

Content Provider Development Guide
Release 14.5

CA DataMinder

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA DataMinder

■ CA Directory

■ CA Site Minder

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Summary 7

Chapter 2: Introduction 9

Content Provider Characteristics ... 10

Specifying Which Content Provider to Use .. 13

Chapter 3: Implementing the Content Provider CoClass 15

ICISContentProvider Interface Methods .. 15

Sequence of Operation from a Client (ICISContentProvider) ... 16

Chapter 4: Implementing the Indexer Function 17

Indexer Instance ... 17

Sequence of Operation from a Client (Indexer) ... 22

Chapter 5: Implementing the Query Function 23

Query Instance ... 23

Sequence of Operation from a Client (Query) ... 25

Appendix A: Accessibility Features 27

Display .. 27

Sound ... 28

Keyboard .. 28

Mouse .. 29

Chapter 1: Summary 7

Chapter 1: Summary

This guide provides a general description of how to develop a Content Provider for the
CA DataMinder Content Services.

By default, CA DataMinder uses Autonomy IDOL as the database system for its Content
Classification Service. CA DataMinder comes with a Content Provider that interfaces
with the Autonomy IDOL database. You can develop a custom content provider that
interfaces with your own database system.

The intended audience is the developer or team tasked with the implementation of a
Content Provider. The reader must be familiar with CA DataMinder's terminology and
general architecture. The reader must be fluent with the Microsoft Component Object
Model (COM).

Read this document together with the Content Provider interface definitions file
(ICISContentProvider.idl) and the Content Provider XML example and documentation
(CISContentProvider.xml).

The introduction gives an overview of Content Providers and includes a summary of the
required main characteristics of a Content Provider. The guide then provides a detailed
look at the implementation of the entry point of a Content Provider, and its indexing
and searching functions.

Note: The CA DataMinder product documentation and log messages refer to Content
Providers as ‘Content Connectors’. The term Content Provider is used in the code and in
all the APIs, and is therefore used in this guide.

Chapter 2: Introduction 9

Chapter 2: Introduction

The CA DataMinder Content Services consist of three components (outlined in green in
the diagram):

■ Content Indexer,

■ Content Proxy,

■ Content Database

The Content Indexer runs configurable jobs which pull events and their data from a CMS
database. Then the Content Indexer pushes the events to the Content Database for
indexing. The Content Proxy turns content search requests into queries for the Content
Database, and returns search results.

The Content Database stores the indexed content data. The Content Database consists
of a third-party database system which interfaces with the rest of the Content Services
through a Content Provider.

Content Providers form an abstraction layer for the rest of the Content Services. A
Content Provider provides an abstraction for a specific database system, and contains all
database-specific code. The Content Indexer and Content Proxy are database-agnostic.

■ (Green) Content Services components provide the indexing and searching services.

Content Provider Characteristics

10 Content Provider Development Guide

■ (Blue) Current consumers of the services:

The Content Indexer Console (for indexing) connects to the Content Indexer; the
iConsole web server (for searching) connects to the Content Proxy. In the Content
Indexer’s case, connection is direct, through COM, to the Content Indexer Server. In
the Content Proxy’s case, connection is through COM to the Content Proxy Client,
which communicates proprietarily with the Content Proxy Server. The Content
Indexer Server also communicates directly with the CMS from which it draws the
events to index.

■ (Red) The Content Database provides indexing and searching capabilities to the
Content Indexer and the Content Proxy. The Content Provider provides the
interfacing layer (using COM) for the Content Database to the Content Indexer and
the Content Proxy.

Content Provider Characteristics
COM Interfacing

The Content Provider public interfaces are COM interfaces.

■ A Content Provider must be a COM server.

■ A Content Provider must implement one public coclass with a CLSID assigned
by the implementer; the coclass exposes the ICISContentProvider interface
with the following IID:

{4daaab52-d5c5-11d4-b613-000102027bbb}.

■ The coclass must be multithreaded.

■ An implementer can develop the COM server to run as a separate process, or
to be an in-process server using a DLL. If the latter, the DLL must be 32-bit,
since the Content Indexer and Content Proxy are currently 32-bit processes;
also, the threading model must be ‘Both’ so the server runs in the apartment of
the client.

■ All other COM interfaces (and whichever COM identities support them) that are
exposed by a Content Provider are accessed solely using methods on the
ICISContentProvider interface.

Clients and Sessions

A CA DataMinder component (Content Indexer, Content Proxy, or any other) that
connects to a Content Provider is called a client.

When a client creates an object instance of the public coclass, this instance forms a
session with the Content Provider. A client may potentially have multiple sessions
with a Content Provider. Each session is independent.

Content Provider Characteristics

Chapter 2: Introduction 11

Functions

A Content Provider can provide up to two functions: an “Indexer” function and a
“Query” function.

■ A Content Provider may implement only one of the function (for segregation of
functionality across multiple hosts), but will typically implement both functions.

■ For each function that it supports, a Content Provider must be able to provide
logical instances of it to clients. When a client requests any function instance
through a session, the Content Provider creates a logical instance of the
function. The Content Provider returns to the client a function-specific COM
interface pointer to access the instance. You can therefore have indexer
instances and query instances.

■ How the COM identity that is underlying an instance is implemented is at the
discretion of the Content Provider, but logical segregation must exist. That
means, from the point of view of a client session, each function instance is
independent, in configuration and in execution, from any other instance and
any other function. An exception would be an irrecoverable problem that
occurs in a function instance that requires the whole Content Provider to shut
down; in this case, all other function instances are obviously affected. Just like
for the public coclass, the implementations of the functions must be
multithreaded.

Use of XML

The Content Provider and its clients use XML to pass information back and forth.

■ Encoding is restricted and constrained to be little-endian UTF-16.

■ A Content Provider is responsible for providing XML that is little-endian UTF-16,
and that is guaranteed to be valid for the XML schema version it declares to
support.

Own Configuration

A Content Provider needs to manage two sets of configuration parameters for itself.

■ External database-specific configuration parameters control how the Content
Provider interfaces with the third-party database system. For example, this can
be a communication port number.

■ Internal configuration parameters control how the Content Provider manages
itself. For example, this can be a timeout value to report a document indexing
operation as failed if the third-party database system has not responded in
time.

Content Provider Characteristics

12 Content Provider Development Guide

These configuration parameters are the Content Provider’s responsibility and are
entirely under its control. Where and how these parameters are located and set up
is up to each Content Provider. We recommend the use of the registry. Clients do
not have access to these parameters.

Note: CA Technologies has provisionally defined an ICISConfigure interface together
with an example of XML structure. The aim is to pass configuration information
from and to a Content Provider (including a Content Provider’s own configuration,
for instance to allow GUI-based configuration management). This interface is
currently reserved. Do not implement it.

Own logging

■ A Content Provider is free to do its own logging (which is recommended).

■ A Content Provider does not do any logging for its clients. Each client does its
own logging, and depends on status reports from a Content Provider to do so.

Status Reports

Content Providers use Status reports to report on the state of a function instance,
on the progress of an operation (including its start) and its outcome (completion),
or on the result of an action by a client (feedback). Status reports are also used to
return search results and output from GetStatus() calls.

Apart from returning search results etc, there are two reasons why Content
Providers generate status reports:

a. A client depends on status reports to log the state of its functions in use, and to
log the progress of its individual operations. This logging is crucial to keep the
customer informed of what is happening, and also for diagnostic purposes.

b. A client depends on status reports to control its execution, for example, to
keep track of the indexing of documents.

Status Callback Mechanism

■ All status reports are made through ICISStatusCallback callback interface
pointers supplied by a client. The only exceptions are status reports that are
returned directly as an output of an interface method call, for example,
ICISContentIndexer::GetStatus().

■ A client must pass valid status callback interface pointers to a Content Provider.

■ A Content Provider must use the appropriate status callback interface pointers
to send status reports, and it must do so on time.

■ A Content Provider may aggregate multiple status reports to send through the
same status callback interface pointer. It may report them all with one call to
ICISStatusCallback::ReportStatus() rather than with multiple individual calls.

Specifying Which Content Provider to Use

Chapter 2: Introduction 13

Status codes

Status codes are of data type HRESULT.

■ Content Providers should only return either standard status codes (for
example, E_OUTOFMEMORY), or common status codes which are defined in
ICISContentProvider.idl for use by all Content Provider implementations. This
applies to HRESULTs returned from interface method calls and also to
HRESULTs reported in status reports.

■ A Content Provider should not return private HRESULTs. Private status codes
are unknown to clients and they cannot interpret them. Also they cannot be
resolved into messages that can be logged by clients.

■ A Content Provider can ‘attach’ custom messages to common or standard
HRESULTs in status reports. For example, database-specific error messages. See
“Custom message information” in CISContentProvider.xml.

■ Clients log the custom message information (message text, code, severity)
verbatim.

■ Content Providers are encouraged to provide custom messages because such
messages provide valuable information for diagnostic purposes.

Note: The current list of status codes was defined to support CA DataMinder’s
first Content Provider implementation. It is generic and limited in scope.
Content Provider implementers are welcome to suggest new common status
codes that they feel are valuable to return.

Specifying Which Content Provider to Use

By default, the CA DataMinder Content Services use the coclass with the CLSID
{521fdd42-d5c5-11d4-b613-000102027bbb}. By extension this identifies the Content
Provider that is used.

You can override the default by setting the CLSID of the core coclass of the desired
Content Provider in the following registry value:

On 32-bit Windows:

HKEY_LOCAL_MACHINE\SOFTWARE\ComputerAssociates\CA DataMinder

 \CurrentVersion\Content Services

CustomProviderCLSID REG_SZ

On 64-bit Windows (pointing to the 32-bit registry):

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ComputerAssociates\CA DataMinder

 \CurrentVersion\Content Services

CustomProviderCLSID REG_SZ

Chapter 3: Implementing the Content Provider CoClass 15

Chapter 3: Implementing the Content
Provider CoClass

An instance of the Content Provider public coclass forms a session with a client.

The Content Provider coclass does very little. Its ICISContentProvider interface has three
methods, GetInformation(), CreateIndexerInstance(), and CreateQueryInstance().

ICISContentProvider Interface Methods
GetInformation()

This method returns to a client an XML document entity which contains information
about the Content Provider.

■ A client uses this information for logging purposes, but also to verify that a
function that it intends to use is supported (refer to the <Functions> element),
and has the required characteristics (such as synchronous indexing).

■ A client is responsible for verifying the XML schema version reported as
supported by the Content Provider. A client which continues, and uses the
Content Provider functions, is implicitly guaranteeing the Content Provider that
it passes it XML according to that schema version.

CreateIndexerInstance()

The Content Provider returns to the client a pointer to an ICISContentIndexer
interface. As this is COM, the interface pointer must have been AddRef()ed before
being given out; it is the client’s responsibility to Release() it.

There is no restriction on the COM identity of the implementation behind the
ICISContentIndexer interface, but the Content Provider must maintain logical
separation of each “instance” thus returned, from other indexer instances, but also
from query instances, and from other sessions.

CreateQueryInstance()

The Content Provider returns to the client a pointer to an ICISContentQuery
interface.

There is no restriction on the COM identity of the implementation behind the
ICISContentQuery interface, but the Content Provider must maintain logical
separation of each “instance” thus returned from other query instances, but also
from indexer instances, and from other sessions.

Sequence of Operation from a Client (ICISContentProvider)

16 Content Provider Development Guide

Sequence of Operation from a Client (ICISContentProvider)
1. A client cocreates an instance of the Content Provider coclass, asking for the

ICISContentProvider interface.

2. The client calls GetInformation(), and if successful, verifies the XML schema version
indicated in the XML returned, and the functions supported by the Content
Provider, and their characteristics.

3. If the client is satisfied, it calls CreateIndexerInstance() or CreateQueryInstance().

4. Depending on what the client does, further calls to CreateIndexerInstance() or
CreateQueryInstance() or both, may be made. A client may also create new sessions
and bypass calling GetInformation() on these, since it would already have done the
verification previously.

Note: A client can be a discovery agent or be solely interested in the Content Provider’s
information, and not need access to indexing or searching.

Chapter 4: Implementing the Indexer Function 17

Chapter 4: Implementing the Indexer
Function

An Indexer [instance] is a state machine. It has three sets of states: pre-active, active,
and post-active.

■ The pre-active states are ”uninitialised” (as spelled here), and the intermediate
state ”initialising” (as spelled here).

■ The active states are “running” and “throttling”.

■ The post-active states are the intermediate state “terminating” and “terminated”.

Indexer Instance
State Transitions Diagram

A terminated indexer cannot be re-started, and that a terminating indexer cannot
be stopped terminating.

While active, an Indexer may also throttle, if supported by the Content Provider.
Throttling is a temporary state from which The Indexer either recovers (back to
“running”), or which the Indexer leaves by terminating.

Initializing

Initialization is implemented by the ICISContentIndexer::Init() method. The method
supplies the ICISStatusCallback interface pointer that the Indexer uses. See
ICISContentProvider.idl for more behavior details.

Indexer Instance

18 Content Provider Development Guide

Terminating

A client can actively terminate an Indexer by calling either
ICISContentIndexer::Abort() or Terminate(), or by the client releasing the last
reference to the ICISContentIndexer interface.

Alternatively, the Content Provider can terminate the Indexer. Such a
self-termination may occur for many reasons. For example, if the Content Provider
cannot recover from an error situation; if the content database is in a bad state that
cannot be recovered from; or if “throttling” is going on for too long and has hit a
timeout limit.

Throttling

A Content Provider must be in control of its content database system. This includes
monitoring its health, managing its connections, managing the data that is pushed
to it.

■ Throttling is a state controlled by a Content Provider [Indexer]. Throttling is
triggered when the Content Provider detects that the content database is not
keeping up with document indexing.

■ When a Content Provider [Indexer] decides to throttle, it delays the execution
of the ICISContentIndexer::Index()calls. The only effect from a client’s point of
view is that calls to Index() take longer to return, both in asynchronous and
synchronous behaviors. The length of the delay for each call can be fixed,
variable, or fully dynamic; that is entirely up to the Content Provider and the
sophistication of its throttling control and management.

■ The throttling continues while the Content Provider takes remedial action. For
example, this may involve doing nothing but waiting for queues to shrink.

■ Upon entering the throttling state, the Indexer must send a status report. This
may make a client pause calling ICISContentIndexer::Index(), independently of
the delaying mechanism.

■ The Indexer should send status reports at regular intervals if throttling
continues.

■ Finally the Indexer must send a status report when it recovers. If recovery is
not possible, it must start to terminate.

Indexing

A client queues a document for indexing by calling
ICISContentIndexer::Index().Index() queues the document and returns
CIS_S_PENDING.

By default, indexing is an asynchronous operation, with Index() returning when the
document is queued or if the queuing fails.

Indexer Instance

Chapter 4: Implementing the Indexer Function 19

If queued, the document is indexed in the background. When the document
indexing is complete, the Indexer sends a status report through the callback
interface. See also Asynchronous Behavior below.

a. Queuing a document should succeed, and Index() should return
CIS_S_PENDING.

b. A Content Provider should fail to queue a document only if the Indexer is not
“active” or if the parameters of the Index() call are structurally invalid (for
example, an invalid NULL pointer). Apart from these conditions, the queuing of
a document can only fail due to exceptional circumstances, such as failing to
allocate memory or failing to notify the client of the queuing.

Note: Notifying the client of the queuing by sending the “queued” status report
through the callback interface is an integral part of the queuing process. If
calling ICISStatusCallback::ReportStatus() fails, then the Indexer should fail the
queuing. This way, it is not possible to have a situation where the Indexer has a
document queued, but the client has not received the “queued” status report
for it.

c. If Index() fails to queue the document, it returns an error code. No status
report is generated for the document.

d. If Index() succeeds in queuing the document, it returns CIS_I_PENDING. The
Indexer sends a “queued” status report for the document through the callback
interface, typically before Index() returns. When the document’s indexing
completes, the Indexer sends a “completed” status report for the document,
regardless of whether the indexing was successful. The completed report can
contain a failure code.

This mechanism helps ensure that besides incorrect API usage (an issue at the
client) and a minimum of unexpected failures (for example, running out of
memory), the start and end of the document indexing process are always logged. In
other words, the acceptance of a document for indexing is the expected behavior,
even if the indexing fails almost immediately because of trivia such as an invalid
parameter value.

Note: Report any failure reason (such as invalid XML syntax, invalid configuration
parameter, connection failure to the content database service, inconsistent or
invalid document description, and others) through the "completed" status report.
This approach maximizes information provided through logging.

The Index() call supplies four separate pieces of data: the document to index (i.e. its
content), its description, its metadata, and some user reference data.

The user reference data is data that the Indexer must pass back in status reports
about the document. That data is for the sole use of the client. It cannot be
interpreted by a Content Provider.

Indexer Instance

20 Content Provider Development Guide

A client may pass the document content directly, using an IStream interface, or
through a file, by indicating contentInFile="true" in the document description.

■ Passing document content using files is an optional feature offered by a
Content Provider. A Content Provider may support it, but it is not mandatory.

■ If the Content Provider supports it, this capability must be indicated in the
Indexer function information element (see the XML schema), which alerts the
client that the capability is available.

■ If a client erroneously calls Index() with contentInFile="true", and the Content
Provider does not support the capability, then the Indexer should report that
the document’s indexing failed (for example, with CIS_E_NOT_SUPPORTED). As
per the rules, this means that the Index() call succeeds with CIS_S_PENDING,
the document is reported as “queued”, and then reported as “completed” with
a failure code.

An Indexer may delay the execution of the method if it is currently throttling.

See ICISContentProvider.idl for more behavior details.

Asynchronous Behavior

A Content Provider must support indexing document asynchronously. This is the
default behavior.

This means that calls to ICISContentIndexer::Index() return quickly (unless the
Indexer is throttling) with CIS_S_PENDING.

A Content Provider can also support synchronous document indexing. If so, this
capability must be indicated in the Indexer function information element (see the
XML schema).

The ICISContentIndexer::Init() method implementation must verify if a client is
wanting to configure the Indexer for synchronous document indexing, and fail if
appropriate (for example, with CIS_E_NOT_SUPPORTED).

See ICISContentProvider.idl for more detail about the expected behavior of
synchronous indexing and Index() in particular. Put simply, a synchronous version of
Index() wraps up the asynchronous behavior implementation and synchronizes the
“queued” and “completed” status reports before returning.

Note: The CA DataMinder 14.0 and 14.1 Content Indexer Server (client) does not
currently use synchronous indexing. This may change in future releases.

Indexer Instance

Chapter 4: Implementing the Indexer Function 21

Outstanding Indexing Operations on Termination

If an Indexer starts to terminate through a client request or through
self-termination, it goes into the “terminating” state. Two things must happen
before the Indexer moves on to the “terminated” state:

a. Any Index() call that was made before termination started and is currently in
progress, but with its document not yet queued, must fail with
CIS_E_SHUTDOWN.

b. Any document queued, but not completed, is abandoned immediately if the
termination is traumatic, for example, an Abort() call. If the termination is
normal, for example, a Terminate() call, then the document is allowed to
complete or to time out.

Any call to Index() after termination starts must fail with CIS_E_SHUTDOWN.

Status Reports

The Indexer sends status reports by calling the ReportStatus() method on the
ICISStatusCallback interface pointer that it received when the client called
ICISContentIndexer::Init().

The Indexer must send status reports when:

■ Initialization starts.

■ Initialization completes (independent of whether it was successful).

■ Throttling starts.

■ Throttling ends and normal running resumes.

■ Termination starts.

■ Termination completes.

■ The client asks for a flushing operation (see ICISContentIndexer::Flush()).

■ A document is queued for indexing.

■ A document’s indexing completes (independent of whether it was successful).

The Indexer may send optional status reports when, for example:

■ The indexer does not timely move on from a temporary state (initializing,
throttling, terminating).

■ A document’s indexing is taking too long.

■ Periodically, for instance to report the current value of monitored counters.

Multithreading

The implementation of the ICISContentIndexer interface must be multithreaded.

A client may call methods on an ICISContentIndexer interface pointer from multiple
threads (for example, worker threads).

Sequence of Operation from a Client (Indexer)

22 Content Provider Development Guide

Sequence of Operation from a Client (Indexer)
1. The client first verifies the Content Provider’s capabilities regarding indexing. For

more information see Sequence of Operation from a Client (see page 16).

2. The client (typically the Content Indexer service) uses its ICISContentProvider
interface pointer and calls CreateIndexerInstance() to get a ICISContentIndexer
interface pointer.

3. The client initializes the Indexer instance by calling ICISContentIndexer::Init().

4. Upon a successful initialization of the Indexer instance, the client cycles through the
documents it wants to index using that Indexer, calling ICISContentIndexer::Index()
for each of them.

5. If a client is batching documents, it may sometimes call ICISContentIndexer::Flush()
and possibly pause while it waits to be told of the completion of all the pending
documents at that point.

6. After having sent all its documents to be indexed, the client calls
ICISContentProvider::Terminate() or releases the ICISContentIndexer interface
pointer. The client also waits to be told of the completion of all the documents still
pending.

Note: Calling Terminate() may occur after waiting for the documents to complete;
that is entirely up to the client.

If the Content Indexer console operator stops an indexing job, the client that is
managing that job stops sending documents. The process effectively arrives at step 6
early. In exceptional circumstances, the client may stop sending documents, and call
ICISContentIndexer::Abort().

Chapter 5: Implementing the Query Function 23

Chapter 5: Implementing the Query
Function

A Query instance is a handler of search queries. Unlike an Indexer instance, which is
configured once using ICISContentIndexer::Init() and whose configuration applies to all
documents it indexes, a Query instance has each search call take its own configuration
parameters.

Query Instance
Searching

A client sends a query by calling ICISContentQuery::Search(). Search() executes the
query and returns results.

Searching is a synchronous operation by default, with Search() returning only when
it has search results, or if the query fails. See also Synchronous Behavior below.

a. The first thing that Search() does is try to “accept” the query. This is
conceptually similar to the queuing of a document with Index(), and is signaled
by the Query instance sending a “queued” status report to the client. To send
the status report, it uses the ICISStatusCallback interface pointer given as a
Search() call parameter.

b. A Content Provider should fail to accept a query only if the Search() call
parameters are structurally invalid (for example, a NULL ICISStatusCallback
interface pointer), or for other exceptional circumstances, such as failing to
allocate memory, or failing to notify the client of the query’s acceptance.

Note: Notifying the client of the query’s acceptance is an integral part of the
process, in a similar fashion to the queuing mechanism for indexing. If calling
ICISStatusCallback::ReportStatus() fails, then the Query instance should fail to
accept the query. This way, it is not possible to have a situation where a query
is accepted but the client has not yet received the “queued” status report for it.

c. If Search() fails to accept the query, it returns an error code. No status report is
generated for the query.

d. If Search() succeeds in accepting the query, it sends a “queued” status report
for the query. When the query completes, it sends a “completed” status report,
independent of whether it was successful. It then returns, either with a success
code and the results, or with a failure code (copied from the “completed”
status report) and no results.

Query Instance

24 Content Provider Development Guide

This mechanism helps ensure that besides incorrect API usage (an issue at the
client) and a minimum of unexpected failures (for example, running out of
memory), the start and end of a query is always logged. In other words, the
acceptance of a query is the expected behavior, even if it fails almost immediately
because of trivia such as an invalid parameter value. You should report any failure
reason, such as invalid XML syntax, invalid configuration parameter, connection
failure to the content database service, inconsistent or invalid search parameters,
and others, through the "completed" status report. This approach maximizes
information provided through logging.

The Search() call supplies two separate pieces of data: the query configuration
parameters, and the query search parameters. It also supplies the
ICISStatusCallback interface pointer that the Query instance uses to send status
reports to the client about the query.

The Search() method returns search results (if applicable) in the
ppSearchResultsXml output parameter. If the search is asynchronous, results (if
applicable) are fed through status reports.

See ICISContentProvider.idl for more behavior details.

Canceling a Search

A client can cancel ongoing searches by calling ICISContentQuery::CancelSearch().

See ICISContentProvider.idl for more behavior details.

Synchronous Behavior

A Content Provider must support searching synchronously. This is the default
behavior. Synchronous searching means that a call to ICISContentQuery::Search()
returns only when it has search results, or if the query fails.

A Content Provider can also support asynchronous searching. If so, this capability
must be indicated in the Query function information element (see the XML
schema).

The ICISContentIndexer::Search() method implementation must verify if a client
wants to run an asynchronous search, and fail if appropriate (for example, with
CIS_E_NOT_SUPPORTED).

See ICISContentProvider.idl for more detail about the expected behavior of
asynchronous searching and Search() in particular.

Note: The CA DataMinder 14.0 and 14.1 Content Indexer Server (client) does not
currently use synchronous indexing. This may change in future releases.

Status Reports

The Query instance sends status reports for a query by calling the ReportStatus()
method on the ICISStatusCallback interface pointer that the Query instance
received when the client called ICISContentIndexer::Search().

Sequence of Operation from a Client (Query)

Chapter 5: Implementing the Query Function 25

The Query instance must send status reports when:

■ The query is accepted.

■ The query completes (independent of whether it was successful).

The Query instance may send optional status reports when, for example the query
is taking too long.

Multithreading

The implementation of the ICISContentQuery interface must be multithreaded.

A client may call methods on an ICISContentQuery interface pointer from multiple
threads.

Sequence of Operation from a Client (Query)
1. The client first verifies the Content Provider’s capabilities regarding querying. For

more information see Sequence of Operation from a Client (see page 16).

2. The client (typically the Content Proxy service) uses its ICISContentProvider
interface pointer and calls CreateQueryInstance() to get a ICISContentQuery
interface pointer.

3. The Content Proxy service manages Content Proxy Client connections. For each
connection, the Content Proxy service typically creates one Query instance.

4. Every time the Content Proxy Client launches a search on that connection, the
Content Proxy service calls ICISContentQuery::Search().

5. If the Proxy Content service needs to cancel a search, it calls
ICISContentIndexer::CancelSearch().

Chapter 5: Implementing the Query Function 27

Appendix A: Accessibility Features

CA Technologies is committed to ensuring that all customers, regardless of ability, can
successfully use its products and supporting documentation to accomplish vital business
tasks. This section outlines the accessibility features that are supported by CA
DataMinder.

Display

To increase visibility on your computer display, you can adjust the following options:

Font style, color, and size of items

Defines font color, size, and other visual combinations.

The CA DataMinder iConsole also supports a High Visibility mode. This increases the
size of text and images in the iConsole screens.

Screen resolution

Defines the pixel count to enlarge objects on the screen.

Cursor width and blink rate

Defines the cursor width or blink rate, which makes the cursor easier to find or
minimize its blinking.

Icon size

Defines the size of icons. You can make icons larger for visibility or smaller for
increased screen space.

High contrast schemes

Defines color combinations. You can select colors that are easier to see.

Sound

28 Content Provider Development Guide

Sound

Use sound as a visual alternative or to make computer sounds easier to hear or
distinguish by adjusting the following options:

Volume

Sets the computer sound up or down.

Text-to-Speech

Sets the computer's hear command options and text read aloud.

Warnings

Defines visual warnings.

Notices

Defines the aural or visual cues when accessibility features are turned on or off.

Schemes

Associates computer sounds with specific system events.

Captions

Displays captions for speech and sounds.

Keyboard

You can make the following keyboard adjustments:

Repeat Rate

Defines how quickly a character repeats when a key is struck.

Tones

Defines tones when pressing certain keys.

Sticky Keys

Defines the modifier key, such as Shift, Ctrl, Alt, or the Windows Logo key, for
shortcut key combinations. Sticky keys remain active until another key is pressed.

Mouse

Chapter 5: Implementing the Query Function 29

Mouse

You can use the following options to make your mouse faster and easier to use:

Click Speed

Defines how fast to click the mouse button to make a selection.

Click Lock

Sets the mouse to highlight or drag without holding down the mouse button.

Reverse Action

Sets the reverse function controlled by the left and right mouse keys.

Blink Rate

Defines how fast the cursor blinks or if it blinks at all.

Pointer Options

Let you do the following:

■ Hide the pointer while typing

■ Show the location of the pointer

■ Set the speed that the pointer moves on the screen

■ Choose the pointer's size and color for increased visibility

■ Move the pointer to a default location in a dialog box

	CA DataMinder Content Provider Development Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Summary
	2: Introduction
	Content Provider Characteristics
	Specifying Which Content Provider to Use

	3: Implementing the Content Provider CoClass
	ICISContentProvider Interface Methods
	Sequence of Operation from a Client (ICISContentProvider)

	4: Implementing the Indexer Function
	Indexer Instance
	Sequence of Operation from a Client (Indexer)

	5: Implementing the Query Function
	Query Instance
	Sequence of Operation from a Client (Query)

	A: Accessibility Features
	Display
	Sound
	Keyboard
	Mouse

