

Reference Guide
Release 5.5

CA Compress™ Data
Compression

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2012 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies product:

■ CA Compress™ Data Compression (CA Compress)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 11

Chapter 2: Control File Maintenance Utility 13

How the Utility Works .. 14

Control File Statements .. 14

Syntax Rules .. 15

ADD Statement (VSAM) .. 18

ALTER Statement (VSAM) .. 20

ADD Statement (Physical Sequential) ... 23

ALTER Statement (Physical Sequential) .. 26

COPY Statement .. 29

DELETE Statement ... 30

FDT Statement .. 31

REPORT Statement .. 32

SET Statement ... 33

Control File Maintenance Utility Reports ... 33

CFMU Short Format .. 34

CFMU Long Format ... 35

CFMU Dump Format ... 36

FDT Compare Utility DEFXP050 .. 36

Executing the FDT Compare Utility ... 37

Chapter 3: Record Definition Language 39

Performance Considerations When Using RDL .. 40

How the RDL Operates ... 41

RDL Terminology .. 42

RDL Syntax Rules .. 44

RDL Field Type Descriptions ... 46

Field Types C1, C2, and C3—Character Data ... 47

Field Type CS—Character Data (SHRVL Compression) .. 47

Field Type GA—Garbage Data (Permanently Unused Fields) ... 48

Field Type L—Insert Tally of Actual Length ... 48

Field Types MA and MB—Pattern Matching ... 49

Field Type N—Fields Exempted From Compression ... 50

Field Type PD—Packed Decimal Data ... 51

Field Types S and X—Set of Expected Values .. 52

6 Reference Guide

Field Type UN — Undefined Fields.. 53

Field Types V, VP, and VZ — Calculate Variable Symbol Value ... 54

Field Types ZL and ZR — Zoned Decimal Data .. 57

RDL Repetition Groups ... 58

RDL Condition Groups .. 59

RDL Position Function .. 63

General Restrictions on RDL Use .. 65

Guide to Correct RDL Specifications ... 67

RDL Defaults ... 69

Determining the Best Compression ... 71

How to Enter or Change the RDL Using the IUI ... 72

Chapter 4: CA Compress/2 73

Features.. 74

Using Subroutines .. 75

Custom Compression .. 75

Standard Tables Compression ... 75

IBM Hardware Compression ... 76

Super Express Compression .. 76

JCL Implications for Existing Application Programs ... 77

Accessing the FDT ... 78

JCL Implications for Existing Application Programs .. 79

Calling the Subroutines .. 80

Assembler Language ... 81

Incorporating Subroutine Calls in Existing Application Programs ... 99

Defining Compressed Records in COBOL Application Programs .. 100

Linking Subroutines With Applications.. 102

Using CA Compress/2 Under CICS .. 103

Install the Callable SHRINK Subroutines for CICS .. 103

CA Compress/2 Subroutines Under CICS .. 106

The CA Compress/2 Utilities ... 107

Prepass .. 108

FDTLOADR Utility .. 110

Compression Utilities .. 111

Expansion Utilities ... 113

JCL Defaults ... 114

Chapter 5: SUBSYS DD Parameter 115

How it Works .. 115

Coding the SUBSYS JCL Parameter ... 116

SUBSYS Syntax for the CA Compress Subsystem .. 117

Contents 7

MVS SUBSYS Restrictions and Special Processing ... 119

Special Considerations When Using SUBSYS .. 119

DCB Information When Using SUBSYS .. 120

Nonlabeled Tapes.. 120

Partitioned Data Sets .. 120

JCL Restrictions.. 122

Chapter 6: Test Compression Facility 123

How The Program Works ... 123

Notes on Using the Program ... 124

TCF Command Language .. 124

Command Language Syntax Rules .. 125

Command Structures in the Command Language .. 128

SET Statement ... 131

SCAN Statement .. 134

SELECT Statement ... 136

EXCLUDE Statement .. 138

SELECT and EXCLUDE Processing Rules ... 139

EXAMINE Statement ... 139

TCF Report .. 141

Field Description and Contents ... 142

Chapter 7: VSAM Performance Enhancement 145

VPE ... 145

How VPE Enhances VSAM Performance ... 146

VPE's Use of VSAM's Local Shared Resources (LSR) .. 146

Reports Allow VPE Tuning ... 147

Installing VPE .. 147

Activating and Deactivating VPE on Your System .. 148

VPE Operation .. 149

VPE Special Control DD Statements .. 150

VPE Rules Table ... 153

Usage Notes .. 160

Advanced Topics... 160

VPE Implementation Considerations .. 161

Optimizing VSAM Performance by Adjusting VSAM Parameters ... 164

VPE Reports .. 171

VPE Initialization and Setup Statistics ... 171

VSAM Recommendation Report ... 172

Performance Statistics Report .. 172

8 Reference Guide

Chapter 8: Exclusion Facility 173

Exclusion for VSAM Backup/Restore Processing .. 173

Exclusion for Physical Sequential Transparency Processing ... 174

Exclusion to Prevent Control-Interval (CI) Processing and EXCP .. 174

The Exclude File .. 175

Expiration Date of 86060.. 176

Exclusion by DDNAME @ZSM@XCL ... 177

Invoking Exclusion in Assembler Macros ... 177

Chapter 9: Safeguards 179

How Safeguards Protect Data .. 180

Safeguards Detailed Description ... 181

Safeguards Utility .. 182

Chapter 10: Physical Sequential Transparency 183

Full Transparency to Application Programs ... 183

Full Interactive User Interface and Control File Maintenance Utility... 184

Compatibility with Previous Releases and the SUBSYS JCL Parameter .. 184

Implementation Considerations ... 184

Deferred and Immediate Implementation .. 185

DCB Attributes... 185

Automated Cleanup of Uncataloged Data Sets ... 185

Implementing Uncompressed Data Sets with the IUI .. 186

Implementing Compressed Data Sets with the IUI .. 186

Limitations and Restrictions ... 186

Only Sequential Access Using QSAM or BSAM ... 187

Concatenation Restrictions ... 187

Limited DCB Exit List Support .. 187

Relatively High Overhead for Sequential Processing .. 187

Chapter 11: User Exits 189

Transparency User Exit ... 189

Enabling the User Exit ... 190

Using the User Exit .. 191

Coding the User Exit .. 192

Return Codes ... 194

Control File Maintenance Utility Security Interface ... 194

How the User Security Exit Works .. 195

Using the Security Exit... 195

Contents 9

Linkage Conventions of the Exit .. 195

Return Codes ... 196

The Parameter List .. 197

Test Compression Facility User Exit.. 197

PREEXIT Pre-Processing Exit .. 198

POSTEXIT Post-Processing Exit .. 198

Security Interface and Exit .. 201

Glossary 203

Index 209

Chapter 1: Introduction 11

Chapter 1: Introduction

CA Compress is a CA Technologies mainframe software product that transparently
compresses and expands VSAM and Physical Sequential data sets, including those under
CICS control. It fully supports data sets under the control of IBM's Storage Management
Subsystem (SMS). No special procedures are required to compress SMS-controlled data
sets.

CA Compress (CA Compress) offers several compression routines. With CA Compress,
you can achieve compression of up to 80 percent. In addition, you can create custom
compression routines for specific data sets to achieve even greater compression. The
product includes a performance enhancement feature which optimizes VSAM data sets
to improve elapsed time for sequential and direct access operations.

Data compression with CA Compress offers numerous advantages to IS organizations:

■ Significantly reduced DASD requirements.

■ Reduced backup and restore times.

■ Improved data security.

■ Easy to use interactive ISPF interface.

■ Choice of maximum compression or minimum CPU overhead.

■ Transparency to application programs.

Chapter 2: Control File Maintenance Utility 13

Chapter 2: Control File Maintenance Utility

The Control File holds the information used by CA Compress to determine which data
sets are to be compressed and how the compression is to be done. The Control File
Maintenance Utility lets you perform the following functions:

■ Add, modify, and delete data set names and name patterns, and their compression
parameters.

■ Maintain File Descriptor Tables (FDTs) in the Control File.

■ Report on the VSAM data sets and patterns, physical sequential data sets and
patterns, and FDTs in the Control File.

Although you may find the Interactive User Interface (IUI) more convenient most of the
time, the Control File Maintenance Utility supports all maintenance functions. For
instance, unlike the IUI, it can maintain the Control File even when CA Compress is not
active. Also, unlike the IUI, it can add paths to the base cluster.

This section contains the following topics:

How the Utility Works (see page 14)
Control File Statements (see page 14)
Control File Maintenance Utility Reports (see page 33)
FDT Compare Utility DEFXP050 (see page 36)

How the Utility Works

14 Reference Guide

How the Utility Works

The Control File Maintenance Utility reads statements from an input data set and
performs the specified actions on the Control File. The Control File Maintenance Utility
can update any Control File on your system. This includes the Control File currently in
use by an active CA Compress Subsystem.

The following JCL is a sample of the Control File Maintenance Utility and can be found in
member CFUJCL in YOUR.CAI.CCVBJCL.

//*CFUMNT JOB

//*

//CFU EXEC PGM=DEFXP001,REGION=1000K

//STEPLIB DD DSN=YOUR.CAI.CCVBLOAD,DISP=SHR

//CMDPRINT DD SYSOUT=*

//MSGPRINT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SUIIN DD *

 --- ENTER MAINTENANCE COMMANDS HERE ---

/*

Control File Statements

Statements in the Control File are executed as they are read. By default, the production
Control File is updated unless you specify otherwise in a SET statement.

Control File Statements

Chapter 2: Control File Maintenance Utility 15

Syntax Rules

The following section explains the syntax rules.

■ Any line which starts with an asterisk (*) in column 1 is treated as a comment line.

■ A statement consists of the statement name followed by one or more parameters.
For example:

ADD DSNAME=MY.DATA.SET,DATA=MY.DATA.SET.D,SUPEREXP

■ Parameter names can be abbreviated to just enough characters to make them
unambiguous, but not fewer than 3.

■ Parameters can be specified in any order. The first parameter must appear on the
same line as the statement name.

■ A statement can span more than one line.

■ A parameter cannot span more than one line unless the statement is continued
through Statement Continuation Method B below.

■ A blank following a parameter terminates a statement. Characters following the
blank are treated as comments.

■ Statement Continuation Method A: If a parameter is followed immediately by a
comma and a space, then the statement is continued onto the next line. Characters
following the space are considered comments. The parameters appearing on the
next line can start in any column. With this continuation method, each parameter
must be completed on a single line.

■ Statement Continuation Method B: If the statement is coded through column 71,
and an X is coded in column 72, then the statement is continued onto the next line.
The first nonblank in the next line is appended to the character in column 71 in
order to form the continued statement. With this continuation method, the line can
be split anywhere. In the example below, the RELEASE=80 parameter is continued
onto the next line:

----+----1----+----2----+ ..//.. +----7----+----8

 ADD DSNAME=MY.DATA.SE DE,RELEX

 ASE=80

■ The following special characters can be used in data set names:

■ An asterisk (*) means any characters in a single node.

■ A question mark (?) means any one character.

■ A slash (/) means any suffix of characters.

■ An exclamation point (!) means any characters.

Control File Statements

16 Reference Guide

The following table provides examples on how you can use special characters in data set
names:

Syntax Description

DSN=* Selects all single-level VSAM data set
names.

DSN=*.* Selects all two-level VSAM data set names.

DSN=A.*.PROD Selects all three-level VSAM data set
names that have an A as the first node,
any character or characters as the second
node, and PROD as the third node.

DSN=A*.PROD Selects all two-level VSAM data set names
that have an A followed by zero to seven
other characters as the first node, and
PROD as the second node.

DSN=? Selects all single-character VSAM data set
names.

DSN=A.TEST?? Selects all two-level VSAM data set names
that have an A as the first node, and TEST
plus two other characters as the second
node.

DSN=A/ Selects all VSAM data sets that begin with
the character A. The data set names can
have any number of nodes. The first node
can be the letter A, or be a string which
starts with A.

DSN=A.TEST/ Selects all VSAM data sets that begin with
the string A.TEST. Examples:

 A.TEST

A.TEST1

A.TEST1.TEST2

A.TEST.PROD

DSN=A.*.C?./ Selects all VSAM data sets which have a
first node of A, any second node, a third
node which is two characters in length
and the first character is the letter C, and
any node or nodes which follow.

DSN=!TEST Selects all VSAM data sets that end with
the string TEST.

Control File Statements

Chapter 2: Control File Maintenance Utility 17

Syntax Description

DSN=!TEST! Selects all VSAM data sets that have the
string TEST somewhere in it. The string
TEST can be at the beginning or the end of
the data set name.

DSN=
!TEST!VSAM

Selects all VSAM data sets, which have the
string TEST somewhere in the name and
VSAM at the end. Examples:

 A.TEST.VSAM

A.TESTVSAM

A.TEST1.VSAM

A.TEST1.KSDSVSAM

Control File Statements

18 Reference Guide

ADD Statement (VSAM)

The ADD statement for VSAM defines a cluster or pattern to CA Compress, indicating
that the discrete data set(s) matching the pattern should be compressed using the
attributes specified.

ADD {DSNAME=datasetname,DATA=datacomponentname}|

 {PATTERN=patternname}

 [,PATHS=(pathname1[,pathname2...

 {,SUPEREXP|

 FDT=fdtname[,STANDARD]|DICTIONARY=dictionary}

 [,SCHEDULED={SCHED|OPEN|LOAD}]

 [,EXCLUDE]

 [,RELEASE=percent]

 [,NON-COMP=#]

 [,SCOPE=CICS|ALL]

 [,IAM=YES|NO]

 [,UEXIT=YES|NO]

DSNAME=datasetname

Specifies a VSAM cluster which is to be compressed. The DATA parameter is
required when the DSNAME parameter is specified.

DATA=datacomponentname

Specifies the data component of the VSAM cluster specified by DSNAME. This
parameter is required when the DSNAME parameter is specified.

PATTERN=patternname

Specifies a data set name pattern which selects data sets for compression. The
pattern can contain any character that is valid in a data set name along with the
special characters ?, *, ! and /. These special characters are defined in the section
Syntax Rules in this chapter.

PATHS=(pathname1 [,pathname2 ...

Specifies all path names associated with the DSNAME. This parameter is required if
there are any paths defined for this cluster. A maximum of 20 path names can be
specified.

SUPEREXP|FDT=fdtname[,STANDARD]|DICTIONARY=dictionary

Selects the type of compression desired for the data set or pattern being defined.

The optional parameter STANDARD can be specified only in conjunction with the
FDT=fdtname parameter. It informs the CA Compress Subsystem that the FDT
specified should be used to provide the compression or expansion tables only, and
that the RDL specified in the FDT should be ignored. The STANDARD parameter
allows one FDT to be used for a number of data sets that share character
distribution characteristics but not key structure. STANDARD is implied if the FDT
parameter specifies a name of the form STDTBLxx (where xx is a numeric value from
01 to 06).

Control File Statements

Chapter 2: Control File Maintenance Utility 19

The DICTIONARY parameter can specify a CA-supplied IBM Hardware Compression
dictionary of the form HC#STDxx (where xx is numeric 01 to 05).

SUPEREXP specifies the low-overhead compression algorithm called Super Express.

SCHEDULED={SCHED|OPEN|LOAD}

The SCHEDULED parameter provides the capability to compress records in a data
set as they are written or updated. OPEN specifies that the data set be compressed
the next time it is opened for OUTPUT. LOAD specifies that compression should
begin the next time the data set is completely reloaded; the entire data set will be
compressed during the load process. SCHED specifies that the data set is currently
compressed and was compressed as SCHEDULED. Because SCHEDULED data sets
have certain requirements, CA Compress must be made aware that these data sets
were originally SCHEDULED. The compression method for a data set defined as
SCHEDULED can be changed using the ALTER statement any time before
compression begins.

EXCLUDE

Specifies that the data set is excluded from compression.

RELEASE=percent

Specifies that excess space should be released from the VSAM cluster. It is also used
to provide the percentage of the space that is to be RETAINED. The percentage is
applied to the file size (high-used RBA) and the resulting value is added to the file
size; the resulting value is the amount retained. Space can only be released from
the last extent of the data set.

Note: A RELEASE value of 0 causes the default value (10%) to be used.

NON-COMP=#

Specifies a data set's original noncompressible field length for other than custom
Huffman or Tailored RDL methods instead of allowing CA Compress to calculate it
from the data set's attributes. This parameter is especially helpful for exempting
nonkey bytes from compression or for setting aside noncompressible bytes at the
beginning of ESDS records. Do not code a value less than the end of the last key.

SCOPE=CICS|ALL

Specifies whether data set should be considered defined as compressed only under
CICS (SCOPE=CICS) or always (SCOPE=ALL). This parameter is primarily intended as a
conversion aid. The default is SCOPE=ALL.

IAM=YES|NO

Specifies that this Control File entry applies to IAM (Innovation Access Method)
data sets as well as VSAM data sets (YES), or that this entry does not apply to IAM
data sets (NO). The default is YES.

UEXIT=YES|NO

Specifies whether the Transparency User Exit is to be invoked during compression
and expansion of each record. The default is NO.

Control File Statements

20 Reference Guide

ALTER Statement (VSAM)

The ALTER statement changes the compression attributes of a data set or pattern that is
currently defined to CA Compress. There are no defaults.

ALTER{DSNAME=datasetname| PATTERN=patternname}

[,ADDPATHS=(pathname1[,...,pathname5)]

 [,DELPATHS=(pathname1[,...,pathname5)]

 [,SUPEREXP|

FDT=fdtname[,STANDARD]DICTIONARY=dictionary]

 [,SCHEDULED={SCHED|OPEN|LOAD}]

 [,EXCLUDE={YES|NO}]

 [,RELEASE={percent|NO}]

 [,NEWNAME=newdatasetname]

 [,NON-COMP=#]

 [,SCOPE=CICS|ALL]

 [,IAM=YES|NO]

 [,UEXIT=YES|NO],

 [,FORCE]

DSNAME=datasetname

Specifies the name of the Control File entry that is being ALTERed. For a simple
rename function (NEWNAME is the only other parameter specified), this value can
be a cluster, data component, or path name. For all other functions, only the cluster
name is valid.

PATTERN=patternname

Specifies the pattern name that is to be ALTERed. The pattern can contain any
character that is valid in a data set name along with the special characters ?, *, !
and /. These special characters are defined in the section Syntax Rules in this
chapter.

ADDPATHS=(pathname1,...pathname5)

Specifies the path names to be added to the existing Control File entry.

DELPATHS=(pathname1,...pathname5)

Specifies the path names to be deleted from the existing Control File entry.

SUPEREXP|FDT=fdtname[,STANDARD]|DICTIONARY=dictionary

Specifies the type of compression desired for the data set or pattern being
ALTERed.

Control File Statements

Chapter 2: Control File Maintenance Utility 21

The optional parameter STANDARD can be specified only in conjunction with the
FDT=fdtname parameter. It informs the CA Compress Subsystem that the FDT
specified should be used to provide the Huffman tables only and that the RDL
specified in the FDT should be ignored. The STANDARD parameter allows one FDT
to be used for a number of data sets that can share character distribution
characteristics but not key structure. The FDT is assumed to be STANDARD if the
FDT parameter specifies a name of the form STDTBLxx (where xx is a numeric value
from 01 to 06). The DICTIONARY parameter can specify a CA-supplied IBM
Hardware Compression dictionary of the form HC#STDxx (where xx is numeric 01 to
05).

The SUPEREXP parameter requests the low-overhead compression algorithm called
Super Express Compression.

SCHEDULED={SCHED|OPEN|LOAD}

The SCHEDULED parameter provides the capability to compress each record in a
data set as it is accessed. OPEN specifies that the data set should start being
compressed the next time it is opened for OUTPUT. LOAD specifies that
compression should begin the next time the data set is completely reloaded; the
entire data set is compressed during the load process. SCHED specifies that the data
set is currently compressed and was compressed as SCHEDULED. Because
SCHEDULED data sets have certain requirements, CA Compress must be made
aware that these data sets were originally SCHEDULED. The compression type of a
SCHEDULED data set can be changed, by using the ALTER statement, any time
before compression begins.

EXCLUDE={YES|NO}

Specifies that the data set is excluded from compression (YES), or no longer
excluded from compression (NO).

RELEASE={percent | NO}

Specifies that any excess space should be released from the space that the VSAM
cluster occupies. It also provides the percentage of the space that is to be
RETAINED. The percentage is applied to the file size (high-used RBA) and the
resulting value is added to the file size. The resulting value is the amount retained.
If the value NO is coded, the release option is turned off for this data set.

Note: A value of 0 for the RELEASE parameter causes the default value of 10% to be
used.

NEWNAME=newdata setname

Specifies the new data set name or data set pattern for a previously-defined entry.
This parameter can be specified in conjunction with any other parameters when
renaming a cluster or pattern entry.

Note: For data component and path names, this is the only valid parameter.

Control File Statements

22 Reference Guide

NON-COMP=#

Specifies a file's original noncompressible field length for other than custom
Huffman methods instead of allowing CA Compress to calculate it from the data
set's attributes. This parameter is especially helpful for exempting nonkey bytes
from compression or for setting aside noncompressible bytes at the beginning of
ESDS records. Do not code a value less than the end of the last key.

SCOPE=CICS|ALL

Specifies whether data set should be considered defined as compressed only under
CICS (SCOPE=CICS) or always (SCOPE=ALL). This parameter is primarily intended as a
conversion aid. The default is the current value in the record.

IAM=YES|NO

Changes this Control File entry to apply to IAM (Innovation Access Method) data
sets as well as VSAM data sets (YES), or to not include IAM data sets (NO).

UEXIT=YES|NO

Specifies whether the Transparency User Exit is to be invoked during compression
and expansion of each record.

FORCE

Allows ALTER to be done even if the data set is already compressed. Valid uses
include changing values such as the noncompressible area on a new entry created
from an existing entry by the COPY statement, which can appear compressed even
though it is a new entry, or to correct an error in a new VSAM entry added with
SCHED=SCHED. Misusing this parameter can cause compressed data not to expand,
or can cause new records to be compressed differently from those already
compressed in the data set.

Control File Statements

Chapter 2: Control File Maintenance Utility 23

ADD Statement (Physical Sequential)

The ADD statement for Physical Sequential defines a physical sequential data set or
pattern to CA Compress, indicating that the individual data set or data sets matching the
pattern should be compressed using the attributes specified.

ADD{PSDSN=datasetname}|{PSPATTERN=patternname}

{,SUPEREXP|FDT=fdtname,[STANDARD]DICTIONARY=dictionary}

{,DCBMODEL=datasetname}|{,RECFM=recfm,LRECL=lrecl,BLKSIZE=blksize}

{,RECFM=recfm,LRECL=lrecl,BLKSIZE=blksize}

{,EFFDATE=yyddd}|{ANYDATE}

 [,GDG=YES|NO|ONLY]

 [,SDB=YES|NO]

 [,ERASEUNCAT=YES|NO]

 [,EXCLUDE]

 [,NON-COMP=#]

 [,SCOPE=CICS|ALL]

 [,DEVTYPE=TAPE|DA|ALL]

 [,UEXIT=YES|NO]

PSDSN=data-setname

Specifies a physical sequential data set which is to be compressed.

PSPATTERN=patternname

Specifies a data set name pattern which selects data sets for compression. The
pattern can contain any character that is valid in a data set name along with the
special characters ?, !, and /. These special characters are defined in the section
Syntax Rules in this chapter.

SUPEREXP|FDT=fdtname[,STANDARD]|DICTIONARY=dictionary

Selects the type of compression desired for the data set or pattern being defined.

The optional parameter STANDARD can be specified only in conjunction with the
FDT=fdtname parameter. It informs CA Compress that the FDT specified should
provide the compression or expansion tables only, and that the RDL specified in the
FDT should be ignored. The STANDARD parameter allows one FDT to be used for a
number of data sets that can share character distribution characteristics but not
different noncompressible area. STANDARD is implied if the FDT parameter
specifies a name of the form STDTBLxx where xx is a numeric value from 01 thru 06.
The DICTIONARY parameter can specify a CA-supplied IBM Hardware Compression
dictionary of the form HC#STDxx (where xx is numeric 01 to 05).

SUPEREXP specifies the low-overhead compression algorithm called Super Express.

DCBMODEL=data-setname/RECFM=recfm/LRECL=lrecl/BLKSIZE=blksize

These parameters supply the DCB attributes of the uncompressed data. These
values must be kept in the Control File because they are unavailable elsewhere.

Control File Statements

24 Reference Guide

DCBMODEL specifies a cataloged data set from which to extract RECFM, LRECL, and
BLKSIZE attributes. It can be the data set being compressed, or any other PS or PO
disk data set, unless it is compressed but not implemented.

RECFM, LRECL, and BLKSIZE supply each individual attribute. They can be combined
with DCBMODEL, in which case any individual attribute coded overrides the value
implied by DCBMODEL.

For PS Patterns, these parameters are optional. DCB attributes in PS Pattern records
serve only to supply defaults to matching PS Dsname records as they are created.

For PS Dsname records, these parameters are individually optional, but some
combination must provide a valid RECFM, LRECL, and BLKSIZE for the data set. A
consistency check is performed. If any are missing, or if in combination they are
invalid, or if DCBMODEL specifies a data set which is compressed but not
implemented in the Control File, the statement is rejected. For these values to be
correct is vital.

EFFDATE=yyddd/ANYDATE

These parameters are optional and mutually exclusive.

EFFDATE specifies the Julian date that compression is to be implemented on the
data set. When the date becomes current or past, the data set is compressed the
next time it is created or replaced.

ANYDATE specifies that the data set should be considered compressed already. If it
is opened for output, compressed data is written, and if it is read, each record is
expanded. ANYDATE should be specified when you are implementing a data set
already compressed in an earlier release of CA Compress using the SUBSYS JCL
parameter; otherwise CA Compress assumes that the data is still uncompressed
until the data set is recreated, and applications receive compressed data.

GDG=YES|NO|ONLY

Specifies whether pattern matches should be recognized for all data sets including
GDGs (GDG=YES), excluding GDGs (GDG=NO), or only for GDGs (GDG=ONLY). The
default is GDG=YES.

SDB=YES|NO

Specifies whether compressed data set BLKSIZE should be calculated by the IBM
System Determined Blocksize (SDB) facility or set to the uncompressed data set
BLKSIZE. SDB=YES gives better compression and I/O performance, but may cause
I/O errors if a smaller BLKSIZE is coded on JCL which reads the compressed data set
without CA Compress. The input BLKSIZE should never be coded except when using
SUBSYS to invoke CA Compress, but until such JCL is corrected, SDB=NO will make it
work correctly. The default is YES unless NOSDB is specified in the CA Compress
started task JCL.

ERASEUNCAT=YES|NO

Specifies whether the entry should be purged from the Control File when the data
set is uncataloged. This is an optional parameter and interacts with the GDG
parameter. The default is YES for GDG=ONLY and NO for GDG=YES and GDG=NO.

Control File Statements

Chapter 2: Control File Maintenance Utility 25

EXCLUDE

Specifies that the data set is excluded from compression.

NON-COMP=#

Specifies a noncompressible area at the beginning of each record for other than
custom Huffman or Tailored RDL methods. This parameter is especially helpful for
setting aside noncompressible bytes to enable record selection or other processing
on the data set without having to expand and compress records.

SCOPE=CICS|ALL

Specifies whether data set should be considered defined as compressed only under
CICS (SCOPE=CICS) or always (SCOPE=ALL). This parameter is primarily intended as a
conversion aid. The default is SCOPE=ALL.

DEVTYPE=TAPE|DA|ALL

Specifies whether data set should be considered defined as compressed only if on
tape (DEVTYPE=TAPE), on direct access (DEVTYPE=DA), or anywhere. The default is
DEVTYPE=ALL.

UEXIT=YES|NO

Specifies whether the Transparency User Exit is to be invoked during compression
and expansion of each record. The default is NO.

Control File Statements

26 Reference Guide

ALTER Statement (Physical Sequential)

The ALTER statement for Physical Sequential changes the compression attributes of a
data set or pattern that is currently defined to CA Compress.

ALTER {PSDSN=datasetname}|{PSPATTERN=patternname}

{,SUPEREXP|FDT=fdtname,[STANDARD]|DICTIONARY=dictionary}

{,DCBMODEL=datasetname}|{,RECFM=recfm,LRECL=lrecl,BLKSIZE=blksize}

{,RECFM=recfm,LRECL=lrecl,BLKSIZE=blksize}

{,EFFDATE=yyddd}|{ANYDATE}

 [,GDG=YES|NO|ONLY]

 [,SDB=YES|NO]

 [,ERASEUNCAT=YES|NO]

 [,EXCLUDE=YES|NO]

 [,NEWNAME=newdatasetname]

 [,NON-COMP=#]

 [,UEXIT=YES|NO]

 [,FORCE]

PSDSN=data-setname

Specifies the physical sequential data set entry being ALTERed.

PSPATTERN=patternname

Specifies the physical sequential data set name pattern being ALTERed. The pattern
can contain any character that is valid in a data set name along with the special
characters ?, !, and /. These special characters are defined in the section Syntax
Rules in this chapter.

SUPEREXP|FDT=fdtname[,STANDARD]|DICTIONARY=dictionary

Selects the type of compression desired for the data set or pattern being ALTERed.

The optional parameter STANDARD can be specified only in conjunction with the
FDT=fdtname parameter. It informs CA Compress that the FDT specified should
provide the compression or expansion tables only, and that the RDL specified in the
FDT should be ignored. The STANDARD parameter allows one FDT to be used for a
number of data sets that can share character distribution characteristics but not
different noncompressible area. STANDARD is implied if the FDT parameter
specifies a name of the form STDTBLxx where xx is a numeric value from 01 thru 06.
The DICTIONARY parameter can specify a CA-supplied IBM Hardware Compression
dictionary of the form HC#STDxx (where xx is numeric 01 to 05).

SUPEREXP specifies the low-overhead compression algorithm called Super Express.

DCBMODEL=data-setname

RECFM=recfm; LRECL=lrecl; BLKSIZE=blksize

These parameters change the DCB attributes of the uncompressed data. These
attributes must be kept in the Control File because they are unavailable elsewhere.

RECFM, LRECL, and BLKSIZE change each individual attribute.

Control File Statements

Chapter 2: Control File Maintenance Utility 27

You need not change them all, but the result after your specified changes must be a
valid combination of RECFM, LRECL, and BLKSIZE for the data set. A consistency
check is performed. If in combination they are invalid, the statement is rejected. For
these values to be correct is vital.

DCBMODEL is ignored when an entry already has DCB attributes defined. For this
reason, it has no effect on the ALTER statement except on PS Patterns for which no
DCB attributes were defined when the Pattern was added.

EFFDATE=yyddd/ANYDATE

These parameters are optional and mutually exclusive.

EFFDATE specifies the Julian date that compression is to be implemented on the
data set. When the date becomes current or past, the data set is compressed the
next time it is created or replaced.

ANYDATE specifies that the data set should be considered compressed already. If it
is opened for output, compressed data is written, and if it is read, each record will
be expanded. ANYDATE should be specified when you are implementing a data set
already compressed in an earlier release of CA Compress using the SUBSYS JCL
parameter; otherwise CA Compress expects to read uncompressed records until the
data set is recreated, and applications receive compressed data.

GDG=YES|NO|ONLY

Specifies whether pattern matches should be recognized for all data sets including
GDGs (GDG=YES), excluding GDGs (GDG=NO), or only for GDGs (GDG=ONLY).

SDB=YES|NO

Specifies whether compressed data set BLKSIZE should be calculated by the IBM
System Determined Blocksize (SDB) facility or set to the uncompressed data set
BLKSIZE. SDB=YES gives better compression and I/O performance, but may cause
I/O errors if a smaller BLKSIZE is coded on JCL which reads the compressed data set
without CA Compress. The input BLKSIZE should never be coded except when using
SUBSYS to invoke CA Compress, but until such JCL is corrected, SDB=NO will make it
work correctly. The default is YES unless NOSDB is specified in the CA Compress
started task JCL.

ERASEUNCAT=YES|NO

Specifies whether the entry should be purged from the Control File when the data
set is uncataloged. This is an optional parameter, but it interacts with the GDG
parameter. For instance, if ERASEUNCAT=NO and you specify GDG=ONLY,
ERASEUNCAT is changed to YES unless you explicitly say ERASEUNCAT=NO.

EXCLUDE=YES|NO

Specifies that the data set is excluded from compression (YES), or no longer
excluded from compression (NO).

Control File Statements

28 Reference Guide

NEWNAME=newdatasetname

Specifies the new data set name or data set pattern for a previously defined entry.
This parameter can be specified in conjunction with any other parameters when
renaming a PS data set or pattern entry.

NON-COMP=#

Specifies a noncompressible area at the beginning of each record for other than
custom Huffman or Tailored RDL methods. This parameter is especially helpful for
setting aside noncompressible bytes to enable record selection or other processing
on the data set without having to expand and compress records. The Utility rejects
this parameter if the data set is already compressed.

SCOPE=CICS|ALL

Specifies whether data set should be considered defined as compressed only under
CICS (SCOPE=CICS) or always (SCOPE=ALL). This parameter is primarily intended as a
conversion aid.

DEVTYPE=TAPE|DA|ALL

Specifies whether data set should be considered defined as compressed only if on
tape (DEVTYPE=TAPE), only if on direct access (DEVTYPE=DA), or anywhere.

UNINHIBIT

Reactivates compression for this data set if compression has been inhibited due to
an earlier error, usually a DCB parameter mismatch. The most common reason for
CA Compress to inhibit an entry is that a compressed data set was expected, but
the data set was actually uncompressed, perhaps because an uncompressed data
set was renamed to this compressed data set name. This condition is normally
corrected when the data set is recreated.

If the data set is correctly compressed, but the entry was inhibited due to a JCL
error, an earlier CA Compress logic error, or some other condition, UNINHIBIT
restores compression and expansion to the data set without having to recreate it. If
the error is due to having used the wrong DCBMODEL data set or coding one of the
other DCB parameters incorrectly in the Control File entry, you should correct these
at the same time.

UEXIT=YES|NO

Specifies whether the Transparency User Exit is to be invoked during compression
and expansion of each record.

FORCE

Allows ALTER to be done even if the data set is already compressed. Valid uses
include changing values such as the noncompressible area on a new entry created
from an existing entry by the COPY statement, which can appear compressed even
though it is a new entry. Misusing this parameter can cause compressed data not
to expand, or can cause new records to be compressed differently from those
already compressed in the data set.

Control File Statements

Chapter 2: Control File Maintenance Utility 29

COPY Statement

The COPY statement copies an entire VSAM or Physical Sequential entry.

COPY {DSNAME=datasetname,DATA=newdatacomponentname|PSDSN=datasetname}

,NEWNAME=newdatasetname

DSNAME=datasetname

Specifies the name of a VSAM entry to COPY to the new entry. The value should be
a valid cluster name, not a data component name or physical sequential data set
name. DSNAME= must be accompanied by DATA=, which specifies the DATA
component name of the new entry.

DATA=newdatacomponentname

Specifies the data component of the new VSAM cluster entry specified by
NEWNAME. This parameter is required when the DSNAME parameter is specified.

PSDSNAME=datasetname

Specifies the name of a Physical Sequential data set entry to COPY. DATA= should
not be coded with PSDSNAME=. If DATA= is present, the CFMU ignores it and issues
a warning message.

NEWNAME=newdatasetname

Specifies the new data set name entry to be created from the DSNAME or
PDSNAME entry specified. For DSNAME, DATA specifies the new data component
name.

Control File Statements

30 Reference Guide

DELETE Statement

The DELETE statement is used to remove the following from the Control File:

■ A VSAM data set or pattern definition

■ A physical sequential data set or pattern definition

■ A system entry

DELETE {DSNAME=data setname|PATTERN=patternname|PSDSNAME=data setname|

 PSPATTERN=patternname|SYSTEM=systemname}

 [,ONLY]

DSNAME=data-setname

Specifies the name of a VSAM entry to DELETE from the Control File. The value
should be a valid cluster or path name, not a data component name or physical
sequential data set name. If it is a cluster name and ONLY is not specified, the
cluster entry and all its associations are deleted from the Control File. If it is a path
entry, only the path entry is deleted.

PATTERN=patternname

Specifies the name of a VSAM pattern entry to DELETE. The entry can contain any
character valid in a data set name, together with special characters ?, *, ! and/or /.
These special characters are defined in the section Syntax Rules in this chapter.

PSDSNAME=data-setname

Specifies the name of a physical sequential data set to DELETE from the Control File.

PSPATTERN=patternname

Specifies the name of a physical sequential pattern to DELETE. The entry can
contain any character valid in a data set name, together with special characters ?, *,
! and /. These special characters are defined in the section Syntax Rules in this
chapter.

SYSTEM=systemname

Specifies the system name of a currently inactive CA Compress system that is to be
deleted from the Control File. The SMF system id is used to maintain the in-storage
list of patterns whenever they change. You do not need to DELETE the system name
regularly because it is automatically removed when the CA Compress subsystem is
brought down normally.

If a system name on the Control File is identical to the one currently starting and it
has not been used for more than 2 minutes, it is reused automatically. You are
queried at startup if the system entry has been used in the last 2 minutes to
determine if it should be reused. You are informed that it is not possible to start CA
Compress if 8 system names are in the Control File and you must add one. Then you
must delete (using the DELETE statement) one of the inactive entries.

Control File Statements

Chapter 2: Control File Maintenance Utility 31

ONLY

Specifies that only the record specified in the DSNAME parameter is to be removed
from the Control File, even when DSNAME is a cluster. ONLY is intended to remove
orphan records in the Control File resulting from hardware or system failures.

FDT Statement

The FDT statement adds or replaces a File Descriptor Table (FDT) entry in the Control
File.

FDT FDTNAME=fdtname

[,REPLACE]

FDTNAME=fdtname

Specifies the name of the FDT that is to be added or replaced in the Control File.

REPLACE

Specifies that the FDT should be replaced if it currently exists on the Control File.
The FDT is added if it does not currently exist.

Control File Statements

32 Reference Guide

REPORT Statement

The REPORT statement generates reports on one or more definitions of data sets,
patterns, File Descriptor Table (FDT) entries, and Systems in the Control File.

REPORT [DSNAMES={ALL|(data-set-name-1 [, . data-set-name-10])]

[,PATTERNS={ALL|(pattern-name-1 [, . pattern-name-10])]

 [PSDSNAMES={ALL|(data-set-name-1 [, . data-set-name-10])]

 [PSPATTERNS={ALL|(pattern-name-1 [, . pattern-name-10])]

 [,SYSTEMS]

 [,FDTS={ALL|(fdt-name-1 [, ... fdt-name-10])]

 [,FORMAT={SHORT|LONG|DUMP}]

DSNAME={ALL|data-setname(s)}

Specifies the name(s) of the VSAM cluster(s) to be reported on. The value should be
a valid cluster name, path name or a data component name. The data set name can
be a pattern, in which case all VSAM data set definitions matching the pattern are
reported on. The value ALL specifies that all VSAM data set definitions in the
Control File are to be reported.

PATTERN={ALL|patternname(s)}

Specifies the VSAM pattern name to be the subject of the report. The pattern can
contain any character that is valid in a data set name, along with the special
characters ?, *, ! and /. The value ALL specifies that all VSAM pattern definitions in
the Control File are to be reported.

PSDSNAME={ALL|data-setname(s)}

Specifies the name(s) of the physical sequential data set(s) to be reported on. The
value should be a valid discrete physical data set name. The data set name can be a
pattern, in which case all PS data set definitions matching the pattern are reported
on. The value ALL specifies that all PS data set definitions in the Control File are to
be reported.

PSPATTERN={ALL|patternname(s)}

Specifies the physical sequential pattern name to be reported on. The pattern can
contain any character valid in a data set name, along with the special characters ?,
*, ! and /. The value ALL specifies that all PS pattern definitions in the Control File
are reported.

SYSTEMS

Specifies that all system name records are the subject of the report.

FORMAT={SHORT|LONG|DUMP}

Specifies the format of the report. A SHORT report contains the basic information
about a File Descriptor Table (FDT), data set, pattern, or system record. A LONG
report for a data set or pattern record contains the size of the noncompressible
area for a Scheduled, Super Express, or Standard data set, and the pattern that
matched it for a pattern match data set. The DUMP format contains a dump of each
record that meets the selection criteria. The default is FORMAT=SHORT.

Control File Maintenance Utility Reports

Chapter 2: Control File Maintenance Utility 33

SET Statement

The SET statement will select a data set or subsystem Control File entry upon which the
subsequent statements are to act. It can also set the abend flag to abend the job if the
step completes with a nonzero return code.

SET [DDNAME=ddname|SUBSYS=subsystem|PRODUCTION]

[,ABEND={NO|YES}]

DDNAME=ddname

Specifies the DDNAME of a VSAM file that is to be used as a Control File.

SUBSYS=subsystem

Specifies the name of the CA Compress subsystem that manages the desired
Control File. The subsystem specified must be active.

PRODUCTION

Specifies that a search is to be made for an active CA Compress subsystem. The
located subsystem is used to access the Control File.

ABEND={NO|YES}

Specifies if an abend is to be generated when a nonzero return code occurs. The
default is ABEND=NO.

Control File Maintenance Utility Reports

The Control File Maintenance Utility (CFMU) Report provides a list of processed control
statements, information about the effects of control statement processing, and output
from the REPORT control statement. This statement can be shown in short, long, or
dump formats.

Control File Maintenance Utility Reports

34 Reference Guide

CFMU Short Format

The following image shows the Control File Maintenance Utility Report in short format:

Fields and Contents—The CFMU short report contains the following information:

■ Command Statement report heading, which includes: the date, day, and time that
the report was generated; and the page number and CA Compress release used to
generate the report.

■ REPORT command followed by a statement specifying the subject of the report:
data set name, pattern name, and system.

■ Module name, message number, and message text.

■ The detail of the item being reported: data set name, pattern name, the
compression routine used or FDT name, implementation type, and exclusion
indicator.

Control File Maintenance Utility Reports

Chapter 2: Control File Maintenance Utility 35

CFMU Long Format

The following image shows the Control File Maintenance Utility Report in long format:

Fields and Contents—The CFMU long report contains the following information:

■ Command Statement report heading, which includes: the date, day, and time that
the report was generated; and the page number and CA Compress release used to
generate the report.

■ REPORT command followed by a statement specifying the subject of the report:
data set name, pattern name, and system.

■ Module name, message number, and message text.

■ The detail of the item being reported: data set name, pattern name, the
compression routine used or FDT name, implementation type, and exclusion
indicator. In addition, it shows the original noncompressible area of the record for a
Scheduled, Super Express, or Standard data set, the pattern match time and name,
and the Release percent.

FDT Compare Utility DEFXP050

36 Reference Guide

CFMU Dump Format

The following image shows the Control File Maintenance Utility Report in dump format:

Fields and Contents—The CFMU dump report contains the following information:

■ Command Statement report heading, which includes: the date, day, and time that
the report was generated; and the page number and CA Compress release used to
generate the report.

■ REPORT command followed by a statement specifying the item to be reported: data
set name, pattern name, system, and FDT.

■ Module name, message number, and message text.

■ The dump of the FDT in the command statement.

FDT Compare Utility DEFXP050

The FDT Compare Utility compares all the FDTs in a specified load library to the CA
Compress Control File being used by the active CA Compress started task. If CA
Compress is not active, an error message is issued and the system abends.

The utility lists those FDTs in the Control File which are unequal to their equivalents in
the load library, or which are damaged and cannot be fetched from the Control File. For
each FDT not found in the Control file, the utility produces a Control File Maintenance
Utility (CFMU) FDT control statement to add the FDT to the Control File. You can supply
this data set to a subsequent CFMU step to add the missing FDTs.

FDT Compare Utility DEFXP050

Chapter 2: Control File Maintenance Utility 37

Executing the FDT Compare Utility

To execute the FDT Compare Utility, you can customize the JCL in member FDTCOMPR
in YOUR.CAI.CCVBJCL.

Additional notes for Sample JCL for the FDT Compare Utility:

■ BADNAMES specifies the list of damaged or unequal FDTs. This is ordinarily a
SYSOUT data set, but it can be a sequential data set which your program can use to
process the problem FDTs. You can specify any BLKSIZE compatible with the utility's
specification of RECFM=FB and LRECL=80.

■ ADDFDTS is the sequential data set containing the CFMU FDT control statements.
You can specify any BLKSIZE compatible with the utility's specification of RECFM=FB
and LRECL=80.

Chapter 3: Record Definition Language 39

Chapter 3: Record Definition Language

Record Definition Language (RDL) provides you with a formal means of describing
characteristics of the data comprising a file that is compressed (and expanded) by the
CA Compress system, using a user-generated FDT. The more you know about the data,
the more detailed and precise the RDL specifications can be.

RDL is used only for user-defined FDTs. Because the execution of any RDL specification
must be serialized, user-defined FDTs impose a significant I/O penalty where multiple
I/Os are issued concurrently, as in busy CICS systems. Super Express, Standard Tables,
and Hardware compression do not require this serialization, so we strongly recommend
them where they give acceptable compression.

Even for user-defined FDTs, CA Compress assumes default record definitions (described
at the end of this chapter) if you choose not to code RDL specifications. CA Compress
effectiveness in achieving impressive compression ratios using default record definitions
(and corresponding low processing overhead) is considerable. In the absence of other
considerations (for example, the need to exempt specific nonkey fields from
compression, for which user-coded RDL specifications are necessary) we recommend
that the default definitions assumed by the CA Compress system be used in the first
attempts to compress any file. Then, if performance is satisfactory, no more user coding
is necessary.

This chapter describes how to create your own RDL, if you need to do it.

This section contains the following topics:

Performance Considerations When Using RDL (see page 40)
How the RDL Operates (see page 41)
RDL Terminology (see page 42)
RDL Syntax Rules (see page 44)
RDL Field Type Descriptions (see page 46)
RDL Repetition Groups (see page 58)
RDL Condition Groups (see page 59)
RDL Position Function (see page 63)
General Restrictions on RDL Use (see page 65)
Guide to Correct RDL Specifications (see page 67)
RDL Defaults (see page 69)
Determining the Best Compression (see page 71)

Performance Considerations When Using RDL

40 Reference Guide

Performance Considerations When Using RDL

Consider three factors when you evaluate performance:

■ I/O—Including the need to serialize concurrent I/Os when using any user generated
FDTs.

■ Compression Ratio—The amount of storage space saved by compressing a data set.

■ Processing Overhead—The amount of additional CPU cycles required to transform
record images from the compressed state to the uncompressed state for processing
by an application program, and to retransform records to the compressed state for
storage in the data set.

Whenever RDL is used, non-reentrant code is compiled to execute the compression and
expansion specified by the RDL. When I/Os are performed sequentially, this
consideration is negligible. However, for the CICS or other systems performing
concurrent reads and writes to the same ACB, this penalty becomes severe. For any data
set used under CICS or similar systems, we strongly recommend Super Express, Standard
Tables, or Hardware Compression, if at all possible.

Maximizing the compression ratio represents a cost saving for users, because more data
can be stored per unit of storage available. The accompanying increase in processing
overhead may or may not represent an increased cost to the user, depending upon the
circumstances unique to each user.

Many factors influence whether the increase in processing overhead results in a cost or
a saving to the user. Although it seems that increased processing overhead to compress
and expand records always costs the user more, more records can be stored per block
when compressed, reducing the number of times that data blocks must be transferred
between the application and the storage device. This reduction represents a decrease in
processing overhead and may result in a net saving. The availability of CPU cycles during
a typical job mix is also important. The total number of CPU cycles available per unit of
time is a fixed cost to the user, directly related to the computing power of the user's
installed hardware. If CPU cycles are available during a typical job mix, increased
processing overhead may result in no increased cost.

In any event, there is a trade-off between the compression ratio and processing
overhead. As the compression ratio approaches the theoretical maximum (that is,
storing the greatest amount of data in the fewest number of bits), processing overhead
tends to increase. By benchmark testing, you can determine the optimum trade-off for
yourself, based upon your requirements.

How the RDL Operates

Chapter 3: Record Definition Language 41

How the RDL Operates

The theoretical maximum compression ratio is different for each data set, because it
depends upon the actual data contained in the data set. The CA Compress system
provides multiple algorithms for compressing data, which you can selectively apply to
individual fields within data records to maximize their compression.

Using RDL specifications, which you code and supply as input to build the File Descriptor
Table (FDT), accomplishes this compression. The more completely and accurately the
RDL describes the records, the closer the compression ratio approaches the theoretical
maximum. However, each RDL specification coded has an associated cost in processing
overhead.

For example, you know that a certain field contains textual data, such as a customer
name and that the customer name field never contains numeric characters. This
characteristic can be used to differentiate this field from a customer address field,
which, while containing textual information, does contain numeric characters. By using
2 different RDL specifications to define these fields, you may achieve a higher
compression ratio for both fields than if both fields are defined by the same RDL
specification.

While it is often sufficient to know what kind of data is in a field, it is also helpful to
know the distribution of values contained in the field across the file. For example, one of
the most efficient ways to define a field to CA Compress is as a small set of fixed
expected values. A file may contain a warehouse name field, where there is only a small
number of warehouses represented on the file. An RDL specification can be coded which
provides these names as a set of expected values.

RDL Terminology

42 Reference Guide

RDL Terminology

To understand how to use CA Compress RDL, understand certain technical terms used to
describe the RDL in the following discussion. You code RDL specifications to describe the
records that comprise the file that is compressed and expanded. Each RDL specification
defines one data field.

Note: Unless otherwise noted, references to the term field in this section means a field
as defined to CA Compress, not a record data element.

A field, to CA Compress, is a series of consecutive byte locations, the contents of which
have similar compression/expansion characteristics, as determined by the user. The
boundaries of fields defined to CA Compress need not correspond with actual field
boundaries of data elements. For example, the entire record can be defined to CA
Compress as a single CA Compress field.

Fields are differentiated by the type of data they contain (for example, character data,
packed decimal data, and so on). Thus, each RDL specification partly consists of a field
type code. From the field type code you specify, the CA Compress system selects a
compression/expansion algorithm appropriate for the field's content.

In addition to the type of data contained in a field, CA Compress must know the extent
of the field; that is, where it begins and ends—the boundaries of the field. Thus, each
RDL specification coded contains an indication of the length of the field, in bytes.

The location in the record where the field begins is implied by the sum of the lengths of
fields previously defined. CA Compress evaluates user-coded RDL specifications
left-to-right and maintains an internal field pointer (IFP). The value in the IFP is initially
zero, corresponding to the first position of the record. CA Compress automatically
adjusts the IFP value for each RDL specification, increasing it by the length of the
previous field definition.

In a few special cases, you may need to set the value of the IFP explicitly by coding a
special RDL specification, the Position Function. Use of the Position Function is
described later in this chapter.

Field lengths are not always fixed. The field length of a variable-length field must be
determinable from information contained in the record. A separate field normally
contains the length of a variable-length field, or contains a value indicating the number
of times that a variably occurring fixed-length segment appears. CA Compress allows
you to perform arithmetic within a field definition to calculate a variable field length,
using a special symbol, VS, to represent the calculated value. The VS (Variable Symbol)
can be coded in certain field definitions in lieu of an integer length. Detailed description
of calculating a value for the VS is presented later in this section.

RDL Terminology

Chapter 3: Record Definition Language 43

You may need to repeat an RDL specification twice or more in succession. For example,
the record may contain 20 successive packed decimal numbers of identical length. To
reduce coding in such cases, the RDL provides for specification of a repetition factor for
a single RDL specification or a group of RDL specifications coded consecutively. This RDL
specification structure has the same effect as coding the RDL specification or a group of
RDL specifications as often, in sequence, as indicated by the repetition factor. This RDL
specification structure is referred to as a repetition group. The VS can be coded in cases
where the repetition factor is variable and can be calculated from information within
the record. This process is described later in this section.

Files can contain multiple record formats, where the format of a particular record can
be determined from the contents of 1 or more individual fields. CA Compress allows
alternative record definitions, which are effective for particular records based upon the
contents of a field. Such an RDL coding structure is referred to as a condition group and
is described later in this section.

RDL Syntax Rules

44 Reference Guide

RDL Syntax Rules

Syntax rules for the Record Definition Language are as follows:

■ Definitions appear within Columns 1—72 of each card.

■ Definitions can be continued onto any number of cards.

■ Each field definition consists of a 1- or 2-character type code followed by a field
length descriptor.

■ Definitions are separated by commas and/or blanks.

■ Groups of definitions are enclosed within quotes and preceded by a repetition
factor.

■ Condition groups (definitions whose pertinence is dependent on record content)
are enclosed in parentheses.

■ Numbers appearing in the language, either as field lengths or arithmetic constants,
must be between 1 and 32767 (inclusive), unless otherwise specified.

■ Definitions are terminated with a period or by end-of-file on the RECDEF data set.
Information appearing after the period is treated as a comment.

As the record definitions are processed by the Prepass Utility or the Interactive User
Interface (IUI), they are checked for syntactical validity (but not applicability to the data)
and printed. If syntax errors are encountered, each error is underscored by an
alphanumeric character identifier, which corresponds to the initial character of an
explanatory error message printed directly below the RDL statement in error.

Each RDL specification consists of a field type code and a field length descriptor. Valid
field type codes and valid forms for coding field length descriptors are shown in the
following tables.

The following example of the use of field definitions with length specifications has the
following characteristics:

■ The first 8-byte field is a right-justified, zoned decimal number.

■ The next 100-byte field is character data.

■ The next 2 fields are 4-byte packed decimal numbers.

■ The remainder of the record is treated as character data.

ZRF8, C1F100, PDF4, PDF4, C1VER.

The following table describes valid field code types:

Field Type Type of Data Defined

C1, C2, C3 Character data using internal frequency table 1, 2, or
3, as specified

RDL Syntax Rules

Chapter 3: Record Definition Language 45

Field Type Type of Data Defined

CS Character data using SHRVL algorithm

GA Garbage, filler, padding, alignment bytes, and so on.

L Insert binary length indication (for COBOL users)

MA, MB Pattern matching

N Exempt from compression (keys)

PD Packed decimal data

S, X Set of expected values

UN Undefined field

V, VP, VZ Variable definition

 ZL, ZR Zoned decimal, left- or right-justified, as specified

The following table describes valid field lengths descriptor codes:

Code Description

Fn Fixed-length field of length n, where
1<n<16384; n may contain leading zeros
but may not exceed eight decimal digits.

FVS Length determined by the previous type-V
field. This descriptor is valid only for types
C1, C2, C3, UN, and GA.

VER Variable-length field extending to the end
of the record. This descriptor is valid only
for types C1, C2, C3, UN, and GA.

This specification gives the RDL some
independence from record length. In
particular, the record length can be
increased indefinitely without having to
recreate the FDT and reimplement the
data set. We strongly encourage its use.

Dc Variable-length field delimited by a given
EBCDIC character, c, or end of input
record, whichever comes first. The length
must be less than 128 bytes. This
descriptor is valid only for types C1, C2,
C3, UN, and GA. The following field
definition, if any, begins beyond the
delimiter.

RDL Field Type Descriptions

46 Reference Guide

RDL Field Type Descriptions

The following subsections describe individual RDL field type codes, with suggestions and
restrictions concerning their use.

RDL Field Type Descriptions

Chapter 3: Record Definition Language 47

Field Types C1, C2, and C3—Character Data

These field types are compressed using the Huffman algorithm, coupled with
elimination of successive repetitions of the same byte value. The value in each byte is
assigned a variable-length bit code, with the most-frequently occurring value assigned
the shortest bit code and the least-frequently occurring value assigned the longest bit
code. The frequency of occurrence of each value is determined during the Prepass and
is stored in 1 of 3 character frequency tables. A separate character frequency table is
associated with each of the character-type RDL field specifications C1, C2 and C3. When
coding RDL specifications for type C fields, you should attempt to group together in the
same frequency table those fields whose byte values are likely to have a similar
distribution.

For example, you can define predominantly alphabetic fields as type C1, predominantly
numeric fields as C2, and fields with another kind of distribution as C3. The compression
ratio thus obtained is better, at no increase in processing overhead, than if all fields are
defined as the same type. With the exception that types C1, C2, and C3 have their own
individual frequency table, they are treated identically by CA Compress.

For example, on a name and address file, suppose the name appears in the first 40
positions, the street address in the next 39, the city and state in the next 28, and the ZIP
code in the final 5 positions. The code could be:

C1F112.

but

C1F40, C2F39, C3F28, C2F5.

gives better results. After the Prepass, the C1 table is heavily skewed toward
alphabetics, with the letters M, R, S, blank and the vowels used most frequently. The
more frequently the character is used, the shorter is its bit code representation. The
second field is preponderantly alphabetics, numerics, and blank, so that its compression
may be improved using a separate frequency table, C2. Because the last field is numeric,
it can also be grouped in C2, although it probably is better for both fields to code it
ZRF5. The city and state field may have the same approximate distribution as the first C1
field, but because there is one more table to spare, (C3), it should be used.

Note: In the improbable event that all 256-byte values are equally represented in the
file, each character translates into an 8-bit code. But even in this case, some
compression may be obtained through the type C automatic elimination of successive
duplicate byte values.

Field Type CS—Character Data (SHRVL Compression)

This field type is compressed using the SHRVL (pronounced shrivel) algorithm. SHRVL
provides better compression than Huffman, especially in circumstances where the data
characteristics vary considerably from record to record.

RDL Field Type Descriptions

48 Reference Guide

Field Type GA—Garbage Data (Permanently Unused Fields)

Field type GA is specified when the content of a field is no longer of value in the file. This
type can be specified for permanently unused fields, fillers, alignment bytes, and so on.
They are deleted in the compressed record, but appear as binary zeros upon
re-expansion. If these fields were not originally zeros, the expanded record is not an
exact replica of the original. Checking used by CA Compress does not consider type GA
fields.

Consider variable-length input records, where the 2 low-order bytes of the IBM
standard Record Descriptor Word (RDW) are always binary zeros. Those 2 bytes can
conveniently be specified as GAF2.

All 4 bytes of the RDW are sometimes superfluous in defining variable-length records,
because the length may be implicit in the record content. The RDW may then be defined
as GAF4. The Expansion Utility fills in the length automatically. The EXPAND subroutine
supplies the length if the output record address (first parameter) and the record length
address (third parameter) are the same.

Field Type L—Insert Tally of Actual Length

This type is used to insert a binary length indicator at the front of each compressed
record. When issued, it must be the first specification of the record definition
statements. In the compressed record it appears as a 2-byte binary number at the start
of the record after the RDW, if any, and before the type N fields. The type L field
contains the number of bytes in the record that follows this field. It is coded in the
record definitions simply as the letter L, with no length descriptor.

Type L is useful in reading and writing compressed records in COBOL. For example, the
COBOL record definition (or redefinition) for records of maximum length 1000 can be
specified as:

01 CMP-RCD SYNC.

 02 LEN PIC 9(4) COMP.

 02 CHARS PIC X OCCURS 1000 TIMES DEPENDING ON LEN.

RDL Field Type Descriptions

Chapter 3: Record Definition Language 49

Field Types MA and MB—Pattern Matching

When data field content is similar from record to record, a pattern matching
specification may produce more efficient compression than other field type
specifications.

Fields defined by this field type are compared with a pattern, and matching characters,
as well as character repetitions, are compressed. Type MA fields use the data in the first
record as a pattern. Type MB fields use the data in the previous record as a pattern.
When SHRINK or EXPAND is called from the user's program, these patterns are set
during the initial CALL. Type MB patterns are reset during each subsequent CALL.

Note: Using MA and MB pattern matching causes an 0C4 abend in both CA Compress
IMS and MVS Editions. For this reason, pattern matching can only be used with CA
Compress/2 and its use is strongly discouraged.

Certain unavoidable restrictions apply to the use of these fields:

■ They must be fixed-length.

■ They cannot be specified within condition groups.

■ When they appear within a repetition group or a nest of repetition groups, none of
the enclosing repetition factors can be the variable symbol, VS.

■ The pattern used to expand the field must be the same as that used to compress
the field.

The use of type MB requires clarification. In general, the compression obtained with
type MB is better than with type MA, but its usage is more restrictive. MB can only be
conveniently used for sequential processing, for example, old master updated by
transaction file yields new master. The following rules must be followed for this type of
sequential update:

Each old master record must be passed to the EXPAND subroutine in sequence. This
requirement precludes the use of MA or MB field definitions with ISAM files retrieved
randomly.

Each new master record must be passed to the SHRINK subroutine in sequence.

If FDTs are in sequential data set format, the old master file and the new master file
must have separate TABLxx DD statements. If the FDTs are in load module format, each
master file must have its own SCB. However, these can, and usually do, refer to the
same File Descriptor Table. Pattern matching works best when field values are partially
or wholly repeated from record to record, as in a file containing multiple consecutive
records with the same name and address. It is useful for print files, files that are
transmitted, and seldom updated read-only files where the speed of compression—and
especially expansion—is more important than compression ratios.

RDL Field Type Descriptions

50 Reference Guide

This type involves substantial setup timing overhead per field and should, therefore, not
be used for fields shorter than 10 bytes, unless a considerable compression payoff is
expected. The longer the field, the less processing overhead for setup is required per
byte.

Field Type N—Fields Exempted From Compression

Type N fields are not compressed. They are placed at the front of each record (after the
RDW, if any, and after the type L field, if any) in the same order as they are defined.
Type N fields can be used as control fields for sorting, retrieving or updating the
compressed record, and are required for key fields.

Type N fields are exempted from the check byte calculation. Thus, they can be modified
within the compressed record without a Check Byte Mismatch condition occurring upon
re-expansion.

Type N fields cannot appear within conditional or repetition groups. Type N fields must
appear at fixed offsets from the start of the record, and their definition must apply to all
records in the file. If such a field happens to occur in the record after variable-length
fields, variable repetition groups, and/or condition groups, the type N field must be
defined before these other fields through the use of a Position Function, which is
described later in this section. The total length of all type N fields must not exceed 4095
bytes.

The decision as to whether or not to exempt a field from compression depends upon
several factors. Key fields used to retrieve records from the file must be exempted from
compression to enable record retrieval. Sort key fields, upon which the file is regularly
sorted, and match key fields, for record matching applications, should also be exempted
from compression.

When sort key fields are exempted from compression, users can invoke a sort utility
program to sort the file in its compressed state, avoiding all expansion overhead. When
match key fields are exempted from compression, you can avoid expansion overhead in
application programs until it is determined that compressed fields from the record
require processing.

Finally, any field at a fixed offset from the record origin, which appears in all records of
the file, can be considered for exemption from compression. Consideration must be
given to the trade-off between compression ratio and processing overhead. If the field is
always or frequently operated upon in application programs, you can exempt the field
from compression. Where compression ratio is critical, the field should be compressed.
Where minimum processing overhead is critical, the field should probably be exempted
from compression. Benchmark testing both ways enables you to determine the optimal
trade-off.

RDL Field Type Descriptions

Chapter 3: Record Definition Language 51

Field Type PD—Packed Decimal Data

Type PD fields contain packed decimal data (USAGE COMPUTATIONAL–3 for COBOL
users). The field length must be less than nine bytes. Valid fields must meet the
following conditions:

■ The number is between –2147483647 and 2147483647.

■ The sign is a hexadecimal C, D, E, or F.

■ Only decimal digits (0–9) occur. (For efficiency, type PD should not be specified for
fields of lengths 1 or 2. Types C1, C2, C3, UN, X, or S can be used in these cases.)

Invalid fields are automatically treated as type UN by CA Compress. Instead of being
compressed, a field defined as type PD, which contains invalid data, is enlarged by one
bit. No data is lost, and upon expansion, field content is the same as it was before
compression. If a field often contains invalid data, type C yields greater compression and
lower processing overhead than PD. A message is printed with the statistics produced by
the Compression Utility indicating the number of times invalid data was encountered in
a PD field during compression.

Packed decimal numbers are converted by CA Compress to binary, bit aligned,
variable-length floating point. If the packed decimal numbers are large in magnitude
and fill their fields with significant digits (for example, the packed date 76 36 5C in a
3-byte field), then defining the field as type PD yields poor performance in both average
time per byte and compression. It is better to specify a type C dedicated to these packed
decimal fields. However, if the numbers rarely come close to filling the field with
significant digits, type PD yields better performance than other specifications.

Specifically, fields with a value of 0 compress to 6 bits, while fields with a value between
-16n-1 and 16n-1 compress to 6+4n bits, regardless of sign or field width.

Consider a file where each record consists of 20, 4-byte packed fields, either written as
PDF4, PDF4, ..., 20 times, or abbreviated as a repetition group

20'PDF4'

If the average number of significant digits is 5 or greater, then it is better to define the
record as

C1F80

If compression is more important than speed, then specifying

20'C1F3,C2F1'

separately defining the low-order sign bytes gives better results for the same record.

RDL Field Type Descriptions

52 Reference Guide

Field Types S and X—Set of Expected Values

A table reference compression technique can be used where the set of expected values
contained in a field across the file is small, and these values are known. It is not
necessary to include all values that occur in the field in the table of expected values. If
data is encountered in the field for which no matching table entry is specified, the data
is not compressed; instead, it grows by one bit. No data is lost in this case, and the
expanded field is identical to the field before compression. A message is printed with
the statistics produced by the Compression Utility, indicating the number of times a
value was encountered in a type S or X field that was not specified in the table of
expected values. To achieve efficient compression, it is important that most values
occurring in a field defined as type S or X are specified in the table of expected values.

Field types S and X are functionally equivalent. The only difference is how to specify the
table of expected values. The table for type S is coded in EBCDIC characters. Any of the
256 possible byte values can be coded, but nongraphic data must be multipunched. The
table for type X is coded in hexadecimal format. Each byte value is coded as 2
hexadecimal digits.

RDL specifications for field types S and X are coded in a special format:

tmnv

Parameter Description

t The field type specification, either S or X.

m A 2-digit number (01<m<99—code the leading zero for
values between 01 and 09), indicating the field length.

n A 2-digit number (01<n<16—code the leading zero for
values between 01 and 09), indicating the number of
entries in the table of expected values.

v The table of expected values. In this table, entries are
coded consecutively until n values are specified. For type
S, no space can be left between consecutive entries. The
table must occupy exactly m*n positions in the field
definition. If the table specification continues past column
72 of the current RDL statement, it starts again in column
1 of the next RDL statement. For type X, spaces can
appear between pairs of hexadecimal digits for
readability, but the table must contain exactly 2*m*n
hexadecimal digits.

RDL Field Type Descriptions

Chapter 3: Record Definition Language 53

CA Compress uses a sequential search algorithm to determine if a field value in the
record appears in the table of expected values. For maximum efficiency in processing
overhead, the entries of the table should be coded in decreasing order of probability of
occurrence. Code first the expected value most likely to occur first; code last the
expected value least likely to occur.

The only limit on the size of an expected value table, other than 99 entries maximum, is
the total space available in the FDT. Where applicable, this is the most efficient method,
both in terms of compression ratio and processing overhead.

To show correctly coded type S and X field definitions, and to show the difference in the
way expected values are coded between types S and X, consider the following
definitions, which are equivalent:

S0103AB1

X0103C1C2F1

Suppose a file has a 4-byte field containing DOGb/, CATb/, FISH, BIRD, FROG, or other,
where other occurs infrequently. If this field is specified as:

S0405DOGbCATbFISHBIRDFROG

the 32-bit (that is, 4-byte) field compresses to 4 bits, one bit as an error flag and 3 bits to
represent which of the 5 values occur. An other field cannot be compressed, but grows
by one bit to 33 bits.

Field Type UN — Undefined Fields

This type is used for fields which fall into none of the other categories. Its chief use is to
define fields which cannot readily be compressed (floating point, binary, bit switches,
and so on), particularly when types C1, C2 and C3 are already in use.

For example, consider defining a floating point field, and types C1, C2 and C3 are already
in use. Defining the floating point field as one of the C types alters the distribution of
values in the corresponding character frequency table. Defining a floating point field as
a type C has a detrimental effect upon the compression ratio for all other fields defined
by type C. To avoid this effect, define the floating point field as type UN. Type UN fields
are not compressed but do not grow in length. Processing overhead for type UN fields is
minimal.

RDL Field Type Descriptions

54 Reference Guide

Field Types V, VP, and VZ — Calculate Variable Symbol Value

Using type V to access the RDW may obtain slightly better compression, because the
RDW is excluded from analysis, but the FDT cannot be used for VSAM or other than
RECFM=V(B) PS data sets, so considerable inconvenience is likely. Moreover, SUBSYS
and the transparency support only V2-4 to access the RDW.

CA Compress RDL provides the capability for defining variable-length fields, and fields
which occur a variable number of times, if the length of the variable-length field, or the
number of times a variably occurring field is actually present, it is stored within the
record or can be calculated from information stored within the record. This capability is
implemented using the Variable Symbol, which is coded in RDL specifications as VS.

Field types V, VP and VZ provide the means to calculate and store a value in the VS. VS is
then coded in subsequent RDL specifications as a field length, a position reference or a
repetition factor. The value stored in the VS during file processing is substituted in the
RDL specification in which it appears for each record for which the specification applies.
The VS can be referenced multiple times within the definition of the record. The value
stored in the VS is changed every time a type V, VP or VZ field is processed.

Field types V, VP and VZ are functionally equivalent. The only difference is the format of
the data in the type V, VP or VZ field. Use type V to define fields containing binary
integer data, type VP for fields containing packed decimal data, and type VZ for fields
containing right-justified zoned decimal data.

RDL specifications for field types V, VP and VZ are coded in one of 3 possible special
formats at the user's discretion: tn; tno1i1; tno1i1o2i2 .

Parameter Description

t is the field type specification, either V, VP,
or VZ.

n is the length of the V, VP, or VZ field, in
bytes.

 For type V: 1<n<4.

For types VP and VZ: 1<n<8.

o1 and o2 + = addition

- = subtraction

* = multiplication

/ = division

i1 and i2 are integers between 0 and 32767.

RDL Field Type Descriptions

Chapter 3: Record Definition Language 55

Any remainder resulting from a division operation is dropped.

Arithmetic operations are evaluated left to right. The following are examples of the
special formats:

Format Description

V4 The 4-byte field currently defined contains
a binary integer whose value is to be
stored in the VS. Using the VS in a
subsequent RDL specification refers to the
value of the binary integer.

V4+500 500 is added to the binary integer, as
described in the previous example, and
the result is stored in the VS.

VP3-3/20 The 3-byte field currently defined contains
a packed decimal number. Three is
subtracted from the number, the result is
divided by 20, and the end result is stored
in the VS.

RDL Field Type Descriptions

56 Reference Guide

The type V specification is often used in CA Compress/2 calls to process variable-length
records using the RDW. For example, for a variable-length record that is treated as a
single type C1 field, the record definition is written as

V2-4,GAF2,C1FVS.

The record length is picked up from the first 2 bytes of the RDW, from which the RDW
length, 4, is subtracted. The next 2 unused bytes of the RDW are treated as a garbage
field, while the remainder of the record is character data.

Consider a variable-length record made up of the 4-byte RDW, followed by a fixed
80-byte field that is followed by a variable number of 40-byte appendages. The fixed
portion is treated as type C1, while each appendage contains 10, 4-byte packed decimal
numbers. The record is defined as

V2-84/40,GAF2,C1F80,VS'10'PDF4''.

One restriction applies to type VP and VZ fields. If invalid packed decimal data is
encountered in a field defined using VP, or invalid right-justified zoned decimal data is
encountered in a field defined using VZ, CA Compress abends with a user code of 20,
and the following message is written to the system output writer:

VP

INVALID TYPE VZ FIELD

Coding the RC parameter when calling the SHRINK or EXPAND subroutine suppresses
the abend, as shown with the messages:

REC DEFS IMPLY WRONG LENGTH

and

CHECK BYTE MISMATCH

See the chapter CA Compress/2 and the CA Compress Data Compression Messages
Guide for more information.

RDL Field Type Descriptions

Chapter 3: Record Definition Language 57

Field Types ZL and ZR — Zoned Decimal Data

Field types ZL and ZR can be used to define fields which contain zoned decimal data.
Type ZL defines a field containing left-justified zoned numeric data, possibly followed by
1 or more filler characters. Type ZR defines a field containing right-justified zoned
numeric data, possibly preceded by 1 or more filler characters.

Valid fields must meet these conditions:

■ The numeric portion must contain only digits (0–9). Commas and decimal points are
not permitted.

■ The value in the numeric portion must be less than 2147483648. Negative numbers
are not permitted.

■ The length of the field must not exceed 128 bytes.

■ For ZL fields, the filler character, if any, must be blank. All-blank fields are valid, as is
a field containing a single, left-justified zero, followed by all blanks.

■ For ZR fields, the filler character can be either blank or zero, but not both. All-blank
and all-zero fields are valid. A field containing a single, right-justified zero preceded
by all blanks is valid.

Data contained in fields defined as ZL or ZR is converted to binary, bit-aligned,
variable-length floating point. Blank or zero fields compress to 5 bits, while fields with a
value between -16n-1 and 16n-1 compress to 5+4n bits, regardless of field length.

If invalid data is encountered in a field defined as ZL or ZR, the field is not compressed.
Instead, it grows by one bit in the compressed record. No data is lost in this event; the
expanded field contains exactly the same data as it did before compression. A message
is printed with the statistics produced by the Compression Utility indicating the number
of times invalid data was encountered in a ZL or ZR field during compression.

ZL and ZR specifications are most useful in cases where a separate type C specification
cannot be dedicated to zoned numeric fields and/or multiple zoned numeric fields are
not contiguous in the record. Consider an 80-byte record containing all numeric digits.
The most efficient specification is C1F80. However, if 80 contiguous bytes containing
zoned numerics occurred within a record for which all type C definitions were already in
use, the best definition for the numeric data is 8'ZRF9',ZRF8. For zoned decimal fields of
9 bytes or less, a definition using type ZR or ZL is better than using a type C specification.

RDL Repetition Groups

58 Reference Guide

RDL Repetition Groups

If a sequence of 1 or more field definitions is repeated n times, it can be coded once
with a repetition factor by enclosing the sequence in single quotes and preceding it with
a 2-digit number, n, where 02<n<99. For example:

02'ZRF2,03'PDF4,C1F25''.

is an abbreviated form of

ZRF2,PDF4,C1F25,PDF4,C1F25,PDF4,C1F25,

ZRF2,PDF4,C1F25,PDF4,C1F25,PDF4,C1F25.

Repetition groups can be completely, but not partially, contained in conditional groups
and conversely. Thus:

...(...03'...)...' and 03'...(...'...)

are syntactical errors.

The symbol VS can be used instead of the 2-digit repetition factor to indicate that the
value used is specified in a previous type V definition. VS is useful when the actual
number of times that a field or a series of fields occurs within the record is variable and
is contained in a separate field. For example, an invoice file consisting of variable-length
records has a variably occurring series of 3 fields:

■ Line item description, 20 bytes of character data

■ Line item quantity, 4 bytes packed decimal data

■ Line item amount, 7 bytes packed decimal data

A separate field in the record contains a value indicating the number of line items
represented in the record. This field is 2 bytes in length and is zoned decimal format.
The following is coded to define these fields:

...,VZ2,...,VS'C1F20,PDF4,PDF7' etc.

Field Description

VZ2 The field containing the actual number of
occurrences

VS The Variable Symbol reference used to
refer to the value (contained in the
previously defined V-type field) which
contains the actual number of occurrences

The characters enclosed in single quotes represent the line item fields.

RDL Condition Groups

Chapter 3: Record Definition Language 59

RDL Condition Groups

CA Compress RDL provides the capability for defining multiple record formats for a file,
where the format of an individual record can be determined from the contents of a field
within the record by coding RDL specifications in a special structure, the condition
group.

The general form of a condition group follows:

(nv,f,...,f)

 Parameter Description

n A 2-digit number, indicating the length of the field that is
tested.

v A value for comparison, n bytes in length.

f Any RDL specification or repetition group.

RDL Condition Groups

60 Reference Guide

If the current n bytes in the input record being processed are equal to the value v, then
the remaining definitions within the parentheses apply to the record; otherwise, they
are skipped.

The value coded for v can consist of any of the 256 possible byte values, but you have to
set the edit screen to hexadecimal to enter nongraphic values.

For readability, you can code the value v in hexadecimal format. To do so, code an X
before the length specification n, and code the value as pairs of hexadecimal digits. For
readability, leave spaces between pairs of hexadecimal digits. For example, the
following 2 condition group specifications are equivalent:

(03XYZ,C1F80)

 (X03E7E8E9,C1F80)

A series of consecutively coded condition groups which are not separated by a comma
(that is, separated by 1 or more blanks) indicates that the first condition group in the
series whose condition is met applies to the record being processed, and the remaining
condition groups in the series are skipped. For example, consider a hypothetical
elementary invoicing file. Assume this file consists of sets of records, where each set of
records represents 1 invoice. Each set of records consists of a header record, 1 or more
detail records and a trailer record. The following image illustrates these records and the
fields contained in them.

RDL Condition Groups

Chapter 3: Record Definition Language 61

The following RDL specifications define these records and show the use of condition
groups:

ZRF8,(01H,C1F8,GAF23)b(01D,C2F20,PDF4,PDF7)b(01T,GAF20,PDF4,PDF7).

It is important that alternative condition groups in a series be separated from one
another by 1 or more blanks—not a comma. The comma is used to separate the last
condition group in a series from any RDL specifications (which could be another
condition group) that follow.

To show this point, consider the sample RDL specifications above, describing the records
in Invoicing File Record Set. Suppose a comma separated the first condition group from
the second condition group. Then if a record whose RECORD TYPE field contained an H
was encountered, the first condition group applies. But after processing the C1F8,GAF23
RDL specifications, the following condition groups are not skipped. CA Compress expects
more data beyond the filler at the end of the record, looking to compare for a D,
according to the next condition group. Because the record definitions do not accurately
define the record that is processed, unpredictable results may occur.

If the file contains a record whose record type is not H, D or T, CA Compress will abend
with a user code of 15 and the message REC DEFS IMPLY WRONG LENGTH. This occurs
because no record definitions are specified past the invoice number for any record
whose record type is neither H, D nor T. You can avoid this situation by coding a default
condition group at the end of the condition group series.

It is permissible (and frequently necessary) to code a default condition group at the end
of a series of condition groups. Such coding supplies a set of record definitions if none of
the preceding condition group tests are met and the actual content of the byte(s) in the
record being tested is not known. The general form of a default condition group is the
following: (00,f,...,f). In this expression:

Parameter Description

00 is coded exactly as shown.

f is any RDL specification or repetition group.

RDL Condition Groups

62 Reference Guide

A condition group coded in this form means that the RDL specifications in the condition
group apply, no matter the contents of the current byte in the record being processed.
Any default condition group coded in a series of condition groups must be coded as the
last in the series. To show this procedure, the following definition can be coded to
describe the records in Figure 2-1. Invoicing File Record Set.

ZRF8,(01H,C1F8,GAF23)b(01D,C2F20,PDF4,PDF7)b(01T,GAF20,PDF4,PDF7)b(00,C3F32).

If you omit coding a default condition group as the last condition group in a series, CA
Compress automatically supplies the default condition group (00). This procedure
indicates that if none of the preceding condition groups apply for a particular record,
any RDL specifications following the condition group series apply beginning at the
current byte location in the record. This is the same byte location within the record
which the preceding series of condition groups tested. To show this point, note that the
following 2 sets of RDL specifications are equivalent:

ZRF8,(01H,C1F8,GAF23)b(01D,C2F20,PDF4,PDF7)b(01T,GAF20,PDF4,PDF7)b(00,C3F32).ZRF8

,(01H,C1F8,GAF23)b(01D,C2F20,PDF4,PDF7,)b(01T,GAF20,PDF4,PDF7),C3F32.

The maximum number of condition groups that can be coded in a series is 16, including
the final default condition group, whether user-specified or automatically provided by
CA Compress. The maximum number of condition group series that can be coded is
limited only by the amount of space available in the FDT.

If the condition specified in a condition group is met, the value specified in the condition
group and found in the record is compressed to 4 bits, regardless of the length of the
value. No separate RDL specification is used to compress the value. The lengths of the
values can differ within a condition group series.

RDL Position Function

Chapter 3: Record Definition Language 63

RDL Position Function

As fields are processed, CA Compress automatically adjusts an internal field pointer (IFP)
to the current displacement within the record. In a few special cases, you can alter this
IFP with the Position Function.

For example, fields exempted from compression (that is, fields defined with the field
type-N RDL specification) must be defined before any variable or condition group RDL
specifications. If a field exempted from compression is located at a higher displacement
from the record origin than variable-length fields or conditionally present fields, the
Position Function must be used to set the IFP at the field exempted from compression,
so it can be defined first. Then the Position Function must be used again to reset the IFP
to the lower displacement so the variable-length and/or conditionally present fields can
be defined.

The Position Function has 4 possible forms, chosen at the user's discretion:

Form Description

Pn Set IFP to n.

P+n Add n to the IFP.

P-n Subtract n from the IFP.

P Reset IFP to prior value.

P is coded as shown; n is either a 1- to 5-digit integer or the Variable Symbol, VS.

Displacements are computed relative to 0, which indicates the start (origin) of the
record. The 4 Position Function forms perform the following functions:

Form Description

Pn repositions to the n+1th byte in the
record.

P+n repositions forward n bytes.

P-n repositions backwards n bytes.

RDL Position Function

64 Reference Guide

P resets the IFP to its value immediately preceding the last Pn, P+n or P-n. If there were
no previous Position Functions executed, the P is ignored. P cannot be specified as the
initial Position Function. You must adhere to the following rules:

■ The IFP must remain within the bounds of the record. This error is usually caught in
the Prepass or compression phase, but not always, because complete checking
involves substantial time overhead during compression.

■ The IFP must be at the byte following the last byte of the record after all fields are
processed. Otherwise, a wrong length record abend 15 occurs.

■ If a field is bypassed, a check byte mismatch abend 10 may occur on re-expansion.

■ Redefining through repositioning degrades performance and should be specified
only when absolutely necessary.

For example, a hypothetical name and address file contains 3 types of 80-byte records
as shown below.

The following RDL specifications define this file:

 P79,(01A,P,C1F79)b(01B,P,C2F79)b(01C,P,C3F74,ZRF5),P+1

RDL Specification Description

P79, sets the IFP at the RECORD TYPE field.
(Note that the IFP is relative to zero, thus
IFP of zero is the first record position, and
IFP of 79 is the 80th byte of the record.)

(01A,P,C1F79)b If the RECORD TYPE field contains A, resets
the IFP to the beginning of the record, and
defines the NAME field.

(01B,P,C2F79)b If the RECORD TYPE field contains B, resets
the IFP to the beginning and defines the
STREET ADDRESS field.

(01C,P,C3F74,ZRF5), If the RECORD TYPE field contains C, resets
the IFP to the beginning and defines the
CITY, STATE and ZIP CODE fields.

General Restrictions on RDL Use

Chapter 3: Record Definition Language 65

RDL Specification Description

P79, sets the IFP at the RECORD TYPE field.
(Note that the IFP is relative to zero, thus
IFP of zero is the first record position, and
IFP of 79 is the 80th byte of the record.)

P+1 At this point, one of the condition groups
has been applied to the record (provided
that all records in the file contain either A,
B or C in the RECORD TYPE field), and thus
the IFP is again pointing at the RECORD
TYPE field. It is necessary to code P+1 to
position the IFP at the byte location
following the last byte of the record.
Failure to do so results in an abend with a
user code of 4 and the message, REC DEFS
IMPLY WRONG LENGTH.

General Restrictions on RDL Use

The RDL is employed to construct the File Descriptor Table (FDT). The FDT has a
maximum size, and there is a corresponding upper limit on the number of RDL
specifications allowed for any one file. In the unlikely event that this maximum is
reached, a user abend 4 occurs and the RDL specifications must be reduced by
combining adjacent field definitions to form group fields. The space in the FDT required
to contain the RDL specifications can be calculated using the following table.

RDL Specification Space Required (In Bytes)

GA, PD, ZL, ZR 6

C1, C2, C3, CS 18

MA, MB 92 for first occurrence. 54 for each
subsequent occurrence

UN 14

N 20

v 48

VP, VZ 40

S, X 26

First (in a condition group series 72

General Restrictions on RDL Use

66 Reference Guide

RDL Specification Space Required (In Bytes)

Each remaining (in a condition group
series

54

Fn, where n < 128 4

Fn, where n > 128 38

FVS 46

VER, Dc 88

P 12

P + n 18

P + VS 8

Fixed repetition group 16

Variable repetition group 30

The space required must be summed according to RDL specifications as coded, and the
total cannot exceed 2800. Consider the following example:

V2-4,GAF2,C1FVS.

Using the following table, the space required for these RDL specifications is as follows
and well within the 2800 limit:

 V2-4 GA F2 C1 FVS total

48 + 6 + 4 + 18 + 46 = 122

Guide to Correct RDL Specifications

Chapter 3: Record Definition Language 67

Guide to Correct RDL Specifications

The following table describes the correct RDL specifications:

Field Type Description

C1, C2, C3 Type C is used to define groups of fields whose byte
values have similar frequency distributions. Up to 3
different frequency distributions can be accommodated,
one each by type C1, C2 and C3. If no other type code is
clearly preferable, choose a type C.

Compression is variable, depending on the skewedness of
distribution. The more greatly skewed the distribution,
the greater the compression ratio. Processing overhead is
minimal (3).a

CS Type CS is used to define groups of fields where the data
varies considerably. Compression is variable, according to
the data characteristics. Processing overhead is minimal
(3).

GA Type GA is used to eliminate unneeded fields from the
compression record.

Compression is 100 percent. Processing overhead is
negligible (1).a

L Type L is used to insert a binary tally of the compressed
actual number of bytes comprising the compressed
record as the first 2 bytes of the record following the
RDW. Particularly useful for COBOL users.

This field type actually increases the compressed record
length by 2 bytes. Processing overhead is negligible (1).a

MA, MB Type M is used when data in a field repeats from record
to record. Several restrictions govern use of this field
type. For fields smaller than 10 bytes in length, type C is
preferable.

Compression is variable, depending upon the degree of
data repetition. Processing overhead is variable,
decreasing as field length increases (3–5).a

N Type N is used to exempt a field from compression. Use
for retrieval, match and sort keys, and any field which you
want to access without expanding the data. There are
several restrictions governing use of this field type
specification.

This field type yields no compression. Processing
overhead is negligible (1).a

Guide to Correct RDL Specifications

68 Reference Guide

Field Type Description

PD Use type PD for fields containing packed decimal data,
preferably with many high-order zero digits. If significant
digits frequently fill the field or if invalid data is frequently
present in the field, choosing a type C specification is
preferable.

Compression is excellent when the value is zero, and
variable, increasing as the proportion of significant digits
to total digits decreases. Processing overhead is moderate
(5–6).a

S, X Use type s or x when the number of values occurring in a
field is small (16 or fewer) and these values are known in
advance.

Compression is excellent, and the processing overhead is
minimal (3).a

UN Use Type UN for fields which cannot readily be
compressed (for example, bit switches, floating point
numbers), particularly when all 3 type C specifications are
already in use.

This field type yields no compression. Processing
overhead is minimal (2).a

V, VP, VZ Use one of these field type specifications to define a field
whose content is used to calculate the actual length of a
variable-length portion of the record, or a field which
contains the actual length of a variable-length portion of
the record.

Type V is not compressed. Type VP is compressed as PD.
Type VZ compressed as ZR. Processing overhead is
minimal to moderate, depending on field type:

V=2 VZ=4 VP=6a

ZL, ZR Type Z is used for fields containing zoned decimal data,
particularly when a type C specification cannot be
dedicated to zoned decimal data. Several restrictions
govern the use of this field type specification.

Compression is excellent when value is zero, variable,
increasing as the magnitude of the value increases.
Processing overhead is moderate (3–4).a

a. Numbers shown are a relative measure of processing efficiency. 1=most efficient,
6=least efficient.

RDL Defaults

Chapter 3: Record Definition Language 69

RDL Defaults

If the RECDEF DD statement is not present in the execution JCL for the File Prepass
Utility or by the IUI, or if it specifies a null data set (that is, one with no records), default
RDL specifications are generated based upon characteristics of the data set defined by
the INFILE DD statement. The defaults are also generated if the only RDL specification
supplied by the user is a single type L field.

Note: If L. is specified, all dfaults begin with L,....

In the default RDL specification formulas shown below, the following variables are
substituted with appropriate values, obtained from the data set label or JCL
specifications:

Variable Description

x The number of bytes before the key, excluding the RDW (if
present)

x' x-1

y The number of bytes following the key; if there is no key, then y
is the record length (LRECL)

k The number of bytes in the key (KEYLEN)

k' k+1

j k + the relative key position (RKP)

The generated defaults are printed on the PRINT data set by the File Prepass Utility or
the IUI.

Files

Formulas for Default RDL
Specifications

Sequential Fixed-length C1Fy

 Variable-length V2-4,GAF2,C1FVS

 Undefined C1VER

ISAM Fixed-length, key at beginning
of record

Nk,,C1Fy

 Fixed-length, RKP=1a Nk',,C2Fy

 Fixed-length, RKP>1a N1,,C1Fx',,Nk,,C2Fy

 Fixed-length, key at end of
record

N1,,C1Fx',,Nk

RDL Defaults

70 Reference Guide

Files

Formulas for Default RDL
Specifications

 Variable-length, relative key
position = 4

V2-j,,GAF2,,Nk,,C2FVS

 Variable-length, RKP=5a V2-j,,GAF2,,Nk',,C2FVS

 Variable-length, RKP>5a V2-j,,GAF2,,N1,,C1Fx',
Nk,,C2FVS

VSAM Fixed-length, key at beginning
of record

Nk,,C1Fy

 Fixed-length, key somewhere
within the record

N1,,C1Fx',,Nk,,C2Fy

 Fixed-length, key at end of
record

N1,,C1Fx',,Nk

 Variable-length, key at
beginning of record

Nk,,C2VER

 Variable-length, RKP=1a Nk',,C2VER

 Variable-length, RKP>1a N1,,C1Fx',,Nk,,C2VER

a. Default definition permits record deletion when the DCB parameter OPTCD=L is
specified.

Determining the Best Compression

Chapter 3: Record Definition Language 71

Determining the Best Compression

To determine the best possible compression to implement for a file, you can use the
facilities of the IUI. Follow the steps below to determine the best compression
obtainable for the file. These steps comprise a summary procedure.

1. Analyze the characteristics of the file.

2. Use the b subcommand on the data set in the worklist to browse the statistics.

You now have a basis on which you can judge the effectiveness of the RDL for each
record. Fine-tuning the RDL for a record may increase compression but may increase the
CPU overhead.

Note: While RDL is the acronym for Record Definition Language, the term the RDL is
commonly used to mean the set of RDL statements which represent the record
definition (for compression purposes) for a given data set or pattern. The RDL is located
in the Analysis File as an entity within the record for a discrete file or pattern entry and
is in the external character format. The RDL is also a subsection of an FDT. The RDL
portion of an FDT is in the internal format and describes the record format for the file to
be processed under control of this FDT.

You can respecify the RDL for the record and perform the testing procedure again. If you
change the RDL for a record, the Byte Distribution Analysis (BDA) for the record is
performed again.

As you fine-tune the RDL for the records in the file, follow the steps below, which can be
repeated as often as needed until you have obtained the compression that you want to
implement for the file.

1. Update the RDL you have devised for the record.

2. Redo the data set analysis.

3. Evaluate the results of the test compression.

When the testing and evaluating have produced the optimum compression controls,
follow the step-by-step procedure outlined earlier in this section to implement
compression for the file.

Determining the Best Compression

72 Reference Guide

How to Enter or Change the RDL Using the IUI

Before actually implementing a data set, you can devise different RDL specifications in
order to achieve better compression. To devise these specifications, you must update
the RDL for a data set and then run a trial compression job. Detailed instructions on how
to update the RDL follow.

1. Select Maintenance from the Task menu.

2. Select Analysis File to display the Analysis File Maintenance menu.

3. Select All Records or Limit Search.

■ All Records displays a list of all the data set names that are in the Analysis File.

■ Limit Search displays the Data set Name selection window. Type the data set
name for the search, and press [Enter] to see a list of the data set names you
selected.

4. Move the cursor to the Action field next to the data set you want.

5. Type R, and press [Enter] to display the RDL User Parameter Maintenance screen.

Initially, each noncompressible field (type N) represents 1 or more keys. The
definition for the N fields cannot be shortened or eliminated but can be increased
in length to cover more data. Consider doing this if, for example, there is one byte
between 2 type N fields. The other fields can be altered as needed. Any altered
definition must not alter the total length of the definition as this can change the
offset of the type N fields and thus the key positions, causing the Dialog to reject
the RDL. You can now enter the RDL for the compressible area.

6. Enter up to 12 lines of 78 characters each for the data set's RDL. When all changes
to the RDL are made, press [Enter] to store the new RDL. If you need to cancel the
changes you made in the RDL, press the [End] PF key, which returns you to the
Analysis File Maintenance screen.

If you have made any errors in the RDL, an error message is displayed in the upper
right-hand corner of the screen and the cursor appears at the location of the error.
To obtain more information about the error, press the [Help] PF key. Correct the
error in the RDL and press [Enter].

When the RDL is correct, it is recorded and you are returned to the Analysis File
Maintenance screen.

Chapter 4: CA Compress/2 73

Chapter 4: CA Compress/2

The CA Compress/2 Data Compression System enables your applications to invoke
subroutines to compress and expand data, reducing the cost of storing data on disk or
tape and supporting compression exits to a wide variety of products. In addition, utilities
can be used to compress or expand the following:

■ Entire key-sequenced or entry-sequenced VSAM files.

■ Entire sequential files.

■ Entire direct access files and members of partitioned data sets when being
processed sequentially.

■ CA Compress/2 is provided to all CA Compress users.

This section contains the following topics:

Features (see page 74)
Using Subroutines (see page 75)
Accessing the FDT (see page 78)
JCL Implications for Existing Application Programs (see page 79)
Calling the Subroutines (see page 80)
Incorporating Subroutine Calls in Existing Application Programs (see page 99)
Defining Compressed Records in COBOL Application Programs (see page 100)
Linking Subroutines With Applications (see page 102)
Using CA Compress/2 Under CICS (see page 103)
The CA Compress/2 Utilities (see page 107)

Features

74 Reference Guide

Features

The CA Compress/2 system provides a unique combination of capabilities:

High Degree of Data Compression

Data sets compressed by CA Compress/2 require as little as 10 percent, and
commonly 35 percent, of their original space allocation.

Efficient Implementation

Application programs using the CA Compress/2 system to process compressed data
sets may in some cases complete in less time than was once required to process
uncompressed data sets.

Demonstrated Reliability

CA Compress/2 uses a check byte technique to ensure that no data is altered during
compression and expansion.

Ease of Use

CA Compress/2 provides excellent compression without requiring you to provide
information about the structure and content of records to be compressed. If you
want to achieve compression ratios approaching the theoretical maximum, CA
Compress/2's Record Definition Language (RDL) provides the opportunity to
describe the record structure and content of the data set to be compressed. In the
absence of user-coded RDL specifications, CA Compress/2 assumes standard
defaults based upon attributes of the input data set to achieve excellent
compression.

Flexibility

The RDL provides a powerful tool for constructing a compressed data set tailored to
your specific requirements. User-specified fields can be exempted from
compression, allowing sorting of compressed data sets without requiring prior
re-expansion. Application programs can expand records selectively by examining
fields exempted from compression, avoiding needless expansion overhead.

If the fields being sorted on are exempt from compression, sort utility programs can
sort the records without expansion and recompression.

Similarly, if match key fields are exempted from compression, application programs
containing logic to match records based on match key fields can perform the
matching logic on the compressed records, limiting record expansion to only those
cases which require further processing.

The RDL enables you to exempt fields from compression as well as to optimize
compression. Fields in the record are defined by field type code specifications,
which indicate the method of compression for the defined field. The available type
codes let you define virtually any combination of field formats. Using the RDL is
optional. If you omit RDL specifications, CA Compress/2 assumes default RDL
specifications based upon data set attributes provided by JCL or by the data set
label.

Using Subroutines

Chapter 4: CA Compress/2 75

Using Subroutines

CA Compress/2 provides the following subroutines which can be invoked from your
application programs for processing of compressed data:

■ Custom Compression

■ Standard Tables Compression

■ IBM Hardware Compression

■ Super Express Compression

Custom Compression

The following are the Custom Compression subroutines:

SHRINK

Converts an uncompressed record image to compressed form.

EXPAND

Converts a compressed record image to its original uncompressed form.

CLOSE

Frees storage dynamically acquired by calls to SHRINK or EXPAND when it is no
longer required.

Standard Tables Compression

The following are the Standard Tables Compression subroutines:

Note: Standard Tables STDTBL0x must be available through STEPLIB, JOBLIB or the
linklist, or you must link edit any routine you require into your program.

SHRINKS

Converts an uncompressed record image to compressed form using a Standard
Table.

EXPANDS

Converts a record image compressed with a Standard Table to its original
uncompressed form.

CLOSES

Frees the dynamic area acquired by SHRINKS or EXPANDS.

Using Subroutines

76 Reference Guide

IBM Hardware Compression

The following lists IBM Hardware Compression subroutines:

Note: The needed IBM Hardware Compression dictionary must be available through
STEPLIB, JOBLIB or the linklist. CA strongly recommends that your dictionaries be kept in
the linklist. The CA supplied dictionaries are named HC#STDnn where nn is numeric
01–99.

SHRKHCS

Converts an uncompressed record image to compressed form using an IBM
Hardware Compression dictionary.

SHRKHCX

Converts a record image compressed with an IBM Hardware Compression
dictionary to its original uncompressed form.

SHRKHCC

Frees the dynamic area acquired by SHRKHCS or SHRKHCX. Because another
application in the address space may be using the dictionary, SHRKHCC does not
issue DELETE to remove it from storage. You can do so yourself when you no longer
need it.

If you supply your own dictionary, it must be named HC#USRnn where nn is numeric
00—27. The compression dictionary must be immediately followed by the expansion
dictionary in one load module. Both the compression and expansion routines expect the
whole module and fail if both dictionaries are not provided in this order.

Super Express Compression

The following are the Super Express Compression subroutines:

Note: SHRINKZ and EXPANDZ do not acquire any dynamic storage, so there is none to
free.

SHRINKZ

Converts an uncompressed record image to compressed form using the Super
Express string compression algorithm.

EXPANDZ

Converts a record image compressed using Super Express to its original
uncompressed form. EXPANDZ also expands records compressed with the old
EXPRESS algorithm.

These subroutines are fully reentrant, and can reside in the Link Pack Area, LINKLIB, or a
load module PDS defined through STEPLIB or JOBLIB in the JCL.

Using Subroutines

Chapter 4: CA Compress/2 77

JCL Implications for Existing Application Programs

When CA Compress/2 subroutines are called by an application program to process
compressed data sets, corresponding changes must be made to the JCL which defines
the compressed data sets. The definition of the compressed version of the data set must
be substituted for the definition of each formerly uncompressed data set.

Information needed to code the JCL for the compressed data set is available from the
data set label or, if the Compression Utility was used, from the Compression Utility job
which compressed the data set. In general, the RECFM is variable and the LRECL must be
increased by 8 bytes (12 if originally fixed length). See the section JCL Defaults in this
chapter for detailed information.

When How Much

Always +2

Type L defined +2

VER length descriptor defined +2

RDW present (not RECFM=U, F, or VSAM) +4

Each type GA definition -field length

Each non-GA field redefined using the
Position function

+field length

Accessing the FDT

78 Reference Guide

Accessing the FDT

The File Descriptor Table (FDT), created by Prepass or the Interactive User Interface,
contains all the information (code tables, edited record definitions, file characteristics,
and so on) needed to compress and expand the data it was built from. Each file
processed by CA Compress/2 must have an associated FDT unless Super Express is being
used. The FDT associated with a particular file must be present (through JCL
specification) in every job step in which records from that file are processed by CA
Compress/2.

Note: We strongly encourage you to use FDTs created by the IUI rather than Prepass,
especially for users of Physical Sequential Transparency. The IUI and Prepass with
SS05300 create FDTs with an Integrity Check Block (ICB), by which the expansion
routines recognize uncompressed records and avoid a number of problems, including
accidental double expansion.

The Super Express, Standard Tables, and Hardware Compression algorithms do not refer
to user-defined FDTs, but the SHRINK, EXPAND, and CLOSE routines do refer to the
user-defined FDT associated with each compressed data set. The FDT for each
compressed data set that is processed must be defined or made accessible via the JCL
used to invoke the application program which uses CA Compress/2 subroutines.

FDTs maintained in sequential data set format require separate definitions on a TABLxx
DD statement, where xx, coded as a two-digit number ranging from 00 through 31,
corresponds to a file number supplied by the user as a parameter in the CALL to SHRINK,
EXPAND, or CLOSE. CA discourages use of this format.

FDTs should preferably be stored as members of a PDS in load module format. Coding
the STEPLIB DD statement to define the PDS containing FDTs in load module format
makes every FDT contained in the PDS accessible to the application program. In this
manner, all FDTs used in an application program can be accessed through a single DD
statement.

Within the application program, each FDT in load module format must have an
associated 48-byte, fullword-aligned Shrink Control Block (SCB). Subroutine calls pass
the SCB as a parameter to identify the FDT, instead of the file number as with FDTs in
sequential data set format. Before the first subroutine CALL using a particular FDT, its
associated SCB must be initialized as follows:

■ The first 8 bytes must contain the member name of the FDT load module,
left-justified with trailing blanks as necessary to fill the full 8 bytes.

■ The remaining 40 bytes must contain binary zeros.

■ The following model definitions demonstrate properly initialized SCBs:

Assembler Language:

JCL Implications for Existing Application Programs

Chapter 4: CA Compress/2 79

SCBNAME DS 0F

DC CL8'fdt-member-name'

DC 10F'0'

COBOL—must be in WORKING—STORAGE SECTION:

01 SCBNAME.

 03 FILLER PICTURE X(8) VALUE 'fdt-member-name'.

 03 FILLER PICTURE X(40) VALUE LOW-VALUES.

PL/I:

DCL 01 SCBNAME,

 03 name CHAR(8) INIT ('fdt-member-name'),

 03 N(10) FIXED BIN(31) INIT ((10)0);

After initialization, the SCB must not be modified in any way. Reentrant programs must
place the SCB in dynamically allocated main storage.

JCL Implications for Existing Application Programs

When CA Compress/2 subroutines are called by an application program to process
compressed data sets, corresponding changes must be made to the JCL which defines
the compressed data sets. The definition of the compressed version of the data set must
be substituted for the definition of each formerly uncompressed data set.

Information needed to code the JCL for the compressed data set is available from the
data set label or, if the Compression Utility was used, from the Compression Utility job
which compressed the data set. In general, the RECFM is variable and the LRECL must be
increased by 8 bytes (12 if originally fixed length). See the section JCL Defaults in this
chapter for detailed information.

When How Much

Always +2

Type L defined +2

VER length descriptor defined +2

RDW present (not RECFM=U, F, or VSAM) +4

Each type GA definition -field length

Each non-GA field redefined using the
Position function

+field length

Calling the Subroutines

80 Reference Guide

Calling the Subroutines
The application program performs all I/O. The first call to SHRINK or EXPAND which
refers to a particular file number or SCB causes 1K to 8K bytes of dynamic storage to be
acquired, the FDT to be loaded, and code to perform the function to be custom
compiled. Subsequent calls execute only the custom-compiled code. This provides the
fastest possible execution time.

SHRINKZ and EXPANDZ do not require this initial processing.

SHRINKS and EXPANDS build a small dynamic area, and depending on how they are
called, they may need to load the appropriate Standard Table.

SHRKHCS and SHRKHCX also build a small dynamic area, and they need to load the
appropriate hardware compression dictionary load module. The following illustration
shows the general flow of subroutines.

The language dependent conventions for parameter passing and subroutine linkage are
described in the following sections.

Calling the Subroutines

Chapter 4: CA Compress/2 81

Assembler Language

The subroutines should be called using the CALL macro with the VL option or an
equivalent method. Register 13 must point to a valid 18-word save area and register 1
must point to the parameter list.

COBOL

Normal COBOL CALL statements are used. Parameters are data element names of the
areas being passed to the appropriate subroutine. The following considerations must be
carefully observed:

SHRINK and EXPAND subroutines

COBOL programs calling the CA Compress subroutines cannot be compiled with the
DYNAM option. DYNAM causes unpredictable results for the SHRINK and EXPAND
subroutines. Calls to SHRINK or EXPAND pass control to the SHRINK or EXPAND
utility, respectively, instead of the SHRINK or EXPAND entry point in the
subroutines, resulting in message SHR005I for SHRINK or SHR050I for EXPAND.

This restriction does not apply to the Super Express subroutines, SHRINKZ and
EXPANDZ; to the Standard Tables subroutines, SHRINKS and EXPANDS; or to the
Hardware Compression subroutines, SHRKHCS and SHRKHCX.

OCCURS DEPENDING ON clause

Because compressed data sets are variable length, to write compressed records of
the proper length requires use of the OCCURS DEPENDING ON clause. To avoid data
loss and other problems, carefully adhere to the COBOL rules.

Any data beyond the length defined by the OCCURS DEPENDING variable is
undefined, so any data placed there by a READ or a call to a CA Compress/2
subroutine may be destroyed. Accordingly, before reading, compressing, or
otherwise moving data of an unknown length, always set the variable to its
maximum. Afterwards use the data to set it to the correct length before writing.

The variable must be set explicitly by a COBOL statement that names the variable in
order for the new value to be recognized by COBOL. In particular, reading a record
into an area that contains the variable or changing its value by passing it to a called
routine does not cause COBOL to recognize the new value.

Failing to observe these precautions can lead to data loss. For instance, you may
successfully compress a record containing more characters than the OCCURS
DEPENDING ON variable provides for. COBOL processing then may destroy the extra
characters and the damaged record is successfully written. Months later, the record
cannot be expanded, and the data is lost.

Calling the Subroutines

82 Reference Guide

PL/I Optimizing Compiler

The compiler must be informed that the CA Compress/2 subroutines are Assembler
subroutines by declaring all entry points, as follows:

DCL (SHRINK,EXPAND,SHRINKZ,EXPANDZ,SHRINKS,EXPANDS,CLOSE)

 OPTIONS (ASM INTER);

Any unused subroutines can be omitted. The CA Compress/2 subroutines can then be
called using the standard PL/I CALL statement.

As in the case of COBOL, dynamic calls to SHRINK and EXPAND invoke the utilities,
causing unpredictable results.

CALL to Subroutine SHRINK

Each CALL to SHRINK compresses one record image in main storage. There are five
parameters (four required and one optional) which the user codes in a SHRINK CALL.
The parameters are positional and must be coded in the same sequence as shown in
below. The following are model statements for calling SHRINK:

Assembler Language

CALL SHRINK,(URA,CRA,URL,FDT[,RC]),VL

COBOL

CALL 'SHRINK' USING URA CRA URL FDT [RC].

PL/I Optimizer

CALL SHRINK(URA CRA URL FDT [RC]);

The following table describes the parameters available to the SHRINK Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the in-core record to be compressed. The
SHRINK subroutine does not alter this area. If the record is
variable length, URA is the address of the RDW.

CRA Compressed Record Address (Required)

The address of a user-supplied main storage area at least
290 bytes larger than the uncompressed record. The
SHRINK subroutine places the compressed record in this
area in variable length format, including the standard
4-byte RDW. If the length exceeds 32K, the RDW is x'80'
followed by a 3 byte length.

Calling the Subroutines

Chapter 4: CA Compress/2 83

Parm Meaning

URL Uncompressed Record Length (Required)

The address of a halfword or fullword in which the user
supplies the length of the uncompressed record in binary
form. The fullword format is specified by setting the first
byte to x'80' and supports data up to 24 megabytes in
length. If variable-length records are being compressed,
URL should be the same as the URA parameter, the
address of the RDW.

FDT File Descriptor Table Identifier (Required)

If the FDT is in sequential data set format, FDT is the
address of a binary fullword containing the file number (a
value between 0 and 31). This value must correspond to
the value coded for the xx in the TABLxx DD statement,
which defines the FDT. If the FDT is in load module format,
the File Descriptor Table Identifier is the address of the SCB
associated with this file.

RC Return Code (Optional)

The address of a binary fullword in which the SHRINK
subroutine can store a value to indicate whether an error
occurred in compressing the record. If this optional
parameter is coded, certain ABEND conditions are
suppressed, and a return code value is stored in the binary
fullword addressed by RC and in register 15. If no error
occurs during processing by the SHRINK subroutine,
register 15 is zero upon return to the user's program, and
RC is set to zero.

Calling the Subroutines

84 Reference Guide

CALL to Subroutine EXPAND

Each call to EXPAND returns one compressed record image in main storage to its original
uncompressed form. There are five parameters (four required and one optional) which
you code in an EXPAND CALL. The parameters are positional and must be coded in the
same sequence as they appear above. The following are model statements for calling
EXPAND:

Assembler Language

CALL EXPAND,(URA,CRA,URL,FDT,[,RC]),VL

COBOL

CALL 'EXPAND' USING URA CRA URL FDT [RC].

PL/I Optimizer

CALL EXPAND(URA CRA URL FDT [RC]);

The following table describes the parameters available to the EXPAND Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the main storage area where the EXPAND
subroutine places the uncompressed record image which it
constructs. If the record was a variable-length record before
compression, URA should be the address of the RDW of the
expanded record image. The storage area provided by the
user must be large enough to contain the entire expanded
record.

CRA Compressed Record Address (Required)

The address of the compressed record image to be expanded
by the subroutine. CRA must be the address of the data
portion of the record, not the RDW. This storage area, that is,
the compressed record, is not modified by the EXPAND
subroutine.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword from which EXPAND
receives the length of the compressed record in binary form
and into which the subroutine returns the length of the
expanded record in binary form. The subroutine does not
always require the compressed length, but you should always
provide it. Setting the first byte to x '80' specifies the fullword
format. If the record was a variable-length non-VSAM record
before compression, URL may be identical to the URA
parameter.

Calling the Subroutines

Chapter 4: CA Compress/2 85

Parm Meaning

FDT File Descriptor Table Identifier (Required)

The address of a binary fullword which contains the file
number, a value between zero and 31, if the FDT is in
sequential data set format. If the FDT is in load module
format, the File Descriptor Table Identifier is the address of
the SCB associated with this file.

RC Return Code (Optional)

The address of a binary fullword in which the EXPAND
subroutine can store a value to indicate whether or not an
error occurred in expanding the record. If this optional
parameter is coded, ABEND 10 (check byte mismatch) and
certain other user abends are suppressed. Instead, the
corresponding completion code is stored in the binary
fullword addressed by the RC parameter and in register 15. If
no error occurs during EXPAND processing, register 15 and RC
are set to zero.

Calling the Subroutines

86 Reference Guide

CALL to Subroutine CLOSE

Each call to the CLOSE subroutine frees all main storage obtained to support one
FDT-compressed data set. Application programs normally call CLOSE only if all
processing is complete for the compressed file in question, or if the storage needs to be
released for other processing.

CA Compress/2 obtains main storage for each data set compressed using an FDT for the
FDT, the compression and expansion tables, and the custom-compiled code. The
amount of storage obtained for a particular file varies, depending upon the extent and
complexity of record definitions. It can vary from about 2K to as much as 24K per file,
though approximately 6K is usual.

Once CLOSE is called for a file, the FDT, compression and expansion tables and
custom-compiled code to perform subroutine functions for the file are no longer
available. Any subsequent call referencing that data set causes the FDT and compression
and expansion tables to be brought into storage again, and custom code to be
recompiled. CLOSE requires one parameter—the File Descriptor Table Identifier. If the
FDT is in sequential data set format, this is the address of a binary fullword containing
the file number. If the FDT is in load module format, the File Descriptor Table Identifier
is the address of the SCB associated with this data set. See Accessing the FDT in this
chapter for more information.

The following are model statements for calling CLOSE:

Assembler Language

CALL CLOSE,(FDT),VL

COBOL

CALL 'CLOSE' USING FDT.

PL/I Optimizer

CALL CLOSE(FDT);

Calling the Subroutines

Chapter 4: CA Compress/2 87

CALL to Subroutine SHRINKS

Each CALL to SHRINKS compresses one record image in main storage. There are five
parameters (four required and one optional), which you code in a SHRINKS CALL. The
parameters are positional and must be coded in the same sequence as shown in Table
5-4. The following are model statements for calling SHRINKS:

Assembler Language

CALL SHRINKS,(URA,CRA,URL,WRK[,RC]),VL

COBOL

CALL 'SHRINKS' USING URA CRA URL WRK [RC].

PL/I Optimizer

CALL SHRINKS(URA CRA URL WRK [RC]);

The following table describes the parameters available to the SHRINKS Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the in-core record to be compressed. The
SHRINKS subroutine does not alter this area. If the record
is variable length, URA is the address of the actual data,
not the RDW.

CRA Compressed Record Address (Required)

The address of a user-supplied main storage area at least
290 bytes larger than the uncompressed record. The
SHRINKS subroutine places the compressed data in this
area.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword in which the user
supplies the length of the uncompressed record in binary
form. The fullword format is specified by setting the first
byte to x'80' and supports data up to 24 megabytes in
length.

WRK Standard Tables Work Area (Required)

The address of a 64-byte work area.

 Bytes

Meaning

 0–7 STDTBL01 through STDTBL06 as
appropriate.

Calling the Subroutines

88 Reference Guide

Parm Meaning

 8–11 Address of the selected Standard Table.
If the desired Standard Table is already
link edited or LOADed, insert its address
here before the first call. If the address
is zero, routine will load it and fill in its
address for you. An invalid nonzero
value will cause an abend or other
unpredictable results, so you must set it
either to zero or to the valid table
address.

 12–13 Noncompressible area in binary format.
If there is no noncompressible area, this
value must be zero.

 14–15 Compressed data length (excluding
RDW) if the length is <32K, or -1 if the
length is >32K. The length is also
returned in register 0 in all cases. Add 4
to this length to build an RDW if
required.

RC Return Code (Optional)

The address of a binary fullword in which the SHRINKS
subroutine can store a value to indicate whether an error
occurred in compressing the record. If this optional
parameter is coded, certain ABEND conditions are
suppressed, and a return code value is stored in the binary
fullword addressed by RC and in register 15. If no error
occurs during processing by the SHRINKS subroutine,
register 15 is zero upon return to the user's program, and
RC is set to zero. If the data does not compress, the return
code is -1, and the uncompressed data is copied to the
compressed data location.

Calling the Subroutines

Chapter 4: CA Compress/2 89

CALL to Subroutine EXPANDS

Each call to EXPANDS returns one compressed record image in main storage to its
original uncompressed form. There are five parameters (four required and one optional)
which you code in an EXPANDS CALL. The parameters are positional and must be coded
in the same sequence as they appear in below. The following are model statements for
calling EXPANDS:

Assembler Language

CALL EXPANDS,(URA,CRA,URL,FDT,[,RC]),VL

COBOL

CALL 'EXPANDS' USING URA CRA URL FDT [RC].

PL/I Optimizer

CALL EXPANDS(URA CRA URL FDT [RC]);

The following table describes the parameters available to the EXPANDS Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the main storage area where the EXPANDS
subroutine places the uncompressed data which it
constructs, excluding any RDW. The storage area provided
by the user must be large enough to contain the entire
expanded record.

CRA Compressed Record Address (Required)

The address of the compressed data to be expanded by
the subroutine. CRA must be the address of the data
portion of the record, not the RDW. This storage area, that
is, the compressed record, is not modified by the EXPANDS
subroutine.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword from which
EXPANDS receives the length of the compressed record in
binary form and into which it returns the length of the
expanded record in binary form. Setting the first byte to x
'80' specifies the fullword format.

WRK Standard Tables Work Area (Required)

The address of a 64-byte work area.

 Bytes

Meaning

 0–7 STDTBL01 through STDTBL06 as
appropriate.

Calling the Subroutines

90 Reference Guide

Parm Meaning

 8–11 Address of the selected Standard Table.
If the desired Standard Table is already
link edited or LOADed, insert its address
here before the first call. If the address
is zero, routine will load it and fill in its
address for you. An invalid nonzero
value will cause an abend or other
unpredictable results, so you must set it
either to zero or to the valid table
address.

 12–13 Noncompressible area in binary format.
If there is no noncompressible area, this
value must be zero.

RC Return Code (Optional)

The address of a binary fullword in which the EXPANDS
subroutine can store a value to indicate whether or not an
error occurred in expanding the record. If this optional
parameter is coded, ABEND 10 (check byte mismatch) and
certain other user abends are suppressed. Instead, the
corresponding completion code is stored in the binary
fullword addressed by the RC parameter and in register 15.
If no error occurs during EXPANDS processing, register 15
and RC are set to zero. If the compressed data is not
compressed, RC and register 15 are set to -1. You can
consider the compressed data to be the uncompressed
data.

Calling the Subroutines

Chapter 4: CA Compress/2 91

CALL to Subroutine CLOSES

CLOSES frees the small dynamic area acquired by the SHRINKS or EXPANDS subroutines.
This call should be used by online applications when they finish processing. CLOSES
accepts one parameter—the work area (WRK) used by SHRINKS or EXPANDS.

The following are model statements for calling CLOSES:

Assembler Language

CALL CLOSES,(WRK),VL

COBOL

CALL 'CLOSES' USING WRK.

PL/I Optimizer

CALL CLOSES(WRK);

CALL to Subroutine SHRKHCS

Each CALL to SHRKHCS compresses one record image in main storage. There are five
parameters (four required and one optional) which the user codes in a SHRKHCS CALL.
The parameters are positional and must be coded in the same sequence as shown in
below. The following are model statements for calling SHRKHCS:

Assembler Language

CALL SHRKHCS,(URA,CRA,URL,WRK[,RC]),VL

COBOL

CALL 'SHRKHCS' USING URA CRA URL WRK [RC].

PL/I Optimizer

CALL SHRKHCS(URA CRA URL WRK [RC]);

The following table describes the parameters available to the SHRKHCS Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the uncompressed data to be compressed
by the subroutine, excluding any RDW. This storage area
(that is, the uncompressed record) is not modified by the
SHRKHCS subroutine.

Calling the Subroutines

92 Reference Guide

Parm Meaning

CRA Compressed Record Address (Required)

The address of a user-supplied main storage area where
the SHRKHCS subroutine places the compressed data. The
storage area must be large enough to contain the entire
compressed record and does not include the RDW.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword from which
SHRKHCS receives the length of the uncompressed record
in binary form. Setting the first byte to x '80' specifies the
fullword format.

WRK Hardware Compression Work Area (Required)

The address of a 60-byte work area.

 Bytes

Meaning

 0–7 HC#STDnn where nn is 01 thru 99 for a
CA supplied dictionary, or HC#USRnn
where nn is 00 thru 27 for a user
defined dictionary.

 8–11 Address of the selected dictionary load
module. Although only the expansion
dictionary is used, the compression
dictionary must be the first half of the
load module. If the desired dictionary is
already LOADed, insert its address here
before the first call. If the address is
zero, the subroutine will load it and fill
in its address for you. An invalid
nonzero value will cause an abend or
other unpredictable results, so you
must set it either to zero or to the valid
dictionary address.

 12–14 ICB. Set this to zero for the first call to
permit the subroutine to calculate it for
you.

 15 Dictionary size. Set this to zero for the
first call to permit the subroutine to
calculate it for you.

 16–17 Noncompressible length if any, or zero.

Calling the Subroutines

Chapter 4: CA Compress/2 93

Parm Meaning

 18–20 Return code from CSRCMPSC macro.

 24–27 Dynamic area address. Set to zero for
first call.

RC Return Code (Optional)

The address of a binary fullword in which the SHRKHCS
subroutine can store a value to indicate whether or not an
error occurred in expanding the record. If this optional
parameter is coded, certain user abends are suppressed.
Instead, the corresponding completion code is stored in
the binary fullword addressed by the RC parameter and in
register 15. If no error occurs during SHRKHCS processing,
register 15 and RC are set to zero. If the data does not
compress, the return code is -1, and the uncompressed
data is copied to the compressed data location.

CALL to Subroutine SHRKHCX

Each CALL to SHRKHCX returns one compressed record image in main storage to its
original uncompressed form. There are five parameters (four required and one optional)
which you code in a SHRKHCX CALL. The parameters are positional and must be coded in
the same sequence as shown in the following table. The following are model statements
for calling SHRKHCX:

Assembler Language

CALL SHRKHCX,(URA,CRA,URL,WRK[,RC]),VL

COBOL

CALL 'SHRKHCX' USING URA CRA URL WRK [RC].

PL/I Optimizer

CALL SHRKHCX(URA CRA URL WRK [RC]);

The following table describes the parameters available to the SHRKHCX Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the main storage area where the SHRKHCX
subroutine places the uncompressed data which it
constructs, excluding any RDW. The storage area provided
by the user must be large enough to contain the entire
expanded record.

Calling the Subroutines

94 Reference Guide

Parm Meaning

CRA Compressed Record Address (Required)

The address of the compressed data to be expanded by
the subroutine. CRA must be the address of the data
portion of the record, not the RDW. This storage area (that
is, the compressed record) is not modified by the SHRKHCX
subroutine.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword from which
SHRKHCX receives the length of the compressed record in
binary form and into which it returns the length of the
expanded record in binary form. Setting the first byte to x
'80' specifies the fullword format.

WRK Hardware Compression Work Area (Required)

The address of a 60-byte work area.

 Bytes

Meaning

 0–7 HC#STDnn where nn is 01 thru 99 for a
CA supplied dictionary, or HC#USRnn
where nn is 00 thru 27 for a user
defined dictionary.

 8–11 Address of the selected dictionary load
module. Although only the expansion
dictionary is used, the compression
dictionary must be the first half of the
load module. If the desired dictionary is
already LOADed, insert its address here
before the first call. If the address is
zero, the subroutine will load it and fill
in its address for you. An invalid
nonzero value will cause an abend or
other unpredictable results, so you
must set it either to zero or to the valid
dictionary address.

 12–14 ICB. Set this to zero for the first call to
permit the subroutine to calculate it for
you.

 15 Dictionary size. Set this to zero for the
first call to permit the subroutine to
calculate it for you.

Calling the Subroutines

Chapter 4: CA Compress/2 95

Parm Meaning

 16–17 Noncompressible length if any, or zero.

 18–20 Return code from CSRCMPSC macro.

 24–27 Dynamic area address. Set to zero for
first call.

RC Return Code (Optional)

The address of a binary fullword in which the SHRKHCX
subroutine can store a value to indicate whether or not an
error occurred in expanding the record. If this optional
parameter is coded, ABEND 10 (check byte mismatch) and
certain other user abends are suppressed. Instead, the
corresponding completion code is stored in the binary
fullword addressed by the RC parameter and in register 15.
If no error occurs during SHRKHCX processing, register 15
and RC are set to zero. If the compressed data is not
compressed, RC and register 15 are set to -1. You can
consider the compressed data to be the uncompressed
data.

CALL to Subroutine SHRKHCC

SHRKHCC frees the small dynamic area acquired by SHRKHCS or SHRKHCS subroutines.
This call should be used by online applications when they finish processing. SHRKHCC
accepts one parameter—the work area (WRK) used by SHRKHCS or SHRKHCS. The
following are model statements for calling SHRKHCC:

Assembler Language

CALL SHRKHCC,(WRK),VL

COBOL

CALL 'SHRKHCC' USING WRK.

PL/I Optimizer

CALL SHRKHCC(WRK);

Calling the Subroutines

96 Reference Guide

CALL to Subroutine SHRINKZ

Each CALL to SHRINKZ compresses one record image in main storage. There are five
parameters (four required and one optional) that the user codes in a SHRINKZ CALL. The
parameters are positional and must be coded in the same sequence as shown in the
following table. The following are model statements for calling SHRINKZ:

Assembler Language

CALL SHRINKZ,(URA,CRA,URL,WRK[,RC]),VL

COBOL

CALL 'SHRINKZ' USING URA CRA URL WRK [RC].

PL/I Optimizer

CALL SHRINKZ(URA CRA URL WRK [RC]);

The following table describes the parameters available to the SHRINKZ Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the in-core record to be compressed. The
SHRINKZ subroutine does not alter this area. If the record is
variable length, URA is the address of the actual data, not the
RDW.

CRA Compressed Record Address (Required)

The address of a user-supplied main storage area at least 8
bytes larger than the uncompressed record. The SHRINKZ
subroutine places the compressed data in this area.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword in which the user
supplies the length of the uncompressed record in binary
form. The fullword format is specified by setting the first byte
to x'80' and supports data up to 24 megabytes in length.

WRK Super Express Work Area (Required)

The address of a 40-byte work area. The first 2 bytes must be
the length of the noncompressible area in binary format. If
there is no noncompressible area, this value must be zero. The
next 2 bytes are set to the compressed data length (excluding
RDW) if the length is <32K, or -1 if the length is >32K. The
length is also returned in register 0 in all cases. Add 4 to this
length to build an RDW if required.

Calling the Subroutines

Chapter 4: CA Compress/2 97

Parm Meaning

RC Return Code (Optional)

The address of a binary fullword in which the SHRINKZ
subroutine can store a value to indicate whether an error
occurred in compressing the record. If this optional parameter
is coded, certain ABEND conditions are suppressed, and a
return code value is stored in the binary fullword addressed
by RC and in register 15. If no error occurs during processing
by the SHRINKZ subroutine, register 15 is zero upon return to
the user's program, and RC is set to zero. If the data does not
compress, the return code is -1, and the uncompressed data is
copied to the compressed data location.

CALL to Subroutine EXPANDZ

Each call to EXPANDZ returns one compressed record image in main storage to its
original uncompressed form. There are five parameters (four required and one optional)
that the user codes in an EXPANDZ CALL. The parameters are positional; they must be
coded in the same sequence as they appear in the following table. The following are
model statements for calling EXPANDZ:

Assembler Language

CALL EXPANDZ,(URA,CRA,URL,WRK,[,RC]),VL

COBOL

CALL 'EXPANDZ' USING URA CRA URL WRK [RC].

PL/I Optimizer

CALL EXPANDZ(URA CRA URL WRK [RC]);

The following table describes the parameters available to the EXPANDZ Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the main storage area where the EXPANDZ
subroutine places the uncompressed data which it
constructs. The storage area provided by the user must be
large enough to contain the entire expanded record.

CRA Compressed Record Address (Required)

The address of the compressed data to be expanded by
the subroutine. CRA must be the address of the data
portion of the record, not the RDW. This storage area,
that is, the compressed record, is not modified by the
EXPANDZ subroutine.

Calling the Subroutines

98 Reference Guide

Parm Meaning

URL Uncompressed Record Length (Required)

The address of a halfword or fullword from which
EXPANDZ receives the length of the compressed record in
binary form and into which it returns the length of the
expanded record in binary form. Setting the first byte to x
'80' specifies the fullword format. The subroutine uses the
compressed record length to make sure the compressed
record ends where expected. If it does not, a check byte
mismatch condition is forced.

WRK Super Express Work Area (Required)

The address of a 40-byte work area. The first 2 bytes must
be the noncompressible area in binary format. If there is
no noncompressible area, this value must be zero.

RC Return Code (Optional)

The address of a binary fullword in which the EXPANDZ
subroutine can store a value to indicate whether or not
an error occurred in expanding the record. If this optional
parameter is coded, ABEND 10 (check byte mismatch) and
certain other user abends are suppressed. Instead, the
corresponding completion code is stored in the binary
fullword addressed by the RC parameter and in register
15. If no error occurs during EXPANDZ processing, register
15 and RC are set to zero. If the compressed data is not
compressed, RC and register 15 are set to -1. You can
consider the compressed data to be the uncompressed
data.

Incorporating Subroutine Calls in Existing Application Programs

Chapter 4: CA Compress/2 99

Incorporating Subroutine Calls in Existing Application
Programs

In most cases, incorporating CA Compress/2 subroutine calls in an application program
requires only minor changes. DD statements which omit the DCB subparameters need
not be changed, because the data set label supplies the correct values. Attributes
explicitly specified on a DD statement or in a DCB macro, COBOL FD or PL/I file definition
must be changed to conform to the compressed data set's attributes.

During compression, except by Super Express, the compressed record image may
temporarily grow up to 290 bytes longer than the uncompressed record. Consequently,
the area supplied for the compressed record must be 290 bytes longer than the
uncompressed record. After compression is complete, the compressed record is almost
never greater than eight bytes longer than the uncompressed record, even in
worst-case situations.

If input records are processed in locate mode, further adjustments are necessary. In
Assembler Language, the general register used with the DSECT must be loaded with the
address of the uncompressed record image after calling EXPAND, EXPANDS, SHRKHCX,
or EXPANDZ in order to make the program consider the uncompressed record to be the
record just read. In COBOL, the entire uncompressed record definition should be moved
from the FILE SECTION to the WORKING-STORAGE SECTION. It is then a simple matter to
insert the proper call to EXPAND or EXPANDZ immediately following the READ (or GET)
for the compressed file. Few if any logic changes should be necessary following the
subroutine CALL. Calls to SHRINK, SHRINKS, SHRKHCS, and SHRINKZ can be handled in a
similar way.

Defining Compressed Records in COBOL Application Programs

100 Reference Guide

Defining Compressed Records in COBOL Application Programs

Compressed records are variable-length records. This fact requires special attention in
COBOL application programs, because COBOL does not support variable length data
conveniently. For this reason, it is especially advisable with COBOL to use the CA
Compress Transparency or SUBSYS and not CA Compress/2.

Variable-length records are defined by the OCCURS DEPENDING ON data-name clause,
where the element defined by data-name contains a value which indicates the actual
number of characters in the variable- length record. The SHRINK subroutine (but not
SHRINKZ or SHRINKS, which do not use RDL) generates this value and places it in the
compressed record in response to a field type L record definition, but COBOL does not
recognize this value until it is explicitly placed in data-name by a COBOL statement. Field
type L does not support records larger than 32K.

The following procedure is recommended for altering a COBOL application program to
process a compressed file.

1. FOR SHRINK, use the field type L RDL specification as the first, or only, RDL
specification when the file is compressed. This specification causes CA Compress/2
to store the actual data length of each variable-length compressed record as a
two-byte binary field at the beginning of each compressed record. For SHRINKZ,
define a field in front of the compressed data and set it to the length of the
compressed data that follows. In both cases, remember to move it to the OCCURS
DEPENDING ON variable—to itself if necessary—to let COBOL know that the value
has changed.

2. Move the definition(s) of the uncompressed data records from the FILE SECTION to
the WORKING-STORAGE SECTION.

3. Change RECORDING MODE from F to V or S, as necessary.

4. Supply the following as the data record in the FILE SECTION for the compressed file
(update the FD to refer to this record definition as DATA RECORD):

01 SHRUNK-RECORD.

03 LENGTH PICTURE 9(4) USAGE COMPUTATIONAL.

03 SHRUNK-DATA PICTURE X OCCURS n TIMES DEPENDING ON LENGTH.

Substitute the maximum record length for the value n.

5. Move the maximum value to LENGTH before the READ to ensure that
SHRUNK-RECORD is long enough to hold all the bytes that are read.

6. Code a call to EXPAND, EXPANDS, SHRKHCX, or EXPANDZ, as appropriate, and insert
it immediately after the READ for the file in question. Code SHRUNK-RECORD as the
CRA parameter in the call to the expansion routine. Code the data record name of
the record definition moved to the WORKING-STORAGE SECTION as the URA
parameter in the call to the expansion routine.

7. If issuing calls to the SHRINK subroutine, provide the following compressed record
area in the WORKING-STORAGE SECTION (not the FILE SECTION):

Defining Compressed Records in COBOL Application Programs

Chapter 4: CA Compress/2 101

01 COMPRESS-AREA.

03 RDW PICTURE 9(5) USAGE COMPUTATIONAL.

03 SHRUNK-RECORD-OUT.

05 LENGTH-OUT PICTURE 9(4) USAGE COMPUTATIONAL.

05 SHRUNK-DATA-OUT PICTURE X OCCURS n TIMES

 DEPENDING ON LENGTH-OUT.

The user must substitute the value of the OUTFILE LRECL increased by 290 for the
value n, and must explicitly move this value to LENGTH-OUT before the SHRINK call
to ensure that COMPRESS-AREA is long enough. Code COMPRESS-AREA as the
second (CRA) parameter of the SHRINK subroutine call. If the output record
definition in the FILE SECTION is coded:

01 UPDATED-SHRUNK-RECORD.

03 UPDATED-LENGTH PICTURE 9(4) USAGE COMPUTATIONAL.

03 UPDATED-SHRUNK-DATA PICTURE X OCCURS n TIMES

 DEPENDI NG ON UPDATED-LENGTH.

The updated compressed record is written as follows:

MOVE LENGTH-OUT TO UPDATED-LENGTH.
WRITE UPDATED-SHRUNK-RECORD FROM SHRUNK-RECORD-OUT.

8. Compile using the NOTRUNC option.

Linking Subroutines With Applications

102 Reference Guide

Linking Subroutines With Applications

The Super Express subroutines, SHRINKZ and EXPANDZ; the Standard Tables
subroutines, SHRINKS and EXPANDS; and the Hardware Compression subroutines,
SHRKHCS and SHRKHCX, can be included explicitly via the linkage editor INCLUDE
statement or resolved implicitly from SYSLIB.

CA Compress/2 provides two methods to link edit the SHRINK, EXPAND and CLOSE
subroutines with application programs. In the first method, SHRINK, EXPAND, and CLOSE
are link edited with the user's application program by including the module SHRKEXPD
using an explicit INCLUDE linkage editor control statement. This method results in
making a copy of the subroutines a part of the application program load module.

The second method provides an improved capability for link editing the SHRINK,
EXPAND and CLOSE subroutines with the user's application program. The subroutines
are link edited by including the module SHRKSTUB via an explicit INCLUDE linkage editor
control statement. This module contains entry points for SHRINK, EXPAND and CLOSE
and functions as a loader. Because SHRKSTUB does not support the Super Express entry
points, SHRINKZ and EXPANDZ; the Standard Tables entry points, SHRINKS and
EXPANDS; or the Hardware Compression entry points, SHRKHCS and SHRKHCX, this
method is not available for Super Express, Standard Tables, or Hardware Compression.

The first CALL to a particular subroutine causes SHRKSTUB to load the correct
subroutine from the CA Compress/2 library. Subsequent calls to that subroutine result in
a direct branch to the previously loaded subroutine with several important advantages:

■ Because copies of CA Compress/2 modules are not link edited into multiple
application programs, library space is conserved.

■ Application programs do not have to be relink edited when a new release of CA
Compress/2 is installed. The subroutine support can reside on a single shared
library.

■ Application programs link edited with the SHRKEXPD module must be relinked each
time a CA Compress subroutine is changed. Programs link edited with the
SHRKSTUB module require no modification when a subroutine is changed because
the fixed module is loaded from the CA Compress/2 library at execution.

■ The subroutines can be shared between tasks. Attached modules are link edited
only with the SHRKSTUB module (approximately 200 bytes).

To use this method, the CA Compress/2 library must either be in the linklist or supplied
through STEPLIB or JOBLIB.

Using CA Compress/2 Under CICS

Chapter 4: CA Compress/2 103

Using CA Compress/2 Under CICS

Because the Super Express, Standard Tables, and Hardware Compression subroutines do
not load FDTs or acquire storage, CICS applications can use them freely, in just the same
way that batch programs do. The only additional consideration is that you MUST pass
the return code parameter in order to prevent the subroutines from issuing the ABEND
macro when compression or expansion is unsuccessful.

Because the use of FDTs involves program and storage management, CA Compress/2
provides special facilities to enable CICS to support the SHRINK and EXPAND
subroutines. The CA Compress/2 for CICS facility supports any mainframe IBM operating
system that supports the CICS Command Level interface.

Install the Callable SHRINK Subroutines for CICS

CA Compress, because it fully supports data sets within a CICS region, replaced these
SHRINK subroutines. In the past, CA Compress provided compression functions in CICS
environments by calling these subroutines. Now, only the rarest circumstances justify
their use. If you must use them, complete the steps in this section to call the SHRINK
subroutines directly from programs running under CICS. Except as otherwise noted, all
members referenced are in the YOUR.CAI.CCVBSAMP library.

■ Set the CWASHRK value in member SHRKWORD to point to a reserved fullword in
the CWA. Change the member FDTNAMES to list the FDTs to be used.

■ Assemble and link edit CA Compress/2 source modules. Modify and use the JCL
MEMBER INSTALL in the CICS CA Compress/2 source library.

■ Modify the CICS tables appropriately. Do both items below:

■ Define the SHRNKMOD and SHRKSCBS modules and all FDT modules to be used
in the CICS Processing Program Table (PPT).

■ Define SHRNKMOD in the CICS Program List Table (PLT).

■ Modify the application programs calling SHRINK/2 CICS subroutines and link edit
them with the SHRKCICS module.

These steps are described in the following section.

Using CA Compress/2 Under CICS

104 Reference Guide

Step 1. Specify the FDT Names and a Fullword in the CWA

In the CICS CA Compress/2 source library:

■ Edit member SHRKWORD to specify the offset from the start of the CWA of an
aligned fullword in the CWA to be used exclusively by CA Compress/2 for CICS.

■ Edit member FDTNAMES to specify the names of the FDTs for the data sets used
with CA Compress.

If you need to change the offset of the reserved fullword, you must repeat this and
reassemble using INSTALL. If converting from the macro level interface, you must
change SHRKWORD to the offset from the CWA, not the CSA.

For seldom used files, you can omit the record in FDTNAMES specifying the
corresponding FDT, because the FDT is loaded dynamically as needed, along with
about 3K of storage for each transaction. This storage, and the dynamically loaded
FDT, is freed when it is no longer needed. Because each FDT may use between 4
and 8K of storage, save storage in this way or, whenever appropriate, use a single
FDT for several files.

CICS CA Compress/2 for CICS can issue the following CICS transaction abends:

SHR1 - SHRKWORD NOT INITIALIZED OR DdOES NOT POINT TO SHRKSCBS

SHR2 - NO RETURN CODE PARAMETER PASSED TO SHRKSTUB

The CICS interface requires a return code argument which is optional in batch. This
prevents CICS from ABENDing on CA Compress/2 errors. Correct the application
program so that it passes a return code parameter.

The names of FDTs prefixed by SCB in the FDTNAMES member are the FDTs that are
loaded into storage at CICS startup. Edit this member as needed.

Using CA Compress/2 Under CICS

Chapter 4: CA Compress/2 105

Step 2. Assemble and Link the Program Modules

Next, modify and run YOUR.CAI.CCVBJCL(INSTALL) to assemble and link the program
modules. INSTALL contains two in-stream procedures.

■ INIT deletes and reallocates the SHRINK CICS load library.

■ CMDASM assembles and links the program modules.

Make the changes shown below to assemble and link the SHRNKMOD, SHRKCICS, and
SHRKSCBS modules. If you need to change FDTNAMES, the member that holds the list of
FDT names, you must assemble and link the SHRKSCBS module and update the PPT to
reflect the current list of FDT names.

■ The DSN of the Assembler H library.

■ The DSN of the standard system macro library.

■ The DSN assigned to YOUR.CAI.CCVBSAMP.

■ The DSN of the CICS macro library.

■ The DSN of the CICS source library.

■ Link edit parameters must default or be specified for AMODE=24 and RMODE=24.

■ The DSN assigned to YOUR.CAI.CCVBLOAD.

Step 3. Modify the CICS Tables

After you run INSTALL to assemble and link edit the modules, define SHRNKMOD,
SHRKSCBS, and all FDT modules in the PPT and link the application programs as follows:

■ In the Processing Program Table (PPT), define SHRNKMOD, SHRKSCBS, and all FDT
modules to be used with CA Compress/2 for CICS. Specify all PPT entries as
PGMLANG=ASSEMBLER, PGMSTAT=ENABLED, and RELOAD=NO.

■ In the Program List Table (PLT) that specifies programs to be executed during CICS
initialization, define SHRNKMOD, or you can run it as a startup transaction. Make
sure that this PLT is identified by the PLTPI operand of the DFHSIT macro.

Using CA Compress/2 Under CICS

106 Reference Guide

Step 4. Modify and Link edit the Application Programs

You must convert your application programs to call the SHRINK and EXPAND
subroutines correctly and link edit them with the SHRKCICS module. If you are
converting from the Macro Level facility, which is not supported under CICS Version 3,
you must not mix this Command Level facility with any modules, including SHRKCICS,
from the Macro Level facility. Convert the application modules as follows:

■ If you are converting existing application programs from the macro-level product
that was supplied with releases of CA Compress before version 4.6.3, you must
change the programs as described in the comments in member INSTALL. In
particular, the call to SHRKCICS must conform to command level specifications:

■ Register 13 must point to a valid save area.

■ The 5 arguments required by CA Compress must be preceded by the EIB and a
dummy DFHCOMMAREA.

■ Link edit the application programs with the SHRKCICS module for CICS. Do not use
SHRKSTUB, SHRKEXPD or the Macro Level version of SHRKCICS.

■ Define the application programs in the PPT as usual.

CA Compress/2 Subroutines Under CICS

CA Compress/2 for CICS provides two subroutines for processing compressed data in
CICS application programs. Each application program must be link edited with the
module SHRKCICS (rather than with SHRKSTUB or SHRKEXPD, as specified earlier in this
chapter for CA Compress/2). The subroutines are as follows:

SHRINK

Converts an uncompressed record image to compressed form.

EXPAND

Converts a record image to its original uncompressed form.

Note: The called subroutines from the application modify storage obtained by the
startup module, SHRNKMOD. Unless disabled, Intertest will issue a breakpoint on these
instructions. Proceed and disregard the breakpoint. One such instruction that will cause
a breakpoint is located at label SE in the CSECT SHRKCICS.

These differ slightly from the subroutines with these names in CA Compress/2:

■ The 5 arguments passed to the SHRINK or EXPAND subroutines must be preceded
by the EIB and a dummy DFHCOMMAREA, as required by command level CICS.

■ The fourth parameter must be an SCB.

Because the CA Compress/2 subroutines modify the SCB, it must be in
transaction-related dynamic storage. The SCB should be specified as documented in the
section Accessing the FDT in this chapter.

The CA Compress/2 Utilities

Chapter 4: CA Compress/2 107

The CA Compress/2 Utilities

Unlike the subroutines, the utilities offer no capabilities beyond those supplied through
the CA Compress Transparency or SUBSYS implementations. All utility functions are
supported more effectively by the subsystem and the Interactive User Interface, and so
the utilities are seldom called for. The utilities supply the following functions:

■ Prepass performs test compression, like the Interactive User Interface, and creates
a sequential FDT.

■ The FDTLOADR utility converts a sequential FDT to load module format. The
Interactive User Interface executes this utility automatically because the
Transparency and SUBSYS implementations do not support sequential FDTs.

■ Two compression utilities are supplied to support Hardware Compression and
custom compression using FDTs generated either by the Prepass function or by the
Interactive User Interface. No utility support is provided for compression using
Standard Tables and Super Express.

■ Three expansion utilities are provided to support both custom and noncustom
methods, including Hardware Compression—EXPAND and EXPANDX, and
SHRHCXPD. These enable disaster recovery in the event that no subsystem is
available. Minor differences between the utilities and the subsystem require care
when expanding data compressed by the subsystem.

The CA Compress/2 utilities are not reentrant and cannot reside in the Link Pack Area.
JCL to execute these utilities is provided in the distribution JCL, file number 1 on the
release tape.

The CA Compress/2 Utilities

108 Reference Guide

Prepass

Prepass test compresses a data set and creates a File Descriptor Table (FDT) for CA
Compress/2 to use to compress and expand the data. The Interactive User Interface also
performs this function. Both methods create FDTs with an Integrity Check Block (ICB) for
additional safety.

Note: FDTs created with older releases of the Prepass utility may not have the ICB.

All or a portion of the file can be Prepassed. Prepass collects statistical information
relating to compression of the Prepassed file and builds a sequential FDT to contain this
information. The FDT must be present (through JCL specification) in every job step that
expands or compresses the data set.

Prepass is invoked by executing the program named SHRINK and supplying a PARM
value in the form P=xxx, where xxx is either the word ALL or a three-digit number. If ALL
is coded, the entire data set defined by the INFILE DD statement is Prepassed (read).
Coding a three-digit number indicates, in thousands, the number of logical records to
Prepass. The first xxx thousand records in the data set are read, the FDT is constructed
and written, and the utility goes immediately to end-of-job without reading the
remaining records in the data set.

Member SHR2PASS in YOUR.CAI.CCVBJCL executes the Prepass function. The PARM
specification P=015 indicates that the first 15,000 records of the INFILE data set are
Prepassed (or the entire data set if it contains fewer than 15,000 records). In most
cases, it is unnecessary to Prepass more than five to ten percent of a data set in order to
collect accurate compression statistics for the FDT.

The optional RECDEF DD statement defines the data set containing user-specified RDL
for the data set. As shown, user-specified record definitions are optional. If omitted,
Prepass assumes defaults based on the data set's attributes. The defaults assumed by
Prepass Utility produce good compression and often execute faster than more precise
user specifications. Seethe chapter Record Definition for more information.

COBOL users should specify record definitions in all cases. To direct Prepass to supply
default definitions for COBOL users, use the following minimum record definition:

//RECDEF DD *

L.

 /*

Compressed records are variable-length, and the L. specification prefixes the
compressed data with a binary halfword containing its length, including the length field.
This gives the COBOL program access to the length of the compressed data.

The CA Compress/2 Utilities

Chapter 4: CA Compress/2 109

Prepass Statistics

The printed output from the File Prepass Utility comprises the following:

■ The input file's DCB information (RECFM, LRECL, BLKSIZE, and if applicable, RKP and
KEYLEN).

■ Record definitions (RDL statements) either specified by the user or assumed by
default.

■ Error messages about incorrect usage of the RDL. Each message is prefixed by an
alphanumeric character, which also underscores the error in the RDL statement to
which the message applies.

■ The number of records Prepassed.

■ The shortest, longest, and average record lengths on the Prepassed file. For
fixed-length records, all three numbers are identical.

If field types C1, C2 and/or C3 are defined in the RDL for the file Prepassed (either by
user specification or by default), a table is printed for each such field type defined
showing the compression bit code for each of the 256 possible values containable in one
byte, plus the bit code used to represent the repetition indicator. The bit codes are
assigned based on the relative frequency of each byte; most frequently encountered
values are assigned the shortest bit codes, and least frequently encountered values are
assigned the longest bit codes.

The CA Compress/2 Utilities

110 Reference Guide

FDTLOADR Utility

The FDT can be converted from a sequential data set to a load module by using the
FDTLOADR Utility. Because sequential FDTs are not supported by CA Compress
Transparency or SUBSYS, the Interactive User Interface performs this function
automatically.

Note: FDT member names must be unique within a PDS library containing FDTs and
unique across the installation. It is extremely dangerous to have more than one FDT
with the same name.

Because FDTs in load module format must be accessed in a slightly different way from
sequential FDTs, converting existing FDTs to load module format requires minor
modifications to the application programs. These differences are discussed in Accessing
the FDT in this chapter, and in the descriptions of the FDT parameter in the detailed
discussions of the SHRINK and EXPAND subroutine calls.

Conversion to load module format offers the following benefits:

■ Compatibility with CA Compress, which does not support sequential FDTs.

■ Access to all FDTs through STEPLIB instead of having to code a separate TABLxx DD
statement for each FDT.

Member SHR2FLDR in the distribution JCL executes the FDTLOADR utility. The TABL00
DD statement defines the FDT in sequential data set format. The SYSLMOD DD
statement defines the PDS library and the member name in which the FDT is to be
stored in load module format.

The CA Compress/2 Utilities

Chapter 4: CA Compress/2 111

Compression Utilities

After a file is Prepassed, all or part of the file can be compressed by the SHRINK
Compression Utility, which also prints compression statistics. The utility supports only
custom compression using an FDT, not Standard Tables, Hardware Compression, or
Super Express.

The SHRINK Compression Utility is invoked by executing the program named SHRINK
and supplying a PARM value in the form C=xxx (xxx is either the word ALL or a
three-digit number). ALL causes the entire data set defined by the INFILE DD statement
to be compressed. A three-digit number indicates, in thousands, the number of logical
records to compress from the data set defined by the INFILE DD statement.

Member SHR2CMP2 uses a load module FDT, which is defined by allocating its load
module library in STEPLIB and specifying its name using the FN= keyword in the PARM.
In both cases, INFILE is the data set to be compressed and OUTFILE is the compressed
data set.

The SHRHCCMP Compression Utility is invoked by executing the program named
SHRHCCMP and supplying a PARM value in the form:

DICT=dictname,C=xxx,N=nnn

where xxx is a three-digit count in thousands of records to compress or ALL and nnn is a
three-digit noncompressible length. The defaults are C=ALL and N=000. You can omit
either one or both of these defaults. DICT= is always required.

For both Compression Utilities, the OUTFILE LRECL should be at least eight bytes greater
than the INFILE LRECL, 12 bytes greater if the uncompressed file is non-VSAM fixed
length in order to provide for the RDW in the compressed records. In most cases, DCB
parameters in the output data set can be defaulted.

The CA Compress/2 Utilities

112 Reference Guide

Compression Statistics

The Compression Utilities direct a printed report to the data set defined by the PRINT
DD statement. This report contains the following information:

■ The DCB information (RECFM, LRECL, and BLKSIZE) of a sequential data set, or the
VSAM information (LRECL, cluster type, and, if applicable, the RKP and KEYLEN) for
both the INFILE and OUTFILE data sets.

■ The data set names of both the INFILE and OUTFILE data sets. These are not printed
for dummy data sets.

■ The number of records compressed and the number of bytes compressed and
produced.

■ The shortest, longest and average record lengths, both before and after
compression, including the four-byte RDW, if present.

■ The average compression percentage (0 = no compression and 100 = total
compression), defined as:

100*X–Y/X

X = average record length before compression.
Y = average record length after compression.

■ For the SHRINK Utility, the number of type PD, ZL, ZR, S, and X fields which
contained information incompatible with the field definition. See the chapter
Record Definition for more information on these field types.

The CA Compress/2 Utilities

Chapter 4: CA Compress/2 113

Expansion Utilities

A compressed file can be returned to its original uncompressed form by one of the
Expansion Utilities. The entire data set is expanded. The expanded data set is identical
to the one that existed before compression. Data integrity is ensured by comparing the
check byte appended to each compressed record to a check byte calculated as each
record is expanded.

The EXPAND Utility can only expand data sets compressed using a custom FDT. The
EXPANDX Utility can only expand data sets compressed using Standard Tables or the
string compression methods, Super Express, or Express. The SHRHCXPD Utility can only
expand data sets compressed using a Hardware Compression dictionary.

The OUTFILE DD statement defines the uncompressed data set written by the Expansion
Utilities. RECFM and LRECL must be the same as in the original uncompressed data set,
but BLKSIZE may differ.

The Expansion Utilities assume default values for certain DCB parameters if they are not
specified by the user. RECFM, LRECL, and BLKSIZE may be omitted in most cases. The
Expansion Utilities report the same INFILE and OUTFILE information, as does the
Compression Utility.

Note on Disaster Recovery: If the CA Compress Subsystem is unavailable the Expansion
Utilities can be used to expand compressed data sets, thus making them accessible.
Minor differences between subsystem and utility logic require caution. In particular, to
expand physical sequential data sets compressed by the subsystem whose
uncompressed format is variable-length, you must include an INSUBSYS DD DUMMY
statement in the utility expansion step to process them correctly.

The CA Compress/2 Utilities

114 Reference Guide

JCL Defaults

Defaults are calculated to make sense, based on the attributes of the original
uncompressed data set. The FDT contains the original attributes, so they are available to
the SHRINK and EXPAND Utilities, but not to the EXPANDX or Hardware Compression
Utilities, which do not use custom FDTs.

Extensive error checking is performed to ensure that the combination of user
specifications and defaults assumed by the utilities (for both JCL and RDL) are
compatible. When a JCL/RDL conflict is not serious, it is permitted, often with a warning
message. Only if it makes no sense at all does the utility end with an error message. It is
prudent to perform a trial compression and re-expansion of a few records to do the
following:

■ Check the defaults (JCL and RDL).

■ Analyze possible warning messages.

■ Check the RDL for Record Definitions Imply Wrong Length.

DSORG

DSORG is not required for the OUTFILE data set. If the data set has partitioned
organization, a member name must be specified on the DSN parameter.

RECFM

For the Compression Utilities, the default value for the compressed data set is
RECFM=VB. For the EXPAND Utility, the default value for the expanded data set is
the same as the original uncompressed data set's RECFM. Except for blocking and
spanning, the RECFM (F,V,U) cannot be changed.

LRECL

LRECL of the compressed output from the Compression Utilities defaults to LRECL+8
of the original uncompressed data set. For output from the EXPAND Utility, the
LRECL value assumed is that of the original uncompressed data set.

BLKSIZE

The Compression Utilities default to the maximum of BLKSIZE of the original
uncompressed data set or LRECL+4 of the compressed data set. The EXPAND Utility
defaults to the maximum of BLKSIZE or LRECL+4 of a variable-length uncompressed
data set. For RECFM=F, FS or U, BLKSIZE defaults to LRECL. For RECFM=FB or FBS,
BLKSIZE defaults to the highest multiple of LRECL which does not exceed the
original uncompressed BLKSIZE. If the default exceeds the track capacity, you must
explicitly code the BLKSIZE.

AMP

The IBM defaults are assumed.

Chapter 5: SUBSYS DD Parameter 115

Chapter 5: SUBSYS DD Parameter

CA Compress provides the following two ways to invoke data set compression using the
CA Compress subsystem:

■ Automatic (transparent) compression of VSAM or physical sequential data sets
using the CA Compress Transparency. This is the preferred method.

■ Manually invoked compression of non-VSAM data sets by coding the SUBSYS
parameter on DD statements in your JCL (or using dynamic allocation). Using the
SUBSYS parameter with VSAM data sets causes OPEN to fail with an 0C4 (IBM APAR
OW10331) due to a missing DEB extension.

This section contains the following topics:

How it Works (see page 115)
Coding the SUBSYS JCL Parameter (see page 116)
Special Considerations When Using SUBSYS (see page 119)

How it Works

Coding the SUBSYS parameter directs MVS to use the specified subsystem to process
the data set. When you specify the CA Compress subsystem, it compresses and expands
the data using I/O module ZSURSHRK, just as the Transparency does, so the results are
completely compatible.

After the data is compressed, the SUBSYS parameter must be coded in order to access
expanded data. If the data need not be expanded, for instance if it is simply being
copied or sorted on an uncompressed field, there is no need to code the SUBSYS DD
parameter to process the compressed data set.

Here is a simple example of the SUBSYS DD statement parameter:

//MYDDNAME DD DSN=MY.DATA.SET,DISP=OLD,

 // SUBSYS=(ZSAM,SHRK,SUPEREXP)

The string 'ZSAM' is the subsystem name given to the CA Compress subsystem by the
systems programmer at your installation. The string 'SHRK' is a constant which must
always be coded. The string 'SUPEREXP' is the name of the CA Compress compression
algorithm that you want to use for this data set. When expanding a compressed data set
you must specify the compression algorithm name used when the data set was
originally compressed.

Coding the SUBSYS JCL Parameter

116 Reference Guide

Coding the SUBSYS JCL Parameter

Be careful when you code the SUBSYS parameter to invoke CA Compress data
compression. This section guides you through the process.

Coding the SUBSYS JCL Parameter

Chapter 5: SUBSYS DD Parameter 117

SUBSYS Syntax for the CA Compress Subsystem

As documented in the MVS JCL Reference, the general syntax for coding the SUBSYS on
a DD statement for any subsystem is:

SUBSYS=(subsystemname,parameters)

The parameters for the CA Compress subsystem are broken into four pieces: subtype,
fdtname, addname, and other-parameters. So, for the CA Compress subsystem, the
syntax can be redefined as:

SUBSYS=(subsystemname,subtype,fdtname,addname,

 other-parameters)

subsystemname

Specifies the name given to your CA Compress subsystem when it was installed on
your system. The usual name is 'ZSAM'.

subtype

This parameter must be the constant 'SHRK'.

fdtname

Specifies the CA Compress compression algorithm or File Descriptor Table (FDT)
which is to be used for the data set. The following values are valid:

SUPEREXP

Specifies the Super Express compression algorithm.

STDTBLxx

Specifies that CA Compress is to use one of the provided standard File Descriptor
Tables (FDT). The 'xx' can be a number from 01 to 06.

fdtname

Specifies the name of the compression algorithm or File Descriptor Table (FDT)
created for your data set. The first character of this name must be alphabetic or the
job fails with a JCL error.

addname

Specifies the associated ddname which is to be used by CA Compress instead of
dynamically allocating the data set. The associated ddname specifies the ddname of
another DD statement coded in the step, which must allocate the data set to be
processed. The DD statement where SUBSYS= is coded should normally contain only
the SUBSYS parameter. All other DD statement parameters for the file should be
coded on the associated DD statement. However, DSN and DCB must sometimes be
coded on both DD cards because certain products like CICS can validate them
during the OPEN process.

Coding the SUBSYS JCL Parameter

118 Reference Guide

Using an associated ddname is the only way to specify certain DD statement
parameters which are incompatible on a DD statement where SUBSYS= is specified
(that is, DISP=PASS or for SMS-managed data sets). The addname parameter is
positional, so a comma must be coded when it is omitted if other parameters follow
it.

The DD statement referenced by the associated ddname is looked for when the
data set is opened. If it is not found, CA Compress issues message ZSUR002I to
inform you of the missing DD. The data set allocated by the associated ddname's
DD statement can be of any type that is supported by QSAM.

Note: The associated ddname may also be needed to avoid I/O errors on
concatenated SUBSYS data sets after the first. For an example on how to avoid this
problem, see the CA Compress User Guide.

other parameters

Specifies other parameters which control the operation of CA Compress. If an error
is made in coding these parameters, a JCL error results. Each of the following
parameters can be coded one time each in any order:

STD or STANDARD—Specifies that CA Compress is to use the standard File
Descriptor Table (FDT). This parameter can be omitted if a File Descriptor Table of
the name STDTBLxx is specified for the fdtname parameter (described above). See
ADD Statement in the chapter Control File Maintenance Utility for more
information about the STANDARD parameter.

SDB=YES or SDB=NO – Specifies whether the actual compressed data set should be
written with BLKSIZE calculated using System Determined Blocksize (SDB). SDB=NO
directs the compress not to optimize but to use the uncompressed BLKSIZE coded in
the JCL or set in the Control File entry. If this is a PS data set, SDB= defaults to
whatever was specified or defaulted for the Control File entry. If not, the default is
YES unless NOSDB was specified on the started task. SDB= does not affect the
BLKSIZE parameter of the SUBSYS data set, which must be nonzero to avoid SDB,
and the BLKSIZE will continue to look to user programs like the JCL specification.
Unless the compressed data is read as compressed with DCB specified, SDB=YES is
best.

Special Considerations When Using SUBSYS

Chapter 5: SUBSYS DD Parameter 119

MVS SUBSYS Restrictions and Special Processing

MVS imposes some restrictions and special processing rules for the use of the SUBSYS
DD parameter. These restrictions and special processing rules are documented in the
IBM JCL Reference Manual and are listed below for your convenience:

■ The SUBSYS DD statement parameter cannot be coded for an SMS-managed data
set. However, with the CA Compress subsystem's associated DDNAME feature, you
can circumvent this IBM restriction. The associated DD statement referenced using
the addname subparameter on the SUBSYS parameter can specify an SMS-managed
data set.

■ The SUBSYS DD statement parameter cannot be coded with SYSOUT=, *, DATA,
DDNAME DLM, DYNAM, OUTPUT or QNAME.

■ When the SUBSYS DD statement parameter is coded, the parameters COPIES, DEST,
FCB and OUTLIM are ignored.

■ If DUMMY is specified, the SUBSYS parameters are checked for syntax, and if they
are acceptable the data set is treated as a dummy data set.

■ If SUBSYS= is specified on an overriding DD statement, a DUMMY parameter on an
overridden DD statement is nullified, and a UNIT parameter is ignored.

■ SUBSYS does not work correctly with System Determined Blocksize (SDB). SDB is an
IBM facility which chooses the optimum BLKSIZE for a data set based on its device
type when the user codes BLKSIZE=0 in JCL. Because a SUBSYS data set looks to the
system like a SYSIN/SYSOUT data set, SDB computes the BLKSIZE by adding 4 to the
LRECL instead of choosing the BLKSIZE appropriate to the actual device. This results
in very poor blocking factors and defeats the purpose of compression.

Special Considerations When Using SUBSYS

You must take several factors into account when determining which data sets to place
under control of CA Compress using the SUBSYS parameter.

Special Considerations When Using SUBSYS

120 Reference Guide

DCB Information When Using SUBSYS

When you code the SUBSYS parameter for the CA Compress subsystem, you can code
the other parameters just as you normally would. However, you must always code the
DCB parameters for non-VSAM data sets (BLKSIZE, LRECL, and RECFM), even if they
already exist (DISP=SHR or DISP=OLD).

There are three restrictions on BLKSIZE and LRECL which you must observe when using
CA Compress:

■ The BLKSIZE must be at least 12 bytes greater than the LRECL.

■ The LRECL cannot be larger than 32,744 bytes.

■ Do not code BLKSIZE=0 in order to invoke System Determined Blocksize.

Compression can cause a record to grow by up to 8 bytes, 12 if it was originally fixed
length. In order to prevent the logical record length from exceeding the block size, and
to prevent the block size from exceeding the maximum value, the BLKSIZE and LRECL
restrictions must be adhered to.

Nonlabeled Tapes

When compressing with the SUBSYS parameter on an output file which is a nonlabeled
tape, you must use the addname subparameter and specify the DCB information on the
associated DD statement. Failure to do it this way will result in an S013-34 abend.

Partitioned Data Sets

Invoking CA Compress using the SUBSYS DD statement parameter supports compression
of individual members in a PDS, but not of a PDS as a whole. Below are the correct and
incorrect ways to compress data in a PDS. The correct way accesses individual members
which are compressed and decompressed by CA Compress as if they were sequential
data sets.

Correct JCL

//GOODPDS DD DSN=MY.PDS(MYMEMBER),

 // DISP=SHR,

 // DCB=(RECFM=FB,BLKSIZE=4080,

 // LRECL=80),

 // SUBSYS=(ZSAM,SHRK,SUPEREXP)

Special Considerations When Using SUBSYS

Chapter 5: SUBSYS DD Parameter 121

Incorrect JCL

//BADPDS DD DSN=MY.PDS,

 // DISP=SHR,

 // DCB=(RECFM=FB,BLKSIZE=4080,

 // LRECL=80),

 // SUBSYS=(ZSAM,SHRK,SUPEREXP)

Special Considerations When Using SUBSYS

122 Reference Guide

JCL Restrictions

When the addname subparameter is not used, CA Compress dynamically allocates the
data set, but when addname is used, the data set is allocated to the associated ddname
before CA Compress begins to process it. Minor differences arise, for instance, in
processing the DISP parameter and in when the data set is cataloged. A number of
incompatibilities exist between the SUBSYS parameter and other JCL parameters.
SMS-controlled data sets must be allocated through an associated ddname. In general,
many problems can be solved by using the associated ddname facility. Some specific
considerations follow:

■ Depending on your IBM maintenance level, if you use the SUBSYS parameter with a
VSAM cluster, an 0C4 abend is likely when clearing a field in a missing DEB
extension (APAR OW10331). IBM is unwilling to fix this problem, and there is no
work around.

■ AMP=(...)—This is a VSAM-only parameter. If this parameter is specified on a
subsystem DD statement, the subsystem routines do not execute properly and
abends result.

■ DISP=(...,PASS)—Because CA Compress dynamically allocates the data set, PASS is
not allowed on the DD statement where SUBSYS is coded. However, PASS can be
coded on an associated DD statement which is specified using the CA Compress
subsystem 'addname' parameter.

■ LABEL=(...,NL,...)—When compressing with SUBSYS with output to a nonlabeled (NL)
tape, an associated DD statement must be supplied in order to specify the DCB
attributes of the compressed file. An associated DD statement is specified using the
CA Compress subsystem 'addname' parameter. Failure to do this results in a
S013-34 abend.

■ VOL=REF=*.ddname (where ddname is a subsystem DD statement)—The CA
Compress subsystem is not able to update the volume list in the subsystem DD
entry, so the volume serial remains the same throughout the life of the job.

■ SPACE=(...,...,RLSE)—When an application program closes multiple data sets in a
single CLOSE macro call where one or more of the data sets is compressed by CA
Compress RLSE can cause an S50D abend. CA Compress issues messages ZSUR007I
and ZSUR050I.

BLKSIZE=0—System Determined Blocksize does not work correctly with SUBSYS,
because the proper device type is not recognized for SUBSYS data sets. If you use
the associated ddname and code BLKSIZE=0 on both ddnames, the BLKSIZE is
computed differently in each case, and an abend is likely.

Chapter 6: Test Compression Facility 123

Chapter 6: Test Compression Facility

The Test Compression Facility (TCF) is a batch program that allows you to determine the
best data compression algorithm to use for each file you want compress. Under the
control of SYSIN control statements, TCF analyzes data sets and provides statistical
projections of the savings (in kilobytes and DASD tracks) to be realized through Huffman
and Super Express compression. TCF enables users of CA Compress to determine which
individual data sets are the best candidates for processing, and to project the storage
savings.

The TCF is an alternative to the Interactive User Interface (IUI), but the IUI is usually
more convenient.

This section contains the following topics:

How The Program Works (see page 123)
TCF Command Language (see page 124)
TCF Report (see page 141)

How The Program Works

The TCF reads SYSIN control statements that control the operation of TCF and specify
the data sets and/or data set name patterns you want to analyze.

The sample JCL below runs the TCF. This JCL can be found in member TCFRPT in
YOUR.CAI.CCVBJCL.

//*TCFRPT JOB

//*

//TCF EXEC PGM=GDAXP001,REGION=1000K

//STEPLIB DD DSN=YOUR.CAI.CCVBLOAD,DISP=SHR

//CMDPRINT DD SYSOUT=*

//MSGPRINT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSIN DD *

 --- ENTER ANALYZER COMMANDS HERE ---

TCF Command Language

124 Reference Guide

Notes on Using the Program

TCF produces a report showing the data sets included in the scan and the compression
percentages achieved for both the Huffman and Super Express (run length code)
compression techniques.

Note: Because it can take a long time to scan every catalog and analyze every VSAM and
physical sequential data set in your installation, limit the scope of your TCF job before
submitting it for processing. See the SCAN, SELECT and EXCLUDE statement sections
later in this chapter for more information.

You can instruct TCF to pass control to a user-coded exit program, which receives the
statistical results from the test compression for each data set. The exit program can take
customized actions using this information.

TCF can be run in simulate mode that shows you the data sets that are selected by TCF
without actually reading and test-compressing the data. This allows you to see how
many data sets are being selected before spending the system resources required to
test compress them all.

TCF Command Language

The TCF command language operates on both sequential and VSAM data sets. TCF
processing consists of a catalog scan, data set selection, and compression analysis.
Within a single execution of the program, you can run multiple sets of TCF processing. In
order to remove redundant data set selections, TCF preprocesses the scans and
combines them so that no data set is selected twice for a single analysis operation
(EXAMINE statement—see in the following table).

There are three types of operations done in the command language:

TCF Statements Operation

SCAN Search catalog(s) and gather a list of data
sets using criteria you specify

SELECT and EXCLUDE Narrow the list of data set names using
criteria you specify.

EXAMINE Test compress the data sets in the final list
and produce a report.

TCF requires at least one SCAN statement and one EXAMINE statement.

TCF Command Language

Chapter 6: Test Compression Facility 125

Command Language Syntax Rules

The following section describes the command language syntax rules.

■ Any line which starts with an asterisk ("*") in column 1 is a comment line and is
ignored.

■ A statement consists of the statement name followed by one or more parameters.
For example:

SCAN CATALOG=MY.CATALOG,PREEXIT=MYPREXIT

■ Parameter names can be abbreviated by truncating them to the first three
characters, if that makes the parameter unambiguous. If three characters are not
enough, then additional characters are required until the abbreviation is
unambiguous.

■ Parameters can be specified in any order. The first parameter must appear on the
same line as the statement name.

■ A statement can span more than one line.

■ A parameter cannot span more than one line unless the statement is continued
using Statement Continuation Method B below.

■ A blank following a parameter terminates a statement. Characters following the
blank are considered comments.

■ Statement Continuation Method A: If a comma and a space follow a parameter
immediately, then the statement is continued onto the next line. Characters
following the space are considered comments. The parameters appearing on the
next line can start in any column. With this continuation method, each parameter
must be completed on a single line.

■ Statement Continuation Method B: If the statement is coded through column 71,
and an 'X' is coded in column 72, then the statement is continued onto the next
line. The first nonblank in the next line is appended to the character in column 71 in
order to form the continued statement. With this continuation method, the line can
be split anywhere. In the example below, the PREEXIT=MYPREXIT parameter is
continued onto the next line:

 ----+----1----+----2----+ ..//.. +----7----+----8

 SCAN CATALOG=MY.CATAL DE,PREEX

 XIT=MYPREXIT

■ The following special characters can be used in data set names, volume names, and
catalog names:

■ An asterisk ("*") means any characters in a single node.

■ A question mark ("?") means any one character.

■ A slash ("/") means any suffix of characters.

■ An exclamation point ("!") means any characters.

TCF Command Language

126 Reference Guide

Examples:

The command language syntaxes are described in the following section.

DSN=*

Selects all single-level data set names.

DSN=*.*

Selects all two-level data set names.

DSN=A.*.PROD

Selects all three-level data set names which have an A as the first node, any
character or characters as the second node, and PROD as the third node.

DSN=A*.PROD

Selects all two-level data set names which have an A followed by zero to seven
other characters as the first node, and PROD as the second node.

DSN=?

Selects all single-character data set names.

DSN=A.TEST??

Selects all two-level data set names that have an A as the first node, and TEST plus
two other characters as the second node.

DSN=A/

Selects all data sets that begin with the character A. The data set names can have
any number of nodes. The first node can be the letter A, or be a string that starts
with A.

DSN=A.TEST/

Selects all data sets that begin with the string A.TEST. Examples:

 "A.TEST"

 "A.TEST1"

 "A.TEST1.TEST2"

 "A.TEST.PROD"

DSN=A.*.C?./

Selects all data sets which have a first node of A, any second node, a third node
which is exactly two characters in length and the first character is the letter C, and
any node or nodes which follow.

DSN=!TEST

Selects all data sets that end with the string TEST

TCF Command Language

Chapter 6: Test Compression Facility 127

DSN=!TEST!

Selects all data sets that have the string TEST somewhere in it. The string TEST can
be at the beginning or the end of the data set name.

DSN=

!TEST!VSAM

Selects all data sets that have the string TEST somewhere in the name and VSAM at
the end. Examples:

 "A.TEST.VSAM"

 "A.TESTVSAM"

 "A.TEST1.VSAM"

 "A.TEST1.KSDSVSAM"

TCF Command Language

128 Reference Guide

Command Structures in the Command Language

The command language processor groups the TCF statements into logical blocks called
command structures. There can be many command structures in a single TCF run. A
command structure consists of the following sequence of statements:

1. One or more SCAN statements. One or more occurrences of the following
sequence:

■ Optional SELECT and/or EXCLUDE statements.

■ One or more EXAMINE statements.

At least one EXAMINE statement must appear in each command structure.

The SCAN statements apply to all SELECT, EXCLUDE, and EXAMINE statements in the
command structure.

Unlike the SCAN statements, which are global in scope, the optional SELECT and/or
EXCLUDE statements apply only to the EXAMINE statement(s) which immediately follow
them.

The following examples show how the command structures work:

Example 1

The command structure below causes TCF to scan catalog ICF.TESTCAT, extract all VSAM
ESDS data sets, all VSAM KSDS clusters, and all physical sequential data sets, and test
compress them based on a sampling of 30 percent of the logical records found in each
data set.

SCAN CATALOG=ICF.TESTCAT

EXAMINE PERCENT=30

Example 2

The command structure below causes TCF to select all data sets in all catalogs that begin
with the prefix 'LABS.TJP' and run complete test compresses on them.

SCAN DSN=LABS.TJP./

EXAMINE

Example 3

The command structure below extracts all data set names from three catalogs and then
analyzes them:

TCF Command Language

Chapter 6: Test Compression Facility 129

SCAN CATALOG=VOL050.USERCAT

SCAN CATALOG=VOL001.USERCAT

SCAN CATALOG=VOL050.TESTCAT

EXAMINE

Example 4

The command structure below extracts data set names matching two different data set
name criteria from all catalogs and then analyzes them:

SCAN DSN=LABS.TJP.VSAMFIL

SCAN DSN=LABS.*.TESTVSAM/

EXAMINE SKIP=20,BYPASS=100,EXTRACT=500

Example 5

The command structure below extracts data set names from two catalogs. Then the list
is narrowed by selecting data sets which match either of the two SELECT statements and
the selected data sets are test compressed using the first EXAMINE statement. Finally,
the entire list of data sets is test compressed using the second EXAMINE statement.

SCAN CATALOG=VOL050.USERCAT

SCAN CATALOG=VOL001.USERCAT

SELECT DSNAMES=(!TJP,!MJA)
 SELECT DSORG=PS,MBYTESRANGE=(300,2000)

EXAMINE SKIP=5,EXTRACT=10000

EXAMINE PERCENT=40

Example 6

The command structure below extracts data set names from two catalogs. This list of
data sets is used twice. In the first use, the list is narrowed by selecting data sets that
are between 50 and 200 megabytes in size (first SELECT statement). Then, a test
compression run is done using 50% of the records in each data set (first EXAMINE
statement). In the second use, the original list is narrowed in a different way. Data sets
are selected only if they are 201 megabytes or larger (second SELECT statement). Then a
test compress is done using 20% of the records in each data set (second EXAMINE
statement).

SCAN CATALOG=VOL050.USERCAT

SCAN CATALOG=VOL001.USERCAT

SELECT MBYTES=(50,200)

EXAMINE PERCENT=50

TCF Command Language

130 Reference Guide

SELECT MBYTES=201

EXAMINE PERCENT=20

Example 7

The command structure below extracts data set names matching two different data set
name criteria from all catalogs. Then the list is narrowed by selecting VSAM data sets up
to 300 MB in size (SELECT statement) and which do not end in DB2 or TEST (EXCLUDE
statement). The resulting list of data sets is test compressed using 20% of the records in
each data set (EXAMINE statement).

SCAN DSN=LABS.TJP.VSAMFIL

SCAN DSN=LABS.TCF.VSAM/

SELECT DSORG=VSAM,MBYTESRANGE=(0,300)
 EXCLUDE DSN=(!DB2,!TEST)

EXAMINE PERCENT=20

TCF Command Language

Chapter 6: Test Compression Facility 131

SET Statement

The following section describes the SET statement.

SET [MODE=LIVE|SIMULATE]

[,PREEXIT=exitname]

 [,POSTEXIT=exitname]

 [,PERCENT=100|n]

 [,BYPASS=0|n]

 [,SKIP=0|n]R [,EXTRACT=0|n]

 [,DSNFILL=.|x]

 [,SECURITY=NONE|RACF|TOPSEC|ACF2]

The SET statement specifies options for the execution of the command structures that
follow it. However, parameters on an EXAMINE statement will override those specified
on a SET statement. Any SET statement which specifies MODE=SIMULATE causes the
entire run to be in simulate mode even if MODE=LIVE is specified on another SET
statement.

You can use the SET statement to establish default values for the compression run
which are different from normal TCF default values. The following example shows how
the SET statement works with EXAMINE statements:

1: SCAN CAT=ICF.PAYROLL All of the records

2: EXAMINE

3: SET PERCENT=30 Estab new default

4: SCAN CAT=!IMS

5: EXAMINE 30% of the records

6: SCAN CAT=!CICS7:

 EXAMINE PERCENT=20 20% of the records

8: SCAN CAT=ICF.PROD019:

 EXAMINE 30% of the records

The EXAMINE statement in line 2 runs a test compression on all of the records in all of
the data sets cataloged in ICF.PAYROLL because TCF processes all records by default.
The SET statement in line 3 establishes a new default of running test compression on
30% of the records. The EXAMINE statement in line 5 runs a test compression on a 30%
sample of the records in all of the data sets cataloged in catalogs which have a name
ending in 'IMS'. The EXAMINE statement in line 7 runs a test compression on a 20%
sample of the records in all of the data sets cataloged in catalogs which have a name
ending in 'CICS' because PERCENT=20 is specified on it. The EXAMINE statement in line 9
runs a test compression on a sample of 30% of the records in all of the data sets
cataloged in ICF.PROD01.

The SET statement is required if you want to use TCF's security interfaces. When used in
this way, the SET statement should precede the first EXAMINE statement in the input
stream, as in the following example:

SET SECURITY=ACF2, ...

TCF Command Language

132 Reference Guide

 SCAN CAT=ICF.TESTCAT

EXAMINE PERCENT=20

MODE=LIVE|SIMULATE

Specifies whether the test compression is a simulated execution. When
MODE=SIMULATE (or MODE=SIM) is specified, a list of data sets is developed by
executing the SCAN, SELECT, and EXCLUDE statements, but the test compression is not
executed. Messages and reports are produced as if normal processing were occurring,
without the compression percentages and resulting data savings being printed. This is
useful in determining how big a TCF run you have without going through the work of
doing the test compressions.

PREEXIT=modname

Specifies the name of your user-coded preprocessing exit. The purpose of this exit is to
allow you to write custom code to select data sets for compression. This is only
necessary when TCF's selection process (SCAN, SELECT, and EXCLUDE statements) does
not give you enough power to select just the data sets you want to select. Your exit
receives control before catalog and format 1 DSCB information is obtained for the data
set. You can set a return code to force TCF to bypass the data set. See PREEXIT
Pre-Processing Exit in the chapter User Exits for more information.

POSTEXIT=modname

Specifies the name of your user-coded postprocessing exit. The purpose of this exit is to
allow you to perform customized processing on the compression statistical data that is
available after the test compression is complete. Your exit receives control after each
data set is successfully test compressed. If you run TCF in simulate mode, your exit will
also receive control, but no compression statistics will be available. See PREEXIT
Pre-Processing Exit in the chapter User Exits for more information.

PERCENT=100|n

Specifies the percent of records to be sampled during the test compression. Use this
parameter to reduce processing resource requirements for the TCF run. The sampling
occurs uniformly throughout the data set. For example, PERCENT=20 samples one in
every five records.

Note: Whenever a value other than 100 is coded, the BYPASS, SKIP and EXTRACT
parameters are ignored.

TCF Command Language

Chapter 6: Test Compression Facility 133

BYPASS=0|n

Specifies the number of records to bypass at the start of a data set before test
compression is to begin.

Note: It is possible to prevent any records from being selected for test compression
through values you specify on BYPASS and SKIP. If no records are selected for test
compression, message DCA0074 is issued and the data set is flagged on the report with
an error indication.

SKIP=0|n

Specifies that TCF is to process every nth record when selecting records for test
compression. For example, if SKIP=4 is specified, records 1, 2 and 3 are skipped and the
4th record is test compressed. Then records 5, 6 and 7 are skipped and the 8th record is
test compressed.

This parameter works in concert with the BYPASS parameter. When BYPASS is specified,
the number of records specified on BYPASS= is bypassed before the SKIP processing
begins.

Note: It is possible to prevent any records from being selected for test compression
through values you specify on BYPASS and SKIP. If no records are selected for test
compression, message DCA0074 is issued and the data set is flagged on the report with
an error indication.

EXTRACT=0|n

Specifies the maximum number of records that are to be test compressed for each data
set. Once this number of records has been test compressed, TCF stops processing
records for that data set. EXTRACT=0 specifies that there is no limit.

The EXTRACT parameter only counts the records selected for test compression. Records
which are bypassed due to BYPASS= and skipped due to SKIP= are not counted toward
this total.

DSNFILL=.|x

Specifies the fill character to use on the TCF Report which helps you to visually align the
data set name with its compression results. The default value is a period. See the TCF
Report in this chapter for more information about this report.

SECURITY=NONE|RACF|TOPSEC|ACF2

Specifies the security system that you want TCF to receive authorization from in order to
obtain access to each data set.

TCF Command Language

134 Reference Guide

SCAN Statement

The following section describes the SCAN statement.

SCAN {CATALOG=catalogname|DSNAME={dsname|pattern}}

[,EXCCATS=(catnamelist)]

 [,BEGINDSN=dsname]

 [,PREEXIT=exitname]

 [,POSTEXIT=exitname]

The SCAN statement is used to indicate the VSAM/ICF catalog or data set name pattern
to be scanned. One or more SET statements can be coded at the top of a command
structure. See the Command Structures in the Command Language in this chapter for
more information.

Either CATALOG or DSNAME must be specified for the SCAN statement to be valid. It is
not valid to specify both on the same SCAN statement.

Narrowing the list of data sets to be processed using the DSNAME parameter on the
SCAN statement usually requires less CPU time and less elapsed time than using the
CATALOG parameter on the SCAN statement in conjunction with a SELECT statement.
This is especially true if your VSAM or ICF catalogs are large. For example, the following
two command structures produce the same result, but the second one is generally more
efficient.

SCAN CATALOG=ICF.TESTCAT

SELECT DSNNAMES=(LABS.TJP./)

EXAMINE

produces the same result as:

SCAN DSNAME=LABS.TJP./

EXAMINE

Note: The assumption here is that all data sets named LABS.TJP./ are cataloged to
ICF.TESTCAT. For the second command structure to work properly, an alias must exist in
the master catalog for the high-level qualifier of the data set name.

TCF Command Language

Chapter 6: Test Compression Facility 135

CATALOG=catalogname

Specifies the catalog(s) to be searched. If pattern characters are specified, then more
than one catalog can be selected on a single SCAN statement. See Command Language
Syntax Rules in this chapter for a complete description of the use of the special
characters. The CATALOG parameter and the DSNAME parameter cannot be used
together.

Note: If the value you specify for CATALOG= does not match any of the catalog names in
your installation, TCF will issue an error message and terminates all commands in the
command stream.

Note: AB/ is not the same as AB./ even if AB is a complete node. The former requires
much more memory and processing time than the latter because the end of the node is
not indicated, so that possibilities like ABX or ABY have to be checked for, even if they
turn out not to exist. AB./ permits TCF to limit the catalog locate function to just that
node.

DSNAME=dsname|pattern

Specifies the data set(s) to be processed. If pattern characters are specified, then more
than one data set can be selected on a single SCAN statement. For a complete
description of the use of the special characters, see the CA Compress User Guide. The
first qualifier of the name must not contain any special characters.

The DSNAME parameter and the CATALOG parameter cannot be used together.

Generally, using DSNAME is more efficient than using CATALOG. The CATALOG
parameter searches an entire catalog. The DSNAME parameter causes TCF to issue a
superlocate to find just those data sets that match the DSNAME parameter.

EXCCATS=catalogname

Specifies up to ten catalog names and/or catalog name patterns that are to be excluded
from processing. This parameter is only valid when CATALOG= is specified. For example,
the following SCAN statement scans all catalogs which have IMS at the end of their
name, but excludes those with TEST or TEMP anywhere in their name.

SCAN CATALOG=!IMS,EXCCATS=(!TEST,!TEMP)

BEGINDSN=dsname

Specifies the starting point in the collating (sorting) sequence of data set names where
you want TCF to begin processing data sets. This is useful when you want to resume
processing at the place where the TCF job was prematurely terminated.

TCF Command Language

136 Reference Guide

PREEXIT=modname

Specifies the name of your user-coded preprocessing exit. The purpose of this exit is to
allow you to write custom code to select data sets for compression. This is only
necessary when TCF's selection process (SCAN, SELECT, and EXCLUDE statements) does
not give you enough power to select just the data sets you want to select. Your exit
receives control before catalog and format 1 DSCB information is obtained for the data
set. You can set a return code to force TCF to bypass the data set. See PREEXIT
Pre-Processing Exit in the chapter User Exits for more information.

The PREEXIT parameter coded on the SCAN statement overrides any PREEXIT parameter
coded on a previous SET statement.

POSTEXIT=modname

Specifies the name of your user-coded postprocessing exit. The purpose of this exit is to
allow you to perform customized processing on the compression statistical data, which
is available after the test compression, is complete. Your exit receives control after each
data set is successfully test compressed. If you run TCF in simulate mode, your exit also
receives control, but no compression statistics are available. See PREEXIT Pre-Processing
Exit in the chapter User Exits for more information.

The POSTEXIT parameter coded on the SCAN statement overrides any POSTEXIT
parameter coded on a previous SET statement.

SELECT Statement

The following section describes the SELECT statement.

SELECT [DSNAMES=(dsnamelist)]

[,VOLUMES=(volumelist)]

 [,MBYTESRANGE=(0|n[,n])]

 [,DSORG=ALL|VSAM|PS]

The SELECT statement is used to narrow the list of data sets to be processed by a
subsequent EXAMINE statement. For a data set to be selected for processing, all tests
specified on the SELECT statement must be met. If more than one SELECT statement is
coded before an EXAMINE statement, a data set can be selected by any one of the
SELECT statements to be processed by the EXAMINE statement. Multiple SELECT
statements are ORed together.

Note: If an EXCLUDE statement immediately precedes or follows any SELECT statement,
special rules apply. See the SELECT and EXCLUDE Processing Rules in this chapter for a
more information.

TCF Command Language

Chapter 6: Test Compression Facility 137

DSNAMES=dsname

Specifies the data set name(s) to be processed. Up to ten names or name patterns can
be specified on a single SELECT statement.

VOLUMES=volume

Specifies the volumes on which the data sets must reside in order to be processed. Up
to thirty (30) volumes or volume name patterns can be specified on a single SELECT
statement. For multivolume data sets, the first (primary) volume is used for this
comparison.

MBYTESRANGE=(0|n[,n])

Specifies the size which the data sets must be in order to be processed. The data set's
size is the number of allocated tracks and cylinders converted into megabytes, not the
actual space usage. The first number of MBYTESRANGE specifies the minimum size,
which the data set must be in order to be included in TCF processing. The second
number specifies the maximum size.

MBYTESRANGE=(0,600)

 MBYTESRANGE=(300,1200)

 MBYTESRANGE=(,500) <--- Invalid

Note: If you code a maximum size, you must also code a minimum size, even if the
minimum is zero. Examples:

DSORG=ALL|VSAM|PS

Specifies the data set organization which the data sets must have to be processed.

TCF Command Language

138 Reference Guide

EXCLUDE Statement

The following section describes the EXCLUDE statement.

EXCLUDE [DSNAMES=(dsname list)]

 [,VOLUMES=(volume list)]

 [,MBYTESRANGE=(0|n[,n])]

 [,DSORG=ALL|VSAM|PS]

The EXCLUDE statement is used to narrow the list of data sets, which are to be
processed by a subsequent, EXAMINE statement. In order for a data set to be excluded
from processing, all tests specified on the EXCLUDE statement must be met. If more
than one EXCLUDE statement is coded prior to an EXAMINE statement, then a data set
can be excluded from processing by any one of the EXCLUDE statements. That is,
multiple EXCLUDE statements are ORed together.

Note: If an EXCLUDE statement immediately precedes or follows any SELECT statement,
special rules apply. See the SELECT and EXCLUDE Processing Rules in this chapter for
more information about these rules.

DSNAMES=dsname

Specifies the data set names to be excluded from processing. Up to ten names or name
patterns can be specified on a single EXCLUDE statement.

VOLUMES=volume

Specifies the volumes on which the data sets must reside in order to be excluded from
processing. Up to thirty (30) volumes or volume name patterns can be specified on a
single EXCLUDE statement. For multi-volume data sets, the first (primary) volume is
used for this comparison.

MBYTESRANGE=(0|n[,n])

Specifies the size which the data sets must be in order to be excluded from processing.
The data set's size is the number of allocated tracks and cylinders converted into
megabytes, not the actual space usage. The first number of MBYTESRANGE specifies the
minimum size which the data set must be in order to be excluded from TCF processing.
The second number specifies the maximum size.

MBYTESRANGE=(0,600)

MBYTESRANGE=(300,1200)

MBYTESRANGE=(,500) <--- Invalid

Note: If you code a maximum size, you must also code a minimum size, even if the
minimum is zero. Examples:

TCF Command Language

Chapter 6: Test Compression Facility 139

DSORG=ALL|VSAM|PS

Specifies the data set organization which the data sets must have to be excluded from
processing.

SELECT and EXCLUDE Processing Rules

The SELECT and EXCLUDE statements can be coded any number of times for a single
EXAMINE statement. The following rules govern TCF's processing of multiple SELECT
and/or EXCLUDE statements for a single EXAMINE statement:

■ For each SELECT or EXCLUDE statement, all criteria must be met for the statement
to select or exclude the data set.

■ If only SELECT statements are coded for a given EXAMINE statement, at least one
SELECT statement must be true for the data set to be selected for TCF processing.

■ If only EXCLUDE statements are coded for a given EXAMINE statement, at least one
EXCLUDE statement must be true for the data set to be excluded from TCF
processing.

■ If both SELECT and EXCLUDE statements are coded for a given EXAMINE statement,
the following rules apply:

■ If an EXCLUDE statement tests true, the data set is excluded whether a SELECT
statement tests true or not.

■ If no EXCLUDE statements test true, at least one SELECT statement must still
test true for the data set to be processed.

EXAMINE Statement

The following section describes the EXAMINE Statement.

EXAMINE [PERCENT=100|n]

[,BYPASS=0|n]

[,SKIP=0|n]

[,EXTRACT=0|n]

The EXAMINE statement initiates test compressions for the list of data sets selected by
the SCAN, SELECT, and EXCLUDE statements which precede it. All records in all data sets
are test compressed unless record sampling is specified by the BYPASS, SKIP, and/or
EXTRACT parameters on the EXAMINE statement itself, or on any SET statement coded
in the command stream.

TCF Command Language

140 Reference Guide

PERCENT=100|n

Specifies the percent of records to be sampled during the test compression. The reason
you would want to use this parameter is to reduce processing resource requirements for
the TCF run. The sampling occurs uniformly throughout the data set. For example,
PERCENT=20 samples one in every five records.

Note: Whenever a value other than 100 is coded, the BYPASS, SKIP and EXTRACT
parameters are ignored.

BYPASS=0|n

Specifies the number of records to bypass at the start of a data set before test
compression is to begin.

Note: It is possible to prevent any records from being selected for test compression
through values you specify on BYPASS and SKIP. If no records are selected for test
compression, message DCA0074 is issued and the data set is flagged on the report with
an error indication.

SKIP=0|n

Specifies that TCF is to process every nth record when selecting records for test
compression. For example, if SKIP=4 is specified, records 1, 2 and 3 are skipped and the
4th record is test compressed. Then records 5, 6 and 7 are skipped and the 8th record is
test compressed.

This parameter works in concert with the BYPASS parameter. When BYPASS is specified,
the number of records specified on BYPASS= is bypassed before the SKIP processing
begins.

Note: It is possible to prevent any records from being selected for test compression
through values you specify on BYPASS and SKIP. If no records are selected for test
compression, message DCA0074 is issued and the data set is flagged on the report with
an error indication.

EXTRACT=0|n

Specifies the maximum number of records, which are to be test compressed for each
data set. After this number of records has been test compressed, TCF stops processing
records for that data set. EXTRACT=0 specifies that there is no limit.

The EXTRACT parameter only counts the records selected for test compression. Records
which are bypassed due to BYPASS= and skipped due to SKIP= are not counted toward
this total.

TCF Report

Chapter 6: Test Compression Facility 141

TCF Report

The following figure shows the format of the TCF report.

TCF Report

142 Reference Guide

Field Description and Contents

The following definitions apply to the fields found on the Test Compression Facility
Report:

DATA SET NAME

The name of the data set being analyzed.

NAME OF CATALOG

The name of the catalog for the data set.

VOLUME

The name of the volume for the data set.

ORGANIZATION

The Data Set Organization: KSDS, ESDS, or Physical Sequential.

SAMPLED K-BYTES

The estimated number of kilobytes of data sampled.

AVERAGE REC LNTH

The estimated average record length of the records sampled.

ALLOCATED TRACKS

The total number of tracks allocated to the data set (not the number of tracks
which contain data).

NUMBER OF RECORDS SAMPLED

The total number of records sampled.

NUMBER OF RECORDS IN FILE

The estimated number of records in the file sampled for VSAM. This field is not
applicable for Physical Sequential data sets.

NON-COMPRS BYTES

The total number of noncompressible bytes.

KEYS

The number keys in the record.

KEYS OFFSET

The offset of the keys in the record.

KEYS LENGTH

The length of the keys in the record.

PATTERN

The SCAN or SELECT criteria used to find the record.

TCF Report

Chapter 6: Test Compression Facility 143

TYPE/TABLE COMPRESSION

The name of the compression technique that was used.

PERCENT COMPRESSION

The estimated percentage of the file to be compressed.

KBYTES OF DATA

The estimated number of kilobytes of data after compression.

AVERAGE REC LNTH

The estimated average record length after compression.

ALLOCATION TRACKS

The estimated number of allocated tracks after compression.

SAVINGS TRACKS

The estimated number of tracks saved after compression.

CURRENT RDL STATEMENT

The current record description language.

Chapter 7: VSAM Performance Enhancement 145

Chapter 7: VSAM Performance
Enhancement

The VSAM Performance Enhancement (VPE) is a general performance enhancer for
VSAM, which operates independently from and compatibly with the other components
of CA Compress. In most situations, implementing VPE dramatically reduces the wall
clock run time of both batch jobs and online transactions, which use VSAM data sets.

This section contains the following topics:

VPE (see page 145)
Installing VPE (see page 147)
Activating and Deactivating VPE on Your System (see page 148)
VPE Operation (see page 149)
Advanced Topics (see page 160)
VPE Reports (see page 171)

VPE

VPE does the following:

■ Eliminates redundant I/Os through buffering.

■ Uses memory above the 16 Mb line for any program. It is possible to have files
completely loaded into ESA's large virtual storage areas.

■ Allows multiple files to share a single buffer pool (Local Shared Resources (LSR)).

■ Optimizes sequential buffers using Read Look-Aside and Deferred Write (DFW)
techniques for batch jobs.

■ Uses Sequential Insert Strategy (SIS) and Deferred Write (DFW) techniques for
VSAM files used by CICS.

■ Gives batch programs the advantage of VSAM Local Shared Resources (LSR) using a
proprietary technique.

It is not necessary to modify your application programs to use VPE. VPE invocation is
controlled in 2 ways, both external to the application:

■ Control statements in the VPE Rules Table, and/or

■ Special DD statements added to the application JCL.

VPE transparently gains control each time a VSAM data set is opened through an
interface program, which is installed and removed by a batch job. An IPL is not required.

VPE provides reporting to give visibility to its benefits and to aid in tuning.

VPE

146 Reference Guide

How VPE Enhances VSAM Performance

The VPE installation program installs intercepts at OPEN and CLOSE. During OPEN, VPE
modifies the VSAM ACB in order to invoke the following techniques to improve VSAM
performance:

■ Optimized I/O Buffering

■ Deferred Write (DFW)

■ Sequential Insert Strategy (SIS)

■ Read Look-Aside

During CLOSE, VPE performs statistics acquisition and reporting.

Optimized I/O Buffering

VPE utilizes a proprietary technique for optimizing VSAM I/O buffers. VPE creates
large numbers of VSAM I/O buffers in virtual storage above the 16 Mb line (when
available) in order to dramatically reduce I/O operations.

Deferred Write (DFW)

The performance of many applications suffers from the result of accessing VSAM
work files, which cannot be tuned to avoid CI and CA splits. Deferred Write (DFW)
allows splits to occur in virtual storage resulting in decreased CPU and DASD
utilization when splits occur.

Sequential Insert Strategy (SIS)

VPE invokes VSAM's Sequential Insert Strategy (SIS) automatically and when
appropriate when records are added to a VSAM data set in order to improve
performance. SIS reduces the number of CA and CI splits when adding multiple
records at one point because it splits the CI or CA at the insertion point rather than
in the middle of the CI or CA. Because half empty CIs and CAs no longer proliferate,
FREESPACE can be reduced without increasing splits.

Read Look-Aside

VPE invokes VSAM's Read Look-Aside feature automatically and when applicable.
VSAM's Read Look-Aside feature reduces I/Os by looking first in the existing I/O
buffers for the CI being read before reading from disk.

VPE's Use of VSAM's Local Shared Resources (LSR)

VSAM Local Shared Resources (LSR) is inappropriate for some types of VSAM file
processing. VPE analyzes the files and processing modes specified by you and modifies
the environment accordingly. In certain cases, sequential optimization is done.
Algorithms determine the optimum number of buffers to assign to gain the most
read-ahead without wasting storage.

Installing VPE

Chapter 7: VSAM Performance Enhancement 147

Reports Allow VPE Tuning

Statistics and performance reports are produced showing how files were optimized and
the percent of I/Os eliminated. These reports allow you to customize the buffer
specifications for a particular job to meet schedules and balance resource consumption
with run time improvements.

Installing VPE

When VPE is installed using the configuration, which comes on the install tape, by
default it does not operate on any of your VSAM files. You can safely install VPE and
have confidence that it does not operate on any files until you tell it to do so.

All of the components of VPE are copied from the distribution tape and installed on your
machine when you perform the installation procedure described in the CA Compress
Installation Guide. There are no other installation steps necessary for VPE.

Note: The installation procedure installs the VPE load modules in one of the libraries in
your LINKLIST. If you repeat the installation procedure (for example. upgrade, reinstall,
and so on), be sure that you do not end up with more than one copy of VPE in your
LINKLIST. If different releases are mixed, or if the VPE modules are not all properly
installed in a LINKLIST library, abends and other problems can occur.

There are several steps required to implement VPE:

1. Copy the VPE data sets from the distribution tape to the appropriate places on disk.
This is the Installation step previously discussed.

2. Modify the parameters, which control the operation of VPE. These are the VPE
Rules Table and the VPE Control DD Statements (discussed below).

3. Activate the VPE OPEN interface program by running program VPEHINST.

4. Repeat steps 2 and 3 as required to refine your VPE implementation.

Activating and Deactivating VPE on Your System

148 Reference Guide

Activating and Deactivating VPE on Your System

The VPE Operating System interfaces are installed and removed by running the
VPEHINST program. The interface programs can be installed in an activated or
deactivated state. When deactivated, the programs are still installed in the operating
system but are nonfunctional.

The VPEHINST program typically runs as part of your IPL sequence to install the VPE
Operating System interfaces. The JCL required to run this program is as follows:

//VPEJOB JOB ...

 //STEP1 EXEC PGM=VPEHINST,

 // PARM='ACTION=actionname[,RESTRICT=jobname']

 //

The valid values for actionname are:

ACTION=STATUS

Directs VPEHINST to display the status of the VPE Operating System interfaces on
the system console.

ACTION=INSTALL

Directs VPEHINST to install the VPE Operating System interfaces.

ACTION=INSTALLD

Directs VPEHINST to install the VPE Operating System interfaces in deactivated
state.

ACTION=ACTIVATE

Directs VPEHINST to activate the VPE Operating System interfaces which are
currently installed and deactivated.

ACTION=DEACTV

Directs VPEHINST to deactivate the VPE Operating System interfaces which are
currently installed and activated.

ACTION=DELETE

Directs VPEHINST to remove the VPE OPEN interface, but to leave the VPE CLOSE
interface installed and active. This is desirable when there are jobs currently
running with open VSAM data sets and you want the VPE CLOSE interface to gather
statistics on them when the CLOSE occurs.

ACTION=FORCDEL

Directs VPEHINST to immediately remove both the VPE OPEN and CLOSE interfaces,
even if statistics are lost on any currently open VSAM data sets.

VPE Operation

Chapter 7: VSAM Performance Enhancement 149

RESTRICT= jobname

Directs VPE to only operate on the job specified. This restriction always takes
precedence over the scope of operation specified in the VPE Rules Table and/or the
VPE Control DD statements. This parameter is useful when you want to test VPE
prior to implementing it for production use. The following VPEHINST example
installs the VPE Operating System interfaces such that they only operate when the
job name is 'TESTJOB1':

//VPEINST JOB ...

 //STEP1 EXEC PGM=VPEHINST,

 // PARM='ACTION=INSTALL,RESTRICT=TESTJOB1'

//

VPE Operation

The operation of VPE is controlled using two methods: Special DD statements in your
application JCL, and the VPE Rules Table. You can use either method or both at the same
time.

VPE Operation

150 Reference Guide

VPE Special Control DD Statements

VPE Control DD statements control the operation of VPE by their presence within a
jobstep. With one exception, these special DD statements do not specify data sets.
Rather, special DUMMY DD statements in the jobstep and artificial data set names
invoke VPE and control its operation. VPE does not open the artificial data set names
you specify on these DD statements. However, be careful in coding the VPE Control DD
statements which include the artificial data set names because the data sets are
allocated and deleted by job control. These DD statements must be completely valid to
job control even though they are not opened and used to create a data set. You need to
code them like the following:

//ddname DD DSN=ddname1.ddname2.ddname3...ddnamen,

 // UNIT=DISK,SPACE=(TRK,0)

ddname

The special VPE ddname

ddname1

The 1st application ddname you are referencing

ddname2

The 2nd application ddname you are referencing

ddnamen

The nth application ddname you are referencing

Unlike the VPE Rules Table, Control DD statements can be coded by anyone who wants
VPE operation, without refreshing the VPE Operating System interfaces, and without the
involvement of the storage administrator. They are also much more easily and quickly
processed by VPE, allowing early exit from the SVC intercept code.

In order for the Special Control DD statements to invoke and control VPE, the
ALLOW=YES parameter must be specified (or be allowed to default) on the SYSOPT
statement in the VPE Rules Table. Conversely, the Special Control DD statement
functionality can be completely disabled by coding ALLOW=NO on the SYSOPT
statement in the VPE Rules Table.

Note: The VPEIGNR Control DD Statement always disables VPE in that step even if
ALLOW=NO is coded in the VPE Rules Table.

DD=VPEONALV

The VPEONALV DD statement activates VPE for all appropriate VSAM files in the
jobstep. In most cases, VPE can correctly select those VSAM files to optimize
completely automatically. You can see which files were selected and how they were
optimized by VPE on the Run Statistics Report. The syntax of the VPEONALV DD
statement is:

//VPEONALV DD DUMMY

VPE Operation

Chapter 7: VSAM Performance Enhancement 151

DD=VPEBUFnn

The VPEBUF DD statement specifies the target buffer pool size for the jobstep. The
default is 4 Mb. The size of the buffer pool requested is specified in Mb as the last
two characters of the ddname. The syntax of the VPEBUFnn DD statement is:

//VPEBUFnn DD DUMMY

For example, VPEBUF99 sets the target buffer pool size to 99 Mb. A value this large
eliminates most I/O.

DD=VPEIGNR

The VPEIGNR DD statement deactivates VPE for the jobstep. This DD statement
always functions and takes precedence, even if ALLOW=NO or PRECEDENCE=VPEDD
is coded on the SYSOPT statement in the VPE Rules Table. The syntax of the
VPEIGNR DD statement is:

//VPEIGNR DD DUMMY

DD=VPEONnn

The VPEONnn DD statement directs VPE to optimize the files referenced by the
ddnames specified as nodes of the DSNAME portion of the DD statement. The nn
portion of the DD statement is a number from 00 through "09", allowing up to 10
VPEONnn DD statements per jobstep. The syntax of the VPEONnn DD statement is:

//VPEONnn DD DSN=ddname1.ddname2.ddname3...ddnamen,

 // UNIT=DISK,SPACE=(TRK,0)

If your security system requires a specific value as the first qualifier of the data set
name, VPE allows you to code any value there without requiring it to match a DD
statement coded in the job. As usual for a real DD statement, the artificial data set
name coded on this special DD statement must not exceed 44 characters in length.
The following example activates VPE for the data sets specified by DD cards VSAM1
and VSAM2:

//VSAM1 DD DSN=MY.VSAM.FILE.ONE,DISP=SHR

//VSAM2 DD DSN=MY.VSAM.FILE.TWO,DISP=SHR

//VPEON00 DD DSN=VSAM1.VSAM2,

 // UNIT=DISK,SPACE=(TRK,0)

DD=VPEONGnn

The VPEONG DD statement works the same as the VPEONnn DD statement except
that the ddnames coded as nodes of the artificial data set name can be ddname
prefixes or wild cards. The syntax of the VPEONGnn DD statements is:

//VPEONGnn DD DSN=ddname1.ddname2.ddname3...ddnamen,

 // UNIT=DISK,SPACE=(TRK,0)

The following example activates VPE for the data sets specified by DD cards VSAM1
and VSAM2 using the ddname prefix VSAM:

//VSAM1 DD DSN=MY.VSAM.FILE.ONE,DISP=SHR

//VSAM2 DD DSN=MY.VSAM.FILE.TWO,DISP=SHR

//VPEONG00 DD DSN=VSAM,

VPE Operation

152 Reference Guide

 // UNIT=DISK,SPACE=(TRK,0)

DD=VPELSRPB

The VPELSRPB DD statement directs VPE to acquire LSR pool space below the 16 Mb
line. This is necessary in applications which are not MVS/XA-ready and use LOCATE
mode I/O. This DD statement always functions and takes precedence, even if
ALLOW=NO or PRECEDENCE=RULES is specified. The syntax of the VPELSRPB DD
statement is:

//VPELSRPB DD DUMMY

DD=VPEVSTS

The VPEVSTS DD statement is a real SYSOUT DD statement which VPE uses to print
error messages and statistics. If it is not included in the jobstep, then VPE
dynamically allocates it. The syntax of the VPEVSTS DD statement is as follows,
where n is a valid SYSOUT class for your JES system:

//VPEVSTS DD SYSOUT=n

DD=VPEVRPT

The VPEVRPT DD statement directs VPE to produce the VSAM Recommendations
Report. See VPE Reports in this chapter for information about the report. In
addition, this statement generates warning messages that reflect conditions
relating to the IDCAMS definition of clusters or their current status as observed in
the catalog. The syntax of the VPEVRPT DD statement is:

//VPEVRPT DD DUMMY

DD=VPEWRKnn (CICS processing only)

The VPEWRKnn DD statement directs VPE to turn on Deferred Write and Sequential
Insert Strategy performance enhancement techniques for the files referenced by
the ddnames specified as nodes of the DSNAME portion of the DD statement. The
nn portion of the DD statement is a number from 00 through 09, allowing up to 10
VPEWRKnn DD statements per jobstep. The syntax of the VPEWRKnn DD statement
is:

//VPEWRKnn DD DSN=ddname1.ddname2.ddname3...ddnamen,

 // UNIT=DISK,SPACE=(TRK,0)

If your security system requires a specific value as the first qualifier of the data set
name, VPE allows you to code any value there without it requiring to match with a DD
statement coded in the job. As usual for a real DD statement, the artificial data set
name coded on this special DD statement must not exceed 44 characters in length.

VPE Operation

Chapter 7: VSAM Performance Enhancement 153

VPE Rules Table

Typically, the Storage Administrator maintains the VPE Rules Table. The rules table
statements are keyed into a simple text file using any text editor, such as the SPF Editor
(Option 2). The statements in this text file are converted to the internal form VPE uses
by running the VPERULB program. When VPE is activated during system startup, the
internal form of the VPE Rules Table is loaded into Common System Area (CSA) memory,
always above the 16 Mb line when it is available.

The VPE Rules Table is deleted from CSA when VPE is uninstalled, so you must run the
VPERULB program each time you install VPE. The best way to accomplish this is to
include the VPERULB step in your startup PROC for VPE and CA Compress.

Note: Running the VPERULB is necessary only when you use the VPE Rules Table. If you
only use the VPE Control DD Statements, it is not necessary to run this program.

VPE Rules Table Syntax Rules

The following section describes the syntax rules of VPE Rules Table.

■ Any line which starts with an asterisk (*) in column 1 is a comment line and is
ignored by the VPERULB program.

■ A statement consists of the statement name followed by one or more parameters.
For example:

SYSOPT ALLOW=NO,PRECEDENCE=VPEDD

■ The first noncomment line must be a SYSOPT or VSAM statement. The SYSOPT and
VSAM statements must appear before all RULE statements.

■ A statement can span more than one line.

■ A parameter may not span more than one line.

■ A parameter followed by a blank terminates a statement. Characters following the
blank are considered comments.

■ A parameter followed by a comma and a blank continues a statement onto the next
line. Characters following the blank are considered comments. The parameters
appearing on the next line can start in any column.

■ Data set names can be enclosed in quotes or not. An asterisk ("*") in a data set
name is a wild card character. It is not node-specific. For example, "A*T" matches
DSN=ABCTEST as well as DSN=ABC.NODE.TEST.

Note: A node is one portion of the data set name delimited by a period. The nodes of
ABC.NODE.TEST are ABC, NODE, and TEST.

VPE Operation

154 Reference Guide

VPE Rules Table Source Statements

There are three rule statements. Each statement can have one or more parameters.

SYSOPT

Sets global system options.

VSAM

Sets default VSAM processing options.

RULE

Sets processing options for individual files, jobs, and jobsteps.

The SYSOPT and VSAM statements specify the global and default processing options for
your system. The RULE statement specifies exceptions to these global and default
options. The flexibility to define your own custom global and default processing options
and then override them for specific files, jobs, and jobsteps allows you to minimize the
number of statements you need to compose in order to implement VPE just the way
you want.

SYSOPT Statement

The following section explains the SYSOPT statement.

SYSOPT [ALLOW=YES|NO]

[,PRECEDENCE=VPEDD|RULES]

The SYSOPT statement sets global system options. There can be at most one SYSOPT
statement. It can be omitted if desired. These options set the default values for your
system. They are global in nature and apply to all jobs, steps, and VSAM files unless
overridden by more specific rules or special VPE DD cards.

ALLOW=YES|NO

Specifies whether the special VPE DD cards are active or not. If ALLOW=YES is
specified (the default), then the special VPE DD cards will affect the operation of
VPE. If ALLOW=NO is specified, then any special VPE DD cards will not affect the
operation of VPE. Exceptions: The VPEIGNR and VPEVIGNR Control DD cards always
disable VPE in that jobstep.

PRECEDENCE=VPEDD|RULES

Specifies which of the two VPE controlling mechanisms takes precedence when
there is a conflict between them. If PRECEDENCE=VPEDD is specified (the default),
then the special VPE DD statements present in the application JCL take precedence
over any conflicting rules in the VPE Rules Table. If PRECEDENCE=RULES is specified,
then the opposite is true. This parameter only makes sense if ALLOW=YES is
specified.

VPE Operation

Chapter 7: VSAM Performance Enhancement 155

VSAM Statement

The following section explains the VSAM statement.

VSAM [POOL=n]

 [,BUFFRLOC=ABOVE|BELOW]

 [,SIS=NO|YES]

 [,VSAMREC=NO|YES]

 [,TGTBUF=nnM]

 [,MINBUF=nnM]

 [,MINRESV=nnnK]

The VSAM statement sets global system options. There can be at most one VSAM
statement. It can be omitted if you want. These options are used to tune VPE. Like the
SYSOPT statement, these options set the default values for your system. They are global
in nature and apply to all jobs, steps, and VSAM files unless overridden by more specific
rules or special VPE DD cards.

POOL=n

Specifies the LSR pool number which VPE is to use for I/O buffers. The default value
is 3.

This is the pool number and not the number of pools. VSAM supports 16 LSR pools
for data components and 16 for index components. Both sets of pools are
numbered 0 through 15. POOL= specifies which of these pairs of pools are to be
used.

BUFFRLOC=ABOVE|BELOW

Specifies from where the LSR buffer space is to be obtained, above or below the 16
Mb line.

Note: In either case, a VPE RULE statement or special VPE DD statement can
override this global value for the data sets affected by them.

SIS=NO|YES

SIS=YES directs VPE to globally turn on VSAM's Sequential Insert Strategy (SIS) for all
applicable ACBs.

SIS=NO (the default) directs VPE to not do so.

VSAMREC=NO|YES

VSAMREC=YES directs VPE to globally produce the VSAM Recommendations Report
for every VSAM data set open.

VSAMREC=NO (the default) directs VPE to not do so.

Note: A VPE RULE statement or special VPE DD statement can override this global
value for the data sets affected by them.

VPE Operation

156 Reference Guide

TGTBUF=nnM

directs VPE to attempt to obtain the specified number of megabytes for the VSAM
I/O buffer. If VPE cannot obtain this much space, it reduces the request until the
space request succeeds, or until the minimum buffer size is reached (see the
MINBUF=nnM parameter below). The default target buffer size is 9 Mb if the LSR
buffers are above the 16 Mb line, and 4 Mb if they are below it.

MINBUF=nnM

Works in conjunction with the ABENDNOMIN=YES parameter of a RULE statement.
MINBUF=nnM specifies the minimum VSAM I/O buffer size which is acceptable. The
default is zero. If a nonzero value is specified for MINBUF=nnM and
ABENDNOMIN=YES is specified, VPE abends the job step if the minimum buffer
space cannot be obtained.

MINRESV=nnnnK

Specifies the minimum amount of memory to reserve below the 16 Mb line for the
application to use. The default setting is 300K. VPE does not enhance sequential file
buffering if this amount of memory is not available. When LSR buffers are being
acquired below the 16 Mb line, this value reduces the size of the VSAM I/O buffers
if this amount of space is not available.

VPE Operation

Chapter 7: VSAM Performance Enhancement 157

RULE Statement

The following section explains the RULE statement.

RULE (Scope of the rule)

[INCLUDE|XCLUDE]

 [,JOB=cccccccc|STEP=cccccccc|DDNAME=cccccccc|DSN=cccccccc]

 (Job/Step specified parameters)

 [,POOL=n]

 [,TGTBUF=nnM]

 [,MINBUF=nnM]

 [,ABENDNOMIN=NO|YES]

 [,MINRESV=nnnK]

 (DDNAME/DSN specific parameters)

 [,POWERFACT=nn]

 [,SIS=NO|YES]

 [,DFW=NO|YES]

 [,FORCEMODE=SEQ|LSR]

 [,BUFND=nn]

 [,BUFNI=nn]

 [,BUFSP=nn]

 [,VSAMREC=NO|YES]

The RULE statement specifies VPE processing options for jobs, steps, and data sets. The
values specified on a RULE statement overrides the corresponding values specified in
the SYSOPT and VSAM statements.

INCLUDE|XCLUDE

Specifies whether this RULE statement is including jobs, jobsteps, or data sets, or
excluding them.

JOB=cccccccc|STEP=cccccccc|DDNAME=cccccccc| DSNAME=cccccccc

Specifies the job name, step name, DDNAME, or DSNAME of the job, step, or data
set being included in or excluded from VPE processing using this RULE statement.
The values specified can contain one or more asterisks, which represent wild card
indicators. Note that for data set names wild card characters are not node-specific.
For example: "A*T" matches DSN=ABCTEST and DSN=ABC.NODE.TEST.

Note: A node is one portion of the data set name delimited by a period. The nodes
of ABC.NODE.TEST are ABC, NODE, and TEST.

JOB/STEP Specific Parameters

These parameters are valid only when the RULE statement specifies JOB= or STEP=.

POOL=n

Specifies the LSR pool number which VPE is to use for I/O buffers for the job(s),
step(s), or data set(s) affected by this RULE statement. The default value is 3.

VPE Operation

158 Reference Guide

This is the pool number and not the number of pools. VSAM supports 16 LSR pools
for data components and 16 for index components. Both sets of pools are
numbered 0 through 15. POOL= specifies which of these pairs of pools is to be used.
This value need not match the value specified on the POOL parameter of the VSAM
statement.

TGTBUF=nnM

Directs VPE to attempt to obtain the specified number of megabytes for the VSAM
I/O buffer for the job(s), step(s), or data set(s) affected by this RULE statement. If
VPE cannot obtain this much space, it reduces the request until the space request
succeeds, or until the minimum buffer size is reached (see the MINBUF=nnM
parameter below). The default target buffer size is 4 Mb.

Note: This parameter overrides the TGTBUF parameter on the VSAM statement.

MINBUF=nnM

Works in conjunction with the ABENDNOMIN=YES parameter. MINBUF=nnM
specifies the minimum VSAM I/O buffer size which is acceptable for the job(s),
step(s), or data set(s) affected by this RULE statement. The default is zero. If a
nonzero value is specified for MINBUF=nnM and ABENDNOMIN=YES is specified,
VPE abends the job step if the minimum buffer space cannot be obtained.

ABENDNOMIN=NO|YES

ABENDNOMIN=YES directs VPE to abend the jobstep when the minimum buffer
space specified by MINBUF= cannot be obtained. Use this parameter whenever it is
unacceptable for a jobstep to run without buffering.

MINRESV=nnnnK

Specifies the minimum amount of memory to reserve below the 16 Mb line for the
application to use for the job(s), step(s), or data set(s) affected by this RULE
statement. The default setting is 300K. VPE does not enhance sequential file
buffering if this amount of memory is not available. When LSR buffers are being
acquired below the 16 Mb line, this value reduces the size of the VSAM I/O buffers
if this amount of space is not available.

VPE Tuning Tip: If you find that TGTBUF= (or even MINBUF=) requirements cannot be
met, reduce MINRESV=.

VPE Operation

Chapter 7: VSAM Performance Enhancement 159

Data Set Specific Parameters

These parameters are valid only when the RULE statement specifies DDNAME= or
DSNAME=:

POWERFACT=nn

Directs VPE to obtain additional buffers for the data set(s) specified on the RULE
statement. This parameter provides a means of distributing the available buffer
space on a file-by-file basis. POWERFACT= does not affect the size of the buffer pool
(see TGTBUF=). The default value is 1.

SIS=NO|YES

SIS= directs VPE to activate VSAM's Sequential Insert Strategy for the data set(s)
specified on the RULE statement. The default value is SIS=NO.

DFW=NO|YES

DFW= directs VPE to activate Deferred Write for the data set(s) specified on the
RULE statement. The default is DFW=NO.

Note: Setting SIS=YES and DFW=YES is equivalent to the CICSWRK control DD.

FORCEMODE=SEQ|LSR

FORCEMODE= directs VPE to force either sequential performance enhancements or
LSR optimization, if possible, for the data set(s) specified on the RULE statement.
There is no default for this parameter. When FORCEMODE= is omitted, VPE uses an
algorithm to automatically select one type of optimization or the other.

BUFND=nn

BUFND= specifies the number of buffers VPE is to acquire for the VSAM data
component. This parameter overrides VPE's automatic computations.

BUFNI=nn

BUFNI= specifies the number of buffers VPE is to acquire for the VSAM index
component. This parameter overrides VPE's automatic computations.

BUFSP=nn

BUFSP= specifies the size of the VSAM buffer space. This parameter overrides VPE's
automatic computations.

VSAMREC=NO|YES

VSAMREC= directs VPE to produce the VSAM Recommendations Report.

Advanced Topics

160 Reference Guide

Usage Notes

VPE's Operating System interfaces receive control during VSAM OPEN and CLOSE.
During each VSAM file OPEN, VPE will process each RULE statement looking for a match
on job, step, or data set. The first RULE statement which matches is the one which is
used for the VSAM file being opened. The sequence of the RULE statements determines
how your implementation of VPE performs. Code the most specific RULE statements
prior to the more general ones. For example, data set specific RULE statements should
appear before step specific ones.

There is no limit placed on the number of RULE statements you can use. However, the
more RULE statements you code, the more processing is done by VPE during VSAM file
open time. For best results, keep the number of RULE statements below 500.

Because the RULE statements can be coded to only affect certain jobs, steps, or data
sets, you can use them to safely experiment with different combinations of parameter
values. Then, when you have determined good parameter values which should apply to
all data sets by default, you can move the parameter settings to the SYSOPT and VSAM
statements.

If the ACB for the VSAM file being opened specifies DIR processing and the file has more
than one record in it, VPE normally attempts to implement LSR processing for the file. If
you know that the file is actually processed sequentially, FORCEMODE=SEQ forces VPE
to implement sequential processing enhancements for the file.

If the VSAM file being opened is empty or has only one record, or if the file's ACB
specifies SEQ processing, VPE normally attempts to implement sequential processing
enhancements for the file. If you know that the file is loaded by the program and then
updated in DIR mode, and if the update is quite large, specify FORCEMODE=LSR to get
the greater benefit of LSR enhancements for the file.

Advanced Topics

The following topics are some special considerations you should make in certain
situations.

Advanced Topics

Chapter 7: VSAM Performance Enhancement 161

VPE Implementation Considerations

There are some VPE implementation considerations:

■ Region Size

■ Sequentially Accessed VSAM Files

■ SHAREOPTION=4 Files

■ MACRF=RLS files

■ Checkpoint/Restart

■ Job Swaps

Region Size

In most cases, VPE functions without region size changes. However, a larger region
enhances sequential access and may be required if LSR below the line is used. VPE
writes messages, which indicate if a larger region would enhance buffering. If VPE does
not ask for a larger region size, increasing the region does not improve performance.

Note: In order to avoid making changes to each job's region size, you can set IEALIMIT
using an SMF exit.

LSR above the line can be used. The additional storage used below the line by VPE for
code and tables is minimal.

Advanced Topics

162 Reference Guide

Region Computations

VPE's region computations involve the amount of space available below the line at the
time of first OPEN plus the following VPE parameters. These parameters are set in the
VPE Rules Table and/or by VPE Control DD statements:

■ MINRESV—Specifies the minimum amount of memory to reserve below the 16 Mb
line for the application to use. The default setting is 300K.

■ TGTBUF—Directs VPE to attempt to obtain the specified number of megabytes for
the VSAM I/O buffers. This defaults to 9 Mb if the LSR buffers are above the 16 Mb
line, and to 4 Mb if they are below it.

■ MINBUF—Specifies the minimum VSAM I/O buffer size, which is acceptable. The
default value for MINBUF is zero bytes. MINBUF can be used to generate error
messages or to prevent jobs from running when sufficient buffer space is not
available.

VPE optimizes buffer space on files opened for load or sequential only access (high RBA
= 0 or 1 or ACB specifies sequential only access) using space from below the line. VPE
uses the following calculation to obtain a value for the upper limit of size of sequential
buffers to assign:

Case 1: LSR below the line:

LIMIT = (AVAIL REGION BELOW 16MB - LSR POOL SIZE / 2).

Case 2: LSR above the line:

LIMIT = (AVAIL REGION BELOW 16MB - MINRESRV)/2.

In Case 1, the LSR pool size is set to the smaller of TGTBUF or the available region minus
MINRESRV. In Case 2, the entire MINRESRV is available for the application. In Case 1, a
minimum of half of the region specified by MINRESRV is available.

Note: This amount of region is not actually taken, but is merely a calculated upper limit.
A message is written if the minimum calculated LSR pool is not available or if the
sequential limit is reached prior to fully optimizing all files.

Sequentially Accessed VSAM Files

If a VSAM file has a high RBA of 0 (that is, the file is empty), has only one record in it, or
if the ACB opened for the file has sequential processing specified, VPE assumes the file is
in a load state. A buffer space target is created such that full track read/write operations
are performed for the data portion of the file and each index level has an index buffer. It
is possible some applications load these files and then update them. If the update is
large, use the VPE rule statement FORCEMODE=LSR to speed these jobs up more than
the default sequential buffering.

Advanced Topics

Chapter 7: VSAM Performance Enhancement 163

SHAREOPTION=4 Files

This VSAM processing option allows multiple CPUs or address spaces to have concurrent
write access to a data set. Unless your environment requires this type of access, it is
generally inadvisable. Specifying SHAREOPTION=4 requires VSAM to perform a physical
I/O to refresh the buffer contents each time the record is read or written, so buffering
these files is useless and VSAM does not permit LSR for such data sets. Review your
cluster definitions to ensure that SHAREOPTION=4 is still appropriate.

MACRF=RLS (Record Level Sharing)

Record Level Sharing is incompatible with LSR and with BUFND, so VPE cannot optimize
such OPENs. VPE excludes these data sets from optimization.

Checkpoint/Restart

Checkpoint/Restart can be used with data sets when VPE is being used, but processing
restarts at the data set's high-used RBA, rather than the point where the checkpoint was
taken. This occurs because VPE uses LSR and this is how LSR affects Checkpoint/Restart.
If your application currently depends on Checkpoint/Restart, become familiar with the
difference in restart processing for files using LSR before using VPE with that application.
See IBM's Checkpoint / Restart Guide, which contains information about restart
processing for VSAM files.

Job Swaps

VPE increases the amount of virtual storage used by your application. The amount of
virtual storage used in a job step is one of the criteria that the MVS System Resource
Manager uses to determine which job to swap out when there is too much contention
for memory resources. This function is a very important part of MVS's ability to ensure
optimum response for time-critical systems such as CICS, as it provides the means to
ensure that priority systems obtain the memory resources they require for good
response times.

Unfortunately, this same evaluation criteria works against optimum performance during
the off-prime hours when online systems are largely idle and the CPU is doing more
batch than interactive work. Under these circumstances, the bias in favor of online
systems and lower multiprogramming levels can lead to bottlenecks and poor memory
utilization. This typically results in high overall CPU utilization, long elapsed run times,
high swap counts for large batch jobs, and relatively light I/O contention (because jobs
spend a great deal of time swapped out). Should you find that VPE has relieved your I/O
bottleneck only to create a memory problem, ask your MVS tuner about raising domain
minimums for your performance group. This can be done by command to test the effect
and made permanent using changes to IEAICSxx parameters. If you are still not satisfied,
contact CA Technical Support for assistance.

Advanced Topics

164 Reference Guide

Optimizing VSAM Performance by Adjusting VSAM Parameters

Although VPE automatically alleviates many of the performance problems which occur
with poorly defined files, you need to correct flagrant violations and problems. This is
especially true for large or heavily accessed files. Poorly defined files always have a
negative effect on processing, even when VPE reduces the effect through intelligent
buffering. For example, a file with excessive index levels requires excessive reads to
access a record without VPE. With VPE, the excessive reads are exchanged for excessive
accesses to the core buffers. This results in wasted CPU processing time accessing the
buffers. Storage is still wasted containing the buffers. In a memory constrained system,
the I/O overhead of paging and swapping may equal the cost of saved index reads.
There is no substitute for properly tuned systems.

The options specified when a VSAM data set is created have a great effect on both its
space usage and overall performance. For some options the defaults are adequate, but
for others they are a poor choice. VPE generates warning messages for poorly defined
files to aid in optimizing VPE performance. The discussion which follows describes
situations which cause VPE to produce these messages and how you can correct the
problems by adjusting parameters on the IDCAMS Define Cluster statement. CISZ (Data
Component CI Size)

VPE flags all data component CI sizes of less than 2048 bytes. These small CI sizes result
in reduced space utilization. Larger data component CI sizes result in improved space
utilization. In addition, small data component CI sizes increase the number of physical
reads required to process a file sequentially. These small sizes are generally a holdover
from 3330 disk devices and channels with speeds of 1.5 Mb-per-second.

CISZ (Data Component CI Size)

VPE flags all data component CI sizes of less than 2048 bytes. These small CI sizes result
in reduced space utilization. Larger data component CI sizes result in improved space
utilization. In addition, small data component CI sizes increase the number of physical
reads required to process a file sequentially. These small sizes are generally a holdover
from 3330 disk devices and channels with speeds of 1.5 Mb-per-second.

Advanced Topics

Chapter 7: VSAM Performance Enhancement 165

SPACE (Data Component CA Size)

Data component CA size is controlled by the space allocation specified for the data
component. Generally, it is one cylinder, but it can be as small as one track. VSAM sets
the data component CA size to the lesser of the primary allocation, the secondary
allocation, and one cylinder. VSAM creates sequence sets such that they hold one
compressed key per data component CI in a data component CA. This means that the
data component CA size controls the number of index records VSAM retrieves on one
read (one index component CI) as well as the number of index levels that are required
to point to the sequence sets. Because obtaining more index records per read benefits
both random and sequentially accessed files, it is generally best to use cylinder CAs. This
means all but very small files should be allocated in cylinders.

An exception to the above guideline is files that have high browse update activity in
CICS. In this case, a small data component CA size can reduce the number of browse
enqueue locks because the number of index entries in the sequence set is smaller.
Therefore, fewer entries are enqueued by browse. However, to achieve optimal
performance, replace the browse operations with Get Key Greater than or Equal. This
replacement eliminates the sequence set enqueue.

Advanced Topics

166 Reference Guide

CISZ (Index Component CI Size)

The lowest level of the index is called the sequence set. It contains one pointer
(compressed key) for each data component CI in a data component CA. This means the
index component CI size must be at a minimum equal to the compressed key size times
the number of data component CIs in a data component CA plus the overhead.

The index set is all levels of the index above the sequence set. The highest level of the
index set must fit in a index component CI. So, if the total number of data component
CAs is greater than the number of keys which can be held in one index component CI,
the index has more than one index level. When the indexes are not in buffers, a physical
read must be performed for each index level to access a data record. Without an explicit
definition for the index component CI size, VSAM automatically selects a CI size based
on assumptions it makes about key compression. Frequently, these assumptions
over-estimate the amount of compression present. Therefore, VSAM creates an index
component CI that is too small to address all data component CIs within one CA.
Because the remaining data component CIs cannot be used, space is wasted. You can
correct this problem by increasing the index component CI size to reduce the amount of
space used by the file.

In addition to wasting space, small index component CI sizes can cause VSAM to add
additional levels to the index set. The additional levels increase the number of I/Os
required to locate data. LSR reduces the impact of this problem by keeping index
component CIs in storage. However, LSR processing is not appropriate for certain
applications, specifically SHAREOPTIONS=4 and sequential processing. In these cases,
the number of physical I/Os required to locate your data can have a great impact on
performance. As a rule of thumb, files should have no more than one index level per 500
cylinders of data, plus one each for the base index and sequence set. VPE issues a
message informing you how many index levels the file has when this is exceeded.

When in doubt, it is better to have an index component CI that is too large than one that
is too small. For most files, index space is a small fraction of data space. If the index
component CI is too large, little space is wasted. If it is too small, major overhead is
added to the file access and a significant amount of data space can be wasted.

The factors to be considered when selecting an index component CI size are:

■ The key size and compression.

■ The data component CI size (index and data component CI sizes should be different
to avoid buffer contention).

■ The number of data component CIs per CA.

■ The data component CA size.

■ The overall file size (total number of CAs).

Advanced Topics

Chapter 7: VSAM Performance Enhancement 167

Because an assessment of actual key compression is not possible without scanning the
full sequence set and the penalty for undersized index component CIs is large, VPE
issues a warning when the index component CI size specified is less than a factor of the
number of CIs per CA multiplied by the full key length. VPE uses factors similar to those
internal to VSAM, but more conservative. If you receive this message, go to the next
higher CI size or use IDCAMS to examine the indexes to determine if any are actually
full. If the index change has a positive effect, increase it again until no further change
takes place. If it has no effect, ignore any further occurrences of this message.
Remember there are NO circumstances under which having an index component CI one
size too large causes any performance degradation.

SHAREOPTIONS

Specifying SHAREOPTIONS=4 (SHAREOPTIONS=(n,4) or SHAREOPTIONS=(4,n)) informs
VSAM that the file is being used by multiple systems. This forces a physical READ or
WRITE every time a record is accessed, so no benefit is achieved by using LSR or extra
buffers. VSAM fails the OPEN if SHAREOPTIONS=4 and LSR are both specified. So, if VPE
encounters this option, it excludes this file in the buffer pool and issues a warning. Do
not use SHAREOPTIONS=4 unless you need it.

Note: If a cluster has SHAREOPTIONS=(n,4) specified, any of its alternate indexes that
were created with the option of UPGRADE are assumed to be SHAREOPTIONS=(n,4)
even if they were not defined that way. The same is true for a cluster that is not
SHAREOPTIONS=(n,4), if any one of its upgrade AIXs were created with
SHAREOPTIONS=(n,4).

IMBED

IMBED causes VSAM to place the sequence set in the first track of each CA and to
replicate the sequence set around the track until it is full. This option normally allows
one seek to satisfy the read for both the sequence set and the data it references, but it
increases the amount of space required to contain the file by a minimum of about seven
percent and reduces the file integrity. It can be up to 50 percent, if the subcylinder
allocations are used. The latter occurs because VSAM must now update the indexes
multiple times.

A typical problem with IMBED is records that are sometimes not found. This occurs
because not all of the sequence sets on the track are updated. This only happens when
the file is updated from two regions at once without the use of SHAREOPTIONS=4; but
this is not uncommon, as few shops can live with the poor performance of
SHAREOPTIONS=4. The use of IMBED is not recommended. If performance dictates,
place the index and data portions of the cluster on separate packs. VPE warns you if
IMBED is specified for a file that is larger than 200 cylinders.

WRITECHECK

This option causes VSAM to read each record written. It is of no use with modern DASD.
VPE warns you if your file is defined with WRITECHECK.

Advanced Topics

168 Reference Guide

REPLICATE

This option causes index records to be replicated around the track using IMBED for
sequence sets. If sufficient buffers exist to hold the entire index set in memory (which is
generally the case), no performance benefit is gained from REPLICATE. This option
wastes DASD and invites problems. VPE warns you if your file is defined with REPLICATE.

SPEED

SPEED is a performance option that helps reduce the amount of time it takes to load a
VSAM file. It has no hidden cost, so it is a good idea to use it. If you do not specify
SPEED, RECOVERY is automatically used. RECOVERY preformats the entire data set
allowing load jobs to restart. VPE issues a message if the cluster was defined without
SPEED.

Advanced Topics

Chapter 7: VSAM Performance Enhancement 169

FREESPACE

This parameter reserves space in either the CI or CA at load time so that new records or
new CIs are usually written without splits taking place. FREESPACE works when file
updates are nonclustered in a key range. It can work with clustered updates, but the
space is allocated to the entire file to help one CI or CA and thus it is wasted. If many
updates/additions take place with similar keys, large amounts of free space are needed
to prevent splits. In fact, the maximum value (100,100), which puts one record in a CI
and one CI in a CA, cannot be enough.

CI splits occur when not enough free space is available to contain a record, which is
being inserted. Without Sequential Insert Strategy (SIS), VSAM must move half the data
in the CI to a new CI before continuing with the insert operation. These splits result in
CPU and I/O overhead and should be avoided. In addition, logically ascending data is no
longer physically adjacent so any sequential access to the file is slowed down.

If CI splits occur over the period of several days, the file needs to be reorganized. If they
occur in a period of a day or less, increase the CI FREESPACE parameter and reorganize
the file. CI free space is a percentage of the CI size and must be large enough to insert a
whole record.

Whereas CI splits represent minimal to moderate overhead, the amount of processing
incurred by a CA split is much greater. A CA split occurs when there is not enough room
to contain the new CI created during a CI split. When this happens, VSAM must create a
new control area, move 50 percent of the data from the old CA to the new one, update
the sequence set, update part of the index set, and then continue with the original CI
split. With Sequential Insert Strategy (SIS), this process is similar except the old CA is
split at the CI being split instead of in the middle. With cylinder CAs (no SIS), both half a
cylinder of data is moved and a minimum of one level of index is located and updated
before the original CI split can occur. Like CI splits, CA splits call for reorganizations and
FREESPACE.

As mentioned above, CA splits are of greater concern than CI splits. Generally it is a
matter of how much free space you can afford to allocate to a file. Putting free space in
a file increases the number of data CIs and CAs, thereby increasing index CI size
requirements and levels as well as the file's space allocation. Splits are probably the
number one cause of poor CICS response time. All the queuing that takes place while
CICS is nondispatchable uses a lot of CPU time, requires additional I/O, and makes CICS
less responsive. Although CICS puts a file in LSR, it does not activate Deferred Write
(DFR), meaning CICS waits on physical I/Os during splits. VPE can help by turning on
Sequential Insert Strategy (SIS) and Deferred Write (DFW) for files that CICS has put into
LSR as well as to identify which files contain splits.

A split in an index component CI or CA indicates the index component CI is undersized.
In addition to increasing the index CI size, you can give the index component its own
FREESPACE.

Advanced Topics

170 Reference Guide

Multiple Extents

Multiple extents occur either when the file needs more space than is available in the
primary allocation or when the pack your file is on is so fragmented that multiple
extents are required to obtain the space you ask for in the primary allocation. Both of
these conditions can increase seek time. Correct this problem by increasing the size of
the primary allocation, or if fragmentation is the problem, reorganize the pack. VPE
issues a warning when a file contains multiple extents.

Tuning VPE's Buffer Size

When you first run VPE on a file, start with the default buffer size and review the
performance statistics generated in the VSAM Recommendation Report to determine
how effective that size is for your application. Run the job several times, with different
buffer sizes. While you are incrementally decreasing the buffer size, you will eventually
reach the point where a continued decrease of the buffer pool size for a particular job
will cause the percent of I/O requests which are being satisfied from the buffer pool to
decrease dramatically. For optimum performance, do not go below this value. While you
are incrementally increasing the buffer size, a point will be reached where adding more
buffer space does very little for the look-aside ratio. For most applications, a look-aside
ratio as high as 90 percent can be obtained on all files. Some applications will get even
higher ratios with the addition of more buffers, but beyond the 90 percent point the
decrease in run time will usually be small. In a memory-constrained environment, the
use of too large a value can cause a performance decrease, due to additional paging in
the system.

Buffer size changes affect the number of times your job is swapped out. When it is out,
it is not doing anything. If swapping is not going up and run times are still out of
proportion with CPU consumption, check the following:

■ Excessive Program Loads—Correct excessive loads from STEPLIB or JOBLIB by
canceling the JOB after it has run a while and inspecting the use count in the CDEs.

■ Excessive OPENS or CLOSES—Correct this problem by performing a GTF trace. This
trace identifies both OPEN/CLOSE and LOAD problems.

■ Enqueue Conflicts—Examine your dumps or use a third party program to identify
enqueue problems.

Assembly Programming Limitations

VPE looks out for the use of certain assembly programming techniques which are not
supported by VSAM when LSR pools are in use. VPE excludes such files from VPE's
optimizations because VPE uses LSR pools. The affected assembly programming
techniques are:

■ CBIC—Control Blocks In Common (specified on the ACB macro).

■ ICI—Improved Control Interval access (specified on the ACB macro).

■ UBF—User Buffering (specified on the ACB macro).

VPE Reports

Chapter 7: VSAM Performance Enhancement 171

VPE Reports

Examples of VPE reports are displayed for the following:

■ VPE Initialization and Setup Statistics

■ VSAM Recommendation Report

■ Performance Statistics Report

VPE Initialization and Setup Statistics

The following sample shows the VPE initialization and setup statistics report.

SDSF OUTPUT DISPLAY ZSAMSTC STC01199 DSID 101 LINE 0 COLUMNS 02- 81

 COMMAND INPUT ===> SCROLL ===> 0011

********************************* TOP OF DATA **********************************

*

**

*

* VPE VSAM PERFORMANCE STATISTICS

*

* JOBNAME=ZSAMSTC STEP=ZSAMSTC DATE: 08/12/12 TIME: 23.37.26 HRS

*

*

* VPE VSAM PERFORMANCE STATISTICS

*

* JOBNAME=ZSAMSTC STEP=ZSAMSTC DATE: 08/12/12 TIME: 23.37.26 HRS

*

**

*

* VPEHINST-I1567 PARMS->> ACTION=INSTALL

**

*

* VPEHINST-I1200 SVC 19 (OPEN) AND 20 (CLOSE) SUCCESSFULLY INTERCEPTED.

* VSAM PERFORMANCE ENHANCER IS NOW INSTALLED.

* REMINDER - ALL SVC ROUTINES MUST BE DEINSTALLED IN LIFO ORDER.

**

*

* VPEHINST-I1111 SVC TBL VALUE FOR SVC 19 IS AT 0142C950 SET TO 00DD8600 TO RESTORE.

**

*

* VPEHINST-I1111 SVC TBL VALUE FOR SVC 20 IS AT 0142C958 SET TO 00DC4000 TO RESTORE.

**

*

* VPEHINST-I1110 VPEHKS19(OPEN) IS AT 869E7DD0. IT HAS BEEN ACTIVE SINCE 08/12/12

 **

VPE Reports

172 Reference Guide

VSAM Recommendation Report

The following image shows the VSAM recommendation report.

Performance Statistics Report

The following image shows the performance statistics report.

Chapter 8: Exclusion Facility 173

Chapter 8: Exclusion Facility

Excluding certain jobs, modules, and programs from CA Compress processing improves
performance by reducing both I/O and CPU time. More importantly, exclusion can
prevent programs from compressing already compressed data.

The CA Compress Exclusion Facility is controlled by a sequential data set or a member of
a PDS that is pointed to by the SYSIN DD of the CA Compress started task. The DCB
attributes of the file are LRECL=80, RECFM=FB, and any BLKSIZE equal to a multiple of
80. It contains definition statements for the CA Compress address space. The
statements include nine table names and their associated record entries.

The tables include the names of jobs, programs, and modules for which CA Compress
processing should not take place. If a job, program, or module name is in these tables,
GET for a Compress data set retrieves compressed data, and a PUT stores the record as
is, without compression.

This section contains the following topics:

Exclusion for VSAM Backup/Restore Processing (see page 173)
Exclusion for Physical Sequential Transparency Processing (see page 174)
Exclusion to Prevent Control-Interval (CI) Processing and EXCP (see page 174)
The Exclude File (see page 175)
Expiration Date of 86060 (see page 176)
Exclusion by DDNAME @ZSM@XCL (see page 177)
Invoking Exclusion in Assembler Macros (see page 177)

Exclusion for VSAM Backup/Restore Processing

You can use the EXCLUDE-JOB, -PGM, and -MOD tables to prevent BACKUP/RESTORE
facilities from doing compression or expansion. The backup functions of CA FAVER,
DFDSS, and CA Disk retrieve data from a compressed cluster without expansion and
store data compressed. However, their restore functions use VSAM record management
to store the compressed backup data back into the cluster at restore time. CA Compress
is invoked when the VSAM cluster is opened for output. Unless the restore functions of
such products are excluded, compressed data from backups is compressed again.

Exclusion for Physical Sequential Transparency Processing

174 Reference Guide

Exclusion for Physical Sequential Transparency Processing

For similar reasons, the EXCLUDE-JOB-PST, EXCLUDE-PGM-PST, and EXCLUDE-MOD-PST
tables prevent compression and expansion of PST data sets. For instance, it is not
uncommon to sort or select certain compressed records based on uncompressed fields,
without actually expanding them. In such cases, processing uncompressed not only adds
overhead, but forces SORT control cards to change.

Because the exclusion facility causes compressed data sets to be processed without CA
Compress, be sure when coding DCB parameters that you specify the compressed
attributes. Otherwise, CA Compress does not realize that the data set is compressed,
and other errors can occur.

Exclusion to Prevent Control-Interval (CI) Processing and EXCP

CA Compress does not expand or compress data when invoked by a program using EXCP
or Control-Interval (CI) processing. The tables *EXCLUDE-JOB-SORT,
*EXCLUDE-PGM-SORT and *EXCLUDE-MOD-SORT force programs performing CI access,
such as SYNCSORT, to use record management access so that the data is compressed
and expanded correctly. The Physical Sequential Transparency reallocates PST data sets
before giving control to SORT and other programs, in order to make them use BSAM
instead of EXCP. This enables CA Compress to compress and expand logical records.

The Exclude File

Chapter 8: Exclusion Facility 175

The Exclude File

The CA Compress Exclude File contains three types of information: table statements,
record entries, and comment statements.

Table Statements—A table statement is specified by the prefix character "*" in column
1, followed by a table name. The table names can be specified only once and must be
syntactically correct, but can be in any order. The names and functions of the
statements are described in the following section.

EXCLUDE-JOB

Excludes jobnames from VSAM compression and expansion.

EXCLUDE-MOD

Excludes VSAM compression and expansion for subroutine modules called from a
processing program.

EXCLUDE-PGM

Excludes VSAM compression and expansion for programs invoked by an EXEC
statement within a job or proc step.

EXCLUDE-JOB-SORT

Forces programs performing CI access to use record management access.

EXCLUDE-MOD-SORTForces programs performing CI access to use record management
access.

EXCLUDE-PGM-SORT

Forces programs performing CI access to use record management access.

EXCLUDE-JOB-PST

Excludes jobnames from transparent physical sequential compression and
expansion.

EXCLUDE-MOD-PST

Excludes transparent physical sequential compression and expansion for subroutine
modules called from a processing program.

EXCLUDE-PGM-PST

Excludes transparent physical sequential compression and expansion for programs
invoked by an EXEC statement within a job or proc step.

Records

A record entry follows a table statement, and must begin in column 1.

Comment

A comment statement is the character "*" in the first column, followed by a blank.

The following code shows a sample of the default CA Compress Exclude File:

Expiration Date of 86060

176 Reference Guide

EDIT .CCVBJCL(EXCLUDE) - 01.00 Columns 00001 00072

Command ===> Scroll ===> CSR

 ****** ***************************** Top of Data *******************

000010 * MAINTENANCE

000020 * 07/07/08 PAA 001783 UPDATED PRODUCT NAME

000030 *

000100 * THIS TABLE IS A LIST OF JOBS, PROGRAMS AND MODULES AND THE

000200 * OCCASIONS UNDER WHICH THEY SHOULD BE EXCLUDED FROM THE

000300 * COMPRESSION/EXPANSION OF CA COMPRESS

000400 *

000410 * PROGRAM NAMES MUST START IN COLUMN 1!

000420 *

000430 *EXCLUDE-JOB

000440 JOBNAME

000450 *EXCLUDE-PGM

000460 EMCSNAP EMC TIMEFINDER

000461 SIBBATCH IBM SNAPSHOT

000462 GVRESTOR FAVER

000470 ADRDSSU DFDSS

000480 ADSAR008 CA DISK AUTORESTORE

000490 ADSMI002 CA DISK BATCH

000500 *EXCLUDE-MOD

000501 EMCSNAP EMC TIMEFINDER

000510 SIBBATCH IBM SNAPSHOT

000600 GVRESTOR

000700 ADRDSSU

000800 ADSST100

000900 ADSAR008

001000 ADSMI002

001100 *EXCLUDE-JOB-PST

Expiration Date of 86060

Another way to use the Exclusion Feature is by specifying the EXPDT parameter (or the
EXPDT subparameter of LABEL) on the DD statement with a value of 86060. When
EXPDT=86060 is specified, CA Compress excludes the data set from compression or
expansion because CA Compress is not invoked. An example is shown below:

// DDNAME DD DSN=compressed.data set.name,DISP=SHR,

// LABEL=EXPDT=86060

Exclusion by DDNAME @ZSM@XCL

Chapter 8: Exclusion Facility 177

Exclusion by DDNAME @ZSM@XCL

Because EXPDT=86060 can conflict with your tape management system, or because
EXPDT=86060 can be inconvenient for other reasons, CA Compress now supports
exclusion by user-specified ddname, in one of two formats.

To invoke exclusion for all compressed data sets in the step, specify:

//@ZSM@XCL DD DUMMY

To specify exclusion of specific ddnames, specify them in the nodes of the DSN as
follows. You can exclude as many ddnames as you can fit in the 44-byte DSN:

//@ZSM@XCL DD UNIT=SYSALLDA,SPACE=(TRK,0),DSN=hlq.ddn1.ddn2

For example, to exclude ddnames SYSUT1 and SYSUT2, where MYTSOID is a valid high
level qualifier:

//@ZSM@XCL DD UNIT=SYSALLDA,SPACE=(TRK,0),

// DSN=MYTSOID.SYSUT1.SYSUT2

Invoking Exclusion in Assembler Macros

It may be necessary to force exclusion regardless of user JCL or because you need the
compressed data set attributes or the compressed data. You can disable CA Compress
processing at OPEN, CLOSE, OBTAIN, RDJFCB, or catalog management by loading
X'DEDFADE1' into Register 15 before issuing the macro.

It is your responsibility to use this facility consistently. Be careful to exclude both OPEN
and CLOSE or neither, and be sure to treat RDJFCB and OPEN TYPE=J consistently.
Failure to observe this restriction leads to abends and other unpredictable results.

Chapter 9: Safeguards 179

Chapter 9: Safeguards

Compressed data should not be accessed by application programs when CA Compress is
not active, because user programs will experience abends or other problems due to
unexpected data.

This exposure is not great for sequential data sets, principally because update in place is
not supported, and so access for update while CA Compress is not up simply results in a
valid uncompressed data set. Support for sequential data sets using the SUBSYS
parameter offers no protection, but customers seldom experience this problem,
especially if they use FDTs created by the IUI, which enable CA Compress to distinguish
between compressed and uncompressed records if both are present.

For VSAM, however, update in place is commonplace. In contrast to the physical
sequential case, keys exist and may not be in the same physical location on the record in
compressed and uncompressed records. For these reasons, CA Compress includes the
Safeguards facility to protect non-SMS VSAM data sets defined under the CA Compress
Transparency.

CA Compress Safeguards protect compressed VSAM data sets from inadvertent access
under two conditions:

■ When the CA Compress subsystem is not active.

■ When the CA Compress subsystem is being abnormally terminated or shut down by
request. If any compressed data sets are being accessed at shutdown time of the CA
Compress subsystem, a warning message is issued.

This section contains the following topics:

How Safeguards Protect Data (see page 180)

How Safeguards Protect Data

180 Reference Guide

How Safeguards Protect Data

Safeguards tell the started task to add a candidate volume to a CA Compress VSAM data
set the first time that the data set is accessed when CA Compress is running. If it is a
non-SMS data set, the started task adds the candidate volume if it is not present. This
candidate volume prevents the allocation of the compressed data set when the CA
Compress subsystem is not active. When CA Compress is active, it monitors all VSAM
Catalog Management requests (SVC 26 calls) and removes the candidate volume so the
job can allocate, open, and access the data set. Because this is not done if the started
task is not running, allocation fails at data set allocation time with the following
messages to the operator:

The message states that the CA Compress volume (volume serial "@ZSAM@") is not
available to the system. The operator must respond to this message by canceling the job
and rerunning it after the CA Compress subsystem is activated.

How Safeguards Protect Data

Chapter 9: Safeguards 181

Safeguards Detailed Description

To add safeguards to non-SMS VSAM data sets, CA Compress adds a special candidate
volume to the catalog record for the data component of the data set. This volume has a
serial number of "@ZSAM@". This serial number in the catalog is not apparent to users
as long as the CA Compress subsystem is active. For example, an IDCAMS LISTCAT of the
cluster does NOT show this volume in the listing when CA Compress is active. Nor do
allocations of multiple volumes attempt to use this volume when CA Compress is active.

The implications of CA Compress adding Safeguards in this manner are as follows:

■ After a data set is defined to CA Compress, the Safeguards are added to the data set
the next time that it is accessed. The Safeguards are added without user
involvement. When Safeguards are added, CA Compress writes a message to the
operator, and it writes a message to SYSPRINT unless the started task specifies
NOSGPRT to PGM=ZSUR through the PARM parameter.

■ After the Safeguards are added, the data set can only be accessed when CA
Compress is active on the CPU that is attempting the access. Special care must be
taken when sharing an ICF catalog that contains CA Compress data sets across
CPUs. CA Compress must be active on the CPU attempting access to the data set or
the access fails.

How Safeguards Protect Data

182 Reference Guide

Safeguards Utility

The Safeguards Utility is designed to provide a simple, easy way of adding or removing
the CA Compress Safeguards. The Utility allows you to specify the CA Compress Control
File that contains the names of the VSAM data sets under CA Compress's control and
provides control statements that contain either a specific data set name or a pattern
data set name to be used. The utility is useful when converting from an earlier release
because it adds whatever Safeguards are missing from a data set. It can also be used to
remove the Safeguards if it is necessary to run an earlier version of CA Compress that
does not support them.

When the Safeguards Utility is invoked, it reads the SYSIN data set. The input can be
either a pattern name or a specific data set name. If a specific data set is named, the
Utility attempts to add or remove the Safeguards information from that data set
without regard for its existence within the CA Compress Control File allocated to the
VSAMFILE DD statement. If a pattern is named, it is stored for later processing. When
the end of input on SYSIN occurs, the utility reads the VSAMFILE data set if there were
any pattern data set names, trying to match each name from VSAMFILE with any of the
patterns. If the match is successful, the Utility attempts to add or remove the
Safeguards.

■ The JCL for the Safeguards Utility is in YOUR.CAI.CCVBJCL(SGUJCL).

■ The PARM can be either ON to add Safeguards to the selected data sets or OFF to
remove them from the selected data sets.

■ STEPLIB defines the library that contains the CA Compress load modules.

■ VSAMFILE defines the CA Compress Control File that contains the names of the data
sets you wish to process.

The control statements are fixed format, with the data set or pattern name starting
in column 1. A pattern name contains one or more special characters ("/", "?", "*"
or "!"). For more information about these characters, see the CA Compress User
Guide. A discrete data set name does not contain any special characters. To process
all of the data sets in the VSAMFILE data set, use a pattern of / in column 1.

Chapter 10: Physical Sequential Transparency 183

Chapter 10: Physical Sequential
Transparency

The Physical Sequential Transparency (PST) supports compression and expansion of
Physical Sequential data sets without application program or JCL changes. As in the case
of VSAM data sets, the user defines selected PS data sets or patterns in the CA
Compress Control File using the Interactive User Interface or Control File Maintenance
Utility. CA Compress automatically intercepts activity against appropriate data sets in
order to write compressed data to the compressed data sets and return uncompressed
data from them to application programs.

This section contains the following topics:

Full Transparency to Application Programs (see page 183)
Full Interactive User Interface and Control File Maintenance Utility (see page 184)
Compatibility with Previous Releases and the SUBSYS JCL Parameter (see page 184)
Implementation Considerations (see page 184)
Implementing Uncompressed Data Sets with the IUI (see page 186)
Implementing Compressed Data Sets with the IUI (see page 186)
Limitations and Restrictions (see page 186)

Full Transparency to Application Programs

Support for application programs is fully transparent to the user. No special exits,
parameters or interfaces are required for SORT and other utilities. Unlike the SUBSYS
implementation, PST does not require you to code DCB parameters in the JCL unless the
application requires it without CA Compress. GDGs, tape processing, and concatenation
of PST and uncompressed data sets are fully supported as long as the processing is
sequential using QSAM or BSAM. CA Compress causes SORT, which ordinarily uses EXCP,
to consider PST data sets to be SYSIN/SYSOUT or SUBSYS data sets and to process them
using BSAM.

Full Interactive User Interface and Control File Maintenance Utility

184 Reference Guide

Full Interactive User Interface and Control File Maintenance
Utility

The Interactive User Interface (IUI) analyzes and implements Physical Sequential data
sets transparently through the Control File, as it does for VSAM. The IUI is able to
recognize data sets compressed using SUBSYS and in most cases can return the
compression algorithm to the user, skipping analysis and compression and
implementing the data set as already compressed.

The Control File Maintenance Utility (CFMU) supports the PST by means of two new
Control File record types, PSDSNAME and PSPATTERN, with a number of new keyword
parameters on the ADD and ALTER control statements to supply DCB and other
information needed to process sequential data sets.

Compatibility with Previous Releases and the SUBSYS JCL
Parameter

Data sets compressed with the transparency are completely compatible with data sets
previously compressed using the SUBSYS parameter - byte for byte the compressed
format is identical. Data sets already compressed with the SUBSYS parameter can be
defined as already compressed and can be read and written immediately with no
change.

Control File records and cross memory services to support the PST are similar to but
completely distinct from those which support the VSAM Transparency. Older releases of
CA Compress running on different systems can even share the same Control File
compatibly, except that the earlier release cannot recognize the PST data sets as
compressed. Data sets defined to the PST can be uncompressed by the previous release
using the SUBSYS parameter, which provides backward compatibility.

Implementation Considerations

Implementing a Physical Sequential data set commonly involves analyzing the data set,
choosing a compression method and defining it to the Control File, just as in the case of
the VSAM Transparency, with certain minor differences. You can run the CFMU yourself
to define the data set, but the IUI analyzes the data set and can normally tell whether it
is already compressed or not, and with which algorithm, which helps you to insure that
the data set is defined correctly.

Implementation Considerations

Chapter 10: Physical Sequential Transparency 185

Deferred and Immediate Implementation

CA Compress cannot support update in place for Physical Sequential data sets, and it
does not support adding compressed records to a data set containing uncompressed
data. For these reasons, Scheduled Implementation is inappropriate for PST data sets,
but immediate and deferred compression are still supported by specifying the date
compression is to take effect (EFFDATE=yyddd), or ANYDATE to specify that the data set
should be immediately treated as compressed.

DCB Attributes

VSAM KSDS and ESDS record formats are essentially the same, whether the user
considers the data set fixed or variable length. However, in the case of non-VSAM data
sets there is a sharp distinction among fixed, variable, and undefined record formats.
Compression changes these attributes, but applications expect to handle the data in its
original uncompressed format, and so the uncompressed attributes must be preserved
in the Control File for CA Compress OPEN processing.

Four parameters enable you to specify DCB attributes for the data set using the IUI or
the CFMU: DCBMODEL, RECFM, LRECL, and BLKSIZE. DCBMODEL specifies a cataloged
data set from which to take DCB parameters, and the other three, if coded, supply or
override individual values.

The DCBMODEL data set can be any PS or PO data set except a compressed data set not
defined as PST, because for such a data set no uncompressed attributes are available. If
a compressed non-PST data set is specified for DCBMODEL, CA Compress issues a
diagnostic message and rejects the statement.

Automated Cleanup of Uncataloged Data Sets

Unlike VSAM data sets, Physical Sequential data sets are often defined by GDGs or
similar schemes - instead of remaining constant, the data set name for a given
application keeps changing as new generations are created and old ones fall away. This
can easily lead to uncontrolled growth of the Control File, so the CFMU provides the
ERASEUNCAT keyword to specify that a PS dsname entry should be automatically
deleted from the Control File after it is uncataloged. To avoid performance problems
and to prevent entries from being lost due to inadvertent deletion of the data set, the
Control File is not purged until at least the day after the data set is uncataloged.

For your convenience, CA Compress tries to pick an intelligent default. If you define a PS
pattern with GDG=ONLY, CA Compress realizes that only GDG data sets are permitted
and selects ERASEUNCAT=YES. For GDG=NO or GDG=YES, which permit non-GDG data
sets, CA Compress defaults to ERASEUNCAT=NO for safety. In many cases, however,
such as IMS log data sets, you probably want to override this choice with
ERASEUNCAT=YES.

Implementing Uncompressed Data Sets with the IUI

186 Reference Guide

Implementing Uncompressed Data Sets with the IUI

While the IUI is building the Work List, it determines whether each PS data set is already
compressed. If it is uncompressed, you implement it much like a VSAM data set. You can
explicitly analyze it or you can pick a compression method and go directly to
implementation.

If the IUI is running in Scheduled mode, it implements the data set online by adding a
Control File entry with an effective date of today with the DCB attributes of the
uncompressed data set. The data set is compressed the next time it is loaded.

If the IUI is running in Choice mode, you can specify all the values supported by the
CFMU, including GDG, ERASEUNCAT, and NON-COMP. If you specify a nonzero effective
date, the IUI implements the data set online with the values you specify, and the data
set is compressed the next time it is loaded. If you specify ANYDATE, the IUI generates
JCL to reload and compress the data set immediately, in the same way that it supports
VSAM immediate compression.

Implementing Compressed Data Sets with the IUI

If the data set is already compressed, the IUI marks it COMPRESD on the Work List and
analysis is not permitted. If the IUI is able to determine the FDT name or compression
algorithm, implementation can be done only with that name. If the IUI cannot
determine the FDT, you can enter the correct FDT.

Remember that if a data set is already compressed, you cannot really select a
compression method. The compression selection has already been made, so you can
only tell CA Compress what it is if the IUI is unable to determine it. To select a different
Compression method, you must uncompress and reimplement the data set.

Limitations and Restrictions

The following are limitations and restrictions of Physical Sequential Transparency:

■ Only Sequential Access Using QSAM or BSAM

■ Concatenation Restrictions

■ Limited DCB Exit List Support

■ Relatively High Overhead for Sequential Processing

Limitations and Restrictions

Chapter 10: Physical Sequential Transparency 187

Only Sequential Access Using QSAM or BSAM

PST data sets can only be processed sequentially, using QSAM or BSAM, and update in
place is not allowed. However, even though the IBM subsystem interface is used, BSAM
NOTE and POINT macros are supported, so ISPF BROWSE and EDIT, ISPF option 3.3 and
similar functions are supported.

Access methods such as BDAM and EXCP are not supported for PST data sets. By adding
SORT and other common utilities which use EXCP to the EXCLUDE-SORT exclusion
tables, you can tell CA Compress to force these programs to think a PST data set is a
subsystem data set and to use BSAM. For this to work, however, the program must be
able to handle subsystem data sets. Any program which works correctly with the
SUBSYS JCL parameter should support PST data sets.

Concatenation Restrictions

PST data sets cannot be concatenated with SYSIN (//ddname DD *) or other subsystem
data sets. In this case, message ZSUR407I is issued and the entire concatenation is
processed without compression or expansion, which will probably lead to errors.
Likewise, if you specify LABEL=EXPDT=86060 on any data set in a concatenation, the
exclusion is applied to the entire concatenation.

Limited DCB Exit List Support

RDJFCB exits x'07' and x'13' are fully supported. User label exits are supported at OPEN
and CLOSE, but not at EODAD or EOV. Because CA Compress must control the DCB
attributes, it replaces the user's DCB Open exit. It does not support EOV exits, user
totaling exits, or other exits which might be affected unpredictably by Compress.

Relatively High Overhead for Sequential Processing

Compression is relatively inexpensive and easy to justify with random access, which is
typical in the case of VSAM, because savings due to compression occur for each record,
whether you ever read it or not, and overhead is exacted only for the relatively few
records actually processed. However, sequential processing incurs overhead for every
record because in most cases all are read whenever the data set is processed.

Moreover, programs like SORT, which normally can optimize I/O, are forced to use the
subsystem interface so that CA Compress can compress or expand each logical record,
and this adds substantially to I/O overhead.

For these reasons, not all sequential data sets should be compressed. Good examples
are multivolume tapes written once and seldom read, or DASD data sets created at
night and seldom accessed during the day.

Chapter 11: User Exits 189

Chapter 11: User Exits

To enhance its power and flexibility, CA Compress enables you to direct its processing at
certain points by means of user exits, as described below.

CA Compress offers the following user exits:

■ Transparency User Exit

■ Control File Maintenance Utility Security Interface

■ Test Compression Facility Pre-Processing, Post-Processing, and Security Exits

These user exits are discussed in detail below.

This section contains the following topics:

Transparency User Exit (see page 189)
Control File Maintenance Utility Security Interface (see page 194)
Test Compression Facility User Exit (see page 197)

Transparency User Exit

The Transparency User Exit enables you to gain control during compression and
expansion in order to avoid or recover from errors. You can receive control from CA
Compress for each record before and after compression and before and after
expansion. Through the CA Compress/2 parameter list, described in the chapter CA
Compress/2, you have access to the record in both its compressed and uncompressed
state, as well as to its length and other information. By setting the return code at
PRECMP and PREXPD, you can prevent compression and expansion where appropriate.
After taking corrective action, you can recover at POSTCMP and POSTXPD from
compression and expansion errors resulting in I/O errors and messages such as SHR014I,
SHR015I, and SHR010I.

The exit is powerful, and you should have a good understanding of the material in the
chapter CA Compress/2, and of the parameters you receive in the exit before you
manipulate them in any way. Errors in the user exit may lead to I/O errors or even data
loss, so always test any changes carefully before enabling the exit for any production
data set. You receive addressability to the ddname, the data set name, and the TCB,
which gives you ready access to the jobname, so you can use these values to control
your processing. You can use RACF or an equivalent product to control access to the
module name, ZUXITMOD.

Transparency User Exit

190 Reference Guide

Enabling the User Exit

The user exit is enabled by the UEXIT parameter of the Control File Maintenance Utility
ADD and ALTER statements. UEXIT is coded just like the EXCLUDE parameter, whose
syntax is found in the descriptions of the ADD and ALTER statements in the chapter
Control File Maintenance.

If UEXIT is not specified, or if the exit is unavailable when CA Compress tries to load it,
compression and expansion are performed without it. If the exit is specified but is
unavailable, CA Compress issues message ZSUR296I, described below.

The expansion phases can only receive control if the preceding GET was successful,
because CA Compress attempts expansion only when the record has been successfully
read. Because compression is performed before writing the record, the PUT has not yet
been done when the compression phases receive control, so errors in the exit may
cause I/O errors when CA Compress tries to write the record.

Transparency User Exit

Chapter 11: User Exits 191

Using the User Exit

The Transparency User Exit must be called ZUXITMOD and reside in STEPLIB, JOBLIB, or
the linklist. If you place the exit in linklist, it can be accessed to process any data set for
which UEXIT has been specified, perhaps in cases you do not intend. For this reason,
avoid the linklist and use STEPLIB or JOBLIB until you confirm that the exit works as you
intend in every case

The exit must be reentrant, because I/O can take place concurrently on several data sets
and RPLs. It can have any RMODE but is always given control in AMODE 31 to insure that
it can gain access to all the parameters it receives from CA Compress.

CA Compress calls the User Exit using standard linkage conventions. The Registers and
their descriptions are given in the following section.

Register 1

Points to the parameter list

Register 13

Points to a 72 byte save area. It is immediately followed by another, which you can
use instead of GETMAINing one yourself

Register 14

Contains the return address and caller's AMODE

Register 15

Contains the address of the entry point receiving control

CA Compress saves and restores Registers 0 thru 9 and ignores Register 15, so the exit
can freely use them as work registers without preserving their contents. The exit must
restore Registers 10 through 14 when it returns to the caller. CA Compress ignores
Register 15 on return and takes the return code from the first word of the parameter
list, as documented in the following section.

Transparency User Exit

192 Reference Guide

Coding the User Exit

The first 4 words of the user exit define the routines that are to get control at each of
the 4 phases of the user exit - PRECMP, POSTCMP, PREXPD, and POSTXPD. If any of
these addresses is zero, that phase does not get control. The routines follow the 4 word
prolog.

To simplify coding, CA Compress supplies a prolog macro, ZXITPLOG, in the installation
library. ZXITPLOG builds the following prolog logic:

1. The 4 word entry point list, addressing the routines you specify for each phase, or
zero for those you do not specify.

2. Register equates, with comments.

3. A dsect and a USING statement for the parameter list.

4. Dsects for the RPL and ACB to permit you to address their fields symbolically.

5. The module name, date, time, and user-specified identification field.

The Parameter List

The parameter list passed to all 4 phases of the user is addressed by Register 1 and has
the following format:

Name Offset Description

ZUXRC 0 Zero on entry to PRECMP and PREXPD. CA
Compress/2 Return Code on entry to
POSTCMP and POSTXPD. Set this field to set
the return code, as documented in Return
Codes in this chapter.

ZUXCLIST 4 Address of CA Compress/2 Parameter List as
described in the chapter CA Compress/2,
except that the RDW is never included unless
the RDL begins with V2-4.

ZUXDDNAM 8 Address of User ddname.

ZUXDSN 12 Address of DSNAME.

ZUXURPL 16 Address of User RPL - refers to uncompressed
record

ZUXCRPL 20 Address of Compress RPL - refers to
compressed record

ZUXTCB 24 Address of TCB

Transparency User Exit

Chapter 11: User Exits 193

Name Offset Description

ZUXDEBUG 28 Address of Debug Byte. If the byte is nonzero,
PST tracing is active, and if zero, it is not. Use
this byte to determine whether you want to
issue diagnostic messages, and you can
change this byte in order to control tracing in
module ZSURSHRK for this data set.

ZUXSPA 32 User Exit Scratch Pad Area. This area is 96
bytes long, and the exit can use it for any
purpose. Because CA Compress does not use
this area after I/O is complete, its contents are
valid from one phase to the next.

Control File Maintenance Utility Security Interface

194 Reference Guide

Return Codes

All phases receive the return code in ZUXRC, the first word of the parameter list, and
they can change it there as appropriate. The incoming and outgoing return codes and
their meanings for each phase are as follows:

PRECMP

On entry, ZUXRC is always zero. The exit can determine that the record cannot be
successfully compressed, perhaps because it is shorter than the noncompressible
area defined by the RDL. To avoid the failure in compression in this case and
message SHR015I, you can set ZUXRC to -1 (x'FFFFFFFF') to stop compression and
write the uncompressed record to the compressed output data set. If you stop
compression at PRECMP, POSTCMP is never entered, because compression is never
called.

POSTCMP

On entry, ZUXRC contains the return code from compression, either zero or a
positive return code indicating that compression failed. You can recover from the
error, after making any needed corrections, but any failing message from CA
Compress/2, such as SHR015I, has already been issued. Set ZUXRC to zero in order
to write the compressed record or to -1 (x'FFFFFFFF') to copy the uncompressed
record without compression. If ZUXRC is zero and you set a positive return code, CA
Compress forces an I/O error, just as if compression had failed.

PREXPD

On entry, ZUXRC is always zero. The exit may determine that the record is already
uncompressed and want to avoid expanding it again and causing errors. To stop
expansion and write the compressed record to the output data set, set ZUXRC to -1
(x'FFFFFFFF'). If you stop expansion at PREXPD, POSTXPD is never entered, because
expansion is never called.

POSTXPD

On entry, ZUXRC contains the return code from expansion, either zero or a positive
return code indicating that expansion failed. You can recover from the error, after
making any needed corrections, but any failing message from CA Compress/2, such
as SHR010I, has already been issued. Set ZUXRC to zero in order to write the
uncompressed record or to -1 (x'FFFFFFFF') to copy the compressed record without
expansion. If ZUXRC is zero and you set a positive return code, CA Compress forces
an I/O error, just as if expansion had failed.

Control File Maintenance Utility Security Interface

The Control File Maintenance Utility interfaces with your installation's security system:
RACF, Top Secret, or ACF2. You need specific types of authority in order to create or
access compression control records in the Control File. You can also write a user exit to
modify that processing.

Control File Maintenance Utility Security Interface

Chapter 11: User Exits 195

How the User Security Exit Works

The User Security Exit is invoked for each access the Utility makes on any compression
profile contained in the Control File. The exit can allow, disallow, or make no access
determination. In addition, the exit can change the data set name and the requested
access level, to be used by the CA Compress Security Interface for access determination.
If the exit makes no access determination, or if the exit does not exist, the installation's
access control facility is invoked through the System Authorization Facility (SAF)
interface. If your installation's access control facility does not support SAF, then the exit
must make a determination or the access is allowed.

The access already defined within your access control facility automatically determines a
user's level of access. If you are attempting to ADD or DELETE a Control File entry, you
need authority that corresponds to RACF's ALTER access. To issue an ALTER for a Control
File entry, you need UPDATE access. To report on an entry, you need at least READ
access. These levels of access can be modified by the user exit.

Using the Security Exit

The Security Exit must be named ZSUSEC00 and reside in a load module library that is
accessible by the Control File Maintenance Utility. The exit module may reside in a
library in the LINKLIST or in the JOBLIB or STEPLIB concatenation. The exit may be link
edited with any valid combination of AMODE and RMODE and should be at least serially
reusable.

Two default exits are supplied. One allows all accesses. The other allows all accesses for
the REPORT statement but invokes the SAF interface for ADD, DELETE and ALTER. The
assembler source for these exits is contained in the YOUR.CAI.CCVBSAMP data set. The
exit names are ZSUSEC01 (allow all accesses) and ZSUSEC02 (check SAF).

Linkage Conventions of the Exit

CA Compress employs standard MVS linkage conventions when invoking the Security
Exit. At entry to the exit:

Register Description

Register 1 contains the address of the parameter list

Register 13 contains the address of a 72 byte save area

Register 14 contains the return address and caller's AMODE

Register 15 contains the Exit's entry point address

Control File Maintenance Utility Security Interface

196 Reference Guide

All registers (except 15) must be saved at entry and restored when the exit returns to
the Control File Maintenance Utility. Register 15 must contain a return code indicating
the security exit's determination.

The exit is called in problem state, user protect key, and the AMODE defined by the link
edit attributes.

Return Codes

The following return codes in register 15 cause CA Compress to take the indicated
action:

0

The exit has allowed the access. CA Compress does not invoke SAF for access
determination. The access is allowed.

4

The exit has made no determination about access. CA Compress invokes SAF for
access determination. Access is determined by SAF.

8

The exit has disallowed access. CA Compress does not invoke SAF for access
determination. The access is disallowed.

Test Compression Facility User Exit

Chapter 11: User Exits 197

The Parameter List

The Parameter list passed to the security exit follows standard MVS conventions.
Register 1 contains the address of a list of addresses to parameter values:

x'00'

The count of the parameters that follow.

x'04'

The access level requested. The field is 2 bytes in length and contains a binary
value: a 1 for READ access, a 2 for UPDATE access, and a 3 for ALTER access. This
field can be changed by the exit to reflect a different level.

x'08'

The statement for which the processing is requested. The field is 8 bytes long.

x'0C'

The entry type of the following parameter. The field is 8 bytes long. This can be
either DATA SET or PATTERN.

x'10'

The entry name. This field is 44 bytes long and contains the data set name or the
pattern name to be accessed.

x'14'

The JOBNAME. This field is 8 bytes long.

Test Compression Facility User Exit

TCF supports the use of optional user exits at various phases in its processing. These are
provided so that each installation can tailor the use of TCF beyond what can be
accomplished based on parameter specifications.

Assembler language conventions are followed in passing parameters to the exit
modules. Register 1 points to a list of addresses, each of which points to a specific
parameter as defined for the exit. In some cases, the exit module returns a half word
code through the designated parameter to indicate to TCF what further actions are to
be taken.

Test Compression Facility User Exit

198 Reference Guide

PREEXIT Pre-Processing Exit

The PREEXIT gets control after TCF obtains the next sequential data set name from
catalog management, but before it obtains the detailed catalog information and format
1 DSCB. Its function is to decide whether or not to allow TCF to compress the data set.
PREEXIT gets control before any selection/exclusion testing, which would be performed
based on SELECT or EXCLUDE statements in the job stream, so SELECT and EXCLUDE
statements can override the PREEXIT's decision to process the data set. The parameter
list that is passed to the exit is shown in the following table.

Type Size Description

OUTPUT Halfword Result Code 0 Allow the data set to be processed.

 8 Bypass the data set.

INPUT CL44 Data set Name-The name of the data set currently being
considered for inclusion in TCF processing.

INPUT CL44 Catalog Name-Where the data set is cataloged.

POSTEXIT Post-Processing Exit

The POSTEXIT gets control after TCF test compresses the data set and computes
statistics.

The parameter list that is passed to the exit is shown in the following table.

Note: The statistical fields contain binary zeroes when TCF is run in simulation mode.

Type Size Description

INPUT CL44 Data set Name-The name of the data set currently being
processed.

INPUT Halfword Volume Count-The total number of volumes to which the
data set is cataloged. This is also the number of volumes
that is presented below in the Volume List parameter.

Test Compression Facility User Exit

Chapter 11: User Exits 199

Type Size Description

INPUT nCL6 Volume List-A list of the volumes to which the data set is
cataloged. The number of volumes appearing in this list can
be determined by examining the Volume Count parameter
above.

INPUT CL3 Data set Organization-This is a literal value indicating the
data set organization. The valid values are 'VS' for VSAM
data sets and 'PS' for physical sequential data sets.

INPUT XL80 Statistical Information - The statistical information that TCF
generated for the data set is passed as a block of
information. It begins on a fullword boundary and contains
the following information:

 FW Total number of data records in the data set.

 FW Total number of compressed records.

 FW Total number of data bytes in the data set.

 FW Total number of data bytes in the compression
sample.

 FW Total number of bytes after Super Express
compression sample.

 FW Total number of bytes after Huffman
compression sample.

 FW Estimated total number of bytes saved using
Huffman.

 FW Estimated total number of bytes saved using
Huffman.

 FW Estimated total number of bytes saved using
Super Express.

 FW Estimated number of tracks saved using Huffman.

 FW Estimated number of tracks saved using Super
Express.

 FW Minimum data record size encountered.

 FW Maximum data record size encountered.

 FW Average data record size encountered.

 FW Minimum record size after Super Express
compression.

 FW Maximum record size after Super Express
compression.

Test Compression Facility User Exit

200 Reference Guide

Type Size Description

 FW Average record size after Super Express
compression.

 FW Average record size after Super Express
compression.

 FW Maximum record size after Huffman
compression.

 FW Average record size after Huffman compression.

 HW Percent of compression using Super Express (that
is, 534 = 53.4%).

 HW Percent of compression using Huffman (that is,
534 = 53.4%).

Test Compression Facility User Exit

Chapter 11: User Exits 201

Security Interface and Exit

The TCF comes with interface routines to the ACF2, RACF and Top Secret security
systems. If you use one of these, you can invoke the appropriate interface by coding the
SECURITY parameter on the SET statement. TCF calls the security system you specified
on the SET statement before obtaining the catalog information for the current data set.
If you do not have read authority for the data set, message DCA0040 is issued and the
data set bypassed.

Important Note for ACF2 Users: TCF's ACF2 interface dynamically attempts to obtain
access to ACF2's CVT. If this cannot be accomplished, message DCA0071 is issued
indicating the CVT could not be dynamically obtained. When this error occurs, you must
link edit the ACF2 CVT with the TCF ACF2 security interface module (GDAXP014) in order
for TCF to gain access to ACF2's user call interface. Without this special link edit, TCF
issues message DCA0070 and TCF's security checking is deactivated for the duration of
the job. Below is some sample JCL to perform this special link edit:

//LKED EXEC PGM=HEWL,PARM=(LIST,MAP),REGION=320K

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(50,20))

 //SYSLIB DD DISP=SHR,DSN=TCF.Rnn.LOADLIB

//ACF2 DD DISP=SHR,DSN=ACF2.LOADLIB

//SYSLMOD DD DISP=SHR,DSN=DCA.Rnn.LOADLIB

//SYSLIN DD *

SETCODE AC(0)

 INCLUDE ACF2($ACFGCVT)

 INCLUDE SYSLIB (GDAXP014)

 ENTRY GDAXP014

NAME GDAXP014

Note: The JCL above shows the module name for the ACF2 CVT as $ACFGCVT. Your
release of ACF2 can use ACF$GCVT instead. Attempt the link edit with the JCL shown. If
you get an unresolved reference for $ACFGCVT, resubmit the job with the alternate
module name.

Glossary 203

Glossary

algorithm
A finite set of well-defined rules for the solution of a problem in a finite number of
steps, for example, a specific set of steps used to compress or expand a record.

analysis file
The data set used by the CA Compress Interactive User Interface to record the results of
compression analysis and implementation performed by the IUI.

BDA
Byte Distribution Analysis. The process of analyzing the distribution of characters in a
data set in order to construct the Huffman tables used to compress and expand the data
set.

buffer
Storage allocated to temporarily hold input or output data.

CA Compress started task
Running in its own address space, the started task supports the SVC intercepts,
cross-memory services, and other facilities required to support compression
transparently for application programs.

CA Compress/2 subroutines
Compression and expansion subroutines, used by CA Compress, which can also be called
by users. These subroutines are especially useful for supporting compression in products
with data that CA Compress cannot support transparently.

CA Compress/2 utilities
Utilities that can be used to perform compression and expansion when the CA Compress
subsystem is unavailable.

CFMU
Control File Maintenance Utility. A batch utility provided with CA Compress for
maintaining the Control File.

checkbyte
An extra byte calculated and added to the compressed data. If it does not exactly match
the expected result at expansion, the compressed data has been damaged, perhaps
through overlay or truncation when written.

compression algorithm
A finite set of rules used to collect and assign values to the characters found in a string
of data so that the data takes less space.

204 Reference Guide

compression overhead
The processing required to compress data as it is transferred from the application to the
data set.

control file
The data set used by CA Compress to record the data sets controlled by CA Compress
and how CA Compress should handle them.

discrete data set
A single data set, as opposed to a pattern defining a number of data sets.

dynamic allocation
1. Assignment of system resources to a program at the time the program is executed
rather than at the time it is loaded into main storage.
2. The IBM facility provided through SVC 99 to accomplish this purpose.

exclusion feature
A facility enabling the user to supply tables of jobs and programs for which compression
and expansion should not take place in order to prevent unnecessary compression and
expansion or double compression.

expansion overhead
The processing required to expand data as it is transferred from the data set to the
application.

express
The CA Compress string compression algorithm that was replaced by the Super Express
algorithm.

FDT
File Descriptor Table. A load module that also exists as records on the Analysis and
Control Files. It contains information required to compress and expand the data set,
including its Huffman compression and expansion tables.

FDTLIB
The load library in which the Interactive User Interface stores FDTs, and from which it
and the CFMU copy FDTs to the Control File.

file analysis
The process by which CA Compress presents the various compression choices and the
compression percentages possible.

huffman
A compression algorithm that uses tables to replace each character by a variable-length
bit string. The characters expected to occur most often are assigned the shortest bit
lengths.

Glossary 205

ICB
Integrity Check Block. A 3-byte field preceding the compressed data by which CA
Compress recognizes the algorithm used to compress the data.

implementation
Placing a data set under CA Compress control.

interactive user interface (IUI)
The ISPF interface of CA Compress.

linklist
The list of load module libraries chosen by the installation to be searched by default
after any STEPLIB or JOBLIB libraries.

LSR
Local Shared Resources. The IBM facility for permitting buffers to be shared by VSAM
data sets in a job step. Because I/O to DASD is greatly reduced for random processing in
most cases, performance is much improved even for a single data set.

PASSTHRU
A facility to enable CA Compress processing without actually performing compression or
expansion.

pattern
A name with variable characters used to implement a particular compression algorithm
for all data sets matching the pattern.

pattern analysis
The process by which CA Compress will search for data sets to analyze based on name.

pattern matching
The process of implementing a data set when it matches a pattern in the Control File,
rather than explicitly by name.

RDL
Record Definition Language. The language supplied with CA Compress to define
compression on each record. RDL is usually generated by default, but can be modified
by the user.

RDW
Record Descriptor Word. The first 4 bytes of a variable length non-VSAM record or
segment, which defines its length.

safeguards
A CA Compress facility for preventing inadvertent access to compressed VSAM data sets
when the CA Compress subsystem is not active.

206 Reference Guide

SAM-SI
Sequential Access Method-Subsystem Interface. The IBM access method used to
support the SUBSYS JCL keyword. It is also invoked by Physical Sequential Transparency.
Its limitations require certain special considerations when implementing compression
using the SUBSYS JCL parameter.

scheduled
A method of implementing compression at a specified future event either when the
VSAM data set is next loaded or when it is opened for output.

SDB
System Determined Blocksize, in which the user codes BLKSIZE=0 to cause the system to
select an optimal block size for the device.

SHRVL
A CA Compress compression algorithm that achieves high compression for relatively
high CPU overhead on certain types of data.

space release
The facility for freeing unused space from compressed VSAM data sets.

standard tables
Six compression tables distributed with CA Compress.

SUBSYS
An IBM JCL DD parameter for non-VSAM data sets that invokes a subsystem to process
the ddname on which it is coded.

subsystem
A facility running under MVS that performs a certain function. JES2 and JES3, for
example, handle job entry and throughput, and SMS does storage management.

super express
The CA Compress string compression algorithm. It compresses repetitive characters
without using tables.

TCF
Test Compression Facility.

VPE
VSAM Performance Enhancement.

VPE rules
Rules supplied to VPE to direct its optimization of data sets.

VPE rules table
The table of rules built by VPE in extended CSA and addressed through the entry for VPE
in the subsystem control table (SSCT). VPE does not run as a true subsystem or started
task, but in this way VPE can recognize rules built before it is activated.

Glossary 207

Index 209

Index

8

86060 expiration date • 176

A

abend codes • 49, 120, 122
013-34 • 120, 122
0C4 • 49
50D • 122

ABEND parameter • 33
ABENDNOMIN parameter • 157
accessing the FDT • 78
ACF2 and the TCF security interface and exit • 201
ADD statement (PS) • 23

DCBMODEL parameter • 23
DEVTYPE parameter • 23
EFFDATE parameter • 23
ERASEUNCAT parameter • 23
EXCLUDE parameter • 23
FDT parameter • 23
GDG parameter • 23
NON-COMP parameter • 23
PSDSN parameter • 23
PSPATTERN parameter • 23
SCOPE parameter • 23
SDB parameter • 23
SUPEREXP parameter • 23
UEXIT parameter • 23

ADD statement (VSAM) • 18
DATA parameter • 18
DSNAME parameter • 18
EXCLUDE parameter • 18
FDT parameter • 18
IAM parameter • 18
NON-COMP parameter • 18
PATHS parameter • 18
PATTERN parameter • 18
RELEASE parameter • 18
SCHEDULED parameter • 18
SCOPE parameter • 18
SUPEREXP parameter • 18
UEXIT parameter • 18

alignment bytes • 48
ALLOW parameter • 154
ALTER statement (PS) • 26

DCBMODEL parameter • 26
DEVTYPE parameter • 26
EFFDATE parameter • 26
ERASEUNCAT parameter • 26
EXCLUDE parameter • 26
FDT parameter • 26
GDG parameter • 26
NEWNAME parameter • 26
NON-COMP parameter • 26
PSDSN parameter • 26
PSPATTERN parameter • 26
SCOPE parameter • 26
SDB parameter • 26
SUPEREXP parameter • 26
UEXIT parameter • 26
UNINHIBIT parameter • 26

ALTER statement (VSAM) • 20
ADDPATHS parameter • 20
DELPATHS parameter • 20
DSNAME parameter • 20
EXCLUDE parameter • 20
FDT parameter • 20
IAM parameter • 20
NEWNAME parameter • 20
NON-COMP parameter • 20
PATTERN parameter • 20
RELEASE parameter • 20
SCHEDULED parameter • 20
SCOPE parameter • 20
SUPEREXP parameter • 20

AMP JCL default for CACompress/2 • 114
assembler language • 78, 82, 84, 86, 87, 89, 91, 93,

95, 96, 97, 105
accessing the FDT • 78
assembler H Library DSN • 105
CALL to subroutine CLOSE • 86
CALL to subroutine CLOSES • 91
CALL to subroutine EXPAND • 84
CALL to subroutine EXPANDS • 89
CALL to subroutine EXPANDZ • 97
CALL to subroutine SHRINK • 82
CALL to subroutine SHRINKS • 87
CALL to subroutine SHRINKZ • 96
CALL to subroutine SHRKHCC • 95
CALL to subroutine SHRKHCS • 91

210 Reference Guide

CALL to subroutine SHRKHCX • 93
assembly programming limitations and VPE • 170
asterisk (*) • 15, 125, 153, 175

use in CFMU • 15
use in exclude file • 175
use in TCF • 125
use in VPE • 153

B

backup/restore processing • 173
exclusioin of • 173

BEGINDSN parameter • 135
binary • 44, 48, 54

integer data • 54
length indicator • 44, 48
zeros • 48

bit • 53, 57
aligned • 57
switches • 53

BLKSIZE JCL default for CACompress/2 • 114
BrightStor CACompress • 100

transparency • 100
BUFFRLOC parameter • 155
BUFND parameter • 159
BUFNI parameter • 159
BUFSP parameter • 159
BYPASS parameter • 133, 140
byte distribution analysis • 71

C

C1 • 67
C2 • 67

and C3 field type • 67
C1 field type • 47, 67
C2 field type • 47, 67
C3 field type • 47, 67
CA Compress • 173

Disk • 173
exclusion from processing • 173

CA Compress/2 • 78
accessing the FDT • 78

CACompress/2 • 75, 80, 102, 103, 105, 107
assemble and link the program modules • 105
calling subroutines • 80
linking subroutines with applications • 102
subroutines • 75
subroutines under CICS • 103
utilities • 107

calculate variable symbol value • 54
RDL field types V • 54

VP • 54
and VZ • 54

calling subroutines • 80, 82, 84, 86, 87, 89, 91, 93,
95, 96, 97
CLOSE • 86
CLOSES • 91
EXPAND • 84
EXPANDS • 89
EXPANDZ • 97
SHRINK • 82
SHRINKS • 87
SHRINKZ • 96
SHRKHCC • 95
SHRKHCS • 91
SHRKHCX • 93

CATALOG parameter • 135
CFMU • 14, 15, 18, 20, 23, 26, 29, 30, 31, 32, 33, 34,

194, 195, 196, 197
ADD statement (physical sequential) • 23
ADD statement (VSAM) • 18
ALTER statement (physical sequential) • 26
ALTER statement (VSAM) • 20
control file statements • 14
COPY statement • 29
DELETE statement • 30
FDT statement • 31
how the utility works • 14
report • 34
REPORT statement • 32
security interface • 194
security user exit • 195, 196, 197

how it works • 195
linkage conventions • 195
parameter list • 197
return codes • 196
using • 195

SET statement • 33
syntax rules • 15

character data • 47
RDL field type CS • 47
RDL field types C1 • 47

C2 • 47
and C3 • 47

character frequency tables • 47
check byte • 50, 113

calculation • 50
mismatch • 50

Index 211

checkpoint/restart parameter • 163
CICS • 103, 105, 106, 150

CACompress/2 subroutines under • 106
macro library • 105
processing program table • 103
program list table • 103
source library • 103
tables • 103
using CACompress/2 Under • 103
VPEWRKnn DD statement • 150

CLOSE subroutine • 75, 86
CLOSES subroutine • 75, 91
COBOL • 44, 48, 51, 67, 78, 81, 82, 84, 86, 87, 89, 91,

93, 95, 96, 97, 99, 100, 108
accessing the FDT • 78
BrightStor CACompress utilities RECDEF DD

requirement • 108
CALL to subroutine CLOSE • 86
CALL to subroutine CLOSES • 91
CALL to subroutine EXPAND • 84
CALL to subroutine EXPANDS • 89
CALL to subroutine EXPANDZ • 97
CALL to subroutine SHRINK • 82
CALL to subroutine SHRINKS • 87
CALL to subroutine SHRINKZ • 96
CALL to subroutine SHRKHCC • 95
CALL to subroutine SHRKHCS • 91
CALL to subroutine SHRKHCX • 93
defining compressed records in • 100
DYNAM problems • 81
OCCURS DEPENDING ON clause • 81

coding the SUBSYS parameter • 115
command language • 124, 125, 128

command structures in TCF • 128
TCF • 124
TCF syntax rules • 125

comment in the exclude file • 175
compression • 39, 40, 47, 49, 52, 53, 67, 111, 112

ratio • 39, 40, 47, 49, 52, 53, 67
statistics • 112
utilities • 111

condition group • 42, 44, 49, 50, 58, 59
considerations • 184

implementation of transparency support • 184
control fields • 50
control-interval (CI) processing and EXCP • 174

exclusion of • 174
COPY statement • 29

DSNAME • 29

PDSNAME • 29
CPU • 40, 71

cycles • 40
overhead • 71

CRA parameter • 82, 84, 87, 89, 91, 93, 96, 97
of EXPAND subroutine • 84
of EXPANDS subroutine • 89
of EXPANDZ subroutine • 97
of SHRINK subroutine • 82
of SHRINKS subroutine • 87
of SHRINKZ subroutine • 96
of SHRKHCS subroutine • 91
of SHRKHCX subroutine • 93

CS field type • 47, 67
CWA • 104

D

data • 18, 113
data integrity • 113
DATA parameter • 18

data set specific parameters • 159
DCB information when using SUBSYS • 120
DD statements • 148, 150, 176

ACTION=ACTIVATE • 148
ACTION=DEACTV • 148
ACTION=DELETE • 148
ACTION=FORCDEL • 148
ACTION=INSTALL • 148
ACTION=INSTALLD • 148
ACTION=STATUS • 148
LABEL=EXPDT=86060 to exclude a data set • 176
RESTRICT= jobname • 148
VPEBUFnn • 150
VPEIGNR • 150
VPELSRPB • 150
VPEONALV • 150
VPEONGnn • 150
VPEONnn • 150
VPEVRPT • 150
VPEVSTS • 150
VPEWRKnn • 150

DDNAME parameter • 33
default • 59, 69, 74, 114

condition group • 59
JCL values for the CACompress/2 utilities • 114
RDL specifications • 69, 74

Deferred Write (DFW) and VPE • 145

212 Reference Guide

defining compressed records in COBOL application •
100

DELETE statement • 30
DSNAME • 30
PATTERN • 30
PSDSNAME • 30
PSPATTERN • 30
SYSTEM • 30

DELPATHS parameter • 20
DEVTYPE parameter • 23, 26
DFDSS • 173

exclusion from processing • 173
DFW • 145, 146, 159, 169
DFW parameter • 159
disaster recovery • 107, 113
DSNAME parameter • 18, 29, 30, 32, 135
DSNAMES parameter • 137, 138
DSNFILL parameter • 133
DSORG • 114

JCL default for CACompress/2 • 114
DSORG parameter • 137, 139
duplicate byte values • 47

E

EBCDIC • 44, 52
EXAMINE statement • 140

BYPASS parameter • 140
EXTRACT parameter • 140
PERCENT parameter • 140
SKIP parameter • 140

EXCCATS parameter • 135
exclude file • 175

comment in • 175
EXCLUDE-JOB • 175
EXCLUDE-JOB-PST • 175
EXCLUDE-MOD • 175
EXCLUDE-MOD-PST • 175
EXCLUDE-MOD-SORT • 175
EXCLUDE-PGM • 175
EXCLUDE-PGM-PST • 175
EXCLUDE-PGM-SORT • 175
records • 175
table statements • 175

EXCLUDE parameter • 18, 20, 23, 26
EXCLUDE statement • 138, 139

DSNAMES parameter • 138
DSORG parameter • 139
MBYTESRANGE parameter • 138

processing rules • 139
VOLUMES parameter • 138

exclusion • 173, 174, 175, 176
backup/restore processing • 173
control-interval (CI) processing and EXCP • 174
dfdss processing • 173
expiration date of 86060 • 176
FAVER/MVS processing • 173
physical sequential transparency processing •

174
SAMS • 173

Disk processing • 173
using expiration date • 176
using the exclude file • 175

exempt a field from compression • 50
EXPAND subroutine • 75, 78, 80, 81, 82, 84, 99, 100,

102, 103, 106, 107, 110, 114
COBOL • 81, 84
parameters for the subroutine • 84

EXPAND utility • 113, 114
EXPANDS subroutine • 75, 80, 81, 89, 91, 99, 102

COBOL • 89
parameter for subroutine • 89

EXPANDX utility • 107, 113, 114
EXPANDZ subroutine • 76, 80, 81, 97, 99, 100, 102

COBOL • 97
parameters for subroutine • 97

expansion utilities • 113
expected values • 52
EXTRACT parameter • 133, 140

F

FAVER/MVS • 173
exclusion from processing • 173

FDT • 41, 78, 82, 84, 86, 103, 105, 107, 108, 110, 111
and RDL specifications • 41
FDTLOADR utility • 107, 110
FDTNAMES • 103, 105
Identifier • 82, 84, 86
in load module format • 78
in sequential data set format • 78, 82
modules • 105
names and a fullword in the CWA • 103
prepass • 78, 107, 108, 111

FDT parameter • 18, 20, 23, 26, 82, 84
EXPAND subroutine • 84
SHRINK subroutine • 82

FDT statement • 31

Index 213

FDTNAME parameter • 31
REPLACE parameter • 31

FDTLOADR utility • 107, 110
FDTNAME parameter • 31
features • 173, 179, 183

exclusion • 173
physical sequential transparency • 183
safeguards • 179

field length • 42, 44
codes • 44
descriptors • 44
fixed • 42

field type • 44, 47, 48, 49, 50, 51, 52, 53, 54, 57
C1 • 44, 47

C2 • 44, 47
and C3 • 44, 47

CS • 44, 47
GA • 44, 48
L • 44, 48
MA and MB • 44, 49
N • 44, 50
PD • 44, 51
S and X • 44, 52
UN • 44, 53
V • 44, 54

VP • 44, 54
and VZ • 44, 54

ZL and ZR • 44, 57
fields exempted for compression • 50

RDL field type N • 50
FILE SECTION • 99, 100
filler characters • 57
fillers • 48
fixed expected values • 41
fixed length • 42

variable • 42
fixed length field • 42
fixed offset • 50
floating point • 51, 53, 57, 67
FORCEMODE parameter • 159
FORMAT parameter • 32

G

GA field type • 44, 48, 67
garbage data • 48

RDL field type GA • 48

H

hexadecimal format • 51, 52, 59
how it works • 14, 41, 115, 123

CFMU • 14
RDL • 41
SUBSYS DD parameter • 115
TCF • 123

how to • 71, 72
determine the best compression • 71

RDL • 71
enter or change the RDL • 72

Huffman algorithm • 47

I

IFP • 42, 63
implementation considerations • 161, 184

transparency support • 184
INCLUDE parameter • 157
Insert Tally of Actual length • 48

RDL field type L • 48
install • 103, 147

callable SHRINK subroutines for CICS • 103
VPE • 147

invalid data • 51, 67
invalid fields • 51
ISAM • 49, 69

files • 49, 69
IUI • 72

how to enter or change the RDL • 72

J

JCL • 77, 114
defaults for the CACompress/2 utilities • 114
for existing application programs • 77

JOB parameter • 157
parameters • 157

JOB • 157
job swaps and VPE • 163
JOB/STEP parameter • 157

K

Key fields • 50

L

L field type • 48, 67
left-justified zoned numeric data • 57
length indicator • 44, 48

214 Reference Guide

binary • 44, 48
limitations • 187

transparency support • 187
linking subroutines with applications • 102
local shared resources (LSR) and VPE • 145
look-aside read • 146
look-aside read and VPE • 145
LRECL JCL default for CACompress/2 • 114

M

MA and MB field type • 44, 49, 67
match key fields • 50
MB field type • 44, 49, 67
MBYTESRANGE parameter • 137, 138
MINBUF parameter • 155, 157, 162
MINRESV parameter • 155, 157, 162
MODE parameter • 132
multiple record formats • 59
multipunched • 52, 59

N

N field type • 50, 67
NEWNAME parameter • 20, 26
NON-COMP parameter • 18, 20, 23, 26
nongraphic • 52, 59

data • 52
values • 59

nonlabeled tapes • 120
NOTRUNC • 100
numeric characters • 41

O

OCCURS DEPENDING ON clause • 81
optimized I/O Buffering with VPE • 146
optimizing VSAM performance • 164

P

packed decimal data • 42, 67
RDL field type PD • 67

parameters • 18, 20, 23, 26, 29, 30, 31, 32, 33, 117,
132, 133, 135, 136, 137, 138, 139, 140, 154, 155,
157, 159
ABEND • 33
ABENDNOMIN • 157
Addname • 117
ADDPATHS • 20
ALLOW • 154
BEGINDSN • 135

BUFFRLOC • 155
BUFND • 159
BUFNI • 159
BUFSP • 159
BYPASS • 133, 140
CATALOG • 135
DATA • 18
DCBMODEL • 23, 26
DDNAME • 33
DELPATHS • 20
DEVTYPE • 23, 26
DFW • 159
DSNAME • 18, 20, 29, 30, 32, 135
DSNAMES • 137, 138
DSNFILL • 133
DSORG • 137, 139
EFFDATE • 23, 26
ERASEUNCAT • 23, 26
EXCCATS • 135
EXCLUDE • 18, 20, 23, 26
EXTRACT • 133, 140
FDT • 18, 20, 23, 26
FDTNAME • 31, 117
FORCEMODE • 159
FORMAT • 32
GDG • 23, 26
IAM • 18, 20
INCLUDE • 157
JOB/STEP • 157
MBYTESRANGE • 137, 138
MINBUF • 155, 157
MINRESV • 155, 157
MODE • 132
NEWNAME • 20, 26
NON-COMP • 18, 20, 23, 26
PATHS • 18
PATTERN • 18, 20, 30, 32
PDSNAME • 29
PERCENT • 132, 140
POSTEXIT • 132, 136
PREEXIT • 132, 136
PRODUCTION • 33
PSDSN • 23, 26
PSDSNAME • 30, 32
PSPATTERN • 23, 26, 30, 32
RELEASE • 18, 20
REPLACE • 31
SCHEDULED • 18, 20
SCOPE • 18, 20, 23, 26

Index 215

SDB • 23, 26
SECURITY • 133
SKIP • 133, 140
STANDARD (STD) • 117
SUBSYS • 33
Subsystemname • 117
Subtype • 117
SUPEREXP • 18, 20, 23, 26
SYSTEM • 30
SYSTEMS • 32
UEXIT • 18, 23, 26
UNINHIBIT • 26
VOLUMES • 137, 138
XCLUDE • 157

Partitioned data sets • 120
compressing with the SUBSYS DD parameter •

120
PATHS parameter • 18
pattern matching • 49

RDL field types MA and MB • 49
PATTERN parameter • 18, 20, 30, 32
PD field type • 51, 67
PDSNAME parameter • 29
PERCENT parameter • 132, 140
performance • 39, 40, 51, 63
permanently unused fields • 48

RDL field type GA • 48
PL/I • 78, 82, 84, 86, 87, 89, 91, 93, 95, 96, 97, 99

accessing the FDT • 78
PL/I optimizer • 82, 84, 86, 87, 89, 91, 93, 95, 96, 97

CLOSE subroutine • 86
CLOSES subroutine • 91
EXPAND subroutine • 84
EXPANDS subroutine • 89
EXPANDZ subroutine • 97
SHRINK subroutine • 82
SHRINKS subroutine • 87
SHRINKZ subroutine • 96
SHRKHCC subroutine • 95
SHRKHCS subroutine • 91
SHRKHCX subroutine • 93

PLT • 103, 105
POOL parameter • 155, 157

parameters • 155, 157
POOL • 155, 157

POSTEXIT • 132, 136, 198
parameter • 132, 136
user exit • 198

POSTEXIT parameter • 132, 136

POWERFACT parameter • 159
parameters • 159

POWERFACT • 159
PPT • 103, 105, 106
PRECEDENCE parameter • 154

parameters • 154
PRECENDENCE • 154

PREEXIT • 132, 136, 198
parameter • 132, 136
user exit • 198

PREEXIT parameter • 132, 136
prepass • 107, 108, 109, 111

statistics • 108, 109
utility • 107, 111

processing • 39, 40, 47, 49, 51, 52, 53, 63, 67, 71,
103, 173, 174
backup/restore • 173

exclusion of • 173
control-interval (CI) and EXCP,exclusion of • 174
DFDSS • 173

exclusion of • 173
FAVER/MVS • 173

exclusion of • 173
overhead • 39, 40, 47, 49, 51, 52, 53, 63, 67, 71
physical sequential transparency • 174

exclusion of • 174
processing program table • 103

CICS • 103
SAMS • 173

Disk • 173
exclusion of • 173

processing rules for SELECT and EXCLUDE • 139
PRODUCTION parameter • 33
program list table • 103
PSDSNAME parameter • 30
PSPATTERN parameter • 30

R

RC parameter • 82, 84, 87, 89, 91, 93, 96, 97
EXPAND subroutine • 84
EXPANDS subroutine • 89
EXPANDZ subroutine • 97
SHRINK subroutine • 82
SHRINKS subroutine • 87
SHRINKZ subroutine • 96
SHRKHCS subroutine • 91
SHRKHCX subroutine • 93

216 Reference Guide

RDL • 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52,
53, 54, 57, 58, 59, 63, 65, 67, 69, 71, 72
C1 • 44

C2 • 44
and C3 field types • 44

changing a record • 72
character data • 44, 47
condition groups • 49
CS field type • 47
defaults • 69
determine the best compression • 71
enter or change • 72

using the IUI • 72
field type descriptions • 46
Fine-tuning • 71
GA field type • 48
Guide to correct RDL specifications • 67
How it works • 41
L field type • 48
MA and MB field types • 49
N field type • 50
PD field type • 51
performance • 39, 40, 51, 63
position function • 42, 50, 63
repetition factor • 42, 44, 49, 54, 58
repetition groups • 42, 49, 50, 51, 58, 59, 65
S field type • 52
syntax rules • 44
terminology • 42
UN field type • 53
V • 54

VP • 54
and VZ field types • 54

X field type • 52
ZL and ZR field types • 57

RDL field type • 48, 49, 51
GA • 48
L • 48
MA and MB • 49
PD • 51

RDW • 48, 50, 54, 67, 69
read look-aside • 146
RECDEF • 44, 69, 108

data set • 44
DD statement • 69, 108

RECFM JCL default for CACompress/2 • 114
record descriptor word • 48, 50, 54, 67, 69
record entry in the exclude file • 175
re-entrant • 76, 107

RELEASE parameter • 18, 20
REPLACE parameter • 31
REPORT statement • 32

DSNAME parameter • 32
FORMAT parameter • 32
PATTERN parameter • 32
PSDSNAME • 32
PSPATTERN • 32
SYSTEMS parameter • 32

REPORTS • 34, 141, 171
CFMU • 34
TCF • 141
VPE • 171

restrictions • 119, 122, 187
JCL • 122

for SUBSYS DD parameter • 122
SUBSYS DD parameter • 119
transparency support • 187

right-justified zoned numeric data • 44, 57
RULE • 157
RULE statement • 157, 159

ABENDNOMIN parameter • 157
BUFND parameter • 159
BUFNI parameter • 159
BUFSP parameter • 159
DFW parameter • 159
FORCEMODE parameter • 159
INCLUDE parameter • 157
JOB parameter • 157
JOB/STEP parameter • 157
MINBUF parameter • 157
MINRESV parameter • 157
POOL parameter • 157
POWERFACT parameter • 159
SIS parameter • 159
TGTBUF parameter • 157
VSAMREC parameter • 159
XCLUDE parameter • 157

S

S and X field type • 67
S field type • 44, 52
safeguards • 179
SCAN statement • 135, 136

BEGINDSN parameter • 135
CATALOG parameter • 135
DSNAME parameter • 135
EXCCATS parameter • 135

Index 217

POSTEXIT parameter • 136
PREEXIT parameter • 136

SCB (Shrink control block) • 78
SCHDULED parameter • 18
SCHEDULED parameter • 20
SCOPE parameter • 18, 20, 23, 26
security • 194, 201

CFMU • 194
TCF interface to commercial packages • 201

SECURITY parameter • 133
SELECT statement • 137, 139

DSNAMES parameter • 137
DSORG parameter • 137
MBYTESRANGE parameter • 137
processing rules • 139
VOLUMES parameter • 137

sequential files • 69
sequential insert strategy (SIS) and VPE • 146
SET statement • 33, 132, 133

ABEND parameter • 33
DDNAME parameter • 33
DSNFILL parameter • 133
EXTRACT parameter • 133
MODE parameter • 132
PERCENT parameter • 132
POSTEXIT parameter • 132
PREEXIT parameter • 132
PRODUCTION parameter • 33
SECURITY parameter • 133
SKIP parameter • 133
SUBSYS parameter • 33

SHAREOPTION and VPE • 163
SHRHCXPD utility • 107, 113
Shrink control block (SCB) • 78
SHRINK subroutine • 75, 80, 81, 82, 100, 103, 106,

110
COBOL • 81, 82
parameters • 82

SHRINK.LOAD • 105
SHRINKS subroutine • 75, 80, 81, 87

COBOL • 87
parameters • 87

SHRINKZ subroutine • 76, 80, 81, 96
COBOL • 96
parameters • 96

SHRKCICS • 103, 105, 106
SHRKEXPD • 102, 106
SHRKHCC subroutine • 95

COBOL • 95

SHRKHCS subroutine • 80, 81, 91, 93
COBOL • 91
parameters • 91

SHRKHCX subroutine • 80, 81, 93
COBOL • 93
parameters • 93

SHRKSCBS • 103, 105
SHRKSTUB • 102, 104, 106
SHRNKMOD • 103, 105, 106
SIS • 146, 169
SIS parameter • 155, 159

parameters • 155, 159
SIS • 155, 159

SKIP parameter • 133, 140
sort key fields • 50, 67
special characters • 15, 125

asterisk (*) • 15, 125
exclamation point (!) • 15, 125
question mark (?) • 15, 125
slash (/) • 15, 125

STANDARD parameter • 18, 20, 23
statements • 18, 20, 23, 26, 29, 30, 31, 32, 33, 124,

131, 134, 136, 138, 139, 154, 155, 175
ADD physical sequential • 23
ADD VSAM • 18
alter physical sequential • 26
ALTER VSAM • 20
COPY • 29
DELETE • 30
EXAMINE • 124, 139
EXCLUDE • 124, 138
FDT • 31
REPORT • 32
SCAN • 124, 134
SELECT • 124, 136
SET • 33, 131
SYSOPT • 154
table statement in the exclude file • 175
VSAM • 155

subroutines • 75, 76, 82, 84, 86, 87, 89, 91, 93, 95,
96, 97, 99, 102
CLOSE • 75, 86
CLOSES • 75, 91
EXPAND • 75, 84
EXPANDS • 75, 89
EXPANDZ • 76, 97
Incorporating calls in an application • 99
linking with applications • 102
SHRINK • 75, 82

218 Reference Guide

SHRINKS • 75, 87
SHRINKZ • 76, 96
SHRKHCC • 95
SHRKHCS • 91
SHRKHCX • 93

SUBSYS DD parameter • 115, 116, 117, 119, 120, 122
coding the • 116
DCB information when using • 120
how it works • 115
JCL restrictions • 122
nonlabeled tapes • 120
parameters • 117
Partitioned data sets • 120
restrictions and special processing • 119

SUBSYS parameter • 33
SUPEREXP parameter • 18, 20, 23, 26
syntax errors • 44, 58
syntax rules • 15, 44, 117, 125, 153

CFMU • 15
RDL • 44
SUBSYS DD parameter • 117
TCF • 125
VPE • 153

SYSLMOD DD statement • 110
SYSOPT statement • 154

ALLOW parameter • 154
PRECEDENCE parameter • 154

system abend codes • 49, 120, 122
013-34 • 120, 122
0C4 • 49
50D • 122

SYSTEM parameter • 30
SYSTEMS parameter • 32

T

TABL • 78, 82, 110
TABL00 DD statement • 110
TABLxx DD statement • 78, 82, 110

table • 175
table statement in the exclude file • 175

TCF • 123, 124, 125, 128, 131, 132, 134, 136, 138,
139, 141, 197, 201
asterisk (*) • 125
command language • 125
command structures • 128
EXAMINE statement • 139
EXCLUDE statement • 138
how it works • 123

Interface to commercial security packages • 201
notes on using • 124
POSTEXIT parameter • 132, 136
PREEXIT parameter • 132, 136
reports • 141
SCAN statement • 134
SELECT statement • 136
SET statement • 131
user exits • 197

textual data • 41
TGTBUF parameter • 155, 157

parameters • 155, 157
TGTBUF • 155, 157

transparency support • 78, 100, 174, 183, 184, 187
accessing the FDT • 78
COBOL applications • 100
exclusion for PS processing • 174
features • 183
implementation considerations • 184
limitations and restrictions • 187

U

UN field type • 44, 67
Undefined fields • 53

RDL field type UN • 53
UNINHIBIT parameter • 26
URA parameter • 82, 84, 87, 89, 91, 93, 96, 97

EXPAND subroutine • 84
EXPANDS subroutine • 89
EXPANDZ subroutine • 97
SHRINK subroutine • 82
SHRINKS subroutine • 87
SHRINKZ subroutine • 96
SHRKHCS subroutine • 91
SHRKHCX subroutine • 93

URL parameter • 82, 84, 87, 89, 91, 93, 96, 97
EXPAND subroutine • 84
EXPANDS subroutine • 89
EXPANDZ subroutine • 97
SHRINK subroutine • 82
SHRINKS subroutine • 87
SHRINKZ subroutine • 96
SHRKHCS subroutine • 91
SHRKHCX subroutine • 93

USAGE COMPUTATIONAL-3 • 51
user exits • 132, 136, 194, 197

POSTEXIT • 132, 136
PREEXIT • 132, 136

Index 219

security for CFMU • 194
TCF • 197

utilities • 107, 111, 112, 113

V

V • 54, 67
VP • 54, 67

and VZ field type • 54, 67
variable symbol • 42, 49, 54, 58, 63
variable-length • 42, 44, 48, 51, 57

converted from data • 57
converted from packed decimal numbers • 51
field • 42, 44
input records • 48

variably occurring field • 54
VOLUMES parameter • 137, 138
VPE • 145, 146, 147, 148, 150, 153, 154, 155, 157,

159, 160, 161, 163, 169, 170, 171
ACTION=ACTIVATE • 148
ACTION=DEACTV • 148
ACTION=DELETE • 148
ACTION=FORCDEL • 148
ACTION=INSTALL • 148
ACTION=INSTALLD • 148
ACTION=STATUS • 148
advanced topics • 160
checkpoint/restart • 163
DFW • 145, 146, 169
DFW parameter • 159
install • 147
job swaps • 163
look-aside read • 145
LSR • 145, 146
multiple extents • 170
optimized I/O Buffering • 146
reports • 171
RESTRICT parameter • 148
RESTRICT=jobname • 148
RULE statement • 157
rules table • 153
SHAREOPTION • 163
SIS • 146, 169
special control DD statements • 150
syntax rules • 153
SYSOPT statement • 154
tuning tip • 157
tuning VPE's buffer size • 170
usage notes • 160

VPEBUFnn DD statement • 150
VPEIGNR DD statement • 150
VPELSRPB DD statement • 150
VPEONALV DD statement • 150
VPEONGnn DD statement • 150
VPEONnn DD statement • 150
VPEVRPT DD statement • 150
VPEVSTS DD statement • 150
VPEWRKnn DD statement • 150
VSAM statement • 155

VPE assembly programming limitations • 170
VPE data set specific parameters • 159
VS • 42, 49, 54, 58, 63, 65
VSAM backup/restore processing • 173

exclusion of • 173
VSAM files • 54, 69
VSAM parameter • 165, 166, 167, 168, 169

CISZ • 166
FREESPACE • 169
IMBED • 167
REPLICATE • 168
SHAREOPTIONS • 167
SPACE • 165
SPEED • 168
WRITECHECK • 167

VSAM statement • 155
BUFFRLOC parameter • 155
MINBUF parameter • 155
MINRESV parameter • 155
POOL parameter • 155
SIS parameter • 155
TGTBUF parameter • 155
VSAMREC parameter • 155

VSAMREC parameter • 155, 159
parameters • 155, 159

VSAMREC • 155, 159
VZ field type • 44, 54

W

WORKING-STORAGE SECTION • 78, 99, 100
WRK parameter • 87, 89, 91, 93, 96, 97

EXPANDS subroutine • 89
EXPANDZ subroutine • 97
SHRINKS subroutine • 87
SHRINKZ subroutine • 96
SHRKHCS subroutine • 91
SHRKHCX subroutine • 93

220 Reference Guide

X

X field type • 44, 52, 67
XCLUDE parameter • 157

Y

YOUR.CAI.CCVBSAMP • 103

Z

ZL and ZR field type • 67
ZL field type • 44, 57
zoned decimal data • 54
ZR field type • 44, 57

	CA Compress Data Compression Reference Guide
	Contents
	1: Introduction
	2: Control File Maintenance Utility
	How the Utility Works
	Control File Statements
	Syntax Rules
	ADD Statement (VSAM)
	ALTER Statement (VSAM)
	ADD Statement (Physical Sequential)
	ALTER Statement (Physical Sequential)
	COPY Statement
	DELETE Statement
	FDT Statement
	REPORT Statement
	SET Statement

	Control File Maintenance Utility Reports
	CFMU Short Format
	CFMU Long Format
	CFMU Dump Format

	FDT Compare Utility DEFXP050
	Executing the FDT Compare Utility

	3: Record Definition Language
	Performance Considerations When Using RDL
	How the RDL Operates
	RDL Terminology
	RDL Syntax Rules
	RDL Field Type Descriptions
	Field Types C1, C2, and C3--Character Data
	Field Type CS--Character Data (SHRVL Compression)
	Field Type GA--Garbage Data (Permanently Unused Fields)
	Field Type L--Insert Tally of Actual Length
	Field Types MA and MB--Pattern Matching
	Field Type N--Fields Exempted From Compression
	Field Type PD--Packed Decimal Data
	Field Types S and X--Set of Expected Values
	Field Type UN --Undefined Fields
	Field Types V, VP, and VZ --Calculate Variable Symbol Value
	Field Types ZL and ZR --Zoned Decimal Data

	RDL Repetition Groups
	RDL Condition Groups
	RDL Position Function
	General Restrictions on RDL Use
	Guide to Correct RDL Specifications
	RDL Defaults
	Determining the Best Compression
	How to Enter or Change the RDL Using the IUI

	4: CA Compress/2
	Features
	Using Subroutines
	Custom Compression
	Standard Tables Compression
	IBM Hardware Compression
	Super Express Compression
	JCL Implications for Existing Application Programs

	Accessing the FDT
	JCL Implications for Existing Application Programs
	Calling the Subroutines
	Assembler Language
	COBOL
	PL/I Optimizing Compiler

	CALL to Subroutine SHRINK
	CALL to Subroutine EXPAND
	CALL to Subroutine CLOSE
	CALL to Subroutine SHRINKS
	CALL to Subroutine EXPANDS
	CALL to Subroutine CLOSES
	CALL to Subroutine SHRKHCS
	CALL to Subroutine SHRKHCX
	CALL to Subroutine SHRKHCC
	CALL to Subroutine SHRINKZ
	CALL to Subroutine EXPANDZ

	Incorporating Subroutine Calls in Existing Application Programs
	Defining Compressed Records in COBOL Application Programs
	Linking Subroutines With Applications
	Using CA Compress/2 Under CICS
	Install the Callable SHRINK Subroutines for CICS
	Step 1. Specify the FDT Names and a Fullword in the CWA
	Step 2. Assemble and Link the Program Modules
	Step 3. Modify the CICS Tables
	Step 4. Modify and Link edit the Application Programs

	CA Compress/2 Subroutines Under CICS

	The CA Compress/2 Utilities
	Prepass
	Prepass Statistics

	FDTLOADR Utility
	Compression Utilities
	Compression Statistics

	Expansion Utilities
	JCL Defaults

	5: SUBSYS DD Parameter
	How it Works
	Coding the SUBSYS JCL Parameter
	SUBSYS Syntax for the CA Compress Subsystem
	MVS SUBSYS Restrictions and Special Processing

	Special Considerations When Using SUBSYS
	DCB Information When Using SUBSYS
	Nonlabeled Tapes
	Partitioned Data Sets
	Correct JCL
	Incorrect JCL

	JCL Restrictions

	6: Test Compression Facility
	How The Program Works
	Notes on Using the Program

	TCF Command Language
	Command Language Syntax Rules
	Examples:

	Command Structures in the Command Language
	SET Statement
	MODE=LIVE|SIMULATE
	PREEXIT=modname
	POSTEXIT=modname
	PERCENT=100|n
	BYPASS=0|n
	SKIP=0|n
	EXTRACT=0|n
	DSNFILL=.|x
	SECURITY=NONE|RACF|TOPSEC|ACF2

	SCAN Statement
	CATALOG=catalogname
	DSNAME=dsname|pattern
	EXCCATS=catalogname
	BEGINDSN=dsname
	PREEXIT=modname
	POSTEXIT=modname

	SELECT Statement
	DSNAMES=dsname
	VOLUMES=volume
	MBYTESRANGE=(0|n[,n])
	DSORG=ALL|VSAM|PS

	EXCLUDE Statement
	DSNAMES=dsname
	VOLUMES=volume
	MBYTESRANGE=(0|n[,n])
	DSORG=ALL|VSAM|PS

	SELECT and EXCLUDE Processing Rules
	EXAMINE Statement
	PERCENT=100|n
	BYPASS=0|n
	SKIP=0|n
	EXTRACT=0|n

	TCF Report
	Field Description and Contents

	7: VSAM Performance Enhancement
	VPE
	How VPE Enhances VSAM Performance
	VPE's Use of VSAM's Local Shared Resources (LSR)
	Reports Allow VPE Tuning

	Installing VPE
	Activating and Deactivating VPE on Your System
	VPE Operation
	VPE Special Control DD Statements
	VPE Rules Table
	VPE Rules Table Syntax Rules
	VPE Rules Table Source Statements
	SYSOPT Statement
	VSAM Statement
	RULE Statement
	Data Set Specific Parameters

	Usage Notes

	Advanced Topics
	VPE Implementation Considerations
	Region Size
	Region Computations
	Sequentially Accessed VSAM Files
	SHAREOPTION=4 Files
	MACRF=RLS (Record Level Sharing)
	Checkpoint/Restart
	Job Swaps

	Optimizing VSAM Performance by Adjusting VSAM Parameters
	CISZ (Data Component CI Size)
	SPACE (Data Component CA Size)
	CISZ (Index Component CI Size)
	SHAREOPTIONS
	IMBED
	WRITECHECK
	REPLICATE
	SPEED
	FREESPACE
	Multiple Extents
	Tuning VPE's Buffer Size
	Assembly Programming Limitations

	VPE Reports
	VPE Initialization and Setup Statistics
	VSAM Recommendation Report
	Performance Statistics Report

	8: Exclusion Facility
	Exclusion for VSAM Backup/Restore Processing
	Exclusion for Physical Sequential Transparency Processing
	Exclusion to Prevent Control-Interval (CI) Processing and EXCP
	The Exclude File
	Expiration Date of 86060
	Exclusion by DDNAME @ZSM@XCL
	Invoking Exclusion in Assembler Macros

	9: Safeguards
	How Safeguards Protect Data
	Safeguards Detailed Description
	Safeguards Utility

	10: Physical Sequential Transparency
	Full Transparency to Application Programs
	Full Interactive User Interface and Control File Maintenance Utility
	Compatibility with Previous Releases and the SUBSYS JCL Parameter
	Implementation Considerations
	Deferred and Immediate Implementation
	DCB Attributes
	Automated Cleanup of Uncataloged Data Sets

	Implementing Uncompressed Data Sets with the IUI
	Implementing Compressed Data Sets with the IUI
	Limitations and Restrictions
	Only Sequential Access Using QSAM or BSAM
	Concatenation Restrictions
	Limited DCB Exit List Support
	Relatively High Overhead for Sequential Processing

	11: User Exits
	Transparency User Exit
	Enabling the User Exit
	Using the User Exit
	Coding the User Exit
	The Parameter List

	Return Codes

	Control File Maintenance Utility Security Interface
	How the User Security Exit Works
	Using the Security Exit
	Linkage Conventions of the Exit
	Return Codes
	The Parameter List

	Test Compression Facility User Exit
	PREEXIT Pre-Processing Exit
	POSTEXIT Post-Processing Exit
	Security Interface and Exit

	Glossary
	Index

