
 

 

SQL User Guide 
Version 14.02 

CA Datacom®/DB 

 

 

 

 



 

 

 

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as 
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time. 

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without 
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed 
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing 
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and 
CA.  

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may 
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your 
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced 
copy.  

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable 
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to 
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.  

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY 
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, 
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST 
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE 
POSSIBILITY OF SUCH LOSS OR DAMAGE. 

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such 
license agreement is not modified in any way by the terms of this notice. 

The manufacturer of this Documentation is CA.  

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions 
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or 
their successors.  

Copyright © 2015 CA. All rights reserved.  All trademarks, trade names, service marks, and logos referenced herein belong to 
their respective companies. 

 



 

 

CA Technologies Product References 

This document references the following CA products:  

■ CA Datacom®/DB 

■ CA Datacom® CICS Services 

■ CA Datacom® Datadictionary™  

■ CA Datacom® DB2 Transparency 

■ CA Datacom® DL1 Transparency 

■ CA Datacom® IMS/DC Services 

■ CA Datacom® Server 

■ CA Datacom® SQL (SQL) 

■ CA Datacom® STAR 

■ CA Datacom® TOTAL Transparency 

■ CA Datacom® VSAM Transparency 

■ CA Dataquery™ for CA Datacom® (CA Dataquery) 

■ CA Ideal™ for CA Datacom® (CA Ideal) 

■ CA IPC 

■ CA Librarian® 

■ CA Common Services for z/OS 

 
 



 

 

Contact CA Technologies 

Contact CA Support 

For your convenience, CA Technologies provides one site where you can access the 
information that you need for your Home Office, Small Business, and Enterprise CA 
Technologies products. At http://ca.com/support, you can access the following 
resources: 

■ Online and telephone contact information for technical assistance and customer 
services 

■ Information about user communities and forums 

■ Product and documentation downloads 

■ CA Support policies and guidelines 

■ Other helpful resources appropriate for your product 

Providing Feedback About Product Documentation 

If you have comments or questions about CA Technologies product documentation, you 
can send a message to techpubs@ca.com. 

To provide feedback about CA Technologies product documentation, complete our 
short customer survey which is available on the CA Support website at 
http://ca.com/docs.  
 

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs


 

Contents  5  
 

Contents 
 

Chapter 1: Introduction 21 

System Tasks .............................................................................................................................................................. 21 

Syntax Diagrams ......................................................................................................................................................... 21 

CA Datacom/DB Extensions ....................................................................................................................................... 21 

Where to Find Information ........................................................................................................................................ 21 

Related Publications ................................................................................................................................................... 21 

Listing Libraries for CA Datacom Products ................................................................................................................. 22 

Sample Report Headers.............................................................................................................................................. 22 

Reading Syntax Diagrams ........................................................................................................................................... 24 

Statement Without Parameters .......................................................................................................................... 25 

Statement with Required Parameters ................................................................................................................ 25 

Delimiters Around Parameters ........................................................................................................................... 25 

Choice of Required Parameters .......................................................................................................................... 26 

Default Value for a Required Parameter ............................................................................................................. 26 

Optional Parameter............................................................................................................................................. 26 

Choice of Optional Parameters ........................................................................................................................... 27 

Repeatable Variable Parameter .......................................................................................................................... 27 

Separator with Repeatable Variable and Delimiter ............................................................................................ 27 

Optional Repeatable Parameters ........................................................................................................................ 28 

Default Value for a Parameter ............................................................................................................................ 28 

Variables Representing Several Parameters ....................................................................................................... 29 

CA Datacom/DB Extensions ....................................................................................................................................... 29 

Chapter 2: Before You Start 31 

What Is SQL? .............................................................................................................................................................. 31 

What You Should Know About SQL ............................................................................................................................ 31 

Tables .................................................................................................................................................................. 31 

Columns .............................................................................................................................................................. 31 

Rows .................................................................................................................................................................... 32 

Views ................................................................................................................................................................... 32 

Table and View Examples .................................................................................................................................... 32 

Indexes ................................................................................................................................................................ 34 

Cursors ................................................................................................................................................................ 34 

Units of Work ...................................................................................................................................................... 34 

Units of Recovery (Logical Unit of Work) ............................................................................................................ 34 

Isolation Levels .................................................................................................................................................... 35 



 

 

6  SQL User Guide 
 

Schemas .............................................................................................................................................................. 37 

Authorization ID .................................................................................................................................................. 37 

Accessor ID .......................................................................................................................................................... 37 

Privileges ............................................................................................................................................................. 38 

Synonym .............................................................................................................................................................. 38 

SQL Statements ................................................................................................................................................... 39 

Binding ................................................................................................................................................................ 41 

Plan ..................................................................................................................................................................... 41 

SQL Manager .............................................................................................................................................................. 42 

Reserved Words ......................................................................................................................................................... 43 

Chapter 3: Getting Started 47 

SQL Schemas .............................................................................................................................................................. 47 

SQL Tables .................................................................................................................................................................. 47 

SQL Tables and Logging ....................................................................................................................................... 48 

Creating SQL Tables............................................................................................................................................. 48 

Using Existing Tables ........................................................................................................................................... 49 

Populating SQL Tables ................................................................................................................................................ 50 

Accessing SQL Tables .................................................................................................................................................. 51 

Selecting and Manipulating Data ............................................................................................................................... 51 

Specifying Preprocessor Options ................................................................................................................................ 52 

Preparing Programs .................................................................................................................................................... 52 

Mixed Mode Programming ................................................................................................................................. 53 

Statement Execution Table ........................................................................................................................................ 53 

Dynamic SQL............................................................................................................................................................... 55 

Static SQL ............................................................................................................................................................ 56 

Dynamic SQL ....................................................................................................................................................... 56 

Dynamic SQL in CA Datacom/DB ......................................................................................................................... 57 

INCLUDE Directive ............................................................................................................................................... 57 

Name Types ......................................................................................................................................................... 58 

Reserved Words .................................................................................................................................................. 58 

Parameter Markers ............................................................................................................................................. 58 

Security Implications of Dynamic SQL ................................................................................................................. 58 

Using Dynamic SQL in Application Programs ...................................................................................................... 58 

Other Tasks................................................................................................................................................................. 69 

SQL Status Tables ....................................................................................................................................................... 70 

Procedures and Triggers ............................................................................................................................................. 70 

Overview ............................................................................................................................................................. 71 

SQL Procedures ................................................................................................................................................... 74 

External Security Support for Procedure/Trigger Creation and Execution ......................................................... 74 

Trigger Execution for Record-at-a-Time Maintenance ........................................................................................ 75 



 

 

Contents  7  
 

Transaction Integrity ........................................................................................................................................... 75 

Subroutine Calls Inside Procedures ..................................................................................................................... 76 

Restrictions ......................................................................................................................................................... 76 

Multi-User Facility Considerations for Procedures ............................................................................................. 77 

Parameter Styles and Error Handling .................................................................................................................. 80 

SQL Error Messages Related to Procedures and Triggers ................................................................................... 83 

Datadictionary Support for Triggers and Procedures ......................................................................................... 86 

Examples: Creating a Procedure ......................................................................................................................... 87 

Example: Calling a Procedure ............................................................................................................................ 109 

Left Outer Joins ........................................................................................................................................................ 110 

Overview of Joins .............................................................................................................................................. 110 

SELECT Statement Subselect Syntax ................................................................................................................. 111 

SELECT Statement Select-Into Syntax ............................................................................................................... 112 

Inner Join Example ............................................................................................................................................ 112 

Outer Join Example ........................................................................................................................................... 112 

Value of Rows That Do Not Match .................................................................................................................... 113 

WHERE Clause ................................................................................................................................................... 114 

Performance Considerations ............................................................................................................................. 115 

Order of Predicate Evaluation ........................................................................................................................... 116 

SQL Memory Guard .................................................................................................................................................. 117 

Activating the SQL Memory Guard ................................................................................................................... 118 

SQL and Multiple Multi-User Facilities Support ....................................................................................................... 119 

Application Design Considerations ........................................................................................................................... 119 

Index-Only Processing ....................................................................................................................................... 120 

Cursor Processing .............................................................................................................................................. 120 

DBSQLPR ................................................................................................................................................................... 121 

Processing ......................................................................................................................................................... 122 

Line Commands ................................................................................................................................................. 122 

DBSQLPR Syntax ................................................................................................................................................ 123 

DBSQLPR Options .............................................................................................................................................. 123 

DROP PLAN (DBSQLPR) ..................................................................................................................................... 132 

Example JCL ....................................................................................................................................................... 133 

Example SQL Statements .................................................................................................................................. 135 

Sample Report ................................................................................................................................................... 137 

DATACOM VIEWs ..................................................................................................................................................... 138 

Overview ........................................................................................................................................................... 138 

Redefinitions ..................................................................................................................................................... 138 

Arrays ................................................................................................................................................................ 141 

Default Values for Redefinitions and Arrays ..................................................................................................... 142 

Datadictionary Considerations .......................................................................................................................... 143 

Using SQC Table to Cancel SQL Requests ................................................................................................................. 143 

Overriding SQL Key Selection ................................................................................................................................... 143 



 

 

8  SQL User Guide 
 

Examples ........................................................................................................................................................... 145 

XML Support...................................................................................................................................................... 145 

SQL Read-Only .......................................................................................................................................................... 146 

Chapter 4: CA Datacom/DB SQL Preprocessors 147 

Input to the Preprocessor ........................................................................................................................................ 148 

INCLUDEs in COBOL ........................................................................................................................................... 149 

INCLUDEs in PL/I ................................................................................................................................................ 149 

INCLUDEs in Assembler ..................................................................................................................................... 149 

INCLUDEs in C .................................................................................................................................................... 150 

Output from the Preprocessors ............................................................................................................................... 150 

COBOL ............................................................................................................................................................... 150 

PL/I, Assembler, and C ...................................................................................................................................... 151 

Sample JCL ................................................................................................................................................................ 151 

Sample COBOL JCL............................................................................................................................................. 152 

Sample PL/I JCL ................................................................................................................................................. 161 

Sample Assembler JCL ....................................................................................................................................... 163 

Sample C Language JCL ..................................................................................................................................... 168 

Embedding SQL Statements in Host Programs ........................................................................................................ 173 

Distinguishing SQL Statements ......................................................................................................................... 173 

Rules for Coding Embedded SQL ....................................................................................................................... 176 

Coding Embedded SQL in COBOL ...................................................................................................................... 178 

Coding Embedded SQL in PL/I ........................................................................................................................... 185 

Coding Embedded SQL in Assembler ................................................................................................................ 200 

Coding Embedded SQL in C ............................................................................................................................... 206 

Using Preprocessor Options ..................................................................................................................................... 208 

Overview ........................................................................................................................................................... 209 

Naming the Plan ................................................................................................................................................ 209 

Specifying Processing Options in COBOL .......................................................................................................... 210 

Specifying Processing Options in PL/I, C, and Assembler .................................................................................. 211 

Options You Can Specify ................................................................................................................................... 214 

Description of Options ...................................................................................................................................... 217 

SQL Communication Area (SQLCA) ........................................................................................................................... 242 

SQLCA in COBOL ................................................................................................................................................ 242 

SQLCA in PL/I ..................................................................................................................................................... 242 

SQLCA in Assembler .......................................................................................................................................... 243 

SQLCA in C Language ......................................................................................................................................... 243 

Example SQLCA Formats ................................................................................................................................... 243 

SQL Work Area (SQLWA) .......................................................................................................................................... 261 

SQLWA Examples .............................................................................................................................................. 261 

Error Handling .......................................................................................................................................................... 268 



 

 

Contents  9  
 

Interaction of Multiple Preprocessors ..................................................................................................................... 269 

SQL Plan Options Special Topics ............................................................................................................................... 270 

Read-Only .......................................................................................................................................................... 270 

Mixing Isolation Levels ...................................................................................................................................... 270 

Locking a Row.................................................................................................................................................... 270 

CICS Unit of Recovery End ................................................................................................................................. 271 

ANSI Compatibility ............................................................................................................................................ 272 

CA Ideal Considerations .................................................................................................................................... 273 

Block Transfer ................................................................................................................................................... 273 

OPEN/CLOSE Efficiency ..................................................................................................................................... 273 

Automatic Unit of Recovery End ....................................................................................................................... 273 

Plan Locks .......................................................................................................................................................... 274 

Chapter 5: Interfacing with the User Requirements Table (URT) 277 

DBURINF - User Requirements Interface ................................................................................................................. 278 

DBURSTR - Start User Requirements Table .............................................................................................................. 279 

DBUREND - End Interface/Table .............................................................................................................................. 279 

Example .................................................................................................................................................................... 279 

Chapter 6: Program Compilation, Link-Edit and Execution 281 

Batch Link-Editing and Execution ............................................................................................................................. 281 

Linking Multiple Modules with SQL .......................................................................................................................... 281 

Sample JCL for Batch ................................................................................................................................................ 284 

CICS Link-Editing and Execution ............................................................................................................................... 284 

Sample JCL for CICS .................................................................................................................................................. 285 

IMS/DC Link-Editing and Execution .......................................................................................................................... 285 

Sample JCL for IMS/DC ............................................................................................................................................. 285 

z/OS IMS/DC Sample JCL ................................................................................................................................... 286 

Chapter 7: SQL Error Handling 289 

SQL Return Codes -117 and -118.............................................................................................................................. 289 

Online Displays ......................................................................................................................................................... 292 

Batch Output ............................................................................................................................................................ 296 

Error Handling Related to Procedures and Triggers ................................................................................................. 298 

SQL States ................................................................................................................................................................. 298 

SQLCA Examples ................................................................................................................................................ 298 

SQL State Classes ............................................................................................................................................... 306 

SQL States Table ................................................................................................................................................ 308 



 

 

10  SQL User Guide 
 

Chapter 8: Application Tasks Using Embedded SQL 317 

Chapter 9: Specifying Result Tables 321 

Selecting All Columns ............................................................................................................................................... 321 

Selecting Some Columns .......................................................................................................................................... 322 

Selecting Using Search Conditions ........................................................................................................................... 323 

Ordering by Column Values...................................................................................................................................... 324 

Eliminating Duplicate Rows ...................................................................................................................................... 325 

Counting ................................................................................................................................................................... 326 

Calculating Values .................................................................................................................................................... 327 

Summarizing Group Values ...................................................................................................................................... 329 

Testing for Existence ................................................................................................................................................ 331 

Chapter 10: Selecting Data from Multiple Tables 333 

Joining Tables ........................................................................................................................................................... 334 

Using the UNION Operator ...................................................................................................................................... 337 

Chapter 11: Inserting Rows 341 

Chapter 12: Updating a Table 343 

Chapter 13: Deleting Rows 347 

Chapter 14: Committing and Backing Out Transactions 349 

Chapter 15: Overview of the Interactive SQL Service Facility 351 

Chapter 16: Using the Interactive SQL Service Facility 355 

Executable SQL Statements ...................................................................................................................................... 356 

Specifying Unique SQL Names.................................................................................................................................. 356 

Submitting SQL Statements ...................................................................................................................................... 357 

How to Submit SQL Statements ........................................................................................................................ 358 

How to Use ........................................................................................................................................................ 359 

Using Commands...................................................................................................................................................... 366 

Commands Specifically for Use in the Interactive SQL Service Facility ............................................................. 368 

ALTERNATE Command ...................................................................................................................................... 368 

COPY SQL Command ......................................................................................................................................... 368 

DELETE SQL Command ...................................................................................................................................... 370 



 

 

Contents  11  
 

DISPLAY SQL Command ..................................................................................................................................... 371 

EDIT SQL Command ........................................................................................................................................... 372 

EXECUTE Command .......................................................................................................................................... 373 

REBIND Command ............................................................................................................................................. 373 

SCROLL Command ............................................................................................................................................. 374 

Using Line Commands .............................................................................................................................................. 375 

Using Margin Commands ......................................................................................................................................... 376 

Using PF Keys ............................................................................................................................................................ 377 

Maintaining Source and Output Members .............................................................................................................. 379 

Editing and Executing Source Members ........................................................................................................... 380 

Displaying Source and Output Members .......................................................................................................... 388 

Copying Source Members ................................................................................................................................. 393 

Deleting Source and Output Members ............................................................................................................. 395 

Chapter 17: Creating SQL Objects 399 

Creating a Schema .................................................................................................................................................... 400 

Naming the Schema .......................................................................................................................................... 400 

Relating the Person to the AUTHID ................................................................................................................... 401 

Changing Your AUTHID...................................................................................................................................... 402 

System Schemas ................................................................................................................................................ 402 

Displaying and Reporting .................................................................................................................................. 403 

Example Source Member .................................................................................................................................. 403 

Example Output Member ................................................................................................................................. 405 

Creating a Table ....................................................................................................................................................... 405 

Naming the Table .............................................................................................................................................. 406 

Key Creation ...................................................................................................................................................... 407 

Element Creation .............................................................................................................................................. 408 

Statement Execution Results ............................................................................................................................ 409 

Example Source Member .................................................................................................................................. 409 

Example Output Member ................................................................................................................................. 411 

Altering a Table ........................................................................................................................................................ 412 

Statement Execution Results ............................................................................................................................ 413 

Example Source Member .................................................................................................................................. 413 

Example Output Member ................................................................................................................................. 414 

Creating an Index ..................................................................................................................................................... 415 

Naming the Index (Key) ..................................................................................................................................... 416 

Key Creation ...................................................................................................................................................... 416 

Statement Execution Results ............................................................................................................................ 416 

Example Source Member .................................................................................................................................. 417 

Example Output Member ................................................................................................................................. 418 

Creating a View ........................................................................................................................................................ 419 



 

 

12  SQL User Guide 
 

Naming the View ............................................................................................................................................... 419 

Example Source Member .................................................................................................................................. 420 

Example Output Member ................................................................................................................................. 422 

Creating a Synonym ................................................................................................................................................. 423 

Naming the Synonym ........................................................................................................................................ 424 

Example Source Member .................................................................................................................................. 425 

Example Output Member ................................................................................................................................. 426 

Adding and Replacing Comments ............................................................................................................................ 427 

Example Source Member .................................................................................................................................. 427 

Example Output Member ................................................................................................................................. 428 

Chapter 18: Deleting SQL Objects 431 

Deleting a Schema .................................................................................................................................................... 432 

Dropping an Index .................................................................................................................................................... 432 

Dropping a Table ...................................................................................................................................................... 434 

Dropping a View ....................................................................................................................................................... 437 

Dropping a Synonym ................................................................................................................................................ 439 

Chapter 19: Manipulating Data in SQL Tables 443 

Chapter 20: Controlling Access Through SQL Statements 445 

Chapter 21: Performing SQL Administrative Tasks 447 

SQL Names ............................................................................................................................................................... 447 

Setting the Session Authorization ID ........................................................................................................................ 448 

Current Authorization ID at Start of Session ..................................................................................................... 448 

Displaying and Reporting .................................................................................................................................. 449 

How to Set the Default ...................................................................................................................................... 450 

Deleting a Plan ......................................................................................................................................................... 452 

How the Plan Is Named ..................................................................................................................................... 453 

How to Delete a Plan ......................................................................................................................................... 454 

Rebinding a Plan ....................................................................................................................................................... 457 

How to Rebind a Plan ........................................................................................................................................ 457 

Displaying Index of SQL Plans ................................................................................................................................... 460 

How to Display an Index of SQL Plans ............................................................................................................... 461 

Specifying Plan Options in a Source Member .......................................................................................................... 463 

Coding Plan Options ................................................................................................................................................. 464 

Options You Can Specify ................................................................................................................................... 467 

Example ............................................................................................................................................................. 473 



 

 

Contents  13  
 

Chapter 22: Overview of SQL Language Reference 475 

Chapter 23: Basic Language Elements 477 

Characters ................................................................................................................................................................ 477 

Tokens ...................................................................................................................................................................... 477 

Spaces ............................................................................................................................................................... 478 

Uppercase and Lowercase ................................................................................................................................ 478 

Identifiers ................................................................................................................................................................. 478 

Ordinary SQL identifiers .................................................................................................................................... 479 

Delimited SQL identifiers .................................................................................................................................. 479 

Naming Conventions ................................................................................................................................................ 480 

Authorization ID ....................................................................................................................................................... 483 

Values ....................................................................................................................................................................... 484 

Data Types ................................................................................................................................................................ 485 

DATE, TIME, and TIMESTAMP ........................................................................................................................... 485 

Host Variable Data Types .................................................................................................................................. 486 

SQL Data Types .................................................................................................................................................. 486 

CA Datacom/DB Data Types .............................................................................................................................. 486 

SQL Data Type Support for All CA Datacom/DB Tables ..................................................................................... 490 

Character Strings ............................................................................................................................................... 495 

Numeric Data Types .......................................................................................................................................... 500 

Basic Operations (Assignment and Comparison) ..................................................................................................... 501 

Numeric Assignments ....................................................................................................................................... 502 

String Assignment ............................................................................................................................................. 505 

Numeric Comparisons ....................................................................................................................................... 507 

String Comparisons ........................................................................................................................................... 509 

Literals ...................................................................................................................................................................... 510 

Character String Literals .................................................................................................................................... 510 

Integer Literals .................................................................................................................................................. 512 

Floating Point Literals ........................................................................................................................................ 513 

Decimal Literals ................................................................................................................................................. 513 

Column Names ......................................................................................................................................................... 514 

Qualified Column Names .................................................................................................................................. 515 

Correlation Names ............................................................................................................................................ 515 

Column-Name Qualifiers to Avoid Ambiguity ................................................................................................... 517 

Column-Name Qualifiers in Correlated References .......................................................................................... 518 

Host Variables .......................................................................................................................................................... 520 

Host Structures ................................................................................................................................................. 520 

Extended Format for Host Variables in COBOL ................................................................................................. 522 

Indicator Variables ................................................................................................................................................... 524 

SQL Parameters ........................................................................................................................................................ 525 



 

 

14  SQL User Guide 
 

SQL Variables ............................................................................................................................................................ 525 

Chapter 24: Expressions 527 

CASE, COALESCE, NULLIF, and CAST ......................................................................................................................... 529 

Special Registers ....................................................................................................................................................... 533 

Labeled Duration ...................................................................................................................................................... 535 

Expressions without Arithmetic Operators .............................................................................................................. 537 

Expressions with the Concatenation Operator ........................................................................................................ 537 

Expressions with Arithmetic Operators ................................................................................................................... 538 

Arithmetic Operations for Dates, Times, and Timestamps ...................................................................................... 542 

Durations ........................................................................................................................................................... 542 

Precedence of Operations ........................................................................................................................................ 546 

Chapter 25: Functions 549 

Column Functions ..................................................................................................................................................... 549 

Description ........................................................................................................................................................ 549 

Rules for Column Functions .............................................................................................................................. 551 

Examples ........................................................................................................................................................... 553 

Scalar Functions ....................................................................................................................................................... 554 

Rules for Scalar Functions ................................................................................................................................. 555 

Description ........................................................................................................................................................ 555 

Character Functions .......................................................................................................................................... 565 

Bit-Level Functions ............................................................................................................................................ 570 

Byte-Level Function ........................................................................................................................................... 573 

XML Functions ................................................................................................................................................... 574 

Chapter 26: Predicates 581 

Basic Predicate ......................................................................................................................................................... 581 

Quantified Predicate ................................................................................................................................................ 583 

BETWEEN Predicate ................................................................................................................................................. 584 

LIKE Predicate ........................................................................................................................................................... 585 

EXISTS Predicate ....................................................................................................................................................... 589 

IN Predicate .............................................................................................................................................................. 590 

NULL Predicate ......................................................................................................................................................... 592 

Chapter 27: Search Conditions 593 

Chapter 28: SQL Statements 597 

Preliminary Information—Lock Levels ..................................................................................................................... 597 



 

 

Contents  15  
 

Statements That Support Procedures and Triggers ................................................................................................. 597 

ALTER TABLE ............................................................................................................................................................. 598 

Description ........................................................................................................................................................ 601 

Processing ......................................................................................................................................................... 606 

Assignment Statement ............................................................................................................................................. 610 

CALL/EXECUTE PROCEDURE ..................................................................................................................................... 610 

CASE Statement ........................................................................................................................................................ 612 

CLOSE ....................................................................................................................................................................... 612 

Description ........................................................................................................................................................ 613 

Processing ......................................................................................................................................................... 613 

COMMENT ON.......................................................................................................................................................... 613 

Description ........................................................................................................................................................ 614 

COMMIT WORK ........................................................................................................................................................ 616 

Description ........................................................................................................................................................ 616 

CREATE INDEX .......................................................................................................................................................... 618 

Description ........................................................................................................................................................ 619 

Processing ......................................................................................................................................................... 620 

CREATE PROCEDURE ................................................................................................................................................ 620 

External Procedures .......................................................................................................................................... 622 

SQL Procedures ................................................................................................................................................. 622 

CREATE PROCEDURE Syntax and Description ................................................................................................... 624 

CREATE RULE ............................................................................................................................................................ 676 

CREATE SCHEMA ...................................................................................................................................................... 676 

Description ........................................................................................................................................................ 677 

CREATE SYNONYM ................................................................................................................................................... 678 

Description ........................................................................................................................................................ 679 

CREATE TABLE .......................................................................................................................................................... 680 

Description ........................................................................................................................................................ 681 

Privileges ........................................................................................................................................................... 682 

Column Definition ............................................................................................................................................. 683 

Column Constraint Definition ........................................................................................................................... 684 

Table Constraint Definition ............................................................................................................................... 687 

Referential Constraint Definition ...................................................................................................................... 689 

Data Types ......................................................................................................................................................... 695 

CREATE TRIGGER/RULE ............................................................................................................................................ 702 

CREATE VIEW ............................................................................................................................................................ 705 

Privileges ........................................................................................................................................................... 706 

Description ........................................................................................................................................................ 707 

Processing ......................................................................................................................................................... 708 

DECLARE CURSOR ..................................................................................................................................................... 710 

Description ........................................................................................................................................................ 712 

Cursor Usage ..................................................................................................................................................... 714 



 

 

16  SQL User Guide 
 

Example1 ........................................................................................................................................................... 715 

Example 2 .......................................................................................................................................................... 716 

Example 3 .......................................................................................................................................................... 716 

DECLARE STATEMENT .............................................................................................................................................. 717 

DELETE ...................................................................................................................................................................... 717 

Searched DELETE ............................................................................................................................................... 718 

Positioned DELETE ............................................................................................................................................. 718 

Description ........................................................................................................................................................ 719 

Processing ......................................................................................................................................................... 720 

DESCRIBE .................................................................................................................................................................. 721 

Description ........................................................................................................................................................ 723 

DROP ........................................................................................................................................................................ 725 

Description ........................................................................................................................................................ 728 

Example 1 .......................................................................................................................................................... 731 

Example 2 .......................................................................................................................................................... 731 

Example 3 .......................................................................................................................................................... 731 

EXECUTE ................................................................................................................................................................... 731 

Description ........................................................................................................................................................ 732 

Parameter Marker Replacement ...................................................................................................................... 733 

EXECUTE IMMEDIATE ............................................................................................................................................... 734 

Description ........................................................................................................................................................ 735 

Rules for Statement Strings............................................................................................................................... 735 

EXECUTE PROCEDURE .............................................................................................................................................. 735 

FETCH ....................................................................................................................................................................... 736 

Description ........................................................................................................................................................ 738 

GRANT ...................................................................................................................................................................... 742 

Plan Security ...................................................................................................................................................... 742 

Description of Plan Security Diagram ................................................................................................................ 743 

Description of Non-Plan Security Diagram ........................................................................................................ 744 

IF-THEN Statement ................................................................................................................................................... 746 

INSERT ...................................................................................................................................................................... 747 

Description ........................................................................................................................................................ 748 

Rules for Inserting ............................................................................................................................................. 749 

Processing ......................................................................................................................................................... 749 

ITERATE Statement ................................................................................................................................................... 750 

LEAVE Statement ...................................................................................................................................................... 750 

LOCK TABLE .............................................................................................................................................................. 751 

Description ........................................................................................................................................................ 751 

Example ............................................................................................................................................................. 752 

LOOP Statement ....................................................................................................................................................... 752 

OPEN ........................................................................................................................................................................ 752 

Description ........................................................................................................................................................ 753 



 

 

Contents  17  
 

Processing ......................................................................................................................................................... 755 

Effect of Temporary Tables ............................................................................................................................... 755 

Example ............................................................................................................................................................. 755 

PREPARE ................................................................................................................................................................... 756 

Description ........................................................................................................................................................ 757 

Rules for Statement Strings............................................................................................................................... 758 

Rules for Parameter Markers ............................................................................................................................ 758 

REPEAT-UNTIL Statement......................................................................................................................................... 759 

REVOKE ..................................................................................................................................................................... 759 

Plan Security ...................................................................................................................................................... 760 

Description of Plan Security Diagram ................................................................................................................ 760 

Description of Non-Plan Security Diagram ........................................................................................................ 762 

Example 1 .......................................................................................................................................................... 763 

Example 2 .......................................................................................................................................................... 764 

Example 3 .......................................................................................................................................................... 764 

ROLLBACK WORK...................................................................................................................................................... 764 

Description ........................................................................................................................................................ 765 

SELECT ...................................................................................................................................................................... 766 

Subselect ........................................................................................................................................................... 767 

Full-Select Statement ........................................................................................................................................ 776 

Description ........................................................................................................................................................ 776 

Select-Statement ............................................................................................................................................... 777 

ORDER BY Clause ............................................................................................................................................... 779 

Select-Into Statement ....................................................................................................................................... 781 

SET CURRENT SQLID ................................................................................................................................................. 787 

Description ........................................................................................................................................................ 788 

Example ............................................................................................................................................................. 789 

UPDATE .................................................................................................................................................................... 789 

Searched UPDATE ............................................................................................................................................. 790 

Positioned UPDATE ........................................................................................................................................... 790 

WHENEVER ............................................................................................................................................................... 794 

Description ........................................................................................................................................................ 794 

Processing ......................................................................................................................................................... 795 

Example ............................................................................................................................................................. 796 

WHILE Statement ..................................................................................................................................................... 796 

Appendix A: SQL Query Optimization Messages 797 

Message Table (SYSADM.SYSMSG) .......................................................................................................................... 797 

Requesting Messages ............................................................................................................................................... 798 

Bind-time Messages ................................................................................................................................................. 798 

Bind-time Summary Messages .......................................................................................................................... 798 



 

 

18  SQL User Guide 
 

Bind-time Detail Messages ................................................................................................................................ 807 

Execution-Time Messages ........................................................................................................................................ 812 

Execution-Time Summary Messages................................................................................................................. 813 

Execution-Time Detail Messages ...................................................................................................................... 816 

Examples .................................................................................................................................................................. 818 

Appendix B: Accessibility Features 821 

Appendix C: Sample Data Tables 823 

CUSTOMERS Table:  Sample Data ............................................................................................................................ 824 

ORDERS Table:  Sample Data.................................................................................................................................... 826 

Appendix D: Results of Defining Structures Using SQL Statements 827 

CREATE INDEX Statement ........................................................................................................................................ 827 

CREATE PROCEDURE Statement............................................................................................................................... 828 

CREATE SCHEMA Statement .................................................................................................................................... 829 

CREATE TABLE Statement ........................................................................................................................................ 829 

CREATE SYNONYM Statement .................................................................................................................................. 837 

CREATE TRIGGER Statement .................................................................................................................................... 837 

CREATE VIEW Statement .......................................................................................................................................... 839 

Appendix E: Results of Using ALTER TABLE 841 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities 849 

SQL Object Consistency Analyzer ............................................................................................................................. 849 

Running the SQL Object Consistency Analyzer ................................................................................................. 850 

Correcting Problems ......................................................................................................................................... 856 

DBSRFPR (SQL Upgrade Rebind Utility) .................................................................................................................... 861 

Rebinding with DBSRFPR ................................................................................................................................... 861 

Dropping Plans with DBSRFPR........................................................................................................................... 865 

Sample JCL ......................................................................................................................................................... 867 

Appendix G: SQL Descriptor Area (SQLDA) 869 

Determining Number of SQLVAR Entries to Use ...................................................................................................... 869 

SQLDA (DESCRIBE or PREPARE INTO Statements) .................................................................................................... 870 

Data Type of the Column and Null Value .......................................................................................................... 871 

Data Type of the Column .................................................................................................................................. 872 

SQLVAR and SQLTYPE ........................................................................................................................................ 873 

SQLDA (EXECUTE, FETCH, or OPEN Statement) ....................................................................................................... 873 



 

 

Contents  19  
 

SQLVAR and VS/COBOL ..................................................................................................................................... 875 

  





 

Chapter 1: Introduction  21  
 

Chapter 1: Introduction 
 

This guide tells you how to use SQL with CA Datacom/DB. 

This guide is intended for those who write application programs with embedded SQL 
statements and create/maintain personal SQL tables. It does not attempt to address 
details of coding programs with CA Datacom/DB or CA Datacom Datadictionary 
commands. These can be found in the CA Datacom/DB Programming Guide and the CA 
Datacom Datadictionary DSF Programming Guide. 

 

System Tasks 

Datadictionary Administrators, Database Administrators, and systems programmers can 
find SQL information pertinent to their system tasks in the CA Datacom/DB Database 
and System Administration Guide. 

 

Syntax Diagrams 

For information on how to read the syntax diagrams in this guide, see Reading Syntax 
Diagrams (see page 24). 

 

CA Datacom/DB Extensions 

For information on CA Datacom/DB extensions to ANSI standard SQL implementations, 
see CA Datacom/DB Extensions (see page 29). 

 

Where to Find Information 

See the index to quickly locate information on specific subjects. 
 

Related Publications 

In addition to this guide, you need the CA Datacom/DB Message Reference Guide. 
 



Listing Libraries for CA Datacom Products 

 

22  SQL User Guide 
 

Listing Libraries for CA Datacom Products 

Guidelines to assist you in preparing your JCL are provided in this guide. The sample 
code provided in this document is intended for use as a reference aid only and no 
warranty of any kind is made as to completeness or correctness for your specific 
installation. 

Samples for JCL and programs are provided in the install library (in z/OS, the default 
name for this library is CABDMAC). In z/VSE, sample PROCs are provided that allow you 
to use parameter substitution. You can copy and modify these samples for your specific 
requirements. 

 

Code JOB statements to your site standards and specifications. Specify all data set 
names and library names with the correct names for the installation at your site. In 
many examples, a REGION= or SIZE= parameter is displayed in an EXEC statement. The 
value displayed should be adequate in most instances, but you can adjust the value to 
your specific needs. 

 

The libraries listed for searching must include the following in the order shown: 

1. User libraries (hlq.CUSLIB) you may have defined for specially assembled and linked 
tables, such as DBMSTLST, DBSIDPR, DDSRTLM, DQSYSTBL, or User Requirements 
Tables  

2. CA Datacom base libraries (hlq.CABDLOAD):  CA Datacom/DB, CA Datacom 
Datadictionary, CA Dataquery 

 

3. CA Common Services for z/OS base libraries (hlq.CAW0LOAD) 
 

4. CA IPC libraries (hlq.CAVQLOAD) 

5. Libraries for additional products, such as [assign the DCS variable value for your 
book], CA Datacom VSAM Transparency, CA Ideal, and so on 

 

Sample Report Headers 

The report headers for the sample reports contained in this guide are shown here.  

DBSQLPR SQL Processor report headers have the following format: 

Date: mm/dd/ccyy    ********************************************************************************         Page:     1 

                    *                           CA Datacom/DB SQL Option                           * 

Time: hh.mm.ss      *                             DBSQLPR SQL Processor                            *      Version: 14.0 

                    *                 Copyright © 1990-2011 CA. All rights reserved.               * 

                    ********************************************************************************  



Sample Report Headers 

 

Chapter 1: Introduction  23  
 

SQL Object Consistency Analyzer report headers have the following format: 

          ************************************************************            Page:    1 

          *       CA-DATACOM/DB SQL OBJECT CONSISTENCY ANALYZER      *            Date: mm/dd/ccyy 

          *                                                          *            Time: hh.mm.ss 

          *       Copyright C 1990-2011 CA. All rights reserved.     * 

          *                       VERSION 14.0                       * 

          ************************************************************  

General Utility report headers have the following format: 

Date: mm/dd/ccyy    ********************************************************************************         Page:     1 

                    *                                 CA Datacom/DB                                * 

Time: hh.mm.ss      *                                General Utility                               *      Version: 14.0 

                    *                 Copyright © 1990-2011 CA. All rights reserved.               * 

Base:     dbid      ******************************************************************************** Directory: name 

          

Base: 

The DATACOM-ID (DBID) of the database (base) in use when the report was 
assembled is shown.  

Note: Base does not appear in the header If not appropriate to the report that was 
generated. 

 

Date: 

The date when the report was assembled is shown in the format mm/dd/ccyy: 

mm 

month 

dd 

day 

cc 

century 

yy 

year 
 

Directory: 

The name of the Directory (CXX) in use when the report was assembled is shown.  

Note: Directory does not appear in the header If not appropriate to the report that 
was generated.  

 

Page: 

The number of the page of the report. 
 



Reading Syntax Diagrams 

 

24  SQL User Guide 
 

Time: 

The time when the report was assembled is shown in the format hh.mm.ss: 

hh 

hour 

mm 

minutes 

ss 

seconds 
 

Version: 

The version of CA Datacom/DB being executed when the report was assembled is 
shown, for example, Version 14.0. 

 

Reading Syntax Diagrams 

Syntax diagrams are used to illustrate the format of statements and some basic 
language elements. Read syntax diagrams from left to right and top to bottom. 

The following terminology, symbols, and concepts are used in syntax diagrams: 

■ Keywords appear in uppercase letters, for example, COMMAND or PARM. These 
words must be entered exactly as shown. 

■ Variables appear in italicized lowercase letters, for example, variable. 

■ Required keywords and variables appear on a main line. 
 

■ Optional keywords and variables appear below a main line. 

■ Default keywords and variables appear above a main line. 

■ Double arrowheads pointing to the right indicate the beginning of a statement. 
 

■ Double arrowheads pointing to each other indicate the end of a statement. 

■ Single arrowheads pointing to the right indicate a portion of a statement, or that 
the statement continues in another diagram. 

 

■ Punctuation marks or arithmetic symbols that are shown with a keyword or variable 
must be entered as part of the statement or command.  Punctuation marks and 
arithmetic symbols can include the following: 

 

, comma > greater than symbol 

. period <- less than symbol 

( open parenthesis = equal sign 



Reading Syntax Diagrams 

 

Chapter 1: Introduction  25  
 

) close parenthesis ¬ not sign 

+ addition - subtraction 

* multiplication / division 

Statement Without Parameters 

The following is a diagram of a statement without parameters: 

►►─ COMMAND ──────────────────────────────────────────────────────────────────►◄ 

For this statement, you must write the following: 

COMMAND 
 

Statement with Required Parameters 

Required parameters appear on the same horizontal line, the main path of the diagram, 
as the command or statement. The parameters must be separated by one or more 
blanks. 

The following is a diagram of a statement with required parameters: 

►►─ COMMAND ─ PARM1 ─ PARM2 ──────────────────────────────────────────────────►◄ 

You must write the following: 

COMMAND PARM1 PARM2 
 

Delimiters Around Parameters 

Delimiters, such as parentheses, around parameters or clauses must be included. 

The following is a diagram of a statement with delimiters around parameters: 

►►─ COMMAND ─ (PARM1) ─ PARM2='variable' ─────────────────────────────────────►◄ 

If the word variable is a valid entry, you must write the following: 

COMMAND (PARM1) PARM2='variable' 
 



Reading Syntax Diagrams 

 

26  SQL User Guide 
 

Choice of Required Parameters 

When you see a vertical list of parameters as shown in the following example, you must 
choose one of the parameters.  This indicates that one entry is required, and only one of 
the displayed parameters is allowed in the statement. 

The following is a diagram of a statement with a choice of required parameters: 

►►─ COMMAND ─┬─ PARM1 ─┬──────────────────────────────────────────────────────►◄ 
             ├─ PARM2 ─┤ 
             └─ PARM3 ─┘ 

You can choose one of the parameters from the vertical list, such as in the following 
examples: 

COMMAND PARM1 

COMMAND PARM2 

COMMAND PARM3 
 

Default Value for a Required Parameter 

When a required parameter in a syntax diagram has a default value, the default value 
appears above the main line, and it indicates the value for the parameter if the 
command is not specified. If you specify the command, you must code the parameter 
and specify one of the displayed values. 

The following is a diagram of a statement with a default value for a required parameter: 

►►─ COMMAND ─ PARM1= ─┬─ YES ◄ ─┬─ PARM2 ─────────────────────────────────────►◄ 
                      └─ NO ────┘ 

If you specify the command, you must write one of the following: 

COMMAND PARM1=NO PARM2 

COMMAND PARM1=YES PARM2 
 

Optional Parameter 

A single optional parameter appears below the horizontal line that marks the main path. 

The following is a diagram of a statement with an optional parameter: 

►►─ COMMAND ─┬─────────────┬──────────────────────────────────────────────────►◄ 
             └─ PARAMETER ─┘ 

You can choose (or not) to use the optional parameter, as shown in the following 
examples: 

COMMAND 

COMMAND PARAMETER 
 



Reading Syntax Diagrams 

 

Chapter 1: Introduction  27  
 

Choice of Optional Parameters 

If you have a choice of more than one optional parameter, the parameters appear in a 
vertical list below the main path. 

The following is a diagram of a statement with a choice of optional parameters: 

►►─ COMMAND ─┬─────────┬──────────────────────────────────────────────────────►◄ 
             ├─ PARM1 ─┤ 
             └─ PARM2 ─┘ 

You can choose any of the parameters from the vertical list, or you can write the 
statement without an optional parameter, such as in the following examples: 

COMMAND 

COMMAND PARM1 

COMMAND PARM2 
 

Repeatable Variable Parameter 

In some statements, you can specify a single parameter more than once.  A repeat 
symbol indicates that you can specify multiple parameters. 

The following is a diagram of a statement with a repeatable variable parameter: 

             ┌────────────┐ 
►►─ COMMAND ─▼─ variable ─┴───────────────────────────────────────────────────►◄ 

In the preceding diagram, the word variable is in lowercase italics, indicating that it is a 
value you supply, but it is also on the main path, which means that you are required to 
specify at least one entry.  The repeat symbol indicates that you can specify a parameter 
more than once.  Assume that you have three values named VALUEX, VALUEY, and 
VALUEZ for the variable.  The following are some of the statements you might write: 

COMMAND VALUEX 

COMMAND VALUEX VALUEY 

COMMAND VALUEX VALUEX VALUEZ 
 

Separator with Repeatable Variable and Delimiter 

If the repeat symbol contains punctuation such as a comma, you must separate multiple 
parameters with the punctuation. The following diagram includes the repeat symbol, a 
comma, and parentheses: 

The following is a diagram of a statement with a separator with a repeatable variable 
and a delimiter: 

                 ┌─ , ────────┐ 
►►─ COMMAND ─ ( ─▼─ variable ─┴─ ) ───────────────────────────────────────────►◄ 



Reading Syntax Diagrams 

 

28  SQL User Guide 
 

In the preceding diagram, the word variable is in lowercase italics, indicating that it is a 
value you supply.  It is also on the main path, which means that you must specify at least 
one entry.  The repeat symbol indicates that you can specify more than one variable and 
that you must separate the entries with commas.  The parentheses indicate that the 
group of entries must be enclosed within parentheses. Assume that you have three 
values named VALUEA, VALUEB, and VALUEC for the variable. 

The following are some of the statements you can write: 

COMMAND (VALUEC) 

COMMAND (VALUEB,VALUEC) 

COMMAND (VALUEB,VALUEA) 

COMMAND (VALUEA,VALUEB,VALUEC) 
 

Optional Repeatable Parameters 

The following diagram shows a list of parameters with the repeat symbol for optional 
repeatable parameters: 

             ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ 
►►─ COMMAND ─▼─┬─────────┬─┴─▼─┬─────────┬─┴─▼─┬─────────┬─┴──────────────────►◄ 
               └─ PARM1 ─┘     └─ PARM2 ─┘     └─ PARM3 ─┘ 

The following are some of the statements you can write: 

COMMAND PARM1 

COMMAND PARM1 PARM2 PARM3 

COMMAND PARM1 PARM1 PARM3 
 

Default Value for a Parameter 

The placement of YES in the following diagram indicates that it is the default value for 
the parameter. If you do not include the parameter when you write the statement, the 
result is the same as if you had actually specified the parameter with the default value. 

The following is a diagram of a statement with a default value for an optional 
parameter: 

►►─ COMMAND ─┬──────────────────────┬─ PARM2 ─────────────────────────────────►◄ 
             └─ PARM1= ─┬─ YES ◄ ─┬─┘ 
                        └─ NO ────┘ 

For this command, COMMAND PARM2 is the equivalent of COMMAND PARM1=YES 
PARM2. 

 



CA Datacom/DB Extensions 

 

Chapter 1: Introduction  29  
 

Variables Representing Several Parameters 

In some syntax diagrams, a set of several parameters is represented by a single 
reference. 

The following is a diagram of a statement with variables representing several 
parameters: 

►►─ COMMAND ─┬─────────────────────┬──────────────────────────────────────────►◄ 
             ├─ PARM1 ─────────────┤ 
             └─┤ parameter-block ├─┘ 

Expansion of parameter-block 

├──┬─────────────────────┬─────────────────────────────────────────────────────┤ 
   ├─ PARM2 ─────────────┤ 
   └─ PARM3 ─┬─────────┬─┘ 
             ├─ PARM4 ─┤ 
             └─ PARM5 ─┘ 

 

The parameter-block can be displayed in a separate syntax diagram. 

Choices you can make from this syntax diagram therefore include, but are not limited 
to, the following: 

COMMAND PARM1 

COMMAND PARM3 

COMMAND PARM3 PARM4 

Note:  Before you can specify PARM4 or PARM5 in this command, youmust specify 
PARM3. 

 

CA Datacom/DB Extensions 

The CA Datacom/DB implementation of SQL conforms to American National Standard 
Database Language SQL, ANSI X3.135-1989 in the following manner: 

1. Full SQL conformance to level 2, except as noted. 

2. Includes implementation of the following facilities: 

a. Direct processing of SQL data manipulation language statements. 

b. Embedded SQL COBOL and PL/I. 
 

In some instances, the SQL implementation described in this manual has added 
capabilities beyond the SQL standard.  CA Datacom/DB extensions to ANSI standard SQL 
are indicated in the label of the syntax diagram's box (if the entire diagram represents a 
CA Datacom/DB extension), or within the diagram as shown below (if only part of a 
diagram represents a CA Datacom/DB extension). 

►►─ STATEMENT ─┬───────────┬──────────────────────────────────────────────────►◄ 
               └─ CLAUSE1 ─┘ 



CA Datacom/DB Extensions 

 

30  SQL User Guide 
 

Note:  CLAUSE1 is a CA Datacom/DB extension. 

You can choose to use the CA Datacom/DB extension, which is essentially an optional 
parameter.  Some of these extensions are unique to the CA Datacom/DB environment 
and could function differently from syntactically similar extensions provided by other 
implementations of SQL. 
 



 

Chapter 2: Before You Start  31  
 

Chapter 2: Before You Start 
 

What Is SQL? 

SQL is a database sub-language which you can use to define, manipulate and control 
data in your relational databases. As part of our ongoing commitment to protect our 
clients' investments in application software resources, CA Datacom/DB offers SQL 
support as a fully integrated part of CA Datacom/DB. We intend CA Datacom/DB SQL to 
provide support that offers a broad scope of facilities for the development of 
applications while minimizing the amount of effort required to port those applications 
from one DBMS to another. 

SQL allows you to perform powerful relational functions such as projection, restriction, 
joining and union. 

In performing tasks using SQL, you can draw on support provided by other DATACOM 
products such as CA Datacom Datadictionary and CA Dataquery. 

 

What You Should Know About SQL 

While a database must satisfy many requirements to be classified as a relational 
database, one of the requirements is that the data appears to you as a collection of 
tables. 

 

Tables 

SQL allows you to access tables as sets of data.  A base table is the table as it is defined 
and contained in the database.   You can form result tables by accessing only part of the 
data stored in a base table.  Each table consists of a specific number of columns and an 
unordered collection of rows. 

 

Columns 

Columns are the vertical components of the table.  A column describes an indivisible 
unit of data.  Each column has a name and a particular data type, such as character or 
integer.  While the order of columns in a table is fixed, there is no conceptual 
significance to this order. 

 



What You Should Know About SQL 

 

32  SQL User Guide 
 

Rows 

The horizontal components of tables are called rows.  A row is a sequence of values, one 
for each column of the table.  Each row contains the same number of columns.  You 
insert and delete rows, whereas you update individual columns.  A table, by the way, 
can exist without any rows. 

 

Views 

Using SQL, you can define views, which are alternative representations of data from one 
or more tables. 

A view is a derived table or a subset of the columns and rows of the table on which it is 
defined. A view can also be defined on another view. 

The capability of joining two or more tables easily is a major advantage that 
distinguishes relational systems from nonrelational systems. The ability to create views, 
or derived tables, allows you to access and manipulate only that data which is significant 
for your purposes. 

 

Table and View Examples 

Following is a conceptual diagram of a table named PERSONNEL: 

 

 
EMPNO LNAME FNAME MI CITY ST 

ROW 1 010900 Duparis Jean C Houston TX 

ROW 2 008206 Santana Juan M Dallas TX 

ROW 3 002105 MacBond Sean D El Paso TX 

ROW 4 010043 Odinsson Jon L Dallas TX 

Following is a conceptual diagram of a table named PAY: 

 

 
EMPNO SALARY YTDCOM 

ROW 1 010043 03560000 00120000 

ROW 2 008206 04530000 00290000 

ROW 3 010900 02970000 00075000 

ROW 4 002105 03280000 00107500 



What You Should Know About SQL 

 

Chapter 2: Before You Start  33  
 

The two previously shown tables contain information about the same four people 
(match the EMPNO columns), but the order of the rows in each table is not significant. 

However, the columns appear in the same order in each row.  For example, in the 
PERSONNEL table, EMPNO is always first, LNAME is always second, FNAME is always 
third, and so on. 

The values which appear in a column fall within the same type, that is to say, LNAME, 
FNAME and MI each contain character data, while SALARY contains numeric data. 

The values which appear in LNAME all fall within the range of valid values, or domain, of 
"last name," the values in FNAME are within the domain of "first name," and the values 
in SALARY are within the domain of "salary" which is $999,999.99 to 0.00 for this 
example. 

 

Some columns, such as ST (for "state"), may contain duplicate values (in this case, TX), 
but that does not mean that TX is the only value in the domain for the column ST. 

Other columns contain only unique values, such as EMPNO, since no two employees of 
this company have the same employee number.  In the previous example, the employee 
number is used to uniquely identify information about each employee no matter which 
table contains the information. 

Using the tables in the previous example, you could define a view that allows you to see 
the name of each employee (columns LNAME, FNAME and MI from the PERSONNEL 
table) and the salary of that employee (column SALARY from the PAY table).  In your 
"view," the information you requested would look like a table and actually joins 
specified data from two different tables. 

 

Following is a conceptual diagram of a view which you have named WAGES: 

 

 
LNAME FNAME MI SALARY 

ROW 1 Duparis Jean C 02970000 

ROW 2 Santana Juan M 04530000 

ROW 3 MacBond Sean D 03280000 

ROW 4 Odinsson Jon L 03560000 

The view WAGES, derived from the tables PERSONNEL and PAY, thus shows a "view" of 
only the columns that you want to see. 

 



What You Should Know About SQL 

 

34  SQL User Guide 
 

Indexes 

Tables are often accessed by the data values contained in one or more columns.  To 
make such accesses efficient, the tables can be indexed by one or more columns.  Such 
an index supports direct access to the table's rows by their data value content.  A given 
table can support multiple indexes. CA Datacom/DB automatically maintains the index 
as the table's content changes. 

Indexes are a performance-only consideration for you, the SQL user. The presence or 
absence of an index does not enhance or restrict the logical operations supported for a 
table.  CA Datacom/DB also supports a special type of index to control the physical 
placement of rows to enhance performance.  This "clustering index" is automatically the 
lowest level, no locks are acquired for rows accessed "read only" created by the system 
if your Database Administrator has selected this space management option. 

 

Cursors 

You can control the row to which an application program points by manipulating a 
control structure called the cursor.  You can use the cursor to retrieve rows from an 
ordered set of rows, possibly for the purpose of updating or deleting.  The SQL 
statements FETCH, UPDATE, and DELETE support the concept of positioned operations. 

 

Units of Work 

A unit of work contains one or more units of recovery.  In a batch environment, a unit of 
work corresponds to the execution of an application program.  Within that program, 
there may be many units of recovery as COMMIT or ROLLBACK statements are 
executed. 

 

Units of Recovery (Logical Unit of Work) 

A unit of recovery also known as a Logical Unit of Work (LUW) is a sequence of 
operations within a unit of work and includes the data and control information needed 
to enable CA Datacom/DB to back out or reapply all of an application's changes to 
recoverable resources since the last commit point. A unit of recovery is initiated when a 
unit of work starts or by the termination of a previous unit of recovery. A unit of 
recovery is terminated by a commit or rollback operation or the termination of a unit of 
work. The commit or rollback operation affects only the results of SQL statements and 
CA Datacom/DB commands executed within a single unit of recovery. 

 



What You Should Know About SQL 

 

Chapter 2: Before You Start  35  
 

Isolation Levels 

Units of recovery can be isolated from the updating operations of other units of 
recovery.  This is called isolation level. 

The "uncommitted data" isolation level allows you to access rows that have been 
updated by another unit of recovery, but the changes have not been committed, or 
written to the base table. 

The isolation level that provides a higher degree of integrity is the "cursor stability" 
isolation level. With cursor stability, a unit of recovery holds locks only on its 
uncommitted changes and the current row of each of its cursors. 

 

The "repeatable read" isolation level provides maximum protection from other 
executing application programs. When your program executes with repeatable read 
protection, rows referenced by your program cannot be changed by other programs 
until your program reaches a commit point. 

Note:  In a Data Sharing environment, an isolation level of repeatable read is not 
supported across the MUFplex. For more information on Data Sharing, see the CA 
Datacom/DB Database and System Administration Guide. 

 



What You Should Know About SQL 

 

36  SQL User Guide 
 

Repeatable Read Interlocks 

The repeatable read transaction isolation level provides the highest level of isolation 
between transactions because it acquires a share or exclusive scan range intent lock 
before beginning a scan (all rows are accessed with the scan operation).  This lock is 
released when the transaction ends, guaranteeing that other transactions cannot 
update, delete or insert rows within the scan range until the transaction ends. If another 
transaction attempts to do so, it waits until the transaction has ended, or one of the 
transactions is aborted if an exclusive control interlock occurs.  As the name implies, a 
repeatable read transaction is therefore guaranteed to reread the exact same set of 
rows if it reopens a cursor or re-executes a SELECT INTO statement (any changes made 
by the transaction itself would of course be visible). 

Although repeatable read isolation provides a convenient way to isolate transactions, it 
does so at the cost of possible lower throughput and more exclusive control interlocks, 
as described in the following: 

■ Lower Throughput: 

Because more rows remain locked for a longer period of time, repeatable read 
isolation may lower total throughput (transactions wait longer for locks to be 
released). 

■ Mixed Repeatable Read and Cursor Stability Transactions: 

Repeatable read may cause more exclusive control interlocks, especially if 
concurrent transactions are not using repeatable read. For example, if cursor 
stability transaction CS updates row R1, and then repeatable read transaction RR 
acquires a scan range intent lock that includes row R1, CS waits if it attempts to 
read a row in RR's scan range with exclusive control.  While CS is waiting, unless row 
R1 has already been read by RR's scan, RR eventually attempts to read row R1 with 
a row-level share lock.  But because CS is waiting on RR, neither transaction can 
continue.  So, the deadlock condition is resolved by abnormally terminating RR, 
which releases its locks and allows CS to continue. In this case, if transaction CS is 
changed to repeatable read isolation, it acquires an exclusive scan range intent lock 
before updating row R1.  Transaction RR then waits when it attempts to acquire its 
scan range intent lock. 

 

■ Scan Range May be Entire Table: 

A deadlock can still occur if concurrent repeatable read transactions acquire 
multiple scan range intent locks.  The same conditions exist as with row-level 
locking of cursor stability transactions, except that with repeatable read a larger 
number of rows may be locked with the scan ranges, and these locks are held for a 
longer period of time. This is especially true when the first column of the scan index 
is not restricted, or multiple indexes are merged.  In these cases, the scan range is 
the entire table. 

 



What You Should Know About SQL 

 

Chapter 2: Before You Start  37  
 

■ Avoiding Deadlocks: 

If deadlock avoidance is critical, it can be avoided if all concurrent transactions 
execute LOCK TABLE statements in the same sequence before executing any other 
statements in a transaction.  If the transaction might insert, update or delete rows 
of a table, the lock must be exclusive, and this causes all other transactions 
attempting to execute a LOCK TABLE statement for the table, or tables, to wait.  
Because the LOCK TABLE statements are executed in the same sequence, perhaps 
by table name, no deadlock can occur. 

 

Schemas 

A schema is a collection of tables, views, synonyms, and plans which make up an SQL 
environment.  Schemas may be created so that each user has a personalized SQL 
environment by creating a schema for each user.  Schemas may also be created that 
reflect some other organization of data, such as by department or project.  Or a 
combination of both approaches may be used. 

 

Authorization ID 

The name of a schema is known as its authorization ID. A fully-qualified table, view, 
synonym, or plan name consists of the name of the object and the authorization ID of 
the schema to which the object belongs.  If an authorization ID is not explicitly specified, 
the default authorization ID in effect is assumed. 

Note:  For application programs, the default authorization ID is the one named in the 
AUTHID= Preprocessor option.  For information about how the default authorization ID 
is specified in CA Datacom Datadictionary, see Relating the Person to the AUTHID. For 
information about how the default authorization ID is specified in CA Dataquery, see the 
CA Dataquery User Guide. 

 

Accessor ID 

An accessor ID designates a user.  Note that this is a user's ID, not a schema's 
authorization ID. 

 



What You Should Know About SQL 

 

38  SQL User Guide 
 

Privileges 

Security is typically handled using the CA Datacom/DB External Security Model.  With 
external security, access rights to the underlying data are controlled through table, 
plans, or view rights, defined in the external security product. 

Optionally, you may secure access using the SQL Security Model.  With the SQL Security 
Model, privileges are automatically granted to the owner when a table or view is 
created.  The owner may then grant and revoke those privileges to others by issuing 
GRANT and REVOKE statements.  With external security, there is no automatic granting 
of privileges. 

Note:  Privileges in CA Datacom/DB are granted to users, not to schema IDs.  For 
example, when a table is created the table is defined to be in a particular schema.  But 
the privileges which are automatically granted are given to the accessor ID of the user 
who executed the CREATE TABLE statements.  Similarly, when privileges are granted, 
they are granted to users, not schemas. 

 

Synonym 

Synonyms are alternative names for tables and views.  The full name of a table or view is 
qualified by the authorization ID.   You can avoid using the full name by defining a 
synonym for a specific table or view.  These short names are especially useful if 
accessing a table or view owned by another schema. 

 



What You Should Know About SQL 

 

Chapter 2: Before You Start  39  
 

SQL Statements 

You embed SQL statements in a host program written in a host language such as COBOL 
or PL/I. Variables defined in the host program that are referenced by the SQL 
statements are called host variables. 

You can also submit certain SQL statements through the CA Datacom Datadictionary 
Interactive SQL Service Facility or interactively through CA Dataquery. See the 
Statement Execution Table (see page 53). 

CA Datacom/DB supports the dynamic preparation and execution of SQL statements 
under the control of an application program.  See Dynamic SQL (see page 55). 

The SQL sub-language consists of the following: 

Data Definition Language (DDL) 

DDL statements define the SQL objects, such as tables and views. 

Note:  Because DDL statements are not recorded to the Log Area (LXX), they are not 
recoverable using the RECOVERY function of the CA Datacom/DB Utility (DBUTLTY).  
In the case of DDL statements, it is therefore your responsibility to ensure the 
existence of the Directory (CXX) definitions necessary for recovery. 

 

Data Manipulation Language (DML) 

DML statements let you access and manipulate the data in your SQL tables. 

Note:  You cannot use SQL DML statements to do maintenance on the DATA-DICT 
database, that is, no maintenance can be done to any tables in the DATA-DICT 
database using SQL. For details about DATA-DICT, see the CA Datacom/DB 
Database and System Administration Guide. 

SQL Control Statements 

Includes the CALL and EXECUTE PROCEDURE statements that supports the 
implementation of procedures and triggers beginning in r10. 

 



What You Should Know About SQL 

 

40  SQL User Guide 
 

The following table lists the SQL statements in the categories of DDL, DML, and SQL 
Control Statements: 

 

Data Definition Language (DDL) Data Manipulation Language (DML) SQL Control Statements 

ALTER TABLE 
COMMENT ON 
CREATE INDEX 
CREATE PROCEDURE 
CREATE RULE 
CREATE SCHEMA 
CREATE SYNONYM 
CREATE TABLE 
CREATE TRIGGER 
CREATE VIEW 
DROP 
GRANT 
REVOKE 

Cursor operations: 

CLOSE 
DECLARE CURSOR 
DELETE...CURRENT (positioned DELETE) 
FETCH 
OPEN 
UPDATE...CURRENT (positioned UPDATE) 

Non-cursor operations: 

DELETE (searched DELETE) 
INSERT 
SELECT 
UPDATE (searched UPDATE) 

Exception handling operations: 

WHENEVER 

CALL 
EXECUTE PROCEDURE 

The following table lists the dynamic SQL and SQL session statements: 

 

Dynamic SQL Statements SQL Session Statement 

DESCRIBE 
dynamic DECLARE 
dynamic FETCH 
dynamic OPEN 
EXECUTE 
EXECUTE IMMEDIATE 
PREPARE 

SET CURRENT SQLID 

See the descriptions of the SQL statements beginning with ALTER TABLE (see page 598) 
for information on how to use these statements. 

 



What You Should Know About SQL 

 

Chapter 2: Before You Start  41  
 

Binding 

SQL statements must be prepared during the program preparation process before the 
program is executed. This process is called binding. The SQL Preprocessor prepares the 
SQL portions of a source program for execution. 

CA Datacom/DB delays some decisions which impact the method used to execute an 
SQL statement until execution time if information required to make the best decision is 
not available until execution time. This technique is called phased binding. In effect, the 
binding process is performed in discrete phases and one of those phases does not occur 
until execution time. 

 

For SQL statements embedded in a host language, such as COBOL, binding is performed 
when the program is preprocessed. For SQL statements executed through CA 
Dataquery, binding occurs during the validation step.  For the CA Datacom 
Datadictionary, binding occurs automatically when SQL statements are executed. 

When a statement is prepared, any dependencies of that statement on table or view 
definitions are recorded in the CA Datacom Datadictionary.  If any dependent objects 
are changed, the related statement is marked invalid and must be rebound before it can 
be executed again. 

The SQL Manager automatically attempts a rebind when an invalid statement is 
executed.  Rebinding can also be requested in advance. For more information, see CA 
Datacom/DB SQL Preprocessors. 

 

Plan 

A product of the binding process is the CA Datacom/DB access plan. The plan is required 
by CA Datacom/DB to process SQL statements encountered during execution.  The 
preparation phase builds the plan for the application and binds a statement to table, 
view and synonym definitions stored in the CA Datacom Datadictionary.  This eliminates 
the cost of binding at each execution of a statement. 

Since SQL plans are stored in the CA Datacom Datadictionary, the CA Datacom 
Datadictionary must be available to execute previously prepared SQL statements. 

SQL plans are securable.  With plan security you can create a plan such that, in order to 
execute the plan, an accessor ID must have the plan EXECUTE privilege for that plan.  
The plan EXECUTE privilege can be granted with the GRANT statement and revoked with 
the REVOKE statement. For other plan security information in this guide, see GRANT and 
REVOKE, and CHECKPLAN=, CHECKWHEN=, CHECKWHO=, and SAVEPLANSEC= options in 
Description of Options. 

Note: For detailed information about plan security, see the CA Datacom Security 
Reference Guide. 

 



SQL Manager 

 

42  SQL User Guide 
 

SQL Manager 

The SQL Manager prepares, optionally stores, and executes SQL statements.  The SQL 
Manager is integrated with the Multi-User Facility and is accessed by the CA 
Datacom/DB SQL Preprocessor and by other DATACOM products such as the CA 
Datacom Datadictionary and CA Dataquery. The following diagram approximates how 
the SQL Manager processes an application with embedded SQL statements. 

 
 



Reserved Words 

 

Chapter 2: Before You Start  43  
 

Interactive SQL is supported by CA Dataquery, with capabilities to create and populate 
tables using standard SQL statements.  See the CA Dataquery documentation for 
information on how this product uses SQL. 

The CA Datacom Datadictionaryy supports the definition of tables and views using SQL 
statements, allowing you to take advantage of the standardization that SQL provides.  
You can also use the CA Datacom Datadictionary menu-driven method to define 
database structures, as an alternative to SQL, and update the SQL defined databases 
with additional information that is not currently available in SQL.  In addition, the CA 
Datacom Datadictionary provides many capabilities not available through SQL.  For 
example, text classifications allow you to store text about your SQL tables, views and 
columns in addition to that specified in the COMMENT ON statement.  Certain 
attributes for SQL tables and columns can be modified directly through CA Datacom 
Datadictionary without limiting the ability to access these occurrences through SQL. 

Note: For more information about these capabilities, see the CA Datacom 
Datadictionary Online Reference Guide. 

 

Reserved Words 

The following table lists SQL reserved words.  Do not form names using any of these 
words as SQL identifiers.  See Identifiers. 

Note:  The SQL transport utility (DDTRSLM) has additional restrictions on words used for 
an AUTHID, SQL name, or CA Datacom Datadictionary occurrence name. See the CA 
Datacom Datadictionary Batch Reference Guide. 

In the following table, where more than one word is listed on a line, those words as a 
group are reserved, not necessarily the individual words that make up the group unless 
that word is listed separately on its own line. Words followed by an asterisk (*) indicate 
that word is reserved only in the COBOL language. We reserve the right to add or 
change reserved keywords as needed. 

 



Reserved Words 

 

44  SQL User Guide 
 

SQL Reserved Words 

 

ADD 
AFTER 
ALL 
ALTER 
AND 
ANY 
ARRAY 
AS 
ASSEMBLER 
ASENSITIVE 
ATOMIC 

BEFORE 
BEGIN 
BETWEEN 
BIT 
BIT_ADD 
BIT_AND 
BIT_NOT 
BIT_OR 
BIT_XOR 
BY 
BYREF 

CALL 
CASE 
CAST 
COALESCE 
COLUMN 
COBOL 
CONCAT 
CONDITION 
CONTINUE HANDLER 
CONTAINS 
CONVERSION 
COUNT 
CURRENT 
CURSOR 

DATA 
DATACOM 
DATACOM DUMP 
DATACOM LOOPLIMIT 
DATACOM TSN 
DELETE 
DESCRIPTOR 
DETERMINISTIC 
DISTINCT 
DO 
DROP 

EACH 
ELSE 
ELSEIF 
END 
END-EXEC* 
EXECUTE 
EXISTS 
EXIT HANDLER 
EXTERNAL 

FIRST 
FOR 
FROM 

GENERAL 
GET CURRENT DIAGNOSTICS 
GET DIAGNOSTICS 
GET STACKED 
GET STACKED DIAGNOSTICS 
GRANT 
GROUP 

HANDLER 
HAVING 

IF 
IMMEDIATE 
IN 
INDEX 
INNER 
INOUT 
INPUT 
INSENSITIVE 
INSERT 
ITERATE 
INTEXTRACT 
INTO 
INVALIDATE 
IS 

JOIN KEY LANGUAGE 
LEADING 
LEAVE 
LEFT 
LIKE 
LOOP 
LOWER 
LOWERCASE 
LTRIM 



Reserved Words 

 

Chapter 2: Before You Start  45  
 

MODIFIES 
MUF_NAME 

NEW 
NEWFUN1 
NEWFUN2 
NEWFUN3 
NO 
NOT 
NOT FOUND 
NULL 
NULLIF 
NULLS 

OF 
OLD 
ON 
OPTIMIZE 
OPTION 
OPTIONS 
OR 
ORDER 
OUT 
OUTER 

PARAMETER 
PLI 
PRIVILEGES 
PROCEDURE 
PROGRAM 

RAISE ERROR 
READS 
REFERENCING 
REPEAT 
RESIGNAL 
RETURN 
RTRIM 
RULE 
RUN 

SELECT 
SENSITIVE 
SET 
SIGNAL 
SOME 
SPECIFIC 
SQL 
SQLEXCEPTION 
SQLSTATE 
SQLWARNING 
SQUEEZE 
STATEMENT 
STRIP 
STYLE 
SUBSTRING 
SYNONYM 

TABLE 
THEN 
TO 
TO PXXSQL 
TO SYSOUT 
TRAILING 
TRIGGER 
TRIM 
TSN 

UNION 
UNDO HANDLER 
UNTIL 
UPDATE 
UPPER 
UPPERCASE 
USER 
USING 

VALUES 
VARCHAR 
VIEW 

WHEN 
WHERE 
WHILE 
WITH 
WITHOUT 

XMLATTRIBUTES 
XMLCONCAT 
XMLELEMENT 
XMLFOREST 
XMLSERIALIZE 

 

 





 

Chapter 3: Getting Started  47  
 

Chapter 3: Getting Started 
 

SQL Schemas 

Before you can use the capabilities SQL offers for defining, manipulating and controlling 
data, you must have a schema to define your SQL environment.  A schema is required 
before you can use SQL. 

The schema is essentially an authorization ID and all the SQL objects (tables, views, 
plans, and synonyms) qualified by that authorization ID. 

You can create a schema in the following ways: 

■ Embed a CREATE SCHEMA statement in an application 

■ Submit the CREATE SCHEMA statement through the CA Datacom Datadictionary 
Interactive SQL Service Facility 

■ Use DBSQLPR to CREATE SCHEMA  

When you create your schema, the only requirement is that you specify the 
authorization ID.  You can optionally define your tables, views and synonyms at that 
time, or you can create these objects separately as needed. 

 

SQL Tables 

Once you have a schema, you must have tables that SQL can access.  In the CA 
Datacom/DB environment, this means you must have a table definition in the CA 
Datacom Datadictionary, and it must be associated with a data area where the table 
data is to be stored.  The data area must be defined in the CA Datacom Datadictionary 
and be associated with a specific database, which has been cataloged to the CA 
Datacom/DB Directory (CXX). You can use existing tables, if they meet the requirements 
for access by SQL. You can also modify existing tables so SQL can access them, or you 
can create your own tables. 

Note:  When you use CA Datacom Datadictionary to modify any attribute of a table that 
is accessible through SQL, CA Datacom Datadictionary changes the SQL-ACCESS 
attribute-value to N. You must run the VERIFY or CATALOG function on the table to 
make CA Datacom Datadictionary change the value back to Y and allow SQL access. 

 



SQL Tables 

 

48  SQL User Guide 
 

SQL Tables and Logging 

Proper execution of SQL statements that cause data change requires all affected tables 
to have logging enabled. Logging should not be turned off (LOGGING=NO) for any SQL 
maintenance. This applies to both the CA Datacom Datadictionary definition and the 
DBUTLTY CXXMAINT option. 

 

Creating SQL Tables 

To create SQL tables, you can embed CREATE TABLE statements (one for each table) in 
an application, or you can submit CREATE TABLE statements through the CA Datacom 
Datadictionary Interactive SQL Service Facility. You can also create SQL tables through 
CA Dataquery (see the CA Dataquery documentation for details). To define an SQL table, 
you must specify the name of the table and the name, the data type and the length of 
each column in the table. 

You can optionally specify if one or more columns are to have a unique value for each 
row of the table.  You can specify this UNIQUE constraint on individual columns and/or a 
list of columns whose combined values are unique.  Using the UNIQUE constraint 
creates a KEY entity-occurrence in CA Datacom Datadictionary. 

Note:  Uniqueness is enforced at the key level, not at the column level, that is to say, 
UNIQUE forces unique values for the entire key and not for the individual columns 
making up the key. 

 

When you define your table, you can specify the area where the table data is to reside.  
If you do not specify the area name, the data is placed in a default area which is 
specified at installation for your convenience.  If you want to store your data in an area 
other than the default, see your Database Administrator to have a specific area defined 
for your use. 

When the CREATE TABLE statement is executed (either embedded or through the CA 
Datacom Datadictionary Interactive SQL Service Facility), the table, columns, and any 
KEY entity-occurrences generated by use of the UNIQUE option are defined to CA 
Datacom Datadictionary in PRODuction status and cataloged to the CA Datacom/DB 
Directory (CXX). 

 



SQL Tables 

 

Chapter 3: Getting Started  49  
 

Using Existing Tables 

Existing tables which were not created by the SQL Manager can be accessed by SQL if 
they adhere to the following rules: 

1. The table definition must exist in the CA Datacom Datadictionary. 

2. The value in the table's SQLNAME attribute must be a valid SQL table name. The 
valid character set includes A-Z, 0-9, $, #, @, and _ (underscore). The area and 
database in which the table resides must also have valid SQLNAMEs. 

3. The value in the table's AUTHID attribute must be a valid authorization ID. 
 

4. Field names must have valid SQL column names specified for the SQLNAME 
attribute. 

5. If the table includes group fields and you are not using DATACOM VIEWs, only the 
lowest-level, simple fields may be accessed using SQL. For information about 
DATACOM VIEWs, see DATACOM VIEWs (see page 138). 

6. Data types other than the following types are treated as character fields by SQL. See 
SQL Data Type Support for All CA Datacom/DB Tables for more information. 

■ C (character) 

■ B 2 (small integer, 2-byte binary, signed) 

■ B 4 (long integer, 4-byte binary, signed) 
 

■ L (float, signed) 

■ D (packed decimal, signed; decimal, unsigned; decimal, positive) 

■ N (zoned decimal, signed; numeric, unsigned; numeric, positive) 
 

■ DATE (B 4 (binary, length=4) SEMANTIC-TYPE=SQL-DATE) 

■ TIME (B 3 (binary, length=3) SEMANTIC-TYPE=SQL-TIME) 

■ TIMESTAMP (B 10 (binary length=10) SEMANTIC-TYPE=SQL-STMP) 

Note: DATE, TIME, and TIMESTAMP are stored as binary data but are automatically 
converted to character strings in SQL. See Character String Literals for more 
information. See the CA Datacom/DB Database and System Administration Guide 
for an explanation of how DATE, TIME, and TIMESTAMP data types are stored in CA 
Datacom/DB. If you are accessing an SQL DATE, TIME, or TIMESTAMP with a 
non-SQL command, you must perform the conversion from the internal format 
yourself. 

 



Populating SQL Tables 

 

50  SQL User Guide 
 

See Data Types for more information about SQL data types. 

7. If the repeat factor of a group field is greater than one (for example, let the repeat 
factor be represented by the letter R), the entire field (all R elements) is treated as 
one-character column by SQL. Arrays on group fields are not supported. If the table 
includes arrays and you are not using DATACOM VIEWs, the entire array is treated 
as one-character field by SQL. 

Note: To process this as group field using a DATACOM VIEW (see DATACOM VIEWs 
(see page 138)), you would need to create a "redefine" that either defines each 
subfield R times or redefines the group field as a CHAR column with a repeat factor 
of R. In the latter case, the SQL SUBSTR (substring) and CAST WITHOUT 
CONVERSION functions can be used to extract the desired sub-fields. Parallel arrays 
of simple repeating fields are supported. 

 

8. No variable-length fields can exist in the table definition. 

9. Redefined fields can exist in the table definition, but SQL ignores the REDEFINES 
attribute. 

10. The value of the table's SQL-INTENT attribute must be set to Y to mark that the 
table is to be accessed by SQL. The table must successfully pass the verification for 
SQL access during the catalog operation before it can be accessed by SQL. 

11. After you complete any modifications to make the tables SQL accessible, the table 
must be copied to PROD status and cataloged to the CA Datacom/DB Directory 
(CXX). 

The SQL CREATE TABLE statement cannot create a remote, partitioned or replicated 
table. For remote tables, SQL access requires a complete duplicate definition of a 
remote table in CA Datacom Datadictionary, and version control enforcement is not 
available (version control enforcement helps ensure that remote definitions are 
synchronized with the local active definition). 

 

Populating SQL Tables 

Before you can access data in a newly defined SQL table, you must populate the table. 
You can use any traditional method to load the data, or you can use the SQL INSERT 
statement. 

 



Accessing SQL Tables 

 

Chapter 3: Getting Started  51  
 

Accessing SQL Tables 

Once your table is populated, you can access data using DML statements you: 

■ Embed in applications (see Embedding SQL Statements in Host Programs (see 
page 173)) 

■ Submit through CA Datacom Datadictionary Interactive SQL Service Facility (see 
Using the Interactive SQL Service Facility (see page 355)) 

■ Submit through CA Dataquery (see the CA Dataquery User Guide) 

Note:  You cannot use SQL Data Definition Language (DDL) statements to modify tables 
defined in CA Datacom Datadictionary as SQL read-only. For more information on SQL 
read-only tables, see SQL Read-Only (see page 146). 

 

Selecting and Manipulating Data 

You can select the data you want to work with using the SQL SELECT statement. Since 
SQL is a powerful language, the SELECT statement can accommodate complex 
constructs. However, if you are a new SQL user, you may want to start with simple 
language constructs, especially using the SELECT and specifying search conditions. 

The most common data manipulation operations involve inserting, updating and 
deleting. Specifying the data to be manipulated can involve cursor and non-cursor 
operations. 

In application programs, any changes to data can be committed by issuing the COMMIT 
WORK statement.  Changes which have not been committed can be backed out by 
issuing the ROLLBACK WORK statement. CA Datacom Datadictionary and CA Dataquery 
automatically handle transaction commits and rollbacks. 

 



Specifying Preprocessor Options 

 

52  SQL User Guide 
 

Specifying Preprocessor Options 

Each application with embedded SQL statements must have a CA Datacom/DB access 
plan.  The plan contains information required by CA Datacom/DB about your program 
and information about each SQL statement you have embedded. 

The plan is built when you submit your application to the CA Datacom/DB SQL 
Preprocessor.  The Preprocessor has options which you can optionally specify or let 
default to determine how the Preprocessor processes the SQL statements and to 
control certain aspects of the application's execution. 

The Preprocessor options allow you to specify criteria for your application, such as if the 
SQL statements must include only ANSI standard constructs, or if CA Datacom/DB 
extensions to SQL are allowed (extended mode).  You can also name the plan for your 
application, specify the plan's authorization ID, designate the isolation level for your 
application, indicate when the plan is to close, or specify an I/O limit interrupt value for 
SQL statements. 

 

Preparing Programs 

If you are embedding SQL statements in an application program, you must distinguish 
SQL statements from source code and place the SQL statements in the appropriate 
division or section of the source program. 

Your application can contain an INCLUDE directive to include a member from an include 
library, if you have coded the Preprocessor option to allow CA Datacom/DB extensions 
to SQL. 

In an application with embedded SQL, you can indicate the action to take when an 
exception condition is encountered by including WHENEVER statements. 

After you have coded your program, you must submit it to the CA Datacom/DB SQL 
Preprocessor.  You must compile and link edit your program along with an SQL User 
Requirements Table and the host variable processor, DBXHVPR. 

 



Statement Execution Table 

 

Chapter 3: Getting Started  53  
 

Mixed Mode Programming 

Mixed mode programming is the embedding of SQL statements in application programs 
where native CA Datacom/DB record-at-a-time and/or set-at-a-time commands are also 
coded. 

The embedded SQL statements can be either CA Datacom/DB SQL statements or IBM 
DB2 SQL statements but not both, that is to say, CA Datacom/DB SQL and DB2 SQL calls 
cannot be made from the same program. All of the SQL statements in a program must 
be processed either by IBM DB2 or CA Datacom/DB but not both because both require 
the source program to embed the SQL statements in the same special statements 
(EXEC-SQL and END-SQL), and both require the source to be manipulated by their own 
Preprocessor.  If the source was processed through a CA Datacom/DB Preprocessor first, 
for example, it could therefore not later be passed through an IBM Preprocessor, 
because at that point there would be no special statements left to process. 

 

To make native CA Datacom/DB calls and CA Datacom/DB SQL calls from the same 
application program, see Embedding SQL Statements in Host Programs. 

The following requirements must be met to make native CA Datacom/DB calls and IBM 
DB2 SQL calls from the same application program: 

1. The DBURINF User Requirements Table macro must have OPEN=USER and 
USRNTRY=program-id. 

2. The COBOL program must be compiled with the compiler option NODYNAM. 

3. The link-edit step must have: 

INCLUDE SYSLIB(-urt-name) 

ENTRY program-id 

NAME program-id(R) 
 

Statement Execution Table 

The following table summarizes the methods by which each SQL statement can be 
executed.  An asterisk indicates that the statement is executable by that method. 

 

SQL Statement CA Datacom 
Datadictionary 
Interactive SQL 
Service Facility 
(Interactive) 

In an application 
program 
prepared using 
an CA Datacom/DB 
SQL Preprocessor 
(Embedded) 

CA Dataquery 
(SQL & Batch 
Modes) 

ALTER TABLE * * * 



Statement Execution Table 

 

54  SQL User Guide 
 

SQL Statement CA Datacom 
Datadictionary 
Interactive SQL 
Service Facility 
(Interactive) 

In an application 
program 
prepared using 
an CA Datacom/DB 
SQL Preprocessor 
(Embedded) 

CA Dataquery 
(SQL & Batch 
Modes) 

CALL YES (if no 
parms are passed) 

* YES (if no 
parms are passed) 

CLOSE  *  

COMMENT ON * * * 

COMMIT WORK * *  

CREATE INDEX * * * 

CREATE PROCEDURE * * * 

CREATE RULE * * * 

CREATE SCHEMA * *  

CREATE SYNONYM * * * 

CREATE TABLE * * * 

CREATE TRIGGER * * * 

CREATE VIEW * * * 

DECLARE CURSOR  *  

DECLARE 
STATEMENT 

*   

DELETE (positioned)  *  

DELETE (searched) * * * 

DESCRIBE  *  

DROP INDEX * *  

DROP RULE * * * 

DROP PROCEDURE * * * 

DROP SYNONYM * * * 

DROP TABLE * * * 

DROP TRIGGER * * * 

DROP VIEW * * * 

EXECUTE  *  



Dynamic SQL 

 

Chapter 3: Getting Started  55  
 

SQL Statement CA Datacom 
Datadictionary 
Interactive SQL 
Service Facility 
(Interactive) 

In an application 
program 
prepared using 
an CA Datacom/DB 
SQL Preprocessor 
(Embedded) 

CA Dataquery 
(SQL & Batch 
Modes) 

EXECUTE 
IMMEDIATE 

 *  

EXECUTE 
PROCEDURE 

YES (if no 
parms are passed) 

* YES (if no 
parms are passed) 

FETCH  *  

GRANT * * * 

INSERT * * * 

LOCK TABLE * *  

OPEN  *  

PREPARE  *  

REVOKE * * * 

ROLLBACK WORK * *  

select-into 
statement 

 *  

select-statement * (use 
DECLARE CURSOR) 

* 

full-select 
statement 

(part of the 
select-statement) 

(part of the 
select-statement) 

(part of the 
select-statement) 

subselect (part of full-select 
statement) 

(part of full-select 
statement) 

(part of full-select 
statement) 

SET CURRENT SQLID  *  

UPDATE 
(positioned) 

 *  

UPDATE (searched) * * * 

WHENEVER  *  

Dynamic SQL 

When static SQL cannot satisfy the functional requirements of a program, you can use 
dynamic SQL for the statements listed in the table in the section PREPARE. 

 



Dynamic SQL 

 

56  SQL User Guide 
 

Static SQL 

In static SQL, you embed SQL statements (the SQL source) in a host language program 
and bind them before executing the program. This makes the statements static, that is, 
when you write the SQL source into the program, the format of the SQL statements are 
known to you and do not change when the program is executed. If you therefore know, 
when you write the program, the type of SQL statements (such as SELECT, UPDATE, 
INSERT) to be used and the table names and column names of the data to be accessed, 
static SQL efficiently provides what you need. But if your program requires complete 
flexibility, that is, if it needs to execute so many different types and structures of SQL 
statements that it is impossible for it to contain a model of each one, use dynamic SQL. 

 

Do not think of static SQL as being totally unflexible. If your static SQL statements 
include host variables that your program changes, you can use static SQL and still enjoy 
a reasonable amount of flexibility. Consider the following COBOL example. Notice that 
the values of WRKRID and NEWPRAT are reset each time the UPDATE statement is 
re-executed, so that it updates the performance ratings of as many workers as required 
with whatever values are needed. 

  MOVE PRFRAT-7 TO NEWPRAT. 

  MOVE 000090 TO WRKRID. 

  EXEC SQL 

    UPDATE DRAKE06.WRK 

      SET RATING = :NEWPRAT 

      WHERE WRKNO = :WRKRID 

  END-EXEC. 
 

Dynamic SQL 

In dynamic SQL, you do not write SQL source statements into the application program.  
Instead, you use variables in the host language to contain the SQL source.  The SQL 
statements are then dynamically prepared and executed within the program as it runs 
and can change one or more times during the program's execution. This means you do 
not need to have complete knowledge of a dynamic SQL statement's full format at the 
time you write the program. 

For example, if your program needs to allow for a large variety of selection criteria, with 
static SQL a small set of criteria can be used to select a table's rows while the rest of the 
criteria are compared against the return rows, but with dynamic SQL an SQL WHERE 
clause can be generated to drive the program and match the criteria exactly. (A WHERE 
clause produces an intermediate result table by applying a search condition to each row 
of a table R, the result of a FROM clause.  The result table contains the rows of R for 
which the search condition is true.  See the description in Subselect. 

 



Dynamic SQL 

 

Chapter 3: Getting Started  57  
 

Dynamic SQL in CA Datacom/DB 

Dynamic SQL in CA Datacom/DB is compatible with IBM DB2's dynamic SQL. Application 
programs that have been using DB2's dynamic SQL can precompile successfully and 
execute equivalently under the DB2 mode of CA Datacom/DB. 

Five statements in CA Datacom/DB support dynamic SQL: 

■ DECLARE STATEMENT (see DECLARE STATEMENT (see page 717)) 

For syntax compatibility with other SQL implementations, the DECLARE STATEMENT 
is accepted by the CA Datacom/DB Preprocessor for SQL, but CA Datacom/DB 
ignores everything after the keyword STATEMENT up to the end-of-statement 
delimiter. CA Datacom/DB functionality is not affected. 

■ DESCRIBE (see DESCRIBE (see page 721)) 

This statement obtains information about a specified table or view, or about a 
statement that has been prepared for execution by the PREPARE statement. 

 

■ EXECUTE (see EXECUTE (see page 731)) 

This statement executes an SQL statement that has previously been prepared for 
execution by the PREPARE statement. 

■ EXECUTE IMMEDIATE (see EXECUTE IMMEDIATE (see page 734)) 

This statement prepares an executable form of an SQL statement from a character 
string form, executes the SQL statement, and then destroys the executable form. 

■ PREPARE (see PREPARE (see page 756)) 

This statement creates an executable SQL statement from a character string form of 
the statement. The executable form is called a prepared statement. 

  

Three other CA Datacom/DB SQL statements also support dynamic SQL: 

■ DECLARE CURSOR (see DECLARE CURSOR) 

■ FETCH (see FETCH) 

■ OPEN (see OPEN (see page 752)) 
 

INCLUDE Directive 

For users of PL/I and Assembler, the INCLUDE directive attaches special meaning to a 
member name of SQLDA, referring to the SQL Descriptor Area (for more information on 
the SQLDA, see SQL Descriptor Area (SQLDA) (see page 869)). When INCLUDE SQLDA is 
specified, the Preprocessor for PL/I or Assembler includes the description of an SQL 
Descriptor Area (SQLDA) for use by dynamic SQL statements. For more information on 
the INCLUDE directive, for PL/I see Rules for SQL INCLUDEs in PL/I (see page 194), or for 
Assembler see Rules for SQL INCLUDEs in Assembler (see page 203). For an example 
SQLDA in COBOL, see Example (see page 724). 

 



Dynamic SQL 

 

58  SQL User Guide 
 

Name Types 

Two CA Datacom/DB name types (descriptor-name and statement-name) support 
dynamic SQL.  See Naming Conventions (see page 480) for more information. 

 

Reserved Words 

Four reserved words pertain to dynamic SQL, as shown on Reserved Words (see 
page 43): DESCRIPTOR, EXECUTE, IMMEDIATE, USING. 

 

Parameter Markers 

A parameter marker is a question mark (?) that is used in place of a host variable in 
dynamic SQL statements. The rules for using parameter markers in a prepared 
statement are given on Rules for Parameter Markers. If a prepared statement contains 
parameter markers, you must use the USING clause of the EXECUTE statement.  For 
information on the USING clause and about parameter marker replacement, see the 
PREPARE (see page 756). 

 

Security Implications of Dynamic SQL 

Security checking of a dynamically prepared statement is always done when that 
statement is executed. When a statement is dynamically prepared, no security checking 
is done, because no special privileges are required to dynamically prepare SQL 
statements.  But when the dynamically prepared statement is executed, the accessor ID 
of the executor is checked for the privileges required to do the requested operations on 
the database. 

 

Using Dynamic SQL in Application Programs 

An SQL statement in character string form is accepted as input by (or is generated from) 
an application program that uses dynamic SQL.  To simplify a program that uses dynamic 
SQL, code it so that it either does not use SELECT statements or only uses SELECT 
statements that return a known number of values of known types. 

When you are coding a program that uses dynamic SQL, but you do not know which SQL 
statements are to be executed, consider having the program take the following steps: 

1. For input data (including parameter markers), translate it into an SQL statement. 

2. For the SQL statement, 

a. Prepare it for execution, and 

b. Obtain its description. 
 



Dynamic SQL 

 

Chapter 3: Getting Started  59  
 

3. For SELECT statements, acquire enough main storage to contain the data that is 
retrieved. 

4. Then, either: 

a. Execute the statement, or 

b. Fetch the rows of data. 

5. Next, process the information that is returned. 

6. And then deal with SQL return codes. 
 

Performance Considerations 

Be aware of the following performance considerations with regard to dynamic SQL. 
When you use dynamic SQL statements, the "runtime overhead" is greater than for 
static SQL statements, because the processing of the statement is similar to a program 
that must be preprocessed before it is executed. You may therefore want to limit your 
use of dynamic SQL to those situations in which its flexibility is required. 

Performance is not greatly affected if you only use a few dynamic SQL statements in an 
application program that takes a long time to execute. The same number of dynamic 
SQL statements in a program of short duration, however, can affect performance 
significantly. 

The following sections show how the various statement-types (and new variants of 
statement-types) that make up Dynamic SQL are used to provide an application with the 
ability to execute SQL statements when those statements are not completely known 
before the program is executed. 

 



Dynamic SQL 

 

60  SQL User Guide 
 

Classes of Use 

There are four classes of use for dynamic SQL: 

■ When no SELECT statements are issued dynamically, dynamic allocation of main 
storage is not needed. This is the simplest way to use dynamic SQL (see the 
example on Dynamic SQL for Non-SELECT Statements (see page 61)). 

■ Use fixed-list SELECT statements when you know ahead of program execution time 
what kinds of host variables need to be declared to store results.  That is, when you 
have rows that contain a known number of values of a known type, use fixed-list 
SELECT statements to return them (see the example on Dynamic SQL for Fixed-List 
SELECT Statements (see page 61)). 

■ Use varying-list SELECT statements when you do not know ahead of program 
execution time what kinds of host variables need to be declared to store results.  
That is, when you have rows that contain an unknown number of values of 
unknown type, use varying-list SELECT statements to return them (see the example 
on Dynamic SQL for Varying-List SELECT Statements (see page 62)). 

■ If you need to have several kinds of dynamic SQL statements (including varying-list 
SELECT statements, in any of which a variable number of parameter markers might 
be contained) executed in a program, the program could be said to execute 
"arbitrary" SQL statements. An example begins on Dynamic SQL for Arbitrary 
Statement-Types (see page 64). 

Note:  In addition to the examples in the following sections, see the sample dynamic 
SQL program on the CA Datacom/DB eSupport website. 

 

Using DBXHAPR in Dynamic SQL 

DBXHAPR is only for COBOL programs using dynamic SQL. COBOL does not allow the 
SQLDATA and SQLIND fields to be declared as pointer variables. When you nevertheless 
need to set them to the address of host variables in SQLVAR, follow these steps: 

1. Link DBXHAPR to the OBJLIB that is being used by adding the following to your 
COBOL programs: 

CALL 'DBXHAPR' USING <SQLDATA>, <host-var>. 

2. Set the address of each SQLDATA and SQLIND field used before SQLDA with the 
following in the linkedit step: 

INCLUDE OBJLIB(DBXHAPR) 

 
 



Dynamic SQL 

 

Chapter 3: Getting Started  61  
 

Dynamic SQL for Non-SELECT Statements 

The simplest use of dynamic SQL is when only non-SELECT statements are to be 
dynamically executed and the SQLDA does not have to be explicitly used. 

Note:  Because you know when you code this type of program how many parameter 
markers are to be included in the statement, you can code the USING clause of the 
EXECUTE statement with a list of variable names. 

The steps taken by a program where only non-SELECT statements are dynamically 
executed are as follows: 

1. Read a statement containing parameter markers (for example, DELETE FROM 
CUSTOMERS WHERE CUSNO=?) into USERSTR. 

2. Do a PREPARE of USERSTMT. 

    EXEC SQL 

      PREPARE USERSTMT FROM :USERSTR 

    END-EXEC 
 

3. Read a value for CUSNO from some list. 

    DO UNTIL (CUSNO = 0) 

      EXEC SQL 

        EXECUTE USERSTMT USING :CUSNO 

      END-EXEC 

    ENDDO 

4. Read the next value for CUSNO from the list, and so on. 

5. Deal with any SQL return codes that indicate errors. 
 

Dynamic SQL for Fixed-List SELECT Statements 

In the following example, assume that you know the number and data types of the 
columns in the SELECT's result table when you code the application program. 

To dynamically execute a fixed-list SELECT statement your program must: 

1. Load input SQL statement into a data area (as in non-SELECT statement example in 
Dynamic SQL for Non-SELECT Statements (see page 61)). 

2. DECLARE a cursor-name for the statement name. 

    EXEC SQL DECLARE CURSOR1 CURSOR FOR STMT; 
 



Dynamic SQL 

 

62  SQL User Guide 
 

3. Read or construct an SQL select-statement (of the form SELECT NAME, ZIP FROM 
CUSTOMERS WHERE...) into host variable USERSTR, then use a PREPARE statement 
and an OPEN statement as shown. 

    EXEC SQL PREPARE STMT FROM :USERSTR; 

 

    EXEC SQL OPEN CURSOR1; 

Alternately, if there were always two parameter markers in the statement: 

    EXEC SQL OPEN CURSOR1 USING :PARA1, :PARA2; 

Or, to be more flexible, the input host variables could be described by an SQLDA, as 
in: 

    EXEC SQL OPEN CURSOR1 USING DESCRIPTOR :SQLDA-PARAS; 

The application program in this case is required to ensure that the number of host 
variables described in the SQLDA matches the number of parameter markers in the 
SQL statement. 

 

4. FETCH rows from result table. 

    EXEC SQL FETCH CURSOR1 INTO :NAME, :PHONE; 

5. CLOSE the cursor. 

    EXEC SQL CLOSE CURSOR1; 

6. Deal with any SQL return codes that indicate errors. 
 

Dynamic SQL for Varying-List SELECT Statements 

The most complex way to use dynamic SQL for SELECT statements is when you do not 
know (when you write the application program) the number and data types of the 
columns in the SELECT's result table.  This requires the use of varying-list SELECT 
statements. 

As the example below shows, a program that uses varying-list SELECT statements must 
do the following: 

1. Load input SQL statement into a data area (as in non-SELECT statement example 
already given). 

2. DECLARE a cursor-name for the statement name. 

    EXEC SQL DECLARE CURSOR1 CURSOR FOR STMT; 

3. Declare a host variable called SMLSQLDA of data type SQLDA, with 100 SQLVARs, 
SQLN=100 (for example, :SQLSTRING = SELECT COL1 FROM TAB1). If the statement 
in :SQLSTRING contains parameter markers, allocate and initialize an SQLDA called, 
for example, SQLDAPARA, which describes the host variables that correspond to the 
parameter markers.  Allocate the storage for these host variables, if necessary. 

 



Dynamic SQL 

 

Chapter 3: Getting Started  63  
 

4. Prepare the variable statement. 

    PREPARE USERSTMT INTO SMLSQLDA FROM :SQLSTRING; 

 

    IF SMLSQLDA.SQLD = 0 THEN 

        the statement was not a select-statement--ERROR 

    ENDIF 
 

5. You must next determine if you have to allocate a larger SQLDA. The PREPARE 
caused SMLSQLDA.SQLD to be set to the number of columns in the result table, and 
SMLSQLDA.SQLDABC is equal to the size in bytes required for an SQLDA big enough 
to describe that many columns (16 + SQLD * 44).  If SMLSQLDA.SQLD is greater than 
SMLSQLDA.SQLN, the number of columns in the result table is larger than the size 
allowed for in SMLSQLDA.  In this case, no information has been put into the 
SQLVARs of SMLSQLDA.  The SQLD field has been set to the number of columns in 
the result table, so that an SQLDA of the required size may be allocated. 

The application program should now allocate an SQLDA of the size indicated by 
SMLSQLDA.SQLD. If we call this full-size SQLDA LRGSQLDA, to get the description of 
the result table filled in, the application program should then execute a DESCRIBE 
statement, using LRGSQLDA. 

    EXEC SQL DESCRIBE STMT INTO LRGSQLDA; 

Now we have an SQLDA that describes (in its SQLVAR section) all of the columns of 
the result table of the select-statement in SQLSTRING. Examine the SQLDA to 
allocate storage for a result row of the select-statement. Set the addresses in the 
SQLVAR entries to point to memory allocated for each entry. 

    EXEC SQL OPEN CURSOR1; 

Or, if there were parameter markers in the select-statement: 

    EXEC SQL OPEN CURSOR1 USING DESCRIPTOR SQLDAPARA; 
 

6. FETCH rows from result table and CLOSE the cursor. The clause USING DESCRIPTOR 
LRGSQLDA names an SQLDA in which the occurrences of SQLVAR point to other 
areas that receive the values returned by the FETCH.  The USING clause can be used 
here because LRGSQLDA was set up previously (in this example). 

    EXEC SQL FETCH CURSOR1 USING DESCRIPTOR LRGSQLDA; 

7. Close the cursor. 

    EXEC SQL CLOSE CURSOR1; 

8. Deal with any SQL return codes that indicate errors. 
 



Dynamic SQL 

 

64  SQL User Guide 
 

Dynamic SQL for Arbitrary Statement-Types 

The most complex use of dynamic SQL is when you need to execute, in a program, 
several kinds of dynamic SQL statements, including varying-list SELECT statements (in 
any of which a variable number of parameter markers might be contained). Such a 
program could be said to execute "arbitrary" SQL statements. For example, this kind of 
program could present a list of choices, such as choices about: 

■ Operations (select, delete, update) 

■ Table names 

■ Columns to select or update 

The program could also allow the entering of lists (such as worker ID numbers) by which 
to control the application of operations. 

 

When you know the number and types of parameters, but you do not know in advance 
the number of parameter markers (and perhaps the kinds of parameter they stand for): 

■ Name a list of host variables in the EXECUTE statement if the SQL statement is not 
SELECT. 

■ Name a list of host variables in the OPEN statement if the SQL statement is SELECT. 

In either case, the number and types of host variables named by your program must 
agree with the number of parameter markers (in USERSTMT) and the types of 
parameter for which they stand. The first variable you use must have the expected type 
for the first parameter marker in the statement, and so on for the other variables and 
parameter marker. You must therefore use at least as many variables as the number of 
parameter markers. 

Use a SQL Descriptor Area (SQLDA) when you do not know the number and types of 
parameters. You can have as many SQLDAs included in your program as you want (there 
is no upper limit), and they do not all have to be used for the same thing.  You can also 
set up an SQLDA to describe a set of parameters. 

 

For purposes of this example, the SQLDA describing a set of parameters is called 
SQLDAPARA. Its structure is the same as the structure of other SQLDAs, and as in other 
SQLDA structures, the number of SQLVAR occurrences can vary. But in SQLDAPARA, 
each occurrence of SQLVAR is used to describe one host variable that replaces one 
parameter marker at execution time, either when (for a SELECT statement) a cursor is 
opened, or when a non-SELECT statement is executed. With SQLDAPARA, there must 
therefore be one SQLVAR for every parameter marker. 

In SQLDAPARA you can ignore some of the SQLDA fields, but in the case of other fields, 
you must fill them before you use an EXECUTE or OPEN statement. See SQLDA 
(EXECUTE, FETCH, or OPEN Statement). 

 



Dynamic SQL 

 

Chapter 3: Getting Started  65  
 

Following is an example of a program that executes arbitrary SQL statements. 

1. To allow for the case in which USERSTMT gets prepared as a select-statement, do 
this DECLARE statement: 

Note: Alternately, this DECLARE statement could be located (as noted later in this 
example) in the part of the program labeled: "* The statement is a 
select-statement. *" 

 PROC HANDLEALL 

 

 EXEC SQL DECLARE CURSOR1 CURSOR FOR USERSTMT; 
 

2. Allocate a host variable called SMLSQLDA of data type SQLDA, with 100 SQLVARs, 
SQLN=100. 

Note: 100 in the previous is an arbitrary number. To save static storage it could be 
much less than 100, but the lower number would result in a lengthened execution 
time because of the increased likelihood of needing the second DESCRIBE that is 
shown later in this example. 

 SQLSTRING := the SQL statement, constructed in some way 

 

 IF the statement in SQLSTRING has parameter markers THEN 

 

     Analyze the SQL statement: find the parameter markers 

       and decide what host variables could be used to 

       contain values for each one.  Allocate the host 

       variables and indicator variables if necessary. 

       (*These parameter markers all describe input host 

       variables, values that must be passed to the DBMS when the 

       statement is executed.*) 

 

    Declare a host variable called SQLDAPARA of data type 

       SQLDA and fill it in to correctly describe and 

       point to host variables that correspond to the 

       parameter markers. 

 

 ENDIF 

 

 EXEC SQL PREPARE USERSTMT INTO SMLSQLDA FROM :SQLSTRING; 

Or alternately: 

 EXEC SQL PREPARE USERSTMT FROM :SQLSTRING; 

 

 EXEC SQL DESCRIBE USERSTMT INTO SMLSQLDA; 
 



Dynamic SQL 

 

66  SQL User Guide 
 

3. The output result of the PREPARE INTO statement (or the PREPARE and DESCRIBE 
statements) is that the SMLSQLDA is filled in by the DBMS to describe the result 
table of the statement in USERSTMT. If the statement in USERSTMT is not a 
select-statement, there is no result table. 

 IF SMLSQLDA.SQLD = 0 THEN 

 

     (* The statement is not a select-statement. *) 

 

     IF the statement in SQLSTRING has no parameter markers THEN 

 

         EXEC SQL EXECUTE USERSTMT; 

 

     ELSE 

 

         IF the statement in SQLSTRING does have parameter 

          markers THEN 

 

             EXEC SQL EXECUTE USERSTMT USING DESCRIPTOR SQLDAPARA; 

 

         ENDIF 

 

     ENDIF 

 

 ELSE 

 

     (* The statement is a select-statement. *) 

 

     (*NOTE: The DECLARE CURSOR1 CURSOR FOR USERSTMT statement could 

       go here, if desired.  It is not executed, but must 

       appear physically in the application program source 

       before any other statement uses the cursor name.*) 

 

     (*If needed, allocate a bigger SQLDA:*) 

 

     IF SMLSQLDA.SQLD > SMLSQLDA.SQLN THEN 

The number of columns in the result table is larger than the size allowed for in 
SMLSQLDA. In this case, no information has been put into the SQLVARs of 
SMLSQLDA. The SQLD field has been set to the number of columns in the result 
table, so that an SQLDA of the required size may be allocated. The application 
program must now allocate an SQLDA of the size indicated by SMLSQLDA.SQLD. In 
this example, this full-sized SQLDA is called LRGSQLDA. 

 



Dynamic SQL 

 

Chapter 3: Getting Started  67  
 

4. Allocate a host variable of data type SQLDA, called LRGSQLDA: 

           LRGSQLDA, SQLN := SMLSQLDA.SQLD, SQLDABC := 

           16 + SQLN * 44, with SQLN SQLVAR's. 

5. To get the description of the result table filled in, the application program must now 
execute a DESCRIBE statement using LRGSQLDA. 

         EXEC SQL DESCRIBE USERSTMT INTO LRGSQLDA; 

 

     ENDIF 

We now have an SQLDA that describes, in its SQLVAR section, all of the columns of 
the result table of the select-statement in SQLSTRING. 

 

6. Allocate storage for a result row of the select-statement by examining the SQLDA 
(either SMLSQLDA or LRGSQLDA). Set the addresses in the SQLVAR entries to point 
to the host variables allocated for each column of the result table. 

     IF the statement in SQLSTRING has no parameter markers THEN 

 

         EXEC SQL OPEN CURSOR1; 

 

     ELSE 

 

         EXEC SQL OPEN CURSOR1 USING DESCRIPTOR SQLDAPARA; 

 

     ENDIF 

 

     DO WHILE SQLCODE NOT = 100 

 

         IF LRGSQLDA was allocated 

 

             EXEC SQL FETCH CURSOR1 USING DESCRIPTOR LRGSQLDA; 

 

         ELSE 

 

             EXEC SQL FETCH CURSOR1 USING DESCRIPTOR SMLSQLDA; 

 

         ENDIF 
 



Dynamic SQL 

 

68  SQL User Guide 
 

7. At this point, the program can decide whether to delete the row (that was just 
read) or to update it. If the program wants to update or delete the current row, it 
can build the UPDATE or DELETE statement and execute it dynamically, as follows: 

          IF an update is desired THEN 

 

              VAR5 := the UPDATE WHERE CURRENT statement, 

                 constructed in some way, for example, 

                      'UPDATE TABLEX SET COL1 = 5 

                       WHERE CURRENT OF CURSOR1' 

 

              EXEC SQL PREPARE S2 FROM :VAR5 END-EXEC; 

 

              EXEC SQL  EXECUTE S2  END-EXEC; 

 

          ELSEIF a delete is desired THEN 

 

              VAR5 := the DELETE WHERE CURRENT statement, 

                 constructed in some way, for example, 

                      'DELETE FROM TABLEX 

                       WHERE CURRENT OF CURSOR1' 

 

              EXEC SQL PREPARE S2 FROM :VAR5 END-EXEC; 

 

              EXEC SQL EXECUTE S2 END-EXEC; 

 

          ENDIF 

 

     ENDDO 

 

     EXEC SQL CLOSE CURSOR1; 

 

 ENDIF 

 

 ENDPROC HANDLEALL 

8. Deal with any SQL return codes that indicate errors. 
 



Other Tasks 

 

Chapter 3: Getting Started  69  
 

Other Tasks 

After your SQL tables are defined to the CA Datacom Datadictionary, you can create 
views based on one or more tables. You can also create a view based on one or more 
views. Views allow you to retrieve only that data which is significant for your purposes. 

You can create synonyms for your tables and views, or for tables and views owned by 
other authorization IDs. Synonyms are short names for tables or views. 

You can define a new index on one or more columns of a base table. 

When making changes to data, you can control access to SQL tables through the 
isolation level Preprocessor option, or with the LOCK TABLE statement. 

If you no longer need a table, view, synonym, or index, you can drop the SQL object 
using the DROP statement.  If you have created an SQL object simply for testing 
purposes or only for the run of an application, you can use the DROP statement to 
remove this object from CA Datacom Datadictionary. 

 

Important! If you remove an SQL object from CA Datacom Datadictionary, you must 
recreate the object you dropped if you want to use it again. 

If a table is dropped, all views and synonyms based on that table are removed from CA 
Datacom Datadictionary. The table definition is removed from the CA Datacom 
Datadictionary and the CA Datacom/DB Directory (CXX), the table data is deleted and 
the space is reclaimed. 

If a view is dropped, all views and synonyms based on the view are removed from CA 
Datacom Datadictionary. 

If a synonym is dropped, only that synonym is removed from CA Datacom 
Datadictionary. 

If you drop an index, all plans dependent on the indexed table are marked invalid. You 
can run a CA Datacom Datadictionary Relationship Report to find out what plans are 
dependent on a table. See the CA Datacom Datadictionary Batch Reference Guide for 
information about running a Relationship Report. 

 



SQL Status Tables 

 

70  SQL User Guide 
 

SQL Status Tables 

The following tables provide information about the current status of the SQL subsystem: 

■ SQL_STATUS (SQS) 

■ SQL_STATUS_CURRENT (SQC) 

■ SQL_STATUS_PLAN (SQP) 

■ SQL_STATUS_URT (SQU) 

■ SQL_MISC_STATS (SQM) 

■ SQL_SQLCODES (SQQ) 

These SQL status tables are located in the dynamic system tables database. See the CA 
Datacom/DB System Tables Reference Guide for detailed information. 

 

Procedures and Triggers 

Procedures and triggers provide CA Datacom with substantial flexibility in building "thin 
client/fat server" applications, enforcing business rules, implementing additional 
security functionality, and even providing functionality to enable a relational view of 
nonrelational data items. 

 



Procedures and Triggers 

 

Chapter 3: Getting Started  71  
 

Overview 

External Procedures are user-written programs (written using LE-conforming Assembler, 
COBOL, PL/I, or C) which execute inside the Multi-User Facility as a separate subtask. 
They can be coded to perform almost any task and generally contain SQL statements. 
SQL procedures consist of user-written program logic composed of SQL statements and 
contained entirely within the CREATE PROCEDURE statement. Both types can be 
executed explicitly using CALL or EXECUTE PROCEDURE statements and can be triggered 
implicitly by user-specified database management system events such as INSERT, 
UPDATE, and DELETE. For information specific to each procedure type, see CREATE 
PROCEDURE (see page 620). 

Triggers depend completely on the SQL procedure to perform the various "triggered" 
activities.  Triggers themselves have a relatively limited logic implementation.  A trigger 
is set to be "fired" when an insert, delete, or update of a row in the selected table 
occurs.  The trigger is fired regardless of where (CICS, batch, Server, and so on) or how 
(record-at-a-time, set-at-a-time, SQL) the maintenance command was issued.  The 
trigger is not fired when a read (or read for update command) is processed. 

Each trigger can be tailored to fire only when specific data values exist.  The trigger can 
also select whether it should fire before or after the event occurs.  Selecting "before" 
gives you the chance to review the process before the maintenance has occurred, while 
"after" allows you to Trigger the event after the maintenance has occurred. 

 

LUW Control 

The trigger and its procedure operate under the same logical-unit-of-work (LUW) as the 
task that caused the trigger to fire. Any failure in execution of the trigger and its 
procedure causes the maintenance command that fired the procedure to receive a 
return code and the maintenance command is rejected by the database. In addition, any 
database work done by the triggered procedure (inserts, deletes, updates) is also done 
under the same LUW as the application that fired the trigger. Any subsequent commit 
issued by the application that caused the trigger to fire also commits any database 
maintenance done by the fired procedure. Likewise, a subsequent ROLLBACK issued by 
the application also rolls back any triggered changes. 

Note: Triggers and their associated procedures cannot contain any commit or rollback 
logic. 

 



Procedures and Triggers 

 

72  SQL User Guide 
 

Thin Client/Fat Server 

You can write External Procedures in LE-conforming Assembler, C, PL/I, or COBOL as 
standard executing programs. These programs accept a list of input variables (SQL 
columns), perform any number of program and/or database functions, then return a list 
of output variables (SQL columns).  This functionality allows you to create procedures 
that can combine a wide variety of program functions into one SQL call. 

For example: A client/server application currently processes a customer order by issuing 
multiple SQL statements to the database region to: 

■ Verify the customer number 

■ Obtain the customer's credit limit/availability 

■ Validate that the ordered item(s) is in stock 
 

■ Validate that the customer has enough credit to order the items 

■ Enter the order in the system 

With a External Procedure in SQL, the client/server application can issue a single SQL call 
to the External Procedure with the appropriate information (Customer number, Item 
number(s), Quantity). The database server (Multi-User Facility) loads the appropriate 
LE-conforming program as a subtask in the Multi-User Facility address space, passes 
over the input variables, and waits to receive the return information. On completion, 
the LE-conforming program hands back the output variables to the Multi-User Facility, 
then the Multi-User Facility returns them to the calling program and terminates the 
Multi-User Facility subtask.  If the program fails, the subtask in the Multi-User Facility 
address space goes away, and the client SQL call receives an SQL return code.  If the 
program completes but does not provide the expected number of return variables, a 
different SQL code is returned. 

 

Enforcing Business Rules 

Since the procedure is a standard LE-conforming program, processing logic can be 
incorporated in the procedure to enforce a wide variety of business rules.  In the 
previous example, the procedure validated that the customer had appropriate credit 
before allowing the order to be placed.  This is a simple example of business rule 
enforcement.  More complex rules or even complex data calculations can be included in 
the procedure code to insure that functions such as "Calculation of product cost" or 
"Standard deviation" are applied consistently within an environment. 

When combined with SQL triggers, you can use procedures to enforce business rules 
"triggered" by a database event, such as the addition of a row to a table or the update 
of a column within a selected table. 

For example: Whenever a new customer is added to the system, the addition triggers 
the procedure ORDER_CREDIT_REPORT and also triggers the procedure 
VALIDATE_TEMP_CREDIT_LIMIT.  This allows your business to make sure that credit 
reports are ordered on a timely basis and that a temporary credit limit is established. 

 



Procedures and Triggers 

 

Chapter 3: Getting Started  73  
 

Enhanced Security 

Along the same lines, you can use triggers and procedures to do validation any time 
selected data rows or fields are updated. For example, anytime the PAYROLL_RATE field 
is updated, it could trigger the procedure CHECK_PAYROLL_RATE_CHANGE. 

 

Automatically Generating Alerts 

You can use triggers with procedures to generate alerts when "out-of-bounds" business 
conditions exist.  One example is to generate a re-stock order for the warehouse when 
an inventory items' shelf quantity drops below a minimum shelf amount.  A more 
complex job is to calculate the minimum amount of stock necessary and initiate a 
product reorder process to ensure that product does not go out of stock before it is 
replenished (by a new shipment).  Since the procedure is actually an application 
program, subroutines could be initiated to provide physical alerts such as a console 
message, fax message, and so on. 

 

Relational View of Nonrelational Data 

Many open systems products used by clients today do not provide detail level data 
manipulation capabilities.  In some cases, this can limit the products' ability to see 
"nonrelational" data as relational columns. 

For example, a CA Datacom/DB table has a column defined as: 

02 MONTH-SALES OCCURS 12 TIMES PIC S9(6)V99 

An SQL view of this table includes the field MONTH_SALES as a CHAR(96) column.  If the 
product viewing this column cannot redefine the data item, this data becomes unusable 
to the end user.  If this data is important, a External Procedure could be written (in 
COBOL) to use SQL to retrieve the CHAR(96) column and move it to working storage, 
where the program language could be used to extract the 12 distinct values and place 
them in 12 columns SQL can use. These columns with other data items would be 
returned as part of the output variable list. 

 



Procedures and Triggers 

 

74  SQL User Guide 
 

Summary 

Procedures and triggers can provide a powerful tool for data and database 
administration and access.  However, they should also be used with caution.  Replacing 
a simple call from a CICS transaction with an execute procedure would probably cause a 
performance degradation.  Similarly, using procedures to do simple security checks or to 
enforce access rules when standard system security products are available may not 
prove worthwhile. However, triggers and procedures can provide great value when used 
to enforce complex or highly sensitive business rules. 

For detailed information about the SQL statements related to procedures and triggers, 
see the following: 

■ CREATE PROCEDURE (see CREATE PROCEDURE (see page 620)) 

■ CALL/EXECUTE PROCEDURE —without SET processing support (see CALL/EXECUTE 
PROCEDURE (see page 610)) 

■ DROP PROCEDURE (see DROP (see page 725)) 
 

■ CREATE TRIGGER/RULE—row level only (see CREATE TRIGGER/RULE (see page 702)) 

■ DROP TRIGGER/RULE (see DROP (see page 725)) 

For examples showing the use of procedures and triggers, see Examples: Creating a 
Procedure (see page 87) and Example: Calling a Procedure (see page 109). 

Note:  Some parts of CA Datacom SQL statement syntax are extensions to the ANSI SQL3 
standard and are therefore rejected by SQL when used under ANSI and FIPS SQLMODEs. 

 

SQL Procedures 

For information on the SQL Procedures feature that was added at r11 SP4, see CREATE 
PROCEDURE (see page 620). 

 

External Security Support for Procedure/Trigger Creation and Execution 

Users executing on externally secured systems cannot create, execute, or drop 
procedures or triggers if the appropriate access rights have not been granted to them. 
Plan security secures procedure and trigger execution in CA Datacom/DB Version 10.0. 
CREATE PROCEDURE, CREATE TRIGGER, DROP PROCEDURE and DROP TRIGGER are 
secured using the DTADMIN external access. 

 



Procedures and Triggers 

 

Chapter 3: Getting Started  75  
 

Trigger Execution for Record-at-a-Time Maintenance 

If you are executing record-at-a-time requests to maintain tables for which triggers are 
defined, be aware that the triggers execute as specified in the SQL CREATE TRIGGER 
statement. Any access method whose maintenance requests are routed through SQL 
causes triggers to fire. 

 

Transaction Integrity 

Any database maintenance performed by CA Datacom SQL during the execution of a 
procedure becomes a part of the transaction that caused the procedure to be executed.  
A procedure cannot issue COMMIT or ROLLBACK statements because that would 
terminate the transaction under which it was called. Any work performed by a 
procedure through means other than CA Datacom SQL is not integrated with the 
transaction state of the transaction that instigated procedure execution. 

When a trigger is created, SQL plans using the table involved are marked invalid and are 
automatically rebound the next time they are read from the DDD table.  Plans currently 
in memory do not recognize the added trigger.  In general, a plan is flushed from 
memory when all applications using it have completed (see the information about the 
PLNCLOSE= preprocessor option in Description of Options). Navigational (native DB 
non-SQL) commands recognize new triggers only when the application's OPEN for the 
table in question occurs after the CREATE TRIGGER has completed. 

 

CA Datacom/DB Utility (DBUTLTY) functions MASSADD and DBTEST, when executed with 
the MULTUSE=YES keyword, invoke triggers as would any other application. All other 
DBUTLTY functions ignore any trigger definitions and perform the maintenance as 
directed.  These functions include LOAD, MASSADD (running with MULTUSE=NO), and 
all forms of RECOVERY. 

Triggers are not activated by the restart process performed during the Multi-User 
Facility startup processing or by transaction backout (ROLLBACK) processing performed 
to reverse a failed transaction. 

Any Single User execution (we do not recommend using Single User execution) ignores 
triggers. 

 



Procedures and Triggers 

 

76  SQL User Guide 
 

Subroutine Calls Inside Procedures 

Procedures may call subroutines that perform non-CA Datacom related tasks, defined as 
any task that does not cause any piece of CA Datacom code to execute. Following are 
the rules for CA Datacom related subroutines: 

■ A subroutine may not contain calls to CA Datacom SQL. 

■ A subroutine may not be a procedure. Note, however, that a procedure mainline is 
allowed to call procedures using the CALL PROCEDURE and EXECUTE PROCEDURE 
statements. 

■ A subroutine may not contain record-at-a-time, set-at-a-time, or other calls that 
trigger CA Datacom code to execute. 

■ Because we do not guarantee that CA Datacom physically prevents a subroutine 
from making a record-at-a-time, set-at-a-time, CA Datacom SQL, or other illegal call, 
making such a call is not recommended. Illegal calls not only attempt to execute 
under a different transaction than that of the caller, but could produce unexpected 
results, unexpected effects, and abnormal terminations for which we cannot be 
held responsible. Therefore, make certain that you do not use any illegal calls. 

 

Restrictions 

Following is a partial list of functions that are not supported. If a feature, API, or other 
item does not appear on this list, its absence does not imply support for it. CA reserves 
the right to add items to this list or change or delete them at any time. 

■ Non-SQL requests (record-at-a-time, set-at-a-time, or other) are forbidden inside 
procedures. 

■ Procedures cannot contain COMMIT or ROLLBACK statements. 

■ Requests that trigger execution of any CA Datacom Transparency product are 
forbidden inside procedures. 

■ Procedures cannot issue INSERT, UPDATE, or DELETE statements against any CA 
Datacom DL1 Transparency-constrained table. 

 

■ COBOL, PL/I, and C procedures must be made Language Environment (LE) 
conforming by being written and compiled using the Language Environment. In 
z/OS, support for procedures and triggers requires a minimum of z/OS Version 2 
Release 5 and compatible Language Environment for z/OS with the following IBM 
compiler products: z/OS C/C++ (only the C subset is supported), COBOL for z/OS, 
and PL/I for MVS. Assembler procedures must also be made LE-conforming by use 
of the CEEENTRY and associated macros. A z/VSE operating system is required, 
along with IBM Language Environment for z/VSE and compatible compilers. 

■ The depth of nesting of recursive procedure execution, whether procedures are 
triggered or called explicitly, is limited. See CALL/EXECUTE PROCEDURE (see 
page 610) for more information. 

 



Procedures and Triggers 

 

Chapter 3: Getting Started  77  
 

Multi-User Facility Considerations for Procedures 

This section provides considerations for executing and coding procedures to run in the 
CA Datacom/DB Multi-User Facility. 

Note: Because SQL has no way of verifying the compatibility of the user-written code 
with the procedure defined by the CREATE PROCEDURE statement, it is the sole 
responsibility of the creator of the procedure to help ensure that the CREATE 
PROCEDURE statement precisely reflects the parameter list expected by the 
user-written program. Failure to properly coordinate parameter lists can cause the 
procedure subtask to abnormally terminate. 

Certain tasks need to be performed to execute procedures. Do the following tasks 
before bringing up the CA Datacom/DB Multi-User Facility. 

■ Add to the Multi-User Facility library concatenation the Language Environment (LE) 
runtime and associated language libraries that are needed to execute the 
procedures. For z/OS, place these ahead of the CA Common Services for z/OS 
runtime libraries. For z/VSE, place these ahead of the CA CIS (Common 
Infrastructure Services) runtime libraries. 

■ Add to the Multi-User Facility library concatenation the libraries containing the 
programs to be executed as procedures, with any associated subroutines. 

 

■ Add an appropriate PROCEDURE Multi-User startup option to the Multi-User Facility 
SYSIN. Code procedure nests and subtasks carefully. 

■ Add the appropriate Language Environment (LE) and associated language support 
data sets to the Multi-User Facility startup job. 

■ Modify the Language Environment (LE) parameter style exit routine for COBOL, 
IGZEPSX, to enable the code to provide the same parameter list processing that was 
done when running VS COBOL II runtime with the ATTACH SVC on MVS. This allows 
for passing Register 1 and the parameter list without change to the main COBOL 
procedure program, instead of having the parameter list style determined by 
Language Environment. 

 



Procedures and Triggers 

 

78  SQL User Guide 
 

■ Make certain you have upgraded Language Environment for z/OS to at least the 
V2R5.0 release level. 

Note: Support for procedures and triggers requires a minimum of z/OS Version 2 
Release 5 and compatible Language Environment for z/OS with the following IBM 
compiler products: z/OS C/C++ (only the C subset is supported), COBOL for z/OS, 
and PL/I for MVS. 

When coding, compiling, and link editing programs that are to execute as procedures, 
adhere to the following guidelines: 

■ Do not modify in your procedure program the Language Environment (LE) user area 
fields (not to be confused with the PL/I user area). These are set and queried by the 
procedure processor and interface in the Multi-User Facility by use of the Language 
Environment CEE3USR callable service. 

■ All procedure programs with embedded SQL statements must be LE-conforming 
and must be link edited with the procedure interface DBXPIPR. 

 

■ All procedure programs must be coded and link edited as RENT and NODYNAM (no 
dynamic calls) with AMODE(31) and RMODE(ANY). 

■ Ensure that the link-edit step receives a return code of 0. Any return code greater 
than 0 indicates a possible error that could lead to a Multi-User Facility abend. A 
possible error could be having included an SQL User Requirements Table to resolve 
the DBNTRY entry point. For example, do not include DBSBTPR. All CA Datacom/DB 
entry points should be resolved by the inclusion of DBXPIPR, and duplicates should 
not occur. The exception is the include for DBXHVPR to resolve COBOL host 
variables. 

 

■ Modify your installation defaults for LE to specify the following recommended 
settings, or include with each procedure program link-edit a CEEUOPT module with 
these settings: 

 ABTERMENC=(ABEND) 

 ALL31=(ON) 

 ANYHEAP=(1K,1K,ANYWHERE,FREE) 

 BELOWHEAP=(1K,1K,FREE) 

 HEAP=(32K,32K,ANYWHERE,FREE,8K,4K) 

 LIBSTACK=(1K,1K,FREE) 

 STACK=(4K,4K,ANY,KEEP) 

 STORAGE=(00,NONE,00,0K) 

 TERMTHDACT=(UADUMP,,32) 

 TRAP=(OFF) 

Note: While these options are recommendations, they may not be appropriate for your 
site or may need to be tuned according to your procedure execution environment 
within the Multi-User Facility. Run a typical procedure with the RPTSG=(ON) option in 
CEEUOPT and tune accordingly. 

 



Procedures and Triggers 

 

Chapter 3: Getting Started  79  
 

Number of Procedure TCBs 

Running Language Environment (LE) subtasks requires a substantial but not predictable 
amount of resources primarily related to LSQA memory and address space 24-bit 
memory. Errors are possible when a shortage exists of either kind of memory. A 
shortage occurring in some locations can cause return codes to be received.  Shortages 
in other locations can cause: 

■ Abend failures in the subtask, and 

■ Recursion loops. 
 

It is possible for these conditions to cause the Multi-User Facility to be terminated by 
the operating system. 

The Multi-User Facility cannot prevent all outages relating to user procedures and the 
Language Environment. Because it is not possible to predetermine requirements 
sufficiently to prevent all errors from occurring, plan to stress test your environment 
and configuration, running less TCBs than you expect would work. 

 

Performance Considerations 

Each request to execute a procedure attaches an operating system subtask to a CA 
Datacom/DB stub module that fetches the LE program. At completion this is deleted and 
detached. This overhead, when done frequently, can be substantial and needs to be 
considered when deciding to implement procedures. 

We recommend running with no more than 20 TCBs until testing proves that your 
environment can accommodate more. 

Note: For more information, see the section on the PROCEDURE Multi-User startup 
option in the CA Datacom/DB Database and System Administration Guide. 

 



Procedures and Triggers 

 

80  SQL User Guide 
 

Parameter Styles and Error Handling 

The PARAMETER STYLE clause of the CREATE PROCEDURE statement defines how 
parameters are passed between an application program, or a trigger, and the procedure 
that is being called. How errors are handled also depends upon the parameter style 
chosen. 

GENERAL 

This parameter style specifies that the user parameter list is passed to the 
procedure devoid of null indicators (nulls are not allowed).  Since no formal method 
is provided for passing error information back to the caller, the success or failure of 
the CALL procedure statement is determined by the contents of the SQL internal 
SQLCODE variable following the last SQL request made by the procedure. This also 
applies to parameter style GENERAL WITH NULLS. 

GENERAL WITH NULLS 

This parameter style differs from GENERAL only in that a null indicator is passed to 
the procedure for each user parameter. 

 

DATACOM SQL 

This parameter style passes nulls to the procedure as does GENERAL WITH NULLS 
and SQL, but it also passes some additional parameters. These parameters are 
modeled after those passed for the ANSI SQL3 parameter style SQL, but with this 
difference: instead of a SQLSTATE, DATACOM SQL passes an SQLCODE in the 
corresponding parameter. 

Following are the additional parameters for parameter style DATACOM SQL (the 
first four are modeled after SQL3): 

■ SQLCODE—passed to the procedure as 0 and used to set the SQLCODE of the 
CALL PROCEDURE statement on output. 

■ A variable-length character string containing the name of the procedure. 
 

■ A variable-length character string reserved for future use. 

■ A variable-length character string containing 80 blanks on input, and an 80-byte 
or shorter error message on output. This error message is placed in the SQLCA 
and used as the SQL error message for the CALL PROCEDURE statement. 

■ A two-byte fixed-length character string containing the CA Datacom/DB 
external error code on output. 

■ A single character containing the CA Datacom/DB internal error code on 
output. 

 



Procedures and Triggers 

 

Chapter 3: Getting Started  81  
 

The logic inside SQL for parameter style DATACOM SQL is as follows: 

When SQL gains control after a successful execution of the procedure, that is, after 
the procedure code loaded, ran, and did not abend, the internal SQL code and error 
message are reset to the values returned in the user's parameter list, regardless of 
whether it was triggered or called, even if this means a non-zero SQLCODE becomes 
zero or is replaced. 

In order to minimize the confusion that a newly-defined trigger can cause for a 
pre-existing application that uses the navigational (record-at-a-time) API rather 
than SQL, we handle the DB return codes for DATACOM SQL style procedures as 
follows. 

 

If the SQLCODE returned from the procedure is zero or positive, a non-blank CA 
Datacom/DB return code is ignored.  If the procedure returned a negative SQLCODE 
and was explicitly called (as opposed to being triggered), the CA Datacom/DB 
external and internal return codes are reset to the values returned through the 
procedure's parameter list.  If the procedure returned a negative SQLCODE and was 
triggered, we store the SQLCODE at offset 26 decimal (signed binary fullword)  into 
the user's Request Area, force the CA Datacom/DB return code(s) to 94(100), then 
document the CA Datacom/DB return codes returned from the procedure at offsets 
30 decimal (2 byte character) and 32 decimal (one byte unsigned binary) into the 
user's Request Area for the external and internal return codes, respectively.  This is 
done to allow users of navigational programs to differentiate between failures 
inside procedures and those related to their specific CA Datacom/DB requests, 
because they generally do not have logic to interpret an SQLCODE. 

 

You have complete control (and responsibility) in deciding whether what occurs 
constitutes a success. You must set the SQLCODE and error message parameters on 
exit in one of these three ways: 

■ If for some reason you want to fail even if all SQL requests received an 
SQLCODE=0, set SQLCODE -534 and provide an error message containing 80 
bytes as desired, or 

■ Supply the SQLCODE, error message, and CA Datacom/DB external and internal 
return codes exactly as SQL returned it to the procedure, or 

■ Pass back an SQLCODE forced to 0 at your discretion. 
 



Procedures and Triggers 

 

82  SQL User Guide 
 

SQL 

When a procedure is created using PARAMETER STYLE DATACOM SQL in the 
CREATE PROCEDURE statement, the SQLSTATE status indicator is returned in the 
SQLCA. For detailed information about the SQLSTATE status indicator, see SQL 
States (see page 298). 

Parameter style SQL passes nulls to the procedure as does GENERAL WITH NULLS 
and DATACOM SQL.  It also passes these additional four parameters that are added 
to the end of the parameter/null indicator list: 

■ The SQLSTATE (INOUT, but always passed in as 00000, similar to the SQLCODE 
in style DATACOM SQL, that is, it is passed to the procedure as 00000 and used 
to set the SQLSTATE of the CALL PROCEDURE statement on output). 

■ Authid.procedure-name (IN, same as in style DATACOM SQL, that is a 
variable-length character string containing the name of the procedure). 

 

■ Authid.specific name (IN, same as in style DATACOM SQL, that is, a 
variable-length character string reserved for future use). 

■ Error message text (INOUT, passed in as 0-length string, same as DATACOM 
SQL, that is, a variable-length character string containing 80 blanks on input, 
and an 80-byte or shorter error message on output that is placed in the SQLCA 
and used as the SQL error message for the CALL PROCEDURE statement). 

Unlike style DATACOM SQL, the CA Datacom/DB external and internal return codes 
are not a part of this parameter list but are encoded in the generated SQLSTATE 
value. For example, the SQLSTATE that equates to SQL return code -117 is Seeii, and 
the SQLSTATE that equates to SQL return code -118 is Reeii, where ee represents 
the 2-byte external CA Datacom/DB return code, and ii is the CA Datacom/DB 
internal return code in hexadecimal characters. 

 

As an aid in understanding error recovery for procedures, note the following: 

■ The PARAMETER STYLE being used by the procedure which is executing at each 
level of nesting controls the SQLCODE seen by the logic that called it, if procedures 
execute in a nested fashion due either to: 

– CALL PROCEDURE statements inside procedures, or 

– TRIGGERs triggering during execution of a procedure. 

This means that the PARAMETER STYLE of any procedure controls how the success 
or failure of everything that occurred during execution of the procedure is 
interpreted, including recursively called procedures whose PARAMETER STYLEs 
might not match that of the outermost procedure. 

 



Procedures and Triggers 

 

Chapter 3: Getting Started  83  
 

■ As with all SQL statements, if an SQL statement is issued from a procedure and fails, 
it has no effect on the database. This rule holds true at every level of recursion. For 
example, if an INSERT statement, issued by a procedure, triggers procedure calls 
five layers deep and results in the updating of 500 rows in the database but then 
fails, not only is the INSERT backed out, the 500 updates that executed during 
processing of the INSERT are also backed out. Even though hundreds of SQL 
statements have been rolled back, at the level of the procedure that executed the 
INSERT, only one statement was backed out.  Limited-scope rollbacks such as this 
(that occur automatically in lower levels of recursion) in no way affect the ability of 
the higher levels of procedures to either continue processing or to abort and return 
errors to callers, triggering additional automatic rollbacks as needed. Note, 
however, that users are not allowed to code their own ROLLBACK or COMMIT 
statements inside procedures. 

 

SQL Error Messages Related to Procedures and Triggers 

The following SQL error codes have been added in support of procedures and triggers: 

-321 

INVALID SQLCODE sqlcode HAS BEEN GENERATED 

Reason: 

A user-written procedure has returned an SQLCODE that is not a valid DATACOM 
SQLCODE. 

The SQLSTATE that equates to this SQL return code is 39001. 

Action: 

Modify, repreprocess, and recompile the procedure to follow all instructions given in 
Parameter Styles and Error Handling (see page 80). 

 

-530 

PROC authid.name: msg-string 

Reason: 

There has been a procedure preparation error. The information in msg-string varies 
depending upon the error that has occurred. 

The SQLSTATE that equates to this SQL return code is 38S01. 

Action: 

Correct the problem described by the msg-string. 
 



Procedures and Triggers 

 

84  SQL User Guide 
 

-531 

PROC authid.name: msg-string 

Reason: 

There has been a procedure execution error. The information in msg-string varies 
depending upon the error that has occurred. This message commonly occurs when you 
have not concatenated the load library (into which your procedure has been linked) into 
the STEPLIB of the DBMUFPR of your Multi-User Facility job. This is especially likely to be 
the cause of the message if the message resembles the following: 

PROC authid.sql-proc-name: external-proc-name FETCH ERROR 

For example, PROC SYSUSR.MYPROC: MYPROC FETCH ERROR. 

The SQLSTATE that equates to this SQL return code is 38S02. 

Action: 

Correct the problem described by the msg-string. 
 

-532 

TRIG authid.name: msg-string 

Reason: 

There has been a trigger preparation error. The information in msg-string varies 
depending upon the error that has occurred. 

The SQLSTATE that equates to this SQL return code is 09S02. 

Action: 

Correct the problem described by the msg-string. 
 



Procedures and Triggers 

 

Chapter 3: Getting Started  85  
 

-533 

TRIG authid.name: msg-string 

Reason: 

There has been a trigger execution error. The information in msg-string varies 
depending upon the error that has occurred. This message commonly occurs when you 
have not concatenated the load library (into which your procedure has been linked) into 
the STEPLIB of the DBMUFPR of your Multi-User Facility job. This is especially likely to be 
the cause of the message if the message resembles the following: 

TRIG authid.sql-trig-name: external-proc-name FETCH ERROR 

For example, TRIG SYSUSR.MYTRIG: MYPROC FETCH ERROR. 

The SQLSTATE that equates to this SQL return code is 09S01. 

Action: 

Correct the problem described by the msg-string. 
 

-534 

msg-string 

Reason: 

There has been a user-defined procedure execution error. This SQL error code only 
occurs in procedures whose parameter style is SQL or DATACOM SQL. The information 
in the msg-string varies depending upon the error that has occurred, that is to say, 
user-written procedure logic creates the entire error message. The message is truncated 
if it exceeds the 80-byte length of the SQLCA error message area. 

The SQLSTATE that equates to this SQL return code is 2FS04 

Action: 

Correct the problem described by the msg-string. 
 



Procedures and Triggers 

 

86  SQL User Guide 
 

-535 

PROC authid.name: msg-string 

Reason: 

There has been an environmental problem, possibly LE-related, that prevented the 
procedure from running. In the message, authid.name identifies the PROC and 
msg-string specifies the cause. 

The SQLSTATE that equates to this SQL return code is 39S01. 

Action: 

Correct the problem described by the msg-string. 
 

-537 

msg-string 

Reason: 

There has been a user-defined execution error in an SQL procedure (a "LANGUAGE SQL" 
procedure). The information in the msg-string varies, depending upon the error that has 
occurred, that is to say, user-written procedure logic creates the entire error message. 
The message is truncated if it exceeds the 80-byte length of the SQLCA error message 
area. 

The SQLSTATE that equates to this SQL return code is 38S04. 

Action: 

Correct the problem described by the msg-string. 
 

Datadictionary Support for Triggers and Procedures 

Beginning in r10, implementation of CA Datacom Datadictionary support for triggers and 
procedures involved the addition of new entity-types, attributes, and relationships to 
the model used in the previous Version. The following page contains a diagrammatic 
view of the changes to the previous model. 

 

Processing 

Following is described the requirements of the SQL/Datadictionary interface for each of 
the SQL statements affected by triggers and procedures. 

 



Procedures and Triggers 

 

Chapter 3: Getting Started  87  
 

ALTER TABLE Processing Modifications 

When an ALTER TABLE statement is processed for a table with any triggers with Event 
Times of either Before Update or After Update and a Column Dependency, these 
triggers are marked for Automatic Rebind by setting the Trigger Valid Indicator field of 
the Trigger DDD Member to N. 

If an ALTER TABLE attempts to delete a Column on which a trigger depends, the ALTER 
fails with a DSF Return Code of TUC. 

 

COMMENT ON Processing 

The parameters and processing are the same as the current COMMENT ON requests for 
tables, views, and synonyms. 

 

DROP TABLE Processing Modifications 

When a Table is dropped, all TRIGGER occurrences and their respective DDD Members 
referring to the Table in the on table SQL clause are deleted. 

 

Examples: Creating a Procedure 

This section takes you through the process of creating a procedure as follows: 

1. Coding the Program (see following) 

2. Defining the Procedure to SQL (see Defining the Procedure to SQL (see page 108)) 
 

Coding the Program 

Consider an application that updates rows in a table representing a catalog of auto parts 
that can be ordered over the Internet, requiring the ability to update the catalog in real 
time. This capability requires a complex series of transactions. Decisions must be made 
during processing. A cascading foreign key alone cannot satisfy these needs. A 
procedure is the most efficient way to fulfill the requirements. 

 



Procedures and Triggers 

 

88  SQL User Guide 
 

Sample JCL for C 

Following is an example of coding the needed procedure in C. The comments in the 
procedure program example provide a guide to the procedure building process. 

For COBOL examples see Sample JCL for z/OS for z/OS and Sample JCL for z/VSE (see 
page 106) for z/VSE. PL/I or Assembler could also have been used to code the 
procedure. 

Before coding your first procedure, see Transaction Integrity (see page 75), Restrictions 
(see page 76), and Parameter Styles and Error Handling (see page 80). 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 



Procedures and Triggers 

 

Chapter 3: Getting Started  89  
 

 //jobname     See the note above. 

 //TWOUP  OUTPUT DEFAULT=YES,FORMDEF=010111,PAGEDEF=W120C0,CHARS=(GT20)  

+INC GRB.JOBLIB3                                                        0000010  

+INC GRB.EDCC  

+INC GRB.CEEVARS  

//* ****************************  

//* *  "C" PRECOMPILE STEP   ***  

//* ****************************  

//CPRECMP  EXEC PGM=DBPLIPR,PARM='PLANNAME=ITEMKILL'  

//PROCLIB  DD DSN=CA90SMVS.NEWC.R3V1.PROCLIB,DISP=SHR  

//SOURCE   DD DSN=DCMDEV.SQL.GARBR02.SRCLIB2(ITEMKILL),DISP=SHR  

//SYSUDUMP DD SYSOUT=*  

//REPORT   DD SYSOUT=*  

//SYSPRINT DD SYSOUT=*  

//SYSOUT   DD SYSOUT=*  

//OPTIONS  DD DSN=DCMDEV.SQL.GARBR02.SRCLIB2(TPRCCOPT),DISP=SHR  

//SRCOUT   DD DSN=&&SRC,DISP=(,PASS,DELETE),UNIT=VIO,  

//            SPACE=(2000,(200,200)),   

//            DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)   

//* ****************************************************  

//*  

//COMPA    EXEC PROC=EDCC,        (FROM SYS2.PROCLIB)  

//   CRUN='RENT',  

//   CPARM='NOMARGINS,NOSEQUENCE,LIST,SOURCE',  

//   CPARM2='LOCALE("POSIX"),LANGLVL(ANSI),OMVS,DLL',  

//   CPARM3='SSCOM,LONGNAME,SHOWINC',  

//  INFILE='&&SRC',  

//  OUTFILE='DCMDEV.SQL.GARBR02.OBJLIB(ITEMKILO)'  

//*  

//SYSLIB   DD  DSN=CEE.SCEEH.H,DISP=SHR  

//         DD  DSN=CEE.SCEEH.SYS.H,DISP=SHR  

//USERLIB  DD  DSN=DCMDEV.SQL.LIBRMAST,DISP=SHR,SUBSYS=LAM  

//*  

//* SYSCPRT  DD  DSN=DCMDEV.SQL.PRINT(TCPG002),DISP=SHR  

//*  

//STEP1  EXEC PGM=DBUTLTY,REGION=2048K,COND=EVEN  

//PXX       DD DSN=DCMDEV.DB.MUF3.PXX,DISP=SHR  

//CXX       DD DSN=DCMDEV.DB.MUF3.CXX,DISP=SHR  

//SNAPER       DD SYSOUT=*  

//SYSPRINT     DD SYSOUT=*  

//SYSUDUMP     DD SYSOUT=*  

//SYSIN    DD  *  

  REPORT AREA=PXX,DUMPS=FULL  

/*  

//* *********** LINK STARTS HERE **********************  

//PRELINK   EXEC  PGM=EDCPRLK,  

//  PARM='POSIX(OFF)/OE,MEMORY,DUP,NOER,MAP,NOUPCASE,NONCAL'  

//*  

//SYSMSGS  DD  DSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR  



Procedures and Triggers 

 

90  SQL User Guide 
 

//OBJLIB   DD  DSN=DCMDEV.SQL.GARBR02.OBJLIB,DISP=SHR  

//C8941    DD  DSN=CEE.SCEEOBJ,DISP=SHR  

//SYSOUT   DD  SYSOUT=*  

//SYSPRINT DD  *  

//SYSMOD   DD  DSN=DCMDEV.SQL.GARBR02.OBJLIB(ITEMKOBJ),DISP=SHR  

//SYSDEFSD DD  DUMMY  

//SYSIN    DD  *  

  INCLUDE OBJLIB(ITEMKILO)  

/*  

//LINKEDIT  EXEC  PGM=LINKEDIT,  

//  PARM=('AMODE=31,RMODE=ANY,TERM=YES,MSGLEVEL=0,MAP,DYNAM=DLL',  

//        'CALL=YES,CASE=MIXED,REUS=RENT,EDIT=YES')  

//SYSLIB   DD  DSN=CEE.SCEELKED,DISP=SHR  

//         DD  DSN=SYS1.CSSLIB,DISP=SHR  

//SYSPRINT DD  SYSOUT=*  

//SYSTERM  DD  SYSOUT=*  

//SYSLMOD  DD  DISP=SHR,DSN=DCMDEV.SQL.GARBR02.LODLIB2(ITEMKILL)  

//OBJLIB   DD  DSN=DCMDEV.SQL.GARBR02.OBJLIB,DISP=SHR  

//*CALIB    DD  DSN=DCMDEV.DB.R100.LODLIB,DISP=SHR  

//CALIB    DD  DSN=DCMDEV.DB.R100.LODLIB,DISP=SHR  

//CEELIB   DD  DSN=DCMDEV.DBDT.DSYTEST.LOADLIB,DISP=SHR  

//SYSLIN   DD  *  

  INCLUDE  OBJLIB(ITEMKOBJ) 

  INCLUDE  CEELIB(CEEUOPT) 

  INCLUDE  CALIB(DBXPIPR) 

/*  

//*+INC GRB.URTCEE 
 



Procedures and Triggers 

 

Chapter 3: Getting Started  91  
 

           /**********  Program source starts below.        ************/ 

                     /* ITEMKILL - C Procedure example. */ 

  /* 

  **  This procedure is triggered when a supplier cancels production of 

  **  a product in our consumer catalog.  The program checks to see how 

  **  many open orders we need to cancel and decides, based on this 

  **  number, whether to send apology letters to a small number of 

  **  customers, or to generate an error message instructing us to contact 

  **  the supplier to attempt to fill the orders.  This procedure is 

  **  passed an input parameter that determines the number of orders we 

  **  are willing to cancel (if any). 

  */ 

 

  /* The procedure you write must be re-entrant. */ 

  #pragma options(RENT) 

  /* 

  **  Use of the linkage pragma is required to tell the C compiler that 

  **  our load module is "fetched" for execution at runtime. 

  */ 

  #pragma linkage(itemKill,FETCHABLE) 

 

  #include <stdlib.h> 

  #include <stdio.h> 

  #include <string.h> 
 

  /*  The following structure maps to a VARCHAR(128) data item in SQL (FYI). */ 

  typedef struct varChar128 

 

     short length; 

     char  data 128á; 

     SQL_VARCHAR_128; 

  /* 

  ** The following structure maps to the additional parameters passed 

  ** to your procedure when the "DATACOM SQL" parameter-style has 

  ** been specified by the CREATE PROCEDURE.  Note that the variable 

  ** containing the sqlcode may not be named "sqlcode" because our 

  ** precompiler generates an SQLCA that uses the name.  These parameters 

  ** enable your program to control the SQLCODE that SQL sees as 

  ** the result of the CALL/EXECUTE PROCEDURE statement that 

  ** was executed or triggered.  Note that a negative SQLCODE-OUT 

  ** aborts any INSERT, UPDATE, or DELETE that triggers it.  See the 

  ** "Parameter Styles and Error Handling" section for more details. 

  */ 
 



Procedures and Triggers 

 

92  SQL User Guide 
 

  typedef struct parmsDatacomSQL 

 

     int             *sqlcodeOut; 

     SQL_VARCHAR_128 *procName; 

     SQL_VARCHAR_128 *specName; 

     SQL_VARCHAR_128 *errMsgOut; /* Truncated to 80 bytes in 10.0. */ 

     char            *dbExtCodeOut; 

     short           *dbIntCodeOut; 

     SQL_PROC_PARMS_DCM; 

  void userDefinedErrorDoc(SQL_PROC_PARMS_DCM *dcmSqlParms, char *errMsg); 

  /* 

  ** The function name used below must match both that of the load- 

  ** module that we are going to produce, and the EXTERNAL name defined 

  ** by the CREATE PROCEDURE statement that we execute later. 

  ** 

  ** Note that the data pointed to by the formal parameters 

  ** precisely correspond to the parameter definitions specified 

  ** in the CREATE PROCEDURE statement and appear in the 

  ** same order.  The C-language variables chosen to process the 

  ** data must match in data-type, size, and order. 

  ** 

  ** When SQL regains control after execution of the procedure, it 

  ** ignores any data that your program stored into parameters defined 

  ** by the CREATE PROCEDURE statement to be input only ("IN"). 

  ** 
 

  ** In order to minimize the confusion that a newly-defined trigger 

  ** can cause for a preexisting application that uses the navigational 

  ** (record-at-a-time) API rather than SQL, we handle DB return codes 

  ** for DATACOM SQL style procedures as follows: 

  ** 

  ** If the SQLCODE returned from the procedure is zero or positive, a 

  ** nonblank DB return code is ignored.  If the procedure returned a 

  ** negative SQLCODE and was explicitly called as opposed to being 

  ** triggered, DB external and internal return codes are reset to the 

  ** values returned through the procedure's parameter list.  If the 

  ** procedure returned a negative SQLCODE and was triggered, we store 

  ** the SQLCODE at offset 26 decimal (signed binary fullword) into the 

  ** user's Request Area, for the DB return code(s) to 94(100), then 

  ** then document the DB return codes returned from the procedure 

  ** at offsets 30 decimal (2-byte character) and 32 decimal (1-byte 

  ** unsigned binary) into the user's Request Area for the external and 

  ** internal return codes, respectively.  This is done to allow users 

  ** of navigational programs to differentiate between failures 

  ** inside procedures and those related to their specific DB requests, 

  ** since they generally do not have logic to interpret an SQLCODE. 

  ** 
 



Procedures and Triggers 

 

Chapter 3: Getting Started  93  
 

  ** Note that the first three parameters would appear in the formal 

  ** parameter list regardless of the PARAMETER STYLE specified 

  ** by the CREATE PROCEDURE statement.  The next three parameters 

  ** are null indicator variables corresponding to the first three, 

  ** and appear only under certain parameter styles (in Version 

  ** 10.0, they appear under DATACOM SQL and GENERAL WITH NULLS). 

  ** The "dcmSqlParms" parameter (see previous explanation) appears 

  ** only under parameter style DATACOM SQL. 

  */ 
 

  int itemKill(int   *canceledPartIdIn,  int   *vendorIdIn, 

               int   *maxBadOrdersIn,    short *canceledPartIdNull, 

               short *vendorIdNull,      short *maxBadOrdersNull, 

               SQL_PROC_PARMS_DCM dcmSqlParms) 

 

 

     EXEC SQL BEGIN DECLARE SECTION; 

     int   canceledPartId     = *canceledPartIdIn; 

     int   vendorId           = *vendorIdIn; 

     int   numBackOrders      = 0; 

     int   numOrdersCanceled  = 0; 

     char *errMsg; 

     EXEC SQL END DECLARE SECTION; 

 

     EXEC SQL WHENEVER NOT FOUND goto end; 

     EXEC SQL WHENEVER SQLERROR  goto sqlError; 

     /* 

     ** Initialize output parameters. 

     ** Since triggers may not call procedures that have output 

     ** (OUT or INOUT) parameters, and we intend to use this 

     ** procedure as a trigger, we have coded/created it without 

     ** output parameters other than those required for parameter 

     ** style DATACOM SQL. 

     */ 
 



Procedures and Triggers 

 

94  SQL User Guide 
 

     *(dcmSqlParms.sqlcodeOut)     = 0; 

     *(dcmSqlParms.dbExtCodeOut)   = 0; 

     *(dcmSqlParms.dbIntCodeOut)   = 0; 

     dcmSqlParms.errMsgOut->length = 0;  /* SQL 10.0 maximum is 80. */ 

 

     memset(dcmSqlParms.errMsgOut->data, 0, 80); 

 

     /* Handle nulls on input. */ 

     if (*canceledPartIdNull == -1) 

        errMsg = "ITEM_ORDER_KILLER ABORTED: CANCELED PART ID IS NULL"; 

     else if (*vendorIdNull == -1) 

        errMsg = "ITEM_ORDER_KILLER ABORTED: VENDOR ID IS NULL"; 

     else 

 

        errMsg = NULL; 

        if (*maxBadOrdersNull == -1) 

           *maxBadOrdersIn = 0; 

 

 

     /* Quit if an error message was produced. */ 

     if (errMsg) 

 

        userDefinedErrorDoc(&dcmSqlParms., errMsg); 

        goto end; 
 

     /* How many back orders for this item have to be canceled? */ 

 

     EXEC SQL 

        select count(*) 

        into   :numBackOrders 

        from   sales.order_items 

        where  item_id     = :canceledPartId and 

               item_status = 'BACK-ORDERED'; 

 

     /* Handle outstanding orders. */ 

     if (numBackOrders > 0) 

 

        /* 

        ** This cancellation by the supplier affects too many 

        ** orders.  Try to get him to honor the orders. 

        */ 

        if (numBackOrders > *maxBadOrdersIn) 

           userDefinedErrorDoc(&dcmSqlParms., 

           "ITEM_ORDER_KILLER DETECTED EXCEEDED ORDER CANCELLATION LIMIT"); 

        else 

 

           /* 

           ** Cancel orders and send apology letters to customers 

           ** whose orders are being canceled. 

           */ 
 



Procedures and Triggers 

 

Chapter 3: Getting Started  95  
 

           EXEC SQL 

              update sales.order_items 

              set    item_status = 'CANCELED', 

                     comments    = 'ITEM DISCONTINUED' 

              where  item_id     = :canceledPartId and 

                     item_status = 'BACK-ORDERED'; 

 

           EXEC SQL 

              insert into customer.apology_letters 

                     (customer_id, order_id, item_id, quantity, 

                      comments, problem_type) 

              select A.customer_id,  A.order_id, B.item_id, 

                     B.quantity, B.comments, 'ITEM DISCONTINUED' 

              from   sales.orders A, sales.order_items B 

              where  A.order_id    = B.order_id       and 

                     B.item_id     = :canceledPartId and 

                     B.item_status = 'CANCELED'; 

 

           numOrdersCanceled = numBackOrders; 
 

     /* Record the problem so we can track "problem" vendors. */ 

     EXEC SQL 

        insert into vendor.problems 

               (vendor_id, problem_type, num_orders_affected, 

                num_orders_canceled, related_item_id, 

                problem_date, resolution_date) 

        values (:vendorId, 'ITEM DISCONTINUED', :numBackOrders, 

                :numOrdersCanceled, :canceledPartId, 

                CURRENT DATE, NULL); 

  end: 

     return(0); 

 sqlError: 

     /* 

     ** Supply error information to caller using output parameters. 

     ** Note that the precompiler automatically includes the "sqlca" 

     ** structure in your program. 

     */ 

     *(dcmSqlParms.sqlcodeOut)      = sqlca.sqlca_code; 

     *(dcmSqlParms.dbIntCodeOut)    = sqlca.sqlca_dbcode_int; 

     dcmSqlParms.errMsgOut->length  = sqlca.sqlca_err_len; 

     memcpy(dcmSqlParms.dbExtCodeOut,    sqlca.sqlca_dbcode_ext, 2); 

     memcpy(dcmSqlParms.errMsgOut->data, sqlca.sqlca_err_msg, 

            sqlca.sqlca_err_len); 

     /* 
 



Procedures and Triggers 

 

96  SQL User Guide 
 

     ** Note that the output of this "printf" statement would have 

     ** appeared in a SYSOUT file attached to the output of the 

     ** Multi-user job, so I have decided its use here is inappropriate: 

     ** printf("ITEMKILL FAILED WITH SQLCODE = %d.", *(dcmSqlParms.sqlcodeOut)); 

     */ 

 

     goto end; 

 

  /* Generate documentation for a user-defined error. */ 

 void userDefinedErrorDoc(SQL_PROC_PARMS_DCM *dcmSqlParms, char *errMsg) 

 

     *(dcmSqlParms->sqlcodeOut)     = -534;/* User-defined error. */ 

     dcmSqlParms->errMsgOut->length = 80;  /* SQL 10.0 maximum. */ 

 

     memcpy(dcmSqlParms->errMsgOut->data, errMsg, 

            (strlen(errMsg) > 80 ? 80 : strlen(errMsg))); 

     return; 
 

 000200 /* 

 000201 //SYSUDUMP DD SYSOUT=* 

 000202 //REPORT   DD SYSOUT=* 

 000203 //SYSPRINT DD SYSOUT=* 

 000204 //SYSOUT   DD SYSOUT=* 

 000205 //SRCOUT   DD DSN=&.&SRC.,DISP=(,PASS,DELETE),UNIT=VIO, 

 000206 //            SPACE=(2000,(200,200)), 

 000207 //            DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200) 

 000208 //* 

 000209 //* LE C COMPILE 

 000210 //COMPA    EXEC PROC=EDCC,        (FROM SYS2.PROCLIB) 

 000211 //   CRUN='RENT', 

 000212 //   CPARM='NOMARGINS,NOSEQUENCE,LIST,SOURCE', 

 000213 //   CPARM2='LOCALE("POSIX"),LANGLVL(ANSI),OMVS,DLL', 

 000214 //   CPARM3='SSCOM,LONGNAME,SHOWINC', 

 000215 //  INFILE='&.&SRC'., 

 000216 //  OUTFILE='dsnname.OBJLIB(ITEMKILO)' 

 000217 //* 

 000218 //SYSLIB   DD  DSN=CEE.SCEEH.H,DISP=SHR 

 000219 //         DD  DSN=CEE.SCEEH.SYS.H,DISP=SHR 

 000220 //USERLIB  DD  DSN=DCMDEV.SQL.LIBRMAST,DISP=SHR,SUBSYS=LAM 

 000221 //* *********** LINK STARTS HERE ********************** 

 000222 //PRELINK   EXEC  PGM=EDCPRLK, 

 000223 //  PARM='POSIX(OFF)/OE,MEMORY,DUP,NOER,MAP,NOUPCASE,NONCAL' 
 



Procedures and Triggers 

 

Chapter 3: Getting Started  97  
 

 000224 //* 

 000225 //SYSMSGS  DD  DSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR 

 000226 //OBJLIB   DD  DSN=dsnname.OBJLIB,DISP=SHR 

 000227 //C8941    DD  DSN=CEE.SCEEOBJ,DISP=SHR 

 000228 //SYSOUT   DD  SYSOUT=* 

 000229 //SYSPRINT DD  * 

 000230 //SYSMOD   DD  DSN=dsnname.OBJLIB(ITEMKOBJ),DISP=SHR 

 000231 //SYSDEFSD DD  DUMMY 

 000232 //SYSIN    DD  * 

 000233   INCLUDE OBJLIB(ITEMKILO) 

 000234 /* 
 

 000235 //LINKEDIT  EXEC  PGM=LINKEDIT, 

 000236 //  PARM=('AMODE=31,RMODE=ANY,TERM=YES,MSGLEVEL=0,MAP,DYNAM=DLL', 

 000237 //        'CALL=YES,CASE=MIXED,REUS=RENT,EDIT=YES') 

 000238 //SYSLIB   DD  DSN=CEE.SCEELKED,DISP=SHR 

 000239 //         DD  DSN=SYS1.CSSLIB,DISP=SHR 

 000240 //SYSPRINT DD  SYSOUT=* 

 000241 //SYSTERM  DD  SYSOUT=* 

 000242 //SYSLMOD  DD  DISP=SHR,DSN=dsnname.LODLIB2(ITEMKILL) 

 000243 //OBJLIB   DD  DSN=dsnname.OBJLIB,DISP=SHR 

 000244 //CAILIB   DD  DSN=xxxxxx.xx.xxxx.LODLIB,DISP=SHR 

 000245 //CEELIB   DD  DSN=xxxxxx.xxxx.xxxxxx.LOADLIB,DISP=SHR 

 000246 //SYSLIN   DD  * 

 000247   INCLUDE  OBJLIB(ITEMKOBJ) 

 000248   INCLUDE  CEELIB(CEEUOPT) 

 000249   INCLUDE  CALIB(DBXPIPR) 

 000250 /* 

Please note that the library containing the procedure's load module must be added to 
the STEPLIB or JOBLIB of the Multi-User Facility startup JCL. 

 



Procedures and Triggers 

 

98  SQL User Guide 
 

Sample JCL for z/OS 

Following is the z/OS COBOL functional equivalent of the C procedure shown previously 
(see Sample JCL for C). For a z/VSE sample in COBOL, see Sample JCL for z/VSE (see 
page 106). 

The following JCL example is for z/OS sites. 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 //jobname     See the note above. 

 //             CLASS=A,MSGCLASS=X,REGION=2048K 

 //JOBLIB   DD DSN=library-containing-DBSIDPR,DISP=SHR 

 //         DD DSN=library-containing-multi-user-modules,DISP=SHR 

 //         DD DSN=etc...,DISP=SHR 

 //*-------------------------------------------------------------------* 

 //* STEP 1: PRE-COMPILE THE PROCEDURE PROGRAM                   * 

 //*-------------------------------------------------------------------* 

 //PRECOMP  EXEC PGM=DBXMMPR 

 //WORK1    DD   DSN=&.&WORK1.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //WORK2    DD   DSN=&.&WORK2.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //WORK3    DD   DSN=&.&WORK3.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //SYSOUT   DD   SYSOUT=* 

 //SYSPRINT DD   SYSOUT=* 

 //SNAPER   DD   SYSOUT=* 

 //SNAPER   DD   SYSOUT=* 

 //SYSPUNCH DD   DSN=&.&SQLCOB.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECF  M=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //SYSUDUMP DD   SYSOUT=* 

 //SYSIN    DD   * 
 

        ***           ITEMKILL - COBOL Procedure example              *** 

        *            (Line numbers removed for clarity) 

        * This procedure is triggered when a supplier cancels production 

        * of a product in our consumer catalog. The program checks to see 

        * how many open orders we need to cancel and decides, based 

        * on this number, whether to send apology letters to a small 

        * number of customers, or to generate an error message instructing 

        * us to contact the supplier to attempt to fill the orders. 

        * This procedure is passed an input parameter that determines the 

        * the number of orders we are willing to cancel (if any). 

 

        *  The "PROCSQLUSAGE" option used below identifies this program 

        *  as a procedure. 
 



Procedures and Triggers 

 

Chapter 3: Getting Started  99  
 

        *$DBSQLOPT PROCSQLUSAGE=MODIFIES USRNTRY=NONE 

        *$DBSQLOPT SQLMODE=DATACOM AUTHID=SYSADM ISOLEVEL=C 

 

         IDENTIFICATION DIVISION. 

 

        * The PROGRAM-ID must match both the name of the load-module 

        * that we are going to produce, and the EXTERNAL name defined by 

        * the CREATE PROCEDURE statement that we execute later. 

 

         PROGRAM-ID. ITEMKILL. 

 

         ENVIRONMENT DIVISION. 

         CONFIGURATION SECTION. 

         SOURCE-COMPUTER. IBM-370. 

         OBJECT-COMPUTER. IBM-370. 

         INPUT-OUTPUT SECTION. 

         DATA DIVISION. 

 

         WORKING-STORAGE SECTION. 

             EXEC SQL BEGIN DECLARE SECTION END-EXEC 

         01  NUM-BACK-ORDERS        PIC S9(9) COMP. 

         01  NUM-ORDERS-CANCELED    PIC S9(9) COMP VALUE 0. 

             EXEC SQL END   DECLARE SECTION END-EXEC. 

 

         LINKAGE SECTION. 
 

        ***  DECLARE PROCEDURE PARAMETERS 

        *    The variables declared in the linkage section must 

        *    precisely match the parameter definitions specified 

        *    in the CREATE PROCEDURE statement, and must appear 

        *    in the same order.  When SQL regains control after 

        *    execution of the procedure, it ignores data that 

        *    your program stored into parameters defined by the 

        *    CREATE PROCEDURE statement to be input only ("IN"). 

 

        *    See the "Parameter Style and Error Handling" section 

        *    for more details. 

 

         01  CANCELED-PART-ID-IN    PIC S9(9) COMP. 

         01  VENDOR-ID-IN           PIC S9(9) COMP. 

         01  MAX-BAD-ORDERS-IN      PIC S9(9) COMP. 

        ***  DECLARE NULL INDICATORS FOR THE PARAMETERS. 

        *    These declarations must be included if (and only if) the 

        *    PARAMETER STYLE specified in your CREATE PROCEDURE is 

        *    GENERAL WITH NULLS or DATACOM SQL. 

 

         01  CANCELED-PART-ID-NULL  PIC S9(4) COMP. 

         01  VENDOR-ID-NULL         PIC S9(4) COMP. 

         01  MAX-BAD-ORDERS-NULL    PIC S9(4) COMP. 
 



Procedures and Triggers 

 

100  SQL User Guide 
 

        ***  DECLARE "PARAMETER STYLE DATACOM SQL" OUTPUT PARAMETERS 

        *    These declarations must be included if (and only if) your 

        *    PARAMETER STYLE is DATACOM SQL.  A copybook containing 

        *    these declarations is provided with CA Datacom/DB SQL. 

        *    The variable containing the sqlcode may not be named 

        *    "SQLCODE" since the SQLCA uses this name. 

        *    These additional parameters allow the procedure 

        *    to control the SQLCODE that SQL sees as the 

        *    result of the CALL/EXECUTE PROCEDURE statement that 

        *    was executed or triggered.  Note that a negative 

        *    SQLCODE-OUT aborts any INSERT, UPDATE, or DELETE 

        *    that triggers it. 

 

        *    See the "Parameter Styles and Error Handling" section 

        *    for more details on this. 

 

         01  SQLCODE-OUT      PIC S9(9) COMP. 

         01  PROCNAME. 

             49 PROCNAME-LEN  PIC S9(4) COMP. 

             49 PROCNAME-TEXT PIC X(128). 

         01  SPECNAME. 

             49 SPECNAME-LEN  PIC S9(4) COMP. 

             49 SPECNAME-TEXT PIC X(128). 
 

        *    Note that in SQL 10.0, error messages longer than 80 bytes 

        *    are truncated.  In the future, this may not be the case. 

 

         01  ERRMSG. 

             49 ERRMSG-LEN    PIC S9(4) COMP. 

             49 ERRMSG-TEXT   PIC X(128). 

         01  DBCODE-EXT       PIC X(2). 

         01  DBCODE-INT       PIC S9(4) COMP. 

 

         PROCEDURE DIVISION USING CANCELED-PART-ID-IN,   VENDOR-ID-IN, 

             MAX-BAD-ORDERS-IN,   CANCELED-PART-ID-NULL, VENDOR-ID-NULL, 

             MAX-BAD-ORDERS-NULL, 

             SQLCODE-OUT, PROCNAME, SPECNAME, ERRMSG, DBCODE-EXT, 

             DBCODE-INT. 

             EXEC SQL WHENEVER SQLERROR   GO TO SQL-ERROR-RTN END-EXEC. 

             EXEC SQL WHENEVER NOT FOUND  CONTINUE            END-EXEC. 
 



Procedures and Triggers 

 

Chapter 3: Getting Started  101  
 

        *** Initialize values of output parameters for SQL. 

        *   Since triggers may not call procedures that have output 

        *   (OUT or INOUT) parameters, and we intend to use this 

        *   procedure as a trigger, we have coded/created it without 

        *   output parameters other than those required for parameter 

        *   style DATACOM SQL. 

 

             MOVE 0          TO SQLCODE-OUT. 

             MOVE 0          TO ERRMSG-LEN. 

             MOVE 'NO ERROR' TO ERRMSG-TEXT. 

             MOVE '  '       TO DBCODE-EXT. 

             MOVE 0          TO DBCODE-INT. 

        *    Handle nulls on input. 

 

             IF (CANCELED-PART-ID-NULL = -1) 

                MOVE 

                   'ITEM_ORDER_KILLER ABORTED: CANCELED PART ID IS NULL' 

                       TO ERRMSG-TEXT 

                GO TO USER-DEFINED-ERROR 

             ELSE IF (VENDOR-ID-NULL = -1) 

                MOVE 'ITEM_ORDER_KILLER ABORTED: VENDOR ID IS NULL' 

                       TO ERRMSG-TEXT 

                GO TO USER-DEFINED-ERROR 

             ELSE IF (MAX-BAD-ORDERS-NULL = -1) 

                MOVE 0 TO MAX-BAD-ORDERS-IN. 
 

        *    How many back orders for this item are affected? 

 

             EXEC SQL 

                 select count(*) 

                 into   :NUM-BACK-ORDERS 

                 from   sales.order_items 

                 where  item_id     = :CANCELED-PART-ID-IN and 

                        item_status = 'BACK-ORDERED'; 

             END-EXEC. 

 

        *    Handle outstanding orders. 
 



Procedures and Triggers 

 

102  SQL User Guide 
 

             IF (NUM-BACK-ORDERS > 0) 

 

        *        This cancellation by the supplier affects too many 

        *        orders.  Try to get him to honor the orders. 

 

                 IF (NUM-BACK-ORDERS > MAX-BAD-ORDERS-IN) 

 

        *            Generate a user-defined error. 

 

                     MOVE 

                     "ITEM_ORDER_KILLER FOUND EXCEEDED ORDER CANCELLATION LIMIT" 

                        TO ERRMSG-TEXT 

                 ELSE 

 

        *            Mark orders and send apology letters to customers 

        *            whose orders are being canceled. 

 

                     EXEC SQL 

                         update sales.order_items 

                         set    item_status = 'CANCELED', 

                                comments    = 'ITEM DISCONTINUED' 

                         where  item_id     = :CANCELED-PART-ID-IN and 

                                item_status = 'BACK-ORDERED'; 

                     END-EXEC 
 

                     EXEC SQL 

                         insert into customer.apology_letters 

                                (customer_id, order_id, item_id, quantity, 

                                 comments, problem_type) 

                         select A.customer_id,  A.order_id, B.item_id, 

                                B.quantity, B.comments,'ITEM DISCONTINUED' 

                         from   sales.orders A, sales.order_items B 

                         where  A.order_id    = B.order_id       and 

                                B.item_id     = :CANCELED-PART-ID-IN and 

                                B.item_status = :'CANCELED'; 

                     END-EXEC 
 



Procedures and Triggers 

 

Chapter 3: Getting Started  103  
 

                     MOVE NUM-BACK-ORDERS TO NUM-ORDERS-CANCELED. 

        *        Record the problem so we can track "problem" vendors. 

 

                 EXEC SQL 

                     Insert into vendor.problems 

                            (vendor_id, problem_type, num_orders_affected, 

                             num_orders_canceled, related_item_id, 

                             problem_date, resolution_date) 

                     values (:VENDOR-ID-IN,'ITEM DISCONTINUED', 

                             :NUM-BACK-ORDERS, :NUM-ORDERS-CANCELED, 

                             :CANCELED-PART-ID-IN, CURRENT DATE, NULL); 

                 END-EXEC. 

 

        *    Does ERRMSG-TEXT indicate a user-defined error occurred? 

 

             IF (ERRMSG-TEXT NOT EQUAL 'NO ERROR') 

                GO TO USER-DEFINED-ERROR. 

 

             GOBACK. 
 

        *** Supply error information to output parameters. 

        *   Copy the error diagnostics we received from SQL in our 

        *   SQLCA to the output parameters, which in turn are 

        *   copied by SQL into the SQLCA of the calling CALL/EXECUTE 

        *   PROCEDURE statement. 

 

         SQL-ERROR-RTN. 

             MOVE SQLCA-ERR-MSG    TO ERRMSG-TEXT. 

             MOVE SQLCA-DBCODE-EXT TO DBCODE-EXT. 

             MOVE SQLCA-DBCODE-INT TO DBCODE-INT. 

             MOVE SQLCODE          TO SQLCODE-OUT. 

             MOVE 80               TO ERRMSG-LEN. 
 

        *** Note that the output of this display statement would have appeared 

        *   in a SYSOUT file attached to output of the Multi-User job, so 

        *   I have decided its use is inappropriate. 

        *   DISPLAY 'SQLCODE =' SQLCODE-OUT' 

 

            GOBACK. 

 

         USER-DEFINED-ERROR. 

        *    ERRMSG-TEXT has already been set. 

             MOVE 80               TO ERRMSG-LEN. 

             MOVE -534             TO SQLCODE-OUT. 

             GOBACK. 

 

        ****   End of Program.  JCL continues below.          ****** 
 



Procedures and Triggers 

 

104  SQL User Guide 
 

 /* 

 //*       *** End of Program and Continuation of JCL. *** 

 //* 

 

 //*-------------------------------------------------------------------* 

 //* STEP2: COMPILE COBOL USER PROGRAM OUTPUT FROM COBOL PRECOMPILER   * 

 

 //*-------------------------------------------------------------------* 

 //* 

 //COBOL  EXEC PGM=IGYCRCTL, 

 //             PARM='RENT,NUM,NODYN,APOST,NOSEQUENCE,LIST', 

 //             COND=(8,LT) 

 //SYSLIN   DD  DISP=(MOD,PASS),DSN=&.&COBOLOD., 

 //             UNIT=SYSDA,SPACE=(TRK,(15,15)) 

 //SYSPRINT DD  SYSOUT=* 

 //SYSUT1   DD  UNIT=SYSDA,SPACE=(CYL,(1,1)) 

 //SYSUT2   DD  UNIT=SYSDA,SPACE=(CYL,(1,1)) 

 //SYSUT3   DD  UNIT=SYSDA,SPACE=(CYL,(1,1)) 

 //SYSUT4   DD  UNIT=SYSDA,SPACE=(CYL,(1,1)) 

 //SYSUT5   DD  UNIT=SYSDA,SPACE=(CYL,(1,1)) 

 //SYSUT6   DD  UNIT=SYSDA,SPACE=(CYL,(1,1)) 

 //SYSUT7   DD  UNIT=SYSDA,SPACE=(CYL,(1,1)) 

 //SYSIN    DD  DSN=&.&SQLCOB.,UNIT=SYSDA,DISP=(OLD,DELETE,DELETE) 

 /* 

 
 



Procedures and Triggers 

 

Chapter 3: Getting Started  105  
 

 //*-------------------------------------------------------------------* 

 //* STEP3: LINK USER PROGRAM WITH SYSTEM MODULES 

* 

 

 //*-------------------------------------------------------------------* 

 //* 

 //LINK   EXEC LKED,COND=(8,LT), 

 //            PARM.LKED='RENT,XREF,LIST,LET,MAP' 

 //LKED.SYSLIN DD DSN=&.&COBOLOD.,UNIT=SYSDA,DISP=(OLD,DELETE,DELETE) 

 //            DD DDNAME=SYSIN 

 //LKED.SYSLMOD DD DSN=dsnname.LODLIB2,DISP=SHR 

 //LKED.SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 

 //LKED.OBJLIB DD DSN=DCMALL.R900.CAILIB,DISP=SHR 

 //            DD DSN=DCMDEV.DB.R100.TST.LODLIB,DISP=SHR 

 //            DD DSN=DCMDEV.DB.R100.LODLIB,DISP=SHR 

 //LKED.CEELIB DD DSN=DCMDEV.DBDT.DSYTEST.LOADLIB,DISP=SHR 

 //LKED.SYSIN  DD * 

  INCLUDE CEELIB(CEEUOPT) 

 INCLUDE OBJLIB(DBXHVPR) 

  INCLUDE OBJLIB(DBXPIPR) 

  NAME ITEMKILL(R) 

 /* 

Note that the library containing the procedure's load module must be added to the 
STEPLIB or JOBLIB of the Multi-User Facility startup JCL. 

 



Procedures and Triggers 

 

106  SQL User Guide 
 

Sample JCL for z/VSE 

Following is sample z/VSE JCL. For sample z/OS JCL, see Sample JCL for z/OS. For sample 
C JCL, see Sample JCL for C. 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 * $$ JOB ...           See the note above. 

 * $$ LST ... 

 // JOB name 

 * *************************************************************** 

 * *                                                             * 

 * *  PRECOMPILE COBOL SQL                                       * 

 * *                                                             * 

 * *************************************************************** 

 // EXEC PROC=procname 

 // DLBL IJSYSPH,'sql.syspunch',0,SD 

 // EXTENT SYSPCH,volser,1,0,r,n 

 ASSGN     SYSPCH,DISK,VOL=volser,SHR 

 // ASSGN  SYSnnn,DISK,VOL=volser,SHR 

 // DLBL   WORK1,'name.precomp.work1',000,SD 

 // EXTENT SYSnnn,volser,1,0,r,n 

 // DLBL   WORK2,'name.precomp.work2',000,SD 

 // EXTENT SYSnnn,volser,1,0,r,n 

 // DLBL   WORK3,'name.precomp.work3',000,SD 

 // EXTENT SYSnnn,1,0,r,n 

 // EXEC DBXMMPR,SIZE=1024K 

  CBL LIB,NOMAP,APOST 

 

      *COBOL SOURCE CODE GOES HERE* 

 

 /* 
 



Procedures and Triggers 

 

Chapter 3: Getting Started  107  
 

 CLOSE SYSPCH,PUNCH 

 // IF $RC GT 0 THEN 

 // GOTO EOJ 

 * *************************************************************** 

 * *                                                             * 

 * *   COBOL COMPILER EXECUTION                                  * 

 * *                                                             * 

 * *************************************************************** 

 // DLBL    IJSYSIN,'name.precomp.outfile',0,SD 

 // EXTENT  SYSIPT,volser 

 ASSGN      SYSIPT,DISK,VOL=volser,SHR 

 // ASSGN   SYS001,DISK,VOL=volser,SHR 

 // ASSGN   SYS002,DISK,VOL=volser,SHR 

 // ASSGN   SYS003,DISK,VOL=volser,SHR 

 // ASSGN   SYS004,DISK,VOL=volser,SHR 

 // ASSGN   SYS005,DISK,VOL=volser,SHR 

 // ASSGN   SYS006,DISK,VOL=volser,SHR 

 // ASSGN   SYS007,DISK,VOL=volser,SHR 

 // DLBL    IJSYS01,'name.workfile.SYS001',0,SD 

 // EXTENT  SYS001,volser,1,0,r,n 

 // DLBL    IJSYS02,'name.workfile.SYS002',0,SD 

 // EXTENT  SYS002,volser,1,0,r,n 

 // DLBL    IJSYS03,'name.workfile.SYS003',0,SD 

 // EXTENT  SYS003,volser,1,0,r,n 

 // DLBL    IJSYS04,'name.workfile.SYS004',0,SD 

 // EXTENT  SYS004,volser,1,0,r,n 

 // DLBL    IJSYS05,'name.workfile.SYS005',0,SD 

 // EXTENT  SYS005,volser,1,0,r,n 

 // DLBL    IJSYS06,'name.workfile.SYS006',0,SD 

 // EXTENT  SYS006,volser,1,0,r,n 

 // DLBL    IJSYS07,'name.workfile.SYS007',0,SD 

 // EXTENT  SYS007,volser,1,0,r,n 

 // OPTION CATAL 

   PHASE phasename,* 

 // EXEC IGYCRCTL,SIZE=1024K 

 /* 

 CLOSE SYSIPT,SYSRDR 

 /* 
 



Procedures and Triggers 

 

108  SQL User Guide 
 

 // IF $RC GT 4 THEN 

 // GOTO EOJ 

 * *************************************************************** 

 * *                                                             * 

 * *   LINK EDIT STEP                                            * 

 * *                                                             * 

 * *************************************************************** 

   INCLUDE DBXHVPR 

   INCLUDE DBXPIPR 

   ENTRY BEGIN 

 // EXEC LNKEDT,SIZE=1024K 

 /. EOJ 

 /* 

 // EXEC LISTLOG 

 /& 

 * $$ EOJ 
 

Defining the Procedure to SQL 

You can define the procedure to SQL after you have precompiled the program code. This 
particular procedure would be defined as follows: 

  CREATE PROCEDURE item_order_killer 

   (IN canceled_item_id      INTEGER, 

    IN distributor-id        INTEGER, 

    IN maximum_cancellations INTEGER) 

   MODIFIES SQL DATA 

   LANGUAGE C (or COBOL or PLI or ASSEMBLER) 

   PARAMETER STYLE DATACOM SQL 

   EXTERNAL NAME itemkill 
 

The procedure name used previously differs from the external name only to illustrate 
that the external name equates to a load-module name, and the SQL name is an 
SQL-identifier.  For simplicity, we recommend using the same name in both places.  
Note that procedure parameters may be any valid SQL data type, but the example uses 
INTEGER to avoid distracting you from the relevant points. 

 



Procedures and Triggers 

 

Chapter 3: Getting Started  109  
 

Note also that while OUT and INOUT parameters are supported, they are not used here 
because this procedure is used with a trigger.  Procedures that use output parameters 
may not be called from a trigger.  If there were no need to call the procedure from a 
trigger and the caller was interested in knowing how many orders had to be canceled, 
the procedure definition might look something like this: 

  CREATE PROCEDURE item_order_killer 

   ( IN    canceled_item_id      INTEGER, 

     IN    distributor-id        INTEGER, 

     IN    maximum_cancellations INTEGER, 

     OUT orders_canceled         INTEGER) 

   LANGUAGE C (or COBOL or PLI or ASSEMBLER) 

   PARAMETER STYLE DATACOM SQL 

   MODIFIES SQL DATA 

   EXTERNAL NAME itemkill 

Note that the CALL PROCEDURE statement must now supply a host variable to receive 
the "orders_canceled" output parameter from the procedure. 

 

Example: Calling a Procedure 

There are two ways to call a procedure.  You can: 

■ Code a CALL or EXECUTE PROCEDURE statement, or 

■ Create a trigger. 

Because the definition of a trigger includes a CALL/EXECUTE statement, in this example 
a trigger definition is used to illustrate both methods. 

 

Using a Trigger 

Given the business process described by the preceding ITEMKILL procedure program, 
you want to call the procedure every time a row is deleted from the ITEMS_FOR_SALE 
table.  The trigger would look like this: 

 CREATE TRIGGER cancel_orders 

   BEFORE DELETE ON sales.items_for_sale 

   REFERENCING OLD ROW AS deleted_item 

   FOR EACH ROW 

   WHEN deleted_item.date_available <= CURRENT_DATE 

   CALL item_order_killer(deleted_item.item_id,deleted_item.vendor_id, 5) 

After the CREATE TRIGGER statement (shown previously) is executed, every DELETE 
executed against the "items_for_sale" table generates a call (or calls, one per deleted 
row) to the coded procedure, unless the "date_available" has not been reached, 
meaning that no orders yet exist. 

 



Left Outer Joins 

 

110  SQL User Guide 
 

Using Embedded SQL 

When a CALL/EXECUTE PROCEDURE statement is embedded in a program, host 
variables can be used in the parameter list. Assuming that the procedure in the 
procedure creation previously shown example included the output parameter 
"orders-canceled" as the fourth parameter, the CALL statement embedded in the 
application program might look something like this: 

 CALL item_order_killer(:item_id, :vendor_id, 5, :NUM-ORDERS-CANCELED) 

The NUM-ORDERS-CANCELED would have to be declared as an integer variable in the 
program.   Note that the first two parameters have also been changed to host variables.  
This is because outside the CREATE TRIGGER statement, CALL parameters cannot refer 
to columns in a table.  They can, however, be host variables containing column values.  
Since these are input-only parameters (IN, as opposed to INOUT or OUT), literals and 
expressions can also be passed.  OUT and INOUT parameters must be host variables, 
since data is returned to the caller. 

 

Left Outer Joins 

Overview of Joins 

A join is a query used to return rows that consist of columns selected from more than 
one table.  The combined rows that are returned are selected and joined together by 
each row of each table being evaluated against join predicates. A new table therefore 
results from a join. 

There are different kinds of joins. Inner joins eliminate from the resulting table the 
combined rows that do not satisfy evaluation against the join predicates. Therefore, 
with inner joins if no matching row is found, no rows are returned. Inner joins were 
supported by CA Datacom/DB in previous versions and continue to be supported (see 
Joining Tables). Outer joins preserve the rows an inner join would discard by returning 
those rows with nulls substituted for each column of one of the tables. 

The SELECT statement's subselect and select-into syntax uses the FROM clause as an 
optional choice. As shown in the third of the three following syntax diagrams, JOIN is 
used in the alternate-join-type segment of the table reference syntax (see the second 
diagram) in the FROM clause (see the first diagram). 

 

In the following diagrams, while a table reference (table-ref) is shown to be the main 
component of the FROM clause, it can also be referenced directly from inside the JOIN 
syntax (third diagram, alternate-join-type syntax). 

          ┌─ , ─────────┐ 
►►─ FROM ─▼─ table-ref ─┴─────────────────────────────────────────────────────►◄ 



Left Outer Joins 

 

Chapter 3: Getting Started  111  
 

The table-ref shown in the syntax box immediately preceding the following one has 
syntax as follows: 

►►─┬─┬─ table-name ─┬─┬────────────────────┬─┬────────────────────────────────►◄ 
   │ └─ view-name ──┘ └─ correlation-name ─┘ │ 
   └─ alternate-join-type ───────────────────┘ 

The alternate-join-type shown in the syntax box immediately preceding the following 
one has syntax as follows: 

►►─┬─────┬─ table-ref ─┬─ INNER ────────────┬─────────────────────────────────► 
   └─ ( ─┘             └─ LEFT ─┬─────────┬─┘ 
                                └─ OUTER ─┘ 
 
 ►─ JOINtable-ref ─┬────────────┬─┬─────┬─────────────────────────────────────►◄ 
                   └─ ONs-cond ─┘ └─ ) ─┘ 

 

Note:  The s-cond (search-condition) specified in the optional ON clause differs from the 
one in the WHERE clause in that the ON clause defines the join conditions that 
determine which rows contain nulls, as opposed to the WHERE clause, which eliminates 
rows from the result entirely. Also note that if you use the optional parentheses, they 
must be balanced.  That is, if you use an open parenthesis, you must also use a close 
parenthesis. 

The previously shown JOIN syntax is compatible with Ingres, DB2, and ANSI SQL3 Core 
SQL. 

 

SELECT Statement Subselect Syntax 

Following is the SELECT statement's complete subselect syntax with the JOIN syntax as a 
choice in the FROM clause: 

►►─ SELECT ─┬────────────────┬────────────────────────────────────────────────► 
            └─┬─ ALL ◄ ────┬─┘ 
              └─ DISTINCT ─┘ 
 
 ►─┬─ * ────────────────────────────────────────────┬─ FROM ──────────────────► 
   │ ┌─ , ────────────────────────────────────────┐ │ 
   └─▼─┬─ expression ─┬───────────────────────┬─┬─┴─┘ 
       │              └─ AS ─ sql-identifier ─┘ │ 
       └─┬─ table-name.* ───────┬───────────────┘ 
         ├─ view-name.* ────────┤ 
         └─ correlation-name.* ─┘ 
 
   ┌─ , ─────────┐ 
 ►─▼─ table-ref ─┴─┬─────────────────────────┬────────────────────────────────► 
                   └─ WHEREsearch-condition ─┘ 
 
 ►─┬──────────────────────────────┬─┬──────────────────────────┬──────────────►◄ 
   └─ GROUP BY ─▼─ column-name ─┴─┘ └─ HAVINGsearch-condition ─┘ 

 



Left Outer Joins 

 

112  SQL User Guide 
 

SELECT Statement Select-Into Syntax 

Following is the SELECT statement's complete select-into syntax with the JOIN syntax as 
a choice in the FROM clause: 

►►─ SELECT ─┬────────────┬────────────────────────────────────────────────────► 
            ├─ ALL ◄ ────┤ 
            └─ DISTINCT ─┘ 
 
 ►─┬─ * ────────────────────────────────────────────┬─ INTO ──────────────────► 
   │ ┌─ , ────────────────────────────────────────┐ │ 
   └─▼─┬─ expression ─┬───────────────────────┬─┬─┴─┘ 
       │              └─ AS ─ sql-identifier ─┘ │ 
       └─┬─ table-name.* ───────┬───────────────┘ 
         ├─ view-name.* ────────┤ 
         └─ correlation-name.* ─┘ 
 
   ┌─ , ─────────────┐        ┌─ , ─────────┐ 
 ►─▼─ host-variable ─┴─ FROM ─▼─ table-ref ─┴─────────────────────────────────► 
 
 ►─┬─────────────────────────┬────────────────────────────────────────────────►◄ 
   └─ WHEREsearch-condition ─┘ 

 

Inner Join Example 

The following example of an inner join only returns rows where the CUSTOMER table 
has a matching row in the ORDERS table: 

 SELECT T1.NAME, SUM(T2.AMOUNT) 

 FROM CUSTOMER T1, ORDERS T2 

 WHERE   T1.CUSTNO = T2.CUSTNO 

 GROUP BY T1.NAME; 
 

Outer Join Example 

If you want to see all customers regardless of whether they have an order, use a LEFT 
OUTER JOIN in a FROM clause. The keyword LEFT specifies that the table on the left 
(CUSTOMER in the example) is to be preserved, that is to say, all of the rows in the 
CUSTOMER table are to survive the join operation. The word OUTER is optional, that is, 
LEFT JOIN is equivalent to LEFT OUTER JOIN in the syntax. In the following outer join 
example, a row is returned for each CUSTOMER even if there is no matching ORDERS 
row. 

 SELECT T1.NAME, VALUE (SUM(T2.AMOUNT), 0) 

 FROM CUSTOMER T1 LEFT OUTER JOIN ORDERS T2 

      ON T1.CUSTNO = T2.CUSTNO 

 GROUP BY T1.NAME; 
 



Left Outer Joins 

 

Chapter 3: Getting Started  113  
 

Using an outer join to see all customers is simpler than the alternate method (shown 
following) of coding a nested loop in your host application. 

 FOR EACH CUSTOMER 

     SET TOTAL = 0 

     FOR EACH ORDERS 

         WHERE ORDERS.CUSTNO = CUSTOMER.CUSTNO 

         SET TOTAL = TOTAL + ORDERS.AMOUNT 

     END FOR 

     PRINT CUSTOMER.NAME, TOTAL 

 END FOR 
 

Value of Rows That Do Not Match 

In the outer join example previously shown, when there is no matching ORDERS row, 
the null value is returned for T2.AMOUNT. This is true even if the AMOUNT column was 
defined as NOT NULL. 

If there is a default value you wish to have returned when a value is null, you can use 
the VALUE function, which returns the first non-null value in its argument list. In this 
case, SUM(T2.AMOUNT) is returned if there is a matching row. Zero is returned when: 

■ There is no matching row, and 

■ AMOUNT is the null value. 
 

The phrase CUSTOMER T1 LEFT OUTER JOIN ORDERS T2 is called a joined table. A joined 
table can be used with other simple table references in the FROM list. For example, if 
you want to also report from the LINE_ITEM table: 

 SELECT T1.NAME, VALUE (SUM(T2.AMOUNT), 0), COUNT(DISTINCT T3.ORDNO) 

 FROM CUSTOMER T1 LEFT OUTER JOIN ORDERS T2 

      ON T1.CUSTNO = T2.CUSTNO, 

      LINE_ITEM T3 

  WHERE T2.ORDNO = T3.ORDNO 

  GROUP BY T1.NAME; 
 

Alternately you can use the joined table syntax by replacing the right operand with an 
INNER JOIN: 

 SELECT T1.NAME, VALUE (SUM(T2.AMOUNT), 0), COUNT(DISTINCT T3.ORDNO) 

 FROM CUSTOMER T1 LEFT JOIN (ORDERS T2 INNER JOIN LINE_ITEM T3 

                             ON T2.ORDNO = T3.ORDNO) 

      ON T1.CUSTNO = T2.CUSTNO 

 GROUP BY T1.NAME; 
 



Left Outer Joins 

 

114  SQL User Guide 
 

In this example, note the following: 

■ The optional keyword OUTER has been omitted. 

■ Since both the ORDERS and LINE_ITEM table are on the right-side of the LEFT JOIN, 
the LINE_ITEM columns returned are also null when there is no matching ORDERS 
row. 

■ Since COUNT always returns zero even if its argument, T3.ORDNO, is null, there is 
no need for the VALUE function. 

 

WHERE Clause 

The WHERE clause can be used with the LEFT OUTER JOIN, but since the WHERE clause 
is conceptually executed after the FROM clause (which includes executing the LEFT 
OUTER JOIN), references to columns in tables on the right side of a LEFT OUTER JOIN are 
evaluated against the null value for non-matching rows. This means that unless IS NULL 
is the predicate (or it is under an OR that has an IS NULL predicate), the predicate result 
is unknown, and the row is eliminated. Eliminating unmatched rows therefore turns 
your LEFT OUTER JOIN into an INNER JOIN. 

For example, if you want to modify the previously shown query to only return ORDERS 
data for the current date, but you still want to see all CUSTOMER rows: 

 SELECT T1.NAME, VALUE (SUM(T2.AMOUNT), 0), COUNT(DISTINCT T3.ORDNO) 

 FROM CUSTOMER T1 LEFT JOIN (ORDERS T2 INNER JOIN LINE_ITEM T3 

                             ON T2.ORDNO = T3.ORDNO) 

      ON T1.CUSTNO = T2.CUSTNO 

 WHERE T2.ORDER_DATE = CURRENT DATE OR T2.ORDER_DATE IS NULL 

 GROUP BY T1.NAME; 
 

Without the OR T2.ORDER_DATE IS NULL you would not get back CUSTOMERS that have 
no matching ORDERS rows. 

As the following example shows, by placing the predicate in the ON clause you do not 
have to add the OR IS NULL predicate, because the ON clause is evaluated before the 
columns of the non-matching row are set to the null value: 

 SELECT T1.NAME, VALUE (SUM(T2.AMOUNT), 0), COUNT(DISTINCT T3.ORDNO) 

 FROM CUSTOMER T1 LEFT JOIN (ORDERS T2 INNER JOIN LINE_ITEM T3 

                              ON T2.ORDNO = T3.ORDNO AND 

                                 T2.ORDER_DATE = CURRENT DATE) 

      ON T1.CUSTNO = T2.CUSTNO 

 GROUP BY T1.NAME; 
 



Left Outer Joins 

 

Chapter 3: Getting Started  115  
 

Performance Considerations 

Outer joins are procedural. The SQL Optimizer cannot do reorders of the join sequence 
without altering the semantics of the join. Therefore, outer joins are executed as 
written, that is to say depth-first, left-to-right. In the preceding examples, T2 is joined to 
T3 and the result is joined to T1. The order of predicate evaluation is discussed in more 
detail on Order of Predicate Evaluation (see page 116) 

You should strive to write the joined table in the most efficient order and place 
predicates in the first join in which they can be evaluated. For example, as previously 
shown, the restriction on ORDER_DATE could have been added to the outer ON clause, 
but then it could not be used to limit the previous join, and all ORDERS rows would be 
joined to all LINE_ITEM rows, only to have many of those rows rejected in the next join 
step. 

 

As shown in the following example, if you add a restriction on T1.CUSTNO to return the 
row for a specific customer, this restriction is not applied until all the ORDERS and 
LINE_ITEM rows have been joined: 

 SELECT T1.NAME, VALUE (T2.AMOUNT, 0), COUNT(DISTINCT T3.ORDNO) 

 FROM CUSTOMER T1 LEFT JOIN (ORDERS T2 INNER JOIN LINE_ITEM T3 

                              ON T2.ORDNO = T3.ORDNO AND 

                                 T2.ORDER_DATE = CURRENT DATE) 

      ON T1.CUSTNO = T2.CUSTNO AND 

         T1.CUSTNO = :CUSTNO AND 

 GROUP BY T1.NAME, T2.AMOUNT; 
 

Rather than doing the previous, it is more efficient to write: 

 SELECT T1.NAME, VALUE (T2.AMOUNT, 0), COUNT(DISTINCT T3.ORDNO) 

 FROM (CUSTOMER T1 LEFT JOIN ORDERS T2 

       ON T1.CUSTNO = T2.CUSTNO AND 

         T1.CUSTNO = :CUSTNO 

          T2.ORDER_DATE = CURRENT DATE) INNER JOIN LINE_ITEM T3 

                                        ON T3.ORDNO = T2.ORDNO 

 GROUP BY T1.NAME, T2.AMOUNT; 
 



Left Outer Joins 

 

116  SQL User Guide 
 

Order of Predicate Evaluation 

Predicates in ON clauses are conceptually evaluated before the WHERE clause.  Within 
the FROM clause, predicates in the ON clauses are evaluated in the order the joins are 
executed —inner most (deepest) first, and then left to right.  For example, in the 
following FROM clause, T1 is joined to T2, T3 joined to T4, and then the result of T1 and 
T2 joined to the result of T3 and T4: 

 FROM (T1 left join T2 on t1.c1 = t2.c1)  left join 

      (T3 left join T4 on t3.c1 = t4.c1)  on T2.c1 = T4.c1 

If a non-matching row has caused the columns of the non-preserved row to be set to 
null in a previous join, then unless IS NULL is the predicate, the result is unknown.  In the 
previously shown example, if either of the first two joins produces a non-matching row, 
then the T2.c1 = T4.c1 predicate evaluates as unknown, and columns in T3 and T4 are 
set to the null value. 

Since the WHERE clause is evaluated last, a predicate other than IS NULL on a column 
that has been set to the null value in an outer join causes the result row to be rejected.  
This effectively changes the outer join to an inner join, since any preserved rows are 
rejected. Continuing the example, WHERE T4.c2 = 'xxx' effectively converts both left 
joins to inner joins. 

 

Non-Matching Rows 

Conversely, the following query finds only rows of T1 that do not have a matching T2 
row (when T2.c2 is defined as not nullable): 

 FROM T1 left join T2 on t1.c1 = t2.c1 

 WHERE T2.c2 IS NULL 

However, since each matching T2 row is found and then rejected, the following query is 
more efficient because the NOT EXISTS predicate is evaluated after finding only a single 
matching row: 

 SELECT * 

 FROM T1 

 WHERE NOT EXISTS (SELECT * 

                   FROM T2 

                   WHERE T2.c1 = T1.c1) 
 

Order of Joins 

The join order is set when LEFT OUTER or INNER is used, otherwise the SQL optimizer 
determines join order (unless plan option OPT=M is used).  Care must therefore be 
taken to ensure efficient evaluation. (This means INNER JOIN can be used in place of 
OPT=M to manually specify join order at the query level.) 

LEFT joins always use the nested loop join method. 
 



SQL Memory Guard 

 

Chapter 3: Getting Started  117  
 

NULL Indicator Variables 

When selecting a NOT NULL column that could be set to the null value by an outer join, 
you must supply a host indicator variable for the column. 

 

SQL Memory Guard 

The SQL Memory Guard function, used for SQL memory monitoring, is not required for 
normal production processing, but if you are experiencing an unusual SQL memory 
problem that is affecting the availability of the Multi-User Facility, the SQL Memory 
Guard function can be invoked. You should in most cases, however, only use the SQL 
Memory Guard function if CA Support requests you to do so. 

SQL Memory Guard monitors memory requests made by SQL and looks for possible 
misuse and contention on each memory address as well as the entire memory pool.  If 
you invoke the SQL Memory Guard function, you may notice a slight increase in CPU 
usage, because the memory guard monitors and records every SQL memory request. 

When the invoked SQL Memory Guard encounters a possible memory problem, it aborts 
the invalid memory request before any damage is done to the memory pool.  The 
request that generated the invalid memory request then receives an SQL return code of 
-999, thus protecting the Multi-User Facility from a possible destructive memory failure. 

 

The following error message is produced when problems are detected. Additional 
debugging information is dumped to the Statistics and Diagnostics Area (PXX). 

-999 

INTERNAL ERROR (file-name LINE xyz): command CONFLICT - 
addr1(task1)/addr2(task2) 

If such a -999 message is received, contact CA Support and give them the following 
information from the message text: 

command 

Is the service requested by task1, such as FREEMEM or DELPOOL. 

addr1 

Is the address of the illegal call to memory services (the R14), relative to the entry 
point of load module DBSRPPR. 

 



SQL Memory Guard 

 

118  SQL User Guide 
 

task1 

Is the task (RWTSA) number of the outlaw requestor of memory services. 

addr2 

Is the relative address of the call for the prior conflicting request (valid regardless of 
RWTSA contents). 

task2 

Is the task (RWTSA) number of the caller for the prior conflicting request on either 
the memory address or the memory pool in question.  Note that this task may be 
executing an unrelated job by this point in time.  This does not, however, 
necessarily prevent the SQL Memory Guard from finding the problem. 

 

The above information helps CA Support resolve memory-related problems more 
quickly.  In addition, as always when you contact CA Support to report any SQL error 
code, provide a Statistics and Diagnostics Area (PXX) report with DUMPS=FULL. 

Following is an example of an actual -999 message: 

-999 

INTERNAL ERROR (MEMSERV LINE 1396): FREEMEM CONFLICT - FD14(1)/FCBE(1) 
 

Activating the SQL Memory Guard 

The features of the SQL Memory Guard can be activated or deactivated, though 
normally only at the direction of CA Support, by executing the following commands (for 
more information on DIAGOPTION, see the CA Datacom/DB Database and System 
Administration Guide): 

DIAGOPTION 2,2,ON 

Causes automatic debugging and abend prevention to begin either immediately or 
as soon as the trace table is allocated. 

DIAGOPTION 2,2,OFF 

Causes automatic debugging and abend prevention to stop.  If the trace table has 
been allocated, requests are still logged. 

 

DIAGOPTION 2,4,ON 

Causes the memory trace table to be allocated (approximately 32K) and activated 
(meaning memory requests are logged) when the next new RUN UNIT starts its first 
SQL request.  In order to receive automatic debugging and abend prevention, also 
execute DIAGOPTION 2,2,ON as described in the following related section. 

DIAGOPTION 2,4,OFF 

Causes the memory trace table to be freed (the memory manager makes the 
storage available for use by SQL only) when the next new RUN UNIT starts its first 
SQL request. 

 



SQL and Multiple Multi-User Facilities Support 

 

Chapter 3: Getting Started  119  
 

SQL and Multiple Multi-User Facilities Support 

Beginning in r11, there is support for multiple Multi-User Facilities. 

With SQL programs, one compile unit must run against one CA Datacom Datadictionary, 
have one plan, and execute against the Multi-User Facility containing both. An SQL 
program may execute with a multiple Multi-User Facilities User Requirements Table, but 
all SQL requests execute using the first Multi-User Facility in the connection list. In this 
case it would have the ability to specify a SIDNAME= and not be forced to use DBSIDPR. 
An SQL program could be split into multiple modules and each could connect to a 
different Multi-User Facility, but no joining of tables or constraints outside of one 
Multi-User Facility are allowed. 

SQL detects RRS User Requirements Tables, issues a return code, and does not process 
COMMIT or ROLLBACK requests. The multiple Multi-User Facility interface detects the 
specific errors and generates RRS COMMIT or ROLLBACK calls. If RRS is successful, the 
SQLCODE and related error fields are set to zero/blank. If RRS provides a return code on 
the SRRCMIT/SRRBACK, the SQL error is changed to: 

■ -117, 

■ program DBMMIPR, and 

■ message: 

RETURN CODE <94(121)> ON COMMAND <COMIT> R15 <?> 

where ? is the R15 error value from RRS. 

Note: For more information on multiple Multi-User Facilities, see the CA Datacom/DB 
Database and System Administration Guide. 

 

Application Design Considerations 

Be aware of the application design considerations involving index-only processing and 
cursor processing. 

 



Application Design Considerations 

 

120  SQL User Guide 
 

Index-Only Processing 

In index-only processing data is retrieved, when possible, from the index only, 
eliminating the cost of accessing the actual row in the data area.  For example, consider 
an online application to look up an account by name when the customer does not know 
their account number: 

 SELECT NAME, STREET, CITY, ST, ZIP, ACCOUNT_NBR 

 FROM ACCOUNTS 

 WHERE NAME BETWEEN :NAME_BEG AND :NAME_END 

 OPTIMIZE FOR 20 ROWS;         -- ONLY 20 ROWS ON A SCREEN 

This query can use index-only processing if the following condition is met: 

■ There is a key with all the columns in the query.  This includes columns in the 
SELECT list, WHERE clause, and anywhere else in the query. In this case key (NAME, 
ST, ZIP, CITY, STREET, ACCOUNT_NBR) would work. Notice that the order of the 
columns in the key is not important, except for being good for selection. Therefore, 
the NAME column is first and the remaining columns are included only so that all 
the columns referenced are available from the index. 

■ ISOLEVEL=R is not used, because isolation level R prevents index-only processing. 

Note: VARCHAR columns with lengths that include trailing blanks have length set to 
exclude the trailing blanks, because VARCHAR lengths are not stored in the index. 

If the ACCOUNTS table Native Key is ACCOUNT_NBR, accessing rows in NAME sequence 
could cost an I/O for every row retrieved.  Indexes usually have 100 or more entries per 
DXX block, requiring just one logical I/O instead of 21 I/Os. 

Note: If you add columns to an index for index-only retrieval that are updated 
frequently, the cost of updating the index may outweigh the advantage of index-only 
retrieval. 

 

Cursor Processing 

The result set of rows for a cursor may be a static set of rows copied to a temporary 
table before any rows are returned to your program, or the rows may be retrieved 
dynamically as you FETCH the rows. You may use isolation levels C or R to isolate your 
transactions from other concurrent transactions, but this does not isolate your cursor 
from changes your transaction is making while you are FETCHing rows from a cursor 
that is dynamically retrieving rows. For example, if you update a row that has been 
FETCHed with a separate searched UPDATE statement, the same row may be returned 
in a subsequent FETCH if the updated values place it in the result set ahead of the 
dynamic retrieval process. 

Note:  If you use an UPDATE where current of <-cursorName>, CA Datacom/DB insures 
that the row is not returned again (at the expense of building a temporary index of 
updated URIs). 

 



DBSQLPR 

 

Chapter 3: Getting Started  121  
 

To isolate your cursor from changes made by other statements in your program while 
the cursor is open, you can use an ORDER BY, that cannot be satisfied by any key, to 
force a temporary table to be built.  However, if such a key is added in the future, this 
new key may be used to eliminate building a temporary table. Also, even if you specified 
isolation level C, the current row of the cursor may not be locked, because a block of 
rows is returned to your program and the cursor stability lock on the row has already 
been released. 

To ensure the current row of the cursor is locked, you can specify an UPDATE or DELETE 
where current of <-cursorName> for the cursor. Even if you never execute these 
statements, blocking is not used, and the current row of the cursor is held by an 
exclusive lock until you FETCH the next row. 

 

DBSQLPR 

DBSQLPR is a utility that enables users to execute SQL statements through CA 
Datacom/DB. It provides a superset of the functionality previously provided by the 
SQIDEMO and COB430 utilities without any dependence upon the SQI interface or any 
requirement to preprocess and compile an SQL program. DBSQLPR is for users who 
want quick access to SQL functionality but do not have access to CICS or the CA 
Datacom Server. 

Consider the following: 

■ If you have existing SQIDEMO and COB430 JCL, it runs with little or no changes. 

■ SQL statements must be terminated with a semicolon (;) unless the TERM= 
parameter is used (see DBSQLPR Options (see page 123)). 

■ SQL statements may not contain host variable references. 
 

■ All nullable columns are printed with one extra character to the left. This character 
is blank when a value is present and an asterisk (*) when the data is NULL. 

■ The CA Common Services for z/OS CAILIB is required in STEPLIB (for z/OS) or LIIBDEF 
(for z/VSE). 

■ When using DBSQLPR, specify PLNCLOSE=T or allow PLNCLOSE to default to that 
value. 

 



DBSQLPR 

 

122  SQL User Guide 
 

Processing 

The execution flow for DBSQLPR is as follows: 

1. DBSQLPR examines any input parameters passed programmatically or through the 
command line (the PARM= specification in the JCL). See DBSQLPR Options (see 
page 123). 

2. The options file is opened and processed. With the exception of the OPTFILE= 
parameter, which may only appear on the PARM= input parameter string, any 
option may appear in either the options file or the PARM= specification. Those 
specified on the PARM= input parameter string override any duplicate specification 
in the options file. 

Note: The same set of plan options you can specify in the COBOL Preprocessor can 
be specified in DBSQLPR. See Specifying Processing Options in COBOL (see 
page 210). 

3. The SYSIN file is read, and the input is processed as a series of commands (see Line 
Commands (see page 122)) and SQL statements. 

 

Line Commands 

The following in-line commands are accepted by DBSQLPR in your input file: 

DROP PLAN auth-id.plan-name 

You can submit a DROP PLAN statement in Version 12 and above as an in-line 
command in DBSQLPR by using DROP PLAN auth-id.plan-name (where auth-id is an 
optional authorization ID, followed by a period, and the plan-name is the required 
name of the plan you want to drop). 

We recommend that you do not use DROP PLAN to drop plans related to 
procedures. and functions. Use the DROP PROCEDURE statement (see page 725) 
and DROP FUNCTION statements to drop procedures. 

For more information about DROP PLAN, see DROP PLAN (DBSQLPR) (see 
page 132). 

 

-- 

Two dashes at the start of any line causes the line to be interpreted as a comment 
and ignored. 

* 

An asterisk at the start of any line causes the line to be interpreted as a comment 
and ignored, unless that line contains one of the following line commands that 
begin with an asterisk: 

*$COLUMN (or *$C) 

Specifies one data item per line of output (same as *$THIN). 
 



DBSQLPR 

 

Chapter 3: Getting Started  123  
 

*$PAGE (or *$P) 

Generates a form-feed and page-header. 

*$ROW (or *$R) 

Specifies tabular output with column headings truncated to width of data. 

*$THIN (or *$T) 

Specifies one data item per line of output (same as *$COLUMN). 
 

*$WIDE (or *$W) 

Prints output in tabular form, reverting to *$THIN if data exceeds PRTWIDTH= 
specification. 

*$ZERO (or *$Z) 

Zeroes the job-step return code. 
 

DBSQLPR Syntax 

Following is the syntax for DBSQLPR: 

                                ┌─ , ───────────────┐ 
►►─ EXEC PGM=DBSQLPR ─ ,PARM=' ─▼─ input-parameter ─┴─ ' ─────────────────────►◄ 

Note:  In z/VSE environments, parameter separators in the PARM= input parameter 
string must be spaces. 

 

DBSQLPR Options 

DBSQLPR examines any input parameters (shown as input-parameter in the syntax 
diagram) that are passed through the OPTIONS file or the command line (the PARM= 
specification in the JCL). Any option can appear in either the OPTIONS file or the PARM= 
specification with the exception of OPTFILE=, which can only appear in the PARM= 
specification. 

Note: In addition to the following, all plan options valid for the COBOL Preprocessor are 
also valid. See Specifying Processing Options in COBOL (see page 210). 

AUTHID= 

Determines the default authorization ID for non-qualified SQL names. 

Valid Entries: 

an authorization ID name of from 1 to 18 characters 

Default Value: 

SYSADM 
 



DBSQLPR 

 

124  SQL User Guide 
 

DATASEPARATOR=c 

DATASEPARATOR produces output in a form ready for import into spreadsheet 
software. The separator character you specify is placed after each data item 
returned from a SELECT statement. 

The c specifies the data-separator character and is generally a comma but can be 
most non-blank characters that work for your data. We recommend that you do a 
test with your choice of separator character to determine whether it works as 
desired. 

This option works only for data that can be represented in tabular format. The 
combination of SQUISH and a large PRTWIDTH specification (up to 1500 is allowed) 
can be used to force some non-tabular output to become tabular. 

Specification of a blank is not allowed because of the way z/VSE handles execution 
parameters, but blank-delimited output is easily produced by either of the two 
following methods: 

■ Specify DATASEPARATOR=B, where B is interpreted as a blank. 

■ A space is automatically employed as the separator when the 
DATASEPARATOR= option is not used. In this case, you could get two spaces in 
a row when null indicators indicate non-null, or you could get multiple spaces if 
SQUISH is not specified. Specifying SQUISH compresses the data and eliminates 
the solid line that appears underneath the column headers, because the 
columns are no longer fixed-length when using SQUISH. 

 

For data-only output (column-names, data types, and data only), specify NOECHO 
and NOPAGES with DATASEPARATOR=. If you want column-names and data types 
eliminated, add NOCOLHDR. NOTYPE can be used instead of NOCOLHDR if you do 
not want the data types but still want to see the column-names. If you need to 
eliminate unneeded spaces, add SQUISH. Any column containing a null-indicator 
still has a space or asterisk preceding the data-value. 

Valid Entries: 

a comma, or any non-blank character that works for your data, 
or a B (for a blank space) 

Default Value: 

a blank space 
 

ERRABORT= 

Specifies that a certain SQLCODE, if encountered, aborts the execution of DBSQLPR. 

Note: The in-line command *$ZERO zeros the jobstep return code. 

Valid Entries: 

any valid SQLCODE, for example, ERRABORT=-117 

Default Value: 

If not specified, this feature is inactive. 
 



DBSQLPR 

 

Chapter 3: Getting Started  125  
 

ERRMIN= 

Specifies the minimum SQLCODE that does not abort DBSQLPR. That is, the format 
of the specification is ERRMIN=sqlcode, where sqlcode is the lowest numbered 
SQLCODE that does not cause DBSQLPR to abort. For example, if you wanted 
DBSQLPR to terminate on any negative SQLCODE, you would code ERRMIN=0. If you 
wanted even positive (warning) SQLCODEs to abort the program, you could code 
9999. 

Note: The in-line command *$ZERO zeros the jobstep return code. 

Valid Entries: 

-9999 through 9999 

Default Value: 

-9999 
The -9999 default means that DBSQLPR does not terminate on any SQLCODE. 

 

FORMFEED=character 

FORMFEED= changes the FORM-FEED character. Also see NOFORMFEED. 

Valid Entries: 

any decimal value between 1 and 255 that works correctly in your environment 

Default Value: 

12 decimal (z/OS) or 241 decimal (z/VSE) 
 

HEXCHAR 

Specify HEXCHAR to request hexadecimal output for all CHAR data. If you do not 
specify HEXCHAR, you get character output with binary zeros and new-lines 
blanked, and all other control characters printed. 

HEXGRAPHIC 

Specify HEXGRAPHIC to request hexadecimal output for all GRAPHIC data. If you do 
not specify HEXGRAPHIC, you get character output. 

INFILE= 

Specify INFILE= to request an alternate DDNAME (in z/OS) or DTFNAME (in z/VSE) 
for the STDIN/SYSIN input. 

Note: Specification of STDIN (the default) or any other file automatically opened by 
the C runtime environment causes a duplicate open error. 

Valid Entries: 

a valid alternate DDNAME (in z/OS) or DTFNAME (in z/VSE) 

Default Value: 

STDIN 
 



DBSQLPR 

 

126  SQL User Guide 
 

INPUTWIDTH= 

Specifies a column beyond which the specified SYSIN lines are to be ignored. May 
be used to ignore line numbers or other unwanted information to the right of your 
intended input line but preceding any line-break. 

Valid Entries: 

50 thru the maximum your system supports, up to 99999 

Default Value: 

999 
 

NOCOLHDR 

NOCOLHDR eliminates column headers from tabular output. Form-feeds and page 
headers still print, unless NOPAGES is also specified. 

NOECHO 

Specifying NOECHO indicates that only the data and any error summaries are 
printed. If you do not specify NOECHO, user input is echo-printed, that is, not only 
the data and error summaries are printed. 

NOFORMFEED 

NOFORMFEED works the same as NOPAGES. Both suppress form-feeds and CA 
Datacom copyright page headers. Column-name headers for tabular output still 
occur exactly once at the top of the output, unless NOCOLHDR is also specified. 
NOPAGEHDR also suppresses CA Datacom copyright page headers but does not 
suppress form-feeds. 

 

NOPAGEHDR 

Specify NOPAGEHDR to suppress page headers. If you do not specify NOPAGEHDR, 
page headers are therefore not suppressed. 

NOPAGES 

NOPAGES works the same as NOFORMFEED. Both suppress form-feeds and CA 
Datacom copyright page headers. Column-name headers for tabular output still 
occur exactly once at the top of the output, unless NOCOLHDR is also specified. 
NOPAGEHDR also suppresses CA Datacom copyright page headers but does not 
suppress form-feeds. 

NOTYPE 

Specify NOTYPE to request that data types be omitted from the printed output. If 
you do not specify NOTYPE, data types are not omitted from the printed output. 

 



DBSQLPR 

 

Chapter 3: Getting Started  127  
 

OPTFILE= 

Specifies an alternate DDNAME (in z/OS) or DTFNAME (in z/VSE) for the options file, 
but OPTFILE= itself can only be specified in the PARM= specification. 

Valid Entries: 

a valid DDNAME (in z/OS) or DTFNAME (in z/VSE) 

Default Value: 

OPTIONS 
 

PAGELEN= 

This parameter specifies the number of output lines per page. Use a high number if 
you do not like the page headers. 

Valid Entries: 

40 through 2147483647 

Default Value: 

the page length specification in the LINES= parameter in your DBSIDPR module, 
or 56 if DBSIDPR contains a number lower than LINES=40 (see the CA 
Datacom/DB Database and System Administration Guide for more information 
about DBSIDPR) 

 

PLANAME= 

Specifies the name of the plan to create for this execution. 

Valid Entries: 

a valid plan name 

Default Value: 

DBSQLx, where x consists of selected portions of the system clock 
 

PLANNAME= 

Specifies the name of the plan to create for this execution. It is compatible syntax 
for PLANAME=. 

Valid Entries: 

a valid plan name 

Default Value: 

DBSQLx, where x consists of selected portions of the system clock 
 



DBSQLPR 

 

128  SQL User Guide 
 

PRTFORMAT= 

Use this parameter to specify tabular or column output. The default is WIDE (or W), 
to print wide (tabular output) when possible. 

ROW (or R) gives tabular output but specifies that the width of the print is only as 
wide as the data, truncating the column name and data-type-descriptor-string to 
the length of the data, even if the data is only one byte long, which allows more 
data to fit onto each line. 

THIN (or T) and COLUMN (or C) print one column value per line. 

Note: These functionally equivalent in-line commands can be used: $WIDE (or 
*$W), *$ROW (or *$R), *$THIN (or *$T), *$COLUMN (or *$C). In-line commands 
allow the format to be changed on the fly. 

Valid Entries: 

WIDE or W, ROW or R, COLUMN or C, THIN or T 

Default Value: 

WIDE 
 

PRTFILE= 

This parameter specifies an alternate DDNAME (in z/OS) or DTFNAME (in z/VSE) for 
the STDOUT output. 

Valid Entries: 

a valid alternate DDNAME (in z/OS) or DTFNAME (in z/VSE) 

Default Value: 

STDOUT 

PRTMODE= 

Do not use this parameter unless directed to do so by CA Support. 
 



DBSQLPR 

 

Chapter 3: Getting Started  129  
 

PRTWIDTH= 

Maximum row width for PRTFORMAT=ROW rows. Specifies where the line is to be 
split. That is, you can use PRTWIDTH= to define the width that can be printed 
before either data truncation or a forced switch from tabular (wide) to 
column-at-a-time (thin) output occurs. However, be aware that some types of 
output files wrap lines at the specification for LRECL=, while some output file types 
truncate. PRTWIDTH= should therefore be used to tell DBSQLPR when to force 
column-based output to occur, unless for some reason you want file 
type-dependent behavior to occur. Also be aware that, to prevent column values 
from spanning line boundaries, the line may be split earlier than specified by 
PRTWIDTH=. 

Valid Entries: 

80 through 1500 

Default Value: 

132 (tabular output, when possible, is the default) 
 

ROWLIMIT= 

This parameter truncates FETCH sequences that retrieve too many rows. That is, 
you can use ROWLIMIT= to truncate FETCH sequences that retrieve more rows than 
you want to retrieve. 

Note: If the ROWLIMIT is exceeded, DBSQLPR returns a -2009 DBSQLPR error code 
and issues an error message. If you know a particular query may exceed the limit 
and still want a job-step return code of 0, place the *$ZERO line command following 
that query in your input file. 

Valid Entries: 

0 through 999999999 

Default Value: 

1000 
 

SQUISH 

SQUISH removes unneeded spaces from column headers and data that can then, if 
enough, be output in tabular format. Do not use SQUISH for non-tabular data. 
SQUISH can, when used with a large PRTWIDTH, enable non-tabular output to 
become tabular, but SQUISH does not eliminate spaces that have been generated 
to represent null indicators. 

SQUISH can cause column data output to vary in length. If this creates a problem for 
you, try using PRTFORMAT=R (ROW) or line command *$R (*$ROW) as an 
alternative method to reduce column widths while preserving the tabular 
appearance of some output that is useful for certain features of spreadsheet 
packages. 

 



DBSQLPR 

 

130  SQL User Guide 
 

TBLHDRRPT=rows 

Specifies how frequently to repeat the header lines that precede table-format 
output. Specify this parameter only if you do not want report-headers at the top of 
each page of a query's output, but prefer instead to see them at longer or shorter 
intervals. If the number you specify matches your PAGELEN= specification or 
default, adjustments are made to help ensure that table-headers appear at the top 
of each new page, even if NOPAGEHDR has been specified. Otherwise, this is the 
number of rows printed before subsequent table-headers appear. 

Note: You can use the *$PAGE line command to help ensure that your output starts 
at the top of a page. Specifying the *$PAGE line command before a query helps 
ensure a full page of output before a page-break and a new set of table-headers 
appears. 

Valid Entries: 

40 through 2147483647 
This range of valid values is the same as the valid values for PAGELEN=. 

Default Value: 

Produces one set of headers on each new page (even if NOPAGEHDR is 
specified, as previously described). 

 



DBSQLPR 

 

Chapter 3: Getting Started  131  
 

TERM= 

Specifies a character to terminate SQL statements. 

The terminating character is changed to a semicolon (;) in the SQL statement that is 
passed to the DBMS and therefore, regardless of what terminating character you 
specify with the TERM= parameter, appears in DBSQLPR output reports as a 
semicolon. 

SQL statements that appear inside the compound statements of SQL Procedures are 
terminated by semicolons, but semicolons are also used as the default termination 
character in DBSQLPR for complete SQL statements. The DBSQLPR parameter 
TERM= can be used, however, to prevent DBSQLPR from truncating compound 
statements in a CREATE PROCEDURE statement at the first semicolon. We therefore 
recommend that you add TERM=@ (specifying an @ symbol) to your DBSQLPR 
command line or options-file options. Then, although semicolons are still used 
inside the compound statements embedded in your CREATE PROCEDURE 
statement, at the end of each complete SQL statement, including the CREATE 
PROCEDURE statement itself, the @ symbol can be used as the termination 
character instead of a semicolon to avoid this ambiguity. 

Valid Entries: 

May be any character that is not alphanumeric and not valid as part of an SQL 
statement. Valid SQL-statement characters include, but are not limited to 
SQL-identifier characters, parentheses, dollar signs, percent signs, underscores, 
commas, quotes, apostrophes, asterisks, pound signs, and arithmetic and 
bitwise operators. One example of a valid terminating character is the at sign 
(@). 

Default Value: 

a semicolon (;) 
 

TRACEALL 

The inclusion of this keyword causes all traces internal to DBSQLPR to be printed. 

Important!  Use this option only when CA Support tells you to use it and only as CA 
Support instructs you to use it. 

TRACEDETAIL 

The inclusion of this keyword causes certain traces internal to DBSQLPR to be 
printed. Traces specifically related to calls to CA Datacom are printed. 

Important! Use this option only when CA Support tells you to use it and only as CA 
Support instructs you to use it. 

TRACERAAT 

The inclusion of this keyword causes certain traces internal to DBSQLPR to be 
printed. Traces specifically related to calls to CA Datacom are printed. 

Important! Use this option only when CA Support tells you to use it and only as CA 
Support instructs you to use it. 

 



DBSQLPR 

 

132  SQL User Guide 
 

DROP PLAN (DBSQLPR) 

(Executable only from DBSQLPR.) 

A plan is the representation in SQL of an SQL application and, unless removed with the 
DROP PLAN statement, can continue to occupy table space long after the application 
has been retired. When you drop a plan, make certain that the plan is not related to an 
SQL application that is still in use. 

We recommend that you do not use DROP PLAN to drop plans related to procedures. 
and functions. Use the DROP PROCEDURE (see page 725) statement and DROP 
FUNCTION statements to drop procedures. and functions. 

The syntax for the DROP PLAN statement is as follows. 

Note:  The DROP PLAN statement is executable only from DBSQLPR, but it can also be 
submitted as a DBSQLPR in-line command (see Line Commands (see page 122)). 

►►─ DROP PLAN ─┬────────────┬─ plan-name ─────────────────────────────────────►◄ 
               └─ auth-id. ─┘ 

 

auth-id. 

(Optional) The auth-id. is the authorization ID, followed by a period, related to the 
plan name that you want to drop. 

Valid Entries: 

a valid authorization ID 

Default Value: 

(No default) 
 

plan-name. 

The plan-name is the name of the plan that you want to drop. 

Valid Entries: 

a valid plan name 

Default Value: 

(No default) 
 



DBSQLPR 

 

Chapter 3: Getting Started  133  
 

Example JCL 

Note:  Users of z/OS can use either spaces or commas as parameter separators in the 
PARM= input parameter string in the JCL. In z/VSE environments, the SYSLST file must be 
assigned to a POWER-controlled print device, and parameter separators in the PARM= 
input parameter string must be spaces. 

Following is an example PARM= input parameter string specification. 

         PARM='PRTWIDTH=255,INPUTWIDTH=72,PAGELEN=56,TBLHDRRPT=56' 

The PARM= input parameter string is limited by IBM to 100 bytes. Following is an 
example in which lines have been spanned. Be aware that the first line ends in column 
71 and the second line starts in column 16. 

         PARM='PRTWIDTH=255,INPUTWIDTH=72,ERRBORT=-56,OPTFILE=OP,ROWLI 

               MIT=9' 

Following is a z/OS JCL sample: 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 

 //jobname      See the note above. 

 //             CLASS=K,MSGCLASS=X,REGION=1024K 

 //SQLEXEC  EXEC PGM=DBSQLPR,...see Listing Libraries for CA Datacom Products 

 //* 

 //       PARM='prtWidth=999,inputWidth=80' 

 //* 

 //SYSUDUMP DD  SYSOUT=* 

 //SYSPRINT DD  SYSOUT=* 

 //STDERR   DD  SYSOUT=* 

 //STDOUT   DD  SYSOUT=* 

 //OPTIONS  DD  * 

 AUTHID=SYSUSR 

 /* 

 //SYSIN    DD  * 

 create table testTable (colChar char(18), colInt integer); 

 insert into  testTable values ('colChar row 1', 1); 

 insert into  testTable values ('colChar row 2', 2); 

 -- Output appears as a table unless "PRTWIDTH=" is exceeded. 

 select colChar, colInt from testTable; 

 rollback work; 

 /* 
 

Following is sample z/VSE JCL. 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 



DBSQLPR 

 

134  SQL User Guide 
 

* $$ JOB ...           See the note above.. 

* $$ LST CLASS=x 

// JOB     jobname 

*           CREATE OPTIONS FILE USING DITTO 

// UPSI 1 

// EXEC    PROC=yourproc 

// ASSGN   SYSnnn,DISK,VOL=volser,SHR 

// DLBL    OPTIONS,'dataset.name',0,SD 

// EXTENT  SYSnnn,volser,1,0,reltrk,1 

// EXEC DITTO 

$$DITTO CSQ FILEOUT=OPTIONS,CISIZE=512,BLKFACTOR=1 

AUTHID=SYSADM 

/* 

$$DITTO EOJ 

/* 

*           EXECUTE DBSQLPR 

// EXEC DBSQLPR,SIZE=AUTO 

   SELECT * FROM table; 

/* 

/& 

* $$ EOJ 

 
 

 
 



DBSQLPR 

 

Chapter 3: Getting Started  135  
 

Example SQL Statements 

The following SQL statements can be used to determine which plans on your system 
were added using the @TIMESTAMP keyword in the PLANAME option of your COBOL 
precompiler.  

If you want to get a list of all plans on your system, that have been created using the 
new method of specifying @TIMESTAMP in the plan name of your COBOL program, you 
can code the following SQL to get the list output (AUTHID=SYSADM option specified):  

SELECT PRIMARY_AUTH_ID,  PRIMARY_OCC_NAM, 

       HEX(SUBSTR(WORK_AREA_UPD, 81, 4)) AS SWITCHES 

FROM DDD_TABLE 

WHERE SQL_TYPE = 'PLN' 

      AND BIT_AND(SUBSTR(WORK_AREA_UPD, 81, 1), X'02') = X'02' 

ORDER BY PRIMARY_OCC_NAM 

; 

 

PRIMARY_AUTH_ID                  PRIMARY_OCC_NAM                 SWITCHES    

CHAR(32) NOT NULL                CHAR(32) NOT NULL                CHAR(8).N.N        

________________________________ ________________________________ ____________        

 SYSADM                           AVE2001_1507221647               02000000            

 SYSADM                           AVE2001_1507231147               02000000            

 SYSADM                           AVE2001_1507241436               02000000            

 SYSADM                           AVE2001L1507231147               02000000            

 SYSADM                           AVE2001L1507241436               02000000            

 SYSADM                           AVE2001L1507241441               02000000            

 SYSADM                           DAF4____1507221647               02000000            

 SYSADM                           DAF4____1507231147               02000000            

 SYSADM                           DAF4____1507241436               02000000            

 SYSADM                           DAF888881507221647               02000000            

 SYSADM                           DAF888881507231147               02000000            

 SYSADM                           DAF888881507241436               02000000            

 ___ 12 rows returned ___                                                              
 



DBSQLPR 

 

136  SQL User Guide 
 

If you want a list of all your plans, with a column that indicates ‘YES’ if they were added 
by COBOL @TIMESTAMP specification, and ‘NO’ if they were not, you can use the 
following SQL statement:  

SELECT PRIMARY_AUTH_ID, PRIMARY_OCC_NAM,                                            

       (CASE                                                                        

         WHEN (BIT_AND(SUBSTR(WORK_AREA_UPD, 81, 1), X'02') = X'02') THEN 'YES'     

         ELSE        'NO'                                                           

         END                                                                        

       ) AS COBOL_TS                                                                

  FROM DDD_TABLE                                                                    

  WHERE SQL_TYPE = 'PLN'                                                            

  ORDER BY PRIMARY_OCC_NAM                                                          

;                                                                                   

 

PRIMARY_AUTH_ID                  PRIMARY_OCC_NAM                  COBOL_TS          

CHAR(32) NOT NULL                CHAR(32) NOT NULL                CHAR(3)           

________________________________ ________________________________ ________          

… 

SYSUSR                           AVE1958                           NO               

SYSADM                           AVE2001                           NO  

…               

SYSADM                           AVE2001_1507221647                YES      

SYSADM                           AVE2001_1507231147                YES      

SYSADM                           AVE2001_1507241436                YES      

… 

SYSADM                           AVE2001L1507231147                YES      

SYSADM                           AVE2001L1507241436                YES      

SYSADM                           AVE2001L1507241441                YES      

SYSADM                           BRM1780                           NO       

…           

SYSADM                           DAF4____1507221647                YES                

SYSADM                           DAF4____1507231147                YES                

SYSADM                           DAF4____1507241436                YES                

…       

SYSADM                           DAF888881507221647                YES                

SYSADM                           DAF888881507231147                YES                

SYSADM                           DAF888881507241436                YES                

SYSADM                           DICKTST                           NO                 

SYSADM                           DICKUDFT                          NO                 

SYSADM                           DICK309                           NO                 

…  

___ nnn rows returned ___  
 



DBSQLPR 

 

Chapter 3: Getting Started  137  
 

Sample Report 

Following are the first two pages of a DBSQLPR SQL Processor report. For a sample 
header for this report, see Sample Report Headers. 

Command Line Options 

 ___________________ 

 INPUTWIDTH=72 

 OPTFILE=OP 

 PRTWIDTH=999 

  

  

 Option File Options 

 ___________________ 

 AUTHID=SYSADM 

  

 INPUT STATEMENT: 

 create table testTable (colChar char(18), colInt integer); 

  

 ___ SQLCODE=0, SQLSTATE=00000 ___ 

  

  

 INPUT STATEMENT: 

 insert into  testTable values ('colChar row 1', 1); 

  

 ___ SQLCODE=0, SQLSTATE=00000, ROWS AFFECTED=1 ___ 

  

  

 INPUT STATEMENT: 

 insert into  testTable values ('colChar row 2', 2); 

  

 ___ SQLCODE=0, SQLSTATE=00000, ROWS AFFECTED=1 ___ 

  

  

 -- Output appears as a table unless "PRTWIDTH=" is exceeded. 

 INPUT STATEMENT: 

 select colChar, colInt from testTable; 

  

 COLCHAR             COLINT 

 CHAR(18)            INT 

 ___________________ ____________ 

  colChar row 1                 1 

  colChar row 2                 2 

 ___ 2 rows returned ___ 

  

  

 INPUT STATEMENT: 

 rollback work; 

  

 ___ SQLCODE=0, SQLSTATE=00000 ___ 

 

 

 ================================================= 

 == DBSQLPR is completing with return code 0000 == 

 ==                                             == 

 ==         Statements Found:   00005           == 

 ==         Statement Errors:   00000           == 

 ==         Statement Warnings: 00000           == 

 ================================================= 

 



DATACOM VIEWs 

 

138  SQL User Guide 
 

DATACOM VIEWs 

Overview 

This section outlines support for SQL access to legacy data that does not conform to the 
standard relational model. Access to the following is now supported: 

■ The elements of an array, that is, single dimensional arrays that correspond to 
"simple repeating fields" in CA Datacom Datadictionary, are supported. 

■ "Redefines," that is, columns that redefine other columns (including arrays). 
 

Compound fields are accessible (as CHAR) even if the underlying simple fields are also 
visible. To achieve this, DATACOM VIEW, a CA Datacom/DB extension to the CREATE 
VIEW statement (see CREATE VIEW (see page 705)), has been implemented. A 
DATACOM VIEW differs from a standard view as follows: 

■ The syntax starts with CREATE DATACOM VIEW instead of CREATE VIEW. 

■ Columns representing the "redefines" and the array elements that we support are 
now visible, but only to the CREATE DATACOM VIEW statement. The data is 
accessed through the view. 

CREATE DATACOM VIEW is a very flexible, powerful construct. References to columns in 
a redefinition from a query or view that references the DATACOM VIEW are references 
to the columns of the view that are projected by the view.  These view columns can 
inherit the column names of the database table, unless that column is an array, or be 
assigned new names. The user of the view can consider the view for each record type as 
a separate database table. 

 

Redefinitions 

A redefinition is a column definition or a set of column definitions that provides an 
alternate definition for another column. Columns in a redefinition do not add length to a 
row but redefine columns previously listed in the table. Columns of a redefinition may 
have a different data type. 

Redefinitions are commonly used to describe a table with multiple record types. Leading 
columns are common to all record types, but trailing columns depend upon the record 
type that is specified by one or more of the leading common columns. Reference to 
columns dependent upon the record type must be delayed until predicate(s) that 
reference the record type column(s) have been evaluated, or attempts to reference data 
contained in rows of the wrong record type could occur. 

 



DATACOM VIEWs 

 

Chapter 3: Getting Started  139  
 

To prevent these invalid references, the following rules are required: 

■ Columns contained in a redefinition are visible only to the CREATE DATACOM VIEW 
statement. CA Datacom/DB enforces this rule. 

■ Any predicates required to limit the rows of the view to a certain "record type" or 
otherwise prevent access to invalidly typed data must appear as the first predicates 
in the WHERE clause and be RQA-able, where "RQA-able" means that the 
predicates should be simple and presentable in a RQA (Request Qualification Area) 
used by Compound Boolean Selection (CBS) logic. For example, LIKE predicates are 
generally not RQA-able, but predicates that use the basic comparison operators are. 
For more information on Compound Boolean Selection in CA Datacom/DB, see the 
CA Datacom/DB Programming Guide. Failure to follow this rule could result in an 
attempt to process non-data-type-conformant data, resulting in "invalid data" 
errors and various other problems. CA Datacom/DB does not enforce this rule. The 
user must enforce this rule, that is to say, because CA Datacom/DB has no way of 
knowing how users distinguish which rows belong to what record type or whether 
there are separate record types at all, users must supply predicates in the CREATE 
DATACOM VIEW as needed to prevent CA Datacom/DB from retrieving rows of, for 
example, "record type B" when reading from the "record type A" view. 

Note: If the data does not contain alternate record types, no predicates to 
distinguish between record types are needed. 

 

Following are additional rules: 

■ The FROM clause of the DATACOM VIEW may only reference a single database 
table.  A DATACOM VIEW can therefore not be nested. However, queries and 
standard views may join DATACOM VIEWS, and those views may be nested. 

■ See Additional Items to Consider (see page 141) for additional rules that apply to 
any arrays referenced by the view. 

 



DATACOM VIEWs 

 

140  SQL User Guide 
 

Example of Multiple Record Types 

In the following example, the ORDERS table contains orders for both parts and service 
calls.  The table has the following set of column definitions: 

■ order_id is INTEGER 

■ order_type is CHAR(7) 

■ order_detail is CHAR(200) 

The order_type column defines the type of row.  When order_type is PARTS, 
order_detail is an array of part numbers, followed by an array of quantities. When the 
order_type is SERVICE, order_detail contains a textual description of the requested 
service. 

Assume that order_detail is redefined for PARTS orders as follows: 

■ Part_number is an array of zoned-decimal (NUMERIC(5,0)) part numbers, followed 
by quantity, an array of INTEGER quantities for each part ordered. 

■ Order_detail is again redefined for SERVICE orders as follows: service_description is 
CHAR(199), followed by on_site, which is CHAR(1). 

 

Given the previously stated conditions, the following views can be defined: 

 CREATE DATACOM VIEW part_orders 

        (order_id, order_type, part_1, quantity_1, 

         part_2, quantity_2, part_3, quantity_3) 

  AS 

  SELECT order_id, order_type, part_number[1], quantity[1] 

         part_number[2], quantity[2], part_number[3],quantity[3] 

  FROM orders 

  WHERE order_type = 'PARTS' 

 CREATE DATACOM VIEW service_orders (order_id, order_type, on_site, description) 

  AS 

  SELECT order_id, order_type, on_site, service_description 

  FROM orders 

  WHERE order_type = 'SERVICE' 
 

The views may then be manipulated almost as if they were database tables, with the 
restrictions previously noted as well as restrictions applicable to any view.  If we had 
omitted the WHERE clauses, then view part_orders might try to read the service 
description of a service order and interpret it as an array of zoned-decimal part 
numbers. 

Note:  The WITH CHECK OPTION is supported. 
 



DATACOM VIEWs 

 

Chapter 3: Getting Started  141  
 

Arrays 

Array element references are made using the syntax column-name[subscript], as shown 
in the following example. Non-subscripted array references are not allowed.  Array 
element references must be assigned specific column names in the view, using either 
the AS-clause in the view-defining query, or an explicit view-column-name list.  Outside 
of the CREATE DATACOM VIEW statement, references to these columns are made using 
the column names of the view. 

Following is an example of a DATACOM VIEW containing references to array elements.  
The sales column does not have to be a redefinition to be visible to CREATE DATACOM 
VIEW: 

 CREATE DATACOM VIEW (sales01, sales02, sales03, sales04, 

         sales05, sales06, sales07, sales08, 

         sales09, sales10, sales11, sales12) AS 

 

 SELECT  sales[1], sales[2], sales[3], sales[4], sales[5], sales[6], 

         sales[7], sales[8], sales[9], sales[10], sales[11], sales[12] 

 

 FROM <-tableName>; 

As shown in this example, elements of an array may be referenced with a literal integer 
subscript within square brackets within the range of 1 to the number of occurrences. 
For example, to reference sales for October: sales[10]. 

As already mentioned, reference to an element of an array is restricted to DATACOM 
VIEWs. 

 

Additional Items to Consider 

Consider the following additional points: 

■ Multiple dimensions are not supported.  In this case, arrays within the first 
dimension are referenced as a single CHAR column as they always have been. 

■ An array must be defined with CA Datacom Datadictionary, versus CREATE TABLE. 

■ View columns containing array elements may not be referenced by left-outer joins.  
Be aware that this reference can be rejected at any point prior to the execution of 
the query. 

 



DATACOM VIEWs 

 

142  SQL User Guide 
 

■ Reference to the array column without the use of subscripts is disallowed. 

Note:  If a whole-array is referenced in a SELECT list outside a DATACOM VIEW, it is 
returned as a single CHAR column.  The host application may redefine this area as an 
array.  But when using Dynamic SQL, the DESCRIBE statement or the SQLDA of a FETCH 
statement cannot describe a column as an array (SQLDA is the SQL descriptor area used 
to describe columns passed to/from the user's application and the Multi-User Facility). 
This is because the SQLVAR structure of the SQLDA as defined by ANSI/ISO SQL does not 
include a field for number of elements (SQLVAR is a structure that defines a single 
column in an SQLDA). 

 

Default Values for Redefinitions and Arrays 

As with any INSERT, when performing an INSERT into a DATACOM VIEW, every 
base-table column must receive an explicitly-specified value, a default, or a NULL. SQL 
processes any default values defined for a redefined column. 

Note: d The default value for an array column, when referenced through a DATACOM 
VIEW, is considered to be an array-element value and is applied separately to each array 
element not receiving a value. 

These defaults are added through CA Datacom Datadictionary rather than through SQL 
DDL. 

With redefines involved, SQL must decide which default to apply to a given base-table 
column. Therefore, when processing an INSERT, the following algorithm is applied 
(columns that are not part of any redefinition are referred to as primary columns): 

1. The INSERT statement is compared to the definition of the base-table in order to 
determine whether a value has been supplied for every primary column. If every 
primary column has a value, the INSERT procedure goes forward. Otherwise, step 2 
occurs. 

 

2. For each primary column not receiving a value, CA Datacom/DB: 

a. Lays down any non-NULL default defined for that column. 

b. Overlays this with defaults or NULL for all redefinitions that are both a part of 
the DATACOM VIEW, and intersect the primary column. 

c. If neither the laying down nor overlaying in the previous two steps resulted in a 
non-NULL value being placed in any portion of the primary column, a NULL is 
inserted. Null indicators for intersecting redefines remain in place. 

 



Using SQC Table to Cancel SQL Requests 

 

Chapter 3: Getting Started  143  
 

Additional Considerations 

Consider the following carefully: 

■ While you are not prevented by CA Datacom/DB from defining DATACOM VIEWs 
that contain overlapping columns, we recommend against the use of overlapping 
columns when alternate solutions are possible. We are not responsible for the 
integrity of data or the operation of a DBMS that has been maintained through a 
view containing overlapping columns. 

■ When an array column is referenced as a single large CHAR column outside of any 
DATACOM VIEW, any default value for INSERT is applied once to the entire column.  
When referenced through a DATACOM VIEW, it is applied to each array element. 
This will change when view support is implemented outside of DATACOM VIEWs. 

 

Datadictionary Considerations 

No change is required by CA Datacom Datadictionary to provide additional data in the 
Data Definition Directory (DDD) table for SQL.  All columns in a redefinition are already 
present and contain a unique SQL name, and all arrays are indicated with their number 
of elements. 

 

Datadictionary SQL Column Report 

To aid users of a DATACOM VIEW, CA Datacom Datadictionary provides a new report to 
list the SQL columns that are visible to the view. See the CA Datacom Datadictionary 
Batch Reference Guide. 

 

Using SQC Table to Cancel SQL Requests 

Note: For information about how to use the SQC Dynamic System Table to cancel SQL 
requests, see the CA Datacom/DB System Tables Reference Guide. 

 

Overriding SQL Key Selection 

Although the SQL Optimizer normally automatically selects the most efficient key for 
you, occasionally the statistics used to estimate costs do not reflect actual costs closely 
enough to select the most efficient key. When this occurs, you can specify the key to be 
used in a special format of a correlation name, or if the SQL statement is generated and 
you cannot specify a correlation name, in a synonym name using the same special 
format. 

Following is the syntax of the override key option: 

►►─ x_HINT_keynm ─────────────────────────────────────────────────────────────►◄ 



Overriding SQL Key Selection 

 

144  SQL User Guide 
 

x 

is any value that is meaningful to you. 

Valid Entries: 

any leading characters 

Default Value: 

(No default) 
 

_HINT_ 

is the literal that triggers the interpretation of the next five characters as the 
override key. 

Valid Entries: 

_HINT_ 

Default Value: 

(No default) 
 

keynm 

is the override key, a 5-character internal key name, not the SQL key name. If this 
override key name exists for the table, all other keys are marked "ignore" in the 
Compound Boolean Selection Optimization Report, and all other keys are hidden 
from the SQL Optimizer. Be aware, however, that if the specified key name does not 
exist or cannot be used because it does not index nil values, no error is generated 
and the key is ignored. 

No check is made to qualify the key for performance. 

That the key was used can be reported by Accounting Element CBSOR (CBS 
Optimizer Reasons) as key type "P," that is, Parm, because it is specified in the CBS 
RQA (Request Qualification Area) Parameter section as the override key. The SQL 
Optimization Report also indicates the use of the override key under an "OVERRIDE 
KEY" heading. 

Valid Entries: 

a valid 5-character internal key name (not the SQL name for the key) 

Default Value: 

(No default) 
 



Overriding SQL Key Selection 

 

Chapter 3: Getting Started  145  
 

Examples 

  CREATE TABLE CARS (MAKE CHAR(8), COLOR CHAR(8)); 

  CREATE INDEX CARS_COLOR_KEY ON CARS (COLOR) DATACOM NAME COLOR; 

  CREATE SYNONYM CARS_HINT_COLOR FOR CARS; 

Note: The first line in the previously shown example creates a key on column MAKE. 

The following example shows the use of a synonym for override: 

  SELECT * FROM CARS_HINT_COLOR 

  WHERE MAKE = 'FORD' AND COLOR= 'PINK'; 
 

The following example shows the use of a correlation name for override: 

  SELECT * FROM CARS CARS_HINT_COLOR 

  WHERE MAKE = 'FORD' AND COLOR= 'PINK'; 

Note: Using statistics such as cardinality and BLKCHG (how  closely does key sequence 
reflect the physical sequence of rows in the data area), the SQL Optimizer might select 
the key on column MAKE when the key on COLOR is the most efficient, since PINK is a 
rare color. These queries cause the COLOR key to be used. 

 

XML Support 

Using XML (Extensible Markup Language) allows you to externalize relational data as 
XML. The CA Datacom/DB implementation of XML includes support for the following 
XML functions: 

■ XMLATTRIBUTES 

■ XMLCONCAT 

■ XMLELEMENT 
 

■ XMLFOREST 

■ XMLSERIALIZE 

For details about using XML, see XML Functions (see page 574). 
 



SQL Read-Only 

 

146  SQL User Guide 
 

SQL Read-Only 

SQL read-only tables can be defined by specifying the SQL-INTENT attribute-type as R in 
CA Datacom Datadictionary batch or online. 

In a table defined as SQL read-only, using SQL Data Definition Language (DDL) 
statements to attempt to insert new rows, update existing rows, or delete existing rows 
is not allowed. Attempts to do so result in an error message. 

Note: For more information on SQL read-only tables, see the CA Datacom/DB Database 
and System Administration Guide, the CA Datacom Datadictionary Batch Reference 
Guide, and the CA Datacom Datadictionary Attribute Reference Guide. 
 



 

Chapter 4: CA Datacom/DB SQL Preprocessors  147  
 

Chapter 4: CA Datacom/DB SQL 
Preprocessors 
 

Before your source program is compiled, the SQL statements embedded in the host 
language program must be prepared (in a process called binding) by an CA Datacom/DB 
SQL Preprocessor for COBOL, PL/I, Assembler, or C (for the C language, the only 
supported compiler is IBM LE/370 C). 

Note: Support for procedures and triggers requires a minimum of z/OS Version 2 
Release 5 and compatible Language Environment for z/OS with the following IBM 
compiler products: z/OS C/C++ (only the C subset is supported), COBOL for z/OS, and 
PL/I for MVS. 

Overview 

The CA Datacom/DB SQL Preprocessor prepares the data sublanguage portions of a 
source program for execution by: 

■ Scanning each statement in the program, and 

■ Producing a modified program in which every embedded SQL statement has been 
replaced by one or more statements of the host language. 

 

The following diagram approximates how this preparation phase is handled in the CA 
Datacom/DB environment. 

 
 



Input to the Preprocessor 

 

148  SQL User Guide 
 

The Preprocessor: 

■ Recognizes SQL statements and passes them to CA Datacom/DB for compilation or 
processing into a CA Datacom/DB access plan. 

■ Replaces each executable SQL statement with source program calls to CA 
Datacom/DB to execute the previously compiled or processed statement. 

The Preprocessor makes each embedded SQL statement in the host source into a 
comment and leaves it for documentation purposes. Each such executable 
statement is replaced with host language code to accomplish the required action. 

 

■ Identifies host-variables both where they are declared and where they are used in 
SQL statements, and creates appropriate references between them. 

■ Creates appropriate initialization code. 

If errors are detected in SQL statements or supporting data definitions, the Preprocessor 
issues appropriate error messages and takes appropriate action. 

 

The CA Datacom/DB access plan is the control structure produced during the bind 
process. This preparation phase builds the plan for the application and binds each SQL 
statement to the appropriate table, view or synonym definition stored in CA Datacom 
Datadictionary. CA Datacom/DB uses the plan to process SQL statements encountered 
during application execution. Each program containing embedded SQL statements must 
have a plan before being executed. 

If any dependencies (tables, views and synonyms) for a prepared statement change, the 
related statement is marked invalid and must be rebound before it can be executed 
again. 

The SQL Manager automatically attempts a rebind when an invalid statement is 
executed. Rebinding can also be requested in advance. For more information, see 
Rebinding a Plan (see page 457). 

 

Input to the Preprocessor 

The primary input to the CA Datacom/DB Preprocessor consists of statements in the 
host language and embedded SQL statements.  Both the host language and SQL 
statements must be written using the same margins. The input data set (SYSIN for 
COBOL, SOURCE for PL/I, Assembler, and C) must have attributes of fixed-length 
records, blocked or unblocked, and a record length of 80 bytes. If you are using C, 
however, note that the C Preprocessor only looks for data in columns 1 through 72. If 
you are using PL/I, Assembler, or C, the source data set for z/OS is either instream, 
physical sequential, or a member of a partition data set, or for z/VSE either a sequential 
disk file or a library member specified by the SMBR= Preprocessor option. 

 



Input to the Preprocessor 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  149  
 

INCLUDEs in COBOL 

In COBOL, the SQL INCLUDE directive can be used to get secondary input from the 
include library, INCLUDE. The INCLUDE directive causes input to be read from the 
specified member of the include library until the end of the member is reached. The 
included library input cannot contain other Preprocessor INCLUDE directives, but can 
contain both host language and SQL statements. The include library must have 
fixed-length records of 80 bytes. For more information, see INCLUDE Directive in COBOL 
(see page 184). 

 

INCLUDEs in PL/I 

In PL/I, the source input may have INCLUDE directives within certain restrictions.  
INCLUDE directives are of two types: PL/I and EXEC SQL.  The PL/I INCLUDEs are 
standard for the language.  The Preprocessor does not perform the functions of the PL/I 
preprocessor. In particular, it does not expand PL/I INCLUDE directives.  To use code 
contained in PL/I INCLUDEs, you must run the Preprocessor to create source with the 
PL/I INCLUDEs expanded.  The expanded source is the input to the Preprocessor.  The 
Preprocessor does expand INCLUDEs designated within an EXEC SQL.  The principal use 
here is for host declarations.  The Preprocessor does not expand any nested INCLUDEs 
nor does it perform any preprocessor functions.  INCLUDEs for the SQLCA, SQLWA or 
other SQL control blocks are ignored except to comment the lines in the source.  SQL 
INCLUDEs must be in a single partition data set for z/OS and sublibraries of a single 
library for z/VSE.  The include data set is INCLUDE.  For more information, see Rules for 
SQL INCLUDEs in PL/I (see page 194). 

 

INCLUDEs in Assembler 

In Assembler, the Preprocessor (except for SQL includes) does not expand macros or 
include source.  Macros, copy statements, or other includes are ignored during 
preprocessing for SQL use.  They are, however, written to the modified source for 
processing by the Assembler.  For more information, see Rules for SQL INCLUDEs in 
Assembler (see page 203). 

 



Output from the Preprocessors 

 

150  SQL User Guide 
 

INCLUDEs in C 

INCLUDEs in the C language are basically the same as in PL/I except note the following: 

■ The SQLCA is always automatically generated, so no INCLUDE should be used for it. 
However, you must code your own SQLDA and SQLVAR when using dynamic SQL. 

■ The EXEC SQL INCLUDE <member name>; SQL statement can be used to include 
members from the PDS data set INCLUDE in z/OS (for z/VSE, the name in the EXEC 
SQL INCLUDE is the name of a member in a z/VSE library). INCLUDEs in C cannot be 
nested. 

■ Because the Precompiler executes before the C Preprocessor, statements such as 
#include, #define, and typedef are not expanded. Unless the user executes the 
language preprocessor only before the CA Datacom/SQL C Preprocessor, host 
variables in #include files cannot be referenced, and #define and typedefs cannot 
be used to declare a host variable data type. 

 

Output from the Preprocessors 

COBOL 

The various kinds of output from the SQL Preprocessor for COBOL are: 

Listing Output 

The following listings are written on the output data set. 

Preprocessor Source Listing 

This listing shows Preprocessor source statements with line numbers assigned 
by the Preprocessor. 

Preprocessor Diagnostics 

Diagnostic messages follow immediately after the statement(s) in error. 
 

Translated Source Statements 

Source statements processed by the Preprocessor are written to SYSPUNCH (z/OS 
environment) or SYSPCH (z/VSE environment), the data set designated as input to 
the compiler.  This data set must have attributes of fixed-length records, blocked or 
unblocked, and a record length of 80 bytes.  In your modified source code, SQL 
statements have been converted to comments and calls to the SQL Manager. 

Work Data Sets 

Three data sets by the symbolic names &.&WORK1., &.&WORK2., and &.&WORK3., 
are required by the Preprocessor. These data sets must have attributes of 
fixed-length records, blocked or unblocked, and a record length of 80 bytes.  These 
work areas must be large enough to hold the generated output. 

 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  151  
 

PL/I, Assembler, and C 

The various kinds of output from the SQL Preprocessor for PL/I, Assembler, and the C 
language are: 

Listing Output 

The following sections of the report are written to REPORT. 

Options File 

This section of the report shows record images with diagnostics. 

Execution Parameters 

This section of the report shows the added execution parameters with 
diagnostics. 

Preprocessor Source Listing with Diagnostics 

This section of the report shows the unmodified source statements with line 
numbers assigned by the Preprocessor. Diagnostic messages follow 
immediately after the statement(s) in error. 

 

Preprocessor-modified Source Listing 

This section of the report shows the source code modified for input. 

Translated Source Statements 

Source statements processed by the Preprocessor are written to SRCOUT, the data 
set designated as input to the compiler.  This data set must have attributes of 
fixed-length records, blocked or unblocked, and a record length of 80 bytes.  In your 
modified source code, SQL statements have been converted to comments and calls 
to the SQL Manager. 

 

Sample JCL 

If you are coding a procedure, see Examples: Creating a Procedure. 

Sample JCL for COBOL follows. Also see: 

■ Sample PL/I JCL (see page 161), 

■ Sample Assembler JCL (see page 163), 

■ Sample C Language JCL (see page 168). 
 



Sample JCL 

 

152  SQL User Guide 
 

Sample COBOL JCL 

The following examples show sample JCL for z/OS and z/VSE environments. These 
examples are intended to be samples only.  You need to modify the JCL to conform to 
your site's requirements. 

Note:  If you are coding a procedure, see Examples: Creating a Procedure (see page 87). 
 

z/OS Sample COBOL JCL for Batch 

The following JCL example is for z/OS sites. 

Note: Use the following as a guide to prepare your JCL. The JCL statements are for 
example only. Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 //jobname    See the note above and Listing Libraries for CA Datacom Products. 

 //******************************************************************** 

 //*   THE FOLLOWING JOB STREAM DEMONSTRATES THE SQL 

 //*   PREPROCESSOR, COBOL COMPILER, AND PROGRAM EXECUTION 

 //******************************************************************** 

 //STEP1  EXEC PGM=DBXMMPR 

 //STEPLIB    See the note above and Listing Libraries for CA Datacom Products. 

 //WORK1    DD   DSN=&.&WORK1.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //WORK2    DD   DSN=&.&WORK2.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //WORK3    DD   DSN=&.&WORK3.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //SYSOUT   DD   SYSOUT=* 

 //SYSPRINT DD   SYSOUT=*                            Print Output 

 //SYSPUNCH DD   DSN=&.&TEMP.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(2,1)) 

 //SYSUDUMP DD   SYSOUT=* 

 //SNAPER   DD   SYSOUT=* 

 //INCLUDE  DD   DSN=ca.user.include.library,DISP=SHR 

 //SYSIN    DD   *                                   Command input 
 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  153  
 

        PLACE COBOL SOURCE TEXT HERE. 

 //****************************************************************** 

 //*      COBOL COMPILE 

 //****************************************************************** 

 //STEP2 EXEC COBUC,COND=(0,NE,STEP1), 

 //      PARM.COB='LIST,NODYNAM,SXREF,PMAP,DMAP' 

 //COB.SYSPRINT DD SYSOUT=* 

 //COB.SYSLIN  DD DSN=&.&DCMPUNCH.,DISP=(NEW,PASS,DELETE), 

 //             UNIT=VIO,SPACE=(TRK,(15,15)), 

 //             DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200) 

 //COB.SYSIN  DD DSN=&.&TEMP.,UNIT=SYSDA,DISP=(OLD,DELETE,DELETE), 

 //         DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) 

 /* 

 //****************************************************************** 

 //*      LINK EDIT 

 //****************************************************************** 

 //LINKSTP EXEC PGM=IEWL,PARM='LIST,XREF,LET',COND=(0,NE) 

 //SYSPRINT  DD SYSOUT=* 

 //SYSLMOD   DD DSN=ca.user.loadlib,DISP=SHR 

 //SYSUT1    DD UNIT=VIO,SPACE=(1024,(200,20)) 

 //SYSLIB    DD DSN=ca.cobol.compiler.loadlib,DISP=SHR 

 //OBJLIB    DD DSN=ca.user.smp.library,DISP=SHR 

 //SYSLIN    DD DSN=&.&DCMPUNCH.,DISP=(OLD,PASS) 

 //          DD * 

  INCLUDE OBJLIB(DBXHVPR) 

  INCLUDE OBJLIB(DBSBTPR) (Use DBSU1PR if program is AMODE=31 and RMODE=ANY.) 

  ENTRY BEGIN 

  NAME DBDP236(R) 
 

 /* 

 //****************************************************************** 

 //*      PROGRAM EXECUTION 

 //****************************************************************** 

 //STEP4   EXEC PGM=DBDP236 

 //STEPLIB  DD DSN=ca.datacom.loadlib,DISP=SHR  See Listing Libraries for CA Datacom 

Products. 

 //         DD DSN=ca.user.loadlib,DISP=SHR 

 //SYSPRINT DD SYSOUT=* 

 //SYSLIST  DD SYSOUT=* 

 //SYSOUT   DD SYSOUT=* 

 //PRINT    DD SYSOUT=* 

 /* 
 



Sample JCL 

 

154  SQL User Guide 
 

z/OS Sample COBOL JCL for CICS 

The following JCL example is for z/OS sites. 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 //jobname    See the note above and Listing Libraries for CA Datacom Products. 

 //******************************************************************** 

 //* THE FOLLOWING JOB STREAM DEMONSTRATES THE SQL 

 //* PREPROCESSOR, THE CICS COMMAND LEVEL PRECOMPILER AND THE COBOL 

 //* COMPILER STEPS 

 //******************************************************************** 

 //STEP1    EXEC PGM=DBXMMPR 

 //STEPLIB    See the note above and Listing Libraries for CA Datacom Products. 

 //WORK1    DD   DSN=&.&WORK1.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //WORK2    DD   DSN=&.&WORK2.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //WORK3    DD   DSN=&.&WORK3.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //SYSOUT   DD   SYSOUT=* 

 //SYSPRINT DD   SYSOUT=*                            Print Output 

 //SYSPUNCH DD   DSN=&.&TEMP.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(2,1)) 

 //SYSUDUMP DD   SYSOUT=* 

 //SNAPER   DD   SYSOUT=* 

 //INCLUDE  DD   DSN=ca.user.include.library,DISP=SHR 

 //SYSIN    DD   *                                   Command input 
 

      PLACE COBOL SOURCE TEXT HERE. 

 //******************************************************************** 

 //*   CICS COMMAND LEVEL PREPROCESSOR STEP 

 //******************************************************************** 

 //TRN      EXEC PGM=DFHECP1$,COND=(4,GT) 

 //STEPLIB  DD   DSN=cics.loadlib,DISP=SHR 

 //SYSPRINT DD   SYSOUT=* 

 //SYSPUNCH DD   DSN=&.&SYSCIN.,DISP=(,PASS),UNIT=DISK, 

 //             DCB=BLKSIZE=400,SPACE=(400,(400,100)) 

 //SYSIN    DD   DSN=&.&TEMP.,UNIT=DISK,DISP=(OLD,DELETE,DELETE), 

 //             DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) 

 //SYSLIN   DD   DSN=&.&DCMPUNCH.,DISP=(NEW,PASS,DELETE), 

 //             UNIT=VIO,SPACE=(TRK,(15,15)), 

 //             DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200) 
 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  155  
 

 //******************************************************************** 

 //*   COBOL COMPILER STEP 

 //******************************************************************** 

 //COB      EXEC PGM=IKFCBL00,REGION=1024K, 

 //             PARM='NOTRUNC,NODYNAM,LIB,SIZE=1024K,BUF=16K', 

 //             COND=(4,GT) 

 //SYSLIB   DD   DSN=cics.coblib,DISP=SHR 

 //SYSPRINT DD   SYSOUT=* 

 //SYSIN    DD   DSN=&.&SYSCIN.,DISP=(OLD,DELETE) 

 //SYSLIN   DD   DSN=&.&LOADSET.,DISP=(MOD,PASS), 

 //             UNIT=DISK,SPACE=(80,(250,100)) 

 //SYSUT1   DD   UNIT=DISK,SPACE=(460,(350,100)) 

 //SYSUT2   DD   UNIT=DISK,SPACE=(460,(350,100)) 

 //SYSUT3   DD   UNIT=DISK,SPACE=(460,(350,100)) 
 

 //******************************************************************** 

 //*    LINK EDIT STEP 

 //******************************************************************** 

 //LKED     EXEC PGM=IEWL,REGION=1024K,PARM=XREF,COND=(4,GT) 

 //SYSLIB   DD   DSN=cics.loadlib,DISP=SHR 

 //         DD   DSN=SYS1.COBLIB,DISP=SHR 

 //         DD   DSN=ca.datacom.loadlib,DISP=SHR  See Listing Libraries for CA Datacom 

Products. 

 //SYSLMOD  DD   DSN=DATACOM.LOADLIB,DISP=SHR 

 //SYSUT1   DD   UNIT=DISK,DCB=BLKSIZE=1024, 

 //             SPACE=(1024,(200,20)) 

 //SYSPRINT DD   SYSOUT=* 

 //SYSLIN   DD   DSN=cics.coblib(DFHEILIC),DISP=SHR 

 //         DD   DSN=&.&LOADSET.,DISP=(OLD,DELETE) 

 //SYSIN    DD   * 

  INCLUDE SYSLIB(DBCSVPR) 

  INCLUDE SYSLIB(DBXHVPR) 

  NAME TEST01(R) 

 /* 

 // 
 



Sample JCL 

 

156  SQL User Guide 
 

CA Datacom IMS/DC Services Sample COBOL z/OS JCL 

The following z/OS JCL example is for compilation of programs running under CA 
Datacom IMS/DC Services. 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 //jobname    See the note above and Listing Libraries for CA Datacom Products. 

 //******************************************************************** 

 //*   THE FOLLOWING JOB STREAM DEMONSTRATES THE SQL 

 //*   PREPROCESSOR, COBOL COMPILER, AND PROGRAM EXECUTION 

 //******************************************************************** 

 //STEP1  EXEC PGM=DBXMMPR 

 //STEPLIB    See the note above and Listing Libraries for CA Datacom Products. 

 //WORK1    DD   DSN=&.&WORK1.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //WORK2    DD   DSN=&.&WORK2.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //WORK3    DD   DSN=&.&WORK3.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //SYSOUT   DD   SYSOUT=* 

 //SYSPRINT DD   SYSOUT=*                            Print Output 

 //SYSPUNCH DD   DSN=&.&TEMP.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(2,1)) 

 //SYSUDUMP DD   SYSOUT=* 

 //SNAPER   DD   SYSOUT=* 

 //INCLUDE  DD   DSN=ca.user.include.library,DISP=SHR 

 //SYSIN    DD   *                                   Command input 
 

        PLACE COBOL SOURCE TEXT HERE. 

 //****************************************************************** 

 //*      COBOL COMPILE 

 //****************************************************************** 

 //STEP2 EXEC COBUC,COND=(0,NE,STEP1), 

 //      PARM.COB='LIST,NODYNAM,SXREF,PMAP,DMAP' 

 //COB.SYSPRINT DD SYSOUT=* 

 //COB.SYSLIN  DD DSN=&.&DCMPUNCH.,DISP=(NEW,PASS,DELETE), 

 //             UNIT=VIO,SPACE=(TRK,(15,15)), 

 //             DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200) 

 //COB.SYSIN  DD DSN=&.&TEMP.,UNIT=SYSDA,DISP=(OLD,DELETE,DELETE), 

 //         DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) 

 /* 
 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  157  
 

 //****************************************************************** 

 //*      LINK EDIT 

 //****************************************************************** 

 //LINKSTP EXEC PGM=IEWL,PARM='LIST,XREF,LET',COND=(0,NE) 

 //SYSPRINT  DD SYSOUT=* 

 //SYSLMOD   DD DSN=ca.user.loadlib,DISP=SHR 

 //SYSUT1    DD UNIT=VIO,SPACE=(1024,(200,20)) 

 //SYSLIB    DD DSN=ca.cobol.compiler.loadlib,DISP=SHR 

 //          DD DSN=ca.datacom.loadlib,DISP=SHR  See Listing Libraries for CA Datacom 

Products. 

 //IMSDCLIB  DD DSN=yourimsdclib,DISP=SHR 

 //SYSLIN    DD DSN=&.&DCMPUNCH.,DISP=(OLD,PASS) 

 //          DD * 

  INCLUDE SYSLIB(DBXHVPR) 

  INCLUDE IMSDCLIB(CBLTDLI) 

  ENTRY DLITCBL 

  NAME PROGNAME(R) 

 //****************************************************************** 

 //* NOTE: IMSDCLIB IS THE LIBRARY CONTAINING THE 

 //*       CA-DATACOM/IMSDC SERVICES LANGUAGE INTERFACE. 

 //****************************************************************** 

 /* 
 

z/VSE Sample COBOL JCL for Batch 

The following sample JCL is for z/VSE sites. 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 

 * $$ JOB ...           See the note above and Listing Libraries for CA Datacom Products. 

* $$ LST   CLASS=x 

// JOB     name 

// EXEC      PROC=yourproc  Whether you use PROCs or LIBDEFs, see Listing Libraries 

for CA Datacom Products. 

// OPTION    DECK,NOXREF,DUMP,LOG 

// DLBL      WORK1,'precompile.work1',0,SD 

// EXTENT    SYSnnn,volser,1,0,reltrk,numtrks 

// DLBL      WORK2,'precompile.work2',0,SD 

// EXTENT    SYSnnn,volser,1,0,reltrk,numtrks 

// DLBL      WORK3,'precompile.work3',0,SD 

// EXTENT    SYSnnn,volser,1,0,reltrk,numtrks 
 



Sample JCL 

 

158  SQL User Guide 
 

// DLBL      SRCOUT,'source.name',0,SD 

// EXTENT    SYSnnn,volser,1,0,reltrk,numtrks 

// DLBL      IJSYSIN,'source.name' 

// EXTENT    SYSIPT,volser 

   ASSGN     SYSLNK,DISK,VOL=volser,SHR 

// ASSGN     SYS001,DISK,VOL=volser,SHR 

// ASSGN     SYS002,DISK,VOL=volser,SHR 

// ASSGN     SYS003,DISK,VOL=volser,SHR 

// ASSGN     SYS004,DISK,VOL=volser,SHR 

// ASSGN     SYS005,DISK,VOL=volser,SHR 

// ASSGN     SYS006,DISK,VOL=volser,SHR 

// ASSGN     SYS007,DISK,VOL=volser,SHR 

// DLBL      IJSYSLN,'syslnk.dataset',0,sd 

// EXTENT    SYSLNK,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS01,'ijsys01.work',0,SD 

// EXTENT    SYS001,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS02,'ijsys02.work',0,SD 

// EXTENT    SYS002,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS03,'ijsys03.work',0,SD 

// EXTENT    SYS003,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS04,'ijsys04.work',0,SD 

// EXTENT    SYS004,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS05,'ijsys05.work',0,SD 

// EXTENT    SYS005,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS06,'ijsys06.work',0,SD 

// EXTENT    SYS006,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS07,'ijsys07.work',0,SD 

// EXTENT    SYS007,volser,1,0,reltrk,numtrks 

* PRECOMPILE 

// OPTION    DECK,NOXREF,DUMP,LOG 

// EXEC DBXMMPR,SIZE=768K 

 CBL LIB,APOST 

       cobol source 

/* 

* COMPILE 

// OPTION    NODECK,CATAL 

   PHASE   xxxxxxx,* 

   INCLUDE DBSBTPR 

   INCLUDE DBXHVPR 

 ASSGN     SYSIPT,DISK,VOL=volser,SHR 

// EXEC IGYCRCTL,SIZE=IGYCRCTL 

/* 

 CLOSE       SYSIPT,READER 

/* 

* LNKEDT 

   ENTRY   BEGIN 

// EXEC LNKEDT 

/* 

// EXEC 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  159  
 

/* 

/& 

* $$ EOJ 

 
 

z/VSE Sample COBOL JCL for CICS 

The following sample JCL is for z/VSE sites. 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 

 * $$ JOB ...           See the note above and Listing Libraries for CA Datacom Products. 

* $$ LST   CLASS=x 

// JOB     name 

// EXEC      PROC=yourproc 

// OPTION    DECK,NOXREF,DUMP,LOG 

// DLBL      WORK1,'precompile.work1',0,SD 

// EXTENT    SYSnnn,volser,1,0,reltrk,numtrks 

// DLBL      WORK2,'precompile.work2',0,SD 

// EXTENT    SYSnnn,volser,1,0,reltrk,numtrks 

// DLBL      WORK3,'precompile.work3',0,SD 

// EXTENT    SYSnnn,volser,1,0,reltrk,numtrks 

// DLBL      SRCOUT,'source.name',0,SD 

// EXTENT    SYSnnn,volser,1,0,reltrk,numtrks 

* PRECOMPILE 

// OPTION    DECK,NOXREF,DUMP,LOG 

// EXEC DBXMMPR,SIZE=768K 

 CBL LIB,APOST 
 

       cobol source 

/* 

* DFHECP1$ 

// DLBL      IJSYSPH,'source.file',0,SD 

// EXTENT    SYSPCH,volser,1,0,reltrk,numtrks 

   ASSGN     SYSPCH,DISK,VOL=volser,SHR 

// DLBL      IJSYSIN,'source.name' 

// EXTENT    SYSIPT,volser 

 ASSGN       SYSIPT,DISK,VOL=volser,SHR 

// EXEC DFHECP1$,SIZE=512K 

/* 

 CLOSE       SYSPCH,PUNCH 

 CLOSE       SYSIPT,READER 
 



Sample JCL 

 

160  SQL User Guide 
 

* COMPILE 

// DLBL      IJSYSIN,'source.file' 

// EXTENT    SYSIPT,volser 

   ASSGN     SYSLNK,DISK,VOL=volser,SHR 

// ASSGN     SYS001,DISK,VOL=volser,SHR 

// ASSGN     SYS002,DISK,VOL=volser,SHR 

// ASSGN     SYS003,DISK,VOL=volser,SHR 

// ASSGN     SYS004,DISK,VOL=volser,SHR 

// ASSGN     SYS005,DISK,VOL=volser,SHR 

// ASSGN     SYS006,DISK,VOL=volser,SHR 

// ASSGN     SYS007,DISK,VOL=volser,SHR 

// DLBL      IJSYSLN,'syslnk.dataset',0,sd 

// EXTENT    SYSLNK,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS01,'ijsys01.work',0,SD 

// EXTENT    SYS001,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS02,'ijsys02.work',0,SD 

// EXTENT    SYS002,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS03,'ijsys03.work',0,SD 

// EXTENT    SYS003,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS04,'ijsys04.work',0,SD 

// EXTENT    SYS004,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS05,'ijsys05.work',0,SD 

// EXTENT    SYS005,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS06,'ijsys06.work',0,SD 

// EXTENT    SYS006,volser,1,0,reltrk,numtrks 

// DLBL      IJSYS07,'ijsys07.work',0,SD 

// EXTENT    SYS007,volser,1,0,reltrk,numtrks 

// OPTION    NODECK,CATAL 

     PHASE   xxxxxxx,* 

     INCLUDE DBSBTPR 

     INCLUDE DBXHVPR 
 

 ASSGN     SYSIPT,DISK,VOL=volser,SHR 

// EXEC IGYCRCTL,SIZE=IGYCRCTL 

/* 

 CLOSE       SYSIPT,READER 

/* 

* LNKEDT 

   ENTRY   BEGIN 

// EXEC LNKEDT 

/* 

/& 

* $$ EOJ 

 
 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  161  
 

Sample PL/I JCL 

The following examples show sample JCL for z/OS and z/VSE environments. These 
examples are intended to be samples only. You need to modify the JCL to conform to 
the requirements of your site. 

Note: If you are coding a procedure, see Examples: Creating a Procedure (see page 87). 
 

z/OS PL/I Sample JCL 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 //jobname    See the note above and Listing Libraries for CA Datacom Products. 

 //*------------------------------------------------------------------- 

 //*  THE FOLLOWING JOB STREAM ILLUSTRATES THE EXECUTION OF THE 

 //*  PREPROCESSOR AND COMPILER. 

 //*------------------------------------------------------------------- 

 //* 

 //*------------------------------------------------------------------- 

 //*  PRECOMPILE 

 //*------------------------------------------------------------------- 

 //* 

 //STEP1 EXEC PGM=DBPLIPR 

 //STEPLIB    See the note above and Listing Libraries for CA Datacom Products. 

 //SYSUDUMP DD SYSOUT=* 

 //SYSPRINT DD SYSOUT=* 

 //SYSOUT   DD SYSOUT=* 

 //OPTIONS  DD *,DCB=BLKSIZE=80 

 LANGUAGE=PLI 

 ... place additional precompile options here .... 

 /* 
 



Sample JCL 

 

162  SQL User Guide 
 

 //SOURCE DD DATA,DCB=BLKSIZE=80,DLM=## 

 ... place PL/I source here ... 

 ## 

 //INCLUDE  DD  DSN=ca.user.include.library,DISP=SHR 

 //SRCOUT   DD  DSN=&.&SRCPRE.,DISP=(MOD,PASS),UNIT=SYSDA, 

 //           DCB=(LRECL=80,BLKSIZE=4000,RECFM=FB), 

 //           SPACE=(4000,(250,100)) 

 //REPORT   DD SYSOUT=* 

 //* 

 //*------------------------------------------------------- 

 //*  assemble urt 

 //*------------------------------------------------------- 

 //* 

 //ASMURT  EXEC PGM=ASMA90,PARM='DECK,NOOBJECT,TERM' 

 //SYSLIB    DD DSN=ca.user.system.library,DISP=SHR 

 //SYSUT1    DD DSN=&.&SYSUT1.,UNIT=VIO,SPACE=(1700,(600,100)) 

 //SYSUT2    DD DSN=&.&SYSUT2.,UNIT=VIO,SPACE=(1700,(300,50)) 

 //SYSUT3    DD DSN=&.&SYSUT3.,UNIT=VIO,SPACE=(1700,(300,50)) 

 //SYSTERM   DD SYSOUT=*,DCB=BLKSIZE=1089 

 //SYSPUNCH  DD DSN=&.&URTPUNCH.,DISP=(NEW,PASS,DELETE), 

 //             UNIT=VIO,SPACE=(3200,(15,15)), 

 //             DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200) 

 //SYSIN DD * 

 ... place urt source here .... 

 ... urt is opened by CA-DATACOM/DB ... 

 /* 
 

 //SYSPRINT  DD SYSOUT=* 

 //* 

 //*------------------------------------------------------------------- 

 //*      COMPILE & LINK 

 //*------------------------------------------------------------------- 

 //* 

 //CC     EXEC PLIXCL 

 //PLI.SYSLIN   DD UNIT=SYSDA 

 //PLI.SYSIN    DD DSN=&.&SRCPRE.,DISP=(MOD,PASS),UNIT=SYSDA, 

 //               DCB=(LRECL=80,BLKSIZE=4000,RECFM=FB) 

 //LKED.SYSLMOD DD DSN=ca.user.loadlib,DISP=SHR 

 //LKED.SYSLIN  DD DSN=&.&URTPUNCH.,DISP=(OLD,DELETE) 

 //             DD DDNAME=SYSIN 

 //LKED.SYSIN   DD * 

  ENTRY BEGIN 

  NAME TESTPL1(R) 

 /* 

 // 
 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  163  
 

z/VSE PL/I Sample JCL 

In this example, both the source and the SQL INCLUDEs are being read from libraries.  
The desired source is specified by the SMBR= Preprocessor option.  A library location is 
required when specifying SMBR=.  In addition, the file type is specified by using the 
ITYP= Preprocessor option. For more information, see Description of Options. 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 * $$ JOB ...           See the note above and Listing Libraries for CA Datacom Products. 

 * $$ LST ... 

 * $$ PUN ... 

 // JOB name 

 // DLBL CAC,'name.c.runtime' 

 // EXTENT ,DDSRN3 

 // DLBL INCLUDE,'name.sql.includes',99/365 

 // EXTENT ,volser... 

 // DLBL SOURCE,'name.pli.source',99/365 

 // EXTENT ,volser... 

 // DLBL DATACOM,'name.datacom.db' 

 // EXTENT ,volser... 

 // LIBDEF *,SEARCH=(DATACOM.LINK2480,CAC.CORE,                         X 

                SOURCE.PROD,INCLUDE.PLISQL ) 

 // DLBL OPTIONS,'name.precomp.pli.options',0,SD 

 // EXTENT SYSnnn,volser... 

 // DLBL REPORT,'name.precomp.pli.report',0,SD 

 // EXTENT SYSnnn,volser... 

 // DLBL SRCOUT,'name.precomp.pliout',0,SD 

 // EXTENT SYSnnn,volser... 

 // ASSGN SYSnnn,DISK,VOL=volser,SHR 

 // ASSGN SYSnnn,DISK,VOL=volser,SHR 

 // EXEC PGM=DBPLIPR,SIZE=500K,PARM='SMBR=PL1SRC4.P ITYP=S' 

 /* 

 /& 

 * $$ EOJ 
 

Sample Assembler JCL 

The following examples show sample JCL for z/OS and z/VSE environments. These 
examples are intended to be samples only.  You need to modify the JCL to conform to 
the requirements of your site. Depending on the method you use, some steps may be 
omitted. 

Note:  If you are coding a procedure, see Examples: Creating a Procedure (see page 87). 
 



Sample JCL 

 

164  SQL User Guide 
 

z/OS Assembler Sample JCL 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 //jobname    See the note above and Listing Libraries for CA Datacom Products. 

 //*------------------------------------------------------- 

 //*  the following job stream illustrates this sequence: 

 //*  preprocess, assemble, link, & execute 

 //*------------------------------------------------------- 

 //* 

 //*------------------------------------------------------- 

 //*  preprocess program 

 //*------------------------------------------------------- 

 //* 

 //PREC EXEC PGM=DBPLIPR 

 //STEPLIB    See the note above and Listing Libraries for CA Datacom Products. 

 //SYSUDUMP DD SYSOUT=* 

 //SYSPRINT DD SYSOUT=* 

 //SYSOUT   DD SYSOUT=* 

 //OPTIONS  DD *,DCB=BLKSIZE=80 

 LANGUAGE=ASM 

 ... place additional preprocessor options here .... 

 /* 
 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  165  
 

 //SOURCE DD DATA,DCB=BLKSIZE=80,DLM=## 

 ... place source here ... 

 ## 

 //SRCOUT   DD DSN=&.&SRCPRE.,DISP=(MOD,PASS),UNIT=SYSDA, 

 //           DCB=(LRECL=80,BLKSIZE=4000,RECFM=FB), 

 //           SPACE=(80,(250,100)) 

 //REPORT   DD SYSOUT=* 

 //INCLUDE  DD DSN=ca.user.include.library,DISP=SHR 

 //* 

 //*------------------------------------------------------- 

 //*  assemble program 

 //*------------------------------------------------------- 

 //* 

 //ASMURT  EXEC PGM=ASMA90,PARM='DECK,NOOBJECT,TERM' 

 //SYSLIB    DD DSN=ca.user.system.library,DISP=SHR 

 //SYSUT1    DD DSN=&.&SYSUT1.,UNIT=VIO,SPACE=(1700,(600,100)) 

 //SYSUT2    DD DSN=&.&SYSUT2.,UNIT=VIO,SPACE=(1700,(300,50)) 

 //SYSUT3    DD DSN=&.&SYSUT3.,UNIT=VIO,SPACE=(1700,(300,50)) 

 //SYSTERM   DD SYSOUT=*,DCB=BLKSIZE=1089 

 //SYSPUNCH  DD DSN=&.&ASMPUNCH.,DISP=(NEW,PASS,DELETE), 

 //             UNIT=VIO,SPACE=(3200,(15,15)), 

 //             DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200) 

 //SYSIN     DD DSN=&.&SRCPRE.,DISP=(OLD,PASS),UNIT=SYSDA, 

 //           DCB=(LRECL=80,BLKSIZE=4000,RECFM=FB) 

 //SYSPRINT  DD SYSOUT=* 

 //* 
 

 //*------------------------------------------------------- 

 //*  assemble urt 

 //*------------------------------------------------------- 

 //* 

 //ASMURT  EXEC PGM=ASMA90,PARM='DECK,NOOBJECT,TERM' 

 //SYSLIB    DD DSN=ca.user.system.library,DISP=SHR 

 //          DD DSN=ca.user.system.library,DISP=SHR 

 //*         DD DSN=ca.user.system.library,DISP=SHR 

 //SYSUT1    DD DSN=&.&SYSUT1.,UNIT=VIO,SPACE=(1700,(600,100)) 

 //SYSUT2    DD DSN=&.&SYSUT2.,UNIT=VIO,SPACE=(1700,(300,50)) 

 //SYSUT3    DD DSN=&.&SYSUT3.,UNIT=VIO,SPACE=(1700,(300,50)) 

 //SYSTERM   DD SYSOUT=*,DCB=BLKSIZE=1089 

 //SYSPUNCH  DD DSN=&.&URTPUNCH.,DISP=(NEW,PASS,DELETE), 

 //             UNIT=VIO,SPACE=(3200,(15,15)), 

 //             DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200) 

 //SYSIN DD * 

 ... place urt source here .... 

 ... urt is opened by CA-DATACOM/DB ... 

 /* 
 



Sample JCL 

 

166  SQL User Guide 
 

 //SYSPRINT  DD SYSOUT=* 

 //* 

 //*------------------------------------------------------- 

 //*  link program 

 //*------------------------------------------------------- 

 //* 

 //LINK   EXEC  PGM=IEWL,REGION=512K, 

 //       COND=(8,LT),PARM='XREF,LIST,MAP,NCAL,LET' 

 //SYSPRINT DD SYSOUT=* 

 //SYSLIN   DD DSN=&.&ASMPUNCH.,DISP=(OLD,DELETE) 

 //         DD DSN=&.&URTPUNCH.,DISP=(OLD,DELETE) 

 //         DD DDNAME=SYSIN 

 //SYSLMOD  DD DSN=ca.user.loadlib,DISP=SHR 

 //SYSUT1   DD UNIT=VIO,SPACE=(1024,(400,40)) 

 //LINK.SYSIN DD * 

  ENTRY BEGIN 

  NAME TESTASM(R) 

 /* 

 //* 

 //*------------------------------------------------------- 

 //*  exec program 

 //*------------------------------------------------------- 

 //* 

 //ASMEXEC EXEC PGM=TESTASM,REGION=512K 

 //STEPLIB    See note at start of this example and Listing Libraries for CA Datacom 

Products. 

 //SYSUDUMP DD SYSOUT=* 

 //SYSPRINT DD SYSOUT=* 

 //SYSOUT   DD SYSOUT=* 

 //SNAP     DD SYSOUT=* 
 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  167  
 

z/VSE Assembler Sample JCL 

In this example, the source is being read from a sequential disk file while SQL INCLUDEs 
are being read from a library. 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

* $$ JOB   .........                                  

// JOB     .........                                  

// EXEC      PROC=procname                            

// ASSGN     SYSnnn,DISK,VOL=vvvvvv,SHR               

// DLBL      OPTIONS,'optdsn',1                   

// EXTENT    SYSnnn,vvvvvv,1,0,strk,ntrks             

// DLBL      SOURCE,'srcdsn',1                    

// EXTENT    SYSnnn,vvvvvv,1,0,strk,ntrks             

// DLBL      REPORT,'rptdsn',1                    

// EXTENT    SYSnnn,vvvvvv,1,0,strk,ntrks             

// DLBL      SRCOUT,'outdsn',1                    

// EXTENT    SYSnnn,vvvvvv,1,0,strk,ntrks             

// DLBL      SDSKIN,'rptdsn'                      

// EXTENT    SYSnnn,vvvvvv                            

// UPSI      1                                        

* DITTO                                               

// EXEC DITTO,SIZE=1M                                 

$$DITTO CSQ FILEOUT=OPTIONS,CISIZE=512,BLKFACTOR=1    

SQLMODE=DATACOM                                        

   *** Other options as appropriate ***                

/*                                                     

$$DITTO CSQ FILEOUT=SOURCE,CISIZE=512,BLKFACTOR=1      

   *** Source here ***                                 

/*                                                     

$$DITTO EOJ                                            

ON $ABEND GOTO $EOJ                                    

* DBPLIPR                                              

// EXEC DBPLIPR,SIZE=500K                              

/*                                                     

* DITTO                                                

// EXEC DITTO,SIZE=1M                                  

$$DITTO SFD FILEIN=SDSKIN,RECSIZE=133                  

$$DITTO EOJ                                            

/*                                                     

/&                                                     

* $$ EOJ           
 



Sample JCL 

 

168  SQL User Guide 
 

Sample C Language JCL 

This is a sample only. Modify the JCL to conform to the requirements of your site. 
Depending on the method you use, some steps may be omitted. 

Note:  If you are coding a procedure, see Examples: Creating a Procedure (see page 87). 
 

z/OS C Language Sample JCL 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply. Code 
all statements to your site and installation standards. 

  //jobname    See the note above and Listing Libraries for CA Datacom Products. 

  //* ------------------------------------------------------------ 

  //*  the following job stream illustrates the execution of the 

  //*  preprocessor and compiler 

  //* ------------------------------------------------------------ 

  //* 

  //* ------------------------------------------------------------ 

  //*             c preprocessor 

  //* ------------------------------------------------------------ 

  //* 

  //CPRECMP  EXEC PGM=progname,PARM='PLANNAME=TESTCEE' 

  //STEPLIB    See the note above and Listing Libraries for CA Datacom Products. 

  //SYSUDUMP DD SYSOUT=* 

  //SYSPRINT DD SYSOUT=* 

  //SYSOUT   DD SYSOUT=* 

  //OPTIONS  DD DATA,DCB=BLKISIZE=80,DLM=## 

  LANGUAGE=C 
 

  //* ------------------------------------------------------------ 

  //* place additional precompile options here 

  //* ------------------------------------------------------------ 

  //SOURCE   DD DATA,DCB=BLKISIZE=80,DLM=## 

  //* ------------------------------------------------------------ 

  //* place c source here 

  //* ------------------------------------------------------------ 

  ## 

  //INCLUDE  DD DSN=ca.user.include.library,DISP=SHR 

  //REPORT   DD SYSOUT=* 

  //SRCOUT   DD DSN=&.&SRC.,DISP=(,PASS,DELETE),UNIT=VIO, 

  //            SPACE=(2000,(200,200)), 

  //            DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200) 

  //* ------------------------------------------------------------ 

  //*                     c comnpile 

  //* ------------------------------------------------------------ 

  //* 
 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  169  
 

  //COMPA    EXEC PROC=EDCC, 

  //   CRUN='RENT', 

  //   CPARM='NOMARGINS,NOSEQUENCE,LIST,SOURCE', 

  //   CPARM2='LOCALE("POSIX")', 

  //   CPARM3='SSCOM,LONGNAME,SHOWINC,OMVS,DLL', 

  //  INFILE='&.&SRC'., 

  //  OUTFILE='ca.user.objlib(TESTCOBJ)', 

  //  COND=(0,LT) 

  //* 

  //SYSLIB   DD  DSN=CEE.SCEEH.H,DISP=SHR 

  //         DD  DSN=CEE.SCEEH.SYS.H,DISP=SHR 

  //USERLIB  DD  DSN=ca.user.srclib,DISP=SHR 

  //* ------------------------------------------------------------ 

  //*                     prelink starts here 

  //* ------------------------------------------------------------ 

  //PRELINK   EXEC  PGM=EDCPRLK,COND=(0,LT), 

  //  PARM='POSIX(OFF)/OE,MEMORY,DUP,NOER,MAP,NOUPCASE,NONCAL' 

  //* 

  //SYSMSGS  DD  DSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR 

  //OBJLIB   DD  DSN=ca.user.objlib,DISP=SHR 

  //C8941    DD  DSN=CEE.SCEEOBJ,DISP=SHR 

  //SYSOUT   DD  SYSOUT=* 

  //SYSPRINT DD  * 

  //SYSMOD   DD  DSN=ca.user.objlib(TESTCEE),DISP=SHR 

  //SYSDEFSD DD  DUMMY 

  //SYSIN    DD  * 

    INCLUDE OBJLIB(TESTCOBJ) 

    LIBRARY C8941 

  /* 
 

  //* ------------------------------------------------------------ 

  //*                             link 

  //* ------------------------------------------------------------ 

  //LINKEDIT  EXEC  PGM=LINKEDIT,COND=(0,LT), 

  //  PARM=('AMODE=31,RMODE=ANY,TERM=YES,MSGLEVEL=0,MAP,DYNAM=DLL', 

  //        'CALL=YES,CASE=MIXED,REUS=RENT,EDIT=YES') 

  //SYSLIB   DD  DSN=CEE.SCEELKED,DISP=SHR 

  //         DD  DSN=SYS1.CSSLIB,DISP=SHR 

  //SYSPRINT DD  SYSOUT=* 

  //SYSTERM  DD  SYSOUT=* 

  //SYSLMOD  DD  DISP=SHR,DSN=ca.user.loadlib 

  //OBJLIB   DD  DSN=ca.user.objlib,DISP=SHR 

  //SYSLIN   DD  * 

    INCLUDE  OBJLIB(urtcee) 

    INCLUDE  OBJLIB(TESTCEE) 

    ENTRY    BEGIN 

    NAME     TESTCEE(R) 

  /* 
 



Sample JCL 

 

170  SQL User Guide 
 

z/VSE C Language Sample JCL 

Note: Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply. Code 
all statements to your site and installation standards. 



Sample JCL 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  171  
 

* $$ JOB   .......                                         

// JOB     .......                                         

// EXEC PROC=procname                                      

// LIBDEF *,CATALOG=lib.sublib                             

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR                        

// DLBL  OPTIONS,'optdsn',1                                

// EXTENT SYSnnn,vvvvvv,1,0,strk,ntrks                     

// DLBL  SOURCE,'Srcdsn',1                                 

// EXTENT SYSnnn,vvvvvv,1,0,strk,ntrks                     

// DLBL  IJSYSPH,'pundsn',1                                

// EXTENT SYSnnn,vvvvvv,1,0,strk,ntrks                     

// DLBL  IJSYSIN,'pundsn'                                  

// EXTENT SYSIPT,vvvvvv                                    

* ASSEMBLY                                                 

 ASSGN SYSPCH,DISK,VOL=vvvvvv,SHR                          

// OPTION    NOXREF,DECK,NOEDECK,LOG,NODUMP   ,CATAL       

// EXEC ASSEMBLY                                           

     *** urt assembly source ***                           

/*                                                                       

* LIBR                                                                   

 CLOSE SYSPCH,PUNCH                                                      

 ASSGN SYSIPT,DISK,VOL=vvvvvv,SHR                                        

// EXEC LIBR,SIZE=450K,PARM='MSHP;ACC S=lib.sublib;                    X 

               CATALOG urtname.OBJ,REPLACE=YES'                          

 CLOSE SYSIPT,SYSRDR                                                     

* PUNCH PRECOMPILE OPTIONS AND SOURCE FILE                               

// UPSI 1                                                                

// EXEC  DITTO,SIZE=1M                                                   

$$DITTO CSQ FILEOUT=OPTIONS,CISIZE=512,BLKFACTOR=1                       

SQLMODE=DATACOM                                                          

LANG=C                                                                   

    *** Other options as appropriate                                     

/*                                                                       

$$DITTO CSQ FILEOUT=SOURCE,CISIZE=512,BLKFACTOR=1                        

    *** Source here ***                                                  

/*                                                                       

$$DITTO EOJ                                       

ON $ABEND GOTO $EOJ                               

// ASSGN   SYSnnn,DISK,VOL=vvvvvv,SHR             

// DLBL    SOURCE,'srcdsn'                        

// EXTENT  SYSnnn,vvvvvv                          

// DLBL    OPTIONS,'optdsn'                       

// EXTENT  SYSnnn,vvvvvv                          

// DLBL    REPORT,'rptdsn',1                      

// EXTENT  SYSnnn,vvvvvv,1,0,strk,ntrks           

// DLBL    SRCOUT,'srodsn',1                      

// EXTENT  SYSnnn,vvvvvv,1,0,strk,ntrks           

// DLBL    IJSYS01,'work1',1,SD                   

// EXTENT  SYS001,vvvvvv,1,0,strk,ntrks           



Sample JCL 

 

172  SQL User Guide 
 

// DLBL    IJSYS02,'work2',1,SD                   

// EXTENT  SYS001,vvvvvv,1,0,strk,ntrks           

// DLBL    IJSYS03,'work3',1,SD                   

// EXTENT  SYS001,vvvvvv,1,0,strk,ntrks           

// DLBL    IJSYS04,'work4',1,SD                   

// EXTENT  SYS001,vvvvvv,1,0,strk,ntrks                        

* PRECOMPILER STEP                                             

// EXEC DBPLIPR,SIZE=500K                                      

/*                                                             

// ASSGN   SYSnnn,DISK,VOL=vvvvvv,SHR                          

// DLBL    SDSKIN,'rptdsn'                                     

// EXTENT  SYSnnn,vvvvvv                                       

* PRINT PRECOMPILER REPORT                                     

// EXEC  DITTO,SIZE=1M                                         

$$DITTO SFD FILEIN=SDSKIN,RECSIZE=133                          

$$DITTO EOJ                                                    

/*                                                             

* COMPILER STEP                                                

// UPSI 0                                                      

// LIBDEF *,SEARCH=(cuslib,cussub,lib.csublib,lib.lesublib)    

// DLBL    IJSYSLN,'syslink',0,SD                              

// EXTENT  SYSLNK,vvvvvv,1,0,strk,ntrks                        

// DLBL    IJSYS01,'work1',1,SD                                

// EXTENT  SYS001,vvvvvv,1,0,strk,ntrks                    

// DLBL    IJSYS02,'work2',1,SD                            

// EXTENT  SYS002,vvvvvv,1,0,strk,ntrks                    

// DLBL    IJSYS03,'work3',1,SD                            

// EXTENT  SYS003,vvvvvv,1,0,strk,ntrks                    

// DLBL    IJSYS04,'work4',1,SD                            

// EXTENT  SYS004,vvvvvv,1,0,strk,ntrks                    

// ASSGN   SYS005,DISK,VOL=vvvvvv,SHR                      

// ASSGN   SYS006,DISK,VOL=vvvvvv,SHR                      

// ASSGN   SYS007,DISK,VOL=vvvvvv,SHR                      

// DLBL    IJSYS05,'work5',1,SD                            

// EXTENT  SYS005,vvvvvv,1,0,strk,ntrks                    

// DLBL    IJSYS06,'work6',1,SD                            

// EXTENT  SYS006,vvvvvv,1,0,strk,ntrks                    

// DLBL    IJSYS07,'work7',1,SD                            

// EXTENT  SYS007,vvvvvv,1,0,strk,ntrks                    

// DLBL    SYSUT1,'CEE001'                                 

// EXTENT  SYSnnn,vvvvvv                                   

// ASSGN  SYSnnn,DISK,VOL=vvvvvv,SHR                                      

// OPTION  CATAL,NODECK                                                   

// EXEC EDCCOMP,SIZE=EDCCOMP,PARM='/INFILE(DD:SYSnnn-SYSUT1),          X  

               NAME(CEE001)'                                              

/*                                                                        

* LNKEDT                                                                  

 INCLUDE urtname                                                          

 ENTRY BEGIN                                                              



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  173  
 

// EXEC LNKEDT,PARM='AMODE=31,RMODE=ANY'                                  

/*                                                                        

/&                                                                        

* $$ EOJ 
 

Embedding SQL Statements in Host Programs 

You can use SQL statements by embedding them in COBOL, PL/I, Assembler, or C host 
language programs. Alternatively, some statements can be submitted online through 
the CA Datacom Datadictionary Interactive SQL Service Facility. See Statement 
Execution Table. (see page 53) 

Detailed information about coding embedded SQL in the various languages can be found 
as follows: 

COBOL 

Information begins in Coding Embedded SQL in COBOL (see page 178). 

PL/I 

Information begins in Coding Embedded SQL in PL/I (see page 185). 

Assembler 

Information begins in Coding Embedded SQL in Assembler (see page 200). 
 

C language 

Information begins in Coding Embedded SQL in C (see page 206). 

When you embed SQL in a host program, your activities include making use of: 

1. Preprocessor options (see Using Preprocessor Options (see page 208)), and 

2. SQL statements (see SQL Statements (see page 597)). 
 

Distinguishing SQL Statements 

To distinguish SQL statements from the host language, you must include special 
statements in your host program to embed SQL statements. 

 



Embedding SQL Statements in Host Programs 

 

174  SQL User Guide 
 

COBOL 

All embedded SQL statements in COBOL programs are preceded by the keywords EXEC 
SQL and followed by the keyword END-EXEC as shown in the following format. 

EXEC SQL 

      statement 

END-EXEC 

The alternate format is shown in the following. 

EXEC SQL statement END-EXEC 

EXEC SQL and END-EXEC are reserved words for use by the CA Datacom/DB 
Preprocessor.  When the Preprocessor scans the host source, it uses the EXEC SQL and 
END-EXEC to identify SQL statements to be passed to CA Datacom/DB for preparation. 

These keywords must be finished on the same line as they were started. They cannot be 
continued to another line. 

 

The first character of the EXEC SQL keyword must be the first significant character on 
that line. The recommended position is column 12 or further right. Do not terminate the 
EXEC SQL keyword with a period (.).  Terminating the EXEC SQL keyword with a period 
results in a syntax error. 

The END-EXEC keyword must be the only or last word on the line. Terminating the 
END-EXEC keyword with a period (.) is only necessary when a period is required to make 
the embedded SQL statement consistent with the COBOL logic of your program.  The 
generated COBOL code has a period at the end of the statement only if you terminated 
the END-EXEC with a period.  For all other embedded SQL statements (declarative or 
Preprocessor declarations and instructions) a terminating period after END-EXEC is not 
necessary and is ignored. 

Note:  See Executable SQL Statements (see page 356) for information about submitting 
SQL statements online using the Interactive SQL Service Facility. 

 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  175  
 

PL/I and C 

All embedded SQL statements in PL/I and C programs are preceded by the keywords 
EXEC SQL and followed by a semicolon: 

 EXEC SQL 

     statement 

 ; 

The identifying words EXEC SQL (which are reserved), the statement, and the 
terminating semicolon can appear on one or more lines within the prescribed margins.  
Do not include code unrelated to SQL on these lines since the Preprocessor comments 
them. The word EXEC must be separated from the word SQL, and the word SQL must be 
separated from the statement.  The semicolon can directly follow the last letter of the 
statement. 

Example 1 

 EXEC SQL 

     DECLARE ADDR_CURSOR CURSOR FOR 

     SELECT ID, NAME_LAST, STATE FROM ADDRTBL; 

Example 2 

 EXEC SQL 

     WHENEVER NOT FOUND GOTO ALL_DONE ; 
 

Example 3 

  EXEC SQL 

     FETCH ADDR_CURSOR 

         INTO :HID, :HNAME_LAST, :HSTATE; 

Example 4 

 EXEC SQL CLOSE ADDR_CURSOR; 
 



Embedding SQL Statements in Host Programs 

 

176  SQL User Guide 
 

Assembler 

All embedded SQL statements in Assembler programs are preceded by the keywords 
EXEC SQL and ended on a record for which the continuation field is not used. 

 EXEC SQL                                                              X 

     statement                                                         X 

     statement 

The identifying words EXEC SQL (which are reserved), and the statement can appear on 
one or more lines within the prescribed margins.  Do not include code unrelated to SQL 
on these lines since the SQL Preprocessor for Assembler comments them. The word 
EXEC must be separated from the word SQL, and the word SQL must be separated from 
the statement. 

Example 1 

 EXEC SQL                                                              X 

     DECLARE ADDR_CURSOR CURSOR FOR                                    X 

     SELECT ID, NAME_LAST, STATE FROM ADDRTBL 

Example 2 

 EXEC SQL                                                              X 

     WHENEVER NOT FOUND GOTO ALLDONE 
 

Example 3 

 EXEC SQL                                                              X 

     FETCH ADDR_CURSOR                                                 X 

         INTO :HID, :HNAME_LAST, :HSTATE 

Example 4 

 EXEC SQL CLOSE ADDR_CURSOR 
 

Rules for Coding Embedded SQL 

When you embed SQL statements in your host program, you must adhere to the 
following requirements: 

■ Exactly one SQL statement is allowed: 

– In COBOL, between a pair of EXEC SQL and END-EXEC keywords. 

– In PL/I and C, between the EXEC SQL and the terminating semicolon. 

– In Assembler, for an EXEC SQL. 

■ In COBOL, BEGIN DECLARE SECTION and END DECLARE SECTION can only be used in 
the WORKING-STORAGE SECTION of your program. 

■ In COBOL, INCLUDE is not recognized by the ANSI standard. 
 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  177  
 

■ Host-variable requirements are: 

– The maximum length allowed for host-variables for all languages is 32,765 
bytes. 

– In COBOL, all host-variables in your program must be declared before you code 
any DECLARE cursor-name CURSOR statement. 

– In PL/I and C, a host-variable in your program must be declared in the source 
prior to its reference by an SQL statement, and you must determine the proper 
scope for host-variables. 

 

– In Assembler, you must determine the proper scope for host-variables. 

– for the C language, also see Rules for Coding Host-Variables in C (see page 206). 

■ In COBOL, all other embedded SQL statements must be in the PROCEDURE 
DIVISION. 

 

■ To conform to the ANSI standards for embedded SQL, exactly one OPEN and one 
CLOSE must be coded: 

– In COBOL, for each defined cursor name (each may be executed multiple times 
by the program). For extended mode SQL, at least one OPEN and one CLOSE 
must be coded for each defined cursor.  This means that you are responsible 
for correctly coding the logic of OPEN and CLOSE. 

– In PL/I and Assembler, for each cursor defined. 

■ In PL/I and Assembler, WHENEVER statements must appear in the source prior to 
their use.  Any previous WHENEVER is in effect until replaced. 

 

Additional Assembler Requirements 

When you embed SQL statements in an Assembler program, the program must provide 
an area of SQLDSIZ and establish addressability by using the DSECT SQLDSECT. Both 
SQLDSIZ and SQLDSECT are generated by the Preprocessor. 

SQLDSECT 

is a DSECT of the storage areas which are required for SQL use. 

SQLDSIZ 

is a fullword where the value is the length required for storage used by SQL.  
SQLDSIZ is variable in size according to the type and number of SQL statements, the 
number of host variables, and whether the SQLCA is generated separately. The area 
must be initialized to binary zeros prior to the first call for SQL. 

In Assembler, registers 0, 1, 14, and 15 are used in generated code.  Do not rely on their 
contents being consistent where code has been generated. 

 



Embedding SQL Statements in Host Programs 

 

178  SQL User Guide 
 

Coding Embedded SQL in COBOL 

The COBOL versions supported are: 

 

z/OS z/VSE 

OS/VS COBOL 2.4 
VS/COBOL II 3.0 

DOS/VS COBOL 3.0 
VS/COBOL II 3.0 

The following sections describe the code which must be included in each COBOL 
division.  The ENVIRONMENT DIVISION is not listed since there is no applicable SQL code 
in that division. 

 

IDENTIFICATION DIVISION 

The CA Datacom/DB SQL Preprocessor uses the COBOL PROGRAM-ID as the name for 
the plan associated with your program, unless another name is specified in the 
Preprocessor options. If you use the PROGRAM-ID for the plan name, then the name 
should be unique within your authorization ID. 

 

DATA DIVISION 

Following are the requirements for embedding SQL in the DATA DIVISION of your 
program. 

 

WORKING-STORAGE SECTION 

The WORKING-STORAGE SECTION statement must be coded on the same line with no 
continuation. 

 

Host-Variable Definitions in COBOL 

Host-variables can be defined only in the WORKING-STORAGE SECTION of your DATA 
DIVISION.  See Host Variables for rules on naming host-variables. Host-variable 
definitions: 

■ Cannot be longer than 32,765 bytes. 

■ Cannot be COMPUTATIONAL-1 or COMP-1 data type. 

■ Cannot have a PICTURE clause containing the following editing symbols: 

 

Z $ (dollar sign) . (period) 

B * (asterisk) + (plus sign) 

0 (zero) , (comma) - (minus sign) 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  179  
 

If the CA Datacom/DB Preprocessor encounters any host-variable which includes any of 
the above clauses, data types or symbols, it issues an error message and the variable is 
not stored in the host-variable symbol table. 

The following sections describe ANSI and extended mode requirements for 
host-variables. 

ANSI SQL Standard Host-Variable Definitions 

If you specify in the CA Datacom/DB SQL Preprocessor options that all SQL statements 
must be ANSI standard, then all host-variables: 

■ Must be defined in one or more SQL DECLARE sections 

■ Must be defined at the elementary column level 
 

All host-variables do not have to be defined within the same SQL DECLARE section.  
However, any host-variable you define must appear in only one SQL DECLARE section.  
Host-variables defined in an ANSI SQL DECLARE section become standard COBOL 
variables after processing by the Preprocessor. The form of an ANSI SQL DECLARE 
section is: 

EXEC SQL 

 

 

      BEGIN DECLARE SECTION 

 

 

END-EXEC 

host-variable definitions 

EXEC SQL 

 

 

      END DECLARE SECTION 

 

 

END-EXEC 
 

ANSI Standard Host-Variable Data Types 

The ANSI standard allowable data types are as follows: 

 

SQL Data Type COBOL Definition 

CHARACTER or CHAR PIC X(n) 

NUMERIC 
(zoned decimal) 

PIC S9(n)V9(n) DISPLAY SIGN LEADING SEPARATE 



Embedding SQL Statements in Host Programs 

 

180  SQL User Guide 
 

SQL Data Type COBOL Definition 

INTEGER or INT 
(large integer) 

PIC S9(n) COMP 
where n > 4 and n <= 9 is supported 
      n > 9 is not supported 

Extended Mode SQL Host-Variable Definitions 

Host-variables can appear outside an SQL DECLARE section if you specify in the CA 
Datacom/DB SQL Preprocessor options that SQL statements can include CA Datacom/DB 
extensions. 

Non-ANSI Host-Variable Data Types 

The non-ANSI standard allowable data types are as follows: 

 

SQL Data Type COBOL Definition 

CHARACTER or CHAR PIC X(n) 

NUMERIC 
(zoned decimal) 

PIC 9(n)V9(n) DISPLAY or 
PIC S9(n)V9(n) DISPLAY or 
PIC S9(n)V9(n) DISPLAY SIGN LEADING SEPARATE 

DECIMAL or DEC 
(packed decimal) 

PIC 9(n)V9(n) COMP-3 or 
PIC S9(n)V9(n) COMP-3 or 
PIC 9(n)V9(n) PACKED-DECIMAL or 
PIC S9(n)V9(n) PACKED-DECIMAL 

SMALLINT 
(small integer) 

PIC S9(n) COMP or 
PIC S9(n) BINARY or 
PIC S9(n) COMP-4 
where n <= 4 

INTEGER or INT 
(large integer) 

PIC S9(n) COMP or 
PIC S9(n) BINARY or 
PIC S9(n) COMP-4 
where n > 4 and n <= 9 is supported 
      n > 9 is not supported 

FLOAT USAGE COMP-2 

REAL USAGE COMP-2 

DOUBLE PRECISION USAGE COMP-2 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  181  
 

Note:  Variable-name-length and variable-name-text are user-defined names.  The 
required level for these two VARCHAR elementary items is 49.  The group level may be 
numbered 01 through 48. 

 

SQL Data Type COBOL Definition 

VARCHAR 
(small integer) 

(character) 

49 variable-name-length PIC S9(4) COMP 
 

49 variable-name-text PIC X(n) 
where n = maximum length 

LONG VARCHAR 
(small integer) 

(character) 

49 variable-name-length PIC S9(4) COMP 
 

49 variable-name-text PIC X(n) 
where n = maximum length 

DATE PIC X(10) 

TIME PIC X(8) 

TIMESTAMP PIC X(26) 

GRAPHIC PIC G(n) USAGE DISPLAY-1 or PIC N(n) USAGE DISPLAY-1 

VARGRAPHIC 
(small integer) 

(character) 

49 variable-name-length PIC S9(4) COMP 
 

49 variable-name-text PIC G(n) USAGE DISPLAY-1 or PIC N(n) USAGE DISPLAY-1 
where n = maximum length 

Note: Variable-name-length and variable-name-text are user-defined names.  The 
required level for these two VARGRAPHIC elementary items is 49.  The group level may be 
numbered 01 through 48.  See GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC. 

LONG VARGRAPHIC 
(small integer) 

(character) 

49 variable-name-length PIC S9(4) COMP 
 

49 variable-name-text PIC G(n) USAGE DISPLAY-1 or PIC N(n) USAGE DISPLAY-1 
where n = maximum length 

Note: Variable-name-length and variable-name-text are user-defined names.  The 
required level for these two LONG VARGRAPHIC elementary items is 49.  The group level 
may be numbered 01 through 48.  See GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC. 



Embedding SQL Statements in Host Programs 

 

182  SQL User Guide 
 

Note:  The lengths shown for DATEs, TIMEs, and TIMESTAMPs are minimum length 
requirements.  See Character String Literals (see page 510) for more information. 

The CA Datacom/DB Preprocessor for COBOL recognizes GRAPHIC host variables and 
allows mixed data in literals.  The Shift-Out and Shift-In characters specified in the 
CXXMAINT option of the CA Datacom/DB Utility (DBUTLTY) are used by the 
Preprocessor.  Support is provided for both the IBM COBOL and COBOL II compilers and 
the Fujitsu COBOL85 compiler, but only in COBOL can host-variable names include DBCS 
characters (delimited by Shift characters). 

For more information about SQL data types, see Data Types (see page 485). 
 

PROCEDURE DIVISION 

The PROCEDURE DIVISION statement must be coded on the same line with no 
continuation. 

The following sections discuss the requirements for embedding SQL in the PROCEDURE 
DIVISION of your program. 

Declaring Cursors in COBOL 

Cursors must be declared in the source: 

■ Before any reference to the cursor, and 

■ After all host-variables used in the definition have been defined. 
 

Cursor declarations can be made in the: 

■ WORKING-STORAGE SECTION 

■ LINKAGE SECTION 

■ REPORT SECTION 

■ PROCEDURE DIVISION 

The recommended practice is to place all cursor definitions immediately before the 
PROCEDURE DIVISION statement. 

Cursor definitions are declarations, not action (procedural) statements. 
 

Declaring Exceptions in COBOL 

An exception declaration specifies a COBOL action to be taken when an exception 
occurs during execution of an SQL statement. The form of the exception declaration is: 

EXEC SQL 

     WHENEVER condition exception-action 

END-EXEC 
 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  183  
 

Following are the exception conditions for ANSI mode and extended mode. 

 

ANSI Extended Mode 

SQLERROR SQLERROR 

NOT FOUND NOT FOUND 

 SQLWARNING 

Following are the exception actions for ANSI mode and extended mode. 

 

ANSI Extended Mode 

GOTO target GOTO target 

GO TO target GO TO target 

CONTINUE CONTINUE 

GOTO and GO TO cause transfer of control to the target paragraph or section. 

CONTINUE causes the program to continue execution with the next COBOL statement. 

The scope of an exception declaration: 

■ Begins with the placement of the exception declaration in the source, and 

■ Continues until either another exception declaration for the same condition in the 
source or the end of the source occurs. 

Note:  SQL statements occurring in the source before an exception declaration are not 
affected by it. 

Any SQL statements executed that are not under control of an exception declaration 
default to CONTINUE. 

If an exception declaration is not provided, the recommended practice is that your 
program include code to check the SQLCODE value in the SQL Communication Area 
(SQLCA) immediately after each executable SQL statement. 

 



Embedding SQL Statements in Host Programs 

 

184  SQL User Guide 
 

Executable SQL Statements in COBOL 

Executable SQL statements must appear in the PROCEDURE DIVISION in the following 
format: 

EXEC SQL 

 

 

     statement 

 

 

END-EXEC 

Executable embedded SQL statements can appear anywhere that a COBOL statement 
can appear. 

 

INCLUDE Directive in COBOL 

You can use the SQL INCLUDE directive to get secondary input from the include library, 
INCLUDE.  The INCLUDE directive causes input to be read from the specified member of 
the include library until the end of the member is reached.  The included library input 
cannot contain other INCLUDE directives, but can contain both host language and SQL 
statements.  The include library must have fixed-length records of 80 bytes. 

You can use the INCLUDE only in the extended mode. If the Preprocessor finds an 
INCLUDE while in the ANSI mode, it ignores the INCLUDE during processing, and issues a 
warning message.  Processing by the Preprocessor continues. 

The INCLUDE can be used anywhere within the program. The Preprocessor locates the 
member name and includes the member in the COBOL source. If the result is invalid 
COBOL, the precompiler does not check for valid COBOL syntax in an INCLUDE. 

Note:  INCLUDE directives cannot be nested, that is to say, a member named in an 
INCLUDE directive cannot contain an INCLUDE directive. 

 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  185  
 

z/OS 

In z/OS, the format for the INCLUDE instruction is: 

EXEC SQL 

     INCLUDE member-name 

END-EXEC 

z/VSE 

In z/VSE, the format for the INCLUDE instruction is: 

EXEC SQL 

     INCLUDE member-name,member-type 

END-EXEC 

Note:  In the previous example, member-type is a one-byte identifier of the file type 
under which the member is cataloged. Any letter is a valid value for member-type. If 
member-type is not specified, it defaults to C. 

 

Coding Embedded SQL in PL/I 

Distinguishing Storage for Use as Host-Variables in PL/I 

The information in this section is divided into three parts: 

■ ANSI and DB2A86 modes 

■ Modes other than ANSI and DB2A86 

■ All modes 

For ANSI and DB2A86 Modes 

For ANSI and DB2A86 SQL modes, all storage that is referenced by the statement must 
be delimited by starting and ending statements. For example: 

 EXEC SQL BEGIN DECLARE SECTION ; 

     storage declarations of host-variables. 

 EXEC SQL END DECLARE SECTION ; 

In the previous example, the EXEC SQL lines (through and including the semicolon) are 
reserved. They may appear on one or more lines but should not be mixed with code not 
related to SQL since the Preprocessor comments the lines. You can, if desired, place the 
semicolon immediately following SECTION (that is to say, without a space between the 
N and the semicolon). All other reserved words must be separated by a space. 

 



Embedding SQL Statements in Host Programs 

 

186  SQL User Guide 
 

You may have more than one SQL declare section. All references to storage must follow 
the declaration in the source. 

You must comply with the following requirements when you code host-variable 
declarations: 

■ All variables must be declared at the elementary level. You may declare more than 
one occurrence of the same variable type in a declare. 

■ All declarations within the DECLARE SECTION must conform as either a potential 
host or indicator. 

 

For Modes Other Than ANSI and DB2A86 

For modes other than ANSI and DB2A86, you must comply with the following 
requirements when you code host-variable declarations: 

■ You may declare structures of fields. These may be referenced as direct or indirect. 

direct 

A direct reference specifies a field within a structure or substructure that can 
be used as a host-variable. A reference in this form may be the name or a 
qualified name of two levels. 

indirect 

Indirect reference specifies a structure or substructure that can be expanded in 
its entirety into fields that are host-variables. A reference to a structure is its 
name.  A reference to a substructure is its name which must be unique or a 
unique two-level qualified name. 

 

For example, consider the following abstract structures. Assume elementary fields 
except X are eligible to be host fields. 

       Structure 1 

               DCL 1   A, 

                    2  B  ..., 

                    2  C  ...; 

 

       Structure 2 

               DCL 1   D, 

                    2  E, 

                     3 F  ..., 

                     3 G  ..., 

                    2  H  ...; 

 

       Structure 3 

               DCL 1   M, 

                    2  N  ..., 

                    2  O  ..., 

                    2  X  ...; 
 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  187  
 

Structure 1 can be referenced directly by specifying B, C, A.B or A.C.  It can be 
referenced indirectly by specifying A which is expanded into its components B and C 
to match the SQL statement. 

Structure 2 can be referenced directly by specifying F, G, or H. Structure D  cannot 
be referenced indirectly since it is more than two levels. Substructure E can be 
referenced indirectly expanding into fields F and G. 

Structure 3 can be referenced directly by specifying N or O.  Remember that X is 
invalid as a host-variable.  Although structure M is two levels, indirect reference is 
not possible since X is a component. 

 

An array of indicator variables may be specified with an indirect reference.  Each 
element field is paired with an indicator variable until all fields have indicators or 
there are no more indicators remaining in the array. 

■ Declarations used as host-variables or indicators may appear after a statement in 
the source.  The use of EXEC SQL BEGIN and END DECLARE SECTION markers is 
optional. 

 

For All Modes 

For all modes, you must comply with the following requirements when you code 
host-variable declarations: 

■ Indicator variables must be declared as fixed binary(15) or binary fixed(15). As with 
host-variables, declarations of indicator variables may contain multiple occurrences. 

■ Declarations may be defined in PL/I INCLUDE directives that have been expanded by 
the Preprocessor. 

■ Declarations may be defined in SQL INCLUDE directives. 
 

Host-Variable Declarations for PL/I 

The maximum length allowed for a host-variable is 32,765 bytes. 

ANSI Standard Host-Variable Data Types in PL/I 

The ANSI standard allowable data types are as follows: 

 

SQL Data Type PL/I Declaration 

CHARACTER or CHAR CHARACTER(n) or CHAR(n) 

DECIMAL or DEC 
(packed decimal) 

FIXED DECIMAL (p,s) or DECIMAL FIXED (p,s) or 
FIXED (p,s) DECIMAL or DECIMAL (p,s) FIXED 

INTEGER or INT 
(large integer) 

FIXED BINARY (n) or BINARY FIXED (n) or 
FIXED (n) BINARY or BINARY (n) FIXED     where 16 <= n <= 31 



Embedding SQL Statements in Host Programs 

 

188  SQL User Guide 
 

SQL Data Type PL/I Declaration 

FLOAT BINARY FLOAT (n) or FLOAT BINARY (n) or 
BIN FLOAT (n) or FLOAT BIN (n)           where 22 <= n <= 53 

Valid short forms of the declarations are: 

■ FIX for FIXED 

■ DEC for DECIMAL 

■ BIN for BINARY 

■ CHAR for CHARACTER 
 

Non-ANSI Host-Variable Data Types in PL/I 

The non-ANSI standard allowable data types are as follows: 

 

SQL Data Type PL/I Declaration 

CHARACTER or CHAR CHARACTER(n) or CHAR(n) 

NUMERIC 
(zoned decimal) 

PICTURE(pVs) or PIC(pVs) 

DECIMAL or DEC 
(packed decimal) 

FIXED DECIMAL (p,s) or DECIMAL FIXED (p,s) or 
FIXED (p,s) DECIMAL or DECIMAL (p,s) FIXED 

SMALLINT 
(small integer) 

FIXED BINARY (n) or BINARY FIXED (n) or 
FIXED (n) BINARY or BINARY (n) FIXED     where 1 <= n <= 15 

INTEGER or INT 
(large integer) 

FIXED BINARY (n) or BINARY FIXED (n) or 
FIXED (n) BINARY or BINARY (n) FIXED     where 16 <= n <= 31 

FLOAT BINARY FLOAT (n) or FLOAT BINARY (n) or 
BIN FLOAT (n) or FLOAT BIN (n)           where 22 <= n <= 53 

DECIMAL FLOAT (n) or DEC FLOAT (n)       where 7 <= n <= 16 

DATE CHARACTER(10) or CHAR(10) 

TIME CHARACTER(8) or CHAR(8) 

TIMESTAMP CHARACTER(26) or CHAR(26) 

VARCHAR CHARACTER(n) VARYING 

LONG VARCHAR CHARACTER(n) VARYING 

GRAPHIC GRAPHIC(x) 
where x is the precision (maximum number of DBCS characters) 

VARGRAPHIC GRAPHIC(x) VARYING 
where x is the precision (maximum number of DBCS characters) 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  189  
 

SQL Data Type PL/I Declaration 

LONG VARGRAPHIC GRAPHIC(x) VARYING 
where x is the precision (maximum number of DBCS characters) 

Valid short forms of the declarations are: 

■ FIX for FIXED 

■ DEC for DECIMAL 

■ BIN for BINARY 
 

■ CHAR for CHARACTER 

■ Exception: With VARCHAR, do not use the short form of CHARACTER. 

The CA Datacom/DB Preprocessor for PL/I recognizes GRAPHIC host variables and allows 
mixed data in literals.  The Shift-Out and Shift-In characters specified in the CXXMAINT 
option of the CA Datacom/DB Utility (DBUTLTY) are used by the Preprocessor. 

Note:  PL/I controlled variables are not supported. 
 

PL/I Examples 

In the following examples, BEGIN and END DECLARE SECTION markers are used for 
clarity.  They may or may not be required, depending on the SQL mode being used (see 
Distinguishing Storage for Use as Host-Variables in PL/I (see page 185)). 

PL/I Example 1 

 EXEC SQL BEGIN DECLARE SECTION ; 

                     /*--------------------------------- 

                       Host-variables 

                     *--------------------------------*/ 

     DECLARE HID             CHAR(12)         INIT(' '); 

     DECLARE HNAME_LAST      CHAR(30)         INIT(' '); 

     DECLARE HSTATE          CHAR(36)         INIT(' '); 

                     /*--------------------------------- 

                       Indicator variables 

                     *--------------------------------*/ 

     DECLARE IID             FIXED BINARY(15) INIT(0); 

     DECLARE INAME_LAST      FIXED BINARY(15) INIT(0); 

     DECLARE ISTATE          FIXED BINARY(15) INIT(0); 

 EXEC SQL END DECLARE SECTION ; 
 



Embedding SQL Statements in Host Programs 

 

190  SQL User Guide 
 

PL/I Example 2 

                     /*--------------------------------- 

                       An alternate form for the declare 

                       section. 

                     *--------------------------------*/ 

 EXEC SQL 

     BEGIN DECLARE SECTION ; 

 %SKIP 

                     /*--------------------------------- 

                       Indicator & host-variable pair 

                     *--------------------------------*/ 

 

 DCL ID_IVAR        FIXED BINARY(15); 

 DCL ID             CHAR(12); 

 %SKIP 

 DCL NAME_LAST_IVAR FIXED BINARY(15); 

 DCL NAME_CODE      CHAR(30); 

 %SKIP 

 EXEC SQL 

     END DECLARE SECTION ; 
 

PL/I Example 3 

 EXEC SQL BEGIN DECLARE SECTION ; 

                     /*--------------------------------- 

                       Host-variables 

                     *--------------------------------*/ 

     DECLARE HID             CHAR(12)         INIT(' '); 

     DECLARE HNAME_LAST      CHAR(30)         INIT(' '); 

     DECLARE HSTATE          CHAR(36)         INIT(' '); 

     %SKIP 

                     /*--------------------------------- 

                       Multiple indicator variables in 

                       a single declare 

                     *--------------------------------*/ 

     DECLARE ( IID, 

               INAME_LAST, 

               ISTATE )      FIXED BINARY(15) INIT(0); 

 EXEC SQL END DECLARE SECTION ; 
 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  191  
 

PL/I Example 4 

 EXEC SQL BEGIN DECLARE SECTION ; 

                                /*----------------------------------- 

                                  Host-variables within a structure 

 

                                  Possible direct references: 

                                    Name         Qualified name 

                                    -----        -------------------- 

                                    SEQ          GRPED.SEQ 

                                    NAME_FIRST   NAME_ALL.NAME_FIRST 

                                    NAME_MIDDLE  NAME_ALL.NAME_MIDDLE 

                                    NAME_LAST    NAME_ALL.NAME_LAST 

                                    NAME_ADDL    NAME_ALL.NAME_ADDL 

                                    SSAN         GRPED.SSAN 

                                    CITY         GRPED.CITY 

                                    STATE        GRPED.STATE 

                                    ZIP_5        ZIP.ZIP_5 

                                    ZIP_4        ZIP.ZIP_4 

 

                                  Possible indirect references: 

                                    NAME_ALL 

 



Embedding SQL Statements in Host Programs 

 

192  SQL User Guide 
 

                                  Ineligible fields and references: 

                                    Specification  Reason 

                                    -------------  --------------- 

                                    ZIP_ST         not 15,0 or 31,0 

                                                   for use as short 

                                                   integer or integer 

                                                   respectively 

                                    NOTES          array 

                                    GRPED          too many levels 

                                                   & contains 

                                                   ineligible field 

                                    ZIP            ineligible field 

                                *----------------------------------*/ 

     DECLARE 

         1   GRPED, 

          2  SEQ                 CHAR(2), 

          2  NAME_ALL , 

           3 NAME_FIRST          CHAR(30), 

           3 NAME_MIDDLE         CHAR(30), 

           3 NAME_LAST           CHAR(30), 

           3 NAME_ADDL           CHAR(30), 

          2  SSAN                CHAR(11), 

          2  CITY                CHAR(30), 

          2  STATE               CHAR(30), 

          2  ZIP, 

           3  ZIP_5              PIC'9999T', 

           3  ZIP_4              PIC'999T', 

           3  ZIP_ST             FIXED BIN(9,4), 

          2  NOTES(3)            CHAR(80); 

 

     DECLARE (ISEQ, INAME, ISSAN, ICITY, ISTATE, IZIP ) 

                 FIXED BINARY(15) INIT(0); 

 EXEC SQL END DECLARE SECTION ; 
 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  193  
 

PL/I Example 5 

 EXEC SQL BEGIN DECLARE SECTION ; 

                                /*----------------------------------- 

                                  Host-variables within a structure 

 

                                  Possible indirect references: 

                                    NAME 

                                    ZIP 

 

                                  Invalid indirect references: 

                                    Specification  Reason 

                                    -------------  --------------- 

                                    ADDRESS        too many levels 

                                                   & contains array 

                                    TYPE           contains array 

                                    MAILING        too many levels 

 

                                  When CHAR(n) VARYING is specified, 

                                  the two fields generated do not 

                                  count as an additional level for 

                                  expansion purposes. 

                                *----------------------------------*/ 

    DECLARE 

        1    ADDRESS, 

         2   TYPE, 

          3  TYPE_R              CHAR(1), 

          3  TYPE_X(3)           CHAR(1), 

         2   NAME, 

          3  FIRST_NAME          CHAR(30) VARYING, 

          3  MIDDLE_NAME         CHAR(30) VARYING, 

          3  LAST_NAME           CHAR(30) VARYING, 

         2   MAILING, 

          3  CARE_OF             CHAR(60) VARYING, 

          3  LINE_1              CHAR(60) VARYING, 

          3  LINE_2              CHAR(60) VARYING, 

          3  LINE_3              CHAR(60) VARYING, 

          3  CITY                CHAR(60), 

          3  STATE               CHAR(30), 

          3  ZIP, 

           4 ZIP_5               PIC'9999T', 

           4 ZIP_4               PIC'999T'; 

 

 EXEC SQL END DECLARE SECTION ; 
 



Embedding SQL Statements in Host Programs 

 

194  SQL User Guide 
 

PL/I Example 6 

 EXEC SQL BEGIN DECLARE SECTION ; 

                                /*----------------------------------- 

                                  Host-variables within a structure 

 

                                  This structure, though similar to 

                                  the previous example, expands 

                                  entirely. 

                                *----------------------------------*/ 

    DECLARE 

        1   ADDRESS, 

         2  TYPE                CHAR(4), 

         2  FIRST_NAME          CHAR(30) VARYING, 

         2  MIDDLE_NAME         CHAR(30) VARYING, 

         2  LAST_NAME           CHAR(30) VARYING, 

         2  CARE_OF             CHAR(60) VARYING, 

         2  LINE_1              CHAR(60) VARYING, 

         2  LINE_2              CHAR(60) VARYING, 

         2  LINE_3              CHAR(60) VARYING, 

         2  CITY                CHAR(60), 

         2  STATE               CHAR(30), 

         2  ZIP                 PIC'99999999T'; 

 

 EXEC SQL END DECLARE SECTION ; 
 

Rules for SQL INCLUDEs in PL/I 

The format for an SQL INCLUDE directive is similar to other SQL statements: 

 EXEC SQL INCLUDE member-name ; 

Note:  INCLUDEs in the C language are basically the same as in PL/I, but see the 
exceptions for C noted in INCLUDEs in C (see page 150). 

Each SQL INCLUDE may specify only one member name contained in the INCLUDE data 
set.  You may, however, code more than one SQL INCLUDE. 

INCLUDEs cannot include other INCLUDEs.  If an SQL INCLUDE is embedded in an SQL 
INCLUDE, the Preprocessor notes the error and does not read its contents.  If a PL/I 
INCLUDE is embedded in the SQL INCLUDE, the Preprocessor ignores it. 

Except for SQLDA, member names that begin with the letters SQL are not included 
because these are assumed to be control block names.  The EXEC SQL INCLUDE 
statement is, however, commented. When INCLUDE SQLDA is specified, the 
Preprocessor for PL/I includes the description of a SQL Descriptor Area (SQLDA) for use 
by dynamic SQL statements. 

 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  195  
 

SQL INCLUDEs are processed in a special manner by the Preprocessor.  If the 
Preprocessor is able to open the INCLUDE, the records contained in the INCLUDE are 
inserted in the source after the semicolon of the SQL INCLUDE.  These records are 
processed as if they were source except in the case of an INCLUDE within an INCLUDE, 
as mentioned above. 

In the modified source the SQL INCLUDE directive is commented. 

The following examples illustrate the inclusion of host declarations from INCLUDEs.  In 
one case the SQL declaration section statements are in the INCLUDE itself.  The other 
INCLUDE contains only PL/I declarations. 

 

For z/OS, the name in the EXEC SQL INCLUDE is the name of the member in the partition 
data set of the INCLUDE DD. 

For z/VSE, the name in the EXEC SQL INCLUDE is part of the member name in the z/VSE 
library.  The other part, the file or book type, is the letter P or any letter designated by 
the ITYP= Preprocessor option. The DLBL name must be INCLUDE. 

EXEC SQL INCLUDE SQLCA causes the SQLCA to be generated at that point in the source 
rather than with other SQL request blocks. 

 

PL/I Example 1 

Following is the source: 

                     /*--------------------------------------------- 

                       This INCLUDE contains the statements for 

                       an SQL declare section. 

                     *--------------------------------------------*/ 

 EXEC SQL INCLUDE PL1INCT1 ; 

Following is the report for the source after the INCLUDE is read.  The INCLUDE source is 
denoted by a plus sign after the sequence number. The sequence number is the record 
number for the respective file (source or INCLUDE). 

 



Embedding SQL Statements in Host Programs 

 

196  SQL User Guide 
 

Report for Source after INCLUDE is Read (Example 1— PL/I) 

 34 

 35                        /*--------------------------------------------- 

 36                          This INCLUDE contains the statements for 

 37                          an SQL declare section. 

 38                        *--------------------------------------------*/ 

 39    EXEC SQL INCLUDE PL1INCT1 ; 

  1+ /*--------------------------------------------------------------------- 

  2+   test include with storage only 

  3+ *--------------------------------------------------------------------*/ 

  4+ 

  5+   EXEC SQL BEGIN DECLARE SECTION ; 

  6+       DECLARE CHSEQ  CHAR(2)    INIT('02');   /* host */ 

  7+       DECLARE HSEQ   CHAR(2)    INIT(' ');    /* host */ 

  8+       DECLARE HNAME  CHAR(20)   INIT(' ');    /* host */ 

  9+       DECLARE HSSAN  CHAR(11)   INIT(' ');    /* host */ 

 10+       DECLARE HCITY  CHAR(10)   INIT(' ');    /* host */ 

 11+       DECLARE HZIP   PIC'9999T';              /* host */ 

 12+       DECLARE (ISEQ, INAME, ISSAN, ICITY, IZIP ) 

 13+                   FIXED BINARY(15) INIT(0);   /* indicator */ 

 14+   EXEC SQL END DECLARE SECTION ; 

 15+  /* end include */ 

 40 
 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  197  
 

Following is the report for the modified source that is used as input to the compiler: 

Report for the Modified Source (Example 1— PL/I) 

 34 

 35                        /*--------------------------------------------- 

 36                          This INCLUDE contains the statements for 

 37                          an SQL declare section. 

 38                        *--------------------------------------------*/ 

     /* commented by CA-DATACOM/DB Preprocessor * 

 39    EXEC SQL INCLUDE PL1INCT1 ; 

      * commented by CA-DATACOM/DB Preprocessor */ 

  1+ /*--------------------------------------------------------------------- 

  2+   test include with storage only 

  3+ *--------------------------------------------------------------------*/ 

  4+ 

     /* commented by CA-DATACOM/DB Preprocessor * 

  5+   EXEC SQL BEGIN DECLARE SECTION ; 

      * commented by CA-DATACOM/DB Preprocessor */ 

  6+       DECLARE CHSEQ  CHAR(2)    INIT('02');   /* host */ 

  7+       DECLARE HSEQ   CHAR(2)    INIT(' ');    /* host */ 

  8+       DECLARE HNAME  CHAR(20)   INIT(' ');    /* host */ 

  9+       DECLARE HSSAN  CHAR(11)   INIT(' ');    /* host */ 

 10+       DECLARE HCITY  CHAR(10)   INIT(' ');    /* host */ 

 11+       DECLARE HZIP   PIC'9999T';              /* host */ 

 12+       DECLARE (ISEQ, INAME, ISSAN, ICITY, IZIP ) 

 13+                   FIXED BINARY(15) INIT(0);   /* indicator */ 

     /* commented by CA-DATACOM/DB Preprocessor * 

 14+   EXEC SQL END DECLARE SECTION ; 

      * commented by CA-DATACOM/DB Preprocessor */ 

 15+  /* end include */ 

 40 
 

PL/I Example 2 

Following is the source: 

                     /*--------------------------------------------- 

                       This INCLUDE contains only declarations. 

                     *--------------------------------------------*/ 

 EXEC SQL BEGIN DECLARE SECTION ; 

     EXEC SQL INCLUDE PL1INCT2 ; 

 EXEC SQL END DECLARE SECTION ; 
 



Embedding SQL Statements in Host Programs 

 

198  SQL User Guide 
 

Following is the report for the source after the INCLUDE is read: 

Report for Source after INCLUDE is Read (Example 2— PL/I) 

 41                        /*--------------------------------------------- 

 42                          This include contains only declarations. 

 43                        *--------------------------------------------*/ 

 44    EXEC SQL BEGIN DECLARE SECTION ; 

 45        EXEC SQL INCLUDE PL1INCT2 ; 

  1+ /*--------------------------------------------------------------------- 

  2+   test include with storage only within declare section 

  3+ *--------------------------------------------------------------------*/ 

  4+ 

  5+       DECLARE CHSEQ CHAR(2)    INIT('02');    /* host */ 

  6+       DECLARE HSEQ  CHAR(2)    INIT(' ');     /* host */ 

  7+       DECLARE HNAME CHAR(20)   INIT(' ');     /* host */ 

  8+       DECLARE HSSAN CHAR(11)   INIT(' ');     /* host */ 

  9+       DECLARE HCITY CHAR(10)   INIT(' ');     /* host */ 

 10+       DECLARE HZIP  PIC'9999T';               /* host */ 

 11+       DECLARE (ISEQ, INAME, ISSAN, ICITY, IZIP ) 

 12+                   FIXED BINARY(15) INIT(0);    /* indicator */ 

 13+  /* end include */ 

 46    EXEC SQL END DECLARE SECTION ; 

 47 
 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  199  
 

Following is the report for the modified source that is used as input to the compiler: 

Report for the Modified Source (Example 2— PL/I) 

 41                        /*--------------------------------------------- 

 42                          This INCLUDE contains only declarations. 

 43                        *--------------------------------------------*/ 

     /* commented by CA-DATACOM/DB Preprocessor * 

 44    EXEC SQL BEGIN DECLARE SECTION ; 

 45        EXEC SQL INCLUDE PL1INCT2 ; 

      * commented by CA-DATACOM/DB Preprocessor */ 

  1+ /*--------------------------------------------------------------------- 

  2+   test include with storage only within declare section 

  3+ *--------------------------------------------------------------------*/ 

  4+ 

  5+       DECLARE CHSEQ CHAR(2)    INIT('02');    /* host */ 

  6+       DECLARE HSEQ  CHAR(2)    INIT(' ');     /* host */ 

  7+       DECLARE HNAME CHAR(20)   INIT(' ');     /* host */ 

  8+       DECLARE HSSAN CHAR(11)   INIT(' ');     /* host */ 

  9+       DECLARE HCITY CHAR(10)   INIT(' ');     /* host */ 

 10+       DECLARE HZIP  PIC'9999T';               /* host */ 

 11+       DECLARE (ISEQ, INAME, ISSAN, ICITY, IZIP ) 

 12+                   FIXED BINARY(15) INIT(0);    /* indicator */ 

 13+  /* end include */ 

     /* commented by CA-DATACOM/DB Preprocessor * 

 46    EXEC SQL END DECLARE SECTION ; 

      * commented by CA-DATACOM/DB Preprocessor */ 

 47 
 

PL/I Example 3 

Following is an example of the source: 

                     /*--------------------------------------------- 

                       This INCLUDE contains an SQL open statement. 

                     *--------------------------------------------*/ 

 EXEC SQL INCLUDE PL1INCT6 ; 

Following is the report for the source after the INCLUDE is read: 

Report for Source after INCLUDE is Read (Example 3— PL/I) 

 87                        /*--------------------------------------------- 

 88                          This include contains an SQL open statement. 

 89                        *--------------------------------------------*/ 

 90    EXEC SQL INCLUDE PL1INCT6 ; 

  1+   EXEC SQL OPEN C1 

  2+   ; 

 91 
 



Embedding SQL Statements in Host Programs 

 

200  SQL User Guide 
 

Following is the report for the modified source that is used as input to the compiler: 

Report for the Modified Source (Example 3— PL/I) 

 87                        /*--------------------------------------------- 

 88                          This INCLUDE contains an SQL open statement. 

 89                        *--------------------------------------------*/ 

  /* commented by CA-DATACOM/DB Preprocessor * 

 90    EXEC SQL INCLUDE PL1INCT6 ; 

  1+   EXEC SQL OPEN C1 

  2+   ; 

      * commented by CA-DATACOM/DB Preprocessor */ 

     /* start of CA-DATACOM/DB Preprocessor generation */ 

            IF XYZK6_DBPRIME = XYZK6_DBPRIME_YES 

                THEN CALL XYZK6_DBINIT; 

            CALL DBSQLE( SQLCA, SQLWA0); 

     /* end of CA-DATACOM/DB Preprocessor generation */ 

 91 
 

Coding Embedded SQL in Assembler 

Rules for Coding Host Variables in Assembler 

When you code host variable declarations, you must comply with the following 
requirements: 

■ Cannot be longer than 32,765 bytes. 

■ Indicator variables must be declared as a halfword with implied or explicit length of 
two. 

■ You may declare structures of fields. Only elementary level fields can be referenced 
as host variables. 

 

■ Definitions may be defined in SQL INCLUDE directives. 

■ Host and indicator fields must have a duplication factor of one, explicit or implied. 

■ Fixed format is not required. 
 

■ All eligible field definition statements must have a name entry. Use of the prefix 
SQL should be avoided. 

■ The operation entry can be either a DS or DC. 

■ The operand entry must define a single field with the exception noted below. 
 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  201  
 

Operand Subfields 

The operand subfields: 

1. The duplication factor must be 1, regardless of whether it is explicitly specified. 

2. Valid types are listed below with the corresponding SQL type. 

3. Modifier use is limited primarily to length. Where the explicit length is specified and 
a nominal value is given, the explicit length takes precedence. 

4. Nominal values can be used to calculate length implicitly where no length modifier 
is given. A nominal value may be scanned to determine the number of decimal 
places. 

 

Host Variable Declarations for Assembler 

In the table below a lowercase n is a number. A lowercase v is a nominal value. 

 

SQL Data Type Operand Formats Notes 

CHARACTER C 
CLn 
C'v' 
CLn'v' 

 

NUMERIC Z 
ZLn 
Z'v' 
ZLn'v' 

The nominal value is used to determine scale. If no nominal value 
is given, then the scale is set to zero. For implicit length, the 
nominal value is used to determine precision and scale.  Where 
both the length modifier and the nominal value are coded, the 
explicit length from the length modifier is used. 

DECIMAL PLn 
P'v' 
PLn'v' 

The nominal value is used to determine scale. If no nominal value 
is given, then the scale is set to zero. For implicit length, the 
nominal value is used to determine precision and scale.  Where 
both the length modifier and the nominal value are coded, the 
explicit length from the length modifier is used. 

SMALLINT H 
HL2 
HL2'v' 

When the length modifier is coded, it must be two. Any nominal 
value is ignored. 

INTEGER F 
FL4 
F'v' 
FL4'v' 

When the length modifier is coded, it must be four. Any nominal 
value is ignored. 

FLOAT D 
DL8 
D'v' 
DL8'v' 

When the length modifier is coded, it must be eight. Any nominal 
value is ignored. 



Embedding SQL Statements in Host Programs 

 

202  SQL User Guide 
 

SQL Data Type Operand Formats Notes 

DATE CLn 
C'vvv.' 
CLn'v' 

The length must be 10 or more. 

TIME CLn 
C'v' 
CLn'v' 

The length must be eight or more. 

TIMESTAMP CLn 
C'v' 
CLn'v' 

The length must be 26 or more. 

VARCHAR H,CLn 
HL2,CLn 
H'vv',C'v' 
HL2'v',CLn'v' 

The operation must have two and only two operands with the 
halfword followed by the character.  Either, both or neither type 
may have a nominal value.  Likewise a length modifier. 

LONG VARCHAR H,CLn 
HL2,CLn 
H'vv',C'v' 
HL2'v',CLn'v' 

The operation must have two and only two operands with the 
halfword followed by the character.  Either, both or neither type 
may have a nominal value.  Likewise a length modifier. 

GRAPHIC DC or DS 
GLn or 
G'xxxx' or 
Gn'xxxx' 

 

VARGRAPHIC DC or DS 
H,GLn 

 

LONG VARGRAPHIC DC or DS 
H,GLn 

 

Note:  The CA Datacom/DB Preprocessor for Assembler recognizes GRAPHIC host 
variables and allows mixed data in literals.  The Shift-Out and Shift-In characters 
specified in the CXXMAINT option of the CA Datacom/DB Utility (DBUTLTY) are used by 
the Preprocessor. 

 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  203  
 

Example 1 

 *------------------------------ 

 *  Valid host variables 

 *------------------------------ 

 

 LASTNAME DS   CL30          . CHAR(30) 

 POBOX    DS   ZL9           . NUMERIC(9) with scale 0 

 ZIPCODE  DS   PL5           . DEC(9,0) 

 ZIPSPLIT DS   P'+99999.9999'. DEC(9,4) 

 

 CUR$PAY  DC   H'0'          . SMALLINT 

 CUM$PAID DC   F'0'          . INTEGER 

 

 INTRATE  DS   D             . FLOAT(n) 

 

 LACTDATE DC   C'          ' . date area 

 LACTTIME DS   CL8           . time area 

 LTXNSTMP DC   CL26' '       . timestamp are 

 

 STREET   DS   H'0',CL40     . VARCHAR(40) 

 CITY     DS   H,CL30        . VARCHAR(30) 

 STATE    DS   H'0',CL20' '  . VARCHAR(20) 

 

 *------------------------------ 

 *  Indicator variables 

 *------------------------------ 

 

 NAMEFND DC    H'0' 

 ZIPAVAL DS    H 
 

Rules for SQL INCLUDEs in Assembler 

The format for an SQL INCLUDE directive is similar to other SQL statements: 

 EXEC SQL INCLUDE member-name 

Each SQL INCLUDE may specify only one member name contained in the INCLUDE data 
set.  You may, however, code more than one SQL INCLUDE. 

INCLUDEs cannot include other INCLUDEs.  If an SQL INCLUDE is embedded in an SQL 
INCLUDE, the Preprocessor for Assembler notes the error and does not read its 
contents. Likewise, macros are not expanded nor are any other copy types processed. 

With the exception of SQLCA and SQLDA, member names that begin with the letters SQL 
are not included because these are assumed to be control block names.  EXEC SQL 
INCLUDE SQLCA causes separate generation of the SQLCA DSECT. When INCLUDE SQLDA 
is specified, the Preprocessor for Assembler includes the description of a SQL Descriptor 
Area (SQLDA) for use by dynamic SQL statements. 

 



Embedding SQL Statements in Host Programs 

 

204  SQL User Guide 
 

SQL INCLUDEs are processed in a special manner by the Preprocessor for Assembler.  If 
the Preprocessor for Assembler is able to open the INCLUDE, the records contained in 
the INCLUDE are inserted in the source after the SQL INCLUDE.  These records are 
processed as if they were source. 

In the modified source the SQL INCLUDE directive is commented. 

The following examples illustrate the inclusion of host definitions from INCLUDEs.  In 
one case the SQL declaration section statements are in the INCLUDE itself. 

For z/OS, the name in the EXEC SQL INCLUDE is the name of the member in the partition 
data set of the INCLUDE DD. 

For z/VSE, the name in the EXEC SQL INCLUDE is part of the member name in the z/VSE 
library.  The other part, the file or book type, is designated by the ITYP= Preprocessor for 
Assembler option. The DLBL name must be INCLUDE. 

 

Assembler Example 1 

Following is an example of the source: 

 EXEC SQL INCLUDE ASMINCT3 

Following is the report for the source after the INCLUDE is read: 

 52        EXEC SQL INCLUDE ASMINCT3 

  1+*-------------------------------------------- 

  2+*  example of including an SQL statement 

  3+*-------------------------------------------- 

  4+* 

  5+  EXEC SQL DECLARE                                                              X 

  6+              C1 CURSOR FOR                                                     X 

  7+          SELECT SEQ,                                                           X 

  8+                 NAME                                                           X 

  9+                    FROM GACTBLV 

 10+* 

 11+*------- end include --------* 

 53 * 
 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  205  
 

Following is the report for the modified source: 

Report for the Modified Source (Example 1— Assembler) 

 52 *      EXEC SQL INCLUDE ASMINCT3 

  1+*-------------------------------------------- 

  2+*  example of including an SQL statement 

  3+*-------------------------------------------- 

  4+* 

  5+* EXEC SQL DECLARE 

  6+*             C1 CURSOR FOR 

  7+*         SELECT SEQ, 

  8+*                NAME 

  9+*                   FROM GACTBLV 

 10+* 

 11+*------- end include --------* 

 53 * 
 

Assembler Example 2 

Following is an example of the source: 

 EXEC SQL INCLUDE ASMINCT4 

Following is the report for the source after the INCLUDE is read: 

Report for Source after INCLUDE is Read (Example 2— Assembler) 

 53 * 

 54        EXEC SQL INCLUDE ASMINCT4 

  1+  EXEC SQL OPEN C1 

 55 * 
 

Following is the report for the modified source: 

Report for the Modified Source (Example 2— Assembler) 

 53 * 

 54 *      EXEC SQL INCLUDE ASMINCT4 

  1+* EXEC SQL OPEN C1 

    *------ start of CA-DATACOM/DB generation ------ 

             BAL   14,SQLINIT 

             LA    1,SQL0 

             ST    1,SQLPWA 

             LA    1,SQLPARMS 

             L     15,SQLVSQLE 

             BALR  14,15 

             TM    SQLCODE,X'80' 

             BO    DUMPNOW 

    *------ end of CA-DATACOM/DB generation -------- 

 55 * 
 



Embedding SQL Statements in Host Programs 

 

206  SQL User Guide 
 

Coding Embedded SQL in C 

Rules for Coding Host-Variables in C 

When you code host-variable declarations in C, you must comply with the following 
requirements: 

■ Host and indicator variables must be within the scope of the referencing SQL 
statement. 

■ In ANSI mode, host and indicator variables must be within the BEGIN and END 
DECLARE SECTION.  Multiple DECLARE sections are allowed. That is, in C only host 
variables that are declared within an EXEC SQL BEGIN DECLARE SECTION/EXEC SQL 
END DECLARE SECTION are valid. 

Note:  The SQLWAs and SQLCA are automatically generated after the first EXEC SQL 
BEGIN DECLARE SECTION in C. 

 

■ Only one level of qualification is allowed, that is, a host or indicator variable can be 
part of a structure, but that structure may not be nested within another structure. 

■ Host and indicator variables must be one of the C data types shown in the following 
table. 

Note:  C does not support VARCHAR as in other languages where the length is 
specified in a 2-byte binary field in front of the actual value. Instead, C supports 
VARCHAR as a null-terminated string. This is true for input and output host variables 
in C. Null-terminated strings can also be used with CHAR columns in C. 

 

C Data Types Compared to SQL Data Types 

 

C Data Type Example SQL Data Type 

single char char    x; CHAR 

char array char    x[10] VARCHAR 

char structure containing exactly one 
short variable followed by exactly one 
char array. 

char struct { 
short len1; 
char  text[9]; 
} hv1; 

VARCHAR 

decimal(precision, scale) decimal(5,0) DECIMAL 

short or short int short    hv1; SMALLINT 

int or long int int       hv1; INTEGER 

float float     hv1; FLOAT 

double double  hv1; FLOAT 

char array char  dateHv[11]; DATE 



Embedding SQL Statements in Host Programs 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  207  
 

C Data Type Example SQL Data Type 

char array char  timeHv[9]; TIME 

char array char  timeStampHv[23]; TIMESTAMP 

Comments on C Data Types 

char array 

The C char array is treated as a null-terminated string. 

char   hv1[10] is equivalent to VARCHAR(9). 

The VARCHAR length is set based on the number of bytes preceding the 
null-terminating byte. 

Char arrays for DATE, TIME, and TIMESTAMP also need the null-terminating byte. 

char structure 

The char array for the text is not null terminated. 
 

decimal 

Use of decimal requires #include decimal.h (provided by the IBM C Compiler), and 
the compiler option must not be ANSI. Precision and scale is optional. To print 
decimal values, use (with printf): 

 %D(precision,scale) 

host structures 

In DATACOM mode, a host variable structure may be used. The host structure must 
be a C structure containing only valid host variables. The host structure must not be 
nested within another structure. 

indicator variables 

In DATACOM mode, a host indicator structure or array may be used. The structure 
or array must only contain short C variables. The indicator structure must not be 
nested within another structure. 

 



Using Preprocessor Options 

 

208  SQL User Guide 
 

INCLUDEs 

INCLUDEs in the C language are basically the same as in PL/I except note the 
following: 

■ The SQLCA is always automatically generated, so no INCLUDE should be used 
for it. However, you must code your own SQLDA and SQLVAR when using 
dynamic SQL. 

■ The EXEC SQL INCLUDE <member name>; SQL statement can be used to include 
members from the PDS data set INCLUDE in z/OS (for z/VSE, the name in the 
EXEC SQL INCLUDE is the name of a member in a z/VSE library). INCLUDEs in C 
cannot be nested. 

■ Because the Precompiler executes before the C Preprocessor, statements such 
as #include, #define, and typedef are not expanded. Unless the user executes 
the language preprocessor only before the CA Datacom/SQL C Preprocessor, 
host variables in #include files cannot be referenced, and #define and typedefs 
cannot be used to declare a host variable data type. 

 

Using Preprocessor Options 

In this section: 

■ For an alphabetically arranged list of the options you can specify, see Options You 
Can Specify (see page 214). 

■ For information specific to COBOL, see Specifying Processing Options in COBOL (see 
page 210). 

■ For information specific to PL/I, C, and Assembler, see Specifying Processing 
Options in PL/I, C, and Assembler (see page 211). 

 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  209  
 

Overview 

The Preprocessor is controlled by options which you can specify before submitting a 
program with embedded SQL. 

The values you assign to the options determine how the Preprocessor processes the SQL 
statements and control certain aspects of the application's environment. 

The options you specify build the CA Datacom/DB access plan for your program 
containing embedded SQL.  Every program with embedded SQL must have a plan, which 
is unique to that program.  The plan contains: 

■ Information required by CA Datacom/DB about your program. 

■ Each embedded SQL statement in your program. 

If you modify any SQL statement in your program, you must precompile your program 
again to update the plan. 

Note:  The Preprocessor options you specify in your host program have no effect on SQL 
statements submitted through CA Dataquery or the CA Datacom Datadictionary 
Interactive SQL Service Facility. 

 

Naming the Plan 

When you submit an application with embedded SQL, you can specify the authorization 
ID (or schema) that owns the application.  You use the SQL Preprocessor AUTHID= 
option to make this assignment. 

The value you assign to AUTHID= must be the name of a schema which already exists in 
the CA Datacom Datadictionary. 

In COBOL, you can also specify the plan name for an application using the SQL 
Preprocessor's PLANAME= option. If you do not assign a value to PLANAME=, the plan 
name defaults to the value specified for the PROGRAM-ID in your COBOL application. 

In PL/I, C, and Assembler, you must also specify the plan name for an application using 
the SQL Preprocessor's PLANAME= or PLANNAME= option. 

In COBOL and Assembler, the plan name must be unique for each program owned by a 
specific authorization ID. 

 



Using Preprocessor Options 

 

210  SQL User Guide 
 

When you precompile or preprocess a program with embedded SQL, CA Datacom 
Datadictionary creates a PLAN entity-occurrence and relates this occurrence to the 
specific program. The name of the PLAN occurrence is formed by concatenating the 
authorization ID and the plan name, that is to say, the value assigned: 

■ For COBOL, the PLANAME= option or the PROGRAM-ID. 

■ For PL/I, C, or Assembler, the PLANAME= or PLANNAME= option. 

A plan name remains associated with a specific application. You can update a plan if you 
make changes to an application by rebinding the plan, or, if necessary, precompiling the 
application again. 

In COBOL, if a rebind fails and you have to precompile the application, you must use the 
same authorization ID and plan name specified during the first precompile. 

 

Specifying Processing Options in COBOL 

When to Delete an Existing Plan 

If either the authorization ID or plan name is changed in another precompile, the orphan 
authorization ID and plan name combination needs to be deleted. 

 

Coding Preprocessor Options in COBOL 

To pass options to the Preprocessor, you must code the options on comment lines 
preceding COBOL's IDENTIFICATION DIVISION statement. 

Each comment line specifying Preprocessor options must have an asterisk (*) in column 
7.  Immediately following the asterisk, you must enter $DBSQLOPT as shown in the 
following example: 

Input 

Column 

 ....+....1....+....2....+....3....+....4....+....5....+....6....+....7.. 

       *$DBSQLOPT option1=value1 option2=value2 . . . 

        IDENTIFICATION DIVISION. 

               .         . 

               .         . 

               .         . 
 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  211  
 

When you code Preprocessor options on the comment lines, you can enter the options 
in any order as long as you adhere to the following rules: 

1. Options must be coded between columns 18 and 72, inclusive. 

2. No option can be continued from one line to the next, that is to say, the option 
keyword and assigned value must be coded on the same line. 

3. Options must be separated from each other by one or more spaces. 

4. Each option you code must be in the form: 

option=value 
 

All options which you enter on the comment lines are edited.  The Preprocessor uses 
the default value for an option in the following situations: 

■ If you do not specify the option in your program. 

■ If you enter the option keyword, but do not specify a value after the equal sign. 

■ If an invalid value is specified for an option. 
 

Specifying Processing Options in PL/I, C, and Assembler 

The three methods by which you can specify processing options are: 

■ Options file 

■ Execution parameters 

■ PL/I, C, or Assembler source 

All option specifications are reported in their processing order: first the options file, 
then the execution parameters, and finally the source. 

 

Not all options can be specified by all three methods.  For example, the GENSTOR= and 
GENINIT= options make sense only within the source. But in all three methods the 
option specification consists of the option keyword, the equal sign, and the value for the 
option without any intervening blanks.  Case is not important except where noted.  See 
Options You Can Specify (see page 214) for details about the option keywords. 

Note:  If you are using the C language, specifying GENSTOR=, GENINIT=, or INLINE= is 
not valid, because in C all storage is allocated at the point of the first EXEC SQL BEGIN 
DECLARE SECTION, meaning that the inline method is the only one C can use. 

 



Using Preprocessor Options 

 

212  SQL User Guide 
 

Using the Option File Method in PL/I, C, and Assembler 

Options specified in the option file are coded one per record beginning in column one.  
An option specification is considered a comment if it is indented.  Anything to the right 
of the option specification is also considered a comment. 

The options file is a good place to put options that are common to a group of programs 
(or possibly all of the programs at your site). 

 

PL/I Example 
 //OPTION DD * 

 CBSIO=0 

 isolevel=c 

  language=pli 

 plnclose=t 

 PRTY=7 

 sqlmode=ansi 

 TIMEMIN=0 

 msgprec=d 

 /* 

Note:  The option specification language=pli is a comment because it is indented.  Also 
note that case is not important. 

 

C Example 
 //option dd * 

 cbsio=0 

 isolevel=c 

  language=c 

 plnclose=t 

 prty=7 

 sqlmode=ansi 

 timemin=0 

 msgprec=d 

 /* 

Note:  The option specification language=c is a comment because it is indented.  Also 
note that in the C language the case is important, that is to say, using upper case causes 
errors. 

 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  213  
 

Assembler Example 
 //OPTION DD * 

 LANGUAGE=ASM 

 SQLMODE=DATACOM 

 CBSIO=0 

 isolevel=c 

  language=asm 

 plnclose=t 

 PRTY=7 

 sqlmode=ansi 

 TIMEMIN=0 

 msgprec=d 

 /* 

Note:  The option specification language=asm is a comment because it is indented.  Also 
note that case is not important. 

 

Using the Execution Parameters Method in PL/I, C, and Assembler 

Options specified as execution parameters are separated by commas for z/OS and 
blanks for z/VSE. This option specification method is useful for options that are unique 
to a particular program such as the plan name and authorization ID. These options can 
be specified when executing a procedure by using symbolic substitution. 

 

Example 1 z/OS for PL/I, C, and Assembler 

 PARM='PLANNAME=ABCSQL,AUTHID=ADMIN' 
 

Example 2 z/OS for PL/I, C, and Assembler 

 PARM='PLANNAME=&PGMNM.,AUTHID=&OWNER'. 

Note:  The symbolic substitution for the plan name can also be used to access the 
correct source member. 

 

Example 3 z/VSE for PL/I, C, and Assembler 

 PARM='SMPR=ABC.P ITYP=I' 
 



Using Preprocessor Options 

 

214  SQL User Guide 
 

Using the Source Method in PL/I, C, and Assembler 

Option specifications in the source can appear on any record but should not be 
combined with actual code, because the option specification is commented. 

The marker $DBSQLOPT is used by the Preprocessor to recognize option specifications. 
In Assembler and C, start $DBSQLOPT in column 1. In PL/I, however, start $DBSQLOPT in 
column 2. In PL/I, C, or Assembler, the $DBSQLOPT marker must be followed by at least 
one blank before the option specifications begin.  The marker may be followed by: 

■ In PL/I and C, one or more specifications separated by commas and terminated with 
a semicolon. 

■ In Assembler, one or more specifications separated by commas. 

Options of the plan must be specified prior to the first SQL statement in the source 
because the plan is added at that point. 

 

Example 1 for PL/I and C 
 $DBSQLOPT authid=sysadm, 

           planname=xyzk 

           ; 
 

Example 1 for Assembler 
 $DBSQLOPT authid=sysadm,                                              X 

           planname=xyzk                                               X 
 

Example 2 for PL/I and C 

 $DBSQLOPT authid=sysadm, planname=xyzk ; 
 

Example 2 for Assembler 

 $DBSQLOPT authid=sysadm, planname=xyzk 
 

Example 3 for PL/I and C 

 $DBSQLOPT authid=sysadm,planname=xyzk; 
 

Example 3 for Assembler 

 $DBSQLOPT authid=sysadm,planname=xyzk 
 

Options You Can Specify 

This table shows the options you can specify in each language so that the Preprocessor 
builds a plan for your program. 

 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  215  
 

Valid Options per Language 

 

COBOL PL/I C Assembler 

APOST=    

AUTHID= AUTHID= AUTHID= AUTHID= 

CBSIO= CBSIO= CBSIO= CBSIO= 

CHECKPLAN= CHECKPLAN= CHECKPLAN= CHECKPLAN= 

CHECKWHEN= CHECKWHEN= CHECKWHEN= CHECKWHEN= 

CHECKWHO= CHECKWHO= CHECKWHO= CHECKWHO= 

COBMODE=    

DATE= DATE= DATE= DATE= 

DECPOINT= DECPOINT= 
DECPT= 

DECPOINT= 
DECPT= 

 

GENSECTN=    

 GENSTOR=  GENSTOR= 

 GENINIT=  GENINIT= 

   INLINE= 

ISOLEVEL= ISOLEVEL= ISOLEVEL= ISOLEVEL= 

ITYP= ITYP= ITYP= ITYP= 

 LANGUAGE= 
LANG= 

LANGUAGE= 
LANG= 

LANGUAGE= 
LANG= 

 MARGINS=  MARGINS= 

MSG=    

 MSGEXEC= MSGEXEC= MSGEXEC= 

 MSGPREC= MSGPREC= MSGPREC= 

OPT= OPT= OPT= OPT= 

PAGESZE= PAGESZE= PAGESZE= PAGESZE= 

PGMNAME=    

PLANAME= PLANAME= 
PLANNAME= 

PLANAME= 
PLANNAME= 

PLANAME= 
PLANNAME= 

PLNCLOSE= PLNCLOSE= PLNCLOSE= PLNCLOSE= 

PRTREXIT= PRTREXIT= PRTREXIT= PRTREXIT= 



Using Preprocessor Options 

 

216  SQL User Guide 
 

COBOL PL/I C Assembler 

PRTY= PRTY= PRTY= PRTY= 

QUOTE=    

   REFNTRY= 

SAVEPLANSEC= SAVEPLANSEC= SAVEPLANSEC= SAVEPLANSEC= 

 SMBR= SMBR= SMBR= 

SQLMODE= SQLMODE= SQLMODE= SQLMODE= 

STRDELIM= STRDELIM= 
STRDLM= 
STRINGDELIM= 

STRDELIM= 
STRDLM= 
STRINGDELIM= 

 

TIME= TIME= TIME= TIME= 

TIMEMIN= TIMEMIN= TIMEMIN= TIMEMIN= 

TIMESEC= TIMESEC= TIMESEC= TIMESEC= 

 UCRPT=  UCRPT= 

USRNTRY=   USRNTRY= 

VIEWSEC= VIEWSEC= VIEWSEC= VIEWSEC= 

WORKSPACE= WORKSPACE= WORKSPACE= WORKSPACE= 

Regarding the CHECKPLAN=, CHECKWHEN=, and CHECKWHO= options that are used in 
plan security, following is a chart showing which combinations of those options are 
valid.  Reference this chart when studying their descriptions in Description of Options. 

 

Plan Options Values 

CHECKWHO (B=BINDER, A=ACCESSOR) B B B B A A A A 

CHECKWHEN (B=BIND, E=EXECUTE) B B E E B B E E 

CHECKPLAN (N=NO, Y=YES) N Y N Y N Y N Y 

ALLOWABLE COMBINATION? (Y=YES, 1/2/3 see below) 1 Y 1 2 3 3 Y Y 

Reason Codes 

1. Not allowed because with plan-level security off, anyone could run this plan, and 
the executor's table-level privileges would not be checked. 

2. Not currently supported. 

3.  Not allowed because SQL does not know at bind-time whom the executors are. 
 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  217  
 

Description of Options 

APOST= 

(COBOL only.) Specifies if an apostrophe (') is the delimiting character for character 
string literals generated in the SQL Communication Area (SQLCA) and the SQL Work 
Area (SQLWA). This option is provided for compatibility with COBOL compilers 
which have a similar option. 

This option is mutually exclusive with the QUOTE= option, that is to say, if you 
specify APOST=, do not specify QUOTE= in the Preprocessor options. If neither 
APOST= or QUOTE= is specified, the Preprocessor uses the default of APOST=Y. 

Valid Entries: 

Y (for yes) 

Default Value: 

Y for z/OS environment 
 

AUTHID= 

Specifies the program plan associated authorization ID. 

Any SQL objects (tables, views, synonyms) you create in your program are owned by 
this authorization ID unless you specifically qualify those objects with a different 
authorization ID within the program. 

The authorization ID name must be 1 to 18 characters. 

Valid Entries: 

An authorization ID name of from 1 to 18 characters 

Default Value: 

(No default) 
 

CBSIO= 

Specifies an I/O limit interrupt value for all SQL commands that create a set. This 
option allows application environments to establish their own maximums in I/O and 
set processing relative to their own requirements. 

Use this option to limit the computer resources that can be used for each execution 
of the following statements in the plan: 

■ OPEN CURSOR, FETCH CURSOR 

■ SELECT INTO 

■ INSERT, UPDATE, DELETE 

■ CREATE INDEX, DROP INDEX, ALTER TABLE 
 



Using Preprocessor Options 

 

218  SQL User Guide 
 

For cursors, the limit applies to the total resources used to OPEN and FETCH all 
rows of the cursor. 

A counter is incremented each time a different index or data block is accessed, and 
each time 100 rows are read. Execution is terminated, and SQL return code -137 is 
returned when this counter exceeds the limit. 

The value of the counter is reported in the Statistics and Diagnostics Area (PXX) at 
the end of each request to the Multi-User Facility when any SQL traces are in effect. 

 

For cursor, SELECT INTO, INSERT, UPDATE and DELETE, you can use the total 
estimated cost reported in the SYSADM.SYSMSG table when bind time optimization 
messages are requested with the MSG= plan option as a guide for setting the limit. 
For CREATE INDEX, DROP INDEX, and ALTER TABLE, estimate the limit as the 
number of bytes in the table divided by 2000. You must set the limit for the most 
expensive statement in the plan. 

A value of 0 (zero) means no limit. 

Note: Here is how the CBSIO plan option is calculated: to 500,000 is added the 
amount over 500,000 multiplied by 10,000. For example, given a value of 500,100, 
the calculation would be 500,000 + (100 * 10,000) = 500,000 + 1,000,000 = 
1,500,000. 

Valid Entries: 

0—524286 

Default Value: 

0 
 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  219  
 

CHECKPLAN= 

This plan option allows the creator of a plan to specify whether that plan is to be 
secured. 

If CHECKPLAN=Y, any accessor ID which attempts to execute the plan must have the 
PLAN EXECUTE privilege for that plan. 

If CHECKPLAN=N, any accessor ID can execute the plan (table-level privileges, 
however, are still checked). 

Note: For additional information about plan security, see GRANT and REVOKE. Also 
see the information on plan security in the CA Datacom Security Reference Guide. 

See the table of valid combinations of CHECKPLAN=, CHECKWHEN=, and 
CHECKWHO= presented previously. 

Valid Entries: 

Y or N 

Default Value: 

CHECKPLAN=N is the default only if the CHECKPLAN= parameter in the 
PLANSEC Multi-User startup option was not specifed. If the CHECKPLAN= 
parameter in PLANSEC was specified, its value is the default here. See the CA 
Datacom/DB Database and System Administration Guide for more information 
about Multi-User startup options. 

 

CHECKWHEN= 

Specifies whether table-level privileges are to be checked at bind or runtime. 

If CHECKWHEN=BIND, then CHECKWHO=BINDER must be specified (it is impossible 
for SQL to know all potential executors). Similarly, if CHECKWHO=ACCESSOR, then 
CHECKWHEN=EXECUTE must be specified. 

Note: For additional information about plan security, see GRANT and REVOKE. Also 
see the information on plan security in the CA Datacom Security Reference Guide. 

See the table of valid combinations of CHECKPLAN=, CHECKWHEN=, and 
CHECKWHO= presented previously. 

Valid Entries: 

BIND or EXECUTE 

Default Value: 

EXECUTE is the default only if the CHECKWHEN= parameter in the PLANSEC 
Multi-User startup option was not specifed. If CHECKWHEN= in PLANSEC was 
specified, its value is the default here. See the CA Datacom/DB Database and 
System Administration Guide for more information about Multi-User startup 
options. 

 



Using Preprocessor Options 

 

220  SQL User Guide 
 

CHECKWHO= 

Used to specify whether table-level privileges is checked at bind or execute time, 
and whether the access rights of the binder or the executor are checked. If 
CHECKWHO=BINDER, the only privilege needed by an accessor ID to run that plan is 
the PLAN EXECUTE privilege (all table-level privileges required to execute the plan 
are checked using the binder's accessor-ID). Since the CHECKWHO=BINDER type of 
plan allows the binder to effectively grant temporary privileges to accessors who 
use the plan, the ability to create CHECKWHO=BINDER plans must be strictly 
controlled. To create a CHECKWHO=BINDER plan, you must possess the 
CHECKBINDER system privilege. See the information about the granting and 
revoking of the CHECKBINDER system privilege in the CA Datacom Security 
Reference Guide. 

Because it is impossible for SQL to know all potential executors, specify 
CHECKWHO=BINDER if CHECKWHEN=BIND and CHECKWHEN=EXECUTE if 
CHECKWHO=ACCESSOR. 

Note: For additional information about plan security, see GRANT and REVOKE. Also 
see the information on plan security in the CA Datacom Security Reference Guide. 

See the table of valid combinations of CHECKPLAN=, CHECKWHEN=, and 
CHECKWHO= on presented previously. 

Valid Entries: 

ACCESSOR or BINDER 

Default Value: 

ACCESSOR is the default only if the CHECKWHO= parameter in the PLANSEC 
Multi-User startup option was not specified. If the CHECKWHO= parameter in 
PLANSEC was specified, its value is the default here. See the CA Datacom/DB 
Database and System Administration Guide for more information about 
Multi-User startup options. 

 

COBMODE= 

(COBOL only.) Specifies the host language, either OS/VS COBOL or VS/COBOL II. 

COBOL II VS/COBOL II Release 3 or later is supported. The CMP2 option is not 
supported. When using nested programs all SQL statements and any host variables 
they reference must be within the first program, and all programs must have a 
DATA DIVISION, a PROCEDURE DIVISION, and a WORKING STORAGE section. 

Valid Entries: 

OSVS, VSCOB2 

Default Value: 

OSVS 
 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  221  
 

DATE= 

Specifies the DATE output format as follows: 

 

Entry Format Description 

ISO yyyy-mm-dd International Standards Organization 

USA mm/dd/yyyy IBM USA standard 

EUR dd.mm.yyyy IBM European standard 

JIS yyyy-mm-dd Japanese Industrial Standard 

Valid Entries: 

ISO, USA, EUR, JIS 

Default Value: 

The default is the value specified in the Multi-User Facility's DATE startup 
option. 

Note:  ISO is the default of the Multi-User Facility's DATE startup option. 
 

DECPOINT= 

(COBOL, PL/I, and C only.) Specify C if you want a comma (,) to be the decimal point 
indicator in decimal, numeric, and floating-point literals. 

Specify P if you want a period (.) to be the decimal point indicator. 

If the comma is specified as the decimal point indicator, commas which are used as 
separators must be followed by a space, as in COBOL. Also, any comma followed by 
a space is interpreted as a separator, even if the comma is preceded by a numeric 
digit. 

Valid Entries: 

C (for comma) 
P (for period) 

Default Value: 

P 
 



Using Preprocessor Options 

 

222  SQL User Guide 
 

DECPT= 

(PL/I only.) Same as DECPOINT= (see above). 

GENSECTN= 

(COBOL only.) Specify if you want the Preprocessor to generate COBOL items in the 
WORKING-STORAGE SECTION or LOCAL-STORAGE SECTION of the program. 

If you specify W, the Preprocessor generates the items in the WORKING-STORAGE 
SECTION of the program. 

If you specify O (a letter O, not a zero) for GENSECTN=, data structures (SQLCAs, 
SQLWAs, SQLDAs), used when SQL statements are executed, are generated in a 
LOCAL-STORAGE section. Addresses of host variables are stored into these data 
structures, and VALUE clauses may be used. 

Memory for a LOCAL-STORAGE section is allocated and value clauses are executed 
each time a program is called, as opposed to once per run-unit for 
WORKING-STORAGE sections. LOCAL-STORAGE therefore provides a way to make 
programs re-entrant. 

 

When you use a LOCAL-STORAGE section: 

■ The entire LOCAL-STORAGE SECTION syntax must appear on a single line. 

■ The same rules apply to LOCAL-STORAGE that apply to WORKING-STORAGE, 
with respect to required locations relative to other program sections. CA 
Datacom/DB does not edit with regard to the order of the LOCAL-STORAGE and 
WORKING-STORAGE sections relative to each other, nor does CA Datacom/DB 
edit for the number of WORKING-STORAGE or LOCAL-STORAGE sections. The 
compiler enforces any rules. 

■ If GENSECTN=O, then a LOCAL-STORAGE section must exist, otherwise an error 
is generated. 

 

Valid Entries: 

W (Preprocessor generates COBOL items in the 
   WORKING-STORAGE SECTION) 
O (Preprocessor generates COBOL items in the 
   LOCAL-STORAGE SECTION) 

Default Value: 

W 
 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  223  
 

GENSTOR= 

(PL/I and Assembler only.) Causes the necessary storage for SQL to be generated. 
GENSTOR= is valid only when specified in the source (the $DBSQLOPT statement). 

Valid Entries: 

TOP specifies the top of the source. 
BOT specifies the end of the source. 
HERE specifies after this point in the source. 

Default Value: 

If not specified, generated storage is placed before the last END statement. 
 

GENINIT= 

(PL/I and Assembler only.) Causes the initialization code to be generated after a 
specified point in the source. GENINIT= is valid only when specified in the source 
(the $DBSQLOPT statement). 

Valid Entries: 

TOP specifies the top of the source. 
BOT specifies the end of the source. 
HERE specifies after this point in the source. 

Default Value: 

If not specified, generated is placed before the last END statement. 
 

INLINE= 

(For Assembler) Specifies the generation of control structures. That is, SQL Work 
Areas (SQLWAs) that are to be used in conjunction with SQL statements. 

With INLINE=N, one set of SQLWAs is generated for each SQL statement. But with 
INLINE=Y, the Preprocessor generates one set of SQLWAs to use for all SQL 
statements. INLINE=Y generates more executed code but much less overall code, 
avoiding the addressability problems (that is, not enough base registers) that can 
occur when INLINE=N. 

Note: Because the C Preprocessor uses the inline method exclusively, the C 
Preprocessor does not look at the INLINE= option. For that reason, an error may 
occur if you code the INLINE= option when using the C language. Therefore, when 
using C, the INLINE= option should not be coded. 

Valid Entries: 

Y or N 

Default Value: 

N 
 



Using Preprocessor Options 

 

224  SQL User Guide 
 

ISOLEVEL 

Specifies the isolation level, or the degree to which a unit of recovery in your 
application is isolated from the updating operations of other units of recovery. 

If you specify U (for uncommitted data), no locks are acquired for any rows 
accessed. Your application can access rows that have been updated by another unit 
of recovery, even though those changes may not have been committed. Since no 
locks are acquired, no updates, deletes, or inserts may be done by a unit of 
recovery operating in the U isolation level. 

If you specify C (for cursor stability), locks are acquired for all rows accessed. Your 
application therefore only accesses rows that contain committed data. For 
updateable cursors (those that have associated UPDATE WHERE CURRENT OF or 
DELETE WHERE CURRENT OF statements), exclusive locks are acquired. For 
read-only cursors, share locks are acquired.  When a row is fetched, the lock on the 
previous row of the cursor is released unless the row was modified. All locks are 
released when the unit of recovery ends, at which time changes are either 
committed (COMMIT WORK) or rolled back (ROLLBACK WORK). 

 

In C isolation level, the current row of a cursor may or may not be locked while your 
application is accessing it, depending on whether the cursor is updateable. For 
updateable cursors, the current row of the cursor is always locked with an exclusive 
lock when your application fetches it. For read-only cursors, the SQL Facility may 
read ahead and transfer multiple rows from the Multi-User Facility to your 
application's region. In this case, the current row of the cursor could possibly no 
longer be locked when your application fetches it. If your application requires the 
current row of a cursor to be locked, it must use an updateable cursor to fetch the 
row. 

If you specify R for repeatable read, data once seen by a transaction cannot be 
changed by another task while the first is still active. Also, other records cannot be 
added or updated if it would cause them to participate in the set of records seen by 
the first transaction. 

 

If SQL receives a blank or zero in the ISOLEVEL= specification from any of the SQL 
access methods, the default for the appropriate SQLMODE is automatically set. If an 
invalid ISOLEVEL= relative to the effective (that is, specified or defaulted) SQLMODE 
is explicitly set (nonblank and nonzero), an appropriate SQLCODE and error 
message is produced. 

Note: If you specify ANSI or FIPS for the SQLMODE= option, you must also specify 
ISOLEVEL=C. For more information, see SQLMODE= later in this chapter. 

To acquire exclusive control of a table, see LOCK TABLE (see page 751). Also see SQL 
Plan Options Special Topics (see page 270). 

 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  225  
 

Valid Entries: 

U (No locks are acquired, no changes are allowed) 
C (Locks are acquired, changes are allowed) 
R (Locks are acquired, restricted changes are allowed) 

Default Value: 

C (For ANSI and FIPS SQLMODEs) 
U (For all other SQLMODEs) 

Note: The both parameter of the SQLOPTION Multi-User startup option controls 
whether you are allowed to mix the use of isolation level U and C plans under a 
single logical unit of work (LUW) for those LUWs not running any SQLMODE ANSI or 
FIPS plans. YES specified for the both option of SQLOPTION indicates that mixing is 
allowed. 

 

ITYP= 

(z/VSE only) Specifies an optional file type for SQL INCLUDE files in z/VSE. The type 
is one letter. 

Note: In COBOL, the ITYP= specification can be overridden by explicitly coding a file 
type on the INCLUDE statement. 

Valid Entries: 

Any letter (including, although not recommended, the standard default letters 
listed below) 

Default Value: 

C for COBOL, P for PL/I and Assembler, H for the C language 
 

LANGUAGE= or LANG= 

(PL/I, C, and Assembler only.) Specifies the source language to be processed. This 
option overrides the initial values for MARGINS= established at initialization. 

Note: Specifying MARGINS= is not allowed if you are using the C language. 

Valid Entries: 

PLI for PL/I 
C for the C language 
ASM or ASSEMBLER for Assembler 

Default Value: 

PLI for PL/I 
No default for the C language 
No default for Assembler 

 



Using Preprocessor Options 

 

226  SQL User Guide 
 

MARGINS= 

(PL/I and Assembler only.) Specifies the valid columns of the source record 
inclusively. 

Do not specify MARGINS= in the $DBSQLOPT statement (source code). Specify 
MARGINS= in the OPTIONS file or in the PARM= text on the EXEC statement of the 
JCL. 

In PL/I you can specify (start, end) or (left, right). For example: (s) or (s,e) or (,e). In 
Assembler, you can specify (start, end, continue) or (left, right, continue). For 
example:  (s) or (s,e) or (,e) or (s,e,c). 

Values are merged with defaults, that is to say, if only one value is specified, the 
default is assigned to the nonspecified value. 

An example in PL/I: if (,71) is specified after LANGUAGE=, the result is (2,71) 
because 2 is the default for the start value. Or, if (5) is specified, the result is (5,72) 
because 72 is the default for the end value. 

 

An example in Assembler: if (,71) is specified, the result is (1,71) because 1 is the 
default for the start value. Or, if (5) is specified, the result is (5,71) because 71 is the 
default for the end value. The continuation field is the next column after the end 
(right) margin. 

Valid Entries: 

1—30, s < e, and width >= 70 

Default Value: 

PL/I defaults are: 
1 (start) 72 (end) if specified before LANGUAGE= 
2 (start) 72 (end) if specified after LANGUAGE= 

Assembler defaults are: 
1 (start) 
71 (end) 
16 (continue) 

 

MSG= 

(COBOL only.) Specifies the level of messages you wish the SQL Optimizer to 
generate. Specify the optimization message in groups of two letters, for example 
MSG=xy, where S and D and N replace the x and y, and where: 

■ x refers to precompile-time messages (these are included at the end of the 
Preprocessor Source Listing), and 

■ y refers to messages generated by the Optimizer when the statement is 
executed (these messages may be retrieved from the SYSMSG table after the 
statement has been executed). 

See SQL Query Optimization Messages for a description of the SYSMSG table. 
 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  227  
 

Note: Messages for a plan are deleted when the plan is deleted. When you 
re-preprocess a program, the Preprocessor deletes the previous plan and therefore 
also its diagnostic messages. 

Valid combinations of S and D and N are given in Valid Entries below, where: 

■ S specifies summary 

■ D specifies detail 

■ N specifies none 
 

Valid Entries: 

SS, DD, SD, DS, NS, ND, DN, SN, NN 

Default Value: 

NN 
 

MSGEXEC= 

(PL/I, C, and Assembler only.) Refers to messages generated by the Optimizer when 
the statement is executed (these messages may be retrieved from the SYSMSG 
table after the statement has been executed). See SQL Query Optimization 
Messages for a description of the SYSMSG table. 

■ S specifies summary 

■ D specifies detail 

■ N specifies none 

Note: Messages for a plan are deleted when the plan is deleted. When you 
re-preprocess a program, the Preprocessor deletes the previous plan and therefore 
also its diagnostic messages. 

Valid Entries: 

S, D, N 

Default Value: 

N 
 



Using Preprocessor Options 

 

228  SQL User Guide 
 

MSGPREC= 

(PL/I, C, and Assembler only.) Refers to precompile-time messages. These messages 
are included at the end of the Preprocessor Source Listing. 

■ S specifies summary 

■ D specifies detail 

■ N specifies none 

Valid Entries: 

S, D, N 

Default Value: 

N 
 

OPT= 

Specifies the join optimization mode. P specifies normal join optimization. Specify 
M (manual join order) if the normal join optimization is unacceptable and you want 
tables joined as they are listed in the FROM clause. This results in a nested loop 
join. 

Do not specify E; it is reserved for future use. 

Valid Entries: 

P or M 

Default Value: 

P 
 

PAGESZE= 

Specifies the number of output lines per page on SYSPRINT. 

Valid Entries: 

For COBOL:  0—120 

For PL/I, C, and Assembler:  10—255 

Default Value: 

55 
 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  229  
 

PGMNAME= 

This option enables the CA Datacom Datadictionary name of a program to be 
changed without requiring the program source itself to be altered. The program 
name of a procedure must match its external (or load module) name. 

The syntax is as follows: PGMNAME=name 

The name specified must be a CA Datacom Datadictionary entity-occurrence name. 
It overrides any PROGRAM-ID specified in COBOL. If the program is a procedure, 
this name must match both the generated load module name and the EXTERNAL 
NAME specified in the CREATE PROCEDURE statement. 

Valid Entries: 

A valid name as described above 

Default Value: 

(No default) 
 

PLANAME= 

Specifies the name for your plan, a name that should be unique within your 
authorization ID. You can use MIXED strings in a plan name, that is, strings in which 
both Double-Byte Character Set (DBCS) and Single-Byte Character Set (SBCS) 
characters are used. 

The plan name must be 1 to 18 bytes in length. The first character of the plan name 
must be alphabetic (including Katakana symbols) or a Shift-Out character (when you 
are using MIXED strings). Shift-Out and Shift-In characters (used to delimit DBCS 
substrings) count toward the 18-byte length limit. If you specify more than 18 bytes 
for the name, the Preprocessor truncates your entry to the first 18 bytes. 

For more information on MIXED data and MIXED strings, see Character Strings (see 
page 495). 

 

If you specify a name you used previously for a plan, you are, in essence, replacing 
that existing plan with a new plan. For example, you have an existing plan named 
PAYROLL. If you specify PAYROLL as the name of a new plan, this new plan replaces 
the previous plan named PAYROLL. 

If you do not specify a plan name, the Preprocessor uses the PROGRAM-ID specified 
in your program. 

Valid Entries: 

A name 1 to 18 bytes long, first character alphabetic (including Katakana 
symbols) or a Shift-Out character (when you are using MIXED strings) 

Default Value: 

In COBOL and PL/I, there is no default. 
 



Using Preprocessor Options 

 

230  SQL User Guide 
 

Plan Versioning - COBOL Only: 

You can generate plans that include a date/timestamp, YYMMDDHHMM 

■ PLANAME=@TIMESTAMP 

Plan name = program idYYMMDDHHMM 

■ If the program id is less than 8 bytes, fill up to 8 bytes with '_'s 

■ If the program id is greater than 8 bytes, truncate it to 8 and catenate the 
timestamp. You receive warning message DB21013W. 

■ Example for PROGRAM-ID.CDC100 compiled on 2015/04/15 at 11:45 am: 

 CDC100__1504171145 
 

■ PLANAME=value@TIMESTAMP 

Plan name = valueYYMMDDHHMM 

■ If value is less than 8 bytes, fill up to 8 bytes with '_'s 

■ Example for PROGRAM-ID.CDC100 compiled on 2015/04/17 at 2:07 pm, 
but with PLANAME=CDC100A@TIMESTAMP 

 CDC100A_1504171407 

■ Since @TIMESTAMP is 10 bytes,the same as the generated timestamp, the 
value in PLANAME cannot be greater than 8 characters. 

■ Plans are not overwritten unless they are generated within the same 
minute. If so, the last one remains. 

■ In the listing for the COBOL program, the plan name is displayed as 
SQLCA-PLAN-NAME within the SQLCA block of the WORKING-STORAGE 
SECTION. 

■ As part of this process, a flag byte is set to x'02' in the SQL options block. This is 
also stored in the DDD. It can be accessed to find just those plans that have 
been added to the system using the @TIMESTAMP option. For two variations 
of obtaining this information, see Example SQL Statements (see page 135). 

 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  231  
 

PLANNAME= 

(PL/I and Assembler only.) Same as PLANAME= (see previous description). 

PLNCLOSE= 

Specifies when the plan, and any User Requirements Tables automatically opened 
by the SQL Manager, are closed. 

If you specify T, the plan, and any User Requirements Tables automatically opened 
by the SQL Manager, close when the transaction ends, that is to say, an SQL 
COMMIT WORK or ROLLBACK WORK statement, a CA Datacom/DB LOGCP, LOGCR 
or LOGTB command, or a CA Datacom CICS Services DEQUE. 

We recommend the T option for a CICS environment. We also recommend 
PLNCLOSE=T for procedures. We recommend the R option for batch programs. 

If you specify R, the plan, and any User Requirements Tables automatically opened 
by the SQL Manager, close when the run unit ends, or when a CA Datacom/DB 
CLOSE command is issued. In a CA Datacom CICS Services environment, the run unit 
ends only when CICS is terminated or when the SQL User Requirements Table 
(usually URT 20) is closed using the DBOC command.  When ISOLEVEL=U is used, 
because no locks are acquired by the MUF (and therefore no DEQUE commands are 
issued by CA Datacom CICS Services), the plan and User Requirements Tables are 
not closed at the end of each CICS transaction, even if PLNCLOSE=T. A PLNCLOSE=R 
plan can be preprocessed or rebound with DDOL or DBSRFPR before the run unit 
ends if no current unit of recovery has executed the plan. 

 

User Requirements Tables opened on behalf of a plan with PLNCLOSE=R are not 
closed until the plan closes when the SQL=YES User Requirements Table (default 
User Requirements Table 020) is closed. If User Requirements Tables accessing a 
database need to be closed to perform utility functions, you can close those 
SQL-generated User Requirements Tables accessing a database by deleting (if you 
have the delete privilege) those rows in the SQL_STATUS_URT_INACTIVE virtual 
table (this virtual table is a view on the SQL_STATUS_URT table with the restriction 
that only User Requirements Tables for the current run unit with zero users are 
selected). Following is an example query that can be executed from any tool that 
uses SQL, where nnn is the database-ID to be closed.  Any valid WHERE clause can 
be used, including no WHERE clause to close all User Requirements Tables. 

 DELETE FROM SYSADM.SQL_STATUS_URT_INACTIVE 

   WHERE DBID = 'nnn'; 
 



Using Preprocessor Options 

 

232  SQL User Guide 
 

Closing these User Requirements Tables does not keep them from being reopened. 
There can also be other User Requirements Tables that are active, meaning they 
have one or more plans that have accessed the table in their current transaction. In 
addition, other run units can also have User Requirements Tables open for the 
database.  Use the following query to see which User Requirements Tables are open 
for a database: 

  SELECT * FROM SYSADM.SQL_STATUS_URT 

  WHERE DBID = 'nnn'; 

For information about possible performance enhancement using the Least Recently 
Used (LRU) statement cache to disconnect the caching of plan statements from the 
control of the PLNCLOSE= option, see LRU Statement Cache. 

 

Valid Entries: 

T (close when transaction ends) 
R (close when run unit ends) 

Default Value: 

R 
 

PROCSQLUSAGE= 

Is valid for COBOL, PL/I, Assembler, and C. If this option is specified, SQL prepares 
the program for execution as a procedure.  This option is required for programs 
intended to run as procedures. It is prohibited for programs not run as procedures. 

Note:  All procedures must be preprocessed, even if there are no embedded SQL 
statements in a particular procedure. 

Important!  Use PROCSQLUSAGE= only as documented.  If it is specified or omitted 
inappropriately, the program can fail in an unpredictable way before SQL has a 
chance to detect the error. 

To support procedure execution, the preprocessors add code to programs that 
specify PROCSQLUSAGE=, thus making proper use of the option critical.  Therefore, 
make certain you have coded this option accurately. CA Datacom reserves the right 
to add edits at any time. 

Specifying NO means the procedure does not call CA Datacom SQL. 
 

Specifying CONTAINS means that the procedure calls CA Datacom SQL but contains 
no SELECT, SELECT INTO, preparations of dynamic-select, INSERT, UPDATE, or 
DELETE statements. 

Specifying READS means that the procedure contains a SELECT, SELECT INTO, or 
preparation of a dynamic-select statement, but does not contain INSERT, UPDATE, 
or DELETE statements. 

 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  233  
 

Specifying MODIFIES means that the procedure contains at least one INSERT, 
UPDATE, or DELETE statement. 

CA Datacom only checks for the existence of calls to CA Datacom SQL in the 
procedure at the time of the CREATE PROCEDURE statement. (An error is produced, 
however, if NO is specified in a program containing SQL, or vice versa.) CA Datacom 
requires the value specified to match the corresponding specification in the CREATE 
PROCEDURE statement. 

Valid Entries: 

NO, CONTAINS, READS, or MODIFIES 

Default Value: 

(No default) 
 

PRTREXIT=load-module-name 

Specifying PRTREXIT= allows you to write a printer exit routine to print the output 
instead of allowing the Preprocessor to write to SYSPRINT.  The load-module-name 
is the name of your printer exit routine.  When your printer exit routine is called, 
the registers are as follows: 

Register 1 

Address of parameter list as follows: 

 Word 1 = x'00000014' 

 Word 2 = AL1(length of print line) 

          AL3(address of print line) 

 Word 3 = Address of a 1-byte top-of-page indicator: 

          if bit x'20' is on, top-of-page is requested 
 

Register 13 

Address of a register save area which you must use to save and restore the CA 
Datacom/DB registers according to standard linkage conventions. 

Register 14 

Address to return to inside CA Datacom/DB. 

Register 15 

Address of the entry point of your printer exit. 
 



Using Preprocessor Options 

 

234  SQL User Guide 
 

On return from your routine, the contents of all registers (except 15) should contain 
what they contained before the exit was called. Register 15 should contain 0 unless 
a failure occurred.  The Preprocessor aborts processing if a nonzero register 15 is 
returned. 

Remember to concatenate the library containing your printer exit to the end of the 
Preprocessor load library concatenation in your JCL. 

If you do not specify a load-module-name (with PRTREXIT=), processing continues 
to write to SYSPRINT instead of calling the printer exit. 

Valid Entries: 

A load-module-name of up to eight characters 

Default Value: 

(No default) 
 

PRTY= 

Specifies the priority of the SQL requests from the plan within the Multi-User 
Facility.  The lowest priority is 1, while 15 is the highest priority. 

If you need more information about specifying a priority, see your Database 
Administrator. 

Valid Entries: 

1—15 

Default Value: 

7 
 

QUOTE= 

(COBOL only.) Specifies if a quotation mark (") is the delimiting character for 
character literals generated in the SQL Communication Area (SQLCA) and the SQL 
Work Area (SQLWA).  This option is provided for compatibility with COBOL 
compilers which have a similar option. 

This option is mutually exclusive with the APOST= option, that is to say, if you 
specify QUOTE=, do not specify APOST= in the Preprocessor options. 

If neither QUOTE= or APOST= is specified, the Preprocessor uses the default of 
QUOTE=Y for z/VSE environments. 

Valid Entries: 

Y (for yes) 

Default Value: 

Y for z/VSE environments 
 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  235  
 

REFNTRY= 

 (Assembler only.)  See USRNTRY= later in this chapter. 

SAVEPLANSEC= 

Use this option to specify whether to drop or not to drop security privileges granted 
on a PLAN when a program is re-preprocessed. 

SAVEPLANSEC=Y means PLAN privileges are not dropped and therefore do not have 
to be regranted after re-preprocessing a program. 

SAVEPLANSEC=N means PLAN privileges are dropped (revoked). 

Valid Entries: 

Y or N 

Default Value: 

N 
 

SMBR= 

(PL/I, C, and Assembler only.) Specifies the member name and type for the source 
residing in a z/VSE library.  The value specified must be of the form:  name.type (for 
example, SMBR=ABC.P where ABC is the name and P the type). 

If SMBR= is not specified, the source is assumed to be on sequential disk. If you 
specify SMBR=, you must do so either in the execution parameters or the options 
file.  If you specify SMBR= when the source is on a sequential disk file, an open error 
results. 

Valid Entries: 

A valid member name and a type of length 1 

Default Value: 

(No default) 
 

SQLMODE= 

Specifies the mode in which to process the program. If you specify 
SQLMODE=DATACOM, your program is processed in extended mode, which means 
CA Datacom/DB extensions to the standards are allowed in your SQL statements. 
Names for tables, columns, views, synonyms and cursors can be 1 to 32 characters 
in length if SQLMODE=DATACOM. Authorization IDs and plan names must be 1 to 
18 characters in extended mode. 

Specifying SQLMODE=DB2 allows you to use the CA Datacom/DB DB2 compatibility 
mode.  CA Datacom DB2 Transparency is required to use the CA Datacom/DB DB2 
mode. The DB2 compatibility mode allows you to use application programs written 
for IBM DB2. CA Datacom/DB recompiles and executes DB2 application programs 
against CA Datacom/DB tables without your having to change the source code of 
those programs.  Plans created by the CA Datacom DB2 Transparency Bind program 
also execute in DB2 mode. 

 



Using Preprocessor Options 

 

236  SQL User Guide 
 

In COBOL and PL/I you can specify SQLMODE=DB2A86 to use the CA Datacom/DB 
DB2 compatibility mode while conforming to ANSI 86 standards. In COBOL and PL/I, 
specify ANSI or FIPS for your program to be processed in ANSI or FIPS mode, which 
means all your SQL statements must be coded according to ANSI or FIPS standards.  
When ANSI or FIPS mode is specified, the ISOLEVEL=U option is not allowed.  
ISOLEVEL=C must be specified when SQLMODE=ANSI or SQLMODE=FIPS. 
Authorization IDs and plan names must be 1 to 18 characters in ANSI mode.  Names 
for tables, columns, views, synonyms and cursors must be 1 to 18 characters in 
length if SQLMODE=ANSI or SQLMODE=FIPS. 

Note:  The SQLMODE Multi-User Facility startup option must be set to DATACOM 
before this Preprocessor option is effective.  If the SQLMODE Multi-User Facility 
startup option is set to ANSI or FIPS, this Preprocessor option is overridden and all 
SQL statements must comply with ANSI or FIPS standards. See your Database 
Administrator for information on the value assigned to the SQLMODE Multi-User 
Facility startup option. 

 

Valid Entries: 

For COBOL and PL/I: 
DATACOM, DB2, DB2A86, ANSI, FIPS 

For Assembler:  DATACOM, DB2 

Default Value: 

DATACOM 
 

STRDELIM= 

(COBOL, PL/I, and C only.) Specifies whether you want the string delimiter, used to 
delimit character string literals in SQL statements, to be an apostrophe (') or a 
quotation mark ("). 

The escape character, used to enclose delimited SQL identifiers, is the apostrophe if 
the string delimiter is the quotation mark, or the quotation mark if the string 
delimiter is the apostrophe.  See Delimited SQL identifiers for more information on 
delimited SQL identifiers. 

Specify A for apostrophe or Q for quotation mark. 

Valid Entries: 

A, Q 

Default Value: 

A 
 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  237  
 

STRDLM= 

(PL/I only.)  Same as STRDELIM= (see previous description). 

STRINGDELIM= 

(PL/I only.)  Same as STRDELIM= (see previous description). 

TIME= 

Specifies the TIME output format as follows: 

 

Entry Format Description 

ISO hh.mm.ss International Standards organization 

USA hh:mm AM or PM IBM USA standard 

EUR hh.mm.ss IBM European standard 

JIS hh:mm:ss Japanese Industrial Standard 

Valid Entries: 

ISO, USA, EUR, JIS 

Default Value: 

The default is the value specified in the Multi-User Facility's TIME startup 
option. 

Note:  ISO is the default of the Multi-User Facility's TIME startup option. 
 

TIMEMIN= 

Specifies exclusive control wait time limit in minutes. 

This option allows a program to either wait or not wait for an explicit amount of 
time when another job is holding a requested record under exclusive control.  If the 
specified time is exceeded, the application program receives a -117 value in the 
SQLCODE of the SQL Communication Area and a CA Datacom/DB 61 return code to 
inform the user that the record was not available. 

Specifying a zero for both TIMEMIN= and TIMESEC= means that there is no time 
limit, and without a limit on the wait time, a wait forever condition is possible. 

TIMEMIN=0 and TIMESEC=1 means do not wait at all. Do not specify nonzero values 
for both TIMEMIN= and TIMESEC=. 

If you are using CA Datacom STAR for distributed processing, see CA Datacom STAR 
documentation before specifying this option. 

Valid Entries: 

0—120 

Default Value: 

0 
 



Using Preprocessor Options 

 

238  SQL User Guide 
 

TIMESEC= 

Specifies exclusive control wait time limit in seconds. 

This option allows a program to either wait or not wait for an explicit amount of 
time when another job is holding a requested record under exclusive control.  If the 
specified time is exceeded, the application program receives a -117 value in the 
SQLCODE of the SQL Communication Area and a CA Datacom/DB 61 return code to 
inform the user that the record was not available. 

Specifying a zero for both TIMEMIN= and TIMESEC= means that there is no time 
limit, and without a limit on the wait time, a wait forever condition is possible. 

TIMESEC=1 and TIMEMIN=0 means do not wait at all. Do not specify nonzero values 
for both TIMEMIN= and TIMESEC=. 

If you are using CA Datacom STAR for distributed processing, see CA Datacom STAR 
documentation before specifying this option. 

Valid Entries: 

0—120 

Default Value: 

0 
 

UCRPT= 

(PL/I and Assembler only.) Specifies whether report should be uppercase only.  The 
data is not affected. 

Do not specify UCRPT= in the $DBSQLOPT statement (source code).  Specify UCRPT= 
in the OPTIONS file or in the PARM= text on the EXEC statement of the JCL. In PL/I, 
if this is the first option in the execution parameters, the entire report is in 
uppercase. 

In Assembler, if this is the first option in the option file, the report is uppercase, 
except for the initial title lines.  To have everything in uppercase, the option should 
be coded in the execution parameters. 

Valid Entries: 

Y, N 

Default Value: 

N 
 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  239  
 

USRNTRY= 

 (COBOL and Assembler only.) The description of USRNTRY= differs in COBOL and 
Assembler. 

COBOL Description: 

Use USRNTRY= in COBOL to specify the entry point in the COBOL program.  The 
value you assign this option must match the value specified for the USRNTRY= 
parameter of the User Requirements Table. 

The default is DBMSCBL.  If you have changed this in the User Requirements 
Table, you must enter the same entry point name as specified in the User 
Requirements Table. Specify NONE if no entry point is to be generated (used 
when an SQL program is called by another program). 

Valid Entries: DBMSCBL or 

An entry point name consistent with COBOL naming conventions, or 

NONE 

Default Value: DBMSCBL 
 

Assembler Description: 

USRNTRY= works with the REFNTRY= Preprocessor option to cause generation 
of an entry point that allows use of a single User Requirements Table with 
OPEN=DB for many separate programs. USRNTRY= and REFNTRY= are for 
Assembler batch mode only. Following is shown the generation: 

        usrntry-name EQU    refntry-name 

                     ENTRY  usrntry-name 

Use USRNTRY= to specify the name of the generated entry point. USRNTRY= 
may be entered in two ways. If USRNTRY=NONE, no entry point is generated.  If 
any other value is entered, that value is considered a valid name.  This name is 
also the name in the User Requirements Table USRNTRY= operand. If 
USRNTRY= is not specified, then a default name, SQLEXECE, may be used to 
generate the entry point. 

REFNTRY= is the name of a CSECT or ENTRY in the program being processed.  
This name represents the point where the program would get control when 
called. 

 



Using Preprocessor Options 

 

240  SQL User Guide 
 

In DATACOM mode, USRNTRY= and REFNTRY= are not required.  If REFNTRY= is 
coded, the entry point is generated.  If USRNTRY= is not coded when REFNTRY= 
is, the default name is used.  Specifying USRNTRY= without REFNTRY= causes 
an error. 

In DB2 mode, the entry point generation must be specified or explicitly 
suppressed.  To specify generation, REFNTRY= must be coded, but in this case 
USRNTRY= is optional since the default name, SQLEXECE, is taken.  To suppress 
generation, USRNTRY=NONE must be entered. 

Valid Entries: A name of up to 8 characters or NONE for USRNTRY=, or for 
REFNTRY= a name of up to 8 characters 

Default Value: SQLEXECE is the default for USRNTRY=, but for REFNTRY= there 
is no default 

 

VIEWSEC= 

Whether view security is used for a particular plan is based on the value of the 
VIEWSEC= Preprocessor plan option. If VIEWSEC= is not specified, whether a plan 
uses view security is determined by the value of the view-security specification in 
the SQLOPTION Multi-User startup option. If neither VIEWSEC= nor the 
view-security specification in SQLOPTION is used, view security is not used for 
newly bound or rebound plans. 

Specify Y to indicate that view security is to be used during the execution of newly 
prepared and newly rebound plans. 

Specify N to indicate that view security is not to be used during the execution of 
newly prepared and newly rebound plans. 

 

Note:  The default for the VIEWSEC= Preprocessor option is the value of the 
view-security option in the SQLOPTION Multi-User startup option (see the CA 
Datacom/DB Database and System Administration Guide for more information on 
SQLOPTION) or N if no default was specified. 

Also note, the choice of security method is made at prepare-time rather than during 
execution. A choice of Y is rejected if view security has not been activated for the 
Multi-User Facility using external security. See the CA Datacom Security Reference 
Guide for more information. 

Valid Entries: 

Y or N 

Default Value: 

Value of the view-security specification in the SQLOPTION Multi-User startup 
option, which itself defaults to N 

 



Using Preprocessor Options 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  241  
 

Important!  Subsequently rebound plans (rebound explicitly or automatically) that do 
not have an explicit view security specification are caused by the value of the 
SQLOPTION view-security option to change security methods, if necessary, to match the 
specification. Be aware, therefore, that the security method used by existing plans can 
be changed intentionally or inadvertently in this way. 

WORKSPACE= 

Use WORKSPACE= only at the direction of CA Support. 

This option specifies an increase in the amount of workspace used at plan execution 
time. The default is 0 if not specified or an incorrect value is given. 

Valid Entries: 

0 to 128 

Default Value: 

0 
 

COBOL Examples 

The following show how different Preprocessor options can be coded in COBOL. 
 

COBOL Example 1 
Input 

Column 

 ....+....1....+....2....+....3....+....4....+....5....+....6....+....7.. 

 

       *$DBSQLOPT AUTHID=JONES PLANAME=KOLLARC CBSIO=25000 PRTY=7 

       *$DBSQLOPT SQLMODE=ANSI TIMEMIN=10 TIMESEC=0 PLNCLOSE=T PAGESZE=88 

        IDENTIFICATION DIVISION. 

               .         . 

               .         . 

               .         . 
 

COBOL Example 2 
Input 

Column 

 ....+....1....+....2....+....3....+....4....+....5....+....6....+....7.. 

 

       *$DBSQLOPT AUTHID=JONES CBSIO=30000 PRTY=9 SQLMODE=DATACOM 

       *$DBSQLOPT TIMEMIN=10 TIMESEC=0 PLNCLOSE=R ISOLEVEL=C 

        IDENTIFICATION DIVISION. 

               .         . 

               .         . 

               .         . 
 



SQL Communication Area (SQLCA) 

 

242  SQL User Guide 
 

SQL Communication Area (SQLCA) 

The CA Datacom/DB SQL Preprocessor generates one SQLCA for each compiled 
embedded SQL program. The SQLCA is a collection of variables used by CA Datacom/DB 
to provide an application program with information about the execution of its SQL 
statements.  Since CA Datacom/DB updates the SQLCA during the execution of every 
SQL statement, the information in this area applies to the most recently executed SQL 
statement. 

 

SQLCA in COBOL 

With the CA Datacom/DB SQL Preprocessor for COBOL, the possible formats of the 
SQLCA are: 

■ CA Datacom/DB format (see SQLCA - CA Datacom/DB Format (COBOL) (see 
page 244)). For a table containing descriptions of this example, see Description of 
SQLCA in CA Datacom/DB Format (see page 251). 

■ DB2 format (see SQLCA - DB2 Format (COBOL) (see page 256)). For a table 
containing descriptions of this example, see Description of SQLCA in DB2 Format 
(see page 259). 

In COBOL, the Preprocessor always generates the SQLCA structure.  An INCLUDE SQLCA 
is not required.  The Preprocessor ignores the INCLUDE directive if SQLCA is the member 
name.  You may therefore either explicitly code the include of the SQLCA or omit it. 

In DB2 mode, the CA Datacom/DB SQL Communication Area (SQLCA) used is the DB2 
SQLCA, including the values for SQLCODE and SQLERRM. 

 

SQLCA in PL/I 

With the CA Datacom/DB SQL Preprocessor for PL/I the possible formats of the SQLCA 
are: 

■ CA Datacom/DB format for ANSI (see SQLCA - CA Datacom/DB Format (PL/I) (see 
page 246)) and for non-ANSI (see SQLCA - CA Datacom/DB Format (PL/I) (see 
page 246)). For a table containing descriptions of these examples, see Description 
of SQLCA in CA Datacom/DB Format (see page 251). 

■ DB2 format for ANSI (see SQLCA - DB2 Format (PL/I) (see page 256)) and for 
non-ANSI (see DB2 format (non-ANSI) (see page 257)). For a table containing 
descriptions of these examples, see Description of SQLCA in DB2 Format (see 
page 259). 

In DB2 mode in PL/I, the CA Datacom/DB SQL Communication Area (SQLCA) used is the 
DB2 SQLCA, including the values for SQLCODE (for the non-ANSI version) or SQLCADE 
(for the ANSI 86 version), and SQLERRM. 

 



SQL Communication Area (SQLCA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  243  
 

SQLCA in Assembler 

With the CA Datacom/DB SQL preprocessor for Assembler, the possible formats of the 
SQLCA are: 

■ CA Datacom/DB format (see SQLCA - CA Datacom/DB Format (Assembler) (see 
page 248)). For a table containing descriptions of this example, see Description of 
SQLCA in CA Datacom/DB Format (see page 251). 

■ DB2 format (see SQLCA - DB2 Format (Assembler) (see page 258)). For a table 
containing descriptions of this example, see Description of SQLCA in DB2 Format 
(see page 259). 

In DB2 mode in Assembler, the CA Datacom/DB SQL Communication Area (SQLCA) used 
is the DB2 SQLCA, including the values for SQLCODE and SQLERRM. 

In Assembler, the SQLCA can be generated in an area separate from the SQLDSECT by 
entering this line in the source (if this include is not used, the SQLCA is generated in the 
SQLDSECT by default): 

 EXEC SQL INCLUDE SQLCA 
 

SQLCA in C Language 

In the C language there is a single conditional structure for the SQL Communication Area 
(SQLCA). This single structure generates the correct format for DB2 and ANSI based on 
the environment in which it is compiled. See SQLCA - (C Language) (see page 249) for an 
example of the SQLCA in C. 

 

Example SQLCA Formats 

These SQLCA examples follow: 

■ COBOL (CA Datacom) - see SQLCA - CA Datacom/DB Format (COBOL) (see page 244) 

■ PL/I (CA Datacom) - see SQLCA - CA Datacom/DB Format (PL/I) (see page 246) 

■ Assembler (CA Datacom) - see SQLCA - CA Datacom/DB Format (Assembler) (see 
page 248) 

 

■ C (CA Datacom) - see SQLCA - (C Language) (see page 249) 

■ Description (CA Datacom) - see Description of SQLCA in CA Datacom/DB Format 
(see page 251) 

■ COBOL (DB2) - see SQLCA - DB2 Format (COBOL) (see page 256) 
 

■ PL/I (DB2) - see SQLCA - DB2 Format (PL/I) (see page 256) 

■ Assembler (DB2) - see SQLCA - DB2 Format (Assembler) (see page 258) 
 



SQL Communication Area (SQLCA) 

 

244  SQL User Guide 
 

■ C (DB2) - see SQLCA - (C Language) (see page 259) 

■ Description (DB2) - see Description of SQLCA in DB2 Format (see page 259) 
 

SQLCA - CA Datacom/DB Format (COBOL) 
       01  SQLCA. 

           05  SQLCA-EYE-CATCH          PIC X(08). 

           05  SQLCAID REDEFINES SQLCA-EYE-CATCH 

                                        PIC X(08). 

           05  SQLCA-LEN                PIC S9(9) COMP. 

           05  SQLCABC REDEFINES SQLCA-LEN 

                                        PIC S9(9) COMP. 

           05  SQLCA-DB-VRS             PIC X(02). 

           05  SQLCA-DB-RLS             PIC X(02). 

           05  SQLCA-LUWID              PIC X(08). 

           05  SQLCA-SQLCODE            PIC S9(9) COMP. 

           05  SQLCA-ERROR-INFO. 

               10  SQLCA-ERR-LEN        PIC S9(4) COMP. 

               10  SQLCA-ERR-MSG        PIC X(80). 

           05  SQLERRM REDEFINES SQLCA-ERROR-INFO. 

               10  SQLERRML             PIC S9(4) COMP. 

               10  SQLERRMC             PIC X(70). 

               10  SQLERRMF             PIC X(10). 

           05  SQLCA-ERROR-PGM          PIC X(08). 

           05  SQLERRP REDEFINES SQLCA-ERROR-PGM 

                                        PIC X(08). 

           05  SQLCA-FILLER-1           PIC X(02). 

           05  SQLCA-ERROR-DATA. 
 



SQL Communication Area (SQLCA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  245  
 

               10  SQLCA-DSFCODE        PIC X(04). 

               10  SQLCA-INFCODE        PIC S9(9) COMP. 

               10  SQLCA-DBCODE. 

                   15  SQLCA-DBCODE-EXT PIC X(02). 

                   15  SQLCA-DBCODE-INT PIC S9(4) COMP. 

               10  SQLCA-MISC-CODE1     PIC S9(9) COMP. 

               10  SQLCA-MISC-CODES-B. 

                   15  SQLCA-MISC-CODE2 PIC S9(9) COMP. 

                   15  SQLCA-MISC-CODE3 PIC S9(9) COMP. 

               10  SQLCA-ERR-INFO-2 REDEFINES SQLCA-MISC-CODES-B. 

                   15  SQLCA-SQLSTATE   PIC X(05). 

                   15  SQLCA-FILLER-2   PIC X(03). 

           05  SQLCA-WRN-AREA. 

               10  SQLCA-WARNING        PIC X OCCURS 8 TIMES. 

           05  SQLWARN REDEFINES SQLCA-WRN-AREA. 

               10  SQLWARN0             PIC X. 

               10  SQLWARN1             PIC X. 

               10  SQLWARN2             PIC X. 

               10  SQLWARN3             PIC X. 

               10  SQLWARN4             PIC X. 

               10  SQLWARN5             PIC X. 

               10  SQLWARN6             PIC X. 

               10  SQLWARN7             PIC X. 

           05  SQLCA-PGM-NAME           PIC X(08). 

           05  SQLCA-AUTHID             PIC X(18). 

           05  SQLCA-PLAN-NAME          PIC X(18). 

Note:  All REDEFINES are for compatibility with other SQL implementations. 
 



SQL Communication Area (SQLCA) 

 

246  SQL User Guide 
 

SQLCA - CA Datacom/DB Format (PL/I) 
 DCL 1 SQLCA, 

       5 SQLCA_EYE_CATCH     CHAR(8) INIT('SQLCA***'), 

       5 SQLCA_LEN           FIXED BINARY(31) INIT(196), 

       5 SQLCA_DB_VRS        CHAR(2) INIT('08'), 

       5 SQLCA_DB_RLS        CHAR(2) INIT('10'), 

       5 SQLCA_LUWID         CHAR(8) INIT(' '), 

       5 SQLCA_CODE          FIXED BINARY(31), 

       5 SQLCA_ERR_LEN       FIXED BINARY(15), 

       5 SQLCA_ERR_MSG       CHAR(80) INIT(' '), 

       5 SQLCA_ERROR_PGM     CHAR(8) INIT(' '), 

       5 SQLCA_FILLER_1      CHAR(2) INIT(' '), 

       5 SQLCA_DSFCODE       CHAR(4) INIT(' '), 

       5 SQLCA_INFCODE       FIXED BINARY(31), 

       5 SQLCA_DBCODE_EXT    CHAR(2) INIT('  '), 

       5 SQLCA_DBCODE_INT    FIXED BINARY(15), 

       5 SQLCA_MISC_CODE1    FIXED BINARY(31), 

       5 SQLCA_MISC_CODE2    FIXED BINARY(31), 

       5 SQLCA_MISC_CODE3    FIXED BINARY(31), 

       5 SQLCA_WRN_AREA, 

         10 SQLCA_WARNING (0:7) CHAR(1) INIT(' '), 

       5 SQLCA_PGM_NAME      CHAR(8) INIT(' '), 

       5 SQLCA_AUTHID        CHAR(18) INIT('authid here      '), 

       5 SQLCA_PLAN_NAME     CHAR(18) INIT('plan name here    '); 
 

 DCL SQLCAID                 CHAR(8) 

                                 DEFINED SQLCA_EYE_CATCH; 

 DCL SQLCABC                 FIXED BINARY(31) 

                                 DEFINED SQLCA_LEN; 

 DCL SQLERRML                FIXED BINARY(15) 

                                 DEFINED SQLCA_ERR_LEN; 

 DCL SQLERRMC                CHAR(80) 

                                 DEFINED SQLCA_ERR_MSG; 

 DCL SQLERRP                 CHAR(8) 

                                 DEFINED SQLCA_ERROR_PGM; 

 DCL 1 SQLWARN               DEFINED SQLCA_WRN_AREA, 

       5 SQLWARN0            CHAR(1), 

       5 SQLWARN1            CHAR(1), 

       5 SQLWARN2            CHAR(1), 

       5 SQLWARN3            CHAR(1), 

       5 SQLWARN4            CHAR(1), 

       5 SQLWARN5            CHAR(1), 

       5 SQLWARN6            CHAR(1), 

       5 SQLWARN7            CHAR(1); 
 



SQL Communication Area (SQLCA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  247  
 

 DCL 1 SQLCA_WARN            DEFINED SQLCA_WRN_AREA, 

       5 SQLCA_WARN0         CHAR(1), 

       5 SQLCA_WARN1         CHAR(1), 

       5 SQLCA_WARN2         CHAR(1), 

       5 SQLCA_WARN3         CHAR(1), 

       5 SQLCA_WARN4         CHAR(1), 

       5 SQLCA_WARN5         CHAR(1), 

       5 SQLCA_WARN6         CHAR(1), 

       5 SQLCA_WARN7         CHAR(1); 
 

Note:  All REDEFINES are for compatibility with other implementations of SQL. 

 DCL 1 SQLCA, 

       5 SQLCA_EYE_CATCH     CHAR(8) INIT('SQLCA***'), 

       5 SQLCA_LEN FIXED     BINARY(31) INIT(196), 

       5 SQLCA_DB_VRS        CHAR(2) INIT('08'), 

       5 SQLCA_DB_RLS        CHAR(2) INIT('10'), 

       5 SQLCA_LUWID         CHAR(8) INIT(' '), 

       5 SQLCODE             FIXED BINARY(31), 

       5 SQLCA_ERR_LEN       FIXED BINARY(15), 

       5 SQLCA_ERR_MSG       CHAR(80) INIT(' '), 

       5 SQLCA_ERROR_PGM     CHAR(8) INIT(' '), 

       5 SQLCA_FILLER_1      CHAR(2) INIT(' '), 

       5 SQLCA_DSFCODE       CHAR(4) INIT(' '), 

       5 SQLCA_INFCODE       FIXED BINARY(31), 

       5 SQLCA_DBCODE_EXT    CHAR(2) INIT('  '), 

       5 SQLCA_DBCODE_INT    FIXED BINARY(15), 

       5 SQLCA_MISC_CODE1    FIXED BINARY(31), 

       5 SQLCA_MISC_DATA     CHAR(8), 

       5 SQLCA_WRN_AREA, 

         10 SQLCA_WARNING (0:7) CHAR(1) INIT(' '), 

       5 SQLCA_PGM_NAME      CHAR(8) INIT(' '), 

       5 SQLCA_AUTHID        CHAR(18) INIT('authid here      '), 

       5 SQLCA_PLAN_NAME     CHAR(18) INIT('plan name here    '); 
 



SQL Communication Area (SQLCA) 

 

248  SQL User Guide 
 

 DCL SQLCAID                 CHAR(8)          DEF SQLCA_EYE_CATCH; 

 DCL SQLCABC                 FIXED BINARY(31) DEF SQLCA_LEN; 

 DCL SQLERRML                FIXED BINARY(15) DEF SQLCA_ERR_LEN; 

 DCL SQLERRMC                CHAR(80)         DEF SQLCA_ERR_MSG; 

 DCL SQLERRP                 CHAR(8)          DEF SQLCA_ERROR_PGM; 

 DCL SQLCA_SQLSTATE          CHAR(5)          DEF SQLCA_MISC_DATA, 

     SQLSTATE                CHAR(5)          DEF SQLCA_MISC_DATA; 

 DCL 1 SQLWARN               DEFINED SQLCA_WRN_AREA, 

       5 SQLWARN0            CHAR(1), 

       5 SQLWARN1            CHAR(1), 

       5 SQLWARN2            CHAR(1), 

       5 SQLWARN3            CHAR(1), 

       5 SQLWARN4            CHAR(1), 

       5 SQLWARN5            CHAR(1), 

       5 SQLWARN6            CHAR(1), 

       5 SQLWARN7            CHAR(1); 

 DCL 1 SQLCA_WARN            DEFINED SQLCA_WRN_AREA, 
 

       5 SQLCA_WARN0         CHAR(1), 

       5 SQLCA_WARN1         CHAR(1), 

       5 SQLCA_WARN2         CHAR(1), 

       5 SQLCA_WARN3         CHAR(1), 

       5 SQLCA_WARN4         CHAR(1), 

       5 SQLCA_WARN5         CHAR(1), 

       5 SQLCA_WARN6         CHAR(1), 

       5 SQLCA_WARN7         CHAR(1); 

Note:  All REDEFINES are for compatibility with other implementations of SQL. 
 

SQLCA - CA Datacom/DB Format (Assembler) 
     SQLCA    DSECT 

     SQLCAEYE DS    CL8    .EYE CATCHER 

     SQLCALEN DS    F      .BLOCK LENGTH 

     SQLCADBV DS    CL2    .DB VERSION 

     SQLCADBR DS    CL2    .DB RELEASE 

     SQLCALUW DS    CL8    .LUW ID 

     SQLCODE  DS    F      .SQL RETURN CODE 

     SQLCAERI DS    0CL82  .ERROR TEXT 

     SQLCAELN DS    H      .  LENGTH 

     SQLCAEMS DS    CL80   .  MESSAGE 

     SQLCAEPG DS    CL8    .  PROGRAM 

     SQLCAFL1 DS    CL2    .UNUSED 

     SQLCAEDT DS    0CL22  .ERROR DATA 

     SQLCADSF DS    CL4    . DSF EXTERNAL CODE 

     SQLCAINF DS    F      . RESERVED 

     SQLCADBC DS    0CL6   . DB CODES 
 



SQL Communication Area (SQLCA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  249  
 

     SQLCADBX DS    CL2    .   EXTERNAL 

     SQLCADBI DS    H      .   INTERNAL 

     SQLCAMC1 DS    F      .ROWS AFFECTED 

     SQLSTATE DS    0CL5   .SQLSTATE 

     SQLCAMC2 DS    F      .RESERVED 

     SQLCAMC3 DS    F      .RESERVED 

     SQLCAWRN DS    0CL8   .WARNINGS 

     SQLCAWN0 DS    CL1    .  SQLCA WARNING 

     SQLCAWN1 DS    CL1    .  RESERVED 

     SQLCAWN2 DS    CL1    .  RESERVED 

     SQLCAWN3 DS    CL1    .  UNEQUAL VARS 

     SQLCAWN4 DS    CL1    .  RESERVED 

     SQLCAWN5 DS    CL1    .  DATE/TIMESTAMP ADJUSTMENT 

     SQLCAWN6 DS    CL1    .  RESERVED 

     SQLCAWN7 DS    CL1    .  RESERVED 

     SQLCAPGM DS    CL8    .UNUSED 

     SQLCAATH DS    CL18   .AUTH ID 

     SQLCAPLN DS    CL18   .PLAN NAME 

     SQLCADLN EQU   *-SQLCA 

Note:  All REDEFINES are for compatibility with other implementations of SQL. 
 

SQLCA - (C Language) 

Here is an example of the SQLCA in the C language. 

 struct sqlca { 

                          char  sqlca_eye_catch [8]; 

               #define sqlcaid  sqlca_eye_catch 

                          int   sqlca_len; 

               #define sqlcabc  sqlca_len 

 

               #ifndef DB2 

                          char  sqlca_db_vrs    [2]; 

                          char  sqlca_db_rls    [2]; 

                          char  sqlca_luwid     [8]; 

               #endif 

 

                          int   sqlca_code; 

               #define sqlcode  sqlca_code 

               #define sqlcade  sqlca_code 

 

               #ifndef DB2 

                          short sqlca_err_len; 

               #define sqlerrml sqlca_err_len 

               #endif 

 

                          char  sqlca_err_msg SQLCA_MSG_LEN&hyphen. ; 
 



SQL Communication Area (SQLCA) 

 

250  SQL User Guide 
 

               #define sqlerrmc sqlca_err_msg 

               #define sqlerrm  sqlca_err_msg 

                          char  sqlca_error_pgm  [8]; 

               #define sqlerrp  sqlca_error_pgm 

 

               #ifdef DB2 

                          int   sqlerrd 6&hyphen. ; 

               #else 

                          char  sqlca_filler_1   [2]; 

                          char  sqlca_dsfcode    [4]; 

                          int   sqlca_infcode; 

                          char  sqlca_dbcode_ext [2]; 

                          short sqlca_dbcode_int; 

                          int   sqlca_misc_code1; 

                          char  sqlca_sqlstate   [5]; 

               #define sqlstate sqlca_sqlstate 

                          char  sqlca_filler_2   [3]; 

               #endif 

                          char     sqlca_wrn_area SQLCA_WARN_LEN&hyphen. ; 
 

               #define sqlca_warn0 sqlca_wrn_area[0] 

               #define sqlca_warn1 sqlca_wrn_area[1] 

               #define sqlca_warn2 sqlca_wrn_area[2] 

               #define sqlca_warn3 sqlca_wrn_area[3] 

               #define sqlca_warn4 sqlca_wrn_area[4] 

               #define sqlca_warn5 sqlca_wrn_area[5] 

               #define sqlca_warn6 sqlca_wrn_area[6] 

               #define sqlca_warn7 sqlca_wrn_area[7] 

               #define sqlwarn0    sqlca_wrn_area[0] 

               #define sqlwarn1    sqlca_wrn_area[1] 

               #define sqlwarn2    sqlca_wrn_area[2] 

               #define sqlwarn3    sqlca_wrn_area[3] 

               #define sqlwarn4    sqlca_wrn_area[4] 

               #define sqlwarn5    sqlca_wrn_area[5] 

               #define sqlwarn6    sqlca_wrn_area[6] 

               #define sqlwarn7    sqlca_wrn_area[7] 

 
 



SQL Communication Area (SQLCA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  251  
 

               #ifdef DB2 

                          char     sqlext        [5]; 

              } 

      sqlca = {"SQLCA   ",136,0,"                            ", 

               "        ",0,0,0,0,0,0,"           ",0,0,0,0,0 

              }; 

               #else 

                          char     sqlca_pgm_name  [8]; 

                          char     sqlca_authid    [18] 

                          char     sqlca_plan_name [18]; 

              } 

      sqlca = {"SQLCA***",196,"10", "0 ","        ",0,0, 

               "                           ","        ","  ", "    ",0,"  ", 0, 

               ' ', ' ', ' ',"        ","        ","CA AuthID","<pgmname>" 

              }; 

               #endif 
 

Description of SQLCA in CA Datacom/DB Format 

Description of SQLCA in CA Datacom/DB Format: 

 

Languages and Field Names Descriptions 

COBOL: SQLCA-EYE-CATCH 
PL/I: SQLCA_EYE_CATCH 
Assembler: SQLCAEYE 
C: sqlca_eye_catch 

A core mark to help find the SQLCA in diagnostic situations 
(containing 'SQLCA***' in COBOL). 

COBOL: SQLCA-LEN 
PL/I: SQLCA_LEN 
Assembler: SQLCALEN 
C: sqlca_len 

The length of the SQLCA (196 in COBOL). 

COBOL: SQLCA-DB-VRS 
PL/I: SQLCA_DB_VRS 
Assembler: SQLCADBV 
C: sqlca_db_vrs 

The CA Datacom/DB version. 

COBOL: SQLCA-DB-RLS 
PL/I: SQLCA_DB_RLS 
Assembler: SQLCADBR 
C: sqlca_db_rls 

The CA Datacom/DB release. 

COBOL: SQLCA-LUWID 
PL/I: SQLCA_LUWID 
Assembler: SQLCALUW 
C: sqlca_luwid 

Reserved. 



SQL Communication Area (SQLCA) 

 

252  SQL User Guide 
 

Languages and Field Names Descriptions 

COBOL: SQLCODE 
PL/I: SQLCA_CODE (ANSI) 
PL/I: SQLCODE (non-ANSI) 
Assembler: SQLCODE 
C: sqlca_code or sqlcode or sqlcade 

Value returned from an SQL call. 

If an exception declaration (WHENEVER statement) is not 
provided, the recommended practice is that your program 
include code to check the returned value immediately after 
each executable SQL statement. 

COBOL: SQLCA-ERROR-INFO 
PL/I: SQLCA_ERROR_INFO 
Assembler: SQLCAERI 
C: N/A (See following error fields for C.) 

The error information area. 

COBOL: SQLCA-ERROR-LEN 
PL/I: SQLCA_ERROR_LEN 
Assembler: SQLCAELN 
C: sqlca_err_len 

The length of the error return string. 

COBOL: SQLCA-ERROR-MSG 
PL/I: SQLCA_ERROR_MSG 
Assembler: SQLCAEMS 
C: sqlca_err_msg 

A brief description of the error. 

COBOL: SQLCA-ERROR-PGM 
PL/I: SQLCA_ERROR_PGM 
Assembler: SQLCAEPG 
C: sqlca_err_pgm 

Contains the name of the CA Datacom/DB module which 
reported the error. 

COBOL: SQLCA-FILLER-1 
PL/I: SQLCA_FILLER_1 
Assembler: SQLCAFL1 
C: sqlca_filler_1 

In PL/I and Assembler, this is a place holder. 

COBOL: SQLCA-ERROR-DATA 
PL/I: SQLCA_ERROR_DATA 
Assembler: SQLCAEDT 
C: N/A (See following code fields for C.) 

Provides diagnostic information. 

COBOL: SQLCA-DSFCODE 
PL/I: SQLCA_DSFCODE 
Assembler: SQLCADSF 
C: sqlca_dsfcode 

The return code from the CA Datacom Datadictionary Service 
Facility. 

COBOL: SQLCA-INFCODE 
PL/I: SQLCA_INFCODE 
Assembler: SQLCAINF 
C: sqlca_infcode 

Reserved for future use. 

COBOL: SQLCA-DBCODE 
PL/I: SQLCA_DBCODE 
Assembler: SQLCADBC 
C: sqlca_dbcode 

Contains additional return codes from CA Datacom/DB for 
some error conditions, to aid in diagnosing errors. 



SQL Communication Area (SQLCA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  253  
 

Languages and Field Names Descriptions 

COBOL: SQLCA-DBCODE-EXT 
PL/I: SQLCA_DBCODE_EXT 
Assembler: SQLCADBEX 
C: sqlca_dbcode_ext 

The CA Datacom/DB external return code. 

COBOL: SQLCA-DBCODE-INT 
PL/I: SQLCA_DBCODE_INT 
Assembler: SQLCADBI 
C: sqlca_dbcode_int 

The CA Datacom/DB internal return code. 

COBOL: SQLCA-MISC-DATA 
PL/I: SQLCA_MISC_DATA 
Assembler: SQLCAMC1 
C: sqlca_misc_code1 

Number of rows affected by an UPDATE, INSERT or DELETE 
statement. 

COBOL: SQLCA-MISC-CODE2 
COBOL: SQLCA-MISC-CODE3 
PL/I: SQLCA_MISC_CODE2 
PL/I: SQLCA_MISC_CODE3 

redefined (following) to SQLSTATE field. 

COBOL: SQLSTATE 
PL/I: SQLSTATE 
Assembler: SQLSTATE 
C: sqlca_sqlstate or sqlstate 

The field in which the ANSI-compatible SQLSTATE return code 
is supplied. 

Assembler: SQLCAMC2 
Assembler: SQLCAMC3 
C: sqlca_filler_2 
C: sqlca_misc_code2 

Reserved. 

COBOL: SQLCA-WARNING 
PL/I: SQLCA_WARNING 
Assembler: SQLCAWRN 
C: sqlca_wrn_area 

An array of eight characters which provides warning return 
codes (a W indicates that a warning has been returned). For 
tables that explain the significance of the return code for each 
element in the array, see: 

■ Warning Array - COBOL (see page 254) (for COBOL) 

■ Warning Arrays - PL/I, Assembler, C (see page 255) (for 
PL/I, Assembler, and C). 

COBOL: SQLCA-PGM-NAME 
PL/I: SQLCA_PGM_NAME 
Assembler: SQLCAPGM 
C: sqlca_pgm_name 

Contains the program identification assigned in the 
PROGRAM-ID statement. 

COBOL: SQLCA-AUTHID 
PL/I: SQLCA_AUTHID 
Assembler: SQLCAATH 
C: sqlca_authid 

Contains the authorization ID specified in the Preprocessor 
AUTHID= option. 



SQL Communication Area (SQLCA) 

 

254  SQL User Guide 
 

Languages and Field Names Descriptions 

COBOL: SQLCA-PLAN-NAME 
PL/I: SQLCA_PLAN_NAME 
Assembler: SQLCAPLN 
C: sqlca_plan_name 

Contains the name of the plan specified in the Preprocessor 
PLANAME= (or PLANNAME= in PL/I) option. (In COBOL, if the 
option is not specified, the default is the PROGRAM-ID.) 

Assembler: SQLCADLN The length of the SQLCA. 

Warning Array - COBOL 

Warning Return Code Array—COBOL: 

 

Array Element Explanation 

SQLCA-WARNING(1) After executing a DBSQLE command this field 
contains a W if any warning condition has been 
detected.  Check the other warning flags for the 
specific warning. Otherwise contains spaces, that 
is, x'40'. 

SQLCA-WARNING(2) Contains W if the value of a string column was 
truncated when assigned to a host-variable. 
Otherwise contains spaces, that is, x'40'. 

SQLCA-WARNING(3) Contains W if null values were eliminated from 
the argument of a column function; not 
necessarily set to W for the MIN function 
because its results are not dependent on the 
elimination of null values. Otherwise contains 
spaces, that is, x'40'. 

SQLCA-WARNING(4) Contains a W if the number of host-variables in 
the INTO clause of a FETCH or SELECT INTO 
statement is not equal to the number of items in 
the SELECT list.  The actual number of columns 
returned is the smaller of the two numbers. 
Otherwise contains spaces, that is, x'40'. 

SQLCA-WARNING(5) Contains W if a prepared UPDATE or DELETE 
statement does not include a WHERE clause. 
Otherwise contains spaces, that is, x'40'. 

SQLCA-WARNING(6) Reserved for future use. 

SQLCA-WARNING(7) Contains a W if an adjustment was made to a 
DATE or TIMESTAMP value to correct an invalid 
date resulting from an arithmetic operation. 
Otherwise contains spaces, that is, x'40'. 

SQLCA-WARNING(8) Contains a W if it was generated by a procedure. 



SQL Communication Area (SQLCA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  255  
 

Note:  In CA Datacom/DB Release 8.0, SQLCA-WARNING(6) was the DATE/TIME 
adjustment warning, but with later versions that warning is in SQLCA-WARNING(7). 
Application programs written for use with Release 8.0 may therefore have to be 
adjusted accordingly for use with later versions. 

 

Warning Arrays - PL/I, Assembler, C 

Warning Return Code Array— PL/I, Assembler, C: 

 

Language and Array Element Explanation 

PL/I: SQLCA_WARNING0 
Assembler: SQLCAWN0 
C: sqlwarn0 

Set to W if any of SQLCA-WARNING (2)—(8) is set 
to W. 

PL/I: SQLCA_WARNING1 
Assembler: SQLCAWN1 
C: sqlwarn1 

Reserved for future use. 

PL/I: SQLCA_WARNING2 
Assembler: SQLCAWN2 
C: sqlwarn2 

Reserved for future use. 

PL/I: SQLCA_WARNING3 
Assembler: SQLCAWN3 
C: sqlwarn3 

Set to W if the number of items in the SELECT list 
is not equal to the number of variables in the 
INTO clause.  The number of items returned is 
the lesser of these two numbers. 

PL/I: SQLCA_WARNING4 
Assembler: SQLCAWN4 
C: sqlwarn4 

Reserved for future use. 

PL/I: SQLCA_WARNING5 
Assembler: SQLCAWN5 
C: sqlwarn5 

Set to W if an adjustment was made to a DATE or 
TIMESTAMP value to correct an invalid date 
resulting from an arithmetic operation. 

PL/I: SQLCA_WARNING6 
Assembler: SQLCAWN6 
C: sqlwarn6 

Reserved for future use. 

PL/I: SQLCA_WARNING7 
Assembler: SQLCAWN7 
C: sqlwarn7 

Contains a W if it was generated by a procedure. 



SQL Communication Area (SQLCA) 

 

256  SQL User Guide 
 

SQLCA - DB2 Format (COBOL) 
01  SQLCA. 

    05  SQLCAID                  PIC X(08). 

    05  SQLCABC                  PIC S9(9) COMP VALUE +136. 

    05  SQLCODE                  PIC S9(9) COMP VALUE +0. 

    05  SQLERRM. 

        49  SQLERRML             PIC S9(4) COMP. 

        49  SQLERRMC             PIC X(70). 

    05  SQLERRP                  PIC X(08). 

    05  SQLERRD                  PIC S9(9) COMP OCCURS 6 TIMES. 

    05  SQLWARN. 

        10  SQLWARN0             PIC X. 

        10  SQLWARN1             PIC X. 

        10  SQLWARN2             PIC X. 

        10  SQLWARN3             PIC X. 

        10  SQLWARN4             PIC X. 

        10  SQLWARN5             PIC X. 

        10  SQLWARN6             PIC X. 

        10  SQLWARN7             PIC X. 

    05  SQLEXT. 

        10  SQLWARN8             PIC X(1). 

        10  SQLWARN9             PIC X(1). 

        10  SQLWARNA             PIC X(1). 

        10  SQLSTATE             PIC X(5). 
 

SQLCA - DB2 Format (PL/I) 
 DCL 1 SQLCA, 

       2 SQLCAID             CHAR(8) INIT(SQLCA'), 

       2 SQLCABC             BIN FIXED(31) INIT(136), 

       2 SQLCADE             BIN FIXED(31) INIT(0), 

       2 SQLERRM             CHAR(70) VAR, 

       2 SQLERRP             CHAR(8), 

       2 SQLERRD(6)          BIN FIXED(31) INIT(0), 

       2 SQLCA_WRN_AREA, 

         3 SQLCA_WARNING  (0:10) CHAR(1) INIT(' '), 

       2 SQLEXT              CHAR(5); 

 DCL SQLCA_EYE_CATCH         CHAR(8) 

                                 DEFINED SQLCAID; 

 DCL SQLCA_LEN FIXED         BINARY(31) 

                                 DEFINED SQLCABC; 

 DCL SQLCA_ERROR_PGM         CHAR(8) 

                                 DEFINED SQLERRP; 

 DCL 1 SQLWARN               DEFINED SQLCA_WRN_AREA, 
 



SQL Communication Area (SQLCA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  257  
 

       5 SQLWARN0            CHAR(1), 

       5 SQLWARN1            CHAR(1), 

       5 SQLWARN2            CHAR(1), 

       5 SQLWARN3            CHAR(1), 

       5 SQLWARN4            CHAR(1), 

       5 SQLWARN5            CHAR(1), 

       5 SQLWARN6            CHAR(1), 

       5 SQLWARN7            CHAR(1), 

       5 SQLWARN8            CHAR(1), 

       5 SQLWARN9            CHAR(1), 

       5 SQLWARNA            CHAR(1); 

 DCL 1 SQLCA_WARN            DEFINED SQLCA_WRN_AREA, 

       5 SQLCA_WARN0         CHAR(1), 

       5 SQLCA_WARN1         CHAR(1), 

       5 SQLCA_WARN2         CHAR(1), 

       5 SQLCA_WARN3         CHAR(1), 

       5 SQLCA_WARN4         CHAR(1), 

       5 SQLCA_WARN5         CHAR(1), 

       5 SQLCA_WARN6         CHAR(1), 

       5 SQLCA_WARN7         CHAR(1), 

       5 SQLCA_WARN8         CHAR(1), 

       5 SQLCA_WARN9         CHAR(1), 

       5 SQLCA_WARNA         CHAR(1); 
 

DB2 format (non-ANSI) 
 DCL 1 SQLCA, 

       2 SQLCAID             CHAR(8) INIT('SQLCA'), 

       2 SQLCABC             BIN FIXED(31) INIT(136), 

       2 SQLCODE             BIN FIXED(31) INIT(0), 

       2 SQLERRM             CHAR(70) VAR, 

       2 SQLERRP             CHAR(8), 

       2 SQLERRD(6)          BIN FIXED(31) INIT(0), 

       2 SQLCA_WRN_AREA, 

         3 SQLCA_WARNING (0:10) CHAR(1) INIT(' '), 

       2 SQLEXT              CHAR(5); 

 DCL SQLCA_EYE_CATCH         CHAR(8) 

                                 DEFINED SQLCAID; 

 DCL SQLCA_LEN FIXED         BINARY(31) 

                                 DEFINED SQLCABC; 

 DCL SQLCA_ERROR_PGM         CHAR(8) 

                                 DEFINED SQLERRP; 

 DCL 1 SQLWARN               DEFINED SQLCA_WRN_AREA, 
 



SQL Communication Area (SQLCA) 

 

258  SQL User Guide 
 

       5 SQLWARN0            CHAR(1), 

       5 SQLWARN1            CHAR(1), 

       5 SQLWARN2            CHAR(1), 

       5 SQLWARN3            CHAR(1), 

       5 SQLWARN4            CHAR(1), 

       5 SQLWARN5            CHAR(1), 

       5 SQLWARN6            CHAR(1), 

       5 SQLWARN7            CHAR(1), 

       5 SQLWARN8            CHAR(1), 

       5 SQLWARN9            CHAR(1), 

       5 SQLWARNA            CHAR(1); 

 DCL 1 SQLCA_WARN            DEFINED SQLCA_WRN_AREA, 
 

       5 SQLCA_WARN0         CHAR(1), 

       5 SQLCA_WARN1         CHAR(1), 

       5 SQLCA_WARN2         CHAR(1), 

       5 SQLCA_WARN3         CHAR(1), 

       5 SQLCA_WARN4         CHAR(1), 

       5 SQLCA_WARN5         CHAR(1), 

       5 SQLCA_WARN6         CHAR(1), 

       5 SQLCA_WARN7         CHAR(1), 

       5 SQLCA_WARN8         CHAR(1), 

       5 SQLCA_WARN9         CHAR(1), 

       5 SQLCA_WARNA         CHAR(1); 
 

SQLCA - DB2 Format (Assembler) 
     SQLCA    DSECT 

     SQLCAID  DS    CL8    .EYE CATCHER 

     SQLCABC  DS    F      .BLOCK LENGTH 

     SQLCODE  DS    F      .SQL RETURN CODE 

     SQLERRM  DS    H,CL70 .ERROR 

     SQLERRP  DS    CL8    .ERROR PROGRAM 

     SQLERRD  DS    6F     .ERROR CODES 

     SQLWARN  DS    0C     .WARNINGS 

     SQLWARN0 DS    CL1    .  WARNING 

     SQLWARN1 DS    CL1    .  WARNING 

     SQLWARN2 DS    CL1    .  WARNING 

     SQLWARN3 DS    CL1    .  WARNING 

     SQLWARN4 DS    CL1    .  WARNING 

     SQLWARN5 DS    CL1    .  WARNING 

     SQLWARN6 DS    CL1    .  WARNING 

     SQLWARN7 DS    CL1    .  WARNING 

     SQLEXT   DS    CL8 

              ORG SQLEXT 

     SQLWARN8 DS    CL1    .  WARNING 

     SQLWARN9 DS    CL1    .  WARNING 

     SQLWARNA DS    CL1    .  WARNING 

     SQLSTATE DS    CL5    . 

     SQLCA2LN EQU   *-SQLCA 
 



SQL Communication Area (SQLCA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  259  
 

SQLCA - (C Language) 

See SQLCA - (C Language) (see page 249). 
 

Description of SQLCA in DB2 Format 

Description of SQLCA in DB2 Format: 

 

COBOL PL/I Assembler Description 

SQLCAID SQLCAID SQLCAID An eye-catcher for storage dumps, set to SQLCA. 

SQLCABC SQLCABC SQLCABC Must be set to the length of the SQLCA: 136. 

SQLCODE SQLCADE (ANSI) 
SQLCODE 
(non-ANSI) 

SQLCODE Value returned from an SQL call. If an exception 
declaration (WHENEVER statement) is not provided, 
the recommended practice is that your program 
include code to check the SQLCODE value 
immediately after each executable SQL statement. 

SQLERRML SQLERRM SQLERRM In COBOL, contains the length indicator for 
SQLERRMC in the range of zero through 70.  It 
contains zero if there is no error or exception 
condition, in which case the value of SQLERRMC is 
not pertinent. 

In PL/I, contains the length of the error return string 
and a brief description of the error. 

In Assembler, contains the length indicator in the 
range of zero through 70.  It contains zero if there is 
no error or exception condition. If greater than 
zero, up to 70 bytes of error text follows. 

SQLERRMC   In COBOL, contains one or more tokens, separated 
by X'FF', that are substituted for variables in the 
descriptions of error conditions. 

SQLERRP SQLERRP SQLERRP Contains the name of the CA Datacom/DB module 
which reported the error. 

  SQLERRD In Assembler, this is the top of error codes (not an 
actual field). 

SQLERRD(1) SQLERRD(1) SQLERRD1 Contains the CA Datacom/DB SQLCODE to aid in 
diagnosing errors.  The value in the SQLCODE field is 
the DB2 equivalent of this value. 

SQLERRD(2) SQLERRD(2) SQLERRD2 Contains the CA Datacom/DB external return code 
for some error conditions, to aid in diagnosing 
errors. 



SQL Communication Area (SQLCA) 

 

260  SQL User Guide 
 

COBOL PL/I Assembler Description 

SQLERRD(3) SQLERRD(3) SQLERRD3 Contains the number of rows affected after an 
INSERT, UPDATE, or DELETE (but not rows deleted 
as a result of CASCADE delete). 

SQLERRD(4) SQLERRD(4) SQLERRD4 Reserved for future use. 

SQLERRD(5) SQLERRD(5) SQLERRD5 Reserved for future use. 

SQLERRD(6) SQLERRD(6) SQLERRD6 Contains the CA Datacom/DB internal return code 
for some error conditions, to aid in diagnosing 
errors. 

  SQLWARN In Assembler, this is the top of warnings (not an 
actual field). 

SQLWARN0 SQLWARN0 SQLWARN0 After executing a DBSQLE command this field 
contains a W if any warning condition has been 
detected.  Check the other warning flags for the 
specific warning. Otherwise contains spaces, that is, 
x'40'. 

SQLWARN1 SQLWARN1 SQLWARN1 Contains W if the value of a string column was 
truncated when assigned to a host-variable. 
Otherwise contains spaces, that is, x'40'. 

SQLWARN2 SQLWARN2 SQLWARN2 Contains W if null values were eliminated from the 
argument of a column function; not necessarily set 
to W for the MIN function because its results are 
not dependent on the elimination of null values. 
Otherwise contains spaces, that is, x'40'. 

SQLWARN3 SQLWARN3 SQLWARN3 Contains a W if the number of host-variables in the 
INTO clause of a FETCH or SELECT INTO statement is 
not equal to the number of items in the SELECT list.  
The actual number of columns returned is the 
smaller of the two numbers. Otherwise contains 
spaces, that is, x'40'. 

SQLWARN4 SQLWARN4 SQLWARN4 Contains W if a prepared UPDATE or DELETE 
statement does not include a WHERE clause. 
Otherwise contains spaces, that is, x'40'. 

SQLWARN5 SQLWARN5 SQLWARN5 Reserved for future use. 

SQLWARN6 SQLWARN6 SQLWARN6 Contains a W if an adjustment was made to a DATE 
or TIMESTAMP value to correct an invalid date 
resulting from an arithmetic operation. Otherwise 
contains spaces, that is, x'40'. 

SQLWARN7 SQLWARN7 SQLWARN7 Contains a W if it was generated by a procedure. 

SQLEXT SQLEXT SQLEXT Reserved for future use. 



SQL Work Area (SQLWA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  261  
 

COBOL PL/I Assembler Description 

SQLWARN8 SQLWARN8 SQLWARN8 Reserved for future use. 

SQLWARN9 SQLWARN9 SQLWARN9 Reserved for future use. 

SQLWARNA SQLWARNA SQLWARNA Reserved for future use. 

SQLSTATE 

 

SQLSTATE 

 

SQLSTATE In COBOL and PL/I, this is the ANSI format return 
code. 

In Assembler, this is the execution error return 
code. 

SQLCA2LN In Assembler, the length of the SQLCA. 

SQL Work Area (SQLWA) 

The SQL Work Area (SQLWA) is a collection of variables used by CA Datacom/DB to 
provide an application program with information about each of its SQL statements.  The 
CA Datacom/DB Preprocessor generates one SQLWA for each compiled embedded SQL 
statement. 

Important!  Do not change any of the Preprocessor generated output pertaining to the 
SQLWAs. 

 

SQLWA Examples 

SQLWA examples are provided in the following pages. 
 

SQLWA in COBOL 

See SQLWA - COBOL (see page 262) for an example COBOL version of the SQLWA. 
 

SQLWA in PL/I 

With the CA Datacom/DB SQL Preprocessor for PL/I there are two possible formats of 
the SQLWA: 

■ CA Datacom/DB format (see SQLWA - db. Format (PL/I) (see page 263)) 

■ DB2 format (see SQLWA - DB2 Format (PL/I) (see page 264)) 
 



SQL Work Area (SQLWA) 

 

262  SQL User Guide 
 

SQLWA in Assembler 

With the CA Datacom/DB SQL Preprocessor for Assembler there are two possible 
formats of the SQLWA: 

■ CA Datacom/DB format (see SQLWA - CA Datacom/DB Format (Assembler) (see 
page 265)) 

■ DB2 format (see SQLWA - DB2 Format (Assembler) (see page 266)) 
 

SQLWA in C 

For an example of the SQLWA format in the C language, see SQLWA - Format for C 
Language (see page 267). 

 

SQLWA - COBOL 

Following is the COBOL version of an SQLWA.  In the example, n represents the number 
for each SQLWA generated by the Preprocessor, while x represents the number 
generated for each host-variable referenced in the SQL statement. 

  01  SQLWAn. 

      05  SQLWAn-EYE-CATCH         PIC X(08) VALUE 'SQLWA***'. 

      05  SQLWAn-LEN               PIC S9(9) COMP VALUE +48. 

      05  SQLWAn-COMMAND           PIC X(05) VALUE 'QEXEC'. 

      05  SQLWAn-FILLER            PIC X(03). 

      05  SQLWAn-PROC-NAME         PIC X(08) VALUE SPACES. 

      05  SQLWAn-CURS-T            PIC S9(9) COMP VALUE +0. 

      05  SQLWAn-STMT-ID 

                  PIC S9(9) COMP VALUE +0. 

      05  SQLWAn-ADDR-HOST-DESC    PIC S9(9) COMP VALUE +0. 

      05  SQLWAn-END-CATCH         PIC X(08) VALUE 'ENDSQLWA'. 

      05  HOST-VARn-AREA. 

          10  HOST-VARn-LEN        PIC S9(9) COMP VALUE +104. 

          10  HOST-VARn-NBR-ENT    PIC S9(4) COMP VALUE +6. 

          10  HOST-VARn-FILLER     PIC X(02). 
 



SQL Work Area (SQLWA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  263  
 

          10  HOST-VARn-DESC. 

              15  HOST-VARn-x-TYPE 

                                   PIC S9(4) COMP VALUE +452. 

              15  HOST-VARn-x-LEN 

                                   PIC S9(4) COMP VALUE +3. 

              15  HOST-VARn-x-DATA 

                                   PIC S9(9) COMP. 

              15  HOST-VARn-x-IND 

                                   PIC S9(9) COMP. 

              15  HOST-VARn-x-DIR 

                                   PIC X(01) VALUE 'F'. 

                  88  HOST-VARn-x-TO-MUF 

                                   VALUE 'T'. 

                  88  HOST-VARn-x-FROM-MUF 

                                   VALUE 'F'. 

              15  HOST-VARn-x-FILLER 

                                   PIC X(03). 
 

SQLWA - CA Datacom/DB Format (PL/I) 

Following is the CA Datacom/DB format of the PL/I version of an SQLWA.  In the 
example, n represents the number for each SQLWA generated by the Preprocessor. 

 DCL 1 SQLWAn, 

     5 SQLWAn_EYE_CATCH             CHAR(8) INIT('SQLWA***'), 

     5 SQLWAn_LEN                   FIXED BINARY(31) INIT(48), 

     5 SQLWAn_COMMAND               CHAR(5) INIT('QEXEC'), 

     5 SQLWAn_FLAGS                 BIT(8) INIT(0), 

     5 SQLWAn_FILLER                CHAR(2) INIT(' '), 

     5 SQLWAn_PROC_NAME             CHAR(8) INIT(' '), 

     5 SQLWAn_STAMP                 FIXED BINARY(31) INIT(nnnnnnnn), 

     5 SQLWAn_STMT_ID               FIXED BINARY(31) INIT(nnnn), 

     5 SQLWAn_ADDR_HOST_DESC        POINTER, 

     5 SQLWAn_END_CATCH             CHAR(8) INIT('ENDSQLWA'), 

     5 HOST_VARn_AREA, 

         10 HOST_VARn_LEN           FIXED BINARY(31) INIT(nnn), 

         10 HOST_VARn_NBR_ENT       FIXED BINARY(15) INIT(nn), 

         10 HOST_VARn_FILLER        CHAR(2) INIT(' '), 

         10 HOST_VARn_DESC, 

             /* host field name m */ 

             15 HOST_VARn_m_TYPE    FIXED BINARY(15) INIT(%t), 

             15 HOST_VARn_m_LEN     FIXED BINARY(15) INIT(%u), 

             15 HOST_VARn_m_DATA    POINTER, 

             15 HOST_VARn_m_IND     POINTER, 

             15 HOST_VARn_m_DIR     CHAR(1) INIT('d'), 

             15 HOST_VARn_m_FILR    CHAR(3) INIT('   '), 
 



SQL Work Area (SQLWA) 

 

264  SQL User Guide 
 

SQLWA - DB2 Format (PL/I) 

Following is the DB2 format of the PL/I version of an SQLWA.  In the example, n 
represents the number for each SQLWA generated by the Preprocessor. 

 DCL 1 SQLWAn, 

     5 SQLWAn_EYE_CATCH             CHAR(8) INIT('SQLWA***'), 

     5 SQLWAn_LEN                   FIXED BINARY(31) INIT(96), 

     5 SQLWAn_COMMAND               CHAR(5) INIT('QEXEC'), 

     5 SQLWAn_FLAGS                 BIT(8) INIT(1), 

     5 SQLWAn_FILLER                CHAR(2) INIT(' '), 

     5 SQLWAn_PROC_NAME             CHAR(8) INIT(' '), 

     5 SQLWAn_STAMP                 FIXED BINARY(31) INIT(nnnnnnn), 

     5 SQLWAn_STMT_ID               FIXED BINARY(31) INIT(nnnn), 

     5 SQLWAn_ADDR_HOST_DESC        POINTER, 

     5 SQLWAn_PGM_NAME              CHAR(8) INIT('        '), 

     5 SQLWAn_AUTHID                CHAR(18) INIT('authid here       '), 

     5 SQLWAn_PLAN_NAME             CHAR(18) INIT('plan name here    '), 
 

     5 SQLWAn_DB_VRS                CHAR(2) INIT(%d), 

     5 SQLWAn_DB_RLS                CHAR(2) INIT(%e), 

     5 SQLWAn_END_CATCH             CHAR(8) INIT('ENDSQLWA'), 

     5 HOST_VARn_AREA, 

         10 HOST_VARn_LEN           FIXED BINARY(31) INIT(nnn), 

         10 HOST_VARn_NBR_ENT       FIXED BINARY(15) INIT(nn), 

         10 HOST_VARn_FILLER        CHAR(2) INIT('  '), 

         10 HOST_VARn_DESC, 

             /* host field name m */ 

             15 HOST_VARn_m_TYPE    FIXED BINARY(15) INIT(%t), 

             15 HOST_VARn_m_LEN     FIXED BINARY(15) INIT(%u), 

             15 HOST_VARn_m_DATA    POINTER, 

             15 HOST_VARn_m_IND     POINTER, 

             15 HOST_VARn_m_DIR     CHAR(1) INIT('d'), 

             15 HOST_VARn_m_FILR    CHAR(3) INIT('   '), 
 



SQL Work Area (SQLWA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  265  
 

SQLWA - CA Datacom/DB Format (Assembler) 

In the following example, n represents the number for each SQLWA generated by the 
Preprocessor for Assembler. 

     SQLWA    DSECT 

     SQLWAEYE DS    CL8    .EYE CATCHER 

     SQLWALEN DS    F      .BLOCK LENGTH 

     SQLWACMD DS    CL5    .Q COMMAND 

     SQLWAFLG DS    X      .FLAGS 

     SQLWAFIL DS    CL2    .UNUSED 

     SQLWAFNM DS    CL8    .ROUTINE NAME 

     SQLWASTP DS    F      .STAMP 

     SQLWASID DS    F      .STATEMENT ID 

     SQLWAHDS DS    F      .ADDR HOST VAR AREA 

     SQLWAEND DS    CL8    .END EYE CATCHER 

     SQLWADLN EQU   *-SQLWA 

     SQLHAARA DS    0CL8    .HOST VAR AREA 

     SQLHAHVL DS    F       .LENGTH OF VARS 

     SQLHANHV DS    H       .NBR OF VARS 
 

     SQLHAFIL DS    CL2     .UNUSED 

     SQLHAALN EQU   *-SQLHAARA .LENGTH OF HOST VAR AREA 

     SQLHVBGN DS    0C      .START OF VARS 

     SQLWATLN EQU   *-SQLWA .LENGTH OF SQLWA & HOST HDR 

 

                                                    0 to n VARs depending 

                                                         on statement 

 

     SQLHVTYP DS    H       .STORAGE TYPE 

     SQLHVLEN DS    H       .LENGTH OR PRECISION/SCALE 

     SQLHVDAT DS    F       .ADDR OF RECEIVING FIELD 

     SQLHVIND DS    F       .ADDR OF INDICATOR FIELD 

     SQLHVDIR DS    CL1     .DIRECTION 

     SQLHVFIL DS    CL3     .UNUSED 

     SQLHVDLN EQU   *-SQLHVAR .LENGTH OF HOST VAR 
 



SQL Work Area (SQLWA) 

 

266  SQL User Guide 
 

SQLWA - DB2 Format (Assembler) 
     SQLWA    DSECT 

     SQLWAEYE DS    CL8    .EYE CATCHER 

     SQLWALEN DS    F      .BLOCK LENGTH 

     SQLWACMD DS    CL5    .COMMAND 

     SQLWAFLG DS    X      .FLAGS   /* always x'01' */ 

     SQLWAFIL DS    CL2    .UNUSED 

     SQLWARTN DS    CL8    .ROUTINE NAME 

     SQLWASTP DS    F      .STAMP 

     SQLWASID DS    F      .STATEMENT ID 

     SQLWAHDS DS    F      .ADDR HOST VAR AREA 

     SQLWAPGM DS    CL8    .UNUSED 

     SQLWAATH DS    CL18   .AUTH ID 

     SQLWAPLN DS    CL18   .PLANNAME 

     SQLWADBV DS    CL2    .VERSION 

     SQLWADVR DS    CL2    .RELEASE 

     SQLWAEND DS    CL8    .END EYE CATCHER 

     SQLWADLN EQU   *-SQLWA 

     SQLHAARA DS    0CL8    .HOST VAR AREA 

     SQLHAHVL DS    F       .LENGTH OF VARS 

     SQLHANHV DS    H       .NBR OF VARS 
 

     SQLHAFIL DS    CL2     .UNUSED 

     SQLHAALN EQU   *-SQLHAARA .LENGTH OF HOST VAR AREA 

     SQLHVBGN DS    0C      .START OF VARS 

     SQLWATLN EQU   *-SQLWA .LENGTH OF SQLWA & HOST HDR 

 

                                                    0 to n VARs depending 

                                                         on statement 

 

     SQLHVTYP DS    H       .STORAGE TYPE 

     SQLHVLEN DS    H       .LENGTH OR PRECISION/SCALE 

     SQLHVDAT DS    F       .ADDR OF RECEIVING FIELD 

     SQLHVIND DS    F       .ADDR OF INDICATOR FIELD 

     SQLHVDIR DS    CL1     .DIRECTION 

     SQLHVFIL DS    CL3     .UNUSED 

     SQLHVDLN EQU   *-SQLHVAR .LENGTH OF HOST VAR 
 



SQL Work Area (SQLWA) 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  267  
 

SQLWA - Format for C Language 

Following is an example SQL Work Area (SQLWA) for the C language. 

 struct SQLwa 

 { 

   char     eye_catch[8]; 

   int      len; 

   char     command[5]; 

   unsigned char flags; 

   char     filler[2]; 

   char     proc_name[8]; 

   int      stamp; 

   int      stmt_id; 

   char    *addr_host_desc; 

   char     end_catch[8]; 

 } sqlwa = {"SQLWA***", 48,"QEXEC", 0, 

            "  ", "", 70488250, 0, 0, "ENDSQLWA"}; 
  

struct 

 { 

   int       len; 

   short     nbr_ent; 

   char        filler[2]; 

   struct sqlhvar 

   { 

     short   type; 

     short   len; 

     void   *data; 

     short  *ind; 

     char    dir; 

     char    filr[3]; 

   } var[n]; 

 } sqlHost; 

 char host_var_end[6] = "VAREND"; 

Note:  The n in var[n] appears as a number that has a special purpose, that is, it 
corresponds to the maximum number of host variables needed by statements in the 
program. 

 



Error Handling 

 

268  SQL User Guide 
 

Error Handling 

If the Preprocessor detects an SQL error that causes the program to be nonexecutable, 
the Preprocessor terminates processing. The plan being built and the statements are 
backed out. The previous plan (if one existed) for the program is restored. See the CA 
Datacom/DB Message Reference Guide for a list of possible return codes generated by 
the Preprocessors. 

In COBOL, if the Preprocessor completes with a condition code other than 0, you should 
check SYSPRINT for the messages and the SQLCODE. The Preprocessor returns the 
following condition, depending on your environment: 

z/OS 

Condition code 12 

z/VSE 

Abnormal termination without a dump 

For PL/I, C, and Assembler, all return codes that are equal to or greater than 16 indicate 
that the Preprocessor encountered an abnormal problem and terminated. 

 



Interaction of Multiple Preprocessors 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  269  
 

Interaction of Multiple Preprocessors 

Multiple preprocesors or precompilers may be used at your site.  The other 
preprocessors or precompilers replace specialized code with legal statements. Source 
statements for the CA Datacom/DB SQL Preprocessor may be generated by another 
preprocessor, such as CA Librarian.  Any preprocessor before the CA Datacom/DB SQL 
Preprocessor must be able to accept and pass through SQL statements. 

Source code processed by the SQL Preprocessor could be processed by additional 
preprocessors after being preprocessed and before being compiled.  There may be 
limitations on the forms of source statements that can be passed through the 
Preprocessor.  For example, literals and comments not accepted by the supported host 
compilers might interfere with precompiler source scanning and cause errors. 
Interaction problems can only occur if one of the preprocessors or precompilers adds 
logic to the program which may be affected by another precompiler or preprocessor.  
You reduce the possibility of encountering interaction problems if you run the 
preprocessors or precompilers in the following order: 

1. CA Librarian 

CA Librarian retrieves the source code from a CA Librarian master file and passes it 
to the next preprocessor or precompiler.  If your site has CA Librarian, you can 
extract the source code by running the batch CA Librarian program with the EXEC 
option.  Use this method if the program contains COPYDD statements.  
Alternatively, if the CA Librarian Access Method (LIB/AM) is installed and the 
program contains no COPYDD statements, you can omit the CA Librarian step and 
allow LIB/AM to pass the source statements directly to the preprocessor or 
precompile.  For more information on using CA Librarian, see the appropriate CA 
Librarian documentation. 

 

2. CA MetaCOBOL+ precompiler (COBOL only) 

Because this precompiler modifies source code (non-SQL), it must be run before the 
CA Datacom/DB SQL Preprocessor for COBOL. 

3. CA Datacom/DB SQL Preprocessors 

One of these is run next because it replaces SQL statements with COBOL, PL/I, or 
Assembler statements. 

4. CICS precompiler (COBOL and PL/I only) 

Always run this precompiler last. 

If one or more preprocessors or precompilers is not run, you must retain the order 
previously specified for the remaining preprocessors or precompilers.  If your site has 
preprocessors or precompilers in addition to those previously listed, the order in which 
they run may vary. 

 



SQL Plan Options Special Topics 

 

270  SQL User Guide 
 

SQL Plan Options Special Topics 

The following comments apply regardless of the host language used. 
 

Read-Only 

If you choose the SQL Preprocessor option ISOLEVEL=U, the access plan is read-only and 
your application cannot execute the SQL statements INSERT, UPDATE, or DELETE. 

In addition, a share lock is not acquired for rows accessed with SELECT INTO or through 
a cursor, which means you may access rows inserted or updated by other concurrent 
tasks that have not been committed and may therefore be backed out. 

 

Mixing Isolation Levels 

You can not mix different isolation levels in the same unit of recovery. For example, if a 
program which uses isolation level C calls another program preprocessed with isolation 
level U, an SQL -144 return code (INVALID TRANSACTION ISOLEVEL) will be returned 
whenever a statement is executed from the second program unless the first program 
executes a COMMIT WORK statement to end the unit of recovery before calling the 
second program. 

Note: The both parameter of the SQLOPTION MUF startup option controls whether you 
are allowed to mix the use of isolation level U and C plans under a single logical unit of 
work (LUW) for those LUWs not running any SQLMODE ANSI or FIPS plans. Specifying 
YES for the both option of SQLOPTION indicates that mixing is allowed. It is your 
responsibility to verify proper locking is performed and the database state is not 
updated incorrectly from "dirty read" data that was read from an isolation level U plan. 

 

Locking a Row 

If your application needs to hold a lock on a row, you must specify ISOLEVEL=C and use 
the SQL FETCH statement to fetch the row using a cursor that has a WHERE CURRENT OF 
cursor-name clause in either an UPDATE or DELETE statement (the WHERE CURRENT OF 
cursor-name clause need never be executed but, if none are present, blocked transfer of 
rows may either cause the share lock acquired for FETCHed rows to be released before 
your application fetches them, or a temporary table may be built). The WHERE 
CURRENT OF cursor-name clause causes the row on which your application is positioned 
to be held with an exclusive lock. 

Note:  Using the SQL SELECT INTO statement with ISOLEVEL=C causes rows to be 
accessed by a share lock, but the lock is released before control is passed to your 
application. 

 



SQL Plan Options Special Topics 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  271  
 

CICS Unit of Recovery End 

If your plan is for a CICS application, CA Datacom CICS Services issues a CICS SYNCPOINT 
and issues either a COMIT or ROLBK to end the unit of recovery: 

■ At the end of each asynchronous CICS task, or 

■ At the end of each synchronous CICS task (that is , a task associated with a terminal) 
if: 

– A task abnormally terminates, or 

– A task returns control to CICS, or 
 

– ISOLEVEL=C and at least one cursor is left open, or 

– ISOLEVEL=C and INSERT, UPDATE, or DELETE statements have been executed. 
 

CA Datacom CICS Services does not issue a CICS SYNCPOINT and does not issue a COMIT 
or ROLBK to end the unit of recovery when: 

■ A synchronous CICS task terminates successfully, and 

■ The transaction ID is specified in the RETURN statement, and either: 

– ISOLEVEL=U, or 

– ISOLEVEL=C, no cursor is left open, and no INSERT, UPDATE, or DELETE 
statements have been executed. 

 

However, the SQL Manager automatically ends a unit of recovery after each SQL 
statement if there are: 

■ No open cursors, 

■ No table-level locks, and 

■ No primary or secondary exclusive control is being held. 

For example, if ISOLEVEL=U and you have only SELECT INTO statements or no open 
cursors, you need not execute a COMMIT WORK statement at CICS transaction end 
because there is no current unit of recovery active. 

 



SQL Plan Options Special Topics 

 

272  SQL User Guide 
 

The only case where the unit of recovery is left active when the synchronous CICS task 
ends successfully is therefore when ISOLEVEL=U and a cursor is left open. 

Note:  If you code ISOLEVEL=U, you are responsible for ending the current unit of 
recovery as follows: 

■ We recommend ending the current unit of recovery by closing all open cursors. Or, 
if your user application logic does not support this method, 

■ Issue a CICS SYNCPOINT (see the CA Datacom CICS Services User Guide). Or, if your 
user application logic does not support this method, 

■ Issue an appropriate SQL statement (COMMIT WORK or ROLLBACK WORK). Or, if 
your user application logic does not support this method, as a last option, 

 

■ Issue an appropriate CA Datacom/DB record-at-a-time command (LOGCP, LOGCR, 
LOGTB, COMIT, or ROLBK). 

Be aware that if a CA Datacom/DB log command is issued in a situation where a 
single transaction talks to multiple Multi-User Facilities, unpredictable results can 
occur. This is why using other methods of ending the current unit of recovery are 
recommended before this last option. 

When you do not do one of the previously given actions and the current unit of recovery 
remains active, it allows a browse application to keep cursors open across CICS 
synchronous transactions.  Be aware, however, that if that was not what you intended, 
the plan stays locked in share mode, and memory is held in the Multi-User Facility until 
the unit of recovery is ended. 

 

For example, if your application opens a cursor, fetches one or more rows, and issues a 
CICS read with return to the application, upon return your application receives a -135 
SQLCODE (INVALID CURSOR STATE) when it attempts to open the cursor, because it was 
left open from the previous CICS transaction.  Or, if the next application attempts to 
execute a plan with ISOLEVEL=C, your application receives a -144 SQLCODE (INVALID 
TRANSACTION ISOLEVEL) because you cannot mix transaction isolation levels in the 
same unit of recovery. 

To end the current unit of recovery, have your application issue a ROLLBACK WORK or 
CICS SYNCPOINT when it receives an unexpected SQLCODE, or you can execute a 
non-SQL command which ends the current unit of recovery. Otherwise, you must close 
the SQL User Requirements Table to end the current unit of recovery. 

If your application does not execute CICS RETURN with the same transaction ID, the 
current unit of recovery is ended, that is to say, the unit of recovery is ended if control is 
passed to another transaction or back to CICS. 

 

ANSI Compatibility 

ISOLEVEL=U is a CA Datacom extension.  It is not ANSI standard and is therefore not 
allowed if ANSI or FIPS is specified in SQLMODE=. 

 



SQL Plan Options Special Topics 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  273  
 

CA Ideal Considerations 

If you are invoking SQL from CA Ideal FOR statements with an embedded TRANSMIT 
statement, ISOLEVEL=C can be specified.  Such cursors are opened in a special mode 
that holds them open across units of recovery. CA Ideal automatically closes the cursors. 

 

Block Transfer 

If you specify ISOLEVEL=U, block transfer of rows between the Multi-User Facility and 
the CICS address space is not performed. 

 

OPEN/CLOSE Efficiency 

Specifying T for the SQL Preprocessor's PLNCLOSE= option (to close the access plan at 
unit of recovery end) causes any opened tables to be closed, except when another unit 
of recovery is currently accessing the table. 

If the table is the last table open for an area, the area is "physically" closed, that is to say 
it is closed by the operating system.  We recommend that tables frequently accessed 
with PLNCLOSE=T be opened in a non-SQL User Requirements Table to avoid this 
overhead.  This User Requirements Table need never be used, but it will keep the areas 
open. 

Note:  Plan binding uses the CA Datacom Datadictionary, the Schema Information Tables 
(SIT), and the Optimizer message table (SYSMSG) areas.  Binding executes faster if there 
is a User Requirements Table that holds those areas open.  The Temporary Table 
Manager (TTM) area should also be held open because it too may be used during the 
execution of binding. 

 

Automatic Unit of Recovery End 

The SQLOPTION Multi-User startup option can be used to automatically close CICS and 
DLI units of recovery that are left open. For more information on SQLOPTION, see the 
CA Datacom/DB Database and System Administration Guide. 

Note:  A unit of recovery will not be ended if it is still active in the Multi-User Facility 
(such as when waiting on a plan lock). 

If an ISOLEVEL=U application with an open cursor exists for longer than the limit 
specified in the SQLOPTION Multi-User startup option, the application will receive a -135 
SQLCODE (INVALID CURSOR STATE) when it tries to continue scrolling. 

Units of recovery that are automatically timed out are not reported. 
 



SQL Plan Options Special Topics 

 

274  SQL User Guide 
 

Plan Locks 

A plan cannot be rebound when in use.  If (for a CICS application) R is specified for the 
SQL Preprocessor's PLNCLOSE= option, the plan remains in use until the SQL User 
Requirements Table is closed. 

To determine which plans are being used, you can use CA Datacom/DB Utility's 
(DBUTLTY) COMM ALTER option as follows: 

Using COMM ALTER to Determine Plans Being Used 

►►─ COMM OPTION=ALTER,TRACE=TRACEGLOBAL ──────────────────────────────────────►◄ 

This writes a report of all open plans (plus various other information about the state of 
the SQL subsystem) to the CA Datacom/DB Statistics and Diagnostics Area (PXX) when 
the SQL User Requirements Table is closed.  Print the report using CA Datacom/DB 
Utility's (DBUTLTY) REPORT AREA=PXX option with FULL or TRACE specified for the 
DUMPS= keyword. 

 

To turn off this option, use CA Datacom/DB Utility's (DBUTLTY) COMM ALTER option: 

Using COMM ALTER to Turn Option Off 

►►─ COMM OPTION=ALTER,TRACE=NONE ─────────────────────────────────────────────►◄ 

Note: For more information about using the CA Datacom/DB Utility (DBUTLTY), see the 
CA Datacom/DB DBUTLTY Reference Guide. 

 

LRU Statement Cache 

The LRU (Least Recently Used) statement cache option enhances caching of statements 
by using a user-specified amount of memory more efficiently. When the LRU option is 
not used, statements are left in memory until the plan is closed, which can cause the 
Multi-User Facility to run out of memory by holding on to statements that are rarely 
re-executed. With the LRU option, however, the amount of memory used is specified by 
the user and contains only the most recently used statements. 

You can set the SQL PLNCLOSE= plan option to close at transaction end or run unit end 
without concern for caching statements because PLNCLOSE= has no effect on caching 
when the LRU option is in effect. For example, users who used PLNCLOSE=T for CICS 
applications have reported a significant decrease in response time by using the LRU 
option because of reductions in read I/Os to the Data Definition Directory (DDD) 
database. 

 



SQL Plan Options Special Topics 

 

Chapter 4: CA Datacom/DB SQL Preprocessors  275  
 

Use the console-like command SQL_LRU_STATEMENT_CACHE n to activate the LRU 
statement cache. The value you specify for the n parameter controls the size of the 
cache. The range supported for the n parameter is a number from 
512000—1073741824. 

Use the console-like command SQL_LRU_STATEMENT_CACHE to close at transaction 
end or run unit end.  

Statement objects are usually between 5k and 30k, so the 1M default holds 
approximately 34 to 204 statements. 

 

This option can be changed at any time while the Multi-User Facility is up. If the LRU 
cache has been on and is then turned off, the virtual storage used by the LRU cache is 
released. If the LRU cache has been off and it is turned on, the statements cached up to 
that point in time are released as their plans are closed. But those cached statements 
will not be used, since only those statements in the LRU cache will be used from this 
point forward. 

To tune the LRU cache by seeng the current size used by the statement cache (either 
with or without the LRU statement cache option), use the following query: 

 SELECT PLAN_POOL_SIZE 

 FROM SYSADM.SQL_STATUS; 
 

To determine how often a statement is found in the LRU statement cache, turn on the 
following trace: 

 COMM OPTION=ALTER,TRACE=TRACEGLOBAL,JOBNAME=xxx 

where xxx is the job name of the DBUTLTY job. This writes general SQL system status 
information when the DBULTY job ends. 

Turn the trace off with the following: 

 COMM OPTION=ALTER,TRACE=NONE 
 

The line reporting statement cache performance is as follows: 

 STMT CACHE REQS: n, FOUND n, PERCENT FOUND  n% 

There is no facility to report how often a statement is found in the non-LRU statement 
cache.  However, most requests to the DDD database are usually due to reading 
statements, so you may use activity to the DDD database as a guide to the effectiveness 
of statement caching. Be aware that it normally takes from 2 to 9 requests to read each 
statement from the DDD database when the DDD block size is 4K. 
 





 

Chapter 5: Interfacing with the User Requirements Table (URT)  277  
 

Chapter 5: Interfacing with the User 
Requirements Table (URT) 
 

Generating User Requirements Interfaces and User Requirements Tables is a database 
administration activity, which is documented in the CA Datacom/DB Database and 
System Administration Guide.  However, the options chosen affect your program, 
especially a batch program. This chapter describes how these options affect your 
program. 

The User Requirements Interface and Table are generated by assembling the following 
macros: 

DBURINF 

CA Datacom/DB Interface 

DBURSTR 

User Requirements Table Global Parameters 

DBUREND 

Additional Global Parameters 

Note:  No DBURTBL macros are needed for programs which use (only) SQL to access CA 
Datacom/DB.  The SQL Manager handles the opening and closing of tables referenced 
by the SQL statements in your program. 

 



DBURINF - User Requirements Interface 

 

278  SQL User Guide 
 

DBURINF - User Requirements Interface 

This macro generates the User Requirements Interface for batch programs.  For CICS, 
the interface is generated by the DBCVTPR macro. This macro produces the module 
DBCSVPR, which is link edited with your program.  See CA Datacom CICS Services 
documentation for details. 

In the batch environment, the User Requirements Interface must be link edited with 
your program, which is described in Program Compilation, Link-Edit and Execution (see 
page 281). 

Note:  In z/VSE only, specifying VSERC= in the DBURNIF macro specifies whether a 
return code is being passed by the application to the operating system in Register 15.  If 
YES is specified, Register 15 is passed to z/VSE unchanged.  If NO is specified, Register 15 
is ignored by z/VSE. Valid entries for VSERC= are YES or NO.  The default is NO. 

Application Program Entry Point 

If you want CA Datacom/DB to open and close its environment, your program must be 
executed as a subroutine of CA Datacom/DB. Your program must be linked using an 
ENTRY BEGIN control statement. Each language has other special requirements 
discussed in the following: 

COBOL 

The value of USRNTRY= in the DBURINF macro defaults to DBMSCBL, which is the 
name generated in the source by the Preprocessor. If you want a name other than 
DBMSCBL, specify that name as the USRNTRY= value in the DBURINF macro of the 
User Requirements Table and for the Preprocessor option of the same name. 

 

PL/I 

The value of USRNTRY= in the DBURINF macro must be the appropriate PL/I entry 
point, commonly PLISTART. 

 

Assembler 

The value of USRNTRY= in the DBURINF macro must be the program's entry point. 

An alternate method is to use the Preprocessor to generate a consistently named 
entry point.  Using this method, a single User Requirements Table assembly may be 
linked with numerous programs.  At preprocess time, the REFNTRY= option must be 
specified.  The value of REFNTRY= is an existing ENTRY or CSECT in the program.  To 
complete the process, use the USRNTRY= option to specify the consistent name.  If 
you do not use the USRNTRY= option, a default name, SQLEXECE, is generated. 

 

Your program, regardless of the language, may control the opening and closing of CA 
Datacom/DB using the langauge.  See the CA Datacom/DB Database and System 
Administration Guide for more information. 

 



DBURSTR - Start User Requirements Table 

 

Chapter 5: Interfacing with the User Requirements Table (URT)  279  
 

DBURSTR - Start User Requirements Table 

The User Requirements Table Start macro defines global program parameters.  The 
DBURSTR macro does not generate assembly output.  Instead, it passes its parameters 
to the User Requirements Table End (DBUREND) macro. 

MULTUSE=YES 

In the DBURSTR macro, MULTUSE=YES is required (to use SQL, CA Datacom/DB must be 
operating in Multi-User mode). 

 

DBUREND - End Interface/Table 

The User Requirements Table End macro performs a final edit on the input parameters 
and generates the assembly output. 

DBSQL=YES 

In the DBUREND macro, DBSQL=YES is required if your program has SQL statements. 

z/VSE Load Option 

To use partition GETVIS for loading CA Datacom/DB modules, the DBUREND macro 
should specify LOADTYP=VIRTUAL. 

 

Example 

In the following Assembler example, note that DBURINF, DBURSTR, DBUREND, and END 
begin in column 10. The continuation character X is in column 72. 

        TITLE 'DBSBTPR -- BATCH SQL URT' 

        DBURINF                                                        X 

           URTABLE=ASM,                                                X 

           OPEN=DB 

        DBURSTR                                                        X 

           MULTUSE=YES,                                                X 

           TXNUNDO=YES 

        DBUREND                                                        X 

           DBSQL=YES,                                                  X 

           USRINFO=SQL-BAT-URT 

        END 

 





 

Chapter 6: Program Compilation, Link-Edit and Execution  281  
 

Chapter 6: Program Compilation, Link-Edit 
and Execution 
 

Compile your program according to the standard compilation procedures for your site. 
After compiling your program, you must link edit the program. 

The following section describes batch link-editing and program execution.  The next 
section describes auto-linking between online programs and CA Datacom CICS Services, 
and online program execution. 

 

Batch Link-Editing and Execution 

When you interface a batch program with the operating system, CA Datacom/DB is 
mainline and your program is a subroutine of CA Datacom/DB. 

■ The program is not sensitive to differences in operating system linkages. 

■ The User Requirements Table can be automatically opened before the program is 
called, and automatically closed when the program returns control to CA 
Datacom/DB, or the program can open and close the User Requirements Table. 

You must link edit a User Requirements Table (URT) with your program. The DBXHVPR 
module (host variable processor) must be link edited with your program in addition to 
the User Requirements Table. DBXHAPR is required if using Dynamic SQL in a COBOL 
program. 

 

The linkage editor ENTRY BEGIN statement indicates CA Datacom/DB is mainline. CA 
Datacom/DB calls your program at default entry point DBMSCBL. 

Batch Program Execution 

After the program has been link edited with the CA Datacom/DB interface, it may be 
executed. 

 

Linking Multiple Modules with SQL 

Suppose you have the following situation: 

■ You have a batch COBOL main program named PGMMAIN that is not SQL. 

■ You have a COBOL subprogram named PGMSUB that is SQL. 

■ You preprocess PGMSUB, compile PGMSUB, and catalog the object to a library. 
 



Linking Multiple Modules with SQL 

 

282  SQL User Guide 
 

■ You compile PGMMAIN (no preprocessing was necessary because it is non-SQL) and 
link the load module in this order: 

– INCLUDE DBSBTPR (from the library) 

– INCLUDE PGMSUB (from the library) 
 

– INCLUDE PGMMAIN (from the compiler output) 

– ENTRY BEGIN 

Note:  Use DBSU1PR instead of DBSBTPR if program is AMODE=31 and RMODE=ANY. 
 

Given the previously described situation, the User Requirements Table gets control first, 
because it has an entry named BEGIN.  It then passes control to the entry named 
DBMSCBL, because that is what the stub URT DBSBTPR (or DBSU1PR) is set up to do. In 
this scenario, however, the main program is never executed, because CA Datacom/DB 
passes control directly to the subprogram, and the program abends when (if not before) 
the subprogram attempts to return to the main program. 

To avoid this, you need to design the link-edit so that the CA Datacom/DB User 
Requirements Table gets control first.  The User Requirements Table that is used first 
then needs to point to the entry point of the main program that is to be executed next. 
The main program subsequently calls the subprogram, the subprogram returns to the 
main program, and when the main program ends it returns to the User Requirements 
Table.  After that, the User Requirements Table program finishes and returns control to 
the operating system. 

 

There are two ways to ensure that the scenario described in the previous paragraph 
happens: 

1. Option 1:  You can continue using User Requirements Table DBSBTPR (or DBSU1PR) 
and compiling and linking programs as before. 

The objective here is to make the entry point to which DBSBTPR (or DBSU1PR) is 
pointing be the entry point of the main program, not the subprogram.  To 
accomplish this, do the following: 

a. In the main program, add ENTRY DBMSCBL at the appropriate point in the 
code. 

b. If the main program involved has parameters and thus has: 

PROCEDURE DIVISION USING parm1 parm2 ... parmn 

the USING clause should be copied onto the ENTRY DBMSCBL so that it 
becomes: 

ENTRY DBMSCBL USING parm1 parm2 ... parmn 
 



Linking Multiple Modules with SQL 

 

Chapter 6: Program Compilation, Link-Edit and Execution  283  
 

c. In the subroutine, remove the ENTRY DBMSCBL statement. Replace it with 
another entry point name.  This is done with the SQL preprocessor option 
USRNTRY=.  Specify something other than DBMSCBL.  Do not let it default, since 
DBMSCBL is the default, and we do not want two modules going into the 
link-edit with the entry point DBMSCBL. 

d. Link edit the main program, including the User Requirements Table DBSBTPR 
(or DBSU1PR), the other modules as desired (PGMSUB and PGMMAIN), and 
ENTRY BEGIN. 

 

2. Option 2:  Create another stub User Requirements Table instead of using DBSBTPR 
(or DBSU1PR). 

The objective here is to create another stub User Requirements Table that points to 
an entry point (other than DBMSCBL) in the main program. To accomplish this, do 
the following: 

a. Create a User Requirements Table with no files specified.  Choose USRNTRY= to 
be the appropriate entry point of the main program.  See the CA Datacom/DB 
Database and System Administration Guide for instructions on creating User 
Requirements Table's. 

b. Link edit the main program, including the new User Requirements Table (using 
whatever name you chose), other modules as desired (PGMSUB and 
PGMMAIN), and ENTRY BEGIN. 

 

Remember, if the call to the SQL subprogram is being added to the main program at 
this point, and the main program does not use DATACOM, the "main" program is 
actually now running as a subprogram to the User Requirements Table program, 
and you should therefore use GOBACK instead of STOP RUN in the main program. 

Note:  A benefit of using option 1 for situations such as this is that you can probably use 
standard link-edit JCL for all programs. Option 2 requires the use of another stub User 
Requirements Table, either one such User Requirements Table per main non-SQL 
program that calls SQL subprograms, or one stub User Requirements Table for all such 
non-SQL main programs that call SQL subprograms.  Also with option 2, the INCLUDE 
statements have to be different in the link-edit jobs if different stub User Requirements 
Table's were used. 

 



Sample JCL for Batch 

 

284  SQL User Guide 
 

Sample JCL for Batch 

COBOL 

For COBOL samples see z/OS Sample COBOL JCL for Batch (z/OS) (see page 152) or z/VSE 
Sample COBOL JCL for Batch (z/VSE) (see page 157). 

PL/I 

For PL/I samples see z/OS PL/I Sample JCL (z/OS) (see page 161) or z/VSE PL/I Sample JCL 
(z/VSE) (see page 163). 

Assembler 

For Assembler samples see z/OS Assembler Sample JCL (z/OS) (see page 164) or z/VSE 
Assembler Sample JCL. (z/VSE) (see page 167). 

C Language 

See Sample C Language JCL (see page 168). 
 

CICS Link-Editing and Execution 

Programs running under the control of IBM's teleprocessing monitor CICS are 
subroutines to CICS.  They access CA Datacom/DB using CA Datacom CICS Services. 

The module DBCSVPR is link edited with the program to provide linkage between the 
program and CA Datacom CICS Services. 

The DBXHVPR module for the host variable processor must also be link edited. DBXHAPR 
is required if using Dynamic SQL in a COBOL program. 

An include card may be used to include these modules, as in the following example: 

 INCLUDE SYSLIB(DBCSVPR) 

 INCLUDE OBJLIB(DBXHVPR) 

 NAME modname 

CA Datacom CICS Services opens and closes all User Requirements Tables. 

Online Program Execution 

Follow the procedure for the online monitor you are using.  There are no special 
execution rules for programs using CA Datacom/DB. 

 



Sample JCL for CICS 

 

Chapter 6: Program Compilation, Link-Edit and Execution  285  
 

Sample JCL for CICS 

z/OS CICS 

For sample z/OS CICS JCL see z/OS Sample COBOL JCL for CICS (see page 154). 

z/VSE CICS 

For sample z/VSE CICS JCL see z/VSE Sample COBOL JCL for CICS (see page 159). 
 

IMS/DC Link-Editing and Execution 

Programs running under the control of IBM's teleprocessing monitor IMS/DC are 
subroutines to IMS.  They access CA Datacom/DB using CA Datacom IMS/DC Services. 
The CA Datacom language interface DFSLI000 is link edited with the program to provide 
linkage between the program and CA Datacom IMS/DC Services. The DBXHVPR module 
for the host variable processor must also be link edited. DBXHAPR is required if using 
Dynamic SQL in a COBOL program. The control cards for the link-edit step are: 

 INCLUDE SYSLIB(DBXHVPR) 

 INCLUDE IMSDCLIB(CBLTDLI) 

 ENTRY DLITCBL 

 NAME PROGNAME(R) 

CA Datacom IMS/DC Services opens and closes all User Requirements Tables. The User 
Requirements Tables are not linked with the program. SYSLIB is your CA Datacom load 
library. IMSDCLIB is the CA Datacom IMS/DC Services library where the language 
interface DFSLI000 resides. 

Note: For more information, see the section on using SQL with IMS/DC in the CA 
Datacom IMS/DC Services System Guide. 

 

Sample JCL for IMS/DC 

The following example shows z/OS JCL for precompile, compile, and link. This example is 
intended as a sample only.  You need to modify the JCL to conform to the requirements 
of your site.. 

 



Sample JCL for IMS/DC 

 

286  SQL User Guide 
 

z/OS IMS/DC Sample JCL 

The following z/OS JCL example is for programs running under CA Datacom IMS/DC 
Services. 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 //jobname    See the note above. 

 //******************************************************************** 

 //* THE FOLLOWING JOB STREAM DEMONSTRATES THE SQL 

 //* PREPROCESSOR, THE CICS COMMAND LEVEL PREPROCESSOR AND THE COBOL 

 //* COMPILER STEPS 

 //******************************************************************** 

 //STEP1    EXEC PGM=DBXMMPR 

 //STEPLIB    See the note above 

 //WORK1    DD   DSN=&.&WORK1.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //WORK2    DD   DSN=&.&WORK2.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //WORK3    DD   DSN=&.&WORK3.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=F,LRECL=80,BLKSIZE=80),SPACE=(TRK,(1,1)) 

 //SYSOUT   DD   SYSOUT=* 

 //SYSPRINT DD   SYSOUT=*                            Print Output 

 //SYSPUNCH DD   DSN=&.&TEMP.,UNIT=SYSDA,DISP=(NEW,PASS), 

 //         DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(2,1)) 

 //SYSUDUMP DD   SYSOUT=* 

 //SNAPER   DD   SYSOUT=* 

 //INCLUDE  DD   DSN=ca.user.include.library,DISP=SHR 

 //SYSIN    DD   *                                   Command input 
 

      PLACE COBOL SOURCE TEXT HERE. 

 //******************************************************************** 

 //*   COBOL COMPILER STEP 

 //******************************************************************** 

 //COB      EXEC PGM=IKFCBL00,REGION=1024K, 

 //             PARM='NOTRUNC,NODYNAM,LIB,SIZE=1024K,BUF=16K', 

 //             COND=(4,GT) 

 //SYSLIB   DD   DSN=CICS.COBLIB,DISP=SHR 

 //         DD   DSN=SYS1.COBOLINK,DISP=SHR 

 //SYSPRINT DD   SYSOUT=* 

 //SYSIN    DD   DSN=&.&SYSCIN.,DISP=(OLD,DELETE) 

 //SYSLIN   DD   DSN=&.&LOADSET.,DISP=(MOD,PASS), 

 //             UNIT=DISK,SPACE=(80,(250,100)) 

 //SYSUT1   DD   UNIT=DISK,SPACE=(460,(350,100)) 

 //SYSUT2   DD   UNIT=DISK,SPACE=(460,(350,100)) 

 //SYSUT3   DD   UNIT=DISK,SPACE=(460,(350,100)) 
 



Sample JCL for IMS/DC 

 

Chapter 6: Program Compilation, Link-Edit and Execution  287  
 

 //******************************************************************** 

 //*    LINK EDIT STEP 

 //******************************************************************** 

 //LKED     EXEC PGM=IEWL,REGION=1024K,PARM=XREF,COND=(4,GT) 

 //SYSLIB    DD DSN=ca.cobol.compiler.loadlib,DISP=SHR 

 //          DD DSN=ca.datacom.loadlib,DISP=SHR 

 //IMSDCLIB DD   DSN=yourimsdclib,DISP=SHR 

 //SYSLMOD  DD   DSN=ca.user.loadlib,DISP=SHR 

 //SYSUT1   DD   UNIT=DISK,DCB=BLKSIZE=1024, 

 //             SPACE=(1024,(200,20)) 

 //SYSPRINT DD   SYSOUT=* 

 //SYSLIN   DD   DSN=&.&LOADSET.,DISP=(OLD,DELETE) 

 //         DD   * 

  INCLUDE IMSDCLIB(CBLTDLI) 

  INCLUDE SYSLIB(DBXHVPR) 

  ENTRY DLITCBL 

  NAME TEST01(R) 

 /* 

 // 

 





 

Chapter 7: SQL Error Handling  289  
 

Chapter 7: SQL Error Handling 
 

If you are using the CA Datacom/DB SQL Preprocessor for COBOL or the Interactive SQL 
Service Facility, errors can generate non-SQL return codes or messages, as described in 
the table and the following information. 

Note: For a complete list of SQL return codes, see the CA Datacom/DB Message 
Reference Guide. 

The SQL Manager passes a value to the SQLCODE field of the SQL Communications Area 
after each SQL statement is processed during preprocessing or during program 
execution. Most values for the SQLCODE indicate that the error was detected within the 
SQL Manager. Two special cases occur when SQLCODE contains -117 or -118 (see SQL 
Return Codes -117 and -118 (see page 289)). 

Beginning with r11, a SQLSTATE status indicator is listed with each SQLCODE.  See the 
SQL return code information in the CA Datacom/DB Message Reference Guide and SQL 
States (see page 298) in this chapter.. 

 

SQL Return Codes -117 and -118 

If SQLCODE contains -117, the error was detected by CA Datacom/DB.  Check other 
SQLCA fields for the internal and/or external CA Datacom/DB return code to determine 
what action you should take. See the CA Datacom/DB Message Reference Guide for 
descriptions of CA Datacom/DB return codes and messages. 

If SQLCODE contains -118, the error was detected by the CA Datacom Datadictionary 
Service Facility. Check other SQL Communication Area (SQLCA) fields for a specific CA 
Datacom Datadictionary Service Facility return code to determine what caused the 
error. See the CA Datacom/DB Message Reference Guide for descriptions of CA Datacom 
Datadictionary Service Facility return codes and CA Datacom Datadictionary messages. 

 

The following table lists the information placed in other SQLCA fields.  Code your 
program so that it prints or displays all of the SQLCA's return code information. 

 

SQLCA Field SQLCODE=0 
No Error 

SQLCODE=-117 
CA 
DATACOM/DB 

SQLCODE=-118 
CA Datacom 
Datadictionary 
Service 
Facility 

 

SQLCA-DSFCODE bbbb  Naaa Mnnn 
Mccc 
D000 



SQL Return Codes -117 and -118 

 

290  SQL User Guide 
 

SQLCA Field SQLCODE=0 
No Error 

SQLCODE=-117 
CA 
DATACOM/DB 

SQLCODE=-118 
CA Datacom 
Datadictionary 
Service 
Facility 

 

SQLCA-DBCODE-INT null n null n 

SQLCA-DBCODE-EXT bb nn bb nn 

SQLCA-ERROR-PGM b DBSERV b ccc 
DDL 

SQLCA-ERR-MSG b error message return data return data 

SQLSTATE 00000 Seeii Rdddd Reeii 

b 

A blank indicates the command was successful, or no data was returned to the field. 

null 

A null value (binary zeros). 

n 

The one-byte CA Datacom/DB internal return code.  See the section on CA 
Datacom/DB Return Codes in the CA Datacom/DB Message Reference Guide for a 
description of the error and corrective action to take. 

 

nn 

The two-byte CA Datacom/DB external return code.  See the section on CA 
Datacom/DB Return Codes in the CA Datacom/DB Message Reference Guide for a 
description of the error and corrective action to take. 

DBSERV 

Internal information. 

Naaa 

The N indicates this is a normal alphanumeric return code, while the aaa represents 
the actual alphanumeric return code from the CA Datacom Datadictionary Service 
Facility. See the section on CA Datacom Datadictionary Service Facility Return Codes 
in the CA Datacom/DB Message Reference Guide for a description of the error and 
corrective action to take. 

 



SQL Return Codes -117 and -118 

 

Chapter 7: SQL Error Handling  291  
 

Mnnn 

M indicates return code is from a module of CA Datacom Datadictionary. The nnn 
represents the numeric return code from the CA Datacom Datadictionary Service 
Facility.  Use the first three bytes of the SQLCA-ERROR-PGM field as the first three 
three of the return code. See the section on CA Datacom Datadictionary Service 
Facility Internal Return Codes in the CA Datacom/DB Message Reference Guide for a 
description of the error and corrective action to take. 

Mccc 

The M indicates the return code is from a module of CA Datacom Datadictionary, 
while the ccc represents the CA Datacom Datadictionary Service Facility return code 
from the interface module that populates CA Datacom Datadictionary. See the 
section on CA Datacom Datadictionary Service Facility Internal Return Codes in the 
CA Datacom/DB Message Reference Guide for a description of the error and 
corrective action to take. 

 

D000 

Indicates that a CA Datacom/DB return code was received during CA Datacom 
Datadictionary Service Facility processing.  See the SQLCA-DBCODE for the CA 
Datacom/DB internal and external return codes. 

ccc 

Indicates the CA Datacom Datadictionary Service Facility module reporting the 
error.  This three-character module name and the last three bytes of the 
SQLCA-DSFCODE field indicate the error.  See the CA Datacom/DB Message 
Reference Guide for a description of the error and corrective action to take. 

 

DDL 

Indicates the error was reported by the interface module that populates CA 
Datacom Datadictionary. 

return data 

If applicable, up to 80 bytes of formatted information specific to the request 
causing the error is returned in the SQLCA-ERR-MSG field. Check the 
SQLCA-DSFCODE field for the return code and see the CA Datacom/DB Message 
Reference Guide for a description of the error and corrective action to take. 

If the SQLCA-DSFCODE field contains D000, the information in the return data 
indicates the CA Datacom/DB request issued when the error was detected, 
including the command, the return code and the CA Datacom/DB table name. 

 



Online Displays 

 

292  SQL User Guide 
 

Rdddd 

The R in the first position associates the SQLSTATE with -118. The dddd is the DSF 
code returned to SQL. 

Reeii 

The R in the first position associates the SQLSTATE with -118. The ee represents the 
2-byte external CA Datacom/DB return code. The ii represents the CA Datacom/DB 
internal return code in hexadecimal characters. 

Seeii 

The S in the first position associates the SQLSTATE with -117. The ee represents the 
2-byte external CA Datacom/DB return code. The ii represents the CA Datacom/DB 
internal return code in hexadecimal characters. 

 

Online Displays 

The following examples show how -117 and -118 are displayed on CA Datacom 
Datadictionary Interactive SQL Service Facility panels when an error is detected when 
executing an SQL statement. 

Example 1 (SQLCODE = -117) 

 => 
 => 
 => 
 ---------------------------------------------------------------------------->>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                            SQL Output Panel                                S01O 
               EDIT      Member: $DDSQL 
                    Description: CREATE TABLE FOR DEPTTBL 
 ------------------------------------------------------------------------------- 
 000010 NUMBER OF SQL STATEMENTS PROCESSED IS   0001 
 000011 (OUTPUT CREATED FROM SQL SOURCE MEMBER $DDSQL) 
 000012 create table depttbl 
 000013       (deptno   char (2), 
 000014        deptname char (24)); 
 000015 --------+--------+--------+--------+--------+--------+--------+--------+ 
 000016 ERROR OCCURRED DELETING  A PLAN  -0117(36,192)               (QDELP) 
 000017 DB ERROR OCCURRED DURING SQL PROCESSING 
 000018 --------+--------+--------+--------+--------+--------+--------+--------+ 
 ====== =========================== B O T T O M ================================ 
 PF1=HELP           PF2=END            PF3=SPLIT           PF4=PROCESS 
 PF5=TOP            PF6=BOTTOM         PF7=BACKWARD        PF8=FORWARD 
 PF9=EXECUTE        PF10=LEFT          PF11=RIGHT          PF12=ALTERNATE 

 



Online Displays 

 

Chapter 7: SQL Error Handling  293  
 

In this panel, the error messages and return codes that display are as follows: 

 ERROR OCCURRED ccccccccccccccccccccc snnnn(xx,yyy)     (bbbbb) 

Indicates an error was encountered during SQL statement execution. 

ccccccccccccccccccccc 

Indicates where the error occurred during the SQL statement execution.  In the 
previous example, an error occurred deleting a plan. 

snnnn(xx,yyy) 

The snnnn string indicates that an error occurred during CA Datacom/DB or CA 
Datacom Datadictionary execution, where the s is the sign (+ or -) and nnnn is the 
error code number.  The value -0117 of snnnn in the previous example indicates an 
error occurred in executing CA Datacom/DB. 

The (xx,yyy) represents the external and internal CA Datacom/DB return codes 
where xx is the external return code and yyy is the internal return code. 

 

(bbbbb) 

These characters identify the internal CA Datacom/DB SQL command. 

Example 2 (SQLCODE = -118) 

 => 
 => 
 => 
  
 ---------------------------------------------------------------------------->>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                            SQL Output Panel                                S01O 
               EDIT      Member: $DDSQL 
                    Description: CREATE MY SCHEMA 
 ------------------------------------------------------------------------------- 
 000001 (OUTPUT CREATED FROM SQL SOURCE MEMBER $DDSQL) 
 000002 create schema authorization jones; 
 000003 --------+--------+--------+--------+--------+--------+--------+--------+ 
 000004 ERROR OCCURRED EXECUTING A PLAN  -0118(MAAE)        DDLGETEN (QEXEI) 
 000005 --------+--------+--------+--------+--------+--------+--------+--------+ 
 ====== =========================== B O T T O M ================================ 
  
  
  
 PF1=HELP           PF2=END            PF3=SPLIT           PF4=PROCESS 
 PF5=TOP            PF6=BOTTOM         PF7=BACKWARD        PF8=FORWARD 
 PF9=EXECUTE        PF10=LEFT          PF11=RIGHT          PF12=ALTERNATE 

 



Online Displays 

 

294  SQL User Guide 
 

In this panel, the error messages and return codes that display are as follows: 

 ERROR OCCURRED ccccccccccccccccccccc snnnn(aaaa :xx,yyy) dddddddd (bbbbb) 

Indicates an error was encountered during SQL statement execution. 

ccccccccccccccccccccc 

Indicates where the error occurred during the SQL statement execution.  In the 
previous example, an error occurred executing a plan. 

 

snnnn(aaaa :xx,yyy) 

The snnnn string indicates that an error occurred during CA Datacom/DB or CA 
Datacom Datadictionary execution, were s is the sign (+ or -) and nnnn is the error 
number.  The value -0118 of snnnn in the previous example indicates an error 
occurred in executing CA Datacom Datadictionary. 

The aaaa string indicates the CA Datacom Datadictionary Service Facility return 
code and corresponds to the SQLCA-DSFCODE.  (See the table at the start of this 
chapter for the interpretation of this error.) The M in MAAE in the previous 
example means that the return code is from a module of CA Datacom 
Datadictionary, while the three characters following the M are the CA Datacom 
Datadictionary Service Facility return code from the interface module that 
populates CA Datacom Datadictionary.  In this case, AAE means "authorization 
already exists." 

When aaaa is D000, xx,yyy represents the external and internal CA Datacom/DB 
return codes where xx is the external return code and yyy is the internal return 
code.  In the previous example, no CA Datacom/DB return code is displayed on the 
panel since the error was not one detected by CA Datacom/DB. 

 

dddddddd 

The DDL in DDLGETEN in the previous example identifies the module that populates 
CA Datacom Datadictionary, while the GETEN is a CA Datacom Datadictionary 
Service Facility command. 

(bbbbb) 

These characters identify the internal CA Datacom/DB SQL command. 
 



Online Displays 

 

Chapter 7: SQL Error Handling  295  
 

Example 3 (SQLCODE = 243) 

 => 
 => 
 => 
  
 ---------------------------------------------------------------------------->>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                            SQL Output Panel                                S01O 
               EDIT      Member: $DDSQL 
                    Description: DROP TABLE DEPTTBL 
 ------------------------------------------------------------------------------- 
 000010 NUMBER OF SQL STATEMENTS PROCESSED IS   0001 
 000011 (OUTPUT CREATED FROM SQL SOURCE MEMBER $DDSQL) 
 000012 drop table depttbl; 
 000013 --------+--------+--------+--------+--------+--------+--------+--------+ 
 000014 ERROR OCCURRED EXECUTING A PLAN  +0243              TBLUPD   (QEXEI) 
 000015 ANSI EXTENSION 
 000016 --------+--------+--------+--------+--------+--------+--------+--------+ 
 ====== =========================== B O T T O M ================================ 
  
  
 PF1=HELP           PF2=END            PF3=SPLIT           PF4=PROCESS 
 PF5=TOP            PF6=BOTTOM         PF7=BACKWARD        PF8=FORWARD 
 PF9=EXECUTE        PF10=LEFT          PF11=RIGHT          PF12=ALTERNATE 

 

In this panel, the error messages and return codes that display are as follows: 

 ERROR OCCURRED ccccccccccccccccccccc snnnn(xx,yyy)   aaaaaa   (bbbbb) 

Indicates an error was encountered during SQL statement execution. 

ccccccccccccccccccccc 

Indicates where the error occurred during the SQL statement execution.  In the 
previous example, an error occurred executing a plan. 

snnnn(xx,yyy) 

The snnnn string indicates that an error occurred during CA Datacom/DB or CA 
Datacom Datadictionary execution, where the s is the sign (+ or -) and nnnn is the 
error code number. 

Note:  In the list of SQL codes found in the CA Datacom/DB Message Reference 
Guide, positive return codes are listed without the plus (+) sign and without the 
leading zero, for example the previously shown +0243, is listed as 243. 

 

The (xx,yyy) represents the external and internal CA Datacom/DB return codes 
where xx is the external return code and yyy is the internal return code. 

aaaaaa 

These characters identify the function being performed. 

(bbbbb) 

These characters identify the internal CA Datacom/DB SQL command. 
 



Batch Output 

 

296  SQL User Guide 
 

Batch Output 

The following examples show how an error handling routine can print pertinent return 
code information when SQLCODE contains -117 or -118. 

Following is the COBOL error routine used to output these examples: 

 ERRORTN. 

 

     MOVE SQLCODE TO WK-CODE. 

     IF (SQLCODE IS LESS THAN 0) 

        DISPLAY 'SQLCODE =' WK-CODE '(MINUS)' 

     ELSE 

        DISPLAY 'SQLCODE =' WK-CODE. 

     DISPLAY 'ERRPGM  =' SQLCA-ERROR-PGM. 

     DISPLAY 'ERRMSG  =' SQLCA-ERR-MSG. 

     DISPLAY 'SQLCA-DSFCODE=' SQLCA-DSFCODE. 

     MOVE SQLCA-INFCODE TO WK-CODE. 

     DISPLAY 'SQLCA-INFCODE=' WK-CODE. 

     DISPLAY 'SQLCA-DBCODE-EXT =' SQLCA-DBCODE-EXT. 

     MOVE SQLCA-DBCODE-INT TO WK-CODE. 
 

     DISPLAY 'SQLCA-DBCODE-INT =' WK-CODE. 

     DISPLAY 'SQLERR4 =' SQLCA-MISC-CODE1. 

     DISPLAY 'SQLERR5 =' SQLCA-MISC-CODE2. 

     DISPLAY 'SQLERR6 =' SQLCA-MISC-CODE3. 

     DISPLAY 'SQLWARN1=' SQLCA-WARNING(1). 

     DISPLAY 'SQLWARN2=' SQLCA-WARNING(2). 

     DISPLAY 'SQLWARN3=' SQLCA-WARNING(3). 

     DISPLAY 'SQLWARN4=' SQLCA-WARNING(4). 

     DISPLAY 'SQLWARN5=' SQLCA-WARNING(5). 

     DISPLAY 'SQLWARN6=' SQLCA-WARNING(6). 

     DISPLAY 'SQLWARN7=' SQLCA-WARNING(7). 

     DISPLAY 'SQLWARN8=' SQLCA-WARNING(8). 

     DISPLAY 'SQLSTATE=' SQLSTATE. 

     MOVE +4 TO RETURN-CODE. 

     GOBACK. 
 



Batch Output 

 

Chapter 7: SQL Error Handling  297  
 

Example 1 (SQLCODE = -117) 

In the following example, the -117 indicates the error was detected by CA Datacom/DB, 
so appropriate return code information is included in the output. 

 SQLCODE =0117(MINUS) 

 ERRPGM  =DBSERV 

 ERRMSG  =DB ERROR OCCURRED DURING SQL PROCESSING 

 SQLCA-DSFCODE= 

 SQLCA-INFCODE= 0000 

 SQLCA-DBCODE-EXT =09 

 SQLCA-DBCODE-INT= 0037 

 SQLERR4 = 

 SQLERR5 =00000000J 

 SQLERR6 = 

 SQLWARN1= 

 SQLWARN2= 

 SQLWARN3= 

 SQLWARN4= 

 SQLWARN5= 

 SQLWARN6= 

 SQLWARN7= 

 SQLWARN8= 

 SQLSTATE=S0925 
 

Example 2 (SQLCODE = -118) 

In the following example, the -118 indicates the error was detected by CA Datacom 
Datadictionary, so appropriate return code information is included in the output. 

  SQLCODE =0118(MINUS) 

  ERRPGM  =DDLGETEN 

  ERRMSG  = 

  SQLCA-DSFCODE= MANF 

  SQLCA-INFCODE= 0000 

  SQLCA-DBCODE-EXT = 

  SQLCA-DBCODE-INT= 0000 

  SQLERR4 = 

  SQLERR5 =00000000J 

  SQLERR6 = 

  SQLWARN1= 

  SQLWARN2= 

  SQLWARN3= 

  SQLWARN4= 

  SQLWARN5= 

  SQLWARN6= 

  SQLWARN7= 

  SQLWARN8= 

 SQLSTATE=RMANF 
 



Error Handling Related to Procedures and Triggers 

 

298  SQL User Guide 
 

Error Handling Related to Procedures and Triggers 

For information about error handling related to procedures and triggers, see Parameter 
Styles and Error Handling (see page 80). 

Also see SQL Error Messages Related to Procedures and Triggers (see page 83). 
 

SQL States 

Prior to r11, the SQLCODE was the sole indicator to users of the success or failure of an 
SQL transaction. Beginning with r11, in addition to the SQLCODE a SQLSTATE status 
indicator is provided that corresponds to any error or completion condition. 

No special configuration is needed to use the SQLSTATE status indicators. Applications 
can use the SQLSTATE simply by referencing the new SQLSTATE field. 

When a procedure is created using PARAMETER STYLE SQL in the CREATE PROCEDURE 
statement, the SQLSTATE is returned in the SQLCA. 

 

The SQLSTATE feature is backward-compatible with existing applications. because the 
fields holding the SQLSTATE in the SQLCA were reserved fields in prior versions. 
However, any existing, embedded SQL program that has defined a field named 
SQLSTATE fails any new preprocessing because of the duplicate name. 

Following are the layouts  of the non-DB2 mode SQLCA format in COBOL, PL/I, 
Assembler, and C (note boldface lines in the examples). 

Note:  The DB2 mode SQLCA formats are unchanged from prior versions. 
 

SQLCA Examples 

Examples follow of the SQLCA in the following language formats: 

■ COBOL (see SQLCA - CA Datacom/DB Format (COBOL) (see page 299)) 

■ PL/I (see SQLCA - CA Datacom/DB Format (PL/I) (see page 300)) 

■ Assembler (see SQLCA - CA Datacom/DB Format (Assembler) (see page 303)) 

■ C (see SQLCA in C Language (see page 304)) 
 



SQL States 

 

Chapter 7: SQL Error Handling  299  
 

SQLCA - CA Datacom/DB Format (COBOL) 
  01  SQLCA. 

       01  SQLCA. 

           05  SQLCA-EYE-CATCH          PIC X(08). 

           05  SQLCAID REDEFINES SQLCA-EYE-CATCH 

                                        PIC X(08). 

           05  SQLCA-LEN                PIC S9(9) COMP. 

           05  SQLCABC REDEFINES SQLCA-LEN 

                                        PIC S9(9) COMP. 

           05  SQLCA-DB-VRS             PIC X(02). 

           05  SQLCA-DB-RLS             PIC X(02). 

           05  SQLCA-LUWID              PIC X(08). 

           05  SQLCODE                  PIC S9(9) COMP. 

           05  SQLCA-ERROR-INFO. 

               10  SQLCA-ERR-LEN        PIC S9(4) COMP. 

               10  SQLCA-ERR-MSG        PIC X(80). 

           05  SQLERRM REDEFINES SQLCA-ERROR-INFO. 

               10  SQLERRML             PIC S9(4) COMP. 

               10  SQLERRMC             PIC X(70). 

           05  SQLCA-ERROR-PGM          PIC X(08). 

           05  SQLERRP REDEFINES SQLCA-ERROR-PGM 

                                        PIC X(08). 

           05  SQLCA-FILLER-1           PIC X(02). 
 

           05  SQLCA-ERROR-DATA. 

               10  SQLCA-DSFCODE        PIC X(04). 

               10  SQLCA-INFCODE        PIC S9(9) COMP. 

               10  SQLCA-DBCODE. 

                   15  SQLCA-DBCODE-EXT PIC X(02). 

                   15  SQLCA-DBCODE-INT PIC S9(4) COMP. 

               10  SQLCA-MISC-DATA. 

                   15  SQLCA-MISC-CODE2 PIC S9(9) COMP. 

                   15  SQLCA-MISC-CODE3 PIC S9(9) COMP. 

               10  SQLCA-ERR-DIAG REDEFINES SQLCA-MISC-DATA. 

                   15  SQLSTATE         PIC X(05). 

                   15  SQLCA-FILLER-2   PIC X(03). 

           05  SQLCA-WRN-AREA. 

               10  SQLCA-WARNING        PIC X OCCURS 8 TIMES. 
 



SQL States 

 

300  SQL User Guide 
 

           05  SQLWARN REDEFINES SQLCA-WRN-AREA. 

               10  SQLWARN0             PIC X. 

               10  SQLWARN1             PIC X. 

               10  SQLWARN2             PIC X. 

               10  SQLWARN3             PIC X. 

               10  SQLWARN4             PIC X. 

               10  SQLWARN5             PIC X. 

               10  SQLWARN6             PIC X. 

               10  SQLWARN7             PIC X. 

           05  SQLCA-PGM-NAME 

                  PIC X(08). 

           05  SQLCA-AUTHID 

                  PIC X(18). 

           05  SQLCA-PLAN-NAME 

                  PIC X(18). 

Note:  All REDEFINES are for compatibility with other SQL implementations. 
 

SQLCA - CA Datacom/DB Format (PL/I) 
 DCL 1 SQLCA, 

       5 SQLCA_EYE_CATCH     CHAR(8) INIT('SQLCA***'), 

       5 SQLCA_LEN           FIXED BINARY(31) INIT(196), 

       5 SQLCA_DB_VRS        CHAR(2) INIT('08'), 

       5 SQLCA_DB_RLS        CHAR(2) INIT('10'), 

       5 SQLCA_LUWID         CHAR(8) INIT(' '), 

       5 SQLCA_CODE          FIXED BINARY(31), 

       5 SQLCA_ERR_LEN       FIXED BINARY(15), 

       5 SQLCA_ERR_MSG       CHAR(80) INIT(' '), 

       5 SQLCA_ERROR_PGM     CHAR(8) INIT(' '), 

       5 SQLCA_FILLER_1      CHAR(2) INIT(' '), 

       5 SQLCA_DSFCODE       CHAR(4) INIT(' '), 

       5 SQLCA_INFCODE       FIXED BINARY(31), 

       5 SQLCA_DBCODE_EXT    CHAR(2) INIT('  '), 

       5 SQLCA_DBCODE_INT    FIXED BINARY(15), 

       5 SQLCA_MISC_CODE1    FIXED BINARY(31), 

       5 SQLCA_MISC_CODE2    FIXED BINARY(31), 

       5 SQLCA_MISC_CODE3    FIXED BINARY(31), 

       5 SQLCA_WRN_AREA, 

         10 SQLCA_WARNING (0:7) CHAR(1) INIT(' '), 

       5 SQLCA_PGM_NAME      CHAR(8) INIT(' '), 

       5 SQLCA_AUTHID        CHAR(18) INIT('authid here      '), 

       5 SQLCA_PLAN_NAME     CHAR(18) INIT('plan name here    '); 
 



SQL States 

 

Chapter 7: SQL Error Handling  301  
 

 DCL SQLCAID                 CHAR(8) 

                                 DEFINED SQLCA_EYE_CATCH; 

 DCL SQLCABC                 FIXED BINARY(31) 

                                 DEFINED SQLCA_LEN; 

 DCL SQLERRML                FIXED BINARY(15) 

                                 DEFINED SQLCA_ERR_LEN; 

 DCL SQLERRMC                CHAR(80) 

                                 DEFINED SQLCA_ERR_MSG; 

 DCL SQLERRP                 CHAR(8) 

                                 DEFINED SQLCA_ERROR_PGM; 

 DCL 1 SQLWARN               DEFINED SQLCA_WRN_AREA, 

       5 SQLWARN0            CHAR(1), 

       5 SQLWARN1            CHAR(1), 

       5 SQLWARN2            CHAR(1), 

       5 SQLWARN3            CHAR(1), 

       5 SQLWARN4            CHAR(1), 

       5 SQLWARN5            CHAR(1), 

       5 SQLWARN6            CHAR(1), 

       5 SQLWARN7            CHAR(1); 
 

 DCL 1 SQLCA_WARN            DEFINED SQLCA_WRN_AREA, 

       5 SQLCA_WARN0         CHAR(1), 

       5 SQLCA_WARN1         CHAR(1), 

       5 SQLCA_WARN2         CHAR(1), 

       5 SQLCA_WARN3         CHAR(1), 

       5 SQLCA_WARN4         CHAR(1), 

       5 SQLCA_WARN5         CHAR(1), 

       5 SQLCA_WARN6         CHAR(1), 

       5 SQLCA_WARN7         CHAR(1); 
 



SQL States 

 

302  SQL User Guide 
 

Note:  All REDEFINES are for compatibility with other implementations of SQL. 

 DCL 1 SQLCA, 

       5 SQLCA_EYE_CATCH     CHAR(8) INIT('SQLCA***'), 

       5 SQLCA_LEN FIXED     BINARY(31) INIT(196), 

       5 SQLCA_DB_VRS        CHAR(2) INIT('08'), 

       5 SQLCA_DB_RLS        CHAR(2) INIT('10'), 

       5 SQLCA_LUWID         CHAR(8) INIT(' '), 

       5 SQLCODE             FIXED BINARY(31), 

       5 SQLCA_ERR_LEN       FIXED BINARY(15), 

       5 SQLCA_ERR_MSG       CHAR(80) INIT(' '), 

       5 SQLCA_ERROR_PGM     CHAR(8) INIT(' '), 

       5 SQLCA_FILLER_1      CHAR(2) INIT(' '), 

       5 SQLCA_DSFCODE       CHAR(4) INIT(' '), 

       5 SQLCA_INFCODE       FIXED BINARY(31), 

       5 SQLCA_DBCODE_EXT    CHAR(2) INIT('  '), 

       5 SQLCA_DBCODE_INT    FIXED BINARY(15), 

       5 SQLCA_MISC_CODE1    FIXED BINARY(31), 

       5 SQLCA_MISC_DATA     CHAR(8), 

       5 SQLCA_WRN_AREA, 

         10 SQLCA_WARNING (0:7) CHAR(1) INIT(' '), 

       5 SQLCA_PGM_NAME      CHAR(8) INIT(' '), 

       5 SQLCA_AUTHID        CHAR(18) INIT('authid here      '), 

       5 SQLCA_PLAN_NAME     CHAR(18) INIT('plan name here    '); 
 

 DCL SQLCAID                 CHAR(8)          DEF SQLCA_EYE_CATCH; 

 DCL SQLCABC                 FIXED BINARY(31) DEF SQLCA_LEN; 

 DCL SQLERRML                FIXED BINARY(15) DEF SQLCA_ERR_LEN; 

 DCL SQLERRMC                CHAR(80)         DEF SQLCA_ERR_MSG; 

 DCL SQLERRP                 CHAR(8)          DEF SQLCA_ERROR_PGM; 

 DCL SQLCA_SQLSTATE          CHAR(5)          DEF SQLCA_MISC_DATA, 

     SQLSTATE                CHAR(5)          DEF SQLCA_MISC_DATA; 

 DCL 1 SQLWARN               DEFINED SQLCA_WRN_AREA, 

       5 SQLWARN0            CHAR(1), 

       5 SQLWARN1            CHAR(1), 

       5 SQLWARN2            CHAR(1), 

       5 SQLWARN3            CHAR(1), 

       5 SQLWARN4            CHAR(1), 

       5 SQLWARN5            CHAR(1), 

       5 SQLWARN6            CHAR(1), 

       5 SQLWARN7            CHAR(1); 
 



SQL States 

 

Chapter 7: SQL Error Handling  303  
 

 DCL 1 SQLCA_WARN            DEFINED SQLCA_WRN_AREA, 

       5 SQLCA_WARN0         CHAR(1), 

       5 SQLCA_WARN1         CHAR(1), 

       5 SQLCA_WARN2         CHAR(1), 

       5 SQLCA_WARN3         CHAR(1), 

       5 SQLCA_WARN4         CHAR(1), 

       5 SQLCA_WARN5         CHAR(1), 

       5 SQLCA_WARN6         CHAR(1), 

       5 SQLCA_WARN7         CHAR(1); 

Note:  All REDEFINES are for compatibility with other implementations of SQL. 
 

SQLCA - CA Datacom/DB Format (Assembler) 
     SQLCA    DSECT 

     SQLCAEYE DS    CL8    .EYE CATCHER 

     SQLCALEN DS    F      .BLOCK LENGTH 

     SQLCADBV DS    CL2    .DB VERSION 

     SQLCADBR DS    CL2    .DB RELEASE 

     SQLCALUW DS    CL8    .LUW ID 

     SQLCODE  DS    F      .SQL RETURN CODE 

     SQLCAERI DS    0CL82  .ERROR TEXT 

     SQLCAELN DS    H      .  LENGTH 

     SQLCAEMS DS    CL80   .  MESSAGE 

     SQLCAEPG DS    CL8    .  PROGRAM 

     SQLCAFL1 DS    CL2    .UNUSED 

     SQLCAEDT DS    0CL22  .ERROR DATA 

     SQLCADSF DS    CL4    . DSF EXTERNAL CODE 

     SQLCAINF DS    F      . RESERVED 

     SQLCADBC DS    0CL6   . DB CODES 

     SQLCADBX DS    CL2    .   EXTERNAL 
 



SQL States 

 

304  SQL User Guide 
 

     SQLCADBI DS    H      .   INTERNAL 

     SQLCAMC1 DS    F      .ROWS AFFECTED 

     SQLSTATE DS    0CL5   .SQLSTATE 

     SQLCAMC2 DS    F      .RESERVED 

     SQLCAMC3 DS    F      .RESERVED 

     SQLCAWRN DS    0CL8   .WARNINGS 

     SQLCAWN0 DS    CL1    .  SQLCA WARNING 

     SQLCAWN1 DS    CL1    .  RESERVED 

     SQLCAWN2 DS    CL1    .  RESERVED 

     SQLCAWN3 DS    CL1    .  UNEQUAL VARS 

     SQLCAWN4 DS    CL1    .  RESERVED 

     SQLCAWN5 DS    CL1    .  DATE/TIMESTAMP ADJUSTMENT 

     SQLCAWN6 DS    CL1    .  RESERVED 

     SQLCAWN7 DS    CL1    .  RESERVED 

     SQLCAPGM DS    CL8    .UNUSED 

     SQLCAATH DS    CL18   .AUTH ID 

     SQLCAPLN DS    CL18   .PLAN NAME 

     SQLCADLN EQU   *-SQLCA 

Note:  All REDEFINES are for compatibility with other implementations of SQL. 
 

SQLCA in C Language 
 struct sqlca { 

                          char  sqlca_eye_catch [8]; 

               #define sqlcaid  sqlca_eye_catch 

                          int   sqlca_len; 

               #define sqlcabc  sqlca_len 

 

               #ifndef DB2 

                          char  sqlca_db_vrs    [2]; 

                          char  sqlca_db_rls    [2]; 

                          char  sqlca_luwid     [8]; 

               #endif 

 

                          int   sqlca_code; 

               #define sqlcode  sqlca_code 

               #define sqlcade  sqlca_code 

 

               #ifndef DB2 

                          short sqlca_err_len; 

               #define sqlerrml sqlca_err_len 

               #endif 

 

                          char  sqlca_err_msg SQLCA_MSG_LEN&hyphen. ; 

               #define sqlerrmc sqlca_err_msg 

               #define sqlerrm  sqlca_err_msg 

                          char  sqlca_error_pgm  [8]; 

               #define sqlerrp  sqlca_error_pgm 
 



SQL States 

 

Chapter 7: SQL Error Handling  305  
 

 

               #ifdef DB2 

                          int   sqlerrd 6&hyphen. ; 

               #else 

                          char  sqlca_filler_1   [2]; 

                          char  sqlca_dsfcode    [4]; 

                          int   sqlca_infcode; 

                          char  sqlca_dbcode_ext [2]; 

                          short sqlca_dbcode_int; 

                          int   sqlca_misc_code1; 

                          char  sqlca_sqlstate   [5]; 

               #define sqlstate sqlca_sqlstate 

                          char  sqlca_filler_2   [3]; 

               #endif 

                          char     sqlca_wrn_area SQLCA_WARN_LEN&hyphen. ; 
 

               #define sqlca_warn0 sqlca_wrn_area[0] 

               #define sqlca_warn1 sqlca_wrn_area[1] 

               #define sqlca_warn2 sqlca_wrn_area[2] 

               #define sqlca_warn3 sqlca_wrn_area[3] 

               #define sqlca_warn4 sqlca_wrn_area[4] 

               #define sqlca_warn5 sqlca_wrn_area[5] 

               #define sqlca_warn6 sqlca_wrn_area[6] 

               #define sqlca_warn7 sqlca_wrn_area[7] 

               #define sqlwarn0    sqlca_wrn_area[0] 

               #define sqlwarn1    sqlca_wrn_area[1] 

               #define sqlwarn2    sqlca_wrn_area[2] 

               #define sqlwarn3    sqlca_wrn_area[3] 

               #define sqlwarn4    sqlca_wrn_area[4] 

               #define sqlwarn5    sqlca_wrn_area[5] 

               #define sqlwarn6    sqlca_wrn_area[6] 

               #define sqlwarn7    sqlca_wrn_area[7] 
 

               #ifdef DB2 

                          char     sqlext        [5]; 

              } 

      sqlca = {"SQLCA   ",136,0,"                            ", 

               "        ",0,0,0,0,0,0,"           ",0,0,0,0,0 

              }; 

               #else 

                          char     sqlca_pgm_name  [8]; 

                          char     sqlca_authid    [18] 

                          char     sqlca_plan_name [18]; 

              } 

      sqlca = {"SQLCA***",196,"10", "0 ","        ",0,0, 

               "                           ","        ","  ", "    ",0,"  ", 0, 

               ' ', ' ', ' ',"        ","        ","CA AuthID","<pgmname>" 

              }; 

               #endif 
 



SQL States 

 

306  SQL User Guide 
 

SQL State Classes 

The two-character SQLSTATE classes, listed in the following table, are the first 
(left-most) characters of the SQLSTATE. You can extract these classes from SQLSTATEs 
returned by CA Datacom and use the error-class-sensitive criteria thus obtained for 
error recovery purposes. For a table listing the SQLSTATEs in numerical order and the 
SQL return code(s) that equate to them, see SQL States Table (see page 308). 

Be aware that some classes shown in the following table may not yet have had 
associated error conditions defined for them by CA Datacom. Also, we reserve the right 
to add or drop classes and to move existing error conditions between classes and 
subclasses (the right-most 3 bytes) at any time, thereby changing the SQLSTATE 
associated with an error condition. However, such changes are expected to only rarely 
occur. 

 

Class Description 

00 Successful completion. 

01 Warning (completion condition as opposed to exception condition). 

02 No data (completion condition as opposed to exception condition). 

03 SQL statement not yet complete. 

07 Dynamic SQL error. 

08 Connection exception. 

09 Triggered action exception. 

0A Feature not supported. 

0B Invalid transaction initiation. 

0D Invalid target type specification. 

0F Locator exception. 

0L Invalid grantor. 

0P Invalid role specification. 

OW Prohibited stmt encountered during trigger exec. 

21 Cardinality violation. 

22 Data exception. 

23 Integrity constraint violation. 

24 Invalid cursor state. 

25 Invalid transaction state. 

26 Invalid SQL statement name. 



SQL States 

 

Chapter 7: SQL Error Handling  307  
 

Class Description 

27 Triggered data change violation. 

28 Invalid authorization specification. 

2B Dependent privilege descriptors still exist. 

2D Invalid transaction termination. 

2E Invalid connection name. 

2F SQL routine exception. 

30 Invalid SQL statement. 

31 Invalid target specification value. 

33 Invalid SQL descriptor name. 

34 Invalid cursor name. 

35 Invalid condition number. 

36 Cursor sensitivity exception. 

38 External routine exception. 

39 External routine invocation exception. 

3B Savepoint exception. 

3C Ambiguous cursor name. 

3D Invalid catalog name. 

3F Invalid schema name. 

40 Transaction rollback. 

42 Syntax error or access rule violation. 

44 With check option violation. 

51 Application state is invalid. 

53 Inconsistent specification or invalid operand. 

54 SQL or DATACOM limit exceeded. 

55 Object not in prerequisite state. 

56 Miscellaneous SQL or DATACOM error. 

57 Resource unavailable or operator intervened. 

58 System error. 

80 CA Datacom Datadictionary, DDD, and CXX errors. 

Hx WHERE x=1 thru F (H1 thru HF): SQL Multimedia (various subclasses). 



SQL States 

 

308  SQL User Guide 
 

Class Description 

HZ Remote Database Access (various subclasses). 

Re SQLCODE -118, where the e is the first character of the CA Datacom/DB 
return code. 

Se SQLCODE -117, where the e is the first character of the CA Datacom/DB 
return code. 

SQL States Table 

This table lists the SQLSTATEs in numerical order and the SQL return code(s) that equate 
to them. For information about the defined classes of SQLSTATEs, see SQL State Classes 
(see page 306). 

 

SQL State SQL Return Code(s) 

00000 0, -985, -986, -987, -988, -989, -990, -991, -992, -993, -994, -995, 
-996, -997, -998 

01S01 +170 

01S02 -243 

07003 -134 

07S01 -301 

07S02 -302 

07S03 -303 

07S04 -304 

07S05 -300 

07S06 -306 

07S07 -307 

07S08 -308 

07S09 -309 

07S10 -311 

07S11 -312 

09S01 -533 

09S02 -532 

0AS01 -023, -024, -027, -029, -031, -109, 



SQL States 

 

Chapter 7: SQL Error Handling  309  
 

SQL State SQL Return Code(s) 

0AS02 -087 

0AS03 -101 

0AS04 -241 

0AS05 -285 

0AS06 -299 

0AS07 -269 

02000 +100 

21000 -142, -148 

2200C -042 

22001 -053 

22002 -001 

22003 -004 

22007 -193, -198, -199, -200, -201, -202, -203, -204, -218, -219, -223, -224, 
-225, -226, -227, -228, -229, -230, -231, -232, -233, -234, -235, -236, 
-237, -238 

22008 -193, -198, -199, -200, -201, -202, -203, -204, -230, -237 

22504 -294, -296, -297, -298 

22512 -293 

22S01 -039 

22S02 -295 

22S03 -161 

23502 -086 

23503 -176 

23504 -175 

23505 -263 

23513 -167 

23515 -267 

24S01 -180 

24S02 -181 

24S03 -183 

24S04 -317 



SQL States 

 

310  SQL User Guide 
 

SQL State SQL Return Code(s) 

24S05 -130 

24501 -135 

24502 -502 

25S01 -147 

25004 -144 

25501 -122 

34S01 -153 

34000 -133 

38S01 -530 

38S02 -531 

38S04 -534 

39S01 -535 

39001 -321, -322 

3FS01 -146 

3FS02 -150 

42S01 -025 

42S02 -244 

42S03 -245 

42S04 -246 

42S05 -270 

42S06 -273 

42S07 -313 

42S08 -314 

42S09 -315 

42S10 -172 

42S11 -563 

42S12 -316 

42S13 -075 

42S14 -209 

42501 -185 



SQL States 

 

Chapter 7: SQL Error Handling  311  
 

SQL State SQL Return Code(s) 

42502 -003, -008, -247, -248 

42601 -020, -110 

42603 -007 

42604 -105, -284 

42606 -565, -566 

42607 -072 

42611 -151 

42612 -002 

42622 -030 

42625 -208 

42701 -055, -069 

42702 -033 

42703 -009 

42703 -261 

42704 -014, -015, -034, -127, -179, -250 

42707 -070 

42710 -165 

42802 -054, -057 

42803 -073, -076, -103 

42804 -207 

42805 -066 

42806 -159 

42807 -079, -111 

42808 -113 

42811 -155 

42815 -044, -278 

42816 -277 

42818 -041, -194, -195 

42820 -289 

42821 -058 



SQL States 

 

312  SQL User Guide 
 

SQL State SQL Return Code(s) 

42823 -071 

42824 -290 

42825 -083 

42826 -082 

42830 -173 

42831 -182 

42837 -255 

42889 -168, -564 

42890 -169 

42902 -162, -174 

42903 -067 

42905 -080 

42908 -184 

44S01 -178 

44S02 -018 

44000 -156 

51S01 -129 

51S02 -210 

51002 -124 

51003 -120 

53S01 -017 

53S02 -019 

53S03 -036 

53S04 -043 

53S05 -045 

53S06 -084 

53S07 -085 

53S08 -132 

53S09 -138 

53S10 -139 



SQL States 

 

Chapter 7: SQL Error Handling  313  
 

SQL State SQL Return Code(s) 

53S11 -140 

53S12 -141 

53S13 -145 

53S14 -143 

53S15 -149 

53S16 -163 

53S17 -189 

53S18 -190 

53S19 -191 

53S20 -192 

53S21 -205 

53S22 -206 

53S23 -242 

53S24 -254 

53S25 -257 

53S26 -260 

53S27 -274 

53S28 -286 

53S29 -310 

53S30 -503 

53S31 -504 

53S32 -505 

53S33 -136 

53S34 -275 

53S35 -276 

53S36 -305 

53S37 -320 

53S38 -562 

53S39 -292 

53S40 -215 



SQL States 

 

314  SQL User Guide 
 

SQL State SQL Return Code(s) 

53S41 -214 

53S42 -216 

54S01 -021 

54S02 -164 

54S03 -256 

54S04 -319 

54001 -032 

54002 -006, -012 

54004 -026, -152 

54010 -061 

54010 -131 

54011 -060 

55S01 -166, -249, -262 

55S02 -252 

55S03 -251 

55S04 -037 

55S05 -158 

55S06 -171 

55S07 -177 

55S08 -188 

55S09 -291 

55S10 -318 

56S01 -056 

56S02 -123 

56S04 -264 

56S05 -038 

56S06 -119 

56S07 -121 

56S08 -128 

56S09 -265 



SQL States 

 

Chapter 7: SQL Error Handling  315  
 

SQL State SQL Return Code(s) 

56S10 -266 

56S11 -272 

56S12 -279 

56S13 -280 

56S14 -281 

56S15 -282 

56S16 -283 

56S17 -287 

56S18 -288 

56SNO -064 

56S19 -999 

57S01 -040 

57S02 -125 

57S03 -137 

57S04 -259 

57S05 -560, -561 

57S06 -258 

57S07 -016 

57002 -559 

57011 -010, -157 

58S01 -126 

58S02 -035 

80S01 -005 

REEII -118 

SEEII -117 

 





 

Chapter 8: Application Tasks Using Embedded SQL  317  
 

Chapter 8: Application Tasks Using 
Embedded SQL 
 

The following chapters contain examples on embedding SQL statements in a host 
program.  The following table lists the chapters in this part and what each contains: 

 

Chapter/Section Contains 

Specifying Result Tables (see page 321) Examples on different ways to use the 
select-statement to retrieve the desired data. 

Selecting All Columns (see page 321) An example on selecting all columns in a 
table. 

Selecting Some Columns (see 
page 322) 

An example on selecting specific columns in a 
table. 

Selecting Using Search Conditions (see 
page 323) 

An example on using search conditions to 
limit the rows in the result table. 

Ordering by Column Values (see 
page 324) 

An example on ordering returned data by 
values in the column(s). 

Eliminating Duplicate Rows (see 
page 325) 

An example on eliminating duplicate rows in 
the returned data. 

Counting (see page 326) An example on counting the rows in a result 
table. 

Calculating Values (see page 327) Examples on using column values to calculate 
values which are not contained in the table, 
and also using a subquery (nested subselects). 

Summarizing Group Values (see 
page 329) 

An example on grouping columns by value. 

Testing for Existence (see page 331) An example on testing for existence of certain 
rows. 

Selecting Data from Multiple Tables 
(see page 333) 

Discusses the join and union operations on 
data from multiple tables. 

Joining Tables An example on deriving a result table which 
includes all specified data from two or more 
tables. 

Using the UNION Operator (see 
page 337) 

An example on deriving a result table which is 
a set formed by the union of two result tables. 



SQL States 

 

318  SQL User Guide 
 

Chapter/Section Contains 

Inserting Rows (see page 341) Examples on using the INSERT statement to 
insert rows into a table. 

Updating a Table (see page 343) An example on using the UPDATE statement 
to update rows in a table. 

Deleting Rows (see page 347) An example on using the DELETE statement to 
delete rows from a table. 

Committing and Backing Out 
Transactions (see page 349) 

An example on using the COMMIT WORK 
statement to commit transactions and the 
ROLLBACK WORK statement to back out 
transactions. 

The embedded examples include the following statements, clauses, functions and 
predicates. 

 

Statements: Clauses: Functions: Predicates: 

CLOSE 
COMMIT WORK 
DECLARE 
CURSOR 
DELETE 
FETCH 
INSERT 
OPEN 
ROLLBACK 
WORK 
SELECT 
SELECT INTO 
UPDATE 
WHENEVER 

FROM 
GROUP BY 
HAVING 
ORDER BY 
WHERE 

AVG 
COUNT 
(DISTINCT 
column-name) 
COUNT (*) 
MAX 
MIN 
SUM 

EXISTS 



SQL States 

 

Chapter 8: Application Tasks Using Embedded SQL  319  
 

With regard to the SELECT statement listed previously, note that in the examples the 
select-statement form of the SELECT statement is a component of the DECLARE CURSOR 
statement, and that the examples could be executed interactively by omitting the 
"DECLARE CURSOR FOR" clause. See DECLARE CURSOR for more information on the 
DECLARE CURSOR statement and SELECT (see page 766) for more information on the 
SELECT statement. 

Note:  All examples use the CUSTOMERS and ORDERS tables listed in Sample Data 
Tables (see page 823). 

For examples using other SQL statements, such as CREATE and DROP, see the 
appropriate chapter in the section starting on Using the Interactive SQL Service Facility 
(see page 355). 

For examples involving the use of dynamic SQL, see Dynamic SQL (see page 55). Also see 
the descriptions and examples of the dynamic SQL statements in SQL Statements (see 
page 597). 
 





 

Chapter 9: Specifying Result Tables  321  
 

Chapter 9: Specifying Result Tables 
 

You can use the SELECT statement to construct queries which specify the result table 
you want. 

The various clauses of the SELECT statement allow you to limit the data you retrieve to 
only that data which is significant for your purpose. 

Note: In the following examples, the SELECT statement is embedded inside a DECLARE 
CURSOR statement, as it would be in a COBOL program. 

 

Selecting All Columns 

You do not have to name every column in a table if you want to retrieve each one, as 
the following example shows. 

 Problem 

 

 Select all columns from the table ORDERS. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       DECLARE ORDER_LIST CURSOR FOR 

  3           SELECT * 

  4           FROM ORDERS 

  5   END-EXEC 

               . 

               . 

       (COBOL statements) 

               . 

               . 

Line 3 

The asterisk (*) in the select-statement is used to retrieve all columns from the specified 
table without having to name each column. 

 



Selecting Some Columns 

 

322  SQL User Guide 
 

Selecting Some Columns 

A result table can contain only those columns you specifically want to see.  To retrieve 
specific columns, you name those columns in the SELECT statement, as shown in the 
following: 

 

 Problem 

 

 Select some specific columns from table CUSTOMERS. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       DECLARE CUSTLIST CURSOR FOR 

  3           SELECT CUST_NO, CITY, STATE 

  4           FROM CUSTOMERS 

  5   END-EXEC. 

               . 

               . 

       (COBOL statements) 

               . 

               . 

Line 3 

To retrieve only specific columns for inclusion in your result table, name those columns 
in the SELECT statement. This example retrieves columns named CUST_NO, CITY and 
STATE from the CUSTOMERS table to build a result table. 

 



Selecting Using Search Conditions 

 

Chapter 9: Specifying Result Tables  323  
 

Selecting Using Search Conditions 

A search condition (WHERE clause) in the SELECT statement can limit the retrieved data 
to only that which is significant for your purposes. 

 

 Problem 

 

Select all columns from table CUSTOMERS, but only retrieve rows where 

the value of the column STATE is equal to the value of the host 

variable WS-STATE. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       DECLARE CUSTLIST CURSOR FOR 

  3           SELECT * 

  4           FROM CUSTOMERS 

  5           WHERE STATE = :WS-STATE 

  6   END-EXEC. 

               . 

               . 

       (COBOL statements) 

               . 

               . 
 

Line 3 

All columns are selected for inclusion in the result table. 

Line 5 

The search condition, STATE = :WS-STATE, limits the number of rows retrieved. Only 
rows where the column STATE contains a value equal to the value of the host variable 
WS-STATE are selected. Hyphens can be used in a COBOL item which is referenced in an 
SQL statement. 

 



Ordering by Column Values 

 

324  SQL User Guide 
 

Ordering by Column Values 

When the ordering of retrieved data is important, use the ORDER BY clause. 

 

 Problem 

 

Specify columns CUST_NO, CITY, and STATE for retrieval from the 

CUSTOMERS table.  Place rows of the result table in ascending order by 

CUST_NO. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       DECLARE CUSTLIST CURSOR FOR 

  3           SELECT CUST_NO, CITY, STATE 

  4           FROM CUSTOMERS 

  5           ORDER BY CUST_NO 

  6   END-EXEC. 

               . 

               . 

       (COBOL statements) 

               . 

               . 
 

Line 3 

Three columns are selected for inclusion in the result table. 

Line 5 

The ORDER BY clause specifies the order the rows are to be placed in the result table.  
The default order is ascending, so the rows are in ascending order, that is to say, the 
lowest customer identification number to the highest. 

 



Eliminating Duplicate Rows 

 

Chapter 9: Specifying Result Tables  325  
 

Eliminating Duplicate Rows 

Redundant duplicates can be eliminated from your result table by specifying the 
keyword DISTINCT in the SELECT statement. 

 

 Problem 

 

Retrieve all customer states in CUSTOMERS, eliminating any duplicates. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       DECLARE CUSTLIST CURSOR FOR 

  3           SELECT DISTINCT STATE 

  4           FROM CUSTOMERS 

  5   END-EXEC. 

               . 

               . 

       (COBOL statements) 

               . 

               . 

Line 3 The keyword DISTINCT specifies that any redundant duplicate values for STATE 
are to be eliminated from the result table.  The result table includes one occurrence of 
each unique value for STATE. 

 



Counting 

 

326  SQL User Guide 
 

Counting 

The COUNT(*) function lets you tally the number of rows in the result table.  The 
COUNT(DISTINCT column-name) form of this function returns the number of distinct 
values in the specified column. 

The following example uses the COUNT(DISTINCT column-name) function in a SELECT 
INTO statement. 

 

 Problem 

 

Find the number of unique customer states contained in CUSTOMERS. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       SELECT COUNT(DISTINCT STATE) 

  3       INTO :WC-COUNT 

  4       FROM CUSTOMERS 

  5   END-EXEC. 

               . 

               . 

       (COBOL statements) 

               . 

               . 
 

Line 2 

The COUNT(DISTINCT STATE) function tallies the number of distinct values in the STATE 
column of CUSTOMERS.  The result of the SELECT statement is the result of the COUNT 
function, which is a number, not a result table. 

Line 3 

The INTO clause specifies that the value returned by the COUNT function is placed in the 
host variable :WC-COUNT. Hyphens can be used in a COBOL item which is referenced in 
an SQL statement. 

 



Calculating Values 

 

Chapter 9: Specifying Result Tables  327  
 

Calculating Values 

You can use expressions and/or functions in the SELECT statement to calculate values 
which are not contained in the actual table. Predicates which contain expressions can be 
used in the WHERE clause to form a search condition based on existing column values. 

Example 1 

 

 Problem 

 

Calculate each year-to-date sales after a 10 percent discount. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       DECLARE YTDLIST CURSOR FOR 

  3           SELECT YTD_SALES, YTD_SALES * .9 

  4           FROM CUSTOMERS 

  5   END-EXEC. 

               . 

               . 

       (COBOL statements) 

               . 

               . 
 

Line 3 

The SELECT statement includes the expression YTD_SALES * .9 to calculate the new 
year-to-date sales after a 10 percent discount. 

 



Calculating Values 

 

328  SQL User Guide 
 

Example 2 

The following example uses nested subselects. The inner subselect is called a subquery. 
Correlation names are also used in this example to avoid ambiguity in referring to 
columns. 

 

 Problem 

 

Find all year-to-date sales whose current value is greater than the 

average year-to-date sales, and the industry code is A. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       DECLARE YTDLIST CURSOR FOR 

  3           SELECT CUST_NO, YTD_SALES 

  4           FROM CUSTOMERS C1 

  5           WHERE IND_CD = 'A' 

  6               AND YTD_SALES > 

  7                   (SELECT AVG(YTD_SALES) 

  8                    FROM CUSTOMERS 

  9                    WHERE CUST_NO = C1.CUST_NO) 

 10   END-EXEC. 

               . 

               . 

       (COBOL statements) 

               . 

               . 
 

Lines 3-6 

The outer subselect requests a set of all rows where the IND_CD values is equal to 'A' 
and the YTD_SALES value is greater than the specifications in the subquery. In Line 4, C1 
is the correlation name for the CUSTOMERS table in the outer subselect. 

Lines 7-9 

The subquery finds the average YTD_SALES where the CUST_NO value equals the 
CUST_NO value in the outer subselect.  C1 is used as a qualifier to indicate the reference 
is to CUST_NO in the outer subselect. 

 



Summarizing Group Values 

 

Chapter 9: Specifying Result Tables  329  
 

Summarizing Group Values 

Use the GROUP BY clause to apply a function to each group of column values. Except for 
the group column(s), any other column you specify can be the argument of a column 
function. 

 

 Problem 

 

Show the state, maximum year-to-date sales, minimum year-to-date 

sales, and average year-to-date sales for each state in the CUSTOMERS 

table.  Each group must have more than one row and the maximum 

year-to-date sales must be more than $200,000. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       DECLARE YTDLIST CURSOR FOR 

  3           SELECT STATE, MAX(YTD_SALES), MIN(YTD_SALES), AVG(YTD_SALES) 

  4           FROM CUSTOMERS 

  5           GROUP BY STATE 

  6           HAVING COUNT(*) > 1 AND MAX(YTD_SALES) > 200000 

  7   END-EXEC. 

               . 

               . 

       (COBOL statements) 

               . 

               . 
 



Summarizing Group Values 

 

330  SQL User Guide 
 

Line 3 

The SELECT statement finds the maximum and minimum year-to-date sales and 
calculates the average year-to-date sales. 

Line 5 

The GROUP BY clause specifies that each function in the SELECT statement is to be 
applied to each group of a STATE value and one row is to be returned for each distinct 
state. 

Line 6 

The HAVING clause limits the result table to only those groups where the STATE value 
was found more than once and the maximum year-to-date sales for the state was 
greater than $200,000. 

 



Testing for Existence 

 

Chapter 9: Specifying Result Tables  331  
 

Testing for Existence 

Use the EXISTS predicate to test for the existence of certain rows. The EXISTS predicate 
evaluates to true only if the subquery finds a row which meets the specifications of its 
search condition. 

 

 Problem 

 

Select the state and minimum year-to-date sales for each state, but 

only check customers who have orders. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       DECLARE YTDLIST CURSOR FOR 

  3           SELECT STATE, MIN(YTD_SALES) 

  4           FROM CUSTOMERS 

  5           WHERE EXISTS 

  6               (SELECT * 

  7                FROM ORDERS 

  8                WHERE ORDERS.CUST_NO = CUSTOMERS.CUST_NO) 

  9           GROUP BY STATE 

 10   END-EXEC. 

               . 

               . 

       (COBOL statements) 

               . 

               . 
 



Testing for Existence 

 

332  SQL User Guide 
 

Line 3 

The outer subselect of the SELECT statement specifies what columns to retrieve only if 
the subselect of the EXISTS predicate (lines 5-8) evaluates to true. 

Lines 5-8 

The subselect of the EXISTS predicate specifies which conditions must be met in order 
for the predicate to evaluate to true. In this case, the customer number in the ORDERS 
table must match a customer number in the CUSTOMERS table. 

Line 9 

The columns of the result table formed by the outer subselect are grouped by the value 
of the STATE column, that is to say, the result table contains one row for each unique 
value of STATE. 
 



 

Chapter 10: Selecting Data from Multiple Tables  333  
 

Chapter 10: Selecting Data from Multiple 
Tables 
 

You can specify result tables which select data from two or more base tables, two or 
more views, or even other result tables. 

One method is the join, which derives a result table that includes the specified columns 
from two or more base tables, views, or other result tables. 

Another method is the union, which produces a result table that is actually a set derived 
from two or more result tables. This method, using the UNION operator, eliminates 
duplicate rows in the result table.  To retain duplicate rows in the set, specify UNION 
ALL. 

 



Joining Tables 

 

334  SQL User Guide 
 

Joining Tables 

The ability to join two or more tables (and/or views) easily is a major advantage that 
distinguishes relational systems from non-relational systems. The join capability 
simplifies the task of retrieving data from different tables to build a single result table 
holding all the necessary data. 

You implement this join by forming a query which retrieves data from more than one 
table. Your SELECT statement includes columns (qualified by table name) from two or 
more tables. The FROM clause of your query names the tables used as qualifiers in the 
select-statement. 

All the columns specified in the SELECT form the result table. Therefore, if you specify 
the column CUST_NO from the CUSTOMERS table and the column CUST_NO from the 
ORDERS table, your result table includes two CUST_NO columns, each qualified by the 
original table name. 

You can reference up to 20 tables in a FROM clause when you are performing a join. For 
example, if a view is based on five tables, you can name that view in the FROM clause, 
and up to fifteen other tables. 

There is a special case where one or more tables are not needed and can be eliminated 
from a query, so that the query executes more efficiently. This case usually occurs when 
a view is defined that includes optional tables, but the particular use of the view does 
not require all the tables. 

Because it is an optional table, it is accessed using a LEFT JOIN, which does not change 
the number of rows returned from the primary table on the left side of the join when 
there is no matching row. When the join is on a unique/primary key, the most rows that 
can be found is one, and therefore the count of rows is also not changed when the 
single matching row is found. Finally, if no columns in the optional table are referenced 
in the query (other than the left join condition, of course), this optional table has been 
accessed and not used. It is, therefore, eliminated from the query for the purpose of 
better performance. 

Example: 

CREATE VIEW INSURANCE AS 

SELECT * FROM ACCOUNT  

T1 LEFT JOIN CARINS T2 ON T1.COL1 = T2.COL1 

T1 LEFT JOIN HOMEINS T3 ON T1.COL1 = T3.COL1 

T1 LEFT JOIN LIFEINS T4 ON T1.COL1 = T4.COL1 ; 

  

SELECT T1.NAME, T2.LICENSE FROM INSURANCE WHERE T2.VIN = :HOSTVAR ; 

In this example, where COL1 is the Primary key in all tables, only the ACCOUNT and 
CARINS tables are referenced. It doesn’t matter if there is a single matching HOMEINS or 
LIFEINS row found, and therefore these tables are eliminated from the query. 



Joining Tables 

 

Chapter 10: Selecting Data from Multiple Tables  335  
 

Also see Left Outer Joins (see page 110). 
 

Example 

The following example joins the CUSTOMERS and ORDERS tables. This example is taken 
from DBCOBSQA, a sample program available on the installation tape. 

Note: You can only join tables which have the same security type, that is to say, either 
the CA Datacom/DB External Security Model or the SQL Security Model. See the CA 
Datacom Security Reference Guide for more information about Security Models. 

 

 Problem 

 

List the customer number, name and order ID for those customers who 

have outstanding orders. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2      DECLARE CUSTORD CURSOR FOR 

  3          SELECT CUSTOMERS.CUST_NO, ORD_ID, NAME 

  4               FROM CUSTOMERS, ORDERS 

  5               WHERE CUSTOMERS.CUST_NO = ORDERS.CUST_NO 

  6               ORDER BY CUSTOMERS.CUST_NO 

  7   END-EXEC 

               . 

               . 

       (COBOL statements) 

               . 

               . 
 

Line 3 

The SELECT statement specifies the columns to be selected from each table. Column 
names which are the same in each table are qualified by the table name, such as 
CUSTOMERS.CUST_NO. ORD_ID is not qualified since it exists only in the ORDERS table 
and NAME is not qualified since it exists only in the CUSTOMERS table. 

Line 4 

Both tables are named in the FROM clause, indicating that the result table includes the 
retrieved data from each table. 

 



Joining Tables 

 

336  SQL User Guide 
 

Line 5 

The WHERE clause specifies that the value of the CUST_NO column in each table must 
be equal to be selected for the result table. If a customer does not have an outstanding 
order, then the CUST_NO value does not appear in the ORDERS, nor in the result of the 
join. The comparison is possible since the columns have comparable data types. For 
comparison rules, see Basic Operations (Assignment and Comparison). 

Line 6 

The ORDER BY clause specifies that the rows in the result table be in ascending order 
according to the customer number. 

 

Sample Output 

Following is the report produced by running DBCOBSQA. 

 -----------------------------------------------  CURRENT ORDERS  ---------------------------------------------PAGE  1 

 CUSTOMER NO CUSTOMER NAME 

 --------------------------------------------------------------------------------------------------------------------- 

  0030         CANNON TOOLS CO 

  0230         CHEMICAL MUTUAL 

  1210         LINGBERGH INDUSTRIES 

  1210         LINGBERGH INDUSTRIES 

  1450         UNION TRANSPORTATION 

  1630         MARBURY MATERIALS 

  1850         TECH CASTLE RESEARCH 

  1890         FIRST STREET BANK CORP 

  2050         TRANSAMERICAN PUBLISHING 

 END OF REPORT 

 



Using the UNION Operator 

 

Chapter 10: Selecting Data from Multiple Tables  337  
 

Using the UNION Operator 

Using the UNION operator derives a result table by combining two other result tables. 

The set of rows in the UNION of result tables R1 and R2 is the set of rows in either R1 or 
R2, with redundant duplicate rows eliminated. Each row of the UNION table is either a 
row from R1 or a row from R2. 

The columns of the result table are not named. 

Duplicate Rows 

Two rows are duplicates of one another only if each value in the first row is equal to the 
corresponding value of the second row. 

All but one row of each set of duplicates are eliminated by a UNION.  The number of 
rows in the UNION table is the sum of the number of rows in R1 and R2, less the number 
of duplicates eliminated. 

If you specify UNION ALL, duplicate rows are not eliminated. 
 



Using the UNION Operator 

 

338  SQL User Guide 
 

Rules for Columns 

Result tables R1 and R2 must have the same number of columns. 

With the exception of column names, the description of the first column of R1 must be 
identical to the description of the first column of R2, that is to say, the data type and the 
length must be the same.  The description of the second column of R1 must be identical 
to the description of the second column of R2, and so on. 

Example 

The following example (see next page) performs a union on the result tables derived 
from the CUSTOMERS and ORDERS tables. This example is taken from DBCOBSQF, a 
sample program available on the installation tape. 

 

 Problem 

 

List all customer numbers for customers who have more than $300,000 in 

year-to-date sales. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2      DECLARE CUSTORD2 CURSOR FOR 

  3          SELECT CUST_NO 

  4              FROM CUSTOMERS 

  5              WHERE YTD_SALES > 300000 

  6          UNION 

  7          SELECT CUST_NO 

  8              FROM ORDERS 

  9              ORDER BY 1 

 10   END-EXEC 

               . 

               . 

       (COBOL statements) 

               . 

               . 
 



Using the UNION Operator 

 

Chapter 10: Selecting Data from Multiple Tables  339  
 

Lines 3-5 

The first subselect specifies the column to retrieve from the CUSTOMERS table.  The 
search condition in the WHERE clause limits the retrieved rows to those where the value 
of YTD_SALES is greater than $300,000.  You do not have to qualify the CUST_NO 
column in this SELECT to distinguish it from the CUST_NO column of the ORDERS table 
because each subselect is evaluated separately.  The union is performed after each 
subselect has been processed. 

Line 6 

The UNION operator between the two subselect statements means the final result table 
contains data that is a set formed from the data retrieved by each subselect. 

 

Lines 7-9 

The second subselect specifies the column to retrieve from the ORDERS table.  No 
search condition limits the number of rows retrieved by this subselect.  The ORDER BY 
clause specifies that the rows in the result table of this union are to be placed in 
ascending order according to the value in the first column.  This column is referenced by 
a number because columns do not have names in a result table formed by a union 
operation. 

In the previous example, each subselect has one column and the definition of the 
column in the first subselect is identical to the definition of the column in the second 
subselect. 

The union of the two result tables would not be possible if one subselect had more 
columns specified than the other, or the column definitions did not match. 

The result table formed by the UNION operation is a set of the data retrieved by each 
subselect.  The columns of the result table are not named. 

 



Using the UNION Operator 

 

340  SQL User Guide 
 

Sample Output 

Following is the report produced by running DBCOBSQF: 

 -----------------------------------------------  CURRENT ORDERS ----------------------------------------------PAGE   1 

 CUSTOMER NO 

 ---------------------------------------------------------------------------------------------------------------------- 

  0030 

  0170 

  0230 

  1210 

  1450 

  1630 

  1850 

  1890 

  1950 

  1970 

  2010 

  2050 

  2070 

  2090 

  2250 

  2330 

  2690 

  3910 

  4310 

  4350 

  5590 

  6390 

  7150 

  7290 

  7350 

  7410 

  7790 

  9130 

 END OF REPORT 

 



 

Chapter 11: Inserting Rows  341  
 

Chapter 11: Inserting Rows 
 

To insert rows into a table or view, use the INSERT statement. The values you assign to 
columns during the insert can be literal values or values which have been placed in host 
variables. 

Literal values assigned to columns that contain character data must be enclosed in 
apostrophes (').  Literal values assigned to columns of numeric data types are not 
enclosed in apostrophes. 

The data type of the host variable must be compatible with the data type of the column 
to which the value is being assigned. 

If you specify the column names in the INSERT statement, the values for the columns 
must be listed in the same order as the column names. This is shown in Example 1. 

If you do not specify the column names in the INSERT statement, the values for the 
columns must be listed in the same order as the columns are specified in the base table 
(see Example 2). 

 

Example 1 

 

 Problem 

 

Add rows to the CUSTOMERS table where the value of CUST_NO and NAME 

are assigned from the host variables WC-CUSTNO and WC-NAME. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

       (loop until end of input) 

               . 

               . 

  1   EXEC SQL 

  2       INSERT INTO CUSTOMERS (CUST_NO, NAME) 

  3       VALUES (:WC-CUSTNO, :WC-NAME) 

  4   END-EXEC. 

Lines 2-3 

The row is inserted in the CUSTOMERS table with the values in the host variables 
assigned to the columns CUST_NO and NAME. 

 



Using the UNION Operator 

 

342  SQL User Guide 
 

Example 2 

The following problem shows how to insert a row in a table without having to specify 
column names to assign a value to each column. 

 

 Problem 

 

Add a row to the CUSTOMERS table with values specified for each 

column.  The values must be specified in the same order as the columns 

are listed in the table definition. 

 

 Solution 

 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL 

  2       INSERT INTO CUSTOMERS 

  3       VALUES ('Z', 

  4               '9999', 

  5               'LAGOONS R US', 

  6               '925 DAILY DRIVE', 

  7               'BOX 25', 

  8               'AGANA', 

  9               'GU', 

 10               '89333', 

 11               'B', 

 12               '808', 

 13               '967', 

 14               '2774') 

 15   END-EXEC. 

Lines 2-14 

The row is inserted into the CUSTOMERS table with the specified value for each column.  
Since the values are listed in the same order that the columns are specified in the table 
definition, it is not necessary to name the columns. 
 



 

Chapter 12: Updating a Table  343  
 

Chapter 12: Updating a Table 
 

Use an UPDATE statement to modify the contents of one or more rows. All rows in a 
table that satisfy the search condition are updated in accordance with the assignments 
in the SET clause.  You can update only one table in a single statement. Following is an 
example: 

 

 Problem 

 

Initialize new records (those with STATE equal to WS-STATE) with 

year-to-date sales equal to the host variable WS-YTD-SALES, and the 

salesman ID equal to the host variable WS-SLMN-ID. 

 Solution 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1      EXEC SQL 

  2          DECLARE CUSTUPD CURSOR FOR 

  3              SELECT * 

  4                 FROM CUSTOMERS 

  5                 WHERE STATE = :WS-STATE 

  6      END-EXEC. 

 

  7      EXEC SQL WHENEVER NOT FOUND GOTO PROGEND END-EXEC. 

  8      EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC. 

  9      EXEC SQL WHENEVER SQLERROR GOTO ERRORTN END-EXEC. 

                   . 

                   . 

 10      EXEC SQL OPEN CUSTUPD END-EXEC. 

 11      PERFORM PROCESS-CUSTOMERS-LOOP THROUGH 

 12          END-PROCESS-CUSTOMERS-LOOP. 

 13      EXEC SQL CLOSE CUSTUPD END-EXEC. 

                   . 

                   . 
 



Using the UNION Operator 

 

344  SQL User Guide 
 

 14   PROCESS-CUSTOMERS-LOOP. 

 15      EXEC SQL 

 16          FETCH CUSTUPD INTO 

 17               :WC-IND-CD, 

 18               :WC-CUSTNO, 

 19               :WC-NAME, 

 20               :WC-ADDR-1, 

 21               :WC-ADDR-2, 

 22               :WC-CITY, 

 23               :WC-STATE, 

 24               :WC-ZIP, 

 25               :WC-CRED-IND, 

 26               :WC-AREA-CD, 

 27               :WC-PH-EXCH, 

 28               :WC-PH-NO, 

 29               :WC-OPEN-DOL, 

 30               :WC-YTD-SALES, 

 31               :WC-ACT-YR, 

 32               :WC-ACT-MO, 

 33               :WC-ACT-DAY, 

 34               :WC-SLMN-ID 

 35      END-EXEC. 

 36      IF SQLCODE = ZERO 

 37          EXEC SQL 

 38              UPDATE CUSTOMERS 

 39                  SET YTD_SALES = :WS-YTD-SALES, 

 40                      SLMN_ID = :WS-SLMN-ID 

 41              WHERE CURRENT OF CUSTUPD 

 42          END-EXEC. 

               . 

               . 

 43   END-PROCESS-CUSTOMERS-LOOP. 
 

Line 5 

The search condition in the SELECT of the DECLARE CURSOR statement specifies that the 
temporary result table contains rows only where the value of the STATE column is equal 
to the value of the host variable WS-STATE. 

Line 7 

The exception condition, NOT FOUND, directs the program to go to a program end 
routine if an SQL return code of +100 is received. 

Line 8 

The exception condition, SQLWARNING, directs the program to continue execution if a 
warning condition or a positive SQL return code other than +100 is received. 

 



Using the UNION Operator 

 

Chapter 12: Updating a Table  345  
 

Line 9 

The exception condition, SQLERROR, directs the program to go to an error handling 
routine in the host program if a negative SQL return code is received. 

Line 10 

The cursor named in the DECLARE CURSOR statement is opened and positioned before 
the first row of the result table formed by the SELECT in the DECLARE CURSOR 
statement. 

Lines 11-12 

The processing loop is performed.  This loop contains the FETCH statement to position 
the cursor. 

 

Line 13 

The cursor named in the DECLARE CURSOR statement is closed. 

Lines 16-34 

The FETCH statement positions the cursor on the first (or next) row of the temporary 
result table and places that row into the host variables listed in this statement. 

Lines 38-41 

The value of each named column is updated in the row where the cursor is currently 
positioned. 
 





 

Chapter 13: Deleting Rows  347  
 

Chapter 13: Deleting Rows 
 

To delete rows from a table or view use the DELETE statement. Deleting a row from a 
view deletes the row from the table that contains the row. 

You can use the searched form of the DELETE statement or the positioned form with a 
cursor. 

The searched form of the DELETE statement uses a WHERE clause to specify a search 
condition.  Any row which matches the search condition in the WHERE clause is deleted. 

The positioned form of the DELETE statement uses the CURRENT OF clause to name a 
cursor which has previously been declared.  Only the row where the cursor is positioned 
is deleted. Following is an example. 

Important!  The DELETE is a powerful statement, and can delete all rows of a table if 
you neglect to specify a WHERE clause that limits the deletion. 

 

 Problem 

 

Delete all rows from the CUSTOMERS table where the STATE column 

contains the value specified in the host variable WS-STATE. 

 

 Solution 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1   EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC. 

  2   EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC. 

  3   EXEC SQL WHENEVER SQLERROR GO TO ERRORTN END-EXEC. 

  4   MOVE 'GU' TO WS-STATE. 

  5   EXEC SQL 

  6       DELETE 

  7           FROM CUSTOMERS 

  8           WHERE STATE = :WS-STATE 

  9   END-EXEC. 
 



Using the UNION Operator 

 

348  SQL User Guide 
 

Line 1 

The exception condition, NOT FOUND, directs the program to continue execution if an 
SQL return code of +100 is received. 

Line 2 

The exception condition, SQLWARNING, directs the program to continue execution if a 
warning condition or a positive SQL return code other than +100 is received. 

 

Line 3 

The exception condition, SQLERROR, directs the program to go to an error handling 
routine in the host program if a negative SQL return code is received. 

Lines 6-8 

The DELETE statement deletes all rows where the value of the STATE column equals the 
value of the host variable WS-STATE. 
 



 

Chapter 14: Committing and Backing Out Transactions  349  
 

Chapter 14: Committing and Backing Out 
Transactions 
 

Use the COMMIT WORK statement to commit any changes made to the database when 
updating tables. Uncommitted changes to a database can be backed out with the 
ROLLBACK WORK statement. In the following example, inserts to the table are 
committed if no errors are detected during processing.  If an error is detected, the 
inserts are backed out. Following is an example: 

 

 Problem 

 

Commit your transactions if no error is detected during processing. 

If an error is detected, rollback the transactions. 

 Solution 

               . 

               . 

       (COBOL statements) 

               . 

               . 

  1        IF SQLCODE = 0 

  2            MOVE 'INSERT COMPLETE' TO MSG-REC1 

  3            PERFORM COM-WORK 

  4            GO TO WRITE-REC. 

  5        IF SQLCODE > 100 

  6            MOVE 'WARNINGS ON INSERT' TO MSG-REC1 

  7            GO TO WRITE-REC. 
 

  8        IF SQLCODE < 0 

  9            PERFORM ROLBK-WORK 

 10            GO TO ERRORTN. 

 11    COM-WORK. 

 12         EXEC SQL 

 13             COMMIT WORK 

 14         END-EXEC. 

 15    ROLBK-WORK. 

 16         EXEC SQL 

 17             ROLLBACK WORK 

 18         END-EXEC. 
 



Using the UNION Operator 

 

350  SQL User Guide 
 

The COBOL IF sets the condition for committing or backing out the inserts to the table.  
If the SQLCODE value in the SQL Communication Area (SQLCA) is 0 (zero), no errors were 
detected during processing. Any other SQLCODE value indicates an error has been 
detected. 

Lines 1-4, 11-14 

In this example, if no errors are detected, the inserts to the table are committed by the 
COMMIT WORK statement. 

 

Lines 5-7 

The program handles the case where a condition code greater than 100 is returned by 
issuing a message. 

Lines 8-10, 15-18 

If the SQLCODE value is less than 0, the ROLLBACK WORK statement is executed to back 
out the inserts. 
 



 

Chapter 15: Overview of the Interactive SQL Service Facility  351  
 

Chapter 15: Overview of the Interactive 
SQL Service Facility 
 



Using the UNION Operator 

 

352  SQL User Guide 
 

The following chapters describe the Interactive SQL Service Facility of CA Datacom 
Datadictionary online. The Service Facility is designed primarily to allow you to create 
and test SQL objects and execute certain SQL statements. See the list of SQL statements 
that you can submit in Executable SQL Statements (see page 356). 

■ Using the Interactive SQL Service Facility (see page 355) 

Overview of the Interactive SQL Service Facility and using this mode in CA Datacom 
Datadictionary online. The following sections contain detailed information. 

■ Executable SQL Statements (see page 356) 

■ Specifying Unique SQL Names (see page 356) 

■ Submitting SQL Statements (see page 357) 

■ Using Commands (see page 366) 

■ COPY SQL Command (see page 368) 

■ DELETE SQL Command (see page 370) 

■ DISPLAY SQL Command (see page 371) 

■ EDIT SQL Command (see page 372) 

■ EXECUTE Command (see page 373) 

■ REBIND Command (see page 373) 

■ SCROLL Command (see page 374) 

■ Using Line Commands (see page 375) 

■ Using Margin Commands (see page 376) 

■ Using PF Keys (see page 377) 

■ Maintaining Source and Output Members (see page 379) 

■ Editing and Executing Source Members (see page 380) 

■ Displaying Source and Output Members (see page 388) 

■ Copying Source Members (see page 393) 

■ Deleting Source and Output Members (see page 395) 

■ Creating SQL Objects 

Overview of the Data Definition Language statements you submit through the 
Interactive SQL Service Facility to create objects or alter a table. The following 
sections contain step-by-step instructions and examples. 

■ Creating a Schema 

■ Creating a Table 

■ Altering a Table 

■ Creating an Index 

■ Creating a View 



Using the UNION Operator 

 

Chapter 15: Overview of the Interactive SQL Service Facility  353  
 

■ Creating a Synonym 

■ Adding and Replacing Comments 

■ Deleting SQL Objects 

Overview of the DROP statement and its impact on definitions in CA Datacom 
Datadictionary. The following sections contain step-by-step instructions and 
examples. 

■ Deleting a Schema 

■ Dropping an Index 

■ Dropping a Table 

■ Dropping a View 

■ Dropping a Synonym 

■ Manipulating Data in SQL Tables 

Overview of the Data Manipulation Language statements you can submit through 
the Interactive SQL Service Facility. 

■ Controlling Access Through SQL Statements 

Overview of the Data Control Language statements you can submit through the 
Interactive SQL Service Facility. 

■ Performing SQL Administrative Tasks 

Overview of the administrative tasks which can be performed for SQL processing 
using the Interactive SQL Service Facility The following sections contain step-by-step 
instructions and examples. 

■ Setting the Session Authorization ID 

■ Deleting a Plan 

■ Rebinding a Plan 

■ Displaying Index of SQL Plans 

■ Specifying Plan Options in a Source Member 

■ Coding Plan Options 

Note: For information about the CA Datacom/DB implementation of support for 
procedures and triggers, see Procedures and Triggers (see page 70) and Datadictionary 
Support for Triggers and Procedures (see page 86). 
 





 

Chapter 16: Using the Interactive SQL Service Facility  355  
 

Chapter 16: Using the Interactive SQL 
Service Facility 
 

You can use the online panels in the CA Datacom Datadictionaryy Interactive SQL 
Service Facility for data definition, manipulation and control, and to perform 
administrative tasks associated with SQL usage. You must be authorized in CA Datacom 
Datadictionary to use the Interactive SQL Service Facility.  See the person responsible for 
CA Datacom Datadictionary security on your system for authorization. 

You should be familiar with the SQL relational sub-language and its languages, listed 
following, before you use the Interactive SQL Service Facility. 

Data Definition Language (DDL) 

You can use specific SQL statements to create indexes, tables, and views, create 
schemas, create alternative names (synonyms) for tables and views, and enter 
descriptive information.  You can also remove definitions. 

Note:  Because DDL statements are not recorded to the Log Area (LXX), they are not 
recoverable using the RECOVERY function of the CA Datacom/DB Utility (DBUTLTY).  
In the case of DDL statements, it is therefore your responsibility to ensure the 
existence of the Directory (CXX) definitions necessary for recovery. 

 

Data Manipulation Language (DML) 

You can use specific SQL statements to insert, update, and delete the data in the 
production database. 

SQL Control Statements 

includes the CALL and EXECUTE PROCEDURE statements that support the CA 
Datacom/DB implementation of procedures and triggers (see Procedures and 
Triggers (see page 70) and Datadictionary Support for Triggers and Procedures (see 
page 86)). 

 



Executable SQL Statements 

 

356  SQL User Guide 
 

Executable SQL Statements 

You can execute the following SQL statements in the Interactive SQL Service Facility of 
CA Datacom Datadictionary online. The following table lists the SQL statements in each 
language: 

 

Data Definition Language (DDL) Data Manipulation Language (DML) SQL Control Statements 

ALTER TABLE 
COMMENT ON 
CREATE INDEX 
CREATE PROCEDURE 
CREATE RULE 
CREATE SCHEMA 
CREATE SYNONYM 
CREATE TABLE 
CREATE TRIGGER 
CREATE VIEW 
DROP 
GRANT 
REVOKE 

Non-cursor operations: 

DELETE (searched DELETE) 
INSERT 
SELECT 
UPDATE (searched UPDATE) 

CALL 
EXECUTE PROCEDURE 

Specifying Unique SQL Names 

SQL names for schemas, tables, indexes, views, and synonyms must be unique according 
to the rules in the following table. 

 

The SQL Statement Defines In 
CA Datacom Datadictionary 

SQL Name Requirements 

CREATE SCHEMA An AUTHORIZATION 
occurrence 

The SQL name and the 
AUTHORIZATION 
occurrence name are the 
same and must be unique 
for all schemas.  

CREATE TABLE A TABLE occurrence The SQL name of the 
table must be unique for 
all indexes, views and 
synonyms owned by a 
specific schema 
(authorization ID).  



Submitting SQL Statements 

 

Chapter 16: Using the Interactive SQL Service Facility  357  
 

The SQL Statement Defines In 
CA Datacom Datadictionary 

SQL Name Requirements 

CREATE INDEX A KEY occurrence The SQL name of the 
index must be unique for 
all indexes owned by a 
specific schema 
(authorization ID).  

CREATE VIEW A VIEW occurrence The SQL name of the view 
must be unique for all 
tables, views and 
synonyms owned by a 
specific schema 
(authorization ID).  

CREATE SYNONYM A SYNONYM occurrence The SQL name of the 
synonym must be unique 
for all tables, views and 
synonyms owned by a 
specific schema 
(authorization ID). 

See the chapter on the SQL transport utility (DDTRSLM) in the CA Datacom 
Datadictionary Batch Reference Guide for information about additional restrictions on 
words used for an AUTHID, SQL name, or CA Datacom Datadictionary occurrence name. 

When you create SQL tables, views and synonyms, the SQL name is prefixed by the 
authorization ID to create the TABLE, VIEW and SYNONYM occurrence name.  The 
format is authid-sqlname. 

Together, the authorization ID and SQL name of each table, view and synonym must be 
unique within the schema. For example, the names JONES.DEPTTBL (for a table) and 
JONES.DEPTTBL (for a view) are not unique since both are owned by the JONES schema, 
but the names JONES.DEPTTBL (for a table) and SMITH.DEPTTBL (for a view) are unique 
because they are owned by different schemas. 

 

Submitting SQL Statements 

Before you can use CA Datacom Datadictionary online to access the Interactive SQL 
Service Facility, you must be authorized in CA Datacom Datadictionary to use this mode. 
See the person responsible for maintaining CA Datacom Datadictionary on your system 
for authorization. 

 



Submitting SQL Statements 

 

358  SQL User Guide 
 

How to Submit SQL Statements 

To submit SQL statements in the Interactive SQL Service Facility: 

1. Place your SQL statements in the variable-line area of the Source Panel (examples 
are shown in the following sections). See Basic Language Elements for information 
on how to write SQL statements. 

■ You can specify a name for the source member that is created when you 
execute your statements, or use a default source member. 

■ You must place a semicolon after each complete SQL statement you enter. 

■ You can use line commands to insert, delete, copy and move lines in the Source 
Panel. 

 

The source member is saved by CA Datacom Datadictionary in a Virtual Library 
System (VLS) member. The name of the VLS library is specified in the System 
Resource Table parameter DDOLSQL= (in the DDSYSTBL macro). See the CA 
Datacom/DB Database and System Administration Guide. 

You can optionally display, copy, modify, execute, and delete your source members 
through menu and panel selections or command line commands. 

Note:  You can put comment lines in your source member. Two dashes (--) indicate 
that the line is a comment. These two dashes must be in column one and two on 
the input line.  Comment lines are included in the final tally of records within the 
member using the statement "number of records read is...," but they are not 
regarded as SQL statements. Blank lines can be used as separator lines. As with 
comment lines, blank lines are counted in the final record count but ignored as 
statements. 

 

2. Submit the source member for processing with the EXECUTE command (PF9 key). 

■ The Interactive SQL Service Facility prepares and executes the statements. 

■ If successful, the CA Datacom Datadictionary is updated with the appropriate 
definitions in PROD status. Table objects are cataloged to the Directory and are 
ready to populate with data. 

 

■ If multiple SQL commands are entered in a single source member and an SQL 
processing error (indicated by an SQL return code in the format -nnn) is 
encountered, a ROLLBACK WORK command is issued by the Interactive SQL 
Service Facility. 

Note: A COMMIT WORK command is implied, in CICS, by a transaction boundary 
(that is to say, from EXECUTE to display of results is a single transaction). A 
ROLLBACK WORK is implied, in all environments, by a negative SQL return code (in 
the format -nnn) on any SQL statement in the member being executed. The 
COMMIT WORK and ROLLBACK WORK commands can be placed in a source 
member to be executed, if necessary. 

 



Submitting SQL Statements 

 

Chapter 16: Using the Interactive SQL Service Facility  359  
 

3. CA Datacom Datadictionary places the results of processing the source member in 
an output member which is displayed on an Output Panel. The output member is 
saved in the same Virtual Library System (VLS) member as the source member. 

■ The Output Panel indicates the status of the statement execution. 

■ If the execution is not successful, CA Datacom Datadictionary displays return 
codes on this panel. Return codes for SQL and other related CA Datacom 
products are listed in the CA Datacom/DB Message Reference Guide.  

■ You can display and delete the output members. 
 

How to Use 

Use the following steps to submit your SQL statements. 

Step 1 

When you sign on or select the SET MODE function, CA Datacom Datadictionary displays 
the Datadictionary Mode Select Panel. Select Option 7 or enter the SET MODE SQL 
command. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Datadictionary Mode Select 
                                                                            P00M 
 Enter desired option number ===> __    (There are 09 options on the menu) 
  
  1. DBMAINT   (SET MODE DBM)     DATACOM/DB Structure Maintenance 
  2. ENTMAINT  (SET MODE ENTM)    Datadictionary Entity Maintenance 
  3. ENTDISPL  (SET MODE ENTD)    Datadictionary Entity Display 
  4. AUTHORIZE (SET MODE AUTH)    Datadictionary Authorization Maintenance 
  5. FILEMAINT (SET MODE FMM)     File Structure Maintenance 
  6. ISF       (SET MODE ISF)     Interactive Service Facility 
  7. SQL       (SET MODE SQL)     Interactive SQL Service Facility 
  8. IDEAL     (IDEAL)            Transfer to IDEAL application 
  9. OFF       (OFF)              End session 

Note:  If CA Ideal is not installed on your system, the OFF option appears in place of the 
CA Ideal option on the previous panel. 

 

Also note that when you access the Interactive SQL Service Facility, CA Datacom 
Datadictionary checks for the existence of the relationship between your PERSON 
occurrence and a valid SQL AUTHORIZATION occurrence.If a relationship does not exist, 
CA Datacom Datadictionary presents the Default Authorization Panel. When the 
relationship exists, the Default Authorization Panel is not presented. 

 



Submitting SQL Statements 

 

360  SQL User Guide 
 

Step 2 

The Interactive SQL Service Facility Panel appears after you select this mode. Select 
Option 1 (SQLMAINT). 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility 
  
 Enter desired option number ===> __    (There are 05 options on the menu) 
  
  1. SQLMAINT                     SQL member maintenance/execution 
  2. SQLADMIN                     SQL administrative functions 
  3. SET MODE                     Reset Datadictionary processing mode 
  4. IDEAL                        Transfer to IDEAL application 
  5. OFF                          End session 

Note: f CA Ideal is not installed on your system, the OFF option appears in place of the 
CA Ideal option on the previous panel. 

 

Step 3 

CA Datacom Datadictionary displays the SQLMAINT menu panel. Select Option 1 or 
enter the EDIT SQL command. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
 Enter desired option number ===> __    (There are 05 options on the menu) 
  
  1. EDIT                         Edit/Execute SQL members 
  2. DISPLAY                      Display source/output members 
  3. DELETE                       Delete source/output members 
  4. COPY                         Copy source members 
  5. END                          End SQLMAINT processing 

 



Submitting SQL Statements 

 

Chapter 16: Using the Interactive SQL Service Facility  361  
 

Step 4 

CA Datacom Datadictionary displays the SQL Member Selection Criteria Fill-in Panel for 
the selected function. After reading the following list, complete your entries on the 
panel and press Enter: 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                     SQL Member Selection Criteria Fill-in                  S01F 
  
  
 EDIT     SQL  / ________ , ________ , ________________________________ / 
 EDT             (source)   (output)   (description) 
                 (name  )   (name  ) 
  
  
  
  
  
 NOTE:  If no source/output member is entered the default is $DDSQL. 
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

source name 

(Optional) Enter the name of the member that contains the SQL statements. Use 
alphanumeric characters in the name. It cannot contain special characters or 
embedded blanks. 

■ If the member does not exist, a new member is created. 

■ If the member already exists in the list of members created by the current user, 
the next panel displays the existing source member for modification. 

■ If you leave this field blank, the default name is used. 

Valid Entries: 

1- to 8-character member name 

Default Value: 

$DDSQL 
 



Submitting SQL Statements 

 

362  SQL User Guide 
 

output name 

(Optional) Enter the name of the member that contains the results of executing the 
source member. Use alphanumeric characters in the name. It cannot contain special 
characters or embedded blanks. 

For convenience of identification, use the same name for both the source and 
output members. 

■ If the member already exists in the list of members created by the current user, 
CA Datacom Datadictionary replaces the previous output member upon 
execution. 

■ If you leave this field blank, the default name is used. 

Valid Entries: 

1- to 8-character member name 

Default Value: 

$DDSQL 
 

description 

(Optional) You can enter up to 32 characters and embedded blanks to describe your 
source members. The same description is displayed with the output member. 

Note: We recommend that you do not use a slash (/) as part of the description's 
text. The member cannot be retrieved with an EDT margin command if the 
description contains a slash. 

Valid Entries: 

1 to 32 characters 

Default Value: 

(No default) 
 



Submitting SQL Statements 

 

Chapter 16: Using the Interactive SQL Service Facility  363  
 

Step 5 

CA Datacom Datadictionary displays the Source Panel. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: $DDSQL    Output Line Limit: 01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

Member: 

The source member name you entered on the SQL Member Selection Criteria Fill-in 
Panel or the default member name $DDSQL. 

Output Line Limit 

The maximum number of lines you receive on the output panel. You can move the 
cursor to this field and change this limit. If your expected output exceeds 1000 
lines, you should consider embedding your SQL statement(s) in a host program. 

Person: 

The PERSON occurrence name associated with the user ID entered on the CA 
Datacom Datadictionary Sign-on Panel. 

 

Current Authid: 

One of the following is displayed: 

■ The authorization ID established for the session with the SET AUTHID function 
issued with the command or the function in the SQL Administrative option. 

■ The default authorization ID related to the user ID. 

Description: 

The description you entered on the SQL Member Selection Criteria Fill-in Panel. 
 



Submitting SQL Statements 

 

364  SQL User Guide 
 

numbered line(s) 

Use this area for your SQL statements. 

■ If you select an existing source member, the contents of the source member 
are displayed for you to modify or execute. 

■ If this is a new source member, you receive one numbered blank line. If the 
statement can be entered on one line, it is not necessary to insert additional 
lines on the panel. 

■ You can use line commands such as I (insert), R (repeat), or D (delete), to add 
and delete lines. See Using Line Commands (see page 375) for more 
information. 

 

■ CA Datacom Datadictionary allows you to enter your statements in mixed-case 
letters. If you enter mixed-case letters on a Source Panel, the Output Panel also 
contains mixed-case letters. However, lowercase letters in an ordinary token 
are folded to uppercase by the SQL Preprocessor.  Lowercase letters in a 
delimiter token remain lowercase. 

■ You must enter a semicolon after each complete SQL statement. 
 

After placing your SQL statement or statements in the numbered line area on the 
Source Panel, you can perform the following: 

1. Press PF9 to execute the source member. CA Datacom Datadictionary responds 
with the Output Panel which shows the results of the SQL processing. 

2. Press PF2 (END) to return to the SQLMAINT menu panel where you can select a 
function. If you have refreshed the panel by pressing ENTER or a PF key, your 
entries are saved in the Source Member. 

3. Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. If you have refreshed the panel by pressing ENTER 
or a PF key, your entries are saved in the Source Member. 

 



Submitting SQL Statements 

 

Chapter 16: Using the Interactive SQL Service Facility  365  
 

Step 6 

When you execute the source member, you receive a Output Panel. The following 
example shows the Output Panel displayed after a CREATE TABLE statement was 
executed.  

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel 
              EDIT     Member= $DDSQL 
                  Description: CREATE A SCHEMA 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER $DDSQL  ) 
 000002 CREATE TABLE DEPTTBL 
 000003       (DEPTNO CHAR(2) NOT NULL, 
 000004        DEPTNAME CHAR(24) NOT NULL); 
 000005 --------+--------+--------+--------+--------+--------+--------+--------+ 
 000006 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000007 --------+--------+--------+--------+--------+--------+--------+--------+ 
 000008 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000009 NUMBER OF INPUT RECORDS READ IS   0003 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

To exit from the Output Panel, you can perform one of the following. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 to display the Source Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel. 
 



Using Commands 

 

366  SQL User Guide 
 

Using Commands 

In the Interactive SQL Service Facility, you can make your selections through menu and 
prompter panels or by entering commands in the command lines of the panels. 

Note: For complete information on using CA Datacom Datadictionary online, see the CA 
Datacom Datadictionary User Guide or CA Datacom Datadictionary Online Reference 
Guide. 

The abbreviated command syntax for the menu options is displayed on the panels to 
help you learn the commands easily. The full and abbreviated command syntax for 
functions performed by the prompter panels are displayed on those panels. 

You can skip the prompter panel by entering these commands. However, if the 
complete command is longer than the 76 spaces available in a command line, you must 
use the prompter panel.  A command cannot be continued to another line. 

 

You can display HELP panels for most commands by entering HELP, followed by the 
command.  The HELP panel explains the functions and options for using that particular 
command. 

To issue commands to CA Datacom Datadictionary, enter the command in the command 
region (region 0) at the top of the panel and then press Enter. If a command is only valid 
in a specific processing mode, you must select the appropriate mode before you enter 
the command. You can select a processing mode by entering the appropriate option on 
the Datadictionary Mode Select Panel or by entering the SET MODE command with the 
selected mode identifier. 

 

Except where noted, you can enter more than one command on a panel as shown in the 
following examples.  You can change the number of command lines displayed with the 
SET CMD LIN command. See the CA Datacom Datadictionary Online Reference Guide for 
details. 

■ You can type each command on a separate line. For example: 

 => SET MODE SQL 
 => EDIT SQL 
 => 
  
 ------------------------------------------------------------------------------- 

 



Using Commands 

 

Chapter 16: Using the Interactive SQL Service Facility  367  
 

■ Or, you can type several commands on the same line and separate them with a 
semicolon, the default delimiter.  You can change the delimiter with the SET CMD 
DLM command. See the CA Datacom Datadictionary Online Reference Guide for 
details. For example: 

 => SET MODE SQL;EDIT SQL 
 => 
 => 
  
 ------------------------------------------------------------------------------- 

 

When you enter only a portion of a command, CA Datacom Datadictionary presents the 
prompter panel or menu for that function with the information you have filled in on the 
panel. 

Remember that on a prompter panel, you must do the following: 

■ Supply all required entries. 

■ Supply any desired optional entries. 

■ Press Enter or PF9 (APPLY) to continue processing. 
 

You can use the following general commands in the Interactive SQL Service Facility. See 
the CA Datacom Datadictionary Online Reference Guide for explanations of the 
commands in the following list. 

■ BOTTOM 

■ COMBINE 

■ END 

■ HELP 
 

■ INPUT 

■ MENU 

■ OFF 

■ POSITION 
 

■ PROCESS 

■ SET 

■ SPLIT 

■ STATUS 
 

■ SRB 

■ SRF 

■ TIME 
 



Using Commands 

 

368  SQL User Guide 
 

Commands Specifically for Use in the Interactive SQL Service Facility 

The following CA Datacom Datadictionary online commands are specifically for the 
Interactive SQL Service Facility.  You can use CA Datacom Datadictionary online to 
perform administrative functions such as setting the session default AUTHID, deleting 
plans, and rebinding plans.  These functions are described in Performing SQL 
Administrative Tasks. 

Note:  The following commands are valid for maintenance in the Interactive SQL Service 
Facility mode in CA Datacom Datadictionary only. They do not perform SQL functions. 

 

ALTERNATE Command 

The ALTERNATE command allows you to switch the display to the Source Panel or the 
Output Panel when both source and output members are entered on a prompter panel. 
The ALTERNATE command is also available with the PF12 key. 

 

COPY SQL Command 

You can duplicate a source member with the COPY SQL command. Output members 
cannot be copied. Use the following format for this command. The abbreviated 
command syntax is COP. 

on 

COPY SQL /old-source-name[,[new-source-name][,person]]/ 

off 

 

old-source-name 

(Required)  Enter the name of the existing source member. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 



Using Commands 

 

Chapter 16: Using the Interactive SQL Service Facility  369  
 

new-source-name 

(Optional)  Enter a valid source member name that is unique for the specified or 
current default person. 

Valid Entries: 

1 to 8 characters 

Default Value: 

If the person is not specified with this command or is the same as the person 
currently signed on to CA Datacom Datadictionary, there is no default and you 
must enter a new source name. 

If the person is specified, and is not the person currently signed on to CA 
Datacom Datadictionary, this field defaults to the old source name. 

 

,person 

(Optional)  Enter the name of the person who created the existing source member. 
If you leave this field blank, CA Datacom Datadictionary uses the name of the 
person currently signed on. 

Valid Entries: 

The first 18 characters of the 1- to 32-character occurrence name 

Default Value: 

PERSON occurrence name associated with the person currently signed on to CA 
Datacom Datadictionary 

 

CA Datacom Datadictionary automatically copies the member indicated by the COPY 
command, and displays the SQL Member List Panel to display the source members that 
currently exist.  A message also displays on the message line indicating the status of the 
copy function. 

After copying the source member, you can perform one of the following: 

■ Enter another source member name to copy on the SQL Member List Panel. 

■ Enter another SQL command on the command line. 
 

■ Press PF2 (END) to return to the SQLMAINT Panel, where you can select another 
maintenance function. 

■ Press CLEAR to return to the Interactive SQL Service Facility Panel to perform 
another SQL function. 

 



Using Commands 

 

370  SQL User Guide 
 

DELETE SQL Command 

You can use the DELETE SQL command to delete a source or output member. 

Note:  Use the SQL DROP statement to delete SQL-accessible tables, views, or 
synonyms.  See Deleting SQL Objects (see page 431) and DROP (see page 725). 

Use the following format for the DELETE SQL command. The abbreviated command 
syntax is DEL. 

on 

DELETE SQL /[source-member-name][,output-member-name]/ 

off 
 

source-member-name 

(Optional)  Enter the name of the source member that you are deleting. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 

,output-member-name 

(Optional)  Enter the name of the output member that you are deleting. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 

After you enter the DELETE SQL command, CA Datacom Datadictionary displays the SQL 
Member Selection Criteria Fill-in Panel with the source and/or output member name 
displayed. Press Enter on this panel to delete the member(s). 

After successfully deleting the members, you can perform one of the following 
functions: 

■ Enter another source and/or output name to delete. 

■ Enter another SQL command on the command line. 
 

■ Press PF2 (END) to return to the SQLMAINT Panel. 

■ Press CLEAR to return to the Interactive SQL Service Facility Panel to perform 
another function. 

 



Using Commands 

 

Chapter 16: Using the Interactive SQL Service Facility  371  
 

DISPLAY SQL Command 

Use the DISPLAY SQL command to display a specific source or output member, or 
display a list of the members for the person currently signed on to CA Datacom 
Datadictionary. To display a specific source or output member, use the following format 
for this command. The abbreviated command syntax is DIS. 

on 

DISPLAY SQL /[source-member-name][,output-member-name][,person-occurrence-name]/ 

off 
 

source-member-name 

(Optional)  Enter the name of the member that contains the SQL statements you 
want to display. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 

,output-member-name 

(Optional)  Enter the name of the member that contains the results of executing a 
source member. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 

,person-occurrence-name 

(Optional)  Enter the name of the person who created the source member. 

Valid Entries: 

1- to 32-character PERSON occurrence-name 

Default Value: 

PERSON occurrence-name associated with the person currently signed on to CA 
Datacom Datadictionary 

 



Using Commands 

 

372  SQL User Guide 
 

To display a list of all source and output members for a specific PERSON occurrence, use 
the following command. The abbreviated command syntax is DIS. 

on 

DISPLAY SQL LIST [person-occurrence-name] 

off 

 

person-occurrence-name 

(Optional)  Enter the name of the person who created the source members you 
want to display. 

Valid Entries: 

1- to 32-character PERSON occurrence name 

Default Value: 

PERSON occurrence name associated with the person currently signed on to CA 
Datacom Datadictionary 

After entering the DISPLAY SQL LIST command, CA Datacom Datadictionary displays the 
SQL Member List Panel. If the display is longer than the screen, you can use the scroll 
commands or PF keys to move backward or forward through the display. 

You can enter the following SQL margin commands on the SQL Member List Panel:  COP 
or CPY, DEL, DIS, and EDT. See Using Margin Commands (see page 376). 

 

EDIT SQL Command 

Use the EDIT SQL command to create or modify a source member. Enter the following 
command on the command line on a panel. The abbreviated command syntax is EDT. 

on 

EDIT SQL /[source-member-name][,output-member-name][,description]/ 

off 

 

source-member-name 

(Optional)  Enter the name of the member containing the SQL statements you want 
to edit. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 



Using Commands 

 

Chapter 16: Using the Interactive SQL Service Facility  373  
 

,output-member-name 

(Optional)  Enter the name of the member containing the results of executing a 
source member. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 

,description 

(Optional)  You can enter the 32-character description of the source member. 

Valid Entries: 

1 to 32 characters 

Default Value: 

(No default) 
 

After you enter the EDIT command, CA Datacom Datadictionary displays the Source 
Panel where you can perform one of the following functions: 

■ Edit the SQL statement(s) or enter additional SQL statements. Place a semicolon 
after each complete statement. 

■ Press PF9 (EXECUTE) to execute the source member. CA Datacom Datadictionary 
responds with the Output Panel which shows the results of SQL processing. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select the EDIT 
function and then specify another source member. 

■ Press CLEAR to return to the Interactive SQL Service Facility Panel to choose 
another function. 

 

EXECUTE Command 

The EXECUTE command submits the source member for execution. It is also available 
with the PF9 key. 

 

REBIND Command 

The REBIND command is valid in this mode only. It accesses the SQLADMIN panel where 
you enter the information necessary to rebind plans. See Rebinding a Plan (see 
page 457) for details. 

 



Using Commands 

 

374  SQL User Guide 
 

SCROLL Command 

Use the SCROLL command to move forward and backward through the lines of a panel 
that you cannot display all at one time on a single screen. Use the following format for 
this command. The abbreviated command syntax is SCR. If your completed command 
exceeds the 76 spaces available in one command line, you must use the prompter panel 
to issue the command. 

ON 

SCROLL [option] 

OFF 

If you do not add a keyword with the SCROLL command, CA Datacom Datadictionary 
scrolls the display forward the set number of lines in a region with the last line of the 
previous display at the top of the new display. You can also enter this command with 
the PF8 key. 

 

You can add the following optional keywords to the SCROLL command: 

 

Option Action 

+ Scroll forward the set number of lines in a region. (You can also 
use the PF8 key, the SCROLL command or the SRF command for 
this function.) 

- Scroll backward the set number of lines in a region. (You can 
also use the PF7 key or the SRB command for this function.) 

+nnn Scroll forward nnn number of lines in a region. 

-nnn Scroll backward nnnn number of lines in a region. 

B 
BACKWARD 

Scroll backward the set number of lines in a region. (You can 
also use the PF7 key, the SCROLL command, or the SRB 
command for this function.) 

BOT 
BOTTOM 

Scroll to bottom of the list. (You can also use the BOTTOM 
command for this function.) 

F 
FORWARD 

Scroll forward the set number of lines in a region. (You can also 
use the PF8 key, the SCROLL command, the SCROLL + 
command, or the SRF command for this function.) 

LEF 
LEFT 

Scroll left one full screen of an output member display. (You 
can also use the PF10 key.) The information in the output 
member can be 228 columns wide (including data, column 
headings, and spaces between columns). 

LEF nn 
LEFT nn 

Scroll left a specified number of columns on an output member 
display, where nn is the number of columns.  You can also 
optionally enter COL after nn. 



Using Line Commands 

 

Chapter 16: Using the Interactive SQL Service Facility  375  
 

Option Action 

RIG 
RIGHT 

Scroll right one full screen of an output member display. (You 
can also use the PF11 key.) The output member can be up to 
228 columns (including data, column headings, and spaces 
between columns). 

RIG nn 
RIGHT nn 

Scroll right a specified number of columns on an output 
member display, where nn is the number of columns.  You can 
also optionally enter COL after nn. 

TOP Scroll to the top of the list. (You can also use the TOP command 
for this function.) 

Using Line Commands 

You can use line commands to scroll through, insert, copy, move, and delete lines in 
repeating groups on Source Panels. These commands are not related to the online work 
queue commands which are called margin commands. See Using Margin Commands 
(see page 376) for a list of these commands. 

The numerical factor described with the following commands can be either left or right 
of the command depending on the site option selected. For example, to insert 3 lines, 
you enter either I3 or 3I depending on the format established at your site in the 
Datadictionary System Resource Table (SRT). See the CA Datacom/DB Database and 
System Administration Guide for information. 

 

Line 
Command 

Action 

* Scroll the display until this line is at the top of the panel. 

*+nnn Scroll the display until the line that is nnn lines after this line is at the 
top of the panel. 

*-nnn Scroll the display until the line that is nnn lines before this line is at the 
top of the panel. 

A Designate the location after which lines are to be copied or moved. 

B Designate the location before which lines are to be copied or moved. 

C Copy a line. Use A or B to designate location where the line is to be 
copied. 

CC Copy a block of lines.  CC must be entered on the first line and the last 
line of the block.  Use A or B to designate location where block is to be 
copied. 

D Delete a line. 



Using Margin Commands 

 

376  SQL User Guide 
 

Line 
Command 

Action 

DB Delete all lines from this line through the bottom line. 

dd Delete a block of lines.  DD must be entered on the first line and the 
last line of the block. 

DT Delete all lines from this line through the top line. 

I Insert a line after the line where the command is entered. 

IB Insert a blank line before the first line. 

In Insert n number of blank lines after the line where the command is 
entered. 

M Move a line. Use A or B to designate where the line is to be moved. 

MM Move a block of lines.  MM must be entered on the first line and the 
last line of the block.  Use A or B to designate where the block is to be 
moved. 

R Repeat the line. 

Rn Repeat the line n times after itself. 

RR Repeat a block of lines.  RR must be entered on the first line and the 
last line of the block.  The lines are repeated after the last line of the 
designated block. 

Using Margin Commands 

CA Datacom Datadictionary online provides an online work queue that allows you to 
store specific functions for processing in sequence. You activate this function by placing 
margin commands in the line numbers of display panels. The online work queue is 
session dependent and is deleted when you exit CA Datacom Datadictionary online. 

After entering margin commands, you can either: 

■ Press Enter or any scrolling PF key to refresh the screen and enter additional margin 
commands as desired. 

■ Press PF4 or enter the PROCESS command to bring the first activity from the online 
work queue. 

 



Using PF Keys 

 

Chapter 16: Using the Interactive SQL Service Facility  377  
 

You can enter the following margin commands in the line numbers on the SQL Member 
List Panel: 

 

Margin 
Commands 

Restriction and Action 

COP 
or 
CPY 

Enter for a source member only. Displays the SQL Member 
Selection Criteria Fill-in Panel for COPY with the source member 
name and person who created the source member filled in. See 
Copying Source Members (see page 393). 

DEL Enter for a source or output member that was created by the 
person currently signed on to CA Datacom Datadictionary. 
Displays the SQL Member Selection Criteria Fill-in Panel for 
DELETE with the member name and description filled in. See 
Deleting Source and Output Members (see page 395). 

DIS Enter for a source or output member. Displays the SQL Member 
Selection Criteria Fill-in Panel for DISPLAY with the member name 
and person name filled in. You can then enter the source or 
output member name, whichever was not selected by the margin 
command. See Displaying Source and Output Members (see 
page 388). 

EDT Enter for a source member that was created by the person 
currently signed on to CA Datacom Datadictionary. Displays the 
SQL Member Selection Criteria Fill-in Panel for EDIT with the 
source member name and description filled in. See Editing and 
Executing Source Members (see page 380). 

Using PF Keys 

The PF and PA keys are assigned the following functions in the Interactive SQL Service 
Facility. Keys not mentioned are ignored by CA Datacom Datadictionary. 

 

Key Equivalent Command and/or Action 

PF1 HELP - displays current HELP panel. 

PF2 END - displays the previous level panel. 

PF3 SPLIT - displays two sessions simultaneously, if your terminal displays 
more than 30 lines. Use the COMBINE command to end the session 
added with PF3 (SPLIT). 

PF4 PROCESS - retrieves and executes the next occurrence and function 
from the online work queue.  The abbreviated form in PRO. See the CA 
Datacom Datadictionary Online Reference Guide. 



Using PF Keys 

 

378  SQL User Guide 
 

Key Equivalent Command and/or Action 

PF5 TOP - scrolls the display on variable line panel to place the first line at 
the top of the repeating group section. 

PF6 BOTTOM - scrolls the display on a variable line panel to place the last 
line at the bottom of the repeating group section. 

PF7 BACKWARD - scrolls backward the default number of lines in the 
repeating group section of a variable line panel. 

PF8 FORWARD - scrolls forward the default number of lines in the 
repeating group section of a variable panel. 

PF9 EXECUTE - submits for processing the SQL statements entered on the 
Source Panel and activates the next logical panel. The abbreviated 
form is EXE. 

PF10 LEFT - scrolls left the default number of columns when the displayed 
member has more than 72 columns. The output member can be up to 
228 columns wide (including data, column headings, and spaces 
between columns). 

PF11 RIGHT - scrolls right the default number of columns when the 
displayed member has more than 72 columns. The output member can 
be up to 228 columns wide (including data, column headings, and 
spaces between columns). 

PF12 ALTERNATE - alternately displays the Source Panel and the Output 
Panel when both a source member name and an output member 
name were entered on a prompter panel. 

PA1 Refreshes the screen. 

PA2 Displays PF/PA key assignments. 

CLEAR Displays the Interactive SQL Service Facility menu. 

ENTER Performs the following functions: 

■ On delete panels:  it deletes the selected source or output 
member. 

■ On display panels:  it stores the margin and line commands and 
refreshes the screen.  This allows you to specify additional margin 
commands. 

■ On variable line maintenance panels:  it executes any line 
commands you type in the line numbers and refreshes the screen. 

■ On prompter panels and menu panels:  it displays the next panel 
when there is a series of panels. 



Maintaining Source and Output Members 

 

Chapter 16: Using the Interactive SQL Service Facility  379  
 

Maintaining Source and Output Members 

Use the SQLMAINT option of the Interactive SQL Service Facility to maintain the CA 
Datacom Datadictionary source and output members. This section explains how to edit, 
execute, display, delete, and copy the source members in CA Datacom Datadictionary. It 
also explains how you display and delete output members using this option. 

The source and output members are saved by CA Datacom Datadictionary in a Virtual 
Library System (VLS) member (the VLS is a library access method used to store panels, 
message members, control blocks, and user programs).  The VLS is one of the CA IPC.  
The name of the VLS member is specified in the System Resource Table parameter 
DDOLSQL= (in the DDSYSTBL macro). 

Note: For more information about DDOLSQL=, see the CA Datacom/DB Database and 
System Administration Guide. For more information on the Virtual Library System and 
the VLS Utility (VLSUTIL) that enables you to modify and maintain the VLS files at your 
site, see the CA IPC Implementation Guide. 

 

When you select option 1 (SQLMAINT) on the Interactive SQL Service Facility panel, CA 
Datacom Datadictionary displays the following panel: 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
 Enter desired option number ===> __    (There are 05 options on the menu) 
  
  1. EDIT                         Edit/Execute SQL members 
  2. DISPLAY                      Display source/output members 
  3. DELETE                       Delete source/output members 
  4. COPY                         Copy source members 
  5. END                          End SQLMAINT processing 

Enter the number for the option you want to use and press Enter. CA Datacom 
Datadictionary displays the SQL Member Selection Criteria Fill-in Panel. The panel 
displays the option at the left of the panel and the fields needed for processing. 

 



Maintaining Source and Output Members 

 

380  SQL User Guide 
 

Editing and Executing Source Members 

Use option 1 (EDIT) on the SQLMAINT Panel to create, modify, or execute a member 
containing SQL statements. CA Datacom Datadictionary displays a SQL Member 
Selection Criteria Fill-in Panel as in the following example: The panel displays the EDIT 
option you requested on the left side of the panel, and provides fields for you to enter 
the names of the source and output members and a description. 

You can also use the EDT SQL command in the command area in the Interactive SQL 
Service Facility. For details about entering this command, see EDIT SQL Command (see 
page 372). 

 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                     SQL Member Selection Criteria Fill-in                  S01F 
  
  
 EDIT     SQL  / ________ , ________ , ________________________________ / 
 EDT             (source)   (output)   (description) 
                 (name  )   (name  ) 
  
  
  
  
  
 NOTE:  If no source/output member is entered the default is $DDSQL. 
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Maintaining Source and Output Members 

 

Chapter 16: Using the Interactive SQL Service Facility  381  
 

Complete your specifications on the SQL Member Selection Criteria Fill-in Panel 
according to the following descriptions: 

source name 

(Optional) Enter the name of the member that contains the SQL statements. Use 
alphanumeric characters in the name.  It cannot contain special characters or 
embedded blanks. 

When the member name you enter already exists for the current user, the next 
panel displays the existing source member for modification. If the member does not 
exist, a new member is created. If you leave this field blank, the default name is 
used. 

Valid Entries: 

1 to 8 characters 

Default Value: 

$DDSQL 
 

output name 

(Optional) Enter the name of the member that contains the results of executing the 
source member. Use alphanumeric characters in the name. It cannot contain special 
characters or embedded blanks. 

For identification convenience, use the same name for both the source and output 
members. If the output member name you enter already exists, CA Datacom 
Datadictionary replaces the previous output member upon execution. If you leave 
this field blank, the default name is used. 

Valid Entries: 

1 to 8 characters 

Default Value: 

$DDSQL 
 

description 

(Optional) You can enter up to 32 characters and embedded blanks to describe your 
source members. The same description is displayed with the output member. 

Valid Entries: 

1  to 32 characters 

Default Value: 

(No default) 
 



Maintaining Source and Output Members 

 

382  SQL User Guide 
 

Source Panel 

After you complete the SQL Member Selection Criteria Fill-in Panel, and press Enter, CA 
Datacom Datadictionary displays the Source Panel. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: $DDSQL    Output Line Limit:  01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: CREATE TABLE DEPTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

Information you provided on the SQL Member Selection Criteria Fill-in Panel displays in 
the top portion of this panel. In this example, a CREATE TABLE SQL statement is being 
executed. See the following explanation of the fields that appear on this panel. 

Member: 

The source member name you entered on the SQL Member Selection Criteria Fill-in 
Panel or the default member name $DDSQL. 

Output Line Limit: 

(Optional) The maximum number of lines you receive on the output panel. Even 
though a portion of the output member information is displayed, the entire 
statement is executed. 

If you want the output to display more than 1000 lines, we recommend that you 
enter the SQL statements in an application program, or see the person responsible 
for administering CA Datacom/DB at your site. 

Valid Entries: 

Up to 1000 

Default Value: 

1000 
 



Maintaining Source and Output Members 

 

Chapter 16: Using the Interactive SQL Service Facility  383  
 

Person: 

The PERSON occurrence associated with the user ID entered on the CA Datacom 
Datadictionary Signon Panel. 

Current Authid: 

One of the following is displayed: 

■ The AUTHID related to the current user 

■ The AUTHID established for the session with the SET AUTHID option. 
 

Description: 

The description you entered on the SQL Member Selection Criteria Fill-in Panel. 

numbered line(s) 

If this is a new source member, you receive one numbered blank line where you 
enter your SQL statement(s). See the instructions in Submitting SQL Statements 
(see page 357) to enter the SQL statements you can execute in the Interactive SQL 
Service Facility. End each statement with a semicolon. 

Use line commands to insert the number of text lines needed to enter the 
statement(s). See Using Line Commands (see page 375). 

 

After completing the statement, press Enter. CA Datacom Datadictionary displays the 
SQL statement as it was entered. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: $DDSQL    Output Line Limit:  01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: CREATE TABLE DEPTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 CREATE TABLE DEPTTBL 
 000002       (DEPTNO CHAR(2) NOT NULL, 
 000003        DEPTNAME CHAR(24) NOT NULL); 
 ====== ======================= B O T T O M ==================================== 
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Maintaining Source and Output Members 

 

384  SQL User Guide 
 

At this point in processing, you can perform one of the following functions: 

■ Enter additional SQL statements. Place a semicolon after each complete statement. 

■ Press PF9 (EXECUTE) to execute the source member. CA Datacom Datadictionary 
responds with the Output Panel which shows the results of SQL processing. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select the EDIT 
function and then specify another source member. 

■ Press CLEAR to return to the Interactive SQL Service Facility Panel to choose 
another function. 

 

Output Panel 

When you execute the statement, you receive the Output Panel. The following example 
is output for the CREATE TABLE statement for the DEPTTBL table. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= $DDSQL 
                  Description: CREATE A SCHEMA 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER $DDSQL  ) 
 000002 CREATE TABLE DEPTTBL 
 000003       (DEPTNO CHAR(2) NOT NULL, 
 000004        DEPTNAME CHAR(24) NOT NULL); 
 000005 --------+--------+--------+--------+--------+--------+--------+--------+ 
 000006 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000007 --------+--------+--------+--------+--------+--------+--------+--------+ 
 000008 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000009 NUMBER OF INPUT RECORDS READ IS   0003 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Maintaining Source and Output Members 

 

Chapter 16: Using the Interactive SQL Service Facility  385  
 

When the display is longer than the screen, you can use the scroll commands or PF keys 
to display the additional information. Another example panel showing an error message 
and return code follows the description of the fields on this panel. 

Note:  Certain SQL statements, such as SELECT, return information that extends beyond 
the right column of a display. Use the scroll commands or PF keys to display this 
information. However, the returned data is truncated when the information on a line 
exceeds 228 bytes. The source and output members are stored in the Virtual Library 
System (VLS) and the VLS has a record limit of 240 bytes, of which 12 bytes are used 
internally. 

The top portion of the panel displays the member name and description you entered on 
the Source Panel. For this example, the text portion of the panel displays the contents of 
the output member the following segments. 

 

Line numbers referenced are only valid as illustration for this example, the output varies 
with each SQL statement you execute. 

Line 1 

The source member that created the output is displayed. 

Lines 2-4 

The SQL statement(s) as entered and the result(s) of the executing statement(s) are 
displayed. 

Line 6 

A message stating the success or failure of the executed statement is displayed. An 
SQLCODE of 0 indicates the statement execution was successful. When you execute a 
SELECT statement, an SQLCODE of 100 also indicates successful execution. SQL return 
codes are listed in the CA Datacom/DB Message Reference Guide. 

 

Remaining Lines 

Additional support information is included:  the number of columns CA Datacom 
Datadictionary uses to process the SQL statements, the number of input records read, 
the number of SQL statements processed. 

If the returned data exceeds the 228-byte per line limit, the support information 
includes: RECORD LENGTH EXCEEDS MAXIMUM, DATA MAY BE TRUNCATED. 

 



Maintaining Source and Output Members 

 

386  SQL User Guide 
 

Error Messages Displayed 

When an error in processing is encountered, more information is displayed containing 
the appropriate return codes, and whether the error was encountered in processing CA 
Datacom Datadictionary or CA Datacom/DB. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= CSCHEMA 
                  Description: CREATE A SCHEMA 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER CSCHEMA ) 
 000002 CREATE SCHEMA AUTHORIZATION JONES; 
 000003 ---------+---------+---------+---------+---------+---------+---------+-- 
 000004 ERROR OCCURRED EXECUTING A PLAN  -0118(MAAE)                 (QEXEI) 
 000005 ---------+---------+---------+---------+---------+---------+---------+-- 
 ====== ======================= B O T T O M ==================================== 
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

In this example, the -0118 SQL return code indicates that an error was detected by the 
CA Datacom Datadictionary Service Facility (DSF) while attempting to process the 
statement. The MAAE return code indicates with M that the return code is from a 
module of CA Datacom Datadictionary and with AAE (a DSF return code) that the 
AUTHORIZATION occurrence already exists in CA Datacom Datadictionary. 

Error messages appear in the following general format: 

ERROR OCCURRED ccccccccccccccccccccc - nnnn(xyyy)     (bbbbb) 

Indicates an error was encountered during execution of the statement. 

where: 

ccccccccccccccccccccc 

Indicates where the error occurred. In the previous example, an error occurred 
executing the plan. 

 



Maintaining Source and Output Members 

 

Chapter 16: Using the Interactive SQL Service Facility  387  
 

nnnnn(xyyy) 

The nnnnn string indicates that an error occurred during CA Datacom/DB or CA 
Datacom Datadictionary execution. The -0118 in the previous example, 
indicates an error occurred in executing CA Datacom Datadictionary. A return 
code of -0117 indicates an error occurred in executing CA Datacom/DB. 

The (xyyy) represents the return codes. The x indicates the type of CA Datacom 
Datadictionary return code and the yyy represents the CA Datacom 
Datadictionary Service Facility (DSF) return code. 

See SQL Error Handling (see page 289) for information. 

(bbbbb) 

These characters represent an internal SQL code. 
 

Return codes for SQL and other related CA Datacom products are listed in the CA 
Datacom/DB Message Reference Guide.  

The output member can be up to 228 columns wide. To view the columns beyond the 
displayable screen area, use the SCROLL commands or PF11 to scroll right and PF10 to 
scroll left. See SCROLL Command (see page 374) for more instructions. 

 

To exit from the Output Panel, you can do one of the following: 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select the EDIT 
function and then specify another source member. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press CLEAR to return to the Interactive SQL Service Facility Panel. 

You can execute the statements in the source member again, or use the member to 
create other source members. Output members can be displayed at a later time or 
deleted. See the following sections for displaying, copying, and deleting source 
members, and for displaying and deleting output members. 

 



Maintaining Source and Output Members 

 

388  SQL User Guide 
 

Displaying Source and Output Members 

You can display the contents of a specific source or output member or a list of all 
members created by a person.  The person can be a named person or the person 
currently signed on to CA Datacom Datadictionary. 

Display Specific Member 

Use one of the following to display a specific member. 

■ Select option 2 (DISPLAY) on the SQLMAINT Panel and complete the entries on the 
SQL Member Selection Criteria Fill-in Panel. 

■ Enter the full DISPLAY SQL command. See DISPLAY SQL Command (see page 371) for 
information on entering this command. 

■ Leave the panel blank and press Enter to receive the list of members.  You can then 
enter the DIS margin command next to the member you want to display. 

■ Enter only DISPLAY SQL to receive the panel and press Enter to receive the list of 
members.  You can then enter the DIS margin command next to the member you 
want to display. 

 

Display Member List 

Use one of the following to display a specific member. 

■ Leave the SQL Member Selection Criteria Fill-in Panel blank and press Enter to 
display a list of all source and output members. 

■ Specify only the person on the SQL Member Selection Criteria Fill-in Panel to display 
a list of all source and output members for that person. 

■ Enter the DIS SQL LIST command in the command line of a panel to obtain the list 
for the person currently signed on or include a valid PERSON occurrence name in 
the command to obtain the list for that person.  See DISPLAY SQL Command (see 
page 371) for information on entering this command. 

 



Maintaining Source and Output Members 

 

Chapter 16: Using the Interactive SQL Service Facility  389  
 

If you select option 2 (DISPLAY) on the SQLMAINT Panel, CA Datacom Datadictionary 
displays a SQL Member Selection Criteria Fill-in Panel. The panel displays the function 
you are requesting on the left side of the panel. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                     SQL Member Selection Criteria Fill-in                  S02F 
  
  
 DISPLAY  SQL  / ________ , ________ , __________________ / 
 DIS             (source)   (output)   (person) 
                 (name  )   (name  ) 
  
  
  
  
 NOTE:  Press Enter to obtain a list of source/output members. 
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

Complete your specifications on the SQL Member Selection Criteria Fill-in Panel 
according to the following descriptions if you are displaying a specific source and/or 
output member. 

source name 

(Optional)  Enter the name of the member that contains the SQL statements you 
want to display. Leave this field blank if you want to display the output member 
only. Leave both fields blank to obtain the SQL Member List Panel. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 



Maintaining Source and Output Members 

 

390  SQL User Guide 
 

output name 

(Optional)  Enter the name of the member that contains results of executing a 
source member. Leave this field blank if you want to display the source member 
only. Leave both fields blank to obtain the SQL Member List Panel. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 

person 

(Optional)  Enter the name of the person who created the source and output 
members.  Leave this field blank to obtain the SQL Member List for the person 
currently signed on to CA Datacom Datadictionary. 

Valid Entries: 

The first 18 characters of the 1- to 32-character PERSON occurrence name 

Default Value: 

PERSON occurrence name associated with the person currently signed on to CA 
Datacom Datadictionary 

 

After completing the SQL Member Selection Criteria Fill-in Panel, press Enter to display 
the Source or Output Panel. If you have left the source and output member names 
blank, a list of all current source and output members for the specified person displays, 
as in the following example: 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                SQL Member List                             S01N 
                           Person: JONES 
  
        Name     Type Description                      Updated  Lines 
 ====== ========   =   ============ T O P =============  ======  ===== 
 000001 $DDSQL    O   CREATE MY SCHEMA                  112099  00004 
 000002 DEPTTBL   O   DEPARTMENT ORGANIZATION TABLE     112099  00011 
 000003 $DDSQL    S   CREATE MY SCHEMA                  112099  00001 
 dis004 DEPTTBL   S   DEPARTMENT ORGANIZATION TABLE     112099  00006 
 ====== ========  =   ========= B O T T O M ==========  ======  ===== 
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Maintaining Source and Output Members 

 

Chapter 16: Using the Interactive SQL Service Facility  391  
 

When the display is longer than the screen, you can use the scroll commands or PF keys 
to move backwards and forwards through the display. Another panel to display the 
additional fields follows the description of the fields on this panel. 

The following information is displayed for each member. 

Name 

The name of the source or output member. 

Type 

Identifies whether the member is a source (S) or output (O) member. 
 

Description 

The description entered for the source member when the member was created. 

Updated 

The date the member was updated in month, day, and year format (mmddyy). 

Lines 

The number of lines in the member. 
 

The members are listed in alphabetical order by type with the output members first. 

Example 

The previous SQL Member List Panel shows an example of entering the DIS margin 
command on line 004.  See Using Margin Commands (see page 376) for more 
information on these commands. After entering margin commands, you can perform 
either of the following: 

■ Press Enter or any scrolling PF key to refresh the screen and enter additional margin 
commands as desired. 

■ Press PF4 or enter the PROCESS command to bring the first activity from the online 
work queue. In this example, CA Datacom Datadictionary displays the SQL Member 
Selection Criteria Fill-in Panel for DISPLAY where you can enter the associated 
source or output member name, or change the displayed names. 

 



Maintaining Source and Output Members 

 

392  SQL User Guide 
 

After you have completed any entries on the SQL Member Selection Criteria Fill-in 
Panel, press Enter to display the source and/or output members. CA Datacom 
Datadictionary always displays the source members first, if you have entered a source 
member name on the prompter panel. 

The following panel illustrates the results of using the DIS margin command to display 
the source member for DEPTTBL. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: DEPTTBL   Output Line Limit:  01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: CREATE TABLE DEPTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 CREATE TABLE DEPTTBL 
 000002       (DEPTNO CHAR(2) NOT NULL, 
 000003        DEPTNAME CHAR(24) NOT NULL); 
 ====== ======================= B O T T O M ==================================== 
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

To exit from either the Source or Output Panels, you can do one of the following: 

■ Press PF12 (ALTERNATE) to obtain the associated source or output member you 
named on the prompter panel. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press CLEAR to return to the Interactive SQL Service Facility Panel to select another 
function. 

 



Maintaining Source and Output Members 

 

Chapter 16: Using the Interactive SQL Service Facility  393  
 

Copying Source Members 

You can use the copy function of the Interactive SQL Service Facility to duplicate a 
source member. To copy a source member, either: 

■ Select option 4 (COPY) on the SQLMAINT Panel. 

■ Enter the CPY or COP margin command on the SQL Member List Panel.  See 
Displaying Source and Output Members (see page 388) for details. 

■ Enter the COP SQL command on the command line in Interactive SQL Service 
Facility. See COPY SQL Command (see page 368) for details. 

If you select option 4 on the SQLMAINT Panel, CA Datacom Datadictionary displays the 
SQL Member Selection Criteria Fill-in Panel with the option you are requesting on the 
left of the panel. Use this panel to identify the source member being copied. 

 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                     SQL Member Selection Criteria Fill-in                  S02F 
  
  
 COPY     SQL  / ________ , ________ , __________________ / 
 CPY             (old   )   (new   )   (person - owner of old source member) 
                 (source)   (source) 
                 (name  )   (name  ) 
  
  
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Maintaining Source and Output Members 

 

394  SQL User Guide 
 

Complete your specifications on the SQL Member Selection Criteria Fill-in Panel 
according to the following descriptions. 

old source name 

(Required)  Enter the name of the existing member. If you receive this panel after 
entering a margin command on the SQL Member List Panel, the existing source 
member name is filled in. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 

new source name 

(Optional)  Enter a valid source member name that is unique for the specified or 
current default person. 

If the person is not specified with this command or is the same as the person 
currently signed on to CA Datacom Datadictionary, you must enter a new source 
name. 

If the person is specified, and is not the person currently signed on to CA Datacom 
Datadictionary, this field defaults to the old source-name. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
old source name 

 

person - owner of old source member 

(Optional)  Enter the name of the person who created the existing source member. 
If you leave this field blank, CA Datacom Datadictionary uses the name of the 
person currently signed on. 

Valid Entries: 

The first 18 characters of the 1- to 32-character PERSON occurrence name 

Default Value: 

PERSON occurrence name associated with the person currently signed on to CA 
Datacom Datadictionary 

 



Maintaining Source and Output Members 

 

Chapter 16: Using the Interactive SQL Service Facility  395  
 

Review your entry, and press Enter. CA Datacom Datadictionary automatically copies 
the member indicated and displays the SQL Member List Panel to display the members 
that currently exist. A message also displays on the message line indicating the status of 
the copy function. 

 => 
 => 
 => 
 1-DDOL0000067I - SIFP - SUCCESSFUL SQL MEMBER COPY 
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                           SQL Member List                                  S01N 
                         Person= JONES 
  
        Name      Type Description                      Updated  Lines 
 ====== ========   =   ============ T O P =============  ======  ===== 
 000001 $DDSQL     O   CREATE MY SCHEMA                  112099  00004 
 000002 DEPTTBL    O   DEPARTMENT ORGANIZATION TABLE     112099  00010 
 000003 $DDSQL     S   CREATE MY SCHEMA                  112099  00001 
 000004 DEPTTBL    S   DEPARTMENT ORGANIZATION TABLE     112099  00003 
 000005 DEPTTBL2   S   DEPARTMENT ORGANIZATION TABLE     112099  00003 
 ====== ========   =   ========= B O T T O M ==========  ======  ===== 
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

After copying the source member, you can perform one of the following: 

■ Enter another source member name to copy. 

■ Press PF2 (END) to return to the SQLMAINT Panel to select another option. 

■ Press CLEAR to return to the Interactive SQL Service Facility Panel to perform 
another function. 

 

Deleting Source and Output Members 

You can use the delete function of the Interactive SQL Service Facility to remove a 
source or output member. Only the source or output member is deleted with the delete 
function. The objects created by the statements in a member remain intact. 

To delete a member, either: 

■ Select option 3 (DELETE) on the SQLMAINT Panel. 

■ Enter the DEL margin command on the SQL Member List Panel. See Displaying 
Source and Output Members (see page 388) for details. 

■ Enter the DEL SQL command in the command line in Interactive SQL Service Facility. 
See DELETE SQL Command (see page 370) for details. 

 



Maintaining Source and Output Members 

 

396  SQL User Guide 
 

If you select option 3 on the SQLMAINT Panel, CA Datacom Datadictionary displays the 
SQL Member Selection Criteria Fill-in Panel. Use this panel to identify the source 
member and/or the output member being deleted. The panel displays the option you 
are requesting on the left of the panel. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                     SQL Member Selection Criteria Fill-in                  S01F 
  
  
 DELETE   SQL  / ________ , ________ , ________________________________ / 
 DEL             (source)   (output)   (description) 
                 (name  )   (name  ) 
  
  
  
  
  
 NOTE:  Press Enter to obtain a list of source/output members. 
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

Complete your specifications on the SQL Member Selection Criteria Fill-in Panel 
according to the following descriptions if you are deleting a specific source and/or 
output member. 

source name 

(Optional)  Enter the name of the member that you are deleting. If you obtain this 
panel after entering the DEL margin command on the SQL Member List Panel, the 
source member name and person name are displayed. 

Leave this field blank if you are requesting a display of all members or if you only 
intend to delete an output member. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 



Maintaining Source and Output Members 

 

Chapter 16: Using the Interactive SQL Service Facility  397  
 

output name 

(Optional)  Enter the name of the member that you are deleting. If you obtain this 
panel after entering the DEL margin command on the SQL Member List Panel, the 
output member name and person name are displayed. 

Leave this field blank if you are requesting a display of all members or if you only 
intend to delete a source member. 

Valid Entries: 

1 to 8 characters 

Default Value: 

(No default) 
 

description 

The description you entered on the SQL Member Selection Criteria Fill-in Panel 
displays. 

Review your entries, and press Enter. CA Datacom Datadictionary automatically deletes 
the member(s) indicated and displays a message indicating the status of the deletion. 

 

 => 
 => 
 => 
 1-DDOL000002I - S1FP - SUCCESSFUL DELETE OF MEMBER(S) 
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                     SQL Member Selection Criteria Fill-in                  S01F 
  
  
 DELETE   SQL  / DEPTTBL  , ________ , DEPARTMENT ORGANIZATIONAL TABLE   / 
 DEL             (source)   (output)   (description) 
                 (name  )   (name  ) 
  
  
  
  
 NOTE:  Press Enter to obtain a list of source/output members. 
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Maintaining Source and Output Members 

 

398  SQL User Guide 
 

If you do not know the source or output member name, press ENTER on the SQL 
Member Selection Criteria Fill-in Panel to display a listing of source and output 
members.  Enter the DEL margin command in the line of the source and/or output 
members you want to delete. 

Press Enter on the SQL Member Selection Criteria Fill-in Panel to delete the source 
and/or output members. If you have entered the DEL margin command, you can press 
PF4 (PROCESS) to delete the first member selected and proceed to the next selection or 
the SQL Member Selection Criteria Fill-in Panel. 

 

After deleting the source and/or output members, you can perform one of the 
following: 

■ Enter another source and/or output name to delete. 

■ Press PF2 (END) to return to the SQLMAINT Panel. 

■ Press CLEAR to return to the Interactive SQL Service Facility Panel to perform 
another function. 

 



 

Chapter 17: Creating SQL Objects  399  
 

Chapter 17: Creating SQL Objects 
 

This chapter contains the following topics: 

In Interactive SQL Service Facility, you can use the SQL Data Definition Language to 
define the components of a relational database, alter a table definition and add or 
replace comments. 

CREATE SCHEMA 

Defines the authorization ID (which is the name of the schema) and can also include 
table, view and privilege definitions. 

CREATE TABLE 

Defines a base table and its columns. You must name the table and each column, 
and also specify the data type and length of each column. You can optionally specify 
if one or more columns are to have a unique value for each row in the table or 
other constraints, and the area where the table's data is stored. 

 

ALTER TABLE 

Changes the definition of a base table, its columns and constraints. 

CREATE INDEX 

Defines an index on one or more columns of a base table to improve performance 
of queries which reference that table. 

CREATE VIEW 

Defines a view, or derived table, which can be based on one or more base tables, or 
even on other views. You can also specify search conditions which limit the rows 
appearing in the view. 

 

CREATE SYNONYM 

Defines an alternative name for a table or a view. Synonyms are especially useful 
when referencing a table or view owned by another authorization ID since the 
definition includes the qualified name of the object. 

COMMENT ON 

Adds or replaces text to the TABLE, COLUMN or VIEW occurrence in CA Datacom 
Datadictionary. 

For information about the CA Datacom/DB implementation of support for CREATE 
PROCEDURE and CREATE TRIGGER/RULE statements, see Procedures and Triggers (see 
page 70) and Datadictionary Support for Triggers and Procedures (see page 86). 

 



Creating a Schema 

 

400  SQL User Guide 
 

Creating a Schema 

A schema defines a user's SQL environment. You establish the schema and identify the 
name for the schema with the CREATE SCHEMA statement. Enter the CREATE SCHEMA 
statement in the numbered area of an EDIT Source Member Panel. See How to Submit 
SQL Statements (see page 358) for the steps to obtain the panel and an explanation of 
the fields on the panel. The schema consists of: 

■ An authorization ID, which is the name of the schema 

■ The SQL objects (tables, views, indexes, and synonyms) created by an identified 
user who uses or specifies the authorization ID when creating the objects 

■ The privileges the user gives to other users 
 

If the CA Datacom/DB Security Facility is installed, you must be a global database owner 
to execute the CREATE SCHEMA statement. 

Note: For information about global database owners, see the CA Datacom Security 
Reference Guide. 

When you create a schema, CA Datacom Datadictionary defines the authorization ID as 
an AUTHORIZATION entity-occurrence. When the AUTHORIZATION occurrence is 
defined, the AUTH-USAGE attribute is assigned a value of S. This indicates that the 
occurrence is an SQL authorization ID. The AUTH-USAGE attribute is updateable by CA 
Datacom Datadictionary only, not by a user. 

Only AUTHORIZATION occurrences created by a CREATE SCHEMA statement can be used 
as SQL authorization IDs. 

 

Naming the Schema 

The name you enter after the AUTHORIZATION keyword in the CREATE SCHEMA 
statement is the name of the schema and is used as an authorization ID for SQL objects 
(tables, views, synonyms) owned by that schema. The schema name, or authorization ID 
(AUTHID), must be 1 to 18 characters in length. CA Datacom Datadictionary uses this 
SQL name as the name of the AUTHORIZATION occurrence which is defined to the CA 
Datacom Datadictionary. The name must be unique for all AUTHORIZATION 
occurrences. You cannot create a schema which has the same name as an existing 
AUTHORIZATION occurrence in CA Datacom Datadictionary. 

 



Creating a Schema 

 

Chapter 17: Creating SQL Objects  401  
 

Relating the Person to the AUTHID 

Your PERSON occurrence, identified to CA Datacom Datadictionary with the user signon 
ID, must be related to a valid SQL AUTHORIZATION occurrence using the 
PER-ATZ-AUTHID relationship before you can use the Interactive SQL Service Facility. 
This is a many-to-one relationship, meaning that several PERSON occurrences can be 
related to a specific AUTHORIZATION occurrence. Several users can have the same 
default AUTHID, but each user can have only one default. 

When you access the Interactive SQL Service Facility, CA Datacom Datadictionary checks 
for the existence of the relationship between your PERSON occurrence and a valid SQL 
AUTHORIZATION occurrence. If a relationship does not exist, CA Datacom 
Datadictionary presents the following panel. 

 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility 
  
                                                                            S01A 
                 Default Authorization Panel 
  
 Please enter your default authorization ID and press Enter. 
  
 AUTHID: __________________ 
  
  
  
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

The AUTHORIZATION occurrence you specify on this panel becomes your permanent 
default AUTHID, until you change it. You can change the AUTHID either temporarily for 
the session or permanently. See Changing Your AUTHID (see page 402). 

When the relationship exists, the Default Authorization Panel is not presented. The 
AUTHORIZATION occurrence is your default AUTHID and is displayed in the Current 
Authid field on the Source Member Panel. 

 



Creating a Schema 

 

402  SQL User Guide 
 

Changing Your AUTHID 

Use the RESET DEFAULT AUTHID xxxxxxxxxxxxxxxxxx command, where the x's represent 
the 1 to 18 characters of an existing SQL AUTHORIZATION occurrence name, to change 
your default authorization ID. When the command completes successfully, the current 
PER-ATZ-AUTHID relationship is deleted and the new one is added. 

Alternately, see the CA Datacom Datadictionary Online Reference Guide for information 
on deleting and adding relationships. You can use the online functions to change the 
PER-ATZ-AUTHID relationship and establish a new default authorization ID. 

 

To change to your default AUTHID later in the session or to temporarily change the 
AUTHID, use the AUTHORIZATION-ID Panel.  Obtain an AUTHORIZATION-ID Panel by 
either using the SET AUTHID command or by selecting the SET AUTHID function on the 
SQLADMIN Panel (see Setting the Session Authorization ID (see page 448)). When you 
have obtained an AUTHORIZATION-ID Panel, you can change to the default AUTHID by 
pressing PF9 (EXECUTE) without placing an entry on the panel.  Or, if you want to 
temporarily change the AUTHID, you can reset it by placing an entry on the 
AUTHORIZATION-ID Panel and pressing PF9 (EXECUTE). In either case, after you press 
PF9 CA Datacom Datadictionary returns a message to the panel naming the 
authorization ID now in effect.  Reset AUTHIDs remain in effect for the duration of the 
session or until again changed. 

If you establish a session AUTHID and subsequently issue a RESET DEFAULT AUTHID 
command, the session AUTHID continues to be used during the current session. 

 

System Schemas 

When upgrading from a version previous to CA Datacom/DB Release 8.0, all tables are 
assigned an AUTHID of SYSUSR. To access these tables, you must use the full SQL name. 
For example, a table with the SQL name of PAYROLL would be accessed by entering 
SYSUSR.PAYROLL. 

Important!  Do not relate any PERSON occurrence to the SYSUSR AUTHORIZATION 
occurrence with the Default Authorization Panel, the SET commands, or using the online 
facilities with the PER-ATZ-AUTHID relationship. 

Note:  When CA Datacom Datadictionary is initially installed, there are only two 
schemas: SYSADM for CA Datacom system tables and SYSUSR, as previously noted, for 
upgraded tables. 

If the CA Datacom/DB Security Facility is installed, the SYSADM AUTHID can be used by a 
global database owner to create the first user schema after installation, but we 
recommend that you do not use SYSADM as an AUTHID thereafter. See the CA Datacom 
Security Reference Guide for information on global database owner status. 

 



Creating a Schema 

 

Chapter 17: Creating SQL Objects  403  
 

Displaying and Reporting 

You can display a table of AUTHORIZATION entity-occurrences using the CA Datacom 
Datadictionary Entity Display (ENTDISPL) Mode and view the attributes to determine if 
AUTH-USAGE=S. This indicates it is a valid SQL authorization ID. See the CA Datacom 
Datadictionary Online Reference Guide for information on the Entity Display Mode. 

You can also run a batch report using the -RPT SCHEMA transaction to list all valid SQL 
authorization IDs and objects owned by each.  See the CA Datacom Datadictionary 
Batch Reference Guide for information on the Schema Report. 

 

Example Source Member 

The following panel shows an example of entering a CREATE SCHEMA statement.  See 
How to Submit SQL Statements (see page 358) for the steps to obtain the Source Panel 
and an explanation of the fields. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: $DDSQL    Output Line Limit:  01000 
                     Person: DATACOM-INSTALL 
             Current Authid: SYSADM 
                Description: CREATE A SCHEMA 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 create schema authorization jones; 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Creating a Schema 

 

404  SQL User Guide 
 

The statement CREATE SCHEMA and the keyword AUTHORIZATION are required.  
AUTHORIZATION must be followed by the name of the authorization ID you are 
creating.  In this example, the authorization ID is JONES. 

You can create a base table at the same time you create a schema by entering a CREATE 
TABLE statement in the source member. 

You can create more than one schema in a source member by entering multiple CREATE 
SCHEMA statements.  If you choose to do this, each authorization ID you specify must 
be unique, that is to say, no duplications are allowed, including naming an authorization 
ID which already exists. 

 

For more information on the CREATE SCHEMA statement, see CREATE SCHEMA (see 
page 676). 

After placing your SQL statement in the numbered line area on the Source Panel, you 
can perform the following: 

■ Enter additional SQL statements.  Place a semicolon (;) after each complete 
statement. 

■ Press PF9 (EXECUTE) to execute the source member.  CA Datacom Datadictionary 
responds with the Output Panel which shows the results of the SQL processing. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

 



Creating a Table 

 

Chapter 17: Creating SQL Objects  405  
 

Example Output Member 

The following example is the Output Panel received after executing the previous CREATE 
SCHEMA statement. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= $DDSQL 
                  Description: CREATE A SCHEMA 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER $DDSQL  ) 
 000002 create schema authorization jones; 
 000003 ---------+---------+---------+---------+---------+---------+---------+-- 
 000004 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000005 ---------+---------+---------+---------+---------+---------+---------+-- 
 000006 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000007 NUMBER OF INPUT RECORDS READ IS 0001 
 000008 NUMBER OF SQL STATEMENTS PROCESSED IS 0001 
 ====== ======================= B O T T O M ==================================== 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

To exit from the Output Panel, you can perform one of the following. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel. 
 

Creating a Table 

Use a CREATE TABLE statement to define a table to CA Datacom/DB and CA Datacom 
Datadictionary. Enter the CREATE TABLE statement in the numbered area of an EDIT 
Source Member Panel. See How to Submit SQL Statements (see page 358) for the steps 
to obtain the panel and an explanation of the fields on the panel. See CREATE TABLE 
(see page 680) for the syntax of the statement. The SQL statement performs the 
following: 

■ Specify the table name. 

■ Define the columns in the table and specify their data type and length (the columns 
in the table are defined as FIELD occurrences in CA Datacom Datadictionary ). The 
columns and tables must follow the SQL naming conventions. See Naming 
Conventions (see page 480). 

 



Creating a Table 

 

406  SQL User Guide 
 

■ Designate if one or more columns are to have a unique value for each row in the 
table. Use of the UNIQUE constraint generates a KEY entity-occurrence in the CA 
Datacom Datadictionary. 

Note:  Uniqueness is enforced at the key level, not at the column level, that is to 
say, UNIQUE forces unique values for the entire key and not for the individual 
columns making up the key. 

■ Designate other constraints in addition to UNIQUE. See the sections starting with 
Column Constraint Definition (see page 684). 

■ Indicate the area where the table data is to reside. 
 

Naming the Table 

The name you give the table in the CREATE TABLE statement is the SQL name you use 
when referencing the table in SQL statements. 

The unqualified SQL table name is: 

■ 1 to 18 characters in length (to comply with ANSI or FIPS standards), or 

■ 1 to 32 characters in length (to take advantage of the CA Datacom/DB extended 
mode for SQL). 

The qualified table name is the table name preceded by its schema and a period (.). The 
schema is represented by a valid authorization ID. Therefore, the qualified table name is 
in the format authid.table-name. 

You can specify the authorization ID in the CREATE TABLE statement. If you do not 
specify an authorization ID, CA Datacom Datadictionary uses the current default 
authorization ID for the session. 

 

The default authorization ID is the AUTHORIZATION occurrence related to the PERSON 
occurrence of the user ID entered to sign on to CA Datacom Datadictionary. However, 
you can establish an authorization ID that is the default for the current session. See 
Relating the Person to the AUTHID (see page 401). 

CA Datacom Datadictionary uses the authorization ID and the table's SQL name to build 
the TABLE entity-occurrence name, as follows: 

■ The period (.) separating the AUTHID and the SQL name is replaced with a dash (-). 

■ If the combination of the authorization ID, the SQL name and the dash is greater 
than the maximum allowed length of 32 characters, CA Datacom Datadictionary 
truncates the concatenated name. 

■ If the truncated name already exists, CA Datacom Datadictionary truncates it by 
four more characters and adds four zeros to the end of the name. CA Datacom 
Datadictionary increments the digits by 1 until the name is unique. 

 



Creating a Table 

 

Chapter 17: Creating SQL Objects  407  
 

You can change the table's CA Datacom Datadictionary entity-occurrence name by 
restoring it to TEST status and using one of the following CA Datacom Datadictionary 
rename functions: 

■ The UPDATE NAME option of the CA Datacom Datadictionary Entity Maintenance 
(ENTMAINT) Mode. 

■ The NAM or NME margin commands in the CA Datacom Datadictionary CA 
Datacom/DB Structure Maintenance (DBMAINT) Mode. 

■ The 1000 NEWNAME batch transaction. 
 

If you rename the TABLE entity-occurrence, you must recatalog it to the CA Datacom/DB 
Directory (CXX). 

Note:  Before copying back to PRODuction status, drop the table that currently exists 
there. 

See the CA Datacom Datadictionary Online Reference Guide and CA Datacom 
Datadictionary Batch Reference Guide for more information on renaming 
entity-occurrences. 

 

Key Creation 

You can create CA Datacom Datadictionary KEY entity-occurrences in several ways with 
parameters in your SQL statements and by using the CREATE INDEX statement. See 
CREATE TABLE (see page 680) and Creating an Index (see page 415) for details. For 
information about specifying an SQL key selection override key in either the correlation 
name or synonym name, see Overriding SQL Key Selection (see page 143). 

The following are four of the ways KEY entity-occurrences can be defined by CA 
Datacom Datadictionary as a result of SQL processing.  The key SQL name is created by 
CA Datacom Datadictionary. The name consists of the DATACOM-NAME attribute-value 
of the key followed by the underscore character followed by the concatenation of the 
DATACOM-NAME attribute-value of the table and the DATACOM-ID attribute-value of 
the database containing the key.  For example, a key with DATACOM-NAME SQ032 in 
table INV in database 16 has the SQLNAME attribute-value SQ032_INV00016. 

■ The first column you specify in the CREATE TABLE statement becomes the CA 
Datacom/DB Master and Native Key for the table except when a primary or unique 
key has been defined. CA Datacom Datadictionary automatically generates this KEY 
entity-occurrence and gives it the same name as the CA Datacom/DB five-character 
name it generates (SQnnn) and SQLNAME=SQLKEY. 

Note:  The DUPE-MASTER-KEY and CHNG-MASTER-KEY attributes of the TABLE 
entity-occurrence are set to Y, indicating that the value of the Master Key can be 
duplicated and/or changed. 

 



Creating a Table 

 

408  SQL User Guide 
 

■ A foreign key can be generated.  Its name is the same as the constraint name.  A 
physical key will not be generated in the Directory. 

■ If you use the column-level UNIQUE constraint (after an individual column name), a 
KEY entity-occurrence is generated. The CA Datacom Datadictionary name for the 
key is the same as the CA Datacom/DB five-character name it generates (SQnnn). 

Note:  Uniqueness is enforced at the key level, not at the column level, that is to 
say, UNIQUE forces unique values for the entire key and not for the individual 
columns making up the key. 

 

■ If you use the table-level UNIQUE constraint or primary key (followed by a list of 
one or more column names enclosed in parentheses), a KEY entity-occurrence is 
generated.  The CA Datacom Datadictionary name of the key is the same as the CA 
Datacom/DB five-character name it generates (SQnnn). 

Note:  Uniqueness is enforced at the key level, not at the column level, that is to 
say, UNIQUE forces unique values for the entire key and not for the individual 
columns making up the key. 

The five-character DATACOM name of each key uses SQ followed by three digits for 
uniqueness. 

 

Element Creation 

CA Datacom Datadictionary creates an element that includes all the columns in the 
table. The CA Datacom Datadictionary name of the element is the same as the table and 
the five-character CA Datacom name of the element is SQLEL. You can rename the 
element, change the element, and add more elements to the table using the other 
modes of CA Datacom Datadictionary. 

 



Creating a Table 

 

Chapter 17: Creating SQL Objects  409  
 

Statement Execution Results 

When the statement executes successfully, the table, columns, key, and element are 
defined to CA Datacom Datadictionary in PROD status and cataloged to the CA 
Datacom/DB Directory (CXX). 

You can use the other modes of CA Datacom Datadictionary to add support data, such 
as aliases, descriptors, additional relationship definitions, and text. You can rename 
keys, change keys, and add more keys to the table using the other modes of CA 
Datacom Datadictionary. 

To add additional keys or elements, copy the PROD status version of the table to a TEST 
status, make your modifications, and catalog the table using the CA Datacom 
Datadictionary CATALOG function. 

Note: For information on enhancing the table definitions, see the CA Datacom/DB 
Database and System Administration Guide and the CA Datacom Datadictionary User 
Guide.  

 

Example Source Member 

The following example shows a CREATE TABLE statement. See How to Submit SQL 
Statements (see page 358) for the steps to obtain the Source Panel and an explanation 
of the fields. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: $DDSQL    Output Line Limit:  01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: CREATE TABLE DEPTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 create table depttbl 
 ......  (deptno char(2) not null, 
 ......   deptname char(24) not null, 
 ......   mgrnbr char(6) not null, 
 ......   unique (deptno, mgrnbr)); 
 ====== ======================= B O T T O M ==================================== 
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Creating a Table 

 

410  SQL User Guide 
 

Before entering the statement, we inserted four additional lines on the panel by typing 
i4 in the line number and pressing Enter. 

The statement CREATE TABLE is required and must be followed by the name of the 
table, which is DEPTTBL in this example. Since the name of a data area in which the 
table is to reside is not specified, it is placed in the default area. 

Each column definition is listed on a separate line and indented from the left simply for 
ease of reading. In this example, all the columns are of the CHARACTER data type. The 
short form, CHAR, is used, followed by the length in parentheses. NOT NULL is specified 
for the first three columns so that these columns cannot contain null values. The list of 
column names must be enclosed in parentheses. You must separate the column 
definitions from each other with a comma. 

 

The table-level UNIQUE constraint specifies that the combined values of the DEPTNO 
and MGRNBR columns are to be unique for each row of this table. The columns 
specified in a table-level UNIQUE constraint must be defined with NOT NULL. The 
column names must be separated by commas and the list enclosed in parentheses when 
using this form of the UNIQUE constraint. 

For information on the syntax of the CREATE TABLE statement, see CREATE TABLE (see 
page 680). 

 

After placing your SQL statement in the numbered line area on the Source Panel, you 
can perform the following: 

■ Enter additional SQL statements.  Place a semicolon (;) after each complete 
statement. 

■ Press PF9 (EXECUTE) to execute the source member.  CA Datacom Datadictionary 
responds with the Output Panel which shows the results of the SQL processing. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

 



Creating a Table 

 

Chapter 17: Creating SQL Objects  411  
 

Example Output Member 

The following example is the Output Panel received when executing the previous 
CREATE TABLE statement. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= DEPTTBL 
                  Description: CREATE TABLE DEPTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER DEPTTBL ) 
 000002 create table depttbl 
 000003  (deptno char(2) not null, 
 000004   deptname char(24) not null, 
 000005   mgrnbr char(6) not null, 
 000006   unique (deptno, mgrnbr)); 
 000007 ---------+---------+---------+---------+---------+---------+---------+-- 
 000008 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000009 ---------+---------+---------+---------+---------+---------+---------+-- 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS          MORE... 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

If the display is larger than your screen allows, use the PF keys to scroll to other portions 
of the display. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= DEPTTBL 
                  Description: CREATE TABLE DEPTTBL 
 ------------------------------------------------------------------------------- 
 000009 ---------+---------+---------+---------+---------+---------+---------+-- 
 000010 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000011 NUMBER OF INPUT RECORDS READ IS   0006 
 000012 NUMBER OF SQL STATEMENTS PROCESSED IS   0001 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Altering a Table 

 

412  SQL User Guide 
 

In this example, a table is created with the full SQL name of JONES.DEPTTBL. The 
columns in the table are all character data type with lengths as specified. Since an area 
is not specified, the table is placed in the default area. 

The combined values for the DEPTNO and MGRNBR columns must be unique for each 
row in the table. 

Two KEY entity-occurrences are generated by CA Datacom Datadictionary during 
execution of the CREATE TABLE statement. The CA Datacom/DB Master and Native Key 
is the first column of the table, DEPTNO. The table-level UNIQUE constraint causes the 
generation of another KEY entity-occurrence, which contains both the DEPTNO and 
MGRNBR columns. 

 

To exit from the Output Panel, you can perform one of the following. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel. 
 

Altering a Table 

Use the ALTER TABLE statement to change a table definition without manually reloading 
it. You can change one of the table's column definitions and/or the table's constraints in 
a single statement. You can make only one change to a column in the ALTER TABLE 
statement. 

You can perform the following with this statement: 

■ Define a new column. (The columns in the table are defined as FIELD occurrences in 
CA Datacom Datadictionary.) 

■ Define new table constraints. 

■ Drop constraints, columns, foreign keys or primary keys. (see the sections starting 
with Column Constraint Definition.) 

 

■ Modify a column definition. 

■ Rename a column. 

Enter the ALTER TABLE statement in the numbered area of an EDIT Source Member 
Panel. See How to Submit SQL Statements (see page 358) for the steps to obtain the 
panel and an explanation of the fields on the panel. See ALTER TABLE (see page 598) for 
information and the syntax of the statement. 

 



Altering a Table 

 

Chapter 17: Creating SQL Objects  413  
 

Statement Execution Results 

When the statement executes successfully, the changes are defined to CA Datacom 
Datadictionary in PRODuction status and cataloged to the CA Datacom/DB Directory 
(CXX). 

You can use the other modes of CA Datacom Datadictionary to add support data, such 
as aliases, descriptors, additional relationship definitions, and text. For information on 
enhancing the table definitions, see the CA Datacom/DB Database and System 
Administration Guide and the CA Datacom Datadictionary User Guide. 

If the ALTER TABLE statement cannot complete, it is rolled back to its beginning. If the 
ALTER TABLE process is force checkpointed (because of the size of the Log Area (LXX) 
and the concurrent activity), the rollback is incomplete. Therefore, before altering large 
tables ensure that the Log Area (LXX) is large enough and take a backup of the data 
area. 

 

Example Source Member 

The following example shows an ALTER TABLE statement. See How to Submit SQL 
Statements (see page 358) for the steps to obtain the Source Panel and an explanation 
of the fields. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: DEPTTBL2  Output Line Limit: 01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: ADD ADMDEPT TO DEPTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 alter table depttbl 
 ......   add admdept char(2); 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Altering a Table 

 

414  SQL User Guide 
 

Before entering the statement, we inserted an additional line on the panel by typing i1 
in the line number and pressing Enter. 

The statement ALTER TABLE is required and must be followed by the name of the table, 
which is DEPTTBL in this example. 

The column definition is listed on a separate line. Since only one column is added, the 
parentheses are not required. 

For information on the ALTER TABLE statement, see ALTER TABLE (see page 598). 
 

After placing your SQL statement in the numbered line area on the Source Panel, you 
can perform the following: 

■ Enter additional SQL statements.  Place a semicolon (;) after each complete 
statement. 

■ Press PF9 (EXECUTE) to execute the source member. CA Datacom Datadictionary 
responds with the Output Panel which shows the results of the SQL processing. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

 

Example Output Member 

The following example is the Output Panel received when executing the previous 
statement. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= DEPTTBL2 
                  Description: ADD ADMDEPT TO DEPTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER DEPTTBL2) 
 000002 alter table depttbl 
 000003   add admdept char(2); 
 000004 ---------+---------+---------+---------+---------+---------+---------+-- 
 000005 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000006 ---------+---------+---------+---------+---------+---------+---------+-- 
 000007 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000008 NUMBER OF INPUT RECORDS READ IS 0002 
 000009 NUMBER OF SQL STATEMENTS PROCESSED IS 0001 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS          MORE... 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Creating an Index 

 

Chapter 17: Creating SQL Objects  415  
 

The column ADMDEPT is added after the existing columns in the table.  If the table has 
existing rows, the rows receive NULL values in the added column unless NOT NULL WITH 
DEFAULT is specified with a column constraint definition. The length of the column is 
added to the table's element SQLEL. 

To exit from the Output Panel, you can perform one of the following. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel. 
 

Creating an Index 

Use a CREATE INDEX statement to define a key to CA Datacom/DB and the CA Datacom 
Datadictionary. When a CREATE INDEX statement successfully executes, a KEY 
entity-occurrence is defined in CA Datacom Datadictionary in PROD status. The 
five-character DATACOM name of the key is generated for you by CA Datacom 
Datadictionary. The key's attributes include MASTER-KEY=N, NATIVE-KEY=N, 
INCLUDE-NIL-KEY=Y, and UNIQUE=N. For information about specifying an SQL key 
selection override key in either the correlation name or synonym name, see Overriding 
SQL Key Selection. 

CREATE INDEX causes all plans dependent on the indexed table to be marked invalid. 
You can run a CA Datacom Datadictionary Relationship Report to find out what plans are 
dependent on a table. See the CA Datacom Datadictionary Batch Reference Guide for 
information on running a Relationship Report. 

 

Enter the CREATE INDEX statement in the numbered area of an EDIT Source Member 
Panel.  See How to Submit SQL Statements (see page 358) for the steps to obtain the 
panel and an explanation of the fields on the panel. See CREATE INDEX (see page 618) 
for the syntax of the statement. 

The SQL statement performs the following: 

■ Specify the index name. 

■ Specify the table to which the index belongs. 

■ Define the columns in the index. 
 



Creating an Index 

 

416  SQL User Guide 
 

Naming the Index (Key) 

The name you place in the CREATE INDEX statement is the SQL name you use when 
referencing the key in SQL statements. 

The unqualified SQL name is: 

■ 1 to 18 characters in length to comply with ANSI or FIPS standards. 

■ 1 to 32 characters in length to take advantage of the CA Datacom/DB extended 
mode for SQL. 

The qualified index name is the index name preceded by its schema and a period (.). The 
schema is represented by a valid authorization ID. Therefore, the qualified index name is 
in the format authid.index-name. 

 

You can specify the authorization ID in the CREATE INDEX statement. If you do not 
specify an authorization ID, CA Datacom Datadictionary uses the current default 
authorization ID for the session. 

The default authorization ID is the AUTHORIZATION occurrence related to the PERSON 
occurrence of the user ID entered to sign on to CA Datacom Datadictionary. However, 
you can establish an authorization ID that is the default for the current session. See 
Relating the Person to the AUTHID (see page 401). 

 

Key Creation 

CREATE INDEX generates a KEY entity-occurrence. See CREATE INDEX (see page 618) for 
details. 

The five-character DATACOM name of each key uses SQ followed by three digits for 
uniqueness. 

 

Statement Execution Results 

When the statement executes successfully, a KEY entity-occurrence is defined to CA 
Datacom Datadictionary in PROD status and cataloged to the CA Datacom/DB Directory 
(CXX). 

You can use the other modes of CA Datacom Datadictionary to add support data, such 
as aliases, descriptors, additional relationship definitions, and text. You can rename 
keys, change keys, and add more keys to the table using the other modes of CA 
Datacom Datadictionary. 

 



Creating an Index 

 

Chapter 17: Creating SQL Objects  417  
 

Example Source Member 

The following example shows a CREATE INDEX statement. See How to Submit SQL 
Statements (see page 358) for the steps to obtain the Source Panel and an explanation 
of the fields. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: $DDSQL    Output Line Limit:  01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: CREATE INDEX EMPLOYEE_INDEX 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 create index employee_index on employees (empno); 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

The statement CREATE INDEX is required and must be followed by the name of the 
index (employee_index in this example) the word "on", the table name (employees), 
and the column-list (empno). For information on the syntax of the CREATE INDEX 
statement, see CREATE INDEX (see page 618). 

After placing your SQL statement in the numbered line area on the Source Panel, you 
can perform the following: 

■ Enter additional SQL statements.  Place a semicolon (;) after each complete 
statement. 

■ Press PF9 (EXECUTE) to execute the source member. CA Datacom Datadictionary 
responds with the Output Panel which shows the results of the SQL processing. 

 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

 



Creating an Index 

 

418  SQL User Guide 
 

Example Output Member 

The following example is the Output Panel received when executing the previous 
CREATE INDEX statement. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= EMPLOYEE 
                  Description: CREATE INDEX EMPLOYEE_INDEX 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER EMPLOYEE) 
 000002 create index employee_index on employee (empno); 
 000003 ---------+---------+---------+---------+---------+---------+---------+-- 
 000004 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000005 ---------+---------+---------+---------+---------+---------+---------+-- 
 000006 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000007 NUMBER OF INPUT RECORDS READ IS   0001 
 000008 NUMBER OF SQL STATEMENTS PROCESSED IS   0001 
 ====== ======================= B O T T O M ==================================== 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS          MORE... 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

If the display is larger than your screen allows, use the PF keys to scroll to other portions 
of the display. 

In this example, an index is created with the full SQL name of JONES.EMPLOYEE_INDEX 
and a KEY entity-occurrence is generated by CA Datacom Datadictionary during 
execution of the CREATE INDEX statement. 

To exit from the Output Panel, you can perform one of the following. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel. 
 



Creating a View 

 

Chapter 17: Creating SQL Objects  419  
 

Creating a View 

Use the CREATE VIEW statement to define a view (a derived table) of one or more tables 
or views. Enter the CREATE VIEW statement in the numbered area of an EDIT Source 
Member Panel. See How to Submit SQL Statements for the steps to obtain the panel and 
an explanation of the fields on the panel. See CREATE VIEW (see page 705) for the  
syntax of the statement. 

The following restrictions apply to the tables on which a view is derived. 

SQL Accessible Tables 

Since a view is derived from specified columns in a table or tables, the table or 
tables must be defined in the CA Datacom Datadictionary and be SQL accessible. 
You can place the CREATE VIEW statement(s) after the the CREATE TABLE 
statement(s) in a single source member. 

 

Same Security Type 

All of the tables and views specified with the CREATE VIEW statement must be in 
databases secured under the same security model, either the CA Datacom/DB 
External Security Model or the SQL Security Model.  See the CA Datacom Security 
Reference Guide for more information about security models. 

Remote Tables 

A complete duplicate definition of a remote table in CA Datacom Datadictionary is 
required for SQL access. No version control enforcement is available to ensure that 
remote definitions are synchronized with the local active definitions. 

 

Naming the View 

The name you give the view in the CREATE VIEW statement is the SQL name you use 
when referencing the view in SQL statements. 

The unqualified view name is: 

■ 1 to 18 characters in length if you want it to comply with ANSI or FIPS standards. 

■ 1 to 32 characters in length if you want to take advantage of the CA Datacom/DB 
extended mode for SQL. 

The qualified view name is the view name preceded by its schema and a period (.). The 
schema is represented by a valid authorization ID. Therefore, the qualified view name is 
in the format authid.view-name. 

You can specify the authorization ID in the CREATE VIEW statement. If you do not 
specify an authorization ID, CA Datacom Datadictionary uses the current default 
authorization ID for the session. 

 



Creating a View 

 

420  SQL User Guide 
 

The default authorization ID is the AUTHORIZATION occurrence related to the PERSON 
occurrence of the user ID entered to sign on to CA Datacom Datadictionary. However, 
you can establish an authorization ID that is the default for the current session. See 
Relating the Person to the AUTHID (see page 401). 

CA Datacom Datadictionary uses the authorization ID and the view's SQL name to build 
the VIEW entity-occurrence name, as follows: 

■ The period (.) separating the AUTHID and the SQL name is replaced with a dash (-). 

■ If the combination of the authorization ID, the SQL name and the dash is greater 
than the maximum allowed length of 32 characters, CA Datacom Datadictionary 
truncates the concatenated name. 

■ If the truncated name already exists, CA Datacom Datadictionary truncates it by 
four more characters and adds four zeros to the end of the name. CA Datacom 
Datadictionary increments the digits by 1 until the name is unique. 

 

Example Source Member 

The following example shows the CREATE VIEW statement. See How to Submit SQL 
Statements (see page 358) for the steps to obtain the Source Panel and an explanation 
of the fields. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: DEPTVEW   Output Line Limit:  01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: VIEW DEPARTMENT ORGANIZATION 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 create view deptvew 
 ......      (deptno, deptname, admdept) 
 ...... as select all 
 ......      deptno, deptname, admdept 
 ...... from depttbl 
 ...... where admdept = 'A1'; 
 ====== ======================= B O T T O M ==================================== 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Creating a View 

 

Chapter 17: Creating SQL Objects  421  
 

Before entering the statement, we inserted five additional lines on the panel by typing 
i5 in the line number and pressing Enter. 

The statement CREATE VIEW is required and must be followed by the name of the view, 
which is DEPTVEW in this example. 

The names of the columns in the view are listed on one line in this example. The column 
names must be separated by commas and enclosed in parentheses. Since the view is 
based on an existing table, the view columns have the same data type as the table 
column. The first column named for the view corresponds to the first column named in 
the SELECT statement, the second column for the view corresponds to the second 
column named in the SELECT, and so on. In the previous example, the view columns 
have the same names as the table columns. 

The WHERE clause limits the rows in this view to those rows in the table where the 
value of the ADMDEPT column is equal to the literal value 'A1'. 

 

For more information on the syntax of the CREATE VIEW statement, see CREATE VIEW 
(see page 705). 

After placing your SQL statement in the numbered line area on the Source Panel, you 
can perform the following: 

■ Enter additional SQL statements.  Place a semicolon (;) after each complete 
statement. 

■ Press PF9 (EXECUTE) to execute the source member. CA Datacom Datadictionary 
responds with the Output Panel which shows the results of the SQL processing. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

 



Creating a View 

 

422  SQL User Guide 
 

Example Output Member 

The following example shows the Output Panel received when executing the previous 
CREATE VIEW statement. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= DEPTVEW 
                  Description: VIEW DEPARTMENT ORGANIZATION 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER DEPTVEW ) 
 000002 create view deptvew 
 000003      (deptno, deptname, admdept) 
 000004 as select all 
 000005      deptno, deptname, admdept 
 000006 from depttbl 
 000007 ---------+---------+---------+---------+---------+---------+---------+-- 
 000008 where admdept = 'A1'; 
 000009 ---------+---------+---------+---------+---------+---------+---------+-- 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS          MORE... 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

If the display is larger than your screen allows, use the PF keys to scroll to other portions 
of the display. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= DEPTVEW 
                  Description: VIEW DEPARTMENT ORGANIZATION 
 ------------------------------------------------------------------------------- 
 000009 ---------+---------+---------+---------+---------+---------+---------+-- 
 000010 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000011 --------+--------+--------+--------+--------+--------+--------+--------+ 
 000012 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000013 NUMBER OF INPUT RECORDS READ IS   0006 
 000014 NUMBER OF SQL STATEMENTS PROCESSED IS   0001 
 ====== ======================= B O T T O M ==================================== 
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Creating a Synonym 

 

Chapter 17: Creating SQL Objects  423  
 

The previous example of a view is a row and column subset view of the table DEPTTBL 
which contains columns DEPTNO, DEPTNAME, MGRNBR, and ADMDEPT. The view 
DEPTVEW is a subset since only three of the four columns in DEPTTBL are included in the 
view, plus the number of rows is limited to those where the value of the ADMDEPT 
column is equal to the literal value 'A1'. 

This view can be used to update values for the three specified columns. However, this 
view would not be used to insert new rows into the DEPTTBL table since one of the 
columns is not included in the view definition. 

 

To exit from the Output Panel, you can perform one of the following: 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel. 
 

Creating a Synonym 

Use the CREATE SYNONYM statement to define an alternative name for a table or view. 
However, the table or view must be defined in CA Datacom Datadictionary before you 
can create its synonym. After defining a synonym, you can use it in place of the full 
qualified table or view name (authorization ID and table or view name). 

You can define synonyms in the same schema as the tables or views. However, the 
schema must be represented by the current authorization ID for the session. You can 
define a synonym in your schema for a table or view that is listed in another schema. 

Enter the CREATE SYNONYM statement in the numbered area of an EDIT Source 
Member Panel. See How to Submit SQL Statements (see page 358) for the steps to 
obtain the panel and an explanation of the fields on the panel. See CREATE SYNONYM 
(see page 678) for the syntax of the statement. 

 



Creating a Synonym 

 

424  SQL User Guide 
 

Naming the Synonym 

The name you give the synonym in the CREATE SYNONYM statement is the SQL name 
you use when referencing the synonym in SQL statements. 

The SQL synonym name is: 

■ 1 to 18 characters in length if you want it to comply with ANSI or FIPS standards. 

■ 1 to 32 characters in length if you want to take advantage of the CA Datacom/DB 
extended mode for SQL. 

The CREATE SYNONYM statement syntax does not allow you to specify an authorization 
ID before the synonym name. Since you cannot specify an authorization ID, CA Datacom 
Datadictionary uses the current default authorization ID. 

The default authorization ID is the AUTHORIZATION occurrence related to the PERSON 
occurrence of the user ID entered to sign on to CA Datacom Datadictionary or the 
current authorization ID established with the SET AUTHID function. See Relating the 
Person to the AUTHID (see page 401). 

 

Since you cannot prefix the synonym name with an authorization ID in the CREATE 
SYNONYM statement, CA Datacom Datadictionary automatically prefixes the synonym 
name with the current authorization ID for the online session. If the combined 
authorization ID and synonym name is greater than the maximum allowed length of 32 
characters, CA Datacom Datadictionary truncates the concatenated name. 

If the truncated name already exists, CA Datacom Datadictionary truncates it by four 
more characters and adds four zeros to the end of the name. CA Datacom 
Datadictionary increments the digits by 1 until the name is unique. 

 



Creating a Synonym 

 

Chapter 17: Creating SQL Objects  425  
 

Example Source Member 

The following example shows the CREATE SYNONYM statement. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: PROJSYN   Output Line Limit: 01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: CREATE SYNONYM PROJECTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 create synonym projects for ted.projecttbl; 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

The statement CREATE SYNONYM is required and must be followed by the name of the 
synonym, which is PROJECTS in this example. 

The FOR clause specifies the authorization ID of the table's schema and the name of the 
table. The authorization ID and table name are concatenated by the period (.) indicating 
this is the qualified name of the table. The table name must be qualified in this case 
since it is not in the schema identified by the authorization ID (JONES) which is the 
default authorization ID. 

For more information on the syntax of the CREATE SYNONYM statement, see CREATE 
SYNONYM. (see page 678) 

 

After placing your SQL statement in the numbered line area on the Source Panel, you 
can perform the following: 

■ Enter additional SQL statements.  Place a semicolon (;) after each complete 
statement. 

■ Press PF9 (EXECUTE) to execute the source member.  CA Datacom Datadictionary 
responds with the Output Panel which shows the results of the SQL processing. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

 



Creating a Synonym 

 

426  SQL User Guide 
 

Example Output Member 

The following example shows the Output Panel received when executing the previous 
CREATE SYNONYM statement. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= PROJSYN 
                  Description: CREATE SYNONYM PROJECTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER PROJSYN ) 
 000002 create synonym projects for ted.projecttbl; 
 000003 ---------+---------+---------+---------+---------+---------+---------+-- 
 000004 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000005 ---------+---------+---------+---------+---------+---------+---------+-- 
 000006 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000007 NUMBER OF INPUT RECORDS READ IS 0001 
 000008 NUMBER OF SQL STATEMENTS PROCESSED IS 0001 
 ====== ======================= B O T T O M ==================================== 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

This example of creating a synonym defines an alternative name, PROJECTS, for the 
PROJECTTBL table listed in the schema that has the authorization ID of TED. The 
synonym is listed in the schema with the authorization ID of JONES. 

To exit from the Output Panel, you can perform one of the following: 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel. 
 



Adding and Replacing Comments 

 

Chapter 17: Creating SQL Objects  427  
 

Adding and Replacing Comments 

You can use the COMMENT ON statement to provide descriptive information for a table, 
view or column. You can place the statement after the CREATE statement on the same 
Source Panel or in its own Source Panel. CA Datacom Datadictionary places the 
comment for the object in a text classification named COMMENT. When you add a 
comment to an object that already has a comment, the new comment replaces the old 
comment. 

You cannot retrieve a comment through SQL. You can display the text created with the 
COMMENT ON statement through the CA Datacom Datadictionary online or batch 
facilities. You can also add additional classifications of text to the occurrence using the 
CA Datacom Datadictionary functions. See the CA Datacom Datadictionary User Guide 
for more information on text classifications. 

Enter the COMMENT ON statement in the numbered area of an EDIT Source Member 
Panel. See How to Submit SQL Statements (see page 358) for the steps to obtain the 
panel and an explanation of the fields on the panel. See COMMENT ON (see page 613) 
for the syntax of the statement. 

 

Example Source Member 

The following example shows a COMMENT ON statement added to an existing table: 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: DEPTCMNT  Output Line Limit: 01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: DEPTTBL COMMENT 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 comment on table depttbl 
 ......  is 'reflects 1st qtr 99 reorganization'; 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Adding and Replacing Comments 

 

428  SQL User Guide 
 

The statement COMMENT ON is required.  In this example, TABLE is also required since 
the comment is being added for a table.  (If the comment is for a view, the keyword 
VIEW is required, and if the comment is for a column, the keyword COLUMN is 
required.)  The TABLE keyword is followed by the name of the table. The required 
keyword IS introduces the comment, which must be enclosed in apostrophes since it is a 
literal string. 

The COMMENT ON statement also allows you to add comments for more than one 
column in a table.  For more information on this special syntax and the COMMENT ON 
statement in general, see COMMENT ON (see page 613). 

 

After placing your SQL statement in the numbered line area on the Source Panel, you 
can perform the following: 

■ Enter additional SQL statements.  Place a semicolon (;) after each complete 
statement. 

■ Press PF9 (EXECUTE) to execute the source member.  CA Datacom Datadictionary 
responds with the Output Panel which shows the results of the SQL processing. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

 

Example Output Member 

When you execute the command, you receive a Output Panel similar to the following 
example. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= DEPTCMNT 
                  Description: DEPTTBL COMMENT 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER DEPTCMNT) 
 000002 comment on table depttbl 
 000003  is 'reflects 1st qtr 99 reorganization'; 
 000004 ---------+---------+---------+---------+---------+---------+---------+-- 
 000005 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000006 ---------+---------+---------+---------+---------+---------+---------+-- 
 000007 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000008 NUMBER OF INPUT RECORDS READ IS 0002 
 000009 NUMBER OF SQL STATEMENTS PROCESSED IS 0001 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS          MORE... 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Adding and Replacing Comments 

 

Chapter 17: Creating SQL Objects  429  
 

This is an example of a comment on table DEPTTBL. The comment is entered in the text 
classification of COMMENT for the occurrence definition in CA Datacom Datadictionary. 
See the CA Datacom Datadictionary Online Reference Guide for information on 
displaying text for an occurrence or the CA Datacom Datadictionary Batch Reference 
Guide for instructions on running a Text Report. 

To exit from the Output Panel, you can perform one of the following: 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel. 
 





 

Chapter 18: Deleting SQL Objects  431  
 

Chapter 18: Deleting SQL Objects 
 

You can use the DROP statement to completely remove tables, indexes, views, and 
synonyms. This function obsoletes all definitions of the object in the CA Datacom 
Datadictionary, deletes it from the CA Datacom/DB Directory, and removes it from the 
schema. You cannot use the DROP statement to remove a schema. See Deleting a 
Schema (see page 432). 

Enter the DROP statement in the numbered area of an EDIT Source Member Panel. See 
How to Submit SQL Statements (see page 358) for the steps to obtain the panel and an 
explanation of the fields on the panel. See DROP (see page 725) for the syntax of the 
statement. 

 

All application plans that reference the dropped object are marked invalid. In addition, 
any data stored in a table is deleted when it is dropped. You can run a CA Datacom 
Datadictionary Relationship Report to find out what plans are dependent on a table.  
See the CA Datacom Datadictionary Batch Reference Guide for information on running a 
Relationship Report. 

■ When you drop an index, all versions of the index in all statuses are automatically 
obsoleted. 

■ When you drop a table, all versions of the table in all statuses and all views and 
synonyms dependent on the table are automatically obsoleted. 

 

■ When you drop a view, all views and synonyms dependent on the view are 
automatically obsoleted. 

■ When you drop a synonym, only the synonym is obsoleted. 
 

Note:  The DROP statement is not processed, and you receive a -118 return code when 
the entity-occurrence definition of the index, table, view, or synonym you specify is 
protected with a password or a Lock Level 1 or 2 in CA Datacom Datadictionary. The 
error message also includes a CA Datacom Datadictionary Service Facility (DSF) return 
code. The DSF return codes are: 

■ IPW for password protected 

■ IOR for Lock Level 1 protected 

■ NTF for Lock Level 2 protected 

See Preliminary Information—Lock Levels (see page 597) and to CA Datacom 
Datadictionary documentation for more information on passwords and lock levels. 

For information about the CA Datacom/DB implementation of DROP PROCEDURE and 
DROP TRIGGER/RULE, see Procedures and Triggers (see page 70) and Datadictionary 
Support for Triggers and Procedures (see page 86). 

 



Deleting a Schema 

 

432  SQL User Guide 
 

Deleting a Schema 

You cannot use DROP to delete a schema. You must use the online CA Datacom 
Datadictionary Entity Maintenance (ENTMAINT) Mode to delete the authorization 
entity-occurrence that identifies the schema. 

See the CA Datacom Datadictionary Online Reference Guide for information on using 
ENTMAINT Mode to delete an occurrence. 

Before you can delete an SQL AUTHORIZATION occurrence, you must make certain it is 
not related to any existing occurrences (TABLE, VIEW, SYNONYM, PLAN) which use it as 
an authorization ID. 

You can run a batch report to determine if the AUTHORIZATION occurrence is related to 
any other occurrences. See the CA Datacom Datadictionary Batch Reference Guide for 
information on running a Schema Report. 

 

Dropping an Index 

The DROP INDEX statement deletes an index. 

Make certain that the name you use in the DROP INDEX statement matches the 
SQLNAME attribute of the KEY that you wish to DROP. 

Enter the DROP INDEX statement in the numbered area of an EDIT Source Member 
Panel. See How to Submit SQL Statements (see page 358) for the steps to obtain the 
panel and an explanation of the fields on the panel. 

Specifying Authorization ID 

To be certain you are dropping a desired index, qualify the index name with the 
authorization ID in the DROP statement. If you specify an authorization ID for the index 
name, it must be the same as the authorization ID of the table name you specify in the 
FROM table-name clause in the DROP statement. If you do not specify the authorization 
ID, CA Datacom Datadictionary uses the current default authorization ID for the online 
session. 

 

Impact 

Dropping an index removes the index from the Index Area (IXX) and removes the index 
definition from the Directory (CXX) and CA Datacom Datadictionary. All plans dependent 
on the indexed table are marked invalid. You can run a CA Datacom Datadictionary 
Relationship Report to find out what plans are dependent on a table. See the CA 
Datacom Datadictionary Batch Reference Guide for information on running a 
Relationship Report. 

 



Dropping an Index 

 

Chapter 18: Deleting SQL Objects  433  
 

Example Source Member 

The following example shows the DROP INDEX statement. See How to Submit SQL 
Statements for the steps to obtain the panel and an explanation of the fields on the 
panel. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: DINDEX    Output Line Limit: 01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: DROP INDEX EMPLOYEE_INDEX 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 drop index employee_index from employees; 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

The DROP statement is required, as are the keywords INDEX and FROM. The keyword 
INDEX must be followed by the name of the index (employee_index in this example) you 
are dropping. The keyword FROM must be followed by the name of the table 
(employees in this example) to which the index belongs. 

Once this source member is executed, you cannot recall the index definition. If you want 
to use this index again, you must re-create it. 

See DROP (see page 725) for more information on the syntax of the DROP statement. 
 

After placing your SQL statement in the numbered line area on the Source Panel, you 
can perform the following: 

■ Enter additional SQL statements. Place a semicolon (;) after each complete 
statement. 

■ Press PF9 (EXECUTE) to execute the source member. CA Datacom Datadictionary 
responds with the Output Panel which shows the results of the SQL processing. 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press the Clear key to return to the Interactive SQL Service Facility Panel where you 
can choose another option. 

 



Dropping a Table 

 

434  SQL User Guide 
 

Example Output Member 

When you execute the statement, you receive a Output Panel similar to the following 
example: 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= DINDEX 
                  Description: DROP INDEX EMPLOYEE_INDEX 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER DINDEX  ) 
 000002 drop index employee_index from employees; 
 000003 ---------+---------+---------+---------+---------+---------+---------+-- 
 000004 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000005 ---------+---------+---------+---------+---------+---------+---------+-- 
 000006 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000007 NUMBER OF INPUT RECORDS READ IS 0001 
 000008 NUMBER OF SQL STATEMENTS PROCESSED IS 0001 
 ====== ======================= B O T T O M ==================================== 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

To exit from the Output Panel, you can perform one of the following: 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the Clear key to return to the Interactive SQL Service Facility Panel. 
 

Dropping a Table 

The DROP TABLE statement removes the table from the schema, obsoletes the table 
from the CA Datacom Datadictionary, and removes the table from the CA Datacom/DB 
Directory. You must be the creator of the table, or have the authority to drop the table. 

Enter the DROP TABLE statement in the numbered area of an EDIT Source Member 
Panel. See How to Submit SQL Statements (see page 358) for the steps to obtain the 
panel and an explanation of the fields on the panel. 

Specifying Authorization ID 

To be certain you are dropping a desired table, qualify the table name with the 
authorization ID in the DROP statement. If you do not specify the authorization ID, CA 
Datacom Datadictionary uses the current default authorization ID for the online session. 

 



Dropping a Table 

 

Chapter 18: Deleting SQL Objects  435  
 

Impact 

The results of processing the DROP TABLE have a far reaching impact. 

■ The table data is deleted and the space is reclaimed. 

■ All views and synonyms based on the table are dropped. 

■ All application plans and statements that reference the table are invalidated. 
 

■ All columns, keys, elements, and support data associated with the table are also 
obsoleted (columns appear as FIELD occurrences in CA Datacom Datadictionary ).  
The support data includes aliases, descriptors, relationship definitions, and text 
(SQL comments and text added through CA Datacom Datadictionary ). 

■ If the table definition also exists in TESTor HIST status in CA Datacom 
Datadictionary, those substructure status/versions, including their elements, keys 
and fields, are deleted at the same time as the PRODuction status. 

 

Example Source Member 

The following example shows the DROP TABLE statement. See How to Submit SQL 
Statements for the steps to obtain the panel and an explanation of the fields on the 
panel. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: DTABLE    Output Line Limit: 01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: DROP TABLE DEPTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 drop table jones.depttbl; 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Dropping a Table 

 

436  SQL User Guide 
 

The DROP statement is required, as is the keyword TABLE. The keyword must be 
followed by the name of the object you are dropping. 

Once this source member is executed, you cannot recall the table definition. If you want 
to use this table again, you must re-create it. 

See DROP (see page 725) for more information on the syntax of the DROP statement. 

After placing your SQL statement in the numbered line area on the Source Panel, you 
can perform the following: 

■ Enter additional SQL statements.  Place a semicolon (;) after each complete 
statement. 

■ Press PF9 (EXECUTE) to execute the source member. CA Datacom Datadictionary 
responds with the Output Panel which shows the results of the SQL processing. 

 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press the Clear key to return to the Interactive SQL Service Facility Panel where you 
can choose another option. 

 

Example Output Member 

When you execute the statement, you receive a Output Panel similar to the following 
example: 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= DTABLE 
                  Description: DROP TABLE DEPTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER DTABLE  ) 
 000002 drop table jones.depttbl; 
 000003 ---------+---------+---------+---------+---------+---------+---------+-- 
 000004 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000005 ---------+---------+---------+---------+---------+---------+---------+-- 
 000006 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000007 NUMBER OF INPUT RECORDS READ IS 0001 
 000008 NUMBER OF SQL STATEMENTS PROCESSED IS 0001 
 ====== ======================= B O T T O M ==================================== 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Dropping a View 

 

Chapter 18: Deleting SQL Objects  437  
 

To exit from the Output Panel, you can perform one of the following: 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the Clear key to return to the Interactive SQL Service Facility Panel. 
 

Dropping a View 

Use the DROP VIEW statement to obsolete a view in CA Datacom Datadictionary. When 
you drop a view, the synonyms or views that are directly or indirectly dependent on the 
view are automatically dropped. All application plans and statements that reference the 
view are invalidated. 

Enter the DROP VIEW statement in the numbered area of an EDIT Source Member 
Panel. See How to Submit SQL Statements (see page 358) for the steps to obtain the 
panel and an explanation of the fields on the panel. 

Specifying Authorization ID 

To be certain you are dropping the desired view, qualify the view name with the 
authorization ID in the DROP statement. If you do not specify the authorization ID, CA 
Datacom Datadictionary uses the current default authorization ID for the online session. 

 



Dropping a View 

 

438  SQL User Guide 
 

Example Source Member 

The following example shows the DROP VIEW statement. See How to Submit SQL 
Statements (see page 358) for the steps to obtain the panel and an explanation of the 
fields on the panel. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: DVIEW     Output Line Limit: 01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: DROP VIEW DEPTVEW 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 drop view jones.deptvew; 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

The DROP statement is required, as is the keyword VIEW. The keyword must be 
followed by the name of the object you are dropping. 

Once this source member is executed, you cannot recall the view definition. If you want 
to use this view again, you must re-create it. 

See DROP (see page 725) for more information on the syntax of the DROP statement. 
 



Dropping a Synonym 

 

Chapter 18: Deleting SQL Objects  439  
 

Example Output Member 

When you execute the statement, you receive a Output Panel similar to the following 
example: 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= DVIEW 
                  Description: DROP VIEW DEPTVEW 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER DVIEW   ) 
 000002 drop view jones.deptvew; 
 000003 ---------+---------+---------+---------+---------+---------+---------+-- 
 000004 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000005 ---------+---------+---------+---------+---------+---------+---------+-- 
 000006 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000007 NUMBER OF INPUT RECORDS READ IS 0001 
 000008 NUMBER OF SQL STATEMENTS PROCESSED IS 0001 
 ====== ======================= B O T T O M ==================================== 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

To exit from the Output Panel, you can perform one of the following: 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the Clear key to return to the Interactive SQL Service Facility Panel. 
 

Dropping a Synonym 

Use DROP SYNONYM to remove a synonym from the CA Datacom Datadictionary. 
Dropping a synonym does not affect the table or view referenced by the synonym. All 
application plans that reference the synonym are invalidated. 

Enter the DROP SYNONYM statement in the numbered area of an EDIT Source Member 
Panel. See How to Submit SQL Statements (see page 358) for the steps to obtain the 
panel and an explanation of the fields on the panel. 

Example Source Member 

The following example shows the DROP SYNONYM statement. 
 



Dropping a Synonym 

 

440  SQL User Guide 
 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: DSYNONYM  Output Line Limit: 01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: DROP SYNONYM PROJECTS 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 drop synonym projects; 
 ====== ======================= B O T T O M ==================================== 
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

The DROP statement is required, as is the keyword SYNONYM.  The keyword must be 
followed by the name of the object you are dropping. 

Once this source member is executed, you cannot recall the synonym definition.  If you 
want to use this synonym again, you must re-create it. 

See DROP (see page 725) for more information on the syntax of the DROP statement. 

After placing your SQL statement in the numbered line area on the Source Panel, you 
can perform the following: 

■ Enter additional SQL statements.  Place a semicolon (;) after each complete 
statement. 

■ Press PF9 (EXECUTE) to execute the source member. CA Datacom Datadictionary 
responds with the Output Panel which shows the results of the SQL processing. 

 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press the Clear key to return to the Interactive SQL Service Facility Panel where you 
can choose another option. 

 



Dropping a Synonym 

 

Chapter 18: Deleting SQL Objects  441  
 

Example Output Member 

When you execute the statement, you receive a Output Panel similar to the following 
example: 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Output Panel                               S01O 
              EDIT     Member= DSYNONYM 
                  Description: DROP SYNONYM PROJECTS 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 (OUTPUT CREATED FROM SOURCE MEMBER DSYNONYM) 
 000002 drop synonym projects; 
 000003 ---------+---------+---------+---------+---------+---------+---------+-- 
 000004 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0 
 000005 ---------+---------+---------+---------+---------+---------+---------+-- 
 000006 SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72 
 000007 NUMBER OF INPUT RECORDS READ IS 0001 
 000008 NUMBER OF SQL STATEMENTS PROCESSED IS 0001 
 ====== ======================= B O T T O M ==================================== 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

To exit from the Output Panel, you can perform one of the following: 

■ Press PF2 (END) to obtain an SQLMAINT Panel where you can select another option. 

■ Press PF12 (ALTERNATE) to display the Source Panel. 

■ Press the Clear key to return to the Interactive SQL Service Facility Panel. 
 





 

Chapter 19: Manipulating Data in SQL Tables  443  
 

Chapter 19: Manipulating Data in SQL 
Tables 
 

In the Interactive SQL Service Facility, you can use the following SQL Data Manipulation 
Language (DML) statements to insert, update, or delete data in SQL tables in the 
production database. See How to Submit SQL Statements. 

■ Searched DELETE 

Deletes rows that meet a specified condition from a table or view. Deleting a row 
from a view deletes the row from the table on which the view is based. See DELETE 
(see page 717) for the statement syntax and more information. 

■ INSERT 

Inserts a row into a table or view. Inserting a row into a view inserts the row into 
the table on which the view is based. See INSERT (see page 747) for the statement 
syntax and more information. 

 

■ SELECT 

Produces a result table consisting of qualifying rows from the specified table. See 
SELECT (see page 766) for the statement syntax and more information. 

■ Searched UPDATE 

Updates rows that meet a specified condition from a table or view. Updating a row 
in a view updates the row in the table on which the view is based. See UPDATE (see 
page 789) for the statement syntax and more information. 

 

You can also perform the transaction level operations with the following Data 
Manipulation Language commands. 

■ COMMIT WORK 

Terminates a unit of recovery and commits the database changes that were made 
by that unit of recovery. See COMMIT WORK (see page 616) for the statement 
syntax and more information. 

■ LOCK TABLE 

Ensures against repeatable reads and provides an isolation level protection from 
other executing programs. See LOCK TABLE (see page 751) for the statement syntax 
and more information. 

 



Dropping a Synonym 

 

444  SQL User Guide 
 

■ ROLLBACK WORK 

Terminates a unit of recovery and backs out the CA Datacom/DB database changes 
made by that unit of recovery. See ROLLBACK WORK (see page 764) for the 
statement syntax and more information. 

Note:  The COMMIT WORK and ROLLBACK WORK commands can be placed in a source 
member to be executed, if necessary.  A COMMIT WORK command is implied, in CICS, 
by a transaction boundary (that is to say, from EXECUTE to display of results is a single 
transaction). A ROLLBACK WORK is implied, in all environments, by a negative SQL 
return code (in the format -nnn) on any SQL statement in the member being executed. 
 



 

Chapter 20: Controlling Access Through SQL Statements  445  
 

Chapter 20: Controlling Access Through 
SQL Statements 
 

In the Interactive SQL Service Facility, you can use the SQL Data Control Language (DCL) 
to define the kind of access authorized for a particular resource. This includes granting 
privileges to other users or revoking those privileges. See How to Submit SQL 
Statements (see page 358). 

■ GRANT 

Gives specified privileges on tables and views in databases that are secured under 
the SQL Security Model. See GRANT (see page 742) for the statement syntax and 
more information. 

■ REVOKE 

Removes privileges on tables and views for which privileges have been given 
through the GRANT statement. See REVOKE (see page 759) for the statement 
syntax and more information. 

Important!  If the CA Datacom/DB Security Facility is not installed at your site, the 
GRANT and REVOKE statements are rejected with an SQL error code -559. All tables and 
views in the statement must belong to databases secured under the SQL Security 
Model.  If tables and views are in databases secured under the CA Datacom/DB External 
Security Model, the GRANT and REVOKE statements are rejected with an SQL error code 
-273.  See the CA Datacom Security Reference Guide for more information about 
security models. 
 





 

Chapter 21: Performing SQL Administrative Tasks  447  
 

Chapter 21: Performing SQL Administrative 
Tasks 
 

You can use the SQL Administrative functions to perform the following maintenance: 

■ Set a default authorization ID for the current session. 

■ Rebind a plan. 

■ Delete a plan. 

The SET AUTHID option allows you to change the default authorization ID used for the 
execution of SQL members in your current Interactive SQL Service Facility session.   This 
default is released when you exit from the Interactive SQL Service Facility. 

The plan options are for administration of plans associated with programs.  You can 
rebind plans without having to re-precompile, and delete plans when the associated 
program becomes obsolete. 

 

SQL Names 

The authorization ID and plan names used in this facility are the SQL names, not the CA 
Datacom Datadictionary occurrence names. The names can be up to 18 characters in 
length. See Naming the Plan (see page 209) for information on how a plan name is 
created as a result of an application program. 

 



Setting the Session Authorization ID 

 

448  SQL User Guide 
 

Setting the Session Authorization ID 

An SQL authorization ID is a entity-occurrence of the AUTHORIZATION entity-type which 
was created using a CREATE SCHEMA statement. An AUTHORIZATION occurrence 
created through another mode of CA Datacom Datadictionary or through batch 
transactions cannot be an SQL authorization ID. 

When the AUTHORIZATION occurrence is created (using CREATE SCHEMA), the 
AUTH-USAGE attribute is assigned a value of S, indicating this occurrence is an SQL 
authorization ID. 

An AUTHORIZATION occurrence marked for use by SQL can be related to one or more 
PERSON occurrences (user signon ID) with the PER-ATZ-AUTHID relationship. This is a 
many-to-one relationship, meaning that several PERSON occurrences can be related to a 
specific AUTHORIZATION occurrence. Several users can have the same default, but each 
user can have only one default. See Relating the Person to the AUTHID (see page 401). 

Important!  Do not relate a PERSON occurrence to the SYSUSR AUTHORIZATION 
occurrence using the PER-ATZ-AUTHID relationship. 

 

Current Authorization ID at Start of Session 

When you enter the Interactive SQL Service Facility of online CA Datacom 
Datadictionary, your default authorization ID is one of the following: 

■ An AUTHID established with CA Datacom Datadictionary functions to relate your 
PERSON occurrence to an SQL valid AUTHORIZATION occurrence using the 
PER-ATZ-AUTHID relationship. (For information on adding relationships between 
occurrences, see the CA Datacom Datadictionary Batch Reference Guide or CA 
Datacom Datadictionary Online Reference Guide.) 

■ An AUTHID established with the Default Authorization Panel or the RESET DEFAULT 
AUTHID command. (See Changing Your AUTHID (see page 402).) 

The SET AUTHID command in the SQLADMIN facility allows you to temporarily change 
the default authorization ID during an online session in the Interactive SQL Service 
Facility. Changing the default is useful when you want to process DML statements 
against tables belonging to another schema without having to qualify those tables with 
the authorization ID. 

 



Setting the Session Authorization ID 

 

Chapter 21: Performing SQL Administrative Tasks  449  
 

Note:  This option does not create a new authorization ID. If you want to create a new 
authorization ID, see Creating a Schema (see page 400). 

The default authorization ID is the one CA Datacom Datadictionary uses with any 
executions of SQL members in the Interactive SQL Service Facility. If the SQL statements 
in the source member being executed do not make an explicit reference to an 
authorization ID, CA Datacom Datadictionary uses the current default authorization ID. 

You can switch to any valid SQL authorization ID. If the specified authorization ID is not 
valid, the switch does not take place and the current authorization ID in effect remains 
intact for the session. 

 

Displaying and Reporting 

You can display a table of AUTHORIZATION entity-occurrences using the Entity Display 
(ENTDISPL) Mode of CA Datacom Datadictionary online and view the attributes to 
determine if AUTH-USAGE=S. This indicates it is a valid SQL authorization ID. See the CA 
Datacom Datadictionary Online Reference Guide for information on the Entity Display 
Mode. 

You can also run a batch report using the -RPT SCHEMA transaction to list all valid SQL 
authorization IDs and objects owned by the schema represented by each AUTHID.  See 
the CA Datacom Datadictionary Batch Reference Guide for information on the Schema 
Report. 

 



Setting the Session Authorization ID 

 

450  SQL User Guide 
 

How to Set the Default 

Use the following steps to set the default authorization ID for a session. 

Step 1 

When you sign on or select the SET MODE function, CA Datacom Datadictionary displays 
the Datadictionary Mode Select Panel. Select Option 7 or enter the SET MODE SQL 
command. 

Step 2 

On the Interactive SQL Service Facility Panel, select Option 2 (SQLADMIN). 

 => 
 => 
 => 
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility 
  
 Enter desired option number ===> __    (There are 05 options on the menu) 
  1. SQLMAINT                     SQL member maintenance/execution 
  2. SQLADMIN                     SQL administrative functions 
  3. SET MODE                     Reset Datadictionary processing mode 
  4. IDEAL                        Transfer to IDEAL application 
  5. OFF                          End session 

Note:  If CA Ideal is not installed on your system, the OFF option appears in place of the 
CA Ideal option on the panel. 

 

Step 3 

CA Datacom Datadictionary displays the Interactive SQL Service Facility SQLADMIN 
Panel with four menu options. Select Option 1 (SET AUTHID). 

 => 
 => 
 => 
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
  
 Enter desired option number ===> __    (There are 05 options on the menu) 
  1. SET AUTHID                   Set default AUTHID for session 
  2. DELETE PLAN                  Delete SQL plan 
  3. REBIND PLAN                  Rebind SQL plan 
  4. DISPLAY PLAN                 Display index of SQL plans 
  5. END                          End SQLADMIN processing 

 



Setting the Session Authorization ID 

 

Chapter 21: Performing SQL Administrative Tasks  451  
 

Step 4 

The AUTHORIZATION-ID Panel appears.  After reading the following information, 
complete your entry on the panel and press PF9 (EXECUTE). To change to the default 
authorization ID, press PF9 (EXECUTE) without placing an entry on the panel. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
                                                                            S03U 
  
                             AUTHORIZATION-ID 
  
  
  
 ENTER AUTHORIZATION-ID:    __________________ 
  
  
  
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

Note:  If your terminal displays 24 lines, you must scroll forward to display the last line 
containing the descriptions of PF9 (EXECUTE) through PF12 (ALTERNATE). 

 

ENTER AUTHORIZATION-ID 

(Optional)  Enter the authorization ID which you want as the default for this session 
of the Interactive SQL Service Facility. 

If you leave this field blank, CA Datacom Datadictionary resets the current 
authorization ID to the default which was in effect when you signed on or that you 
established with the RESET DEFAULT AUTHID command (see Changing Your AUTHID 
(see page 402)). 

Valid Entries: 

1- to 18-character authorization ID 

Default Value: 

Authorization ID in effect at signon 
 



Deleting a Plan 

 

452  SQL User Guide 
 

Step 5 

When you successfully execute the request, CA Datacom Datadictionary returns a 
message to the panel naming the default authorization ID in effect. In this example, the 
default authorization is set to JONES. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
                                                                            S03U 
  
                             AUTHORIZATION-ID 
  
  
  
 ENTER AUTHORIZATION-ID:    JONES_____________ 
 AUTHORIZATION-ID IS NOW JONES 
  
  
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

To exit this panel, you can: 

■ Press PF2 (END) to display the Interactive SQL Service Facility SQLADMIN Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

 

Deleting a Plan 

The DELETE PLAN option of the SQLADMIN facility allows you to remove plans that, for 
example, are associated with an application that is no longer in use or is invalid and you 
want to reuse the plan name. See Preliminary Information—Lock Levels (see page 597) 
for information about lock levels with regard to DELETE PLAN. 

 



Deleting a Plan 

 

Chapter 21: Performing SQL Administrative Tasks  453  
 

How the Plan Is Named 

See Naming the Plan (see page 209) for information on how a plan name is created as a 
result of an application program. 

When a source member is created and executed, CA Datacom Datadictionary creates 
and deletes a plan for that member during the execution. If the execution of the 
member is successful, the plan is deleted. If you execute the source member again, CA 
Datacom Datadictionary creates and deletes a new plan for that member. 

The name for the plan is formed by concatenating the character string SQLD with the 
four-byte terminal ID.  For example, if the terminal ID is WXYZ, the plan name for a 
source member executed by the user is SQLDWXYZ. 

In certain circumstances, the plan for a source member may not be automatically 
deleted. For example, if the CA Datacom/DB MUF terminates abnormally while a source 
member is executing, there is a possibility of the plan not being deleted. 

 

An automatic plan deletion can also fail when CA Datacom Datadictionary issues an 
internal command to delete the plan. In this case, a message specifying that the 
command failed is displayed on the output panel after the line stating NUMBER OF 
INPUT RECORDS READ IS. 

If you attempt to execute a source member and receive the message PLAN ALREADY 
EXISTS, the automatic plan delete failed after a previous execution. You must delete the 
plan before you can execute the source member. 

 

You can display an index report of PLAN occurrences using the Entity Display (ENTDISPL) 
Mode of CA Datacom Datadictionary or the display plan command in the SQLADMIN 
mode. See the CA Datacom Datadictionary Online Reference Guide or CA Datacom 
Datadictionary User Guide. Also, you can produce an index report for the PLAN 
entity-type using CA Datacom Datadictionary batch reporting. See the CA Datacom 
Datadictionary Batch Reference Guide. If the name of any PLAN occurrences in the index 
report begins with SQLD, the automatic deletion of online plans did not take place and 
the plan must be manually deleted. 

 



Deleting a Plan 

 

454  SQL User Guide 
 

How to Delete a Plan 

Use the following steps to delete a plan. 

Step 1 

When you sign on or select the SET MODE function, CA Datacom Datadictionary displays 
the Datadictionary Mode Select Panel. Select Option 7 or enter the SET MODE SQL 
command. 

Step 2 

On the Interactive SQL Service Facility Panel, select Option 2 (SQLADMIN). 
 

Step 3 

CA Datacom Datadictionary displays the Interactive SQL Service Facility SQLADMIN 
Panel with five menu options. Select Option 2 (DELETE PLAN). 

 => 
 => 
 => 
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
  
 Enter desired option number ===> __    (There are 05 options on the menu) 
  1. SET AUTHID                   Set default AUTHID for session 
  2. DELETE PLAN                  Delete SQL plan 
  3. REBIND PLAN                  Rebind SQL plan 
  4. DISPLAY PLAN                 Display index of SQL plans 
  5. END                          End SQLADMIN processing 

 



Deleting a Plan 

 

Chapter 21: Performing SQL Administrative Tasks  455  
 

Step 4 

The DELETE PLAN Panel appears. After reading the list below, complete your entries on 
the panel and press PF9 (EXECUTE) to execute your request. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
  
                             DELETE  PLAN PANEL                             S03U 
  
  
  
 ENTER PLAN NAME TO  DELETE : __________________ 
 ENTER AUTHORIZATION-ID:    __________________ 
  
  
  
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

ENTER PLAN NAME TO DELETE 

(Required) Specify the name of the plan you want to delete. This is the name 
specified in the SQL PLANAME= option or the PROGRAM-ID value in the application 
program. 

Valid Entries: 

1- to 18-character plan name 

Default Value: 

(No default) 
 



Deleting a Plan 

 

456  SQL User Guide 
 

ENTER AUTHORIZATION-ID 

(Optional) Specify authorization ID which owns the plan you are deleting. 

If you do not specify the authorization ID, CA Datacom Datadictionary uses the 
default authorization ID for the current online session. 

It is possible for different authorization IDs to have a plan with the same name. To 
be certain you are deleting the right plan, specify authorization ID on this panel if 
you do not know the default for current online session. 

Valid Entries: 

1- to 18-character authorization ID 

Default Value: 

Default authorization ID for current session 
 

Step 5 

When you successfully execute the request, CA Datacom Datadictionary returns a 
message to the panel naming the plan and the authorization-ID, which is either the one 
you specified on the panel or the default for the session if you left that field blank. 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
  
                             DELETE  PLAN PANEL                             S03U 
  
  
  
 ENTER PLAN NAME TO  DELETE : PLANA_____________ 
 ENTER AUTHORIZATION-ID:    __________________ 
 SUCCESSFUL DELETE OF PLAN PLANA              AUTHID=JONES 
  
  
  
  
  
  
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

After successfully deleting the plan, you can: 

■ Press PF2 (END) to display the Interactive SQL Service Facility SQLADMIN Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

 



Rebinding a Plan 

 

Chapter 21: Performing SQL Administrative Tasks  457  
 

Rebinding a Plan 

The Interactive SQL Service Facility allows you to specify plan options when rebinding an 
existing plan that was created as a result of SQL statements embedded in a program. 
The plan options you can specify during the Interactive SQL Service Facility session are 
slightly different from those you can specify before submitting a program with 
embedded SQL statements.  See Coding Plan Options (see page 464). 

A change to an SQL table definition marks any plans referencing that table for a rebind. 
CA Datacom/DB attempts an automatic rebind of the plan when the program executes. 
If the rebind fails, you must make any necessary changes to your program and submit it 
to the SQL Preprocessor. 

The REBIND PLAN option allows you to manually control the rebind instead of waiting 
for the automatic rebind attempt. A manual rebind: 

■ Saves execution time resources. 

■ Identifies source program changes necessary before the next scheduled execution 
of that program. 

 

■ Allows you to change the plan options. 

■ Could prevent abnormal termination of the program. 

The REBIND PLAN option allows you to update a plan that may have become invalid but 
is assumed to be successfully rebound without the need for precompiling and linking the 
program again. 

 

How to Rebind a Plan 

Use the following steps to rebind a plan: 

Step 1 

When you sign on or select the SET MODE function, CA Datacom Datadictionary displays 
the Datadictionary Mode Select Panel. Select Option 7 or enter the SET MODE SQL 
command. 

Step 2 

On the Interactive SQL Service Facility Panel, select Option 2 (SQLADMIN). 
 



Rebinding a Plan 

 

458  SQL User Guide 
 

Step 3 

CA Datacom Datadictionary displays the Interactive SQL Service Facility SQLADMIN 
Panel. Select Option 3 (REBIND PLAN). 

 => 
 => 
 => 
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
  
 Enter desired option number ===> __    (There are 05 options on the menu) 
  1. SET AUTHID                   Set default AUTHID for session 
  2. DELETE PLAN                  Delete SQL plan 
  3. REBIND PLAN                  Rebind SQL plan 
  4. DISPLAY PLAN                 Display index of SQL plans 
  5. END                          End SQLADMIN processing 

 

Step 4 

The REBIND PLAN Panel appears. After reading the list below, complete your entries on 
the panel and press PF9 (EXECUTE) to execute your request. 

The options for the plan are displayed on the panel. 

 => 
 => 
 => 
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
  
                             REBIND  PLAN PANEL                             S03U 
  
 ENTER PLAN NAME TO  REBIND : __________________ 
 ENTER AUTHORIZATION-ID:    __________________ 
  
                       PLAN OPTIONS 
    CBSIO   : ______    (between 0 and 524287)       MSG-PREP: _     (N,S or D) 
    PRIORITY: __        (between 1 and 15)           MSG-EXEC: _     (N,S or D) 
    TIMEMIN : ___       (between 0 and 120)          PLNCLOSE: _     (T or R) 
    TIMESEC : ___       (between 0 and 120)          PLNISOLA: _     (U,C or R) 
    SQLMODE : ________  (DATACOM, ANSI, FIPS)        PLNJOVRD: _     (M,P or E) 
    PLNWKSP : ____      (between 0 and 0128K)        PLNDATE : _     (0 thru 4) 
    PLNTIME : _         (0 thru 4) 
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Rebinding a Plan 

 

Chapter 21: Performing SQL Administrative Tasks  459  
 

ENTER PLAN NAME TO REBIND 

(Required)  Specify the name of the plan you want to rebind. This is the name 
specified in the SQL PLANAME= option or the PROGRAM-ID value in the application 
program. See Naming the Plan (see page 209). 

Valid Entries: 

1- to 18-character plan name 

Default Value: 

(No default) 
 

ENTER AUTHORIZATION-ID 

(Optional)  Specify the authorization ID which owns the plan you are rebinding. If 
you do not specify the authorization ID, CA Datacom Datadictionary uses the 
default authorization ID for the current online session. 

It is possible for different authorization IDs to have a plan with the same name. To 
make certain you are rebinding the right plan, specify the authorization ID on this 
panel if you do not know the default for the current online session. 

Valid Entries: 

1- to 18-character authorization ID 

Default Value: 

Default authorization ID for current session 
 

PLAN OPTIONS 

The options you can specify in the rebind of this plan are shown on the panel. See 
Coding Plan Options (see page 464) for an explanation of the valid entries. 

Step 5 

When you successfully execute the request, CA Datacom Datadictionary returns a 
message to the panel naming the plan and the authorization-ID. The AUTHID is either 
the one you specified on the panel or the default for the session if you left that field 
blank. 

 



Displaying Index of SQL Plans 

 

460  SQL User Guide 
 

 => 
 => 
 => 
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
  
                             REBIND  PLAN PANEL                             S03U 
  
 ENTER PLAN NAME TO  REBIND : PLANB 
 ENTER AUTHORIZATION-ID:      JONES            . 
 SUCCESSFUL REBIND OF PLAN PLANB              AUTHID=JONES 
  
                       PLAN OPTIONS 
    CBSIO   : ______    (between 0 and 524287)       MSG-PREP: _     (N,S or D) 
    PRIORITY: __        (between 1 and 15)           MSG-EXEC: _     (N,S or D) 
    TIMEMIN : ___       (between 0 and 120)          PLNCLOSE: _     (T or R) 
    TIMESEC : ___       (between 0 and 120)          PLNISOLA: _     (U,C or R) 
    SQLMODE : ________  (DATACOM, ANSI, FIPS)        PLNJOVRD: _     (M,P or E) 
    PLNWKSP : ____      (between 0 and 0128K)        PLNDATE : _     (0 thru 4) 
    PLNTIME : _         (0 thru 4) 
  
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

After successfully rebinding the plan, you can: 

■ Press PF2 (END) to display the Interactive SQL Service Facility SQLADMIN Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

Note:  If you press Enter instead of PF9 (EXECUTE), the values for each option the plan 
currently has are displayed. If you press Enter instead of PF9 (EXECUTE) after making a 
change to any option, the current option is redisplayed. 

 

Displaying Index of SQL Plans 

The Interactive SQL Service Facility allows you to display an index of all plans that 
currently exist in the dictionary. 

You receive an error message telling you that no plans currently exist if there are none, 
or if you are not pointing to the active dictionary where the plan occurrences are 
defined. 

Note:  The online plan is usually deleted after successful execution. The DISPLAY PLAN 
option should therefore only show the plans created by embedded SQL in application 
programs.  However, if an online plan is not deleted for some reason, such as an abend, 
it is displayed. 

 



Displaying Index of SQL Plans 

 

Chapter 21: Performing SQL Administrative Tasks  461  
 

How to Display an Index of SQL Plans 

Use the following steps to display an index of SQL plans: 

Step 1 

When you sign on or select the SET MODE function, CA Datacom Datadictionary displays 
the Datadictionary Mode Select Panel. Select Option 7 or enter the SET MODE SQL 
command. 

Step 2 

On the Interactive SQL Service Facility Panel, select Option 2 (SQLADMIN). 
 

Step 3 

CA Datacom Datadictionary displays the Interactive SQL Service Facility SQLADMIN 
Panel. Select Option 4 (DISPLAY PLAN). 

 => 
 => 
 => 
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
  
 Enter desired option number ===> __    (There are 05 options on the menu) 
  1. SET AUTHID                   Set default AUTHID for session 
  2. DELETE PLAN                  Delete SQL plan 
  3. REBIND PLAN                  Rebind SQL plan 
  4. DISPLAY PLAN                 Display index of SQL plans 
  5. END                          End SQLADMIN processing 

 



Displaying Index of SQL Plans 

 

462  SQL User Guide 
 

Step 4 

The following display appears. 

 => 
 => 
 => 
  
 --------------------------------------------------------------------------- >>> 
 DDOL:  ANCHORED OCCURRENCE FOR INDEX DISPLAY 
  
 TYPE   OCCURRENCE       STA VER                                            S04D 
  PLN   SYSADM-BANEMODE   P  001 
 ------------------------------------------------------------------------------- 
        Type   Occurrence-Name                  Status  Version 
 ====== ========================== T O P ======================================= 
 000001  PLN   SYSADM-BANEMODE                     P     001 
 000002  PLN   SYSADM-CANEMODE                     P     001 
 000003  PLN   SYSADM-DANEMODE                     P     001 
 000004  PLN   SYSADM-EANEMODE                     P     001 
 000005  PLN   SYSADM-LANEMODE                     P     001 
 000006  PLN   SYSADM-TANEMODE                     P     001 
 000007  PLN   SYSADM-TESTMODE                     P     001 
 ====== ======================= B O T T O M ==================================== 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 

After a successful display of the index of SQL plans, you can: 

■ Press PF2 (END) to display the Interactive SQL Service Facility SQLADMIN Panel. 

■ Press the CLEAR key to return to the Interactive SQL Service Facility Panel where 
you can choose another option. 

If no plans currently exist, or if you are not pointing to the active dictionary where the 
plan occurrences are defined, you receive an error message as shown following instead 
of the index display. 

 

 => 
 => 
 => 
 1-DDOL000472I - STRP - NO PLANS CURRENTLY EXIST ON DICTIONARY 
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLADMIN 
 Enter desired option number ===> __    (There are 05 options on the menu) 
  1. SET AUTHID                   Set default AUTHID for session 
  2. DELETE PLAN                  Delete SQL plan 
  3. REBIND PLAN                  Rebind SQL plan 
  4. DISPLAY PLAN                 Display index of SQL plans 
  5. END                          End SQLADMIN processing 

 



Specifying Plan Options in a Source Member 

 

Chapter 21: Performing SQL Administrative Tasks  463  
 

Specifying Plan Options in a Source Member 

The plan is controlled by options which you can specify or allow to default. The values 
you assign to the options determine how the plan processes the SQL statements and 
controls certain aspects of the environment. 

The options you specify in your source member build the CA Datacom/DB access plan 
containing the SQL statements you place in a source member. This access plan is 
temporary and is deleted after the SQL statements are executed. The plan only 
continues to exist if the system abends before the plan is deleted. The access plan 
contains: 

■ Information required by CA Datacom/DB about your source member. 

■ Each embedded SQL statement in your source member. 

Note:  The plan options you specify in your source member have no affect on SQL 
statements submitted through CA Dataquery. 

 

The plan options you code in a source member must appear before your SQL 
statements. The following example shows the format: 

 => 
 => 
 => 
  
 ------------------------------------------------------------------------------- 
 Interactive SQL Service Facility                                       SQLMAINT 
  
                                 Source Panel                               S01S 
            EDIT     Member: $DDSQL    Output Line Limit:  01000 
                     Person: JONES 
             Current Authid: JONES 
                Description: CREATE TABLE DEPTTBL 
 ------------------------------------------------------------------------------- 
 ====== ========================== T O P ======================================= 
 000001 *$dbsqlopt prty=9; 
 ...... create table depttbl 
 ......  (deptno char(2) not null, 
 ......   deptname char(24) not null, 
 ......   mgrnbr char(6) not null, 
 ......   admdept char(2), 
 ......   unique (deptno, mgrnbr)); 
 PF1=HELP         PF2=END         PF3=SPLIT         PF4=PROCESS 
 PF5=TOP          PF6=BOTTOM      PF7=BACKWARD      PF8=FORWARD 
 PF9=EXECUTE      PF10=LEFT       PF11=RIGHT        PF12=ALTERNATE 

 



Coding Plan Options 

 

464  SQL User Guide 
 

When you code the options in your source member, you can enter the options in any 
order, but the following rules apply: 

■ The options must be the first statement in your source member and must begin 
with *$DBSQLOPT. 

■ No option can be continued from one line to the next, that is to say, the option 
keyword and assigned value must be coded on the same line. 

■ Each option must be separated from another by one space. 
 

■ Each option you code must be in the option-name=value format. 

■ The last option keyed must be followed by a semicolon (;). 
 

All options which you enter in the source member are edited. The default value for an 
option is used if you do not specify the option in your member. 

If you enter the option keyword, but do not specify a value after the equal sign or if an 
invalid value is specified for an option or the option itself is misspelled, you receive error 
code DDOL000008 -- PLAN OPTION(S) IN ERROR. 

 

Coding Plan Options 

The following options are valid only when submitted with a program with embedded 
SQL.  You cannot change them on the REBIND PLAN panel. For more information on 
options submitted with a program with embedded SQL, see Options You Can Specify 
(see page 214). 

Valid Options per Language: 

 

COBOL PL/I C Assembler 

APOST=    

AUTHID= AUTHID= AUTHID= AUTHID= 

CBSIO= CBSIO= CBSIO= CBSIO= 

CHECKPLAN= CHECKPLAN= CHECKPLAN= CHECKPLAN= 

CHECKWHEN= CHECKWHEN= CHECKWHEN= CHECKWHEN= 

CHECKWHO= CHECKWHO= CHECKWHO= CHECKWHO= 

COBMODE=    

DATE= DATE= DATE= DATE= 

DECPOINT= DECPOINT= 
DECPT= 

DECPOINT= 
DECPT= 

 

GENSECTN=    



Coding Plan Options 

 

Chapter 21: Performing SQL Administrative Tasks  465  
 

COBOL PL/I C Assembler 

 GENSTOR=  GENSTOR= 

 GENINIT=  GENINIT= 

   INLINE= 

ISOLEVEL= ISOLEVEL= ISOLEVEL= ISOLEVEL= 

ITYP= ITYP= ITYP= ITYP= 

 LANGUAGE= 
LANG= 

LANGUAGE= 
LANG= 

LANGUAGE= 
LANG= 

 MARGINS=  MARGINS= 

MSG=    

 MSGEXEC= MSGEXEC= MSGEXEC= 

 MSGPREC= MSGPREC= MSGPREC= 

OPT= OPT= OPT= OPT= 

PAGESZE= PAGESZE= PAGESZE= PAGESZE= 

PLANAME= PLANAME= 
PLANNAME= 

PLANAME= 
PLANNAME= 

PLANAME= 
PLANNAME= 

PLNCLOSE= PLNCLOSE= PLNCLOSE= PLNCLOSE= 

PRTREXIT= PRTREXIT= PRTREXIT= PRTREXIT= 

PRTY= PRTY= PRTY= PRTY= 

QUOTE=    

   REFNTRY= 

SAVEPLANSEC= SAVEPLANSEC= SAVEPLANSEC= SAVEPLANSEC= 

 SMBR= SMBR= SMBR= 

SQLMODE= SQLMODE= SQLMODE= SQLMODE= 

STRDELIM= STRDELIM= 
STRDLM= 
STRINGDELIM= 

STRDELIM= 
STRDLM= 
STRINGDELIM= 

 

TIME= TIME= TIME= TIME= 

TIMEMIN= TIMEMIN= TIMEMIN= TIMEMIN= 

TIMESEC= TIMESEC= TIMESEC= TIMESEC= 

 UCRPT=  UCRPT= 

USRNTRY=   USRNTRY= 



Coding Plan Options 

 

466  SQL User Guide 
 

COBOL PL/I C Assembler 

VIEWSEC= VIEWSEC= VIEWSEC= VIEWSEC= 

WORKSPACE= WORKSPACE= WORKSPACE= WORKSPACE= 

The following options are valid only when submitted in a source member with a 
*$DBSQLOPT statement or with a program with embedded SQL.  You cannot change 
them on the REBIND PLAN panel: 

■ DECPOINT= (in COBOL, PL/I, and C only) 

■ STRDELIM= (in COBOL, PL/I, and C only) 

For more information about DECPOINT= and STRDELIM= see Options You Can Specify 
(see page 214). 

 

You can specify alternate values for the following plan options in the Interactive SQL 
Service Facility. 

 

Plan Option on 
Rebind Panel 

Plan Option in 
Source Member 

Preprocessor 
Option (see chapter 4) * 

CBSIO CBSIO= CBSIO= 

MSG-EXEC 
MSG-PREP 

PLNMSGPE= MSG= (COBOL) 
MSGEXEC= (PL/I, C, Assembler) 
MSGPREC= (PL/I, C, Assembler) 

PLNCLOSE PLNCLOSE= PLNCLOSE= 

PLNDATE PLNDATE= DATE= 

PLNISOLA PLNISOLA= ISOLEVEL= 

PLNJOVRD PLNJOVRD= OPT= 

PLNTIME PLNTIME= TIME= 

PLNWKSP PLNWKSP= WORKSPACE= 

PRIORITY PRTY= PRTY= 

SQLMODE SQLMODE= SQLMODE= 

TIMEMIN TIMEMIN= TIMEMIN= 

TIMESEC TIMESEC= TIMESEC= 

*  In the Preprocessor column, except where noted the listed options are for COBOL, 
PL/I, C, and Assembler. 

 



Coding Plan Options 

 

Chapter 21: Performing SQL Administrative Tasks  467  
 

Options You Can Specify 

You can specify values for plan options on the REBIND PLAN panel or in a source 
member with a $DBSQLOPT statement. When you do not specify a value, the value 
specified for the existing plan remains in effect. 

CBSIO= 

Specifies an I/O limit interrupt value for all SQL commands that create a set.  This 
option allows application environments to establish their own maximums in I/O and 
set processing relative to their own requirements. 

You can use this option to limit the computer resources that can be used for each 
execution of the following statements in the plan: 

■ OPEN CURSOR, FETCH CURSOR 

■ SELECT INTO 
 

■ INSERT, UPDATE, DELETE 

■ CREATE INDEX, DROP INDEX, ALTER TABLE 

For cursors, the limit applies to the total resources used to OPEN and FETCH all 
rows of the cursor. 

A counter is incremented each time a different index or data block is accessed, and 
each time 100 rows are read.  Execution is terminated, and SQL return code -137 is 
returned when this counter exceeds the limit. 

The value of the counter is reported in the Statistics and Diagnostics Area (PXX) at 
the end of each request to the MUF when any SQL traces are in effect. 

 

For cursor, SELECT INTO, INSERT, UPDATE and DELETE, you can use the total 
estimated cost reported in the SYSADM.SYSMSG table when bind time optimization 
messages are requested with the MSG-PREP plan option as a guide for setting the 
limit.  For CREATE INDEX, DROP INDEX, and ALTER TABLE, estimate the limit as the 
number of bytes in the table divided by 2000.  You must set the limit for the most 
expensive statement in the plan. 

A value of zero means no limit. 

Note:  Beginning in r10, here is how the CBSIO plan option is calculated: to 500,000 
is added the amount over 500,000 multiplied by 10,000. For example, given a value 
of 500,100, the calculation would be 500,000 + (100 * 10,000) = 500,000 + 
1,000,000 = 1,500,000. 

 

Valid Entries: 

0—524287 

Default Value: 

(in CA Datacom Datadictionary only) 1000 
 



Coding Plan Options 

 

468  SQL User Guide 
 

MSG-PREP and MSG-EXEC 

Use MSG-PREP and MSG-EXEC fields on the REBIND PLAN Panel to specify the same 
options as the PLNMSGPE= option.  MSG-PREP specifies the messages returned 
during preparation of the plan and MSG-EXEC specifies the messages returned 
during execution of the plan. Specify N for no messages, S for summary messages, 
or D for detail or full messages. 

Valid Entries: 

D, N, S 

Default Value: 

(in CA Datacom Datadictionary only) 0 
 

PLNCLOSE= 

Specifies when the plan and User Requirements Table are closed. 

If you specify T, the plan and User Requirements Table close when the transaction 
ends, that is to say, an SQL COMMIT WORK or ROLLBACK WORK statement, a CA 
Datacom/DB LOGCP, LOGCR or LOGTB command, or a CA Datacom CICS Services 
DEQUE. 

We recommend the T option for a CICS environment. See OPEN/CLOSE Efficiency 
for CICS-related information with regard to the SQL Preprocessor's PLNCLOSE= 
option We also recommend PLNCLOSE=T for procedures. The T option gives the 
most flexibility because: 

■ User Requirements Tables that are opened by a plan are closed when the 
transaction ends, and 

■ Operations that require User Requirements Tables to be closed (such as a 
LOAD) can be performed whenever the plan is not being executed. 

 

The R option is the most efficient, however, because: 

■ The User Requirements Tables, plan, and its cached statements are not closed 
each time the plan is not being executed by current transactions, but 

■ To perform operations requiring the User Requirements Tables to be closed, 
the CICS User Requirements Table that provides SQL access (default is URT 020) 
must be closed to close the plan and its User Requirements Tables. 

If you specify R, the plan and User Requirements Table close when the run unit ends 
or when a CA Datacom/DB CLOSE command is issued. A PLNCLOSE=R plan may be 
rebound or precompiled without closing it, as long as it is not currently being 
executed by any transactions. The R option is recommended for batch programs. 

 

Valid Entries: 

T or R 

Default Value: 

(in CA Datacom Datadictionary only) T 
 



Coding Plan Options 

 

Chapter 21: Performing SQL Administrative Tasks  469  
 

PLNDATE= 

Specifies the format of the date when the plan was precompiled.  See the following 
chart for the formats: 

 

Entry Format Description 

0  retain existing format specification 

1 yyyy-mm-dd ISO - International Standards Organization 

2 mm/dd/yyyy USA - IBM USA Standard 

3 dd.mm.yyyy EUR - IBM European Standard 

4 yyyy-mm-dd JIS - Japanese Industrial Standard 

Valid Entries: 

0, 1, 2, 3, 4 

Default Value: 

(in CA Datacom Datadictionary only) 0 
 

PLNISOLA= 

Specifies the isolation level, or the degree to which a unit of recovery in your 
application is isolated from the updating operations of other units of recovery. 

When you specify U, no locks are acquired for rows accessed for read-only 
purposes. Your application can access rows that have been updated by another unit 
of recovery, but the changes have not been committed. 

When the value is C, for cursor stability, a unit of recovery holds locks only on its 
uncommitted changes and the current row of each of its cursors. This isolation level 
provides a high degree of concurrency. 

Note:  If you are doing updates, deletes or inserts on tables, the value must be C. 
Also note that if you specify ANSI or FIPS for the SQLMODE= option, ISOLEVEL= 
must have the value of C. 

To acquire exclusive control of a table, see LOCK TABLE. 

Valid Entries: 

U or C 

Default Value: 

(in CA Datacom Datadictionary only) C 
 



Coding Plan Options 

 

470  SQL User Guide 
 

PLNJOVRD= 

Specifies the join optimization sequence. Specify M if the normal join optimization 
is unacceptable and you want tables joined as they are listed in the FROM clause. 
This results in a nested loop join. Specify P to change to normal join optimization. 

Valid Entries: 

M or P 

Default Value: 

(in CA Datacom Datadictionary only) P 
 

PLNMSGPE= 

Specifies the messages returned during preparation and execution of the plan.  Use 
the MSG-PREP and MSG-EXEC fields on the REBIND PLAN Panel to assign this value. 

Specify N for no messages, S for summary messages, or D for detail or full 
messages. Enter a combination of letters, that is to say, SD or NS. If an S or a D is 
specified in the PLNMSGPE= option, the message is automatically displayed in the 
output member by the Interactive SQL Service Facility. 

Valid Entries: 

DD, DN, DS, ND, NN, NS, SD, SN, SS 

Default Value: 

(in CA Datacom Datadictionary only) NN 
 

PLNTIME= 

Specifies the format of the time when the plan was precompiled. See the following 
chart for the formats. 

 

Entry Format Description 

0  retain existing format specification 

1 hh.mm.ss ISO - International Standards organization 

2 hh:mm AM or PM USA - IBM USA Standard 

3 hh.mm.ss EUR - IBM European Standard 

4 hh:mm:ss JIS - Japanese Industrial Standard 

Valid Entries: 

0, 1, 2, 3, 4 

Default Value: 

(in CA Datacom Datadictionary only) 0 
 



Coding Plan Options 

 

Chapter 21: Performing SQL Administrative Tasks  471  
 

PLNWKSP= 

Use PLNWKSP= only at the direction of CA Support. Specifies an increase in the 
amount of work space used at plan execution time. 

Valid Entries: 

0—128 

Default Value: 

(in CA Datacom Datadictionary only) 0 
 

PRTY= 

Specifies the priority of the SQL requests from the plan within the MUF. Use the 
PRIORITY field on the REBIND PLAN Panel to specify this option. 

The lowest priority is 1, while 15 is the highest priority. If you need more 
information about specifying a priority, see your Database Administrator. 

Valid Entries: 

1—15 

Default Value: 

(in CA Datacom Datadictionary only) 7 
 

SQLMODE= 

Specifies the mode in which to process the program. 

If you specify ANSI or FIPS, your program is processed in ANSI or FIPS mode, which 
means all your SQL statements must be coded according to ANSI or FIPS standards. 

Names for tables, columns, views, synonyms and cursors must be 1 to 18 characters 
in length if SQLMODE=ANSI or SQLMODE=FIPS. 

If ANSI or FIPS is specified for the mode, the PLNISOLA=U option is not allowed.  
PLNISOLA= must be C when SQLMODE=ANSI or SQLMODE=FIPS. 

If you specify DATACOM, your program is processed in extended mode, which 
means CA Datacom/DB extensions to the standards are allowed in your SQL 
statements. 

 



Coding Plan Options 

 

472  SQL User Guide 
 

Names for tables, columns, views, synonyms and cursors can be 1 to 32 characters 
in length if SQLMODE=DATACOM. 

Authorization IDs and plan names must be 1 to 18 characters in all modes. 

Note:  The SQLMODE MUF startup option must be set to DATACOM before this plan 
option is effective. If the SQLMODE MUF startup option is set to ANSI, this plan 
option is overridden and all SQL statements must comply with ANSI standards. If 
the SQLMODE MUF startup option is set to FIPS, this plan option is overridden and 
all SQL statements must comply with FIPS standards. See the Database 
Administrator for information on the value assigned to the SQLMODE Multi-User 
startup option. 

Valid Entries: 

ANSI, DATACOM, FIPS 

Default Value: 

(in CA Datacom Datadictionary only) DATACOM 
 

TIMEMIN= 

Specifies exclusive control wait time limit in minutes. 

This option allows a program to either wait or not wait for an explicit amount of 
time when another job is holding a requested record under exclusive control. If the 
specified time is exceeded, the application program receives a -117 value in the 
SQLCODE of the SQL Communication Area and a CA Datacom/DB 61 return code to 
inform the user that the record was not available. 

Specifying a zero for both TIMEMIN= and TIMESEC= means that there is no time 
limit, and without a limit on the wait time, a wait forever condition is possible. 

TIMEMIN=0 and TIMESEC=1 means do not wait at all. 

Note:  Do not specify nonzero values for both TIMEMIN= and TIMESEC=.  You can 
specify one or the other, not both. 

If you are using CA Datacom STAR for distributed processing, see CA Datacom STAR 
documentation before specifying this option. 

Valid Entries: 

0—120 

Default Value: 

(in CA Datacom Datadictionary only) 0 
 



Coding Plan Options 

 

Chapter 21: Performing SQL Administrative Tasks  473  
 

TIMESEC= 

Specifies exclusive control wait time limit in seconds. 

This option allows a program to either wait or not wait for an explicit amount of 
time when another job is holding a requested record under exclusive control.  If the 
specified time is exceeded, the application program receives a -117 value in the 
SQLCODE of the SQL Communication Area and a CA Datacom/DB 61 return code to 
inform the user that the record was not available. 

Specifying a zero for both TIMEMIN= and TIMESEC= means that there is no time 
limit, and without a limit on the wait time, a wait forever condition is possible. 

TIMESEC=1 and TIMEMIN=0 means do not wait at all. 

Note:  Do not specify nonzero values for both TIMEMIN= and TIMESEC=. You can 
specify one or the other, not both. 

If you are using CA Datacom STAR for distributed processing, see CA Datacom STAR 
documentation before specifying this option. 

Valid Entries: 

0—120 

Default Value: 

(in CA Datacom Datadictionary only) 120 
 

Example 

The following example of the entry area of a Source Panel shows how the plan options 
can be coded: 

 ------------------------------------------------------------------------------- 
 ====== ============================== T O P =================================== 
 000001 *$dbsqlopt cbsio=25000 prty=9 sqlmode=ansi 
 ...... timesec=60; 
 ......        .         . 
 ......        .         . 
 ......        .         . 

 





 

Chapter 22: Overview of SQL Language Reference  475  
 

Chapter 22: Overview of SQL Language 
Reference 
 

The following table lists the chapters that follow and what each chapter contains: 

 

Chapter Contains 

Basic Language Elements (see 
page 477) 

Describes the basic language elements of SQL, including characters, tokens, 
identifiers, naming conventions, authorization ID, USER, values, data types, 
basic operations (assignment and comparison), literals, column names, host 
variables and indicator variables. Includes examples for most language 
elements. 

Functions (see page 549) Describes column and scalar functions and provides a syntax diagram of this 
basic language element, plus examples. 

Expressions (see page 527) Describes expressions and provides a syntax diagram of this basic language 
element, plus examples.  Also discusses expressions without arithmetic 
operators, with arithmetic operators and conversions between data types 
during arithmetic operations, and the precedence of operations. 

Predicates (see page 581) Describes predicates, including the basic predicate, quantified predicate, 
BETWEEN predicate, LIKE predicate, EXISTS predicate, IN predicate and NULL 
predicate, and provides a syntax diagram of each predicate, plus examples. 

Search Conditions (see page 593) Describes search conditions and provides a syntax diagram of this basic 
language element, plus examples.  Includes information on Boolean 
operators. 

SQL Statements (see page 597) Describes the various SQL statements and gives syntax diagrams and 
examples of each. 

 





 

Chapter 23: Basic Language Elements  477  
 

Chapter 23: Basic Language Elements 
 

Language elements common to many SQL statements are discussed in the following 
sections. Other language elements are discussed in the following chapters: 

■ Functions 

■ Expressions 

■ Predicates 

■ Search Conditions 
 

Characters 

The basic symbols of SQL are EBCDIC characters. These include: 

■ Letters:  A—Z, a, #, @, $ 

■ Digits:  0—9 

■ Special Characters:  Any character other than a letter or digit 
 

Tokens 

Tokens are the basic syntactical units of the language.  A token consists of one or more 
characters.  A token can be an ordinary token or a delimiter token.  The following table 
lists the different types of ordinary and delimiter tokens: 

 

Ordinary Tokens Delimiter Tokens 

Numeric literal String literal 

Ordinary SQL identifier Operator 

Host identifier Any special character shown in syntax diagrams 

Keyword Delimited SQL identifier 



Identifiers 

 

478  SQL User Guide 
 

Spaces 

Spaces are a sequence of one or more blank characters.  The rules for using spaces are: 

■ Tokens cannot include spaces except if the token is a string literal or a delimited 
identifier. 

■ A token can be followed by a space. 

■ An ordinary token must be followed by a delimiter token or a space. 

■ If the syntax does not allow an ordinary token to be followed by a delimiter token, 
the ordinary token must be followed by a space. 

 

Uppercase and Lowercase 

Any token can include lowercase letters.  Lowercase letters in an ordinary token are 
always folded to uppercase.  However, lowercase letters in a delimiter token are never 
folded to uppercase. 

 

Identifiers 

An identifier is a token that is used to form a name. The two types of identifiers are host 
identifiers and SQL identifiers. 

A host identifier is an identifier used to form the name of a host variable.  Rules for 
forming host identifiers depend on the host language. 

All other identifiers are SQL identifiers.  SQL identifiers are of two types, ordinary and 
delimited. 

 



Identifiers 

 

Chapter 23: Basic Language Elements  479  
 

Ordinary SQL identifiers 

An ordinary SQL identifier is a letter (the term "letter" includes the @, $, and #) that 
may be followed by zero or more characters.  Each character is a letter (including @, $, 
#), digit, or the underscore character. 

Ordinary SQL identifiers can include DBCS (Double-Byte Character Set) characters.  The 
DBCS portions of the name must be delimited by the Shift-Out and Shift-In characters.  
The names are checked by SQL for paired shift characters.  The maximum physical 
length of these names is the same as it was for prior versions of CA Datacom/DB.  The 
Shift characters count in determining the length, and the DBCS characters take up two 
bytes each. Therefore you can get a maximum of 15 DBCS characters in a 32-byte 
identifier ((15 * 2) for the DBCS characters + 2 for the shift characters).  DBCS blanks 
(X'4040') are not allowed in the DBCS portion of an identifier. 

Note:  Do not use a reserved word as an ordinary SQL identifier.  See the list of reserved 
words on Reserved Words (see page 43). 

 

Delimited SQL identifiers 

A delimited SQL identifier is a sequence of one or more characters enclosed within SQL 
escape characters. Enclosing a name within SQL escape characters allows a name to be 
used which is the same as an SQL reserved word (see Reserved Words for a list of the 
SQL reserved words.) The escape character is the quotation mark (") unless the plan 
option STRDELIM= has been set to Q, in which case the escape character is the 
apostrophe ('). 

In the following example, the column named SELECT is enclosed in escape characters 
(quotation marks in the example) to show that the SQL reserved word SELECT is not 
what is meant. 

 CREATE TABLE SAMPLE 

    ("SELECT" CHAR(6) DEFAULT 'SELECT', 

      COL2 INTEGER) 

 

 ... 

 SELECT "SELECT" FROM SAMPLE 

 WHERE "SELECT" = 'SELECT' 
 



Naming Conventions 

 

480  SQL User Guide 
 

Naming Conventions 

The rules for forming a name depend on the type of object designated by the name.  
Syntax diagrams for SQL language elements and statements use different terms for 
different types of names. Following are terms used in the syntax diagrams. 

accessor-id 

An SQL identifier that designates a user. Accessor IDs must be 1 to 18 characters. 

authorization-id (AUTHID) 

An SQL identifier that designates a schema. Authorization IDs must be 1 to 18 
characters. 

The SQL name and the AUTHORIZATION occurrence name are the same and must 
be unique for all schemas. 

 

column-name 

A name that designates a column of a table or view.  The name can be unqualified 
or qualified. If you specify ANSI or FIPS for SQLMODE= in the SQL Preprocessor 
options, the unqualified form of a column name is an SQL identifier, 1 to 18 
characters. For all other modes, the unqualified form of a column name can be 1 to 
32 characters. The qualified form of a column name is a qualifier followed by a 
period and the column name.  The qualifier is a table-name, a view-name or a 
correlation-name. 

correlation-name 

An SQL identifier that designates a table, a view, or individual rows of a table or 
view. If you specify ANSI or FIPS for SQLMODE= in the SQL Preprocessor options, 
the correlation name can be 1 to 18 characters. For all other modes, the correlation 
name can be 1 to 32 characters. Also see Correlation Names (see page 515) and SQL 
Index Binding (see page 516). 

 

cursor-name 

An SQL identifier that designates an SQL cursor. If you specify ANSI or FIPS for 
SQLMODE= in the SQL Preprocessor options, the cursor name can be 1 to 18 
characters. For all other modes, the cursor name can be 1 to 32 characters. 

descriptor-name 

A host identifier that designates an SQL Descriptor Area (SQLDA). The host identifier 
may be preceeded by a colon. For more information on the SQLDA, see SQL 
Descriptor Area (SQLDA) (see page 869). For more information on host identifiers, 
see Host Variables (see page 520). 

host-variable 

A sequence of tokens that designate one or more host variables. The host variable 
includes an identifier (see Host Variables (see page 520)). 

 



Naming Conventions 

 

Chapter 23: Basic Language Elements  481  
 

index-name 

A name that designates an index. The name can be qualified or unqualified. The 
unqualified index name in an SQL statement is implicitly qualified by the 
authorization ID of that statement. If you specify ANSI or FIPS for SQLMODE= in the 
SQL Preprocessor options, the unqualified form of an index name is an SQL 
identifier, 1 to 18 characters. For all other modes, the unqualified form of an index 
name can be 1 to 32 characters in length. The qualified form of an index name is an 
authorization ID followed by a period and the index name. 

The SQL name of the index must be unique for all indexes owned by a specific 
schema (authorization ID). See Naming the Index (Key) (see page 416) for more 
information on naming an index. 

statement-name 

An identifier (1 to 18 characters) that designates a prepared SQL statement. 

procedure name 

The procedure name is the name that identifies a procedure. The name can be 
qualified with an authorization ID. 

 

SQL parameter name 

The SQL parameter name is the name of a parameter passed to an SQL Procedure (a 
LANGUAGE SQL procedure). When used in a SQL Procedure containing an SQL 
variable with a conflicting (matching) name, or a table or view reference where the 
table or view contains a conflicting column name, the name should be qualified 
using the procedure name. 

SQL variable name 

The SQL variable name is the name of a variable that is declared within a compound 
statement inside a SQL Procedure (a LANGUAGE SQL procedure). If the name 
conflicts with (matches) another SQL variable name (for example, from a nested 
compound statement such as a condition handler), an SQL parameter name, or a 
column contained within a referenced table or view, the SQL variable name should 
be qualified using the start-label of the compound statement that immediately 
contains it. 

 



Naming Conventions 

 

482  SQL User Guide 
 

synonym 

An SQL identifier that designates a table or a view. A synonym can be used 
wherever a table-name or view-name can be used to reference a table or view. If 
you specify ANSI or FIPS for SQLMODE= in the SQL Preprocessor options, the 
synonym name is an SQL identifier, 1 to 18 characters. For all other modes, the 
synonym name can be 1 to 32 characters. 

The SQL name of the synonym must be unique for all tables, views, and synonyms 
owned by a specific schema (authorization ID). See Naming the Synonym (see 
page 424) for more information on naming a synonym. 

table-name 

A name that designates a table. The name can be qualified or unqualified. The 
unqualified table name in an SQL statement is implicitly qualified by the 
authorization ID of that statement. If you specify ANSI or FIPS for SQLMODE= in the 
SQL Preprocessor options, the unqualified form of a table name is an SQL identifier, 
1 to 18 characters. For all other modes, the unqualified form of a table name can be 
1 to 32 characters in length. The qualified form of a table name is an authorization 
ID followed by a period and the table name. 

The SQL name of the table must be unique for all indexes, views and synonyms 
owned by a specific schema (authorization ID). See Naming the Table (see page 406) 
for more information on naming a table. 

 

view-name 

A name that designates a view.  The name can be qualified or unqualified. The 
unqualified view name in an SQL statement is implicitly qualified by the 
authorization ID of that statement. If you specify ANSI or FIPS for SQLMODE= in the 
SQL Preprocessor options, the unqualified form of a view name is an SQL identifier, 
1 to 18 characters. For all other modes, the unqualified form of a view name can be 
1 to 32 characters. The qualified form of a view name is an authorization ID 
followed by a period and the view name. 

The SQL name of the view must be unique for all tables, views and synonyms 
owned by a specific schema (authorization ID). See Naming the View (see page 419) 
for more information on naming a view. 

 



Authorization ID 

 

Chapter 23: Basic Language Elements  483  
 

Note:  See the chapter on the SQL transport utility (DDTRSLM) in the CA Datacom 
Datadictionary Batch Reference Guide for information about additional restrictions on 
words used for an AUTHID, SQL name, or CA Datacom Datadictionary occurrence name. 

When you create SQL tables, views and synonyms, the SQL name is prefixed by the 
authorization ID to create the TABLE, VIEW and SYNONYM occurrence name.  The 
format is authid-sqlname. 

Together, the authorization ID and SQL name of each table, view and synonym must be 
unique within the schema. For example, the names JONES.DEPTTBL (for a table) and 
JONES.DEPTTBL (for a view) are not unique since both are owned by the JONES schema, 
but the names JONES.DEPTTBL (for a table) and SMITH.DEPTTBL (for a view) are unique 
because they are owned by different schemas. 

 

Authorization ID 

An authorization ID is a string of 1 to 18 characters. This rule applies for both ANSI mode 
and the CA Datacom/DB extended mode. 

Authorization IDs are used to identify schemas. For example, to select from a table 
named PAY in the schema named CA, the table name is preceded by the authorization 
ID: 

 SELECT * 

 FROM CA.PAY 

Note: Do not specify authorization IDs for tables and views that are to be used in 
Dynamic Plan Selection. (In a z/OS environment, Dynamic Plan Selection online requires 
CA Datacom CICS Services Release 2.5 and higher. Dynamic Plan Selection is batch only 
in z/VSE.) For more information on Dynamic Plan Selection, see the CA Datacom/DB 
Database and System Administration Guide. 

 



Values 

 

484  SQL User Guide 
 

Values 

The smallest unit of data that can be manipulated in SQL is called a value.  How a value 
is interpreted depends on the data type of the source. Sources of values include: 

■ Scalar Functions (see page 554) 

■ Expressions (see page 527) 

■ Special Registers (see page 533) 

■ Labeled Duration (see page 535) 

■ Literals (see page 510) 

■ Column Names (see page 514) 

■ Host Variables (see page 520) 

■ Indicator Variables (see page 524). 

■ SQL Parameters (see page 525). 

■ SQL Variables. (see page 525) 
 



Data Types 

 

Chapter 23: Basic Language Elements  485  
 

Data Types 

The valid SQL data types are: 

■ CHARACTER 

■ VARCHAR 

■ LONG VARCHAR 

■ FLOAT 

■ NUMERIC 

■ DECIMAL 

■ INTEGER 

■ SMALLINT 

■ REAL 

■ DOUBLE PRECISION 

■ DATE 

■ TIME 

■ TIMESTAMP 

■ GRAPHIC 

■ VARGRAPHIC 

■ LONG VARGRAPHIC 
 

DATE, TIME, and TIMESTAMP 

DATE, TIME, and TIMESTAMP are special SQL data types that are stored and 
manipulated in CA Datacom/DB as BINARY data with lengths 4, 3, and 10 respectively.  
However, when SQL retrieves this type of data from the database, it sends it back to the 
user in CHARACTER form. When you specify this type of data to send to the database, 
you specify it in CHARACTER form. See Character String Literals (see page 510). 

If you are accessing the data with non-SQL commands, the data is in the internal form 
which is BINARY and you must perform the conversion from the internal form yourself. 
See the CA Datacom/DB Database and System Administration Guide for an explanation 
of how DATE, TIME, and TIMESTAMP data types are stored in CA Datacom/DB. 

 



Data Types 

 

486  SQL User Guide 
 

Host Variable Data Types 

Information about ANSI standard and non-standard host variable data types can be 
found in Character Strings (see page 495) for COBOL and in Host-Variable Declarations 
for PL/I. Host variable declarations for Assembler can be found in Host Variable 
Declarations for Assembler. Host variable declarations for the C language are described 
in Rules for Coding Host-Variables in C. 

 

SQL Data Types 

See Data Types (see page 485) for the valid SQL data types syntax diagram. 
 

CA Datacom/DB Data Types 

When defining a column, specify its data type in the TYPE attribute of the FIELD 
entity-occurrence or in the SQL statement. Refer to the CA Datacom Datadictionary 
User Guide and the CA Datacom/DB SQL User Guide for details. CA Datacom/DB 
supports the following data types: 

Binary, halfword - 2 bytes 

CA Datacom Datadictionary Valid Entry: B 

SQL Data Type: SMALLINT 

CA Ideal Support: Supported 
 

Binary, fullword - 4 bytes 

CA Datacom Datadictionary Valid Entry: B 

SQL Data Type: INTEGER or INT 

CA Ideal Support: Supported 
 

Binary, length = 4, SEMANTIC-TYPE=SQL-DATE 

CA Datacom Datadictionary Valid Entry: B 

SQL Data Type: DATE 

CA Ideal Support: Supported 
 

Binary, length = 3, SEMANTIC-TYPE=SQL-TIME 

CA Datacom Datadictionary Valid Entry: B 

SQL Data Type: TIME 

CA Ideal Support: Supported 
 



Data Types 

 

Chapter 23: Basic Language Elements  487  
 

Binary, length = 10, SEMANTIC-TYPE=SQL-STMP 

CA Datacom Datadictionary Valid Entry: B 

SQL Data Type: TIMESTAMP 

CA Ideal Support: Supported 
 

Character 

CA Datacom Datadictionary Valid Entry: C 

SQL Data Type: CHARACTER or CHAR 

CA Ideal Support: Supported 
 

Character data type with mixed DBCS and SBCS with SEMANTIC-TYPE=MIXED 

CA Datacom Datadictionary Valid Entry: C 

SQL Data Type: CHARACTER with FOR MIXED DATA 

CA Ideal Support: Supported as character 
 

Varying-length character string of length 1 to maximum row size 

CA Datacom Datadictionary Valid Entry: V 

SQL Data Type: VARCHAR 

CA Ideal Support: Supported 
 

V data type with mixed DBCS and SBCS with SEMANTIC-TYPE=MIXED 

CA Datacom Datadictionary Valid Entry: V 

SQL Data Type: VARCHAR 

CA Ideal Support: Supported 
 

V data type with attribute LONG=Y 

Varying-length character string whose maximum length is determined by the 
amount of space available in a block after all fixed-length fields have been 
subtracted from the blocksize (assumes one record per block). See following notes. 

CA Datacom Datadictionary Valid Entry: V 

SQL Data Type: LONG VARCHAR 

CA Ideal Support: Supported 
 

Packed decimal 

CA Datacom Datadictionary Valid Entry: D 

SQL Data Type: DECIMAL or DEC, maximum length = 16 bytes 

CA Ideal Support: Supported 
 



Data Types 

 

488  SQL User Guide 
 

Numeric, zoned decimal 

CA Datacom Datadictionary Valid Entry: N 

SQL Data Type: NUMERIC, maximum length = 31 bytes 

CA Ideal Support: Supported 
 

Hexadecimal, two-byte hexadecimal display 

CA Datacom Datadictionary Valid Entry: H 

SQL Data Type: Not supported. 

CA Ideal Support: Not supported 

Short floating-point, fullword aligned 

CA Datacom Datadictionary Valid Entry: S 

SQL Data Type: CHAR 

CA Ideal Support: Not supported 
 

Long floating-point, doubleword aligned 

CA Datacom Datadictionary Valid Entry: L 

SQL Data Type: FLOAT, REAL, DOUBLE PRECISION 

CA Ideal Support: Not supported 

Extended floating-point, 16-byte aligned 

CA Datacom Datadictionary Valid Entry: E 

SQL Data Type: CHAR 

CA Ideal Support: Not supported 
 

Double-byte character set (DBCS) 

See notes following this list. 

CA Datacom Datadictionary Valid Entry: Y 

SQL Data Type: GRAPHIC 

CA Ideal Support: Not supported 
 

Mixed DBCS and single byte 

See notes following this list. 

CA Datacom Datadictionary Valid Entry: Z 

SQL Data Type: CHAR with FOR MIXED DATA 

CA Ideal Support: Supported as character 
 



Data Types 

 

Chapter 23: Basic Language Elements  489  
 

Graphics data 

CA Datacom Datadictionary Valid Entry: G 

SQL Data Type: GRAPHIC 

CA Ideal Support: Not supported 

Varying-length double-byte character set of length 2 to maximum row size 

CA Datacom Datadictionary Valid Entry: W 

SQL Data Type: VARGRAPHIC 

CA Ideal Support: Not supported 
 

Varying-length double-byte character set of length 2 to maximum row size 

With attribute LONG=Y varying-length double-byte character set whose maximum 
length is determined by the amount of space available in a block after all fixed 
length fields have been subtracted from the blocksize (assumes one record per 
block). See the notes following this list. 

CA Datacom Datadictionary Valid Entry: W 

SQL Data Type: LONG VARGRAPHIC 

CA Ideal Support: Not supported 
 

Kanji, same as Y and G 

See notes following this list. 

CA Datacom Datadictionary Valid Entry: K 

SQL Data Type: GRAPHIC 

CA Ideal Support: Not supported 
 

PL/I bit representation 

CA Datacom Datadictionary Valid Entry: T 

SQL Data Type: Not supported 

CA Ideal Support: Not supported 
 

Halfword binary, aligned 

CA Datacom Datadictionary Valid Entry: 2 

SQL Data Type: SMALLINT 

CA Ideal Support: Not supported 
 

Fullword binary, aligned 

CA Datacom Datadictionary Valid Entry: 4 

SQL Data Type: INTEGER or INT 

CA Ideal Support: Not supported 
 



Data Types 

 

490  SQL User Guide 
 

Doubleword binary, aligned 

CA Datacom Datadictionary Valid Entry: 8 

SQL Data Type: Not supported 

CA Ideal Support: Not supported 
 

Notes: 

■ In CA Datacom Datadictionary the data types K, Y, and Z are being replaced by 
GRAPHIC and CHARACTER data types.  You can use the DDCNVLM utility to update 
FIELD entity-occurrences with data types of K or Y to G (GRAPHIC) and data type Z 
to C (CHARACTER) with SEMANTIC-TYPE=MIXED. See the CA Datacom Installation 
Guide for more information about DDCNVLM. 

■ SMALLINT and INTEGER data types do not allow decimals. 
 

■ Aligned field types are aligned in records or tables, not in elements and keys. 

■ Those lengths or types not specified as an SQL data type are treated as character 
through SQL. 

■ VARCHAR (TYPE=V) and VARGRAPHIC (TYPE=W) have a two-byte binary length 
prefix added to the value you specify for the LENGTH attribute. 

 

SQL Data Type Support for All CA Datacom/DB Tables 

Tables created with prior versions of CA Datacom/DB may contain data types 
unrecognizable by SQL.  For data to be retrieved from those tables, unrecognizable data 
types must be viewed as recognizable data types. 

The chart on the following page shows the SQL-supported values for four CA Datacom 
Datadictionary FIELD attributes (TYPE, JUSTIFICATION, SIGN, and TYPE-NUMERIC), their 
meaning, and the equivalent SQL data type. When retrieving data from any column 
(field) that is defined in CA Datacom Datadictionary with a combination of 
attribute-values not included in this chart, CA Datacom/DB returns the data to an SQL 
application as if it were CHARACTER. That is, CA Datacom/DB presents the data without 
any translation or interpretation. 

 

The CA Datacom Datadictionary FIELD Attributes have the following meanings: 

TYPE 

Represents CA Datacom Datadictionary FIELD Attributes TYPE 

JUST 

Represents CA Datacom Datadictionary FIELD Attributes JUSTIFICATION 

SIGN 

Represents CA Datacom Datadictionary FIELD Attributes SIGN 
 



Data Types 

 

Chapter 23: Basic Language Elements  491  
 

T-N 

Represents CA Datacom Datadictionary FIELD Attributes TYPE-NUMERIC 

Binary, halfword - 2 bytes 

CA Datacom Datadictionary Valid Entry: B 

SQL Data Type: SMALLINT 

CA Ideal Support: Supported 
 

Binary, fullword - 4 bytes 

CA Datacom Datadictionary Valid Entry: B 

SQL Data Type: INTEGER or INT 

CA Ideal Support: Supported 
 

Binary, length = 4, SEMANTIC-TYPE=SQL-DATE 

CA Datacom Datadictionary Valid Entry: B 

SQL Data Type: DATE 

CA Ideal Support: Supported 
 

Binary, length = 3, SEMANTIC-TYPE=SQL-TIME 

CA Datacom Datadictionary Valid Entry: B 

SQL Data Type: TIME 

CA Ideal Support: Supported 
 

Binary, length = 10, SEMANTIC-TYPE=SQL-STMP 

CA Datacom Datadictionary Valid Entry: B 

SQL Data Type: TIMESTAMP 

CA Ideal Support: Supported 
 

Character 

CA Datacom Datadictionary Valid Entry: C 

SQL Data Type: CHARACTER or CHAR 

CA Ideal Support: Supported 
 

Character data type with mixed DBCS and SBCS with SEMANTIC-TYPE=MIXED 

CA Datacom Datadictionary Valid Entry: C 

SQL Data Type: CHARACTER with FOR MIXED DATA 

CA Ideal Support: Supported as character 
 



Data Types 

 

492  SQL User Guide 
 

Varying-length character string of length 1 to maximum row size 

CA Datacom Datadictionary Valid Entry: V 

SQL Data Type: VARCHAR 

CA Ideal Support: Supported 
 

V data type with mixed DBCS and SBCS with SEMANTIC-TYPE=MIXED 

CA Datacom Datadictionary Valid Entry: V 

SQL Data Type: VARCHAR 

CA Ideal Support: Supported 
 

V data type with attribute LONG=Y 

Varying-length character string whose maximum length is determined by the 
amount of space available in a block after all fixed-length fields have been 
subtracted from the blocksize (assumes one record per block). See following notes. 

CA Datacom Datadictionary Valid Entry: V 

SQL Data Type: LONG VARCHAR 

CA Ideal Support: Supported 
 

Packed decimal 

CA Datacom Datadictionary Valid Entry: D 

SQL Data Type: DECIMAL or DEC, maximum length = 16 bytes 

CA Ideal Support: Supported 
 

Numeric, zoned decimal 

CA Datacom Datadictionary Valid Entry: N 

SQL Data Type: NUMERIC, maximum length = 31 bytes 

CA Ideal Support: Supported 
 

Hexadecimal, two-byte hexadecimal display 

CA Datacom Datadictionary Valid Entry: H 

SQL Data Type: n/a 

CA Ideal Support: Not supported 
 

Short floating-point, fullword aligned 

CA Datacom Datadictionary Valid Entry: S 

SQL Data Type: CHAR 

CA Ideal Support: Not supported 
 



Data Types 

 

Chapter 23: Basic Language Elements  493  
 

Long floating-point, doubleword aligned 

CA Datacom Datadictionary Valid Entry: L 

SQL Data Type: FLOAT, REAL, DOUBLE PRECISION 

CA Ideal Support: Not supported 
 

Extended floating-point, 16-byte aligned 

CA Datacom Datadictionary Valid Entry: E 

SQL Data Type: CHAR 

CA Ideal Support: Not supported 
 

Double-byte character set (DBCS) 

See notes following this list. 

CA Datacom Datadictionary Valid Entry: Y 

SQL Data Type: GRAPHIC 

CA Ideal Support: Not supported 
 

Mixed DBCS and single byte 

See notes following this list. 

CA Datacom Datadictionary Valid Entry: Z 

SQL Data Type: CHAR with FOR MIXED DATA 

CA Ideal Support: Supported as character 
 

Graphics data 

CA Datacom Datadictionary Valid Entry: G 

SQL Data Type: GRAPHIC 

CA Ideal Support: Not supported 
 

Varying-length double-byte character set of length 2 to maximum row size 

CA Datacom Datadictionary Valid Entry: W 

SQL Data Type: VARGRAPHIC 

CA Ideal Support: Not supported 
 



Data Types 

 

494  SQL User Guide 
 

Varying-length double-byte character set of length 2 to maximum row size 

With attribute LONG=Y varying-length double-byte character set whose maximum 
length is determined by the amount of space available in a block after all fix ed 
length fields have been subtracted from the blocksize (assumes one record per 
block). See the following notes. 

CA Datacom Datadictionary Valid Entry: W 

SQL Data Type: LONG VARGRAPHIC 

CA Ideal Support: Not supported 
 

Kanji, same as Y and G 

See notes following this list. 

CA Datacom Datadictionary Valid Entry: K 

SQL Data Type: GRAPHIC 

CA Ideal Support: Not supported 
 

PL/I bit representation 

CA Datacom Datadictionary Valid Entry: T 

SQL Data Type: n/a 

CA Ideal Support: Not supported 
 

Halfword binary, aligned 

CA Datacom Datadictionary Valid Entry: 2 

SQL Data Type: SMALLINT 

CA Ideal Support: Not supported 
 

Fullword binary, aligned 

CA Datacom Datadictionary Valid Entry: 4 

SQL Data Type: INTEGER or INT 

CA Ideal Support: Not supported 
 

Doubleword binary, aligned 

CA Datacom Datadictionary Valid Entry: 8 

SQL Data Type: CHAR(8) 

CA Ideal Support: Not supported 
 



Data Types 

 

Chapter 23: Basic Language Elements  495  
 

Notes: 

■ In CA Datacom Datadictionary the data types K, Y, and Z are being replaced by 
GRAPHIC and CHARACTER data types. You can use the DDCNVLM utility to update 
FIELD entity-occurrences with data types of K or Y to G (GRAPHIC) and data type Z 
to C (CHARACTER) with SEMANTIC-TYPE=MIXED. See the CA Datacom Installation 
Guide for more information about DDCNVLM. 

■ SMALLINT and INTEGER data types do not allow decimals. 
 

■ Aligned field types are aligned in records or tables, not in elements and keys. 

■ Those lengths or types not specified as an SQL data type are treated as character 
through SQL. 

■ VARCHAR (TYPE=V) and VARGRAPHIC (TYPE=W) have a two-byte binary length 
prefix added to the value you specify for the LENGTH attribute. 

 

Character Strings 

A character string is a sequence of any EBCDIC characters.  The length of the string is 
determined by the length attribute of the column.  The data type for a character string is 
CHARACTER. The default value for the CHARACTER data type length is one byte. Also see 
Data Types (see page 485). 

In extended mode you can use character strings to represent dates, times, and 
timestamps. See Character String Literals (see page 510) for more information. 

 

VARCHAR and LONG VARCHAR 

The VARCHAR and LONG VARCHAR data types provide for varying-length character 
strings. 

VARCHAR 

VARCHAR(n) specifies a varying-length character string of maximum length n.  The 
length may range from 1 to the maximum row size. 

The physical size in bytes of a VARCHAR(n) column is: 

n + 2 + x 

where x=1 if the column allows nulls, else x=0. 

The 2 is added because of the two-byte current-length field which precedes the 
character string.  The 1 is added if the column allows nulls because of the one-byte null 
indicator flag which precedes the length and data fields. 

 



Data Types 

 

496  SQL User Guide 
 

LONG VARCHAR 

Specifies a varying-length character string whose maximum length is determined by the 
amount of space available in a block. 

The physical size of a LONG VARCHAR field varies with the block size of the table and the 
number of LONG VARCHAR fields defined for the table.  Assuming: 

m = Maximum row size (block size - 14) 
  i = The sum of the byte counts of all columns in the table that are not LONG VARCHAR 
  j = the number of LONG VARCHAR columns in the table 
  k = the number of LONG VARCHAR columns which allow nulls 

 

then the physical size in bytes of a LONG VARCHAR column is: 

2 * (INTEGER ((INTEGER ((m - i - k) / j )) / 2)) 

LONG VARCHAR columns get whatever space is left in the block after all of the other 
columns are defined.  If only one LONG VARCHAR is defined, it gets all of the space left 
in the block that is not taken up by the other columns.  If there is more than one LONG 
VARCHAR column, they share the space evenly.  Defining any LONG VARCHAR columns 
causes the row size of the table to be equal to the block size (minus block overhead). 

 

Defining a LONG VARCHAR column is exactly equivalent to defining a VARCHAR(n) 
where n = the size as calculated above.  If the block size of the table is later changed, the 
size of its LONG VARCHAR columns is not recalculated.   When modifying a LONG 
VARCHAR column using ALTER TABLE, the column is treated like any VARCHAR(n) 
column.  The LONG VARCHAR data type is provided to simplify defining a column that is 
as long as possible to be used for storing text, binary data, and so forth. 

 

Using VARCHAR Columns 

Each VARCHAR or LONG VARCHAR column value is made up of two parts, a SMALLINT 
current-length subfield, which contains the length in bytes of the character string, 
followed by the character string itself.  The length specified when the column is defined 
is the maximum length; at any given time, a column value may contain a character string 
whose length is between 0 and the maximum length of the column. 

In a COBOL program, a VARCHAR host variable must have the following form: 

 01 VAR1. 

    49 VAR1-LEN     PIC S9(4) USAGE COMP. 

    49 VAR1-TEXT    PIC X(n). 
 



Data Types 

 

Chapter 23: Basic Language Elements  497  
 

Where VAR1, VAR1-LEN, and VAR1-TEXT are user-defined names, and n is the maximum 
length for the VARCHAR column.  The group-level may be numbered 01 through 48.  The 
group must contain two elementary items with the level number of 49.  The first 
elementary item must be a SMALLINT integer variable.  The second elementary item 
must have the same description as a fixed-length character string.  When referring to 
the VARCHAR host variable in an embedded SQL statement, the group name is used, for 
example :VAR1 in the following: 

INSERT INTO TABLE1 VALUES (:VAR1, 50) 
 

Before the INSERT statement is executed, the character string to insert must be moved 
to VAR1-TEXT, and VAR1-LEN must be set to the length of the data in VAR1-TEXT which 
is to be inserted into the column. 

When a VARCHAR column value is retrieved, CA Datacom/DB fills in the length as well as 
the text.  For example, after the following statement is executed: 

FETCH CURSOR1 INTO :VAR1 

VAR1-LEN is set to the length of the character data returned in VAR1-TEXT. 
 

Null indicators work as they do with any other data type.  For instance, to insert a NULL 
value into a column, define a null indicator variable, set it to -1, and specify the null 
indicator variable and the variable for the column value: 

 01 VAR1. 

    49 VAR1-LEN     PIC S9(4) USAGE COMP. 

    49 VAR1-TEXT    PIC X(n). 

 01 VAR1-NI         PIC S9(4) USAGE COMP. 

 SET VAR1-NI = TO -1. 

 INSERT INTO TABLE1 VALUES (:VAR1:VAR1-NI, 500) 
 

In this case, neither VAR1-TEXT nor VAR1-LEN need be set to any particular value, 
because the null indicator is checked first.  Similarly, when retrieving a VARCHAR value 
that might be null, provide a null indicator value and check the null indicator first.  If the 
null indicator indicates that the value is null, the values in VAR1-LEN and VAR1-TEXT are 
undefined. 

 FETCH CURSOR1 INTO :VAR1:VAR1-NI 

 

 IF VAR1-NI = -1 THEN 

    PERFORM 'STRING-OUT' USING 4 'NULL' 

 ELSE 

    PERFORM 'STRING-OUT' USING VAR1-LEN VAR1-TEXT 

 END-IF 
 



Data Types 

 

498  SQL User Guide 
 

Various Rules Related to VARCHAR 

In general, you can use a varying-length character string column or variable anywhere a 
fixed-length character string or column could be used. 

When a string of length n is assigned to a varying-length string variable with a maximum 
length greater than n, the characters after the nth character of the variable are 
undefined and may or may not be set to blanks. 

Varying-length strings that differ only in the number of trailing blanks are considered 
equal. 

In CA Datacom/DB, character string constants are considered to be fixed-length 
character strings and are limited to 32720 characters. 

 

MIXED Data 

Three semantic types are allowed on CHAR, VARCHAR, and LONG VARCHAR columns: 
FOR MIXED DATA, FOR SBCS DATA, and FOR BIT DATA. 

FOR MIXED DATA means that Double-Byte Character Set (DBCS) characters are allowed 
in values stored in the column, in addition to EBCDIC (Single-Byte Character Set (SBCS)) 
characters.  This is relevant when SQL is processing a value in the column, since it must 
recognize the Shift-Out and Shift-In characters that delimit DBCS substrings. FOR SBCS 
DATA means that DBCS characters are not used in the column. FOR BIT DATA means 
that the data is a string of binary data rather than a string of characters. 

 

If a semantic type is not specified when the column is created, the default is the 
semantic type that was specified on the CXXMAINT OPTION=ALTER,DBCS=xxx option.  If 
xxx was IS or FS, the default is FOR SBCS DATA.  If xxx was IM or FM, the default is FOR 
MIXED DATA. 

Default values for MIXED columns may include DBCS characters (each sequence of DBCS 
characters must be delimited by Shift characters). 

Note:  SQL does not check to make sure Shift characters are not used in SBCS strings, 
and there is no validation of DBCS characters. X'42' is used as the first byte of any 
(non-blank) DBCS character generated by SQL. 

 



Data Types 

 

Chapter 23: Basic Language Elements  499  
 

GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC 

The GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC data types provide Double-Byte 
Character Set (DBCS) support.  Each character is two bytes long.  The precision of one of 
these columns is the maximum number of two-byte characters that can be stored, not 
the physical length. 

DBCS characters in SQL statements are delimited by the Shift-Out and Shift-In 
characters.  Shift characters are either the IBM-defined characters (X'0E' and X'0F') or 
the Fujitsu-defined characters (X'28' and X'29'), as specified in the CXXMAINT 
OPTION=ALTER,DBCS=xxx option.  If xxx is IS or IM, the shift characters are the 
IBM-defined characters.  If xxx is FS or FM, the shift characters are the Fujitsu-defined 
characters. 

 

Note:  SQL does not check to make sure Shift characters are not used in SBCS strings, 
and there is no validation of DBCS characters. X'42' is used as the first byte of any 
(non-blank) DBCS character generated by SQL. 

Default values for GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC columns are 
expressed as graphic literals in either the COBOL or PL/I formats.  In these default 
literals the quote must always be the single-quote.  The existing limit of 20 bytes 
maximum for all default values also applies to the GRAPHIC, VARGRAPHIC, and LONG 
VARGRAPHIC data types. 

 

Ordering on DBCS Columns 

GRAPHIC and VARGRAPHIC columns are indexed and/or used as sort fields, but the 
ordering is strictly byte-for-byte. There is no support provided for ordering the DBCS 
columns in other ways. 

Indexing and ordering on MIXED columns is also strictly byte-for-byte.  There is no 
normalizing of the strings so that equivalent DBCS versions of SBCS strings or substrings 
would compare equal. 

 

Katakana Support 

The code points used for the encoding of the Katakana language overlap the code points 
assigned to lower case EBCDIC letters, so special processing is required to support 
Katakana.  If the CXXMAINT ALTER LANGUAGE option has been turned on, SQL supports 
Katakana, which also means lower-case English letters are not available. Even when 
LANGUAGE is K, SQL uses X'42', not X'43' as the first byte of any (non-blank) DBCS 
character it generates. 

 



Data Types 

 

500  SQL User Guide 
 

Numeric Data Types 

The numeric data types can be defined in all host languages. 

All binary integers and decimal numbers have a sign and a precision.  The precision is 
the total number of binary or decimal digits, excluding the sign. 

NUMERIC 

A zoned decimal number with an implicit decimal point. The position of the decimal 
point determined by the precision and scale of the number. 

The precision is the total number of decimal digits.  The maximum precision is 31 
digits. 

The scale is the number of digits in the fractional part of the number.  The scale 
cannot be negative and it cannot be greater than the precision. 

All values of a decimal column have the same precision and scale. The range of a 
decimal variable or the numbers in a decimal column is -n to n. The absolute value 
of n is the largest number that can be represented with the applicable precision and 
scale. 

 

DECIMAL 

A packed decimal number with an implicit decimal point. The position of the 
decimal point is determined by the precision and scale of the number. 

The precision is the total number of decimal digits.  The maximum precision is 31 
digits. 

The scale is the number of digits in the fractional part of the number.  The scale 
cannot be negative and it cannot be greater than the precision. 

All values of a decimal column have the same precision and scale. The range of a 
decimal variable or the numbers in a decimal column is -n to n. The absolute value 
of n is the largest number that can be represented with the applicable precision and 
scale. 

 

SMALLINT 

A binary integer with a precision of 15 bits. The range of small integers is -32768 to 
32767. 

INTEGER 

A binary integer with a precision of 31 bits. The range of large integers is 
-2147483648 to 2147483647. 

FLOAT 

A long (64 bits) floating-point number. The range of magnitudes is approximately 
5.4E-79 to 7.2E+75. 

 



Basic Operations (Assignment and Comparison) 

 

Chapter 23: Basic Language Elements  501  
 

REAL 

A long (64 bits) floating-point number. The range of magnitudes is approximately 
5.4E-79 to 7.2E+75. 

DOUBLE PRECISION 

A long (64 bits) floating-point number. The range of magnitudes is approximately 
5.4E-79 to 7.2E+75. 

 

Basic Operations (Assignment and Comparison) 

The basic operations of the SQL language are assignment and comparison. 

Assignment operations are performed during the execution of: 

■ INSERT 

■ UPDATE 

■ FETCH 
 

Comparison operations are performed during the execution of statements that include 
predicates and other language elements such as: 

■ DISTINCT 

■ GROUP BY 

■ MAX 

■ MIN 

■ ORDER BY 
 

The basic rule for both operations is that numbers and strings are not compatible. This 
means that: 

■ Numbers and strings cannot be compared. 

■ Numbers cannot be assigned to string columns or variables. 

■ Strings cannot be assigned to numeric columns or variables. 
 

All character strings are compatible.  For example one character string can be compared 
to another character string. 

All numbers are compatible. (See Numeric Assignments (see page 502) and Numeric 
Comparisons (see page 507) for information on conversions made during assignment 
and comparison operations.) 

 



Basic Operations (Assignment and Comparison) 

 

502  SQL User Guide 
 

Numeric Assignments 

The following table lists the conversion rules which apply when assigning a number of 
one data type to another data type. 

Conversion implies that the value is represented in a form compatible for the 
assignment operation. 

To determine the rule which applies when assigning a number of one data type to 
another data type, locate the original data type in the left column.  Next, locate the 
target data type in the vertical columns to the right. 

 

The rule number specified at the intersection of the two columns is the rule which 
applies during the assignment operation.  See the list of numbered rules following the 
table for an explanation of the conversion required during the assignment operation. 

 
 



Basic Operations (Assignment and Comparison) 

 

Chapter 23: Basic Language Elements  503  
 

The following list contains explanations of the numbered rules referenced in the 
previous table. 

1. Decimal or integer to floating-point 

Floating-point numbers are approximations of real numbers.  Thus, decimal and 
integer numbers may not be identical to the original number when assignment is to 
a floating-point column or variable. 

2. Floating-point to integer 

The fractional part of the number is lost on this assignment. 
 

3. Decimal to decimal 

When a decimal number is assigned to a decimal column or variable, the number is 
converted, if necessary, to the precision and scale of the target. 

In the whole part of the number, the necessary number of leading zeros is 
appended or eliminated. 

In the fractional part of the number, the necessary number of leading zeros is 
appended, or the necessary number of digits exceeding the scale is eliminated. 

 

4. Integer to decimal 

When an integer is assigned to a decimal column or variable, the number is 
converted to the DECIMAL data type first.  Next, it is converted to the precision and 
scale of the target.  For example if X'0005' is placed in a DECIMAL with precision 
equal to 3 and scale equal to 2, it appears as pack decimal '500C'. 

The precision of a small integer, when converted to DECIMAL, is 5, and the scale is 
0. 

The precision of a large integer, when converted to DECIMAL, is 11, and the scale is 
0. 

 

5. Floating-point to decimal 

When a floating-point number is assigned to DECIMAL or NUMERIC, the number is 
first converted to a temporary packed decimal number of precision 31. If necessary, 
the number is then truncated to the precision and scale of the target. 

In conversion, the number is rounded (using floating-point arithmetic) to a precision 
of 31 decimal digits. If the representation requires more than 31 digits to the left of 
the decimal point, an error is reported. Otherwise, the scale is given the largest 
possible value that allows the whole part of the number to be represented without 
loss of significance. 

 



Basic Operations (Assignment and Comparison) 

 

504  SQL User Guide 
 

6. Decimal to integer 

The fractional part of the decimal number is truncated. 

The maximum range of values which can be represented for each data type is: 

 

Data Type Minimum Value Maximum Value 

SMALLINT -32768 32767 

INTEGER -2147483648 2147483647 

DECIMAL (31 digits) (31 digits) 

NUMERIC (31 digits) (31 digits) 

7. DATE, TIME, and TIMESTAMP 

See "Assignment for Dates, Times, and Timestamps" on Assignment for Dates, 
Times, and Timestamps (see page 506). 

8. VARCHAR to CHAR 

If the varying-length string value is shorter than the length attribute of the CHAR 
column or variable, the string is padded on the right with blanks until it is the 
required length. 

If the varying-length string value is longer than the length attribute of a CHAR 
column, an error occurs. 

If the varying-length string value is longer than the length attribute of a CHAR 
variable, the string is truncated on the right by the required number of characters (a 
'W' is assigned to SQLWARN1 of the SQLCA if this occurs). 

 

9. CHAR to VARCHAR 

If the length attribute of the CHAR column or variable is less than the maximum 
length of the VARCHAR column or variable, the CHAR string is copied and the length 
is set to the length of the CHAR string. 

If the length attribute of the CHAR column or variable is longer than the maximum 
length of the VARCHAR target, an error occurs when the target is a column, or 
truncation occurs when the target is a variable. 

 



Basic Operations (Assignment and Comparison) 

 

Chapter 23: Basic Language Elements  505  
 

10. MIXED Data 

When a GRAPHIC value is assigned to a larger-precision target, the value is padded 
with DBCS blanks (X'4040').  When MIXED data is enabled via the CXXMAINT option, 
SQL does special processing as follows: 

■ When a MIXED string is moved to a smaller-precision MIXED host variable, SQL 
ensures that the truncation results in a well-formed string.  If there is an 
unpaired Shift-Out in the result: 

– If the last byte in the truncated string is the first byte of a DBCS character, 
that last byte is overlayed with a Shift-In. 

– If the last byte in the truncated string is the second byte of a DBCS 
character, the last DBCS character is replaced by a Shift-In and an SBCS 
blank. 

 

– If the last byte of the truncated string is a Shift-Out, it is overlayed with an 
SBCS blank. 

– If the next-to-last byte of the truncated string is a Shift-Out, it and the last 
byte are overlayed with SBCS blanks. 

■ SQL issues an error if there are unpaired Shift codes in a string when assigning 
it to a column or host variable. 

 

String Assignment 

The basic rule of string assignment is that the length of a string assigned to a column 
must not be greater than the length attribute of the column.  Trailing blanks are 
included in the length of the string. 

When a string is assigned to a fixed-length string column or variable and the length of 
the string is less than the length attribute of the target, the string is padded on the right 
with the necessary number of blanks. 

When a string is assigned to a variable and the string is longer than the length attribute 
of the variable, the string is truncated on the right by the necessary number of 
characters. 

 



Basic Operations (Assignment and Comparison) 

 

506  SQL User Guide 
 

Assignment for Dates, Times, and Timestamps 

The basic rule for date, time, and timestamp assignments is that a value may only be 
assigned to a column with a matching data type, or to a fixed or varying length character 
string variable or column. 

If the assignment of a date or time value is made to a character string variable or 
column, conversion to a string representation is automatic.  Leading zeros are not 
omitted from any part of the date, time or timestamp.  The required length of the target 
varies depending on the format of the string representation.  If the length of the target 
is greater than required, it is padded on the right with blanks.  If the length of the target 
is less than required, the result depends on the type of date or time value involved, as 
well as on the type of target.  If the target is a column, truncation is not allowed.  The 
length must therefore be 10 for a date, 8 for a time, and 26 for a timestamp. 

 

If the target is a host variable, the following rules apply: 

Date Assignments 

If the string or column length is less than ten bytes, an error occurs. 

Time Assignments 

If the USA format is used (see Character String Literals (see page 510) for additional 
format information), the length of your host variable or string column must not be 
less than 8.  Otherwise, its length must not be less than 5. 

If ISO or JIS formats are used, and if the length of the host variable is less than 8, the 
seconds part of the time is omitted from your result and assigned to your indicator 
variable. The SQLCA-WARNING(2) field of the SQLCA (SQLWARN1 in the DB2 
format) is set to alert you to the omission. 

Timestamp Assignments 

If the string or column length is less than 19 bytes, an error occurs.  If the length is 
less than 26 bytes but greater than or equal to 19 bytes, trailing digits of the 
microseconds part of the value are omitted. 

 



Basic Operations (Assignment and Comparison) 

 

Chapter 23: Basic Language Elements  507  
 

Numeric Comparisons 

Numbers are compared according to their algebraic value. In some cases, one of the 
operands must be converted to another data type before the comparison operation is 
performed. 

Conversion implies that each of the two values are represented in a form compatible for 
the comparison operation. 

This conversion is performed automatically when the specified operands are of different 
data types.  General rules for conversion during a comparison operation are: 

■ Integer numbers are compared to decimal numbers by converting the integer 
number to DECIMAL (packed decimal). 

■ Decimal and integer numbers are compared to floating-point numbers by 
converting the decimal or integer number to FLOAT. 

 



Basic Operations (Assignment and Comparison) 

 

508  SQL User Guide 
 

The following table lists the conversions that must take place before two numbers can 
be compared. 

To determine the data type used in the comparison operation, locate the data type of 
the first operand in the left column.  Next, locate the data type of the second operand in 
the vertical columns to the right. 

The data type specified at the intersection of the two columns is the data type used in 
the actual comparison operation.  In some cases, this data type is different from that of 
both operands, indicating that both operands are converted before the comparison is 
made. 

 

 
 

Note:  Be aware that there is one exception to the information in this table. Normally, 
there is no comparison of any type of a number with character data, but an equal (=) 
comparison is allowed between unsigned numeric (zoned decimal) data and character 
data of the same length for joins between tables. Because this is also allowed when both 
operands are in the same table, a join does not have to be involved, but the exception 
was made to facilitate joining tables designed at different times. The exception works 
for equal comparisons of the same length by treating the unsigned zone field as a 
character column for comparison purposes. 

 



Basic Operations (Assignment and Comparison) 

 

Chapter 23: Basic Language Elements  509  
 

In the previous tables, the following numbered rules are referenced: 

1. 

For decimal numbers, the comparison is done in DECIMAL form. The number with 
the smallest scale is extended with zeros to match the scale of the other number 
before the comparison. 

2. 

Any number compared to a floating-point number must be converted to FLOAT.  
Two floating-point numbers are equal only if the bit configurations of their 
normalized form are identical. 

 

3. 

See the information about dates, times, and timestamps on Comparisons for Dates, 
Times, and Timestamps (see page 510). 

4. 

MIXED Data Considerations: In SQL, string comparisons are strictly byte-for-byte, so 
predicates involving MIXED strings may not give the desired results.  For instance, a 
string with the SBCS version of XYZ does not compare as equal to a string with a 
Shift-Out, then the DBCS version of XYZ, then a Shift-In.  You can use the 
VARGRAPHIC scalar function to normalize both strings into VARGRAPHIC data types 
before doing the comparison. 

 

String Comparisons 

The comparison of two strings is determined by the comparison of the corresponding 
bytes of each string. 

If the strings are not the same length, the comparison is made with a temporary copy of 
the shorter string. The temporary copy is padded on the right with blanks so that it has 
the same length as the longest string. 

Two strings are equal if all corresponding bytes are equal. 

If two strings are not equal, their relation is determined by the comparison of the first 
pair of unequal bytes from the left end of the strings.  This comparison is made 
according to the EBCDIC collating sequence. 

 



Literals 

 

510  SQL User Guide 
 

Comparisons for Dates, Times, and Timestamps 

A value for a date, time, or timestamp can be compared either with another value of the 
same data type, or with a string representation of that data type.  All comparisons are 
chronological, that is to say, the farther a point in time is from January 1, 0001, the 
greater the value of that point in time. 

Comparisons and string representations involving time values always include seconds.  If 
the string representation omits seconds, zero seconds is implied. 

Comparisons involving timestamp values are chronological without regard to 
representations that could possibly be considered equivalent. The following predicate is 
therefore true: 

TIMESTAMP('1985-02-23-00.00.00') > '1985-02-22-24.00.00' 
 

Literals 

A literal specifies a value.  Literals are classified as: 

1. Character string literals (CHARACTER or CHAR), and 

2. Numeric literals, which are further classified as: 

■ integer (INTEGER or INT) 

■ decimal (DECIMAL or DEC and NUMERIC) 

■ floating-point (FLOAT, REAL and DOUBLE PRECISION) 
 

Character String Literals 

A character string literal is a string that specifies a character string. 

Note:  String literals may include Double-Byte Character Set (DBCS) characters.  The 
DBCS string must be preceded by the Shift-Out character and ended with the Shift-In 
character (the Shift characters are specified in the CXXMAINT option of the CA 
Datacom/DB Utility (DBUTLTY)). 

There are two forms of character string literals. 
 



Literals 

 

Chapter 23: Basic Language Elements  511  
 

First Form 

The first form is a sequence of characters that starts and ends with a string delimiter as 
specified by the STRDELIM= plan option.  A string delimiter is either an apostrophe (') or 
a quotation mark ("). 

This form of string literal specifies the character string contained between the string 
delimiters.  Two consecutive string delimiters are used to represent one string delimiter 
within the character string.  The length of the character string must not be greater than 
32720. Character string literals are delimiter tokens. 

Some examples of character string literals are: 

■ 'YES' 

■ '32' 

■ 'DON''T CHANGE' 
 

Dates, times, and timestamps are special character string literals with minimum length 
requirements as described in the following sections: 

Dates 

Dates must have a minimum of 10 characters.  Formats for dates are as follows (where 
yyyy represents the year, mm the month, and dd the day): 

■ ISO is yyyy-mm-dd (International Standards Organization). 

■ USA is mm/dd/yyyy (IBM USA Standard). 

■ EUR is dd.mm.yyyy (IBM European Standard). 

■ JIS is yyyy-mm-dd (Japanese Industrial Standard). 
 

You can vary the formats for dates as given previous as follows: 

■ Trailing blanks are the only other characters allowed. 

■ Leading zeros may be omitted from the month and day. 
 

Times 

Times must have a minimum of eight characters.  Formats for times are as follows 
(where hh represents hours, mm minutes, and ss seconds): 

■ ISO is hh.mm.ss 

■ USA is hh:mm AM or PM 

■ EUR is hh.mm.ss 

■ JIS is hh:mm:ss 
 



Literals 

 

512  SQL User Guide 
 

You can vary the formats for times as given previous as follows: 

■ You can omit leading zeros from the hour. 

■ Omission of seconds implies zero seconds. 

■ You may omit minutes from the USA format.  Omission of minutes implies zero 
minutes. 

■ Trailing blanks are the only other characters allowed. 
 

Timestamps 

Timestamps must have a minimum of 26 characters.  The format for timestamps in all 
cases is as follows (where yyyy-mm-dd represents the date, hh.mm.ss the time, and 
nnnnnn the microseconds): 

■ yyyy-mm-dd-hh.mm.ss.nnnnnn 

You can vary the formats for times as given previous as follows: 

■ You may omit leading zeros from the month, day, and hour. 

■ Trailing blanks are the only other characters allowed. 
 

Second Form (HEX) 

The second form of character string literals begins with an X, followed by a sequence of 
characters that starts and ends with a string delimiter.  The characters between the 
string delimiters must be an even number of hexadecimal digits.  A hexadecimal digit is 
either a digit or any of the letters: A B C D E or F (upper or lower case). 

This form of string literal allows you to specify characters that do not have a keyboard 
representation (for example, X'FFFF' or X'01DABC'). 

 

Integer Literals 

An integer literal specifies a binary integer which can be signed, is no greater than 10 
digits and does not include a decimal point. 

The data type of an integer literal is INTEGER (large integer). The value must be within 
the range of a large integer.  Examples of integer literals are: 

■ 32 

■ -10 

■ +255 
 



Literals 

 

Chapter 23: Basic Language Elements  513  
 

Floating Point Literals 

A floating-point literal specifies a floating-point number as two numbers separated by 
an E. The first number may include a decimal point and a sign. The second number may 
include a sign, but not a decimal point. 

The data type of a floating-point literal can be FLOAT, REAL or DOUBLE PRECISION. The 
value of the literal is the product of the first number and the power of 10 specified by 
the second number.  The value must be within the range of floating-point numbers. 

The number of characters in the literal must not exceed 30. Excluding leading zeros: 

■ The number of digits in the first number must not exceed 17. 

■ The number of digits in the second number must not exceed 2. 
 

Examples of floating-point literals are: 

■ 10E1 

■ 3.E4 

■ 3.2E-2 

■ 7.E+3 
 

Decimal Literals 

A decimal literal specifies a DECIMAL or NUMERIC data type number which can be 
signed, can be no greater than 31 digits and includes a decimal point. 

The precision is the total number of digits, including leading and trailing zeros.  The scale 
is the number of digits to the right of the decimal point, including trailing zeros. 
Examples of decimal literals are: 

■ 1.5 

■ 1000. 

■ -100. 

■ +144. 
 



Column Names 

 

514  SQL User Guide 
 

Column Names 

A column-name designates a column of a table or view.  The name can be unqualified or 
qualified. 

If you specify SQLMODE=ANSI or SQLMODE=FIPS in the SQL Preprocessor options, the 
unqualified form of a column name is a long identifier, 1 to 18 characters. 

If you specify SQLMODE=DATACOM for extended mode in the SQL Preprocessor 
options, the unqualified form of a column name can be 1 to 32 characters. 

The column-name must be alphanumeric and the first character must be alphabetic.  
The name can contain underscores ( _ ), but not hyphens ( - ). 

Do not use a keyword as the name of a column. 
 

The meaning of a column-name depends on its context.  A column-name can be used to: 

■ Declare the name of a column, as in the CREATE TABLE statement. 

■ Identify a column, as in the SELECT statement. 
 

■ Specify values of a column, as in the following contexts: 

In functions 

A column-name specifies all values of the column in the group or intermediate 
result table to which the function is applied. 

For example, MAX(SALARY) applies the function MAX to all values of the 
column SALARY in a group. 

In GROUP BY or ORDER BY clauses 

A column-name specifies all values in the intermediate result table to which the 
clause is applied. 

For example, ORDER BY DEPT orders an intermediate result table by the values 
of the column DEPT. 

In expressions or search conditions 

A column-name specifies a value for each row or group to which the expression 
or search condition is applied. 

For example, when the search condition CODE = 20 is applied to a row, the 
value specified by the column-name CODE is the value of the column CODE in 
that row. 

 



Column Names 

 

Chapter 23: Basic Language Elements  515  
 

Qualified Column Names 

A qualifier for a column-name can be a: 

■ Table-name 

■ View-name 

■ Synonym 

■ Correlation-name 

When you qualify a column name, you enter the qualifier, followed immediately by a 
period (.), then the column-name.  The format for qualifying a column name is shown in 
the below: 

 qualifier.column-name 
 

Whether a column-name may be qualified depends on its context.  In some forms of the 
COMMENT ON statement, a column-name must be qualified.  Where the column-name 
specifies values of the column, it may be qualified at the user's option. 

In all other contexts, a column-name must not be qualified. 

Where a qualifier is optional, it can serve two purposes.  For a discussion of these 
purposes, see Column-Name Qualifiers to Avoid Ambiguity (see page 517) and 
Column-Name Qualifiers in Correlated References (see page 518). 

 

Correlation Names 

A correlation-name can be defined in any FROM clause. 

For example, the clause 

          . 

          . 

 FROM X.MYTABLE Z, Y.MYTABLE 

          . 

          . 

Establishes Z as a correlation-name for X.MYTABLE.  Z can be used anywhere in the 
SELECT statement to designate that particular table. 

 



Column Names 

 

516  SQL User Guide 
 

A correlation-name is associated with a table or view only within the context in which it 
is defined.  The same correlation-name can be defined for different purposes in 
different statements, or in different clauses of the same statement. 

As a qualifier, a correlation-name can be used: 

■ To avoid ambiguity 

■ To establish a correlated reference 

■ As a shorter name for a table or view 

In the previous example, Z could be used to avoid having to enter X.MYTABLE more than 
once. 

 

SQL Index Binding 

Beginning in r11, SQL binds to a specific key more frequently than in previous versions.  
The purpose of this is to reduce the cost of key selection optimization in Compound 
Boolean Selection at execution. 

You can tell if a key was selected during binding by the SQL Optimizer in the Compound 
Boolean Selection (CBS) Diagnostic Report when the KEY parameter specifies a key 
name. This is also reflected in the CBSOR Accounting Element. 

You may directly specify the key to use in your query by appending "_HINT_keynm" to 
the correlation name, where keynm is the 5-character internal key name that is printed 
in the SQL Optimization and CXX Reports. 

Note:  If the 5-character key name is not found or cannot be used due to KEY_INC = N 
(that is, nil values not indexed), the query is processed as if no HINT key had been given. 

 

In the following example, assume that: 

■ CARS is the table name. 

■ COLOR is the 5-character key name (keynm). 

■ T1 is the variable chosen to prefix _HINT_keynm, that is, in this specific example T1 
is the prefix of the SQL identifer that composes the correlation name, resulting in 
T1_HINT_COLOR. 

■ Indexes exist for COLOR and MAKE. 
 



Column Names 

 

Chapter 23: Basic Language Elements  517  
 

If there are more MAKE values than COLOR values, the SQL Optimizer may select the 
MAKE index, but in the case of this example, because the COLOR is so rare, it is the best 
key to use. 

Following is the coding specific to this example, given the previous explanation. 

 SELECT * 

 FROM CARS T1_HINT_COLOR 

 WHERE T1_HINT_COLOR.COLOR = "PINK" 

   AND T1_HINT_COLOR.MAKE = "FORD"; 
 

Column-Name Qualifiers to Avoid Ambiguity 

In the context of a function, GROUP BY clause, ORDER BY clause, expression or a search 
condition, a column-name refers to values of a column in some table or view. 

The tables and views that could possibly contain the column are called the object tables 
of the context.  Two or more object tables could possibly contain columns with the same 
name. 

One reason for qualifying a column-name is to designate which table the column comes 
from. 

 

Table Designators 

A qualifier that designates a specific object table is a table designator.  The clause that 
identifies the object tables also establishes the table designators for these tables. 

For example, the object tables of an expression in a SELECT clause are named in the 
FROM clause that follows the SELECT, as in this partial statement: 

 SELECT Z.CODE, MYTABLE.CODE 

 

 

 FROM X.MYTABLE Z, MYTABLE, 

 

 

 WHERE . . . 
 

A name that follows a table or view name is a correlation-name and a table designator.  
In the previous example, Z is a table designator and qualifies the first column name after 
SELECT. 

A table-name, view-name or synonym that is not followed by a correlation-name is a 
table designator.  In the previous example, MYTABLE is a designator and qualifies the 
second column-name after SELECT. 

 



Column Names 

 

518  SQL User Guide 
 

Avoiding Undefined or Ambiguous References 

When a column-name refers to values of a column, exactly one object table must 
include a column with that name. 

The following conditions are considered errors: 

■ No object table contains a column with the specified name.  In this case, the 
reference is undefined. 

■ The column name is qualified by a table designator, but the designated table does 
not include a column with the specified name. Again, the reference is undefined. 

■ The name is unqualified and more than one object table includes a column with 
that name.  In this case, the reference is ambiguous. 

 

Avoid ambiguous references by qualifying a column-name with a uniquely defined table 
designator. 

If the column is contained in several object tables with different names, the table names 
can be used as designators. 

In the case that two or more of the object tables are instances of the same table and 
have the same name, you can use correlation-names to designate, unambiguously, the 
particular instances of the table. 

For example, in the following FROM clause, X and Y are defined to refer, respectively, to 
the first and second instances of the table NAMETBL. 

          . 

          . 

 FROM NAMETBL X, NAMETBL Y 

          . 

          . 
 

Column-Name Qualifiers in Correlated References 

A subselect used with a search condition is a subquery.  A subquery is said to be at a 
lower level than (or nested in) the subselect that contains the search condition. 

A subquery can contain search conditions of its own.  Among the object tables of those 
search conditions are all the tables and views identified at any higher level. 

Some of the higher level tables and views may be other instances of the same tables or 
views named in the subquery.  It may be necessary to refer specifically to a column in a 
table or view identified at a higher level.  The means for doing so is a correlated 
reference. 

 



Column Names 

 

Chapter 23: Basic Language Elements  519  
 

A qualified column-name, QUAL.COLUMN, is a correlated reference if, and only if, these 
conditions are met: 

■ QUAL.COLUMN is used in a search condition of a subquery. 

■ QUAL.COLUMN is not used in the FROM clause of that subquery. 

■ QUAL is used in a FROM clause at some higher level. 
 

QUAL.COLUMN refers specifically to the value of column COLUMN in table (or view) 
QUAL at the level where QUAL is used in the FROM clause.  If QUAL is used in the FROM 
clause of more than one level, then QUAL.COLUMN refers to the level that most directly 
contains the subquery that contains QUAL.COLUMN. 

The correlated reference QUAL.COLUMN identifies a value of COLUMN in a row or 
group of QUAL to which two search conditions are being applied.  The conditions are 
located as follows: 

1. Condition 1 is in the subquery. 

2. Condition 2 is at some higher level. 
 

If condition 2 is used in a WHERE clause, the subquery is evaluated for each row to 
which condition 2 is applied. 

If condition 2 is used in a HAVING clause, the subquery is evaluated for each group to 
which condition 2 is applied. 

 

For example: 

 SELECT EMPNO, LASTNAME, WORKDEPT 

 FROM NAMETBL X 

 WHERE SALARY > (SELECT AVG(SALARY) 

                 FROM NAMETBL 

                 WHERE WORKDEPT = X.WORKDEPT) 

The previous statement lists employees who make more than the average salary for 
their department.  The first FROM clause establishes X as a correlation-name for 
NAMETBL.  The correlated reference X.WORKDEPT (in the last line) refers to the value of 
WORKDEPT in table NAMETBL at the level of the first FROM clause. 

 



Host Variables 

 

520  SQL User Guide 
 

Host Variables 

A host variable is a data item that is referenced in an SQL statement.  For information 
about how to define host variables in the source code: 

■ For COBOL, see Host-Variable Definitions in COBOL (see page 178). 

■ For PL/I, see Host-Variable Declarations for PL/I (see page 187). 

■ For Assembler, see Host Variable Declarations for Assembler (see page 201). 

■ For the C language, see Rules for Coding Host-Variables in C (see page 206). 
 

The term host-variable, as used in the syntax diagrams, shows a reference to a host 
variable.  A host variable in the INTO clause of a FETCH or SELECT statement identifies a 
host variable to which a value from a row is assigned. 

In all other contexts, a host variable specifies a value. 

The general form of a host variable reference is: 

:host-identifier 
 

The host-variable name must: 

1. Be a valid data name in the host language that is being used. 

2. Be defined as a legal elementary item with an acceptable embedded SQL data type. 

3. Not include any spaces. 

An indicator variable must be associated with a host variable if the host variable will 
become NULL.  See Indicator Variables (see page 524) for more information. 

 

Host Structures 

Host structures are allowed in COBOL and PL/I but not in Assembler. 

You can qualify a host variable by a group name, for example: 

:GROUPNAME.VARNAME 

In this example, GROUPNAME is the host structure name and is used to qualify a host 
variable name.  Host structure names may also be used in certain contexts to represent 
a list of the elementary items that they contain. 

 



Host Variables 

 

Chapter 23: Basic Language Elements  521  
 

A host structure is a group whose subordinate levels are elementary data items.  Host 
structures have a maximum of two levels, even though the structure could possibly itself 
occur within a multilevel structure.  An exception is that the declaration of a 
varying-length character string variable requires another level, which must be level-49.  
In COBOL, for example: 

 01 GROUPX. 

     02 SUBGROUP. 

         03 C1   PIC X(4). 

         03 C2   PIC X(5). 

         03 C3. 

             49  C3LENGTH  PIC S9(4) COMP. 

             49  C3STRING  PIC X(30). 

         03 C4   PIC X(10). 
 

In the previous example, SUBGROUP is a valid host structure, because there is only one 
level subordinate to it, except for the varying-length variable.  GROUPX is not a valid 
host structure, because it has more than one level beneath it. 

Specifying a host structure is a short-hand for specifying a list of the elementary items it 
contains.  For example: 

 EXEC SQL 

 SELECT COL1, COL2, COL3, COL4 

   INTO :SUBGROUP 

   FROM TABLEX 

 END-EXEC 
 

Is equivalent to: 

 EXEC SQL 

 SELECT COL1, COL2, COL3, COL4 

   INTO :SUBGROUP.C1, :SUBGRO.C2, :SUBGROUP.C3, :SUBGROUP.C4 

   FROM TABLEX 

 END-EXEC 

The Preprocessor does this expansion whenever a host variable is specified which 
qualifies as a valid host structure. 

 

The form of a host structure reference is identical to the form of a host variable 
reference.  The reference :S1:S2 is a host structure reference if S1 designates a host 
structure.  If S1 designates a host structure, S2 must be defined as a vector of small 
integer variables, as for example in COBOL: 

     03 S2    PIC S9(4) COMP OCCURS 6 TIMES. 

As just shown, S1 is the main structure and S2 is its indicator structure. 
 



Host Variables 

 

522  SQL User Guide 
 

A host structure may be referenced in any context where a list of host variables may be 
referenced.  A host structure reference is equivalent to a reference to each of the host 
variables contained within the structure in the order in which they are defined in the 
host language structure declaration.  The nth variable of the indicator structure is the 
indicator variable for the nth variable of the main structure. 

If the main structure has x more variables than the indicator structure, the last x 
variables of the main structure do not have indicator variables.  If the main structure has 
x less variables than the indicator structure, the last x variables of the indicator structure 
are ignored.  These rules also apply if a reference to a host structure includes an 
indicator variable (not a structure) or if a reference to a host variable (not a structure) 
includes an indicator structure.  If an indicator structure or variable is not specified, no 
variable of the main structure has an indicator variable. 

 

Extended Format for Host Variables in COBOL 

The extended format for the host variable supports the COBOL construct of qualified 
names.  However, use of the extended format differs from the COBOL construct.  For 
example, if you define: 

  01 DATE1. 

       03 MONTH1  PIC 99 

       03 DAY1    PIC 99 

       03 YEAR1   PIC 99 

you reference DAY1 in the COBOL construct as follows: 

  MOVE DAY1 OF DATE1 TO TEMP-DAY 

In an SQL statement, you reference DAY1 as follows: 

   SELECT NEWDAY 

   INTO :DATE1.DAY1 
 

Host Variable Data Types 

See Character Strings (see page 495) for more information on host variable data types. 

For more information about SQL data types, see Data Types (see page 485). 
 



Host Variables 

 

Chapter 23: Basic Language Elements  523  
 

Using Colons in Host Variables 

Host variables must be preceded by a colon (:) if the host identifier is identical to an SQL 
reserved word.  Colons are always required on indicator variables.  When used, the 
colon can be preceded by a blank, an open parenthesis or a comma, as shown in the 
following examples where b represents a blank. 

 b:host-variable 

 (:host-variable 

 ,:host-variable 

Colons may be omitted only in the following contexts: 

■ In the INTO clause of a: 

– SELECT INTO statement 

– FETCH statement 
 

■ Following LIKE or NOT LIKE 

■ Following VALUES (in an INSERT statement) 

■ Following IN (in a SELECT statement), when the target of the IN clause is a list of 
host variables and/or constants and/or special registers, NOT when the target of 
the IN is a subselect or an expression 

 

■ When an indicator variable is included (in the form '&V1V2.', NOT in the form ':V1 
INDICATOR :V2') 

■ When qualified by a valid host structure name 

Note:  All except the last of the previous are those in which only host variables are 
allowed, not both column references and host variables. When both column references 
and host variable references are allowed, the colon should be used on host variables to 
avoid confusion, because CA Datacom/DB may not be able to give a clear indication of 
error when the colon is omitted.  In a context in which either a host variable or column 
can be referenced, the use of an unqualified name without a colon is interpreted by the 
Preprocessor as a reference to a column, even if there is a host variable with that same 
name.  If the host variable was what was intended, the results are confusing but no 
error is issued. 

 

If a qualified name without a colon such as GROUPX.V is used, and GROUPX is a host 
structure that contains V, GROUPX.V is always interpreted by CA Datacom/DB as a 
reference to a host variable.  If the group name happened to be the same as a table 
name and the host variable within the group was the same as a column name, that 
column could never be referenced because CA Datacom/DB would always interpret the 
name as the host structure reference.  You should therefore avoid naming host 
structures the same as any possible qualifiers of a column-name that you could possibly 
specify in your program. 

 



Indicator Variables 

 

524  SQL User Guide 
 

Indicator Variables 

Indicator variables associated with host variables are used to indicate the presence or 
absence of NULL values in the data.  To avoid having to designate one of the valid values 
for each data type to represent the NULL value, for example, zero or blanks, a separate 
indicator variable is associated with each host variable.  The indicator variable must be 
checked first.  If the indicator variable contains -1, the value of the associated host 
variable is NULL.  In this case, the value present in the host variable itself is undefined.  If 
the indicator variable contains anything other than -1, the value of the associated host 
variable is not NULL; it is the value in the host variable itself. 

An indicator variable must be associated with a host variable if the host variable will 
become NULL.  An error message is issued if an indicator variable is not associated with 
a host variable and SQL attempts to assign a NULL value to the host variable.  It is 
recommended that you always use indicator variables to avoid the possibility of 
encountering that error. 

 

Provision is made in the CA Datacom/DB SQL Preprocessor for recognizing indicator 
variables. 

An indicator variable must be defined as a SMALLINT data type.  The indicator variable 
can be defined anywhere a host variable can be defined. 

An indicator variable is associated with a host variable by the form: 

:host-variable:indicator-variable 
 

In the previous format: 

■ The first colon identifies a host variable. 

■ The second colon, appearing without a break, identifies an indicator variable 
associated with the host variable. 

The rules for forming host variable names in an SQL statement apply equally to the 
host-variable and the indicator-variable.  Both the host variable name and the indicator 
variable name can be qualified names.  For more information on forming host variable 
names, see Host Variables (see page 520). 

 



SQL Parameters 

 

Chapter 23: Basic Language Elements  525  
 

SQL Parameters 

An SQL parameter is a parameter that is passed to an SQL Procedure (a LANGUAGE SQL 
procedure). In SQL Procedures, SQL parameters can be used anywhere expressions are 
allowed. They cannot be used outside of procedures except as keyword parameters in 
the CALL and EXECUTE statements. When used in an SQL Procedure containing an SQL 
variable with a conflicting (matching) name, or in a statement containing a table or view 
reference where the table or view contains a conflicting column name, the name should 
be qualified using the procedure name. The syntax of an SQL parameter follows: 

►►─┬──────────────┬─ SQL-parameter-name ──────────────────────────────────────►◄ 
   └─ proc-name. ─┘ 

Note:  The proc-name is discussed further in the CREATE PROCEDURE section. The 
proc-name can be qualified by an authorization ID. 

The SQL-parameter-name is discussed further in the CREATE PROCEDURE section. 

 
 

SQL Variables 

An SQL variable is a variable that is declared within a compound statement in an SQL 
Procedure (a LANGUAGE SQL procedure). In compound statements, SQL variables can 
be used anywhere expressions are allowed. They cannot be used outside of compound 
statements. If the name conflicts with (matches) another SQL variable name (for 
example from another compound statement such as a condition handler), an SQL 
parameter name, or a column contained within a referenced table or view, the SQL 
variable name should be qualified using the start-label of the compound statement that 
immediately contains it. The syntax of an SQL variable follows: 

►►─┬────────────────┬─ variable-name ─────────────────────────────────────────►◄ 
   └─ start-label. ─┘ 

 





 

Chapter 24: Expressions  527  
 

Chapter 24: Expressions 
 

An expression specifies a value. Following is the syntax diagram for an expression. 

   ┌─ operator ───────────────────────┐ 
►►─▼─┬─────┬─┬─ function ───────────┬─┴───────────────────────────────────────►◄ 
     ├─ - ─┤ ├─ (expression) ───────┤ 
     └─ + ─┘ ├─ CASEexpression ─────┤ 
             ├─ COALESCEexpression ─┤ 
             ├─ NULLIFexpression ───┤ 
             ├─ CASTexpression ─────┤ 
             ├─ literal ────────────┤ 
             ├─ column-name ────────┤ 
             ├─ host-variable ──────┤ 
             ├─ special-register ───┤ 
             ├─ labeled-duration ───┤ 
             ├─ SQL-parameter ──────┤ 
             └─ SQL-variable ───────┘ 

Expansion of Where operator is as follows 

├──┬─ * ──┬────────────────────────────────────────────────────────────────────┤ 
   ├─ \  ─┤ 
   ├─ - ──┤ 
   └─ + ──┘ 

 

The special-register and labeled-duration are CA Datacom/DB extensions. See Special 
Registers (see page 533) and Labeled Duration (see page 535). 

function 

Specify a function. For more information about functions, see Functions (see 
page 549). 

(expression) 

Specify an expression. 

CASE expression 

For information about CASE expressions, see CASE Expressions (see page 529). 
 

COALESCE expression 

For information about COALESCE expressions, see COALESCE and NULLIF 
Expressions (see page 529). 

NULLIF expression 

For information about NULLIF expressions, see COALESCE and NULLIF Expressions 
(see page 529). 

CAST expression 

For information about CAST expressions, see CAST Expressions (see page 529). 
 



SQL Variables 

 

528  SQL User Guide 
 

literal 

Specify a literal.  If the expression is numeric, the literal must be numeric. For more 
information on literals, see Literals. (see page 510) 

column-name 

Specify the name of a column in a table or view.  If the expression is an arithmetic 
expression, the column must be of a numeric data type. 

host-variable 

Specify a host-variable.  A host-variable in an expression must identify a variable 
described in the program under the rules for declaring host-variables. For more 
information on host-variables, see Host Variables (see page 520). 

 

special-register 

A special register can be used wherever an expression can be used, except that 
special registers may not be used in the search condition of a CHECK constraint. See 
Special Registers (see page 533). 

labeled-duration 

A labeled duration can only be used in an expression that involves a date or time 
value. See Labeled Duration (see page 535). 

 

SQL-parameter 

Inside SQL Procedures, an SQL-parameter can be used anywhere expressions are 
allowed. Except in the CALL and EXECUTE statements, an SQL-parameter cannot be 
used outside of procedures. For more information, see SQL Parameters (see 
page 525). 

SQL-variable 

Inside compound statements, an SQL-variable can be used anywhere expressions 
are allowed, but an SQL-variable cannot be used outside of a compound statement. 
For more information, see SQL Variables (see page 525). 

 



CASE, COALESCE, NULLIF, and CAST 

 

Chapter 24: Expressions  529  
 

CASE, COALESCE, NULLIF, and CAST 

CASE Expressions 

Beginning in r11, CA Datacom/DB supports CASE expressions. The value of a CASE 
expression is the result of the first CASE that evaluates to TRUE. If no CASE evaluates to 
TRUE, the value is the result of the ELSE. If no ELSE is coded, the value is the NULL value. 

Note: If a CASE evaluates to UNKNOWN because of NULL values, the effect is the same 
as if the CASE evaluated to FALSE, and the next CASE or ELSE is evaluated. 

►►─ CASE ─┬─ searched-when-clause ─┬─┬──────────────┬─ END ───────────────────►◄ 
          └─ simple-when-clause ───┘ └─ ELSEresult ─┘ 
   ┌──────────────────────────────────┐ 
►►─▼─ WHENsearch-conditionTHENresult ─┴───────────────────────────────────────►◄ 
                ┌────────────────────────────┐ 
►►─ expression ─▼─ WHENexpressionTHENresult ─┴────────────────────────────────►◄ 
►►─┬─ expression ─┬───────────────────────────────────────────────────────────►◄ 
   └─ NULL ───────┘ 

 

CASE 

Begins a CASE expression. 

searched-when-clause 

Specifies a search-condition and the result when that condition is true. 

simple-when-clause 

The value of the first expression is compared to each WHEN expression, and the 
CASE result is the first WHEN result that is TRUE. The data type of the expressions 
must be compatible. 

 

result 

Specifies an expression that follows the THEN and ELSE keywords. There must be at 
least one result in the CASE expression that is not NULL. All result expressions must 
be compatible. 

search-condition 

Specifies a condition that is true, false, or unknown about a row. The search 
condition cannot contain a subquery. 

 

END 

Ends a CASE expression. 
 



CASE, COALESCE, NULLIF, and CAST 

 

530  SQL User Guide 
 

Example 1 (Simple WHEN Clause) 

Using simple WHEN clauses, this example translates the response codes to a survey: 

 SELECT EMPNO, QUESTION, 

     CASE RESPONSE_CODE 

     WHEN 1 THEN 'Strongly Disagree' 

     WHEN 2 THEN 'Somewhat Disagree' 

     WHEN 3 THEN 'Neutral' 

     WHEN 4 THEN 'Somewhat Agree' 

     WHEN 5 THEN 'Strongly Agree' 

     ELSE        'No Response' 

     END 

 FROM SURVEY; 
 

Example 2 (Searched WHEN Clause) 

Using searched WHEN clauses, this example translates the response codes to a survey: 

 SELECT EMPNO, QUESTION, 

     CASE 

     WHEN MODE = YN AND RESPONSE_CODE = 1 THEN 'YES' 

     WHEN MODE = YN AND RESPONSE_CODE = 2 THEN 'NO ' 

     ELSE 'NO RESPONSE' 

     END 

 FROM SURVEY; 
 

COALESCE and NULLIF Expressions 

Beginning in r11, CA Datacom/DB supports COALESCE and NULLIF expressions, shortcuts 
for expressing two frequent uses of the CASE expression. 

COALESCE is the ANSI 1999-compatible version of the VALUE scalar function.  It returns 
the first non-NULL argument it is passed. 

                  ┌─ , ─────────────────┐ 
►►─ COALESCE ─ ( ─▼─ result-expression ─┴─ ) ─────────────────────────────────►◄ 

NULLIF returns NULL if the arguments it is passed are equivalent. Otherwise, it returns 
the first argument. 

►►─ NULLIF ─ (result-expression-1,result-expression-2) ───────────────────────►◄ 

Coding: 

COALESCE(value1, value2) 

is the same as coding: 

CASE WHEN value1 IS NOT NULL THEN value1 ELSE value2 END 
 



CASE, COALESCE, NULLIF, and CAST 

 

Chapter 24: Expressions  531  
 

Example 

Using COALESCE, select the value of parm, which can be specified at the global, region 
or individual level: 

 SELECT COALESCE(I.PARM, R.PARM, G.PARM) 

 FROM GLOBAL G, REGION R, INDIVIDUAL I 

 WHERE I.REGION = R.REGION 

   AND I.ID_NBR = :HST_ID_NBR 

Specifying: 

NULLIF(value1, value2) 

is the same as specifying: 

CASE WHEN value1 = value2 THEN NULL ELSE value1 END 
 

Example 

Using NULLIF, substitute NULLs for zeros as follows: 

 SELECT EMPNO, NULLIF(COMMISSION, 0) FROM EMPLOYEE 

All arguments passed to COALESCE and NULLIF must be of compatible data types. 
 

CAST Expressions 

Beginning in r11, CA Datacom/DB supports CAST expressions to give users access to data 
stored in non-standard formats. Although CAST has a wide range of potential uses, users 
of CA Datacom Datadictionary REDEFINEs should be particularly interested in the 
feature, because it enables SQL to access redefined data using the correct data type. 

Consider the following example.  Assume that a table named "customers" contains 
legacy data and has a column called "credit_info" that SQL knows as a CHAR[7].  CA 
Datacom Datadictionary redefines the column as a CHAR[1] containing a credit "grade" 
of 'A' through  'F', followed by a 6-digit zoned decimal representing a credit limit in 
whole dollars. The credit limit can now be accessed as a number using the following 
syntax: 

►►─ CAST ─ (<-source-expression>AS <-target-type>WITHOUT CONVERSION) ─────────►◄ 
 



CASE, COALESCE, NULLIF, and CAST 

 

532  SQL User Guide 
 

In the syntax, source-expression refers to the source value expression, and target-type 
refers to the target data type. 

WITHOUT CONVERSION is a CA Datacom extension that means the source data is 
already formatted as the target data type and does not need to be converted.  Following 
is an example specification: 

CAST(SUBSTR(credit_info,2,6) AS NUMERIC(6,0) WITHOUT CONVERSION) 

CAST WITHOUT CONVERSION allows any data type to be cast to any other data type.  
However, it is your responsibility to ensure that the source data matches the target data 
type and is not longer than the target.  Leading zeroes and trailing blanks are inserted 
into targets as needed.  For example, casting a CHAR(2) containing 1234 hexadecimal to 
INTEGER without conversion results in 00001234 hexadecimal, and casting an INTEGER 
containing F1F2F3F4 hexadecimal to CHAR(6) without conversion results in "1234  " 
(note the trailing spaces), or F1F2F3F44040 hexadecimal. 

 

Following are some examples to help clarify how to specify the target type for CAST 
WITHOUT CONVERSION: 

 

If your source data is: The target type should be: 

Binary 2 bytes SMALLINT 

Binary 4 bytes INTEGER 

31 zoned decimal digits NUMERIC(31) 

6 packed decimal digits DECIMAL(6) 

Following is an example of the use of CAST in a query where the credit limit is retrieved 
as a number rather than a character string: 

   SELECT name, account_number, 

          CAST(SUBSTR(credit_info,2,6) AS NUMERIC(6,0) WITHOUT CONVERSION) 

          AS credit_limit 

   FROM customers 

Following is an example showing a query that uses the credit limit in a mathematic 
comparison: 

   SELECT name, account_number 

   FROM customers 

   WHERE 

   CAST(SUBSTR(credit_info,2,6) AS NUMERIC(6,0) WITHOUT CONVERSION) > 50000 
 

For the matrix (see Numeric Assignments (see page 502)) of implicit (automatic) data 
type conversions that CA Datacom/DB already supports, the following version of CAST 
may also be used: 

►►─ CAST ─ (<-source-expression>AS <-target-type>) ───────────────────────────►◄ 



Special Registers 

 

Chapter 24: Expressions  533  
 

This version of CAST requires that the source value be interpreted first and then stored 
into the target in converted form.  For example, when casting zoned decimal (NUMERIC) 
to packed decimal (DECIMAL), the source would have to contain a valid zoned decimal 
value. 

 

Special Registers 

A special register can be used wherever an expression can be used, except that special 
registers may not be used in the search condition of a CHECK constraint. 

Following is the special register syntax diagram. 

►►─┬─ CURRENT DATACOM MUF_NAME ─┬─────────────────────────────────────────────►◄ 
   ├─ CURRENT DATACOM TSN ──────┤ 
   ├─ CURRENT DATE ─────────────┤ 
   ├─ CURRENT SQLID ────────────┤ 
   ├─ CURRENT TIME ─────────────┤ 
   ├─ CURRENT TIMESTAMP ────────┤ 
   ├─ CURRENT TIMEZONE ─────────┤ 
   ├─ SYSTEM USER ──────────────┤ 
   └─ USER ─────────────────────┘ 

 

CURRENT DATACOM MUF_NAME 

Produces a CHAR(8) containing the name of the Multi-User Facility (MUF) that is 
processing the request. This name can be specified in the MUF Multi-User startup 
option, or it defaults to the job name of the MUF. 

CURRENT DATACOM TSN 

Produces an INTEGER containing the current value of the Transaction Sequence 
Number (TSN) of the current unit of work. If no maintenance 
(INSERT/UPDATE/DELETE) has been performed in this unit of work, the value 
returned is zero. 

CURRENT DATE 

Represents the current local date.  It is derived from a reading of the time-of-day 
clock plus the CURRENT TIMEZONE. 

 

CURRENT SQLID 

Represents the current SQL authorization ID, that is, the authorization ID (in this 
case actually a schema ID). 

CURRENT TIME 

Represents the current local time.  It is derived from a reading of the time-of-day 
clock plus the CURRENT TIMEZONE. 

CURRENT TIMESTAMP 

Represents the current local timestamp.  It is derived from a reading of the 
time-of-day clock plus the CURRENT TIMEZONE. 

 



Special Registers 

 

534  SQL User Guide 
 

CURRENT TIMEZONE 

Is defined as DECIMAL(6,0) and represents the number of hours, minutes and 
seconds from Greenwich, England because Greenwich time is Greenwich Mean 
Time (GMT).  East of Greenwich the CURRENT TIMEZONE number is negative.  West 
of Greenwich the CURRENT TIMEZONE number is positive.  The CURRENT TIME 
minus the CURRENT TIMEZONE gives the GMT. 

SYSTEM USER 

Is the accessor ID of the currently signed on user. 

The accessor ID is padded on the right with blanks, if necessary, so that the value of 
SYSTEM USER is always a fixed-length character string of length 18. 

 

In the following example, the result table of the SELECT contains all rows where the 
value of the column CREATOR is equal to the accessor ID of the user who executes 
the query. 

SELECT *  FROM CA.INVENTIONS  WHERE CREATOR = SYSTEM USER 

Important!  The CA Datacom/DB Security Facility must be installed at your site for 
CA Datacom/DB to determine the accessor IDs of users. 

USER 

Is the current authorization ID.  This is the same as the authorization ID of the 
currently executing plan. 

 



Labeled Duration 

 

Chapter 24: Expressions  535  
 

Labeled Duration 

A labeled duration represents any number of years, months, days, hours, minutes, 
seconds, or microseconds. This number is then converted as if it were assigned to a 
DECIMAL(15,0).  The unit is expressed by a keyword following the number.  For 
example, 25 YEARS is the labeled duration in HIREDATE + 25 YEARS. 

A labeled duration can only be used in an expression that involves a date or time value. 
For example: 

HIREDATE + 25 YEARS + 1 MONTH is valid, but 

HIREDATE + (25 YEARS + 1 MONTH) is not valid. 

Following is the syntax diagram for labeled durations. 

Note:  Labeled duration, this is a CA Datacom/DB extension. 

►►─┬─ function ──────┬─┬─ DAY ──────────┬─────────────────────────────────────►◄ 
   ├─ (expression) ──┤ ├─ DAYS ─────────┤ 
   ├─ literal ───────┤ ├─ HOUR ─────────┤ 
   ├─ column-name ───┤ ├─ HOURS ────────┤ 
   └─ host-variable ─┘ ├─ MICROSECOND ──┤ 
                       ├─ MICROSECONDS ─┤ 
                       ├─ MINUTE ───────┤ 
                       ├─ MINUTES ──────┤ 
                       ├─ MONTH ────────┤ 
                       ├─ MONTHS ───────┤ 
                       ├─ SECOND ───────┤ 
                       ├─ SECONDS ──────┤ 
                       ├─ YEAR ─────────┤ 
                       └─ YEARS ────────┘ 

 

function 

Specify a function.  For more information about functions, see Functions (see 
page 549). 

(expression) 

Specify an expression.  For more information about expressions, see Expressions 
(see page 527). 

literal 

Specify a literal.  If the expression is numeric, the literal must be numeric.  For more 
information on literals, see Literals. (see page 510) 

 



Labeled Duration 

 

536  SQL User Guide 
 

column-name 

Specify the name of a column in a table or view.  If the expression is an arithmetic 
expression, the column must be of a numeric data type. 

host-variable 

Specify a host-variable.  A host-variable in an expression must identify a variable 
described in the program under the rules for declaring host-variables.  For more 
information on host-variables, see Host Variables (see page 520). 

DAY/DAYS 

A duration expressed in day(s). For more information on durations, see Durations 
(see page 542). 

 

HOUR/HOURS 

A duration expressed in hour(s). For more information on durations, see Durations 
(see page 542). 

MICROSECOND/MICROSECONDS 

A duration expressed in microsecond(s). For more information on durations, see 
Durations (see page 542). 

MINUTE/MINUTES 

A duration expressed in minute(s). For more information on durations, see 
Durations (see page 542). 

 

MONTH/MONTHS 

A duration expressed in month(s). For more information on durations, see 
Durations (see page 542). 

SECOND/SECONDS 

A duration expressed in second(s). For more information on durations, see 
Durations (see page 542). 

YEAR/YEARS 

A duration expressed in year(s). For more information on durations, see Durations 
(see page 542). 

 



Expressions without Arithmetic Operators 

 

Chapter 24: Expressions  537  
 

Expressions without Arithmetic Operators 

If the arithmetic operators are not used, the result of the expression is the specified 
value.  Some examples of expressions without arithmetic operators are: 

■ COST -- column-name 

■ :COST -- host variable 

■ 'COST' -- string literal 

■ MIN(COST) -- function performed with column-name as argument 
 

Expressions with the Concatenation Operator 

The concatenation operator is represented by two vertical lines (||) or by CONCAT. If 
the concatenation operator is used in an expression, the result of the expression is a 
character string.  The operands of concatenation must be character strings. 

If either operand can be null, the result of the expression can be null.  If either operand 
is null, the result of the expression is the null value.  The result otherwise consists of the 
first operand character string followed by the second operand character string.  The 
length of the result character string is the sum of the lengths of the operand strings. 

In a concatenation, if any operand is MIXED, the result of the expression is MIXED. 
When concatenating a MIXED string ending with Shift-In with a MIXED string beginning 
with Shift-Out, both Shift characters are omitted in the result. 

Following is an example of using a concatenation operator: 

LASTNAME || ' , ' || FIRSTNAME 
 



Expressions with Arithmetic Operators 

 

538  SQL User Guide 
 

Expressions with Arithmetic Operators 

If arithmetic operators are used, the result of an expression is derived by the application 
of the operators to the value of the operands. 

Arithmetic operators must not be applied to character strings. Thus, USER + 2 is invalid. 

The two types of arithmetic operators are prefix operators and infix operators. 

Unary Operators 

The prefix operator + (unary plus) does not change its operand. 

The prefix operator - (unary minus) reverses the sign of its operand.  For example, if 
the data type of A is small integer, then the data type of -A is large integer. 

The first character of the token following a prefix operator must not be a plus or 
minus sign. For example, --10 is not allowed since 10 is preceded by two minus 
signs. 

Note:  Unary operators are not allowed with FLOAT, REAL and DOUBLE PRECISION 
data types. 

 

Infix Operators 

The infix operators and the operation they specify are: 

 

Operator Operation 

+ Addition 

- Subtraction 

* Multiplication 

/ Division 

The operand of an infix operator must not be a function that includes the keyword 
DISTINCT. 

The value of the second operand of division must not be zero. 
 



Expressions with Arithmetic Operators 

 

Chapter 24: Expressions  539  
 

Conversions During Arithmetic Operations 

Conversion implies that each of the two values are represented in a form compatible for 
the arithmetic operation. 

The following table lists the conversions that must take place before any arithmetic 
operation can occur. 

To determine the data type used in the arithmetic operation, locate the data type of the 
first operand in the left column.  Next, locate the data type of the second operand in the 
vertical columns to the right. 

The data type specified at the intersection of the two columns is the data type used in 
the actual arithmetic operation.  In some cases, this data type is different from that of 
both operands, indicating that both operands are converted before the arithmetic 
operation is performed. 

 

 
 



Expressions with Arithmetic Operators 

 

540  SQL User Guide 
 

Two Integer Operands 

If both operands of an arithmetic operator are integers, the operation is performed in 
binary and the result is INTEGER (large integer).  Any remainder of division is lost. 

The result of a binary arithmetic operation must be within the range of large integers. 

Integer and Decimal Operands 

If one operand is an integer and the other is DECIMAL (packed decimal) or NUMERIC 
(zoned decimal), the operation is performed in DECIMAL (packed decimal). 

 

The operation uses a temporary copy of the integer which has been converted to a 
DECIMAL number with scale 0.  The precision of the temporary copy depends on the 
characteristics of the operand as shown in the following: 

 

Operand Precision of 
Decimal Copy 

Column or variable: large integer 11 

Column or variable: small integer 5 

Literal or column more than 
5 digits (including leading zeros) 

same 

Literal: 5 digits or fewer 5 

Two Decimal Operands 

If both operands are DECIMAL (packed decimal) or NUMERIC (zoned decimal), the 
operation is performed in DECIMAL (packed decimal).  The result of any decimal 
arithmetic operation is a decimal number with a precision and scale that are dependent 
on the operation and the precision and scale of the operands. 

If the operation is addition or subtraction, and the operands do not have the same scale, 
the operation is performed with a temporary copy of one of the operands.  The 
temporary copy is extended with trailing zeros so that its fractional part has the same 
number of digits as the other operand. 

The result of a decimal operation must not have a precision greater than 31. 
 



Expressions with Arithmetic Operators 

 

Chapter 24: Expressions  541  
 

The result of decimal addition, subtraction and multiplication is derived from a 
temporary result, which may have a precision greater than 31. 

■ If the precision of the temporary result is not greater than 31, the final result is the 
same as the temporary result. 

■ If the precision of the temporary result is greater than 31, the final result is derived 
from the temporary result by the elimination of leading digits so the final result has 
a precision of 31. The eliminated digits must all be zeros. 

Following are formulas defining the precision and scale of the result of decimal 
operations in SQL. 

 

The following table lists the symbols designating the precision and scale for each 
operand. 

 

Operand Precision Scale 

first operand p s 

second operand p' s' 

The following table lists the formulas for the precision and scale for the four arithmetic 
operations. 

 

Operation: 
Precision: 
Scale: 

Addition and Subtraction 
min(31, max(p - s, p' - s') + max(s, s') + 1) 
max(s, s') 

Operation: 
Precision: 
Scale: 

Multiplication 
min(31, p + p') 
min(31, s + s') 

Operation: 
Precision: 
Scale: 

Division 
31 
If s' <= 15 then 
    scale=(m - p') - p - s + s' 
else 
    scale=max(s' - p' + 15,0) + 15 - (p - s) 
endif 

scale=max(scale,3) 

m=29 if p is even, or m=30 if p is odd 



Arithmetic Operations for Dates, Times, and Timestamps 

 

542  SQL User Guide 
 

Floating-point Operands 

If either operand of an arithmetic operator is floating-point, the operation is performed 
in floating-point.  Thus, if any element of an expression is a floating-point number, the 
result of the expression is a floating-point number. 

An operation involving a floating-point number and a integer is performed with a 
temporary copy of the integer.  The temporary copy of the integer is converted to 
floating-point. 

An operation involving a floating-point number and a DECIMAL (packed decimal) or 
NUMERIC (zoned decimal) number is performed with a temporary copy of the decimal 
number.  The temporary copy of the decimal number is converted to floating-point. 

The result of a floating-point operation must be within the range of floating-point 
numbers. 

 

Arithmetic Operations for Dates, Times, and Timestamps 

Addition and Subtraction are the only arithmetic operations which you can perform on 
date and time values.  You can increment or decrement a date, time or timestamp by a 
duration, or subtract a date from a date or a time from a time, but you cannot subtract 
a timestamp from a timestamp. 

 

Durations 

A duration is a number that represents an interval of time.  The number may be any of 
the following: 

■ Function 

■ Expression 

■ Literal 
 

■ Column name 

■ Host variable 

■ Special registers 
 

■ Labeled durations 

Special registers and labeled durations are CA Datacom/DB extensions. See Special 
Registers (see page 533) for information on special registers. See Labeled Duration (see 
page 535) for information on labeled durations. 

 



Arithmetic Operations for Dates, Times, and Timestamps 

 

Chapter 24: Expressions  543  
 

Date Durations 

A date duration represents a number of years, months, and days.  A date duration is 
expressed as a DECIMAL(8,0).  For example, a date duration of 1999 years, 3 months, 
and 20 days is 19990320. 

Subtracting dates results in a date duration. 
 

Time Durations 

A time duration represents a number of hours, minutes and seconds. A time duration is 
expressed as DECIMAL(6,0).  For example, a time duration of 19 hours, 30 minutes and 
20 seconds is 193020. 

Subtracting times results in a time duration. 
 

Addition Rules for Dates, Times, and Timestamps 

If operand one is a date, operand two must be a date duration or a labeled duration of 
years, months, or days. 

If operand one is a time, operand two must be a time duration or a labeled duration of 
hours, minutes, or seconds. 

If operand one is a timestamp, operand two must be a labeled duration, a date 
duration, or a time duration. 

 

Subtraction Rules for Dates, Times, and Timestamps 

The operation of subtracting two date-time values is different from the operation of 
subtracting a duration from a date-time value. The operands of date-time subtraction 
must be as follows: 

■ If operand one is a date, operand two must be a date, date duration, a date string, 
or a labeled duration of years, months, or days. 

■ If operand one is a time, operand two must be a time, time duration, a time string, 
or a labeled duration of hours, minutes, or seconds. 

■ If operand one is a timestamp, operand two must be a labeled duration, a time 
duration, or a date duration of years, months. 

 

■ If operand two is a date, operand one must be a date or date string. 

■ If operand two is a time, operand one must be a time or time string. 

■ A string representation of a date or time value cannot be subtracted from another 
string representation of a date or time value. However, if one of the strings is 
interpreted as a date or time, the expression is valid.  For example: 

DATE('1989-03-10') - '1985-03-10' is valid, but ('1989-03-10' - '1985-03-10') is 
invalid. 

 



Arithmetic Operations for Dates, Times, and Timestamps 

 

544  SQL User Guide 
 

Using Durations to Increment or Decrement Dates 

The result of adding or subtracting a duration to or from a date is a date.  If D is a date 
and N is a number defined as DECIMAL(15,0), the result of D + N YEARS or D - N YEARS is 
the date that is N years before or after D.  Only years are counted.  The month of the 
result is always the same as the month of D.  The day of the result is the same as the day 
of D, unless the result is February 29th of a non-leap year, in which case the day part of 
the result is 28 and SQLWARN6 is set to W. 

The result of D + N MONTHS or D - N MONTHS is the date that is N months before or 
after  D.  Only months and years (if necessary) are counted.  The day of the result is the 
same as the day of D, unless the result would be an invalid date, in which case the day 
part of the result is the last day of the month and SQLWARN6 is set to W. 

 

The result of D + N DAYS or D - N DAYS is the date that is N days before or after D. 

If N is a duration of y years, m months, and d days, the result of D + N (where N is 
positive) or D - N (where N is negative) is the date that is y years, m months, and d days 
after D.  The arithmetic is performed in this order using the previously defined rules, 
including the setting of SQLWARN6 whenever an end-of-month adjustment is made. 

If N is a duration of y years, m months, and d days, the result of D - N (where N is 
positive) or D + N (where N is negative) is the date that is d days, m months, and y years 
before D.  The arithmetic is performed in that order using the previously defined rules, 
including the setting of SQLWARN6 whenever an end-of-month adjustment is made. 

 

Subtracting Dates 

If D1 and D2 are dates, the result of D1 - D2 is a date duration that gives the number of 
years, months, and days between the two dates.  The data type of the result is 
DECIMAL(8,0).  If D1 is greater than or equal to D2, D2 is subtracted from D1.  If D1 is 
less than D2, D1 is subtracted from D2 and the sign of the result is negative.  Given the 
example D1 - D2, the rules for date subtraction are: 

■ If DAY(D2) is less than or equal to DAY(D1), the day part of the result is equal to 
DAY(D1) - DAY(D2). 

■ If DAY(D2) is greater than DAY(D1), the day part of the result is equal to N + 
DAY(D1) - DAY(D2), where N is the last day of MONTH(D2). MONTH(D2) is 
incremented by 1. 

 

■ If MONTH(D2) is less than or equal to MONTH(D1), the month part of the result is 
equal to MONTH(D1) - MONTH(D2). 

■ If MONTH(D2) is greater than MONTH(D1), the month part of the result is equal to 
12 + MONTH(D1) - MONTH(D2).  YEAR(D2) is incremented by 1. 

■ The year part of the result is equal to YEAR(D1) - YEAR(D2). 
 



Arithmetic Operations for Dates, Times, and Timestamps 

 

Chapter 24: Expressions  545  
 

Special Considerations Relating to Date Arithmetic 

Because of the differing number of days in each month of the year, adding a month to a 
given date does not always result in the same day of the next month.  For example, 
adding one month to January 31 would yield February 31, which is not a valid date.  The 
result is adjusted back to the last day of the month, February 28.  Therefore, D + N 
MONTHS - N MONTHS is not always equal to D. 

To avoid inconsistencies in date arithmetic caused by months, use days rather than 
months.  For example, DATE(DAYS(D1) + DAYS(D2) - DAYS(D3)) gives accurate results, 
but D1 + (D2 - D3) may not give accurate results. 

 

Incrementing and Decrementing Times by Durations 

The result of adding or subtracting a duration to or from a time is a time. The result is in 
the range of times.  If T is a time and N is a number defined as DECIMAL(15,0): 

■ The result of T + N HOURS or T - N HOURS is a time that is N hours before or after T.  
Only hours are counted.  The minute and second of the result are the same as the 
minute and second of T. 

■ The result of T + N MINUTES or T - N MINUTES is the time that is N minutes before 
or after T. Only minutes and hours (if necessary) are counted.  The second of the 
result is the same as T. 

 

■ The result of T + N SECONDS or T - N SECONDS is the time that is N seconds before 
or after T. 

■ If N is a duration of h hours, m minutes, and s seconds, the result of T + N or T - N is 
the time that is h hours, m minutes, and s seconds before or after T.  The arithmetic 
is performed using the previously defined rules. 

 

Subtracting Times 

If T1 and T2 are times, the result of T1 - T2 is a time duration that gives the number of 
hours, minutes, and seconds between the two times.  The data type of the result is 
DECIMAL(6,0). If T1 is greater than or equal to T2, T2 is subtracted from T1.  Otherwise, 
T1 is subtracted from T2 and the sign of the result is negative. Given the example of T1 - 
T2 the rules for time subtraction are: 

■ If SECOND(T2) is less than or equal to SECOND(T1), the seconds part of the result is 
equal to SECOND(T1) - SECOND(T2). 

■ If SECOND(T2) is greater than SECOND(T1), the seconds part of the result is equal to 
60 + SECOND(T1) - SECOND(T2), and MINUTE(T2) is incremented by one. 

 

■ If MINUTE(T2) is less than or equal to MINUTE(T1), the minutes part of the result is 
equal to MINUTE(T1) - MINUTE(T2). 

■ If MINUTE(T2) is greater than MINUTE(T1), the minutes part of the result is equal to 
60 + MINUTE(T1) - MINUTE(T2), and HOUR(T2) is incremented by one. 

■ The hour part of the result is equal to HOUR(T1) - HOUR(T2). 
 



Precedence of Operations 

 

546  SQL User Guide 
 

Special Considerations Relating to Time Arithmetic 

Adding 24 hours to the time 00.00.00 results in 24.00.00. 

Adding 24 hours to any other time results in the same time. 

For example, adding 24 hours to 00.00.59 results in 00.00.59. 
 

Incrementing and Decrementing Timestamps by Durations 

The result of adding or subtracting to or from a timestamp is a timestamp. 

The date part of the arithmetic is performed using the rules previously defined for 
incrementing or decrementing a date by a date duration. 

The time part of the arithmetic is performed using the rules previously defined for 
incrementing or decrementing a time by a time duration, except that any overflow or 
underflow of hours is carried into the date part of the result. 

 

The following rules apply to microseconds: 

■ If S is a timestamp and N is a number, the result of S + N MICROSECONDS or S - N 
MICROSECONDS is the timestamp that is N microseconds before or after S. 

■ If S is a timestamp and N is a date duration of y years, m months, and d days, the 
result of S + N or S - N is the timestamp that is y years, m months, and d days before 
or after S. 

■ If S is a timestamp and N is a time duration of h hours, m minutes, and s seconds, 
the result of S + N or S - N is the timestamp that is h hours, m minutes, and s 
seconds before or after S.  The microsecond part of the result is the same as the 
microsecond part of S. 

 

Precedence of Operations 

Expressions within parentheses are evaluated first.  When the order of evaluation is not 
specified by parentheses, operations are done in the following order. 

1. Prefix operators (unary + or unary -) 

2. multiplication and division 

3. Addition and subtraction 

Operators at the same level are evaluated from left to right. 

The examples that follow show the difference in results when you use parentheses to 
specify an order of evaluation in an expression.  The same equation is used in each 
example, but parentheses are either omitted or inserted to show that different results 
are possible. 

 



Precedence of Operations 

 

Chapter 24: Expressions  547  
 

Example 1:  RESULT = 10 + 20 / 5 - 1 * 2 

 

RESULT = 10 + 20 / 5 - 1 * 2 Division is performed since it is the first operation with the highest 
order of precedence going left to right in the expression. 

RESULT = 10 + 4 - 1 * 2 Multiplication is performed next since it has the highest order of 
precedence among the remaining operations. 

RESULT = 10 + 4 - 2 Addition is performed since it is the first operation going from left 
to right among the remaining operations. 

RESULT = 14 - 2 Subtraction is performed since it is the remaining operation. 

RESULT = 12  

Example 2:  RESULT = (10 + 20) / 5 - 1 * 2 

 

RESULT = (10 + 20) / 5 - 1 * 2 Addition is performed since it is enclosed in parentheses. 

RESULT = 30 / 5 - 1 * 2 Division is performed next since it is the first operation with the 
highest order of precedence going from left to right in the 
expression. 

RESULT = 6 - 1 * 2 Multiplication is performed next since it has the highest order of 
precedence among the remaining operations. 

RESULT = 6 - 2 Subtraction is performed since it is the remaining operation. 

RESULT = 4  

Example 3: RESULT = ((10 + 20) / 5 - 1) * 2 

 

RESULT = ((10 + 20) / 5 - 1) * 2 Addition is performed since it is enclosed in the inner pair of 
parentheses. 

RESULT = (30 / 5 - 1) * 2 Division is performed since it has a higher order of precedence than 
subtraction, even though both are enclosed within parentheses. 

RESULT = (6 - 1) * 2 Subtraction is performed since it is enclosed in parentheses. 

RESULT = 5 * 2 Multiplication is performed since it is the remaining operation. 

RESULT = 10  



Precedence of Operations 

 

548  SQL User Guide 
 

Examples 

Some examples of expressions are: 

Example 1:  This example finds the maximum value for each instance of a salary added 
to a year-to-date commission. 

 MAX(SALARY + YTDCOMM) 

Example 2:  This example finds the number of distinct status codes, eliminating any 
duplicates. 

 COUNT(DISTINCT STATUS) 
 

Example 3:  This expression calculates the discount by multiplying the cost by 5 percent. 

 DISCOUNT = COST * .05 

Example 4:  This expression calculates the total amount of all discounts by summing the 
results for each instance when the cost is multiplied by 5 percent. 

 TOTDISC = SUM(COST * .05) 

 



 

Chapter 25: Functions  549  
 

Chapter 25: Functions 
 

A function specifies a value.  Functions are of two types, column functions and scalar 
functions.  Scalar functions are a CA Datacom/DB extension. 

Scalar functions can be nested within scalar functions or column functions, and column 
functions can be nested within scalar functions, but a column function cannot be nested 
within another column function. An expression in a column function must therefore not 
include another column function.  See Rules for Scalar Functions (see page 555) for 
more information on nesting using scalar functions. 

Following is the functions syntax diagram: 

Note:  Scalar functions are a CA Datacom/DB extension. See Scalar Functions (see 
page 554). 

►►─┬─ column functions ─┬─────────────────────────────────────────────────────►◄ 
   └─ scalar functions ─┘ 

 

Column Functions 

Following is the syntax diagram for column functions: 

►►─┬─┬─ AVG ─┬─ ( ─┬─ ALL ◄expression ─────┬─ ) ─┬────────────────────────────►◄ 
   │ ├─ SUM ─┤     └─ DISTINCTcolumn-name ─┘     │ 
   │ ├─ MAX ─┤                                   │ 
   │ └─ MIN ─┘                                   │ 
   └─ COUNT ─┬─ (*) ───────────────────┬─────────┘ 
             └─ (DISTINCTcolumn-name) ─┘ 

 

Description 

AVG 

Specifies to return the average of the values in the column or expression.  The 
values must be numeric. 

SUM 

Specifies to return the sum of the values in the column or expression.  The values 
must be numeric. 

MAX 

Specifies to return the largest value in the column or expression. 
 



Column Functions 

 

550  SQL User Guide 
 

MIN 

Specifies to return the smallest value in the column or expression. 

ALL 

Specifies that duplicate values are not to be eliminated before the column function 
is applied.  ALL is the default. 

expression 

Enter the expression which is to be the argument of the column function.  An 
expression in a column function must include a column name (see the following 
rules).  For more information about expressions, see Expressions (see page 527). 

 

DISTINCT 

Specifies that duplicate values are to be eliminated before the column function is 
applied. 

column-name 

Specifies the column which is the argument of the column function. 
 

COUNT(*) 

Specifies to count all rows in the result table without eliminating duplicates. 

When COUNT(*) is the only item in the SELECT list and there is no join or WHERE 
clause, an optimization is used to take the count from the CXX rather than actually 
count the lines in the table. The potential exists for the CXX row count to be 
incorrect if the MUF has abended at a point where the latest CXX row count is only 
in memory, but this is an unlikely occurrence and the margin of error is small. In 
addition, actually counting the rows could potentially be off if inserts or deletes 
were issued after the count was begun. This enhancement provides a valuable and 
significant improvement in performance. 

If the most accurate count is required, a column can be added to the SELECT list, or 
a WHERE clause could be added, for example, WHERE 1=1 would be sufficient. 

Example 1: CXX Count Returned 

SELECT COUNT(*) FROM SYSADM.AGGREGATE; 

Example 2: Count each row in table 

SELECT COUNT(*) FROM SYSADM.AGGREGATE WHERE 1 = 1; 

Note: The CXX count could be inaccurate if MUF has abnormally terminated. 
 

COUNT(DISTINCT column-name) 

Specifies to return the number of distinct values of the named column. 
 



Column Functions 

 

Chapter 25: Functions  551  
 

Rules for Column Functions 

The result of a column function is derived by the application of the column function to 
the specified argument. 

■ The argument of COUNT(*) is a collection of rows. 

■ The argument of the other column functions is a collection of values.  For SUM and 
AVG, the values must be numbers. 

■ The source of the argument of any column function is a group or an intermediate 
result table. 

 

The following rules apply to all column functions other than COUNT(*). 

1. A column-name in a column function must not reference a column derived from a 
column function (a column of a view can be derived from a column function). 

2. Column functions cannot be nested.  Thus, an expression in a column function must 
not include a column function. 

3. An expression in a column function must include a column-name.  If the 
column-name is a correlated reference (which is allowed in a subquery of a HAVING 
clause), the expression must not include any operators. 

 

4. Before a column function is applied, null values are eliminated from its argument. 

■ If DISTINCT is specified, redundant duplicate values are also eliminated. 

■ If ALL is specified, duplicates are not eliminated. 

■ If neither ALL nor DISTINCT is specified, duplicates are not eliminated. 
 



Column Functions 

 

552  SQL User Guide 
 

The following table lists each column function, the result of each, the data type of the 
result, and any exceptions. 

Column Functions: 

 

Column Function Description 

AVG 

 

Results: 
The average of the values in its arguments. 

The values must be numbers. 

If the values are binary integers, the fractional part of the average is 
lost. 

Data Type: 
The same as the data type of its argument. 

Exception: 
The result is a large integer if the data type of the argument is a small 
integer. 

If the data type of the argument is decimal with precision p and scale 
s, the precision of the result is 31 and the scale is 31 - p + s. 

The sum of the values of the argument must be within the range of the 
result data type. 

COUNT(*) 

 

Results: 
The number of rows in its argument. 

Data Type: 
The result is always a large integer which cannot have a null value. 

COUNT(DISTINCT column-name) 

 

Results: 
The number of values in its argument, that is to say, the number of 
distinct values of the column in the group or intermediate result table. 

Data Type: 
The result is always a large integer. 

MAX 

 

Results: The maximum value in its argument. 

Data Type: 
The same as the data type of its argument. 

MIN 

 

Results: The minimum value in its argument. 

Data Type: 
The same as the data type of its argument. 



Column Functions 

 

Chapter 25: Functions  553  
 

Column Function Description 

SUM 

 

Results: 
The sum of the values in its arguments. 

Data Type: 
The same as the data type of its argument. 

The values must be numbers. 

Exception: 
The result is a large integer if the data type of the argument is a small 
integer. 

If the data type of the argument is decimal, the precision of the result 
is 31 and the scale is the same as the scale of the argument. 

The sum of the values must be within the range of the result data 
type. 

Examples 

The following examples show the use of column functions. 

Example 1:  This example shows how to find the average salary of all employees in the 
EMP table. 

 SELECT AVG(SALARY) 

 FROM EMP 

Example 2:  This example shows how to find the maximum and minimum salaries in the 
EMP table for employees whose age is over 30. 

 SELECT MAX(SALARY), MIN(SALARY) 

 FROM EMP 

 WHERE AGE > 30; 
 

Example 3:  This example finds the sum of salaries for all employees whose age is 30 or 
less. 

 SELECT SUM(SALARY) 

 FROM EMP 

 WHERE AGE <= 30; 

Example 4:  This example counts the number of shipments which included a part with 
the number P3.  Duplicates are not eliminated. 

 SELECT COUNT(*) 

 FROM SHIPPART 

 WHERE PNUM = 'P3' 
 

Example 5:  This example counts the exact number of part numbers contained in 
PARTLIST.  Any duplicates are eliminated. 

 SELECT COUNT(DISTINCT PNUM) 

 FROM PARTLIST 
 



Scalar Functions 

 

554  SQL User Guide 
 

Scalar Functions 

Scalar functions are a CA Datacom/DB extension.  A scalar function produces a single 
value from another value.  It is expressed in the form of a function name, followed by a 
list of arguments enclosed in parentheses. 

Scalar functions may be nested within scalar functions or column functions, and column 
functions may be nested within scalar functions. See Rules for Scalar Functions (see 
page 555) for more information on nesting. 

Following is the syntax diagram for scalar functions. This is CA Datacom/DB extension. 
For details, see the following: 

■ Character Functions (see page 565). 

■ Bit-Level Functions (see page 570). 

■ Byte-Level Function (see page 573). 

■ XML Functions (see page 574). 
 

►►─┬─┬─ DATE ────────┬─ (expression) ───────────────────────┬─────────────────►◄ 
   │ ├─ DAY ─────────┤                                      │ 
   │ ├─ DAYS ────────┤                                      │ 
   │ ├─ DIGITS ──────┤                                      │ 
   │ ├─ FLOAT ───────┤                                      │ 
   │ ├─ HEX ─────────┤                                      │ 
   │ ├─ HOUR ────────┤                                      │ 
   │ ├─ INTEGER ─────┤                                      │ 
   │ ├─ LENGTH ──────┤                                      │ 
   │ ├─ MICROSECOND ─┤                                      │ 
   │ ├─ MINUTE ──────┤                                      │ 
   │ ├─ MONTH ───────┤                                      │ 
   │ ├─ SECOND ──────┤                                      │ 
   │ ├─ TIME ────────┤                                      │ 
   │ ├─ VARGRAPHIC ──┤                                      │ 
   │ └─ YEAR ────────┘                                      │ 
   ├─ CHAR(expression ─┬────────┬─ ) ───────────────────────┤ 
   │                   ├─ ,ISO ─┤                           │ 
   │                   ├─ ,USA ─┤                           │ 
   │                   ├─ ,EUR ─┤                           │ 
   │                   └─ ,JIS ─┘                           │ 
   ├─ DECIMAL(expression ─┬───────────────────────────┬─ ) ─┤ 
   │                      └─ ,integer ─┬────────────┬─┘     │ 
   │                                   └─ ,integer ─┘       │ 
   ├─ SUBSTR(string,start ─┬───────────┬─ ) ────────────────┤ 
   │                       └─ ,length ─┘                    │ 
   ├─ TIMESTAMP(expression ─┬───────────────┬─ ) ───────────┤ 
   │                        └─ ,expression ─┘               │ 
   │                    ┌───────────────┐                   │ 
   ├─ VALUE(expression ─▼─ ,expression ─┴─ ) ───────────────┤ 
   ├─ character-functions ──────────────────────────────────┤ 
   ├─ bit-level-functions ──────────────────────────────────┤ 
   ├─ byte-level-function ──────────────────────────────────┤ 
   └─ xml-functions ────────────────────────────────────────┘ 

 



Scalar Functions 

 

Chapter 25: Functions  555  
 

Rules for Scalar Functions 

Scalar functions may be nested within scalar functions. For example: 

DATE(TIMESTAMP(LASTCHANGED)) results in the conversion of the value in a column 
from a string representation of a TIMESTAMP into a TIMESTAMP value and then extracts 
the DATE from that TIMESTAMP. 

Scalar functions may be nested within column functions. For example: 

AVG(YEAR(HIREDATE)) results in the average year all hiring was done. 

Column functions may be nested within scalar functions. For example: 

YEAR(MAX(HIREDATE)) results in the last year hiring was done. 
 

Description 

The following descriptions of the entries shown in the previous syntax diagram are listed 
in alphabetical order, except for the description of expression, described first because of 
its multiple occurrences in the diagram. Also, see Rules for Scalar Functions (see 
page 555). 

bit-level-functions 

See Bit-Level Functions (see page 570) 

byte-level-function 

See Byte-Level Function (see page 573) 
 

CHAR 

Use the CHAR function to obtain a string representation of a date/time value. The 
result is a fixed-length character string. Its first argument must be a date, time, or 
timestamp. Its second argument is used, when the first argument is a date or time, 
to specify an ISO, USA, EUR, or JIS string format. 

If the first argument is a date, the result has a length of 10 and is the character 
string representation of the date in the format specified by the second argument. 

If the first argument is a time, the result has a length of eight and is the character 
string representation of the time in the format specified by the second argument. 

 



Scalar Functions 

 

556  SQL User Guide 
 

If the first argument is a timestamp, the result has a length of 26 and is the 
character string representation of the timestamp. Do not specify a second 
argument (for a string format) when the first argument is a timestamp. 

See Character String Literals (see page 510) for information about date, time, and 
timestamp formats. 

,ISO 

Specifies International Standards Organization format. 

,USA 

Specifies International USA Standard format. 
 

,EUR 

Specifies IBM European Standard format. 

,JIS 

Specifies Japanese Industrial Standard format. 

character-functions 

See Character Functions (see page 565) 
 

DATE 

Use the DATE function to obtain a date from a value. The result is a date.  Its 
argument must be a date, timestamp, a string representation of a date, a character 
string of length 7, or a positive number. 

For example, DATE(TIMESTAMP('1989-03-20-11.30.00') + 2 DAYS) results in a date 
of 1989-03-22 (in ISO or JIS format). 

If its argument is a character string of length seven, it is assumed to have the form 
yyyynnn where yyyy is the year and nnn is the day within the year in the range of 
001 to 366. 

For example, DATE('1989079') results in a date of 1989-03-20 (in ISO or JIS format). 

If the argument is a positive number, n, the result is the date that is n days after 
December 31, 0000. 

For example, DATE(32) results in a date of 0001-02-01 (in ISO or JIS format). 
 



Scalar Functions 

 

Chapter 25: Functions  557  
 

DAY 

Use the DAY function to obtain the day part of a value. The result is an integer 
representing a day. The sign of the result is negative only if the value of its 
expression is a negative duration. Its argument must be a date, timestamp, or 
DECIMAL(8,0) number interpreted as a date-duration. 

For example, if BIRTHDATE is March 25, 1945, that is to say, 19450325, then 
DAY(BIRTHDATE) results in 25. 

DAYS 

Use the DAYS function to obtain an integer representation of a date. The result is an 
integer representing the number of days since December 31, 0000 (that is to say, 
January 1 is 1 day, February 1 is 32 days, and so on). The sign of the result is always 
positive.  Its argument can be a date, timestamp, or string representation of a date. 

For example, DAYS('0001-02-01') results in 32 days. 
 

DECIMAL 

Use the DECIMAL function to obtain a decimal representation of a numeric value. 
Three arguments are possible.  The first argument is required. The second and third 
arguments (labeled as "integer" in the syntax diagram) are optional. The result is a 
decimal number with a precision of p and a scale of s, where p is the second 
argument and s is the third argument. 

The first argument must be a number. If you specify a second argument, it 
represents the precision p and must be an integer in the range of 1 to 31. If you 
specify a third argument, it represents the scale s and must be an integer in the 
range of 0 to the p specified in the second argument. You cannot specify a third 
argument if you have not specified a second argument. 

 

Omitting the third argument results in a value of 0 for the scale. Omitting the 
second argument results in: 

■ p = 15 if the first argument is floating-point or decimal 

■ p = 11 if the first argument is a large integer 

■ p =  5 if the first argument is a small integer. 
 

The result can be null if the first argument can be null; the result is the null value if 
the first argument is null. The result is the same number that would occur if the first 
argument were assigned to a decimal column or variable with a precision of p and a 
scale of s. 

If the number of significant decimal digits required to represent the whole part of 
the number is greater than p-s, an error occurs. 

For example, if SALARY is a FLOAT column, DECIMAL(AVG(SALARY),8,2) results in 
the average salary being converted to a packed decimal value of xxxxxx.xx. 

 



Scalar Functions 

 

558  SQL User Guide 
 

DIGITS 

Use the DIGITS function to obtain a fixed-length character string representation of a 
number. Its argument must be an integer or a decimal number. The string of digits 
that make up the result represent the absolute value of the argument without 
regard to its scale. The result therefore does not include a sign or a decimal point. 
Leading zeros are included in the result as necessary so that length of string equals: 

■ 5 if argument is a small integer 

■ 10 if argument is a large integer 

■ p if argument is a decimal number with precision p. 

The result can be null if the argument can be null; the result is the null value if the 
argument is null. 

For example, if the data type of COLUMNX is DECIMAL(6,2), and if COLUMNX has a 
value of -7.27, then DIGITS(COLUMNX) gives '000727' as the result. 

 

(expression) 

Enter the expression which is to be the argument of the function. For more 
information about expressions, see Expressions (see page 527). 

FLOAT 

Use the FLOAT function to obtain a floating-point representation of a number. Its 
argument must be a number. A double precision floating-point number is the result. 
The result can be null if the argument can be null; the result is the null value if the 
argument is null. 

For example, if ACSTAFF is an INTEGER column, FLOAT(ACSTAFF)/2 results in the 
double precision floating-point representation of half of the value in ACSTAFF. 

 

HEX 

Use the HEX function to obtain an hexadecimal representation of a value. A 
character string is the result of the function. The result can be null if the argument 
can be null; the result is the null value if the argument is null. 

In the string of hexadecimal digits that form the result, the first two digits represent 
the first byte of the argument, the second two digits the second byte, and so on. If a 
date or time value is the argument, the result is the hexadecimal representation of 
the internal form of the argument. 

The length of the result is twice the defined (maximum) length of the argument. 
 



Scalar Functions 

 

Chapter 25: Functions  559  
 

If the argument is not a varying-length string and the length of the result is less than 
255, the result is a fixed-length string. Otherwise, the result is a varying-length 
string whose maximum length depends on the following considerations.  If the 
argument: 

■ Is not a varying-length string: maximum length of the result string is the same 
as the length of the result. 

■ Is a varying-length string: maximum length of the result string is twice the 
maximum length of the argument. 

For example, if 'ABC' is contained in CHAR column COLX, HEX(COLX) results in the 
fixed-length string 'C1C2C3'. 

 

HOUR 

Use the HOUR function to obtain the hour part of a value. The result is an integer 
representing an hour. The sign of the result is negative only if the value of its 
argument is a negative duration. Its argument must be a time, timestamp, or a 
DECIMAL(6,0) number interpreted as a time-duration. 

For example, if TIME1 is a timestamp of 19890203093020009900, then 
HOUR(TIME1) results in 9. 

INTEGER 

Use the INTEGER function to obtain an integer representation of a number. The 
argument must be a number. A large integer is the result of the function. The result 
can be null if the argument can be null; the result is the null value if the argument is 
null. 

The result obtained by this function is the same number that would occur if the 
argument were assigned to a large integer column or variable. An error occurs if the 
whole part of the argument is not within the range of integers. 

For example, if PAYNUM is a DECIMAL(8,2) column, INTEGER(SUM(PAYNUM)+.5) 
results in the sum (rounded up) as an integer value. 

 

LENGTH 

Use the LENGTH function to obtain the length of a value. Any value can be used as 
the argument.  The result is a large integer. The result can be null if the argument 
can be null. The result is the null value if the argument is null. 

The length of the argument is the result. The null indicator byte of column 
arguments that allow null values is not included in the length. Blanks are included in 
the length of strings, but the length control field of varying-length strings is not 
included in the length. The actual (not the maximum) length of varying-length 
strings is the length. 

 



Scalar Functions 

 

560  SQL User Guide 
 

The length is the number of bytes used to represent the value as follows: 

■ Character string: length of the string 

■ Small integer:  2 

■ Large integer:  4 

■ Floating-point:  8 
 

■ Decimal numbers with precision p:  INTEGER(p/2) + 1 

■ Date:  4 

■ Time:  3 

■ Timestamp:  10 

■ Numeric numbers with precision p: p 

For example, if COLX is a VARCHAR(20) column, LENGTH(COLX) returns the actual 
length of the string in that column. 

 

MICROSECOND 

Use the MICROSECOND function to obtain the microsecond part of a value. The 
result is an integer representing a number of microseconds. The sign of the result is 
always positive. Its argument must be a timestamp. 

For example, if TIME1 is 19890320093020109000 then, MICROSECOND(TIME1) 
results in 109000 microseconds. 

MINUTE 

Use the MINUTE function to obtain the minute part of a value. The result is an 
integer representing a minute. The sign of the result is negative only if the value of 
its argument is a negative duration. Its argument must be a time, timestamp, or a 
DECIMAL(6,0) number interpreted as a time-duration. 

For example, if TIME1 is a timestamp of 19890203093020009900, then 
MINUTE(TIME1) results in 30. 

 



Scalar Functions 

 

Chapter 25: Functions  561  
 

MONTH 

Use the MONTH function to obtain the month part of a value. The result is an 
integer representing a month. The sign of the result is negative only if the value of 
its expression is a negative duration. Its argument must be a date, timestamp, or 
DECIMAL(8,0) number interpreted as a date-duration. 

For example, if BIRTHDATE is of March 25, 1945, that is to say, 19450325, then 
MONTH(BIRTHDATE) results in 3. 

SECOND 

Use the SECOND function to obtain the seconds part of a value. The result is an 
integer representing a second. The sign of the result is negative only if the value of 
its argument is a negative duration. Its argument must be a time, timestamp, or a 
DECIMAL(6,0) number interpreted as a time-duration. 

For example, if TIME1 is a timestamp of 19890203093020009900, then 
SECOND(TIME1) results in 20. 

 

SUBSTR 

Use the SUBSTR function to obtain a substring of a string. Three arguments are 
possible:  string, start, and length. The string and start arguments are required, but 
the length argument is optional. The result can be null if any of the arguments can 
be null. The result is the null value if any of the arguments are null. 

Note:  The SUBSTR function accepts mixed data strings. However, because SUBSTR 
operates on a strict byte-count basis with character strings, the result is not 
necessarily a properly formed mixed data string. 

DBCS characters can be used in either GRAPHIC or CHAR with MIXED DATA.  When 
GRAPHIC is used, there is no problem because there are no shift-out or shift-in 
bytes, and start and length refer to double-byte characters (not bytes). However, be 
aware that in CHAR MIXED DATA, the shift-out and shift-in may not balance in the 
result string. 

 

You can use the VARGRAPHIC scalar function to normalize data before doing 
comparisons. 

string 

Refers to an expression specifying the string from which the result is derived. 
The string must be a character string or a graphic string. If string is a character 
string, the result of the function is a character string. If it is a graphic string, the 
result of the function is a graphic string. 

A substring of the string argument is 0 or more contiguous characters of the 
string argument. 

,start 

Refers to an expression specifying the position of the first character of the 
result.  The start argument must be a positive binary integer that is not greater 
than the length attribute of the string argument.  Note that the length attribute 
of a varying-length string is its maximum length. 

 



Scalar Functions 

 

562  SQL User Guide 
 

,length 

Refers to an expression specifying the length of the result. If you specify the 
length argument, it must be a binary integer in the range of 0-n, where n is the 
length attribute of the string argument minus the start argument plus 1, with 
the exception that n must not be the integer constant 0. 

If you explicitly specify the length argument, the string argument is effectively 
padded on the right with the necessary number of blank characters so that the 
specified substring of the string argument always exists. The length argument 
has a default of the number of characters from the character specified by the 
start argument to the last character of the string argument, but if the string 
argument is a varying-length string with a length that is less than the start 
argument, the default is 0 and the result is the empty string. 

If you explicitly specify the length argument to be an integer constant of less 
than 255, the result is a fixed-length string. If you do not explicitly specify the 
length argument but the string argument is a fixed-length string and the start 
argument is an integer constant, the result is a fixed-length string. In all other 
cases, the result is a varying-length string with a maximum length that is the 
same as the length attribute of the string argument. 

If the string argument is a fixed-length string, omitting the length argument is 
an implicit specification of 

LENGTH(string) - start + 1 

If the string argument is a varying-length string, omitting the length argument 
is an implicit specification of either 

LENGTH(string) - start + 1 

or 0, whichever is greater. 

For example, if FIRSTNAME is a VARCHAR(20) column, SUBSTR(FIRSTNAME,1,1) 
results in a fixed-length string value containing the first character of the value in 
FIRSTNAME. 

 



Scalar Functions 

 

Chapter 25: Functions  563  
 

TIME 

Use the TIME function to obtain the time from a value. The result is a time. Its 
argument must be a time, timestamp, a string representation of a time. For 
example if TIME1 is 10890320093020, then TIME(TIME1) results in time 9.30.20 (in 
ISO or EUR format). 

TIMESTAMP 

Use the TIMESTAMP function to obtain a timestamp from a value or a pair of 
values. The result is a timestamp. If only one argument is given, it must be a 
timestamp, a string representation of a timestamp, a character string of length 8, or 
a character string of length 14. If the value is a character string of length 8, it is 
assumed to be a STORE CLOCK value representation of a timestamp. If the value is a 
character string of length 14, it must be in the form yyyymmddhhmmss where yyyy 
is the year, mm the month, dd the day, hh the hours, mm the minutes, and ss the 
seconds. 

If a second optional argument is specified, the second argument must be a time or a 
string representation of a time, and the first argument must be a date or a string 
representation of a date. 

For example, TIMESTAMP(CURRENT DATE, '11.30.00') results in the timestamp 
11:30 today. 

 

VALUE 

Use the VALUE function to substitute a value for the null value. The arguments' data 
types must be compatible.  Because character strings are not converted to 
date/time values, all arguments must be dates if any argument is a date. Similarly, 
all arguments must be times if any argument is a time, all must be timestamps if 
any are timestamps, and all must be character strings if any are character strings. 

Arguments are evaluated in the order of specification. The result of the function is 
equal to the first argument that is not null. The result is nullable. That is, it is not 
NOT NULL. The result is the null value only if all arguments are null. 

 



Scalar Functions 

 

564  SQL User Guide 
 

The result is defined as equal to an argument because that argument is converted 
or extended, if necessary, in order to conform to the data type of the function. The 
data type of the result is derived from the data types of the specified arguments as 
follows: 

strings: 

If any argument is a varying-length string, the result is a varying-length string 
whose maximum length is equal to the longest string that can result from the 
application of the function. 

If all arguments are fixed-length strings, the result is a fixed-length string whose 
length is equal to the longest string that can result from the application of the 
function. 

date/time values: 

The result is a date if the arguments are dates, times if the arguments are 
times, or timestamps if the arguments are timestamps. 

 

numbers: 

If the arguments are numbers, the result is the numeric data type that would 
occur if all arguments were part of a single arithmetic expression.  If that data 
type is decimal, it has a precision of p and a scale of s. Therefore, s is the largest 
result scale of any argument and p is the minimum of 31 and s + n, where n is 
the largest integral part result of any argument. Conversion errors are possible 
if the sum of s + n is greater than 31. 

For example, SALARY + VALUE(COMMISSION,0) results in the sum of SALARY and 
COMMISSION if COMMISSION is not the null value, or the sum of SALARY and 0 if 
COMMISSION contains the null value. 

 



Scalar Functions 

 

Chapter 25: Functions  565  
 

VARGRAPHIC 

Use the VARGRAPHIC function to convert SBCS (Single-Byte Character Set) and 
MIXED strings to VARGRAPHIC. 

In SQL, string comparisons are strictly byte-for-byte, so predicates involving MIXED 
strings may not give the desired results. For instance, a string with the SBCS version 
of XYZ does not compare as equal to a string with a Shift-Out, then the DBCS 
version of XYZ, then a Shift-In. You can use the VARGRAPHIC scalar function to 
normalize both strings into VARGRAPHIC data types before doing the comparison. 

When SBCS strings are converted, each SBCS character is paired with a X'42' to form 
the double-byte character. In MIXED strings, the SBCS characters are converted, 
and Shift-In and Shift-Out characters are removed. FOR BIT DATA operands are not 
allowed. 

YEAR 

Use the YEAR function to obtain the year part of a value. The result is an integer 
representing a year. The sign of the result is negative only if the value of its 
expression is a negative duration. Its argument must be a date, timestamp, or 
DECIMAL(8,0) number interpreted as a date-duration. 

For example, if BIRTHDATE is March 25, 1945, that is to say, 19450325, then 
YEAR(BIRTHDATE) results in 1945. 

 

Character Functions 

Following is the syntax diagram for character-level scalar functions: 

►►─┬─┬─ LOWER ─────┬─ (expression) ─┬─────────────────────────────────────────►◄ 
   │ └─ LOWERCASE ─┘                │ 
   ├─┬─ UPPER ─────┬─ (expression) ─┤ 
   │ └─ UPPERCASE ─┘                │ 
   ├─ SQUEEZE(expression) ──────────┤ 
   ├─ LTRIM(expression) ────────────┤ 
   ├─ RTRIM(expression) ────────────┤ 
   ├─ TRIM(trim_operands) ──────────┤ 
   └─ STRIP(strip_operands) ────────┘ 

 



Scalar Functions 

 

566  SQL User Guide 
 

LOWER(expression) or LOWERCASE(expression) 

This character function returns a copy of the result of the input expression that has 
been converted to lowercase characters. The input expression must resolve to the 
character data type and cannot consist of bit, mixed, or Katakana data. Bit and 
mixed data are rejected. Katakana data is processed, producing an unpredictable 
result string. The data type, length, and nullability of the result matches that of the 
input. 

Following is an example of using the LOWER scalar function: 

 SELECT LOWER(last_name) FROM customer_names 

Given input of 

'     Smith     ' 

Resulting output is 

'     smith     ' 
 

UPPER(expression) or UPPERCASE(expression) 

This character function returns a copy of the result of the input expression that has 
been converted to uppercase characters. The input expression must resolve to the 
character data type and cannot consist of bit, mixed, or Katakana data. Bit and 
mixed data are rejected. Katakana data is processed, producing an unpredictable 
result string. The data type, length, and nullability of the result matches that of the 
input. 

Following is an example of using the UPPER scalar function: 

 SELECT UPPER(last_name) FROM customer_names 

Given input of 

'     Smith     ' 

Resulting output is 

'     SMITH     ' 
 



Scalar Functions 

 

Chapter 25: Functions  567  
 

SQUEEZE(expression) 

This character function returns a copy of the result of the input expression that has 
had both leading and trailing white space (blanks, nulls, new lines (line feeds), 
carriage returns, horizontal tabs and form feeds (vertical tabs)) removed and has 
had any embedded white space converted to blanks. The input expression must 
resolve to the variable-length character (VARCHAR) data type and cannot consist of 
bit or mixed data. Katakana strings are processed as if they were EBCDIC. The data 
type and nullability of the result matches that of the input. The length of the result 
is the squeezed length. 

Following is an example of using the SQUEEZE scalar function: 

 SELECT SQUEEZE(last_name) FROM customer_names 

Given input of 

'     Smith     ' 

Resulting output is 

'Smith' 
 

LTRIM(expression) 

This character function returns a copy of the result of the input expression that has 
had leading blanks removed. The input expression must resolve to the character 
data type and may not consist of bit or mixed data. Katakana strings are processed 
as if they were EBCDIC. The result is VARCHAR with nullability matching that of the 
input. The length of the result is the trimmed (shortened) length. 

Following is an example of using the LTRIM scalar function: 

 SELECT LTRIM(last_name) FROM customer_names 

Given input of 

'     Smith     ' 

Resulting output is 

'Smith     ' 
 



Scalar Functions 

 

568  SQL User Guide 
 

RTRIM(expression) 

This character function returns a copy of the result of the input expression that has 
had trailing blanks removed. The input expression must resolve to the character 
data type and cannot consist of bit or mixed data. Katakana strings are processed as 
if they were EBCDIC. The result is VARCHAR with nullability matching that of the 
input. The length of the result is the trimmed (shortened) length. 

Following is an example of using the RTRIM scalar function: 

 SELECT RTRIM(last_name) FROM customer_names 

Given input of 

'     Smith     ' 

Resulting output is 

'     Smith' 
 

TRIM(trim_operands) 

The TRIM character function removes extraneous characters from the start and/or 
end of a character string. The trim-source_expression (see following) must resolve 
to a CHAR, VARCHAR, or GRAPHIC data type and must be compatible with the data 
type of the trim-char_expression as shown in the following description. Katakana 
strings are processed as if they were EBCDIC. For CHAR and VARCHAR input, the 
result is VARCHAR. For GRAPHIC input, the result is VARGRAPHIC. Nullability of the 
result matches that of the input. The length of the result is the trimmed (shortened) 
length. 

►►─┬─────────────────────────────────────────┬─ trim-source_expression ───────►◄ 
   └─┬─────────┬─┬─────────────────┬ ─ FROM ─┘ 
     └─ l_t_b ─┘ └─ trim-char_exp ─┘ 

l_t_b 

This parameter specifies where to remove unwanted characters. 

Specify LEADING or L if you want to remove unwanted characters from the 
start of the input source string. 

Specify TRAILING or T if you want to remove unwanted characters from the end 
of the input source string. 

Specify BOTH or B if you want to remove unwanted characters from both the 
start and the end of the input source string. The default is BOTH. 

 



Scalar Functions 

 

Chapter 25: Functions  569  
 

trim-char_exp 

This trim character expression parameter specifies the character to be 
removed. The default is the blank character. 

trim-source_expression 

This parameter supplies the input string to be operated upon. 

Following is an example of using the TRIM function: 

 SELECT TRIM(BOTH ' ' FROM last_name) FROM customer_names 

Given input of 

'     Smith     ' 

Resulting output is 

'Smith' 
 

STRIP(strip_operands) 

The STRIP character function, provided for DB2 syntax compatibility, operates 
identically to the TRIM function described above in that STRIP removes extraneous 
characters from the start and/or end of a character string. For details, see the 
previously given TRIM description. 

►►─ strip-source_expression ─┬──────────────────────────────────┬─────────────►◄ 
                             └─ , l_t_b ─┬────────────────────┬─┘ 
                                         └─ , strip-char_exp ─┘ 

strip-source_expression 

This parameter supplies the input string to be operated upon. 
 

l_t_b 

This parameter specifies where to remove unwanted characters. 

Specify LEADING or L if you want to remove unwanted characters from the 
start of the input source string. 

Specify TRAILING or T if you want to remove unwanted characters from the end 
of the input source string. 

Specify BOTH or B if you want to remove unwanted characters from both the 
start and the end of the input source string. The default is BOTH. 

 



Scalar Functions 

 

570  SQL User Guide 
 

, strip-char_exp 

This strip character expression parameter specifies the character to be 
removed. The default is the blank character. 

Following is an example of using the STRIP function: 

 SELECT STRIP(last_name, BOTH, ' ') FROM customer_names 

Given input of 

'     Smith     ' 

Resulting output is 

'Smith' 
 

Bit-Level Functions 

Following is the syntax diagram for bit-level scalar functions: 

►►─┬─ BIT_ADD(expression, expression) ─┬──────────────────────────────────────►◄ 
   ├─ BIT_AND(expression, expression) ─┤ 
   ├─ BIT_NOT(expression) ─────────────┤ 
   ├─ BIT_OR(expression, expression) ──┤ 
   └─ BIT_XOR(expression, expression) ─┘ 

The following rules define the input and output of each bit-level function, that is to say, 
all of these rules apply to every function. 

■ The expression that represents each parameter must resolve to INTEGER, 
SMALLINT, CHAR, or VARCHAR data. In this case, CA Datacom operates on character 
values of any length and rejects input parameters containing mixed data (mixed 
single-byte/double-byte). Though not required, we recommend using the FOR BIT 
DATA specification in the CREATE TABLE statement for columns that are going to 
use bit-level functions. 

■ For functions that receive two parameters, character and numeric parameters 
cannot be used in the same function call (numeric means INTEGER or SMALLINT in 
this context). 

 

■ The data type, length, and nullability of the result matches that of the input if there 
is either only one parameter or all parameters are of identical data type, length, 
and nullability. The attributes of the result are otherwise determined as follows: 

– The result is nullable (that is, it is not NOT NULL) if either of the parameters are 
nullable. 

– The length of the result matches the length of the longer parameter. 
 

– If both parameters are numeric, the result is INTEGER if at least one of the 
parameters is INTEGER, or SMALLINT if neither of the parameters is INTEGER. 

– If both parameters are character (VARCHAR is character) the data type of the 
result matches that of the first operand. This allows you to control the data 
type of the result when the data types of the parameters differ. 

 



Scalar Functions 

 

Chapter 25: Functions  571  
 

BIT_ADD(expression, expression) 

This bit-level function returns the logical sum of the results of the input expressions. 
The logical sum is obtained by using logical addition and discarding any arithmetic 
overflow that is generated. 

Following is an example of using BIT_ADD to construct a web address for a 
computer that is being turned on. 

SELECT BIT_ADD(web_addrs_company_prefix,web_addrs_assigned_suffix) FROM 

web_addrses 

Given input of 

A web_addrs_company_prefix of 127.255.0.0 as an integer representation or 
0x7FFF0000 in C-style notation and a web_addrs_assigned_suffix of 
0.0.255.254 as an integer representation or 0x0000FFEE in C-style notation 

Resulting output is 

An integer representation of 127.255.255.254 or 0x7FFFFFFE in C-style notation 
 

BIT_AND(expression, expression) 

This bit-level function returns the logical AND of the results of the input expressions 
consisting of a (1) bit in the result for every input bit-pair of (1,1) and a (0) bit for all 
other bit-pair value combinations. 

Note:  A single 1 or 0 digit inside parentheses, that is a (1) or a (0), is used here to 
represent a single bit value. The term bit-pair refers to the value of a bit taken from 
the first input parameter and that of a bit taken from the corresponding position in 
the second input parameter. For example, a bit-pair of (1,0) refers to a 1 bit 
somewhere in the first parameter and a 0 bit in the corresponding position of the 
second parameter. 

Following is an example of using BIT_AND to find what area of the web a browser is 
pointed to (that is, get the high-level portion of the web address). 

SELECT BIT_AND(:bits_to_extract, web_addrs), user_name FROM web_addrses 
 

Given input of 

A bits_to_extract of 127.255.0.0 as an integer representation or 0x7FFF0000 in 
C-style notation, used to denote the bits you want to extract from the web 
address (here, bits_to_extract has a colon (:) in front of it to show it can be a 
host variable from a theoretical user program) and a web_addrs of 127.255.1.1 
as an integer representation or 0x7FFF0101 in C-style notation 

Resulting output is 

An integer representation of 127.255.0.0 or 0x7FFF0000 in C-style notation 
 



Scalar Functions 

 

572  SQL User Guide 
 

BIT_NOT(expression) 

This bit-level function returns the logical NOT (the complement) of the results of 
the input expression. Each (1) bit in the input parameter becomes a (0) bit in the 
result, and each (0) bit becomes a (1) bit. 

Note:  A single 1 or 0 digit inside parentheses, that is a (1) or a (0), is used here to 
represent a single bit value. 

Following is an example of using BIT_NOT to find out which status flags are not set. 

 SELECT BIT_NOT(status_bits) from system_status 
 

Given input of 

A status_bits of 0x7F010101 in C-style notation 

Resulting output is 

0x80FEFEFE in C-style notation 
 

BIT_OR(expression, expression) 

This bit-level function returns the logical OR of the results of the input expressions. 
Each input bit-pair of (0,0) becomes a (0) bit in the result, and all other bit-pair 
value combinations become (1) bits. 

Note:  A single 1 or 0 digit inside parentheses, that is a (1) or a (0), is used here to 
represent a single bit value. The term bit-pair refers to the value of a bit taken from 
the first input parameter and that of a bit taken from the corresponding position in 
the second input parameter. For example, a bit-pair of (1,0) refers to a 1 bit 
somewhere in the first parameter and a 0 bit in the corresponding position of the 
second parameter. 

 

Following is an example of using BIT_OR to construct a web address for a computer 
being turned on. 

SELECT BIT_OR(web_addrs_company_prefix, web_addrs_assigned_suffix) from 

web_addrses 

Given input of 

A web_addrs_company_prefix of 127.255.0.0 in an integer representation or 
0x7FFF0000 in C-style notation and a web_addrs_assigned_suffix of 
0.0.255.254 in an integer representation or 0x0000FFFE in C-style notation 

Resulting output is 

An integer representation of 127.255.255.254 or 0x7FFFFFFE in C-style 
notation. 

 



Scalar Functions 

 

Chapter 25: Functions  573  
 

BIT_XOR(expression, expression) 

This bit-level function returns the logical exclusive-OR of the results of the input 
expressions. Each bit-pair containing exactly one (1) bit becomes a (1) bit in the 
result. That is to say, each input bit-pair of (0,1) or (1,0) becomes a (1) bit in the 
result, and all other bit-pair value combinations, (0,0) or (1,1), become (0) bits. 

Note:  A single 1 or 0 digit inside parentheses, that is a (1) or a (0), is used here to 
represent a single bit value. The term bit-pair refers to the value of a bit taken from 
the first input parameter and that of a bit taken from the corresponding position in 
the second input parameter. For example, a bit-pair of (1,0) refers to a 1 bit 
somewhere in the first parameter and a 0 bit in the corresponding position of the 
second parameter. 

 

Following is an example of using BIT_XOR to find out which system status flags do 
not match a required value. 

 SELECT BIT_XOR(status_bits, required_status_bits) from system_status 

Given input of 

A status_bits of 0x7F010101 in C-style notation and a required_status_bits of 
0x7F111110 in C-style notation 

Resulting output is: 

0x00101011 in C-style notation, giving the bits that do not match 
 

Byte-Level Function 

Following is the syntax diagram for byte-level scalar functions: 

►►─ INTEXTRACT(expression, expression) ───────────────────────────────────────►◄ 

INTEXTRACT(expression, expression) 

This byte-level function is used to extract the binary value of a single byte of a data 
value. The function returns an INTEGER result, hence the name INTEXTRACT 
(integer extract). The first parameter, meaning the first expression in 
INTEXTRACT(expression, expression), supplies the data value, and the second 
parameter (the second expression) specifies which byte is wanted. 

For example, if variable web_addrs in a C-language program contains the value (in 
C-style notation) 0x11223344, then INTEXTRACT(web_addrs, 2) returns the value 
0x22 in C-style notation or 34 in decimal-style notation, extracted from the second 
byte from the high-order (left-hand) side of the value, returning an INTEGER result. 

 



Scalar Functions 

 

574  SQL User Guide 
 

The first expression 

Representing the first parameter must resolve to INTEGER, SMALLINT, CHAR 
(non-mixed data only, that is to say, mixed DBCS/SBCS only), or VARCHAR 
(non-mixed data only). The length of the first parameter is limited only to the 
SQL-imposed limits for each data type. Though not required, we recommend 
use of the FOR BIT DATA specification in the CREATE TABLE statement for 
columns that are going to use byte-level functions. 

The second expression 

Representing the second parameter must resolve to INTEGER or SMALLINT 
data. 

 

Following is an example of using INTEXTRACT to get a single node of a web address: 

 SELECT INTEXTRACT(web_addrs, 2) FROM web_addresses 

Given input of 

A web_addrs of 0x11223344 in C-style notation. 

Resulting output is 

An integer containing 0x00000022 in C-style notation or 34 in decimal-style 
notation. 

 

XML Functions 

XML Overview 

The Extensible Markup Language (XML) functions described in the following sections 
allow you to externalize relational data as XML data. The CA Datacom/DB 
implementation of XML includes support for the following XML functions: 

■ XMLELEMENT (see following description) 

■ XMLATTRIBUTES (valid within use of XMLELEMENT only) 

■ XMLFOREST (see XMLFOREST (see page 576)) 
 

■ XMLSERIALIZE (see XMLSERIALIZE (see page 578)) 

■ XMLCONCAT (see XMLCONCAT (see page 579)) 

The XMLELEMENT, XMLATTRIBUTES, XMLFOREST, and XMLCONCAT functions operate 
on relational or XML data to produce XML output. The XMLSERIALIZE function is an 
ANSI-compliant method for returning XML values into user applications that expect 
string result types such as VARCHAR. An XML value is defined as a well-formed XML 
document or a document fragment consisting of well-formed XML content. 

 

Descriptions of Functions 

Following are descriptions of the supported XML functions. 
 



Scalar Functions 

 

Chapter 25: Functions  575  
 

XMLELEMENT 

This function builds and returns an XML value given the following: 

■ An XML element name, 

■ An optional list of XML attributes, and 

■ An optional list of values as the content of the new element. 

Note:  The XML namespace declaration is not supported. 
 

XMLATTRIBUTES 

This function builds a list of attributes to be included in the XML element generated by 
the XMLELEMENT function. XMLATTRIBUTES is valid only within an XMLELEMENT 
function. 

Following is the syntax diagram for XMLELEMENT and XMLATTRIBUTE: 

►►─ XMLELEMENT ─ (NAME ─ identifier ──────────────────────────────────────────► 
 
 ►─┬───────────────────────────────────────────────┬──────────────────────────► 
   │                      ┌─ , ─────────────┐      │ 
   └─ ,XMLATTRIBUTES ─ ( ─▼─ xml-attribute ─┴ ─ ) ─┘ 
 
   ┌─────────────────────────┐ 
 ►─▼─┬─────────────────────┬─┴─┬───────────────────────────────┬─ ) ──────────►◄ 
     └─ ,value-expression ─┘   └─ OPTION ─ xml-content-option ─┘ 

 

Expansion of Where xml-attribute is as follows 

├── value-expression ─┬───────────────────┬────────────────────────────────────┤ 
                      └─ AS ─ identifier ─┘ 

Expansion of Where xml-content-option is as follows 

├──┬─ EMPTY ON NULL ◄ ───┬─────────────────────────────────────────────────────┤ 
   ├─ NULL ON NULL ──────┤ 
   ├─ ABSENT ON NULL ────┤ 
   ├─ NIL ON NULL ───────┤ 
   └─ NIL ON NO CONTENT ─┘ 

 

The xml-content-option defines the XML value that is produced when the 
value-expression list, representing the content of the element, is either missing or 
evaluates entirely to NULLs. If no content is supplied, then any supplied ON NO 
CONTENT specification is applied. If content is supplied but every supplied item 
evaluates to NULL, the ON NULL option applies. In the XMLELEMENT function, EMPTY 
ON NULL is the default. In XMLFOREST, NULL ON NULL is the default. In all other cases, 
an element is generated using whatever non-NULL values were supplied. 

NULL ON NULL 

Produces a NULL rather than an element. 

EMPTY ON NULL 

Produces an element with no content (subject to change or removal). 
 



Scalar Functions 

 

576  SQL User Guide 
 

ABSENT ON NULL 

Produces a zero-length result (subject to change or removal). 

NIL ON NULL and NIL ON NO CONTENT 

Produce elements with no content but containing attributes that read "nil=true" 
when serialized. 

 

The following example produces a Customer element for each customer, with customer 
number and name attributes: 

SELECT XMLSERIALIZE(CONTENT 

                     XMLELEMENT(NAME "Customer", 

                                XMLATTRIBUTES(CustNo, 

                                              SurName as LastName, 

                                              FirstName) 

                               ) 

                    AS VARCHAR(200)) AS "CustomerList" 

  FROM customers; 
 

Note:  The XMLSERIALIZE function (see XMLSERIALIZE (see page 578)) converts the XML 
output of XMLELEMENT to VARCHAR in this example. 

The result of the previous example follows: 

CustomerList 

VARCHAR(200) 

--------------------------------------------------------------------------------- 

<-Customer CustNo="000001" LastName="Sturlasson" FirstName="Snorri"><-/Customer> 

<-Customer CustNo="000002" LastName="Skallagrimsson" 

FirstName="Eigil"><-/Customer> 

--------------------------------------------------------------------------------- 
 

XMLFOREST 

This function returns an XML value consisting of a forest, or collection, of XML elements, 
given a list of "forest elements." Each forest element generates an XML element using 
the referenced column name or, if provided, the forest element name (the identifier in 
the syntax diagram that follows) as the XML element name and the forest element value 
(the value expression in the following diagram) as the element content. 

Following is the syntax diagram for XMLFOREST: 

                   ┌─ , ──────────────┐ 
├── XMLFOREST ─ ( ─▼─ forest-element ─┴───────────────────────────────────────► 
 
 ►─┬───────────────────────────────┬─ ) ───────────────────────────────────────┤ 
   └─ OPTION ─ xml-content-option ─┘ 

Expansion of Where forest-element is as follows 

├── value-expression ─┬───────────────────┬────────────────────────────────────┤ 
                      └─ AS ─ identifier ─┘ 

 



Scalar Functions 

 

Chapter 25: Functions  577  
 

Expansion of Where xml-content-option is as follows 

├──┬─ NULL ON NULL ◄ ────┬─────────────────────────────────────────────────────┤ 
   ├─ EMPTY ON NULL ─────┤ 
   ├─ ABSENT ON NULL ────┤ 
   ├─ NIL ON NULL ───────┤ 
   └─ NIL ON NO CONTENT ─┘ 

The xml-content-option in the XMLFOREST function is applied separately to each 
forest-element. In XMLFOREST, EMPTY ON NULL is the default. For a further description 
of the xml-content-option, see the paragraph following the XMLELEMENT syntax 
diagram in XMLATTRIBUTES (see page 575). 

 

The following example generates a "Vendor" element for each vendor. The name of the 
vendor is used as an attribute, and two sub-elements are created from columns 
contactName and contactPhone using the XMLFOREST function. 

SELECT vendorId, 

       XMLSERIALIZE(CONTENT 

                    XMLELEMENT(NAME "Vendor", 

                               XMLATTRIBUTES(v.vendorDBA AS DBA), 

                               XMLFOREST (v.contactName, 

                                          v.contactPhone AS phone) 

                              ) 

                    AS VARCHAR(300)) AS "vendorContacts" 

  FROM vendors v; 
 

The result of the previous example follows: 

vendorId  vendorContacts 

INTEGER   VARCHAR(300) 

--------  --------------------------------------------- 

       1  <-Vendor DBA="Best Office Supplies"> 

              <-contactName>Joeseph Dudely<-/contactName> 

              <-phone>123-456-7890<-/phone> 

           <-/Vendor> 

       2  <-Vendor DBA="Widgets R Us"> 

              <-contactName>Mary Doeright<-/contactName> 

              <-phone>123-456-1313<-/phone> 

          <-/Vendor> 

------------------------------------------------------- 
 



Scalar Functions 

 

578  SQL User Guide 
 

XMLSERIALIZE 

This function converts an XML value into the corresponding representation in an 
alternative character-string data-type. XMLSERIALIZE converts XML types to string types 
for export to user host-variables. 

Note:  When XMLSERIALIZE is used to externalize floating point data, 15 is the maximum 
number of significant digits produced. 

Following is the syntax diagram for XMLSERIALIZE: 

├── XMLSERIALIZE ─ ( ─┬─ DOCUMENT ─┬─ xml-value-expression ─ AS ─ data-type ──► 
                      └─ CONTENT ──┘ 
 
 ►─ ) ─────────────────────────────────────────────────────────────────────────┤ 

 

DOCUMENT 

Specifies that the result of the xml-value-expression is a validly formed XML 
document. 

CONTENT 

Specifies well-formed XML content. 

xml-value-expression 

Any expression whose result is an XML value, such as XMLELEMENT (see 
XMLELEMENT (see page 575)), XMLCONCAT (see XMLCONCAT (see page 579)), or 
XMLFOREST (see XMLFOREST (see page 576)). 

data-type 

Must specify some character-string type. 
 

The following example is a repetition of our XMLELEMENT example and produces a 
Customer element for each customer, with customer number and name attributes: 

SELECT XMLSERIALIZE(CONTENT 

 

                    XMLELEMENT(NAME "Customer", 

                               XMLATTRIBUTES(CustNo, 

                                             surName as LastName, 

                                             FirstName) 

                              ) 

                    AS VARCHAR(200)) AS "CustomerList" 

  FROM customers 
 



Scalar Functions 

 

Chapter 25: Functions  579  
 

The result of the previous example follows: 

CustomerList 

VARCHAR(200) 

--------------------------------------------------------------------------------- 

<-Customer CustNo="000001" LastName="Sturlasson" FirstName="Snorri"><-/Customer> 

<-Customer CustNo="000002" LastName="Skallagrimsson" 

FirstName="Eigil"><-/Customer> 

--------------------------------------------------------------------------------- 
 

XMLCONCAT 

This function returns an XML value that is the concatenation of a list of XML values. 

Following is the syntax diagram for XMLCONCAT: 

                   ┌─ , ────────────────────┐ 
├── XMLCONCAT ─ ( ─▼─ xml-value-expression ─┴─ ) ──────────────────────────────┤ 

xml-value-expression 

Any expression whose result is an XML value, such as XMLELEMENT (see 
XMLELEMENT (see page 575)), XMLCONCAT (see XMLCONCAT (see page 579)), or 
XMLFOREST (see XMLFOREST (see page 576)). 

 

The following example (a repetition of the XMLELEMENT example) produces a Customer 
element for each customer, with customer number and name attributes: 

SELECT XMLSERIALIZE(CONTENT 

                    XMLCONCAT(XMLELEMENT(NAME "contact',v.contactName), 

                              XMLELEMENT(NAME "phone",v.contactPhone) 

                             ) 

                    AS VARCHAR(300)) AS "vendorContacts" 

  FROM vendors v; 
 

The result of the previous example follows: 

vendorContacts 

VARCHAR(300) 

------------------------------------------------------------ 

<-contact>Joeseph Dudely<-/contact><-phone>123-456-7890<-/phone> 

<-contact>Mary Doeright<-/contact><-phone>123-456-1313<-/phone> 

------------------------------------------------------------ 

 





 

Chapter 26: Predicates  581  
 

Chapter 26: Predicates 
 

A predicate specifies a condition that is "true" or "false" about a given row or group. 

Note:  In SQL, string comparisons are strictly byte-for-byte, so predicates involving 
MIXED strings may not give the desired results.  For instance, a string with the SBCS 
version of XYZ does not compare as equal to a string with a Shift-Out, then the DBCS 
version of XYZ, then a Shift-In.  You can use the VARGRAPHIC scalar function to 
normalize both strings into VARGRAPHIC data types before doing the comparison. 

Following is the syntax diagram for a predicate: 

►►─┬─ basic predicate ──────┬─────────────────────────────────────────────────►◄ 
   ├─ quantified predicate ─┤ 
   ├─ BETWEEN predicate ────┤ 
   ├─ LIKE predicate ───────┤ 
   ├─ EXISTS predicate ─────┤ 
   ├─ IN predicate ─────────┤ 
   └─ NULL predicate ───────┘ 

All values specified in a predicate must be compatible. 

The following sections discuss branches of the predicate's general form. 
 

Basic Predicate 

A basic predicate is used to compare two values.  The format of a basic predicate is: 

■ An expression followed by a comparison operator and another expression. 

■ An expression followed by a comparison operator and a subselect. The subselect 
cannot be preceded by ANY, ALL, or SOME. A subselect is a form of the SELECT 
command.  A subselect in a basic predicate must not return more than one value. 

Following is the syntax diagram for a basic predicate: 

Note:  The following are CA Datacom/DB extensions: 

■ ¬= is a CA Datacom/DB extension. 

■ ¬< is a CA Datacom/DB extension. 

■ ¬> is a CA Datacom/DB extension. 

►►─ expression ─┬─ = ─────┬─┬─ expression ──┬─────────────────────────────────►◄ 
                ├─ < ─────┤ └─ (subselect) ─┘ 
                ├─ > ─────┤ 
                ├─ <> ────┤ 
                ├─ <= ────┤ 
                ├─ >= ────┤ 
                ├─ ¬= ────┤ 
                ├─ ¬< ────┤ 
                └─ ¬> ────┘ 

 



Basic Predicate 

 

582  SQL User Guide 
 

Description 

expression 

Specify an expression.  For more information about expressions, see Expressions 
(see page 527). 

(subselect) 

Specify a subselect.  The subselect must be enclosed by parentheses.  For more 
information about the subselect see Subselect. 

 

The result of the comparison is either true or false.  The following table shows the 
results for each comparison operator when comparing the values x and y. 

 

Predicate Is true only if... 

x = y x is equal to y 

x < y x is less than y 

x > y x is greater than y 

x <> y x is not equal to y 

x <= y x is less than or equal to y 

x >= y x is greater than or equal to y 

x ¬= y x is not equal to y 

x ¬< y x is not less than y 

x ¬> y x is not greater than y 

The ¬=, ¬< and ¬> comparison operators are CA Datacom/DB extensions to SQL. 

Examples 

Some examples of basic predicates are: 

Example 1:  This example specifies that the employee number must be equal to the 
literal value 671. 

 EMPNO = '671' 

Example 2:  This example specifies that the salary must be less than $20,000. 

 SALARY < 20000 
 



Quantified Predicate 

 

Chapter 26: Predicates  583  
 

Example 3:  This example specifies that the quantity must not be equal to the value of 
the host-variable, VAR1. 

 QUANTITY <> :VAR1 

Example 4:  This example specifies that the salary must be greater than the average 
salary for all employees. 

 SALARY > (SELECT AVG(SALARY) 

           FROM EMP) 
 

Quantified Predicate 

Use the quantified predicate to compare a value with a collection of values. 

A quantified predicate has the same form as a basic predicate except the second 
operand is a subselect preceded by ANY, ALL, or SOME. The subselect may return any 
number of values. 

Following is the syntax diagram for a quantified predicate: 

Note:  The following are CA Datacom/DB extensions: 

■ ¬= is a CA Datacom/DB extension. 

■ ¬< is a CA Datacom/DB extension. 

■ ¬> is a CA Datacom/DB extension. 
 

►►─ expression ─┬─ = ─────┬─┬─ ALL ──┬─ (subselect) ──────────────────────────►◄ 
                ├─ < ─────┤ ├─ ANY ──┤ 
                ├─ > ─────┤ └─ SOME ─┘ 
                ├─ <> ────┤ 
                ├─ <= ────┤ 
                ├─ >= ────┤ 
                ├─ ¬= ────┤ 
                ├─ ¬< ────┤ 
                └─ ¬> ────┘ 

 



BETWEEN Predicate 

 

584  SQL User Guide 
 

Description 

expression 

Specify an expression.  For more information about expressions, see Expressions 
(see page 527). 

(subselect) 

Specify a subselect.  The subselect must be enclosed by parentheses.  For more 
information about the subselect see Subselect. 

ALL 

The result of the predicate is true if the subselect returns no values or if the 
specified relationship is true for every value returned by the subselect. 

The result is false if the specified relationship is false for at least one value returned 
by the subselect. 

 

ANY 

The result of the predicate is true if the specified relationship is true for at least one 
value returned by the subselect. 

The result is false if the subselect returns no values or if the specified relationship is 
false for every value returned by the subselect. 

SOME 

The result of the predicate is true if the specified relationship is true for at least one 
value returned by the subselect. 

The result is false if the subselect returns no values or if the specified relationship is 
false for every value returned by the subselect. 

 

Example 

The following example of a quantified predicate specifies that value of PAY must be 
greater than or equal to each SALARY value returned by the SELECT.  The result is true if 
that is the case. However, if the value of PAY is less than one of the values returned by 
the SELECT, then the result is false. 

 PAY >= ALL(SELECT SALARY 

            FROM EMP) 
 

BETWEEN Predicate 

Use the BETWEEN predicate to compare a value with a range of values. 

Following is the syntax diagram for a BETWEEN predicate:. 

►►─ expression ─┬───────┬─ BETWEENexpressionANDexpression ────────────────────►◄ 
                └─ NOT ─┘ 



LIKE Predicate 

 

Chapter 26: Predicates  585  
 

Description 

expression 

Specify an expression.  For more information about expressions, see Expressions 
(see page 527). 

BETWEEN 

Introduces the range of values for the comparison. 
 

AND 

Joins the lower and upper limits of the value range. 

NOT 

A keyword.  Use NOT to specify values that are not within the lower and upper 
limits of the value range. 

 

The following table shows BETWEEN predicates and the search conditions to which they 
are equivalent. 

 

The BETWEEN predicate: is equivalent to the search condition: 

value-1 BETWEEN value-2 AND value-3 value-1 >= value-2 AND value-1 <= value-3 

value-1 NOT BETWEEN value-2 AND value-3 NOT (value-1 BETWEEN value-2 AND value-3) 

Example 

The result of the following BETWEEN predicate is true only if the value of SALARY is 
greater than or equal to $25,000, or is less than or equal to $50,000.  If the value of 
SALARY is not within the specified range, the result of this BETWEEN predicate is false. 

 SALARY BETWEEN 25000 AND 50000 
 

LIKE Predicate 

Use the LIKE predicate to search for strings that have a certain pattern.  The pattern is 
specified by a string in which the underscore and percent sign have special meaning. 
Following is the syntax diagram for the LIKE predicate:. 

►►─ column-name ─┬───────┬─ LIKE ─┬─ host-variable ─┬─────────────────────────► 
                 └─ NOT ─┘        └─ literal ───────┘ 
 
 ►─┬──────────────────────────────┬───────────────────────────────────────────►◄ 
   └─ ESCAPE ─┬─ host-variable ─┬─┘ 
              └─ literal ───────┘ 



LIKE Predicate 

 

586  SQL User Guide 
 

Description 

column-name 

Specify the name of a column in a table or view.  The column-name can be any 
expression that has a character string data type. 

NOT 

A keyword.  Use NOT to specify values that do not match the comparison. 
 

LIKE host-variable 

Specify a host-variable.  The host-variable must identify a variable that is described 
in the program under the rules for declaring string host-variables.  (See Host 
Variables for more information.) The host-variable must contain data of the same 
type as the specified column. 

Specify a pattern for the comparison as part of the host-variable. The pattern must 
contain character data. Use the percent sign (%) in your pattern to indicate a 
substring of zero or more characters.  Use the underscore (_) in your pattern to 
indicate a single character. 

See the examples at the end of this section for use of the percent sign and 
underscore as substring specifiers. 

Note:  When you specify a pattern (such as xxx%) that provides the prefix of the 
desired value, the Compound Boolean Selection Facility performs an index scan, 
which gives a performance gain.  Any other use of a pattern or the use of a specific 
value causes a data scan, which is slower than an index scan. 

 

LIKE literal 

Specify a literal, and specify a pattern for the comparison as part of the literal.  The 
pattern must contain character data. Use the percent sign (%) in your pattern to 
indicate a substring of zero or more characters.  Use the underscore (_) in your 
pattern to indicate a single character. 

See the examples at the end of this section for use of the percent sign and 
underscore as substring specifiers. 

Note:  When you specify a pattern (such as xxx%) that provides the prefix of the 
desired value, the Compound Boolean Selection Facility performs an index scan, 
which gives a performance gain.  Any other use of a pattern or the use of a specific 
value causes a data scan, which is slower than an index scan. 

 



LIKE Predicate 

 

Chapter 26: Predicates  587  
 

ESCAPE host-variable 

Specify a host-variable.  The host-variable must identify a variable that is described 
in the program under the rules for declaring string host-variables.  (See Host 
Variables (see page 520) for more information.) The host-variable must contain 
data of the same type as the specified column. 

Specify an escape character as part of the host-variable.  An escape character is a 
valid character that is one byte in length. Use the escape character when you want 
to include the percent sign (%) or the underscore(_) as part of the pattern (as 
previously discussed in the description of LIKE host-variable). 

When an escape character is used in the pattern of the LIKE predicate, it must be 
followed by the percent character (%), the underscore character (_), or another 
escape character.  The word character in this context refers to either a Single-Byte 
Character Set (SBCS) or Double-Byte Character Set (DBCS) character.  Any other use 
of the escape character in the pattern of the LIKE predicate is invalid. 

See the examples at the end of this section for use of the escape character. 
 

ESCAPE literal 

Specify a literal, and specify an escape character as part of the literal.  An escape 
character is a valid character that is one byte in length. Use the escape character 
when you want to include the percent sign (%) or the underscore(_) as part of the 
pattern (as previously discussed in the description of LIKE literal). 

When an escape character is used in the pattern of the LIKE predicate, it must be 
followed by the percent character (%), the underscore character (_), or another 
escape character.  The word character in this context refers to either a Single-Byte 
Character Set (SBCS) or Double-Byte Character Set (DBCS) character.  Any other use 
of the escape character in the pattern of the LIKE predicate is invalid. 

See the examples at the end of this section for use of the escape character. 
 

If the column contains character data, the terms "character," "percent sign," and 
"underscore" in the following discussion refer to EBCDIC (Single-Byte Character Set 
(SBCS)) characters. If the column contains GRAPHIC data, those terms refer to 
Double-Byte Character Set (DBCS) characters. 

This predicate is best explained by examples.  The following description is intended for 
those who require a rigorous definition. 

1. Let x denote a value of the column. 

2. Let y denote the string specified by the second operand. 
 



LIKE Predicate 

 

588  SQL User Guide 
 

3. The string y is interpreted as a sequence of the minimum string of substring 
specifiers such that each character of y is part of exactly one substring specifier.  A 
substring specifier is: 

■ An underscore (_) 

■ A percent sign (%) 

■ Any nonempty sequence of characters other than an underscore or a percent 
sign 

 

4. The result is either true or false. 

5. The result is true if x and y are both empty strings or there exists a partitioning of x 
into substrings such that: 

a. A substring of x is a sequence of zero or more continuous characters and each 
character of x is part of exactly one substring. 

b. If the nth substring specifier is an underscore, the nth substring of x is any 
single character. 

c. If the nth substring specifier is a percent sign, the nth substring of x is any 
sequence of zero or more characters. 

 

d. If the nth substring specifier is neither an underscore nor a percent sign, the 
nth substring of x is equal to that substring specifier and has the same length as 
that substring specifier. 

e. The number of substrings of x is the same as the number of substring specifiers. 

Predicate x NOT LIKE y is equivalent to search condition NOT(x LIKE y). 
 

If MIXED data is in effect, the column identified by column-name may contain 
Double-Byte Character Set (DBCS) characters, as may the host-variable or string literal. 
In that case, the special characters in y are interpreted as follows: 

■ An EBCDIC (Single-Byte Character Set (SBCS)) character underscore refers to one 
EBCDIC character. 

■ A double-byte underscore refers to one DBCS character. 

■ A percent sign, either EBCDIC or double-byte, refers to any number of characters of 
any type, either EBCDIC or double-byte. 

 



EXISTS Predicate 

 

Chapter 26: Predicates  589  
 

Examples 

Some examples of the LIKE predicate are: 

Example 1:  This example is true if JOHN appears anywhere within the value of NAME.  
The first percent sign indicates any character substring which precedes JOHN while the 
second percent sign indicates any substring which follows JOHN. 

 NAME LIKE '%JOHN%' 

Example 2:  The following example is true if the value of CODE has a length of three 
characters and the first character is A and the third character is C.  The underscore 
indicates any single character between the A and the C. 

 CODE LIKE 'A_C' 

Example 3:  The following example is true if one hundred percent (100%) appears at the 
end of the value of INCREASE.  The first percent sign indicates any substring which 
precedes 100.  The pound sign (#) indicates that the following percent sign is to be part 
of the search pattern.  Assignment of the pound sign as the escape character is 
accomplished by ESCAPE '#'. 

 INCREASE LIKE '%100#%' ESCAPE '#' 
 

EXISTS Predicate 

Use the EXISTS predicate to test for the existence of certain rows.  Following is the 
syntax diagram for the EXISTS predicate: 

►►─┬───────┬─ EXISTS ─ (subselect) ───────────────────────────────────────────►◄ 
   └─ NOT ─┘ 

Description 

EXISTS 

Indicates to return a "true" result if at least one row exists in the result table that 
matches the specifications in the subselect. 

NOT 

A keyword.  Use NOT to indicate the return of a "true"result only if no rows exist in 
the result table matching the specifications in the subselect. In the EXISTS 
predicate, NOT is a CA Datacom/DB extension. 

(subselect) 

Specify a subselect.  The subselect must be enclosed by parentheses.  For more 
information about the subselect see Subselect. 

 



IN Predicate 

 

590  SQL User Guide 
 

The predicate evaluates to true only if at least one row matches the conditions specified 
in the subselect. 

The predicate evaluates to false if no row matches the conditions specified in the 
subselect. 

Note:  The subselect does not return a value.  The result of the predicate cannot be 
unknown. 

Example 

This EXISTS predicate is true only if at least one row of the result table contains a value 
greater than $150,000 for the SALARY column.  The result is false if no value for SALARY 
is greater than $150,000. 

 EXISTS (SELECT * 

         FROM EMP 

         WHERE SALARY > 150000) 
 

IN Predicate 

You use the IN predicate to compare a value with a collection of values. Following is the 
syntax diagram of the IN predicate: 

Note:  The special-register is a CA Datacom/DB extension. See Special Registers (see 
page 533). 

►►─ expression ─┬───────┬─ IN ─┬─ (subselect) ──────────────────────┬─────────►◄ 
                └─ NOT ─┘      │     ┌─ , ────────────────────┐     │ 
                               └─ ( ─▼─┬─ host-variable ────┬─┴─ ) ─┘ 
                                       ├─ literal ──────────┤ 
                                       └─ special-register ─┘ 

Description 

expression 

Specify an expression.  For more information about expressions, see Expressions 
(see page 527). 

NOT 

A keyword.  Use NOT to specify that only values that do not match the comparison 
be selected. 

 



IN Predicate 

 

Chapter 26: Predicates  591  
 

IN 

Introduces the collection of values used in the comparison. 

(subselect) 

Specify a subselect.  The subselect must be enclosed by parentheses.  For more 
information about the subselect see Subselect. 

host-variable 

Specify a host-variable.  Each host-variable specified must identify a variable that is 
described in the program under the rules for declaring host-variables.  See Host 
Variables (see page 520) for more information. 

Use a comma to separate the host-variables and enclose the list in parentheses. 
 

special-register 

Specify a special-register. See Special Registers (see page 533) for more information 
on special-registers. 

literal 

Specify a literal.  If the expression is numeric, the literal must be numeric. 

Use a comma to separate the literals and enclose the list in parentheses. 
 

The following table shows forms of the IN predicate and the predicate form to which it 
is equivalent. 

 

The IN predicate form: expression IN expression 

is equivalent to: a basic predicate 

of the form: expression = expression 

The IN predicate form: expression IN (subselect) 

is equivalent to: a quantified predicate 

of the form: expression = ANY (subselect) 

The IN predicate form: where the second operand is a collection of one 
or more values specified by any combination of 
literals, host-variables or the keyword USER 

is equivalent to: a quantified predicate 

of the form: expression = ANY (subselect) 

except: the second operand consists of the specified 
values rather than the values returned by a 
subselect 



NULL Predicate 

 

592  SQL User Guide 
 

Example 

The following IN predicate is true only if the value for DEPT is equal to any of the 
specified literals, A2, B1 or C3.  The result is false if the value for DEPT is not equal to 
any of the literals. 

 DEPT IN ('A2', 'B1', 'C3') 
 

NULL Predicate 

Use the NULL predicate to test for null values.  Following is the syntax diagram for the 
NULL predicate: 

►►─ column-name ─ IS ─┬───────┬─ NULL ────────────────────────────────────────►◄ 
                      └─ NOT ─┘ 

Description 

column-name 

Specify the name of a column in a table or view. 

IS NULL 

Indicates to test the value of the column to determine if it is null. 
 

NOT 

A keyword.  Use NOT to specify that the value of the column be tested to determine 
if it is not null. 

The result of a NULL predicate cannot be unknown.  If the value of the column is null, 
the result is true.  If the value is not null, the result is false.  If NOT is specified, the result 
is reversed. 

Example 

The following NULL predicate is true only if the value of PHONENO is null.  If the value of 
PHONENO is not null, the result of the predicate is false. 

 PHONENO IS NULL 

 



 

Chapter 27: Search Conditions  593  
 

Chapter 27: Search Conditions 
 

A search condition specifies a condition that is "true" or "false" about a given row or 
group. 

Following is the syntax diagram for a search condition: 

   ┌─ choice ───────────────────────────┐ 
►►─▼─┬───────┬─┬─ predicate ──────────┬─┴─────────────────────────────────────►◄ 
     └─ NOT ─┘ └─ (search-condition) ─┘ 

Expansion of Where choice is as follows 

├──┬─ AND ─┬───────────────────────────────────────────────────────────────────┤ 
   └─ OR ──┘ 

Description 

predicate 

Specify a predicate.  For more information about predicates, see Predicates (see 
page 581). 

(search-condition) 

Specify a search condition.  Enclose the search condition within parentheses. 
 

AND 

A keyword.  This Boolean operator indicates that both conditions joined by this 
keyword must be satisfied before the result is true. 

OR 

A keyword.  This Boolean operator indicates that only one of the conditions joined 
by this keyword must be satisfied for the result to be true. 

NOT 

A keyword. Using NOT negates the result of the predicate or search condition. 
 

The result of a search condition is derived by the application of the specified Boolean 
operators to the result of each specified predicate.  If Boolean operators are not 
specified, the result of the search condition is the result of the specified predicate. 

If the search condition or predicate is preceded by NOT, the result is negated. For 
example: 

■ NOT(true) means false 

■ NOT(false) means true 
 



NULL Predicate 

 

594  SQL User Guide 
 

The following table shows the results when: 

1. The value of predicate P is joined with the value of predicate Q by AND. 

2. The value of predicate P is joined with the value of predicate Q by OR. 

3. Each of the previous operations is preceded by NOT. 

 

P Q P AND Q P OR Q NOT (P AND Q) NOT (P OR Q) 

T T T T F F 

T F F T T F 

F T F T T F 

F F F F T T 

Boolean expressions within parentheses are evaluated first.  When the order of 
evaluation is not specified by parentheses: 

1. NOT is applied before AND. 

2. AND is applied before OR. 

3. Operators at the same precedence level are applied from left to right. 
 

Examples 

The following examples show search conditions in WHERE and HAVING clauses.  For 
more information about these clauses, see SELECT. 

Example 1:  This search condition specifies that the value of PNUM must be P3, which is 
a literal. 

 WHERE PNUM = 'P3' 

Example 2:  This search condition specifies that the value of NAME (a string) must be 
the same as in the host-variable, VAR2. 

 WHERE NAME LIKE :VAR2 
 

Example 3:  This search conditions specifies that the city must be Dallas, and the salary 
must be greater than $20,000. 

 WHERE CITY = 'DALLAS' AND SALARY > 20000 
 



NULL Predicate 

 

Chapter 27: Search Conditions  595  
 

Example 4:  This search condition uses an IN predicate and a subselect.  The condition 
specifies that the employee number must be contained in the result table for the 
SELECT which retrieves only those employee numbers related to department E11. 

 WHERE EMPNO IN (SELECT EMPNO 

                 FROM EMP 

                 WHERE DEPTNO = 'E11') 

Example 5:  This search condition uses a function and a subselect, which also includes a 
function.  The condition specifies that the maximum salary (for some group) must be 
less than the average salary for all employees. 

 HAVING MAX(SALARY) < (SELECT AVG(SALARY) 

                       FROM EMP)) 

 





 

Chapter 28: SQL Statements  597  
 

Chapter 28: SQL Statements 
 

This chapter discusses each SQL statement in detail and gives examples. 
 

Preliminary Information Lock Levels 

In SQL processing, the following statements do not process when the CA Datacom 
Datadictionary occurrence definition you specify in the statement is protected with a 
password or Lock Level 1 or 2. 

 

SQL Statement Occurrence 

ALTER TABLE 

DROP TABLE, VIEW, or SYNONYM 

CA Datacom Datadictionary issues a -118 return code and an error message which 
includes a Datadictionary Service Facility (DSF) return code identifying the problem. See 
CA Datacom Datadictionary documentation for more information on passwords and lock 
levels. 

 

Statements That Support Procedures and Triggers 

These statements support procedures and triggers: 

■ CREATE PROCEDURE (see CREATE PROCEDURE (see page 620)) 

■ CALL/EXECUTE PROCEDURE —without SET processing support (see CALL/EXECUTE 
PROCEDURE (see page 610)) 

■ DROP PROCEDURE (see DROP (see page 725)) 

■ CREATE TRIGGER/RULE—row level only (see CREATE TRIGGER/RULE (see page 702)) 

■ DROP TRIGGER/RULE (see DROP (see page 725)) 

For an overview and examples of procedures and triggers, see Procedures and Triggers 
(see page 70). 

 



ALTER TABLE 

 

598  SQL User Guide 
 

ALTER TABLE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

ALTER TABLE YES YES YES 

Note:  YES indicates a valid execution method for this statement. 

To learn about using SQL keywords in CA Dataquery, see the CA Dataquery User Guide. 

For information about the access rights required to execute this statement, see the CA 
Datacom/DB Database and System Administration Guide. 

Note:  If you are using CA Datacom/DB as part of the CA Datacom/AD environment, you 
cannot use the ALTER TABLE statement. With regard to table partitioning, ALTER 
statements may not be issued against a table which is partitioned nor against a 
partition. An SQL integrity constraint cannot reference a partitioned table, nor a 
partition of a partitioned table. That is to say, constraints and partitioned tables are 
mutually exclusive. For more information about table partitioning, see the CA 
Datacom/DB Database and System Administration Guide. 

 

The ALTER TABLE statement is a CA Datacom/DB extension.  ALTER TABLE allows you to 
alter a table definition without having to reload manually.  You may change the table's 
column definition and/or the table's constraints.  You may make only one change to a 
column in an ALTER TABLE statement. 

You can query the SYSCONSTRSRC and SYSCONSTRDEP tables (see Schema Information 
Tables (SIT) (see page 821)) to view information about constraints.  You can then use 
ALTER TABLE to drop the constraint or modify the constraint's selection criteria. 

 

When a table is altered, the prepared statements in plans that reference the table are 
marked nonexecutable until rebound. An attempt to execute these statements invokes 
automatic rebind.  Depending on the change, the rebind may be successful and require 
no manual intervention.  But if the plans containing referencing statements are 
currently executing or binding, the ALTER request is aborted.  This is always the case 
when the plan containing the ALTER statement references the table, because this is an 
attempt to invalidate its own plan and is not allowed. 

A Datadictionary Relationship Report can tell you what plans are dependent on a table.  
See the CA Datacom Datadictionary Batch Reference Guide for information on 
Relationship Reports. 

 



ALTER TABLE 

 

Chapter 28: SQL Statements  599  
 

See Results of Using ALTER TABLE for information about the results in CA Datacom 
Datadictionary of using the ALTER TABLE statement. See Preliminary Information—Lock 
Levels (see page 597) for information about lock levels with regard to the ALTER TABLE 
statement. 

The ALTER TABLE statement causes the CONSTRAINT attribute-value to be marked A (for 
ALTERED) for all TEST and HIST versions of the CA Datacom Datadictionary definition.  
The next time you try to copy that definition from TEST to PROD status, CA Datacom 
Datadictionary issues an ALT DSF return code that indicates it cannot be copied because 
the PROD version has been altered.  For details, see the appendix on constrained tables 
in the CA Datacom Datadictionary Online Reference Guide or CA Datacom 
Datadictionary Batch Reference Guide. 

 

The table must be at least half empty before alteration, if using the ALTER TABLE 
statement causes a table's rows to be reformatted (adding, dropping, or modifying 
columns).  But the table must be more than half empty before alteration (that is, less 
than half full) if the adding, dropping, or modifying of columns causes the size of the 
table's rows to grow. 

Issuing an ALTER TABLE statement involves a process that: 

1. Copies the contents of the table to the Temporary Table Manager (TTM), 

2. Changes the definition of the table, and then 

3. Copies the reformatted rows back to the table. 
 

However, a check is made before this operation begins to see if enough space is 
available in the TTM, and if the answer is no, SQL code -561 (SQLSTATE 57S05) is 
generated: TTM TOO SMALL - SEE ERROR ACTION FOR SUGGESTION. In response to this 
message you could make the TTM larger, but it can take a long time to perform that 
operation if there are many rows in the table.  Therefore, instead of making the TTM 
larger consider doing the following: 

1. Copy the rows to an external file using the EXTRACT function of DBUTLTY. 

2. Convert the rows yourself. 

3. For single table areas, do a null LOAD. For multi-table areas, do a REPLACE on the 
specific table. 

 

4. Perform the ALTER of the empty table. 

5. For single table areas, LOAD the converted table. For multi-table areas, do a 
REPLACE using the converted data. 

Note:  Be aware that because the TTM space check is made at the beginning of the 
process, there is the possibility that other tasks could use some space and the TTM still 
become full even if the -561 SQL code was not initially received. 

 



ALTER TABLE 

 

600  SQL User Guide 
 

When the NOMAINT option of the CA Datacom/DB Utility (DBUTLTY) ACCESS function is 
in force, an ALTER TABLE statement receives a CA Datacom/DB return code 94(87), 
where 87 is a decimal internal return code (hex 57) that tells you no maintenance 
statements are allowed while NOMAINT is in force. 

Following is the syntax diagram for the ALTER TABLE statement: 

►►─ ALTER TABLEtable-name ────────────────────────────────────────────────────► 
 
   ┌────────────────────────────────────────────────────────────┐ 
 ►─▼─┬─ ADD ─┬─ column definition ───────────┬────────────────┬─┴─────────────►◄ 
     │       └─ table constraint definition ─┘                │ 
     ├─ DROP ─┬─ CONSTRAINT ─ constraint-name ──┬─────────────┤ 
     │        ├─ column-name ───────────────────┤             │ 
     │        ├─ PRIMARY KEY ───────────────────┤             │ 
     │        └─ FOREIGN KEY ─ constraint-name ─┘             │ 
     ├─ MODIFY ─ column-name ─┬─ DEFAULT ─┬─ literal ─────┬─┬─┤ 
     │                        │           ├─ NULL ────────┤ │ │ 
     │                        │           ├─ USER ────────┤ │ │ 
     │                        │           └─ SYSTEM USER ─┘ │ │ 
     │                        └─ datatype ──────────────────┘ │ 
     └─ RENAME ─ column-name ─ TO ─ column-name ──────────────┘ 

 



ALTER TABLE 

 

Chapter 28: SQL Statements  601  
 

Description 

table-name 

Specify the name of the table you want to alter.  The table-name must identify a 
table described in the CA Datacom Datadictionary, but not a CA Datacom 
Datadictionary table. 

ADD 

Allows you to add column definitions or table constraint definitions. 

Important!  Constraints should not be added to an open table.  If a constraint 
(CHECK, FOREIGN KEY, or PRIMARY KEY) is added to a table which previously had no 
constraints, the constraint is not be enforced in programs which opened the table 
before the execution of the ALTER TABLE statement.  Should this occur, the 
program should close and reopen the table to activate constraint enforcement for 
that table. (This caution only applies to record-at-a-time programs referencing 
tables to which the constraint was added.) 

When you use the ALTER TABLE statement to add domain or foreign key 
constraint(s) to a table, they are added to the Schema Information Tables (SIT) (see 
Schema Information Tables (SIT) (see page 821)) in check pending status. The 
CONFIRM function of DBUTLTY is then called to validate existing data against the 
added constraint(s).  Previous existing foreign key(s) are not revalidated.  If a 
violation is found, CA Datacom/DB issues an SQL warning message and changes the 
table's Directory (CXX) status to prevent access to the table's rows. 

Note:  You must CONFIRM tables in the following order, from 
referenced-to-referencing, or parent-to-child, that is to say, the referenced table 
cannot be in check pending status.  For example, if there is a foreign key from a 
REMARKS table to a LINE_ITEM table on PO_Nbr and Line_Item_Nbr, and the 
LINE_ITEM table has a foreign key that references the PO table on PO_Nbr, the PO 
table must be loaded first, then the LINE_ITEM table can be confirmed, then the 
REMARKS table can be confirmed.  Therefore, the confirm order would be:  from PO 
table to LINE_ITEM table to REMARKS table. 

 



ALTER TABLE 

 

602  SQL User Guide 
 

If violations are found, with the table in check pending status you can do one of two 
things: 

1. You can execute the CONFIRM function of DBUTLTY to delete the row(s) in 
error and optionally write them to an exception table for further action.  To 
identify the violated constraint(s), after writing the row(s) in error to an 
exception table you can write a program to read those row(s) and attempt to 
insert them back into the original table so that the violated constraint(s) are 
reported. 

2. Or you can use the ALTER TABLE statement to drop the violated constraint(s), 
causing the table to be reconfirmed and taken out of check pending status.  If 
all the added constraints are dropped, the CONFIRM function of DBUTLTY notes 
that there are no constraints in check pending status in the SIT and resets the 
table's Directory (CXX) status to allow access to the table's rows. 

If you try to add a new constraint other than domain or foreign key constraint(s) 
previously described and there is data already in the table that violates the 
constraint, CA Datacom/DB issues an error message.  You can correct the error by 
either changing the constraint definition or removing the data from the table. 

 

column definition 

When a new column is added (through a column definition), rows that already exist 
in the table receive NULL values in the added column unless NOT NULL WITH 
DEFAULT is specified in the column constraint definition.  If NOT NULL WITH 
DEFAULT is specified, they receive zero (0) for  NUMERIC data types, blanks for 
fixed-length strings, 1/1/1 for dates, 0:00:00 for times, and 1/1/1-0:00:00.000000 
for timestamps. 

The new column is added at the end of the row. 

When a table is created through SQL, an element with the name SQLEL is added 
spanning the full row.  If the SQLEL element exists, the length of this new column is 
added.  If the SQLEL element does not exist, it is added. 

See Column Definition (see page 683) for information about the column definition 
and Column Constraint Definition (see page 684) for information about the column 
constraint definition. 

 



ALTER TABLE 

 

Chapter 28: SQL Statements  603  
 

table constraint definition 

See Table Constraint Definition (see page 687). 

DROP 

Allows you to drop CONSTRAINTs, columns, PRIMARY KEYs, or FOREIGN KEYs. If you 
try to drop a constraint by name during an ALTER TABLE statement and the 
specified constraint name is not found, CA Datacom/DB issues an error message. 
You can query the SYSCONSTRSRC and SYSCONSTRDEP tables (see Schema 
Information Tables (SIT)) to determine the correct name of the constraint. 

You cannot drop a primary or unique constraint if there is one or more foreign 
references to it.  In such cases, CA Datacom/DB issues an error message. You can 
query the SYSCONSTRSRC and SYSCONSTRDEP tables (see Schema Information 
Tables (SIT) (see page 821)) to locate the foreign reference.  You can then remove 
all foreign references before dropping the primary or unique constraint. 

 

Note:  When a PRIMARY KEY or UNIQUE constraint is dropped, the corresponding 
index (key) remains but is made nonunique, even if the key was originally created 
using CA Datacom Datadictionary. 

You cannot drop a WITH CHECK OPTION constraint from a view definition by using 
the ALTER TABLE statement.  To drop a WITH CHECK OPTION constraint from a view 
definition, use the DROP statement to drop the view definition, then use the 
CREATE VIEW statement to re-create the view definition without the WITH CHECK 
OPTION constraint. 

Note:  Dropping the view and re-creating it requires the rebinding of all dependent 
statements and views.  You also have to re-create any views which were dependent 
on the dropped view. 

 

A column may not be dropped if it is: 

■ The only column in any element, 

■ The only column of a key, or 

■ Involved in any constraint, that is to say, a FOREIGN KEY, PRIMARY KEY, 
UNIQUE, or CHECK constraint.  If you attempt to drop a column involved in any 
constraint, you receive an SQL -242 return code (CONFLICT ALTERING 
COLUMN). 

 



ALTER TABLE 

 

604  SQL User Guide 
 

DROP does not process and you receive a -118 return code when the CA Datacom 
Datadictionary entity-occurrence definition of the table or view you specify is 
protected with a password or a Lock Level 1 or 2.  The error message also includes a 
Datadictionary Service Facility (DSF) return code.  The DSF return codes are: 

■ IPW (for password protected) 

■ IOR (for Lock Level 1 protected) 

■ NTF (for Lock Level 2 protected) 

See Deleting SQL Objects (see page 431) for more information, and see the CA 
Datacom Datadictionary documentation for information on passwords and lock 
levels. 

 

CONSTRAINT constraint-name 

Specifies the CONSTRAINT to be dropped. See Column Constraint Definition (see 
page 684) for information about the CONSTRAINT constraint-name. 

column-name 

Specifies the name of a column.  The column must belong to the table you have 
specified with the table-name. 

PRIMARY KEY 

Specifies that the PRIMARY KEY constraint for a table name is to be dropped.  See 
Column Constraint Definition (see page 684) for information about the PRIMARY 
KEY. 

FOREIGN KEY constraint-name 

Specifies the FOREIGN KEY to be dropped. See Referential Constraint Definition (see 
page 689) for information about the FOREIGN KEY. 

 

MODIFY 

Allows you to modify a column's DEFAULT or data type. 

You cannot modify a column that is involved in any constraint, that is to say, a 
FOREIGN KEY, PRIMARY KEY, UNIQUE, or CHECK constraint.  If you attempt to 
modify a column that is involved in any constraint, you receive an SQL -242 return 
code (CONFLICT ALTERING COLUMN). 

DEFAULT 

Allows you to specify a default. 
 



ALTER TABLE 

 

Chapter 28: SQL Statements  605  
 

literal 

Specifies a literal as the default.  The literal you specify must be consistent with the 
data type of the specified column. 

A user-supplied DEFAULT literal can be up to 20 bytes long, or the length of the 
column involved, whichever is shorter.  A default value may be specified for a 
character column where the column is greater than 20 bytes long, but the default 
literal itself is limited to 20 bytes, with the remaining bytes padded with blanks by 
the system. 

NULL 

Specifies a NULL value as the default. 
 

USER 

Specifies the current authorization ID as the default. 

SYSTEM USER 

This CA Datacom/DB extension specifies the accessor ID of the currently signed-on 
user as the default. 

 

datatype 

A column's data type may be changed with the following rules: 

■ DATE, TIME, TIMESTAMP: these data types may not be modified. 

■ Changing the length of a character field results in padding with blanks or 
truncation.  You receive an error message if truncation would delete non-blank 
data. 

Important!  All data types that are known to CA Datacom Datadictionary as 
special data types but are unknown to SQL are treated by SQL as character.  
Therefore, if you alter one of these columns, the ALTER uses the character 
rules. 

■ Any of the numeric data types may be converted to any other numeric data 
type (FLOAT, REAL, DOUBLE PRECISION, DECIMAL, SMALLINT, INTEGER, 
NUMERIC). Conversion of values from the old to the new data type is treated 
with the same truncation rules as assignment. (See Basic Operations 
(Assignment and Comparison) (see page 501).) 

See Data Types (see page 695) for more information about data types. 
 

RENAME column-name TO column-name 

Allows you to rename a column.  This changes the SQL name of the column 
throughout the CA Datacom Datadictionary and SIT tables.  It does not correct any 
external source statements. 

You cannot rename a column that is involved in any constraint, that is to say, a 
FOREIGN KEY, PRIMARY KEY, UNIQUE, or CHECK constraint.  If you attempt to 
rename a column that is involved in any constraint, you receive an SQL -242 return 
code (CONFLICT ALTERING COLUMN). 

 



ALTER TABLE 

 

606  SQL User Guide 
 

Processing 

In one ALTER TABLE statement, all ADD column-name, DROP column-name, and 
MODIFY column-name with data type functions are done first and as one group.  
Processing this group is done in the following sequence: 

1. Lock the table. 

2. Read the first/next row in the table. 

3. Add the row to the SQL Temporary Table (TTM). 

4. Delete the row. 

5. Loop back through all the rows. 

6. Update the definitions in the CA Datacom Datadictionary and Directory (CXX). 

7. Read the records from the SQL Temporary Table (TTM). 

8. Reformat the row by adding new columns to the end, deleting any dropped 
columns, and changing the format and/or length of any modified column. 

9. Add the row to the original table. 

10. Loop back to process all rows. 

Primary and unique constraints are validated as rows are added back in step 9.  If a 
duplicate is found, the entire ALTER statement is backed out. 

Foreign keys and domain constraints are added after all rows have been added back.  
After adding the constraint definition(s), the rows of the table are read in Native Key 
sequence to validate the constraints.  If a row violates one or more domain constraints, 
the table is placed in check pending status and an SQL return code 170 is returned. You 
must use the CONFIRM function of DBUTLTY to remove the check pending status before 
the table can be used. If a row violates foreign keys, the ALTER TABLE statement fails 
with an SQL return code -176. 

If the ALTER TABLE statement cannot complete, it is rolled back to its beginning.  If the 
ALTER TABLE process is force checkpointed (because of the size of the Log Area (LXX) 
and the concurrent activity), the rollback is incomplete.  Therefore, before altering large 
tables, ensure that the Log Area (LXX) is large enough and take a backup of the data 
area. 

 



ALTER TABLE 

 

Chapter 28: SQL Statements  607  
 

Example 1 

Modify an existing table column decimal number to precision 6 with a scale of 2 
decimals.  This assumes the previous column was such that no data is lost. 

1. Table name: DEPTTBL 

2. Column name: PROJSTAFF 

3. Data type: DECIMAL 

 EXEC SQL 

 

      ALTER TABLE DEPTTBL 

        MODIFY PROJSTAFF DECIMAL(6,2) 

 END-EXEC 
 

Example 2 

Modify two columns to allow for more character data than previously defined. 

1. Table name: DEPTTBL 

2. Column names: ADMDEPT (to be 3 characters) and DEPTNAME (to be 30 characters) 

 EXEC SQL 

      ALTER TABLE DEPTTBL 

        MODIFY ADMDEPT CHAR(3) 

        MODIFY DEPTNAME CHAR(30) 

 END-EXEC 
 

Example 3 

Alter table ORDERS to prevent the acceptance of any order that would require the 
financing of a purchase of less than $1000.00. 

1. Require a down payment of 100 percent on orders of less than $1000.00. 

2. Give a meaningful constraint name:  ORDERS_MIN_AMT_FINANCED. 

 EXEC SQL 

      ALTER TABLE ORDERS 

        ADD CHECK (GROSS_AMOUNT >= 1000.0 OR PERCENT_DOWN_PMT = 100.0) 

        CONSTRAINT ORDERS_MIN_AMT_FINANCED 

 END-EXEC 
 



ALTER TABLE 

 

608  SQL User Guide 
 

Example 4 

Respond to customers' requests to allow financing on small purchases. 

1. Table name: ORDERS 

2. Remove constraint: ORDERS_MIN_AMT_FINANCED 

 EXEC SQL 

      ALTER TABLE ORDERS 

         DROP CONSTRAINT ORDERS_MIN_AMT_FINANCED 

 END-EXEC 
 

Example 5 

Prevent the acceptance of orders from customers who do not pay their bills by ensuring 
that any order accepted comes from a customer whose name is on a "customers in good 
standing" list. 

1. Table containing customers in good standing: PAYING_CUSTOMERS 

2. Table to be protected: ORDERS 

3. Columns on which a match is required: 

ORDERS.CUSTOMER_NAME to PAYING_CUSTOMERS.COMPANY_NAME 

4. Constraint name: ORDERS_TO_PAYING_CUST_NAME 

 EXEC SQL 

      ALTER TABLE ORDERS ADD FOREIGN KEY 

         (CUSTOMER_NAME) REFERENCES PAYING_CUSTOMERS(COMPANY_NAME) 

         CONSTRAINT ORDERS_TO_PAYING_CUST_NAME 

 END-EXEC 
 



ALTER TABLE 

 

Chapter 28: SQL Statements  609  
 

Example 6 

Prevent the entrance of a shipment into the system unless there is an outstanding order 
for the goods to be shipped. 

1. Table containing outstanding orders: ORDERS 

2. Table to be protected: CURRENT_SHIPMENTS 

3. Columns requiring a match: 

CURRENT_SHIPMENTS columns ORDER_ID and SHIPMENT_NUM to ORDERS 
columns ORDER_ID and SHIPMENT_ID 

4. Constraint name: SHIPMENTS_TO_ORDERS_IDS_MATCH 

 EXEC SQL 

      ALTER TABLE CURRENT_SHIPMENTS ADD FOREIGN KEY 

         (ORDER_ID, SHIPMENT_NUM) REFERENCES 

         ORDERS(ORDER_ID, SHIPMENT_ID) 

 END-EXEC 

Note:  The columns referenced by a foreign key must correspond to the primary key of 
the referenced table. 

 

Example 7 

Remove the foreign key restriction from table CURRENT_SHIPMENTS in order to ship 
goods that were mistakenly left out of the original shipments, when the order is no 
longer current. 

■ Foreign key name: SHIPMENTS_TO_ORDERS_IDS_MATCH 

 EXEC SQL 

      ALTER TABLE CURRENT_SHIPMENTS 

         DROP FOREIGN KEY SHIPMENTS_TO_ORDERS_IDS_MATCH 

 END-EXEC 

Note:  If a domain constraint is added to a table containing rows that violate the 
constraint, you receive an SQL return code to warn you of this fact.  The constraint is 
added, but the table is placed in "check" status to make it unusable until the problem 
has been corrected by either running the CONFIRM function of DBUTLTY with the 
DELETE=YES option specified to delete violating rows, or by dropping the constraint and 
then running CONFIRM. 

A similar situation occurs when adding a foreign key for which the referenced table lacks 
rows to match all of the values in the referencing table.  The same options (previously 
described) are available to correct the problem. However, in the case of dropping a 
foreign key to correct the situation, an automatic CONFIRM is initiated for you so that 
you do not need to perform this step yourself. 

 



Assignment Statement 

 

610  SQL User Guide 
 

Assignment Statement 

For details about this statement, see Assignment Statement (see page 638). 

Note:  This statement is executed from within the Compound Statement (see 
Compound Statement (see page 642)). 

 

CALL/EXECUTE PROCEDURE 

For an overview and examples of procedures and triggers, see Procedures and Triggers 
(see page 70). 

 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

CALL EXECUTE 
PROCEDURE 

YES if no parms passed YES YES if no parms passed 

Note:  YES indicates a valid execution method for this statement. 
 

A CALL or EXECUTE PROCEDURE statement is used to call user-written procedure logic. 
This statement can be coded directly by the end-user or can be embedded in a trigger 
definition.  Please note that procedures themselves can contain CALL/EXECUTE 
PROCEDURE statements, subject to the following discussion of nesting limitation. 

A procedure can also cause procedures to execute (trigger them) by executing INSERT, 
UPDATE, or DELETE statements. The depth of nesting of these recursive procedure calls 
is limited by the PROCEDURE Multi-User startup option that can be used to limit or 
eliminate nesting. 

 



CALL/EXECUTE PROCEDURE 

 

Chapter 28: SQL Statements  611  
 

If null indication variables are passed to the procedure, a list of pointers to the 
indicators follows the list of pointers to the variables themselves.  Although the pointers 
are contiguous, the indicators themselves are not. 

Note:  Because SQL has no way of verifying the compatibility of the user-written code 
with the procedure defined by the CALL/EXECUTE PROCEDURE statement, it is the sole 
responsibility of the creator of the procedure to ensure that the CALL/EXECUTE 
PROCEDURE statement precisely reflects the parameter list expected by the 
user-written program. Failure to properly coordinate parameter lists can cause the 
procedure subtask to abnormally terminate. 

►►─┬─ CALL ──────────────┬─ proc-name ─ proc-parms ───────────────────────────►◄ 
   └─ EXECUTE PROCEDURE ─┘ 
►►─┬─────────────────────────────────────────────────┬────────────────────────►◄ 
   └─ ( ─┬────────────────────────────────────┬ ─ ) ─┘ 
         ├─ positional-parms ─────────────────┤ 
         ├─ keyword-parms ────────────────────┤ 
         └─ positional-parms , keyword-parms ─┘ 
   ┌─ , ──────────────────────────┐ 
►►─▼─ parameter-value-expression ─┴───────────────────────────────────────────►◄ 
   ┌─ , ─────────────────────────────────────────┐ 
►►─▼─ parameter-name=parameter-value-expression ─┴────────────────────────────►◄ 
►►─┬─ literal ──────────────────┬─────────────────────────────────────────────►◄ 
   ├─ host-variable ────────────┤ 
   ├─ BYREF(host-variable) ─────┤ 
   ├─ value-expression ─────────┤ 
   └─ trigger-column-reference ─┘ 

 

CALL 

(Required) 

EXECUTE PROCEDURE 

(Required) 

proc-name 

Specify a procedure name. The procedure name cannot be specified as a host 
variable reference. 

ANSI supports overloading of the procedure name, with duplicate procedure names 
resolved to procedure definitions using the layout of the parameter list. For syntax 
compatibility purposes, a second, specific name may be given to a procedure to 
uniquely identify it, but it must match the nonspecific name, and the nonspecific 
name must be unique. 

 

parameter-name 

Enter the name of the parameter as specified in the CREATE PROCEDURE 
statement. 

literal 

Specify a literal (value) for the parameter. 

host-variable 

Specify a host-variable by naming a variable that is described in the program in 
accordance with the rules for declaring host variables. 

 



CASE Statement 

 

612  SQL User Guide 
 

BYREF(host-variable) 

This clause, supported for compatibility purposes, is treated as a host variable 
reference. 

value-expression 

Specify a value expression (value expressions are used in procedure parameter 
lists). 

trigger-column-reference 

(Valid only in a CREATE TRIGGER or CREATE RULE statement.) A reference to a base 
table column value through a correlation name defined in the old-row/new-row 
syntax of the CREATE TRIGGER/CREATE RULE statements. 

 

CASE Statement 

For details about this statement, see CASE Statement (see page 640). 

Note:  This statement is executed from within the Compound Statement (see 
Compound Statement (see page 642)). 

 

CLOSE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

CLOSE  YES  

Note:  YES indicates a valid execution method for this statement. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

 

The CLOSE statement closes a cursor.  If a temporary table is created when the cursor is 
opened, the table is destroyed when the cursor is closed. 

Following is the syntax diagram for the CLOSE statement: 

►►─ CLOSE ─ cursor-name ──────────────────────────────────────────────────────►◄ 
 



COMMENT ON 

 

Chapter 28: SQL Statements  613  
 

Description 

cursor-name 

The name of a cursor that is defined in a DECLARE CURSOR statement in your 
program. The DECLARE CURSOR statement must precede the CLOSE statement in 
your source program. When the CLOSE statement is executed, the cursor must be in 
the open state. 

 

Processing 

If your program terminates without closing an open cursor, the cursor is closed by CA 
Datacom/DB. 

 

Example 

See DECLARE CURSOR's "Example 1" in Example1 (see page 715). 
 

COMMENT ON 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

COMMENT ON YES YES YES 

Note:  YES indicates a valid execution method for this statement. To learn about using 
SQL keywords in CA Dataquery, see the CA Dataquery User Guide. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

 



COMMENT ON 

 

614  SQL User Guide 
 

The COMMENT ON statement is a CA Datacom/DB extension.  COMMENT ON adds or 
replaces comments in CA Datacom Datadictionary.  The comments apply to tables, 
views or columns. 

If a comment does not exist for the table, view or column, the comment you specify is 
added to text in CA Datacom Datadictionary.  If a comment already exists for the table, 
view or column, and you specify a new comment, the existing comment is replaced by 
the new comment. 

You cannot retrieve a comment through SQL.  You can display the text created by the 
COMMENT ON statement through the CA Datacom Datadictionary batch and online 
functions.  See the CA Datacom Datadictionary User Guide for information about 
displaying text. 

 

CA Datacom Datadictionary provides many capabilities not available through SQL.  For 
example, text classifications allow you to store text about your SQL tables, views and 
columns in addition to that specified in the COMMENT ON statement.  See the CA 
Datacom Datadictionary User Guide for more information about specifying additional 
text. 

 

Following is the syntax diagram for the COMMENT ON statement: 

►►─ COMMENT ON ───────────────────────────────────────────────────────────────► 
 
 ►─┬─ TABLE ─┬─ table-name ─┬IS ─ string-literal ────────────────┬────────────►◄ 
   │         └─ view-name ──┘                                    │ 
   ├─ COLUMN ─┬─ table-name.column-name ─┬IS ─ string-literal ───┤ 
   │          └─ view-name.column-name ──┘                       │ 
   │                      ┌─ , ────────────────────────────┐     │ 
   └─┬─ table-name ─┬─ ( ─▼─ column-name ─ string-literal ─┴─ ) ─┘ 
     └─ view-name ──┘ 

 

Description 

TABLE 

Indicates you want to comment on a table or view. 

table-name or view-name 

Must identify a table or view described in the CA Datacom Datadictionary. The 
comment is placed in text in CA Datacom Datadictionary. 

COLUMN 

Indicates you want to comment on a column. 

table-name.column-name or view-name.column-name 

The name of the column, qualified by the name of the table or view in which it 
appears. The column must be described in the CA Datacom Datadictionary.  The 
comment is placed in text in CA Datacom Datadictionary. 

 



COMMENT ON 

 

Chapter 28: SQL Statements  615  
 

IS string-literal 

The string-literal can be any character string literal enclosed between apostrophes. 

column-name IS string-literal 

To comment on more than one column in a table or view, do not use TABLE or 
COLUMN. Give the table or view name and a list of the form: 

(column-name IS 'string-literal', column-name IS 'string-literal', column-name IS 
'string-literal') 

The column comments must be separated by commas and the list must be enclosed 
with parentheses. All columns named must appear in the same table or view and 
the table or view must be described in the CA Datacom Datadictionary. 

 

Example 1 

Enter a comment on table EMP. 

 EXEC SQL 

      COMMENT ON TABLE EMP 

      IS 'REFLECTS 1ST QTR 87 REORGANIZATION' 

 END-EXEC 
 

Example 2 

Enter a comment on view MGR. 

 EXEC SQL 

      COMMENT ON VIEW MGR 

      IS 'VIEW OF TABLE EMP THAT ARE MANAGERS' 

 END-EXEC 
 

Example 3 

Enter a comment on the EMPNBR column of table EMP. 

 EXEC SQL 

      COMMENT ON COLUMN EMP.EMPNBR 

      IS 'EMPNBR IS UNIQUE' 

 END-EXEC 
 

Example 4 

Enter comments on two columns in table DEPTTBL. 

 EXEC SQL 

      COMMENT ON DEPTTBL 

      (MGRNBR IS 'EMPLOYEE NUMBER OF DEPARTMENT MANAGER', 

       ADMDEPT IS 'DEPARTMENT NUMBER OF ADMINISTERING DEPARTMENT') 

 END-EXEC 
 



COMMIT WORK 

 

616  SQL User Guide 
 

COMMIT WORK 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

COMMIT WORK YES YES  

Note:  YES indicates a valid execution method for this statement. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

The COMMIT WORK statement terminates a unit of recovery and commits the database 
changes that were made by that unit of recovery.  The commit closes all open cursors. 

 

Note:  If a cursor is defined WITH HOLD, it stays open when a COMMIT WORK is 
executed.  Any record-at-a-time command that commits the logical unit of work (for 
example LOGCP, LOGCR) works the same way. See the description of the WITH HOLD 
clause in DECLARE CURSOR. 

A commit point is the moment in the sequence of operations at which the commit is 
actually done. 

Following is the syntax diagram for the COMMIT WORK statement: 

Note:  COMMIT is a CA Datacom/DB extension. 

►►─┬─ COMMIT WORK ─┬──────────────────────────────────────────────────────────►◄ 
   └─ COMMIT ──────┘ 

 

Description 

COMMIT WORK 

The COMMIT WORK statement is the commit operation.  The unit of recovery in 
which the statement is executed is terminated and a new unit of recovery is 
initiated.  All changes made by CREATE, COMMENT ON, DROP, INSERT, UPDATE and 
DELETE statements executed during the unit of recovery are committed. A COMMIT 
WORK releases all locks not acquired by a LOCK TABLE statement.  See LOCK TABLE 
(see page 751) for an explanation of the duration of explicitly acquired locks. 

COMMIT 

This CA Datacom/DB extension has the same effect as COMMIT WORK. 
 



COMMIT WORK 

 

Chapter 28: SQL Statements  617  
 

A unit of work is made up of one or more units of recovery.  In a batch environment, a 
unit of work corresponds to the execution of an application program.  Within that 
program, there may be many units of recovery as COMMIT or ROLLBACK statements are 
executed. 

A unit of recovery is a sequence of operations within a unit of work. A unit of recovery is 
initiated by: 

■ The initiation of a unit of work. 

■ The termination of a previous unit of recovery. 
 

A unit of recovery is terminated by: 

■ A commit operation. 

■ A rollback operation. 

■ The termination of a unit of work. 

A commit or rollback operation affects only the results of SQL statements executed 
within a single unit of recovery. 

Uncommitted database changes made in a unit of recovery may or may not be 
perceived by other units of work depending on the isolation level selected. 

 

Uncommitted database changes made in a unit of recovery can be backed out by CA 
Datacom/DB. 

Committed database changes can be perceived by other units of recovery and cannot be 
backed out by CA Datacom/DB. 

CA Datacom/DB database changes are also committed when a unit of recovery 
terminates normally. 

 

Example 

The following statement commits alterations to the database made since the last 
commit point. 

 EXEC SQL 

      COMMIT WORK 

 END-EXEC 
 



CREATE INDEX 

 

618  SQL User Guide 
 

CREATE INDEX 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

CREATE INDEX YES YES YES 

Note:  YES indicates a valid execution method for this statement. To learn about using 
SQL keywords in CA Dataquery, see the CA Dataquery User Guide. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

The CREATE INDEX statement is a CA Datacom/DB extension.  CREATE INDEX defines a 
new index on one or more columns of a base table.  Adding an index to a table may 
improve the performance of some queries which reference that table. 

 

When a CREATE INDEX statement successfully executes, a KEY entity-occurrence is 
defined in CA Datacom Datadictionary in PROD status.  The five-character key name is 
generated for you by CA Datacom Datadictionary.  The key's attributes include 
MASTER-KEY=N, NATIVE-KEY=N, INCLUDE-NIL-KEY=Y, and UNIQUE=N. For information 
about specifying SQL key selection override keys in either the correlation name or 
synonym name of a query, see Overriding SQL Key Selection. 

CREATE INDEX causes all plans dependent on the indexed table to be marked invalid.  
You can run a Datadictionary Relationship Report to find out what plans are dependent 
on a table.  See the CA Datacom Datadictionary Batch Reference Guide for information 
on Relationship Reports. 

 

Note:  When the NOMAINT option of the CA Datacom/DB Utility (DBUTLTY) ACCESS 
function is in force, a CREATE INDEX statement receives a CA Datacom/DB return code 
94(87), where 87 is a decimal internal return code (hex 57) that tells you no 
maintenance statements are allowed while NOMAINT is in force. With regard to table 
partitioning, CREATE statements may not be issued against a table which is partitioned 
nor against a partition. For more information about table partitioning, see the CA 
Datacom/DB Database and System Administration Guide. 

 

Following is the syntax diagram for the CREATE INDEX statement: 

►►─ CREATE ─┬──────────┬─ INDEX ─┬────────────┬─ index-name ─ ON ─────────────► 
            └─ UNIQUE ─┘         └─ auth-id. ─┘ 
 
                                   ┌─ , ───────────────────────┐ 
 ►─┬────────────┬─ table-name ─ ( ─▼─ column-name ─┬─────────┬─┴─ ) ──────────► 
   └─ auth-id. ─┘                                  ├─ ASC ◄ ─┤ 
                                                   └─ DESC ──┘ 
 
 ►─┬───────────────────────┬──────────────────────────────────────────────────►◄ 
   └─ DATACOM NAME ─ name ─┘ 

 



CREATE INDEX 

 

Chapter 28: SQL Statements  619  
 

Description 

UNIQUE 

If UNIQUE is specified, the created index enforces value uniqueness and provides an 
efficient means of both retrieving rows containing specific data values and of 
ordering the data. The index is rejected if the table contains non-unique values. 

auth-id. 

An optional identifier of the schema for the index and table.  If specified for the 
index-name, it must be the same as the authorization ID of the table you have 
specified with the table-name. Use a period (.) to concatenate the authorization ID 
to the index name or table name (for example, auth-id.table-name). 

index-name ON 

The name for the index you are creating.  The index-name you supply, including the 
implicit or explicit qualifier (authid), must not identify an index already described in 
CA Datacom Datadictionary. 

 

table-name 

Specify the name of the table to be indexed.  Must be a table described in CA 
Datacom Datadictionary. 

(column-name) 

Specifies the name of a column or a list of columns.  The column(s) must belong to 
the table you have specified with the table-name.  If more than one column name is 
listed, each name must be different and separated by commas. The name of a 
column or a list of columns must be enclosed in parentheses. 

 

ASC 

Places the values of the column in ascending order.  ASC is the default order. 

DESC 

Places the values of the column in descending order. 

DATACOM NAME name 

Specifies a five-character DATACOM NAME name (a KEY entity-occurrence in CA 
Datacom Datadictionary ) for the index.  If you do not specify a DATACOM NAME 
name, CA Datacom Datadictionary generates a name for you.  (This is not the CA 
Datacom Datadictionary entity-occurrence name.) 

 



CREATE PROCEDURE 

 

620  SQL User Guide 
 

Processing 

CREATE INDEX processing is done by: 

1. Locking the table to be indexed, 

2. Copying the rows to a temporary table while deleting them from the original table, 

3. Adding the definition of the new index, and then 
 

4. Adding the rows from the temporary table back to the original table. 

Because of the amount of processing involved, adding an index through the CREATE 
INDEX statement may not be appropriate for tables with a large number of rows.  You 
may wish to use DBUTLTY's BACKUP function to unload the table's area and then use 
DBUTLTY's LOAD function to null load the area before executing the CREATE INDEX 
statement.  After adding the new key definition by executing the CREATE INDEX 
statement, DBUTLTY's LOAD function can be used to reload the area. 

Note: For information on using DBUTLTY, see the CA Datacom/DB DBUTLTY Reference 
Guide. 

The sum of the lengths of all columns to be included in the index must be no more than 
180. 

 

Example 

The following example creates an EMPLOYEE_INDEX index on table-name EMPLOYEES, 
column-name EMPNO. 

 EXEC SQL 

     CREATE INDEX EMPLOYEE_INDEX ON EMPLOYEES (EMPNO) 

 END-EXEC 
 

CREATE PROCEDURE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

CREATE PROCEDURE YES/NO YES YES/NO 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  621  
 

Note:  YES indicates a valid execution method for this statement. 

YES/NO means YES for External Procedures but NO for SQL Procedures (see following 
explanations of External Procedures (see page 622) and SQL Procedures (see page 622)). 

External Procedure definitions and SQL Procedures are created with this statement. 
External Procedures are written in a host programming language (COBOL, PL/I, C, or 
ASSEMBLER) with SQL statements imbedded in their programs. For an overview and 
examples of External Procedures and triggers, see Procedures and Triggers (see 
page 70). SQL Procedures are written in SQL and have all of their execution-time logic 
included in an SQL CREATE PROCEDURE statement. 

 

There are three ways to execute procedures: 

■ CALL statements (see CALL/EXECUTE PROCEDURE (see page 610)) 

■ EXECUTE PROCEDURE statements (see CALL/EXECUTE PROCEDURE (see page 610)) 

■ Triggers (see CREATE TRIGGER/RULE (see page 702)) 

We recommend using PLNCLOSE=T for procedures instead of PLNCLOSE=R. For External 
Procedures, the PLNCLOSE= specification is determined by the Preprocessor options 
used for the procedure body compilation. For SQL Procedures, the PLNCLOSE= 
specification is determined by the options used by the plan in which the CREATE 
PROCEDURE statement is executed. When using DBSQLPR, specify PLNCLOSE=T or allow 
PLNCLOSE to default to that value. 

 

When you code procedures that perform INSERTs or UPDATEs, keep in mind that if they 
are called or triggered (directly or indirectly) from an application that reads the same 
table on which that procedure is operating, the procedure affects the results of the 
calling or triggering application and, in extreme cases, can cause loops to occur. For 
example, if an application is performing a searched UPDATE of a table, and the UPDATE 
triggers a procedure that does UPDATEs itself, the procedure could cause an endless 
loop by moving previously updated rows back into the traversal path of the controlling 
searched update. Because CA Datacom/DB cannot prevent such a situation from 
occurring, it is important that you make every effort to ensure your coding of a 
procedure does not cause this to occur. 

 

Triggers whose procedures perform INSERTs, UPDATEs, or DELETEs have the potential to 
trigger themselves recursively, triggering themselves immediately, or passing through 
other triggers first. However, be aware that the maximum recursion depth specified in 
the PROCEDURE Multi-User startup option cannot be exceeded. 

 



CREATE PROCEDURE 

 

622  SQL User Guide 
 

External Procedures 

External Procedure logic is created by executing a preprocessor against user-written 
host-language source code. The program source code for the procedure must be 
preprocessed before the CREATE PROCEDURE statement is allowed to run. 

The following in the CREATE PROCEDURE statement distinguishes External Procedures 
from SQL Procedures: 

■ External Procedures allow any valid choice for the language in the proc-attributes 
syntax except SQL. 

■ External Procedures allow, in the proc-body syntax, the use of the proc-external and 
parameter-style clauses, but not the proc-SQL-stmt clause. 

In a z/OS environment, COBOL, PL/I, and C procedures must be made Language 
Environment (LE) conforming by being written and compiled using COBOL for z/OS, PL/I 
for MVS, and z/OS C/C++. Assembler procedures must also be made LE-conforming by 
use of the CEEENTRY and associated macros. 

 

In a z/VSE environment, COBOL, PL/I, and C procedures must be made Language 
Environment (LE) conforming by being written and compiled using COBOL for z/VSE, PL/I 
for z/VSE, IBM C for z/VSE, and High Level Assembler. 

Because SQL has no way of verifying the compatibility of the user-written code with the 
procedure defined by the CREATE PROCEDURE statement, it is the sole responsibility of 
the creator of the procedure to ensure that the CREATE PROCEDURE statement 
precisely reflects the parameter list expected by the user-written program. Failure to 
properly coordinate parameter lists can cause the procedure subtask to abnormally 
terminate. 

 

Note:  As described in Multi-User Facility Considerations for Procedures, you should add 
to the Multi-User Facility library concatenation the libraries containing the programs to 
be executed as procedures, along with any associated subroutines. Also, if an existing 
procedure is being replaced, do a NEWCOPY console command, as described in the CA 
Datacom/DB Database and System Administration Guide, to that procedure so that the 
next job executes the latest copy. For additional information, see Multi-User Facility 
Considerations for Procedures. 

 

SQL Procedures 

SQL procedures support a basic procedural language with support for the following: 

■ declaration of SQL variables 

■ value assignment 

■ decision-making logic (IF-THEN statement) and CASE statement 

■ looping constructs (LOOP, REPEAT-UNTIL, and WHILE statements) 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  623  
 

■ error and condition handling, including user-defined conditions (see Diagnostics and 
Condition Handling (see page 634)) 

■ As many SQL statements as the size of your RWTSA area allows 
 

For SQL Procedures, the CREATE PROCEDURE statement is specified as follows: 

■ SQL is specified for LANGUAGE in the language syntax. 

■ In the proc-body syntax, a proc-SQL-stmt clause is specified. The proc-SQL-stmt 
clause is composed of SQL Procedure statements that are coded and executed 
directly. For instructions about coding a list of statements and program-like logic, 
see the compound statement information in Compound Statement (see page 642). 

 

Following is a list of the SQL statements that support SQL Procedures: 

■ Assignment Statement (see page 638) 

■ CASE Statement (see page 640) (different from a case expression) 

■ Compound Statement (see page 642) (the building block from which SQL 
Procedures are mainly composed) 

■ condition declaration 

■ DATACOM DUMP Statement (see page 647) 
 

■ GET DIAGNOSTICS Statement (see page 649) 

■ IF-THEN Statement (see page 652) 

■ ITERATE Statement (see page 653) 

■ LEAVE Statement (see page 654) 
 

■ SQL variable declaration 

■ looping constructs 

– LOOP Statement (see page 655) 

– REPEAT-UNTIL Statement (see page 658) 

– WHILE Statement (see page 675) 
 

■ RAISE ERROR Statement (see page 657) 

■ RESIGNAL Statement (see page 660) 

■ SIGNAL Statement (see page 663) 

■ SIMULATE DATACOM PROCEDURE Statement (see page 665) (DBSQLPR only) 
 



CREATE PROCEDURE 

 

624  SQL User Guide 
 

CREATE PROCEDURE Syntax and Description 

Following is the syntax for the CREATE PROCEDURE statement: 

Note:  SQL-parameter-name is required for SQL Procedures and, though optional for all 
others, is recommended for all others as well. See the separate proc-body syntax 
diagram that follows. 

                                      ┌─ , ──────────────────────┐ 
►►─ CREATE PROCEDURE ─ proc-name ─ ( ─▼─┬──────────────────────┬─┴─ ) ────────► 
                                        ├─┬─ IN ◄ ──┬──────────┤ 
                                        │ ├─ OUT ───┤          │ 
                                        │ └─ INOUT ─┘          │ 
                                        ├─ SQL-parameter-name ─┤ 
                                        └─ datatype ───────────┘ 
 
 ►─┬───────────────────┬─ proc-body ──────────────────────────────────────────► 
   └─ proc-attributes ─┘ 
 
 ►─┬────────────────────────────────────┬─────────────────────────────────────►◄ 
   └─ RUN OPTIONS ─ run-options-string ─┘ 

 

Expansion of Where proc-attributes is defined as 

   ┌────────────────────────────────┐ 
├──▼─┬─ language ─────────────────┬─┴──────────────────────────────────────────┤ 
     ├─ parameter-style ──────────┤ 
     ├─ SPECIFIC ─ name ──────────┤ 
     ├─┬───────┬ ─ DETERMINISTIC ─┤ 
     │ └─ NOT ─┘                  │ 
     └─ data-access ──────────────┘ 

 

Expansion of Where language is defined as 

├── LANGUAGE ─┬─ COBOL ─────┬──────────────────────────────────────────────────┤ 
              ├─ PLI ───────┤ 
              ├─ C ─────────┤ 
              ├─ ASSEMBLER ─┤ 
              └─ SQL ───────┘ 

 

Expansion of Where parameter-style is defined as 

├── PARAMETER STYLE ─┬─ GENERAL ────────────┬──────────────────────────────────┤ 
                     ├─ GENERAL WITH NULLS ─┤ 
                     ├─ DATACOM SQL ────────┤ 
                     └─ SQL ────────────────┘ 

 

Expansion of Where data-access is defined as 

├──┬─ MODIFIES SQL DATA ─┬─────────────────────────────────────────────────────┤ 
   ├─ READS SQL DATA ────┤ 
   ├─ CONTAINS SQL ──────┤ 
   └─ NO SQL ────────────┘ 

Note:  All of the proc-attributes choices can be used together, but each can only be used 
once. If you are using SQL Procedures, data-access and parameter-style do not apply. 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  625  
 

You can specify the parameter style only once, either here as part of the procedure 
attribute syntax or as part of the EXTERNAL syntax. Parameter style applies only to 
External Procedures. It does not apply to SQL Procedures. 

Note:  The proc-external clause is only used for External Procedures. 

The optional parameter-style clause is only used for External Procedures. 
 

The proc-SQL-stmt clause is only used for SQL Procedures. 

►►─┬─ proc-external ─┬───────────────────┬─┬──────────────────────────────────►◄ 
   │                 └─ parameter-style ─┘ │ 
   └─ proc-SQL-stmt ───────────────────────┘ 

Expansion of Where proc_external is defined as 

├── EXTERNAL ─┬───────────────────┬────────────────────────────────────────────┤ 
              └─ NAME ─ ext-name ─┘ 

 

Expansion of Where proc-SQL-stmt is defined as 

├──┬─ executable-DML-stmt ─┬───────────────────────────────────────────────────┤ 
   ├─ DDL-stmt ────────────┤ 
   ├─ control-stmt ────────┤ 
   └─ diagnostics-stmt ────┘ 

 

Expansion of Where diagnostics-stmt is defined as 

├──┬─ signal-stmt ──────────┬──────────────────────────────────────────────────┤ 
   ├─ get-diagnostics-stmt ─┤ 
   ├─ datacom-dump-stmt ────┤ 
   ├─ raise-error-stmt ─────┤ 
   └─ resignal-stmt ────────┘ 

 

Expansion of Where control-stmt is defined as 

├──┬─ call-proc ──────────────┬────────────────────────────────────────────────┤ 
   ├─ execute-proc ───────────┤ 
   └─ proc-only-control-stmt ─┘ 

Expansion of Where proc-only-control-stmt is defined as 

├──┬─ compound-stmt ─────────────────────────┬─────────────────────────────────┤ 
   └─ compound-stmt-only-control-statements ─┘ 

Note:  Syntax for the compound-stmt-only-control-statement is given in a separate 
diagram on the next page. 

 

Note:  The executable-DML-stmt is any DML statement except for DECLARE CURSOR 
(DECLARE CURSOR is supported as part of the compound statement, see Compound 
Statement (see page 642)). For a list of DML statements, see SQL Statements. 

See the separate diagnostics-stmt syntax diagram that follows and see the GET 
DIAGNOSTICS statement on GET DIAGNOSTICS Statement (see page 649). 

►►────────────────────────────────────────────────────────────────────────────►◄ 



CREATE PROCEDURE 

 

626  SQL User Guide 
 

Expansion of Where compound-stmt-only-control-statements are defined as 

├──┬─ assignment-stmt ─┬───────────────────────────────────────────────────────┤ 
   ├─ case-stmt ───────┤ 
   ├─ if-then-stmt ────┤ 
   ├─ iterate-stmt ────┤ 
   ├─ leave-stmt ──────┤ 
   ├─ loop-stmt ───────┤ 
   ├─ repeat-stmt ─────┤ 
   └─ while-do-stmt ───┘ 

 

Following is the description of the CREATE PROCEDURE syntax: 

proc-name 

(Required) For the proc-name specify the SQL-name of the procedure name. The 
name can be qualified with an authorization ID. This name is an SQL-identifier. 

We recommend that you use unique procedure names with regard to the names of 
any record, table, synonym, view, or constraint. If you code and reference a 
procedure parameter, for example, whose name is identical to a column name that 
is also referenced inside a particular SQL Procedure, uniqueness in naming would 
allow you to use the procedure name and table name to distinguish a procedure 
parameter reference from a reference to the database-table column. 

ANSI supports overloading of the procedure name, with duplicate procedure names 
resolved to procedure definitions using the layout of the parameter list. For syntax 
compatibility purposes, a second, specific name may be given to a procedure to 
uniquely identify it, but it must match the nonspecific name, and the nonspecific 
name must be unique. 

 

IN/OUT/INOUT 

(Optional) Part of the SQL parameter definition. Specifies to SQL whether this 
parameter is used for input (IN), output (OUT), or both (INOUT). If this parameter is 
not specified, the default (IN) is used. 

Valid Entries: 

IN, OUT, INOUT 

Default Value: 

IN 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  627  
 

SQL-parameter-name 

(Optional) The SQL-parameter-name is required for SQL Procedures and, though 
optional for all others, is recommended for all others as well. The 
SQL-parameter-name is the name of a parameter passed to a SQL Procedure (a 
LANGUAGE SQL procedure). When used in a SQL Procedure containing an SQL 
variable with a conflicting (matching) name, or a table or view reference where the 
table or view contains a conflicting column name, the name should be qualified by 
using the procedure name. 

datatype 

Part of the SQL parameter definition. Specify a datatype. 

Valid Entries: 

Default Value: 

(No default) 
 

LANGUAGE COBOL/PLI/C/ASSEMBLER/SQL 

Part of the procedure attributes definition. 

Specify COBOL, PLI, C, or ASSEMBLER as the programming language when writing a 
External Procedure. 

Specify SQL when writing a SQL Procedure. When you create a LANGUAGE SQL 
procedure, CA Datacom/DB creates a plan to hold the SQL statements contained by 
the procedure. The plan name that is created consists of the first 18 bytes of the 
procedure name. We recommend creating a SQL Procedure using a method such as 
DBSQLPR. We support but do not recommend creating an SQL procedure from a 
preprocessed program. 

See the note about language conformance in External Procedures (see page 622). 

Note:  For all except LANGUAGE SQL, the program source code for the procedure 
must be preprocessed before the CREATE PROCEDURE statement is allowed to run. 

Valid Entries: 

COBOL, PLI, C, ASSEMBLER, SQL 

Default Value: 

(No default) 
 



CREATE PROCEDURE 

 

628  SQL User Guide 
 

SPECIFIC name 

Part of the procedure attributes definition. 

ANSI supports overloading of the procedure name, with duplicate procedure names 
resolved to procedure definitions using the layout of the parameter list. For syntax 
compatibility purposes, a second, specific name may be given to a procedure to 
uniquely identify it, but it must match the nonspecific name, and the nonspecific 
name must be unique. 

DETERMINISTIC/NOT DETERMINISTIC 

Part of the procedure attributes definition. This is informational only, indicating 
whether the procedure always returns the same output, given a certain input. 

 

PARAMETER STYLE 

Defines how parameters are passed into and out of the procedure program you 
write, and how errors are handled. 

Note:  Parameter style applies only to External Procedures. It does not apply to SQL 
Procedures. 

See Parameter Styles and Error Handling (see page 80) for detailed information. 

You can specify PARAMETER STYLE only once, either as: 

■ Part of the optional proc-attributes (procedure attributes) syntax that is 
specified before the EXTERNAL keyword as shown in the CREATE PROCEDURE 
proc-attributes syntax 

■ Part of the optional parameter style definition following the EXTERNAL 
keyword as shown in the CREATE PROCEDURE syntax in CREATE PROCEDURE 
Syntax and Description (see page 624). 

 

Parameter style applies only to External Procedures. It does not apply to SQL 
Procedures. 

PARAMETER STYLE GENERAL 

This parameter style means that the user parameter list is passed to the procedure 
devoid of null indicators (nulls are not allowed).  Since no formal method is 
provided for passing error information back to the caller, the success or failure of 
the CALL procedure statement is determined by the contents of SQL's internal 
SQLCODE variable following the last SQL request made by the procedure. This also 
applies to parameter style GENERAL WITH NULLS (see following). 

PARAMETER STYLE GENERAL WITH NULLS 

This parameter style differs from GENERAL only in that a null indicator is passed to 
the procedure for each user parameter. 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  629  
 

PARAMETER STYLE DATACOM SQL 

This parameter style passes nulls to the procedure as does GENERAL WITH NULLS 
and SQL, but it also passes some additional parameters. These parameters are 
modeled after those passed for the ANSI SQL3 parameter style SQL but with this 
difference: instead of a SQLSTATE, DATACOM SQL passes an SQLCODE in the 
corresponding parameter. Following are the additional parameters (the first four 
are modeled after SQL3): 

■ SQLCODE—passed to the procedure as 0 and used to set the SQLCODE of the 
CALL PROCEDURE statement on output. 

■ A variable-length character string containing the name of the procedure. 

■ A variable-length character string reserved for future use. 
 

■ A variable-length character string containing 80 blanks on input, and an 80-byte 
or shorter error message on output. This error message is placed in the SQLCA 
and used as the SQL error message for the CALL PROCEDURE statement. 

■ A two-byte fixed length character string containing the CA Datacom/DB 
external error code on output. 

■ A single character (a 4-byte integer) containing the CA Datacom/DB internal 
error code on output. You cannot have spaces in the field, so it must be 0000 
(hex 'F0F0F0F0') if no internal error is returned. Or if, for example, a return 
code 94 is returned with an internal error code of 100, hex 'F0F1F0F0' would be 
returned. Your code should convert the binary one-byte field to a four byte 
unsigned display number. 

 

PARAMETER STYLE SQL 

When a procedure is created using PARAMETER STYLE SQL in the CREATE 
PROCEDURE statement, the SQLSTATE status indicator is returned in the SQLCA. For 
detailed information about the SQLSTATE status indicator, see the CA Datacom/DB 
Message Reference Guide. 

Parameter style SQL passes nulls to the procedure as does GENERAL WITH NULLS 
and DATACOM SQL.  It also passes these additional four parameters that are added 
to the end of the parameter/null indicator list: 

■ The SQLSTATE (INOUT, but always passed in as 00000, similar to the SQLCODE 
in style DATACOM SQL, that is, it is passed to the procedure as 00000 and used 
to set the SQLSTATE of the CALL PROCEDURE statement on output). 

■ Authid.procedure-name (IN, same as in style DATACOM SQL, that is a 
variable-length character string containing the name of the procedure). 

 

■ Authid.specific name (IN, same as in style DATACOM SQL, that is, a 
variable-length character string reserved for future use). 

■ Error message text (INOUT, passed in as 0-length string, same as DATACOM 
SQL, that is, a variable-length character string containing 80 blanks on input, 
and an 80-byte or shorter error message on output that is placed in the SQLCA 
and used as the SQL error message for the CALL PROCEDURE statement). 

 



CREATE PROCEDURE 

 

630  SQL User Guide 
 

Unlike style DATACOM SQL, the CA Datacom/DB external and internal return codes 
are not a part of this parameter list but are encoded in the generated SQLSTATE 
value. For example, the SQLSTATE that equates to SQL return code -117 is Seeii, and 
the SQLSTATE that equates to SQL return code -118 is Reeii, where ee represents 
the 2-byte external CA Datacom/DB return code, and ii is the CA Datacom/DB 
internal return code in hexadecimal characters. 

Valid Entries: 

GENERAL, GENERAL WITH NULLS, DATACOM SQL, SQL 

Default Value: 

DATACOM SQL 

How procedure errors are handled depends on the PARAMETER STYLE specified in 
the CREATE PROCEDURE statement. See the parameter style information in the 
error handling section in Parameter Styles and Error Handling. (see page 80) 

 

data-access 

Data access is part of the proc-attributes (procedure attributes) definition. If you 
are using SQL Procedures, data-access is ignored. 

Valid Entries: 

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, NO SQL 

Default Value: 

(No default) 
 

proc-SQL-stmt 

A proc-SQL-stmt is part of the proc-body syntax. The proc-SQL-stmt is composed of 
SQL Procedure statements that are coded and executed directly. Use the compound 
statement to create program-like logic. For details about compound statements, 
see Compound Statement (see page 642). 

In statements that are within SQL Procedures, that is, not External Procedures, SQL 
parameters and SQL variables can be referenced anywhere expressions are allowed. 
Colons are not allowed in these references. When a parameter or variable is 
referenced in a context containing or within the scope of an identically named 
variable or column, you must disambiguate the name as follows: 

For parameters, use the following: 

authid.SQL-proc-name.SQL-parameter-name 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  631  
 

The authid is optional if the procedure name is unique in this particular context. For 
variables, use the start-label of the compound statement as follows: 

start-label.variable-name 

If your procedure fails to avoid ambiguity as required, CA Datacom/DB attempts to 
resolve the ambiguity in the following way. If the statement involves a table or 
view, an attempt is made to find a matching column name. All currently executing 
contexts are next searched for a matching SQL variable, inner-most context first 
(inner-most active compound-statement, including active condition handlers). The 
inner-most SQL parameter list is then searched. 

We recommend you do not label a compound statement using the SQL Procedure 
name. If you do so, know that we do not guarantee any specific result or its 
consistency over time. 

Recursive procedure calls are supported. Each occurrence has separate copies of 
parameters and SQL variables. 

 

The statements in a proc-SQL-stmt are as follows: 

executable-DML-stmt 

The executable-DML-stmt is any DML (Data Manipulation Language) statement, 
except for DECLARE CURSOR. Use DML statements to access and manipulate 
data in SQL tables. 

DDL-stmt 

The DDL-stmt (Data Definition Language statements) are used to define SQL 
objects such as tables and views. DDL statements are only allowed when they 
do not interfere with the preparation, execution, or rebinding of your 
procedure. 

 

control-stmt 

Part of the proc-SQL-stmt clause that is used only with SQL Procedures. 

Following are the control statements you can choose: 

call-proc Part of the control-stmt in the proc-SQL-stmt that is used only with 
SQL Procedures. 

execute-proc Part of the control-stmt in the proc-SQL-stmt that is used only 
with SQL Procedures. 

proc-only-control-stmt Part of the control-stmt in the proc-SQL-stmt that is 
used only with SQL Procedures. The proc-only-control-stmt can be a compound 
statement (compound-stmt) or compound statement control statements 
(compound-stmt-only-control-statements). 

compound-stmt For information about compound statements, see Compound 
Statement (see page 642). 

 



CREATE PROCEDURE 

 

632  SQL User Guide 
 

compound-stmt-only-control-statements Compound statement only control 
statements can appear only within the context of a compound statement. They 
can be nested. They can appear immediately inside a compound statement, or 
inside other statements that are themselves contained by a compound 
statement. Choices include the following statements: 

assignment-stmt (see Assignment Statement (see page 638)) 

case-stmt (not a case-expression, see CASE Statement (see page 640)) 

if-then-stmt (see IF-THEN Statement (see page 652)) 

iterate-stmt (see ITERATE Statement (see page 653)) 

leave-stmt (see LEAVE Statement (see page 654)) 
 

loop-stmt (see LOOP Statement (see page 655)) 

while-do-stmt (see WHILE Statement (see page 675)) 

repeat-stmt (see REPEAT-UNTIL Statement (see page 658)) 

Notice the recursive nature of these definitions. Each of these 
proc-only-control-stmt statements qualify indirectly as a proc-SQL-stmt (each 
proc-only-control-stmt is a control-stmt), but many of them can also have lists 
of proc-SQL-stmt statements embedded in them. This means that the various 
statement types may be nested within each other to an unlimited depth. 
Notice however the following limitations. 

 

DDL statements (Data Definition) are only allowed when they do not interfere 
with the preparation, execution, or rebinding of your procedure. For example, 
if your procedure creates a table and then uses it, the statements that use the 
table might fail with TABLE NOT FOUND or a similar error during the table 
resolution process of the prepare phase, unless that table is manually created 
before the CREATE PROCEDURE is prepared (it can be dropped afterwards). If 
your procedure uses and then ALTERs or DROPs a table, the procedure could be 
marked invalid as it executes, then attempt an auto-rebind (which could fail, 
depending on the change you made and how the table is used by the 
procedure). 

 

diagnostics-stmt 

Part of the proc-SQL-stmt clause that is used only with SQL Procedures. See the GET 
DIAGNOSTICS statement on GET DIAGNOSTICS Statement (see page 649). 

EXTERNAL 

Begins the external body syntax that can be used to specify a name (NAME 
ext-name) for the program you write that constitutes the body of the procedure 
(see following for more information on NAME ext-name). EXTERNAL is only used for 
External Procedures, not for SQL Procedures. 

A parameter style can also be specified as part of the EXTERNAL syntax but only if 
you have not specified a parameter style as part of the proc-attributes (procedure 
attribute) syntax. Parameter style is only used for External Procedures, not for SQL 
Procedures. 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  633  
 

NAME ext-name 

(Optional) If you specify EXTERNAL NAME ext-name, the external name you specify 
as the ext-name must match both the load-module name and PROGRAM-ID (CA 
Datacom Datadictionary PROGRAM entity-occurrence name) of the program. We 
recommend you specify a NAME ext-name to avoid confusion. NAME ext-name is 
only used for External Procedures, not for SQL Procedures. 

Valid Entries: 

A valid external name that meets the listed requirements 

Default Value: 

If you do not specify a NAME, the SQL name of the procedure is used as the 
default which in this case must be unique even without an AUTHID, and must 
be a valid load-module name. 

 

RUN OPTIONS run-options-string 

(Optional) Specifying RUN OPTIONS run-options-string provides control over the 
environment in which the procedure executes. The run-options-string is a quoted 
string constant of up to 128 characters in length containing run options for use by 
the IBM OS/390 Language Environment (LE), which controls procedure execution. 
Following is an example: 

RUN OPTIONS 'MSGFILE(SYSOUT,FBA,121,0,ENQ)' 

Using the MSGFILE option prevents unmanaged contention for the SYSOUT data set 
(SYSLST in z/VSE) from procedures running concurrently. The ENQ parameter allows 
competing procedure executions (running in distinct LE environments) to share the 
data set by single-threading access. 

 

The destination of print statements (for example, printf in C or DISPLAY in COBOL), 
executed in procedures across the Multi-User Facility, tends to be a single data set, 
usually DDNAME SYSOUT (SYSLST in z/VSE), identified by the Multi-User Facility 
startup JCL.  For that reason, we recommend using these statements with caution. 
Assuming no print statements have been coded, use of MSGFILE is still useful, 
however, in enqueuing the messages that LE itself occasionally produces. 

Valid Entries: 

A quoted string constant of up to 128 characters in length containing run 
options for use by the IBM OS/390 Language Environment 

Note:  Details about the contents of the string are documented in the IBM 
OS/390 Language Environment for OS/390 & VM Programming Reference. 

Default Value: 

(No default) 
 



CREATE PROCEDURE 

 

634  SQL User Guide 
 

Diagnostics and Condition Handling 

Understanding the concepts of a Diagnostics Area (see following section) and condition 
handler (see Condition Handler (see page 635)) provides you with the ability to use the 
full capabilities of SQL Procedure condition handling. 

 

Diagnostics Area 

A Diagnostics Area is a data structure that represents a list of errors, warnings, and 
user-defined conditions that have occurred during the execution of a single SQL 
statement. 

SQL maintains an array of Diagnostics Areas, known as a Diagnostics Area Stack, for each 
logical unit of work (LUW). At any given time, the stack represents the error status of 
both the currently-active user request and any related condition handler executions 
(see following) or of the previous request if a request is not currently active. 

Each Diagnostics Area contains a header containing information such as a description of 
the SQL statement that was executed, and an array of condition information areas 
(CIAs), each area representing a single error, warning, or user-defined condition that 
occurred during execution of the statement. The number of CIAs that are maintained in 
each Diagnostics Area is determined by the SQL_COND_INFO_AREAS Multi-User startup 
option. The amount of memory used by a Diagnostics Area can be computed as follows, 
where active LUWs is the number of concurrently active LUWs and CIAs is the number 
of CIAs as specified by SQL_COND_INFO_AREAS: 

9k * (active LUWs) * (CIAs) 
 

You can obtain an estimate of the number of concurrent SQL LUWs by querying the 
LUWS column in the SQL_STATUS (SQS) Dynamic System Table. Assuming you have 50 
SQL applications running concurrently, and SQL_COND_INFO_AREAS is 2, then 
additional memory usage would then become: 

9k * 50 * 2 = 900k 

There are four ways to populate a Diagnostics Area. The first way is to simply experience 
an error or warning in an SQL statement. The second, third, and fourth ways are to 
execute the statements SIGNAL (see SIGNAL Statement (see page 663)), RESIGNAL (see 
RESIGNAL Statement (see page 660)), and RAISE ERROR (see RAISE ERROR Statement 
(see page 657)). To retrieve diagnostics information in your application, execute the GET 
DIAGNOSTICS statement (see GET DIAGNOSTICS Statement (see page 649)). 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  635  
 

Condition Handler 

A condition handler is a user-written routine embedded in a user-witten procedure that 
detects and acts to recover from errors, warnings, and any user-defined condition that 
requires action or remediation. When an end-user merges the functionalities provided 
by condition handlers and the Diagnostics Area Stack, basic error recovery can be 
provided, with complete sequences of errors available for retrieval, and business-rule 
related functions can be performed automatically. The condition declaration and 
condition handler are found in the syntax for the compound statement (see Compound 
Statement (see page 642)). 

A procedure that, for example, takes customer orders from a phone operator, checks 
inventory, and reserves warehouse stock to cover them should also, if every item is in 
stock, ship the orders immediately. A customer, however, could in addition request that 
individual items be shipped as they become available. The logic of a condition handler 
could therefore include that situation as follows (for details about condition handling, 
see Condition Handler (see page 635). To implement the procedure just described, do 
the following: 

1. Declare names for the conditions to be handled: 

 DECLARE ALL_ITEMS_IN_STOCK CONDITION; 

 DECLARE SHIP_AS_AVAILABLE CONDITION; 

Lists of SQLSTATEs can also be named as conditions using a FOR clause that is not 
included in this example, but can be seen in the example starting in Sample 
Procedure 2. General conditions of SQLEXCEPTION, SQLWARNING, and NOT FOUND 
are automatically defined (see the description of cond-declarations). 

 

2. Define the condition handler (see the two examples that follow). 

This example sends a message to initiate action by warehouse personnel. In this 
example, a compound statement is supplied that includes SQL variable references 
and some logic. A condition handler, however, could also consist of only one SQL 
statement, as shown in the example that follows this one. 

DECLARE CONTINUE HANDLER FOR ALL_ITEMS_IN_STOCK, SHIP_AS_AVAILABLE 

ship_it: BEGIN ATOMIC 

           DECLARE messageLocal VARCHAR(80); 

           IF numberItemsAvailable = numberItemsOrdered THEN 

              SET messageLocal = 'ORDER IS COMPLETE.  SHIP NOW.'; 

           ELSE 

               SET messageLocal = 'SHIP ALL AVAILABLE ITEMS NOW.'; 

           END IF; 

           INSERT INTO warehouseToDo (orderId, instructions) 

                        VALUES  (orderIdParameter, messageLocal); 

         END end_ship_it; 
 



CREATE PROCEDURE 

 

636  SQL User Guide 
 

The following example performs essentially the same function as the example just 
shown. It presents, however, an alternative to the more complicated logic of the 
previous example by using an INSERT statement coded into the warehouseToDo 
table. 

DECLARE CONTINUE HANDLER FOR ALL_ITEMS_IN_STOCK, SHIP_AS_AVAILABLE 

  INSERT INTO warehouseToDo (orderId, instructions) 

               VALUES (orderIdParameter, 'SHIP ALL AVAILABLE ITEMS NOW'); 

3. When you detect the defined condition, signal this fact to the condition handler. If, 
for example, the procedure determines that some items are not in-stock, but the 
client has requested that items ship as they become available, the following 
statement could be executed to trigger the handler to execute. 

SIGNAL SHIP_AS_AVAILABLE; 

Note:  Condition handlers triggered by particular SQLSTATEs execute automatically 
and therefore have no need for explicit SIGNAL statements. 

For examples of error handlers embedded in procedures, see the example procedure 
starting in Sample Procedure 2 (see page 667) 

 

Condition Handlers Optional 

Because condition Handlers are optional, you can have the caller of a procedure handle 
any error condition by not coding any handlers. When an error is then encountered, 
your procedure backs out any maintenance it performed and aborts. You need handlers 
for NOT FOUND and SQLWARNING, however, if you do not want completion codes to 
cause a procedure to abort, for example if you have an SQLSTATE '02000' or SQLCODE 
100 at the end of each cursor and (or) warning conditions such as when an SQLSTATE 
starts with '01' or there is a positive SQLCODE. For an example showing a procedure 
without handlers, see Sample Procedure 1 (see page 667). 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  637  
 

SQLSTATE and SQLCODE Special Variables 

As an alternative to using the GET DIAGNOSTICS statement in a handler to retrieve the 
SQLSTATE into an SQL variable, and for compatibility with other implementations, 
supply an SQLSTATE or SQLCODE local variable and code the following as the first 
statement in your handler: 

 SET SQL-variable-name = sqlstate-or-sqlcode; 

SQL then assigns a value to your SQLSTATE or SQLCODE variable after every statement 
execution. Instructions for using this feature follows: 

1. Declare SQLSTATE (or SQLCODE) as an SQL variable in your condition handler or a 
compound statement that contains the handler. 

2. As the first (or only) statement in a handler, assign SQLSTATE (or SQLCODE) to your 
SQL variable. Again, note that if you supply an SQLSTATE (or SQLCODE) variable, 
Datacom will reset it's value each time a statement is executed, hence the need for 
a separate SQL variable copy of any value you need to save. 

For example, from a functional point of view code example 1 (following on this page) 
and code example 2 (see Code Example 2 (see page 638)) are equivalent. In the example 
that follows, logic that is not shown (for space considerations) is indicated by three 
vertically arranged periods. 

 

Code Example 1 
 . 

 . 

 . 

 DECLARE sqlState, sqlStateLocal CHAR(5) DEFAULT '00000'; 

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION, SQLWARNING, NOT FOUND 

    SET sqlStateLocal = sqlState; 

 . 

 . 

 . 

 INSERT INTO orderTable VALUES (customerId, orderId, orderStatus, orderComments); 

 IF sqlStateLocal <-> '00000' THEN 

    LEAVE thisCompoundStatement; 

 END IF; 

 . 

 . 

 . 
 

In the example just shown, you could have substituted for every occurrence of sqlCode 
and sqlCodeLocal the variables sqlState and sqlStateLocal. We do not recommend using 
SQLSTATE and SQLCODE at the same time, because each statement, including 
assignment statements, reset both the SQLSTATE and SQLCODE, meaning that the 
following situation could result. Consider the following two statements: 

 SET sqlCodeLocal = sqlCode; 

 SET sqlStateLocal = sqlState; 
 



CREATE PROCEDURE 

 

638  SQL User Guide 
 

If the two statements just shown should be the first and second statements in a handler, 
SQL variable sqlStateLocal would receive '00000' as the (reset) value. Because the 
condition information in the Diagnostics Area is preserved until the handler succeeds, 
the following would work as a coding alternative: 

 SET sqlCodeLocal = sqlCode; 

 GET STACKED DIAGNOSTICS sqlStateLocal = RETURNED_SQLSTATE; 

Following is code example 2, which is equivalent from a functional point of view, to the 
previously shown code example 1. In the example that follows, logic that is not shown 
(for space considerations) is indicated by three vertically arranged periods. 

 

Code Example 2 

 . 

 . 

 . 

 DECLARE sqlState, sqlStateLocal CHAR(5) DEFAULT '00000'; 

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION, SQLWARNING, NOT FOUND 

    GET STACKED DIAGNOSTICS sqlCodeLocal = 

 RETURNED_SQLSTATE; 

 . 

 . 

 . 

 INSERT INTO orderTable VALUES (customerId, orderId, orderStatus, orderComments); 

 IF sqlStateLocal <-> '00000' THEN 

    LEAVE thisCompoundStatement; 

 END IF; 

 . 

 . 

 . 
 

Assignment Statement 

The assignment statement stores a value into an SQL variable or SQL parameter. 

Following is the syntax for the assignment statement: 

►►─ SET ─ assignment-target=proc-value-expression ────────────────────────────►◄ 

Expansion of Where assignment-target is defined as 

├──┬─ SQL-variable-name ──┬────────────────────────────────────────────────────┤ 
   └─ SQL-parameter-name ─┘ 

assignment-target 

For the assignment-target specify an SQL-variable-name or an 
SQL-parameter-name. 

proc-value-expression 

For a description of a proc-value-expression, see CASE Statement (see page 640). 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  639  
 

SQL-variable-name 

The SQL-variable-name is the name of a variable that is declared within a 
compound statement inside a SQL Procedure (a LANGUAGE SQL procedure). If the 
name conflicts with (matches) another SQL variable name from a nested compound 
statement (for example, a condition handler), or an SQL parameter name, or a 
column contained within a referenced table or view, the SQL variable name should 
be qualified using the start-label of the compound statement that immediately 
contains it. 

SQL-parameter-name 

The SQL-parameter-name is required for SQL Procedures and, though optional for 
all others, is recommended for all others as well. The SQL-parameter-name is the 
name of a parameter passed to a SQL Procedure (a LANGUAGE SQL procedure). 
When used in a SQL Procedure containing an SQL variable with a conflicting 
(matching) name, or a table or view reference where the table or view contains a 
conflicting column name, the name should be qualified by using the procedure 
name. 

 

Example 

An assignment statement example follows. In the example that follows, logic that is not 
shown (for space considerations) is indicated by three vertically arranged periods. 

 . 

 . 

 . 

 DECLARE mySalary, yourSalary decimal(15,0) DEFAULT 1000000.; 

 DECLARE errorClass char(2); 

 DECLARE sqlStateLocal char(5); 

 . 

 . 

 . 

 SET errorClass = SUBSTR(sqlStateLocal, 1, 2); 

 . 

 . 

 . 

 SET mySalary = yourSalary * 2; 

 . 

 . 

 . 
 



CREATE PROCEDURE 

 

640  SQL User Guide 
 

CASE Statement 

The CASE works in the same way an IF statement works to control which SQL 
statements, based on predicates you specify, are executed. 

Following is the syntax for the CASE statement: 

►►─ CASE ─┬─ proc-value-expression ─ simple-when-stmt-list ─┬─────────────────► 
          └─ searched-when-stmt-list ───────────────────────┘ 
 
 ►─┬─────────────────────────────┬─ END CASE ─────────────────────────────────►◄ 
   └─ ELSE ─ proc-SQL-stmt-list ─┘ 

Expansion of Where simple-when-stmt-list is defined as 

   ┌────────────────────────────────────────────────────────────┐ 
├──▼─ WHEN ─ proc-value-expression ─ THEN ─ proc-SQL-stmt-list ─┴──────────────┤ 

Expansion of Where searched-when-stmt-list is defined as 

   ┌────────────────────────────────────────────────────────────┐ 
├──▼─ WHEN ─ proc-search-condition ─ THEN ─ proc-SQL-stmt-list ─┴──────────────┤ 

Expansion of Where proc-SQL-stmt-list is defined as 

   ┌──────────────────────────┐ 
├──▼─ proc-SQL-stmt ─ ; ──────┴────────────────────────────────────────────────┤ 

Note:  For proc-SQL-stmt syntax, see the syntax fragment in CREATE PROCEDURE Syntax 
and Description (see page 624). 

 

proc-value-expression 

A proc-value-expression is a variant form of the expressions used to specify values 
as follows: 

■ To the syntax for expressions, the proc-value-expression adds SQL variable 
names (see SQL-variable-declarations in Compound Statement (see page 642)) 
and SQL parameter names (see SQL-parameter-name in CREATE PROCEDURE 
Syntax and Description (see page 624)). To view SQL variable names and SQL 
parameter names in the syntax diagram for expressions, see Expressions. 

■ A proc-value-expression does not allow the use of column functions. 

Note:  Scalar functions, however, are allowed. 

■ A proc-value-expression does not allow the use of column names. 

■ A proc-value-expression does not allow the use of host variables. 
 

simple-when-stmt-list 

A simple-when-stmt-list is a list of simple-when statements, each terminated by a 
semicolon. For more information, see the example that follows. 

searched-when-stmt-list 

A searched-when-stmt-list is a list of searched-when statements, each terminated 
by a semicolon. For more information, see the example that follows. 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  641  
 

proc-search-condition 

The proc-search-condition specifies a condition that is true, false, or unknown about 
a row. The proc-search-condition is similar to the search-condition described in with 
the following modifications that allow its use in SQL Procedures: 

■ SQL parameter and SQL variable references are allowed instead of column and 
host-variable references. 

■ Aggregate functions and any predicate involving a sub-query are not allowed. 

proc-SQL-stmt-list 

A proc-SQL-stmt-list is a list of proc-SQL-stmt statements, each terminated by a 
semicolon. 

 

Examples 

Following is an example that uses a simple-when statement: 

CASE creditStatus 

   WHEN 'CURRENT' THEN 

      call creditLimitCheck(clientId, creditAmount, creditLimit, orderStatus); 

      IF (orderStatus = 'CREDIT LIMIT EXCEEDED') 

         SET orderStatus = orderStatus CONCAT ', DISCUSS CREDIT LINE INCREASE'; 

      END IF; 

   WHEN 'NEW APPLICATION' THEN 

      set orderStatus = 'ACCEPT ORDER PENDING ACCOUNT SETUP COMPLETION'; 

   WHEN 'PAST DUE' THEN 

      set orderStatus = 'NOTIFY CUSTOMER, HOLD FOR PAYMENT RECEIPT'; 

   WHEN 'BAD' THEN 

      set orderStatus = 'REJECTED FOR FAILURE TO PAY'; 

END CASE; 
 

Following is an example that uses a searched-when statement: 

CASE 

   WHEN creditStatus = 'CURRENT' OR clientStatus = 'PRE-APPROVED' THEN 

      call creditLimitCheck(clientId, creditAmount, creditLimit, orderStatus); 

      IF (orderStatus = 'CREDIT LIMIT EXCEEDED') 

         SET orderStatus = orderStatus CONCAT ', DISCUSS CREDIT LINE INCREASE'; 

      END IF; 

   WHEN creditStatus = 'NEW APPLICATION' THEN 

      set orderStatus = 'ACCEPT ORDER PENDING ACCOUNT SETUP COMPLETION'; 

   WHEN creditStatus = 'PAST DUE' THEN 

      set orderStatus = 'NOTIFY CUSTOMER, HOLD FOR PAYMENT RECEIPT'; 

   ELSE 

      set orderStatus = 'CREDIT IS ' CONCAT orderStatus; 

END CASE; 
 



CREATE PROCEDURE 

 

642  SQL User Guide 
 

Compound Statement 

Compound statements implement a small procedural language that provides the 
building blocks from which SQL Procedures are composed. A compound statement can 
contain a large number of interacting SQL statements that are limited only by the size of 
the RWTSA that must transport the syntax to the DBMS. For details about size 
adjustment to the RWTSA, see the information about the TASKS Multi-User startup 
option in the CA Datacom/DB Database and System Administration Guide. in the CA 
Datacom/DB Database and System Administration Guide. When a compound statement 
is executed, an execution context is created for the statements the compound 
statement contains. That execution context consists of the following: 

■ SQL variables and condition handlers for both this compound statement and any 
statements within which this compound statement is nested 

■ A save-point token for transaction backout (controlled by the DBMS) 
 

■ SQL parameters 

■ Labels defining SQL statements (used for branching) 

■ Locally declared cursors 
 

The set of statements to which variables and other context-related information is visible 
is referred to as scope. Scope consists of all statements and contexts enclosed by a 
compound statement. Compound statements cannot exist outside of a procedure, but 
they can be nested. Nested compound statements are most frequently used for 
condition handling. 

Following is the syntax for the compound statement: 
 

Note:  Combinations and multiples of these two optional choices can be used. 

►►─┬──────────────────────┬─ BEGIN ATOMIC ────────────────────────────────────► 
   └─ start-label: ───────┘ 
 
   ┌─────────────────────────────────┐ 
 ►─▼─┬─────────────────────────────┬─┴────────────────────────────────────────► 
     ├─ SQL-variable-declarations ─┤ 
     └─ condition-declarations ────┘ 
 
   ┌─────────────────────────────────┐ ┌─────────────────────────┐ 
 ►─▼─┬─────────────────────────────┬─┴─▼─┬─────────────────────┬─┴────────────► 
     └─ declare-cursor-stmt; ──────┘     └─ condition-handler ─┘ 
 
 ►─ proc-SQL-stmt-list ─ END ─┬─────────────┬─────────────────────────────────►◄ 
                              └─ end-label ─┘ 

 

Expansion of Where SQL-variable-declarations are defined as 

             ┌─ , ─────────────┐ 
├── DECLARE ─▼─ variable-name ─┴─ datatype ───────────────────────────────────► 
 
 ►─┬─────────────────────────────┬─ ; ────────────────────────────────────┤ 
   └─ DEFAULT ─┬─ literal ─────┬─┘ 
               ├─ NULL ────────┤ 
               ├─ USER ────────┤ 
               └─ SYSTEM USER ─┘ 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  643  
 

Expansion of Where condition-declarations are defined as 

├── DECLARE ─ condition-name ─ CONDITION ─────────────────────────────────────► 
 
 ►─┬───────────────────────────────────────────────┬─ ; ──────────────────┤ 
   └─ FOR ─ SQLSTATE ─ VALUE ─ character-constant ─┘ 

Expansion of Where condition-handler is defined as 

                                          ┌─ , ──────────────────┐ 
├── DECLARE ─┬─ CONTINUE ─┬─ HANDLER FOR ─▼─┬─ condition-name ─┬─┴────────────► 
             ├─ EXIT ─────┤                 ├─ sqlstate-value ─┤ 
             └─ UNDO ─────┘                 ├─ SQLEXCEPTION ───┤ 
                                            ├─ SQLWARNING ─────┤ 
                                            └─ NOT FOUND ──────┘ 
 
 ►─ proc-SQL-stmt ─ ; ────────────────────────────────────────────────────┤ 

 

Expansion of Where proc-SQL-stmt-list is defined as 

   ┌──────────────────────────┐ 
├──▼─ proc-SQL-stmt ─ ; ──────┴───────────────────────────────────────────┤ 

Following are descriptions of the parts of the compound statement syntax: 

start-label: / end-label 

(Optional) A start-label: is an SQL identifier (followed by a colon) that can be used in 
various flow-control statements to mark the destination of a branch. When you 
specify an end-label you must also specify a matching start-label. 

We recommend you do not label a compound statement using the SQL Procedure 
name. When the SQL Procedure name is used, we cannot guarantee any specific 
result or its consistency over time. 

ATOMIC 

Specifying ATOMIC prevents a procedure from containing a COMMIT or a 
non-savepoint ROLLBACK. Specify ATOMIC after BEGIN and specify an END before 
the end-label. 

 

SQL-variable-declarations 

(Optional) In SQL-variable-declarations each variable receives the default value on 
entry to a compound statement. Variables without defaults are assigned NULL 
values on entry. Each declaration can include a list of variables separated by 
commas. The variable-name is an SQL identifier.  

The scope (range of visibility) of these variables is the BEGIN-END pair, including any 
compound statements contained within and any error handlers that execute while 
the contained compound statement is executing. 

Indentical variable names can be disambiguated using start-label.variable-name 
where the start label is the start-label of a compound statement. 

 



CREATE PROCEDURE 

 

644  SQL User Guide 
 

DEFAULT literal/NULL/USER/SYSTEM USER 

(Optional) The DEFAULT clause, an optional part of the SQL-var-declarations clause, 
specifies a default from among the choices that follow: 

literal 

Specifies the default to be a literal. Be certain the literal agrees with the data 
type of the column. The specified literal can be up to 20 bytes long or the 
length of the column involved, whichever is shorter. You can specify a default 
value for a character column where the column is greater than 20 bytes long, 
but the default literal itself is limited to 20 bytes with the remaining bytes 
padded with blanks by the system. 

NULL 

Specifies the default as NULL. 

USER 

Specifies the default to be the current authorization ID. 

SYSTEM USER 

Specifies the default to be the accessor ID of the currently signed-on user. 
 

condition-declarations 

(Optional) Each of the condition-declarations relates a name to an SQLSTATE or any 
user-signaled condition (see the information on the SIGNAL statement on SIGNAL 
Statement (see page 663)). A condition handler can be written for any declared 
condition, including those defined by the user and not related to any SQLSTATE. 
Declared conditions are visible to all compound statements executing within their 
context. For instructions and examples of conditions and handlers, see Diagnostics 
and Condition Handling (see page 634). 

Note:  The names NOT FOUND, SQLWARNING, and SQLEXCEPTION are pre-defined 
conditions assigned to SQLSTATE subclasses 02, 01, and any other non-00 subclass, 
respectively. 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  645  
 

condition-handler 

(Optional) The condition-handler defines an SQL statement (a proc-SQL-stmt that 
can be a compound statement) to be executed when a given condition occurs. If a 
condition occurs for which multiple handlers have been written, SQL chooses and 
executes the most appropriate handler, after searching available handlers in the 
inner-most context first, as follows. 

1. If an SQLSTATE other than 00000 has occurred and a handler exists in any 
active context for a condition defined for that specific SQLSTATE, that handler 
executes. This includes situations where the SQLSTATE was signaled by value or 
using a condition-name associated with a specific SQLSTATE as described in the 
information about the SIGNAL statement in SIGNAL Statement (see page 663). 
A condition-name is an SQL identifier. 

2. If a condition was signaled using a condition-name and the first step did not 
find a match on SQLSTATE, or if there is no SQLSTATE associated with the 
condition-name, a search is done for a handler associated with the specific 
condition-name. 

3. If an SQLSTATE other than 00000 has occurred (including being signaled) and a 
handler for the generalized condition associated with that SQLSTATE, 
specifically, SQLEXCEPTION, SQLWARNING, or NOT FOUND, exists, that handler 
is executed. 

 

If no appropriate handler is found, the SQL statement precipitating the error or 
warning condition aborts with that condition. 

Specific SQLSTATEs and condition names are prevented by CA Datacom from being 
associated with more than one handler, except when the duplicate handler applies 
only to a generalized condition under which that SQLSTATE is classified, preventing 
an ambiguity by following the previously given rules. For instructions and examples 
of conditions and handlers, see Diagnostics and Condition Handling (see page 634). 

After execution of the handler-action statement(s) without any errors or warnings, 
the SQLSTATE is reset to 00000 and procedure execution continues as separately 
described for each of the handler types, CONTINUE, EXIT, and UNDO. 

If an error handler generates an unexpected (rather than signaled) error or warning 
condition, that condition is handled like any other error. To avoid endless loops in 
error handling, we only handle errors generated in the top level error handler. 
Unhandled error handler errors cause a RESIGNAL command to execute, followed 
by an exit from the handler and execution continuation as prescribed by any 
handler executed on the RESIGNAL.  On exit from the handlers, the DIAGNOSTICS 
AREA STACK (see GET DIAGNOSTICS in GET DIAGNOSTICS Statement (see page 649)) 
contains information on any unresolved errors. Unresolved errors cause an abort of 
the executing procedure statement. 

 



CREATE PROCEDURE 

 

646  SQL User Guide 
 

If a SIGNAL, RESIGNAL, or RAISE ERROR statement is executed as part of a handler, 
CA Datacom/DB assumes that the signaled condition is intended to be seen by the 
caller of the procedure, and CA Datacom/DB therefore exits with that error intact 
and unhandled. After successful execution of a CONTINUE type handler, procedure 
execution resumes with the statement following the one that generated the error. 

EXIT handlers operate in a similar way except that when they complete, procedure 
execution continues after execution of an implied LEAVE statement (see LEAVE 
Statement (see page 654)) whose target-label is the one attached to the compound 
statement in which the handler was defined. The result is that the compound 
statement containing the statement generating the error aborts but with no error. 

 

UNDO handlers start by performing a ROLLBACK that terminates at the save-point 
that SQL automatically establishes at the start of the compound statement in which 
the handler was defined, and closing all cursors open in that context.  The 
handler-action statements then execute.  If no unhandled conditions occur, then 
the condition precipitating the handler execution is cleared, and procedure 
execution continues after execution of an implied LEAVE statement (see LEAVE 
Statement (see page 654)) whose target label is the one attached to the compound 
statement under which the handler was defined. In other words, the compound 
statement containing the statement generating the error aborts but with no error. 

Note:  SIGNAL, RAISE ERROR, and RESIGNAL statements that execute inside 
handlers do not activate additional condition handling. They instead cause the 
handler to be exited with the signaled condition and cause the execution of the 
compound statement that triggered the handler to abort. In addition, the 
compound statement that contains the handler definition is aborted if it is different 
from the compound statement that triggered the handler, the same as would 
happen if the handler failed to resolve the triggering condition. The SIGNAL, RAISE 
ERROR, and RESIGNAL statements should therefore be positioned as the last 
statements in your condition handler. 

proc-SQL-stmt-list 

A proc-SQL-stmt-list is a list of proc-SQL-stmt statements, each terminated by a 
semicolon. 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  647  
 

Example 

Following is a compound statement example used in a procedure named 
creditLimitCheck. In the example, the compound statement begins with line number 
000017 and ends with line number 000030: 

 000013 -- Does the customer have enough credit to purchase an ordered part? 

 000014 CREATE PROCEDURE creditLimitCheck 

 000015    (INOUT result CHAR(80), IN custId CHAR(5), IN purchaseAmount DECIMAL(15,2)) 

 000016    LANGUAGE SQL 

 000017    limitCheck: BEGIN ATOMIC 

 000018       DECLARE creditAvailable DECIMAL(15,2) DEFAULT 0; 

 000019 

 000020       SELECT creditMax-creditUsed INTO creditAvailable 

 000021              FROM credit 

 000022              WHERE credit.custId = 
 

 000023                    CAST(creditLimitCheck.custId AS NUMERIC(5)); 

 000024 

 000025       IF (purchaseAmount > creditAvailable) THEN 

 000026          SET result = 'CREDIT LIMIT EXCEEDED'; 

 000027       ELSE 

 000028          SET result = 'CREDIT APPROVED'; 

 000029       END IF; 

 000030    END limitCheck@ 

On line 00030 of the previously shown example, the at sign (@), used in conjunction 
with the TERM=@ parameter in DBSQLPR, enables DBSQLPR to skip over semicolons 
embedded in statements and instead recognize the @ as the end of the statement. For 
more information about TERM=, see DBSQLPR Options (see page 123). 

 

DATACOM DUMP Statement 

The DATACOM DUMP statement can be used as a debugging tool for SQL Procedures. 
This statement causes requested information to be dumped to a specified file and 
marked by a header and footer as shown in the first and last lines in the example in 
Example (see page 648). The plan name that is shown in the dump report matches the 
SQL-name of your procedure. 

►►─ DATACOM DUMP ─ dumpable-expression-list ─ TO PXXSQL ──────────────────────►◄ 

Expansion of Where dumpable-expression-list is defined as 

   ┌─ , ──────────────────────┐ 
├──▼─┬─ SQL-variable-names ─┬─┴────────────────────────────────────────────────┤ 
     ├─ parameter-names ────┤ 
     ├─ special-registers ──┤ 
     ├─ literals ───────────┤ 
     └─ scalar-functions ───┘ 

dumpable-expression-list 

A list, separated by commas, of SQL-variable-names, parameter-names, 
special-registers, literals, and scalar-functions. 

 



CREATE PROCEDURE 

 

648  SQL User Guide 
 

TO PXXSQL 

PXXSQL is the destination supported by the DATACOM DUMP statement. TO 
PXXSQL causes output to go to the PXX location to which SQL output is sent. The 
destination of SQL output is either specified using the Multi-User startup option 
SYSOUT (see the CA Datacom/DB Database and System Administration Guide) or 
allowed to default. 

SQL-variable-names 

The SQL-variable-names is the name of a variable that is declared within a 
compound statement inside a SQL Procedure (a LANGUAGE SQL procedure). If the 
name conflicts with (matches) another SQL variable name from a nested compound 
statement (for example, a condition handler), or an SQL parameter name, or a 
column contained within a referenced table or view, the SQL variable name should 
be qualified using the start-label of the compound statement that immediately 
contains it. 

 

parameter-names 

The parameter-names variable refers to any parameter in your procedure. 

special-registers 

For information about special registers (see page 533). 

literals 

For information about literals, see literals (see page 510). 

scalar-functions 

For information about scalar functions, see scalar functions. (see page 554) 

Note:  When using scalar functions, operands can include SQL variables and 
parameters but not column names. Fetching the value of a column into a variable is 
a suggested way to use a scalar function. 

 

Example 

If you add a tracesOn input parameter or SQL variable to your procedure, you can use it 
to turn DATACOM DUMP statements on and off, preventing your having to recode the 
statements if procedure modifications require debugging. For example: 

 IF tracesOn = 'TRUE' THEN 

   DATACOM DUMP dumpable-expression-list TO PXXSQL; 

 END IF; 

DATACOM DUMP produces output that goes to the PXXSQL and is printed in the 
detailed format shown in the following sample. In this context, the dumping of 
constants, for example VALUES ON EXIT in the sample, can help find the output on your 
test or development MUFs. We reserve the right, however, to change the format of 
dumps without notice. For example, a less detailed, summary style dump that produces 
simpler output could be provided at a later time, a summary dump style that could 
even, at that time, become the default style. 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  649  
 

Following is the DATACOM DUMP statement that produces the sample output that 
follows: 

 DATACOM DUMP 'VALUES ON EXIT:', result, sqlstateLocal, 

                                       errorMessage TO PXXSQL; 

 000017 S0001 -- DCM DUMP PLAN SYSADM.SUPPLYHOSTVARSFORC STMT 5 LUW 0000000000000001 REQ 305 TASK 1 8/3/2007 17:39:02 -- 

 000018 S0001   LVL 2 NODE 3684D16C OP=00000000 NXT=3684D1A8  QCB=00000000 VAL=3684D15C NAM=00000000 

 000019 S0001   ... . PROCTYPE=0x0000  STEP=-01  OPER=000    FLAGS=0x0,0x0 

 000020 S0001   ... . LITERAL (#0021:00000.00015): CHAR (15) NOT NULL 

 000021 S0001   DCM . CONTENTS= VALUES ON EXIT:. 

 000022 S0001   LVL 2 NODE 3684D1A8 OP=00000000 NXT=3684D266 QCB=3684D068 VAL=3684254F NAM=00000000 

 000023 S0001   ... . PROCTYPE=0x0000  STEP=01  OPER=000    FLAGS=0x0,0x0 

 000024 S0001   ... . LCLVARREF (#1027:00000.00081): CHAR (80) 

 000025 S0001   DCM . NAME: ..RESULT 

 000026 S0001   DCM . CONTENTS= CREDIT LIMIT EXCEEDED 

 000027 S0001   LVL 2 NODE 3684D266 OP=00000000 NXT=3684D324  QCB=3684D068 VAL=36842722 NAM=00000000 

 000028 S0001   ... . PROCTYPE=0x0000  STEP=01  OPER=000    FLAGS=0x0,0x0 

 000029 S0001   ... . LCLVARREF (#1025:00000.00006): CHAR (5) 

 000030 S0001   DCM . NAME: ..SQLSTATELOCAL 

 000031 S0001   DCM . CONTENTS= NULL 

 000032 S0001   LVL 2 NODE 3684D324 OP=00000000 NXT=3684D446L QCB=3684D068 VAL=3684244B NAM=00000000 

 000033 S0001   ... . PROCTYPE=0x8000  STEP=01  OPER=000    FLAGS=0x0,0x0 

 000034 S0001   ... . LCLVARREF (#1026:00000.00081): CHAR (80) 

 000035 S0001   DCM . NAME: ..ERRORMESSAGE 

 000036 S0001   DCM . CONTENTS= N/A 

 000037 S0001 -- END DCM DUMP PLAN SYSADM.SUPPLYHOSTVARSFORC STMT 5 LUW 0000000000000001 REQ 305 TASK 1 8/3/2007 17:39:02 -- 

See SIMULATE DATACOM PROCEDURE Statement (see page 665) to see how a 
DATACOM DUMP statement that produced the previously shown sample report appears 
within a SIMULATE PROCEDURE statement. 

 

GET DIAGNOSTICS Statement 

The GET DIAGNOSTICS statement retrieves exception or completion condition 
information from a Diagnostics Area (for information, see Diagnostics Area (see 
page 634)). 

Note:  CURRENT and STACKED are optional choices for specifying which diagnostics area 
to use. 

CONDITION followed by an integer is an optional specificiation for which condition area 
to use. If you do not specify CONDITION, a default of CONDITION 1 is used (see the 
description following the syntax). 

►►─ GET ─┬───────────┬─ DIAGNOSTICS ──────────────────────────────────────────► 
         ├─ CURRENT ─┤ 
         └─ STACKED ─┘ 
 
 ►─┬──────────────────────────────────┬─ diagnostic-info-items ───────────────►◄ 
   └─ CONDITION ─ integer-expression ─┘ 

Expansion of Where diagnostic-info-items are defined as 

   ┌─ , ───────────────────────┐ 
├──▼─┬─ statement-info-item ─┬─┴───────────────────────────────────────────────┤ 
     └─ condition-info-item ─┘ 

 



CREATE PROCEDURE 

 

650  SQL User Guide 
 

Expansion of Where statement-info-item is defined as 

   ┌─ , ────────────────────────────────────────────────┐ 
├──▼─┬─ SQL-variable-name ──┬─statement-info-item-name ─┴──────────────────────┤ 
     └─ SQL-parameter-name ─┘ 

Expansion of Where statement-info-item-name is defined as 

├──┬─ NUMBER ─┬────────────────────────────────────────────────────────────────┤ 
   └─ MORE ───┘ 

 

Expansion of Where condition-info-item is defined as 

   ┌─ , ───────────────────────────────────────────┐ 
├──▼─┬─ SQL-variable-name ──┬─cond-info-item-name ─┴───────────────────────────┤ 
     └─ SQL-parameter-name ─┘ 

Expansion of Where cond-info-item-name is defined as 

├──┬─ CONDITION_NUMBER ─────┬──────────────────────────────────────────────────┤ 
   ├─ MESSAGE_LENGTH ───────┤ 
   ├─ MESSAGE_TEXT ─────────┤ 
   ├─ RETURNED_SQLSTATE ────┤ 
   └─ CONDITION_IDENTIFIER ─┘ 

 

CURRENT 

(Optional) Specifying CURRENT (or omitting this optional specification), to indicate 
which diagnostics area to use, causes information to be retrieved on the SQL error 
(or other condition) generated by the SQL statement that was just executed. 

STACKED 

(Optional) Specifying STACKED inside an error handler retrieves the Diagnostics 
Area that is related to the condition that caused the handler to be executed. This 
original Diagnostics Area has been pushed in order to supply an empty current 
Diagnostics Area for use by any conditions that can be caused by the error handler 
itself. 

 

CONDITION integer-expression 

(Optional) CONDITION followed by an integer that can range in value from one (1) 
to the number of condition areas available, specifies which condition area to 
retrieve. Within each Diagnostics Area lies a stack of condition information areas, 
allowing each Diagnostics Area to store information related to any sequence of 
errors or conditions that could have occurred during the execution of a single 
statement. 

The number of condition areas available is specified by using the Multi-User startup 
option SQL_COND_INFO_AREAS (for Multi-User startup option information, see the 
CA Datacom/DB Database and System Administration Guide). 

If you do not specify CONDITION, the default is CONDITION 1, which specifies using 
the most recent error condition, that is, the error condition that occurred during 
the last non-diagnostics related SQL statement that executed. 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  651  
 

diagnostic-info-items 

The diagnostic-info-items variable specifies the information you want to store and 
where to store it. 

statement-info-item 

The statement-info-item contains information about the statement that was 
executing when the condition occurred. 

statement-info-item-name 

A statement-info-item-name (the data type listed in parentheses must be 
compatible with the data type of the variable or parameter into which the 
value is being stored) can be one of the following: 

NUMBER (SMALLINT) NUMBER indicates the number of condition areas that 
are in use. 

MORE (CHAR(1)) A letter Y (for YES) indicates that more conditions than 
condition areas occurred. 

 

condition-info-item 

The condition-info-item variable contains information about the condition that 
occurred. 

cond-info-item-name 

A cond-info-item-name (the data type listed in parentheses must be compatible 
with the data type of the variable or parameter into which the value is being 
stored) can be one of the following: 

CONDITION_NUMBER (SMALLINT) indicates the condition for which you want 
to retrieve information. Specifying 1 (a number one) indicates the most recent 
condition, a 2 specifies the second most recent condition, and so on. 

MESSAGE_LENGTH (SMALLINT) indicates the length of the message text 
information item. 

MESSAGE_TEXT (VARCHAR(128)) indicates the text of the error message or 
signal condition. 

RETURNED_SQLSTATE (CHAR(5)) indicates the condition that occurred. 

CONDITION_IDENTIFIER (VARCHAR(128)) gives the name, if one was signaled, 
of a named condition. 

 



CREATE PROCEDURE 

 

652  SQL User Guide 
 

Example 

A GET DIAGNOSTICS statement example follows. In the example that follows, logic that 
is not shown (for space considerations) is indicated by three vertically arranged periods. 

    . 

    . 

    . 

    DECLARE errMsg varchar(128); 

    DECLARE sqlStateLocal char(5) default '00000'; 

    DECLARE continue HANDLER FOR sqlexception, sqlwarning, not found 

       GET stacked DIAGNOSTICS 

          sqlStateLocal = RETURNED_SQLSTATE, errMsg = MESSAGE_TEXT; 

    . 

    . 

    . 

 startRepeat: 

   REPEAT 

      FETCH orderCrs INTO orderId, custId, creditReqAmt; 

      . 

      . 

      . 

   UNTIL sqlStateLocal <-> '00000' 

   END REPEAT DATACOM LOOPLIMIT 100; 

   . 

   . 

   . 
 

IF-THEN Statement 

The IF-THEN statement controls logic execution flow in a compound statement, that is, 
it allows you to specify what logic to use, based on some condition that you specify. 

Following is the syntax for the IF-THEN statement: 

►►─ IF ─ proc-search-condition ─ THEN ─ proc-SQL-stmt-list ───────────────────► 
 
 ►─┬──────────────────────────────────────────────────────────────┬───────────► 
   └─ ELSEIF ─ proc-search-condition ─ THEN ─ proc-SQL-stmt-list ─┘ 
 
 ►─┬─────────────────────────────┬─ END IF ───────────────────────────────────►◄ 
   └─ ELSE ─ proc-SQL-stmt-list ─┘ 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  653  
 

proc-search-condition 

The proc-search-condition specifies a condition that is true, false, or unknown about 
a row. The proc-search-condition is similar to the search-condition described in with 
the following modifications that allow its use in SQL Procedures: 

■ SQL parameter and SQL variable references are allowed instead of column and 
host-variable references. 

■ Aggregate functions and any predicate involving a sub-query are not allowed. 

proc-SQL-stmt-list 

A proc-SQL-stmt-list is a list of proc-SQL-stmt statements, each terminated by a 
semicolon. For information about a proc-SQL-stmt, see CREATE PROCEDURE Syntax 
and Description (see page 624). 

 

Example 

An IF-THEN statement example follows. In the example that follows, logic that is not 
shown (for space considerations) is indicated by three vertically arranged periods. 

      . 

      . 

      . 

      IF sqlStateLocal <-> '00000' THEN 

         LEAVE loopExample; 

      END IF; 

      . 

      . 

      . 
 

ITERATE Statement 

The ITERATE statement controls looping logic in a compound statement. Use the 
ITERATE statement to specify when to skip to the next iteration of a loop. 

Following is the syntax for the ITERATE statement: 

►►─ ITERATE ─ statement-label ────────────────────────────────────────────────►◄ 

statement-label 

The statement-label specifies the start-label of a loop, that is, it relates the ITERATE 
statement to the position at which execution continues. 

 



CREATE PROCEDURE 

 

654  SQL User Guide 
 

Example 

An ITERATE statement example follows. This example skips rows we are not interested 
in. In the example that follows, logic that is not shown (for space considerations) is 
indicated by three vertically arranged periods. 

    . 

    . 

    . 

 startWhile: 

    WHILE sqlStateLocal <-> '00000' DO 

       FETCH orderCrs INTO orderId, custId, creditReqAmt; 

       . 

       . 

       . 

       IF creditReqAmt = 0 THEN 

          ITERATE startWhile; 

       END IF; 

       . 

       . 

       . 

    END WHILE endWhile DATACOM LOOPLIMIT 10000; 

    . 

    . 

    . 
 

LEAVE Statement 

The LEAVE statement in a compound statement specifies that you want to exit the 
specified statement, which must contain the LEAVE statement. 

Following is the syntax for the LEAVE statement: 

►►─ LEAVE ─ statement-label ──────────────────────────────────────────────────►◄ 

statement-label 

The statement-label specifies the start-label of the statement that you want to exit. 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  655  
 

Example 

A LEAVE statement example follows. This example exits the loop after a non-zero 
SQLSTATE. In the example that follows, logic that is not shown (for space 
considerations) is indicated by three vertically arranged periods. 

      . 

      . 

      . 

      DECLARE continue HANDLER FOR sqlexception, sqlwarning, not found 

         GET stacked DIAGNOSTICS 

            sqlStateLocal = RETURNED_SQLSTATE, errMsg = MESSAGE_TEXT; 

      . 

      . 

      . 

 loopExample: 

    LOOP 

       FETCH orderCrs INTO orderId, custId, creditReqAmt; 

       IF sqlStateLocal <-> '00000' THEN 

          LEAVE loopExample; 

       END IF; 

       . 

       . 

       . 

    END LOOP loopExample DATACOM LOOPLIMIT 100; 

    . 

    . 

    . 
 

LOOP Statement 

The LOOP statement controls looping logic in a compound statement. It provides an 
unconditional loop that continues until there is an explicit or condition-based (with a 
carefully designed EXIT or UNDO condition-handler) loop exit. You must therefore be 
certain to include a LEAVE statement or SIGNAL statement in your design logic. In 
addition, we recommend that you use the optional DATACOM LOOPLIMIT clause. 

Following is the syntax for the LOOP statement: 

►►─┬──────────────────────┬─ LOOP ─ proc-SQL-stmt-list ─ END LOOP ────────────► 
   └─ start-label: ───────┘ 
 
 ►─┬───────────────────┬─┬───────────────────────────────────────┬────────────►◄ 
   └─ end-label; ──────┘ └─ DATACOM LOOPLIMIT ─ integer-literal ─┘ 

start-label: / end-label 

(Optional) A start-label: is an SQL identifier (followed by a colon) that can be used in 
various flow-control statements to mark the destination of a branch. When you 
specify an end-label you must also specify a matching start-label. The labels must 
match. 

 



CREATE PROCEDURE 

 

656  SQL User Guide 
 

proc-SQL-stmt-list 

A proc-SQL-stmt-list is a list of proc-SQL-stmt statements, each terminated by a 
semicolon. For information about a proc-SQL-stmt, see CREATE PROCEDURE Syntax 
and Description (see page 624). 

DATACOM LOOPLIMIT 

We recommend that you use DATACOM LOOPLIMIT. DATACOM LOOPLIMIT is a CA 
Datacom extension that we provide to allow your proactive avoidance of endless 
loops that might be caused by faulty logic, unexpected or missing column values, or 
other unforeseen conditions. The Multi-User startup option 
SQL_DATACOM_LOOPLIMIT can be used to force a default limit on each looping 
statement. An error is produced if the limit is exceeded. 

integer-literal 

Defines how many loops are too many. 
 

Example 

A LOOP statement example follows. In the example that follows, logic that is not shown 
(for space considerations) is indicated by three vertically arranged periods. 

     . 

     . 

     . 

     DECLARE continue HANDLER FOR sqlexception, sqlwarning, not found 

        GET stacked DIAGNOSTICS 

           sqlStateLocal = RETURNED_SQLSTATE, errMsg = MESSAGE_TEXT; 

     . 

     . 

     . 

 loopExample: 

    LOOP 

       FETCH orderCrs INTO orderId, custId, creditReqAmt; 

       IF sqlStateLocal <-> '00000' THEN 

          LEAVE loopExample; 

       END IF; 

       . 

       . 

       . 

    END LOOP loopExample DATACOM LOOPLIMIT 100; 

    . 

    . 

    . 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  657  
 

RAISE ERROR Statement 

The RAISE ERROR statement is used to signal an error or other condition in the manner 
of the SIGNAL statement. You must provide a valid SQLSTATE value when using the 
RAISE ERROR statement. 

Note:  SIGNAL, RAISE ERROR, and RESIGNAL statements that execute inside handlers do 
not activate additional condition handling. They instead cause the handler to be exited 
with the signaled condition and cause the execution of the compound statement that 
triggered the handler to abort. In addition, the compound statement that contains the 
handler definition is aborted if it is different from the compound statement that 
triggered the handler, the same as would happen if the handler failed to resolve the 
triggering condition. The SIGNAL, RAISE ERROR, and RESIGNAL statements should 
therefore be positioned as the last statements in your condition handler. 

►►─ RAISE ERROR ─ (signal-value,error-message-text) ──────────────────────────►◄ 

Expansion of Where signal-value is defined as 

├──┬─ condition-name ─┬────────────────────────────────────────────────────────┤ 
   └─ sqlstate-value ─┘ 

 

The RAISE ERROR statement functions identically to the following SIGNAL statement 
syntax: 

Note:  For more information on the SIGNAL statement, see SIGNAL Statement (see 
page 663). 

►►─ SIGNAL ─ signal-value ─ SET MESSAGE_TEXT = ─ error-message-text ──────────►◄ 

Expansion of Where signal-value is defined as 

├──┬─ condition-name ─┬────────────────────────────────────────────────────────┤ 
   └─ sqlstate-value ─┘ 

 

signal-value 

(Optional) When a signal-value is specified, existing Condition Areas within the 
current Diagnostics Area are pushed down in the Condition Area stack, that is, 
Condition Area number one becomes Condition Area number two. Condition Area 
number one is then populated with any supplied or implied RETURNED_SQLSTATE 
(supplied using sqlstate-value) and (or) CONDITION_IDENTIFIER (supplied using 
condition-name) in addition to any other information supplied in the SET 
signal-information clause. The statement-information-items are modified to 
indicate that a RESIGNAL statement was the last to modify the Diagnostics Area. 

 



CREATE PROCEDURE 

 

658  SQL User Guide 
 

condition-name 

See the condition-name information in the compound statement section that 
begins in Compound Statement (see page 642). 

sqlstate-value 

See the sqlstate-value information in the compound statement section that begins 
in Compound Statement (see page 642). 

error-message-text 

The text of an error message whose occurrence you want to signal an error. 
 

Example 

A RAISE ERROR statement example follows. In the example that follows, logic that is not 
shown (for space considerations) is indicated by three vertically arranged periods. 

 . 

 . 

 . 

 IF creditReqAmt > creditAvailable 

  RAISE ERROR ('2FS04', 'CUSTOMER HAS INSUFFICIENT CREDIT LIMIT TO COMPLETE 

PURCHASE'); 

 END IF; 

 . 

 . 

 . 
 

REPEAT-UNTIL Statement 

The REPEAT-UNTIL statement defines conditional looping logic in a compound 
statement. It provides a means to loop until some predicate becomes true. We 
recommend that you use the optional DATACOM LOOPLIMIT clause with this statement. 

Following is the syntax for the REPEAT-UNTIL statement: 

►►─┬──────────────────────┬─ REPEAT ─ proc-SQL-stmt-list ─────────────────────► 
   └─ start-label: ─┘ 
 
 ►─ UNTIL ─ proc-search-condition ─ REPEAT ─┬─────────────┬───────────────────► 
                                            └─ end-label ─┘ 
 
 ►─┬───────────────────────────────────────┬──────────────────────────────────►◄ 
   └─ DATACOM LOOPLIMIT ─ integer-literal ─┘ 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  659  
 

start-label: / end-label 

(Optional) A start-label: is an SQL identifier (followed by a colon) that can be used in 
various flow-control statements to mark the destination of a branch. When you 
specify an end-label you must also specify a start-label, and the labels must match. 

proc-SQL-stmt-list 

A proc-SQL-stmt-list is a list of proc-SQL-stmt statements, each terminated by a 
semicolon. For information about a proc-SQL-stmt, see CREATE PROCEDURE Syntax 
and Description (see page 624). 

 

proc-search-condition 

The proc-search-condition specifies a condition that is true, false, or unknown about 
a row. The proc-search-condition is similar to the search-condition described in with 
the following modifications that allow its use in SQL Procedures: 

■ SQL parameter and SQL variable references are allowed instead of column and 
host-variable references. 

■ Aggregate functions and any predicate involving a sub-query are not allowed. 
 

DATACOM LOOPLIMIT 

We recommend that you use DATACOM LOOPLIMIT. DATACOM LOOPLIMIT is a CA 
Datacom extension that we provide to allow your proactive avoidance of endless 
loops that might be caused by faulty logic, unexpected or missing column values, or 
other unforeseen conditions. The Multi-User startup option 
SQL_DATACOM_LOOPLIMIT can be used to force a default limit on each looping 
statement. An error is produced if the limit is exceeded. 

integer-literal 

The integer-literal specifies the maximum number of times the loop is allowed to 
execute. 

 



CREATE PROCEDURE 

 

660  SQL User Guide 
 

Example 

A REPEAT-UNTIL statement example follows. In the example that follows, logic that is 
not shown (for space considerations) is indicated by three vertically arranged periods. 

    . 

    . 

    . 

    DECLARE continue HANDLER FOR sqlexception, sqlwarning, not found 

       GET stacked DIAGNOSTICS 

          sqlStateLocal = RETURNED_SQLSTATE, errMsg = MESSAGE_TEXT; 

    . 

    . 

    . 

 startRepeat: 

    REPEAT 

       FETCH orderCrs INTO orderId, custId, creditReqAmt; 

       . 

       . 

       . 

    UNTIL sqlStateLocal <-> '00000' 

    END REPEAT DATACOM LOOPLIMIT 100; 

    . 

    . 

    . 
 

RESIGNAL Statement 

The RESIGNAL statement is generally used within a handler to either add information to 
the condition information items in a Diagnostics Area that represents an error being 
currently handled, or to fill in subsequent Condition Areas within a Diagnostics Area to 
indicate that a subsequent error occurred during error handling. The most appropriate 
handler, if one exists, is also triggered. A RESIGNAL that specifies an SQLSTATE that has 
no handler can also be used to alter or customize the error information seen by the 
end-user. 

If a handler executes, SQL statement execution might not continue following completion 
of the SIGNAL statement. The SQL statement that is executed after a SIGNAL completes 
is dependent upon how the handler was declared and whether that handler succeeds. 
For example, if a CONTINUE type handler executes and succeeds, execution continues as 
if no error occurred. For information about other possibilities such as UNDO and EXIT, 
see Diagnostics and Condition Handling (see page 634). 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  661  
 

Note:  SIGNAL, RAISE ERROR, and RESIGNAL statements that execute inside handlers do 
not activate additional condition handling. They instead cause the handler to be exited 
with the signaled condition and cause the execution of the compound statement that 
triggered the handler to abort. In addition, the compound statement that contains the 
handler definition is aborted if it is different from the compound statement that 
triggered the handler, the same as would happen if the handler failed to resolve the 
triggering condition. The SIGNAL, RAISE ERROR, and RESIGNAL statements should 
therefore be positioned as the last statements in your condition handler. 

 

►►─ RESIGNAL ─┬────────────────┬─┬──────────────────────┬─────────────────────►◄ 
              └─ signal-value ─┘ └─ signal-information ─┘ 

Expansion of Where signal-value is defined as 

├──┬─ condition-name ─┬────────────────────────────────────────────────────────┤ 
   └─ sqlstate-value ─┘ 

Expansion of Where signal-information is defined as 

├── SET ─ signal-info-item-list ───────────────────────────────────────────────┤ 
 

Expansion of Where signal-info-item-list is defined as 

   ┌─ , ────────────────┐ 
├──▼─ signal-info-item ─┴──────────────────────────────────────────────────────┤ 

Expansion of Where signal-info-item is defined as 

├── condition-info-item-name ─ =ssbl. ─ proc-value-expression ─────────────────┤ 
 

signal-value 

(Optional) When a signal-value is specified, existing Condition Areas within the 
current Diagnostics Area are pushed down in the Condition Area stack, that is, 
Condition Area number one becomes Condition Area number two. Condition Area 
number one is then populated with any supplied or implied RETURNED_SQLSTATE 
(supplied using sqlstate-value) and (or) CONDITION_IDENTIFIER (supplied using 
condition-name) in addition to any other information supplied in the SET 
signal-information clause. The statement-information-items are modified to 
indicate that a RESIGNAL statement was the last to modify the Diagnostics Area. 

signal-information 

(Optional) If signal-information is supplied without a signal-value, that information 
is copied into Condition Area number one to represent the error condition being 
handled. The most appropriate handler, if one exists, is then triggered. 

 



CREATE PROCEDURE 

 

662  SQL User Guide 
 

condition-name 

See the condition-name information in the compound statement section that 
begins in Compound Statement (see page 642). 

sqlstate-value 

See the sqlstate-value information in the compound statement section that begins 
in Compound Statement (see page 642). 

SET signal-info-item-list 

The SET signal-info-item-list specification is used to set a condition-info-item such as 
the error message. 

 

condition-info-item-name 

For information about the condition-info-item-name, including a list of the 
condition information items that can be set. 

proc-value-expression 

For informaiton about the proc-value-expression see CASE Statement (see 
page 640). 

 

Example 

A RESIGNAL statement example follows. In this example, SQLSTATE 'S0480' remains 
unhandled and can be seen by the end user. In the example that follows, logic that is 
not shown (for space considerations) is indicated by three vertically arranged periods. 

 . 

 . 

 . 

 declare continue handler for sqlexception 

 errHandler1: begin atomic 

    set errCount = errCount + 1; 

    get STACKED diagnostics 

       sqlStateLocal = returned_sqlstate, errMsg = message_text; 

    insert into errTable values 

       (orderId,errCount,"sqlState",errMsg); 

    if sqlStateLocal = 'S0480' 

       RESIGNAL 

    endif 

 end errHandler1; 

 . 

 . 

 . 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  663  
 

SIGNAL Statement 

The SIGNAL statement signals an error or other condition, populates the first 
Diagnostics Area (see Diagnostics and Condition Handling (see page 634)), and triggers 
the execution of the appropriate condition handler, if one exists. The information 
supplied by the SIGNAL statement is available for retrieval by the GET DIAGNOSTICS 
statement until the error condition is either resolved or a subsequent statement is 
executed. 

The first Diagnostics Area is cleared and the RETURNED_SQLSTATE and/or 
CONDITION_IDENTIFIER are set in the first condition information area of that 
Diagnostics Area. Certain statement information items such as NUMBER and MORE are 
also filled in. Any signal information supplied is also moved to the condition information 
area. The most appropriate error/condition handler (if one exists) is then triggered. 

 

If a handler executes, SQL statement execution might not continue following completion 
of the SIGNAL statement. The SQL statement that is executed after a SIGNAL completes 
is dependent upon how the handler was declared and whether that handler succeeds. 
For example, if a CONTINUE type handler executes and succeeds, execution continues as 
if no error occurred. For information about other possibilities such as UNDO and EXIT, 
see Diagnostics and Condition Handling (see page 634). 

Note:  SIGNAL, RAISE ERROR, and RESIGNAL statements that execute inside handlers do 
not activate additional condition handling. They instead cause the handler to be exited 
with the signaled condition and cause the execution of the compound statement that 
triggered the handler to abort. In addition, the compound statement that contains the 
handler definition is aborted if it is different from the compound statement that 
triggered the handler, the same as would happen if the handler failed to resolve the 
triggering condition. The SIGNAL, RAISE ERROR, and RESIGNAL statements should 
therefore be positioned as the last statements in your condition handler. 

 

►►─ SIGNAL ─ signal-value ─┬──────────────────────┬───────────────────────────►◄ 
                           └─ signal-information ─┘ 

Expansion of Where signal-value is defined as 

├──┬─ condition-name ─┬────────────────────────────────────────────────────────┤ 
   └─ sqlstate-value ─┘ 

Expansion of Where signal-informatiion is defined as 

├── SET ─ signal-info-item-list ───────────────────────────────────────────────┤ 

Expansion of Where signal-info-item-list is defined as 

   ┌─ , ────────────────┐ 
├──▼─ signal-info-item ─┴──────────────────────────────────────────────────────┤ 

Expansion of Where signal-info-item is defined as 

├── condition-info-item-name ─ = ─ proc-value-expression ──────────────────────┤ 
 



CREATE PROCEDURE 

 

664  SQL User Guide 
 

signal-value 

(Optional) When a signal-value is specified, existing Condition Areas within the 
current Diagnostics Area are pushed down in the Condition Area stack, that is, 
Condition Area number one becomes Condition Area number two. Condition Area 
number one is then populated with any supplied or implied RETURNED_SQLSTATE 
(supplied using sqlstate-value) and/or CONDITION_IDENTIFIER (supplied using 
condition-name) in addition to any other information supplied in the SET 
signal-information clause. The statement-information-items are modified to 
indicate that a SIGNAL statement was the last to modify the Diagnostics Area. 

signal-information 

(Optional) The supplied signal-information is copied into Condition Area number 
one to represent the condition being signaled. The most appropriate handler, if one 
exists, is then triggered. 

condition-name 

See the condition-name information in the compound statement section that 
begins in Compound Statement (see page 642). 

 

sqlstate-value 

See the sqlstate-value information in the compound statement section that begins 
in Compound Statement (see page 642). 

SET signal-info-item-list 

The SET signal-info-item-list specification is used to set a condition-info-item such as 
the error message. 

 

condition-info-item-name 

For information about the condition-info-item-name, including a list of the 
condition information items that can be set, see GET DIAGNOSTICS Statement (see 
page 649). 

proc-value-expression 

For informaiton about the proc-value-expression see CASE Statement (see 
page 640). 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  665  
 

Example 

A SIGNAL statement example follows. Another SIGNAL statement example can be found 
in the section labeled SIGNAL orderApproved in Sample Procedure 2. In the example 
that follows, logic that is not shown (for space considerations) is indicated by three 
vertically arranged periods. 

 . 

 . 

 . 

 IF creditReqAmt > creditAvailable 

  SIGNAL SQLSTATE '2FS04' 

   SET MESSAGE_TEXT = 'CUSTOMER HAS INSUFFICIENT CREDIT LIMIT TO COMPLETE PURCHASE'; 

 END IF; 

 . 

 . 

 . 
 

SIMULATE DATACOM PROCEDURE Statement 

(DBSQLPR only) The SIMULATE DATACOM PROCEDURE statement provides support in 
DBSQLPR for SQL variables, user-controlled cursors, and complex program logic. 

►►─ SIMULATE DATACOM PROCEDURE ─ compound-statement ──────────────────────────►◄ 

compound-statement 

The compound statement is described in Compound Statement (see page 642). The 
start-label of the compound statement is required in the context of the SIMULATE 
DATACOM PROCEDURE statement and becomes the SQL-name of an actual 
procedure that is created, executed, and then dropped. 

To simulate a procedure that itself has parameters, either simulate the parameters 
by declaring SQL variables and assigning values or issue a CREATE PROCEDURE 
followed by a simulated call to that procedure as shown in the following example. 

 

In the following example, SQL-names that do not consist of delimited identifiers are 
converted to upper-case by SQL. Also, if you need confirmation of the values returned 
into the ordersAccepted and ordersRejected variables, use the DATACOM DUMP 
statement (see DATACOM DUMP Statement (see page 647)) or insert the values into a 
table, for retrieval outside of the procedure, by subsequent SELECT statements. The 
ORDERREVIEW procedure called from this example is created by the example SQL 
procedure that begins in Examples (see page 667). 

 SIMULATE DATACOM PROCEDURE 

 supplyVarsForCall: begin atomic 

    declare ordersAccepted, ordersRejected int; 

    CALL ORDERREVIEW(ordersAccepted, ordersRejected); 

 end supplyVarsForCall@ 
 



CREATE PROCEDURE 

 

666  SQL User Guide 
 

Following is a SIMULATE PROCEDURE statement that calls the procedure created by the 
compound statement example in Example (see page 647). This SIMULATE PROCEDURE 
statement contains the DATACOM DUMP example shown in Example (see page 648). 

 000034 simulate datacom procedure 

 000035 supplyHostVarsForCall: begin atomic 

 000036    declare errorMessage, result char(80) default 'N/A'; 

 000037 -- The default value for SQL vars is NULL 

 000038    declare sqlstateLocal char(5); 

 000039 

 000040    declare continue handler for not found 

 000041          set errorMessage = 'CUSTOMER HAS NO CREDIT RECORD'; 

 000042    declare continue handler for sqlexception, sqlwarning 

 000043          get diagnostics sqlstateLocal = returned_sqlstate, 

 000044                          errorMessage  = message_text; 

 000045 

 000046    datacom dump 'VALUES ON ENTRY:', result,errorMessage to pxxsql; 

 000047    call creditLimitCheck(result, '00001', 999.99); 

 000048    datacom dump 'VALUES ON EXIT:', result,sqlstateLocal,errorMessage to pxxsql; 

 000049 -- 

 000050 -- In a more comprehensive example, procedure "creditLimitCheck" could have 

 000051 -- returned an error message and sqlstate through the parameter list, with 

 000052 -- the inclusion of an SQLEXCEPTION error handler containing a GET DIAGNOSTICS 

 000053 -- call.  This would prevent the caller from having to code their own 

 000054 -- GET DIAGNOSTICS statement to retrieve the information into SQL variables. 

 000055 end supplyHostVarsForCall@ 

 

Example 

A WHILE statement example follows. In the example that follows, logic that is not shown 
(for space considerations) is indicated by three vertically arranged periods. 

   . 

   . 

   . 

   DECLARE continue HANDLER FOR sqlexception, sqlwarning, not found 

      GET stacked DIAGNOSTICS 

         sqlStateLocal = RETURNED_SQLSTATE, errMsg = MESSAGE_TEXT; 

   . 

   . 

   . 

 startWhile: 

    WHILE sqlStateLocal <-> '00000' DO 

       FETCH orderCrs INTO orderId, custId, creditReqAmt; 

       . 

       . 

       . 

    END WHILE endWhile DATACOM LOOPLIMIT 10000; 

    . 

    . 

    . 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  667  
 

Examples 

Following are examples that show the use of SQL Procedures. 

Sample Procedure 1 

In this example, SQL names that do not consist of delimited identifiers are converted to 
uppercase by SQL. Also, notice that the at sign (@), used in conjunction with the 
TERM=@ parameter in DBSQLPR, enables DBSQLPR to skip over semicolons embedded 
in statements and instead recognize the @ as the end of the statement. For more 
information about TERM=, see DBSQLPR Options (see page 123). For z/OS and z/VSE JCL 
samples, see Example JCL. (see page 133) 

 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

  //jobname     See the note above. 

  //       REGION=1024K 

  //JOBLIB  your DD statements go here (see Listing Libraries for CA Datacom Products) 

  //SQLEXEC  EXEC PGM=DBSQLPR, 

  //       PARM='authid=sysadm,prtWidth=1500,inputWidth=80,term=@' 

  //*CAOESTOP DD  DUMMY 

  //SYSUDUMP DD  SYSOUT=* 

  //SYSPRINT DD  SYSOUT=* 

  //STDERR   DD  SYSOUT=* 

  //STDOUT   DD  SYSOUT=* 

  //OPTIONS  DD  * 

  /* 

  //SYSIN    DD  * 
 



CREATE PROCEDURE 

 

668  SQL User Guide 
 

  -- Supply customer credit limits for procedure creditLimitCheck below. 

  create table credit 

     (custId numeric(10), 

      creditMax  decimal(15,2), 

      creditUsed decimal(15,2)) @ 

  insert into credit values (1, 2000., 1000.)@ 

  commit@ 

  -- 

  -- Does the customer have enough credit to purchase an ordered part? 

  create procedure creditLimitCheck 

     (inout result varchar(25), in custId char(5), 

      in purchaseAmount decimal(15,2), in turnDebugDumpsOn int) 

     language sql 

     limitCheck: begin atomic 

        declare creditAvailable decimal(15,2) default 0; 

 

  --    Compute available credit. 

        select creditMax-creditUsed into creditAvailable 

               from credit 

               where credit.custId = 

                     cast(creditLimitCheck.custId as numeric(5)); 
 

        if (purchaseAmount > creditAvailable) then 

           set result = 'CREDIT LIMIT EXCEEDED'; 

        else 

           set result = 'CREDIT APPROVED'; 

        end if; 

 

        if (turnDebugDumpsOn = 1) then 

           datacom dump purchaseAmount, creditAvailable, result, 

                        'CREDITLIMITCHECK CUSTID=' || custId 

                   to pxxsql; 

        end if; 

     end limitCheck@ 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  669  
 

  -- 

  --  Use SIMULATE to supply a variable for the INOUT "result" parameter 

  --  SIMULATE was invented to provide procedure-like functionality to DBSQLPR. 

  simulate datacom procedure 

  supplyVarsForCall: begin atomic 

     declare errorMessage char(80) default 'N/A'; 

     declare result varchar(25) default 'N/A'; 

  -- The default value for SQL variables is NULL 

     declare sqlstateLocal char(5); 

  -- 

  -- Note that proc. "creditLimitCheck" could have contained the error handlers 

  -- directly and returned an error message and sqlstate through the parameters. 

     declare continue handler for not found 

           set errorMessage = 'CUSTOMER HAS NO CREDIT RECORD'; 

     declare continue handler for sqlexception, sqlwarning 

           get diagnostics sqlstateLocal = returned_sqlstate, 

                           errorMessage  = message_text; 
 

     datacom dump 'VALUES ON ENTRY:', result, errorMessage to pxxsql; 

  -- Note that SQL variable "result" is being used like a host variable here. 

     call creditLimitCheck(result, '00001', 999.99, 1); 

     datacom dump 'VALUES ON EXIT:', result,sqlstateLocal,errorMessage to pxxsql; 

  end supplyVarsForCall@ 

  -- 

  -- The above procedure, coded using a SELECT rather than a compound statement: 

  --commit@ 

  -- Does the customer have enough credit to purchase an ordered part? 

  create procedure creditLimitCheckV2 

     (inout result varchar(80), in custId char(5), 

      in purchaseAmount decimal(15,2)) 
 

     language sql 

     select case 

            when creditMax-creditUsed >= purchaseAmount then 

               'CREDIT APPROVED' 

            else 

               'CREDIT LIMIT EXCEEDED' 

            end 

        into result 

        from credit 

        where credit.custId = 

              cast(creditLimitCheckV2.custId as numeric(5))@ 
 



CREATE PROCEDURE 

 

670  SQL User Guide 
 

  -- 

  --  Use SIMULATE to supply a host variable for the INOUT "result" parameter 

  simulate datacom procedure 

  supplyVarsForCall: begin atomic 

     declare errorMessage, result char(80) default 'N/A'; 

  -- The default value for SQL vars is NULL 

     declare sqlstateLocal char(5); 

 

     declare continue handler for not found 

           set errorMessage = 'CUSTOMER HAS NO CREDIT RECORD'; 

     declare continue handler for sqlexception, sqlwarning 

           get diagnostics sqlstateLocal = returned_sqlstate, 

                           errorMessage  = message_text; 

 

     datacom dump 'VALUES ON ENTRY:', result, errorMessage to pxxsql; 

     call creditLimitCheckV2(result, '00001', 999.99); 

     datacom dump 'VALUES ON EXIT:', result,sqlstateLocal,errorMessage to pxxsql; 

  end supplyVarsForCall@ 

 /* 
 

Sample Procedure 2 

In this example, SQL names that do not consist of delimited identifiers are converted to 
uppercase by SQL. Also, notice that the at sign (@), used in conjunction with the 
TERM=@ parameter in DBSQLPR, enables DBSQLPR to skip over semicolons embedded 
in statements and instead recognize the @ as the end of the statement. For more 
information about TERM=, see DBSQLPR Options (see page 123). For z/OS and z/VSE JCL 
samples, see Example JCL. (see page 133) 

Note:  Use the following as a guide to prepare your JCL. The JCL statements are for 
example only.  Lowercase letters in a statement indicate a value you must supply.  Code 
all statements to your site and installation standards. 

 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  671  
 

 //jobname     See the note above. 

 //       REGION=1024K 

 //JOBLIB  your DD statements go here 

 -- Regarding TERM=@ in the following, DBSQLPR normally uses a semicolon to detect 

 -- the end of an SQL statement, but SQL statements, as sub-statements within 

 -- compound-statements, are also required to be terminated with semicolons. 

 -- This presents a challenge for DBSQLPR, because DBSQLPR must detect the end of a 

 -- compound-statement (without the problem-prone addition of an extraneous SQL parser 

 -- outside SQL-proper) despite the appearance of additional semicolons. We circumvent 

 -- this inherent ambiguity by using the TERM=@ specification to provide a different 

 -- terminating character for the compound-statement. The specification applies to 

 -- the entire input file (SYSIN). 

 //SQLEXEC  EXEC PGM=DBSQLPR,PARM='AUTHID=SYSADM,TERM=@,prtwidth=500' 

 //SYSUDUMP DD  SYSOUT=* 

 //SYSPRINT DD  SYSOUT=* 

 //STDOUT   DD  SYSOUT=* 

 //OPTIONS  DD  * 

 inputwidth=80 

 /* 
 

 //SYSIN    DD  * 

 -- Set up tables and data for use by the procedure 

 drop procedure orderReview CASCADE@ 

 drop table errTable@ 

 drop table newOrder@ 

 drop table warehouseToDo@ 

 commit@ 

 create table errTable 

    (orderId     int, 

     errCountCol int, 

     sqlStateCol char(5), 

     errMsgCol   varchar(128))@ 

 create table newOrder 

    (orderId      int, 

     custId       numeric(10), 

     creditReqAmt decimal(15,2), 

     status       char(25))@ 

 create table credit 

    (custId       numeric(10), 

     creditMax    decimal(15,2), 

     creditUsed   decimal(15,2))@ 

 create table warehouseToDo 

    (orderId        integer, 

     instructions   char(500), 

     whenInstructed timestamp)@ 
 



CREATE PROCEDURE 

 

672  SQL User Guide 
 

 commit@ 

 delete from neworder@ 

 delete from credit@ 

 insert into newOrder values(1, 1, 501.01, 'NOT REVIEWED')@ 

 insert into newOrder values(2, 2, 902.02, 'NOT REVIEWED')@ 

 insert into credit values(1,750.01, 100.01)@ 

 insert into credit values(2, 750.02, 100.02)@ 

 commit@ 

 -- 
 

 CREATE PROCEDURE ORDERREVIEW 

    (out ordersAccepted int, out ordersRejected int) 

    language sql 

 -- The rest of this procedure consists of a single compound statement 

 -- labelled "orderReviewMain". 

    orderReviewMain: 

    begin atomic 

 --    Non-delimited variables will be uppercased so ABC matches abc. 

       declare statusLocal char(25); 

       declare creditReqAmt, creditAvail decimal(15,2); 

       declare custId numeric(10); 

       declare errCount, orderId, I_want_to_leave_the_loop_NOW, 

               I_want_to_re_loop_NOW int; 

       declare errMsg varchar(128); 

       declare sqlStateLocal char(5); 
 

 -- 

       declare orderCrs cursor for 

               select orderId, custId, creditReqAmt 

               from newOrder 

               where status = 'NOT REVIEWED'; 

 --    Conditions and Condition Handler(s) 

 -- 

 --    This condition is signaled when an order is approved. 

       declare orderApproved condition; 

 -- 

 --    Handlers may consist of a compound or non-compound statement. 

 --    Non-compound handler examples: 

 -- 

       declare continue handler for orderApproved 

             insert into warehouseToDo values (orderReviewMain.orderId, 

                                   'ORDER APPROVED.  BEGIN MAKE-READY', 

                                   current timestamp); 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  673  
 

       declare undo handler for sqlstate '44444', sqlstate value '55555' 

             set I_want_to_leave_the_loop_NOW = 1; 

 

       declare exit handler for sqlstate '66666' 

             set sqlStateLocal = '66666'; 

 

       declare continue handler for not found 

             set sqlStateLocal = '02000'; 

 -- 

 --    Compound handler example: 

 --       Note the use of "errCount" even though it's declared outside the 

 --       scope of the errHandler1 compound statement.  If errHandler1 had an 

 --       errCount variable, we'd have to specify "orderReviewMain.errCount" 

 --       to reference the variable from the outer compound statement.  Also, 

 --       a locally declared copy of "errCount" would have to have its' value 

 --       reset on each entry to the handler, hence the "outer" reference. 

 -- 

 --       Note that there ARE duplicate "errMsg" variables in other scopes 

 --       but we'll resolve to the one inside the error handler's context. 

 -- 

 --       SQL exceptions '44444', '55555', and '66666' would trigger the 

 --       handlers for those specific SQLSTATEs.  But all other SQLSTATEs 

 --       qualifying as SQLEXCEPTIONs will trigger this handler. 

 -- 
 

       declare continue handler for sqlexception, sqlstate '12345', 

                                    sqlwarning 

       errHandler1: begin atomic 

             set errCount = errCount + 1; 

             get STACKED diagnostics 

                   sqlStateLocal = returned_sqlstate, 

                   errMsg     = message_text; 

             insert into errTable values 

                   (orderId,errCount,sqlStateLocal,errMsg); 

       end errHandler1; 

 --    Main Logic Start      -- 

       set errCount = 0; 

       set ordersAccepted = 0; 

       set ordersRejected = 0; 

       set I_want_to_leave_the_loop_NOW = 0; 

       set I_want_to_re_loop_NOW = 0; 

       delete from errTable; 

       set sqlStateLocal = '00000'; 

 --    Loop thru new orders and approve or reject each. 

       open orderCrs; 

       start_while: 

       while (sqlStateLocal = '00000') do 
 



CREATE PROCEDURE 

 

674  SQL User Guide 
 

 -- 

 --       Note references to SQL variables 

          fetch orderCrs into orderId, custId, creditReqAmt; 

 --       Note usage of SQL variable orderWatchMain.custId in query 

          select creditMax-creditUsed into creditAvail 

             from credit 

             where credit.custId = orderReviewMain.custId; 

 

          if (creditReqAmt > creditAvail) then 

             set statusLocal = 'CREDIT LIMIT EXCEEDED'; 

             set ordersRejected = ordersRejected + 1; 

          else 

             set statusLocal = 'CREDIT APPROVED'; 

             update credit set creditUsed = creditUsed+creditReqAmt 

                where custId = orderReviewMain.custId; 

             set ordersAccepted = ordersAccepted + 1; 

             SIGNAL orderApproved; 

          end if; 
 

 -- Statement included only to demonstrate usage 

 

          if (I_want_to_re_loop_NOW = 1) 

             then iterate start_while; 

          end if; 

          update newOrder set status = statusLocal 

             where current of orderCrs; 
 

 -- Statement included only to demonstrate usage 

 

          if (I_want_to_leave_the_loop_NOW = 1) 

             then leave start_while; 

          end if; 

 

       end while end_while_label datacom looplimit 100; 

       close orderCrs; 

    end 

    orderReviewMain@ 

 COMMIT@ 
 



CREATE PROCEDURE 

 

Chapter 28: SQL Statements  675  
 

 -- Confirm contents 

 SELECT * from newOrder@ 

 DELETE from errTable@ 

 drop procedure supplyHostVarsForCallStmt@ 

 commit@ 

 SIMULATE DATACOM PROCEDURE 

 supplyHostVarsForCallStmt: begin atomic 

    declare ordersAccepted, ordersRejected int; 

    CALL ORDERREVIEW(ordersAccepted, ordersRejected); 

    datacom dump ordersAccepted, ordersRejected to pxxsql; 

 end supplyHostVarsForCallStmt@ 

 -- 

 -- Confirm results 

 SELECT * from newOrder@ 

 select * from errTable@ 

 select * from warehouseToDo@ 

 /* 
 

WHILE Statement 

The WHILE statement defines conditional looping logic in a compound statement. It 
provides a means to loop while some predicate remains true. We recommend that you 
use the optional DATACOM LOOPLIMIT clause with this statement. 

Following is the syntax for the WHILE statement: 

►►─┬──────────────────────┬─ WHILE ─ proc-search-condition ─ DO ──────────────► 
   └─ start-label: ───────┘ 
 
 ►─ proc-SQL-stmt-list ─ END WHILE ─┬─────────────┬───────────────────────────► 
                                    └─ end-label ─┘ 
 
 ►─┬───────────────────────────────────────┬──────────────────────────────────►◄ 
   └─ DATACOM LOOPLIMIT ─ integer-literal ─┘ 

 

start-label: / end-label 

(Optional) A start-label: is an SQL identifier (followed by a colon) that can be used in 
various flow-control statements to mark the destination of a branch. When you 
specify an end-label you must also specify a start-label, and the labels must match. 

proc-search-condition 

The proc-search-condition specifies a condition that is true, false, or unknown about 
a row. The proc-search-condition is similar to the search-condition described in with 
the following modifications that allow its use in SQL Procedures: 

■ SQL parameter and SQL variable references are allowed instead of column and 
host-variable references. 

■ Aggregate functions and any predicate involving a sub-query are not allowed. 
 



CREATE RULE 

 

676  SQL User Guide 
 

proc-SQL-stmt-list 

A proc-SQL-stmt-list is a list of proc-SQL-stmt statements, each terminated by a 
semicolon. For information about a proc-SQL-stmt, see CREATE PROCEDURE Syntax 
and Description (see page 624). 

DATACOM LOOPLIMIT 

We recommend that you use DATACOM LOOPLIMIT. DATACOM LOOPLIMIT is a CA 
Datacom extension that we provide to allow your proactive avoidance of endless 
loops that might be caused by faulty logic, unexpected or missing column values, or 
other unforeseen conditions. The Multi-User startup option 
SQL_DATACOM_LOOPLIMIT can be used to force a default limit on each looping 
statement. An error is produced if the limit is exceeded. 

integer-literal 

The integer-literal specifies the maximum number of times the loop is allowed to 
execute. 

 

CREATE RULE 

For information about the CREATE RULE statement, see CREATE TRIGGER/RULE (see 
page 702). 

 

CREATE SCHEMA 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

CREATE SCHEMA YES YES  

Note:  YES indicates a valid execution method for this statement. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

The CREATE SCHEMA statement creates a schema which defines an SQL environment.  A 
schema exists for each authorization ID and contains all table, view, plan, and synonym 
definitions which are qualified by that authorization ID. 

 



CREATE SCHEMA 

 

Chapter 28: SQL Statements  677  
 

When a CREATE SCHEMA statement successfully executes, the name of the schema is 
defined in CA Datacom Datadictionary as an AUTHORIZATION entity-occurrence. 

If the CA Datacom/DB Security Facility is installed at your site, you must be a global 
database owner to execute the CREATE SCHEMA statement. 

Note: For information about global database owners, see the CA Datacom Security 
Reference Guide. 

 

With regard to table partitioning, CREATE statements may not be issued against a table 
which is partitioned nor against a partition. 

Note: For more information about table partitioning, see the CA Datacom/DB Database 
and System Administration Guide. 

Following is the syntax diagram for the CREATE SCHEMA statement: 

►►─ CREATE SCHEMA ─ AUTHORIZATION ─ auth-id ──────────────────────────────────► 
 
 ►─┬────────────────────────────┬─┬────────────────────────────┬──────────────►◄ 
   │ ┌────────────────────────┐ │ │ ┌────────────────────────┐ │ 
   └─▼─┬─ table-definition ─┬─┴─┘ └─▼─ privilege-definition ─┴─┘ 
       └─ view-definition ──┘ 

 

Description 

AUTHORIZATION auth-id 

Specify a unique authorization ID.  The authorization ID must be 1 to 18 characters.  
This rule applies for both ANSI and FIPS modes and the CA Datacom/DB extended 
mode. 

table-definition 

You can define a table using CREATE TABLE.  For information about CREATE TABLE 
see CREATE TABLE (see page 680). 

view-definition 

You can define a view using CREATE VIEW.  For information about CREATE VIEW see 
CREATE VIEW (see page 705). 

privilege-definition 

You can grant privileges using GRANT in databases that have been defined for 
GRANT in the CA Datacom Datadictionary. For information about GRANT see 
GRANT (see page 742). 

 



CREATE SYNONYM 

 

678  SQL User Guide 
 

Example 

The following example creates the schema for the authorization ID JOE, and the table 
named PROJECTTBL. 

 EXEC SQL 

     CREATE SCHEMA AUTHORIZATION JOE 

 

     CREATE TABLE PROJECTTBL 

                 (PROJECTNUM CHAR(6), 

                  PROJECTNAME CHAR(24), 

                  DEPTNO CHAR(3), 

                  EMPNUM CHAR(6), 

                  PROJSTAFF DECIMAL(5,2), 

                  PRSTARTDATE DECIMAL(6), 

                  PRENDDATE DECIMAL(6), 

                  MAJPROJECT CHAR(6)) 

 END-EXEC 
 

CREATE SYNONYM 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

CREATE SYNONYM YES YES YES 

Note:  YES indicates a valid execution method for this statement. To learn about using 
SQL keywords in CA Dataquery, see the CA Dataquery User Guide. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

 



CREATE SYNONYM 

 

Chapter 28: SQL Statements  679  
 

The CREATE SYNONYM statement is a CA Datacom/DB extension.  CREATE SYNONYM 
defines an alternative name for a table or view.  You can use the synonym to reference a 
table in another schema without having to enter the qualified name.  You can also 
define synonyms for tables or views in your default schema. When a CREATE SYNONYM 
statement successfully executes, a SYNONYM entity-occurrence is defined in CA 
Datacom Datadictionary in PRODuction status.  The synonym is added to your default 
schema. 

With regard to table partitioning, CREATE statements may not be issued against a table 
which is partitioned nor against a partition. 

Note: For more information about table partitioning, see the CA Datacom/DB Database 
and System Administration Guide. 

Following is the syntax diagram for the CREATE SYNONYM statement: 

►►─ CREATE SYNONYM ─ synonym ─ FOR ─┬────────────┬─┬─ table-name ─┬───────────►◄ 
                                    └─ auth-id. ─┘ └─ view-name ──┘ 

 

Description 

synonym 

The alternative name you want to use when referring to the table or view. The 
synonym name must not be identical to another synonym or to the unqualified 
name of a table or view in your default schema. The synonym name can be 1 to 18 
characters if you specify the Preprocessor option SQLMODE=ANSI or 
SQLMODE=FIPS. If SQLMODE=DATACOM, the synonym name can be 1 to 32 
characters. 

FOR 

Introduces the qualified name of the table or view for which you are creating the 
synonym. 

auth-id. 

Specify an authorization ID if you are creating a synonym for a table or view in a 
schema other than your default schema. Use a period (.) to concatenate the 
authorization ID to the table or view name (for example, auth-id.table-name). 

table-name or view-name 

Must name a table or view described in the CA Datacom Datadictionary. The 
synonym is defined only for your authorization ID, that is to say, the authorization 
ID of the CREATE SYNONYM statement when the statement is prepared. 

 



CREATE TABLE 

 

680  SQL User Guide 
 

Example 

The following example defines an alternative name, OUTDEPTS,for the table DEPTTBL. 
KWAN is the authorization ID of the user who owns DEPTTBL. 

EXEC SQL 

CREATE SYNONYM OUTDEPTS 

FOR KWAN.DEPTTBL 

END-EXEC 
 

CREATE TABLE 

In the following table, YES indicates a valid execution method for this statement. 

 

This SQL 
statement can 
be executed in 
the following 
ways: 

Through the CA 
Datacom 
Datadictionary 
Interactive SQL 
Service Facility 
(interactive) 

In an application 
program 
prepared using a 
CA Datacom/DB 
SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL & 
Batch Modes) 

CREATE TABLE YES YES YES 

To learn about using SQL keywords in CA Dataquery, see the CA Dataquery User Guide. 

For information about the access rights required to execute this statement, see the CA 
Datacom/DB Database and System Administration Guide. 

Note:  If you are using CA Datacom/DB as part of the CA Datacom/AD environment, you 
cannot use the CREATE TABLE statement. 

CREATE TABLE defines a table.  In this statement, you must specify: 

■ The name of the table, and 

■ The column definition for the table. 
 

Optional specifications include: 

■ The table constraint definition for the table. 

■ Designating more than one column definition. 

■ Designating one or more table constraint definitions. 

■ Naming the data area where the table data is to reside. 
 



CREATE TABLE 

 

Chapter 28: SQL Statements  681  
 

When a CREATE TABLE statement successfully executes, a TABLE entity-occurrence is 
defined in CA Datacom Datadictionary in PRODuction status, cataloged to the CA 
Datacom/DB Directory (CXX), and is ready to be populated with data. See Results of 
Defining Structures Using SQL Statements for information about the results in CA 
Datacom Datadictionary of using the CREATE TABLE statement. 

With regard to table partitioning, CREATE statements may not be issued against a table 
which is partitioned nor against a partition. An SQL integrity constraint cannot reference 
a partitioned table, nor a partition of a partitioned table. That is to say, constraints and 
partitioned tables are mutually exclusive. For more information about table partitioning, 
see the CA Datacom/DB Database and System Administration Guide. 

 

Following is the syntax diagram for the CREATE TABLE statement: 

                                ┌─ , ───────────────────────────────┐ 
►►─ CREATE TABLEtable-name ─ ( ─▼─┬─ column definition ───────────┬─┴─ ) ─────► 
                                  └─ table constraint definition ─┘ 
 
 ►─┬───────────────┬─┬────────────────────┬───────────────────────────────────►◄ 
   └─ INarea-name ─┘ └─ DATACOM NAMEname ─┘ 

Notes: 

DATACOM NAME name is a CA Datacom/DB extension. 

IN area-name is a CA Datacom/DB extension. 
 

Description 

table-name 

The name of the table you are creating. The name you supply, including the implicit 
or explicit qualifier, must not identify a table, view or synonym already described in 
the CA Datacom Datadictionary. 

If you specify SQLMODE=ANSI or SQLMODE=FIPS in the Preprocessor options, the 
table name can be 1 to 18 characters in length. 

If you specify SQLMODE=DATACOM for extended mode in the Preprocessor 
options, the table name can be 1 to 32 characters in length. 

The qualified form is the name preceded by an authorization ID and a period, for 
example, auth-id.table-name (but do not use SYSADM for the auth-id). If you qualify 
the table-name, the qualifier designates the schema of the table.  If you do not 
qualify the table-name, the default authorization ID is used as the qualifier.  If the 
CREATE TABLE statement is embedded within a CREATE SCHEMA statement, the 
authid that qualifies the table must be the same as the authid that follows the 
AUTHORIZATION keyword. 

 



CREATE TABLE 

 

682  SQL User Guide 
 

column definition 

See Column Definition (see page 683) for information on the column definition. 

table constraint definition 

See Table Constraint Definition (see page 687) for information on the table 
constraint definition. 

 

IN area-name 

Use this CA Datacom/DB extension to specify the name of the area in which the 
table data is to reside. The name you specify for the area must be the SQL name, 
not the CA Datacom Datadictionary occurrence name. The area must already exist 
in the CA Datacom Datadictionary and be cataloged to the Directory (CXX).  If you 
do not specify the area-name, the table is placed in the default area. If you need to 
specify an area other than the default, or if the default area is full, see your 
Database Administrator for names of other areas you can specify when creating a 
table. 

DATACOM NAME name 

Use this CA Datacom/DB extension to specify a three-character DATACOM NAME 
name (a TABLE entity-occurrence in CA Datacom Datadictionary ) for the table.  If 
you do not specify a DATACOM NAME name, CA Datacom Datadictionary generates 
a name for you.  (This is not the CA Datacom Datadictionary entity-occurrence 
name.) 

 

Privileges 

If the Multi-User Facility is secured, whether the creator of the table may access that 
table depends on the security model of the table.  Under the SQL Security Model, when 
a table is created the user who executes the CREATE TABLE statement is automatically 
granted all privileges on the table.  Under the CA Datacom/DB External Security Model, 
all access rights, including those for the creator of a table, must be defined through the 
external security product. See the CA Datacom Security Reference Guide for more 
information. 

The CREATE TABLE statement cannot create a remote, partitioned or replicated table. 
For remote tables, a complete duplicate definition of a remote table in CA Datacom 
Datadictionary is required for SQL access, and no version control enforcement is 
available to ensure that remote definitions are synchronized with the local active 
definition. 

 



CREATE TABLE 

 

Chapter 28: SQL Statements  683  
 

Column Definition 

Following is the syntax diagram for the column definition: 

►►─ column-name ─ datatype ─┬─────────────────────────────┬───────────────────► 
                            └─ DEFAULT ─┬─ literal ─────┬─┘ 
                                        ├─ NULL ────────┤ 
                                        ├─ USER ────────┤ 
                                        └─ SYSTEM USER ─┘ 
 
 ►─┬─────────────────────────┬────────────────────────────────────────────────►◄ 
   │ ┌─────────────────────┐ │ 
   └─▼─ column constraint ─┴─┘ 

Note: 

SYSTEM USER is a CA Datacom/DB extension. 
 

Description 

column-name 

The name of a column of the table. Do not use the same name for more than one 
column in this table. 

If you specify SQLMODE=ANSI or SQLMODE=FIPS in the Preprocessor options, the 
column name can be 1 to 18 characters in length. 

If you specify SQLMODE=DATACOM for extended mode in the Preprocessor 
options, the column name can be 1 to 32 characters in length. 

The number of columns you can define for a single table is limited only by the 
maximum size of the physical record.  The sum of the byte counts of the columns 
must not be less than 1 or greater than 32720. 

If you use the UNIQUE (column-list) constraint in a table constraint definition (see 
Table Constraint Definition (see page 687)), you must separate the last column 
definition from the UNIQUE (column-list) constraint with a comma. 

 

If you specify a ref-col-name in the column constraint definition (see Column 
Constraint Definition (see page 684)), the data type, length, and scale of the 
column-name specified here in the column definition must be identical to those of 
the ref-col-name. 

The first column you name in the CREATE TABLE statement becomes the CA 
Datacom/DB Master and Native Key for the table except when a primary key has 
been defined.  CA Datacom Datadictionary automatically generates this KEY 
entity-occurrence, which has the same name as the column. 

Note:  The DUPE-MASTER-KEY and CHNG-MASTER-KEY attributes of the TABLE 
entity-occurrence are set to Y, indicating that the value of the Master Key can be 
duplicated and/or changed. The 5-character CA Datacom/DB name of the key is 
SQnnn, where nnn is a sequential number unique to each database. 

 



CREATE TABLE 

 

684  SQL User Guide 
 

datatype 

See Data Types (see page 695). 

Note:  If NOT NULL WITH DEFAULT is specified as a constraint with DATE, TIME, or 
TIMESTAMP, the default value is the current date, current time, or current 
timestamp. 

DEFAULT 

Used to specify a default.  If DEFAULT is specified, you cannot use a column 
constraint of WITH DEFAULT. 

 

literal 

Specifies a literal as the default.  The literal you specify must be consistent with the 
data type of the column. A user-supplied DEFAULT literal can be up to 20 bytes 
long, or the length of the column involved, whichever is shorter.  A default value 
may be specified for a character column where the column is greater than 20 bytes 
long, but the default literal itself is limited to 20 bytes, with the remaining bytes 
padded with blanks by the system. 

NULL 

Specifies NULL as the default. If NULL is specified, you cannot use a column 
constraint of NOT NULL. 

 

column constraint 

See the column constraint definition in the following. 

USER 

Specifies the current authorization ID as the default. 

SYSTEM USER 

This CA Datacom/DB extension specifies the accessor ID of the currently signed-on 
user as the default. 

 

Column Constraint Definition 

Following is the syntax diagram for the column constraint definition: 

►►─┬─ NOT NULL ─┬────────────────┬─┬───────────────┬───────────┬──────────────► 
   │            └─ WITH DEFAULT ─┘ ├─ PRIMARY KEY ─┤           │ 
   │                               └─ UNIQUE ──────┘           │ 
   ├─ REFERENCEStable-name ─┬──────────────────┬─┬───────────┬─┤ 
   │                        └─ (ref-col-name) ─┘ └─ ref-act ─┘ │ 
   └─ CHECK(search condition) ─────────────────────────────────┘ 
 
 ►─┬─────────────────────────────┬────────────────────────────────────────────►◄ 
   └─ CONSTRAINTconstraint-name ─┘ 

Note: 

WITH DEFAULT is a CA Datacom/DB extension. 
 



CREATE TABLE 

 

Chapter 28: SQL Statements  685  
 

Description 

NOT NULL 

Specifies that the column value cannot be NULL.  If NOT NULL is not specified, the 
column may contain NULL values.  On INSERT, a non-null value must be supplied, or 
a DEFAULT must be specified.  On UPDATE, the column cannot be set to the null 
value. If NOT NULL WITH DEFAULT is specified as a constraint with DATE, TIME, or 
TIMESTAMP, the default value is the current date, current time, or current 
timestamp. You must specify NOT NULL to use the column-level UNIQUE constraint. 
If you specify NOT NULL, you cannot specify NULL as the column default. 

UNIQUE 

Specifying the column-level UNIQUE constraint after an individual column name 
indicates that the value for the column is to be unique for each row of the table. 

You must specify NOT NULL to use the UNIQUE column-level constraint. 

The UNIQUE column-level constraint restricts update or insertion of a row if it 
contains a column value which has been previously assigned. For example, if 
COLUMN_A has been assigned the value '75252' for one row in the table, you 
cannot insert a row or update another row to assign that same value to the column. 

 

You can specify the column-level UNIQUE on a maximum 50 individual columns per 
table.  The column length must not exceed 180 bytes if you specify this constraint 
on the column. 

When you use the column-level UNIQUE constraint, CA Datacom Datadictionary 
generates a KEY entity-occurrence with the UNIQUE attribute to enforce 
uniqueness.  This key may not be deleted directly.  You must DROP the UNIQUE 
constraint to delete the key.  The CA Datacom Datadictionary name for the key is 
the same as the column.  The 5-character CA Datacom/DB name of the key is 
SQnnn, where nnn is a sequential number unique to each database. 

 



CREATE TABLE 

 

686  SQL User Guide 
 

PRIMARY KEY 

Same as UNIQUE, except for the following: 

■ Only one primary key is allowed per table, whether specified at the column or 
table level. 

■ When the referential constraint ref-col-list is omitted, the columns of the 
primary key are implied by default. 

WITH DEFAULT 

This is a CA Datacom/DB extension.  Specifying WITH DEFAULT means that if you do 
not specify a value, blanks is used if the data type is CHARACTER.  If the data type is 
not CHARACTER, zero (0) is used of the appropriate type, length, and scale. 

If NOT NULL WITH DEFAULT is specified as a constraint with DATE, TIME, or 
TIMESTAMP, the default value is the current date, current time, or current 
timestamp. 

You must specify NOT NULL to use the WITH DEFAULT column-level constraint. 

Do not use WITH DEFAULT if you specify a DEFAULT in the column definition. 
 

REFERENCES table-name 

Specify the name of the table you want to reference.  The table-name must identify 
a table described in the CA Datacom Datadictionary other than a CA Datacom 
Datadictionary table. 

(ref-col-name) 

If you specify a ref-col-name, the data type, length, and scale of the column-name 
specified in the column definition (see Column Definition (see page 683)) must be 
identical to those of the ref-col-name. 

When no ref-col-name is specified, the table-name must have a PRIMARY KEY, and 
its column-name is the column-name specified in the column definition. 

The referenced column must be a UNIQUE or PRIMARY KEY in the referenced table.  
If the referenced column is not a UNIQUE or PRIMARY KEY, CA Datacom/DB issues a 
-169 SQL return code. 

 



CREATE TABLE 

 

Chapter 28: SQL Statements  687  
 

ref-act 

Specifies the referential action to be taken when a row in the referenced table is 
deleted or updated. 

CHECK (search condition) 

Allows you to check domain constraints specified in the search condition. 

The search condition must be enclosed in parentheses. 

When you check a constraint through the CREATE TABLE or ALTER TABLE 
statements, do not include a function, special register, host variable, subquery, or 
external table reference in the search condition. If you do, CA Datacom/DB issues 
an error message informing you that none of those are allowed. 

For more information on the search condition, see Search Conditions (see 
page 593). 

 

CONSTRAINT constraint-name 

Allows you to specify a constraint-name. Constraint names must be unique within 
all constraints defined in the same schema. A fully qualified constraint name 
contains the schema ID, that is to say, the authorization ID or creator ID, and a 
32-byte name. 

If the name you specify already exists, CA Datacom/DB issues an error message. 
Query the SYSCONSTRSRC table (see Schema Information Tables (SIT) (see 
page 821)) to see which names are already in use. 

If you do not specify a constraint-name, the system generates a name in the form 
CONSTRAINT_nnnn where nnnn is 0001 to 9999.  For example, the first 
constraint-name generated by the system would be CONSTRAINT_0001, the second 
would be CONSTRAINT_0002, and so on. 

Constraint names are returned in the SQLCA Error Message to indicate which of 
possibly several constraints were violated, and in the ALTER TABLE DROP statement 
to specify which constraint is to be dropped. 

 

Table Constraint Definition 

Following is the syntax diagram for the table constraint definition: 

►►─┬─┬─ UNIQUE ──────┬─ (column-list) ───┬─ CONSTRAINTconstraint-name ────────►◄ 
   │ └─ PRIMARY KEY ─┘                   │ 
   ├─ referential constraint definition ─┤ 
   └─ CHECK(search condition) ───────────┘ 

 



CREATE TABLE 

 

688  SQL User Guide 
 

Description 

UNIQUE 

The UNIQUE table-level constraint specifies that the combination of values assigned 
to all the listed columns is to be unique. 

Individual columns on which the column-level UNIQUE is specified can also be 
included in the column list for a table-level UNIQUE. 

If you use the table-level UNIQUE constraint, CA Datacom Datadictionary generates 
a KEY entity-occurrence with the UNIQUE attribute to enforce uniqueness.  This key 
may not be deleted directly.  You must DROP the UNIQUE constraint to delete the 
key.  The CA Datacom Datadictionary name for the key is the same as the table, 
followed by a number which makes the name unique. The 5-character CA 
Datacom/DB name of the key is SQnnn, where nnn is a sequential number unique 
to each database. 

Note:  Uniqueness is enforced at the key level, not at the column level, that is to 
say, UNIQUE forces unique values for the entire key and not for the individual 
columns making up the key. 

 

PRIMARY KEY 

Same as UNIQUE, except for the following: 

■ Only one primary key is allowed per table, whether specified at the column or 
table level. 

■ When the referential constraint ref-col-list is omitted, the columns of the 
primary key are implied by default. 

 

(column-list) 

Specify the column-list for the table-level UNIQUE or PRIMARY KEY constraint by 
enclosing one or more column names in parentheses. Use a comma to separate 
column names. 

For example, if you specify UNIQUE (COLUMN_A, COLUMN_B) when you create a 
table, the following value assignments are valid because the combination of values 
for these two columns are unique in each row. 

 

 
COLUMN_A COLUMN_B 

Row 1 DALLAS TEXAS 

Row 2 PARIS TEXAS 

Row 3 PARIS FRANCE 

The total length of all columns listed in each table-level constraint cannot exceed 
180 bytes. 

 



CREATE TABLE 

 

Chapter 28: SQL Statements  689  
 

referential constraint definition 

See Referential Constraint Definition (see page 689). 

CHECK (search condition) 

Allows you to check domain constraints specified in the search conditions. 

The search condition must be enclosed in parentheses. 

When you define a constraint through the CREATE TABLE or ALTER TABLE 
statements, do not include a function, special register, host variable, subquery, or 
external table reference in the search condition. If you do, CA Datacom/DB issues 
an error message informing you that none of those are allowed. 

You may define multiple CHECK constraints to indicate exactly which constraint has 
been violated, since the constraint name is returned in the SQL Error Message. 

For information on the search condition, see Search Conditions (see page 593). 
 

CONSTRAINT constraint-name 

Allows you to specify a constraint-name. Constraint names must be unique within 
all constraints defined in the same schema. A fully qualified constraint name 
contains the schema ID, that is to say, the authorization ID or creator ID, and a 
32-byte name. 

If the name you specify already exists, CA Datacom/DB issues an error message. 
Query the SYSCONSTRSRC table (see Schema Information Tables (SIT) (see 
page 821)) to see which names are already in use. 

If you do not specify a constraint-name, the system generates a name in the form 
CONSTRAINT_nnnn where nnnn is 0001 to 9999.  For example, the first 
constraint-name generated by the system would be CONSTRAINT_0001, the second 
would be CONSTRAINT_0002, and so on. 

Constraint names are returned in the SQLCA Error Message to indicate which of 
possibly several constraints were violated, and in the ALTER TABLE DROP statement 
to specify which constraint is to be dropped. 

 

Referential Constraint Definition 

Following is the syntax diagram for the referential constraint definition: 

►►─ FOREIGN KEY ─ (column-list) ─ REFERENCES ─ table-name ────────────────────► 
 
 ►─┬──────────────────┬─┬───────────┬─────────────────────────────────────────►◄ 
   └─ (ref-col-list) ─┘ └─ ref-act ─┘ 

 



CREATE TABLE 

 

690  SQL User Guide 
 

Description 

FOREIGN KEY 

Allows you to specify a foreign key. 

Foreign keys define relationships between tables.  The column(s) of a foreign key in 
one table are related to the primary or unique key of some table.  That related 
primary or unique key may not be defined on the same table as the foreign key. 

Every foreign key is related to a primary or unique key.  A primary or unique key 
may be related to zero, one, or many foreign keys. 

Each foreign key defines a referential integrity constraint.  Every foreign key value 
(the column values of the foreign key's columns from a single row of the table) 
must exactly match a primary or unique key value of the foreign key's related 
primary or unique key, except when at least one foreign key column value is NULL.  
When a foreign key value exists which does not match any primary or unique key 
value of its related primary or unique key, the referential integrity constraint is 
violated. 

 

The foreign key constraint does not restrict the number of rows with the same 
foreign key value, that is to say, the constraint is "1-to-many," one referenced table 
row may match multiple referencing rows.  You may define a "1-to-1" constraint by 
also defining the foreign key columns in a primary key or unique constraint. 

An attempt to INSERT or UPDATE a foreign key value that does not exist in the 
referenced primary/unique key is rejected as a foreign key value error.  An attempt 
to DELETE or UPDATE a primary/unique value that is referenced by one or more 
foreign key values is rejected as a foreign key reference error. 

 

When the referenced table is loaded or recovered, the integrity of the foreign key is 
in doubt, and the table is placed in a CHECK-RELATED check state.  A table in a 
check state cannot be opened.  You must execute the CONFIRM function of 
DBUTLTY to confirm that all referenced values still exist.  The check state is reported 
in the Directory (CXX) report. 

Note:  Tables defined using the SQL CREATE TABLE statement have the RECOVERY 
attribute-type of the TABLE entity-occurrence set to Y (for yes) in CA Datacom 
Datadictionary. 

A "physical" key is not generated for a foreign key. However, if you define a key, it is 
used when checking the DELETE or UPDATE of the referenced primary/unique key.  
For best performance, the key should include all columns of the foreign key as the 
only or leading columns.  Other columns may be included following the foreign key 
columns.  The order in which foreign key columns are specified in the key does not 
affect performance. 

A foreign key is rejected if the table involved has more than one foreign key and the 
delete or update actions of any two of those foreign keys conflict.  A -36 SQL return 
code is issued if a conflict occurs.  For more information see Referential Actions 
That Conflict (see page 693). 

 



CREATE TABLE 

 

Chapter 28: SQL Statements  691  
 

(column-list) 

Use the column-list to specify one or more column names. The column names must 
be separated by commas and the list must be enclosed in parentheses. 

The number of columns in the column-list and their data type, length, and scale 
must be identical to those specified in the ref-col-list or the default ref-col-list. 

When at least one of the columns is not defined with NOT NULL, that is to say, it 
may contain the null value, the reference is said to be "optional."  When at least 
one column is the null value, no check is made for a matching primary/unique 
value. 

 

REFERENCES table-name 

Specify the name of the table you want to reference.  The table-name must identify 
a table described in the CA Datacom Datadictionary other than a CA Datacom 
Datadictionary table. When no ref-col-list is specified, the table-name must have a 
PRIMARY KEY, and its column(s) is the default ref-col-list. The referenced table 
cannot be a remote table. Reference to a table in a different schema is permitted. 

(ref-col-list) 

Use the column-list to specify one or more column names. The column names must 
be separated by commas and the list must be enclosed in parentheses. When you 
are specifying a ref-col-list, specify column(s) of a UNIQUE or PRIMARY KEY 
constraint on the table-name. 

 

ref-act 

Specifies the referential action to be taken when a row in the referenced table is 
deleted or updated. 

Following is the syntax diagram for ref-act (referential action): 

►►─┬─ delete-action ───────────────┬──────────────────────────────────────────►◄ 
   ├─ update-action ───────────────┤ 
   ├─ delete-action update-action ─┤ 
   └─ update-action delete-action ─┘ 

Expansion of Where delete-action is defined as 

├── ON DELETE ─┬─ RESTRICT ◄ ──┬───────────────────────────────────────────────┤ 
               ├─ CASCADE ─────┤ 
               ├─ SET DEFAULT ─┤ 
               └─ SET NULL ────┘ 

 

Expansion of Where update-action is defined as 

├── ON UPDATE RESTRICT ────────────────────────────────────────────────────────┤ 



CREATE TABLE 

 

692  SQL User Guide 
 

ON DELETE 

Specifies which delete-action is to be taken.  Errors that occur during delete-actions 
cause the original DELETE (and all propagated delete-actions) to be aborted. 

Delete-actions may be one of the following: 

RESTRICT 

ON DELETE RESTRICT is the default delete-action.  It specifies that there shall 
be no matching rows when a row is deleted from the referenced table.  
Matching rows are (for a given row in the referenced table) all rows in the 
referencing table whose referencing columns equal the corresponding 
referenced column.  If referencing rows exist, the DELETE is rejected with a 
-175 return code. 

CASCADE 

Specifies that referencing rows are deleted after any references to the child 
table are followed and those referential actions performed. 

 

SET DEFAULT 

Specifies that each column in the referencing foreign key is set to its default 
value for every referencing row.  If ON DELETE SET DEFAULT is specified, all of 
the columns in the foreign key must have defaults defined. 

SET NULL 

Specifies that nullable columns in the referencing foreign key are set to NULL 
for all referencing rows.  At least one column is guaranteed to be nullable in 
this foreign key.  If ON DELETE SET NULL is specified, at least one of the foreign 
key columns must be nullable. 

 

ON UPDATE 

Specifies which update action is to be taken.  RESTRICT is the only update action 
supported. RESTRICT is the default and is enforced even if not specified. 

ON UPDATE RESTRICT specifies that there shall be no matching rows when a row is 
updated in the referenced table.  Matching rows are (for a given row in the 
referenced table) all rows in the referencing table whose referencing columns equal 
the corresponding referenced column. If referencing rows exist, the UPDATE is 
rejected with a -175 return code. 

 



CREATE TABLE 

 

Chapter 28: SQL Statements  693  
 

Referential Actions That Conflict 

A foreign key is rejected if the table involved has more than one foreign key and the 
referential actions of any two of those foreign keys conflict. One of two conditions are 
generally responsible for conflicts between referential actions: 

1. A delete on a referenced table can propagate conflicting referential actions to a row 
of a referencing table. For example, if two foreign keys on table A reference table B, 
and one foreign key specifies ON DELETE CASCADE but the other specifies ON 
DELETE SET DEFAULT, then it becomes impossible to update table A in a way that 
satisfies both foreign keys. 

2. The order in which foreign key references are followed and satisfied affects the 
resulting actions taken on referencing rows. It might initially seem that all situations 
described in the first condition (previously described) would also be included here.  
For example, if the SET DEFAULT described in the first condition (previously 
described) were executed before the CASCADE, the stored default values could 
effectively sever the row's other foreign key connection to the deleted row in table 
B, in which case the ON DELETE CASCADE would never be executed.  But this 
second condition can occur even if the delete actions agree. 

Consider a case in which both foreign keys on table A specify ON DELETE SET NULL 
and the columns used in the two keys partially overlap.  Setting any of the 
overlapping columns to NULL would sever both foreign keys' connections, because 
a NULL in any column of a foreign key severs the connection to the parent row.  The 
first foreign key that is executed would therefore have its columns set to NULL, but 
the second foreign key would never be executed. 

 

A table listing referential actions that conflict is provided in the following. When 
referring to the table, please note that it should be interpreted with regard to the 
following: 

■ An update action only conflicts with a delete action if the first condition on the 
previous page is violated, that is to say only if a DELETE on some indirect parent of a 
table can propagate both an ON UPDATE RESTRICT and a conflicting delete action to 
the table using two separate foreign key paths at the same time.  A DELETE can 
propagate ON UPDATE RESTRICT because when an ON DELETE SET DEFAULT or ON 
DELETE SET NULL is executed on a table that is in turn referenced by another 
foreign key, the update actions on a referencing child table are executed instead of 
the delete actions. 

■ Referential actions that would normally conflict are allowed if the foreign keys 
involved have disjoint sets of parent tables (including both direct and indirect 
parents), or if the sets of columns affected by the conflicting rules are disjoint.  SET 
NULL and SET DEFAULT actions that are not listed as being in conflict in the 
following table are, however, rejected if the second condition described on the 
previous page exists. But that second condition does not apply if the two foreign 
keys involved contain either totally disjoint or completely matching sets of columns 
on the child table. 

 



CREATE TABLE 

 

694  SQL User Guide 
 

In the following table, the abbreviations describe CONFLICTS and represent the 
following: 

ODR 

Represents ON DELETE RESTRICT. 

ODC 

Represents ON DELETE CASCADE. 

ODSD 

Represents ON DELETE SET DEFAULT. 
 

ODSN 

Represents ON DELETE SET NULL. 

OUR 

Represents ON UPDATE RESTRICT. 
 

Note:  The asterisk (*) means it does not conflict if defaults for all columns involved are 
NULL. 

 

REFERENTIAL ACTIONS: ODR ODC ODSD ODSN OUR 

ON DELETE RESTRICT  X X X  

ON DELETE CASCADE X  X X X 

ON DELETE SET DEFAULT X X  X* X 

ON DELETE SET NULL X X X*  X 

ON UPDATE RESTRICT  X X X  

Note:  Foreign keys can also be rejected for reasons not mentioned here.  For a 
complete list of reasons, see the SQL return codes section in the CA Datacom/DB 
Message Reference Guide. 

 



CREATE TABLE 

 

Chapter 28: SQL Statements  695  
 

Data Types 

Following is the syntax diagram for the valid SQL data types: 

►►─┬─┬─ VARCHAR(length) ─┬─┬──────────────────┬──────────┬────────────────────►◄ 
   │ └─ LONG VARCHAR ────┘ ├─ FOR MIXED DATA ─┤          │ 
   │                       ├─ FOR SBCS DATA ──┤          │ 
   │                       └─ FOR BIT DATA ───┘          │ 
   ├─┬─ CHARACTER ─┬─┬────────────┬─┬──────────────────┬─┤ 
   │ └─ CHAR ──────┘ └─ (length) ─┘ ├─ FOR MIXED DATA ─┤ │ 
   │                                ├─ FOR SBCS DATA ──┤ │ 
   │                                └─ FOR BIT DATA ───┘ │ 
   ├─ FLOAT ─┬───────────────┬───────────────────────────┤ 
   │         └─ (precision) ─┘                           │ 
   ├─┬─ NUMERIC ─┬─┬───────────────────────────────┬─────┤ 
   │ ├─ DECIMAL ─┤ └─ (precision ─┬──────────┬─ ) ─┘     │ 
   │ └─ DEC ─────┘                └─ ,scale ─┘           │ 
   ├─┬─ INTEGER ─┬───────────────────────────────────────┤ 
   │ └─ INT ─────┘                                       │ 
   ├─ SMALLINT ──────────────────────────────────────────┤ 
   ├─ REAL ──────────────────────────────────────────────┤ 
   ├─ DOUBLE PRECISION ──────────────────────────────────┤ 
   ├─ DATE ──────────────────────────────────────────────┤ 
   ├─ TIME ──────────────────────────────────────────────┤ 
   ├─ TIMESTAMP ─────────────────────────────────────────┤ 
   ├─ GRAPHIC ─┬───────────────┬─────────────────────────┤ 
   │           └─ (precision) ─┘                         │ 
   ├─ VARGRAPHIC(precision) ─────────────────────────────┤ 
   └─ LONG VARGRAPHIC ───────────────────────────────────┘ 

 

The following are CA Datacom/DB extensions: 

■ VARCHAR 

■ LONG VARCHAR 

■ FOR MIXED DATA 

■ FOR SBCS DATA 

■ FOR BIT DATA 
 

■ DATE 

■ TIME 

■ TIMESTAMP 
 

■ GRAPHIC 

■ VARGRAPHIC 

■ LONG VARGRAPHIC 
 



CREATE TABLE 

 

696  SQL User Guide 
 

The following summarizes information about the valid SQL data types. See Data Types 
(see page 485) for more information. 

Valid SQL Data Types: 

CHARACTER (length) CHAR (length) 

CHARACTER or CHAR specifies a character string. The optional length must be an 
integer designating the number of characters in the string and must be enclosed in 
parentheses. The default value for the CHARACTER data type length is one byte. 

VARCHAR (length) 

VARCHAR specifies a varying-length character string of length 1 to maximum row 
size.  The length is required, must be an integer designating the number of 
characters in the string, and must be enclosed in parentheses. 

LONG VARCHAR 

LONG VARCHAR specifies a varying-length character string whose maximum length 
is determined by the amount of space available in a block.  Use of the LONG 
VARCHAR Data Type creates rows that are as long as the block size of the containing 
area.  If LONG VARCHARs are to be used, this block size should be taken as the row 
size to be used in calculating the Log Area  (LXX) block size (the block size of the 
longest block sized area containing LONG VARCHARs should be used). 

Three semantic types are allowed: FOR MIXED DATA, FOR SBCS DATA, and FOR BIT 
DATA. FOR MIXED DATA means that DBCS characters are allowed in values stored 
in the column, in addition to EBCDIC (Single-Byte Character Set (SBCS)) characters.  
This is relevant when SQL is processing a value in the column, since it must 
recognize the Shift-Out and Shift-In characters that delimit DBCS substrings. FOR 
SBCS DATA means that DBCS characters are not allowed in the column. FOR BIT 
DATA means that the data is a string of binary data rather than a string of 
characters. 

If a semantic type is not specified when the column is created, the default is the 
semantic type that was specified on the CXXMAINT OPTION=ALTER,DBCS=xx option.  
If xx was IS or FS, the default is FOR SBCS DATA.  If xx was IM or FM, the default is 
FOR MIXED DATA. 

FLOAT (precision) 

Specifies a 64-bit floating-point number. 

The optional precision of the number is the total number of digits.  The precision 
can range from 1 to 15.  The precision must be enclosed in parentheses. 

NUMERIC (precision,scale) 

Specifies a zoned decimal number. 

The optional precision of the number is the total number of digits. The precision can 
range from 1 to 31. If you specify precision, you have the option of also specifying 
scale. The optional scale of the number is the number of digits to the right of the 
decimal point.  The scale can range from 0 to the precision. 



CREATE TABLE 

 

Chapter 28: SQL Statements  697  
 

If you specify both precision and scale, you must separate them with a comma and 
enclose them in parentheses. When specifying a scale of zero, however, you can 
use (precision) for (precision,0). If you do not specify precision and/or scale, the 
default value used is a precision of 5 and a scale of zero (5,0). 

DECIMAL (precision,scale) DEC (precision,scale) 

Specifies a packed decimal number. 

The optional precision of the number is the total number of digits. The precision can 
range from 1 to 31. If you specify precision, you have the option of also specifying 
scale. The optional scale of the number is the number of digits to the right of the 
decimal point.  The scale can range from 0 to the precision. 

If you specify both precision and scale, you must separate them with a comma and 
enclose them in parentheses. When specifying a scale of zero, however, you can 
use (precision) for (precision,0). If you do not specify precision and/or scale, the 
default value used is a precision of 5 and a scale of zero (5,0). 

INTEGER INT 

Specifies a large binary integer with a precision of 31 bits. 

SMALLINT 

Specifies a small binary integer with a precision of 15 bits. 

REAL 

Specifies a 64-bit floating-point number. 

DOUBLE PRECISION 

Specifies a 64-bit floating-point number. 

DATE 

Specifies a date. 

TIME 

Specifies a time. 

TIMESTAMP 

Specifies a timestamp. 

GRAPHIC (precision) / VARGRAPHIC (precision) / LONG VARGRAPHIC 

GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC specify Double-Byte Character Set 
(DBCS) characters.  Each character is two bytes long. The precision of a DBCS 
column (optional for GRAPHIC, required for VARGRAPHIC) is the maximum number 
of two-byte characters that can be stored, not the physical length. 



CREATE TABLE 

 

698  SQL User Guide 
 

DBCS characters in SQL statements must be delimited by the Shift-Out and Shift-In 
characters.  Shift characters are either IBM-defined (X'0E' and X'0F') or 
Fujitsu-defined (X'28' and X'29').  Shift characters are specified in CXXMAINT 
OPTION=ALTER,DBCS=xx in the CA Datacom/DB Utility (DBUTLTY).  If xx is IS or IM, 
the Shift characters are the IBM-defined characters.  If xx is FS or FM, the Shift 
characters are the Fujitsu-defined characters. GRAPHIC, VARGRAPHIC, and LONG 
VARGRAPHIC. 

 

Example 1 

Some examples of using the CREATE TABLE statement are: 

Create a table with the following specifications: 

1. Authorization ID:  JOE 

The example assumes that JOE is the default authorization ID in effect when the 
statement is executed.  In this case, it is not necessary to specify the authorization 
ID. 

2. Table name:  DEPTTBL 

3. Column names:  DEPTNO, DEPTNAME, MGRNBR, ADMDEPT 
 

4. Data type:  CHAR for all columns 

5. Area name:  CASQLDEFAULT 

The default area name is specified, although it is not necessary.  If you do not 
specify an area name, the table is automatically placed in the default area.  You 
must specify the area name if you want to place the table in an area other than the 
default. 

 

EXEC SQL 

      CREATE TABLE DEPTTBL 

           (DEPTNO CHAR(2), 

            DEPTNAME CHAR(24), 

            MGRNBR CHAR(6), 

            ADMDEPT CHAR(2)) 

      IN CASQLDEFAULT 

END-EXEC 
 

Example 2 

Create a table with the following specifications: 

1. Authorization ID:  TED 

In this example, TED is not the default authorization ID.  It is therefore necessary to 
specify the authorization ID. 

2. Table name:  DEPTTBL 

3. Column names:  DEPTNO (value to be unique), DEPTNAME, MGRNBR, ADMDEPT 
 



CREATE TABLE 

 

Chapter 28: SQL Statements  699  
 

4. Data type:  CHAR for all columns 

EXEC SQL 

      CREATE TABLE TED.DEPTTBL 

           (DEPTNO CHAR(2) NOT NULL UNIQUE, 

            DEPTNAME CHAR(24), 

            MGRNBR CHAR(6), 

            ADMDEPT CHAR(2)) 

END-EXEC 
 

Example 3 

Create a table with the following specifications: 

1. Authorization ID: JOE 

2. Table name: PROJECTTBL 

3. Column names (CHARACTER data): PROJECTNUM (value to be unique), 
PROJECTNAME (value to be unique), DEPTNO, EMPNUM, MAJPROJECT 

 

4. Column names (DECIMAL data): PROJSTAFF, PRSTARTDATE, PRENDDATE 

EXEC SQL 

      CREATE TABLE JOE.PROJECTTBL 

           (PROJECTNUM CHAR(6) NOT NULL UNIQUE, 

            PROJECTNAME CHAR(24) NOT NULL UNIQUE, 

            DEPTNO CHAR(3), 

            EMPNUM CHAR(6), 

            PROJSTAFF DECIMAL(5,2), 

            PRSTARTDATE DECIMAL(6), 

            PRENDDATE DECIMAL(6), 

            MAJPROJECT CHAR(6)) 

END-EXEC 
 

Example 4 

Create a table with the same specifications as Example 2, but specify that the DEPTNO 
and MGRNBR columns are to have a combined value which is unique for this table. 

Note:  The last column definition is separated from the table-level UNIQUE constraint by 
a comma. 

EXEC SQL 

      CREATE TABLE TED.DEPTTBL 

           (DEPTNO CHAR(2) NOT NULL UNIQUE, 

            DEPTNAME CHAR(24), 

            MGRNBR CHAR(6), 

            ADMDEPT CHAR(2), 

            UNIQUE (DEPTNO, MGRNBR)) 

END-EXEC 
 



CREATE TABLE 

 

700  SQL User Guide 
 

Example 5 

Create a table to keep track of customers who pay their bills on time.  Then create 
another table to keep track of current orders.  Design the tables to enforce the following 
business rules: 

1. Never accept an order from a customer who does not pay his bills. 

2. Do not finance orders of less than $1,000.00 worth of merchandise. 

3. Always get a down payment of at least 25 percent on financed orders. 
 

4. Never negotiate interest rates to below 11 percent. 

5. Ensure maximum performance when retrieving customer orders based on the 
assigned "order ID." 

Note:  The following example is intended to show the specification of as many different 
data types and options as possible.  For this reason, proper data base design and table 
normalization have been ignored.  Proper design and normalization of your databases is 
imperative for maximum system performance. 

 

EXEC SQL 

      CREATE TABLE ACCOUNTING.PAYING_CUSTOMERS 

       (TOTAL_NUM_ORDERS    INTEGER NOT NULL, 

        FIRST_ORDER         DATE, 

        LAST_ORDER          DATE, 

        COMPANY_NAME        CHAR(40) NOT NULL, 

        TOTAL_GROSS_ORDERS  DECIMAL(12,2) NOT NULL, 

        AVG_GROSS_PER_ORDER DECIMAL(9,2) NOT NULL, 

        PRIMARY KEY (COMPANY_NAME)); 

END-EXEC 

(Example 5 continued on next page) 
 



CREATE TABLE 

 

Chapter 28: SQL Statements  701  
 

EXEC SQL 

      CREATE TABLE ORDERS 

       (ORDER_ID_NUMBER     INTEGER NOT NULL PRIMARY KEY, 

        CUSTOMER_NAME       CHAR(40) DEFAULT 'INTERNAL ORDER', 

        SHIPMENT_ID_NUMBER  DECIMAL(6,0) NOT NULL UNIQUE, 

        GROSS_AMOUNT        NUMERIC(8,2) NOT NULL, 

        PERCENT_DOWN_PMT    REAL DEFAULT 100.0 

                            CHECK (PERCENT_DOWN_PMT >= 25.0), 

        NUM_PAYMENTS        SMALLINT DEFAULT NULL, 

        INTEREST_RATE       DOUBLE PRECISION CHECK (INTEREST_RATE >= 11.0) 

                            CONSTRAINT ORDERS_MIN_INTEREST_RATE, 

        DATE_PROMISED       DATE, 

        TIME_PROMISED       TIME, 

        DATE_AND_TIME_SHIPPED TIMESTAMP NOT NULL WITH DEFAULT, 

        AVG_ITEM_QUANTITY   FLOAT, 

        AVG_NUM_ITEMS       FLOAT(6), 

        TOTAL_PIECES        INTEGER NOT NULL WITH DEFAULT, 

        FOREIGN KEY (CUSTOMER_NAME) REFERENCES 

                    ACCOUNTING.PAYING_CUSTOMERS(COMPANY_NAME), 

        CHECK (GROSS_AMOUNT > 1000.0 OR PERCENT_DOWN_PMT = 100.0) 

              CONSTRAINT ORDERS_MIN_AMT_FINANCED); 

END-EXEC 
 

How the Tables Enforce the Business Rules: 

The following numbers correspond to the numbers of the business rules specified at the 
beginning of this example. 

1. The foreign key on ORDERS.CUSTOMER-NAME prevents orders from being inserted 
into the table ORDERS unless the customer's name appears in the 
PAYING-CUSTOMERS table in column COMPANY-NAME.  Any attempt to insert an 
order for a nonpaying customer is rejected. 

2. Constraint ORDERS-MIN-AMT-FINANCED prevents an order from being inserted if 
an attempt is being made to finance an order of less than $1000.00. 

 

3. CHECK (PERCENT-DOWN-PMT >= 25.0) stops orders that are being financed with a 
down payment of less than 25 percent.  Since the user did not specify a constraint 
name, the system generates a unique name.  It is recommended that you give 
meaningful names to all constraints so that error messages are more meaningful 
when a constraint name is in the message. 

4. Constraint ORDERS-MIN-INTEREST-RATE stops orders with an interest rate below 11 
percent. 

5. Making ORDER-ID-NUMBER the primary key causes the system to generate an index 
based on this column for quick access to the data records. 

 



CREATE TRIGGER/RULE 

 

702  SQL User Guide 
 

CREATE TRIGGER/RULE 

For an overview and examples of procedures and triggers, see Procedures and Triggers. 

In the following table, YES indicates a valid execution method for this statement. 

 

This SQL 
statement can 
be executed in 
the following 
ways: 

Through the CA 
Datacom 
Datadictionary 
Interactive SQL 
Service Facility 
(interactive) 

In an application 
program 
prepared using a 
CA Datacom/DB 
SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL & 
Batch Modes) 

CREATE 
TRIGGER/RULE 

YES YES YES 

The CREATE TRIGGER/RULE statement creates a user-specified set of instructions whose 
execution is triggered by a specified maintenance request against a certain base table. 
See Transaction Integrity for information about when a created trigger is recognized by 
applications that are currently executing. 

 

Note the following: 

■ Statement-level rules are not supported by CA Datacom/DB, that is, a 
TRIGGER/RULE can only be invoked for each row affected, not once for a statement 
that can affect many rows. 

■ Use of host variables, and therefore OUT and INOUT parameters, is forbidden in a 
procedure call that is part of a triggered action. 

 

■ To allow the trigger to be recognized during the execution of the plan, plans 
containing SQL statements that reference the table to which the trigger is being 
added are marked invalid and automatically rebound the next time they are 
executed. 

■ A single event can invoke multiple triggers.  When this occurs, the triggers are 
invoked according to the date and time created with the most recently created 
being invoked last. 

 



CREATE TRIGGER/RULE 

 

Chapter 28: SQL Statements  703  
 

With regard to table partitioning, CREATE statements may not be issued against a table 
which is partitioned nor against a partition. For more information about table 
partitioning, see the CA Datacom/DB Database and System Administration Guide. 

►►─ CREATE ─┬─ TRIGGER ─┬─ trig-name ─┬─ BEFORE ─┬────────────────────────────► 
            └─ RULE ────┘             └─ AFTER ──┘ 
 
 ►─ trig-event ─┬─ ON ───┬─ table-name ─┬───────────────────┬─ trig-action ───►◄ 
                ├─ OF ───┤              └─ trig-references ─┘ 
                ├─ FROM ─┤ 
                └─ INTO ─┘ 
   ┌─ , ───────────────────────────────────┐ 
►►─▼─┬─ INSERT ──────────────────────────┬─┴──────────────────────────────────►◄ 
     ├─ UPDATE ─┬──────────────────────┬─┤ 
     │          └─ OF ─ (column-list) ─┘ │ 
     └─ DELETE ──────────────────────────┘ 
►►─ REFERENCING ─┬─ old-row ─────────┬────────────────────────────────────────►◄ 
                 ├─ new-row ─────────┤ 
                 ├─ old-row,new-row ─┤ 
                 └─ new-row,old-row ─┘ 
►►─ OLD ─┬───────┬─ AS ─ correlation-name ────────────────────────────────────►◄ 
         └─ ROW ─┘ 
►►─ NEW ─┬───────┬─ AS ─ correlation-name ────────────────────────────────────►◄ 
         └─ ROW ─┘ 
►►─┬────────────────┬─┬───────────────┬─┬─ call-procedure ────┬───────────────►◄ 
   └─ FOR EACH ROW ─┘ └─ when-clause ─┘ └─ execute-procedure ─┘ 
►►─┬─ WHEN ──┬─ boolean-expression ───────────────────────────────────────────►◄ 
   └─ WHERE ─┘ 

 

CREATE TRIGGER/RULE 

(Required)  Specify for the CREATE either a TRIGGER or a RULE. 

trig-name 

Specify the SQL-name of the trigger.  SQL-names are SQL-identifiers. 

BEFORE/AFTER 

Trigger BEFORE or AFTER the CA Datacom maintenance occurs. 

trig-event ON/OF/FROM/INTO table-name 

Specify a trigger event, one of the listed options, and a table name. Options ON, OF, 
FROM, and INTO are supplied for syntax compatibility. 

 

INSERT/UPDATE/DELETE 

Part of the trig-event syntax. You can use up to three comma-separated 
occurrences of these three maintenance types (INSERT, UPDATE, DELETE), but each 
maintenance type can only be used once in the trig-event definition. 

OF 

(Optional) Part of the trig-event syntax. Supplied for syntax compatibility. 

(column-list) 

is a list of columns whose value-change triggers a trigger. Omission implies all 
columns are triggers. 

REFERENCING 

Part of the trig-references syntax. 
 



CREATE TRIGGER/RULE 

 

704  SQL User Guide 
 

OLD 

Part of the old-row syntax.  Refers to the row prior to UPDATE or DELETE. 

NEW 

Part of the new-row syntax.  Refers to the row that results from execution of the 
INSERT or UPDATE. 

ROW 

(Optional) Part of the old-row and new-row syntax. 
 

AS correlation-name 

Part of the old-row and new-row syntax. The correlation-name is the name which is 
to be used to reference a column from the before-maintenance or 
after-maintenance image of the row being maintained.  For example, if 
ACCOUNT_NUMBER is a column name, OLD_ACCOUNT_ROW is the before-image 
correlation-name, and NEW_ACCOUNT_ROW, then 
OLD_ACCOUNT_ROW.ACCOUNT_NUMBER can be used to refer to the account 
number prior to an UPDATE (or DELETE), and 
NEW_ACCOUNT_ROW.ACCOUNT_NUMBER may be used to refer to the account 
number after an UPDATE (or INSERT) occurs. The use of this name is, of course, 
limited to the CREATE statement itself. Also see Correlation Names (see page 515) 
and SQL Index Binding (see page 516). 

 

FOR EACH ROW 

(Optional) Part of the trig-action syntax. Denotes this trigger as one that executes 
once per maintained row rather than once per SQL statement.  ROW level is used 
(the default) even if you do not specify this optional clause. 

call-procedure 

Part of the trig-action syntax. 

As a convenience to users of CREATE TRIGGER who need to pass large base table 
rows to a triggered procedure, a special DATACOM_WHOLE_ROW column is 
available. DATACOM_WHOLE_ROW is only visible during execution of the CREATE 
TRIGGER statement. When you pass the special DATACOM_WHOLE_ROW column 
name to your procedure, the procedure receives a CHAR parameter containing the 
entire row in CA Datacom/DB format. Following is an example of the use of 
DATACOM_WHOLE_ROW: 

 CREATE TRIGGER myTrigger AFTER DELETE FROM myTable 

   REFERENCING OLD ROW AS old_row 

   CALL handleMaintenance('DELETE', old_row.datacom_whole_row) 

We recommend that you use this special DATACOM_WHOLE_ROW column name 
only if your parameter list becomes unwieldy because of an excessive number of 
columns being passed. 

 



CREATE VIEW 

 

Chapter 28: SQL Statements  705  
 

execute-procedure 

Part of the trig-action syntax. 

As a convenience to users of CREATE TRIGGER who need to pass large base table 
rows to a triggered procedure, a special DATACOM_WHOLE_ROW column is 
available. DATACOM_WHOLE_ROW is only visible during execution of the CREATE 
TRIGGER statement. See the information previously given in the call-procedure 
description about DATACOM_WHOLE_ROW. 

WHEN/WHERE boolean-expression 

This is the when-clause syntax. The when-clause executes before the triggered 
action (the procedure call) is taken and cancels execution of the procedure if the 
boolean-expression evaluates to UNKNOWN or FALSE. The boolean-expression is 
similar to the WHERE clause of the SELECT statement but may not include 
subqueries or functions of any type. The correlation-name (see previous 
description) can be used to reference values in the row being maintained. 

The trigger only activates on rows for which the boolean-expression evaluates to 
TRUE.  If the WHEN clause containing the boolean-expression is omitted, the trigger 
always triggers. 

 

CREATE VIEW 

In the following table, YES indicates a valid execution method for this statement. 

 

This SQL 
statement can 
be executed in 
the following 
ways: 

Through the CA 
Datacom 
Datadictionary 
Interactive SQL 
Service Facility 
(interactive) 

In an application 
program 
prepared using a 
CA Datacom/DB 
SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL & 
Batch Modes) 

CREATE VIEW YES YES YES 

To learn about using SQL keywords in CA Dataquery, see the CA Dataquery User Guide. 

For information about the access rights required to execute this statement, see the CA 
Datacom/DB Database and System Administration Guide. 

The CREATE VIEW statement creates a view (derived table) of one or more tables or 
views. 

 



CREATE VIEW 

 

706  SQL User Guide 
 

When a CREATE VIEW statement successfully executes, a VIEW entity-occurrence is 
defined in CA Datacom Datadictionary in PROD status. 

All of the tables and views specified in the CREATE VIEW statement must be in 
databases of the same security type, that is to say, either the CA Datacom/DB External 
Security Model or the SQL Security Model.  See the CA Datacom Security Reference 
Guide for more information about security models. 

 

Privileges 

If the Multi-User Facility is secured, whether the creator of the view may access that 
view depends on the security model of the view.  Under the SQL Security Model, when a 
view is created the user who executes the CREATE VIEW statement is automatically 
granted all privileges on the view.  Under the CA Datacom/DB External Security Model, 
all access rights, including those for the creator of a view, must be defined through the 
external security product. See the CA Datacom Security Reference Guide for more 
information. 

With regard to table partitioning, CREATE statements may not be issued against a table 
which is partitioned nor against a partition. For more information about table 
partitioning, see the CA Datacom/DB Database and System Administration Guide. 

Following is the syntax diagram for the CREATE VIEW statement: 

►►─ CREATE ─┬───────────┬─ VIEWview-name ─┬───────────────────────────┬─ AS ──► 
            └─ DATACOM ─┘                 │     ┌─ , ───────────┐     │ 
                                          └─ ( ─▼─ column-name ─┴─ ) ─┘ 
 
 ►─ subselect ─┬─────────────────────┬────────────────────────────────────────►◄ 
               └─ WITH CHECK OPTION ─┘ 

 



CREATE VIEW 

 

Chapter 28: SQL Statements  707  
 

Description 

DATACOM 

(Optional) See DATACOM VIEWs. 

view-name 

The unqualified or qualified name of the view. This name, including the implicit or 
explicit qualifier, must not name a table, view or synonym already described in the 
CA Datacom Datadictionary. 

If you specify SQLMODE=ANSI or SQLMODE=FIPS in the Preprocessor options, the 
view name can be 1 to 18 characters in length. 

If you specify SQLMODE=DATACOM for extended mode in the Preprocessor 
options, the view name can be 1 to 32 characters in length. 

The qualified form is the name preceded by an authorization ID and a period, for 
example, auth-id.view-name. 

If you qualify the view-name, the qualifier designates the schema of the view. If you 
do not qualify the view-name, the default authorization ID is used as the qualifier. 

If the CA Datacom/DB Security Facility is installed, the creator of the view is 
automatically granted the SELECT privilege on the view, and any other privilege that 
applies to a view and is a privilege that the creator has on the tables or views 
identified in the FROM clause of the SELECT statement. A privilege acquired by the 
creator is grantable only if the privilege from which it is derived is grantable by the 
creator. 

 

column-name 

A list of one or more names for columns in the view. The column names must be 
separated by commas and the list must be enclosed in parentheses. 

If you specify SQLMODE=ANSI or SQLMODE=FIPS in the Preprocessor options, the 
column name can be 1 to 18 characters in length. 

If you specify SQLMODE=DATACOM for extended mode in the Preprocessor 
options, the column name can be 1 to 32 characters in length. 

If you do not give other names to the columns, the columns of the view have the 
same names as the columns of the result table of the SELECT statement. 

If the result of the SELECT statement has duplicate column names, or a column 
derived from a function, literal, or arithmetic expression, you must give names to all 
the columns. Give a name for each column and do not use the same name more 
than once. 

 



CREATE VIEW 

 

708  SQL User Guide 
 

AS subselect 

The subselect defines the view. At any time, the view consists of the rows that 
result if the SELECT statement is executed. 

The subselect must be the subselect form of a SELECT statement that does not 
reference host variables. See Subselect for the subselect syntax diagram and 
information about the subselect parameters. 

 

WITH CHECK OPTION 

Specifies that all inserts and updates against this view are checked to ensure that 
the newly inserted or updated row satisfies the view definition. 

For example, if you use the view to insert a row, the row can be inserted only if you 
can also view it using this view, that is to say, the data being inserted must be 
within the bounds specified in the view's definition. 

The WITH CHECK OPTION can be specified only if the view is updateable and the 
view definition does not include a nested subquery. 

See Example 3 (see page 710) for a view definition using the WITH CHECK OPTION. 
 

Processing 

A view is read-only and cannot be updated if its definition includes any of the following 
phrases: 

■ A FROM clause naming more than one table or view (a join) 

■ The keyword DISTINCT 

■ A GROUP BY clause 
 

Keywords and phrases which cannot be used in the definition of a view are: 

■ FOR UPDATE OF 

■ ORDER BY 

■ UNION 

Note:  A view whose definition involves either a GROUP BY clause or a column function 
cannot be named in any FROM clause that contains another table or view, that is to say, 
the view cannot be joined.  This is not a restriction on the content of the CREATE VIEW 
statement itself, but on queries that reference the view.  An error message is issued if 
you violate this rule. Also, a view whose definition contains a SELECT DISTINCT may only 
be joined if the join itself has a SELECT DISTINCT.  Again, this is a restriction on queries 
that reference the view, not a restriction on the view itself. 

 



CREATE VIEW 

 

Chapter 28: SQL Statements  709  
 

Example 1 

Create a read-only view with the specifications listed in the following: 

1. View name:  PROJV1 

2. Column names:  PROJNO, PROJNAME, PROJDEP, RESPEMP, EMPNO, FIRSTNME, 
MIDINIT, LASTNAME 

3. The view joins the tables PROJTBL and NAMETBL where a value in the RESPEMP 
column is equal to a value in the EMPNO column. 

Note:  Since this view joins two tables, it is a read-only view. 
 

EXEC SQL 

      CREATE VIEW PROJV1 

           (PROJNO, PROJNAME, PROJDEP, RESPEMP, 

            FIRSTNME, MIDINIT, LASTNAME) 

      AS SELECT ALL 

           PROJNO, PROJNAME, DEPTNO, EMPNO, 

           FIRSTNME, MIDINIT, LASTNAME 

      FROM PROJTBL, NAMETBL 

      WHERE RESPEMP = EMPNO 

END-EXEC 
 

Example 2 

Create an updateable view with the specifications listed in the following: 

1. View name:  SUPPLY 

2. Column names:  SNUM, SNAME, STATUS, CITY 

3. Search condition:  The value of STATUS must be greater than 10 

This view is a row and column subset view of the table CASUPL which contains columns 
SNUM, SNAME, STATUS, CITY, STATE and ZIP. View SUPPLY can be used to update values 
for the four specified columns.  However, this view would not be used to insert new 
rows into CASUPL since some of the columns are not included in the view definition. 

 

EXEC SQL 

      CREATE VIEW SUPPLY 

           (SNUM, SNAME, STATUS, CITY) 

      AS SELECT ALL 

           SNUM, SNAME, STATUS, CITY 

      FROM CASUPL 

      WHERE STATUS > 10 

END-EXEC 
 



DECLARE CURSOR 

 

710  SQL User Guide 
 

Example 3 

Create an updateable view with the specifications listed in the following: 

1. View name:  SUPPLY 

2. Column names:  SNUM, SNAME, STATUS, CITY, STATE, ZIP 

3. Search condition:  The value of STATUS must be greater than 10 

4. Use the WITH CHECK OPTION 
 

This view is a row subset view of the table CASUPL which contains columns SNUM, 
SNAME, STATUS, CITY, STATE and ZIP.  View SUPPLY can be used to update values for all 
the columns, and to insert new rows into CASUPL where the value for STATUS is greater 
than 10. If you attempt to insert a row where the value of STATUS is less than or equal 
to 10, the row is not inserted because the WITH CHECK OPTION does not allow you to 
view any row where STATUS is not greater than 10. 

 

EXEC SQL 

      CREATE VIEW SUPPLY 

           (SNUM, SNAME, STATUS, CITY, STATE, ZIP) 

      AS SELECT ALL 

           SNUM, SNAME, STATUS, CITY, STATE, ZIP 

      FROM CASUPL 

      WHERE STATUS > 10 

      WITH CHECK OPTION 

END-EXEC 
 

DECLARE CURSOR 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

DECLARE CURSOR  YES  

Note:  YES indicates a valid execution method for this statement. 

Note:  This statement cannot be executed interactively.  Use the SELECT statement 
instead (see SELECT (see page 766)). For information about the access rights required to 
execute this statement, see the CA Datacom/DB Database and System Administration 
Guide. 

 



DECLARE CURSOR 

 

Chapter 28: SQL Statements  711  
 

The DECLARE CURSOR statement defines a cursor. 

Following is the syntax diagram for the DECLARE CURSOR statement: 

►►─ DECLARE cursor-name ─┬─ NO SCROLL ◄ ──────────────────────────┬─ CURSOR ──► 
                         ├─ ASENSITIVE ◄ ──────────────┬─ SCROLL ─┘ 
                         ├─ INSENSITIVE ───────────────┤ 
                         └─ SENSITIVE ─┬─ DYNAMIC ◄ ─┬─┘ 
                                       └─ STATIC ────┘ 
►──┬─────────────┬─ FOR ─┬─ select-statement ─┬──────────────────────────►◄ 
   └─ WITH HOLD ─┘       └─ statement-name ───┘ 
 
 

 



DECLARE CURSOR 

 

712  SQL User Guide 
 

Description 

NO SCROLL  

Specifies the cursor is not scrollable. If scrolling is not specified, the default is NO 
SCROLL. With NO SCROLL, the FETCH statement can only return the next row. 

Note: Rows are sensitive to changes if a temporary table is not used. 

SCROLL 

Specifies the cursor is scrollable. 

ASENSITIVE 

With ASENSITIVE specified, the cursor is SENSITIVE DYNAMIC if a temporary table is 
not used. Otherwise, it is INSENSITIVE. This is the same as NO SCROLL except that 
scroll options are available with the FETCH statement. 

When scrolling is used, ASENSITIVE is the default scroll type. 

INSENSITIVE 

INSENSITIVE means that the cursor is not sensitive to changes in the underlying 
tables of the result set.  

With INSENSITIVE specified, the cursor is made read-only, and no positioned update 
or delete is allowed 

SENSITIVE 

SENSITIVE means that the cursor is sensitive to changes made after the cursor is 
opened. 

Note:If changes cannot be made visible to the cursor, an error is returned on the 
bind of the cursor open statement. 

Changes cannot be made visible if a temporary table is required, or when the cursor 
has more than one database table, or when a User Defined Function Table (UDFT) is 
used. 

A SENSITIVE scroll cursor must therefore reference only a single database table and 
not use aggregation. 

SENSITIVE scroll cursors can be DYNAMIC or STATIC. The DYNAMIC scroll cursor is 
the default with SENSITIVE specified. 

DYNAMIC 

DYNAMIC means that changes made by the current transaction are visible 
immediately, and changes made by other transactions are visible when committed. 

A temporary table is not built, so qualifying rows that are inserted while the cursor 
is open are visible, and rows deleted or updated such that they no longer qualify 
while the cursor is open are no longer visible. 



DECLARE CURSOR 

 

Chapter 28: SQL Statements  713  
 

If a row is updated, it is logically moved to its new position in the result set. For 
example, if the key being used to retrieve rows dynamically is on column 
line_number, if the application increments line_number using a positioned update, 
then the same row will be fetched using fetch next.  

This is more efficient than an insensitive scroll cursor because no temporary table is 
required, but the application must be able to work properly with the dynamic 
nature of the result set. 

STATIC 

As with an insensitive scroll cursor, a result table is built, so the size of the result set 
does not change. However, rows fetched using the fetch sensitive option reflect the 
current state of the corresponding underlying base table row. 

Row of a cursor declared as sensitive static can be fetched as sensitive or 
insensitive. If fetch sensitive is used, then the temporary table is updated to reflect 
the corresponding row of the underlying database table. If fetch insensitive is used, 
the row is returned from the temporary table in its current state, which reflects 
changes due to a previous fetch sensitive. 

■ Rows inserted after the cursor is opened are not visible. 

■ Rows deleted after the cursor is opened are not visible; a delete hole is 
created. 

■ Rows updated after the cursor is opened such that they no longer qualify are 
not visible; an update hole is created. 

cursor-name 

A cursor with the specified name is defined when your program is executed. The 
name must not be the same as the name of another cursor declared in your 
program. 

If you specify SQLMODE=ANSI or SQLMODE=FIPS in the SQL Preprocessor options, 
the cursor name can be 1 to 18 characters. 

For all other modes, the cursor name can be 1 to 32 characters. 

WITH HOLD 

When this CA Datacom/DB extension is specified, the cursor stays open when a 
COMMIT WORK is executed.  Any record-at-a-time command that commits the 
logical unit of work (for example LOGCP, LOGCR) works the same way. This is 
especially useful in a batch program that does updates and issues COMMIT WORK 
periodically to keep the log from becoming full and to limit the amount of work 
RESTART would have to do in case of a failure. The repositioning of the cursor is 
harder to program without WITH HOLD. 

 



DECLARE CURSOR 

 

714  SQL User Guide 
 

select-statement 

For information about the select-statement, see Select-Statement. 

statement-name 

Specifies the name of a prepared statement.  That statement must be prepared 
(using the PREPARE statement) sometime after the DECLARE CURSOR statement is 
executed and before the OPEN statement is executed, and it must be a 
select-statement.  For information on the PREPARE statement, see PREPARE (see 
page 756). 

 

A cursor in the open state designates a result table and a position relative to the rows of 
that table.  The table is the result table specified by the select-statement of the cursor. 

The result table is read-only if the select-statement includes any of the following: 

■ The keyword DISTINCT 

■ A UNION operator 

■ A column function 

■ A GROUP BY clause 

■ A HAVING clause 

■ An ORDER BY clause 
 

The result table is also read-only if the FROM clause of the outer subselect of the 
select-statement: 

■ Identifies more than one table or view 

■ Identifies a read-only view 

■ Identifies a table or view that is also identified in a FROM clause of a subquery 
of the select-statement 

 

Cursor Usage 

A DECLARE CURSOR statement must have corresponding OPEN, FETCH and CLOSE 
statements in the same source program for the execution of the OPEN to proceed 
without error. 

Cursors must be declared in the source: 

1. Before any reference to the cursor, and 

2. After all host variables used in the definition have been defined. 
 



DECLARE CURSOR 

 

Chapter 28: SQL Statements  715  
 

If an exception declaration (WHENEVER statement) is not provided, the recommended 
practice is for your program to include code to check the returned value of the SQLCODE 
immediately after each executable SQL statement.  If you do not use a WHENEVER 
statement, however, be aware of the following: 

Cursor definitions are declarations, not operational (procedural) statements, and as 
such are used for Preprocessor input only.  Because no call is sent to the Multi-User 
Facility, checking the SQLCODE after a DECLARE CURSOR statement always shows the 
SQLCODE received by whatever statement immediately preceeded the DECLARE 
CURSOR statement. 

 

In COBOL, cursor declarations can be made in the: 

■ WORKING-STORAGE SECTION 

■ LINKAGE SECTION 

■ REPORT SECTION 

■ PROCEDURE DIVISION 

Note:  The recommended practice is to place all cursor definitions immediately 
before the PROCEDURE DIVISION source statement.  But if you do not use a 
WHENEVER statement and want to avoid any potential confusion resulting from the 
content of the SQLCODE after a DECLARE CURSOR statement, place all of your 
DECLARE CURSOR statements in the WORKING-STORAGE SECTION. 

 

Example1 

In this example, the DECLARE CURSOR statement associates the cursor name C1 with 
the results of the SELECT. This example also shows how the cursor is opened with the 
OPEN statement, used in a FETCH statement, and closed with a CLOSE statement. 

     EXEC SQL 

         DECLARE C1 CURSOR FOR 

             SELECT DEPTNO, DEPTNAME, MGRNO 

             FROM DEPTTBL 

             WHERE ADMDEPT = 'A0' 

     END-EXEC. 

 

 ... 
 

    * DISPLAY DEPT TABLE INFO 

     EXEC SQL 

         WHENEVER NOT FOUND   GO TO DEPT-FETCH-LP-END 

         WHENEVER SQLERROR    GO TO SQL-ERROR-RTN 

         WHENEVER SQLWARNING  CONTINUE 

     END-EXEC. 

 

     EXEC SQL 

         OPEN C1 

     END-EXEC. 
 



DECLARE CURSOR 

 

716  SQL User Guide 
 

 DEPT-FETCH-LP. 

     EXEC SQL 

         FETCH C1 INTO :DNUM, :DNAME, :MNUM 

     END-EXEC. 

     DISPLAY DNUM, DNAME, MNUM. 

     GO TO FETCH-LOOP. 

 DEPT-FETCH-LP-END. 

 

     EXEC SQL 

         CLOSE C1 

     END-EXEC. 

 ... 
 

Example 2 

In this example, the DECLARE CURSOR statement defines the cursor, C1.  This cursor 
could be used in an UPDATE statement to update the column named in the clause, or 
used in a DELETE statement to delete a row. 

 EXEC SQL 

      DECLARE C1 CURSOR FOR 

           SELECT DEPTNO, DEPTNAME, MGRNO 

           FROM DEPTTBL 

           WHERE EXISTS 

                 (SELECT * 

                  FROM DIVTBL 

                  WHERE DIVTBL.DEPTNO = DEPTTBL.DEPTNO) 

 END-EXEC 
 

Example 3 

In this example, the DECLARE CURSOR statement defines the cursor, C1, and orders the 
results of the SELECT since an ORDER BY clause is included in the definition.  The SELECT 
retrieves the number and name of all employees hired before 1980 in order of seniority.  
HIREDATE is in the form "yymmdd." 

 EXEC SQL 

      DECLARE C1 CURSOR FOR 

           SELECT EMPNO, LASTNAME, FIRSTNME, HIREDATE 

           FROM EMP 

           WHERE HIREDATE < 800000 

           ORDER BY HIREDATE 

 END-EXEC 
 



DECLARE STATEMENT 

 

Chapter 28: SQL Statements  717  
 

DECLARE STATEMENT 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

DECLARE STATEMENT   YES  

Note:  YES indicates a valid execution method for this statement. 
 

The DECLARE STATEMENT is accepted by the CA Datacom/DB Preprocessors for SQL for 
the purpose of syntax compatibility with other SQL implementations, but CA 
Datacom/DB ignores everything after the keyword STATEMENT up to the 
end-of-statement delimiter.  CA Datacom/DB functionality is not affected. 

Following is the syntax diagram for the DECLARE statement (statement-name specifies 
the 1- to 18-character(s) name of a prepared SQL statement): 

►►─ DECLAREstatement-nameSTATEMENT ───────────────────────────────────────────►◄ 
 

DELETE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

DELETE (positioned)  YES  

DELETE (searched) YES YES YES 

Note:  YES indicates a valid execution method for this statement. To learn about using 
SQL keywords in CA Dataquery, see the CA Dataquery User Guide. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

 



DELETE 

 

718  SQL User Guide 
 

The DELETE statement deletes rows from a table or view.  Deleting a row from a view 
deletes the row from the table that the view is based on. 

You must specify ISOLEVEL=C (isolation level C) in the Preprocessor options when using 
the DELETE statement 

Note:  When the NOMAINT option of the CA Datacom/DB Utility (DBUTLTY) ACCESS 
function is in force, a DELETE statement receives a CA Datacom/DB return code 94(87), 
where 87 is a decimal internal return code (hex 57) that tells you no maintenance 
statements are allowed while NOMAINT is in force. 

Following is the syntax diagram for a DELETE statement: 

►►─┬─ searched DELETE ───┬────────────────────────────────────────────────────►◄ 
   └─ positioned DELETE ─┘ 

Note:  The positioned DELETE is not used by CA Dataquery. 
 

Searched DELETE 

Following is the syntax diagram for the searched DELETE statement: 

►►─ DELETE FROM ─┬─ tab-name ──┬─┬────────────────────┬───────────────────────► 
                 └─ view-name ─┘ └─ correlation-name ─┘ 
 
 ►─┬─────────────────────────┬────────────────────────────────────────────────►◄ 
   └─ WHEREsearch-condition ─┘ 

 

Positioned DELETE 

Following is the syntax diagram for the positioned DELETE statement, which you use 
with a cursor. 

►►─ DELETE FROM ─┬─ tab-name ──┬─┬────────────────────┬───────────────────────► 
                 └─ view-name ─┘ └─ correlation-name ─┘ 
 
 ►─ WHERE CURRENT OFcursor-name ──────────────────────────────────────────────►◄ 

 



DELETE 

 

Chapter 28: SQL Statements  719  
 

Description 

FROM tab-name or FROM view-name 

Name the table or view from which you want to delete. The table or view must be 
described in the CA Datacom Datadictionary, but must not be a CA Datacom 
Datadictionary table or a read-only view. 

correlation-name 

You can specify a 1- to 18-byte correlation-name to be used within the 
search-condition to designate the table or view. Also see Correlation Names and 
SQL Index Binding. 

WHERE 

Introduces a condition that specifies what rows are to be deleted. You can omit the 
clause, give a search condition or name a cursor.  If you omit the clause, all rows of 
the table or view are deleted. 

 

search-condition 

Each column-name in the search condition must name a column of the table or 
view, and the table or view must not be referenced in the FROM clause of any 
subselect in the search condition.  See Search Conditions for the search-condition 
syntax diagram. 

Each column-name in the search condition which is not in a subquery must name a 
column of the table or view being updated. In subqueries, the table or view being 
updated must not be named in any FROM clause. 

If the search condition contains a subquery, the subquery can be thought of as 
being executed each time the search condition is applied to a row. The result of the 
subquery is used in applying the search condition. In actuality, the subquery is 
executed for each row only if it contains a correlated reference to a column of the 
table or view. 

 

CURRENT OF cursor-name 

Names a cursor that is defined in a DECLARE CURSOR statement of your program.  
The DECLARE CURSOR statement must appear in your program before the DELETE 
statement. 

The table or view named must also be named in the FROM clause of the SELECT 
statement of the cursor. The result table of the cursor must not be read-only. 

When the DELETE statement is executed, the cursor must be positioned on a row. 
This row is the one that is deleted. After the deletion, the cursor is positioned 
before the next row of its result table. If there is no next row, the cursor is 
positioned after the last row. 

 



DELETE 

 

720  SQL User Guide 
 

Processing 

No rows are deleted if an error occurs during the execution of a DELETE statement.  The 
cursor is closed if an error occurs that makes the position of a cursor unpredictable. 

Unless appropriate locks already exist, one or more exclusive locks are acquired by the 
execution of a successful DELETE statement. Unless the locks are released by a rollback 
operation, a deleted row cannot be accessed by any unit of recovery. 

 

Example 1 

Delete the row from table DEPTTBL where the value of DEPTNO equals D1. 

EXEC SQL 

DELETE FROM DEPTTBL 

WHERE DEPTNO = 'D1' 

END-EXEC 
 

Example 2 

Delete several rows from table NAMETBL, specifically, those for all employees in 
Department E1 or D2. 

EXEC SQL 

    DELETE FROM NAMETBL 

    WHERE WORKDEPT = 'E1' OR WORKDEPT = 'D2' 

END-EXEC 
 



DESCRIBE 

 

Chapter 28: SQL Statements  721  
 

Example 3 

Deletes the row where the cursor is positioned. 

EXEC SQL 

DECLARE C1 CURSOR FOR 

SELECT DEPTNO, DEPTNAME, MGRNO 

FROM DEPTTBL 

WHERE ADMDEPT='A' 

END-EXEC. 

EXEC SQL 

OPEN C1 

END-EXEC. 

FETCH-LOOP. 

IF SQLCODE =  

EXEC SQL 

  FETCH C1 INTO :DNUM, :DNAME, :MNUM 

END EXEC. 

EXEC SQL 

  DELETE FROM DEPTTBL 

  WHERE CURRENT OF C1 

END-EXEC. 

GO TO FETCH LOOP. 

EXEC SQL 

CLOSE C1 

END-EXEC. 
 

DESCRIBE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

DESCRIBE  YES  



DESCRIBE 

 

722  SQL User Guide 
 

Note:  YES indicates a valid execution method for this statement. 

The DESCRIBE statement obtains information about a specified table or view, or about a 
prepared statment. 

Note:  When you use the PREPARE statement to create an executable SQL statement 
from a character string form of the statement, the executable form is called a prepared 
statement.  Information about a prepared statement can also be obtained by using the 
INTO clause of the PREPARE statement.  See PREPARE (see page 756) for more 
information about PREPARE. 

 

No authorization is required to DESCRIBE a prepared statement, but to execute a 
DESCRIBE TABLE statement you must hold at least one of the following authorizations: 

■ INSERT, UPDATE, DELETE, SELECT, INDEX, or ALTER on the table or view. 

■ Be a global, database, or table owner. 

■ Be the original creator of the table (only applies if the SQL Security Model is being 
used). 

 

Note:  Because the table name is not known at prepare time, security checks for this 
statement are always performed at execution time regardless of plan security options. 

Following is the syntax diagram for the DESCRIBE statement: 

►►─ DESCRIBE ─┬─ statement-name ─────┬─ INTOdescriptor-name ──────────────────► 
              └─ TABLEhost-variable ─┘ 
 
 ►─┬───────────────────────┬──────────────────────────────────────────────────►◄ 
   └─ USING ─┬─ NAMES ◄ ─┬─┘ 
             ├─ LABELS ──┤ 
             ├─ ANY ─────┤ 
             └─ BOTH ────┘ 

 



DESCRIBE 

 

Chapter 28: SQL Statements  723  
 

Description 

statement-name 

Identifies the prepared statement about which you want to obtain information. 

TABLE host-variable 

Identifies the table or view.  When the DESCRIBE statement is executed, 
host-variable must be a character string data type (a CHAR or VARCHAR variable) 
that contains a name identifying a table or view.  If the escape character is used in 
the string it must be the quotation mark (double-quotes).  Host-variable must be 
preceded by a colon.  An indicator variable is not allowed. 

INTO descriptor-name 

Identifies an SQL Descriptor Area (SQLDA) to be filled. See SQLDA (DESCRIBE or 
PREPARE INTO Statements). If the TABLE clause is used to describe a table or view, 
the information returned in the SQLDA describes the columns of the specified table 
or view.  If statement-name is used to describe a select-statement associated with a 
dynamic cursor, the information returned in the SQLDA describes the columns of 
the result table of the select-statement. When any other prepared statement is 
described, the SQLD field of the SQLDA is set to zero, which indicates a statement 
other than a select-statement has been described. 

 

USING 

Specifies if the SQLNAME field in the SQLDA is to contain a column name or a 
column label. If the requested value does not exist, SQLNAME is set to length 0. 

NAMES 

Assigns the name of the column.  This is the default. 

LABELS 

Assigns the label for the column.  A label is the column's CA Datacom 
Datadictionary field attribute HEADING-1. 

 

ANY 

Assigns the column label, or (if one does not exist) the column name. 

BOTH 

Assigns the column names to the first n occurrences of SQLVAR, and the column 
labels to the second n occurrences. 

 



DESCRIBE 

 

724  SQL User Guide 
 

Example 

In the following COBOL example of an SQLDA, a table or view with up to 100 columns is 
described. (For more information on SQLDAs used in DESCRIBE statements, see SQLDA 
(DESCRIBE or PREPARE INTO Statements).) 

          01  SQLDA 

              05  SQLAID                PIC X(8)  VALUE 'SQLDA   '. 

              05  SQLABC                PIC S9(9) COMP. 

              05  SQLN                  PIC S9(4) COMP VALUE +100. 

              05  SQLD                  PIC S9(4) COMP. 

              05  SQLVAR  OCCURS 100 TIMES. 

                  10  SQLTYPE           PIC S9(4) COMP. 

                  10  SQLLEN            PIC S9(4) COMP. 

                  10  FILLER  REDEFINES SQLLEN. 

                      15  SQLPREC       PIC X. 

                      15  SQLSCALE      PIC X. 

                  10  SQLDATA           PIC S9(9) COMP. 

                  10  SQLIND            PIC S9(9) COMP. 

                  10  SQLNAME-VARCHAR. 

                      49  SQLNAME-LEN   PIC S9(4) COMP. 

                      49  SQLNAME       PIC X(30). 

 

          01  TABLE-NAME                PIC X(32). 

 

          MOVE table-name TO TABLE-NAME. 

          EXEC SQL 

          DESCRIBE TABLE :TABLE-NAME INTO :SQLDA USING ANY 

          END-EXEC 

          PERFORM PRINT-NAMES SQLD TIMES. 
 

See the previous example and consider the following. 

Before the DESCRIBE statement is executed, you must set SQLN to the number of 
SQLVAR occurrences that are provided in the SQLDA. No information is returned in the 
SQLVARs if SQLD is set greater than SQLN, because in this case the SQLDA is not large 
enough (see the following for an explanation of how the SQLD is set). 

CA Datacom/DB sets: 

■ SQLAID to SQLDA. 

■ SQLABC to the length of the SQLDA. 

■ SQLD to the number of columns described by occurrences of SQLVAR (or twice this 
number when USING BOTH is specified). 

 



DROP 

 

Chapter 28: SQL Statements  725  
 

Assuming the object being described has n columns (and there are enough SQLVAR 
entries), values are assigned to the first n SQLVAR fields (listed in the following) to 
describe the object's columns. (When USING BOTH is specified, the SQLNAME field is 
used in a second set of n SQLVAR entries to return labels.) 

SQLTYPE 

A code for the data type of the column and if the column is nullable.  See SQLDA 
(DESCRIBE or PREPARE INTO Statements) (see page 870) for a list of these codes. 

SQLLEN 

A length value depending on the data type of the column.  See SQLDA (DESCRIBE or 
PREPARE INTO Statements) (see page 870) for possible values. 

SQLDATA 

A value of -1 indicates FOR BIT DATA. 
 

SQLIND 

Reserved. 

SQLNAME 

The unqualified name or label of the column, depending on the USING option 
specified. 

Note:  A string length of zero indicates that the column name or label does not 
exist. 

 

DROP 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

DROP INDEX YES YES  

DROP SYNONYM YES YES YES 

DROP TABLE YES YES YES 

DROP VIEW YES YES YES 

DROP PROCEDURE YES YES YES 

DROP TRIGGER/RULE YES YES YES 
Note:  YES indicates a valid e xecution method for this stateme nt.  



DROP 

 

726  SQL User Guide 
 

Important!  There is also a DROP PLAN statement that can only be submitted through 
DBSQLPR. See DROP PLAN (DBSQLPR). 

To learn about using SQL keywords in CA Dataquery, see the CA Dataquery User Guide. 

For information about the access rights required to execute this statement, see the CA 
Datacom/DB Database and System Administration Guide. 

The DROP statement is a CA Datacom/DB extension.  DROP removes an SQL-accessible 
object.  The object's description is removed from the CA Datacom Datadictionary.  Any 
application plans that reference the object are invalidated. 

Important!  When an object is dropped, any objects that are directly or indirectly 
dependent on that object are either dropped or marked for rebind. 

 

When a table or view is dropped, the prepared statements in plans that reference the 
table or view are marked nonexecutable until rebound. An attempt to execute these 
statements invokes automatic rebind, and the rebind fails.  If the plans containing 
referencing statements are currently executing or binding, the DROP request is aborted.  
This is always the case when the plan containing the DROP statement references the 
table or view, because this is an attempt to invalidate its own plan and is not allowed.  
Dropping an index causes all plans dependent on the indexed table to be marked 
invalid.  You can run a CA Datacom Datadictionary Relationship Report to find out what 
plans are dependent on a table.  See the CA Datacom Datadictionary Batch Reference 
Guide for information on Relationship Reports. 

 

The DROP statement does not process and you receive a -118 return code when the CA 
Datacom Datadictionary entity-occurrence definition of the table, view, synonym, or 
index you specify is protected with a password or a Lock Level 1 or 2.  The error message 
also includes a Datadictionary Service Facility (DSF) return code.  The DSF return codes 
are: 

■ IPW (for password protected) 

■ IOR (for Lock Level 1 protected) 

■ NTF (for Lock Level 2 protected) 
 



DROP 

 

Chapter 28: SQL Statements  727  
 

See Deleting SQL Objects for more information. See Preliminary Information—Lock 
Levels (see page 597) and to Datadictionary documentation for more information on 
passwords and lock levels. 

Note:  When the NOMAINT option of the CA Datacom/DB Utility (DBUTLTY) ACCESS 
function is in force, a DROP statement receives a CA Datacom/DB return code 94(87), 
where 87 is a decimal internal return code (hex 57) that tells you no maintenance 
statements are allowed while NOMAINT is in force. 

Also note that the DROP statement is rejected if other DML statements (see SQL 
Statements (see page 597)) are in the same plan or if the table being dropped is in use 
by other plans. 

With regard to table partitioning, DROP statements may not be issued against a table 
which is partitioned nor against a partition. For more information about table 
partitioning, see the CA Datacom/DB Database and System Administration Guide. 

 

Following is the syntax diagram for the DROP statement: 

►►─ DROP ─────────────────────────────────────────────────────────────────────► 
 
 ►─┬─ TABLE ─┬───────────┬─ tab-name ──────────────────────────────┬──────────►◄ 
   │         └─ authid. ─┘                                         │ 
   ├─ SYNONYMsynonym-name ─────────────────────────────────────────┤ 
   ├─ VIEW ─┬───────────┬─ view-name ──────────────────────────────┤ 
   │        └─ authid. ─┘                                          │ 
   ├─ INDEX ─┬───────────┬index-nameFROM ─┬───────────┬─ tab-name ─┤ 
   │         └─ authid. ─┘                └─ authid. ─┘            │ 
   ├─┬────────────┬─ PROCEDURE proc-name ─┬──────────────────┬─────┤ 
   │ └─ SPECIFIC ─┘                       └─┬─ RESTRICT ◄ ─┬─┘     │ 
   │                                        ├─ INVALIDATE ─┤       │ 
   │                                        └─ CASCADE ────┘       │ 
   └─┬─ TRIGGER ─┬─ trig-name ─────────────────────────────────────┘ 
     └─ RULE ────┘ 

Note:  DROP INDEX is not used by CA Dataquery. 
 



DROP 

 

728  SQL User Guide 
 

Description 

authid. 

An optional identifier of the schema for the table, view, or index. If specified for the 
index-name, it must be the same as the authorization ID of the table you have 
specified with the tab-name in the FROM tab-name clause. Use a period (.) to 
concatenate the authorization ID to the table or view name, for example, 
authid.tab-name. 

TABLE 

Indicates that the object you are dropping is a table. 

tab-name 

Specify the name of the table you want to drop. The tab-name must identify a table 
described in the CA Datacom Datadictionary, other than a CA Datacom 
Datadictionary table. 

The DROP TABLE statement removes the table from the schema, obsoletes the 
table from the CA Datacom Datadictionary, and removes the table from the CA 
Datacom/DB Directory (CXX). 

 

Important!  The table data is deleted and the space is reclaimed when you drop a table. 

All views and synonyms based on the table are dropped. All application plans and 
statements that reference the table are invalidated. If the table definition exists in 
TEST or HIST status in CA Datacom Datadictionary, those status/versions are 
deleted at the same time as the PROD status. 

All columns (columns appear as FIELD occurrences in CA Datacom Datadictionary ), 
keys, elements, and support data related to the table are also obsoleted. The 
support data includes aliases, descriptors, relationship definitions, and text (SQL 
comments). 

SYNONYM 

Indicates that the object you are dropping is a synonym. 

synonym-name 

Specify the name of the synonym you want to drop. Dropping a synonym does not 
affect the table or view referenced by the dropped synonym. 

 



DROP 

 

Chapter 28: SQL Statements  729  
 

VIEW 

Indicates that the object you are dropping is a view. 

view-name 

Specify the name of the view you want to drop. The view name must identify a view 
described in the CA Datacom Datadictionary. The definition of the view is removed 
from the CA Datacom Datadictionary. The definition of any view that is directly or 
indirectly dependent on that view is also removed. When the definition of a view is 
removed from the CA Datacom Datadictionary, all privileges on that view are also 
dropped. 

INDEX 

Indicates that the object you are dropping is an index. 
 

index-name FROM tab-name 

Specify the name of the index you want to drop and the table to which the index 
belongs. Make certain that the index-name you use in the DROP INDEX statement 
matches the SQLNAME attribute of the KEY that you wish to DROP. 

Dropping an index removes the index from the Index Area (IXX), removes the index 
definition from the Directory (CXX) and CA Datacom Datadictionary, and causes all 
plans dependent on the indexed table to be marked invalid. You can run a CA 
Datacom Datadictionary Relationship Report to find out what plans are dependent 
on a table. See the CA Datacom Datadictionary Batch Reference Guide for 
information on Relationship Reports. 

 

SPECIFIC 

Provided for ANSI syntax compatibility only. Specifies that the proc-name given is 
the specific name of the procedure. 

PROCEDURE 

DROP PROCEDURE deletes a procedure definition and the associated program 
definition and plan (that is, the portion of the procedure logic that resides in SQL). 

Note: For an overview and examples of procedures and triggers, see Procedures 
and Triggers (see page 70). 

 



DROP 

 

730  SQL User Guide 
 

proc-name 

Specify a procedure name. 

ANSI supports overloading of the procedure name, with duplicate procedure names 
resolved to procedure definitions using the layout of the parameter list. For syntax 
compatibility purposes, a second, specific name may be given to a procedure to 
uniquely identify it, but it must match the nonspecific name, and the nonspecific 
name must be unique. 

RESTRICT 

Tells SQL to abort the DROP if triggers exist that call the procedure.  RESTRICT is the 
default. 

INVALIDATE 

Specifies that referencing triggers are marked invalid, and therefore cannot execute 
until the procedure is re-added and the triggers rebound.  The rebind occurs 
automatically and is transparent to the user unless the procedure has not been 
replaced when the triggering of the trigger occurs. This option protects the integrity 
of the tables on which the triggers are defined. Any attempt to fire an invalid trigger 
causes the triggering maintenance request (INSERT, UPDATE, or DELETE) to abort, 
unless the automatic trigger rebind succeeds. The INVALIDATE option also causes 
the plan related to the procedure to be marked invalid. The plan automatically 
rebinds during the next CALL PROCEDURE if the procedure is re-created. 

 

CASCADE 

Specifies the dropping of any referencing triggers. In order to avoid the potential for 
later PROGRAM/PLAN MISMATCH errors if the procedure is re-precompiled, unless 
the program is called by other procedures we strongly recommend that you delete 
the corresponding load module and CA Datacom Datadictionary PROGRAM 
definitions at this time. The LOAD module and CA Datacom Datadictionary 
PROGRAM definitions are not affected. 

DROP TRIGGER/RULE 

Specify either a TRIGGER or RULE to be dropped. DROP TRIGGER/RULE deletes a 
trigger or rule from the system. To prevent a trigger from being invoked after being 
dropped, plans containing SQL statements that reference the table from which the 
trigger is being removed are marked invalid and automatically rebound the next 
time they are executed. 

Note: For an overview and examples of procedures and triggers, see Procedures 
and Triggers. (see page 70) 

trig-name 

Specify a trigger name. 
 



EXECUTE 

 

Chapter 28: SQL Statements  731  
 

Example 1 

Drop table TED.TDEPT.  TED is the authorization ID of the user who owns the table. 

 EXEC SQL 

      DROP TABLE TED.TDEPT 

 END-EXEC 
 

Example 2 

Drop the view VDEPT. 

EXEC SQL 

DROP VIEW VDEPT 

END-EXEC 
 

Example 3 

Drop the index named EMPLOYEE_INDEX that belongs to the table named EMPLOYEES. 

EXEC SQL 

DROP INDEX EMPLOYEE_INDEX FROM EMPLOYEES 

END-EXEC 
 

EXECUTE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

EXECUTE  YES  

Note:  YES indicates a valid execution method for this statement. 
 



EXECUTE 

 

732  SQL User Guide 
 

No privileges are required to execute an EXECUTE statement, and no authorization is 
required to preprocess an EXECUTE statement. That is, there is no security check of the 
EXECUTE statement or its contents at preprocessor time.  At execution time, however, 
the statement's contents are checked against the security conditions that are valid for 
that program. 

Following is the syntax diagram for the EXECUTE statement: 

►►─ EXECUTEstatement-name ─┬─────────────────────────────────────────┬────────►◄ 
                           │           ┌─ , ─────────────┐           │ 
                           └─ USING ─┬─▼─ host-variable ─┴─────────┬─┘ 
                                     └─ DESCRIPTOR descriptor-name ┘ 

 

Description 

statement-name 

Identifies the prepared statement to be executed.  The prepared statement must 
have been prepared within the same logical unit of work as the EXECUTE statement 
used to execute it, and it cannot be a select-statement.  (Prepared 
select-statements are executed with OPEN statements.) See PREPARE (see 
page 756) for more information about prepared statements. 

USING 

If the prepared statement includes parameter markers, you must code the USING 
clause.  The USING clause specifies either a list of host variables (whose values are 
substituted for parameter markers) or a SQL Descriptor Area (SQLDA) that contains 
a description of the host variables.  If you code the USING clause when there are no 
parameter markers in the prepared statement, the USING clause is ignored. See 
Rules for Parameter Markers (see page 758) for rules for parameter markers. 
Information about parameter marker replacement can be found on PREPARE (see 
page 756). 

 

host-variable 

Identifies host structures or variables used to supply the values for parameter 
markers. Separate the host variables in the list with commas. 

The host-variable specified in the USING clause identifies a structure or variable 
that is described in the program in accordance with the rules for declaring host 
structures and variables.  When the statement is executed, a reference to a 
structure has been replaced by references to each of its variables.  The number of 
variables must be the same as the number of parameter markers in the prepared 
statement. The nth variable supplies the value for the nth parameter marker in the 
prepared statement. 

 



EXECUTE 

 

Chapter 28: SQL Statements  733  
 

DESCRIPTOR descriptor-name 

The descriptor-name identifies a SQL Descriptor Area (SQLDA) containing a 
description of the host variables. The SQLD field (used to indicate the number of 
variables) must be set to the number of parameter markers in the prepared 
statement, and the length of the SQLDA (indicated by SQLABC) must be sufficient to 
describe that number of variables. The nth variable (the nth SQLVAR entry) 
described by the SQLDA corresponds to the nth parameter marker in the prepared 
statement.  For details on the SQLDA, see SQL Descriptor Area (SQLDA) (see 
page 869) 

 

Parameter Marker Replacement 

Before the prepared statement is executed, host variables are assigned to target 
variables for each parameter marker. The attributes of the target variables depend on 
the role that the parameter marker plays in the SQL statement.  The rules for these roles 
are shown in the following.  In these rules, P represents the parameter marker in 
question. 

Arithmetic Operand 

When P is an operand of an infix operator, the data type, precision, and scale of the 
target variable is the same as the other operand, so both operands cannot be parameter 
markers. 

When P is the operand of a unary minus, the data type of the target variable is double 
precision floating-point. 

 

LIKE Predicate 

If you specify the parameter marker as the pattern of a LIKE predicate (see LIKE 
Predicate (see page 585)), ensure that the host variable used to replace the parameter 
marker is compatible with the first operand. 

Comparand 

P can be a comparand in a BETWEEN, IN, or basic predicate, where at least one of the 
other comparands is not a parameter marker. The attributes of the target for P are 
those of one of the other comparands. 

■ For a BETWEEN predicate, it is the first comparand that is a column name, or (if no 
comparand is a column name) the first comparand that is not a parameter marker. 

 



EXECUTE IMMEDIATE 

 

734  SQL User Guide 
 

■ For the IN predicate, it is the first comparand that is not a parameter marker. 

■ For a basic predicate, it is the other comparand. 

Assignment Operand 

P must be the value assigned to a column in an INSERT or UPDATE statement.  The 
attributes of the target are the same as the column. 

 

Example 
          01  S1. 

              49  S1LEN                 PIC S9999 COMP VALUE +80. 

              49  S1HV                  PIC X(8). 

          01  HV1                       PIC X VALUE 'X'. 

          01  HV2                       PIC X VALUE 'Y'. 

 

          MOVE 'INSERT INTO T1 VALUES (?, ?)' TO S1HV. 

          EXEC SQL 

              PREPARE STMT1 FROM S1 

          END-EXEC 

          EXEC SQL 

              EXECUTE STMT1 USING :HV1, :HV2 

          END-EXEC 
 

EXECUTE IMMEDIATE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

EXECUTE IMMEDIATE   YES  

Note:  YES indicates a valid execution method for this statement. 

The EXECUTE IMMEDIATE statement prepares and executes an SQL statement.  
EXECUTE IMMEDIATE is more convenient than using PREPARE and EXECUTE, but note 
the following: 

■ With EXECUTE IMMEDIATE, parameter markers cannot be used, and 

■ EXECUTE IMMEDIATE is less efficient than using PREPARE and EXECUTE, which allow 
you to prepare a statement once and execute it multiple times. 

 



EXECUTE PROCEDURE 

 

Chapter 28: SQL Statements  735  
 

No authorization is required to preprocess an EXECUTE IMMEDIATE statement, that is, 
there is no security check of the EXECUTE IMMEDIATE statement or its contents at 
preprocessor time.  At execution time, however, the statement's contents are checked 
against the security conditions that are valid for that program. 

Following is the syntax diagram for the EXECUTE IMMEDIATE statement: 

►►─ EXECUTE IMMEDIATE ─┬─ string-expression ─┬────────────────────────────────►◄ 
                       └─ host-variable ─────┘ 

 

Description 

string-expression 

A PL/I expression that yields a character string. 

host-variable 

A host-variable must be used for languages other than PL/I. It must identify a 
varying-length string host variable. 

 

Rules for Statement Strings 

A statement string is the value of the string-expression or host-variable. See the rules 
for statement strings on Rules for Statement Strings (see page 758). 

 

Example 
          01  S1. 

              49  S1LEN                 PIC S9999 COMP VALUE +80. 

              49  S1HV                  PIC X(8). 

 

          MOVE 'INSERT INTO T1 VALUES (1, 2)' TO S1HV. 

          EXEC SQL 

              EXECUTE IMMEDIATE S1 

          END-EXEC 
 

EXECUTE PROCEDURE 

For information about the EXECUTE PROCEDURE statement, see CALL/EXECUTE 
PROCEDURE (see page 610). 

 



FETCH 

 

736  SQL User Guide 
 

FETCH 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

FETCH  YES  

Note:  YES indicates a valid execution method for this statement. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

 

The FETCH statement positions a cursor on the specified row of its result table and 
assigns the value of that row to any specified host variables. You can use multiple FETCH 
statements referencing the same cursor. The host variables in the INTO list are matched 
by position to SELECT list expressions. The INTO list may FETCH a leading subset of the 
SELECT list expressions.  However, unless the plan has SQLMODE=DB2, the FETCH 
statement that appears first in the host program must have the same or greater number 
of host variables. Also, although each FETCH statement may reference different host 
variables, unless the plan has SQLMODE=DB2, they must have the same data type, 
length, precision, and scale. 

Following is the syntax diagram for the FETCH statement: 

►►─ FETCH ─┬───────────────┬──┤ fetch-orientation ├──┬──────────┬─ cursor-name ─► 
           ├─ INSENSITIVE ─┤                         └─ FROM ◄ ─┘ 
           └─ SENSITIVE ───┘ 
►──┬──────────────────────┬─────┬───────────────────────────────────┬──────────►◄ 
   └─┤ single-row-fetch ├─┘     ├        ┌─ , ─────────────┐        ┤ 
                                ├─ INTO ─▼─ host-variable ─┴────────┤ 
                                └─ USING DESCRIPTORdescriptor-name ─┘ 
 
Expansion of fetch-orientation 
├──┬── BEFORE ──────────┬──────────────────────────────────────┤ 
   ├── AFTER ───────────┤ 
   └─┤ row-positioned ├─┘ 
 
Expansion of row-positioned 
 
├──┬── NEXT ────────────────────────────┬───────────────────────┤ 
   ├── PRIOR ───────────────────────────┤ 
   ├── FIRST ───────────────────────────┤ 
   ├── LAST ────────────────────────────┤ 
   ├── ABSOLUTE──┬─ host-variable ────┬─┤ 
   ├             └─ integer-constant ─┘ ┤ 
   └── RELATIVE ─┬─ host-variable ────┬─┘ 
                 └─ integer-constant ─┘ 
 
Expansion of single-row-fetch 
 
├──┬───────────────────────────────────┬─────────────────────────┤ 
   ├        ┌─ , ─────────────┐        ┤ 
   ├─ INTO ─▼─ host-variable ─┴────────┤ 
   └─ INTO DESCRIPTOR descriptor-name ─┘ 
 



FETCH 

 

Chapter 28: SQL Statements  737  
 

Note 1:  Whether INSENSITIVE or SENSITIVE is the default in the FETCH statement 
depends on the sensitivity of the cursor specified in the DECLARE CURSOR statement. If 
INSENSITIVE was specified in DECLARE CURSOR, INSENSITIVE is the default in the FETCH 
statement. If SENSITIVE was specified in DECLARE CURSOR, SENSITIVE is the default in 
the FETCH statement.  

Note 2: If SENSITIVE or INSENSITIVE is specified in the FETCH statement, 
single-row-fetch must also be specified. 

Note 3: If BEFORE or AFTER is specified, do not specify SENSITIVE, INSENSITIVE, or the 
accompanying single-row-fetch. 

Note 4: For a scrollable cursor, all FETCH statements with the single-row-fetch must 
specify the same number of columns. 

Note 5: INTO and USING are optional, as shown, if a SCROLL CURSOR is being used. For 
non-SCROLL CURSOR operations, however, specifying either INTO or USING is required. 

 



FETCH 

 

738  SQL User Guide 
 

Description 

Positioning 

Positioning is either BEFORE or AFTER the first or last row of the result set, or it is 
based on the ABSOLUTE or RELATIVE position in the result set. 

The position value must be an integer literal or host variable. 

ABSOLUTE 

The cursor is positioned to the row specified from the beginning, or end if 
negative, of the result set. If the position is zero, the cursor is positioned before the 
first row of the set. If the position value is greater than the number of rows in the 
result set, a warning is issued and the position is changed to after the last row. 

Examples with a set of 100 rows:  

    0 - cursor is positioned before first row of set, no data returned. 

   10 - cursor is positioned on the tenth row of the set, data returned (unless a hole 
with the static sensitive cursor mode). 

   -1 - cursor is positioned on the last row of the set. 

101 - cursor is positioned after the last row of the set, no data returned, warning 
issued. 

-101 - cursor is positioned before the first row of the set, no data returned, warning 
issued. 

RELATIVE 

The cursor is positioned from the current position. A negative value positions 
backwards, and a positive value forwards. Zero returns the current row; however, if 
the current row has been deleted or updated such that it no longer qualifies, then 
the next row of the set is returned for the dynamic sensitive cursor mode. 

    0 - the same row is returned. If it has been deleted or no longer qualifies for a 
sensitive dynamic cursor, then the next row is returned. 

+10 - cursor is moved forward 10 rows, and data returned (unless a hole with the 
static sensitive cursor mode). If position is after the last row of the set, a warning is 
returned and no data returned. 

   -1 - cursor is positioned backwards one row. 

+101 - cursor is positioned after the last row of the set, no data returned, warning 
issued. 

-101 - cursor is positioned before the first row of the set, no data returned, warning 
issued. 

Cursors are declared insensitive, sensitive static and sensitive dynamic, but there is 
also the option of specifying insensitive or sensitive on the fetch. 

 



FETCH 

 

Chapter 28: SQL Statements  739  
 

Declare Fetch 
Insensitive 

Fetch 
Sensitive 

Insensitive Not needed since  
it is the default. 

Error returned; no effect on cursor 

Sensitive 
Dynamic 

Error returned; no effect on cursor. Row is returned from the database, reflecting changes 
made by this transaction, and other committed changes. 

Sensitive 
Static 

Returns row as is ■ If the row has been deleted, no data is returned. 

■ If the row has been updated such that it no longer 
qualifies for the set, no data is returned. 

■ If the row has been updated, the updated values are 
returned. 

■ Rows inserted since the cursor was opened that would 
qualify are not visible. 

Any ■ Positioned update or delete from 
the cursor are reflected. 

■ Previous fetch sensitive reflected. 

  



FETCH 

 

740  SQL User Guide 
 

Starting and Resulting Cursor Position 

Kalpana Shyam of IBM Silicon Valley Lab provided the table below in her 
presentation "Scrollable Cursors: Fetching Opportunities for DB2 for OS/390" at the 
DB2 and Business Intelligence Technical Conference, October 16-20, 2000. 

Starting and resulting cursor position 

 

Note: If a fetch encounters an update or delete hole, a +222 SQLCODE is returned to the 
program. 

SQLCA 

Explanation of SQLCA fields on scrollable cursors 

 

Field Value Meaning 

SQLWARN1 N Non-scrollable 

SQLWARN1 S Scrollable 

SQLWARN4 I Insensitive 

SQLWARN4 S Sensitive static 

SQLWARN5 1 Read-only implicitly or explicitly 

SQLWARN5 2 Select and delete allowed on result table 



FETCH 

 

Chapter 28: SQL Statements  741  
 

Field Value Meaning 

SQLWARN5 3 Select, delete, and update allowed on result table 

 

cursor-name 

Specify the name of a cursor that is defined in a DECLARE CURSOR statement of 
your program. The DECLARE CURSOR statement must precede the FETCH statement 
in your source program. When the FETCH statement is executed, the cursor must 
be in the open state. 

INTO host-variable 

If INTO is used, each host-variable you specify must identify a variable that is 
described in your program in accordance with the rules for declaring host variables.  
The host variables must be separated by commas. 

The first value in the result row is assigned to the first variable in the list, the second 
value to the second variable, and so on. If the number of variables is not the same 
as the number of values in the row, the SQLCA-WARNING(4) field of the SQLCA is 
set to W. 

 

The data type of a variable must be compatible with the value assigned to it.  If the 
value is numeric, the variable must have the capacity to represent the integral part 
of the value.  If the value is null, an indicator variable must be specified. 

Each assignment to a variable is made according to the rules described in Basic 
Operations (Assignment and Comparison) Assignments are made in sequence 
through the list.  If an assignment error occurs, the value is not assigned to the 
variable, and no more values are assigned to variables.  Any values that have 
already been assigned to variables remain assigned. 

 

USING DESCRIPTOR descriptor-name 

This clause allows the row of a result table of a cursor to be fetched into variables 
which are determined at execution-time.  Descriptor-name identifies a SQL 
Descriptor Area (SQLDA) that contains a valid description of zero or more host 
variables. The length of the SQLDA, as indicated by SQLABC, must be sufficient to 
describe the number of variables indicated by SQLD.  The first value of a row 
corresponds to the first variable described by the SQLDA, the second value to the 
second variable, and so on.  For more information about the SQLDA, see SQL 
Descriptor Area (SQLDA) (see page 869). 

Note: A cursor referenced in an UPDATE or DELETE statement must be positioned on a 
row. A cursor can only be positioned on a row as a result of a FETCH statement. If an 
error occurs during the execution of a FETCH statement that makes the position of a 
cursor unpredictable, the cursor is closed. 

 

Example 

See the DECLARE CURSOR's "Example 1" on Example1 (see page 715). 
 



GRANT 

 

742  SQL User Guide 
 

GRANT 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

GRANT YES YES YES 

Note:  YES indicates a valid execution method for this statement. To learn about using 
SQL keywords in CA Dataquery, see the CA Dataquery User Guide. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

 

The GRANT statement grants privileges on tables and views in databases that are 
secured under the SQL Security Model. All of the tables and views specified in the 
GRANT statement must be in databases secured under the SQL Security Model. If tables 
and views are in databases secured under the CA Datacom/DB External Security Model, 
the GRANT statement is rejected with an SQL error code -273. See the CA Datacom 
Security Reference Guide for more information about security models. 

 

Plan Security 

SQL plans are securable.  With plan security you can create a plan such that, in order to 
execute the plan, an accessor ID must have the plan EXECUTE privilege for that plan. The 
plan EXECUTE privilege can be granted with the GRANT statement and revoked with the 
REVOKE statement. For other plan security information in this guide, see REVOKE (see 
page 759), Also see the information on the CHECKPLAN=, CHECKWHEN=, CHECKWHO=, 
and SAVEPLANSEC= options. For detailed information about plan security, see the CA 
Datacom Security Reference Guide.  

Note: To grant a plan privilege you must possess that privilege WITH GRANT OPTION or 
be a Global Owner. To revoke a plan privilege you must have granted the privilege or be 
a Global Owner. See the CA Datacom Security Reference Guide for more information on 
Global Owners. 

 

Following is the syntax diagram for the plan security version of the GRANT statement: 

                                                ┌─ , ───────────┐   
►►─ GRANT ─┬─ EXECUTE ─┬─ ON PLANplan-nameTO ─┬─▼─ accessor-id ─┴─┬───────────► 
           └─ BIND ────┘                      ├─ PUBLIC ──────────┤ 
                                              └─ UNKNOWNUSER ─────┘ 
 
 ►─┬─────────────────────┬────────────────────────────────────────────────────►◄ 
   ├─ WITH GRANT OPTION ─┤ 
   └─ WITH GRANT ────────┘ 

 



GRANT 

 

Chapter 28: SQL Statements  743  
 

Description of Plan Security Diagram 

EXECUTE 

Grants the PLAN EXECUTE privilege. 

BIND 

Grants the PLAN BIND privilege. 

ON PLAN plan-name 

Specifies the name of the plan to which the PLAN EXECUTE or PLAN BIND privilege 
is to be granted. 

TO accessor-id 

Specify the accessor ID of one or more users to whom you are granting the 
privileges.  This is a user's ID, not a schema auth-id.  Do not specify your own 
accessor ID, that is to say, you cannot grant privileges to yourself. 

 

TO PUBLIC 

Specify PUBLIC when you are granting the specified privileges to all users. A new 
user automatically has any privileges previously granted to the public. 

TO UNKNOWNUSER 

Specify UNKNOWNUSER when you are granting the specified privileges to users 
whose identities cannot be determined by CA Datacom/DB security. 

WITH GRANT OPTION 

Specify this option if you want the user to whom you have granted the privilege to 
be able to grant it to another user. WITH GRANT OPTION cannot be used with 
PUBLIC. 

 



GRANT 

 

744  SQL User Guide 
 

WITH GRANT 

Specify WITH GRANT if you want the user to whom you have granted the privilege 
to be able to grant it to another user. WITH GRANT cannot be used with PUBLIC or 
with UNKNOWNUSER. 

Following is the non-plan security syntax diagram for the GRANT statement: 

►►─ GRANT ─┬─ ALL ──────────────────────────────┬─ ON ─┬─────────┬────────────► 
           ├─ ALL PRIVILEGES ───────────────────┤      └─ TABLE ─┘ 
           │ ┌─ , ────────────────────────────┐ │ 
           └─▼─┬─ SELECT ───────────────────┬─┴─┘ 
               ├─ INSERT ───────────────────┤ 
               ├─ DELETE ───────────────────┤ 
               ├─ UPDATE ─┬───────────────┬─┤ 
               │          └─ column-list ─┘ │ 
               ├─ ALTER ────────────────────┤ 
               └─ INDEX ────────────────────┘ 
 
   ┌─ , ──────────────┐        ┌─ , ───────────┐   
 ►─▼─┬─ table-name ─┬─┴─ TO ─┬─▼─ accessor-id ─┴─┬────────────────────────────► 
     └─ view-name ──┘        ├─ PUBLIC ──────────┤ 
                             └─ UNKNOWNUSER ─────┘ 
 
 ►─┬─────────────────────┬────────────────────────────────────────────────────►◄ 
   ├─ WITH GRANT OPTION ─┤ 
   └─ WITH GRANT ────────┘ 

 

The following are CA Datacom/DB extensions. 

■ ALL 

■ TABLE 

■ ALTER 

■ INDEX 
 

■ UNKNOWNUSER 

■ WITH GRANT (without the keyword OPTION) 
 

Description of Non-Plan Security Diagram 

ALL or ALL PRIVILEGES 

Grants all privileges (excluding ALTER and INDEX) for which you have GRANT 
authority on all tables or views named in the ON clause. GRANT ALL is a CA 
Datacom/DB extension. 

If you do not use ALL, you must use one or more of the following keywords.  Each 
keyword grants the privilege described, but only as it applies to the tables or views 
named in the ON clause. 

SELECT 

Grants the privilege to use the SELECT statement. 

INSERT 

Grants the privilege to use the INSERT statement. 
 



GRANT 

 

Chapter 28: SQL Statements  745  
 

DELETE 

Grants the privilege to use the DELETE statement. 

ALTER 

Grants the privilege to use the ALTER statement.  GRANT ALTER is a CA Datacom/DB 
extension. 

INDEX 

Grants the privilege to execute the CREATE INDEX and DROP INDEX statements.  
GRANT INDEX is a CA Datacom/DB extension. 

 

UPDATE 

Grants the privilege to use the UPDATE statement. 

UPDATE (column-list) 

Grants the privilege to update only the named columns.  Each column-name must 
belong to every table or view named in the ON clause. The column names must be 
separated by commas and the list must be enclosed with parentheses. 

ON or ON TABLE 

Introduces a list of table and/or view names.  ON TABLE is a CA Datacom/DB 
extension. 

 

table-name or view-name 

Specify the name of one or more tables or views on which you are granting the 
privileges.  The list can be a list of table names or view names, or a combination of 
the two.  The names must be separated by commas. 

If you name specific privileges, then for each table or view you name, you must 
have all those privileges with GRANT authority.  If you use GRANT ALL, then for each 
table or view you name, you must have at least one privilege with GRANT authority. 

TO accessor-id 

Specify the accessor ID of one or more users to whom you are granting the 
privileges.  This is a user's ID, not a schema auth-id.  If listing more than one 
accessor ID, separate them with commas.  Do not specify your own accessor ID, 
that is to say, you cannot grant privileges to yourself. 

 

TO PUBLIC 

Specify PUBLIC when you are granting the specified privileges to all users.  A new 
user automatically has any privileges previously granted to the public. 

TO UNKNOWNUSER 

Specify UNKNOWNUSER when you are granting the specified privileges to users 
whose identities cannot be determined by CA Datacom/DB security. 
UNKNOWNUSER is a CA Datacom/DB extension. 

 



IF-THEN Statement 

 

746  SQL User Guide 
 

WITH GRANT OPTION 

Specify this option if you want the user to whom you have granted the privilege to 
be able to grant it to another user.  The WITH GRANT OPTION cannot be used with 
PUBLIC. 

WITH GRANT 

Specify WITH GRANT if you want the user to whom you have granted the privilege 
to be able to grant it to another user.  WITH GRANT cannot be used with PUBLIC or 
with UNKNOWNUSER.  WITH GRANT is a CA Datacom/DB extension. 

 

Example 1 

Grant SELECT privileges on table TEMPL to user PULASKI. 

 GRANT SELECT 

     ON TABLE CA.TEMPL 

     TO PULASKI 
 

Example 2 

Grant UPDATE privileges on columns EMPNO and WORKDEPT in table TEMPL to all 
users. 

 GRANT UPDATE (EMPNO, WORKDEPT) 

     ON TABLE CA.TEMPL 

     TO PUBLIC 
 

Example 3 

Grant all privileges on table TEMPL to users KWAN and THOMPSON, including the WITH 
GRANT OPTION. 

 GRANT ALL PRIVILEGES 

     ON TABLE CA.TEMPL 

     TO KWAN, THOMPSON 

     WITH GRANT OPTION 
 

IF-THEN Statement 

For details about this statement, see IF-THEN Statement (see page 652). 

Note:  This statement is executed from within the Compound Statement (see 
Compound Statement (see page 642)). 

 



INSERT 

 

Chapter 28: SQL Statements  747  
 

INSERT 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

INSERT YES YES YES 

Note:  YES indicates a valid execution method for this statement. To learn about using 
SQL keywords in CA Dataquery, see the CA Dataquery User Guide. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

The INSERT statement inserts rows into a table or view.  Inserting a row into a view 
inserts the row into the table upon which the view is based. You must specify 
ISOLEVEL=C (isolation level C) in the Preprocessor options when using the INSERT 
statement. 

 

Note:  When the NOMAINT option of the CA Datacom/DB Utility (DBUTLTY) ACCESS 
function is in force, an INSERT statement receives a CA Datacom/DB return code 94(87), 
where 87 is a decimal internal return code (hex 57) that tells you no maintenance 
statements are allowed while NOMAINT is in force. 

Also note that constraints that existed in versions before r10 can act differently in 
Release 10.0 and above because, in Release 10.0 and above, columns containing a NULL 
rather than a value do not cause a CHECK constraint to be violated. Constraints are 
considered, in Release 10.0 and above, to be satisfied unless the predicates evaluate 
explicitly to FALSE.  That is, CHECK constraints whose predicates evaluate to UNKNOWN 
rather than TRUE or FALSE are considered, with Release 10.0 and above, to have been 
satisfied. Therefore, INSERT and UPDATE statements, from versions before r10, that 
resulted in constrained columns being nulled are, when used in Release 10.0 and above, 
successful for the first time. 

 

Following is the syntax diagram for the INSERT statement. See Special Registers (see 
page 533) for the special-register diagram. See Subselect for the subselect's syntax 
diagram. 

Note:  The special-register is a CA Datacom/DB extension. 

►►─ INSERT INTO ─┬─ table-name ─┬─┬───────────────────────────┬───────────────► 
                 └─ view-name ──┘ │     ┌─ , ───────────┐     │ 
                                  └─ ( ─▼─ column-name ─┴─ ) ─┘ 
 
               ┌─ , ────────────────────┐ 
 ►─┬─ VALUES( ─▼─┬─ special-register ─┬─┴─ ) ─┬───────────────────────────────►◄ 
   │             ├─ host-variable ────┤       │ 
   │             ├─ literal ──────────┤       │ 
   │             └─ NULL ─────────────┘       │ 
   └─ subselect ──────────────────────────────┘ 

 



INSERT 

 

748  SQL User Guide 
 

Description 

table-name or view-name 

Specify the name of the table or view into which you want to insert the row(s).  The 
table or view must be described in the CA Datacom Datadictionary, and must not be 
a CA Datacom Datadictionary table or any of the following types of views: 

■ A read-only view. 

■ A view of a CA Datacom Datadictionary table. 

■ A view with a column that is derived from a literal or an arithmetic expression. 

■ A view with two columns derived from the same column of the underlying 
table. 

 

column-name 

Specify the name of one or more columns for which you provide insert values.  You 
can name the columns in any order. Each column must belong to the table or view 
you specified, and you cannot name the same column more than once.  The column 
names must be separated by commas and the list must be enclosed with 
parentheses. 

VALUES 

Introduces one row of values to be inserted. The values of the row are the values of 
the keywords, literals, or host variables specified in the clause.  The values must be 
separated by commas and the list must be enclosed with parentheses. 

When the statement is executed, the number of values in the VALUES clause must 
equal the number of names in the column list. The first value is inserted in the first 
column in the list, the second value in the second column, and so on. 

 

special-register 

See Special Registers for the special-register diagram.  This is a CA Datacom/DB 
extension. 

host-variable 

Specify a host-variable which must be a variable that is described in your program 
in accordance with the rules for declaring host variables. 

literal 

Specify a literal consistent with the data type of the column. 
 



INSERT 

 

Chapter 28: SQL Statements  749  
 

NULL 

Use the NULL keyword to specify that the value(s) being inserted are null values. 

subselect 

If you specify a subselect, the rows of the subselect's result table are inserted into 
the table or view you specified in the INSERT statement. The result can be one row, 
more than one row or no rows. If no rows are inserted, SQLCODE is set to +100. See 
Subselect for the subselect's syntax diagram. 

The table or view named after INSERT INTO must not be named in a FROM clause of 
the subselect or the FROM clause of any subquery in the subselect. 

The number of columns in the result table must equal the number of names in the 
column list. The value of the first column of the result is inserted in the first column 
in the list, the second value in the second column, and so on. 

 

Rules for Inserting 

Insert values must satisfy the following rules: 

Default values: 

The value inserted in any column not in the column list is the default value of the 
column.  Columns without a default value must be included in the column list. 

If you insert into a view, the default value is inserted into any column of the base 
table that is not included in the view. 

All columns of the base table that are not in the view must have default values. 
 

Length: 

If the insert value of a column is a number, the column must be a numeric column 
with the capacity to represent the integral part of the number. 

If the insert value of a column is a string, the column must be a string column with a 
length attribute at least as great as the length of the string. 

If insert values do not adhere to the previously given rules, or if any other error occurs 
during the execution of the INSERT statement, no rows are inserted. 

 

Processing 

Rows can be inserted that do not conform to the definition of a view.  These rows 
cannot appear in the view, but are inserted into the base table of the view. 

Unless appropriate locks already exist, one or more exclusive locks are acquired at the 
execution of a successful INSERT statement.  Until the locks are released, an inserted 
row can be accessed only by the unit of recovery in which the insert was performed. 

 



ITERATE Statement 

 

750  SQL User Guide 
 

Example 1 

Insert a row into table EMP. 

EXEC SQL 

INSERT INTO EMP 

VALUES('315', 'JOHN', 'T', 'SMITH', 'A1', '1234', 

87 11, 32, 19, 'M', 55 422, 16325) 

END-EXEC 
 

Example 2 

Load the temporary table TEMPEMP with data from table EMP. 

EXEC SQL 

INSERT INTO SMITH.TEMPEMP 

SELECT _ 

FROM EMP 

END-EXEC 
 

Example 3 

Load the temporary table TEMPEMP with data from Department E1 from EMP. 

EXEC SQL 

INSERT INTO SMITH.TEMPEMP 

SELECT FROM EMP 

WHERE WORKDEPT = 'E1' 

END-EXEC 
 

ITERATE Statement 

For details about this statement, see ITERATE Statement (see page 653). 

Note:  This statement is executed from within the Compound Statement (see 
Compound Statement (see page 642)). 

 

LEAVE Statement 

For details about this statement, see LEAVE Statement (see page 654). 

Note:  This statement is executed from within the Compound Statement (see 
Compound Statement (see page 642)). 

 



LOCK TABLE 

 

Chapter 28: SQL Statements  751  
 

LOCK TABLE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

LOCK TABLE YES YES  

Note:  YES indicates a valid execution method for this statement. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

CA Datacom/DB provides the LOCK TABLE statement as an extension so you can acquire 
a shared or exclusive lock on the named table.  The table lock is acquired when the LOCK 
TABLE statement is executed.  The table lock is released at the next commit point. 

 

With regard to table partitioning, a LOCK TABLE statement can receive a CA 
Datacom/DB return code of 01(034) if it attempts to use a Any Parent table.  See the CA 
Datacom/DB Message Reference Guide for details about return code 01(034).  
Information about table partitioning can be found in the CA Datacom/DB Database and 
System Administration Guide. 

Following is the syntax diagram for the LOCK TABLE statement: 

►►─ LOCK TABLEtable-nameIN ─┬─ SHARE ─────┬─ MODE ────────────────────────────►◄ 
                            └─ EXCLUSIVE ─┘ 

 

Description 

table-name 

Specify the name of the table to be locked. The table must be a base table 
described in the CA Datacom Datadictionary, but not a CA Datacom Datadictionary 
table. 

IN SHARE MODE 

Acquires a shared lock for the unit of recovery in which the statement is executed.  
The lock prevents other concurrent units of recovery from inserting, updating or 
deleting rows in the identified table. 

Using the SHARE mode of the LOCK TABLE statement ensures that the data 
retrieved by your application is valid, that is to say, has been committed by a 
previous transaction. 

 



LOOP Statement 

 

752  SQL User Guide 
 

IN EXCLUSIVE MODE 

Acquires an exclusive lock for the unit of recovery in which the statement is 
executed.  The lock prevents other concurrent units of recovery from acquiring any 
shared or exclusive row or table lock. 

Using either mode of the LOCK TABLE statement ensures that your application can do a 
repeatable read.  This isolation level provides maximum protection from other 
executing application programs. When a program executes with repeatable read 
protection, rows referenced by the program cannot be changed by other programs until 
the program reaches a commit point. 

Neither lock prevents rows from being read with user isolation (ISOLEVEL=U in 
Preprocessor options) since no locks are acquired by user isolation. 

 

Example 

The following example: 

■ Obtains a lock on the table containing table NAMETBL. 

■ Does not allow another program to update the table. 

EXEC SQL 

LOCK TABLE NAMETBL IN EXCLUSIVE MODE 

END-EXEC 
 

LOOP Statement 

For details about this statement, see LOOP Statement (see page 655). 

Note:  This statement is executed from within the Compound Statement (see 
Compound Statement (see page 642)). 

 

OPEN 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

OPEN  YES  



OPEN 

 

Chapter 28: SQL Statements  753  
 

Note:  YES indicates a valid execution method for this statement.For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

 

The OPEN statement opens a cursor so that it can be used to fetch rows from its result 
table. 

In an application program, a DECLARE CURSOR statement must have corresponding 
OPEN, FETCH and CLOSE statements for the execution of the OPEN to proceed without 
error. 

Following is the syntax diagram for the OPEN statement: 

►►─ OPENcursor-name ─┬──────────────────────────────────────┬─────────────────►◄ 
                     │           ┌─ , ─────────────┐        │ 
                     └─ USING ─┬─▼─ host-variable ─┴──────┬─┘ 
                               └─ DESCRIPTORdescrpt-name ─┘ 

 

Description 

cursor-name 

Specify the name of a cursor that is defined in a DECLARE CURSOR statement 
appearing earlier in your program. When the OPEN statement is executed, the 
cursor must be in a closed state. 

The result table of the cursor is derived by evaluating the SELECT statement, using 
the current values of any host variables specified in it. Two ways in which the rows 
of the result table can be derived are: 

1. During the execution of the OPEN statement, and a temporary table is created 
to hold them. 

2. During the execution of subsequent FETCH statements. 

In either case, the cursor is placed in the open state and positioned before the first 
row of its result table (or after the last row, if the table is empty). 

 



OPEN 

 

754  SQL User Guide 
 

USING 

The USING clause introduces a list of host variables whose values are substituted 
for the parameter markers of the prepared select-statement.  If the DECLARE 
CURSOR statement names a prepared statement that includes parameter markers, 
you must use USING.  If the prepared statement does not include parameter 
markers, USING is ignored. 

For more information on the USING clause, see the discussion about it in the 
section on the EXECUTE statement. 

The USING clause is intended for a prepared select-statement that contains 
parameter markers.  However, it can also be used when the select-statement of the 
cursor is part of the DECLARE CURSOR statement.  In this case the OPEN statement 
is executed as if each host variable in the select-statement were a parameter 
marker.  Thus the effect is to override the host variables in the select-statement of 
the cursor with the host variables specified in the USING clause. 

 

host-variable 

A reference to each of its variables replaces reference to a structure when the 
statement is executed, where the number of variables must equal the number of 
parameter markers in the prepared statement, and the nth variable corresponds to 
the prepared statement's nth parameter marker. 

Note:  The OPEN is rejected with SQL error code -305 if the number of variables 
does not equal the number of parameter markers of host variables in the SELECT 
statement. 

Parameter Marker Replacement: Each parameter marker in the query is effectively 
replaced by its corresponding host variable before the OPEN statement is executed. 
The replacement is an assignment operation in which the source is the value of the 
host variable and the target is a variable within CA Datacom/DB.  The attributes of 
the target variable operand are the same as the left-most column reference 
operand or, if no column reference operand exists, the first non-parameter marker 
operand.  If there are no operands, or if they are all parameter markers, or if the 
operator is concatenated, a parameter marker cannot be used, and the statement 
is rejected with SQL error code -302. 

 

DESCRIPTOR descrpt-name 

The value to which SQLD is set is required to be: 

■ Equal to or greater than zero, and 

■ Less than or equal to the value of SQLN, and 

■ The same as the number of parameter markers in the prepared statement. 

Note:  The nth variable described by the SQLDA corresponds to the prepared 
statement's nth parameter marker. 

 



OPEN 

 

Chapter 28: SQL Statements  755  
 

Processing 

All cursors in a program are in the closed state when: 

1. The program is initiated. 

2. The program initiates a new unit of recovery by executing a COMMIT or ROLLBACK 
operation. 

Note:  Unless the WITH HOLD option has been used in the DECLARE CURSOR 
statement, a new unit of work is started for the application process. 

 

A cursor can also be in the closed state because: 

1. A CLOSE statement was executed. 

2. An error was detected that made the position of the cursor unpredictable. 

The only way to change the state of a cursor from closed to open is to execute an OPEN 
statement. 

To retrieve rows from the result table of a cursor, you must execute a FETCH statement 
when the cursor is open. 

 

Effect of Temporary Tables 

In some cases, CA Datacom/DB derives the result table of a cursor by first creating a 
temporary table when the OPEN statement is executed.  When a temporary table is 
used, the results of a program can differ in two ways: 

1. An error can occur during OPEN that would otherwise not occur until some later 
FETCH statement. 

2. If you selected cursor stability as your isolation level, INSERT, UPDATE, and DELETE 
statements executed by other transactions while the cursor is open do not affect 
the result table. 

 

Example 

See the DECLARE CURSOR's "Example 1" on Example1 (see page 715). 
 



PREPARE 

 

756  SQL User Guide 
 

PREPARE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

PREPARE  YES  

Note:  YES indicates a valid execution method for this statement. 

The PREPARE statement creates an executable SQL statement from a character string 
form of the statement.  The executable form is called a prepared statement.  The 
character string form is called a statement string. 

Prepared statements are deleted when the unit of recovery in which they were 
prepared ends, except that a select-statement whose cursor is declared with the WITH 
HOLD option persists (if the cursor is open) over a COMMIT WORK. 

 

No authorization is required to preprocess a PREPARE statement, that is, there is no 
security check of the PREPARE statement or its contents at preprocessor time.  At 
execution time, however, the statement's contents are checked against the security 
conditions that are valid for that program. 

Prepared statements can be referenced by these statements: 

■ DESCRIBE 

■ DECLARE CURSOR (must be a select-statement when cursor is opened) 

■ EXECUTE (must not be a select-statement) 
 

A prepared statement can be executed multiple times. 

Following is the syntax diagram for the PREPARE statement: 

►►─ PREPAREstatement-name ────────────────────────────────────────────────────► 
 
 ►─┬──────────────────────────────────────────────┬─ FROM ────────────────────► 
   └─ INTOdescrpt-name ─┬───────────────────────┬─┘ 
                        └─ USING ─┬─ NAMES ◄ ─┬─┘ 
                                  ├─ LABELS ──┤ 
                                  ├─ ANY ─────┤ 
                                  └─ BOTH ────┘ 
 
 ►─┬─ string-expression ─┬────────────────────────────────────────────────────►◄ 
   └─ host-variable ─────┘ 

 



PREPARE 

 

Chapter 28: SQL Statements  757  
 

Description 

statement-name 

Specifies the name under which the executable form of the statement (the 
prepared statement) is saved if there are no errors.  If the name identifies an 
existing prepared statement, that statement is deleted.  The prepared statement 
must not be the select-statement of an open cursor. The scope of statement-name 
is the same as the scope of cursor-name. 

INTO 

If the prepare is successful, information about the prepared statement is placed in 
the SQLDA specified by descrpt-name, as if you had executed a separate DESCRIBE 
statement. 

descrpt-name 

Identifies the SQLDA (descriptor name). SQLN should be set to the number of 
SQLVAR occurrences. 

 

USING 

Specifies if the SQLNAME field is to contain a column name or label. 

NAMES 

Assigns the name of the column.  This is the default. 

LABELS 

Assigns the label of the column.  A label is the column's CA Datacom Datadictionary 
field attribute HEADING-1. 

 

ANY 

Assigns the column label, or (if one does not exist) the column name. 

BOTH 

Assigns the column label to the first n occurrences, and the column label to the 
second n occurrences. 

FROM 

Specifies the statement string, which is the value of the string-expression or 
host-variable. 

 

string-expression 

A PL/I expression that yields a character string. 

host-variable 

A host-variable must be used for languages other than PL/I and identify a 
varying-length string variable. 

 



PREPARE 

 

758  SQL User Guide 
 

Rules for Statement Strings 

A statement string is the value of the string-expression or host-variable. A host-variable 
containing the statement string must be a varying-length string variable.  The statement 
string must not begin with EXEC SQL nor end with a statement terminator, and it must 
not include references to host variables. 

 

The statement string can be any of 
the following statements: 

The statement string must not be any of the 
following statements: 

ALTER TABLE  
COMMENT ON  
COMMIT WORK  
CREATE  
DELETE  
DROP  
GRANT  
INSERT  
LOCK TABLE  
REVOKE  
ROLLBACK WORK select-statement  
UPDATE 

CALL  
CLOSE  
DECLARE CURSOR  
DECLARE STATEMENT  
DESCRIBE  
EXECUTE  
EXECUTE IMMEDIATE  
EXECUTE PROCEDURE  
FETCH  
OPEN  
PREPARE  
SELECT (other than the select-statement) SET 
CURRENT SQLID  
WHENEVER 

Rules for Parameter Markers 

A parameter marker is a question mark (?) that is used in place of a host variable in 
dynamic statements. Parameter markers must not be used: 

■ In an ESCAPE clause. 

■ In a select list. 

■ As an operand of the concatenation operator. 

■ As both operands of an arithmetic or comparison operator. 
 

■ As an operand in a date/time arithmetic expression. 

■ As the first operand of a LIKE predicate. 

■ As the first operand of a NULL predicate. 
 

At least one of the operands of a BETWEEN or IN predicate must not be a parameter 
marker. 

An argument of a scalar function cannot be specified solely as a parameter marker. 

A parameter marker can be the operand of a unary minus operator. 
 



REPEAT-UNTIL Statement 

 

Chapter 28: SQL Statements  759  
 

Example 
          01  S1. 

              49  S1LEN                 PIC S9999 COMP VALUE +80. 

              49  S1HV                  PIC X(8). 

          01  HV1                       PIC X VALUE 'X'. 

          01  HV2                       PIC X VALUE 'Y'. 

 

          MOVE 'INSERT INTO T1 VALUES (?, ?)' TO S1HV. 

          EXEC SQL 

              PREPARE STMT1 FROM S1 

          END-EXEC 

          (Check for sucessful prepare and set host variable values.) 

          EXEC SQL 

              EXECUTE STMT1 USING :HV1, :HV2 

          END-EXEC 
 

REPEAT-UNTIL Statement 

For details about this statement, see REPEAT-UNTIL Statement (see page 658). 

Note:  This statement is executed from within the Compound Statement (see 
Compound Statement (see page 642)). 

 

REVOKE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

REVOKE YES YES YES 

Note:  YES indicates a valid execution method for this statement. To learn about using 
SQL keywords in CA Dataquery, see the CA Dataquery User Guide. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

Important!  If CA Datacom/DB security is not installed at your site, the REVOKE 
statement is rejected with an SQL error code -559. 

 



REVOKE 

 

760  SQL User Guide 
 

CA Datacom/DB provides the REVOKE statement as an extension so you can revoke 
privileges on tables and views for which privileges have been granted through the 
GRANT statement.  All tables and views in the statement must belong to databases 
secured under the SQL Security Model.  If tables and views are in databases secured 
under the CA Datacom/DB External Security Model, the GRANT and REVOKE statements 
are rejected with an SQL error code -273.  See the CA Datacom Security Reference Guide 
for more information about security models. 

 

Plan Security 

SQL plans are securable.  With plan security you can create a plan such that, in order to 
execute the plan, an accessor ID must have the plan EXECUTE privilege for that plan.  
The plan EXECUTE privilege can be granted with the GRANT statement and revoked with 
the REVOKE statement. Also see the information on the REVOKE statement and the 
CHECKPLAN=, CHECKWHEN=, CHECKWHO=, and SAVEPLANSEC= options. For detailed 
information about plan security, see the CA Datacom Security Reference Guide. 

Note:  To grant a plan privilege you must possess that privilege WITH GRANT OPTION or 
be a Global Owner. To revoke a plan privilege you must have granted the privilege or be 
a Global Owner.  See the CA Datacom Security Reference Guide for more information on 
Global Owners. 

Following is the syntax diagram for the plan security version of the REVOKE statement: 

                                                   ┌─ , ───────────┐   
►►─ REVOKE ─┬─ EXECUTE ─┬─ ON PLANplan-nameFROM ─┬─▼─ accessor-id ─┴─┬────────► 
            └─ BIND ────┘                        ├─ PUBLIC ──────────┤ 
                                                 └─ UNKNOWNUSER ─────┘ 
 
 ►─┬───────────┬──────────────────────────────────────────────────────────────►◄ 
   └─ CASCADE ─┘ 

 

Description of Plan Security Diagram 

EXECUTE 

Revokes the PLAN EXECUTE privilege. 

BIND 

Revokes the PLAN BIND privilege. 

ON PLAN plan-name 

Specifies the name of the plan from which the PLAN EXECUTE or PLAN BIND 
privilege is to be revoked. 

FROM accessor-id 

Specify the accessor ID of a user from whom you are revoking the privileges that 
were granted with a GRANT statement. This is a user's ID, not a schema auth-id. 

 



REVOKE 

 

Chapter 28: SQL Statements  761  
 

FROM PUBLIC 

Specify PUBLIC when you are granting or revoking the specified privileges to or from 
all users. A new user automatically has any privileges previously granted to the 
public. 

FROM UNKNOWNUSER 

Specify UNKNOWNUSER when you are revoking the specified privileges from users 
whose identities cannot be determined by the CA Datacom/DB security. 

 

CASCADE 

If CASCADE is specified, any other dependent privileges that have been granted to 
others (through the GRANT statement) are also revoked. If a REVOKE is issued 
without CASCADE and the grantee granted privileges to other users, the REVOKE is 
not permitted. The CASCADE option of REVOKE does not block the cascading effect 
of a revoke but operates instead as a fail-safe device.  Specifying CASCADE simply 
acknowledges your understanding that there are cascading effects. 

 

Following is the non-plan security syntax diagram for the REVOKE statement: 

►►─ REVOKE ─┬─ ALL ──────────────────────────────┬─ ON ─┬─────────┬───────────► 
            ├─ ALL PRIVILEGES ───────────────────┤      └─ TABLE ─┘ 
            │ ┌─ , ────────────────────────────┐ │ 
            └─▼─┬─ SELECT ───────────────────┬─┴─┘ 
                ├─ INSERT ───────────────────┤ 
                ├─ DELETE ───────────────────┤ 
                ├─ ALTER ────────────────────┤ 
                ├─ INDEX ────────────────────┤ 
                └─ UPDATE ─┬───────────────┬─┘ 
                           └─ column-list ─┘ 
 
   ┌─ , ──────────────┐          ┌─ , ───────────┐   
 ►─▼─┬─ table-name ─┬─┴─ FROM ─┬─▼─ accessor-id ─┴─┬─┬───────────┬────────────► 
     └─ view-name ──┘          ├─ PUBLIC ──────────┤ └─ CASCADE ─┘ 
                               └─ UNKNOWNUSER ─────┘ 
 
 ►─┬─────────────────────────────────────────────┬────────────────────────────►◄ 
   │                         ┌─ , ───────────┐   │ 
   └─  ─┬───────────┬─ BY ─┬─▼─ accessor-id ─┴─┬─┘ 
        └─ GRANTED ─┘      └ ALL ──────────────┘ 
 

 



REVOKE 

 

762  SQL User Guide 
 

Description of Non-Plan Security Diagram 

ALL or ALL PRIVILEGES 

Revokes all privileges (excluding ALTER and INDEX) which the executor of the 
REVOKE statement has previously granted to the specified users. 

If you do not use ALL, you must use one or more of the following keywords. Each 
keyword revokes the privilege described, but only as it applies to the tables or views 
named in the ON clause. 

SELECT 

Revokes the privilege to use the SELECT statement. 

INSERT 

Revokes the privilege to use the INSERT statement. 

DELETE 

Revokes the privilege to use the DELETE statement. 
 

ALTER 

Revokes the privilege to use the ALTER statement. 

INDEX 

Revokes the privilege to execute the CREATE INDEX and DROP INDEX statements. 

UPDATE 

Revokes the privilege to use the UPDATE statement. 
 

UPDATE (column-name) 

Revokes the privilege to update only the named columns.  Each column-name must 
belong to every table or view named in the ON clause.  The column names must be 
separated by commas and the list must be enclosed with parentheses. 

ON or ON TABLE 

Introduces a list of table and/or view names. 
 

table-name or view-name 

Specify the name of one or more tables or views on which you are revoking the 
privileges.  The list can be a list of table names or view names, or a combination of 
the two.  The names must be separated by commas. 

For each table or view you identify, you (or the indicated grantors) must have 
granted (using the GRANT statement) at least one of the specified privileges on that 
table or view to all identified users (including PUBLIC, if specified). 

FROM accessor-id 

Specify the accessor ID of one or more users from whom you are revoking the 
privileges that were granted with a GRANT statement. This is a user's ID, not a 
schema auth-id.  If listing more than one accessor ID, separate them with commas. 

 



REVOKE 

 

Chapter 28: SQL Statements  763  
 

FROM PUBLIC 

Specify PUBLIC when you are revoking the specified privileges from all users. 

FROM UNKNOWNUSER 

Specify UNKNOWNUSER when you are revoking the specified privileges from users 
whose identities cannot be determined by the CA Datacom/DB security. 

 

CASCADE 

If CASCADE is specified, any other dependent privileges that have been granted to 
others (through the GRANT statement) are also revoked. If a REVOKE is issued 
without CASCADE and the grantee granted privileges to other users, the REVOKE is 
not permitted. The CASCADE option of REVOKE does not block the cascading effect 
of a revoke but operates instead as a fail-safe device.  Specifying CASCADE simply 
acknowledges your understanding that there are cascading effects. 

GRANTED 

Allows you to specify that you are revoking privileges that were GRANTED BY 
another user(s).  The accessor ID(s) specified in GRANTED BY must therefore have 
previously granted the specified privileges to the grantee.  This form of the REVOKE 
statement may only be executed by a global database owner. For information about 
global database owners, see the CA Datacom Security Reference Guide. 

 

BY accessor-id 

The BY indicates that the person revoking the privileges is doing so on behalf of 
another user.  Specify the accessor ID of the person who granted the privileges you 
are revoking.  The accessor IDs must be separated by commas. 

BY ALL 

Specify ALL when revoking privileges granted by all other users to the user 
identified in the FROM clause of the REVOKE statement. 

 

Example 1 

Revoke SELECT privileges on table TEMPL from user PULASKI. 

 REVOKE SELECT 

     ON TABLE CA.TEMPL 

     FROM PULASKI 
 



ROLLBACK WORK 

 

764  SQL User Guide 
 

Example 2 

Revoke UPDATE privileges on table TEMPL previously granted to all users. 

Note:  Grants to specific users are not affected. 

 REVOKE UPDATE 

     ON TABLE CA.TEMPL 

     FROM PUBLIC 
 

Example 3 

Revoke all privileges on table TEMPL from users KWAN and THOMPSON. 

 REVOKE ALL PRIVILEGES 

     ON TABLE CA.TEMPL 

     FROM KWAN, THOMPSON 
 

ROLLBACK WORK 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

ROLLBACK WORK YES YES  

Note:  YES indicates a valid execution method for this statement. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

The ROLLBACK WORK statement terminates a unit of recovery and backs out the CA 
Datacom/DB database changes made by that unit of recovery. 

 

If a cursor is defined WITH HOLD, it stays open when a COMMIT WORK is executed.  Any 
record-at-a-time command that commits the logical unit of work (for example LOGCP, 
LOGCR) works the same way. See the description of the WITH HOLD clause in DECLARE 
CURSOR. 

Also, see the CA Datacom/DB Database and System Administration Guide for 
information on DIAGOPTION line 0,128,ON. This line can change the resulting cursor 
state (open or closed) following a ROLLBACK WORK statement when 
SQLMODE=DATACOM is specified.  This option is not recommended for general use. 

 



ROLLBACK WORK 

 

Chapter 28: SQL Statements  765  
 

Following is the syntax diagram for the ROLLBACK WORK statement: 

Note:  ROLLBACK (without the keyword WORK) is a CA Datacom/DB extension. 

►►─┬─ ROLLBACK WORK ─┬────────────────────────────────────────────────────────►◄ 
   └─ ROLLBACK ──────┘ 

 

Description 

ROLLBACK WORK 

The ROLLBACK WORK statement is the rollback operation. The unit of recovery in 
which the statement is executed is terminated and a new unit of recovery is 
initiated.  All changes made by CREATE, COMMENT ON, DROP, INSERT, UPDATE, 
and DELETE statements executed during the unit of recovery are backed out. 

All locks implicitly acquired by the unit of recovery subsequent to its initiation are 
released. 

ROLLBACK 

This CA Datacom/DB extension has the same effect as ROLLBACK WORK. 
 

A unit of work is made up of one or more units of recovery.  In a batch environment, a 
unit of work corresponds to the execution of an application program.  Within that 
program, there may be many units of recovery as COMMIT or ROLLBACK statements are 
executed. 

A unit of recovery is a sequence of operations within a unit of work.  A unit of recovery 
is initiated by: 

1. The initiation of a unit of work. 

2. The termination of a previous unit of recovery. 
 

A unit of recovery is terminated by: 

1. A commit operation. 

2. A rollback operation. 

3. The termination of a unit of work. 
 



SELECT 

 

766  SQL User Guide 
 

A commit or rollback operation affects only the results of SQL statements executed 
within a single unit of recovery. 

Uncommitted database changes made by a unit of recovery may or may not be 
perceived by other units of work depending on the isolation level that is selected. 

Uncommitted database changes made by a unit of recovery can be backed out by CA 
Datacom/DB. 

Committed database changes can be perceived by other units of recovery and cannot be 
backed out by CA Datacom/DB. 

Database changes are backed out when a unit of recovery terminates abnormally. 
 

Example 

The following example deletes the alterations made since the last commit point or 
rollback: 

EXEC SQL 

ROLLBACK WORK 

END-EXEC 
 

SELECT 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

select-into statement  YES  

select-statement YES (use DECLARE CURSOR) YES 

full-select statement (part of the 
select-statement) 

(part of the 
select-statement) 

(part of the select-statement) 

subselect (part of full-select 
statement) 

(part of full-select 
statement) 

(part of full-select statement) 



SELECT 

 

Chapter 28: SQL Statements  767  
 

Note:  YES indicates a valid execution method for this statement. 

Information about the DECLARE CURSOR statement begins on DECLARE CURSOR. 

Note:  The subselect and full-select forms of the SELECT statement are not executable 
directly, because they are components of other statements. To learn about using SQL 
keywords in CA Dataquery, see the CA Dataquery User Guide. For information about the 
access rights required to execute this statement, see the CA Datacom/DB Database and 
System Administration Guide. 

 

The SELECT statement specifies a result table. 

All of the tables and views specified in the SELECT statement must be in databases of 
the same security type, that is to say, either the CA Datacom/DB External Security 
Model or the SQL Security Model.  See the CA Datacom Security Reference Guide for 
more information about security models. 

Following is the syntax diagram for a SELECT statement: 

►►─┬─ subselect ─────────────┬────────────────────────────────────────────────►◄ 
   ├─ full-select statement ─┤ 
   ├─ select-statement ──────┤ 
   └─ select-into statement ─┘ 

Note:  The select-into statement is not used by CA Dataquery. 
 

Subselect 

The subselect is a component of: 

1. The full-select statement. 

2. The CREATE VIEW statement. 

3. The INSERT statement. 

4. Certain predicates, which, in turn, are components of a subselect. A subselect that 
is a component of another subselect is called a subquery. 

 



SELECT 

 

768  SQL User Guide 
 

Following is the syntax diagram for the subselect statement: 

►►─ SELECT ─┬────────────────┬────────────────────────────────────────────────► 
            └─┬─ ALL ◄ ────┬─┘ 
              └─ DISTINCT ─┘ 
 
 ►─┬─ * ────────────────────────────────────────────┬─ FROM ──────────────────► 
   │ ┌─ , ────────────────────────────────────────┐ │ 
   └─▼─┬─ expression ─┬───────────────────────┬─┬─┴─┘ 
       │              └─ AS ─ sql-identifier ─┘ │ 
       └─┬─ table-name.* ───────┬───────────────┘ 
         ├─ view-name.* ────────┤ 
         └─ correlation-name.* ─┘ 
 
   ┌─ , ─────────┐ 
 ►─▼─ table-ref ─┴─┬─────────────────────────┬────────────────────────────────► 
                   └─ WHEREsearch-condition ─┘ 
 
 ►─┬───────────────────────────────────┬─┬──────────────────────────┬────────►◄ 
   │            ┌─ , ────────────────┐ │ │                          │ 
   └─ GROUP BY ─▼─┬─ column-name ──┬─┴─┘ └─ HAVINGsearch-condition ─┘ 
                  └─ expression   ─┘ 

 

The table-ref shown in the syntax box immediately preceding the following one has 
syntax as follows: 

►►─┬─┬─ table-name ─┬─┬──────┬─┬────────────────────┬─┬───────────────────────►◄ 
   │ └─ view-name ──┘ └─ AS ─┘ └─ correlation-name ─┘ │ 
   └─ alternate-join-type ────────────────────────────┘ 

 

The alternate-join-type shown in the syntax box immediately preceding the following 
one has syntax as follows: 

►►─┬─────┬─ table-ref ─┬─ INNER ────────────┬─────────────────────────────────► 
   └─ ( ─┘             └─ LEFT ─┬─────────┬─┘ 
                                └─ OUTER ─┘ 
 
 ►─ JOIN ─ table-ref ─┬───────────────┬─┬─────┬───────────────────────────────►◄ 
                      └─ ON ─ s-cond ─┘ └─ ) ─┘ 

Note:  The s-cond (search-condition) specified in the optional ON clause differs from the 
one in the WHERE clause in that the ON clause defines the join conditions that 
determine which rows contain nulls, as opposed to the WHERE clause, which eliminates 
rows from the result entirely. Also note that if you use the optional parentheses, they 
must be balanced.  That is, if you use an open parenthesis, you must also use a close 
parenthesis. 

The previously shown JOIN syntax is compatible with Ingres, DB2, and ANSI SQL3 Core 
SQL. 

 



SELECT 

 

Chapter 28: SQL Statements  769  
 

Description 

A subselect specifies a result table derived from the tables or views identified in the 
FROM clause.  The derivation can be described as a sequence of operations in which the 
result of each operation is input for the next. 

The sequence of the hypothetical operations is: 

1. FROM clause 

2. WHERE clause 

3. GROUP BY clause 

4. HAVING clause 

5. SELECT clause 

Descriptions of these clauses appear in the order as previously listed. 
 

FROM Clause 

FROM table-ref 

Where table-ref can be a table-name, view-name, or alternate-join-type.  If 
table-ref is a table-name or view-name, it names: 

■ A single table or view. 

■ Several tables and/or views to produce an intermediate result table. 

If table-ref is an alternate-join-type, see the information about joins in Left Outer 
Joins (see page 110). 

You can reference up to 20 tables in a FROM clause of a query when you are 
performing a join. For example, if a view is based on five tables, you can name that 
view in the FROM clause and up to 15 other tables.  The names must be separated 
by commas. 

The intermediate result table contains all possible combinations of the rows of the 
named tables or views. Each row of the result is a row from the first table or view 
concatenated with a row from the second table or view, concatenated in turn with 
a row from the third, and so on.  The number of rows in the result is the product of 
the number of rows in all the named tables or views. 

 

The list of names in the FROM clause must conform to these rules: 

1. Each table-name and view-name must name a table or view described in the CA 
Datacom Datadictionary. 

2. If the FROM clause is in a subquery of a basic predicate, no view named can use 
either GROUP BY or HAVING. 

 



SELECT 

 

770  SQL User Guide 
 

3. In other cases, if a named view uses GROUP BY, HAVING, or a column function, no 
other table or view can be named.  The subselect statement is processed as if it 
contained the GROUP BY, HAVING, or column function used in the definition of the 
view. 

correlation-name 

The 1- to 18-byte correlation-name applies to the table or view named by the 
immediately preceding table-name or view-name. The correlation name can be 
used elsewhere in the statement to designate that table or view.  Use a blank to 
separate the correlation name from the table-name or view-name. 

 

WHERE Clause 

WHERE search-condition 

Produces an intermediate result table by applying the search-condition to each row 
of table R, which is the result of the FROM clause.  The result table contains the 
rows of R for which the search condition is true. 

Note:  If using alternate-join-type, see the additional information about WHERE clauses 
in WHERE Clause. Also, in addition to the information about search conditions that 
follows, see the additional alternate-join-type search condition. 

The search-condition describes a search condition that conforms to the following rules: 

1. The condition is formed (see Search Conditions). 

2. Each column-name in the search-condition either unambiguously identifies a 
column of R, or is a correlated reference.  A correlated reference is allowed only in a 
subquery. 

 

3. A column-name in the search-condition does not identify a column that is derived 
from a function or a grouping column.  A column of a view can be derived from a 
function or a grouping column. 

4. The search condition does not include a function unless the argument of the 
function is a correlated reference.  This is only possible in a subquery of a HAVING 
clause. 

Any subquery in the search-condition is effectively executed for each row of R and the 
results used in the application of the search-condition to the given row of R.  A subquery 
is actually executed for each row of R only if it includes a correlated reference to a 
column of R. 

 



SELECT 

 

Chapter 28: SQL Statements  771  
 

GROUP BY Clause 

GROUP BY 

Produces an intermediate result table by grouping the rows of R, where R is the 
result of the previous clause. 

column-name 

The column-name must unambiguously name a column of R.  Each column named is 
called a group column.  The names must be separated by commas. 

The result of GROUP BY is a set of groups of rows.  In each group of more than one row: 

1. All values of each grouping column are equal. 

2. All rows with the same set of values of the grouping columns are in the same group. 
 

For the purpose of grouping, all null values within a grouping column are considered 
equal. 

Because every row of a group contains the same value of any grouping column, the 
name of a grouping column can be used in a search condition in a HAVING clause or an 
expression in a SELECT clause. In each case, the reference specifies only one value for 
each group. 

GROUP BY must not be used in: 

■ A subquery of a basic predicate. 

■ A subselect whose FROM clause names a view that used GROUP BY or HAVING. 

expression 

GROUP BY elements can be expressions with the following restrictions: 

■ No column (aggregate) functions (SUM, AVG, and so on) 

■ Expression must reference a base table column in the FROM clause (that is, 
cannot have '5' or '10-2', but 'col1-5' is OK) 

■ No “case” 

■ No LOB column 

■ No special registers (CURRENT DATE, CURRENT TIME, and so on) 
 



SELECT 

 

772  SQL User Guide 
 

HAVING Clause 

HAVING search-condition 

Produces an intermediate result table by applying the search-condition to each 
group of R, where R is the result of the previous clause.  If that clause is not GROUP 
BY, all rows of R are considered as one group.  The result table contains those 
groups of R for which the search condition is true. 

The search-condition describes a search condition that conforms to the following rules: 

1. The condition is formed (see Search Conditions). 

2. Each column-name in the search-condition must: 

a. Unambiguously identify a grouping column of R, or 

b. Be a correlated reference, or 

c. Be specified within a function. 
 

A group of R to which the search condition is applied supplies the argument for each 
function in the search condition, except for any function whose argument is a correlated 
reference. 

If the search condition contains a subquery, the subquery can be thought of as being 
executed each time the search condition is applied to a group of R, and the results used 
in applying the search condition.  In actuality, the subquery is executed for each group 
only if it contains a correlated reference. 

 

A correlated reference to a group of R must either identify a grouping column or be 
contained within a function. 

The HAVING clause must not be used in: 

■ A subquery of a basic predicate. 

■ A subselect whose FROM clause names a view that used GROUP BY or HAVING. 
 



SELECT 

 

Chapter 28: SQL Statements  773  
 

SELECT Clause 

SELECT 

Produces a final result table by selecting only the columns indicated by the select 
list from R, where R is the result of the previous clause. 

Note:  We do not impose an arbitrary limit on the number of columns you can 
select in a query.  We are limited only by environmental factors. Some of these 
factors are the size of your work area as specified by the size parameter of the 
TASKS Multi-User startup option (see the CA Datacom/DB Database and System 
Administration Guide), your column sizes, and limits placed by other products such 
as the CA Datacom Server. 

ALL 

Retains all rows of the final result table and does not eliminate redundant 
duplicates.  ALL is the default. 

 

DISTINCT 

Eliminates all but one of each set of duplicate rows of the final result table. 

DISTINCT must not be used more than once in a subselect. This restriction includes: 

1. Functions in the SELECT list of the subselect. 

2. Functions in a HAVING clause of a subselect. 

3. Functions which are specified in a subquery of the HAVING clause and contain a 
correlated reference to groups of the subselect. 

* 

The asterisk (*) represents a list of names that identify the columns of R.  The first 
name in the list identifies the first column of R, the second name identifies the 
second column of R, and so on. The list of names is established when the program 
containing the SELECT clause is prepared. 

 

Important!  SELECT * and SELECT table.* (see the following) are useful when selecting 
from tables or views in an interactive environment, especially when the names of the 
columns are not known.  However, embedding SELECT * or SELECT table.* in an 
application program may cause unexpected results if the definition of the table is ever 
altered.  For example, when a column is dropped from a table definition, all statements 
which reference the table are automatically rebound as they are executed.  The 
rebound forms of the statements reflect the new set of columns.  The application 
program, however, still expects the original set of columns, and the result table 
returned to the program no longer matches the FETCH statement's host variables.  
Views which are referenced by application programs should not include SELECT * or 
SELECT table.* for the same reason. 

 



SELECT 

 

774  SQL User Guide 
 

name.* 

The asterisk (*) represents a list of names that identify the columns of R.  The name 
can be a table-name, view-name, or correlation-name, and must designate a 
table-name or view-name in the FROM clause.  The first name in the list identifies 
the first column of R, the second name identifies the second column, and so on. The 
list is established at preparation time and does not represent any columns that 
have been added later.  The names must be separated by commas. 

expression 

Commonly, the expressions used in a SELECT statement include column names.  
Each column name used in the select list must unambiguously identify a column of 
R. Multiple expressions must be separated by commas. 

 

The number of columns in the result of SELECT is the same as the number of expressions 
in the operational form of the select list, that is to say, the list established at preparation 
time. 

The result of a subquery must be a single column unless the subquery is used in the 
EXISTS predicate. 

 

Applying the Select List 

Some of the results of applying the select list to R depend on whether GROUP BY or 
HAVING is or is not used. 

If neither GROUP BY nor HAVING is used: 

The select list must either include no functions, or be entirely a list of functions. 

If the select includes no functions, then the select list is applied to each row of R, 
and the result contains as many rows as there are rows in R. 

If the select list is a list of functions, then R is the source of the arguments of the 
functions, and the result of applying the select list is one row. 

If GROUP BY or HAVING is used: 

Each column-name in the select list must either identify a grouping column or be 
specified within a function. 

The select list is applied to each group of R, and the result contains as many rows as 
there are groups in R.  When the select list is applied to a group of R, that group is 
the source of the arguments of the functions in the select list. 

 



SELECT 

 

Chapter 28: SQL Statements  775  
 

In either case the nth column of the result contains the values specified by applying the 
nth expression in the operational form of the select list. 

A result column derived from a column name acquires the unqualified name of that 
column.  All other result columns have no names. 

Each column of the result of SELECT acquires a data type from the expression from 
which it is derived. 

 

Example 1 

Show all rows of the employee table TEMPL. 

      SELECT * FROM CA.TEMPL 
 

Example 2 

Show the job code, maximum salary and minimum salary for each group of rows of the 
table TEMPL with the same job code, but only for groups with more than one row and 
with a maximum salary less than $50,000. 

      SELECT JOBCODE, MAX(SALARY), MIN(SALARY) 

      FROM CA.TEMPL 

      GROUP BY JOBCODE 

      HAVING COUNT(*) > 1 AND MAX(SALARY) < 50000 
 

Example 3 

Show all rows of the employee-to-project-activity table TEMPRAC for Department E11, 
as determined by the employee table TEMPL. 

      SELECT * 

      FROM CA.TEMPRAC 

      WHERE EMPNO IN (SELECT EMPNO 

                      FROM CA.TEMPL 

                      WHERE WORKDEPT = 'E11') 
 

Example 4 

Show the department number and maximum departmental salary for all departments 
whose maximum salary is less than the average salary for all employees. The 
information is in the employee table TEMPL.  In this example, the subselect would be 
executed only once. 

      SELECT WORKDEPT, MAX(SALARY) 

      FROM CA.TEMPL 

      GROUP BY WORKDEPT 

      HAVING MAX(SALARY) < (SELECT AVG(SALARY) 

                           FROM CA.TEMPL) 
 



SELECT 

 

776  SQL User Guide 
 

Full-Select Statement 

A full-select statement specifies a result table. If UNION is not used, the result of the 
full-select is the result of the specified subselect. 

Following is the syntax diagram for the full-select statement: 

   ┌─ choice ────┐ 
►►─▼─ subselect ─┴─────────────────────────────────────────────────────────────►◄ 

Expansion of Where choice is as follows 

├──┬─ UNION ─────┬─────────────────────────────────────────────────────────────┤ 
   └─ UNION ALL ─┘ 

 

Description 

UNION 

Derives a result table by combining two other result tables. The set of rows in the 
UNION of result tables R1 and R2 is the set of rows in either R1 or R2, with 
redundant duplicate rows eliminated. Each row of the UNION table is either a row 
from R1 or a row from R2. 

The columns of the result table are not named. 

UNION ALL 

As in UNION, derives a result table by combining two other result tables. The set of 
rows in the UNION ALL of result tables R1 and R2 is the set of rows in either R1 or 
R2, but UNION ALL specifies not to eliminate duplicate rows when deriving the 
result table.  Each row of the UNION ALL table is either a row from R1 or a row from 
R2. 

The columns of the result table are not named. 

subselect 

Specify a subselect.  For more information about the subselect see Subselect. 

Important!  If more than two subselects are used, you may not mix UNION with UNION 
ALL. 

 

Duplicate Rows 

Two rows are duplicates of one another only if each value in the first row is equal to the 
corresponding value of the second row. 

A UNION eliminates all but one row of each set of duplicates. The number of rows in the 
UNION table is the sum of the number of rows in R1 and R2, less the number of 
duplicates eliminated. 

If ALL is specified, duplicate rows are not eliminated. 
 



SELECT 

 

Chapter 28: SQL Statements  777  
 

Rules for Columns 

Result tables R1 and R2 must have the same number of columns. 

When UNION is performed, the corresponding columns of the SELECT lists need to be 
compatible data types. 

 

Example 1 

Show all the rows from the EMP table. 

      SELECT * 

      FROM EMP 
 

Example 2 

List the employee numbers of all employees: 

■ Whose department number begins with D or, 

■ Who are assigned to projects whose project number begins with AD. 

SELECT EMPNO 

FROM EMP 

WHERE WORKDEPT LIKE 'D%' 

UNION 

SELECT EMPNO 

FROM ASSIGNTBL 

WHERE PROJNO LIKE 'AD%' 
 

Select-Statement 

The select-statement is the form of a query that you can issue in interactive SQL (using 
CA Datacom Datadictionary or CA Dataquery online) or in static SQL (embedded in a 
DECLARE CURSOR statement in a preprocessed batch program), but not in dynamic SQL. 
The result table returned by a select-statement is the result of the full-select statement. 

Following is the syntax diagram for the select-statement: 

Note: For the syntax of the full-select statement, see Full-Select Statement (see 
page 776). 

 

FOR UPDATE OF is a CA Datacom/DB extension. 

►►─ full-select statement ────────────────────────────────────────────────────► 
 
 ►─┬──────────────────────────────────────────────────────┬───────────────────►◄ 
   ├─┬───────────────────┬─┬────────────────────────────┬─┤ 
   │ └─ ORDER BY clause ─┘ └─ optimize-read-fetch-list ─┘ │ 
   │                 ┌─ , ──────┐                         │ 
   └─ FOR UPDATE OF ─▼─ c-name ─┴┬───────────────────────┬┘ 
                                 └─ OPTIMIZE FOR n ROWS ─┘ 



SELECT 

 

778  SQL User Guide 
 

Note: OPTIMIZE FOR n ROWS is a CA Datacom/DB extension. 

FOR READ/FETCH ONLY is a CA Datacom/DB extension. 

FETCH FIRST is a CA Datacom/DB extension. 

   ┌─ (only one use of each clause is allowed) ───┐ 
►►─▼─┬──────────────────────────────────────────┬─┴───────────────────────────►◄ 
     ├─ OPTIMIZE FOR n ROWS ────────────────────┤ 
     ├─ FOR ─┬─ READ ──┬── ONLY ────────────────┤ 
     │       └─ FETCH ─┘                        │ 
     ├─ FETCH FIRST ─┬─────┬─┬─ ROW ──┬── ONLY ─┤ 
     │               └─ n ─┘ └─ ROWS ─┘         │ 
     └─ WITH UR ────────────────────────────────┘ 
 

 

Description 

ORDER BY clause 

You can specify the order for rows in the result table. For more information, see 
ORDER BY Clause (see page 779). 

FOR UPDATE OF c-name 

This CA Datacom/DB extension is provided for compatibility with other SQL 
implementations. The functionality of update indication is accomplished by other 
means in CA Datacom/DB. The columns must belong to the table or view that is 
named in the FROM clause of the SELECT statement. Commas must separate the 
column names (c-name in the diagram). 

OPTIMIZE FOR n ROWS 

This CA Datacom/DB extension tells the optimizer how many rows are normally 
fetched before the cursor is closed. This is useful when there is a choice between:  

■ A key that builds a temporary table and gives a lower cost if all rows are 
fetched, and  

■ A key that does not build a temporary table and takes longer if all rows are 
fetched, but takes less time when only a few rows are fetched 

Note: The number n is not a limit (as it is, for example, in FOR FIRST n). The 
complete set of rows can be fetched. The number n in this clause is merely input to 
the optimizer. 

 

FOR READ/FETCH ONLY 

This clause is provided for compatibility with other SQL implementations. If you use 
it and then try to do an update or delete on the current cursor, you receive an SQL 
return code -130 CURSOR NOT UPDATABLE (SQLSTATE 24S05). 

NOTE: FOR FETCH ONLY does not force locking or have any effect on locking in any 
way. It only prevents the cursor from having an UPDATE/DELETE WHERE CURRENT 
OF cursName. 

 



SELECT 

 

Chapter 28: SQL Statements  779  
 

FETCH FIRST n ROW/ROWS ONLY 

The FETCH FIRST clause allows you to control how many rows a query retrieves. This 
clause allows you to limit the number of fetches that are done. FETCH FIRST can 
therefore be used to prevent runaway queries. 

Note: Queries that require the resulting set to be sorted have to perform the sort 
on the entire resulting set. For example, if a non-indexed column is being ordered 
by the use of an ORDER BY clause, to return the correct n rows the entire resulting 
set would need to be generated and sorted. In this case, the savings would be 
minimal even though CA Datacom/DB would prevent an excessive number of 
FETCHes from occurring. 

The n can be optionally used to specify the number of rows to be fetched. When a 
specified number of rows have been fetched, a SQL return code number +100 NO 
ROW FOUND (SQLSTATE 02000) is received. If n is not specified, the resulting set is 
limited to one row. 

Either ROW or ROWS must be specified. 

ONLY must be specified. ONLY is provided for compatibility with other SQL 
implementations. 

 

QUERYNO nnnnn 

Use this optional clause to identify a query in various reports. The supplied value is 
stored in the Source Cache Entry Dynamic System Table SC_ENTRY. If this option is 
not used, a default unique negative value is used in SC_ENTRY. 

Valid values are any positive integer. 

Note: CA Datacom does not check for a unique value, but because the intention is 
to uniquely identify the query, we recommend that you use a unique value. 

 

WITH UR 

Specifies “U” transaction isolation level, which does not acquire a lock on rows read 
by the cursor. This option overrides the isolation level set at the plan or CA 
Datacom Server level. 

 

ORDER BY Clause 

The ORDER BY clause is a component of a select-statement. 

Following is the syntax diagram for the ORDER BY clause: 

              ┌─ , ───────────────────────────┐ 
►►─ ORDER BY ─▼─┬─ column-name ─┬─┬─────────┬─┴───────────────────────────────►◄ 
                └─ integer ─────┘ ├─ ASC ◄ ─┤ 
                                  └─ DESC ──┘ 

 



SELECT 

 

780  SQL User Guide 
 

Description 

ORDER BY 

Puts the rows of the result table in order by the values of the columns you identify. 
If you identify more than one column, the rows are ordered first by the values of 
the column you identify first, then by the values of the column you identify second, 
and so on. If you do not specify the ORDER BY clause, the rows of the result table 
have an arbitrary order. 

colume-name 

Each column-name specified must unambiguously identify a column of the result 
table. The sum of the lengths of the columns must be less than 32720. The column 
names must be separated by commas. 

 

integer 

The integer n identifies the nth column of the result table. Each integer specified 
must be greater than 0 and not greater than the number of columns in the result 
table.  The integers must be separated by commas. 

A named column can be identified by an integer or a column-name. 

An unnamed column must be identified by an integer.  A column is unnamed if it is 
derived from: 

■ A literal 

■ An arithmetic expression 

■ A function 

If the full-select statement includes a UNION operator, every column of the result 
table is unnamed. 

 

ASC 

Places the values of the column in ascending order. ASC is the default order. 

DESC 

Places the values of the column in descending order. 

Ordering is performed in accordance with the comparison rules.  The null value is higher 
than all other values.  If your ordering specification does not determine a complete 
ordering, rows with duplicate values of the last identified column have an arbitrary 
order. 

 

Processing 

A cursor defined with an ORDER BY clause cannot be used for update. 
 



SELECT 

 

Chapter 28: SQL Statements  781  
 

Examples 

In this example, the ORDER BY clause is used to order the results of the SELECT.  The 
SELECT retrieves the number and name of all employees hired before 1980 in order of 
seniority.  HIREDATE is in the form yymmdd. 

      SELECT EMPNO, LASTNAME, FIRSTNME, HIREDATE 

      FROM EMP 

      WHERE HIREDATE < 800000 

      ORDER BY HIREDATE 
 

Example 

This example shows an SQL query, using an ORDER BY clause, that runs against system 
tables (SYS authorization ID) to display keys, where TBL and FLD are correlation names. 

 SELECT DISTINCT TBL.TABLE_SQLNAME, 

    FLD.DBID, 

    FLD.KEY_NAME, 

    FLD.OCCURRENCE, 

    FLD.KEY_FIELD_SEQ, 

    FLD.FIELD_LENGTH, 

    FLD.FIELD_UNIQUE 

 FROM SYS.DIR_TABLE TBL, 

            SYS.DIR_KEY_FIELD FLD 

 WHERE (TBL.TABLE_NAME = FLD.TABLE_NAME) 

 AND 

       (TBL.TABLE_SQLNAME = 'PSN_AST' AND TBL.STATUS = 'P') 

 ORDER BY FLD.DBID, FLD.KEY_NAME, FLD.KEY_FIELD_SEQ; 
 

Select-Into Statement 

The select-into statement produces a result table consisting of at most, one row, and 
assigns the values in that row to host variables. If the table is empty, the statement 
assigns +100 to SQLCODE and does not assign values to the host variables. 

Following is the syntax diagram for the select-into statement: 

►►─ SELECT ─┬────────────┬────────────────────────────────────────────────────► 
            ├─ ALL ◄ ────┤ 
            └─ DISTINCT ─┘ 
 
 ►─┬─ * ────────────────────────────────────────────┬─ INTO ──────────────────► 
   │ ┌─ , ────────────────────────────────────────┐ │ 
   └─▼─┬─ expression ─┬───────────────────────┬─┬─┴─┘ 
       │              └─ AS ─ sql-identifier ─┘ │ 
       └─┬─ table-name.* ───────┬───────────────┘ 
         ├─ view-name.* ────────┤ 
         └─ correlation-name.* ─┘ 
 
   ┌─ , ─────────────┐        ┌─ , ─────────┐ 
 ►─▼─ host-variable ─┴─ FROM ─▼─ table-ref ─┴─────────────────────────────────► 
 
 ►─┬─────────────────────────┬────────────────────────────────────────────────►◄ 
   └─ WHEREsearch-condition ─┘ 

 



SELECT 

 

782  SQL User Guide 
 

The table-ref shown in the syntax box immediately preceding the following one has 
syntax as follows: 

►►─┬─┬─ table-name ─┬─┬──────┬─┬────────────────────┬─┬───────────────────────►◄ 
   │ └─ view-name ──┘ └─ AS ─┘ └─ correlation-name ─┘ │ 
   └─ alternate-join-type ────────────────────────────┘ 

The table-ref shown in the syntax box immediately preceding the following one has 
syntax as follows: 

►►─┬─┬─ table-name ─┬─┬────────────────────┬─┬────────────────────────────────►◄ 
   │ └─ view-name ──┘ └─ correlation-name ─┘ │ 
   └─ alternate-join-type ───────────────────┘ 

 

The alternate-join-type shown in the syntax box immediately preceding the following 
one has syntax as follows: 

►►─┬─────┬─ table-ref ─┬─ INNER ────────────┬─────────────────────────────────► 
   └─ ( ─┘             └─ LEFT ─┬─────────┬─┘ 
                                └─ OUTER ─┘ 
 
 ►─ JOIN ─ table-ref ─┬───────────────┬─┬─────┬───────────────────────────────►◄ 
                      └─ ON ─ s-cond ─┘ └─ ) ─┘ 

Note: The s-cond (search-condition) specified in the optional ON clause for a LEFT JOIN 
differs from the one in the WHERE clause in that the ON clause defines the join 
conditions that determine which rows contain nulls, as opposed to the WHERE clause, 
which eliminates rows from the result entirely. Also note that if you use the optional 
parentheses, they must be balanced. That is, if you use an open parenthesis, you must 
also use a close parenthesis. 

The previously shown JOIN syntax is compatible with Ingres, DB2, and ANSI SQL3 Core 
SQL. 

 

Description 

SELECT Clause 

SELECT 

Produces a final result table by selecting only the columns indicated by the select 
list from R, where R is the result of the previous clause. 

Note:  We do not impose an arbitrary limit on the number of columns you can 
select in a query.  We are limited only by environmental factors. Some of these 
factors are the size of your work area as specified by the size parameter of the 
TASKS Multi-User startup option (see the CA Datacom/DB Database and System 
Administration Guide), your column sizes, and limits placed by other products such 
as the CA Datacom Server. 

ALL 

Retains all rows of the final result table and does not eliminate redundant 
duplicates.  ALL is the default. 

 



SELECT 

 

Chapter 28: SQL Statements  783  
 

DISTINCT 

Eliminates all but one of each set of duplicate rows of the final result table. 

DISTINCT must not be used more than once in a select-into statement. 

* 

The asterisk (*) represents a list of names that identify the columns of R.  The first 
name in the list identifies the first column of R, the second name identifies the 
second column of R, and so on. 

The list of names is established when the program containing the SELECT clause is 
prepared. 

 

Important!  SELECT * and SELECT table.* (see the following) are useful when selecting 
from tables or views in an interactive environment, especially when the names of the 
columns are not known.  However, embedding SELECT * or SELECT table.* in an 
application program may cause unexpected results if the definition of the table is ever 
altered.  For example, when a column is dropped from a table definition, all statements 
which reference the table are automatically rebound as they are executed.  The 
rebound forms of the statements reflect the new set of columns.  The application 
program, however, still expects the original set of columns, and the result table 
returned to the program no longer matches the FETCH statement's host variables.  
Views which are referenced by application programs should not include SELECT * or 
SELECT table.* for the same reason. 

 

name.* 

The asterisk (*) represents a list of names that identify the columns of R.  The name 
can be a table-name, view-name, or correlation-name, and must designate a 
table-name or view-name in the FROM clause.  The first name in the list identifies 
the first column of R, the second name the second column, and so on. The list is 
established at preparation time and does not represent any columns that have 
been added later.  The names must be separated by commas. 

expression 

Commonly, the expressions used in a SELECT statement include column names.  
Each column name used in the select list must unambiguously identify a column of 
R.  For more information about expressions, see Expressions. Multiple expressions 
must be separated by commas. 

 



SELECT 

 

784  SQL User Guide 
 

AS 

(Optional)The AS clause, used after an expression, can be used to give a name to an 
expression or to give a column reference another name that is returned to the user 
in the SQLDA. The term sql-identifier represents either an ordinary or delimited SQL 
identifier (see Identifiers). The word AS itself is optional. 

An AS can also be used before the correlation-name in the table-ref part of a FROM 
clause. 

An AS clause is used in the following example to give the name PROPOSED_SALARY 
to the expression: 

      SELECT EMP.NAME, SALARY, SALARY * 1.1 

        AS PROPOSED_SALARY 

        FROM EMP; 

The number of columns in the result of SELECT is the same as the number of expressions 
in the operational form of the select list, that is to say, the list established at preparation 
time. The result of a subquery must be a single column unless the subquery is used in 
the EXISTS predicate. 

 

Applying the Select List 

The select list must either include no functions, or be entirely a list of functions. 

If the select includes no functions, then the select list is applied to each row of R, and 
the result contains as many rows as there are rows in R. 

If the select list is a list of functions, then R is the source of the arguments of the 
functions, and the result of applying the select list is one row. 

 

The nth column of the result contains the values specified by applying the nth 
expression in the operational form of the select list. 

A result column derived from a column name acquires the unqualified name of that 
column.  All other result columns have no names. 

Each column of the result of SELECT acquires a data type from the expression from 
which it is derived. 

 



SELECT 

 

Chapter 28: SQL Statements  785  
 

INTO Clause 

Introduces a list of host variables. 

host-variable 

INTO 

Must name a variable that is described in the program in accordance with the rules 
for declaring host variables.  The names must be separated by commas. 

The first value in the result row is assigned to the first variable in the list, the second 
value to the second variable, and so on. If the number of values is not the same as 
the number of variables, the value W is assigned to SQLCA-WARNING(4). 

The data type of a variable must be compatible with the value assigned to it.  If the 
value is numeric, the variable must have the capacity to represent the integral part 
of the value.  If the value is null, an indicator variable must be specified. 

 

Each assignment to a variable is made according to the rules described in Basic 
Operations (Assignment and Comparison) (see page 501). Assignments are made in 
sequence through the list.  If an assignment error occurs for some variable, no value 
is assigned to that variable or later variables. Any values that have already been 
assigned to variables remain assigned. 

 

FROM Clause 

FROM table-ref 

Where table-ref can be a table-name, view-name, or alternate-join-type.  If 
table-ref is a table-name or view-name, it names: 

■ A single table or view. 

■ Several tables and/or views to produce an intermediate result table. 

If table-ref is an alternate-join-type, see the information about joins in Left Outer 
Joins. 

You can reference up to 20 tables in a FROM clause of a query when you are 
performing a join. For example, if a view is based on five tables, you can name that 
view in the FROM clause and up to 15 other tables.  The names must be separated 
by commas. 

 

The intermediate result table contains all possible combinations of the rows of the 
named tables or views. Each row of the result is a row from the first table or view 
concatenated with a row from the second table or view, concatenated in turn with 
a row from the third, and so on.  The number of rows in the result is the product of 
the number of rows in all the named tables or views. 

 



SELECT 

 

786  SQL User Guide 
 

The list of names in the FROM clause must conform to these rules: 

1. Each table-name and view-name must name a table or view described in the CA 
Datacom Datadictionary. 

2. The FROM clause of a select-into statement must not identify a view that includes a 
GROUP BY or HAVING clause. 

3. If any view named contains a column function, that view-name must be the only 
name in the FROM clause, that is to say, you cannot have a join in this case. 

 

correlation-name 

The 1- to 18-byte correlation-name applies to the table or view named by the 
immediately preceding table-name or view-name. The correlation name can be 
used elsewhere in the statement to designate that table or view.  Use a blank to 
separate the correlation name from the table-name or view-name. 

 

WHERE Clause 

WHERE search-condition 

Produces an intermediate result table by applying the search-condition to each row 
of table R, which is the result of the FROM clause.  The result table contains the 
rows of R for which the search condition is true. 

Note:  If using alternate-join-type, see the additional information about WHERE 
clauses in WHERE Clause. Also, in addition to the information about search 
conditions that follows, see the additional alternate-join-type search condition. 

The search-condition describes a search condition that conforms to the following rules: 

1. The condition is formed (see Search Conditions (see page 593)). 

2. Each column-name in the search-condition either unambiguously identifies a 
column of R, or is a correlated reference.  A correlated reference is allowed only in a 
subquery. 

 

3. A column-name in the search-condition does not identify a column that is derived 
from a function or a grouping column.  A column of a view can be derived from a 
function or a grouping column. 

4. The search condition does not include a function unless the argument of the 
function is a correlated reference.  This is only possible in a subquery of a HAVING 
clause. 

Any subquery in the search-condition is effectively executed for each row of R and the 
results used in the application of the search-condition to the given row of R.  A subquery 
is actually executed for each row of R only if it includes a correlated reference to a 
column of R. 

 



SET CURRENT SQLID 

 

Chapter 28: SQL Statements  787  
 

Example 1. 

Put the row for employee 528671, from the employee table, into the specified host 
variables. 

 EXEC SQL 

      SELECT * 

      INTO :EMPNO, :FNAME, :MI, :LNAME, :DEPTNO, 

      :HIREDATE, :SALARY 

      FROM CA.TEMPL 

      WHERE EMPNO = '528671' 

 END-EXEC 
 

Example 2. 

Put the maximum salary in the employee table into the host variable MAXSALARY. 

 EXEC SQL 

      SELECT MAX(SALARY) 

      INTO :MAXSALARY 

      FROM CA.TEMPL 

 END-EXEC 
 

SET CURRENT SQLID 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

SET CURRENT SQLID  YES  

Note:  YES indicates a valid execution method for this statement. 

The SET CURRENT SQLID statement can be prepared and executed dynamically.  SET 
CURRENT SQLID allows the CURRENT SQLID special register to be changed to any 
authorization ID.  The value of the CURRENT SQLID special register is the current SQL 
authorization ID (in this case actually a schema ID).  Using SET CURRENT SQLID to 
change the CURRENT SQLID therefore allows you to qualify any unqualified table or view 
names in dynamically executed SQL statements. After you have changed the CURRENT 
SQLID special register with SET CURRENT SQLID, the value you specified remains in 
effect until either another SET CURRENT SQLID statement is executed or your 
application process terminates. 

 



SET CURRENT SQLID 

 

788  SQL User Guide 
 

Note:  In a Single User  environment, the CURRENT SQLID affects all plans executing 
under an application process. 

There is no authorization checking required to execute the SET CURRENT SQLID 
statement. The name checked for privileges when a CREATE, GRANT or REVOKE 
statement is dynamically prepared is the value of the accessor ID special register, not 
the value of CURRENT SQLID. The accessor ID becomes the owner of tables, views and 
indexes created by dynamic SQL statements. The value of the accessor ID special 
register may not be changed. 

 

The CURRENT SQLID special register is initially set to the same value as the USER special 
register, which is the authorization ID of the plan that is executing.  This initial value is 
also known as the primary SQL authorization ID.  The USER register retains the original 
value even when the CURRENT SQLID is changed. 

Note:  In interactive SQL products such as CA Dataquery or CA Datacom Server, plans 
are generated internally, but there is always a way of specifying what authorization ID 
the generated plans have. 

 

If Dynamic Plan Selection is used, the AUTHID provided in the User Requirements Table 
(URT) parmameter or CA Datacom CICS Services table is used to specify the 
authorization ID of the plan, which corresponds to the USER special register.  That 
authorization ID is used to qualify any unqualified table or view names in the 
non-dynamically prepared statements in the plan.  Do not confuse this with the 
CURRENT SQLID, which only affects dynamically prepared statements. 

Following is the syntax diagram for the SET CURRENT SQLID statement: 

►►─ SET CURRENT SQLID= ─┬──────────────────┬──────────────────────────────────►◄ 
                        ├─ USER ───────────┤ 
                        ├─ string-literal ─┤ 
                        └─ host-variable ──┘ 

 

Description 

USER 

Specifying USER means you want the CURRENT SQLID special register set to the 
authorization ID of the currently executing plan. 

string-literal or host-variable 

Use a string literal or host variable if you want to specify a value for the CURRENT 
SQLID special register. 

If the value you specify is not a valid authorization ID that was created by using the 
CREATE SCHEMA statement, an error results if the authorization ID is later used to 
qualify a table or view name in a dynamic SQL statement. 

 



UPDATE 

 

Chapter 28: SQL Statements  789  
 

Example 

Change the current SQLID special register to contain the contents of host variable 
:USERSQLID. 

EXEC SQL 

SET CURRENT SQLID=:USERSQLID 

END-EXEC 
 

UPDATE 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

UPDATE (positioned)  YES  

UPDATE (searched) YES YES YES 

Note:  YES indicates a valid execution method for this statement. To learn about using 
SQL keywords in CA Dataquery, see the CA Dataquery User Guide. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

The UPDATE statement updates the values of specified columns in rows of a table or 
view.  Updating a row of a view updates a row of the base table from which the view is 
derived. 

 

You must specify ISOLEVEL=C (isolation level C) in the Preprocessor options when using 
the UPDATE statement. 

Note:  When the NOMAINT option of the CA Datacom/DB Utility (DBUTLTY) ACCESS 
function is in force, an UPDATE statement receives a CA Datacom/DB return code 
94(87), where 87 is a decimal internal return code (hex 57) that tells you no 
maintenance statements are allowed while NOMAINT is in force. 

 



UPDATE 

 

790  SQL User Guide 
 

Also note that constraints that existed in versions before r10 can act differently in 
Release 10.0 and above because, in Release 10.0 and above, columns containing a NULL 
rather than a value do not cause a CHECK constraint to be violated. Constraints are 
considered, in Release 10.0, to be satisfied unless the predicates evaluate explicitly to 
FALSE.  That is, CHECK constraints whose predicates evaluate to UNKNOWN rather than 
TRUE or FALSE are considered, starting with Release 10.0, to have been satisfied. 
Therefore, INSERT and UPDATE statements, from versions before r10, that resulted in 
constrained columns being nulled are, when used in Release 10.0 and above, successful 
for the first time. 

Following is the syntax diagram for an UPDATE statement: 

►►─┬─ searched UPDATE ───┬────────────────────────────────────────────────────►◄ 
   └─ positioned UPDATE ─┘ 

Note:  The positioned UPDATE is not used by CA Dataquery. 
 

Searched UPDATE 

Following is the syntax diagram for the searched UPDATE statement: 

►►─ UPDATE ─┬─ table-name ─┬─┬────────────────────┬─ SET ─────────────────────► 
            └─ view-name ──┘ └─ correlation-name ─┘ 
 
   ┌─ , ────────────────────────────┐ 
 ►─▼─ column-name ─┬─ expression ─┬─┴─┬─────────────────────────┬─────────────►◄ 
                   └─ NULL ───────┘   └─ WHEREsearch-condition ─┘ 

 

Positioned UPDATE 

Following is the syntax diagram for the positioned UPDATE statement that you use with 
a cursor: 

►►─ UPDATE ─┬─ table-name ─┬─┬────────────────────┬─ SET ─────────────────────► 
            └─ view-name ──┘ └─ correlation-name ─┘ 
 
   ┌─ , ────────────────────────────┐ 
 ►─▼─ column-name ─┬─ expression ─┬─┴─ WHERE CURRENT OFcursor-name ───────────►◄ 
                   └─ NULL ───────┘ 

 



UPDATE 

 

Chapter 28: SQL Statements  791  
 

Description 

table-name or view-name 

Specify the name of the table or view you want to update.  You must name a table 
or view described in the CA Datacom Datadictionary, but not a CA Datacom 
Datadictionary table, a view of a CA Datacom Datadictionary table, or a read-only 
view. 

correlation-name 

You can specify a 1- to 18-byte correlation-name (correlation-name) to be used 
within the search-condition to designate the table or view. Also see Correlation 
Names (see page 515) and SQL Index Binding (see page 516). 

SET 

Introduces a list of column names and values. 
 

column-name 

Specify the names of the columns you want to update.  The names must be 
separated by commas.  You must name a column of the table or view you specified.  
Do not specify the name of the same column more than once and do not specify a 
column of any of the following types: 

■ A view column that is derived from a literal. 

■ A view column that is derived from an arithmetic expression. 
 

expression 

Tells the new value of the column.  The expression cannot include a function. See 
Expressions (see page 527) for the expression's syntax diagram. 

A column-name in an expression must name a column of the named table or view.  
For each row that is updated, the value of the column in the expression is the value 
of the column in the row before the row is updated.  The following table shows a 
SET clause, the value of the columns in the row (before) and the resulting value 
(after) for each column: 

 

SET clause Value of X 
Before 

Value of Y 
Before 

Value of X 
After 

Value of Y After 

SET X = 10, Y = X + 1 1 3 1 5 1 10 1 4 

NULL 

Use the NULL keyword to specify that the value for the column is to be set to a null 
value. 

WHERE 

Introduces a condition that tells what rows are updated.  You can omit the clause, 
give a search condition, or name a cursor.  If you omit the clause, all rows of the 
table or view are updated. 

 



UPDATE 

 

792  SQL User Guide 
 

search-condition 

The search-condition is applied to each row of the table or view and the updated 
rows are those for which the result of the search-condition is true. See Search 
Conditions (see page 593) for the search-condition syntax diagram. 

Each column-name in the search condition must name a column of the table or 
view, and the table or view must not be referenced in the FROM clause of any 
subselect in the search condition. 

If the search condition contains a subquery, the subquery can be thought of as 
being executed each time the search condition is applied to a row, and the results 
used in applying the search condition.  In actuality, the subquery is executed for 
each row only if it contains a correlated reference to a column of the table or view. 

 

CURRENT OF cursor-name 

Specify the name of a cursor that is defined in a DECLARE CURSOR statement of 
your program.  The DECLARE CURSOR statement must appear in your program 
before the UPDATE statement. 

The table or view named must also be named in the FROM clause of the SELECT 
statement of the cursor, and the result table of the cursor must not be read-only. 

When the UPDATE statement is executed, the cursor must be positioned on a row.  
That row is the one that is updated. 

 

Processing 

Update values are assigned to columns in accordance with the following assignment 
rules: 

 

If update value is: The column must be: 

A number A numeric column with the capacity to represent the 
integral part of the number 

A character string A character string column with a length attribute that is not 
less than the length of the string 

The updated row must conform to any constraint imposed on the table (or on the base 
table of the view) by any unique index on an update column. If an update value violates 
any of those constraints, or if any other error occurs during the execution of the 
UPDATE statement, no rows are updated. If an error occurs during the execution of 
UPDATE that makes the position of a cursor unpredictable, the cursor is closed. Rows 
can be changed so that they no longer conform to the definition of the view.  Such rows 
are updated in the base table of the view and no longer appear in the view. 

Unless appropriate locks already exist, one or more exclusive locks are acquired by the 
execution of a successful UPDATE statement.  Until the locks are released, an updated 
row can be accessed only by the unit of recovery that performed the update. 

 



UPDATE 

 

Chapter 28: SQL Statements  793  
 

Example 1 

For employee 000190, change the employee's telephone number in the TEMPL table. 

 EXEC SQL 

      UPDATE CA.TEMPL 

      SET PHONENO = '3565' 

      WHERE EMPNO = '000190' 

 END-EXEC 
 

Example 2 

Increase the job code by 10 members in Department D11. 

 EXEC SQL 

      UPDATE CA.TEMPL 

      SET JOBCODE = JOBCODE + 10 

      WHERE WORKDEPT = 'D11' 

 END-EXEC 
 

Example 3 

This example assumes the system for assigning manager numbers has been modified 
due to changes at the division level.  To locate the manager numbers which must be 
updated, this example uses a SELECT in a DECLARE CURSOR statement.  When the result 
table is obtained and the cursor is positioned, an UPDATE statement, using the WHERE 
CURRENT OF clause, updates the value for MGRNO. 

 EXEC SQL 

      DECLARE C1 CURSOR FOR 

           SELECT DEPTNO, DEPTNAME, MGRNO 

           FROM DEPTTBL 

           WHERE ADMDEPT = 'A0' 

 END-EXEC 

EXEC SQL 

      OPEN C1 

 END-EXEC 

FETCH-LOOP. 

    IF SQLCODE = 0 

        EXEC SQL 

            FETCH C1 INTO :DNUM, :DNAME, :MNUM 

        END EXEC. 

        EXEC SQL 

            UPDATE DEPTTBL 

                SET MGRNO = MGRNO + 100000 

                WHERE CURRENT OF C1 

        END-EXEC. 

 

        GO TO FETCH LOOP. 

EXEC SQL 

      CLOSE C1 

 END-EXEC 
 



WHENEVER 

 

794  SQL User Guide 
 

WHENEVER 
 

This SQL statement can 
be executed in the 
following ways: 

Through the CA Datacom 
Datadictionary 
Interactive SQL Service 
Facility (interactive) 

In an application 
program prepared using 
a CA Datacom/DB SQL 
Preprocessor 
(embedded) 

By using CA Dataquery (SQL 
& Batch Modes) 

WHENEVER  YES  

Note:  YES indicates a valid execution method for this statement. For information about 
the access rights required to execute this statement, see the CA Datacom/DB Database 
and System Administration Guide. 

The WHENEVER statement identifies the statement that is to be executed next if 
execution of the latest SQL statement produces a specified condition. 

Following is the syntax diagram for the WHENEVER statement: 

Note:  SQLWARNING is a CA Datacom/DB extension. 

►►─ WHENEVER ─┬─ NOT FOUND ──┬─┬─ CONTINUE ───────────────┬───────────────────►◄ 
              ├─ SQLERROR ───┤ └─┬─ GOTO ──┬─ host-label ─┘ 
              └─ SQLWARNING ─┘   └─ GO TO ─┘ 

 

Description 

Use the following clauses to identify the type of exception condition. 

NOT FOUND 

Identifies any condition that results in an SQL return code of +100. 

SQLERROR 

Identifies any condition that results in a negative SQL return code. 

SQLWARNING 

This CA Datacom/DB extension allows you to identify any condition that results in a 
warning condition (SQLCA-WARNING is W) or that results in a positive SQL return 
code other than +100. 

 



WHENEVER 

 

Chapter 28: SQL Statements  795  
 

Use the following clauses to specify the statement to be executed when the identified 
type of exception condition exists. 

CONTINUE 

Causes the program to continue execution with the next sequential statement of 
the source program. 

GO TO or GOTO 

Causes transfer of control to the statement identified by host-label. 

host-label 

You can specify a single token, optionally preceded by a colon. The form of the 
token depends on the host language.  For example, in COBOL it can be a 
section-name or an unqualified paragraph-name. 

 

Processing 

The types of WHENEVER statements are: 

 

ANSI Extended Mode 

WHENEVER NOT FOUND 
WHENEVER SQLERROR 

WHENEVER NOT FOUND WHENEVER SQLERROR 
WHENEVER SQLWARNING 

Every executable SQL statement in a program is within the scope of one implicit or 
explicit WHENEVER statement of each type.  The scope of a WHENEVER statement is 
related to the listing sequence of the statements in the program, not their execution 
sequence. 

 

The scope of an exception declaration: 

1. Begins with the placement of the exception declaration in the source, and 

2. Continues until either another exception declaration in the source or the end of the 
source. 

An SQL statement is within the scope of the last WHENEVER statement of each type 
specified before that SQL statement in the source program. SQL statements occurring in 
the source before an exception declaration are not affected by it. Any SQL statements 
executed that are not under control of an exception declaration default to CONTINUE. If 
an exception declaration is not provided, the recommended practice is that your 
program include code to check the SQLCODE value in the SQL Communication Area 
(SQLCA) immediately after each executable SQL statement. 

 



WHILE Statement 

 

796  SQL User Guide 
 

Example 

The following identifies the exception conditions and the next statement to be executed 
in the order listed: 

1. If an error is produced, go to HANDLERR. 

2. If a warning code is produced, continue with the normal flow of the program. 

3. If no results are found, go to ENDDATA. 
 

WHILE Statement 

For details about this statement, see WHILE Statement (see page 675). 

Note:  This statement is executed from within the Compound Statement (see 
Compound Statement (see page 642)). 
 



 

Appendix A: SQL Query Optimization Messages  797  
 

Appendix A: SQL Query Optimization 
Messages 
 

You can tune the performance of SQL queries by using the SQL Query Optimization 
Messages to determine: 

■ What processing steps the data access plan contains, 

■ Why those processing steps were selected, and 

■ The estimated and actual costs of those processing steps. 
 

There are two main types of Optimization messages: 

■ Bind Time (see Bind-time Messages (see page 798)): 

Summary: 

Join order and method, sort required, total estimated cost. 

Detail: 

Detail estimates for each join order/method combination. 
 

■ Execution Time (see Execution-Time Messages (see page 812)): 

Summary: 

Rows read from index and data, rows qualified, rows sorted, and so on, during 
the time the plan was open. 

Detail: 

Same data as summary, but for each execution of a statement. 
 

Message Table (SYSADM.SYSMSG) 

Optimization messages are written to table SYSADM.SYSMSG.  They are deleted when 
the plan is rebound or deleted. 

This table was created as: 

 CREATE TABLE SYSADM.SYSMSG 

 (AUTHID    CHAR(18) NOT NULL, 

   PLANNAME CHAR(18) NOT NULL, 

   STMTID   INTEGER  NOT NULL, 

   SEQNBR   SMALLINT NOT NULL, 

   MSG      CHAR(80) NOT NULL, 

 PRIMARY KEY (AUTHID, PLANNAME, STMTID, SEQNBR)) 

 IN SYSMSG_AREA; 
 



Requesting Messages 

 

798  SQL User Guide 
 

Requesting Messages 

You specify that SQL Query Optimization Messages be generated by either using the 
MSG= plan option (see CA Datacom/DB SQL Preprocessors) or by using the COMM 
function of CA Datacom/DB Utility (DBUTLTY) as follows. 

For summary level: 

 COMM OPTION=ALTER,TRACE=TRACEMSG,JOBNAME=xxxxxxxx 

 For detail level, also turn on: 

 COMM OPTION=ALTER,TRACE=TRACEDETAIL,JOBNAME=xxxxxxxx 

When triggered by CA Datacom/DB Utility (DBUTLTY) traces, the messages are written 
both to SYSADM.SYSMSG and to the PXX.  For more information on using the CA 
Datacom/DB Utility (DBUTLTY), see the CA Datacom/DB DBUTLTY Reference Guide. 

 

Note:  CA Dataquery deletes the messages from the previous query when the next 
query is executed if the plan option to generate messages is not turned off. Therefore, 
to save the messages turn off the message option and run: 

SELECT * FROM SYSADM.SYSMSG 

You can optionally use the WHERE clause to read only rows for the desired plan.  After 
the SELECT statement has been run, use the DQRY STORE command to store the result 
in a different table. Alternately, before preparing another query (and without signing off 
DQRY) use any other method, such as DDOL, to query the SYSADM.SYSMSG table. 

 

Bind-time Messages 

Cost estimates used in bind time messages are based on the number of index and data 
blocks that must be accessed. 

 

Bind-time Summary Messages 

Summary-level messages contain: 

■ Reference Information (source statement and indexes) 

■ Sort optimization 

■ Data Access Plan (join order and method, sorts required, total estimated cost) 

Detail-level messages contain cost estimates for each possible combination of join order 
and method.  If you think another join order or method should have a lower cost, you 
can see the estimates used by the optimizer. 

 



Bind-time Messages 

 

Appendix A: SQL Query Optimization Messages  799  
 

Reference Information 

This section identifies the statement and subselect or subquery being optimized and 
contains a copy of the SQL source statement and index definitions for referenced tables. 

Headings and Source Statement 

Bind-time messages begin by identifying the statement being bound and listing the SQL 
statement: 

 *** Plan:authId.planName, Stmt:nnnnnnnn DT:yyyy.-mm-dd hh:mm:ss 

 xxxxxxxxxxxxxxxxxxxxxxxxxxx source statement xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

One of the following messages identifies the subselect or subquery: 

***** BIND MESSAGES FOR SUBSELECT nn ***** 

 

***** BIND MESSAGES FOR SUBQUERY LEVEL nn NUMBER nn  OF SUBSELECT nn ***** 
 

SUBSELECT 

Subselects are numbered in the order they appear in the SQL statement.  Unless 
you have a UNION, there is only one subselect. 

LEVEL 

Level 1 is a subquery of a subselect, level 2 a subquery of a level 1 subquery, and so 
on. 

NUMBER 

Multiple subqueries in the same search condition are numbered in the order in 
which they appear in the SQL statement. 

 

Index Definitions 

Index definitions are listed as reference information for each base table referenced in 
the query. 

Table Level 

  INDEX DEFINITIONS FOR: ttt/ddd authId.tableName correlationName 

  KEYS=nn, IDXLVLS=n, LN=nnnnn, ROWS/BLK=nnn ROWS=nnnnnnnnn 

  *** WARNING: INDEX CARDINALITY STATISTICS NOT COMPUTED *** 

ttt/ddd 

DATACOM 3-character name and database ID. 

KEYS 

Number of keys defined for the table. 
 



Bind-time Messages 

 

800  SQL User Guide 
 

IDXLVLS 

Number of levels in the index. 

LN 

Number of bytes in a row. 

ROWS/BLK 

Number of rows that can fit in a data block (actual value may be higher for 
compressed areas). 

 

ROWS 

Number of rows in the table (as reported in the Directory (CXX)). 

CARDINALITY NOT COMPUTED 

Join optimization is very dependent on index cardinality.  To compute index 
cardinality, use the CA Datacom/DB Utility (DBUTLTY) to either execute the RETIX or 
LOAD function, or use: 

 REPORT AREA=IXX,DBID=nnn,TYPE=G,UPDATE=YES 
 

Key Level 

 KEY xxxxx id=nnn FLG=hh hh FLDS=nn DXX=nnnn BLKCHG=nnnn ROWS=nnnnnn 

KEY 

CA Datacom/DB five-character key name. 

ID 

CA Datacom/DB key ID. 
 

FLG 

Key attributes (as hex dump of bit flags): 

Note:  Any value found (on a report) that is unobtainable using the values below is 
for internal use only. 

x'80' 

NATIVE SEQUENCE KEY 

x'40' 

NIL-INCL-KEY 

x'10' 

MASTER KEY 
 



Bind-time Messages 

 

Appendix A: SQL Query Optimization Messages  801  
 

x'08' 

DUPLICATE KEY ID IN THIS FILE 

x'04' 

DIFFERENT TOTAL KEY LENGTHS 

x'01' 

UNIQUE KEY 
 

x'20' 

KEY HAS DATA TYPE SENSITIVE FIELDS 

x'10' 

KEY HAS DECIMAL FIELDS 

x'08' 

KEY IS RELATIVE RECORD NUMBER 

x'01' 

CBS WILL IGNORE THIS KEY 
 

FLDS 

Number of columns in key 

DXX 

Average number of index entries per DXX block 

BLKCHG 

Average number of data area blocks that must be accessed to read 1024 rows in 
sequence by this key. 

 

ROWS 

Number of index entries at the time when cardinality was last computed.  This can 
be lower than ROWS at the table level if NIL-INCL-KEY is specified. 

Column Level 

 OFFSET=nnnnn, LN=nnn, DIR=xxxx SENS=x CARDINALITY=nnnnnnnnn xxxxx... 

OFFSET 

Offset of column in the row, relative to zero 

LN 

Number of bytes in the column 
 



Bind-time Messages 

 

802  SQL User Guide 
 

DIR 

Either ASC for ascending or DESC for descending direction 

SENS 

Either Y for data type sensitive, or N 

CARDINALITY 

Number of unique values for this and preceding columns 

xxxxx... 

SQL column name 
 

Sort Optimization 

Each subselect or subquery can require at most two sorts for: 

■ SORT1:  GROUP BY 

■ SORT2:  ORDER BY, UNION, or DISTINCT 
 

The estimated cost of these sorts is indicated by the following messages: 

 ESTIMATED GROUP SORT COST= nnnnnnnnn 

 ESTIMATED ORDER/DISTINCT/UNION SORT COST= nnnnnnnnn 

If ORDER BY and GROUP BY reference the same columns, SORT1 eliminates the need for 
SORT2, which is indicated by the following message: 

 ORDER/DISTINCT/UNION SORT SATISFIED BY GROUP BY SORT 

UNION and DISTINCT always require SORT2, but if the scan index returns rows in sort 
sequence, then sorts for GROUP BY and ORDER BY can be eliminated. 

 

The following messages indicate which indexes, if any, satisfy these sorts. 

 KEY xxxxx SATISFIES GROUP BY 

 KEY xxxxx SATISFIES ORDER/DISTINCT/UNION 

However, if these indexes are to be used to eliminate sorts, they must: 

■ Index the first table in join sequence, and 

■ Be the same index as index merge, if index merge used. 
 

Data Access Plan 

The data access plan contains: 

■ Estimated cost 

■ Order and method in which tables are joined 
 



Bind-time Messages 

 

Appendix A: SQL Query Optimization Messages  803  
 

■ Scan indexes with which estimates were calculated (except for index-merge join 
indexes, and indexes used to eliminate sorting, different indexes may be used at 
execution-time due to the value of host variables or index statistics). 

■ Sorts required 
 

Total Estimated Cost 

Total estimated cost is given by the first message if there is a join, else by the second 
message. 

 TOTAL JOIN COST ESTIMATE = nnnnnnnnn 

 

 KEY xxxxx HAS LOWEST COST OF nnnnnnnnn FOR nnnnnnnnn ROWS 
 

Join Steps 

Messages in this section are only generated when a join exists. 

The terms outer and inner table refererence the first and second tables of a join, 
respectively.  When three or more tables are joined, the first two tables are joined, and 
the result of that join becomes the outer table of the next join, and so on. 

Predicates dependent only on a single table are called restriction predicates.  These 
predicates are always applied before join conditions.  The terms inner and outer table 
refererence to conceptual intermediate tables containing only those rows of their base 
table for which restriction predicates are true. 

 

JOIN STEPS: 

Each join step is described in the order of execution. Different messages are issued 
depending on the join method used. 

Nested-Loop Join Method 

The nested-loop join method searches the inner table for matching rows for each outer 
table row.  A matching row is a row for which the join conditions are true. 

Nested-loop is used when: 

■ Merging is not possible. 

■ Has the lowest estimated cost. 

■ Manual optimization is specified with plan option MSG. 
 



Bind-time Messages 

 

804  SQL User Guide 
 

An example of when nested-loop has the lowest estimate cost: 

■ Outer table has a non-join index restriction (merge would need to read the entire 
unrestricted join index), or a non-join index can eliminate a sort due to GROUP BY 
or ORDER BY. 

■ Inner table has an index restricted by the join condition (the entire table does not 
need to be searched). 

 NESTED-LOOP JOIN TBL n USING KEY xxxxx 

 TO TBL n USING KEY xxxxx 
 

TBL 

Indicates table by its position in the FROM clause. 

KEY 

CA Datacom/DB five-character key name that has the lowest estimated cost. This 
may not be the key used at execution time. 

TO 

Only the first join generates both lines.  The outer table of subsequent joins is the 
intermediate result table of previous joins.  This intermediate result table is not 
materialized, that is to say, it is not physically generated as a temporary table in the 
TTM area. 

 

Index Merge Join Method 

Index merge can only be used when: 

■ A first join. 

■ There is at least one equijoin condition. 

■ There are no non-equijoin join conditions. 

■ Operands of equijoin predicates are column references (no expressions or scalar 
functions) but data type conversion is acceptable. 

 

■ Both tables have a matching index with all join columns in the same order. 

■ No OR has more than one table under it. 

■ There are no expressions in the search condition referencing more than one table. 
 

An example of when index merge has the lowest cost: 

■ Search condition contains only equijoin predicates (no restrictions). 

■ Restriction predicates do not reference indexed columns. 
 



Bind-time Messages 

 

Appendix A: SQL Query Optimization Messages  805  
 

Under these conditions index merge has the following advantages over nested-loop: 

■ Only one set is required for the inner table.  Nested-loop requires a set for each 
outer table row. 

■ Since there is only one inner table set, it is usually larger and benefits more from 
pre-fetch. 

 INDEX-MERGE JOIN TBL n USING KEY xxxxx TO TBL n USING KEY xxxxx 

TBL 

Table is identified by its position in the FROM clause. 

KEY 

CA Datacom/DB five-character key name of index used for the merge. 
 

Sort-Merge Join Method 

The sort-merge join method has the same restrictions as index-merge except that no 
matching indexes are required. Instead, the tables are sorted in the sequence the 
matching indexes would have provided before merging begins. 

These sorts build temporary tables in the TTM area. 
 

An example of when sort-merge is faster than nested-loop: 

■ There is no index on the inner table restricted by the join predicates.  Nested-loop 
must read the entire inner table for each outer table row, which is the entire base 
table unless there are restrictions that restrict an index scan range. 

■ Non-indexed restrictions exist on the inner table. Nested-loop would need to read 
rows rejected by the restriction for each outer table row, but sort-merge only 
rejects these rows once on input to the sort. 

 SORT TBL n FOR SORT-MERGE JOIN 

 SORT TBL n FOR SORT-MERGE JOIN 

 SORT-MERGE JOIN TBL n TO TBL m 
 

TBL 

Table is identified by its position in the FROM clause. 

Sorts Required 

The following messages indicate if a sort is eliminated by using an index: 

  KEY xxxxx USED FOR GROUPING 

  KEY xxxxx USED FOR ORDERING 

If a sort is required, its reasons are given in the following messages: 

 GROUP BY ........ SRT REASONS= xxxxxxx 

 ORDER BY/DISTINCT SRT REASONS= xxxxxxx 
 



Bind-time Messages 

 

806  SQL User Guide 
 

CBS ORDER 

The Compound Boolean Selection Facility cannot return rows in sort sequence 
because no index satisfies sort sequence. 

EXPR/FUNC 

ORDER BY refers to a SELECT list column that is an expression or function. 

MULTI-TBL 

ORDER BY or GROUP BY refers to columns in multiple tables. 
 

JOIN 

Index-merge join method is used.  Its index does not satisfy ordering requirements. 

DISTINCT 

DISTINCT specified. 

UNION 

UNION (without ALL) specified. 
 

Predicates Evaluated in SQL-Subsystem 

The following message indicates how many predicates are evaluated by the SQL 
subsystem: 

***** nn PREDICATES EVALUATED BY SQL SUBSYSTEM IN JOIN STEP nn ***** 

These predicates cannot restrict index scan range, or be evaluated from the index; so, 
they cause data scanning. 

If the data is remote, rows may be transferred to the requesting node only to be 
rejected by these predicates. 

 

The following predicates are evaluated by the SQL subsystem: 

■ When a column is compared to a literal, host or register variable that has a greater 
length, scale, or whole number digits. 

■ LIKE, other than pattern xxx%. 

■ IN list. 

■ Comparing two columns in the same table with different data types, precision, 
scale, (although different data type modifiers type-numeric, sign, and nullable are 
permitted). 

 

■ Correlated or quantified subquery. 

■ Predicates with operands that are expressions or scalar functions (except 
concatenation of contiguous not nullable character columns, and arithmetic with 
only literals). 

■ Predicates under an OR containing reference to more than one table. 
 



Bind-time Messages 

 

Appendix A: SQL Query Optimization Messages  807  
 

■ Index or sort merge equijoin predicates. 

■ Predicates whose operands make no reference to a column. 

■ All predicates in the HAVING search condition. 
 

You can dump the actual predicates by using the CA Datacom/DB Utility (DBUTLTY) 
request: 

 COMM OPTION=ALTER,TRACE=TRACECRS,JOBNAME=xxxxxxxx 

If you cannot convert a predicate into a type that restricts index scan range or be 
evaluated from the index, you only improve efficiency slightly or make it worse by 
converting it to a predicate that the Compound Boolean Selection Facility (CBS) 
evaluates. 

 

For example, converting the predicate: 

  "COL1 IN(&HOST1., &HOST2.)" 

to 

 "COL1 = :HOST1 OR COL1 = :HOST2" 

would not help much unless COL1 is in the scan index. Performance could be worse if 
there are many other predicates ANDed with this predicate that are evaluated by 
Compound Boolean Selection.  This is because these other predicates are repeated for 
each IN list entry to be in the CBS-required disjunctive normal form. 

 

Bind-time Detail Messages 

The detail-level bind-time messages show the cost estimates for each combination of 
join order and method. 

Join optimization messages are produced in the following way. Each level of indentation 
indicates a loop at that level: 

■ Restriction Costs:  Cost of each table as if it is the only table.  This estimate is used 
when the table is the first table of a candidate join sequence. 

■ Join Order:  All possible orders are estimated, until the cost is greater than an order 
already computed. 

– Join Method:  For each join step, the cost of each join method is estimated. 

– Scan Index:  For nested-loop, the cost of using each inner table index is 
estimated.  For index-merge, only matching indexes are considered.  For 
sort-merge, the restriction index is used. 

 



Bind-time Messages 

 

808  SQL User Guide 
 

The join order with the lowest estimated cost is repeated at the end after the following 
heading: 

 ---------------------- LOWEST COST CANDIDATE --------------------- 

Note: Because of the number of rows generated, do not use this option when joining 
more than 6 tables. 

Restriction Costs 

 TBL xxx DBID nnn RESTRICTION COSTS: 

RESTRICTION COSTS 

This is the estimated cost without join conditions, that is to say, as if this table were 
the outer table of the first join. Restriction cost estimates are computed once 
before all possible join orders are estimated. 

Join Step Detail 

  CANDIDATE JOIN SEQUENCE = n,n,n.... 

 JOIN STEP n 
 

CANDIDATE JOIN SEQUENCE 

The cost of all possible join orders is estimated, until the estimated cost exceeds a 
previously computed estimate.  The numbers refererence table positions in the 
FROM clause. 

JOIN STEP 

The first two tables are joined in join step 1.  The output of this step is joined to 
table three, and so on.  The cost of each join step is estimated separately. 

 

Nested-Loop 

   NESTED LOOP JOIN COSTS: 

 

       KEY xxxxx 1ST nn FLDS SELECTIVITY= .nnnnnnnnn 

           nn LOW-ORDER FLDS SELECTIVITY= .nnnnnnnnn 

                        DATA SELECTIVITY= .nnnnnnnnn 

               INDEX nnnnnnnnn DATA nnnnnnnnn SORT nnnnnnnnn ROWS nnnnnnnnn 

       *** KEY xxxxx HAS LOWEST ESTIMATED COST OF nnnnnnnnn 

   *** RESTRICTION COST    =nnnnnnnnn 

     *** NESTED LOOP COST    =nnnnnnnnn 
 



Bind-time Messages 

 

Appendix A: SQL Query Optimization Messages  809  
 

SELECTIVITY 

Used to estimate the number of rows that are filtered out.  For example, a 
selectivity factor of 1.0 indicates no rows rejected, 0.5, half the rows rejected, and 
0.0 all rows rejected. 

1ST FLDS SELECTIVITY 

The first nn columns of the key are either restricted to a single value, or the last 
column may be restricted to a range of values. 

This type of restriction is called a high-order restriction. The high-order restriction 
reduces the number of index entries that must be scanned. 

Selectivity is based on cardinality statistics.  For example, if the first three columns 
have a high-order restriction and the cardinality at that level is 1000, that is to say, 
there are 1000 different values within the first three columns of the key, then 
selectivity is 0.001.  This means that when nested-loop is used, each outer table row 
is estimated to join to only 1 out of every 1000 rows in the inner table. 

 

LOW-ORDER FLDS SELECTIVITY 

This is the filtering effect of predicates that can be evaluated from the index, but do 
not restrict the range of index entries that must be scanned. 

The selectivity of each predicate is estimated as one-tenth if the predicate is = else 
one-third.  The total low-order selectivity is the product of the selectivity of each 
predicate.  For example, the low-order selectivity of two = predicates is 1/10 * 1/10 
= 1/100. 

The process of evaluating low-order predicates is called index scanning. 
 

DATA SELECTIVITY 

This is the filtering effect of predicates that must be evaluated from the data 
record.  It is computed the same as low-order selectivity.  This process is called data 
scanning.  Since accessing data records is usually more expensive than index 
entries, data scanning is usually more expensive than index scanning of the same 
selectivity. 

INDEX 

This is the cost of reading the index.  It is estimated as the number of index entries 
to be read divided by the average number of index entries per DXX block, plus the 
number of levels in the index. 

cost = indexEntries / avg per blk + indexLevels 

The number of index entries is computed as the number of entries indexed by 
high-order cardinality.  For example, if high-order cardinality is 1,000 and there 
were 10000 rows indexed at the time the cardinality was computed, the number of 
index entries is 10000 /1000 = 10. 

If OPTIMIZE FOR n ROWS is specified and it is less than the computed value, the 
number of index entries is reduced to this value. 

 



Bind-time Messages 

 

810  SQL User Guide 
 

DATA 

This is the cost of reading the data area.  It is computed by dividing the number of 
rows to be read by the effective blocking factor of the index. 

cost = row / effBlk 

The number of data area rows is the number of index entries read times the 
selectivity of low-order predicates. 

The effective blocking factor accounts for the randomness in which the data area is 
accessed by the index. 

effBlk = dataRows * BLKCHG / 1024 

where BLKCHG is the average number of times a new data block is encountered per 
1024 rows, when accessed in the sequence of this index. 

If at least 10 data blocks are to be read and the index is 90 percent in physical 
sequence, the cost is divided by two, to account for the savings of pre-fetch 
multi-block reads. 

 

SORT 

This is the estimated cost of sorting for GROUP BY, ORDER BY, DISTINCT, or UNION.  
It applies only to the first join.  If the first, or outer, table has an index that 
eliminates the need for a sort, its cost is not included. 

ROWS 

This is the estimated number of rows in the result table.  It is computed as the 
number of data area rows times data selectivity. 

LOWEST ESTIMATED COST 

This is the estimated cost for the index with the lowest estimated cost. 

Estimated cost is computed as the sum of the index, data and sort costs, multiplied 
by the number of rows from the previous join, or for the first join, the outer table 
restriction estimated rows. 

 



Bind-time Messages 

 

Appendix A: SQL Query Optimization Messages  811  
 

Merge 

 KEY xxxxx MERGE CANDIDATE FOR TBL authId.tblName correlationName 

 KEY xxxxx SELECTED FROM MULTIPLE CANDIDATES 

MERGE CANDIDATE 

All equijoin columns are leading columns of the index. 

SELECTED CANDIDATE 

When there are several index merge candidate indexes, this message indicates the 
index selected.  An index may be selected over another candidate for a lower total 
cost due to its eliminating sorts or a lower index and data scan cost. 

 SORT MERGE JOIN COSTS: 

 NO JOIN CONDITION - MERGE NOT POSSIBLE 

 GROUP/ORDER/DISTINCT/UNION SORT COST=nnnnnnnnn 

 OUTER TABLE COSTS (SCAN,SORT,READ)=nnnnnnnnn, nnnnnnnnn, nnnnnnnnn 

 INNER TABLE COSTS (SCAN,SORT,READ)=nnnnnnnnn, nnnnnnnnn, nnnnnnnnn 
 

NO JOIN CONDITION 

No join condition was specified.  Nested-loop method is selected. 

GROUP/ORDER/DISTINCT/UNION SORT COST 

Cost of sorting due to GROUP BY, and/or ORDER BY, UNION or DISTINCT. 
 

OUTER TABLE COSTS: 

SCAN 

Restriction cost (cost of reading base table) 

SORT 

Cost of sorting (zero if index-merge) 

READ 

Cost of reading sorted temporary table (zero if index-merge) 
 

INNER TABLE COSTS 

Same as outer table. 

 TOTAL SORT-MERGE COST =nnnnnnnnn 

 INDEXED MERGE COST USING INDEXES xxxxx AND xxxxx: nnnnnnnnn 

Only the message for the method with the lowest estimated cost is given. 

Join Step Summary 

  MANUAL JOIN OPTIMIZATION SPECIFIED - NESTED LOOP USED 

  DISJUNCTIVE JOIN CONDITION - NESTED LOOP USED 
 



Execution-Time Messages 

 

812  SQL User Guide 
 

MANUAL JOIN OPTIMIZATION 

Plan option OPT=M is specified, so tables are joined in the order listed in the FROM 
clause and nested-loop method is used. 

DISJUNCTIVE JOIN CONDITION 

Join predicates are under an OR, so merge methods cannot be considered. 

 *** JOIN STEP LOWEST COST = nnnnnnnn 

JOIN STEP LOWEST COST 

The lowest estimate of all join methods and indexes. 
 

Execution-Time Messages 

Scope 

Execution-time messages report query execution statistics for the following statement 
types: 

■ OPEN and FETCH CURSOR 

■ INSERT (single row and searched) 

■ UPDATE (positioned and searched) 

■ DELETE (positioned and searched) 
 

Purpose 

You can use these execution statistics to determine: 

■ Which statements are using the most resources. 

■ Determine which query execution processes within a statement that is using the 
most resources. 

■ Compare bind-time resource estimations with actual performance. 

■ Compare resource usage between trial versions of a query. 
 



Execution-Time Messages 

 

Appendix A: SQL Query Optimization Messages  813  
 

Operation 

Execution-time messages are written to the SYSADM.SYSMSG table with sequence 
numbers higher than bind-time messages for a plan.  A maximum of 32767 messages 
can be written for each statement of a plan. 

Execution-time messages may be requested at either the summary or detail level: 

■ Summary-level messages are written when a plan is closed. 

■ Detail-level messages are written after the statement is executed or, for a cursor, 
when it is closed. For example, if you set plan option PLNCLOSE=T for a plan in a 
CICS transaction, these messages will be written for each CICS transaction or explicit 
COMMIT or ROLLBACK.  To get a summary of all activity against the plan, use 
PLNCLOSE=R.  This will cause the plan to only be closed when the SQL User 
Requirements Table is closed. 

WARNING!  Because of the number of rows inserted into the SYSADM.SYSMSG table by 
detail level or summary level CICS with PLNCLOSE=T, you may experience poor 
performance with these options. 

 

Execution-Time Summary Messages 

This section describes the summary execution messages written to the SYSADM.SYSMSG 
table when a plan is closed. 

There is a header message for changes in plan, and with plan for each statement, 
followed by detail messages for each table. 

Messages are grouped by plan and statement, but they are ordered in the reverse 
sequence in which they were first executed. 

Plan Header 

  *** EXECUTION STATS FOR PLAN authId.planName 

Statement Header 

  STMT NBR: nnnnnnnnn TYPE: xxxxxxxxxxxx EXECUTIONS: nnnnnnnnn ROWS: nnnnnnnnn 
 



Execution-Time Messages 

 

814  SQL User Guide 
 

TYPE 

Type of statement as indicated by the following table: 

Type Code Process 

FETCH CRS 

Open/Fetch Cursor 

SELECT INTO 

Select Into 

INSERT ROW 

Insert Row 
 

INSERT SET 

Insert Searched 

UPDATE CRS 

Update Positioned 

UPDATE SET 

Update Searched 
 

DELETE CRS 

Delete Positioned 

DELETE SET 

Delete Searched 
 

EXECUTIONS 

Number of times the statement was executed 

ROWS 

Number of rows fetched, inserted, updated, or deleted. 
 



Execution-Time Messages 

 

Appendix A: SQL Query Optimization Messages  815  
 

Table Level 

These messages are in order by query block level and position, and table process 
sequence. 

 LVL NBR ------ TABLE NAME ------ --SETS-- --INDEX- --DATA-- --QUAL-- ---I/O-- 

 nnn nnn xxxxxxxxxxxxxxxxxxxxxxxx nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn 

LVL and NBR 

These fields indicate the query block in which the table is used. LVL is zero for 
subselects, and for subqueries indicates the level of nesting. When there are 
multiple select blocks at the same level, NBR indicates the order in which the select 
block appears in the SQL statement. 

TABLE NAME 

The base table name or kind of temporary table. If you have referenced the same 
table multiple times, or tables with the same name but different authId, in the 
same FROM clause, these messages are in the order the tables appear in the FROM 
clause. If you referenced a view with a join, the view reference has been expanded 
into a reference for each table in the view's FROM clause. 

 

SETS 

If the statement is executed multiple times, or the table is an inner table in a 
nested-loop join, or in a correlated subquery, this is the number of times a base 
table has been searched or a temporary table built. Divide SETS by statement 
EXECUTIONS to compute SETS per execution. 

INDEX 

The total number of index entries read. 

DATA 

The total number of data records read. The difference between INDEX and DATA is 
the number of rows rejected by low-order predicates, and the additional index 
intersection probes made if index intersection is used. 

 

QUAL 

The total number of qualified by Compound Boolean Selection (CBS) rows. Any rows 
rejected by predicates evaluated by the SQL subsystem, are not included. The 
difference between QUAL and DATA is the number of rows rejected by data 
scanning, that is to say, predicates evaluated by the Compound Boolean Selection 
Facility that reference a column that is not in the scan index. Also, if index merging 
is used, the difference includes the elimination of duplicates, where the same row 
was found in multiple indexes. 

 



Execution-Time Messages 

 

816  SQL User Guide 
 

ACCEPTED 

The number of rows that passed all the filtering criteria. Rows rejected by 
predicates evaluated by the SQL subsystem is computed by QUAL - ACCEPTED. 

I/O 

The total physical read and write I/O commands charged to requests accessing the 
table. A read-only task may be charged write I/Os if the buffer it needs is in a write 
pend status. 

The ratio (INDEX + DATA) divided by I/O will tend to be the lowest for sequential 
access in data area physical sequence. Random access requires more I/O because 
each level of the index may need to be read for each row. 

 

Execution-Time Detail Messages 

Base Tables 

  ACTIVITY FOR TBL <authId.tblName correlation name> 

 

 SETS=nnnnnnnnn INDEX=nnnnnnnnn DATA=nnnnnnnnn QUAL=nnnnnnnnn I/O=nnnnnnnnn 

See the table level summary message for the definition of these fields. 

 CBS OPTIMIZER REASONS: xxxxxxxxxxxxxxxxxxxxxx 

Compound Boolean Selection (CBS) Optimizer Reasons indicate the type of processes 
used and why they were necessary. 

For example, there is a query that you do not think should require index or data 
scanning, but INDEX and DATA is approximately twice QUAL.  This can be explained if 
index merging is used because it builds a temporary index, where each data row may be 
accessed one or more times to build the temporary index, and then using the temporary 
index, read once more to return rows after duplicates have been eliminated.  You can 
determine if index merging was indeed used from CBS Optimizer Reason number 4. 

See the CBS Diagnostic Report description in the CA Datacom/DB DBUTLTY Reference 
Guide. for the definition of the optimizer reasons. 

 

Sort Temporary Tables 

 SORT COMPLETED: ROWS EST=nnnnnnnnn IN=nnnnnnnnn, OUT=nnnnnnnnn 

EST 

Number rows estimated, which may be zero if an estimate was not required. 

IN 

Number rows input to the sort. 
 



Execution-Time Messages 

 

Appendix A: SQL Query Optimization Messages  817  
 

OUT 

Number rows output by the sort.  If GROUP BY or DISTINCT is specified, this can be 
a lower number than rows input to the sort because the sort process performs 
grouping and eliminates duplicate rows. 

 HIGHEST SORT MERGE LEVEL = nn 

The sort first builds strings of sorted rows, then after several strings are built, the strings 
merged into a longer string.  After several of these longer strings are built, they are in 
turn merged into yet a still longer string.  This process is continued until there is a single 
result string.  Each merging of strings is called a merge level.  As you can see, the cost 
per row of a sort is dependent on the number of these merge levels. 

 

Quantified Subquery 

  ACTIVITY FOR TEMP TBL **SUBQUERY nn ** 

  ** SUBQUERY nnn ** TBLS=nnnnnnnnn ROWS=nnnnnnnnn READS=nnnnnnnnn 

SUBQUERY 

Number within SELECT block 

TBLS 

Number of times temporary table was built, that is to say, number of times 
subquery was executed.  This will of course be 1 or 0 unless subquery is correlated. 

 

ROWS 

Number of rows in table.  If TBLS is greater than 1, this is the sum of all the rows in 
all tables. 

READS 

Number of rows read from table.  This can be greater than the number of rows if 
subquery is not correlated. 

 



Examples 

 

818  SQL User Guide 
 

Examples 

MSG=DD 

In this example, the user is only concerned with customers with IND_CD = 'A', so IND_CD 
was omitted from the SELECT and GROUP BY list. Since CUST_NO only appears as the 
second column of index ACSTI, this causes a sort for the GROUP BY.  Adding IND_CD 
eliminates this inefficiency. 

Before Adding IND_CD to SELECT and GROUP BY List 

 PLAN:SYSADM         .ISDBXXXX80270477   STM:000000001. DT: 07/28/2014 11.51.49 

 DECLARE C0         CURSOR FOR 

 SELECT CUST_NO, SUM(ORD_AMT) 

 FROM ACCTS 

 WHERE IND_CD  = 'A' 

 GROUP BY CUST_NO 

            ***** BIND MESSAGES FOR SUBSELECT 01 ***** 

 INDEX DEFINITIONS FOR: ACT/010 SYSADM.ACCTS 

 KEYS= 2, IDXLVLS=1, LN=   31, ROWS/BLK= 95 ROWS=        3 

     KEY ACTOR id=  4 FLG=D0 00 FLDS= 1 DXX= 300 BLKCHG= 204 ROWS=3 

         OFFSET=    0, LN=  5, DIR=ASC  SENS=N CARD=        3 ORD_ID 

     KEY ACSTI id=  1 FLG=04 00 FLDS= 2 DXX= 300 BLKCHG= 204 ROWS=3 

         OFFSET=   26, LN=  1, DIR=ASC  SENS=N CARD=        2 IND_CD 

         OFFSET=   27, LN=  4, DIR=ASC  SENS=N CARD=        3 CUST_NO 

 TBL ACT DBID 010 RESTRICTION COSTS: 

         KEY ACTOR 1ST  0 FLDS SELECTIVITY= 1.000000000 

              0 LOW-ORDER FLDS SELECTIVITY= 1.000000000 

                          DATA SELECTIVITY= 0.099999964 

             INDEX         1 DATA         1 SORT         3 ROWS         1 

         KEY ACSTI 1ST  1 FLDS SELECTIVITY= 0.500000000 

              0 LOW-ORDER FLDS SELECTIVITY= 1.000000000 

                          DATA SELECTIVITY= 1.000000000 

             INDEX         1 DATA         1 SORT         3 ROWS         2 

         *** KEY ACTOR HAS LOWEST ESTIMATED COST OF         5 

     *** RESTRICTION COST     =        5 

 ESTIMATED GROUP SORT COST= 3 

 KEY ACTOR HAS LOWEST COST OF         5 FOR 1 ROWS 

 GROUP BY SRT REASONS= CBS ORDER 

 BUILDING SORTED RESULT TABLE FOR SUBSELECT 1 

 ACTIVITY FOR TBL <SYSADM.ACCTS 

    SETS=000000001 INDEX=000000004 DATA=000000004 QUAL=000000004 I/O=000000000 

    CBS OPTIMIZER REASONS: <     P P   Y          > 

 SORT COMPLETED: ROWS EST=1 IN=1, OUT=1 

 HIGHEST SORT MERGE LEVEL = 0 

 



Examples 

 

Appendix A: SQL Query Optimization Messages  819  
 

After Adding IND_CD to SELECT and GROUP BY List 

 PLAN:SYSADM         .ISDBXXXX80270477   STM:000000002 DT: 07/28/2014 11.51.50 

 DECLARE C0         CURSOR FOR 

 SELECT IND_CD, CUST_NO, SUM(ORD_AMT) 

 FROM ACCTS 

 WHERE IND_CD  = 'A' 

 GROUP BY IND_CD, CUST_NO 

            ***** BIND MESSAGES FOR SUBSELECT 01 ***** 

 INDEX DEFINITIONS FOR: ACT/010 SYSADM.ACCTS 

 KEYS= 2, IDXLVLS=1, LN=   31, ROWS/BLK= 95 ROWS=        3 

     KEY ACTOR id=  4 FLG=D0 00 FLDS= 1 DXX= 300 BLKCHG= 204 ROWS=3 

         OFFSET=    0, LN=  5, DIR=ASC  SENS=N CARD=        3 ORD_ID 

     KEY ACSTI id=  1 FLG=04 00 FLDS= 2 DXX= 300 BLKCHG= 204 ROWS=3 

         OFFSET=   26, LN=  1, DIR=ASC  SENS=N CARD=        2 IND_CD 

         OFFSET=   27, LN=  4, DIR=ASC  SENS=N CARD=        3 CUST_NO 

 KEY ACSTI SATISFIES GROUP BY 

 TBL ACT DBID 010 RESTRICTION COSTS: 

         KEY ACTOR 1ST  0 FLDS SELECTIVITY= 1.000000000 

              0 LOW-ORDER FLDS SELECTIVITY= 1.000000000 

                          DATA SELECTIVITY= 0.099999964 

             INDEX         1 DATA         1 SORT         3 ROWS         1 

         KEY ACSTI 1ST  1 FLDS SELECTIVITY= 0.500000000 

              0 LOW-ORDER FLDS SELECTIVITY= 1.000000000 

                          DATA SELECTIVITY= 1.000000000 

             INDEX         1 DATA         1 SORT         0 ROWS         2 

         *** KEY ACSTI HAS LOWEST ESTIMATED COST OF         2 

     *** RESTRICTION COST     =        2 

 ESTIMATED GROUP SORT COST= 3 

 KEY ACSTI USED FOR GROUPING 

 ACTIVITY FOR TBL <SYSADM.ACCTS  > 

SETS    INDEX     DATA      QUAL    ACCEPTED     I/0   CBS  OPT  REASONS 

00001 000000004 000000004 000000004 000000004 0000000  < P  P    Y      > 

 





 

Appendix B: Accessibility Features  821  
 

Appendix B: Accessibility Features 
 

The Schema Information Tables (SIT) are located in the SIT area, base 15, and are 
associated with an authorization ID of SYSADM, for example 
SYSADM.SYSCONSTRDEP,SYSADM.SYSCONSTROBJ, and so on. They contain CA 
Datacom/DB system information that can be queried by authorized users. The SIT 
information should be properly secured. 

Note: For information about querying the SIT, see the CA Datacom/DB Database and 
System Administration Guide. For information about the SIT tables themselves, see the 
chapter about SQL tables (that also contains information about the SQL status tables) in 
the CA Datacom/DB System Tables Reference Guide. 
 





 

Appendix C: Sample Data Tables  823  
 

Appendix C: Sample Data Tables 
 

The sample tables in this section are used in the examples in the section discussing 
application tasks that use embedded SQL. 

 



CUSTOMERS Table:  Sample Data 

 

824  SQL User Guide 
 

CUSTOMERS Table:  Sample Data 

                              CUSTOMERS 

 CUSNO  NAME                            CITY           ST  ZIP        CRED OPEN $    YTD SALES   ACT DT  SLMN ID 

  

  0030  CANNON TOOLS CO                 ATLANTA        GA  303012334  A    23442.00  3322123.00  860220  34222 

  0090  INTERNATIONAL BANK CORP         NEW YORK       NY  100059989  A         .00   211650.00  850815  21165 

  0130  SUN DIAL CITRUS GROWERS         LOS ANGELES    CA  902130000  A    21489.00   293900.00  850815  29390 

  0150  IMPERIAL BANKCORP               NEW YORK       NY  100190000  A         .00   131500.00  850815  13150 

  0170  UNITED ATLANTIC SHARES          CHARLOTTE      NC  282552550  A         .00   314200.00  850815  31420 

  0190  SOUTHWEST STATE OIL REFINING    SHERMAN OAKS   CA  914231423  A         .00   179800.00  850815  17980 

  0210  WEST LIFE INSURANCE             BALTIMORE      MD  212031203  A         .00     6550.00  850815  00655 

  0230  CHEMICAL MUTUAL                 FORT WORTH     TX  761026102  A      931.72     7250.00  860220  00725 

  0250  MICHIGAN LIGHTING INC.          PHOENIX        AZ  850365036  A         .00   182600.00  850815  18260 

  0270  HARTFORD IRON WORKS INC         ALLENTOWN      PA  181018101  A         .00     7600.00  850815  00760 

  0290  NATIONAL HARRIS CORPORATION     ATLANTA        GA  303310331  A         .00     7950.00  850815  00795 

  0310  CARTERET STEEL CORPORATION      SAN MATEO      CA  940024002  A     3457.00    10750.00  850815  01075 

  0330  HARVESTLAND FOODS INC           HONOLULU       HI  968426842  A         .00   186100.00  850815  18610 

  0350  FLEET BANKING INDUSTRIES        PORTLAND       OR  972047204  A         .00    11450.00  850815  01145 

  0370  GREAT LAKES PRODUCTS            PLAINFIELD     IN  461686168  A         .00   186450.00  850815  18645 

  0390  HOLLY TEXTILES INTERNATIONAL    WORCESTER      MA  016041604  A         .00   187150.00  850815  18715 

  0410  COASTLINE INC                   BOSTON         MA  021992199  A      528.84   187850.00  850815  18785 

  0430  WESTER CORPORATION              ST. LOUIS PARK MN  554265426  A         .00   190300.00  850815  19030 

  0450  HORIZON LABORATORIES            MILWAUKEE      WI  532023202  A         .00    15650.00  850815  01565 

  0470  FIRST DOWNEY INC                NORFOLK        VA  235103510  A         .00    16000.00  850815  01600 

  0490  MORRISON HOME FEDERATION        PROSPECT HGTS  IL  600740074  A         .00   194850.00  850815  19485 

  0510  SIGNAL/WEST PETROLEUM           LOS ANGELES    CA  900540054  A         .00   204300.00  850815  20430 

  0530  GULF LAND USA                   DALLAS         TX  752345234  A         .00   207100.00  850815  20710 

  0550  H. F. MURPHY CORP               EL DORADO      AR  717301730  A         .00    34550.00  850815  03455 

  0570  TEXAS LIFE & CASUALTY CO        DALLAS         TX  752225222  A         .00    34900.00  850815  03490 

  0610  SUN FIBERGLASS                  MIAMI BEACH    FL  331413141  A         .00    40150.00  850815  04015 

  0630  BAY-BANK AUTOMOBILES            NASHVILLE      TN  372027202  A      530.50    41550.00  850815  04155 

  0650  CONTINENTAL GREETINGS INC       TWINSBURG      OH  440874087  A         .00    45750.00  850815  04575 

  0670  TRANSAMERICA RUBBER INDUSTRIES  CLEARWATER     FL  335183518  A         .00    46100.00  850815  04610 

  0690  MANUFACTURERS LABORATORIES      OAKBROOK       IL  605210521  A         .00    46450.00  850815  04645 

  0710  NORTHERN MEDICAL SERVICES       ROCHELLE PARK  NJ  076627662  A         .00    47150.00  850815  04715 

  0730  TRIBUNE MOTORS                  SALT LAKE CITY UT  841274127  A         .00    47500.00  850815  04750 

  0750  CAMERON INCORPORATED            WILMINGTON     DE  198019801  A         .00    49250.00  850815  04925 

  0770  PROVIDENCE CHEMICAL COMPANY     NEW YORK       NY  100150015  A         .00    49600.00  850815  04960 

  0790  REYNOLDS SHIPPING               WICHITA        KS  672187218  A         .00   229850.00  850815  22985 

  0810  SMITHFIELD TRANSPORTATION       NEW YORK       NY  100220022  A         .00   230200.00  850815  23020 

  0830  AVERY PRINTING                  SPRINGDALE     AR  727642764  A         .00   230900.00  850815  23090 

  0850  NUSON DRUGS & RESEARCH          OKLAHOMA CITY  OK  731253125  A         .00    56250.00  850815  05625 

  0870  UNIVERSAL AIRWORKS              ARMONK         NY  105040504  A         .00   231600.00  850815  23160 

  0890  BELL-BAKER POWER & SERVICE      BOISE          ID  837263726  A         .00    57300.00  850815  05730 

  0910  C.F. RIVERS AIRLINE & FREIGHT   PITTSBURG      PA  152305230  A         .00    58700.00  850815  05870 

  0930  FLEETWOOD FREIGHTWAYS INC       WILMINGTON     DE  198019801  A         .00   235450.00  850815  23545 

  0950  M.A.C. SAVINGS                  ATLANTA        GA  303020302  A         .00   236150.00  850815  23615 

  0970  PHELPS FINANCIAL CORP           VAN NUYS       CA  914051405  A     1441.08   239650.00  850815  23965 

  0990  SUNSTRAND BANKS                 MEMPHIS        TN  381038103  A         .00   241400.00  850815  24140 

  1010  INTERNATIONAL SHIPYARDS INC     CHARLOTTE      NC  282558255  A         .00   242450.00  850815  24245 

  1030  BROTHERS GYPSUM INC             MIAMI          FL  328012801  A         .00    69550.00  860220  06955 

  1050  MACMILLAN HOME PRODUCTS CO      COSTA MESA     CA  282888288  A         .00   248400.00  850815  24840 

  1070  JORIE PAPER INC                 PHOENIX        AZ  850125012  A         .00    76200.00  850815  07620 

  1090  CHESTERSON-KIDD INC             BALTIMORE      MD  212021202  A         .00   251550.00  850815  25155 

  1110  LEXINGTON CHEMICAL              ST PETERSBURG  FL  972047204  A         .00   254350.00  850815  25435 

  1130  ST. LOUIS FOODS DIST.           DENVER         CO  100190019  A         .00   258550.00  850815  25855 

  1150  AFTON INDUSTRIES                DALLAS         TX  752405240  A         .00   259250.00  850815  25925 

  1170  PARK-HESS & COMPANY             GLENDALE       CA  912031203  A         .00   263100.00  850815  26310 

  1190  KELLWOOD-HANDY TRUCKING         MOBILE         AL  366096609  A         .00   263800.00  850815  26380 

 

 



CUSTOMERS Table:  Sample Data 

 

Appendix C: Sample Data Tables  825  
 

 

  1210  LINGBERGH INDUSTRIES            SEATTLE        WA  981858185  A     2032.10    89150.00  860220  08915 

  1230  BORDEN-SPEERY INSTRUMENTS       NEW ORLEANS    LA  701600160  A         .00   264150.00  850815  26415 

  1250  PALMOLIVE INNS                  DALLAS         TX  752015201  A         .00    89500.00  850815  08950 

  1270  SOUTHLAND DEPARTMENT STORES     FORT WORTH     TX  761016101  A         .00    90900.00  850815  09090 

  1290  MCDONNEL SYSTEMS                WOODLANDS      TX  773807380  A         .00    91250.00  850815  09125 

  1310  RESOUCE COMPUTERS               OIL CITY       PA  163016301  A         .00   272550.00  850815  27255 

  1330  NETTLETON AIRCRAFT              BARTLESVILLE   OK  740044004  A         .00    97550.00  850815  09755 

  1350  HARMAN-MCGEE INDUSTRIES         WHITE PLAINS   NY  106500650  A         .00    99650.00  850815  09965 

  1370  MCCORMICK ELECTRIC SUPPLIES     HOUSTON        TX  772517251  A         .00   275000.00  850815  27500 

  1390  MIDLAND CHEMICAL                HAMILTON       OH  452025202  A         .00   275700.00  850815  27570 

  1410  WRIGHT-ILLINOIS DATA            FRESNO         CA  937213721  A         .00   276750.00  850815  27675 

  1430  PITWAN-WAY FOODS                WASHINGTON     DC  200760076  A         .00   277100.00  850815  27710 

  1450  UNION TRANSPORTATION            GALVESTON      TX  775507550  A     1807.30   277450.00  860220  27745 

  1470  MARK & MARK INTERNATIONAL       BETHPAGE       NY  117141714  A         .00   104200.00  850815  10420 

  1490  SALEM PAPERBOARD                YORKLYN        DE  197369736  A         .00   280600.00  850815  28060 

  1510  ABBOTT BRANDS CORP              HUNT VALLEY    CA  900360036  A         .00   105600.00  850815  10560 

  1530  JOHNSON MULTIFOODS              BETHESDA       VA  232613261  A         .00   105950.00  850815  10595 

  1550  DELUX COSMETICS                 HAWTHORNE      SC  295509550  A         .00   283400.00  850815  28340 

  1570  PAMMEL BREWING                  DALLAS         TX  752015201  A         .00   109800.00  850815  10980 

  1590  FOXBORRO PETRO-CHEMICAL         GERMANTOWN     MD  212011201  A         .00   286550.00  850815  28655 

  1610  ROLM-CASTLE SOY PRODUCTS        SANTA MONICA   CA  904060406  A         .00   112600.00  850815  11260 

  1630  MARBURY MATERIALS               BURBANK        CA  911031103  A      446.50   287600.00  860220  28760 

  1650  METROPLEX ASSOCIATED            RICHMOND       VA  232203220  A         .00   112950.00  850815  11295 

  1670  MALIRY ENTERTAINMENT INDUSTRY   BALTIMORE      MD  915201520  A         .00   114000.00  850815  11400 

  1690  WALTERS-BORUM INCOP             PASADENA       CA  911031103  A         .00   289350.00  850815  28935 

  1710  PARKER REPUBLIC CONSOLIDATED    TOWSON         MD  201240124  A         .00   117850.00  850815  11785 

  1730  HOOVER-EAGLE TIRE & RUBBER      GREENSBORO     NC  274207420  A         .00   293550.00  850815  29355 

  1750  MILES-COOPER GENERAL CORP.      CHULA VISTA    CA  232203220  A         .00   118900.00  850815  11890 

  1770  MULTMOMAH CORPORATION           WINSTON-SALEM  NC  271027102  A         .00   121000.00  850815  12100 

  1790  DORSEY STEEL INC                HARTSVILLE     SC  295509550  A         .00   121350.00  850815  12135 

  1810  EATON-AKRON PACIFIC CORP        VALLEY FORGE   PA  194829482  A         .00   297050.00  850815  29705 

  1830  SPRINGS-WEYER LABORATORIES      RIVERSIDE      CA  911031103  A         .00   297750.00  850815  29775 

  1850  TECH CASTLE RESEARCH            GREENSBORO     NC  274207420  A         .00   298800.00  850815  29880 

  1870  WULCAR-FORMAN REAL ESTATE INMT  FORT WORTH     TX  720912091  A         .00   299150.00  850815  29915 

  1890  FIRST STREET BANK CORP          COLUMBUS       OH  430853085  A     2717.00   124850.00  860220  12485 

  1910  GRAND RAPIDS FINANCIAL ASSOC    LOUISVILLE     KY  402230223  A         .00   125550.00  850815  12555 

  1930  NORTHERN EXPRESS                INDIANAPOLIS   IN  462856285  A         .00   125900.00  850815  12590 

  1950  WESTMINISTER MEDICAL SUPPLIES   TOLEDO         OH  436973697  A         .00   301600.00  850815  30160 

  1970  KENT SAVINGS & LOAN             LAKEWOOD       OH  441074107  A         .00   302650.00  850815  30265 

  1990  MOSSVINE FOODS                  WICKLIFFE      OH  440924092  A         .00   129050.00  850815  12905 

  2010  HOLIDAY MERCHANDISE INC.        CANTON         OH  447114711  A         .00   304400.00  850815  30440 

  2030  KNIGHT-GANNETT TOYS INC         HARTFORD       CT  494439443  A         .00   129400.00  850815  12940 

  2050  TRANSAMERICAN PUBLISHING        TELUMSEH       MI  492769276  A     5127.93   304750.00  860220  30475 

  2070  NICOLLET STORES INC.            MILWAUKEE      WI  532013201  A         .00   305100.00  850815  30510 

  2090  BRYAN DAIRY PRODUCTS            ORANGE         CT  064776477  A         .00   305800.00  850815  30580 

  2110  SERVICE AGRICULTURE INC         ST. PAUL       MN  551085108  A         .00   132200.00  850815  13220 

  2130  INTERSALE INC.                  GLENDALE       WI  532013201  A         .00   136050.00  850815  13605 

  2150  WESTLAND DEPT STORES            NEWTON         IA  502080208  A         .00   138500.00  850815  13850 

  2170  HERALD DRY GOODS                TECUMSETT      MI  492769276  A         .00   139550.00  850815  13955 

  2190  OSWISH MANUFACTURING            WOODCLIFF LAKE NJ  076757675  A         .00   139900.00  850815  13990 

  2210  ALLEGHENY HOTELS                CHICAGO        IL  606060606  A         .00   141650.00  850815  14165 

  2230  AMTEX FREIGHTWAYS               NEW YORK       NY  100160016  A         .00   142350.00  850815  14235 

  2250  ALLIED CONTINENTAL              BRIDGEWATER    NJ  079607960  A         .00   317700.00  850815  31770 

  2270  HANKS-MAY INVESTMENTS INC       SKOKIE         IL  600770077  A         .00   143400.00  850815  14340 

  2290  XMART CINEMAS                   KANSAS CITY    MO  631783178  A         .00   144100.00  850815  14410 

  2310  UNIONWAYS TRANSPORT CO.         PEORIA         IL  616291629  A         .00   144450.00  850815  14445 

  2330  CORTER-SOUTH ACCOUNTING         ST. LOUIS      MO  631783178  A         .00   320850.00  850815  32085 

  2350  ASSOCIATED DIXIE RESOURCES      MOLINE         IL  616291629  A         .00   146550.00  850815  14655 

  2370  LANDMARK FOODS                  DECATOR        IL  625252525  A         .00   148650.00  850815  14865 

 



ORDERS Table:  Sample Data 

 

826  SQL User Guide 
 

ORDERS Table:  Sample Data 

                              ORDERS 

 ORDID  CUSTNO ORD DT  EXP DT  DSC  STATUS   SHP DT  TERMS            SHIP        ORD TOT     FRT AMT  SLMN   LAST DT 

  

 01008   7290  851106  85121   2.0  S        860220  NET 30           WWWWW        360.50        2.99  13185  860220 

 01009   7350  851106  851213  3.0  S        860220  NET 30                        979.93        2.50  13745  860220 

 01010   2690  851106  85121   2.0  S        860220  NET 30                       8073.05        8.00  15740  860220 

 01011   0030  851106  851215  3.0  P                NET 30                       4250.30         .00  17630  860220 

 01012   7410  851108  851215   .0  P                NET30                         305.84         .00  21060  860220 

 01013   0230  851108  851210   .0  P                NET30                         931.72         .00  00725  860220 

 01015   1210  851108  851214   .0  P                NET30                        2032.10         .00  08915  860220 

 01016   1450  851108  851201   .0  A                NET30                        1807.30         .00  27745  860220 

 01017   1630  851108  851230   .0  A                NET30                         446.50         .00  28760  860220 

 01018   1890  851108  851218   .0  A                NET30                        2717.00         .00  12485  860220 

 01019   2050  851108  851208   .0  A                NET30                        4641.93         .00  30475  860220 

 01020   7790  851108  851202   .0  A                NET30                        2710.61         .00  04085  860220 

 01021   3910  851108  851210   .0                   NET30                        3595.75         .00  07165  860220 

 01022   5590  851108  851213   .0                   NET30                        2258.10         .00  07970  860220 

 01023   7150  851108  851212   .0                   NET30                         190.65         .00  08600  860220 

 01024   4310  851108  851225   .0                   NET30                          76.00         .00  06080  860220 

 01026   9130  851108  851203   .0                   NET30                         181.78         .00  06640  860220 

 01027   4350  851108  851214   .0                   NET30                         146.90         .00  19135  860220 

 01028   1210  851108  851230   .0                   NET30                        1645.65         .00  28830  860220 

 01029   1850  851108  851220   .0                   NET30                         745.74         .00  13255  860220 

 01030   6390  851108  851216   .0                   NET30                         353.50         .00  01845  860220 

 



 

Appendix D: Results of Defining Structures Using SQL Statements  827  
 

Appendix D: Results of Defining Structures 
Using SQL Statements 
 

The following describe how using SQL statements to define structures impacts the CA 
Datacom Datadictionary definition. For each SQL syntax segment, only the significant 
attribute-values are discussed. See the Occurrence Names Created from SQL Names 
section in the CA Datacom Datadictionary User Guide for details on actions taken by CA 
Datacom Datadictionary to create unique names and the CA Datacom Datadictionary 
Attribute Reference Guide for details on attribute values of the various entity-types. 

 

CREATE INDEX Statement 

CREATE INDEX index-name (column-list) 

Creates a key for one or more columns of a table as specified in the statement. The 
following are the significant KEY entity-occurrence attributes defined: 

■ AGR-SQLNAME= The SQL name of the table. 

■ AUTHID= The schema (authorization identifier) of the table. 

■ DATACOM-ID= An available 3-digit ID selected by Datadictionary for uniqueness 
within the database. 

■ DATACOM-NAME= The 5-character value specified with the optional DATACOM 
NAME parameter in the CREATE INDEX statement or SQ followed by three digits 
selected by Datadictionary for uniqueness within the database. 

 

■ ENTITY-NAME= The index-name specified in the CREATE INDEX statement. 

■ FOREIGN=N 

■ INCLUDE-NIL-KEY=Y 

■ MASTER-KEY=N 
 

■ MAX-KEY-LENGTH=0 

■ NATIVE-KEY=N 

■ SQLNAME= The index-name provided on the CREATE INDEX statement. 

■ UNIQUE=N 
 



CREATE PROCEDURE Statement 

 

828  SQL User Guide 
 

CREATE PROCEDURE Statement 

CREATE PROCEDURE 

Creates a procedure. The following are the significant PROCEDURE entity-occurrence 
attributes defined: 

■ AUTHID= The authorization identifier (the schema) in effect when the SQL CREATE 
statement was executed. 

■ CREATOR= The accessor ID assigned at the SQL CREATE statement execution. 

■ DETERMINISTIC= Indicates that the procedure does (Y) or does not (N) return the 
same value given the same input (whether a procedure can provide different results 
due to factors other than the data). This attribute is informational only. 

 

■ ENTITY-NAME= This is an internally generated unique name consisting of the 
schema (the AUTHID), followed by a hyphen, followed by the SQLNAME value. 

■ EXTERNAL= If the procedure causes an external module to be executed, this 
attribute is set to Y.  Otherwise, if the procedure directly executes SQL statements, 
this attribute is set to N. 

■ FIPS= Indicates if the procedure is valid in FIPS processing. Y indicates yes, N 
indicates no, and S indicates no because of syntax. 

 

■ LANGUAGE= The programming language used to produce the module executed 
when the procedure is invoked. 

■ PARM-LIST-STYLE= The style of the parameter list to be passed to the procedure 
module by SQL:  GENERAL, GENERAL WITH NULLS, or DATACOM SQL. 

■ PRC-VALID=Y  When a change is made to a program referenced by a procedure, this 
attribute is set to N. 

 

■ SQLNAME= The name of the procedure as specified in the CREATE PROCEDURE 
statement. 

■ SQL-ACCESS= Indicates whether the procedure executed contains SQL statements 
and whether SQL performs only read function (READ), read and updated functions 
(MODIFY), or only other SQL functions such as DDL (YES).  If no SQL is executed, the 
value is NO. 

 



CREATE SCHEMA Statement 

 

Appendix D: Results of Defining Structures Using SQL Statements  829  
 

CREATE SCHEMA Statement 

CREATE SCHEMA AUTHORIZATION authid 

Creates a schema, also known as an AUTHID, which is defined in CA Datacom 
Datadictionary as an AUTHORIZATION entity-occurrence. The following are the 
significant AUTHORIZATION entity-occurrence attributes defined: 

■ AUTH-USAGE=S 

■ ENTITY-NAME= The name (authid) specified in the CREATE SCHEMA statement. 
 

CREATE TABLE Statement 

CREATE TABLE table-name 

Creates a table, a key, and an element for the entire table. It relates the TABLE 
entity-occurrence to the AUTHORIZATION entity-occurrence (the schema). 

The following are the significant TABLE entity-occurrence attributes defined: 

■ AUTHID= The schema (authorization identifier) specified with a qualified 
table-name in the statement or the default schema. 

■ CHNG-MASTER-KEY=Y 

■ COMPRESSION=N 
 

■ CONSTRAINT=Y if the table or any of the columns has a constraint defined; 
otherwise, CONSTRAINT=N. 

■ DATACOM-ID= A 3-digit ID generated by CA Datacom Datadictionary that is unique 
within the database. 

■ DATACOM-NAME= An internally generated unique name in the form Bnn, Cnn, or 
Dnn where nn is 00 to 99, or the first three characters of the SQLNAME, if that is 
unique. 

 

■ DDD-SYNCH=Y 

■ DUPE-MASTER-KEY=Y 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID used when creating the table) followed by a hyphen and the name 
specified in the CREATE statement.  The name must be unique.  See the Occurrence 
Names Created from SQL Names section in the CA Datacom Datadictionary User 
Guide for details on actions taken by CA Datacom Datadictionary to create unique 
names. 

 



CREATE TABLE Statement 

 

830  SQL User Guide 
 

■ FIPS= Indicates if the procedure is valid in FIPS processing. Y indicates yes, N 
indicates no, and S indicates no because of syntax. 

■ LOGGING=Y 

■ PIPELINE-OPTION=Y 
 

■ RECOVERY=Y 

■ SQL-INTENT=Y 

■ SQLNAME= The table-name provided in the CREATE TABLE statement. 
 

The element contains all the columns defined to the table. The following are the 
significant ELEMENT entity-occurrence attributes defined: 

■ DATACOM-NAME=SQLEL 

■ DISP-IN-TABLE=0 

■ ENTITY-NAME=SQLEL 
 

■ FIRST-FIELD= The occurrence-name of the first field in the table. 

■ LAST-FIELD= The occurrence-name of the last field in the table. 

■ LENGTH= The length of the table including null indicators for columns defined to 
accept null values. 

 

The first column named in the CREATE TABLE statement becomes the CA Datacom/DB 
Master and Native Key for the table except when a primary key is defined for the table. 
The following are the significant KEY entity-occurrence attributes defined: 

■ AGR-SQLNAME= The SQL name of the table. 

■ AUTHID= The schema (authorization ID) of the table. 

■ DATACOM-NAME= SQ followed by three digits selected by CA Datacom 
Datadictionary for uniqueness within the database (same name as used for 
ENTITY-NAME). 

 

■ DATACOM-ID= An available 3-digit ID selected by CA Datacom Datadictionary for 
uniqueness within the database. 

■ ENTITY-NAME= SQ followed by three digits selected by CA Datacom Datadictionary 
for uniqueness within the database (same name as used for DATACOM-NAME). 

■ FOREIGN=N 

■ INCLUDE-NIL-KEY=Y 
 

■ MASTER-KEY=Y unless a primary key is defined, in which case N. 

■ MAX-KEY-LENGTH=0 

■ NATIVE-KEY=Y unless a primary key is defined, in which case N. 
 



CREATE TABLE Statement 

 

Appendix D: Results of Defining Structures Using SQL Statements  831  
 

■ SQLNAME= The key's DATACOM-NAME followed by an underscore character 
followed by the concatenation of the DATACOM-NAME of the table and the 
DATACOM-ID of the database in which the key is defined (for example, 
SQ032_INV00016). 

■ UNIQUE=Y unless a primary key is defined, in which case N. 
 

IN area-name 

Relates the TABLE entity-occurrence created to the AREA entity-occurrence named. If 
you do not include this parameter, the table is placed in the SQL default area (see the 
CA Datacom/DB Database and System Administration Guide). 

CREATE TABLE table-name column-name 

Defines a column (FIELD entity-occurrence) in the table. The following are the significant 
FIELD entity-occurrence attributes defined: 

■ AFTER=START for first column; otherwise, the ENTITY-NAME of the column it 
follows. 

■ AGR-SQLNAME= The SQL name of the table. 

■ AUTHID= The schema (authorization ID) of the table. 
 

■ CLASS=S 

■ ENTITY-NAME = The column-name specified in the CREATE TABLE statement (the 
same name as used for SQLNAME). 

■ LENGTH= The length of the column. 
 

■ PARENT=START 

■ SQLNAME= The column-name specified in the CREATE TABLE statement (the same 
name as used for ENTITY-NAME). 

 



CREATE TABLE Statement 

 

832  SQL User Guide 
 

Additional attributes are defined based on the column definition syntax as follows. 

datatype 

Defines the column's data type through FIELD entity-occurrence attributes. If the 
column's data type is DATE, TIME, or TIMESTAMP: 

■ SEMANTIC-TYPE= This attribute is defined as SQL-DATE, SQL-TIME, or SQL-STMP, 
respectively. 

■ SIGN=N 

■ TYPE=B 

– length  4 for SQL-DATE 

– length  3 for SQL-TIME 

– length 10 for SQL-STMP 

■ TYPE-NUMERIC=C 
 

FOR BIT DATA 

For the FIELD entity-occurrence, specifies SEMANTIC-TYPE=BITDATA (only valid for 
character, VARCHAR, and LONG VARCHAR data types). 

DEFAULT literal 

For the FIELD entity-occurrence, defines a literal value in the VALUE attribute and sets 
the DEFAULT-INSERT attribute to O. 

DEFAULT USER 

For the FIELD entity-occurrence, sets the DEFAULT-INSERT attribute to U. 
 

DEFAULT NULL 

For the FIELD entity-occurrence, sets the NULL-INDICATOR attribute to Y and the 
DEFAULT-INSERT attribute to N. 

DEFAULT SYSTEM USER 

For the FIELD entity-occurrence, sets the DEFAULT-INSERT attribute to S. 

NOT NULL 

For the FIELD entity-occurrence, sets the NULL-INDICATOR attribute to N. 
 



CREATE TABLE Statement 

 

Appendix D: Results of Defining Structures Using SQL Statements  833  
 

NOT NULL WITH DEFAULT 

For the FIELD entity-occurrence, sets the DEFAULT-INSERT attribute to D. 

WITH DEFAULT 

For the FIELD entity-occurrence, sets the DEFAULT-INSERT attribute to D. 
 

PRIMARY KEY 

Creates a key consisting of this column or columns and a constraint. The following are 
the significant KEY entity-occurrence attributes defined: 

■ AGR-SQLNAME= The SQL name of the table. 

■ AUTHID= The schema (authorization ID) of the table. 

■ DATACOM-ID= An available 3-digit ID selected by CA Datacom Datadictionary for 
uniqueness within the database. 

 

■ DATACOM-NAME= SQ followed by three digits selected by CA Datacom 
Datadictionary for uniqueness within the database (same name as used for the 
ENTITY-NAME). 

■ ENTITY-NAME= SQ followed by three digits selected by CA Datacom Datadictionary 
for uniqueness within the database (same name as used for the DATACOM-NAME). 

■ FOREIGN=N 
 

■ INCLUDE-NIL-KEY=Y 

■ MASTER-KEY=Y 

■ MAX-KEY-LENGTH=0 
 

■ NATIVE-KEY=Y 

■ SQLNAME= The key's DATACOM-NAME followed by an underscore character 
followed by the concatenation of the DATACOM-NAME of the table and the 
DATACOM-ID of the database in which the key is defined (for example, 
SQ032_INV00016). 

■ UNIQUE=Y 
 

The following are the significant CONSTRAINT entity-occurrence attributes defined: 

■ AUTHID= The schema (authorization ID) associated with the table. 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID) used when creating the table followed by a hyphen and the SQLNAME. 

■ SQLNAME= The name given to the constraint in the statement or an internally 
created name in the form CONSTRAINT_nnnn where the nnnn are four digits 
selected for uniqueness within the database. 

 



CREATE TABLE Statement 

 

834  SQL User Guide 
 

The TABLE entity-occurrence has the following attributes that pertain to constraints: 

■ CNS-UNIQUE=Y 

■ CONSTRAINT=Y 
 

UNIQUE 

Defines a key consisting of the identified column or columns and a constraint. The 
following are the significant KEY entity-occurrence attributes defined: 

■ AGR-SQLNAME= The SQL name of the table. 

■ AUTHID= The schema (authorization ID) of the table. 

■ DATACOM-ID= An available 3-digit ID selected by CA Datacom Datadictionary for 
uniqueness within the database. 

 

■ DATACOM-NAME= SQ followed by three digits for uniqueness within the database 
(same name as used for the ENTITY-NAME). 

■ ENTITY-NAME= SQ followed by three digits for uniqueness within the database 
(same name as used for the DATACOM-NAME). 

■ FOREIGN=N 
 

■ INCLUDE-NIL-KEY=Y 

■ MASTER-KEY=N if this is not the first unique key of the table and a primary key is 
not defined; otherwise, MASTER-KEY=Y. 

■ MAX-KEY-LENGTH=0 
 

■ NATIVE-KEY=N if this is not the first unique key of the table and a primary key is not 
defined; otherwise, NATIVE-KEY=Y. 

■ SQLNAME= The key's DATACOM-NAME followed by an underscore character 
followed by the concatenation of the DATACOM-NAME of the table and the 
DATACOM-ID of the database in which the key is defined (for example, 
SQ032_INV00016). 

■ UNIQUE=Y 
 

The following are the significant CONSTRAINT entity-occurrence attributes defined: 

■ AUTHID= The schema (authorization ID) associated with the table. 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID used when creating the table) followed by a hyphen and the SQLNAME. 

■ SQLNAME= The name given to the constraint in the statement or an internally 
created name in the form CONSTRAINT_nnnn where the nnnn are four digits 
selected for uniqueness within the database. 

 



CREATE TABLE Statement 

 

Appendix D: Results of Defining Structures Using SQL Statements  835  
 

The TABLE entity-occurrence has the following attributes that pertain to constraints: 

■ CNS-UNIQUE=Y 

■ CONSTRAINT=Y 

REFERENCES table-name (column-list) 

Sets the TABLE entity-occurrence CNS-REFERS= and CONSTRAINT= attributes to Y for 
this table. 

Sets the referenced TABLE entity-occurrence CNS-REFERENCED= and CONSTRAINT= 
attributes to Y. 

Also establishes a foreign key occurrence (see following page). 
 

CHECK (search condition) 

Creates a constraint. The following are the significant CONSTRAINT entity-occurrence 
attributes defined: 

■ AUTHID= The schema (authorization ID) associated with the table. 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID used when creating the table) followed by a hyphen and the SQLNAME. 

■ SQLNAME= The name given to the constraint in the statement or an internally 
created name in the form CONSTRAINT_nnnn where the nnnn are four digits 
selected for uniqueness within the database. 

 

The TABLE entity-occurrence has the following attributes that pertain to constraints: 

■ CNS-DOMAIN=Y 

■ CONSTRAINT=Y 
 

CONSTRAINT constraint-name 

Sets the CONSTRAINT entity-occurrence SQLNAME attribute to the name specified in 
the statement. 

FOREIGN KEY (column-list) 

Creates a key consisting of the identified column or columns and a constraint. The 
following are the significant KEY entity-occurrence attributes defined: 

■ AGR-SQLNAME= The SQL name of the table. 

■ AUTHID= The schema (authorization ID) of the table. 

■ AGR-SQLNAME= The SQL name of the table. 
 



CREATE TABLE Statement 

 

836  SQL User Guide 
 

■ AUTHID= The schema (authorization ID) of the table. 

■ DATACOM-NAME= blanks 

■ DATACOM-ID=000 
 

■ ENTITY-NAME= CA Datacom Datadictionary uses the constraint's ENTITY-NAME 
value. 

■ FOREIGN=Y 

■ INCLUDE-NIL-KEY=Y 
 

■ MASTER-KEY=N 

■ NATIVE-KEY=N 

■ MAX-KEY-LENGTH=00 
 

■ SQLNAME= CA Datacom Datadictionary uses the constraint's SQLNAME value. 

■ UNIQUE=N 
 

The following are the significant CONSTRAINT entity-occurrence attributes defined: 

■ AUTHID= The schema (authorization ID) associated with the table. 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID used when creating the table) followed by a hyphen and the SQLNAME. 

■ SQLNAME= The name given to the constraint in the statement or an internally 
created name in the form CONSTRAINT_nnnn where the nnnn are four digits 
selected for uniqueness within the database. 

 

The TABLE entity-occurrence has the following attributes: 

■ CNS-SAME-BASE=Y (if all tables to which the foreign key refers are in the same 
base). 

■ CNS-REFERS=Y 

■ CONSTRAINT=Y 

Sets the referenced TABLE entity-occurrence CNS-REFERENCED= and CONSTRAINT= 
attributes to Y. 

 



CREATE SYNONYM Statement 

 

Appendix D: Results of Defining Structures Using SQL Statements  837  
 

CREATE SYNONYM Statement 

CREATE SYNONYM synonym-name FOR table-name (or view-name) 

Creates a synonym. The following are the significant SYNONYM entity-occurrence 
attributes defined: 

■ AUTHID= The supplied or default schema (authorization ID). 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID) followed by a hyphen and the name specified in the CREATE statement 
(the name must be unique— see the Occurrence Names Created from SQL Names 
section in the CA Datacom Datadictionary User Guide for details on actions taken by 
CA Datacom Datadictionary to create unique names). 

■ SQLNAME= The synonym-name provided in the CREATE SYNONYM statement. 

CA Datacom Datadictionary creates relationships to associate the table or view with its 
synonyms. 

 

CREATE TRIGGER Statement 

CREATE TRIGGER 

Creates a trigger. The following are the significant TRIGGER entity-occurrence attributes 
defined: 

■ ACTION-LEVEL= In conjunction with the Trigger Action Time switches, indicates 
whether the trigger is to be invoked for each row (R) processed or for each SQL 
statement (S). 

■ AFTER-DELETE= 

AFTER-INSERT= 

AFTER-UPDATE= 

Indicates with Y or N whether the trigger should be invoked after the action has 
taken place on the table. One or more of these switches and/or the BEFORE-x 
switches must be set to Y for the trigger to be valid. 

 



CREATE TRIGGER Statement 

 

838  SQL User Guide 
 

■ AUTHID= This is the authorization identifier (schema) in effect when the trigger was 
created. 

■ BEFORE-DELETE= 

BEFORE-INSERT= 

BEFORE-UPDATE= 

Indicates with Y or N whether the trigger should be invoked before the action has 
taken place on the table. One or more of these switches and/or the AFTER-x 
switches must be set to Y for the trigger to be valid. 

■ ENTITY-NAME= This is an internally generated unique name consisting of the 
schema (the AUTHID), followed by a hyphen, followed by the SQLNAME value. 

 

■ FIPS= Indicates if the procedure is valid in FIPS processing. Y indicates yes, N 
indicates no, and S indicates no because of syntax. 

■ NEW-ROW-CORR-NAME= 
OLD-ROW-CORR-NAME= 
The alternative names for the before and after row images. 

■ NEW-TABLE-ALIAS= 
OLD-TABLE-ALIAS= 
The alternative names for the before and after table images. 

 

■ SQLNAME= The name of the trigger specified in the CREATE TRIGGER statement. 

■ SQL-TIMESTAMP= The ANSI Standard specifies that triggers are to be invoked in the 
order they are created, with the oldest being invoked first.  The SQL timestamp 
ensures that triggers are invoked in that order. 

 

■ TRIGGER-VALID= When a change is made to a table referenced by a trigger and that 
change can affect the ability of the trigger to function correctly, this attribute is set 
to N.  Otherwise, it is set to Y.  This attribute is also set to N if there is a recognized 
change to a procedure called by the trigger. 

■ UPDATE-TRIGGER= This attribute indicates, in conjunction with the BEFORE-UPDATE 
and AFTER-UPDATE attributes, whether the trigger is invoked only when certain 
columns are updated (EXPLICIT) or when any column in the table is updated 
(IMPLICIT). 

 



CREATE VIEW Statement 

 

Appendix D: Results of Defining Structures Using SQL Statements  839  
 

CREATE VIEW Statement 

CREATE VIEW view-name 

Creates a view. The following are the significant VIEW entity-occurrence attributes 
defined: 

■ AUTHID= The supplied or default schema (authorization ID). 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID) followed by a hyphen and the name specified in the CREATE statement 
(the name must be unique— see the Occurrence Names Created from SQL Names 
section in the CA Datacom Datadictionary User Guide for details on actions taken by 
CA Datacom Datadictionary to create unique names). 

 

■ FIPS= Indicates if the procedure is valid in FIPS processing. Y indicates yes, N 
indicates no, and S indicates no because of syntax. 

■ LENGTH= The sum of the lengths of all columns included in the view. 

■ SQLNAME= The view-name specified in the CREATE VIEW statement. 

column-name 

Creates a column (FIELD entity-occurrence). See the CREATE TABLE column-name 
statement. 

 

AS subselect 

Creates a relationship between the view and the table whose columns make up the 
view. 

WITH CHECK OPTION 

Creates a domain constraint. The following are the significant CONSTRAINT 
entity-occurrence attributes defined: 

■ AUTHID= The schema (authorization ID) associated with the table. 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID used when creating the table) followed by a hyphen and the SQLNAME. 

■ SQLNAME= The view-name provided in the CREATE VIEW statement. 
 





 

Appendix E: Results of Using ALTER TABLE  841  
 

Appendix E: Results of Using ALTER TABLE 
 

The following table describes how using the SQL ALTER TABLE statement impacts the CA 
Datacom Datadictionary definition. 

ALTER TABLE table-name 

Updates the definition of the specified table. 

column-name 

Defines a column (FIELD entity-occurrence) in the table. The following are the significant 
FIELD entity-occurrence attributes defined: 

■ AFTER= $LAST or the SQL name of the column it follows. 

■ AGR-SQLNAME= The SQL name of the table. 

■ AUTHID= The schema (AUTHID) of the table. 

■ CLASS=S 
 

■ ENTITY-NAME = The column-name specified in the statement (the same name as 
used for SQLNAME). 

■ LENGTH= The length of the column. 

■ PARENT=START 

■ SQLNAME= The column-name specified in the statement (the same name as used 
for ENTITY-NAME). 

Additional attributes are defined based on the column definition syntax. 
 



CREATE VIEW Statement 

 

842  SQL User Guide 
 

The column must be added to the end of the table. 

datatype 

Defines the column's data type through the following FIELD entity-occurrence 
attributes: 

■ SEMANTIC-TYPE= If the column's data type is DATE, TIME, or TIMESTAMP, this 
attribute reflects SQL-DATE, SQL-TIME, or SQL-STMP, respectively. 

■ SIGN=N 

■ TYPE=B 

– length 4 for SQL-DATE 

– length 3 for SQL-TIME 

– length 10 for SQL-STMP 

■ TYPE-NUMERIC=C 
 

DEFAULT literal 

For the FIELD entity-occurrence, defines a literal value in the VALUE attribute and sets 
the DEFAULT-INSERT attribute to O. 

DEFAULT USER 

For the FIELD entity-occurrence, sets the DEFAULT-INSERT attribute to U. 

DEFAULT SYSTEM USER 

For the FIELD entity-occurrence, sets the DEFAULT-INSERT attribute to S. 
 

DEFAULT NULL 

For the FIELD entity-occurrence, leaves the NULL-INDICATOR attribute unchanged. 
Removes a previously specified numeric or literal default value, but does not alter the 
nullability (NULL-INDICATOR attribute) of a column. 

NOT NULL 

For the FIELD entity-occurrence, sets the NULL-INDICATOR attribute to N. NOT NULL can 
be used when adding a column, but not when modifying a column. 

 



CREATE VIEW Statement 

 

Appendix E: Results of Using ALTER TABLE  843  
 

PRIMARY KEY 

Creates a key consisting of this column or columns and a constraint. The following are 
the significant KEY entity-occurrence attributes defined: 

■ AGR-SQLNAME= The SQL name of the table. 

■ AUTHID= The schema (AUTHID) of the table. 

■ DATACOM-ID= An available 3-digit ID selected by CA Datacom Datadictionary for 
uniqueness within the database. 

■ DATACOM-NAME= SQ followed by three digits selected by CA Datacom 
Datadictionary for uniqueness within the database (same name as used for the 
ENTITY-NAME). 

 

■ ENTITY-NAME= SQ followed by three digits selected by CA Datacom Datadictionary 
for uniqueness within the database (same name as used for the DATACOM-NAME). 

■ FOREIGN=N 

■ INCLUDE-NIL-KEY=Y 
 

■ MASTER-KEY=N if not already Y 

■ MAX-KEY-LENGTH=0 

■ NATIVE-KEY=N if not already Y 
 

■ SQLNAME= The key's DATACOM-NAME followed by an underscore character 
followed by the concatenation of the DATACOM-NAME of the table and the 
DATACOM-ID of the database in which the key is defined (for example, 
SQ032_INV00016). 

■ UNIQUE=Y 
 

The following are the significant CONSTRAINT entity-occurrence attributes defined: 

■ AUTHID= The schema (AUTHID) associated with the table. 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID used when creating the table) followed by a hyphen and the SQLNAME. 

■ SQLNAME= The name given to the constraint in the statement or an internally 
created name in the form CONSTRAINT_nnnn where the nnnn are four digits 
selected for uniqueness within the database. 

 

The TABLE entity-occurrence has the following attributes that pertain to constraints: 

■ CNS-UNIQUE=Y 

■ CONSTRAINT=Y 
 



CREATE VIEW Statement 

 

844  SQL User Guide 
 

You cannot copy over or delete a table or any part of a table while it has a constraint. 

UNIQUE 

Defines a key consisting of the identified column or columns and a constraint. The 
following are the significant KEY entity-occurrence attributes defined: 

■ AGR-SQLNAME= The SQL name of the table. 

■ AUTHID= The schema (AUTHID) of the table. 

■ DATACOM-ID= An available 3-digit ID selected by CA Datacom Datadictionary for 
uniqueness within the database. 

■ DATACOM-NAME= SQ followed by three digits selected by CA Datacom 
Datadictionary for uniqueness within the database (same name as used for the 
ENTITY-NAME). 

 

■ ENTITY-NAME= SQ followed by three digits selected by CA Datacom Datadictionary 
for uniqueness within the database (same name as used for the DATACOM-NAME). 

■ FOREIGN=N 

■ INCLUDE-NIL-KEY=Y 

■ MASTER-KEY=N if this is not the first unique key of the table and a primary key is 
not defined; otherwise, MASTER-KEY=Y. 

 

■ MAX-KEY-LENGTH=0 

■ NATIVE-KEY=N if this is not the first unique key of the table and a primary key is not 
defined; otherwise, NATIVE-KEY=Y. 

■ SQLNAME= The key's DATACOM-NAME followed by an underscore character 
followed by the concatenation of the DATACOM-NAME of the table and the 
DATACOM-ID of the database in which the key is defined (for example, 
SQ032_INV00016). 

■ UNIQUE=Y 
 

The following are the significant CONSTRAINT entity-occurrence attributes defined: 

■ AUTHID= The schema (AUTHID) associated with the table. 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID) used when creating the table followed by a hyphen and the SQLNAME. 

■ SQLNAME= The name given to the constraint in the statement or an internally 
created name in the form CONSTRAINT_nnnn where the nnnn are four digits 
selected for uniqueness within the database. 

 

The TABLE entity-occurrence has the following attributes that pertain to constraints: 

■ CNS-UNIQUE=Y 

■ CONSTRAINT=Y 
 



CREATE VIEW Statement 

 

Appendix E: Results of Using ALTER TABLE  845  
 

WITH DEFAULT 

For the FIELD entity-occurrence, sets the DEFAULT-INSERT attribute to D. 

REFERENCES table-name 

Sets the TABLE entity-occurrence CNS-REFERS= and CONSTRAINT= attributes to Y for 
this table. 

Sets the referenced TABLE entity-occurrence CNS-REFERENCED= and CONSTRAINT= 
attributes to Y. 

 

CHECK (search condition) 

Creates a constraint. The following are the significant CONSTRAINT entity-occurrence 
attributes defined: 

■ AUTHID= The schema (AUTHID) associated with the table. 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID used when creating the table) followed by a hyphen and the SQLNAME. 

■ SQLNAME= The name given to the constraint in the statement or an internally 
created name in the form CONSTRAINT_nnnn where the nnnn are four digits 
selected for uniqueness within the database. 

 

The TABLE entity-occurrence has the following attributes that pertain to constraints: 

■ CNS-DOMAIN=Y 

■ CONSTRAINT=Y 

CONSTRAINT constraint-name 

Sets the CONSTRAINT entity-occurrence SQLNAME attribute to the name supplied in this 
parameter. 

ADD table constraint 

Modifies the table to add one of the constraints that follows to the table. 
 

FOREIGN KEY (column-list) 

Defines a key consisting of this column or columns and a constraint. The KEY 
entity-occurrence has the following attributes: 

■ AGR-SQLNAME= The SQL name of the table. 

■ AUTHID= The schema (AUTHID) of the table. 

■ DATACOM-NAME= blanks 

■ DATACOM-ID=000 
 



CREATE VIEW Statement 

 

846  SQL User Guide 
 

■ ENTITY-NAME= CA Datacom Datadictionary uses the constraint's ENTITY-NAME 
value. 

■ FOREIGN=Y 

■ INCLUDE-NIL-KEY=Y 

■ MASTER-KEY=N 
 

■ MAX-KEY-LENGTH=00 

■ NATIVE-KEY=N 

■ SQLNAME= CA Datacom Datadictionary uses the constraint's SQLNAME value. 

■ UNIQUE=N 
 

The following are the significant CONSTRAINT entity-occurrence attributes defined: 

■ AUTHID= The schema (AUTHID) associated with the table. 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID) used when creating the table followed by a hyphen and the SQLNAME. 

■ SQLNAME= The name given to the constraint in the statement or an internally 
created name in the form CONSTRAINT_nnnn where the nnnn are four digits 
selected for uniqueness within the database. 

 

The TABLE entity-occurrence has the following attributes: 

■ If all tables referred to by the foreign key are in the same base, CNS-SAME-BASE=Y; 
otherwise, CNS-SAME-BASE=N. 

■ CNS-REFERS=Y 

■ CONSTRAINT=Y 
 

Sets the referenced TABLE entity-occurrence CNS-REFERENCED= and CONSTRAINT= 
attributes to Y. 

REFERENCES table-name (column-list) 

Sets the TABLE entity-occurrence CNS-REFERS= and CONSTRAINT= attributes to Y for 
this table. 

Sets the referenced TABLE entity-occurrence CNS-REFERENCED= and CONSTRAINT= 
attributes to Y. 

 



CREATE VIEW Statement 

 

Appendix E: Results of Using ALTER TABLE  847  
 

CHECK (search condition) 

Creates a constraint. The following are the significant CONSTRAINT entity-occurrence 
attributes defined: 

■ AUTHID= The schema (AUTHID) associated with the table. 

■ ENTITY-NAME= An internally generated unique name consisting of the schema (the 
AUTHID used when creating the table) followed by a hyphen and the SQLNAME. 

■ SQLNAME= The name given to the constraint in the statement or an internally 
created name in the form CONSTRAINT_nnnn where the nnnn are four digits 
selected for uniqueness within the database. 

 

CONSTRAINT constraint-name 

Sets the CONSTRAINT entity-occurrence SQLNAME attribute to the name supplied in the 
statement. 

DROP CONSTRAINT constraint-name 

Obsoletes the CONSTRAINT entity-occurrence specified. The KEY entity-occurrence 
remains.  Views that reference the constraint's table are marked invalid. 

You can drop the foreign key only if there are no primary keys that reference it.  Views 
based on this table are marked invalid. 

 

DROP column-name 

Obsoletes the column.  All plans, views, and synonyms that reference the column are 
marked invalid. 

DROP PRIMARY KEY 

Obsoletes the CONSTRAINT entity-occurrence. The KEY entity-occurrence remains. The 
DROP PRIMARY KEY statement is successful only if there are no foreign keys that 
reference this primary key. Views based on the table associated with the constraint are 
marked as invalid. 

DROP FOREIGN KEY identifier 

Obsoletes the KEY entity-occurrence created as the foreign key and the CONSTRAINT 
entity-occurrence. 

Views based on the table associated with the obsoleted key are marked as invalid. 
 



CREATE VIEW Statement 

 

848  SQL User Guide 
 

MODIFY column-name DEFAULT literal 

For the FIELD entity-occurrence, defines a literal value in the VALUE attribute and sets 
the DEFAULT-INSERT attribute to O. 

MODIFY column-name DEFAULT USER 

For the FIELD entity-occurrence, sets the DEFAULT-INSERT attribute to U. 

MODIFY column-name DEFAULT SYSTEM USER 

For the FIELD entity-occurrence, sets the DEFAULT-INSERT attribute to S. 
 

MODIFY column-name DEFAULT NULL 

For the FIELD entity-occurrence, sets the DEFAULT-INSERT attribute to N. 

MODIFY column-name data type 

Modifies the column's data type changing the following FIELD entity-occurrence 
attributes: 

■ SEMANTIC-TYPE= If the column's data type is changed from DATE, TIME, or 
TIMESTAMP to another data type, this attribute reflects blanks. 

■ SIGN= N if character, Y if numeric. 
 

■ TYPE= becomes the new data type you specify. 

■ TYPE-NUMERIC= conventional. 

All plans and views that reference the column are marked invalid. 

RENAME column-name TO column-name 

For the FIELD entity-occurrence, changes the SQLNAME to the name specified in the 
RENAME statement.  All plans, views, and synonyms that reference the column are 
marked invalid.  The ENTITY-NAME attribute is not changed from its current value in CA 
Datacom Datadictionary. 
 



 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities  849  
 

Appendix F: SQL Object Consistency 
Analyzer and Upgrade Rebind Utilities 
 

Discussed in this chapter are the SQL Object Consistency Analyzer (see SQL Object 
Consistency Analyzer (see page 849)) and the SQL Upgrade Rebind Utility (see DBSRFPR 
(SQL Upgrade Rebind Utility) (see page 861)) which, beginning in r10, can also be used 
to drop plans. 

 

SQL Object Consistency Analyzer 

Each SQL object consists of information stored in various tables managed by SQL and CA 
Datacom Datadictionary. A successful rebind depends on the accessibility of that 
information. The CA Datacom/DB SQL Upgrade Rebind Utility cannot execute 
successfully if the SQL objects (constraints, plans, and views) that it rebinds are not 
intact in the CA Datacom/DB system to be rebound. The SQL Object Consistency 
Analyzer allows you to verify that the needed information is accessible.  Therefore, 
before beginning an upgrade to a new CA Datacom/DB version, execute the SQL Object 
Consistency Analyzer against your current CA Datacom/DB system. If any problems are 
discovered, correct them before you begin the upgrade. 

Note:  You can also execute the SQL Object Consistency Analyzer against the new CA 
Datacom/DB version system if you suspect rows are missing in SQL-managed tables (in 
the areas in the DATA-DICT and DDD-DATABASE databases). 

 

The information on the SQL Object Consistency Analyzer is divided into three sections: 

■ Running the SQL Object Consistency Analyzer (see Running the SQL Object 
Consistency Analyzer (see page 850)). 

■ Interpreting the Output (see Sample Report). 

■ Correcting Problems (see Correcting Problems (see page 856)). 
 



SQL Object Consistency Analyzer 

 

850  SQL User Guide 
 

Running the SQL Object Consistency Analyzer 

The SQL Object Consistency Analyzer can verify all constraints, views, and plans in a 
single execution, or can be limited to a subset.  Analysis can be limited by object type, 
authorization ID, and object name as indicated by the following syntax diagram.  This 
syntax should be added as a parameter to the execution statement in your JCL.  The 
parameter may be omitted if all constraints, views, and plans are to be analyzed and 
the default values for UID=, PSW=, and OVRD= are acceptable. 

►►─ PARM=' ─┬─────────────────────────────────┬─┬──────────────────┬──────────► 
            └─┬────────────┬─ authid.sqlname ─┘ └─ UID=dd-user-id ─┘ 
              └─ objtype= ─┘ 
 
 ►─┬───────────────────┬─┬─────────────────────────┬─┬─────────┬─ ' ──────────►◄ 
   └─ PSW=dd-password ─┘ └─ OVRD=dd-override-code ─┘ └─ TRACE ─┘ 

Note:  Use a single space to separate parameters, but do not use any other spaces (or 
any commas) in the statement. The parameters can be entered in any order. Use 
uppercase letters to specify values for the parameters. 

 

objtype= 

(Optional) Identifies the entity-type of the object(s) to be verified. 

Valid Entries: 

CONSTRAINT= or PLAN= or VIEW= 

Default: 

If objtype= is not specified, constraints, plans, and views are verified. 
 

authid 

(Required, if objtype= is specified.) Enter the authorization ID of object(s) to be 
verified, or * (an asterisk) to verify all AUTHIDs of the specified entity type(s). 

Valid Entries: 

An existing AUTHID or * (the AUTHID may not exceed 18 characters.) 

Default: 

(No default) 
 

.sqlname 

(Required, if authid is specified.)  Enter the name of a constraint, view, or plan, or * 
(an asterisk).  Specifying * will cause all entities of the specified AUTHID to be 
verified.  If * was specified as the AUTHID, then SQL name is treated as if * was 
specified. 

Valid Entries: 

The SQL name of an existing constraint, view, or plan, or * (the name may not 
exceed 32 characters). 

Default: 

(No default) 
 



SQL Object Consistency Analyzer 

 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities  851  
 

UID= 

(Optional) You must specify a valid user ID if DATACOM-INSTALL has been removed 
as a valid CA Datacom Datadictionary user ID (a PERSON entity-occurrence), or if 
NEWUSER has been removed as the CA Datacom Datadictionary password for the 
DATACOM-INSTALL user ID. 

Note:  If you specify a CA Datacom Datadictionary user ID but not a CA Datacom 
Datadictionary password, blanks are used as the password. 

Valid Entries: 

A valid CA Datacom Datadictionary user ID 

Default: 

DATACOM-INSTALL 
 

PSW= 

(Optional) You must specify a valid password assigned to the CA Datacom 
Datadictionary user ID if DATACOM-INSTALL has been removed as a valid CA 
Datacom Datadictionary user ID (a PERSON entity-occurrence), or if NEWUSER has 
been removed as the DATACOM-INSTALL password, or if UID= has been specified 
but the password is something other than blanks.  If the password parameter is 
specified, then the user ID must also be specified. 

Valid Entries: 

A valid CA Datacom Datadictionary password 

Default: 

blanks (if UID= is specified) or 
NEWUSER (if UID= is not specified) 

 

OVRD= 

(Optional) A valid four-character CA Datacom Datadictionary override code must be 
specified if PRIV is no longer the CA Datacom Datadictionary override code. 

Valid Entries: 

A valid four-character CA Datacom Datadictionary override code 

Default: 

PRIV 
 



SQL Object Consistency Analyzer 

 

852  SQL User Guide 
 

TRACE 

(Optional) Prints additional output to help CA Support diagnose problems found by 
the Analyzer. 

Important!  Do not specify any entity-type that includes the character string TRACE 
unless instructed to do so by CA Support. 

Valid Entries: 

TRACE 

Default: 

(No default) 
 

Sample JCL 

Following are JCL examples showing the limiting of analysis to a specific entity-type (and 
a certain AUTHID) and showing the analysis of all constraints, views, and plans. For more 
information about the target libraries, see Listing Libraries for CA Datacom Products. 

Note:  These JCL examples contain lowercase letters indicating entries you must replace 
with code that meets your installation and site standards. 

 //jobname  JOB (acctinfo),'submitter name',CLASS=A,MSGCLASS=X,REGION=2048K 

 //SQLEXEC1 EXEC PGM=DBSOCPR,COND=(0,NE),REGION=1024K, 

 //       PARM='PLAN=authid.*' 

 //STEPLIB  DD DSN=cai.db90.svclib,DISP=SHR        CA Datacom SVC library 

 //         DD DSN=cai.db90.loadlib,DISP=SHR       CA Datacom load library 

 //         DD DSN=cai.db100.cuslib,DISP=SHR       CA Datacom custom library 

 //         DD DSN=cai.db100.CAILIB,DISP=SHR       CA Datacom target library 

 //         DD DSN=cai.ca90s.wu40.CAILIB,DISP=SHR  VPE target library 

 //SYSUDUMP DD   SYSOUT=* 

 //SYSPRINT DD  SYSOUT=* 

 /* 
 

 //jobname  JOB (acctinfo),'submitter name',CLASS=A,MSGCLASS=X,REGION=2048K 

 //SQLEXEC1 EXEC PGM=DBSOCPR,COND=(0,NE),REGION=1024K, 

          PARM='*.*' 

 //STEPLIB  DD DSN=cai.db90.svclib,DISP=SHR        CA Datacom SVC library 

 //         DD DSN=cai.db90.loadlib,DISP=SHR       CA Datacom load library 

 //         DD DSN=cai.db100.cuslib,DISP=SHR       CA Datacom custom library 

 //         DD DSN=cai.db100.CAILIB,DISP=SHR       CA Datacom target library 

 //         DD DSN=cai.ca90s.wu40.CAILIB,DISP=SHR  VPE target library 

 //SYSUDUMP DD   SYSOUT=* 

 //SYSPRINT DD  SYSOUT=* 

 /* 
 



SQL Object Consistency Analyzer 

 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities  853  
 

Ensure that your new version's library is concatenated behind your previous version's 
library. 

 * $$ JOB JNM=SQLENT,CLASS=n,USER='CAINS' 

 * $$ LST CLASS=a,DEST=(*,vmuidnn) 

 // JOB SQLENT   ANALYSIS BY ENTITY-TYPE 

 // ASSGN SYS025,DISK,VOL=volser,SHR 

 // DLBL db90,'db90.customer.library' 

 // EXTENT SYS025,volser 

 // DLBL db100,'db100.customer.library' 

 // EXTENT SYS025,volser 

 // DLBL vpe,'cai.ca90s.wu40.library 

 // EXTENT SYS025,volser 

 // LIBDEF *,SEARCH=(db90.db90,db100.db100,vpe.vpe,ca90s.ca90s) 

 /* 

 /& 
 

 * $$ EOJ 

 * $$ JOB JNM=SQLALL,CLASS=n,USER='CAINS' 

 * $$ LST CLASS=a,DEST=(*,vmuidnn) 

 // JOB SQLALL   ANALYSIS OF ALL CONSTRAINTS, VIEWS, AND PLANS 

 // ASSGN SYS025,DISK,VOL=volser,SHR 

 // DLBL db90,'db90.customer.library' 

 // EXTENT SYS025,volser 

 // DLBL db100,'db100.customer.library' 

 // EXTENT SYS025,volser 

 // DLBL vpe,'cai.ca90s.wu40.library' 

 // EXTENT SYS025,volser 

 // LIBDEF *,SEARCH=(db90.db90,db100.db100,vpe.vpe,ca90s.ca90s) 

 // EXEC DBSOCPR,SIZE=1024K,PARM='*.*' 

 /* 

 /& 

 * $$ EOJ 
 

General Utility Sample Report 

Following are two pages of a General Utility report. For a sample header for this report, 
see Sample Report Headers. 

CONSTRAINT REBIND  SUCCESSFUL  FOR TABLE sysadm.testplan1 

CONSTRAINT REBIND  SUCCESSFUL  FOR TABLE sysadm.testplan2 

CONSTRAINT REBIND  SUCCESSFUL  FOR TABLE sysadm.testplan3 

SUCCESSFULLY REBOUND VIEW sysadm.testview1 

SUCCESSFULLY REBOUND VIEW sysadm.testview2 

SUCCESSFULLY REBOUND VIEW sysadm.testview3 

SUCCESSFULLY REBOUND PLAN sysadm.testplan1 

REBIND FAILED FOR PLAN    sysadm.testplan2 - SEE PXX FOR ERRORS 

SUCCESSFULLY REBOUND PLAN sysadm.testplan3 

SUCCESSFULLY REBOUND PLAN sysadm.testplan4 

 



SQL Object Consistency Analyzer 

 

854  SQL User Guide 
 

  

                                **** RELEASE BOUNDARY UPGRADE REBIND SUMMARY ********* 

                                *                                                      * 

                                ********************  CONSTRAINTS  ********************* 

                                *                                                      * 

                                * CONSTRAINED TABLES ALREADY REBOUND       : nnnnnnnnn * 

                                * CONSTRAINED TABLES SUCCESSFULLY REBOUND  : nnnnnnnnn * 

                                * CONSTRAINED TABLES WITH REBIND ERRRORS   : nnnnnnnnn * 

                                * TOTAL CONSTRAINED TABLES                 : nnnnnnnnn * 

                                *                                                      * 

                                ********************  VIEWS   ************************** 

                                *                                                      * 

                                * VIEWS              ALREADY REBOUND       : nnnnnnnnn * 

                                * VIEWS              REBOUND               : nnnnnnnnn * 

                                * VIEWS              WITH REBIND ERRORS    : nnnnnnnnn * 

                                * TOTAL VIEWS                              : nnnnnnnnn * 

                                *                                                      * 

                                ********************  PLANS   ************************** 

                                *                                                      * 

                                * PLANS             ALREADY REBOUND        : nnnnnnnnn * 

                                * PLANS             REBOUND                : nnnnnnnnn * 

                                * PLANS             WITH REBIND ERRORS     : nnnnnnnnn * 

                                * TOTAL PLANS                              : nnnnnnnnn * 

                                *                                                      * 

                                ******************************************************** 

 



SQL Object Consistency Analyzer 

 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities  855  
 

Object Consistency Analyzer Sample Report 

The following is an example of the output produced by the SQL Object Consistency 
Analyzer. If the summary for each entity-type indicates that all entities were found 
intact, then your task is complete.  Otherwise, use the information printed in the report 
to correct the problem as described in Correcting Problems (see page 856). In the 
following report, note that the name and type of the SQL object involved is printed for 
each problem found, as well as a specific statement or statements indicating which 
pieces of that entity-type are missing: 

For a sample header for this report, see Sample Report Headers. 

 ECHO PRINT OF PARMS: 

   WINDIGO.*. 

  

 RESULTS OF CONSTRAINT CONSISTENCY CHECKING: 

  

   ERRORS FOUND IN TABLE WINDIGO.ORDR CONSTRAINT MIN_PMT AS FOLLOWS: 

     CONSTRAINT IS MISSING FROM DATADICTIONARY. 

  

   CONSTRAINTS DEFINED ON THE FOLLOWING DATABASES WILL NOT REBIND 

   DUE TO DD STRUCTURE VERIFY ERRORS: 

  

   DB ID   DB NAME                            DD ERROR/MODULE   DESCRIPTION 

   -----   --------------------------------   ---------------   -------------------------------- 

     481   TEST-DATABASE                      SV4     /         STRUCTURE VERIFY ERROR 

  

   NOTE:  DD STRUCTURE VERIFY ERRORS NOT INCLUDED IN NUMBERS REPORTED IN FOLLOWING 

   TOTAL CONSTRAINTS PROCESSED: 118 

   VALID CONSTRAINTS:           117 

   INVALID CONSTRAINTS:         1 

   --------------------------------- 

  

 RESULTS OF PLAN CONSISTENCY CHECKING: 

  

   ERRORS WERE FOUND IN PLAN WINDIGO.XYZ AS FOLLOWS: 

     PLAN IS MISSING FROM DD TABLE PLN. 

     STATEMENT(S) ARE MISSING FROM TABLES DDD AND/OR STM. 

  

   TOTAL PLANS PROCESSED: 281 

   VALID PLANS:           280 

   INVALID PLANS:         1 

   --------------------------- 

  

 RESULTS OF VIEW CONSISTENCY CHECKING: 

  

   ALL VIEWS WERE FOUND INTACT. 

  

   TOTAL VIEWS PROCESSED: 17 

   VALID VIEWS FOUND:     17 

   INVALID VIEWS FOUND:   0 

   --------------------------- 

 



SQL Object Consistency Analyzer 

 

856  SQL User Guide 
 

You could also receive error messages indicating problems that prevented DBSOCPR 
from running normally.  Most of the messages are self explanatory and include 
instructions for correcting the problem. Following are messages that may be more 
difficult to interpret: 

DB RETURN CODE xx(yyy DEC) PRODUCED BY zzzzz COMMAND.  CONSISTENCY 
CHECKING IS BEING ABORTED. 

If you receive this message, xx is the CA Datacom/DB external return code, yyy is the 
internal return code in decimal, and zzzzz is the record-at-a-time command that 
produced the error.  Look up the return code in the CA Datacom/DB Message Reference 
Guide, correct the problem as described in that manual, and retry the SQL Object 
Consistency Analyzer. 

 

DD USRINITI FAILED. RC=return-code,  ERROR=dd-error-message,USER=uid,password  
PLEASE SPECIFY OR CHECK THE UID AND PSW PARAMETERS. 

If you receive this message, first follow the printed suggestion to check your UID and 
PSW parameters for correctness (see the PARM= documentation on the preceding 
pages).  If no problem is found, check for a message in the job output (JES LOG for z/OS) 
indicating that a requested module was not found.  If no problem is found here, contact 
CA Support for a support person to look at your RC, ERROR, and USER information 
printed in the error message to determine what the problem is.  Only contact CA 
Support if the first two steps were unproductive. 

 

Correcting Problems 

Correcting problems found by the SQL Object Consistency Analyzer involves deleting the 
invalid data and restoring the constraint, plan, or view to its original condition. 

Important!  First make backups of the following areas: 

■ DDD (Data Definition Directory) 

■ SIT (Schema Information Tables) 

■ CXX (CA Datacom/DB Directory) 

■ DD (CA Datacom Datadictionary ) 
 

If you no longer need the constraint, plan, or view in question, you can skip the steps 
that involve saving the source and re-creating the constraint, plan, or view.  All reports 
and documentation produced should be saved until successful re-creation or deletion of 
the constraint, view, or plan has been achieved.  If you call CA Support during this 
process, have the necessary documentation ready for their use. 

 



SQL Object Consistency Analyzer 

 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities  857  
 

The remainder of this section is divided into three areas: 

■ Correcting Constraint Problems (see Correcting Constraint Problems (see page 857)) 

■ Correcting Plan Problems (see Correcting Plan Problems (see page 859)) 

■ Correcting View Problems (see Correcting View Problems (see page 860)) 
 

Correcting Constraint Problems 

Read all instructions before attempting any of the steps outlined in this section, and if 
any step is unclear, call CA Support. 

Constraint problems cause the following message to be generated: 

ERRORS FOUND IN TABLE authid.tablename CONSTRAINT constraint-name AS 
FOLLOWS: 

Following that message will be other messages detailing the problems that were found.  
Here is a list of possible messages: 

CONSTRAINT IS MISSING FROM DATADICTIONARY 

CONSTRAINT IS MISSING FROM SYSADM.SYSCONSTROBJ 

CONSTRAINT IS MISSING FROM SYSADM.SYSCONSTRSRC 

CONSTRAINT IS MISSING FROM SYSADM.SYSCONSTRDEP 
 

If any of these messages appear, use the CA Datacom Datadictionary Interactive SQL 
Service Facility to accomplish the following steps: 

1. Obtain the SQL statement that created the constraint using one of the following: 

■ Obtain the CREATE TABLE or ALTER TABLE SQL statement that was used to 
create the constraint in question.  If this statement is not available, run the 
following query to obtain the constraint source: 

 SELECT TEXT, SEQNO FROM SYSADM.SYSCONSTRSRC WHERE 

  CNAME='constraint-name' AND CREATOR='authid' ORDER BY SEQNO. 

■ If the SELECT above was unsuccessful, run a DDUTILTY Text Report on the 
CONSTRAINT entity-occurrence, specifying a text CLASS of SQLSOURCE.  (See 
the CA Datacom Datadictionary Batch Reference Guide for details on running 
this report.) 

 



SQL Object Consistency Analyzer 

 

858  SQL User Guide 
 

2. Issue the following SQL statement to drop the constraint: 

 ALTER TABLE authid.table-name DROP CONSTRAINT constraint-name. 

3. If the ALTER TABLE succeeds, go to step 4.  If the ALTER TABLE does not succeed: 

a. Execute the following SQL DELETE statements to remove traces of the 
constraint from the SIT area. 

 DELETE FROM SYSADM.SYSCONSTRSRC WHERE CNAME='constraint-name' AND 

    CREATOR='authid' 

 DELETE FROM SYSADM.SYSCONSTRDEP WHERE CNAME='constraint-name' AND 

    CCREATOR='authid'  (CCREATOR is not a misprint) 

 DELETE FROM SYSADM.SYSCONSTROBJ WHERE CNAME='constraint-name' AND 

    CREATOR='authid' 

b. Execute a DDUTILTY Index Report on constraints to determine if traces of the 
constraint exist. 

c. If no traces are found, go to step 4.  If traces are found, use DDUPDATE to 
delete the CONSTRAINT entity-occurrence.  If you require assistance, call CA 
Support. 

 

4. Re-add the constraint by running an SQL statement in the form: 

  ALTER TABLE authid.tablename ADD insert-constraint-text-here 

   CONSTRAINT constraint-name. 

5. If the ALTER TABLE succeeds, your problem has been solved. If the ALTER TABLE 
fails, consult the CA Datacom/DB Message Reference Guide to determine the 
appropriate action to take for the SQLCODE you received.  After remedying the 
problem that caused the nonzero SQLCODE, retry the ALTER TABLE. 

 

If you receive this message: 

CONSTRAINTS DEFINED ON THE FOLLOWING DATABASES WILL NOT REBIND DUE TO 
DD STRUCTURE VERIFY ERRORS: 

1. Note the DD ERROR, MODULE, and DESCRIPTION listed for each database that had 
an error. 

2. Use the CA Datacom/DB Message Reference Guide to find out what went wrong. 

3. If the information printed in the report does not give you enough information to 
find the problem, perform the CA Datacom Datadictionary VERIFY function on the 
database in question and correct the problems indicated by the output from the 
function. 

4. After problems are corrected, run DBSOCPR again to confirm that the problems no 
longer exist. 

 



SQL Object Consistency Analyzer 

 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities  859  
 

Correcting Plan Problems 

Read all instructions before attempting any of the steps outlined in this section, and if 
any step is unclear, call CA Support. 

Plan problems cause the following message to be generated: 

ERRORS WERE FOUND IN PLAN authid.plan-name AS FOLLOWS: 

This message is followed by further messages detailing the problems that were found.  
The following is a list of possible messages and the corrective actions they require: 

PLAN IS MISSING FROM DD TABLE PLN 

STATEMENT(S) ARE MISSING FROM TABLES DDD AND/OR STM 

PLAN  IS  INVALID — REBIND BEFORE RUNNING DBSRFPR 
 

If either of the first two messages above are received, attempt to drop the plan using 
the DELETE PLAN administrative task in the CA Datacom Datadictionary Interactive SQL 
Service Facility. 

If the DELETE PLAN succeeds, restore the plan by re-preparing (re-precompiling) the 
program that generated the plan.  The problem is then solved. 

If the DELETE PLAN or the re-prepare fails: 

1. Execute the DDDDULM utility with FUNC=INDEX.  (See CA Datacom/DB Database 
and System Administration Guide for instructions on using the DDDDULM utility.)  
Look for entries beginning with PLN, SRC, PRP, and DEP, followed immediately by 
the AUTHID and the SQL name of the plan (see the report headers). 

 

2. Execute DDUTILTY Index Reports on the PLAN and STATEMENT entity-types, looking 
for names consisting of the plan's AUTHID, a dash, then the sqlname.  The 
statements contain the plan name followed by the statement number in numeric 
form.  For example, statement one for plan SYSUSR.TESTPLAN would appear as 
SYSUSR-TESTPLAN0000000000000001. If you require assistance in deleting a PLAN 
entity-occurrence, or if the report shows that some other combination of 
circumstances exist, or if you need assistance interpreting the report, call CA 
Support. 

3. After the plan has been successfully deleted, restore the plan by re-preparing 
(re-precompiling) the program that generated it. 

Rebind the specified plan if you receive the message: 

PLAN IS INVALID — REBIND BEFORE RUNNING DBSRFPR 
 



SQL Object Consistency Analyzer 

 

860  SQL User Guide 
 

Correcting View Problems 

Read all instructions before attempting any of the steps outlined in this section, and if 
any step is unclear, call CA Support. 

View problems cause the following message to be generated: 

ERROR(S) WERE FOUND IN VIEW authid.view-name AS FOLLOWS: 

This message is followed by other messages detailing the problems that were found. 
The following is a list of other messages that might appear: 

VIEW IS MISSING FROM DATADICTIONARY 

THE DDD IS MISSING ROWS FOR THIS VIEW 
 

If either of these messages appears, take the following steps: 

1. Locate your original CREATE VIEW statement. 

2. Drop the view using Interactive SQL Service Facility to execute the SQL statement: 

 DROP VIEW authid.viewname 

3. If the DROP fails, go to the following step 4.  If the DROP succeeds: 

a. Re-create the view using your CREATE VIEW source. 

b. If the CREATE VIEW fails, consult the CA Datacom/DB Message Reference Guide 
for instructions on recovering from your particular SQLCODE, then correct the 
problem that caused the SQLCODE and retry the CREATE VIEW. 

Note:  The problem is solved when the CREATE VIEW succeeds. 
 

4. When the DROP fails: 

a. Execute the three SQL DELETE statements detailed in the Correcting Constraint 
Problems section that begins on Correcting Constraint Problems (see page 857), 
substituting the view name for the constraint-name and ignoring any 100 
SQLCODEs received. 

b. Use the Interactive SQL Service Facility to execute the following SQL statement: 

 DELETE FROM SYSADM.SYSVIEWDEP WHERE 

  DCREATOR='authid' and DNAME='view-name'. 

c. Note any negative SQL return code received.  See the CA Datacom/DB Message 
Reference Guide for information about specific return codes. 

 

d. Execute the DDDDULM utility with FUNC=INDEX.  Look for entries beginning 
with SRC, PRP, COL, REL, and DEP, followed immediately by the AUTHID and the 
SQL name of the view (see the report headers). 

e. Execute a DDUTILTY Index Report on the VIEW entity-type, looking for names 
consisting of the AUTHID followed by the view name, separated by a dash. 

 



DBSRFPR (SQL Upgrade Rebind Utility) 

 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities  861  
 

f. If no traces of the view are found by the DDDDULM report but the Index Report 
shows there is a VIEW entity-occurrence in CA Datacom Datadictionary, use 
DDUPDATE to delete the VIEW entity-occurrence.  If you need assistance, or if 
the reports show that some other combination of circumstances exist, or if you 
require help interpreting the reports, call CA Support. 

g. Go to step 3 and follow the instructions listed for when the DROP succeeds. 
 

DBSRFPR (SQL Upgrade Rebind Utility) 

A restartable utility program, DBSRFPR, gives you an easy way to do common tasks such 
as rebinding plans, views, and contstraints (see the following). Starting in r10, DBSRFPR 
can also be used to drop plans (see Dropping Plans with DBSRFPR (see page 865)). 

 

Rebinding with DBSRFPR 

When upgrading to a new CA Datacom/DB version, all constraints, plans, and views of 
the previous version must be rebound, but it is not necessary that all constraints, plans, 
and views be successfully rebound during the upgrade process. You can begin using the 
new version for the objects rebound and correct remaining rebind problems at a later 
time.  If an object is accessed before it is upgraded, an automatic rebind is attempted. 

DBSRFPR can be used to force the rebinding of SQL objects.  If desired, you can use this 
facility after applying solutions that correct errors in bound objects.  (The solution's 
USER ACTION REQUIRED will state that affected objects, usually plans, must be 
rebound.)  Or, for performance reasons, you can use this facility to rebind plans instead 
of using the CA Datacom Datadictionary Interactive SQL Service Facility plan rebind 
facility. 

Specifying REBIND forces rebinds to be performed even on items that have not been 
marked invalid by CA Datacom Datadictionary.  Valid items whose rebinds are forced in 
this way are reported as SUCCESSFULLY REBOUND instead of ALREADY REBOUND. 

 

To rebind objects already upgraded or select specific objects to be rebound, add the 
following parameter to the execution statement in your JCL. 

►►─ PARM=' ─┬─────────────────────────────────┬─┬─────────────┬───────────────► 
            └─┬────────────┬─ authid.sqlname ─┘ ├─ REBIND ────┤ 
              └─ objtype= ─┘                    └─ CHECKONLY ─┘ 
 
 ►─┬──────────┬─ ' ───────────────────────────────────────────────────────────►◄ 
   └─ MSG=xy ─┘ 

Note:  Use a single space to separate parameters, but do not use any other spaces (or 
any commas) in the statement. The parameters can be entered in any order. Use 
uppercase letters to specify values for the parameters. 

 



DBSRFPR (SQL Upgrade Rebind Utility) 

 

862  SQL User Guide 
 

objtype= 

(Optional) Identifies the entity-type of the object(s) to be rebound. 

With regard to specifying CONSTRAINT= for objtype=, the table name is used rather 
than a constraint name because all constraints attached to a table are invalidated at 
the same time, and all constraints need to be rebound before the table is fully 
useable. Therefore, to save steps and prevent mistakes specify for the value of 
CONSTRAINT= the table name to which the constraint belongs. 

Valid Entries: 

CONSTRAINT= or PLAN= or VIEW= 

Default: 

If objtype= is not specified, constraints, plans, and views are rebound. 
 

authid 

(Required, if objtype= is specified.) Enter the authorization ID of object(s) to be 
rebound, or * (an asterisk) to rebind all AUTHIDs of the specified entity-type(s). 

Valid Entries: 

An existing AUTHID or * (the AUTHID may not exceed 18 characters.) 

Default: 

(No default) 
 

.sqlname 

(Required, if authid is specified.) Enter the name of a table, view, or plan, or * (an 
asterisk). Specifying * will cause all entities of the specified AUTHID to be rebound. 
You can rebind a given entity name under every AUTHID by specifying an asterisk 
for authid and a specific sqlname, that is, objtype=*.sqlname. 

Valid Entries: 

The SQL name of an existing table, view, or plan, or * (the name may not 
exceed 32 characters). 

Default: 

(No default) 
 



DBSRFPR (SQL Upgrade Rebind Utility) 

 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities  863  
 

REBIND 

(Optional) Use after upgrade to rebind an object of the new version. 

CHECKONLY 

(Optional) When CHECKONLY is specified, CA Datacom/DB reports which plans have 
bad options and which have bad SQL version/release numbers, but no rebinds are 
performed. CHECKONLY is ignored if REBIND has been specified (this exclusivity is 
shown in the previous syntax diagram as a choice between the two). 

The plan summary at the end of PARM= execution is different when CHECKONLY is 
specified in that the number of plans with mismatched versions, bad options, and 
the total number of plans is reported. If there were plans that had bad options and 
mismatched versions, those two numbers add to a total that can therefore have a 
sum greater than the number of TOTAL PLANS displayed. Messages are displayed 
for plans with bad options and/or mismatched versions. 

 

 MSG=xy 

(Optional) Specify the MSG plan option when rebinding plans. The x refers to 
precompile-time messages and y refers to messages generated by the Optimizer 
when the statement is executed. Use S to specify summary, D to specify detail, or N 
to specify none. 

Valid Entries: 

SS, DD, SD, DS, NS, ND, DN, SN, or NN 

Default Value: 

The default is the MSG plan option for the existing plan in the DDD. If MSG= is 
specified, it overrides the specification in the existing plan. 

 

Because the following areas are updated, you should back them up before running 
DBSRFPR: 

■ CA Datacom/DB Directory (CXX) 

■ Data Definition Directory (DDD) 

■ CA Datacom Datadictionary (DD) 

■ SQL Information Tables (SIT) 

■ SYSADM.SYSMSG table (MSG) 
 

Order in Which Objects Are Rebound 

Objects are rebound in the following order: 

1. Constraints 

2. Views 

3. Plans 
 



DBSRFPR (SQL Upgrade Rebind Utility) 

 

864  SQL User Guide 
 

A success or failure message in the following formats is written for each object. 

  CONSTRAINT REBIND ALREADY DONE FOR TABLE xxxxxxxxxxxxxxxxxxxxxxxxxxx 

  CONSTRAINT REBIND  SUCCESSFUL  FOR TABLE xxxxxxxxxxxxxxxxxxxxxxxxxxx 

  CONSTRAINT REBIND  **FAILED**  FOR TABLE xxxxxxxxxxxxxxxxxxxxxxxxxxx 

  ...  xxxxxxxxxxxxxxxxxxxxxxxxxxxxx NOT REBOUND 

  ...  xxxxxxxxxxxxxxxxxxxxxxxxxxxxx SHOULD HAVE BEEN REBOUND 

  ALREADY REBOUND VIEW      xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

  REBIND FAILED FOR VIEW    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

  SUCCESSFULLY REBOUND VIEW xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

  ALREADY REBOUND PLAN      xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

  REBIND FAILED FOR PLAN    xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

  SUCCESSFULLY REBOUND PLAN xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
 

If execution is prematurely ended due to a fatal error, such as table full or index full, the 
following message is issued: 

  **** FATAL ERROR - UPGRADE INCOMPLETE **** 

A summary report shows, by object type, the number of successful and unsuccessful 
rebinds, and previously rebound objects: 

  ****** VERSION BOUNDARY UPGRADE REBIND SUMMARY ******** 

  *                                                     * 

  ********************  CONSTRAINTS  ******************** 

  *                                                     * 

  * CONSTRAINED TABLES ALREADY REBOUND      : nnnnnnnnn * 

  * CONSTRAINED TABLES SUCCESSFULLY REBOUND : nnnnnnnnn * 

  * CONSTRAINED TABLES WITH REBIND ERRORS   : nnnnnnnnn * 

  * TOTAL CONSTRAINED TABLES                : nnnnnnnnn * 

  *                                                     * 

  ********************  VIEWS   ************************* 

  *                                                     * 

  * VIEWS              ALREADY REBOUND      : nnnnnnnnn * 

  * VIEWS              REBOUND              : nnnnnnnnn * 

  * VIEWS              WITH REBIND ERRORS   : nnnnnnnnn * 

  * TOTAL VIEWS                             : nnnnnnnnn * 

  *                                                     * 

  ********************  PLANS   ************************* 

  *                                                     * 

  * PLANS              ALREADY REBOUND      : nnnnnnnnn * 

  * PLANS              REBOUND              : nnnnnnnnn * 

  * PLANS              WITH REBIND ERRORS   : nnnnnnnnn * 

  * TOTAL PLANS                             : nnnnnnnnn * 

  ******************************************************* 
 



DBSRFPR (SQL Upgrade Rebind Utility) 

 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities  865  
 

Diagnostic information to correct rebind failures is found in the Statistics and 
Diagnostics Area (PXX). You might need to allocate a larger than normal PXX data set. 

The upgrade rebind utility is restartable. Each time it is executed it finds the objects not 
yet rebound.  It issues COMMIT WORK after each successful rebind, so it can be 
canceled at any time and restarted. 

 

Although the new plans will normally be more efficient, optimization messages are 
written to the SYSADM.SYSMSG table to help resolve any performance problems. 

■ Before running the upgrade utility, you should back up or copy the 
SYSADM.SYSMSG table to preserve the optimization messages of the previous 
version. 

■ If the plan option MSG is not used to request summary or detail bind-time 
messages, summary-level bind-time messages are forced during the rebind.  You 
should ensure that this area is large enough to hold messages inserted by the 
upgrade utility.  If this or any other area becomes full, the utility program will end. 

■ Special upgrade messages beginning with REBIND: indicate differences in join order 
or method, and when a sort is required when one was not previously required. See 
the SQL Optimization Messages section in the CA Datacom/DB Message Reference 
Guide. 

 

You can access these messages for review with the following query: 

   SELECT * 

   FROM SYSADM.SYSMSG 

   WHERE SUBSTR(MSG, 1, 7) = 'REBIND:'; 

Note:  These messages are deleted the first time the plan is rebound after being 
upgraded. 

In most cases these changes will result in better efficiency, but you can force the join 
order of the previous version by placing the tables in the FROM clause in the join order 
of the previous version, setting plan option OPT=M, and recompiling the program.  This 
also forces the nested loop join method. 

 

Dropping Plans with DBSRFPR 

DBSRFPR can be used to drop plans.  In order to use this feature, add the following 
parameter (PARM=) to the execution statement in your JCL. following is the syntax 
diagram for using the PARM= parameter of DBSFRPR to drop plans: 

►►─ PARM=' ─┬─ DROP PLAN=authid.sqlname ─┬─ ' ────────────────────────────────►◄ 
            └─ DROP ALL PLAN=*.* ────────┘ 



DBSRFPR (SQL Upgrade Rebind Utility) 

 

866  SQL User Guide 
 

DROP or DROP ALL 

Specify a drop command of either DROP or DROP ALL to indicate that you want a 
specified set of plans dropped from the MUF. Code DROP PLAN=authid.sqlname 
carefully to be certain you drop only the plans you want to drop. If you want every 
plan in your MUF dropped, use DROP ALL and PLAN=*.* (an asterisk followed by a 
period followed by another asterisk). 

 

authid 

(Required.) Enter the authorization ID of object(s) to be dropped, or * (an asterisk) 
to drop all AUTHIDs of the specified entity type. 

Valid Entries: 

An existing AUTHID or * (the AUTHID may not exceed 18 characters.) 

Default: 

(No default) 
 

.sqlname 

(Required, if authid is specified.) Enter the name of a plan, or * (an asterisk). 
Specifying * will cause all entities of the specified AUTHID to be dropped.  If * was 
specified as the AUTHID, then SQL name is treated as if * was specified. 

Valid Entries: 

The SQL name of an existing plan, or * (the name may not exceed 32 
characters). 

Default: 

(No default) 
 



DBSRFPR (SQL Upgrade Rebind Utility) 

 

Appendix F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities  867  
 

Sample JCL 

The JCL contains lowercase letters indicating entries you must replace with code that 
meets your installation and site standards. 

 //jobname JOB acctinfo,'submitter name',MSGLEVEL=1 

 //* 

 //* NOTE:  The above job statement is for example only. 

 //* Code the job statement according to your installation standards. 

 //* 

 //DBS81  EXEC PGM=DBSRFPR,REGION=2048K 

 //STEPLIB  DD DSN=cai.db100.cuslib,DISP=SHR       CA Datacom custom library 

 //         DD DSN=cai.db100.CAILIB,DISP=SHR       CA Datacom target library 

 //         DD DSN=cai.ca90s.wu40.CAILIB,DISP=SHR  VPE target library 

 //SYSPRINT DD SYSOUT=*                            Print Output 

 //SYSUDUMP DD SYSOUT=* 

 /* 

 * $$ JOB JNM=jobname,CLASS=class,USER=submitter name 

 * $$ LST CLASS=printer class 

 // JOB name 

 // EXEC DBSRFPR,SIZE=2048K 

 /* 

 /& 

 * $$ EOJ 
 

 





 

Appendix G: SQL Descriptor Area (SQLDA)  869  
 

Appendix G: SQL Descriptor Area (SQLDA) 
 

The SQL Descriptor Area (SQLDA) is used in the DESCRIBE statement.  It can also be used 
in the EXECUTE, FETCH, OPEN, and PREPARE statements. Activities involving the SQLDA 
include building the SQLDA, updating the SQLDA, and using the SQLDA. 

You build an SQLDA by coding an SQLDA and using a DESCRIBE or PREPARE statement to 
fill it.  (When you use a PREPARE statement to fill an SQLDA, you must use the 
PREPARE's optional INTO clause.)  For an example COBOL SQLDA and more information 
about the DESCRIBE and PREPARE statements, see DESCRIBE (see page 721) and 
PREPARE (see page 756). 

After you have built an SQLDA in a DESCRIBE statement, you can update the SQLDATA 
entry (in the SQLDA) with a host variable address or update the SQLIND entry with an 
indicator variable address. You must update the SQLDATA entry with a host variable 
address before using the SQLDA in a FETCH statement. 

 

You can retrieve values for parameter markers from the SQLDA by using OPEN or 
EXECUTE statements. A parameter marker is a question mark (?) that is used in place of 
a host variable in dynamic SQL statements. Rules for parameter markers can be found in 
PREPARE. 

FETCH cursor-name can use the SQLDA to store the output of a select-statement, if that 
select-statement was built by the DECLARE CURSOR statement in which the 
corresponding cursor-name was defined. 

 

Determining Number of SQLVAR Entries to Use 

Before the DESCRIBE is executed, the value of SQLN must be set to indicate how many 
occurrences of SQLVAR are provided in the SQLDA.  To obtain the description of the 
columns of the result table of a prepared select-statement, the number of occurrences 
of SQLVAR must not be less than the number of columns. 

When the USING BOTH clause is specified in the DESCRIBE statement, and SQLN is less 
than twice the size of the SQLD field, SQLD is set to twice the number of columns.  
When USING BOTH is specified, and SQLN is greater than or equal to twice the size of 
the SQLD field, SQLD is set to the number of columns. 

 



SQLDA (DESCRIBE or PREPARE INTO Statements) 

 

870  SQL User Guide 
 

The following technique is suggested for determining the number of SQLVAR entries to 
use: 

1. Execute a DESCRIBE or PREPARE statement. The SQLDA that is used must not have 
any occurrences of SQLVAR. If you use a PREPARE statement, it must use the INTO 
clause. 

2. If the value that is returned in the SQLD field is: 

■ Greater than zero, use that value to allocate an SQLDA with the necessary 
number of occurrences of SQLVAR, then use that SQLDA to execute a DESCRIBE 
statement. 

■ Equal to zero, it means that the prepared statement was not a 
select-statement, and that means that the prepared statement has no result 
table to be described. 

 

SQLDA (DESCRIBE or PREPARE INTO Statements) 

The SQLABC and SQLN fields are input fields, and must be set before executing the 
DESCRIBE or PREPARE INTO statements.  The other fields are output fields, and are filled 
in by the DESCRIBE statement.  The SQLDA values expected by and assigned by the 
DESCRIBE statement are as follows: 

 

Field Value Expected or Returned 

SQLAID SQLDA (set by CA Datacom/DB) 

SQLABC Length of the SQLDA, equal to SQLN*44 + 16 (set by CA Datacom/DB 
) 

Note: If USING BOTH is used, upon return from the DESCRIBE, if 
SQLN was not large enough for both column names and the labels 
information, SQLD has been set to twice the number of columns, 
the correct value for SQLN. 

SQLN Total number of occurrences of SQLVAR provided in this SQLDA (set 
by user—see Determining Number of SQLVAR Entries to Use (see 
page 869)). 

SQLD Number of columns described by occurrences of SQLVAR, or twice 
this number when USING BOTH is specified (set by CA Datacom/DB). 



SQLDA (DESCRIBE or PREPARE INTO Statements) 

 

Appendix G: SQL Descriptor Area (SQLDA)  871  
 

Field Value Expected or Returned 

SQLVAR If the value returned for SQLD is 0, or greater than the value of 
SQLN, no values are assigned to occurrences of SQLVAR. 

If the value returned for SQLD is n, where n is greater than 0 but less 
than or equal to the value returned for SQLN, values are assigned to 
the first n occurrences of SQLVAR so that the first occurrence of 
SQLVAR contains a description of the first column of the table, the 
second occurrence of SQLVAR contains a description of the second 
column of the table, and so on.  The description of a column consists 
of the values assigned to SQLTYPE, SQLLEN, and SQLNAME. 

If USING BOTH is used, the first n occurrences of SQLVAR contain 
column names (where they exist).  The second n occurrences 
contain column labels.  Occurrence n+1 contains the label of column 
1; occurrence n+2, the label of column 2; and so on. 

Data Type of the Column and Null Value 

The following applies when the value expected or returned has a code showing the data 
type of the column and whether it can contain null values, as shown below. 

 

Field Field Value Data Type Nulls 

SQLVAR SQLTYPE 384/385 date no/yes 

SQLVAR SQLTYPE 388/389 time no/yes 

SQLVAR SQLTYPE 392/393 timestamp no/yes 

SQLVAR SQLTYPE 436/437 numeric (zoned 
decimal) 

no/yes 

SQLVAR SQLTYPE 448/449 varying-length 
character string 

no/yes 

SQLVAR SQLTYPE 452/453 fixed-length 
character string 

no/yes 

SQLVAR SQLTYPE 456/457 long, 
varying-length 
character string 

no/yes 

SQLVAR SQLTYPE 464/465 varying-length 
graphic string 

no/yes 

SQLVAR SQLTYPE 468/469 fixed-length 
graphic string 

no/yes 

SQLVAR SQLTYPE 472/473 long varying-length 
graphic string 

no/yes 



SQLDA (DESCRIBE or PREPARE INTO Statements) 

 

872  SQL User Guide 
 

Field Field Value Data Type Nulls 

SQLVAR SQLTYPE 480/481 floating-point no/yes 

SQLVAR SQLTYPE 484/485 decimal (packed 
decimal) 

no/yes 

SQLVAR SQLTYPE 496/497 large integer no/yes 

SQLVAR SQLTYPE 500/501 small integer no/yes 

Note:  On DESCRIBE, the type codes 384/385, 388/389, and 392/393 denote date, time, 
and timestamp, respectively. However, host variables do not have date/time data types, 
so character string variables must be used to retrieve date/time values.  Thus, when the 
SQLDA describes host variables, these type codes denote fixed-length character string 
variables. 

 

Data Type of the Column 

The following applies when a value depends on the data type of the columns. 

 

Field Field Data Type Value 

SQLVAR SQLLEN Any string The length attribute of the 
column, that is, the 
maximum number of 
characters in a value 

SQLVAR SQLLEN FLOAT 8 

SQLVAR SQLLEN INTEGER 4 

SQLVAR SQLLEN SMALLINT 2 

SQLVAR SQLLEN DECIMAL(p,s) p in byte 1 
s in byte 2 

SQLVAR SQLLEN NUMERIC(p,s) p in byte 1 
s in byte 2 

SQLVAR SQLLEN DATE 10 

SQLVAR SQLLEN TIME 8 

SQLVAR SQLLEN TIMESTAMP 26 



SQLDA (EXECUTE, FETCH, or OPEN Statement) 

 

Appendix G: SQL Descriptor Area (SQLDA)  873  
 

SQLVAR and SQLTYPE 

Before you can use the SQLDA in an EXECUTE, FETCH, or OPEN statement, the SQLDATA 
field must be loaded with the address of the host-variable that is to receive data (for 
that column), while the SQLIND field must be loaded (if applicable) with the address of 
an indicator variable. 

 

Field Field Value Expected or Returned 

SQLVAR SQLDATA A value of -1 indicates FOR BIT DATA. 

SQLVAR SQLIND Reserved. 

SQLVAR SQLNAME-VARCHAR A varying-length string (VARCHAR(30)) which 
contains the unqualified name of the 
column, or the label of the column, 
depending on the value of USING (NAMES, 
LABELS, ANY, or BOTH). Also, a string of 
length 0 if a column name is to be used but 
no column name exists (for example, the 
column of the result table is an expression). 

SQLDA (EXECUTE, FETCH, or OPEN Statement) 

For the EXECUTE, FETCH, or OPEN statement, the SQLDA which describes the host 
variables must contain the following values: 

 

Field Value Expected or Returned 

SQLAID Not used 

SQLABC Length of the SQLDA, equal to SQLN*44 + 16  (set by CA Datacom/DB) 

SQLN Total number of occurrences of SQLVAR provided in this SQLDA 
(set by user, see Determining Number of SQLVAR Entries to Use (see 
page 869)) 

SQLD Number of host variables described by occurrences of SQLVAR 

Note:  The fields of each occurrence of SQLVAR must contain the following values. 

 

Field Field Value Data Type Nulls 

SQLVAR SQLTYPE 384/385 fixed-length 
character string 

no/yes 



SQLDA (EXECUTE, FETCH, or OPEN Statement) 

 

874  SQL User Guide 
 

Field Field Value Data Type Nulls 

SQLVAR SQLTYPE 388/389 fixed-length 
character string 

no/yes 

SQLVAR SQLTYPE 392/393 fixed-length 
character string 

no/yes 

SQLVAR SQLTYPE 436/437 numeric (zoned 
decimal) 

no/yes 

SQLVAR SQLTYPE 448/449 varying-length 
character string 

no/yes 

SQLVAR SQLTYPE 452/453 fixed-length 
character string 

no/yes 

SQLVAR SQLTYPE 456/457 long, 
varying-length 
character string 

no/yes 

SQLVAR SQLTYPE 464/465 varying-length 
graphic string 

no/yes 

SQLVAR SQLTYPE 468/469 fixed-length 
graphic string 

no/yes 

SQLVAR SQLTYPE 472/473 long 
varying-length 
graphic string 

no/yes 

SQLVAR SQLTYPE 480/481 floating-point no/yes 

SQLVAR SQLTYPE 484/485 decimal (packed 
decimal) 

no/yes 

SQLVAR SQLTYPE 496/497 large integer no/yes 

SQLVAR SQLTYPE 500/501 small integer no/yes 

SQLVAR SQLTYPE 504/505 COBOL display 
sign leading 
separate 

no/yes 

Defines the external length of a value from the host variable, as shown in the following 
table. 

 

Field Field Data Type Value 

SQLVAR SQLLEN VARCHAR Length attribute in bytes 

SQLVAR SQLLEN GRAPHIC Precision (number of double-byte 
characters) 



SQLDA (EXECUTE, FETCH, or OPEN Statement) 

 

Appendix G: SQL Descriptor Area (SQLDA)  875  
 

Field Field Data Type Value 

SQLVAR SQLLEN VARGRAPHIC Precision (max number of double-byte 
characters) 

SQLVAR SQLLEN CHARACTER Length attribute in bytes 

SQLVAR SQLLEN FLOAT 8 (bytes) 

SQLVAR SQLLEN INTEGER 4 (bytes) 

SQLVAR SQLLEN SMALLINT 2 (bytes) 

SQLVAR SQLLEN DECIMAL Precision in byte 1, scale in byte 2 

SQLVAR SQLLEN NUMERIC Precision in byte 1, scale in byte 2 

SQLVAR SQLLEN DATE 10 (bytes) 

SQLVAR SQLLEN TIME 8 (bytes) 

SQLVAR SQLLEN TIMESTAMP 26 (bytes) 

SQLVAR and VS/COBOL 

Before you can use the SQLDA in an EXECUTE, FETCH, or OPEN statement, the SQLDATA 
field must be loaded with the address of the host variable that is to receive data (for 
that column), while the SQLIND field must be loaded (if applicable) with the address of 
an indicator variable. 

In VS/COBOL II a "pointer" data type field can be associated with each host variable.  
The value in these pointer fields can be moved to the SQLDATA field to load the address 
of the host variable. In VS/COBOL, an Assembler subroutine must be used to determine 
the address of the host variable (see the example Assembler subroutine in the sample 
dynamic SQL program on the installation tape). 

 

Field Field Value Expected or Returned 

SQLVAR SQLDATA Contains the address of the host variable. 

SQLVAR SQLIND If there is an associated indicator variable, SQLIND 
contains its address.  If there is not an associated 
indicator variable, SQLIND is not used. 

SQLVAR SQLNAME Not used 

 


	CA Datacom/DB SQL User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	System Tasks
	Syntax Diagrams
	CA Datacom/DB Extensions
	Where to Find Information
	Related Publications
	Listing Libraries for CA Datacom Products
	Sample Report Headers
	Reading Syntax Diagrams
	Statement Without Parameters
	Statement with Required Parameters
	Delimiters Around Parameters
	Choice of Required Parameters
	Default Value for a Required Parameter
	Optional Parameter
	Choice of Optional Parameters
	Repeatable Variable Parameter
	Separator with Repeatable Variable and Delimiter
	Optional Repeatable Parameters
	Default Value for a Parameter
	Variables Representing Several Parameters

	CA Datacom/DB Extensions

	2: Before You Start
	What Is SQL?
	What You Should Know About SQL
	Tables
	Columns
	Rows
	Views
	Table and View Examples
	Indexes
	Cursors
	Units of Work
	Units of Recovery (Logical Unit of Work)
	Isolation Levels
	Repeatable Read Interlocks

	Schemas
	Authorization ID
	Accessor ID
	Privileges
	Synonym
	SQL Statements
	Binding
	Plan

	SQL Manager
	Reserved Words

	3: Getting Started
	SQL Schemas
	SQL Tables
	SQL Tables and Logging
	Creating SQL Tables
	Using Existing Tables

	Populating SQL Tables
	Accessing SQL Tables
	Selecting and Manipulating Data
	Specifying Preprocessor Options
	Preparing Programs
	Mixed Mode Programming

	Statement Execution Table
	Dynamic SQL
	Static SQL
	Dynamic SQL
	Dynamic SQL in CA Datacom/DB
	INCLUDE Directive
	Name Types
	Reserved Words
	Parameter Markers
	Security Implications of Dynamic SQL
	Using Dynamic SQL in Application Programs
	Performance Considerations
	Classes of Use
	Using DBXHAPR in Dynamic SQL
	Dynamic SQL for Non-SELECT Statements
	Dynamic SQL for Fixed-List SELECT Statements
	Dynamic SQL for Varying-List SELECT Statements
	Dynamic SQL for Arbitrary Statement-Types


	Other Tasks
	SQL Status Tables
	Procedures and Triggers
	Overview
	LUW Control
	Thin Client/Fat Server
	Enforcing Business Rules
	Enhanced Security
	Automatically Generating Alerts
	Relational View of Nonrelational Data
	Summary

	SQL Procedures
	External Security Support for Procedure/Trigger Creation and Execution
	Trigger Execution for Record-at-a-Time Maintenance
	Transaction Integrity
	Subroutine Calls Inside Procedures
	Restrictions
	Multi-User Facility Considerations for Procedures
	Number of Procedure TCBs
	Performance Considerations

	Parameter Styles and Error Handling
	SQL Error Messages Related to Procedures and Triggers
	Datadictionary Support for Triggers and Procedures
	Processing
	ALTER TABLE Processing Modifications
	COMMENT ON Processing
	DROP TABLE Processing Modifications

	Examples: Creating a Procedure
	Coding the Program
	Sample JCL for C
	Sample JCL for z/OS
	Sample JCL for z/VSE
	Defining the Procedure to SQL

	Example: Calling a Procedure
	Using a Trigger
	Using Embedded SQL


	Left Outer Joins
	Overview of Joins
	SELECT Statement Subselect Syntax
	SELECT Statement Select-Into Syntax
	Inner Join Example
	Outer Join Example
	Value of Rows That Do Not Match
	WHERE Clause
	Performance Considerations
	Order of Predicate Evaluation
	Non-Matching Rows
	Order of Joins
	NULL Indicator Variables


	SQL Memory Guard
	Activating the SQL Memory Guard

	SQL and Multiple Multi-User Facilities Support
	Application Design Considerations
	Index-Only Processing
	Cursor Processing

	DBSQLPR
	Processing
	Line Commands
	DBSQLPR Syntax
	DBSQLPR Options
	DROP PLAN (DBSQLPR)
	Example JCL
	Example SQL Statements
	Sample Report

	DATACOM VIEWs
	Overview
	Redefinitions
	Example of Multiple Record Types

	Arrays
	Additional Items to Consider

	Default Values for Redefinitions and Arrays
	Additional Considerations

	Datadictionary Considerations
	Datadictionary SQL Column Report


	Using SQC Table to Cancel SQL Requests
	Overriding SQL Key Selection
	Examples
	XML Support

	SQL Read-Only

	4: CA Datacom/DB SQL Preprocessors
	Input to the Preprocessor
	INCLUDEs in COBOL
	INCLUDEs in PL/I
	INCLUDEs in Assembler
	INCLUDEs in C

	Output from the Preprocessors
	COBOL
	PL/I, Assembler, and C

	Sample JCL
	Sample COBOL JCL
	z/OS Sample COBOL JCL for Batch
	z/OS Sample COBOL JCL for CICS
	CA Datacom IMS/DC Services Sample COBOL z/OS JCL
	z/VSE Sample COBOL JCL for Batch
	z/VSE Sample COBOL JCL for CICS

	Sample PL/I JCL
	z/OS PL/I Sample JCL
	z/VSE PL/I Sample JCL

	Sample Assembler JCL
	z/OS Assembler Sample JCL
	z/VSE Assembler Sample JCL

	Sample C Language JCL
	z/OS C Language Sample JCL
	z/VSE C Language Sample JCL


	Embedding SQL Statements in Host Programs
	Distinguishing SQL Statements
	COBOL
	PL/I and C
	Assembler

	Rules for Coding Embedded SQL
	Additional Assembler Requirements

	Coding Embedded SQL in COBOL
	IDENTIFICATION DIVISION
	DATA DIVISION
	WORKING-STORAGE SECTION
	Host-Variable Definitions in COBOL
	PROCEDURE DIVISION
	INCLUDE Directive in COBOL

	Coding Embedded SQL in PL/I
	Distinguishing Storage for Use as Host-Variables in PL/I
	Host-Variable Declarations for PL/I
	Rules for SQL INCLUDEs in PL/I

	Coding Embedded SQL in Assembler
	Rules for Coding Host Variables in Assembler
	Host Variable Declarations for Assembler
	Rules for SQL INCLUDEs in Assembler

	Coding Embedded SQL in C
	Rules for Coding Host-Variables in C


	Using Preprocessor Options
	Overview
	Naming the Plan
	Specifying Processing Options in COBOL
	When to Delete an Existing Plan
	Coding Preprocessor Options in COBOL

	Specifying Processing Options in PL/I, C, and Assembler
	Using the Option File Method in PL/I, C, and Assembler
	PL/I Example
	C Example
	Assembler Example
	Using the Execution Parameters Method in PL/I, C, and Assembler
	Example 1 z/OS for PL/I, C, and Assembler
	Example 2 z/OS for PL/I, C, and Assembler
	Example 3 z/VSE for PL/I, C, and Assembler
	Using the Source Method in PL/I, C, and Assembler
	Example 1 for PL/I and C
	Example 1 for Assembler
	Example 2 for PL/I and C
	Example 2 for Assembler
	Example 3 for PL/I and C
	Example 3 for Assembler

	Options You Can Specify
	Valid Options per Language

	Description of Options
	COBOL Examples
	COBOL Example 1
	COBOL Example 2


	SQL Communication Area (SQLCA)
	SQLCA in COBOL
	SQLCA in PL/I
	SQLCA in Assembler
	SQLCA in C Language
	Example SQLCA Formats
	SQLCA - CA Datacom/DB Format (COBOL)
	SQLCA - CA Datacom/DB Format (PL/I)
	SQLCA - CA Datacom/DB Format (Assembler)
	SQLCA - (C Language)
	Description of SQLCA in CA Datacom/DB Format
	Warning Array - COBOL
	Warning Arrays - PL/I, Assembler, C
	SQLCA - DB2 Format (COBOL)
	SQLCA - DB2 Format (PL/I)
	DB2 format (non-ANSI)
	SQLCA - DB2 Format (Assembler)
	SQLCA - (C Language)
	Description of SQLCA in DB2 Format


	SQL Work Area (SQLWA)
	SQLWA Examples
	SQLWA in COBOL
	SQLWA in PL/I
	SQLWA in Assembler
	SQLWA in C
	SQLWA - COBOL
	SQLWA - CA Datacom/DB Format (PL/I)
	SQLWA - DB2 Format (PL/I)
	SQLWA - CA Datacom/DB Format (Assembler)
	SQLWA - DB2 Format (Assembler)
	SQLWA - Format for C Language


	Error Handling
	Interaction of Multiple Preprocessors
	SQL Plan Options Special Topics
	Read-Only
	Mixing Isolation Levels
	Locking a Row
	CICS Unit of Recovery End
	ANSI Compatibility
	CA Ideal Considerations
	Block Transfer
	OPEN/CLOSE Efficiency
	Automatic Unit of Recovery End
	Plan Locks


	5: Interfacing with the User Requirements Table (URT)
	DBURINF - User Requirements Interface
	DBURSTR - Start User Requirements Table
	DBUREND - End Interface/Table
	Example

	6: Program Compilation, Link-Edit and Execution
	Batch Link-Editing and Execution
	Linking Multiple Modules with SQL
	Sample JCL for Batch
	CICS Link-Editing and Execution
	Sample JCL for CICS
	IMS/DC Link-Editing and Execution
	Sample JCL for IMS/DC
	z/OS IMS/DC Sample JCL


	7: SQL Error Handling
	SQL Return Codes - 117 and - 118
	Online Displays
	Batch Output
	Error Handling Related to Procedures and Triggers
	SQL States
	SQLCA Examples
	SQLCA - CA Datacom/DB Format (COBOL)
	SQLCA - CA Datacom/DB Format (PL/I)
	SQLCA - CA Datacom/DB Format (Assembler)
	SQLCA in C Language

	SQL State Classes
	SQL States Table


	8: Application Tasks Using Embedded SQL
	9: Specifying Result Tables
	Selecting All Columns
	Selecting Some Columns
	Selecting Using Search Conditions
	Ordering by Column Values
	Eliminating Duplicate Rows
	Counting
	Calculating Values
	Summarizing Group Values
	Testing for Existence

	10: Selecting Data from Multiple Tables
	Joining Tables
	Using the UNION Operator

	11: Inserting Rows
	12: Updating a Table
	13: Deleting Rows
	14: Committing and Backing Out Transactions
	15: Overview of the Interactive SQL Service Facility
	16: Using the Interactive SQL Service Facility
	Executable SQL Statements
	Specifying Unique SQL Names
	Submitting SQL Statements
	How to Submit SQL Statements
	How to Use

	Using Commands
	Commands Specifically for Use in the Interactive SQL Service Facility
	ALTERNATE Command
	COPY SQL Command
	DELETE SQL Command
	DISPLAY SQL Command
	EDIT SQL Command
	EXECUTE Command
	REBIND Command
	SCROLL Command

	Using Line Commands
	Using Margin Commands
	Using PF Keys
	Maintaining Source and Output Members
	Editing and Executing Source Members
	Displaying Source and Output Members
	Copying Source Members
	Deleting Source and Output Members


	17: Creating SQL Objects
	Creating a Schema
	Naming the Schema
	Relating the Person to the AUTHID
	Changing Your AUTHID
	System Schemas
	Displaying and Reporting
	Example Source Member
	Example Output Member

	Creating a Table
	Naming the Table
	Key Creation
	Element Creation
	Statement Execution Results
	Example Source Member
	Example Output Member

	Altering a Table
	Statement Execution Results
	Example Source Member
	Example Output Member

	Creating an Index
	Naming the Index (Key)
	Key Creation
	Statement Execution Results
	Example Source Member
	Example Output Member

	Creating a View
	Naming the View
	Example Source Member
	Example Output Member

	Creating a Synonym
	Naming the Synonym
	Example Source Member
	Example Output Member

	Adding and Replacing Comments
	Example Source Member
	Example Output Member


	18: Deleting SQL Objects
	Deleting a Schema
	Dropping an Index
	Dropping a Table
	Dropping a View
	Dropping a Synonym

	19: Manipulating Data in SQL Tables
	20: Controlling Access Through SQL Statements
	21: Performing SQL Administrative Tasks
	SQL Names
	Setting the Session Authorization ID
	Current Authorization ID at Start of Session
	Displaying and Reporting
	How to Set the Default

	Deleting a Plan
	How the Plan Is Named
	How to Delete a Plan

	Rebinding a Plan
	How to Rebind a Plan

	Displaying Index of SQL Plans
	How to Display an Index of SQL Plans

	Specifying Plan Options in a Source Member
	Coding Plan Options
	Options You Can Specify
	Example


	22: Overview of SQL Language Reference
	23: Basic Language Elements
	Characters
	Tokens
	Spaces
	Uppercase and Lowercase

	Identifiers
	Ordinary SQL identifiers
	Delimited SQL identifiers

	Naming Conventions
	Authorization ID
	Values
	Data Types
	DATE, TIME, and TIMESTAMP
	Host Variable Data Types
	SQL Data Types
	CA Datacom/DB Data Types
	SQL Data Type Support for All CA Datacom/DB Tables
	Character Strings
	VARCHAR and LONG VARCHAR
	GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC

	Numeric Data Types

	Basic Operations (Assignment and Comparison)
	Numeric Assignments
	String Assignment
	Assignment for Dates, Times, and Timestamps

	Numeric Comparisons
	String Comparisons
	Comparisons for Dates, Times, and Timestamps


	Literals
	Character String Literals
	First Form
	Second Form (HEX)

	Integer Literals
	Floating Point Literals
	Decimal Literals

	Column Names
	Qualified Column Names
	Correlation Names
	SQL Index Binding

	Column-Name Qualifiers to Avoid Ambiguity
	Table Designators
	Avoiding Undefined or Ambiguous References

	Column-Name Qualifiers in Correlated References

	Host Variables
	Host Structures
	Extended Format for Host Variables in COBOL

	Indicator Variables
	SQL Parameters
	SQL Variables

	24: Expressions
	CASE, COALESCE, NULLIF, and CAST
	Special Registers
	Labeled Duration
	Expressions without Arithmetic Operators
	Expressions with the Concatenation Operator
	Expressions with Arithmetic Operators
	Arithmetic Operations for Dates, Times, and Timestamps
	Durations

	Precedence of Operations

	25: Functions
	Column Functions
	Description
	Rules for Column Functions
	Examples

	Scalar Functions
	Rules for Scalar Functions
	Description
	Character Functions
	Bit-Level Functions
	Byte-Level Function
	XML Functions
	XML Overview
	Descriptions of Functions
	XMLELEMENT
	XMLATTRIBUTES
	XMLFOREST
	XMLSERIALIZE
	XMLCONCAT




	26: Predicates
	Basic Predicate
	Quantified Predicate
	BETWEEN Predicate
	LIKE Predicate
	EXISTS Predicate
	IN Predicate
	NULL Predicate

	27: Search Conditions
	28: SQL Statements
	Preliminary Information--Lock Levels
	Statements That Support Procedures and Triggers
	ALTER TABLE
	Description
	Processing
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7


	Assignment Statement
	CALL/EXECUTE PROCEDURE
	CASE Statement
	CLOSE
	Description
	Processing
	Example


	COMMENT ON
	Description
	Example 1
	Example 2
	Example 3
	Example 4


	COMMIT WORK
	Description
	Example


	CREATE INDEX
	Description
	Processing
	Example


	CREATE PROCEDURE
	External Procedures
	SQL Procedures
	CREATE PROCEDURE Syntax and Description
	Diagnostics and Condition Handling
	Diagnostics Area
	Condition Handler
	Condition Handlers Optional
	SQLSTATE and SQLCODE Special Variables
	Code Example 1
	Code Example 2
	Assignment Statement
	Example
	CASE Statement
	Examples
	Compound Statement
	Example
	DATACOM DUMP Statement
	Example
	GET DIAGNOSTICS Statement
	Example
	IF-THEN Statement
	Example
	ITERATE Statement
	Example
	LEAVE Statement
	Example
	LOOP Statement
	Example
	RAISE ERROR Statement
	Example
	REPEAT-UNTIL Statement
	Example
	RESIGNAL Statement
	Example
	SIGNAL Statement
	Example
	SIMULATE DATACOM PROCEDURE Statement
	Example
	Examples
	WHILE Statement


	CREATE RULE
	CREATE SCHEMA
	Description
	Example


	CREATE SYNONYM
	Description
	Example


	CREATE TABLE
	Description
	Privileges
	Column Definition
	Description

	Column Constraint Definition
	Description

	Table Constraint Definition
	Description

	Referential Constraint Definition
	Description
	Referential Actions That Conflict

	Data Types
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5


	CREATE TRIGGER/RULE
	CREATE VIEW
	Privileges
	Description
	Processing
	Example 1
	Example 2
	Example 3


	DECLARE CURSOR
	Description
	Cursor Usage
	Example1
	Example 2
	Example 3

	DECLARE STATEMENT
	DELETE
	Searched DELETE
	Positioned DELETE
	Description
	Processing
	Example 1
	Example 2
	Example 3


	DESCRIBE
	Description
	Example


	DROP
	Description
	Example 1
	Example 2
	Example 3

	EXECUTE
	Description
	Parameter Marker Replacement
	Example


	EXECUTE IMMEDIATE
	Description
	Rules for Statement Strings
	Example


	EXECUTE PROCEDURE
	FETCH
	Description
	Example


	GRANT
	Plan Security
	Description of Plan Security Diagram
	Description of Non-Plan Security Diagram
	Example 1
	Example 2
	Example 3


	IF-THEN Statement
	INSERT
	Description
	Rules for Inserting
	Processing
	Example 1
	Example 2
	Example 3


	ITERATE Statement
	LEAVE Statement
	LOCK TABLE
	Description
	Example

	LOOP Statement
	OPEN
	Description
	Processing
	Effect of Temporary Tables
	Example

	PREPARE
	Description
	Rules for Statement Strings
	Rules for Parameter Markers
	Example


	REPEAT-UNTIL Statement
	REVOKE
	Plan Security
	Description of Plan Security Diagram
	Description of Non-Plan Security Diagram
	Example 1
	Example 2
	Example 3

	ROLLBACK WORK
	Description
	Example


	SELECT
	Subselect
	Description
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	SELECT Clause
	Applying the Select List
	Example 1
	Example 2
	Example 3
	Example 4

	Full-Select Statement
	Description
	Duplicate Rows
	Rules for Columns
	Example 1
	Example 2

	Select-Statement
	Description

	ORDER BY Clause
	Description
	Processing
	Examples
	Example

	Select-Into Statement
	Description
	SELECT Clause
	Applying the Select List
	INTO Clause
	FROM Clause
	WHERE Clause
	Example 1.
	Example 2.


	SET CURRENT SQLID
	Description
	Example

	UPDATE
	Searched UPDATE
	Positioned UPDATE
	Description
	Processing
	Example 1
	Example 2
	Example 3


	WHENEVER
	Description
	Processing
	Example

	WHILE Statement

	A: SQL Query Optimization Messages
	Message Table (SYSADM.SYSMSG)
	Requesting Messages
	Bind-time Messages
	Bind-time Summary Messages
	Bind-time Detail Messages

	Execution-Time Messages
	Execution-Time Summary Messages
	Execution-Time Detail Messages

	Examples

	B: Accessibility Features
	C: Sample Data Tables
	CUSTOMERS Table: Sample Data
	ORDERS Table: Sample Data

	D: Results of Defining Structures Using SQL Statements
	CREATE INDEX Statement
	CREATE PROCEDURE Statement
	CREATE SCHEMA Statement
	CREATE TABLE Statement
	CREATE SYNONYM Statement
	CREATE TRIGGER Statement
	CREATE VIEW Statement

	E: Results of Using ALTER TABLE
	F: SQL Object Consistency Analyzer and Upgrade Rebind Utilities
	SQL Object Consistency Analyzer
	Running the SQL Object Consistency Analyzer
	Sample JCL
	General Utility Sample Report

	Object Consistency Analyzer Sample Report

	Correcting Problems
	Correcting Constraint Problems
	Correcting Plan Problems
	Correcting View Problems


	DBSRFPR (SQL Upgrade Rebind Utility)
	Rebinding with DBSRFPR
	Dropping Plans with DBSRFPR
	Sample JCL


	G: SQL Descriptor Area (SQLDA)
	Determining Number of SQLVAR Entries to Use
	SQLDA (DESCRIBE or PREPARE INTO Statements)
	Data Type of the Column and Null Value
	Data Type of the Column
	SQLVAR and SQLTYPE

	SQLDA (EXECUTE, FETCH, or OPEN Statement)
	SQLVAR and VS/COBOL




