

Content Designer Guide
Service Pack 04.0.01

CA Process Automation

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2012 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document is part of a bookshelf with references the following CA Technologies
products:

■ CA Catalyst for CA Service Desk Manager (CA Catalyst Connector for CA SDM)

■ CA Client Automation (formerly CA IT Client Manager)

■ CA Configuration Automation (formerly CA Cohesion® Application Configuration
Manager)

■ CA Configuration Management Database (CA CMDB)

■ CA eHealth®

■ CA Embedded Entitlements Manager (CA EEM)

■ CA Infrastructure Insight (formerly Bundle: CA Spectrum IM & CA NetQoS Reporter
Analyzer combined)

■ CA NSM

■ CA Process Automation (formerly CA IT Process Automation Manager)

■ CA Service Catalog

■ CA Service Desk Manager (CA SDM)

■ CA Service Operations Insight (CA SOI) (formerly CA Spectrum® Service Assurance)

■ CA SiteMinder®

■ CA Workload Automation AE

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Documentation Changes

The following documentation updates have been made since the last release of this
documentation:

Forms

The following topics have been added or enhanced to support form designers:

■ Monitor Start Request Form Instances and Process Instances (see page 244)

■ Form Elements (see page 248)

■ Form Element Properties (see page 251)

■ View Form Properties in a Separate Window (see page 259)

■ Form Element Events (see page 260)

■ Form Element Functions (see page 262)

■ Create a Simple Form with Basic Functions (see page 283)

■ Initialize Form Variables (see page 287)

Processes

The following topics have been added or enhanced to support process designers:

■ Operator Status Icons (see page 164)

■ Invisible Parameter Option (see page 151)

Datasets

The following topics have been added or enhanced to support developers working with
datasets:

■ Define Dataset Pages and Variables (v4) (see page 177)

■ Modify a Dataset (see page 183)

■ View a Dataset Expression (see page 184)

General

The following topics have been added or enhanced to support the general user
experience:

■ Configure User Settings (see page 35)

■ Web Browsers (see page 53)

Contents 7

Contents

Chapter 1: Introduction to Process Automation 13

Process Development Phases... 15

Phase I: Requirements Analysis.. 16

Identify Processes to Automate .. 17

Identify Where Processes Run .. 17

Identify Steps in Processes .. 18

Identify Interdependencies ... 18

Identify External Dependencies .. 19

Identify Runtime Constraints .. 19

Phase II: Design and Implementation .. 19

Identify Process Objects and Operators .. 20

Configure Operators and Steps ... 22

Optimize for Modularity and Component Reuse .. 24

Define Process Initiation and Monitoring ... 25

Define Alerts ... 28

Phase III: Testing and Deployment ... 29

Assemble the Solution .. 29

Test Components .. 30

Export a Package ... 30

Specify Import Instructions ... 31

Chapter 2: Getting Started 33

Log In to CA Process Automation ... 34

Configure User Settings .. 35

The CA Process Automation User Interface ... 36

Main Application Pages ... 37

Common User Interface Controls ... 50

Change Your Own Password in CA EEM ... 52

Web Browsers .. 53

Chapter 3: The Library Browser 55

Automation Object Types... 56

Create a Folder ... 58

Create an Object .. 59

Working with Objects ... 60

Edit an Object .. 61

8 Content Designer Guide

Copy an Object .. 77

Delete or Restore an Object or Folder ... 82

Search the Library Browser .. 83

Customize the Library Browser .. 84

Auto Recovery .. 85

Chapter 4: Designing Processes 87

The Process Designer ... 88

Operators and Links: The Building Blocks .. 90

Create a Process Object ... 91

Design a Process ... 92

Process Operators .. 93

The Start Operator .. 95

Add Operators to a Process .. 96

Logical Operators .. 97

The Stop Operator: Success or Failure .. 100

Process Operator Ports and Links .. 101

Add Operator Ports and Links ... 102

Custom Exit Ports and Expressions ... 103

Break a Link for Readability ... 105

Process Loops and Iterations ... 105

System Variables for Looping .. 106

Loop an Operator in a Process .. 107

Loop a Series of Operators .. 111

Loop a Process... 114

Process Control .. 116

Child Processes .. 117

Inline Process .. 120

Process Lanes ... 122

Create Horizontal or Vertical Lanes .. 123

Manage Swim Lanes .. 124

Lane Handling Rules .. 125

Process Versions ... 126

Document a Process ... 126

Add Comments to a Process ... 126

Set the Name for an Operator in a Process... 127

Change and Display Operator Information in a Process ... 127

Embedded Content .. 128

Embedded Content Links .. 128

Navigate to a Specific Part of a Process ... 131

Multi-Tenancy and CA Process Automation ... 131

Contents 9

Make a Process Aware of Multiple Tenants .. 132

Inherit Security in Sub-Processes .. 133

Add Variables at Time of Initialization .. 133

Multi-Tenant Processes Using Process Watch .. 133

Chapter 5: Operators and Icons 135

Operators ... 136

Configure Operator Properties ... 138

Java and External JARs .. 139

Custom Operators ... 145

Your Favorite Operators .. 160

Connectors .. 162

Operator Icons ... 163

Operator Status Icons ... 164

Creating, Editing, and Applying Custom Icons .. 165

Chapter 6: Datasets and Parameters 173

Datasets .. 173

Create a Named Dataset Object ... 175

Define Dataset Pages and Variables.. 177

Modify a Dataset ... 183

View a Dataset Expression .. 184

Read Operating System Values into Dataset Variables ... 184

Process Parameters .. 192

Operator Properties .. 193

Calculated Parameters .. 206

Chapter 7: Forms 243

Start Request Forms ... 243

Monitor Start Request Form Instances and Process Instances ... 244

Interaction Request Forms ... 245

Create and Edit a Start Request Form Object .. 246

The Form Designer ... 247

Form Elements .. 248

Form Element Properties .. 251

Form Element Events .. 260

Form Element Functions ... 262

User Interface.. 263

Initialize Form Variables ... 287

10 Content Designer Guide

Chapter 8: Resources 289

How Resources Work ... 289

Create a Resource Object ... 291

Edit a Resource Object ... 292

Monitor and Edit Resources ... 294

Add a Manage Resources Operator to a Process ... 295

Define Resource Actions .. 296

Check for and Respond to Unavailable Resources ... 297

Specify a Time-Out Interval ... 297

Specify Resource Availability and Action Settings ... 298

Check for Resource Availability without Executing Actions .. 299

Chapter 9: Calendars, Schedules, Tasks, and Triggers 301

Calendars .. 301

Create a Calendar Object .. 302

The Basic Calendar Designer ... 303

The Advanced Calendar Designer ... 304

The Calendar Designer: Preview Tab .. 314

Exclude Calendars ... 315

Schedules ... 316

Create a Schedule Object .. 318

Schedule Process and Operator Tasks .. 319

Preview All Occurrences of a Scheduled Task ... 321

Using Schedules .. 322

Monitor Active Schedules ... 322

Monitor All Occurrences of All Scheduled Tasks ... 323

Task Management .. 324

Assign a Task to a User .. 324

The Task List .. 326

Administer Triggers .. 327

Controlling Processes from an External Application with SOAP Calls ... 328

How File and Mail Triggers Work .. 328

SNMP Trap Input Considerations .. 332

Chapter 10: Running, Testing, and Debugging Processes 335

Process Watch Objects ... 336

Filter Objects Displayed by a Shortcut .. 337

Process Watch Objects .. 338

Execution Rules .. 341

Runtime Security .. 342

Contents 11

Properties Affecting Security of Running Processes ... 342

Guidelines for Setting Runtime Security for a Process .. 344

Exception Handling... 344

Create Exception Handlers .. 346

Run Processes Interactively .. 348

Start a Process from the Library .. 349

Start a Process as Suspended from the Library ... 350

Start a Process While Editing .. 351

Open an Instance of a Process .. 351

Process States .. 352

Debug a Process ... 352

Suspend a Process ... 352

Change whether Processes are Unloaded on Completion .. 353

Set and Remove Breakpoints in a Process .. 353

Debug a Java Process .. 355

Reset a Process ... 356

Abort a Process ... 356

Control a Process Branch ... 356

Disable Operators or Deactivate Branches ... 357

Abort an Operator ... 357

Reset Operators in a Process .. 358

Resume Execution of a Suspended Process .. 358

Simulate Processing of Operators .. 359

Simulate Processing of a Selected Operator ... 360

Simulate Processing of an Entire Process.. 361

Appendix A: Format Specifiers for Dates 363

Appendix B: Using Masks to Specify Patterns in Strings 367

Mask Syntax ... 367

Sample Mask .. 370

Appendix C: How Targets of an Operator are Processed 371

How Targets for an Operator Can Be Specified .. 372

Processing a Target Specified as an IP Address or FQDN ... 373

Processing a Target Specified as the ID of an Agent or Orchestrator .. 375

Use Case: Track Recovered Processes through Logs .. 377

Operators Auto Recovery Example .. 377

12 Content Designer Guide

Index 385

Chapter 1: Introduction to Process Automation 13

Chapter 1: Introduction to Process
Automation

Information Technology teams like yours are automating their IT processes. By defining,
automating, and orchestrating processes across systems, you can improve productivity
while enforcing standards across departments. Automation helps your organization to:

■ Reduce operational expenses

■ Increase staff productivity

■ Speed IT service delivery

■ Improve service quality

■ Enforce compliance policies

Automate operational processes that are otherwise manual, time-consuming,
inconsistent, or error-prone. You can automate IT processes that span multiple systems
across multiple organizations.

Process Development Phases

14 Content Designer Guide

Welcome to CA Process Automation

Use CA Process Automation to design, test, manage, and report on automated
processes that support IT operations and production environments. CA Process
Automation speeds the delivery of IT services while reducing manual errors. You can

Use CA Process Automation in your web browser to manage, design, and deploy
processes in an easy-to-use interface that supports the following essential features:

■ Visual authoring including familiar drag-and-drop icon-based designs.

■ Enterprise process monitoring with the ability to pause, modify, and resume live
running processes.

■ Role-based views with flexible layout options.

■ User-friendly objects. Processes, calendars, schedules, datasets, forms, and other
automation objects are represented as objects you can click.

■ Easy organization of automation objects through a library of hierarchical folders.

■ Object version control including check in, check out, and selection of current and
baseline versions.

■ Active assistance features to help you work with datasets, variables, and
expressions.

■ Process operators that integrate with other applications and systems.

This section contains the following topics:

Process Development Phases (see page 15)
Phase I: Requirements Analysis (see page 16)
Phase II: Design and Implementation (see page 19)
Phase III: Testing and Deployment (see page 29)

Process Development Phases

Chapter 1: Introduction to Process Automation 15

Process Development Phases
Before working with CA Process Automation, it is important for you as a content developer or designer to be

familiar with the concepts behind process development. The remainder of this section walks you through the
phases and steps involved in automating IT processes.

Process development includes the following phases:

Phase I: Requirements Analysis (see page 16)

Identify and characterize the automation processes required at your organization.

Phase II: Design and Implementation (see page 19)

Map requirements to automation objects and configure the elements. Identify
existing elements to reuse, modules you need from other parties (for example,
database-related processes or data from database administrators), and modules
you must develop yourself. You can then use CA Process Automation development
tools to import or define those automation objects in your library.

Phase III: Testing and Deployment (see page 29)

Export all relevant automation objects to a file and facilitate their import into the
CA Process Automation production environment. Provide production administrators
with instructions explaining how to configure the elements to work in the
production environment.

Phase I: Requirements Analysis

16 Content Designer Guide

Phase I: Requirements Analysis

This phase focuses on what information to gather and which issues to address before
you design a CA Process Automation management package or process. Your specific
sites and management solutions could require additional tasks.

Include the following tasks in a typical requirements analysis:

 Identify processes to automate.

 Identify where the processes run.

 Identify steps in the processes and describe the outcomes of each step.

 Identify the interdependencies.

 Identify the external dependencies.

 Identify the runtime constraints.

Good candidates for process automation meet one or more of the following initiation
requirements:

■ You can identify multiple, often interdependent, tasks.

■ You can identify overlapping resource requirements.

■ The process can run over the network or on different platforms.

■ You can apply date and time constraints to schedule the process.

■ Other processes, applications, or users can trigger the process.

■ System or database administrators, operators, or other users can run the process
on demand.

Phase I: Requirements Analysis

Chapter 1: Introduction to Process Automation 17

Identify Processes to Automate

The first step in the CA Process Automation development process is to identify
processes for automation. A process typically consists of multiple subprocesses.

Follow these steps:

1. Identify the primary task or use case, such as move data from distributed
transactional databases to a single data warehouse.

2. Identify subprocesses for subordinate tasks, such as:

a. Extract data from different sources

b. Transform extracted data

c. Load the transformed data

3. Separate the components that are common to multiple processes into modular
subprocesses. Similar to code reuse, modularization of shared subprocesses saves
development and maintenance time.

Note: Later in this guide, you will learn that subprocesses correspond to separate
process objects (see page 56) in the Library Browser.

Identify Where Processes Run

Identify where you want to run the following components:

■ The process itself

■ Subprocesses

■ Tasks in the process and subprocesses

Note: Later in this guide, you will learn that these locations correspond to touchpoints
running processes or individual steps in processes. Your administrator configures
touchpoints for you.

Phase I: Requirements Analysis

18 Content Designer Guide

Identify Steps in Processes

List each step that is performed as part of the process or subprocess.

Follow these steps:

1. Identify each step. Examples include:

■ Running an application

■ Obtaining data from a remote source

■ Performing one or more calculations

■ Prompting a user for information with a form

■ Starting a subprocess

2. For each step, determine the following possible results or outcomes:

a. Normal outcomes

b. Abnormal outcomes

c. Any conditional outcomes

A step can produce a result with conditional outcomes. When the result is greater
than a specified value, the step yields one particular outcome. When the result is
less than a specified value, the step yields a different outcome. Multiple calculated
outcomes determine the subsequent paths through the branches of a process.

Note: Later in this guide, you learn that steps in a process design correspond to
operators (see page 90).

Identify Interdependencies

Interdependencies determine the logical flow through a process.

Follow these steps:

1. Determine which steps in a process must precede or follow other steps.

2. Determine how the outcome of each step affects subsequent steps.

3. For a step with more than one outcome, identify each outcome and list the
separate sequence of steps that must run after each outcome.

Note: The application performs each outcome separately. For example, an
abnormal outcome of a step can cause a process to alert another step to wait for
input. For the same step or operator, a custom outcome could activate a separate
branch of the process to handle an error condition.

Phase II: Design and Implementation

Chapter 1: Introduction to Process Automation 19

Identify External Dependencies

Identify external dependencies of steps in a process, such as:

■ Remote systems and applications.

■ Shared resources such as file systems or databases.

■ Synchronized processes, and other processes that run in parallel.

Identify Runtime Constraints

Identify the resources that a process requires at runtime. Because they are shared,
resources are always in limited supply; for example, processors, memory, or access to
other files, databases, or hardware. Be aware of two main types of runtime constraints:

■ Time constraints define when a process must be completed. Examples include
backups that run at night or system maintenance activities that run only during a
specific time window.

■ Configuration constraints include process environment requirements. For example,
data that must be available to a process, including files, programs, user profiles, and
account data such as user names and passwords.

Phase II: Design and Implementation

In the design phase of process development, you map requirements to CA Process
Automation automation objects and operator functionality. The steps in the design and
implementation of a process include:

 Identify the automation objects and process operators to implement the process.

 Configure all operators and logical steps, including all tasks, parameters, outcomes,
resources, and dependencies. Define any required runtime configuration
information (such as user names, passwords, and file names).

 Optimize your design for modularity and component reuse.

 Define process initiation and monitoring including the permissions for starting,
monitoring, and modifying the process.

 Define the alerts and determine which users or groups are alerted.

Phase II: Design and Implementation

20 Content Designer Guide

Identify Process Objects and Operators

Each process or subprocess that you identify corresponds to a process object in the
Library Browser. Process objects define a sequence of linked steps. A process operator
represents each step. After you map out a process step by step, identify the operators
that perform each step. Sometimes a single operator can perform a given step. Other
times, a step can require two or more separate operators.

Define steps in a process by placing icon-based operators that represent actions that CA
Process Automation performs. Start operators begin processes. Stop operators end
processes. Logical and control operators define starting and stopping points, branching,
and iterations in a process. The design for a process reveals its structure and also maps,
synchronizes, and defines both the sequence and dependency between tasks.

Example: Operators in a Process

Item: Description:

 Start: The Start operator represents the single entry point where the process
begins. Start operators can also be used to indicate the first step in an
independent branch.

 Get SNMP Variable: This operator returns the value of an SNMP variable.

 Or Operator: Or and And operators control steps according to logic. For
example, do step A or do step B.

 Send Email: Use this operator to notify other users by email.

Phase II: Design and Implementation

Chapter 1: Introduction to Process Automation 21

Item: Description:

 External Interfaces: You can use operators that are included with connecting
modules to interface with other applications. In this example, a UCF Storage
Volume Update operator interfaces with CA Catalyst.

 Write File: This operator writes a dataset variable to a file.

 Start Process: This operator starts another process. You can set an optional
Loop property to run another process repeatedly.

 Stop Failure: The Stop Failure operator stops execution of all branches in a
process. The Stop Failure operator sets the process to a Failed state. Use a
Stop Failure operator for the abnormal outcome of a process or branch.

 Stop Success: The Stop Success operator also stops execution of all branches
in a process. The Stop Success operator sets the process to a Completed
state.Use a Stop Success operator for the normal outcome of a process or
branch.

More information:

Getting Started (see page 33)
Designing Processes (see page 87)

Phase II: Design and Implementation

22 Content Designer Guide

Configure Operators and Steps

After you identify operators for each step, define their properties. Think about the types
of data they need and the source of that data. Some operator properties are common to
all operators and others are limited to specific types of operators. For example, a
database operator requires parameters for the type of database, the database name, a
valid user name, and password.

You can set the value of a property to a literal entity such as 5 or Australia or to an
expression such as Var1.quantity or GetCountry. Expressions often include variables or
functions. A variable stores a value. For example, a variable can contain a password or a
threshold setting. A function inspects some logical statement and returns a value. For
example, a function can get or set a field value.

Expressions can include any of the following items:

■ User and system variables

■ Functions

■ Literal values

■ Logical, string, arithmetic, and comparison operators

■ JavaScript expressions

Some fields accept only literal values. The labels for these fields appear in italics. Most
fields support calculated expressions.

Note: Previous versions of CA Process Automation identify fields that accept calculated
expressions with an asterisk (*).

Operators also share the following common properties:

■ Execution target: Where should this operator run?

■ Time-out settings: What should happen when the operator takes too long to run?

To learn more about the functionality and properties of each operator, see the CA
Process Automation Reference Guide.

Datasets store CA Process Automation variables. You can add and edit variables in any
of the three dataset types:

■ Named Datasets: The dataset objects that you create and maintain in the Library
Browser.

■ Process Datasets: The dataset for each process.

■ Operator Datasets: The dataset for each operator in a process.

Phase II: Design and Implementation

Chapter 1: Introduction to Process Automation 23

Additionally, the read-only system dataset makes system data available to any
expression. Use variables and more complicated expressions to define values that can
change, such as user credentials. You can assign values for expressions and variables
globally or dynamically change a value in code. Use literal values to configure
parameters only if the values are unlikely to change.

Named Datasets

Use global variables in named datasets to define parameter settings. Named datasets
are automation objects that define variables having scope across the entire library.
Depending on the security settings for a dataset object, its variables are globally
accessible to any expression in any automation object. A field in another dataset can
reference a dataset variable.

Use named datasets to specify information such as accounts and passwords used in
multiple processes. When information saved in a named dataset changes, you only have
to change it once, in the named dataset, instead of in each automation object that uses
it.

You can use Start Request Forms to gather information from authorized users and then
update the values of dataset variables. You can use a Run JavaScript operator in a
process to calculate and store values in named variables.

More information:

Access Dataset Fields in Expressions (see page 223)
Start Request Forms (see page 243)

Resources

Some operators or processes draw heavily on memory, processor time, or other limited
resources. For example, if a child process calls on other processes, monopolizing many
CPU cycles, you can limit the number of instances of the child process running at any
given time.

To manage resources, define a resource object that the process draws on. When the
resource is locked or consumed by running processes, additional requests for the
resource must wait until the resource is available or free. Use resources to handle load
balancing in your processes.

More information:

Resources (see page 289)

Phase II: Design and Implementation

24 Content Designer Guide

Assign Exit Conditions to Outcomes

You can define an exit condition for each outcome of the operator. An operator can
have multiple exit conditions for different outcomes, such as Completed or Failed.

Operators support specific exit conditions. Some operators also allow you to define a
custom port. For example, you can define a custom port that only runs if the operator
result is True, False, "blue", 500, -2, or some other designated value.

Define a custom port when you have a distinct course of action in mind for a particular
exit condition. One such condition is when a database import fails for a particular
reason. When a process runs and you encounter a situation with no specific exit
condition, the process is suspended and switches into a blocked state, pending user
action. An administrator or other user with sufficient permissions can change parameter
settings if necessary and can restart a suspended process either where it failed or from
the beginning.

Optimize for Modularity and Component Reuse

Break processes into separate subprocesses or child process objects. Use a main parent
process to control the subprocesses. Each subprocess performs a distinct task or set of
tasks, such as extracting data from a database and writing it to separate files. When
multiple processes share a common subprocess, maintain flexibility in the design to
allow the subprocess to continue to be used in the different parent processes.

Add flexibility by using variables or expressions to set parameters on the process and on
each operator. This way, if a process is reused in different environments or systems,
adjusting the process is as easy as updating only the relevant variables.

CA Process Automation also helps you control the flow among different paths or
subprocesses. For example, when processes require input at runtime, you can use
Interaction Request Forms to prompt users for information. Use one or more interaction
request forms to implement process checkpoints where specific users or groups are
required to authorize a specific subprocess before it can proceed. The Assign User Task
operator in a process object pauses the process and then opens the form. The user can
then enter the required values.

Phase II: Design and Implementation

Chapter 1: Introduction to Process Automation 25

Custom Operators

You can create your own Custom Operator objects that are based on any of the other
operators available in your environment. Use Custom Operators to:

■ Facilitate reuse: Use the same operator with the same configuration settings in
different processes.

■ Save settings for a task: You can preconfigure custom operators to perform certain
tasks. For example, you can define a custom operator to work with an application
that is already installed on your system.

■ Interact with enterprise applications: You can also define packages to support
common enterprise applications.

You can modify your own custom operator and the original operator does not change.

Define Process Initiation and Monitoring

Process Initiation

When designing processes, decide how each process starts. You can design a process to
start in several ways:

■ Manual Start: You can manually start a process in the Library Browser or the
Process Designer. As a designer and content developer working in CA Process
Automation, you routinely start processes manually while designing and testing
them.

■ Automatic Start: You can construct a process that automatically starts another
process using the Start Process operator.

■ Automatic Start by External Entity: You can set a process to start from an external
application or system using Web services, a command line utility, or triggers. For
example, you can specify that another program starts a process using Web Services
(executeProcess or executeStartRequest). You can set a process to start by an
external event through the use of supported triggers including file creation,
incoming e-mail, SNMP traps, and events from UCF connectors.

■ Start by Schedule: You can schedule a process to start by using a Schedule object.

■ Start by User and Form: You can design a Start Request Form object or Interaction
Request Form object that can prompt a user to respond to the form resulting in the
initiation of another process. An example of this method for starting a process is an
expense report submission form. An employee can fill out the form and start an
UpdateExpenses process on demand.

Phase II: Design and Implementation

26 Content Designer Guide

Process Control

Designers, administrators, and production staff use CA Process Automation to control
processes. To learn more, refer to the following content for your role:

■ Designers: To run, test, and debug processes, see Running, Testing, and Debugging
Processes (see page 335).

■ Administrators: To administer application or system content, see the CA Process
Automation Content Administrator Guide.

■ Production Users: To start processes interactively in a production environment, see
the CA Process Automation Production User Guide.

Schedule Processes

Two automation objects that are used for scheduling processes are calendars and
schedules. Use calendar objects to define date conditions for starting tasks that launch
processes or individual operators. Use schedule objects to schedule tasks using calendar
objects and/or explicit dates.

■ Creating date conditions with calendar objects is described in Calendars (see
page 301).

■ Scheduling tasks with schedule objects is described in Schedules (see page 316).

More information:

Calendars (see page 301)

On Demand Processes

The development and administrative tools available on the Operations tab expose the
underlying structure and logic of libraries and applications. The Operations tab might
feature a Start Request Form object to prompt a user for information required to start a
process. Authorized users can use Start Request Forms to run on-demand processes
without knowing the technical details behind:

■ How CA Process Automation works.

■ How the system architecture is designed.

■ How each process is structured.

More information:

Start Request Forms (see page 243)

Phase II: Design and Implementation

Chapter 1: Introduction to Process Automation 27

Triggered Processes

CA Process Automation supports events and triggers that can start processes from
external applications and systems. You can designate applications, email messages, web
pages, or other processes to trigger a process. Any of the following methods can be
used to trigger a process:

■ FTP

■ HTTP/SOAP post

■ Custom SNMP traps

■ SMTP (email)

■ UCF event

To learn more, see Triggers (see page 327).

Monitor Processes

You can graphically monitor processes using a process watch object. Process watch
objects provide portals or shortcuts to all processes and related objects for a particular
category of ownership. For example, a data warehouse team requires access to a
process watch object containing shortcuts to all extract, transform, and load (ETL)
processes for populating data warehouses.

Consider roles and ownership when managing a process watch. For example, an end
user must typically see and respond to processes as they are occurring. In contrast, an
administrator might need to view history. A process watch accounts for ownership by
including only those objects that the person using it must monitor.

More information:

Process Watch Objects (see page 336)

Phase II: Design and Implementation

28 Content Designer Guide

Define Permissions

Permissions depend on who owns the components being managed or who is
responsible for particular management functions. You can assign permissions by
functional group (such as administrators, operators, or a data warehouse team) or by
ownership. You can then add or remove individual users in a group.

For example, a data warehouse team would monitor the extraction, transformation, and
loading (ETL) processes to populate a data warehouse. Create a DW group containing
the data warehouse team members. Then, give this group List and Open permissions to
a process watch object providing all shortcuts related to the ETL processes.

Administrators are assigned greater permissions than general users. A database
administrator can have control over processes to update a data warehouse or to restore
or back up certain databases. If you are developing for a complicated enterprise
environment with many different roles and ownership, consider this approach. Map out
ownership in a spreadsheet or other format for the groups, users, and roles to assign
appropriate permissions.

Ownership for a process (or any automation object) is initially assigned to the user
under which it is created. Ownership can be changed.

Defining permissions for actions users can take at runtime is handled by the permissions
editor in CA EEM. Members of the default PAMAdmins group have full permissions on
all folders and all automation objects. Members of the default PAMUsers group have no
permissions on any folder or automation object. Content designers are typically
members of the PAMUsers group.

A content administrator or the owner of a folder can assign you permissions on the
folder with the Set Owner property. Folder permissions are inherited by automation
objects added to the folder. An administrator with CA EEM credentials can assign you
permissions on automation objects and folders in CA EEM.

Note: See the Content Administrator Guide for details.

Define Alerts

You can use email alerts in processes to notify users or administrators about errors or
incidents, or to inform users that a process or task is complete.

When you design alerts in a process, first define the critical recipients. For example, you
might notify a single administrator when a process succeeds, fails, or is waiting for user
input. You can also create a recipient group to alert managers that might need to
receive monthly reports.

Phase III: Testing and Deployment

Chapter 1: Introduction to Process Automation 29

Create separate processes that not only send alerts, but handle escalation and perform
other tasks related to the alert. Then, invoke the alert process from other processes as
needed using the Start Process operator.

Always use named dataset variables in CA Process Automation to specify email
recipients, users, groups, profiles, and account passwords. Use the variables to set
parameters in the Send Email operator. When changes occur, you need only edit the
variables in a named dataset rather than in all the processes using the values.

Because individuals change, you can define user email groups or email aliases based on
function or role. When personnel change, you can then change individuals assigned to
the aliases without having to edit variables. Your organization may already have aliases
for the appropriate roles or groups.

Phase III: Testing and Deployment

Deployment of your solution to production includes the following activities:

 Assemble the related automation objects for this solution into a folder, multiple
folders, or a package spanning multiple folders.

 Test, debug, and verify all content for this particular solution or project.

 Export the solution from the development environment.

 Import the solution to a production environment.

 Provide instructions and required training for users to activate schedules and use
forms to start processes on demand.

More information:

Copy Objects Using Export and Import (see page 78)

Assemble the Solution

Assemble the related automation objects for this solution in a folder, folders, or package
spanning multiple folders. Use a package when your solution spans multiple objects and
folders.

Phase III: Testing and Deployment

30 Content Designer Guide

Test Components

Testing is an important part of deploying the package or folder that represents the
processes you want to automate. Verify that all components of the solution work before
it is allowed to become operational in the production environment.

CA Process Automation has several features that assist in testing processes:

■ To have full control over a process and test it during runtime, start the process in a
suspended state. For example, open the suspended process in a process watch and
observe it as it runs. You can start, pause, restart, and stop each process instance.

■ Set breakpoints to pause and debug steps in a process.

■ Simulation mode allows you to define specific outcomes for a step. You get the
simulated results of each step without performing any real actions.

Testing takes place on two different levels. On one level, you test the automation
objects and processes. On another level, you test the deployment of the automation
content. For example, the deployment as a whole can pass all tests and can be
operational while a specific form is still being redesigned and tested. Many terms reflect
this difference including unit testing versus solution testing, internal release candidate
build versus a customer proof-of-concept build, or development versus production.
Periodically retest rarely executed mission-critical processes such as system failovers to
verify that the processes and users stay fully current and functional in the production
environment. Periodic testing prevents incidents from becoming full-blown crises.

More information:

Run Processes Interactively (see page 348)
Debug a Process (see page 352)
Simulate Processing of Operators (see page 359)

Export a Package

After testing a solution, export the folder, folders, or package of related automation
content to an XML file. Include all required automation objects and folders from the
development environment. Production administrators deploy the solution by importing
this XML file into the production environment.

Phase III: Testing and Deployment

Chapter 1: Introduction to Process Automation 31

Specify Import Instructions

To help facilitate the deployment of the package, provide import instructions. Write
your instructions for production environment administrators and any other process
users. Indicate how the process elements must be configured to work in the production
environment.

These instructions can include the following sample topics:

■ How to Install Any Required Applications or Updates

■ How to Set Up User Names, Groups, and Passwords

■ How to Set Permissions for Users or Groups

■ How to Configure Datasets for the Production Environment

■ How to Configure Additional Hardware for Operators

■ How to Activate Schedules

■ How to Set Up External Triggers

■ How to Start Processes On Demand Using a Form

Chapter 2: Getting Started 33

Chapter 2: Getting Started

This section orients you to CA Process Automation and provides basic information about
logging in and becoming familiar with the user interface.

This section contains the following topics:

Log In to CA Process Automation (see page 34)
Configure User Settings (see page 35)
The CA Process Automation User Interface (see page 36)
Change Your Own Password in CA EEM (see page 52)
Web Browsers (see page 53)

Log In to CA Process Automation

34 Content Designer Guide

Log In to CA Process Automation

After an administrator has installed and configured the CA Process Automation web
interface, all users can begin working with the application. Application administrators
can use the Configuration tab to perform additional installation and configuration steps.
Content architects and designers can create objects and design processes. And users can
start process forms or run reports.

Use the CA Process Automation user interface in a web browser for all your
development and testing tasks. For security, you are prompted to log in.

Follow these steps:

1. Open a supported web browser.

2. Enter the URL for your CA Process Automation deployment. Configure the URL in
one of the following ways, depending on whether the CA Process Automation
orchestrator was installed with secure communication enabled over SSL. You can
enter either the hostname or the IP address of the CA Process Automation domain
orchestrator.

■ For secure communication, use the following syntax:

 https://<hostname_or_IPaddress>:8443/itpam

■ For nonsecure communication, use the following syntax:

 http://<hostname_or_IPaddress>:8080/itpam

For example, you could click a predefined link (Bookmark or Favorite) for CA
Process Automation that is mapped to a server by hostname and port.

The CA Process Automation login page appears.

3. Enter your user name and password and click Log In.

Configure User Settings

Chapter 2: Getting Started 35

The CA Process Automation interface appears. If your login fails, verify the domain
orchestrator and the CA EEM directory server (for CA Process Automation) are
running on the host computer.

Configure User Settings

After you log in for the first time, configure your user interface display settings.

Follow these steps:

1. From the list of links at the top of the main page, click your username.

2. On the User Settings dialog, indicate your display preferences for the date and time
formats, and language.

3. Click Save and Close.

Note: CA Process Automation automatically saves and restores other personalized
adjustments that you make as you work. For example, if you dock a palette or customize
the columns you want to view in a table or list.

The CA Process Automation User Interface

36 Content Designer Guide

The CA Process Automation User Interface

The CA Process Automation interface provides an integrated development and
administrative environment to view, manage, and run all objects in your automation
systems. CA Process Automation is a web application that can be opened on any
computer that has access to the CA Process Automation orchestrator.

Each major tab at the top of the page presents a unique section or functional area of the
application. Common controls appear throughout the application making it easy to use.
For example, sort a list of entries or configure which columns appear using the same
basic steps.

Item: Description:

 OS and Browser Controls: Although not part of CA Process Automation, your
operating system provides controls for working with the current window. For
example, Minimize, Maximize, Restore, and Close. Your browser also displays
its own menus, toolbars, panes, and search areas. Browser features can
sometimes be used to supplement built-in CA Process Automation features. For
example, you can refresh a page or you can adjust the view magnification
(Zoom) using your browser.

 Links: CA Process Automation provides a series of the most common
application links including User Settings, Help, and Log Out. Individual pages
will include appropriate links to related content.

The CA Process Automation User Interface

Chapter 2: Getting Started 37

Item: Description:

 Main Application Tabs: Click a tab to focus on a specific section of CA Process
Automation. In the sample image, the Library tab is selected. The application
displays folders and objects in the Library Browser.

 Toolbar: Pages and dialogs can sometimes display their own toolbars with an
appropriate set of tool buttons and icons.

 Pane: A pane provides a way to divide a window or page. In this example, the
Library Browser pane appears at left. This pane features a filter input field and
an expandable folder hierarchy. The detailed information for an entry you
select in the pane is displayed on the main page.

 Main Page: The main area of a page displays the essential information that you
need. This data is often presented in a table, list, form, design canvas, or chart.
This area can sometimes also be further divided using palettes, tabs, panes, or
other visual controls.

 Dialog: When you click certain buttons, apply actions, or issue commands, the
application often presents dialog boxes to collect additional input from you.

 Message: Predefined logic and events that you or the system initiate can result
in the appearance of messages. Most of these alerts are informative and
provide you with necessary feedback. However, some messages can display
critical warnings that are designed to protect your data. Error messages provide
useful information that can be combined with log file data to troubleshoot
problems.

Main Application Pages

Click any of the six main tabs to navigate within the main pages of the application. As
you work, CA Process Automation applies logic and permissions to determine what you
can view. At times, CA Process Automation automatically changes your current tab
selection, or opens another window. For example, when you open a process in the
Library Browser you automatically see the process in the Designer. When you open a
schedule object from the Library tab, you see the Schedule Editor window. When you
click a process instance from the Operations tab, you automatically see a separate
Process Instance window.

The CA Process Automation User Interface

38 Content Designer Guide

Home

Use this page as a convenient starting point and personal dashboard for your CA Process
Automation work session. Available features are highlighted in the following example.

Item: Description:

 Home Tab: Click the Home tab to view the Home page. When you log in to CA
Process Automation the Home page appears.

 Quick Buttons: CA Process Automation provides a series of options to help
you save time and begin working. A series of Quick Links is also listed in the
lower right corner of the page. Click View Tutorials, browse sample content,
design a new process, refer to the online help, or learn about Best Practices.

 Tasks and Automation Objects: CA Process Automation displays convenient
tables listing your tasks as well as the automation objects you have
checked-out (working versions of objects).

 Recent Activity: A list of recent process activity appears sorted by date and
time. Click a link to open the process instance.

The CA Process Automation User Interface

Chapter 2: Getting Started 39

Library Browser

If you are assigned the role of a content administrator, architect, or designer, then take
some time to become familiar with the Library Browser. Use this part of the application
as a central repository to create, edit, and manage automation objects in a hierarchy of
folders. Use the Library Browser for version control on each object, including object
check-in and check-out.

Item: Description:

 Library Tab: Click this tab to navigate to the Library Browser to view, create,
edit, or remove automation objects and folders.

 Folder Hierarchy: CA Process Automation displays the folders that you can
access in this resizeable pane. You have the option of applying a filter to view
only matching folders.

 Search Area: Perform a basic or advanced search using your own input
criteria. For example, locate one or more objects by name, type, or keyword.

 Automation Objects: Filter and sort the list of automation objects in this table.

 Properties: This tabbed panel displays the general data, tags, versions, and
audit trail for each object.

The CA Process Automation User Interface

40 Content Designer Guide

Designer

When you are ready to design, edit, and even test a process, use this page for all your
work. The Designer supports all of the following process details:

■ the basic flow of operators

■ documenting the process objects

■ logical results

■ connecting lines

■ browsing datasets

■ defining properties

■ writing code

■ monitoring process instances

■ stepping through, debugging, testing, and controlling process instances

Item: Description:

 Designer Tab: When you open a new process or edit an existing one from the Library
Browser, this tab appears. If you do not see this tab, it means you have not yet
opened a process or do not have security permissions to open a process.

The CA Process Automation User Interface

Chapter 2: Getting Started 41

Item: Description:

 Process Designer Toolbar: Use the tool buttons to design and test processes. Use the
View settings at right to show or hide the Operators, Dataset, Properties, and
Navigation palettes.

 Process Tabs: Each process you open appears in its own tab. You can copy and paste
objects between tabs.

 Process Designer: The actual process design appears in this work area, canvas, or
layout. The process designer includes the grid, lanes, all operators, ports, and
connecting lines.

 Operators Palette: Drag and drop operators with specific functions from this palette
to your process layout.

 Dataset Palette: Use this palette to view or edit the variables in process or operator
datasets.

 Properties Palette: Use this palette and its additional links and windows to manage
the properties for an operator. In this example, the Run Script operator's properties
appear. The user has also added code in the Post-execution Code dialog.

 Navigation Palette: Use this palette to navigate to specific regions inside larger
processes. To save time, try panning within this palette instead of scrolling the main
designer layout.

The CA Process Automation User Interface

42 Content Designer Guide

You can also run process instances on the Designer page.

Item: Description:

 Designer Tab: When you open an existing process instance from another page
in the application, this tab appears. If you do not see this tab, it means you
have not yet opened a process instance or do not have security permissions to
open a process instance.

 Process Instance Toolbar: Use the tool buttons to stop, start, debug, and test
actual instances of a process. Use the View settings at right to show or hide the
Operators, Dataset, Properties, Navigation, and Logs palettes.

 Process and Instance Tabs: Each process and each instance of a process that
you open appears in its own tab. Process instance tabs appear adjacent to their
source process design tab. Process tabs show an icon. Process instance tabs do
not show an icon. Instance names are also assigned a unique process ID
number to help you identify different instances. You can copy and paste objects
between tabs.

 Process Instance Status Bar: This bar displays the status of the instance. When
applicable, the status duration also appears. For example, a Waiting instance
will also show a live clock indicating how long the instance has been in this
state. You can also use the Hierarchy control to focus on specific sub-processes.

The CA Process Automation User Interface

Chapter 2: Getting Started 43

Item: Description:

 Process Instance: The design for the process instance appears in this work area,
canvas, or layout. The process instance includes the grid, lanes, and all
operators, ports, and connecting lines. Use it to trace the path of your process
as it runs.

 Logs Palette: Use this palette to verify or troubleshoot process instances.

The CA Process Automation User Interface

44 Content Designer Guide

Operations

Use this page to view a dashboard showing the following key elements:

■ Links to operators, processes, and other objects

■ Process Watch

■ Start Request Forms

■ Datasets

■ Resources

The Operations page helps you manage running or completed processes. Start
processes on demand and interact with running processes through interactive forms.
The Operations page serves as an automation dashboard that answers the following
types of questions:

■ What is running in my environment?

■ What has been running in my environment?

■ Which processes are available to start on demand?

■ Which processes are waiting for user input or approval?

The CA Process Automation User Interface

Chapter 2: Getting Started 45

Item: Description:

 Operations Tab: Click this tab to view the Operations page.

 Operations Toolbar: Use these commands when working with items in the various
lists of the Operations page.

 Operations Pane: Make a selection from the expandable list of entries in this pane.
For example, click Process Instances to view a chart and list of instances. Click a Start
Request Form to start it. Enter an optional filter to find a resource object. In this
example, the user has entered My Resource to find matching entries arranged in
folders in the Resources section of the pane.

 Graph or Chart Area: If appropriate, CA Process Automation will display the data as a
visual graph or chart. In this example, you can browse over the Completed instances
to see the total count of 11. Click a color bar in the chart to add that status value to
the filter for the resulting list below it. Click on the bar again to remove the value
from the filter.

 Main Page or List: The main area of this page displays the essential information you
need. In addition to the chart, this data is often presented in a table, list, or form. For
example, you can view, filter, and sort a list of instances by their state. Click a
resource object to view the current status of the resources it represents.

The CA Process Automation User Interface

46 Content Designer Guide

Configuration

Use this page for administrative functions including installation and configuration tasks.
These functions involve the following entities:

■ orchestrators

■ host groups

■ touchpoints

■ agents

■ user resources

Item: Description:

 Configuration Tab: Administrators click this tab to access the administrative
and configuration settings for CA Process Automation.

 Configuration Toolbar: Use these tool buttons to help you install or configure
the application.

 Configuration Pane: This area helps you navigate the options available for this
main page of the application. For example, you can choose an installation
scenario, manage versions, or add and configure a touchpoint.

The CA Process Automation User Interface

Chapter 2: Getting Started 47

Item: Description:

 Main Page: The main area of this page displays the essential information you
need. This data is often presented in a table, list, form, design canvas, or chart.
This area may also be further divided using palettes, tabs, panes, or other
visual controls. In this example, the user has selected Default Environment in
the Configuration Browser pane. The domain properties for the orchestrator
appear in the main page.

 Installation Scenarios: When you click Installation in the Configuration
Browser pane, the main page displays available installation scenarios.

The CA Process Automation User Interface

48 Content Designer Guide

Reports

Use this page to work with reports. Tasks include:

■ Generate an existing report

■ Upload a new report

■ Set custom parameters

■ Export report data

Item: Description:

 Reports Tab: Click the Reports tab to view or create reports.

 Reports Toolbar: Use this toolbar to work with the Reports page. A separate
standard toolbar is also available for working with the actual report output.

 New Report Area: If you click Add New in the toolbar, this area appears so you
can save details about the report.

 Reports List: A list of the available reports.

The CA Process Automation User Interface

Chapter 2: Getting Started 49

Item: Description:

 Report Parameters Dialog: When you click a report in the list, this dialog
appears. Use it to specify the range of data you want to include in this
particular instance of the report. In this example, the user has selected All
States from the { } Process State field.

 Report Output: An on-screen preview of the output appears. You can use this
output as is, print it to another device, or export it for use in another
application.

Note: To design new reports, install BIRT designer on a separate application server and
connect it to the reporting database.

The CA Process Automation User Interface

50 Content Designer Guide

Common User Interface Controls

The CA Process Automation web interface offers a consistent set of controls. Tables,
lists, pages, commands, and filters work in the same standard way from page to page.

Note: Some features are not available on all pages.

Item: Description:

The CA Process Automation User Interface

Chapter 2: Getting Started 51

Item: Description:

 Commands: As a shortcut, you can right-click a list item to select the same commands
that are available on a toolbar. In this example, you can click Properties in the toolbar
or right-click a task row in the table and choose Properties from the resulting shortcut
menu.

 Pagination: When CA Process Automation presents tables of data, you can control
how much fits on a page. The top and bottom tables in this example both display 170
items. On the top page, the user has selected 200 Rows On Each Page. This condenses
all 170 items to a single page. For the bottom page, the user has elected to view 10
rows. This setting increases the number of pages required to display all 170 items to
17 pages.

Use the controls at the bottom of the window to navigate to the first, last, previous, or
next on-screen page. You can also jump to a specific page by entering the page
number in the Page field.

 Multi-Select: Check one or more rows to apply the same command to similar items.
The application will only allow you to perform valid commands for multiple items at
the same time.

 Filters: Enter an optional word or text string and press the Enter key to view only
matching items. For example, type net and only the netstat and netstatw objects
appear in the list. Click the X to clear the filter.

 Sort Order: Click in a field column header row to select Sort Ascending or Sort
Descending. As a shortcut, just click the column header to toggle the sort order. A
small triangle indicates the sort order direction: ascending (down), descending (up), or
unsorted (no triangle).

 Column Arrangement: Click and drag an entire column to change the sequence of
columns in a table. In this example, the user has elected to position the Type column in
between Name and State.

 Column Size: Position your mouse over the borderline dividing two columns. When it
changes to a resize cursor, drag the column edge left or right to adjust the width of the
column and its data.

 Show or Hide Columns: You can show (checked) or hide (not checked) the listed fields
to control the columns that appear in a table.

 Quick Filters: If available, you can apply a quick filter to a column. Check the field
values you want to include and clear the values you want to exclude.

 Date-Time Filters: For date-time fields in a table, you can define a filter as a range or
span in time. The filter excludes data not in the range. In this example, the user only
wants to include rows with End Time values from November 30, 2012 at 10:00 a.m. to
November 30, 2013 at 11:59 p.m.

Change Your Own Password in CA EEM

52 Content Designer Guide

Change Your Own Password in CA EEM

CA Process Automation users can change their own passwords in CA EEM.

Follow these steps:

1. Open a browser and enter the URL for the CA EEM server used by CA Process
Automation. For example:

https://hostname_or_IPaddress:5250/spin/eiam/

The CA Embedded Entitlements Manager (CA EEM) Log In dialog appears.

2. For Application, select <Global>.

3. Delete EiamAdmin if this default User Name appears.

4. Enter your CA Process Automation user name and password, and then click Log In.

5. Click Change Password.

6. Enter your CA Process Automation user name and old password. Then enter your
new password in both the New password and Confirm password fields and click OK.

Web Browsers

Chapter 2: Getting Started 53

7. Browse to CA Process Automation and log in with your new credentials.

Web Browsers

Even among supported web browsers, CA Process Automation may behave differently
due to differences in third party products. For example, when you attempt to leave a
page or tab with unsaved changes, each of the following supported browsers may
display a slightly different message:

■ Microsoft Internet Explorer

■ Google Chrome

■ Mozilla Firefox

Essentially, all three give you the option of remaining on the page to save your data or
leaving the page and discarding any changes.

Microsoft Internet Explorer

When you set Microsoft Internet Explorer 8 or 9 to Compatibility Mode (CM), CA
Process Automation may exhibit poor performance or behavior. For example, the
drop-down menus for the field columns on the Operations page may disappear if you
click Start Requests (or another option in the Operations pane) and then go back to
Links and choose Process Instances. Once in this state, the column header drop-down
menu button may not appear for other views. This may result in the inability to set a
filter.

We recommend that you do not explicitly enable CM or Intranet Settings. If you observe
odd behavior when using Internet Explorer, ensure that CM is not enabled.

Note: If you must enable Intranet settings, manually disable the Display intranet sites in
Compatibilty View option in Compatibility View Settings under the Tools menu in
Internet Explorer.

Chapter 3: The Library Browser 55

Chapter 3: The Library Browser

Use the Library Browser to manage automation objects in folders.

Item: Description:

 Library Tab: Click this tab to navigate to the Library Browser. Here you can
view, create, edit, or remove automation objects and folders.

 Folder Pane: CA Process Automation displays the orchestrators and folders
that you can access in this resizeable pane. Apply an optional filter to view
only matching folders. For example, Folder_2 would find Folder_2,
Folder_200, and MyFolder_2.

 Search Area: Perform a basic or advanced search using your own input
criteria. For example, locate one or more objects by name, owner, type, state,
or keywords.

 Create Automation Objects: In the Library Browser, you can create folders to
store automation objects. Right-click a folder to view a menu of commands
you can perform in that folder. You can also create new automation objects
such as a process, schedule, or start request form.

 Rename an Object: Right-click an object and choose Rename from the
shortcut menu to edit its name in place within the table.

Automation Object Types

56 Content Designer Guide

Item: Description:

 Edit an Object: Use the toolbar or right-click an object to view a shortcut
menu of commands.

 Properties: This tabbed panel displays general data, tags, versions, and an
audit trail for each object.

 Recycle Bin: Use the Recycle Bin to manage objects you want to delete. The
application allows you to restore them, leave them in the Recycle Bin, or
permanently purge them.

Note: For information on configuring security for objects and folders, see the Content Administrator Guide.

This section contains the following topics:

Automation Object Types (see page 56)
Create a Folder (see page 58)
Create an Object (see page 59)
Working with Objects (see page 60)
Delete or Restore an Object or Folder (see page 82)
Search the Library Browser (see page 83)
Customize the Library Browser (see page 84)
Auto Recovery (see page 85)

Automation Object Types

Automation objects are application components that define configurable elements of a
CA Process Automation package. These objects define system operations and include
executable software. Create and configure CA Process Automation automation objects
in the Library Browser in specific automation library folders associated with a specific
orchestrator.

You can browse an automation library associated with an orchestrator. You can also
create, edit, and view objects in an automation library. You can create folders in a
library to group related objects. Folders let you define a hierarchical structure so you
and your co-workers can locate objects. This structure is similar to the directories or
folders of any computer operating system such as Microsoft Windows.

Automation Object Types

Chapter 3: The Library Browser 57

You can create all of the following types of automation objects in the Library Browser:

 Process

Process objects graphically depict the order and dependencies between operators
and sometimes other processes. Operators are represented in a process graphically
with links that show the sequence and logic behind the steps that a process
performs.

 Schedule

Schedule objects associate module invocations (including the launch of a process)
with date and time conditions. You can use multiple schedules to group tasks by
application, ownership, or other criteria.

 Calendar

Calendar objects define rules that describe complex date conditions. Calendar
objects graphically specify dates, time intervals, and conditional elements that
determine when and how frequently operators are performed.

 Custom Icon

Custom Icon objects specify graphic images that uniquely identify operators.

 Custom Operator

Custom Operator objects allow you to extend the presentation and configuration of
existing operators. You can customize your own operators based on existing
operators and optimize them with specific parameters that are designed for reuse
in many different processes.

 Dataset

Dataset objects define and group variables used as parameters that are required by
other processes, operators, and resources. Examples include application locations,
passwords, and profile names. These variables can be configured easily so that
processes and scheduling can be updated efficiently to reflect changes in an
application environment.

 Package

A single Package object bundles shortcuts to other automation library objects. This
provides a way to manage related objects residing in any number of different
folders in the library. A package can be used to bundle various related objects on an
orchestrator to export for deployment on a production orchestrator. Packages also
facilitate reuse of objects in different environments. Use a package when your
solution spans multiple objects and folders. Apply permissions to each folder. For
example, put custom operators in a Custom Operators folder, put network items in
a Network folder, and put security items in a Security folder. A package or solution
can include content from each folder.

 Process Watch

Create a Folder

58 Content Designer Guide

Process Watch objects allow users to define and monitor selected applications in
the production environment. A Process Watch object consists of a collection of
shortcuts to other elements of an automation library. A user can open a Process
Watch object to view the state of process instances and other objects. Process
Watch objects allow a user to monitor operators without necessarily permitting
access to underlying objects or data.

 Resource

Use Resource objects to synchronize independent processes that rely on common
elements of the infrastructure. Resource objects are models representing elements
of your system architecture. Use resources to quantify and control access to
particular IT entities. Include multiple resources representing related entities in a
single Resource object.

 Start Request Form

Start Request Form objects define shortcuts to allow a production user to invoke
processes manually. Custom dialogs prompt users for the values of parameters
required to start their associated processes.

 Interaction Request Form

Interaction Request Form objects allow you to prompt users to provide responses in
data fields and other user interface controls. Users enter information that is
required to continue a process. For example, use a form to prompt a stakeholder to
review each step in an approval process.

More information:

Designing Processes (see page 87)
Running, Testing, and Debugging Processes (see page 335)
Datasets (see page 173)
Interaction Request Forms (see page 245)
Package Objects (see page 81)
Create a New Process Watch Object (see page 339)
Start Request Forms (see page 243)

Create a Folder

Folder hierarchies let you categorize and organize related objects and allow you to apply
selected permissions recursively to subordinate objects and folders. To organize and
secure groups of objects, you can add folders to structure the library hierarchy.

Create an Object

Chapter 3: The Library Browser 59

Follow these steps:

1. Click the Library tab.

2. In the Library Browser folder pane, select the folder where you want to create a
new folder.

3. In the toolbar click New, and then choose Folder.

The new folder appears.

4. Rename the folder.

Note: We recommend that you organize objects in folders to set rights, export them,
and perform other tasks. Do not create objects at the root level because there is no way
to manage them as a group.

Create an Object

Create new automation objects in specific folders in the library associated with an
orchestrator. After creating an object, you can edit its properties.

Follow these steps:

1. Click the Library tab.

2. In the Library Browser folder pane, select a folder to store the new object.

3. In the toolbar click New, and choose an object type.

A new object is created.

4. Rename the object to identify it.

Provide a unique name. The application alerts you when the name is already
applied to another object in the folder including any deleted objects that are in the
Recycle Bin.

Note: We recommend that you organize objects in folders to set rights, export them,
and perform other tasks. Do not create objects at the root level because there is no way
to manage them as a group.

Working with Objects

60 Content Designer Guide

Working with Objects

The task of editing an object is divided into the following sub-steps:

■ identify the location of an object or folder in the Library Browser

■ open the object

■ check out the object to a working version you can edit

■ edit the object

■ save the changes

■ check in the object (in this step you also decide to apply the changes to the same or
a new version)

When you just want to inspect an object, you can click Properties or open it. You can
then view its properties in detail and decide if you then want to edit it.

Objects open in their own editor or designer based on object type. For example, a
process opens in the Process Designer, a dataset object opens in a Dataset dialog. Each
editor has its own tabs, palettes, and toolbar buttons.

Note: This section includes only basic information on opening and editing objects and
managing versions. Other chapters in this guide describe how to edit the different types
of objects in greater detail.

Working with Objects

Chapter 3: The Library Browser 61

Edit an Object

After you create an object, you can edit its properties or modify its configuration at any
time. For example, you can edit the tags for an object, add a resource to a resource
object, or remove an object from a process watch.

CA Process Automation stores multiple versions of an object. When you check out and
edit an object, by default, the application uses the version that is designated as the
current version. After editing the object, you must check it back into the application.
When you check in the object, you can apply the changes to either the same version or
create a new version of the object. Whether you choose a new version or the same one,
by default, the latest changes are applied and that version becomes the new current
version.

Follow these steps:

1. Click the Library tab.

2. In the Library Browser folder pane, click a folder.

3. Double-click an object.

The current version of the object opens.

4. If it is not already checked out, click Check Out.

5. Edit the object.

6. Click Save or Save and Close.

The changes you made to the object are saved. Since the object is still checked out,
you can continue to edit it.

7. To check the object back in, click Check In.

8. On the Check-In dialog:

a. In the Check-in As field, choose New Version or Same Version.

b. Enter any optional comments about the changes made in this version.

c. (Optional) Check the Baseline check box to use this version as a baseline.

d. (Optional) For new versions, uncheck the Current check box only if you want a
new version but do not want it to be marked as current. The previously current
version will remain current.

e. Click Check-In.

Working with Objects

62 Content Designer Guide

View General Properties for a Library Object

You can view the general properties of any library object including processes. All of the
following properties are read-only except for Description.

To view or change general properties

1. Click the Library tab.

2. Select a folder in the left pane and a single object in the list.

3. In the toolbar, click Properties.

4. View the following fields on the General tab:

Name

The name of the object.

Current Version

The version number set as current for the object. An object can have multiple
versions but can only have one current version.

Description

The description of the current object. You can edit this field whether the object
is checked out or not. Click Save to store your changes.

Type

The type of automation object.

Owner

The ID of the CA Process Automation user who created the object.

Checked Out By

The ID of the CA Process Automation user who has checked out the object.

Date Created

The date that the folder or object was created.

Date Modified

The date that the folder or object was last modified.

Path

The path for the object in the CA Process Automation library.

Orchestrator

The name of the orchestrator associated with the library and who manages the
database object being configured.

Working with Objects

Chapter 3: The Library Browser 63

Specify Tags or Keywords for Objects

Use the Tags tab to assign keywords that organize objects according to any meaningful
naming system recognized by your organization. You and other users can then perform
an advanced search on objects or folders using the tags or keywords.

Follow these steps:

1. Click the Library tab.

2. In the Library Browser folders pane, select a folder.

3. Select an object or folder.

4. In the toolbar click Properties.

The Properties pane appears.

5. In the Properties pane, click the Tags tab.

6. On the Tags tab:

a. Click Edit.

b. Enter one or more comma-separated text values. For example,

testing,security,Project Code Beta

c. Click Save.

Change Ownership for Automation Objects

The owner has full control of an automation object or folder. You must be logged in to
CA Process Automation as the owner or the Environment Content Administrator to
change ownership of an automation object. The user who creates an automation object
is, by default, its owner. If you set ownership of a folder to a user who is not an
administrator, that user is the only non-administrator who can access that folder.

Ownership of a process is used when Runtime Security is enabled. If you enable Runtime
Security, then only the owner you set for a given process can start that process.

Follow these steps:

1. Click the Library tab.

2. Select one or more objects including folders.

3. In the toolbar, click Set Owner.

The Set Owner dialog opens.

4. In the Available Users list, select the user account to set as the new owner. Use
search to find matching user accounts.

5. Click Save and Close.

Working with Objects

64 Content Designer Guide

Specify an Archival Policy

You can define how long a completed instance of a Process or Schedule object is
archived on the server.

Follow these steps:

1. Click the Library tab.

2. Select a folder and then select a process or schedule object.

3. In the toolbar, click Properties.

4. In the Properties pane, click the Archival Policy tab.

5. Enter the following options:

Minimum Days of History

Defines the minimum number of days to retain completed and failed instances
of Processes. The age of an instance measures in hours. If an instance ends at
10:00 PM and this option is set to one day, the instance remains in the Library
at least until 10:00 PM the following day.

Minimum number of Failed Instances

Defines the minimum number of failed instances of the Process to retain in the
history. Failed instances of the Process in excess of this number are deleted in
order of age (oldest first) only if they have been in the history longer than the
specified minimum number of days.

Minimum number of Completed Instances

Defines the minimum number of completed instances of the Process to retain
in the history. Completed instances of the Process in excess of this number are
deleted in order of age (oldest first) only if they have been in the history longer
than the specified minimum number of days.

Inherit Archival Policy From Orchestrator

Select this check box to inherit the archival Policy property settings for the CA
Process Automation server. This check box is initially selected as the default
setting for an object.

6. Click Save.

Working with Objects

Chapter 3: The Library Browser 65

Specify ROI Properties

You can specify the return on investment (ROI) properties for a Process object. The ROI
values you enter appear in the dataset of process instances.

Follow these steps:

1. Click the Library tab.

2. Select a folder and then select a process.

3. In the toolbar, click Properties.

4. In the Properties pane, click the ROI tab.

5. On the ROI tab, enter the following:

Enable ROI

Enables the ROI fields.

Manual Labor Time (hh:mm)

Specifies the number of man hours and minutes it typically takes to complete
this process.

Note: Man hours is the time it takes a human being to trigger each step in the
process. Man hours does not include the time each step takes to run.

Manual Process Elapsed Time (hh:mm)

Specifies the time taken for this process to execute manually from start to
finish.

Criticality

Specifies the criticality for this process.

Valid Values: High, Medium, or Low.

Note: The ROI report displays the criticality of the process.

App/System Group Name

Defines the process group name.

Note: You can group processes by group name in the ROI report. Click the
Reports tab to run the Return on Investment Report for an application or
system group.

6. Click Save.

Working with Objects

66 Content Designer Guide

Specify Runtime Security Properties

You can specify runtime security properties for Process and Schedule objects.

Follow these steps::

1. Click the Library tab.

2. Select a folder and then select a process or schedule.

3. In the toolbar, click Properties.

4. In the Properties pane, click the Runtime Security tab.

5. On the Runtime Security tab, enter the following:

Runtime Security

Runtime security ensures that a process cannot be started by someone who
does not have the proper permissions. Select one of the following:

Inherit from Orchestrator

If selected, security settings are inherited from the Orchestrator.

Enable

Enabling runtime security lets CA Process Automation check permissions
for a user before accessing automation objects from the database.

Disable

Disabling runtime security ensures backward compatibility to earlier
versions of CA Process Automation. Processes continue to run as they have
prior to this release.

Run as Owner

If runtime security is Enabled then Run as Owner applies. Any process and its
child process executes as if the owner of the process is running it. Only
Environment Content Administrators or the owner of the process can select
this option.

If Run as Owner is selected, then the current identity is the owner of the object
and an access control list is enforced for the owner of the process. CA Process
Automation loads private copies of the objects created by the owner (including
the process itself).

This check box is not selected by default. If Run as Owner is unchecked, then at
runtime, CA Process Automation checks permissions for the user who has
executed the process.

Enable Operator Recovery

Working with Objects

Chapter 3: The Library Browser 67

Applies to Process objects only. Specifies whether to automate recovery.
Recovery applies to certain operators that fail with a SYSTEM_ERROR.
Operators subject to recovery must be part of processes that are in a Blocked,
Running, or Waiting state. If checked, recovery starts running the affected
processes. The operators that target the proxy touchpoint run. If not checked,
operator recovery is disabled.

Working with Objects

68 Content Designer Guide

Versions

CA Process Automation uses a version control system that tracks the changes you make
to the objects in your library. An important point to remember is that the version
tracking system always maintains what is known as a single current version for each
object. When you open an object, the application automatically uses the one you have
designated as the current version. Other versions of an object are retained for backup or
archival purposes. Any archived version of an object can also be opened for viewing or
editing or converted to the current version. The object owner or a user with sufficient
permission can change which version is the current version.

You can check out and edit any version of an object and then check in changes either to
that same version or to a new version of the object. To prevent users from changing a
particular version, you can designate it as a baseline version. A baseline version can be
used like any other version. You can also check out a baseline version and edit it, but can
only check it in as a new version. Baseline versions serve as a benchmark or template for
further development.

Item: Description:

 Object Versions: For every object, the library browser displays the user who has
checked out the object, as well as the current and latest versions. In this example, the
current version of the selected dataset is 2. This is the version checked out by user
Design_01. Note that the latest version of the object is version 4.

Working with Objects

Chapter 3: The Library Browser 69

Item: Description:

 Properties Panel: The Versions tab of the object's Properties panel lists the original
and all subsequent versions for that object. You can see which one is current, which
one or more are baselines, as well as creation and modification information.

 Versions Tab in Object Editor: When you open or edit an object, the Versions tab
allows you to select a single current and one or more baseline versions. The other
information is exactly the same as the information displayed in the Properties panel.

 Audit Trail Tab in Object Editor: This tab provides a history of all changes made to
each automation object.

Working with Objects

70 Content Designer Guide

Understanding Versions

Refer to the following graphics and examples to learn the essential concepts about
working with versions.

Symbols:

 Object version. Current version.

 Working version. Discard working version.

 Open a previous version. Baseline version.

 Version checked out by user 1. Latest version checked out by user 2.

Item: Description:

 Typical Versioning Sequence: A new automation object begins at version 1. The

object is checked out as working version 1, with the option of applying pending
changes to the same version 1 or new version 2.

 Current Version: In this typical sequence, working version 1 is checked in as new

version 2. The new version is also typically designated as the current version. The

current version is the one that is used when the process actually runs. The original
version 1 is now considered just a backup or archive.

Working with Objects

Chapter 3: The Library Browser 71

Item: Description:

 Changes Applied to the Same Version: In this example, version 3 is checked out
multiple times. Each time, the user has elected to apply the changes to the same

version rather than create a new one. Although changes were made in working
versions 3(i), 3(ii), and 3(iii), the user has decided to group them all together into the
same single version. The user cannot go back to view the object in between changes
3(i) and 3(ii). No separate version exists to go back to.

 Baseline Version: Version 4 has been designated by the user as a baseline version.
Any checked-out working version must be checked in as a new version, version 5.
When you specify one or more baseline versions, you are essentially locking each
version. This practice prevents any modifications to the actual baseline versions. They
can only be used as templates or ancestor class objects to facilitate the creation of
new versions.

 Current, Working, and Open Versions: current version 5 has three simultaneous

branches users might follow. In branch A, its changes are applied as new and

current version 6. In branch B, working version 5 can be checked in as new

version 6, with version 5 remaining as the current version. In branch C, the user

elects to open version 5. The user can view the version but cannot save any
changes to it.

 Multiple Users: While running processes use current version 6, it is possible for the

object to also be checked out to user 1 with pending changes in working

version 7. While running processes use current version 6, the latest changes to the

object may be made by user 2 and reflected as latest version 7.

 Discard Working Version: The changes to working version 7 can be discarded.
Similar to an Undo Checkout operation, this rolls back the object to the last checked in
version.

 New Current Version: The latest version 7 can be checked out as working

version 7. During check-in, the user can elect to make it the new current version 8.

Working with Objects

72 Content Designer Guide

View Version Information

The Versions tab displays information about checked-in versions of an object.

Follow these steps:

1. Click the Library tab.

2. Select an object in the main window and click Properties.

The Properties pane appears in the bottom portion of the window.

3. Click the Versions tab.

4. Expand a version to view all of its fields and optional comments.

Version

The number assigned to this iteration of an object in sequence with other
iterations.

Current

Indicates which version is designated as the current one. Only the current
version will display true in this field.

Baseline

Indicates which versions are designated as baselines for the object. The field
displays true for baselines or false for non-baselined versions. A baseline
version is locked, but can be changed and checked in as a new version.

Last Modified on

The date and time when the version was last checked in.

Modified by

The CA Process Automation user who last changed the version.

Created on

The date and time when the version was created.

Created by

The CA Process Automation user who last checked in the version.

Comments

Displays comments that can be entered when checking in a version of an
object.

Working with Objects

Chapter 3: The Library Browser 73

Set the Current Version of an Object

The current version of an object is the default version used by CA Process Automation in
development or production. You do not have to check out an object to set the current
version, but you must be the owner of the object or a member of the Environment
Content Administrator role.

Follow these steps:

1. Click the Library Browser tab.

2. Double-click an object.

The object opens in its editor.

3. Click the Versions tab.

4. In the row for a specific version, click the Current button.

The disabled Current button indicates that the selected version is now current. You
can directly change the current version by clicking the Current button in any row.

Open the Current or Working Version of an Object

When you double-click an object in the library that you have checked out, the working
version opens. The working version will display the changes you make. If the object has
not been checked out, the current version will open in read-only mode. Check out the
object to edit it.

Open a Selected Version of an Object

You can open a selected version of any object to view or edit it instead of opening the
current version. For example, you can open a previous version or open a new branch of
the object with your latest changes.

To open a selected version of an object

1. Click the Library Browser tab.

2. In the Library Browser folders pane, click a folder.

3. Right-click an object and choose Versions and then Open a Version.

4. In the Edit Version dialog, click a version of the object and then click Open.

The object opens in its editor.

Working with Objects

74 Content Designer Guide

Check Out an Object

To edit and save changes to an object, check it out. Checking out an object allows you to
edit versions of the object while preventing other users from changing it at the same
time. You can open and view an object without checking it out, but you cannot edit it.

You can check out one or more objects before you open them.

Follow these steps:

1. In the Library Browser, select one or more objects.

2. Click Check Out.

You can now double-click the checked-out object to open and edit it.

You can also check out a single object after you open it.

Follow these steps:

1. In the Library Browser, double-click an object.

The object opens in its editor.

2. From the object editor or the Process Designer, click Check Out.

You can check out, edit, check in, test the changes, and then check out and
continue editing the object.

Save Changes to a Checked-Out Object

Saving the working version of an object prevents you from losing changes as you work.
For example, you might inadvertently close the object editor. Saving changes for a
checked out object affects only the working version of the object. A new version of the
object is not created and the object is not checked in.

1. Check Out an Object (see page 74).

2. Make changes to the working version.

3. Click Save.

Once changes are saved to the working version, you can close the editor. The object is
still checked out. The working version remains editable and continues to reflect your
changes as long as it is still checked out. When you open the object again, the
application automatically opens the working version.

Working with Objects

Chapter 3: The Library Browser 75

Check in Objects

When your changes are complete, check the object back into the system. This saves
your changes to your choice of the same version or a new version.

After you complete the procedure, the Designer remains open and you can continue
viewing the object in read-only mode. To make additional changes you must check out
the object again.

Follow these steps:

1. Check Out an Object (see page 74).

2. (Optional) Save Changes for a Checked Out Object (see page 74).

3. On the object editor toolbar or Library Browser toolbar, click Check In.

The Check-In dialog appears.

4. Decide how you want to check in the changes you made by configuring the
following settings:

Current

Select this check box to make the checked-in version the current version of the
object. For new versions, clear this check box to keep the previous current
version. The new version reflects the latest changes but will not be used by the
application.

Baseline

Select this check box to designate a version of the object that cannot be
changed. Baseline versions can only serve as the basis for new versions.

Comments

Enter any descriptive comments to save with this version of the object.

Check-in as

Specify whether to create a new version of the object or apply the changes to
the same version.

5. Click Check-In.

Note: CA Process Automation displays a message if you attempt to check in a
baseline version without creating a new version.

Working with Objects

76 Content Designer Guide

Create a Baseline Version of an Object

To prevent users from changing a particular version, you can designate it as a baseline
version. Users can check out a baseline version and edit it, but can only check it in as a
new version.

You do not have to check out objects to set them as baselines, but you must be the
owner or have administrative permission to the object.

Follow these steps:

1. Click the Library Browser tab.

2. Double-click an object.

The object opens in its editor.

3. Click the Versions tab.

4. In the row for a specific version, click the Baseline button.

The selected version is now a baseline indicated by the disabling of the Baseline
button. You can select multiple baseline versions of an object.

Note: You cannot undo or reverse the baseline status of a version. If you want to reset a
version so that it is no longer a baseline, set it to current, check it out, and then check it
in as a new version with the Baseline check box not marked.

Discard Changes to the Working Version of an Object

After checking out an object, making changes to it, and saving it, you may decide you do
not want to continue working with that particular working version. Even if you have
saved the working version numerous times, you can still discard the saved working
version.

Follow these steps:

1. Click the Library tab.

2. Right-click the object in the main window and choose Versions and then click
Discard Working Version.

The saved changes to the working version of an object are ignored and the object
reverts back to the originally checked out version.

Note: Any unsaved changes continue to appear in the editor or process designer.

Working with Objects

Chapter 3: The Library Browser 77

Copy an Object

You can copy objects or folders. You can use the current version of an object as the basis
for similarly configured objects on the same orchestrator. Copy the current version of an
object and then paste it to the same or a different folder where it can be renamed and
edited as a new object. For example, you can configure a Custom Operator object and
then add copies within a library.

Follow these steps:

1. Click the Library tab.

2. Identify the objects you want to copy in the main window. Ensure that the version
you want is marked as the current version.

3. Select one or more source objects or folders and click Copy.

4. In the Library Browser folder pane, click the destination folder in the same
automation library and click Paste.

The copied objects are added with the same names as the original objects. If this
location is the same as the source folder, then an ordinal number is appended to
each object name (for example, Process_1).

5. (Optional) Rename the new objects.

Working with Objects

78 Content Designer Guide

Copy Objects Using Export and Import

You can copy objects or folders from one automation library on an orchestrator to
another by exporting them to an export file. Exporting a folder also exports its
contents.Then you can import the objects on the destination orchestrator. Use
export/import to move objects or folders between libraries or to deploy objects from a
development library to a production library. You can also use an export file to copy
folders to other locations within the same automation library.

Part 1: Export

1. Click the Library tab.

2. In the Library Browser folder pane, select the parent folder.

3. Right-click one of the following:

a. the parent folder

b. a child folder

c. an object

4. In the resulting shortcut menu, choose Export, and then Absolute Paths or Relative
Paths.

■ Click Absolute Paths to export the full paths for the exported objects.

■ Click Relative Paths to export the relative paths within the folder containing the
selected object.

Your browser prompts you about the new XML export file.

5. Save the file to a local or network directory.

Part 2: Import

1. In the Library Browser folder pane, select the destination for the imported items. If
necessary, change the orchestrator or library.

2. Right-click the parent folder and choose Import.

3. In the Import dialog:

a. Enter the path to the XML file you exported or click Browse to locate it.

b. Specify how you want to handle objects with conflicting names.

c. Click Submit.

The import recreates the exported folder structure in the selected location and
imports the new objects.

When exporting and importing files, be aware of the following points:

Working with Objects

Chapter 3: The Library Browser 79

■ The export file preserves complete information, including hierarchies and paths, for
each exported object. When you export objects, you can save either the full
absolute folder hierarchy from the root folder, or only the relative paths starting in
the selected folder.

■ When the object information is imported back into an automation library, CA
Process Automation uses the path information stored in the file to reconstruct the
exported folder structure.

■ When you export the root folder, the entire automation library is exported. Size
constraints may apply.

■ You can open an export file in any XML text editor application including Windows
Notepad. A <head> element contains the CA Process Automation version
information for the development environment.

■ At the deployment phase of the production cycle, an export file is used to deploy
the objects in an automation library to production computers.

Important! Do not change any information in an export file. External changes can
corrupt the file. Any changes must be made in CA Process Automation.

Working with Objects

80 Content Designer Guide

Copy Objects in Packages Using Export and Import

Use a Package object to export select versions of multiple objects simultaneously.

As you work with objects in a package, you can select the version to be exported with
the package. When you select an object, the version information shows in the browser
pane. You can select a different version to export next to Version on the browser pane.
Choose to include either the “Current” version or a particular version number in the list.
The default setting when you add an object to a package is to export the “Current
Version”.

Part 1: Export

1. Click the Library tab.

2. Right-click a Package object and choose Export, and then click either Absolute
Paths or Relative Paths.

These commands apply only to the Package object itself; the full path is always
exported for each object in a package.

■ Click Absolute Paths to export the full path for the exported package.

■ Click Relative Paths to export the relative paths within the folder containing the
selected package.

Your browser prompts you about the new XML export file.

3. Save the file to a local or network directory.

Part 2: Import

1. In the Library Browser folder pane, select the destination for the imported items. If
necessary, change the orchestrator or library.

2. Right-click the parent folder and choose Import.

3. In the Import dialog:

a. Enter the path to the package XML file you exported or click Browse to locate
it.

b. Specify how you want to handle objects with conflicting names.

c. Click Submit.

The application imports the new objects specified by the package. The package
object itself is imported in the currently selected folder. The objects in the package
are imported to the same locations where they were originally stored when
exported.

Working with Objects

Chapter 3: The Library Browser 81

Package Objects

Complex processes can use various objects including operators, icons, resources,
datasets, and even other processes. They can be distributed with unrelated objects
among several different folders in an automation library. This complexity presents the
following potential problems:

■ It is difficult to work with only those objects required for a deployment or
subsequent update.

■ A developer working with disparate objects in a solution can have trouble tracking
or finding individual objects.

■ An administrator exporting updated objects for deployment to a production
environment can easily forget a required object.

To help you work with multiple objects, use Package objects. Package objects allow you
to define a collection of shortcuts to objects that can be worked on and exported
together. You can create a package in the Library Browser just as you would create any
other object type. After you create a Package object, double-click it to open the current
version in the Package Editor dialog.

In the Package Editor, check one or more objects and folders and click the Add button
on the toolbar to add objects to the package. The absolute path for each folder appears.
For objects, you can specify an absolute or relative path.

If you add a folder, the Package Editor includes every object in the folder. To remove an
object from a package, click the object and then click Delete.

Delete or Restore an Object or Folder

82 Content Designer Guide

Delete or Restore an Object or Folder

When you no longer need an object, empty folder, or folder containing objects, you can
delete it. The application moves deleted items to the Recycle Bin as a convenience and
loss prevention measure. After you delete an object and it moves into the Recycle Bin,
you have three options for handling it:

a. You can restore it.

b. You can leave it in the Recycle Bin.

c. You can permanently delete or purge it.

Follow these steps:

1. Click the Library tab.

2. Select one or more objects or folders.

3. Click Delete.

To prevent immediate loss of data, the items automatically move to the Recycle
Bin.

4. In the Library Browser folders pane, click Recycle Bin.

5. (Optional) Sort by Date, Name, Type, or use the search features to locate the items
you want to find.

6. To restore objects or folders, select them and click Restore Selected.

7. To permanently delete objects or folders, select them and click Purge Selected.

Important! If you purge the objects or folders they are permanently destroyed with
no way to recover them.

Search the Library Browser

Chapter 3: The Library Browser 83

Search the Library Browser

You can use the search features to find specific items in the Library Browser. You can
then perform actions on multiple related objects in the search results.

Follow these steps:

1. Click the Library tab.

2. In the Library Browser folder pane, select the root folder or a specific subfolder.

Your search is limited to objects and folders within the selected folder.

3. In the Search field, enter the name of an operator or folder.

4. (Optional) Click Advanced Search to define a search based on any of the following
properties:

■ Name

■ Owner

■ Type

■ Check-In State

■ Creation Date

■ Modification Date

■ Keywords

5. Click Search.

The search results appear.

6. You can work with objects and folders here just as you would in any other library
folder. Double-click an item to open it for editing. Right-click a single item to view a
shortcut menu of available commands. You can also select more than one item and
then right-click any selected item to apply an action to multiple objects at once.

7. To begin a new search, do one of the following:

a. Click Reset.

b. Click Basic Search or Advanced Search again.

c. Clear or modify the criteria specified in the search fields.

d. Click the x in the Basic Search box.

Customize the Library Browser

84 Content Designer Guide

Customize the Library Browser

You can customize your view of the columns in the Library Browser. Columns display
field values for entries in a table.

Follow these steps:

1. Click the Library tab.

2. In the Library Browser folders pane, select a folder.

3. In the main window, to show or hide a column, click in the column header and
choose Columns.

A checklist of available field names appears.

4. Clear the field columns you want to hide. Check the field columns you want to
show.

5. To sort the list, click in a specific column header and choose Sort Ascending or
Sort Descending.

6. To rearrange the columns, click a column header and drag it to the left or right.

Auto Recovery

Chapter 3: The Library Browser 85

Auto Recovery

The Operator Recovery feature controls what processes can recover as part of the
manual or automatic recovery of a touchpoint, orchestrator, or host group. You can
enable or disable this feature.

■ Enable recovery on a process and define an exception handler that notifies you
of a failure.

■ Disable recovery on a process and define an exception handler that remedies
the system error. For example, the handler could run the operator on a
different touchpoint.

Note:For more information see Exception Handling (see page 344).

CA Process Automation checks the Enable Operator Recovery Settings for each object
before running a process instance. CA Process Automation uses the settings to
determine whether the process instance is recoverable. The process instance is not
affected if the object settings change after running the process instance.

If enabled, the recovery procedure acts on operators and recovers process instances
that fail with a SYSTEM_ERROR. The operators' processes must be set to be recoverable
and must be in the Blocked, Running,or Waiting state when the recovery is triggered.
Operator recovery resets the operator and then resumes the processes. An operator in
the Blocked state should resume operation and run again during touchpoint recovery.

New processes created in CA Process Automation version 4.0 or later have this option
selected by default. Enable Operator Recovery is unchecked by default only for existing
processes created before a CA Process Automation version 4.0 upgrade.

Chapter 4: Designing Processes 87

Chapter 4: Designing Processes

CA Process Automation process objects graphically represent operators, ports, links,
logic, and constraints. Each process contains one or more chains of operators that you
can run in a sequence or in parallel. Lanes separate parent processes from any triggered
secondary processes. For example, a branch of a process that switches to a subprocess
is often depicted in a separate lane. Exception handlers control operators that abort or
terminate due to system errors or unidentified exit conditions.

Each process defines the configuration and management of operators on touchpoints in
an environment. Process objects are stored with other objects in a library that is
associated with an orchestrator. You can create process objects in the Library Browser
or directly in the Designer. You also open them from the Library Browser. However, you
view and edit processes in the Process Designer.

This section contains the following topics:

The Process Designer (see page 88)
Operators and Links: The Building Blocks (see page 90)
Create a Process Object (see page 91)
Design a Process (see page 92)
Process Operators (see page 93)
Process Operator Ports and Links (see page 101)
Process Loops and Iterations (see page 105)
Process Control (see page 116)
Process Lanes (see page 122)
Process Versions (see page 126)
Document a Process (see page 126)
Embedded Content (see page 128)
Navigate to a Specific Part of a Process (see page 131)
Multi-Tenancy and CA Process Automation (see page 131)

The Process Designer

88 Content Designer Guide

The Process Designer

The Process Designer provides an integrated development environment where you can
drag and drop operators and links to design processes. The Process Designer also
provides property and dataset configuration, testing, and debugging capabilities.

Use the Process Designer to:

■ Design and edit processes.

■ Run, monitor, and control the execution of processes in production or test
environments.

■ Modify a running instance of a process to recover from an incident.

Add an operator by dragging it from the Operators palette to the design layout. You can
also directly view and configure the properties or dataset values for an operator or
process.

The process designer layout includes the following process elements:

■ Canvas: Drag an operator to view guides to help your operator snap to positions in
the grid.

■ Lanes: The example process shows two lanes to arrange segments. You can add
more, merge, or remove lanes. You can also refer to lanes as swim lanes.

■ Operators: The functional entities within a process. Each operator except for those
operators at the end shows its exit ports and other smaller status icons.

■ Ports: These small connection points represent the exit ports for each operator.
Every operator except the Start operator also has a single entry port.

■ Links: These lines connect the exit port from one operator to the entry port of
another operator. You can customize the appearance of these lines.

■ Handler Editors: In addition to the Main Editor, the designer also includes two
other tabs along the bottom for editing exception and lane change handlers.

The following graphic depicts the Process Designer.

The Process Designer

Chapter 4: Designing Processes 89

Item: Description:

 Designer Toolbar and Process Tabs: When you open a process from the Library
Browser, the Designer tab appears. Each open process appears in its own tab.
Use the toolbar buttons to check out, edit, zoom in or out, save, test, and check
in the selected process object. You can copy and paste operators from one
process tab to another. The toolbar also features icons for creating a process or
opening an existing process (screen images may vary).

 View Menu: Use the View settings at top right to show or hide the Operators,
Dataset, Properties, and Navigation palettes. You can also dock the properties
and datasets palettes to the right or bottom. Click Tear Off to open the current
page in its own window in your browser to maximize your view.

 Operators Palette: Drag and drop operators from this palette to your process
layout. You can also enter search criteria (for example, "Get") to filter out
nonmatching operators.

 Dataset Palette: Use this palette to view, edit, and add variables in process or
operator datasets.

 Properties Palette: Use this palette and its additional buttons and windows to
manage the properties of the currently selected operator.

 Navigation Palette: Use this palette to navigate to specific regions inside large
processes with multiple lanes. As a convenience, you can pan in any direction
within this palette instead of scrolling the main designer layout up or down.

 Process Designer: The actual process design appears in this work area, canvas,
or layout. The Process Designer includes the background grid and one or more
lanes.

Operators and Links: The Building Blocks

90 Content Designer Guide

Operators and Links: The Building Blocks

The general structure of a CA Process Automation process consists of two basic items:
operators and links. Operators perform tasks or conditional tests. Links connect
operators and determine the processing sequence.

The following list describes some examples of operators:

■ File Management operators monitor file sizes, patterns, and other parameters
relative to files on a system.

■ File Transfer operators use FTP to perform file transfers and remote file operators.

■ Email operators notify system administrators in the event of errors or other
conditional states requiring human intervention.

■ Network Utilities interface operators get, update, and monitor SNMP variables and
send SNMP traps for network devices and monitors.

■ Resource operators represent resources in limited supply.

■ Web Services (SOAP methods) represent an interface between third party products
and CA Process Automation.

Links connect operators and carry out the processing flow. The point where an operator
and link intersect is called a port. A link originates at the exit port for one operator and
ends at the entry port for another operator.

When a process between two operators runs, the processing sequence can be
summarized as follows:

■ Activate the first operator.

■ Apply logic, get a result, and flow to the appropriate exit port.

■ Activate the second operator.

Create a Process Object

Chapter 4: Designing Processes 91

An operator can have multiple exit ports to handle various results. Each exit link can
initiate a separate branch of operators in a subprocess or child process. Exit and entry
ports enforce a linear sequence in which operators are processed. They can direct the
process flow to a particular branch of a process depending on the outcome of a single
operator.

To direct processing based on the outcomes of multiple operators, use the following
operators:

■ The Loop operator.

■ The Exception operator in Exception Handler mode.

■ Conditional operators, such as the And operator or the Or operator.

These operators allow you to design multiple entry and exit branches for other
operators. You can also create links that depend on the outcomes of multiple operators.

Create a Process Object

Use the Library Browser to create a Process object in a folder. You can also create a
process in the Designer and specify a folder when you save it. Create a Process object
for every discrete automation sequence, flow, or subprocess that you want to
automate. After creating the Process object, design the process by adding operators and
connecting them with links.

Note: We recommend that you organize objects in folders to set rights, export them,
and perform other tasks. Do not create objects at the root level because there is no way
to manage them as a group.

Follow these steps:

1. Click the Library tab.

2. In the Library Browser folders pane, select a folder.

3. In the toolbar, click New and then choose Process.

A new process object appears with a default name. The process is automatically
checked out to you to capture your exclusive changes.

4. Click the process name and change it to a unique name. The name is directly
editable until you deselect it. To edit it again, right-click it and choose Rename.

You have created a new process object. Next, you can design the process.

Design a Process

92 Content Designer Guide

Design a Process

Complete the steps in Create a Process Object (see page 91) first. After you understand
the concepts and steps behind creating your first few new process, you can easily edit
any process. Use the Process Designer to design and configure all process objects.

Follow these steps:

1. Double-click the process in the Library or open it from the Process Designer.

The Process Designer opens with a default set of basic start and stop operators.

2. Use the Process Designer to design and configure the process. This includes adding
operators, ports, and links. Refer to the remaining topics in this section in any order
to guide you.

3. To configure properties for a process, click any neutral space in the canvas, and
choose Properties from the View menu in the toolbar.

The Properties palette opens. The process properties determine the default
behavior for all operators added to the process.

Configuration

Specifies whether to display horizontal or vertical swim lanes.

Link

Specifies the weight, color, and shape of the lines that link operators.

Simulation

Specifies the default simulation options for operators added to a process. You
can also override these settings for a specific operator.

Label Options

Specifies the default display options for operators added to a process. You can
also override these settings for a specific operator.

4. When finished, click Apply to view the changes.

5. Continue with any other tasks in this section of this guide.

6. When you are done editing an object click Save and then Check In.

Process Design Tips

Keep the following tips in mind when working with processes:

■ You can repeat any of the topics in this entire chapter in almost any order. For
example, add a swim lane, add a port, or connect a link.

■ As a basic rule, you can edit a process using the same steps for editing any
automation object in the library. See Working with Objects (see page 60).

Process Operators

Chapter 4: Designing Processes 93

■ Always check out the process to prevent others from overwriting your changes. You
can check out a process before opening it (in the Library Browser) or after opening
it (in the Process Designer).

■ CA Process Automation always runs the current version of a process; however, if
you have an object checked out, CA Process Automation is smart enough to run
your working version.

■ When you check in a changed process, decide how its versions are handled. You can
either replace the version that you opened or you can create a separate distinct
new version.

■ Before you test changes to a process, check in the edited version that you had
previously checked out.

Process Operators

Process operators apply functions or perform actions to yield a result. The collective
results of a series of operators determine the automated flow through the process.

Item: Description:

 Start Operator: All processes include at least one Start operator with no entry port and a single exit
port. It is possible, although rare, to have more than one Start operator in a process.

 Stop Success Operator: All processes include at least one Stop operator. Stop operators come in two
flavors or types: success (shown here) or failure.

Process Operators

94 Content Designer Guide

Item: Description:

 Selected Operator: The currently selected operator border appears as a dashed outline. The Properties
palette displays the currently selected operator's settings.

 Database Query Operator with Multiple Exit Ports: As you add ports, they appear around the
operator's bottom and right edges. Each port represents the process flow for a particular result.

Note: Right-click an operator to add a port.

 Delay Operator with After Port: Delay operators do not include successful Completed or Timeout ports.
In addition to a custom result port, they feature just two default ports: After and Failed. Different
operators include different ports.

 Send Event Operator with Breakpoint Indicator: Status indicators appear when you click Set
Breakpoint.

 Disabled Operator: When you disable an operator, the designer gives it a transparent appearance. You
can decide later to enable it.

Process Operators

Chapter 4: Designing Processes 95

The Start Operator

A default Start operator is automatically applied when you create and open a new
process. The Start operator has no entry port. Configure the properties for the Start
operator in the Properties palette. For example, you can change the name, specify a
custom icon, or change the location and text in the icon label.

The Start operator starts a chain of operators in any process. When a new process
begins, it immediately activates the Start operator. All operators must be linked either
directly or indirectly to this chain of operators. A process can have multiple Start
operators to initiate multiple processing paths. These paths are also known as branches
or subprocesses. However, as a general rule, a process really only needs one Start
operator. As the example shown at right illustrates, a more efficient design utilizes the
same Start operator and perhaps even the same Stop Success operator. Multiple links
can share the same operator.

Note: Running multiple branches in parallel with multiple Start operators can result in
confusing log entries. The logs may be difficult to analyze because the run sequence of
branches with multiple starts may appear to be in random order. In most cases, use a
single Start operator for each process.

Process Operators

96 Content Designer Guide

Add Operators to a Process

After you place the Start operator in a process, drag the next operator, and then join the
links that determine the process flow.

Follow these steps:

1. Do one of the following to open a process

a. In the Library Browser, double-click a Process object.

b. In the Designer toolbar, click Open.

The Process Designer tab appears. If not already checked out, click Check Out.

2. Drag an operator from the Operators palette onto the process layout anywhere
below or to the right of the Start operator. Operators are arranged in folders for
each module or operator category supported by CA Process Automation. Enter the
name of an operator in the Search field to search for matching operators.

3. Repeat the previous step as often as necessary to create a chain of operators.

4. Create the first link in the chain. Click the small exit port under the Start operator
and drag the link to the destination operator's entry port.

5. Continue to logically connect exit ports to the entry ports of operators in sequence.

6. Configure each operator by double-clicking it to open its Property palette.

Process Operators

Chapter 4: Designing Processes 97

Logical Operators

The logical operators (And, Or, and Derivation) are used to synchronize, unite, and split
processing based on conditions. In this release, the And and Or operators are available
in the Standard folder in the Operators palette. The Derivation operator is no longer
available; when imported or migrated to this release from a previous release, it is
converted to an Or operator.

Process Example: Conditional Logic

The following process example shows eight operators and nine links (2 blue, 4 green,
and 3 red).

■ The Start operator at the top initiates simultaneous processing of the first two
linked operators. Let's call them Task 1 and Task 2.

■ Task 3 is initiated only when Task 2 is successfully completed.

■ The And operator on the exit links for Task 1 and Task 3 is activated only after both
Task 1 and Task 3 are successful. This path ultimately leads to the green Stop
Success operator.

■ The Or operator on the exit links for Task 2 and Task 3 is activated after an
abnormal exit from either Task 2 or Task 3. This path ultimately leads to the red
Stop Failure operator.

■ The Process Control operators running on an orchestrator run a process. You can
run individual tasks in a process on any agent touchpoint in the same environment
as the orchestrator. For example, Task 1 can flow on a Windows touchpoint while
Task 2 and Task 3 flow on a UNIX touchpoint.

Process Operators

98 Content Designer Guide

The And Operator

The And operator defines a synchronization point between all entry links to it. Exit links
from an And operator are activated only after all the entry links to it have been
activated. Use an And operator to synchronize multiple branches of a process when all
branches must be completed before beginning one or more additional branches.

The Or Operator

The Or operator activates exit links when any one of its entry links are activated. The Or
operator can also be implemented with a single entry link to enable two or more output
links for separate parallel branches.

You do not have to use an Or operator to implement a logical "or" condition in a
process. Two or more links entering the same operator behave the same as an Or
operator. However, to reduce confusion, and to document the logic in a process, it is
recommended that you use an Or operator rather than merging links in an operation.
The Name property on an Or operator allows you label the operator and document it in
context of the logical sequence of operators in the process.

Process Operators

Chapter 4: Designing Processes 99

The Derivation Operator

Any Derivation operators imported or migrated to the current release will be converted
to Or operators. The Derivation operator was used in previous releases to group links to
make a process more readable. Logically, the Derivation operator is the same as the Or
operator. It was smaller and took less space in a complicated process. The Derivation
operator was most often used to neatly group links originating from or exiting to
multiple operators.

The following example from a previous release shows a process using several Derivation
operators to keep links from cutting across operators. The logic represents an Or
condition with many different input links. The Stop operator is activated after any one
of the eight processes exits successfully.

Process Operators

100 Content Designer Guide

The Stop Operator: Success or Failure

Terminate a process by linking the final operator in a sequence to a Stop operator. A
process can have multiple Stop operators on different branches. A Stop operator
processed on any branch has no exit and terminates processing of the entire process.
Stop operators can optionally be configured to terminate a calling loop in another
process.

Follow these steps:

1. Open and check out a process.

2. In the Operators palette, drag a Stop Success or a Stop Failure operator to your
process.

3. Double-click the Stop operator to open the Properties palette.

4. In the Stop section, specify the integer value returned by the process in the Result
field and choose a value for the End Type field.

■ To end the process normally, click Stop Success and enter a Result value of 1.
The Result value 1 causes a completed process to exit when the process is
called from a Start Process operator in a parent process.

■ To end the process abnormally, click Stop Failure and enter a Result value of 0.
The Result value 0 causes an aborted process to exit when the process is called
from a Start Process operator in a parent process.

5. (Optional) Instead of using these default result settings, you can specify any
expression that returns an integer. The expression should return a non-zero integer
to indicate that the process completed normally or zero to indicate that the process
completed abnormally.

6. Select the Break Calling Loop check box to break a calling loop. If the process was
called from a looping operator in another process, this option breaks the loop when
processing returns from this Stop to the other process. Clearing this check box
allows a calling loop to continue.

7. Select the Ignore Running Tasks (Immediate Stop) check box to stop processing the
process immediately when the Stop is executed. This interrupts any other operators
that are still active elsewhere in the process. Clear this check box to allow ongoing
operators to terminate normally before stopping the process.

Process Operator Ports and Links

Chapter 4: Designing Processes 101

Process Operator Ports and Links

Links between operators define dependencies. The links act on the results produced by
each operator. Links define the order and logic of a process as it flows.

Different kinds of actions have different predefined results or outcomes (such as
successful, completed, aborted, failed, or timed out). The application calculates these
outcomes to determine what exit conditions, ports, and links to activate next, in a
logical sequence. For example, on some operators, you can add a custom port and
define it to activate when an expression returns a True value.

Exit conditions on an operator are not mutually exclusive. If more than one exit
condition is evaluated as True, all of them are processed. Processing multiple exit links
on a single operator can start subsequent simultaneous processing of multiple branches.

When a process runs, its operators are processed only once. When a link leads to an
operator that has already been activated, the destination operator is not processed
again and the branch extended by the link ends.

Note: Links are joined to operators at small connection points called ports.

Item: Description:

 Selected Operator: Click an operator to view its dataset variables, pages, and
properties. Right-click an operator to add an exit port.

 Link Properties: Double-click a link, or right-click and choose Link Properties, to
adjust its appearance. Select the thickness, color, shape, and dashed
appearance of each link.

Process Operator Ports and Links

102 Content Designer Guide

Item: Description:

 Link Line Shape: Instead of ordinary orthogonal lines, this purple link appears
with straight line segments. You can stretch and position all links as needed.

 Stopped Link: This link has been forced to stop. As an example, consider a
process that is looping, waiting for some event, processing that event, and
looping repeatedly. When a parallel branch of the process determines that the
original looping process must stop, it can use the stopped port and link to stop
the loop.

 Broken Link: Break a link to split a long circuitous route into two numbered
stubs. The split links are easier to view and manage. To rejoin the numbered
stubs, right-click the circled link number and choose Join Links.

 Disabled Link: This link appears in a dashed gray color to indicate it is
temporarily disabled. You can right-click to enable it again.

Add Operator Ports and Links

Place a link between operators to establish the logical flow. For example, link the Start
operator to the next operator to begin a process flow. Links connect one of any number
of exit ports on one operator to the single fixed entry port of another.

Follow these steps:

1. Open a process.

The Process Designer tab appears. If not already checked out, click Check Out.

2. Identify a source operator, its exit port, and a destination operator's entry port.

3. On the source operator, if the exit port you want does not appear, right-click the
operator and then click the port you want to add. Port types vary by operator.
Examples include Failed, Completed, After, and Custom.

A new color-coded exit port appears on the operator's border.

4. Click the exit port on the source operator and drag the link to the entry port of the
destination operator.

A new link appears between the two operators.

5. Repeat these steps, adding links and, if necessary, ports between operators to
define the process flow.

6. In the toolbar, click Save.

Process Operator Ports and Links

Chapter 4: Designing Processes 103

Custom Exit Ports and Expressions

Most CA Process Automation operators support custom exit ports. When you add a
custom port, specify the following:

■ a name for the condition

■ an icon to distinguish it from other ports on the operator

■ a valid Boolean expression that returns True or False when the operator finishes
processing

■ an optional description

You can also move the port to improve your view of the link. Press the Ctrl key while
clicking the port to move it to supported positions along the right or bottom edges of
the operator.

In the Expression field, enter any valid JavaScript expression that returns a Boolean
value, either True or False. You can use the custom port expression to evaluate the
result code of an operator. The result code indicates the outcome of the operator and is
returned by the Result variable in the operator dataset. The custom link is activated only
if the expression returns a True condition.

To activate a link based on a specific value for the result code, use the following syntax:

Process.Operator.Result == value

The keyword Process refers to the process dataset. Operator is the value specified by
the Name parameter of the operator. Result is the field name for the result code
variable in the operator dataset.

Process Operator Ports and Links

104 Content Designer Guide

To activate a port, you can also construct an expression as a comparison between
multiple statements. In this example, the value for GoJava must be 1 and the value for
operator OpM in process P2 must not be 1:

(Process.GoJava.Result == 1) && (P2.OpM != 1)

When a process runs and encounters an operator with no defined exit port, the process
goes to a Blocked state.

When an operator has multiple custom ports, the application runs all the ports with an
exit condition that returns a True value. Avoid overlapping logic for exit ports if you do
not want to activate more than one exit link at a time. This condition is more likely to
occur if you include both standard and custom ports on the same operator. For
example, if you include a custom port activated by the expression Process.A==5 and a
standard successful port on an operator, an operator activates both exit links when
Process.A returns 5. To trap values and route processing to a single port, it would be
better to use more than one custom exit port to specify exclusive expressions, such as:

(Process.A == 5) AND (Process.OperatorName.Result == 5)

(Process.A == 5) AND (Process.OperatorName.Result != 5)

(Process.B == "finance") AND (Process.OperatorName.Result == 7)

(Process.OperatorName.Result == 1) AND (Process.A <> 5)

In this example you could also include the standard failure link to cover when the
operator result variable returns 0. If you are uncertain about the results of different
outcomes, you can use the simulation function on an operator to test outcomes of
different permutations of settings and values.

Note: Use variable assistance features (press Ctrl + Space) to ease constructing these
expressions.

You can edit a custom port any time after you add it to an operator by double-clicking
the port. If you cannot predefine a course of action for a particular exit condition (for
example, when a database import fails), you can omit a link for it. When an exit
condition for an operator is not specified by any exit link, the process enters a
suspended state until a user can take corrective action.

More information:

Simulate Processing of Operators (see page 359)

Process Loops and Iterations

Chapter 4: Designing Processes 105

Break a Link for Readability

Links can become tangled in a complicated process and clutter your view. If you have
many links crossing one area, or you want to link an operator across other branches to a
distant operator, you can break a link.

Note: The link itself is not broken; only the visual representation of the link. Instead of a
full line winding its way between two operators, the line is split into two matching
numbered link symbols at the source and destination operators.

Follow these steps:

1. Identify the link you want to break between a source operator and a destination
operator.

2. Right-click the link, and select Break Link.

The link is broken, replaced by matching link markers at both ends of the link. The
split link behaves the same way as an unbroken link.

Note: To rejoin a broken link, right-click either numbered link marker, and click Join
Link.

Process Loops and Iterations

Surveillance, monitoring, and other cyclical processes often run repeatedly. You can
control these cycles using loops. You can apply one or more methods for running
operators in loops:

■ You can cycle through or loop an operator until some condition is met.

■ You can use the Loop operator to loop a sequence of operators.

■ You can loop an entire process. A looped process can consist of multiple linked
operators.

Process Loops and Iterations

106 Content Designer Guide

System Variables for Looping

You can create custom loop variables and manage them yourself, or use the available
system variables for loops included with this release of CA Process Automation.

For example, you could create logic to calculate the duration from the start time of the
first iteration of a loop to the current time for each loop. You could even use pre and
post execution code to set up input into a loop such as

■ initializing variables

■ setting loop counts

■ processing results when the loop is complete

Instead of creating and updating your own loop counter variables, you can take
advantage of built-in loop variables. The Loop operator and any other operator with
loop settings support the following dataset variables:

■ CurrentLoopIteration

■ OverallLoopDuration

Use CurrentLoopIteration when you need a standard loop counter. The
CurrentLoopIteration variable contains the value 0 during the first iteration of the loop
and increments by 1 at the beginning or end of each additional iteration. For example, if
the operator is configured to loop 3 times, at the end of execution of all iterations,
CurrentLoopIteration is equal to 3. Specifically, it is 0 in the first iteration, 1 in the
second iteration, 2 in the third iteration, and 3 in the last iteration. The last iteration is
not executed because it violates the loop condition.

Use OverallLoopDuration when you need to loop for some fixed time duration; for
example, to loop for a maximum of 5 minutes and then exit. This variable contains the
number of seconds between the start of the first iteration of the loop and the end of the
last iteration. OverallLoopDuration is updated at the beginning and end of every loop
iteration. It includes any delay set between iterations of the loop.

Note: You cannot modify the CurrentLoopIteration and OverallLoopDuration system
variables. Although they appear in the operator dataset, their values do not change
unless they are looping (operator Repeat Count > 1).

Process Loops and Iterations

Chapter 4: Designing Processes 107

Loop an Operator in a Process

A simple method for looping a process is to set the Loop parameters on an operator that
supports looping. Open the Properties palette for the operator. In the Execution
Settings section, in the Repeat Count field, enter the number of times for the operator
to repeat. Repeat Count is a calculated field, so you can use a variable or expression to
specify the count at runtime. Repeat Count accepts either an integer (the number of
times to loop) or a Boolean (the loop continues as long as the condition evaluates to
true). Examples of valid entries include:

3

Process.var < 3

Process.var == false

You can repeat the operator indefinitely by selecting the Infinite Loop check box.

The Loop indicator appears on operators that you have decided to loop:

You can configure the loop parameter on the Start Process operator to run a process
repeatedly. This works well for looping a few iterations of a process and saving a
historical snapshot of the process for each loop. However, avoid calling a process many
times (as in an infinite loop) from another process. CA Process Automation keeps a
history of all process instances. Calling a process in an infinite loop from another process
can use a considerable amount of disk space to save irrelevant data.

Process Loops and Iterations

108 Content Designer Guide

The preferred method for running a process repeatedly is to loop cyclically within a
process. When necessary, you can still save a historical snapshot of a looping process by
branching to a Start Process operator that starts a new detached instance of the process
before executing a Stop operator at the end of the branch.

You can specify the retention period, or length of time to save for the history, in the
library policy settings for an orchestrator or its associated touchpoint.

Note: If you set an operator to loop with a timeout followed by an action of Reset, the
loop condition is checked when moving from one iteration to another, not when
resetting an iteration. The OverallLoopDuration variable contains the number of seconds
since the start of the first iteration, including time spent in all the reset iterations. Loop
iteration resets do not also reset OverallLoopDuration.

If you set an operator to loop with a timeout followed by an action of Continue,
OverallLoopDuration will contain the number of seconds from the start of the first
iteration until the end of the last successful iteration. If the operator times out,
OverallLoopDuration will not contain the number of seconds from the start of the first
iteration until the time the operator times out.

Interrupt a Looping Operation

You can interrupt a looping operator by adding a stop link from another branch of the
process.

Follow these steps:

1. Open and check out a process.

2. Create a link from an operator in an independent branch and attach it to a looping
operator.

3. Right-click the link, and click Stop Link.

The link appears as a dashed red line with a red stop symbol near the looping
operator.

4. Click Save.

At runtime, the separate branch reaches the looping operator, and the following actions
occur:

■ The looping operator runs and completes itself.

■ Any post-execution actions for the operator are performed.

■ The now-merged processing from the two branches proceeds to the next operator
in the process.

Process Loops and Iterations

Chapter 4: Designing Processes 109

Loop Through Indexed Elements of a Dataset Field

Instead of using the built-in CurrentLoopIteration and OverallLoopDuration system
variables, you can create custom loop variables and manage them yourself. Previous
versions of CA Process Automation required this method. For example, you could create
logic to calculate the duration from the start time of the first iteration of a loop to the
current time for each loop. You could even use pre and post execution code to set up
input into a loop such as

■ initializing variables

■ setting loop counts

■ processing results when the loop is complete

To loop through all the elements of an indexed dataset field, first use a Run JavaScript
operator in the Utilities group to initialize the CurrentIndex element for the dataset field
to 0. For example, the following expression initializes the CurrentIndex element on the
process variable X to 0:

Process.X.CurrentIndex=0;

To loop through indexed elements of a dataset field

1. Connect the Successful exit link from the Run JavaScript operator to the operator
you want to process in a loop.

2. In the Dataset palette of the operator that you want to loop, use a Size element
setting for the indexed field as the Repeat Count value on the Loop tab. For
example:

Process.X.Size.

3. To increase the CurrentIndex setting after completing each iteration of the loop,
use a post-execution code expression. For example:

Process.X.CurrentIndex=Process.X.CurrentIndex+1;

In this case, the CurrentIndex element is the counter for the loop. You can use the
CurrentIndex setting to access elements of the indexed field in calculated
expressions. For example:

Process.X[Process.X.CurrentIndex];

Note: If you are accustomed to programming languages such as Visual BASIC that
use one-based arrays, remember that an indexed dataset field is a zero-based array.
In one-based arrays the first element is indexed by 1 and the last element is
indexed by the number of elements. The first element of an indexed dataset field is
indexed by 0 and the last element is indexed by one less than the value of the Size
element for the field.

In addition to accessing elements in an indexed dataset field, you can track the iteration
number during loop processing for other purposes. Use a process variable such as
process.i for the index variable. In an Interpreter Module Calculation operator that
precedes the looped operator, initialize the process variable to its starting value. For
example, process.i=1. To increase the index variable after completing each iteration of
the loop, use an expression in the post-execution code for the operator. For example:

Process Loops and Iterations

110 Content Designer Guide

Process.i=Process.i+1;

Note: The steps in this topic are considered no longer necessary; however, they are
included for reference with legacy code. If using the newer system variables, only step 2
applies and step 3 is replaced as follows. Use the CurrentLoopIteration variable of the
looping operator to access elements of the indexed field in calculated expressions. For
example:

Process.X[Process[OpName].CurrentLoopIteration];

Index the Loop Count for Other Purposes

You can track the iteration number during loop processing for accessing elements in an
indexed Dataset field, or for other purposes. Use a process variable for the index
variable (for example, process.i). In an Interpreter module Calculation operator that
precedes the looped operator, initialize the process variable to its starting value for the
loop:

Process.i=1;

To increase the index variable after completing each iteration of the loop, use an
expression on the Post-Execution Actions tab of the operator properties, for example:

Process.i=Process.i+1;

Note: This topic is considered no longer necessary; however, it is included for reference
when working with legacy code.

Loop Errors and Exceptions

If an error occurs with respect to the pre or post-execution code:

■ The process logs indicate that the Loop operator pre or post condition failed to
execute.

■ The process exception handler is triggered with an abort exception. The Source and
SourceROID point to the Loop operator.

Process Loops and Iterations

Chapter 4: Designing Processes 111

Loop a Series of Operators

You can also loop a series of operators inside a Loop operator.

Follow these steps:

1. Open a process.

2. Drag the Loop operator from the Standard operators group onto the process.

3. Resize the bounding box for the Loop operator to accommodate the sequence of
operators that you want to add to the loop.

4. Drag operators into the box.

The bounding box color changes to indicate it is the selected destination for
operators you drag.

5. Add ports and links.

6. Link the entry point on the box to the first icon in the branch and link the last icon
to the exit port on the box.

7. Add links to and from the Loop operator:

a. Link at least one operator outside the box to the entry port.

b. Link the exit port to at least one operator outside the box.

8. Double-click the Loop operator to view its Properties.

The Properties palette for the Loop operator appears. If it does not appear, choose
Properties from the View menu.

9. Set the Loop Properties and click Apply.

Note: You can create an infinitely looping branch by selecting the Infinite Loop
check box. As with any infinitely looping operator, you can stop the loop by adding
a Stop link from another operator.

Process Loops and Iterations

112 Content Designer Guide

Note: Values for the CurrentLoopIteration and OverallLoopDuration system
variables are updated for each process instance and appear in the dataset. Even if
the Repeat Count for the Loop operator is set to 1, CurrentLoopIteration shows 1
and OverallLoopDuration shows 10 at the end of a single instance. By contrast, the
CurrentLoopIteration and OverallLoopDuration system variables are only updated
for other operators when Repeat Count is greater than 1. This is because the Loop
operator always loops, even if it is only one time.

More information:

Interrupt a Looping Operation (see page 108)

While and Do While Loops

Use the While Loop check box of the Loop operator to manage loop behavior. When
checked, the Loop operator behaves as a while loop. When unchecked the Loop
operator behaves as a do while loop.

Any existing Loop operators in content developed before an upgrade to CA Process
Automation 4.0 will have the While Loop field unchecked. They will continue to behave
as do while loops. You can turn these Loop operators into while loops by checking the
associated While Loop box.

The two main differences between while and do while Loop operators are:

■ While loops check the loop condition specified in the Repeat Count field before it
executes the first iteration and each subsequent iteration.

■ Do while loops check the loop condition specified in the Repeat Count field at the
end of every iteration, so it is guaranteed to always execute at least the first
iteration of the loop.

Note: A Loop operator can be set to behave as a while or do while loop. The other
operators that support looping can only behave as do while loops.

Process Loops and Iterations

Chapter 4: Designing Processes 113

The Logical Sequence of a Loop Operator

A Pre-execution code and Post-execution code field are available in the Loop operator
properties. You can enter JavaScript code in these fields to run with each iteration of the
loop. CA Process Automation runs any pre and post execution code for a Loop operator
for each iteration of the loop.

Note: In content developed before an upgrade to CA Process Automation 4.0, loop
operators will have empty Pre-execution code and Post-execution code fields.

The processing sequence of any Pre and Post conditions depends on the type of loop.

While Loop Operators:

1. Run Pre condition.

2. Check while loop condition as indicated by the Repeat Count field.

■ If the loop condition succeeds:

a. Reset the operators inside the Loop operator.

b. Execute the operators inside the Loop operator.

c. Execute the Post Condition at the end of the Loop iteration.

d. Loop back to step 1.

■ If the loop condition fails:

Get out of the Loop operator without executing the Post condition then
execute the next operator after the loop operator.

Do While Loop Operators:

1. Reset the operators inside the Loop operator.

2. Execute Pre condition.

3. Execute the operators inside the Loop operator.

4. Execute Post condition.

5. Check do while loop condition as indicated by the Repeat Count field.

■ If the loop condition succeeds, loop back to step 1.

■ If the loop condition fails, get out of the Loop operator then execute the next
operator after the Loop operator.

Process Loops and Iterations

114 Content Designer Guide

Loop a Process

To run a process many times, create a cyclical branch in a process object instead of using
the Start Process operator to call a process repeatedly from another process. This
method involves looping a process cyclically by placing two Start operators. One Start
operator goes at the beginning and another Start operator goes at the end.

Follow these steps:

1. Open and check out a process.

2. Place the following operators:

a. Start

b. Stop Success

c. Stop Failure

d. A series of operators that you want to repeat.

3. Add a Start operator at the point in the sequence where it ends and where you
want to restart the branch.

4. Link the last operator in the branch to the second Start operator. The Start operator
has an entry link that allows it to be placed at the end of a sequence of steps.

Note: When the processing sequence arrives at the second Start operator shown in
the figure, it reinitializes all operators and restarts the process.

5. To interrupt this type of cyclical process, incorporate logic that leads out of the
cyclical branch. Add an exit port on an operator which leads directly to a Stop
operator or a different branch.

Process Loops and Iterations

Chapter 4: Designing Processes 115

Daemons and Other Looping Processes

When you want to run a process over and over repeatedly, create a cyclical branch in a
process object instead of using the Start Process operator to call a second process
repeatedly. A cyclical process runs in an infinite loop. Each iteration does not create new
instances of the process object. The primary advantage for implementing a cyclical
branch is that the logic that exits the loop is in the process itself. The process does not
depend on external factors in a parent process. The process performs as an autonomous
object.

Examples of looping processes that run indefinitely include:

■ Continuously looping processes for monitoring system or network usage

■ Polling the state of networks or system components

■ Organizing and checking events or messages

■ Daemons

■ Services

Looping Process Example

Item: Description:

 Start Operator 1: Begin the process with a standard Start operator.

 Start Process Operator: Design a sequence of operators that represent the
functionality you want to repeat or loop. This branch can even include a Start
Process operator to launch instances of a second process.

Process Control

116 Content Designer Guide

Item: Description:

 Start Operator 2: The Start operator has an optional entry link. When the
process flows to the second Start operator, it reinitializes all other operators
and restarts the process back at Start Operator 1.

 Exit Port and Link: To exit this looping sequence, specify an exit condition.

Note: An alternate method for interrupting a cyclical process is to use an independent
branch with its own Start operator. The branch can wait for the looping portion of the
process to change a variable or free a resource. After those events occur, the
independent branch runs; for example, by sending an email alert or processing a Stop
operator.

Process Control

Complex processes often require a hierarchy of subprocesses. In traditional
programming, functionality is modular. Teams break down complexity into procedures,
methods, or libraries that you can use repeatedly. Similarly, in CA Process Automation
there are methods to simplify complex processes. You can model subordinate processes
as branches or as separate processes. A separate subordinate or child process can then
be called from a parent process by a Start Process operator. For example, a parent
process managing computer systems for a bank could incorporate the following child
processes using Start Process operators:

■ During each business day, process automatic bill payments.

■ During each night, perform a daily backup.

■ At the end of each day, process and verify checks.

■ At the end of each month, calculate interest for accounts.

Subordinate processes define logically or physically distinct child processes within a
system. The structure of a parent process synchronizes child processes, manages
resources that are shared across processes, and defines error handling and
dependencies between processes on a system-wide scale.

Process Control

Chapter 4: Designing Processes 117

Child Processes

Use the Start Process operator to start a secondary or child process from a running
instance of a primary or parent process. The Start Process operator starts a new process
instance on a specified touchpoint. The Start Process operator initiates process variables
that are associated with the new instance.

The Start Process operator can start a new instance of a process in attached mode,
detached mode, or as an inline process:

■ Attached mode: The process that starts the new instance is referred to as the
parent process. The new instance is referred to as the child process. The application
finishes processing the entire new instance. A child process finishing its flow in
attached mode can copy its dataset values to the dataset in the calling parent
process.

If a parent process activates a Stop operator on a branch before a child activates its
own Stop operator, it is possible for the parent instance to finish before the child
instance.

■ Detached mode: The Start Process operator launches a new child process instance
that behaves as if it has no parent. In detached mode, the workflow that starts a
new instance of another process completes immediately after queuing the start
request. A process finishing in detached mode cannot copy its dataset values to the
dataset in the calling parent process.

■ Inline process: The child process runs as a separate instance. A parent process has
limited control over the child process. The inline child process is tightly linked to the
parent with access to the parent context and lifecycle such as instantiation or
archiving. You cannot run an inline process in detached mode.

Process Control

118 Content Designer Guide

Configure a Child Process

Configure the Start Process operator in a parent process to control the behavior of the
child process it is starting.

Follow these steps:

1. Open and check out a process in the Process Designer.

2. In the Operators palette, expand Process Control and drag a Start Process operator
into your process.

3. Double-click the Start Process operator to view its properties in the Properties
palette.

4. Expand the Start Process group.

5. In the Process Name field, enter the full path to the process.

6. In the Process Dataset Initialization Code field, click the Browse button indicated by
... (ellipsis) to open the full scripting dialog.

7. Enter JavaScript statements to initialize variables in the dataset of the child process
that you are starting. In this context, the Process keyword refers to the process
dataset of the new instance being started. The Caller keyword refers to the dataset
of the parent instance containing the Start Process operator. This context is the only
one in which the Caller keyword is available. This context is also the only one in
which the Process keyword does not refer to the process that contains an operator.

■ Parent Process: Process A

■ Child Process: Process B

■ Start Process operator in A starts child process B

■ Initialization of local dataset B occurs with dataset A as the Caller

The Process and Caller keywords are mandatory for referring to parent or child
process dataset variables. If you omit both keywords on a variable name, the
application looks for a calculation-scope variable. It does not check for a similarly
named variable in either the parent or child dataset. For example, the following
code fails if no calculation-scope variable X was previously created in the local script
dialog:

Process.X = Caller.X;

Process.Y = X + 100;

8. Click Save to close the Initialization Code dialog.

9. In the Mode field, select Attached, Detached, or Inline.

If you select Detached, the Start Date field becomes enabled. It specifies the date
when the detached instance of the process starts. The default value is the date
when the operator runs, indicated as System.Date. Similarly, the Start Time field
specifies the time when the detached instance starts. The default value is
System.Time.

Process Control

Chapter 4: Designing Processes 119

Note: Previous versions of this application included separate Run Process operators for
attached mode and detached mode. Both operators actually performed the same
function. The only difference was that for the operator placed with Run Process, the
Detach after start or after queuing request check box is initially cleared. For the Run
Detached Process operator, the check box was initially selected. In either case, you
could select or clear the Detach After Start or After Queuing Request check box anytime
after you placed the Run Process operator to change its start mode. In this release, all of
these operators are imported as Start Process operators.

Return Dataset Variables to the Parent Process

The dataset for a completed child process can be accessed by using an expression in the
parent process. The name of the Start Process operator references the child process
dataset in the local dataset of the parent process. The following code in the parent
process references a dataset variable of a child process:

Process.Operator_Name.Field_Name

Operator_Name represents the name of the Start Process operator in the parent
process and Field_Name is the dataset variable that you want to access in the child
process.

This only works for processes started in attached mode. Processes started in detached
mode become the root process in a call sequence and do not copy their datasets to the
process that started them.

Start Processes Recursively

Other than memory usage, there is no restriction on the number of processes you can
start in a chain. A process can even start another instance of itself recursively.

Avoid calling processes recursively in attached mode because this practice can result in
an infinite call chain. However, it is often useful for a process to start another instance
of itself in detached mode. For example, you can save an image of a monitoring process
in a certain state, and continue running the process. In this case, the monitoring process
can start a new instance of itself in detached mode, and then execute a Stop operator to
terminate itself. The terminated instance is then saved and an administrator can
examine it in its preterminated state.

Process Control

120 Content Designer Guide

Inline Process

The Start Process operator is used to invoke child processes. The child process that is
invoked runs as a separate instance. A parent process has limited control over the child
process and may lead to a performance overhead at execution time.

Inline mode lets you execute a child process and expand it into the parent process. An
inline child process has access to the parent context. The lifecycle of the inline child,
including instantiation, archiving, and so on, is tightly linked to the parent.

CA Process Automation also permits users to decide whether they want to run a process
as an inline process.

Configure an Inline Process

You can configure a process operator to run a child process in inline mode.

Follow these steps:

1. In the Start Process operator Properties palette, click the Object Browser (...)
button.

The Object Browser appears.

2. Select the child process.

3. In the Mode field, select Inline.

The child process is configured to run as an inline process.

4. Select the Inherit Lane Change Handler from parent process check box.

The lane change handlers of the parent are loaded for the child process.

Note: The Inherit Lane Change Handler from parent process check box is enabled
only for inline child processes. CA Process Automation evaluates the child process
when the parent process starts. The inline child process is loaded and expanded in
the parent process.

Process Control

Chapter 4: Designing Processes 121

View an Inline Child Process

You can view an inline child process at runtime using one of the following methods:

■ In the Designer, click the plus icon on the top right-hand side of the Start Process
operator in the parent instance.

■ In the Designer, click the Hierarchy drop-down list and select a child process listed
under the parent.

■ On the Operations page, click a parent instance.

The following graphic demonstrates these three methods.

Process Lanes

122 Content Designer Guide

Process Lanes

The lanes in a process, often called swim lanes, provide a way for you to divide your
process into different logical parts. You can add, insert, resize, and remove swim lanes in
the Process Designer. You can define rules that are triggered when links between steps
in a process cross a boundary between lanes. The rules define additional steps to run
when processing crosses swim lane boundaries.

You arrange process operators visually in one or more swim lanes. Parallel lines show
the lane boundaries. The default lane orientation for a new process is vertical. Initially, a
new process has a single lane, labeled Lane_0. Additional lanes are named in sequence
as you add them, for example, Lane_1, Lane_2, and so forth. You can customize the
names to arrange branches of a process in your own meaningful way.

When there are multiple lanes in a process, you can define lane change rules. These
rules specify operator sequences that are invoked only when execution of a process
crosses between two lanes. A lane change rule looks like any sequence of operators on
the Main Editor tab, except that each rule starts with a Change Lane operator instead of
the Start operator. Properties on the Change Lane operator define the transition
between source and destination lanes that invoke the sequence of operators linked to
the Change Lane operator.

You can add any number of lanes on the Main Editor tab and then form links that cross
lane boundaries between operators in the process. Then, on the Lane Change Handler
tab, you define sequences of operators invoked when execution crosses boundaries.
When execution of a process crosses a lane boundary, it invokes a process on the lane
change handler that is defined to occur for the particular transition (such as from lane A
to lane B).

If you define more than one rule for a particular transition, the application uses the first
existing rule in the following order of priority:

Priority Matches and runs

1 Rule defined for specific source and destination lanes (A to B)

2 Rule defined for a specific source lane (A to any)

3 Rule defined for a specific destination lane (any to B)

4 Rule defined for any two lanes (any to any)

5 No rule if none of the matches listed above exist.

Process Lanes

Chapter 4: Designing Processes 123

If no lane change rules are defined in the process object for the current instance of a
process, the application looks for a matching lane change rule in the default process
object specified in the property settings for the orchestrator. This occurs only if no lane
change rules are defined in the current process object. The application does not check
the default process object if there is any lane change rule defined in the current process
object, even when no match occurs.

When processing crosses a transition between lanes, the application:

■ Suspends the process after completing currently executing operators.

■ Tries to match a rule defined in the process object or in the default process for the
orchestrator in the following order:

Lane Change Rules Matches Action

Are defined in the
process object

A rule in the process object
in the order of priority listed
above

Run the rule defined in the
process object.

Are not defined in the
process object

A rule in the default process
object for the orchestrator in
the order of priority listed
above.

Run the rule defined in the
default process object.

 No match. Ignore the transition.

Then, the application continues processing the process.

Create Horizontal or Vertical Lanes

Swim lanes are oriented either horizontally or vertically, as configured in the process
properties. Select the orientation of swim lanes before you start to add operators to a
process. You must configure the orientation before you add additional swim lanes to a
process because you cannot change the orientation of multiple swim lanes in a process.

Follow these steps:

1. Open and checkout a process.

2. In the Process Designer, click Properties.

3. In the Process Properties palette, expand the Configuration section.

4. Under Lane Orientation, click Horizontal or Vertical.

5. Click Apply.

Process Lanes

124 Content Designer Guide

Manage Swim Lanes

You can add, insert, resize, and remove swim lanes in the Process Designer.

To add a new lane to the right of vertically orientated lanes or to the bottom of
horizontally orientated lanes:

1. On the Main Editor panel of the Process Designer, right-click the Process pane.

2. Click Lanes, Add Lane.

Note: Alternately, you can click the Add Lane button on the toolbar.

A new lane is added to the Main Editor panel.

To insert a lane anywhere else on the Main Editor tab:

1. On the Main Editor panel of the Process Designer, right-click the lane adjacent to
where you want to add the new lane.

2. Click Lanes, Insert Lane, click Insert Lane on Left Side or Insert Lane on Right Side.

A new lane is inserted.

3. If lanes are oriented horizontally, click Insert Lane Above or Insert Lane Below

A lane is inserted above or below the existing lane based on your selection.

4. To resize an existing lane, click the separator line between lanes and drag it left or
right for vertically arranged lanes or up or down for horizontally orientated lanes.

Note: The minimum width of a swim lane is 50 pixels.

You can remove a lane from a process by merging it into an existing lane. When merging
a lane, you can merge with a lane either to the left or right of a vertically oriented lane
or to above or below a horizontally orientated lane.

To remove a lane from a process

1. On the Main Editor panel of the Process Designer, right-click within the lane that
you want to delete.

2. Click Lanes, click Merge Lanes, and click either Merge with Left Side or Merge with
Right Side.

Note: If lanes are oriented horizontally, click Merge Lane Above or Merge Lane
Below to merge.

Process Lanes

Chapter 4: Designing Processes 125

Lane Handling Rules

When there are multiple lanes in a process, you can define lane change rules. These
rules specify operator sequences that are invoked only when execution of a process
crosses a lane boundary. Each rule is defined to occur for one of the following lane
transitions:

■ From a specific lane to another specific lane (from lane A to lane B)

■ From a specific lane to any other lane (lane A to any)

■ From any lane to a specific lane (any to lane B)

■ From any lane to any other lane (any to any)

A lane change rule looks like any sequence of operators on the Main Editor tab, except
that each rule starts with a Lane Change operator instead of the Start operator.
Properties on the Lane Change operator define the transition between source and
destination lanes that invoke the sequence of operators linked to the Lane Change
operator.

To create a lane handling rule

1. At the bottom of the Process Designer, select the Lane Change Handler tab.

2. From the Operators palette Standard group, drag a Lane Change operator onto the
Lane Change Handler panel.

3. Double-click the Lane Change icon, and in the Properties pane, click the Lane
Change properties panel

4. In the Name field, type a name to identify the rule.

5. For Source and Destination, select the combination of lanes that triggers the rule.

6. Click Apply.

7. From the palette, drag additional Operators onto the Process that completes the
rule for the transition, and configure each one as necessary.

8. In the toolbar, click the Save button.

The new transition rule is complete.

Process Versions

126 Content Designer Guide

Process Versions

CA Process Automation always runs the checked-in copy of the current version of a
process object. When the orchestrator starts running the current version of a Process
object, it creates a copy of that version of the process in the automation library. The
system processes operators in an instance and creates or references process dataset
variables within the instance. Changes to an instance of a process do not affect the base
definition of the process. Base definitions are accessed using the Library Browser. You
view or edit both the base definition and instances of a version of a process using the
Process Designer.

Document a Process

You can use comments, your own operator names, and object labels to document a
process. Appropriate comments, naming, and labels help other designers understand
what your process does and how it is constructed. Use comments for documenting a
process, and for documenting chains, processes, or regions in a process. Comments
remain stationary in a process. Do not use comments to label individual operators
because operators are often relocated on the workspace to adjust for links and other
operators. Instead, use the Name property in the Information properties of an operator
to label it.

Add Comments to a Process

Use the Comment operator in the Standard group of the Operators palette to add
comments to a process. You can change the Name property string for the operator.
Comments are important for documenting steps in a process and allow more space than
labels.

To add a comment to a process

1. Drag a Comment operator from the Standard group onto the process.

A comment object appears with a default name of Comment.

2. Double-click the comment to open the Comment Properties dialog.

3. Replace the initial text of the comment with the text that you want to appear on
the canvas.

You can change the background color, text format, and alignment.

4. Click OK to apply your changes.

5. Click Save to save your process design.

Document a Process

Chapter 4: Designing Processes 127

Set the Name for an Operator in a Process

The operator Name property identifies an operator placed in a process. Expressions use
the name to access the operator dataset in the format:

Process.operator_name.field_name

By default, the Name property is also used to label an operator in the Process Designer
when you turn on the Icon Information option for a process.

When you add an operator to the process, a default name is generated, indicating the
task performed by the operator. You can change this text to provide more meaningful or
specific information about the operator relative to your system.

To change the name of an operator

1. Double-click an operator in a process or click the operator and choose Properties
from the View menu.

2. In the Information properties on the Properties pane, in the Name field, enter a
short description for the operator.

Operator names can be composed of alphanumeric characters and the underscore
(_).

Change and Display Operator Information in a Process

The name is included in a text field that optionally labels an operator on a process. This
field is defined by the operator Text property. The Operator Information option on the
View menu hides or displays this text field next to operators in a process.

CA Process Automation generates a default value for the Text property by combining
the operator name and operator parameter settings.

To change the Text property of an operator

1. Double-click an operator in a process.

2. In the Information properties on the Properties palette, in the Name field, enter the
text that you want to appear next to the operator in the process.

Note: Use the other settings on the Information tab on the Properties pane to:

■ Specify a Custom Icon instead of the default icon for the operator.

■ Override the object preferences for automatically or manually updated text
displayed with the operator.

■ Set the text position, background color, font, and alignment.

Embedded Content

128 Content Designer Guide

Embedded Content

You can embed a process design, runtime instance, automation object, or a particular
view into other products and dynamic interfaces using designated URLs. This seemless
integration offers the following functionality:

■ Other development teams can adopt products and solutions that leverage CA
Process Automation and that offer integrated views on one page in one window.
For example, as a customer, administrator, or service provider, you can integrate
specific portions of the CA Process Automation user interface into existing portals
such as web sites, intranets, and Sharepoint repositories.

■ As a process designer, you can construct a process workflow that sends email with a
direct link to a specific task so that the task can be approved directly.

■ Embedded content facilitated by shortcut links to specific views saves time
accessing important and relevant information.

Embedded Content Links

The following links support embedded content in other views, frames, web parts, or
portals. You can also send email with these links to facilitate direct views on specific
objects.

In place of [Server URL] use the URL for your CA Process Automation deployment. For
example:

http://<server>:CA Portal/itpam/Web.jsp

In place of <path> specify the absolute path to the automation object and its name in
the Library Browser. For example:

/MyProjectFolder/Folder_1/MyStartForm

Note: These links are case sensitive.

Embedded Content

Chapter 4: Designing Processes 129

Automation Objects:

Interaction Request Form

[Server URL]?page=Form&refPath=<path>

Start Request Form

[Server URL]?page=Commander&refPath=<path>

Schedule

[Server URL]?page=Agenda&refPath=<path>

Calendar

[Server URL]?page=Calendar&refPath=<path>

Custom Icon

[Server URL]?page=CustomIcon&refPath=<path>

Custom Operator

[Server URL]?page=Template&refPath=<path>

DataSet

[Server URL]?page=Dataset&refPath=<path>

Package

[Server URL]?page=C2OPackage&refPath=<path>

Process Watch

[Server URL]?page=AppMonitor&refPath=<path>

Resource

[Server URL]?page=Resources&refPath=<path>

Process

[Server URL]?page=processeditor&refPath=<path>

Other Entities:

Process Watch (default)

Use this format to access the Process Watch as seen on the Operations tab:

[Server URL]?page=processwatch

Task Lists

Use this format to access all tasks as seen on the Operations tab:

[Server URL]?page=tasklist&tasklist=alltasks

Use this format to access group tasks as seen on the Operations tab:

[Server URL]?page=tasklist&tasklist=grouptasks

Use this format to access my tasks as seen on the Operations tab or Home tab:

[Server URL]?page=tasklist

Process Instances

Use this format to access a runtime instance of a process in its own window:

[Server URL]?ROID=<runtime_instance_ID>&page=runtimeeditor

Embedded Content

130 Content Designer Guide

Forms

Use this format to access the Start Request Form or Interaction Request Form used
to reply to a task:

[Server URL]?ROID=<runtime_object_ID>&tasklist=ALL_TASK_FILTER

&page=replytask

Use this format to access a list of Start Request Form instances as seen on the
Operations tab:

[Server URL]?refPath=<path_to_SRF_object>&page=srflist

Object Versions

Append the URL with the versionid parameter to access a specific checked in
version of any library object except a process:

&versionid=<version_number>

For example, to access version 3 of the MyResource object:

[Server URL]?page=Resources&refPath=/TestFolder/MyResource&versionid=3

Process Versions

Append the URL with the version parameter to access a specific checked in version
of a process:

&version=<version_number>

For example, to access version 4 of the MyProcess object:

[Server URL]?page=processeditor&refPath=/TestFolder/MyProcess&version=4

Navigate to a Specific Part of a Process

Chapter 4: Designing Processes 131

Navigate to a Specific Part of a Process

When working with long processes, use the Navigator window to help you adjust your
current view. Panning a smaller view of a process is more convenient than scrolling
through the entire process in the main window.

Follow these steps:

1. Open a process.

2. In the Process Designer, check Navigator from the View menu.

The Navigator window shows a miniature image of your process.

3. Drag the rectangular frame over the portion of the process that you want to view.

The main window shows an enlarged view of the selected area.

4. To adjust the miniature view of your process, drag the square at the bottom right
corner.

5. To resize the Navigation palette, drag any edge or corner the same way you resize
any palette.

Multi-Tenancy and CA Process Automation

In a multi-tenant deployment, administrators want to control user access to process
instances based on a tenant or a set of tenants. You can use common CA Process
Automation processes across multiple tenants. This feature allows for access control of
process instances. You can prevent a user with access to one tenant from accessing an
instance related to a different tenant. This feature also results in enhanced process
duplication and synchronization and reduces related maintenance tasks.

You can limit access to the process instances, based on access to a tenant, using
common processes across tenants. This is accomplished by setting a tenant ID (as a new
well-defined variable) as part of a process instance. Then validate access to that tenant
ID when access to that process instance is requested.

Note: Setting the tenant ID is up to the process designer as part of designing the process
or as part of the input parameters to the process. Any process that does not have a
tenant ID already set must follow the current access control restriction based on the
process definition.

Multi-Tenancy and CA Process Automation

132 Content Designer Guide

Make a Process Aware of Multiple Tenants

Making an existing process aware of multiple tenants involves two steps:

■ Add a security-related variable to the context of a running process instance at
runtime

■ Create a policy for multi-tenancy

To add a security-related variable to the context of a running process at runtime

1. Do one of the following:

■ Add a security-related variable to the context of a running process instance at
runtime using JavaScript:

Process.SECURITY_CONTEXT_ID=<ID>;

Process.SECURITY_CONTEXT_GRP=[set the product group or family];

For example:

Process.SECURITY_CONTEXT_ID="myid";

Process.SECURITY_CONTEXT_GRP="mygrp";

OR

■ Pass values to the Process instance using <params> tags while starting the process
through the executeProcess web service. For example:

<executeProcess xmlns="http://www.ca.com/itpam">

<flow>

…

<params>

 <param name="SECURITY_CONTEXT_ID">myid</param>

 <param name="SECURITY_CONTEXT_GRP">mygrp</param>

</params>

</executeProcess>

To create a policy for multi-tenancy

1. Add a new policy in EEM using Object as the Resource Class Name.

2. Specify the Identities for which this policy is valid.

3. Specify Resources so that it matches the path of the process for which the policy is
created.

4. Specify the required policy actions.

5. Add filters and specify values for the named attributes Security Context ID and
Security Context Group.

Multi-Tenancy and CA Process Automation

Chapter 4: Designing Processes 133

This policy applies to all process instances when the values of the named attributes
match those in the process instance at runtime.

Inherit Security in Sub-Processes

Sub-processes automatically inherit the values of security attributes (that is,
SECURITY_CONTEXT_ID and SECURITY_CONTEXT_GRP) from their parent process.

Add Variables at Time of Initialization

You can specify new values in the Process Dataset Initialization Code option of the Run
Process service operator. Values for the security context specified in the Process Dataset
Initialization Code take precedence over those specified in the parent process.

Multi-Tenant Processes Using Process Watch

You can view runtime process instances in Process Watch if a policy for multi-tenancy
allows it. You can also perform required actions such as Open, Abort, Suspend, and so
on, if a policy allows it.

Chapter 5: Operators and Icons 135

Chapter 5: Operators and Icons

CA Process Automation carries out the instructions in the operators that you add to a
process or to a schedule. This section describes how to configure operators after you
have added them to a process or schedule object. This section also includes information
on custom operators and connectors.

This section contains the following topics:

Operators (see page 136)
Operator Icons (see page 163)

Operators

136 Content Designer Guide

Operators

Process Operators (see page 93) were introduced in a previous section of this guide. To
learn more about each operator, see the Content Designer Reference Guide.

This section provides general guidelines for configuring properties and working with
different types of operators including custom operators.

Item: Description:

 Designer Tab and Toolbar: When you open a new
process or you edit an existing one from the Library
Browser, the Designer tab appears. In the toolbar,
click View and check the Operators and Properties
palettes.

 Operators Palette: Search for operators by folder or name.

 Custom Operators in a Custom Group: Drag and drop a custom operator from
this palette to your process layout. Right-click an operator to add or remove it
from the Favorites group.

 Properties Palette: Use this palette and its additional buttons, links, and
windows to manage the properties of the currently selected operator. Expand
and collapse panels as you work. Each panel consists of similar properties.

Operators

Chapter 5: Operators and Icons 137

Item: Description:

 Additional Windows: Some properties appear in their own additional windows.

You also work with operators when configuring schedules.

Item: Description:

 Schedule Editor: When you open a schedule from the Library Browser, the
Schedule Editor appears. Use the toolbar to activate, set validity, check in, or
save the schedule.

 Processes Pane: Select the processes that you want to include and drag them
into the Schedule Items page.

 Scheduled Process in Queue:Set the duration and frequency for running the
process within a single day.

 Process Properties: Click the Properties button to view process properties on
the General and Specific tabs.

Operators

138 Content Designer Guide

Item: Description:

 Operators Pane: Select the operators that you want to include and drag them
into the Schedule Items page.

 Operator Properties: Click the Properties button to view operator properties
on the General and Specific tabs.

Configure Operator Properties

Operator properties appear in the Process Designer on the Properties palette. Similar
fields are organized in group boxes on expandable panels with familiar titles such as
Process, Execution Settings, Simulation, and Icon. Some panels and groups are common
to all operators and others are unique to a particular operator. For example, the
properties for every operator include an Icon panel. The Asynchronous SOAP Call Data
panel however, only appears for the Invoke SOAP Method Async operator.

Operator properties are also available when you include operators in Schedule objects.

Follow these steps:

1. Click the Library tab.

2. Open a process object or open a schedule object.

Processes open in the Process Designer. Schedules open in the Schedule Editor
dialog.

3. In the toolbar, click Check Out if the object is not already checked out.

4. Add an operator to the process or schedule:

a. For a process, drag an operator onto the process layout from the Operators
palette.

b. For a schedule, collapse the Processes pane, expand the Operators pane, and
drag an operator into the list of Schedule Items.

5. View the operator properties:

a. In a process, double-click the operator.

The Properties palette appears.

b. In a schedule, click Properties and then click the General or Specific tabs.

6. Expand the panels to configure the fields.

7. Click Save.

Note: For detailed information about operator properties, see the Content Designer
Reference Guide.

Operators

Chapter 5: Operators and Icons 139

Java and External JARs

The Java module allows you to specify Java code to run inside a BeanShell Interpreter in
the CA Process Automation JVM. BeanShell is an embedded dynamic Java source
interpreter, scripting language, and flexible environment. Using the CA Process
Automation Java module and operators, you can:

■ Import and reference JAR files at the module or operator level.

■ Configure global settings for all Run Java Code operators or specific settings for a
particular operator. You can specify paths to the external JAR files that operators
can use. You can also set the default log setting in the module. For each operator,
you can specify the code that you want to run, the input parameters, and the
output variable names. Log settings you specify for a single Run Java Code operator
override the module-level log settings.

■ Write Java code that references classes in these JARs. CA Process Automation
automatically creates new Java Object data types when you run a Java program.
Because new Java objects are invoked inside the Run Java Code operator, you do
not need to use any create or destroy object methods. After execution of the
operator, CA Process Automation automatically collects any garbage resources,
classes, and objects in memory.

■ Run the Java code using the Run Java Code operator. You can invoke classes in an
external Java Archive (JAR) file from a Run Java Code operator. Use this operator to
leverage the functionality that your existing Java code provides.

■ Save Java objects to the operator dataset to make them available to subsequent
Run Java Code operators. You have the option of saving an entire Java object in the
operator dataset before the end of execution of the operator. You can then
leverage the Java object saved in the operator dataset in subsequent operators by
passing it to them.

Operators

140 Content Designer Guide

Configure the Java Module

You can invoke classes in an external Java Archive (JAR) file from all Run Java Code
operators. Configure the Java module to apply settings to these operators to leverage
the functionality that your existing Java code provides. Then use the Run Java Code
operator to create a Java object.

Follow these steps:

1. Specify the JARs you want to work with on a CA Process Automation orchestrator or
agent machine. Locate the Default External Jars field for the module. Enter the
paths to the external JARs to load for use by all the Run Java Code operators
running on the orchestrator or agent. For each path, you can enter:

a. The full path to a JAR file that resides on the machine where the orchestrator
or agent is running. The full path starts with either of the following slash marks:

/

\\

You can also designate the full path using a regular expression that starts with
one character, then a colon (:), and then the rest of the string, including dot
syntax as in:

^.:.*

b. The full path to a JAR file available over http:// or https://. The path does not
require authentication and is not accessible through an http proxy.

c. A relative path to a JAR file that was uploaded to the CA Process Automation
User Resources folder. Unless you specify a full path, the application considers
the path that you enter to be a relative path.

The Java Module Class Loader, which all the running Run Java Code operators of the
Java module share, loads the JARs that you list in this field. The JARs are loaded
once when executing the first Java module operator, and later after any changes
made to the default external JARs. Any JAR entered in this list are available to the
Java code that the Run Java Code operators run. Any classes you define in the
operator-level JARs override the same classes specified in the module-level JARs.

2. In addition to external JARs, enter paths to any .class files that any Run Java Code
operators running on the orchestrator or agent are using.

a. For .class files in an unnamed package, enter a path that ends with the
directory that contains the .class files. For example, MyAccount.java does not
belong to a package, and MyAccount.class is in the following location:

C:\java\tests\MyAccount.class

Set the operator to use the following path:

C:\\java\\tests

Operators

Chapter 5: Operators and Icons 141

b. For .class files in a named package, enter a path that ends with the directory
that contains the root package. The root package is the first package in the full
package name. For example, MyAccount.java belongs to package com.ca.tech.
MyAccount.class is at the following path:

C:\java\othertests\com\ca\tech\MyAccount.class

Set the operator to use the following path:

C:\\java\\othertests

Note: Specify the path to a folder as a full path or as a relative path to CA Process
Automation User Resources. Do not specify an http path. Specify the path to a
folder to load .class files, not JAR files. Unlike .class files, each JAR file requires a
separate path that ends with the JAR file (not the directory where it resides).

3. (Optional) Upload the JARs you want to work with to the CA Process Automation
User Resources.

CA Process Automation automatically mirrors the JARs.

Note: Resources, including user resources, are mirrored within the mirroring
interval of the orchestrator or agent. Ensure that the JAR files you upload in the
user resources are already mirrored before using them in the Java module
operators.

4. Verify that the JAR files containing the Java classes you want to work with are
available to the orchestrator/agent whose touchpoint is running the operator.

5. (Optional) Configure the module default logger. You can override this configuration
at the operator level.

6. (Optional) Override any module level settings by configuring individual operators.
See the next procedure, Configure a Run Java Code Operator (see page 142).

7. Run any Run Java Code operators. The Java module captures any exceptions or
errors that are encountered during an operation and alerts the user in the Reason
field of the problem operator.

Operators

142 Content Designer Guide

Configure the Run Java Code Operator

You can invoke classes in an external Java Archive (JAR) file from a Run Java Code
operator. The Run Java Code operator can use both operator-level and module-level
JARs. You can even configure the Run Java Code operator to override module-level
settings. Use the operator to leverage the functionality in your existing Java code.

Follow these steps:

1. If you have not already configured the Java module, complete this task first. See
Configure the Java Module (see page 140).

2. Configure the Run Java Code operator. Specify the paths to the external jars that
the Run Java Code operator uses. For each path, you can enter:

a. The full path to a JAR file that resides on the machine where the orchestrator
or agent is running. The full path starts with either of the following slash marks:

/

\\

You can also designate the full path using a regular expression that starts with
one character, then a colon (:), and then the rest of the string, including dot
syntax as in:

^.:.*

b. The full path to a JAR file available over http:// or https://. The path cannot
require authentication and must not be accessible through an http proxy.

c. A relative path to a JAR file that was uploaded to the CA Process Automation
User Resources folder.

Unless you specify a full path, the application considers the path that you enter to
be a relative path.

The operator loads the JARs listed in this field and makes them available to the Java
code in the running operator. The classes defined in these JARs override the same
classes specified in the module-level JARs.

3. In addition to external JARs, enter paths to any .class files for the Run Java Code
operator.

a. For .class files in an unnamed package, enter a path that ends with the
directory that contains the .class files. For example, if MyAccount.java does not
belong to a package, and MyAccount.class is in:

C:\java\tests\MyAccount.class

Set the operator to use the following path:

C:\\java\\tests

b. For .class files in a named package, enter a path that ends with the directory
that contains the root package. The root package is the first package in the full
package name. For example, if MyAccount.java belongs to package
com.ca.tech; and MyAccount.class is in:

C:\java\othertests\com\ca\tech\MyAccount.class

Operators

Chapter 5: Operators and Icons 143

Set the operator to use the following path:

C:\\java\\othertests

Note: Specify the path to a folder as a full path or as a relative path to CA Process
Automation User Resources. Do not specify an http path. Specify the path to a
folder to load .class files, not JAR files. Unlike .class files, each JAR file requires a
separate path that ends with the JAR file (not the directory where it resides).

4. (Optional) Upload the JARs you want to work with to the CA Process Automation
User Resources.

CA Process Automation automatically mirrors the JARs.

Note: Resources, including user resources, are mirrored within the mirroring
interval of the orchestrator or agent. Ensure that the JAR files you upload in the
user resources are already mirrored before using them in the Java module
operators.

5. Specify the code that you want to run.

6. Specify the input parameters to pass to the Java code.

7. Specify the output variable names. These are the names of the variables created in
the operator Java code which must be saved in the operator dataset at the end of
execution of the code.

Note: Any Java object that is not a boolean, date, integer, number, string, character,
or array of any of these types, is serialized and saved as a JavaObject.

8. (Optional) Specify the logger setting of this Run Java Code operator. These settings
override the module-level logger settings.

9. Run the Run Java Code operator.

The Java module captures any exceptions or errors encountered during an
operation and alerts the user in the Reason field of the problem operator.

Operators

144 Content Designer Guide

Using a JavaObject

Java objects are saved after a Run Java Code operator has completed in a JavaObject
data type. You can use a JavaObject dataset variable in the following ways:

■ Pass the JavaObject dataset variable in the parameters list of the Run Java Code
operator.

■ Pass the path of the JavaObject dataset variable in a string variable from an
Interaction Request Form or Start Request Form. For example:

JavaObjectPath = Datasets["/GlobalDatasets"].acct

Then, you can use the eval function when passing the JavaObjectPath variable to
the parameters list of the Run Java Code operator. For example:

eval(Process.IRF.JavaObjectPath)

■ Copy a JavaObject in Javascript. You can also assign one JavaObject to another.

Note: Do not modify the actual value of a CA Process Automation JavaObject (the
serialized string of the original Java object). Your changes could prevent the Run
Java Code operator from loading the JavaObject.

Observe the following constraints when working in JavaScript:

■ Similar to passwords, you cannot concatenate a JavaObject to a string.

■ You cannot load a JavaObject and use its methods in JavaScript. Instead, pass the
JavaObject in the Run Java Code operator parameters list and access it in the
operator Java code.

Operators

Chapter 5: Operators and Icons 145

The Java code that you write can consist of normal Java statements and expressions.
You can also define your own methods and use them inside the code. For example:

// Import the classes that you want to use

import ca.tech.pam.MyAccount;

// Note: no need to import StringBuffer and Date because they are part of the

// automatically imported packages

// import java.lang.StringBuffer;

// import java.util.Date;

// Note: the jar that contains the ca.tech.pam.MyAccount class

// must be in the list of External Jars of the operator or the module;

// but java lang and java util are in rt.jar, which is automatically put in the

classpath

MyAccount acct = new MyAccount(1000.00);

// Use the public methods of the MyAccount object

acct.addFunds(34.44);

acct.subFunds(10);

// Define your own method

String getStatement(MyAccount acc) {

 StringBuffer strBuff = new StringBuffer("Account Balance: " +

acc.getBalance());

 Date dt = new Date(System.currentTimeMillis());

 strBuff.append(" on date: " + dt);

 return strBuff.toString();

}

// Use the method you defined

// also print the statement using the 'logger' object that you

// setup in the 'Logger' page of the operator

logger.info(getStatement(acct));

After you run this Java code, the log message shows the account balance, the date, and
the time:

Account Balance: 124.44 on date: Wed Jul 13 12:53:37 EDT 2011

Custom Operators

You can define your own Custom Operator objects that users can add to their processes
or schedules just as they would add any other operator. You create custom operators by
reusing an existing base operator. Configure the settings of that base operator in the
Properties palette. Use custom operators to extend new functionality that can be
shared across your IT organization.

Operators

146 Content Designer Guide

As a simple example, you could create a custom operator that retrieves a specific piece
of information from a network router using the Get SNMP Variable operator as its base.
Configure the appropriate SNMP variable OID and community string, and then set the
properties so a user can configure the IP address of the SNMP variable. Once published,
any user can easily access this specific information from a network router by placing
your custom operator in their process or schedule and simply configuring the IP address.
They do not have to know the SNMP variable OID or the community string. Those values
have already been configured and are likely hidden from the user.

A more powerful use of custom operators is in the development of interfaces to new
enterprise applications and systems including:

■ Mission-critical applications; organizations often develop and deploy these
applications internally.

■ Web services (SOAP)

■ Command line and scripting applications.

■ JMX

■ SNMP

Develop custom operators that perform common actions that interface with your
applications and systems. Reuse your own custom operators to enable your
organization to work easily with these applications and systems from automated
processes. Users can perform actions without expert knowledge of all application and
system interfaces.

Custom operators also provide the added advantage of easily adapting to changes in
your IT environment. For example, if changes in your IT environment require you to
change the way you interface with an application, then you can change only the original
Custom Operator object. All processes and schedules using that custom operator would
automatically apply the changes in the latest designated version. Thus, any changes in
the IT environment are transparent to all processes and schedules.

Create a Custom Operator Object

You can create custom operators in any library folder.

Operators

Chapter 5: Operators and Icons 147

Follow these steps:

1. Click the Library tab.

2. Click a folder.

3. In the toolbar, click New and then choose Custom Operator.

The Select Base Operator dialog appears.

4. Select the base operator for your custom operator and click OK. Expand folders or
enter an operator name to search.

A custom operator object with a default name is created in the library.

5. Rename the custom operator.

Note: The application identifies custom operators by a unique location in the library
using the object path and name. Avoid changing the location and custom operator
object name if it is currently being used in a process. Renaming or moving a custom
operator while it is used in a process can result in the loss of changes or updates.

Custom Operator Properties

You can configure a custom operator by modifying the default settings available for the
base operator. You can also add input pages and parameters to present a user of the
custom operator with specific input settings.

Seven main types of properties exist for each custom operator:

■ Form

■ Preview

■ Settings

■ Dataset

■ Properties

■ Versions

■ Audit Trail

For each setting, you would typically:

■ Leave it blank and let the user configure it when they use your custom operator.

■ Configure it with a predefined value and mark it as invisible, which hides the setting
altogether from the user when they use your custom operator.

You can also:

■ Configure it with a predefined value, but let the user change the value.

■ Configure it with a predefined value and mark it as read-only, which lets the user
see but not edit the value.

Operators

148 Content Designer Guide

Example: A Basic Custom Operator

You can create a custom operator that retrieves a specific piece of information from a
network router using the Get SNMP Variable operator as its base. As part of your
custom operator, configure the appropriate SNMP variable OID and community string,
and then set the properties so a user can configure the IP address of the SNMP variable.
The Get SNMP Variable operator has the following specific settings:

■ Agent Host (IP Address)

■ Community

■ Object ID (OID)

■ Retry Count

■ Timeout

■ SNMP Version

You would typically configure predefined values and mark as invisible all the settings
except for Agent Host. Another designer using this custom operator only sees the Agent
Host setting in the Properties palette. All other settings are hidden. Other users can
specify the Agent Host to determine the network router where information is sourced.
But other users do not need to know the other settings for a Get SNMP Variable
operator. As long as they configure the correct IP address, the information in question
appears.

Example: An Advanced Custom Operator

As for a more advanced example, you can create an interface to an in-house application
using scripting. In this example, you would use the Start Script operator as the base for
your custom operator. Then, you would typically specify the extension of the script, the
script itself, and other settings such as the parameters to pass to the script. You would
typically set these parameters (in fact, every parameter that comes from the base
operator) as invisible. You can also create your own settings page to ask a user of your
custom operator for some settings that are specific to your operator. As in the simple
example above, an end user can then use your custom operator to act upon your
in-house application. This technique extends integrated processes without the need to
know specifics about how you interface with that application.

More information:

Custom Operator: Properties Tab (see page 158)

Operators

Chapter 5: Operators and Icons 149

Custom Operator: Form Tab

When designing a custom operator, you can permit custom parameters and pages to
receive input from end users as they configure your custom operator in a process or
schedule. Use the Custom Operator Form tab to:

■ Add, remove, and rename property pages

■ Add, remove, and rename parameters on the property pages

■ Configure the characteristics of a parameter

■ Reorder parameters on a property page

■ Move parameters between pages

Each custom operator can have one or more pages of parameters that are based on its
ancestor or base operator. You can modify and configure these parameters. For
example, if the base is the Run Script operator, you can configure the following
parameters:

■ The scriptType field to define the extension of the script

■ The inLineScript field to define the script itself

■ The other fields and parameters standard for the Run Script operator

Add Property Pages

The Custom Operator Settings tab includes the standard base operator properties.
These settings correspond to the parameters found on the Properties palette in the
Process Designer. Use the Properties palette to configure the custom operator’s base
properties and the custom properties that you assign to it.

A custom operator may require additional parameters as input into the function of the
operator. You can add property pages to group these additional parameters. When you
add pages to the custom operator on the Form tab, they appear as expandable sections
in the Properties palette of the Process Designer.

Operators

150 Content Designer Guide

Follow these steps:

1. In the Library Browser, double-click a custom operator.

2. In the toolbar, click Check Out.

3. In the Custom Operator designer window, click the Form tab.

4. In the Form Elements pane, expand all of the following:

a. Form Elements

b. Page Layout under Form Elements

c. Page Layout under your custom operator

5. Drag a Page element from the Form Elements Page Layout down to the Page Layout
level for your custom operator.

6. Click the new page and then click Rename in the toolbar. Rename the new page to a
meaningful identifier.

Each page name corresponds to a named expandable section in the Custom
Operator Properties palette in the Process Designer.

7. The order of the pages in the Properties palette also corresponds to the order
shown on the Form tab. Select a page and click Move Up or Move Down from the
toolbar to move the page up or down in the list.

To remove a property page including all parameters:

1. Select the page.

2. In the toolbar, click Remove.

Add Custom Parameters

After creating property pages, you can add parameters (fields) to them. Custom
parameters are often used to give users a different presentation for a parameter
needed for the base operator. For example, you can add a parameter to present a list of
values that you want users to select from, rather than using an edit box with no defined
values. Parameters are also used to capture input that is then used in an expression to
calculate one or more base operator parameters. Also, parameters are used to present
an interface to users with appropriate terminology.

Unless you set their Read Only, Disabled, or Hidden properties to true, custom
parameters that you add to your custom operator are visible and configurable by end
users in your Custom Operator Properties palette in the Process Designer or in the
Schedule Editor.

Operators

Chapter 5: Operators and Icons 151

Follow these steps:

1. In the Library Browser, double-click a custom operator.

2. In the toolbar, click Check Out.

3. In the Custom Operator designer window, click the Form tab.

4. In the Form Elements pane, expand all of the following:

a. Form Elements

b. Page Layout and any pages under your custom operator

5. Drag a form element from the Form Elements down to the page for your custom
operator. You cannot drag a field directly onto the form layout.

6. Click the new field to edit its properties. Rename the new field to a meaningful
identifier using the Label property. Use the Rename toolbar button to rename
certain fields such as check boxes.

Each field name corresponds to a named field in the Custom Operator Properties
palette in the Process Designer.

7. The order of the fields in the Properties palette also corresponds to the order
shown on the Form tab. Select an element and click Move Up or Move Down from
the toolbar to move it up or down in the list.

To remove a parameter:

1. Select the page.

2. In the toolbar, click Remove.

Invisible Parameter Option

CA Process Automation allows you to configure and hide custom operator parameters
from the end user. You can set the custom operator parameters to be invisible,
read-only, or editable at run time. To pass information to the custom operator
parameter, add macros to the custom operator. You can hide input parameters from the
user and use macros to access the input values of the hidden custom operator
parameters. Changes you make to custom operator parameters cascade down to all the
processes using the custom operator.

Unless you set their Read Only, Disabled, or Hidden properties to true, custom
parameters that you add to your custom operator are visible and configurable by end
users in your Custom Operator Properties palette in the Process Designer or in the
Schedule Editor.

Operators

152 Content Designer Guide

Expand Macro in the Value Property

To use a custom parameter to define the value of a base operator parameter (a typical
reason for using custom parameters), you must treat it as a macro. Use the Expand
macro in the value property to permit user input for a custom operator field to be used
as the value for the base operator parameter.

To do this, set the Hidden property first. Then configure the base operator parameter
with the Expand macro in the value option. CA Process Automation searches the base
operator parameter values (for any parameter with the Expand macro in the value set)
for any custom parameter name, and replaces the custom parameter name with the
customer parameter value. While this is a powerful feature, take care to determine
which base operator parameters should have the Expand macro in the value option set
and in naming your custom parameters so that they are unique enough that you do not
accidentally replace a string with your custom parameter sharing the same name.

For example, you created a custom operator using the Run Script operator as a base.
The script is defined to pass some parameters based on input supplied by a user of the
custom operator. A form field is added to obtain this input from the end user and that
field is named for. In the base operator, add one parameter and enter the value for and
set the Expand macro in the value property to true. This correctly passes the user's input
configured in the custom operator form field to the script as a parameter.

If a user enters the value Steve for this custom parameter, the script would receive one
parameter with the value Steve. However, if you set the Expand macro in the value
property for the base operator parameter inLineScript, this replaces the word for
anywhere in the script with the word Steve. This is undesirable, as the scripting code for
any For loops would be accidentally replaced with an unintended term, resulting in a
syntax error in your script.

More information:

Custom Operator: Properties Tab (see page 158)

Test the Custom Operator Interface

After you add and configure pages and parameters, you can use the Test feature to
preview the Custom Operator Properties pane.

Follow these steps:

1. Click Test on the toolbar.

The parameters appear on the tabs in the same order that is listed on the
corresponding pages in the Custom Operator Parameters palette.

2. Review the pages and parameters.

You can preview the end-user view of the customer operator and available options
for it.

Operators

Chapter 5: Operators and Icons 153

Custom Operator: Preview Tab

Use the Preview tab to test the form elements.

Custom Operator: Settings Tab

Use the Settings tab to configure settings that are common to all operators. The Custom
Operator Settings tab includes the standard base operator properties. These settings
correspond to the parameters found on the Properties palette in the Process Designer.

Target

Defines where the custom operator runs.

Target is a calculated expression

Indicates the target uses a calculated expression.

Target is Read-Only

Indicates the target is read-only and cannot be changed.

Run as Caller User

Indicates the operator runs as if it were the calling entity,

'Run as Caller User' is Read-Only

Indicates the operator runs as if it were the calling entity, but as read-only so that it
cannot be changed.

Group

Specifies a group name for your custom operator. This setting is used as the title of
the group or folder in the Operators palette. You can use the same group name for
related custom operators so that they all appear under the same folder in the
Operators palette.

Display Name

Indicates the name that is shown in the Operators palette with the icon for your
custom operator. The name should be short and based on the function of your
operator. Display Name is also used to provide the initial value for the Name field
on the Information page of the Operator Properties. You can use any combination
of letters, digits, spaces, and underscore characters.

Operators

154 Content Designer Guide

Custom Operator Pre-execution

Specifies any code that must be performed before the custom operator runs.

Custom Operator Post-execution

Specifies any code that must be performed after the custom operator runs.

Current Display Icon

Specifies the icon that represents the operator. By default, the icon of your custom
operator is the icon of the base operator.

Custom Operator Specific Pre and Post Execution Code

CA Process Automation allows you to define pre-execution and post-execution
JavaScript code for custom operators. Pre-execution code is processed before an
operator runs; post-execution code is processed after an operator runs. Users of a
custom operator cannot override any pre-execution or post-execution code already
defined by designers or developers with more permissions.

The order of execution of the code is as follows:

1. User-defined pre-execution code.

2. Custom operator specific pre-execution code.

3. The actual operation.

4. Custom operator specific post-execution code.

5. User-defined post-execution code.

Define Custom Operator-specific Pre and Post Execution Code

Operators

Chapter 5: Operators and Icons 155

To prevent accidental deletion or modification of execution code, you can define
specific code for each custom operator. You can also use the custom operator input or
output data in your code.

Follow these steps:

1. Click the Library tab.

2. Double-click a custom operator.

The Custom Operator dialog appears.

3. Click the Settings tab.

4. Click one of the following two long buttons:

■ Click Custom Operator Pre-execution to enter pre-execution code.

■ Click Custom Operator Post-execution to enter post-execution code.

A code dialog appears.

5. Enter your code. Click OK.

6. Click Save.

Order of Execution for Custom Operator-specific Pre-Execution Code

The order of execution for the Custom Operator specific Pre-execution code is as
follows:

1. Execution of the user defined Pre-execution code i.e. Pre-execution code defined in
the process.

2. Evaluation of the User Parameters that includes expression evaluation and macro
expansion.

3. Execution of the Custom defined Pre-execution code. The User Parameters are
exposed and you can access the parameters using the Operator keyword.

Note: You do not have the permissions to change the User Parameter values.

4. Evaluation of the Standard Parameters including expression evaluation and macro
expansion.

5. Evaluation of the Base operator.

Custom Operator: Dataset Tab

Use the Dataset tab to define and group operator dataset variables that contain
information that is returned by the custom operator. For example, if your custom
operator retrieves some fields from a ticket in an in-house ticketing system, you can
create a page to group all the retrieved fields and place the parameters in the page
corresponding to the returned fields.

Operators

156 Content Designer Guide

Doing this as part of your Custom Operator provides two benefits:

■ Users of your Custom Operator can easily see the definition of the output of the
Operator without having to run the Operator first to have the parameters created
at runtime.

■ You can group related parameters in a page with a descriptive name, which is not
possible at runtime.

In the Dataset Palette, you can add, rename, delete, and move pages and parameters.
You can also configure the parameter definitions to set the type, initial value, and other
characteristics. The configurations and settings in the Dataset Palette of a Custom
Operator are the same as for any other Dataset.

More information:

Datasets (see page 173)

Operators

Chapter 5: Operators and Icons 157

Custom Operator: Custom Panels Tab

The Custom Panels tab appears for a limited subset of base operators only, such as the
Assign User Task or Invoke SOAP Method operators. The sections on the tab vary by
base operator. Two common base operators appear in the following examples.

For custom operators based on the Assign User Task operator, the Custom Panels tab is
divided into the following sections:

Assignees

Specifies the users or groups that can interact with the custom operator and its
form.

Transfer/Delegate Filters

Specifies the users or groups that are available for task transfer or delegation.

User Task

Specifies the Title, Description, and Form Data Initialization Code for the associated
Interaction Request Form.

For custom operators based on the Invoke SOAP Method operator, the Custom Panels
tab is divided into the following sections:

SOAP Call Data

Use this group of fields to specify the Service URL, method name, user name,
password, version, source, and other details for basic SOAP or HTTP authentication.
Use the WSDL Wizard to load a URL and select WSDL services, ports, and
operations.

Dynamic Parameters

Use this group of fields to specify the parameter style and add, edit, or delete
macros or XPath queries.

Call Results

Use this group of fields to specify the saved SOAP request response file path and
add, edit, or delete additional extracted data. You can also check options to
determine how portions of the extracted SOAP body, header, and XML namespaces
are handled.

MIME Attachment

Use this group of fields to specify an expression or add, edit, and delete content as
MIME attachments.

WS Security

Use this large group of fields to manage security details. Expand each group box by
clicking its title to view all the fields.

Operators

158 Content Designer Guide

Macro Expansion Syntax

In previous releases of CA Process Automation, you could use a variable in a custom
operator field that accepted an expression as input. The base operator supported the
use of variables and dynamically replaced them with actual values, a concept that is
known as macro expansion. Custom operators that you import from previous releases
continue to support dynamic variables and macro expansion in this release of CA
Process Automation.

For certain base operators, however, namely the ones with a Custom Panels tab, the
fields do not support macro expansion with just a variable name alone. Examples
include the Assign User Task and Invoke SOAP Method operators. Add the term
operator to the field for evaluation of the expression and macro expansion, if
supported. The following graphic demonstrates the syntax that is required to replace
the variables varUserID and varUserPassword dynamically:

Operator.varUserID

Operator.varUserPassword

Custom Operator: Properties Tab

Use this tab to store the name, description, and keyword tags for your custom operator.
Basic properties on this tab function the same way for all automation objects.

Custom Operator: Versions Tab

Use this tab to manage the versions of your custom operator. Versions function the
same way for all automation objects.

Operators

Chapter 5: Operators and Icons 159

Custom Operator: Audit Trail Tab

Use this tab to examine the history of your custom operator. Audit Trails function the
same way for all automation objects.

Set Custom Operator Availability to All Users

By default, a custom operator is not available to other CA Process Automation
designers. You can set the availability of custom operators for all users.

The availability of a custom operator only affects the ability to see and add the custom
operator to a process or schedule. Once a custom operator has been added to a process
or schedule, making it unavailable does not affect its existing inclusion and use.

Follow these steps:

1. Click the Library tab.

2. Double-click a custom operator.

The Custom Operator dialog appears.

3. In the toolbar:

a. Click Make Available to allow all users to see and use the operator.

b. Click Make Unavailable to hide the operator from other users.

The change in availability is instant whether you click Save or not.

Operators

160 Content Designer Guide

Using Custom Operators

You can use a custom operator in a process or schedule like any other operator. Keep
these points in mind when working with custom operators:

■ Initial values for the custom operator parameters may be pre-configured or hidden.

■ New custom parameter inputs may exist that require configuration.

■ Your custom operator will appear in a folder called Uncategorized unless you set a
custom group name on the Custom Operator dialog Settings tab.

■ If a custom operator is not available at the time that your process was opened for
editing, make the custom operator available, and refresh the operator group folder
again.

■ If a custom operator is not available at the time that your schedule was opened for
editing, make the custom operator available, and refresh the operator group folder
again.

■ You must refresh the operator group folder in a process or schedule to see any
changes made to the custom operator's name or other settings.

■ You must close and re-open a process or schedule to see any changes to existing
custom operators.

■ Any process or schedule using a custom operator uses the latest checked-in version
that is marked as Current in the Library Browser.

Your Favorite Operators

As a convenience, you can add your favorite operators to the Favorites folder or group.
The Favorites group appears at the top of the Operators palette in the Process Designer.

Click Refresh in the Operators palette to view your favorite operators when you design a
process.

Add or Remove Your Favorite Operators

You can add and remove your favorite operators from the Favorites group folder in the
Operators palette.

Follow these steps:

1. Click the Designer tab.

2. Open a process or create a process.

3. In the toolbar, click the View menu and select Operators.

The Operators palette appears.

Operators

Chapter 5: Operators and Icons 161

4. In the filter area at the top of the Operators palette, click Refresh.

The list of operators, custom operators, and favorite operators is updated.

5. Expand the Favorites folder to view the operators you have added. For new users,
no operators appear.

6. To add an operator to your Favorites folder:

a. Expand any other folder of operators.

b. Right-click an operator and select Add to Favorites.

c. Click Refresh.

7. To remove an operator from your Favorites folder:

a. Click Refresh.

b. Expand the Favorites folder to view the operators you have added.

c. Right-click an operator and select Remove from Favorites.

Operators

162 Content Designer Guide

Connectors

Connectors are optional extensions that enable additional operators that interface with
other CA and third party solutions. When your administrator configures a connector, a
new group of operators appears in the Operators palette in the Process Designer.

Connectors integrate CA and third party products into workflow processes and also
provide bridge services from other products to CA products and solutions that embed
CA Catalyst. In addition to the connectors that are provided on the CA Process
Automation installation media, many connectors are available for download. Licensing
restrictions may apply. A list of the most popular connectors follows:

■ CA Workload Automation AE

■ CA CMDB

■ CA Configuration Automation

■ CA eHealth

■ CA Client Automation

■ CA NSM

■ CA Service Desk Manager

■ CA Spectrum IM

■ CA Workload Automation AE

■ Amazon Web Services (AWS)

■ AS400

■ BMC Remedy

■ Hyper-V

■ IBM z/OS

■ Microsoft Access

■ Oracle

■ Sybase

■ VMware

■ vSphere

■ UCF\Catalyst

Use application-specific connectors to perform tasks, such as gathering data or applying
actions, on target systems and target applications. Connectors provide operators that
are executed either on the orchestrator, on agents residing on the application server or
on proxy agents that can remotely perform the required task or collect the data on the
application server.

Operator Icons

Chapter 5: Operators and Icons 163

Each connector module typically includes multiple operators. Each operator performs
one of the following specialized tasks:

a. Decision Tree Support

Returns a binary (true/false, success/failure) value that can be used to decide
how to branch in the process. In some situations the returned value might have
more than two options, but it is always a small and well-defined set of possible
values that are returned.

b. Data Collection

Collects more complex datasets from the target application. The result is
usually stored in a local dataset and can be further analyzed by other
operators. If required, the data can also be made global so that it can be used
by other Processes.

c. Active Management

Performs actions on the target system. This includes all operators that, in any
way, change the behavior of the target system. A few examples of this would
be: sending an event, reconfiguring the application, starting or stopping a
related service.

In some cases, a single operator may perform more than one of these functions. For
example, a connector might perform an action and return a result set based on that
update.

CA Process Automation includes a large number of connectors. It is also easy to create
additional connectors and their related operators by calling standard,
application-specific executables located on the agent or by using standard scripting
languages for more complex functions.

To minimize the application footprint and the complexity of the user interface, only a
set of generic and commonly used connectors are installed by default. Other connectors
should be installed only when necessary.

Operator Icons

CA Process Automation supplies default icons that are displayed for operators when
they are placed in a process or schedule. You can replace the default icon with an icon
that you specify, called a Custom Icon. You can assign a Custom Icon to any operator in a
process, including custom operators.

CA Process Automation automatically handles the smaller visual indicators that
represent the status of an operator in a process. For example, smaller graphics appear in
the corners of all icons to represent different execution states in a process such as idle,
running, completed, and failed.

Operator Icons

164 Content Designer Guide

Operator Status Icons

The following graphic details the smaller subset of icons that an operator can display to
indicate status and port options.

Item: Description:

 Breakpoint: This icon indicates that you set a breakpoint in the process at this operator. Click Set
Breakpoint in the toolbar.

 Simulation Mode: This icon indicates that you are overriding simulation options and have set the
operator simulation type to local or distant. In the Properties palette, expand Simulation.

 Pre-Execution Code: This icon indicates the presence of JavaScript code that runs before the operator
runs. In the Properties palette, expand Execution Settings.

 Post-Execution Code: This icon indicates the presence of JavaScript code that runs after the operator
runs. In the Properties palette, expand Execution Settings.

 Custom Port: The process flows through a custom port when its predefined expression is true.

 Timeout Port: The process flows through this port when the operator times out.

 Failed Port: The process flows through this port when the operator yields an unsuccessful result or
fails.

 Completed Port: The process flows through this port when the operator yields a successful result.

Operator Icons

Chapter 5: Operators and Icons 165

When you run a process, the following icons indicate the status of each operator.

Item: Description:

 Aborted: The process has been stopped.

 Running: The process is currently running.

 Failed: The process failed at this particular operator.

 Completed: The process has successfully passed this particular operator.

 Timeout: The process has timed out at this particular operator.

Creating, Editing, and Applying Custom Icons

Custom icons are visual identifiers for an operator. Custom icons assist you in identifying
the specific function that an operator performs. You can create custom icons in any
automation library folder, then apply them to any operator. Each icon displays your
choice of base image with a modifier image overlaid in the lower-right corner of the
base. The base (object) and modifier (action) provide a consistent structure for all icons.

The topics in this section describe why and how a CA Process Automation Content
Designer uses custom icons to customize the appearance of operators. This section also
provides examples.

As a process designer, you rely on the visual cues that icons provide to determine the
purpose of each operator. For example, what would you guess is the function of the
following operator icon?

Even without a label, you can infer from the image that this icon represents a Delete
Email operator. An appropriate icon helps you and other designers understand the
functionality of an operator.

Operator Icons

166 Content Designer Guide

The initial investment of time you make in assigning an appropriate icon yields many
benefits, including the following:

Standardization

Using a standard set of base and modifier images helps designers understand the
object performing the action.

Simplicity

Designers can readily identify distinct operators in even the largest, most complex,
processes.

Sharing

Teams of designers working in other native languages can share process designs
because they are easier to understand.

Use the following flowchart as a guide when customizing icons for your process
operators:

Operator Icons

Chapter 5: Operators and Icons 167

No sequence is required for performing the listed tasks. At any time, you have the
following options for customizing icons:

■ Apply a Custom Icon to Any Operator in a Process (see page 169): While you design
a process, you can change the icon for any operator to customize its appearance
only for a single instance. Select a specific instance of an operator and change its
icon to one of the predefined custom icon objects in the library.

■ Apply a Custom Icon to a Custom Operator (see page 170): When you change a
custom operator icon, your choice of icon is applied to all future instances of that
operator. In addition, all designers can see the new icon for the custom operator in
the Operator palette.

■ Edit a Custom Icon (see page 168): As time goes by, you can edit one or more
predefined custom icons. Your changes apply wherever that custom icon is already
used.

■ Create a Custom Icon (see page 168): You can define one or more custom icons. You
can create a series of custom icons that you plan to assign to operators or custom
operators. Or, you can simply create and save custom icons without knowing in
advance exactly where they will be used.

Operator Icons

168 Content Designer Guide

Create a Custom Icon

You can create custom icons in any automation library folder. Each icon pairs your
choice of base image with a modifier image overlaid in the lower-right corner of the
base. The base and modifier provide a consistent structure for all icons.

Follow these steps:

1. Click the Library tab.

A hierarchical list of folders appears in the left pane and all your automation objects
appear in the main window.

2. (Optional) If the new custom icon you want to create is similar to an existing custom
icon object, select it, click Copy, and then Paste.

You can now edit the copy to complete your custom icon. Skip the next step.

3. Right-click any folder in the Library Browser pane and click New Object, Custom
Icon.

The new icon appears in the browser with a default name.

4. Double-click the icon.

The Custom Icon Editor opens

5. Select one base and one modifier image. You can browse the icons one by one,
filter by the category drop-down menu, or enter a keyword search.

6. Click the Object Properties tab, enter or edit the icon name, and then click Save &
Close.

Your new custom icon is available in the library.

For example, if you want to represent an operator named Upload Report, you would:

■ Select a base image that represents a report.

■ Select a modifier image that represents the upload action.

Edit a Custom Icon

Over time, the custom icons you and other designers create can be modified to align
with other icons. You can edit custom icons in any automation library folder. Each icon
pairs your choice of base image with a modifier image overlaid in the lower-right corner
of the base. The base and modifier provide a consistent structure for all icons.

Follow these steps:

1. Click the Library tab.

A hierarchical list of folders appears in the left pane and all your automation objects
appear in the main window.

2. Right-click a custom icon.

Operator Icons

Chapter 5: Operators and Icons 169

3. Click Action, Edit.

The Custom Icon Editor opens.

4. Select a base and a modifier image, edit the icon name, and then click Save.

Your modifications to the custom icon are applied.

For example, if you want to represent an operator named Upload Report, you would:

■ Select a base image that represents a report.

■ Select a modifier image that represents the upload action.

Apply a Custom Icon to Any Operator in a Process

You can change the icon for any single operator used in a process.

Follow these steps:

1. Click the Designer tab.

2. Click Open.

The Open Process dialog opens.

3. Navigate to your process and click Open.

The process that you open appears on a new tab.

4. Double-click a specific operator already shown on the canvas to view its Properties.
In the toolbar, click the View menu and check Properties to view the Properties
palette.

5. In the Properties palette, expand the Information section.

6. In the Information section:

a. Clear the Use default Icon check box.

A border appears around the current icon and a Browse button is available.

b. Click the Browse button.

The Select Custom Icon dialog appears.

c. Select the custom icon object that you want to use for this specific occurrence
of the operator.

d. Click OK.

7. In the toolbar, click Save.

Note: You cannot change the icons that are associated with the execution state of an
operator. For example, waiting or completed. CA Process Automation automatically
manages these icons.

Operator Icons

170 Content Designer Guide

Apply a Custom Icon to a Custom Operator

You can change the icon for a custom operator. The icon that you select applies to all
future occurrences of the custom operator in processes. Existing occurrences of the
custom operator in processes continue to show the original default icon for the base
operator.

Follow these steps:

1. Click the Library tab

A hierarchical list of folders appears in the left pane and all your automation objects
are listed in the main window by type.

2. Double-click a custom operator.

The Custom Operator window appears.

3. In the toolbar, click Check Out.

4. Click the Settings tab.

5. On the Settings tab, click the Change Icon link.

6. In the Select Custom Icon dialog, browse to the custom icon, select it, and click OK.

7. Click Save.

8. (Optional) If none of the existing icons are appropriate, edit a custom icon or create
a new one.

Note: You cannot change the icons that are associated with the execution state of a
custom operator. For example, waiting or completed. CA Process Automation
automatically manages these icons.

Custom Icon Examples

The following list shows examples of custom icons and the potential operators they
could represent.

 Diagnose (or Monitor) Performance

 Add User Account

 Debug Script or Code

Operator Icons

Chapter 5: Operators and Icons 171

Example: Create or Edit a Custom Icon

This example demonstrates the key concepts behind the CA Process Automation
Custom Icon Editor. The graphic shows the selection of a base icon that is combined
with a smaller modifier icon to create a custom icon. The resulting combination is saved
as a Custom Icon object that can later be applied to any operator.

Operator Icons

172 Content Designer Guide

Example: Apply a Custom Icon

In the following example, the designer has decided to change one of the two identical
icons. The custom operator is based on the Assign User Task operator. However, it has a
distinct new purpose. The operator prompts a user to approve a report. The old default
icon appears within the process at left (Before) and the new custom icon appears at
right (After). The new icon better represents the function of the currently selected
operator within the process. In this example, the designer has also elected to show the
long name for the operator.

Imagine a process with many similar operators arranged in a series. Each operator could
perform a different action. In this situation, use custom icons to help you to identify
each distinct operator.

Chapter 6: Datasets and Parameters 173

Chapter 6: Datasets and Parameters

This section contains the following topics:

Datasets (see page 173)
Process Parameters (see page 192)

Datasets

Datasets let you define groups of variables to store and organize data. Datasets provide
a way to share data across multiple process instances.

A dataset object defines a collection of variables that you can reference by name. You
create and manage datasets in the Library Browser just like any other automation
objects for an orchestrator. A dataset can contain any number of fields, called variables.
Assign each variable to one of the following data types by the kind of data the variable
stores:

■ Boolean

■ Date

■ String

■ Integer

■ Java Object

■ Long

■ Double

■ Password

■ Object Reference

■ ValueMap

You can configure all data types to contain a single value or multiple indexed values
(called an array). You can define an indexed field as an array of one or more dimensions.

Datasets

174 Content Designer Guide

You can edit dataset objects and custom operator datasets from the Library Browser.
You can edit datasets for processes and each operator in the Process Designer.

Item: Description:

 Datasets in the Library Browser: Create, edit, and manage your own dataset objects in the Library
Browser. Open a dataset to edit it.

 Custom Operator Datasets: Create, edit, and manage your own datasets for custom operator objects
in the Library Browser. Open a custom operator to edit its dataset.

 Datasets in the Process Designer: The Dataset palette displays the datasets available for the process
and each operator. You can also refer to your own datasets in code. Click the + icon to open a dialog
for editing the selected process or operator dataset.

Datasets

Chapter 6: Datasets and Parameters 175

Item: Description:

 Pages, Variables, Data Types, and Values: Define the pages and variables for the dataset in the left
half of the dialog. Define the data types and enter a description in the right half. Define values on
either side. Right-click the variable name for an array to add or delete an indexed value.

Create a Named Dataset Object

You create and manage named dataset objects with your other automation objects in
the Library Browser.

Follow these steps:

1. Click the Library tab.

2. In the Library Browser folders pane, select a folder.

3. In the toolbar, click New and select Dataset.

A new dataset object appears and is checked out to you.

4. Enter a name for the new dataset.

5. Double-click the dataset to define its pages and fields.

The Dataset dialog opens.

Dataset Types

Dataset variables (also called fields) can contain literal values that you explicitly define in
the dataset object. You can also assign values to variables (fields) at runtime using
expressions. Refer to dataset objects and their variables by name using JavaScript
expressions in calculated parameters.

You can create and configure dataset variables for all types of datasets, except the
system dataset. Refer to system dataset variables directly. You can refer to process and
operator datasets through parent process or operator objects. The following table
describes the dataset types.

Dataset
Type:

Description and Scope: To Reference in an
Expression:

Named
Dataset

Dataset objects store the definition for a named
dataset in the Library Browser. Named dataset
variables are accessible by any operator, process,
or schedule in the same library. You can edit the
current version of a named dataset by expanding
the library folder and double-clicking the dataset
object.

See Specify Named
Dataset Variables
(see page 227).

Datasets

176 Content Designer Guide

Dataset
Type:

Description and Scope: To Reference in an
Expression:

Process
Dataset

Process datasets contain variables that you or
another designer defines. CA Process Automation
can also define process variables automatically
when a process instance starts. Process datasets
appear in the Dataset palette of the Process
Designer.

See Specify Process
Dataset Variables.

Operator
Dataset

An operator dataset is included in every instance
of an operator added to a process or schedule
object. The operator dataset can contain
operator-parameters, user-defined variables, and
program-defined variables. An operator dataset is
primarily accessible to the immediate operator
and secondarily to other operators in a process.
Operator datasets appear below process datasets
in the Dataset palette of the Process Designer.

See Specify Operator
Dataset Variables
(see page 230).

System
Dataset

Contains predefined variables that are available in
the context of the entire CA Process Automation
domain. These variables access system parameters
and are made available by the System keyword.

See Specify System
Dataset Variables
(see page 231).

Datasets

Chapter 6: Datasets and Parameters 177

Define Dataset Pages and Variables

Define the pages, variables, and values in a dataset. When you run a process, operators
can reference the values in datasets.

New named datasets and process datasets include a default root page called
Parameters. The pages and variables for operator datasets vary by operator. You can
create new variables (fields) or edit existing variables. You can also add pages to group
variables in logical ways. To edit an existing variable or its value, click the variable or its
value, and then make your changes. You can also change values in dataset variables
(fields) programmatically.

Follow these steps:

1. Click the Library tab.

2. Select a folder and locate a dataset. Use the optional search features if necessary.

3. Double-click the dataset.

The Dataset tab of the Dataset dialog appears.

4. Click Check Out.

5. To create a new page, click Add Page.

6. To create a new variable:

a. Select a page.

b. Click Add Variable.

7. Click a page or variable to rename it. Names must start with a letter and have a
maximum length of 32 characters.

8. For variables, select the data type and page, enter an initial value, and provide an
optional description.

Page

Defines the page that contains the variable. Select a different page to move the
variable to that page. For custom operators, the page specified here
corresponds to an expandable properties group on the Properties palette.

Description

(Optional) Provides helpful information about the variable when it appears
later in a dataset. If provided, a tool tip displays the text entered here when
you move the mouse pointer over the field name or value.

Value

Specifies the default value if the field is blank or cleared. For fields of type
integer, long, and double, the default value is zero. For fields of type integer,
double, long, or string, you can specify your own default value here. To view
the Value field contents in a separate window, right-click in the Value field and
choose Expand.

Datasets

178 Content Designer Guide

You can also enter constraints for a field of these types:

■ For fields of type Boolean, you can select True or False.

■ For fields of type Object Reference, click the browse button (...) to select a
dataset object.

■ For fields of type Date, click the browse button (...) to select a date.

Note: The ValueMap field type cannot be assigned a default value.

9. To define arrays:

a. On the General tab, select the Array check box and select Single or Double in
the Array Dimension field.

b. Right-click the variable and select Add Indexed Value.

c. Click the Value field to enter a value.

Note: To edit the dataset for a custom operator, open it, check it out, and click the
Dataset tab. You can also edit process and operator datasets by clicking + in the titlebar
of the Dataset palette in the Process Designer.

Variable Data Types

Dataset variable data types map to JavaScript value types.

The different data types for variables are as follows:

Boolean

Stores and returns True or False.

In expressions, this type maps to the JavaScript Boolean data type.

Object Reference

References any type of object available in CA Process Automation, including objects
available in an automation library, touchpoint, and touchpoint groups.

Date

Stores and returns a date in a date format specified in the parameter properties.

In expressions, this type maps to the JavaScript date object.

Double

Stores and returns a decimal value. Double values are entered in the following
format:

[digits][.digits][(E|e)[(+|-)]digits]

In expressions, this type maps to JavaScript floating-point literal type. The literal has
a minimum value of -1.7976931348623157E308 and a maximum value of
1.7976931348623157E308.

Datasets

Chapter 6: Datasets and Parameters 179

Integer

Stores and returns a 16-bit integer value. An integer field can return a single integer
or an indexed list of integers. The integer allows you to represent all integers to ten
digits from -2,147,483,648 to +2,147,483,647.

In expressions, this value type maps to the JavaScript integer type.

Java Object

Stores a Java object.

Long

Stores and returns a 32-bit integer. The long data type allows you to represent all
integers to 19 digits from -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807.

In expressions, this value type maps to the JavaScript integer type.

Password

Returns a password in encrypted format. Password-field values can only be
assigned to other password fields. Unauthorized users are prevented from viewing
passwords in an unencrypted format.

Note: CA Process Automation protects passwords from any modification.
Operations such as concatenation and string manipulation on the passwords results
in a null value.

String

Returns a string of characters. A string field can return a single string or an indexed
list of strings.

In expressions, this value type maps to the JavaScript string type.

ValueMap

Defines a dataset structure that is stored within another dataset. You can add pages
and variables to a ValueMap field. ValueMap variables and pages can be nested one
inside of another.

In calculated fields, ValueMap type fields are addressed hierarchically within a
dataset path. The following example addresses the parameter param1 in ValueMap
field VMap2, which is in turn nested in ValueMap field VMap1, which in turn is a
member of the dataset MyDataset.

Process.MyDataset.VMap1.VMap2.param1

Important! Changing the data type or changing the Array check box option eliminates
any existing data in the field. Edit the dataset only if it is acceptable to discard any
current values in the field.

Datasets

180 Content Designer Guide

Edit Validation Settings for a Dataset Field

When you select the variable type, you can specify exactly what type of data a user can
enter. The constraints that you can apply to a value depend on the selected data type.
The following table lists the potential constraints for the different data types in an
operator dataset.

Data Type Validations

Boolean None

Dataset None

Date None

Double Specifies minimum and maximum values for a
Double type variable between minus
1.7976931348623157E308 and positive
1.7976931348623157E308.

Minimum value is the minimum allowed value for
double values.

Maximum value is the maximum allowed value for
double values.

Integer Specifies minimum and maximum values for an
Integer type variable between minus 2147483648
and positive 2147483647.

Minimum value is the minimum allowed value for
integer values.

Maximum value is the maximum allowed value for
integer values.

Long Specifies minimum and maximum values for a Long
type variable between minus 9223372036854775808
and positive 9223372036854775807.

Minimum value is the minimum allowed value for
long values.

Maximum value is the maximum allowed value for
long values.

String Specifies the regular expression mask for text.

Note: For more information about specifying string
patterns, see Using Masks to Specify Patterns in
Strings (see page 367).

Minimum length is the minimum allowed number of
characters for string values.

Maximum length is the maximum allowed number of
characters for string values.

Datasets

Chapter 6: Datasets and Parameters 181

Data Type Validations

ValueMap None

Arrays with Indexed Values

You can define a dataset variable to store a single value or an array of indexed values.
You can access each value in an indexed array. You can define the indexed fields in a
single or double dimension array.

Each dimension in an array begins with indexed value [0] and continues in sequence
with [1], [2], then [3], and can continue with any number of additional values. In
expressions, represent a dimension, or level, of an array with bracket notation. Each
level of an array supports JavaScript array properties and methods.

The default type of field is to store a single value. To specify that a field store an indexed
list of values, select the Array check box and configure the indexed values.

Datasets

182 Content Designer Guide

Define a ValueMap as an Array

You can create a ValueMap, define its variables, and can include arrays in the ValueMap.
You can even decide to define a ValueMap as an array. Each variable of the ValueMap
represents a structure that you define in the dataset under Element Type.

1. Click the Library tab.

2. Select a folder and locate a dataset. Use the optional search features or create a
dataset if necessary.

3. Double-click the dataset.

The Dataset tab of the Dataset dialog appears.

4. Click Check Out.

5. Select a page. The default page is named Parameters.

6. In the toolbar, click Add Variable.

7. On the General tab:

a. Set the Type to ValueMap.

b. Do not click the Array check box.

8. Expand the new ValueMap variable and select a page. The default page is named
Parameters.

9. In the toolbar, click Add Variable.

10. On the General tab:

a. Set the Type.

b. Enter an initial value.

c. Check the Array check box.

11. Repeat the last three steps. Select a page, click Add Variable, and define the
variable as an Array.

12. Expand the ValueMap variable and page. Right-click the first variable and choose
Add Indexed Value.

13. Repeat the last step.

14. Right-click the second variable and choose Add Indexed Value.

15. Repeat the last step.

You have defined a ValueMap made up of two arrays.

16. Click the original ValueMap variable.

17. On the General tab, check the Array check box.

The Element Type folder appears under the ValueMap variable.

18. Expand Element Type completely to view its pages, variables, and indexed values.

Datasets

Chapter 6: Datasets and Parameters 183

19. Right-click the original ValueMap variable and choose Add Index Value.

Array index [0] appears.

20. Expand array index [0]. The pages, variables, and indexed values are copied from
the Element Type structure.

When you add a variable to a page under Element Type, all existing valuemap array
index entries immediately include the new variable under the corresponding page.

When you delete a variable from a page under Element Type, all existing valuemap
array index entries no longer include the deleted variable under the corresponding
page.

When you specify values for the variables under Element Type, the values become the
default values for any new indexed entries of the ValueMap array. The new Element
Type values are not propagated to existing index entries of the ValueMap array.

Modify a Dataset

You can modify a dataset by adding indexed values or modifying variable data. This
procedure provides fewer capabilities than the more robust dataset tasks of defining
pages and variables.

Follow these steps:

1. Click the Library tab.

2. Right-click a dataset and choose Modify Dataset.

3. In the Modify Dataset window:

a. Right-click an array variable and choose Add Indexed Value to add an entry to
the array.

b. Click a value to directly add or change it.

Datasets

184 Content Designer Guide

View a Dataset Expression

When working with datasets, you often need to view or copy the full reference to a
dataset array or a specific value.

Follow these steps:

1. Click the Library tab.

2. In the Library, do one of the following:

a. Double-click a dataset.

b. Right-click a dataset and choose Edit.

c. Right-click a dataset and choose Manage Dataset.

3. In the resulting window, click an array or a specific variable to view it.

4. Right-click it and choose Dataset Expression.

The Dataset Expression window appears.

5. View or copy the expression.

Read Operating System Values into Dataset Variables

CA Process Automation can read values generated by a shell process into dataset
variables. Before a UNIX Script or Windows Script Operator runs its associated script, it
creates a folder to accept values generated by the script. The C2OSVD environment
variable specifies the full path to the folder (for example, C:\TMP_VS_559) created for
the script operator. A script can then copy data to text files in the folder to pass the data
back to CA Process Automation. Data passed back to CA Process Automation using the
C2OSVD directory populates variables in the script Operator Dataset.

A script must save data to text files in the C2OSVD directory. After a script Operator
completes its script (but before it performs post-execution actions), it determines
whether there are any files in the location pointed to by the C2OSVD environment
variable. Operator Dataset variables are then created according to the following rules:

Datasets

Chapter 6: Datasets and Parameters 185

■ The Operator saves the contents of a file in the C2OSVD location to a string variable
in the Operator Dataset with the same name as the file.

■ A folder in the C2OSVD location generates an indexed variable in the Operator
Dataset with the same name as the folder. The Operator saves the contents of text
files named in a numbered sequence (0, 1, 2, ..., n) located in the folder to the
corresponding elements in the indexed variable. The elements are numbered from
0 to as many elements as the highest numbered file in the folder. Missing files in
the number sequence generate null elements in the indexed variable.

■ A script should create files in the C2OSVD location with the same names as the
variables you want to appear in the Operator Dataset. The script should create text
files, but the files should not have any file extension (such as .txt), or the extension
is included in the variable name.

The following illustration shows how the file-to-variable conversion works when the
working directory is set to C:\TMP. The Operator appends _VS_599 to the working
directory path to create the C2OSVD value C:\TMP_VS_599. The folder name (in this
case _VS_599) is unique for every instance of any Operator.

The following illustration shows two folders %C2OSVD%/HostList and
%C2OSVD%\OSList containing five files named 0, 1, 2, 3, and 4. The script writes a
computer name to each of the numbered files in the HostList folder and an operating
system name to each of the numbered files in the OSList folder. CA Process Automation
creates two zero-based indexed variables after running the script, HostList and OSList,
and assigns the contents of the numbered files in the HostList and OSList folders to the
corresponding elements of the indexed variables.

Datasets

186 Content Designer Guide

In the illustrated example, the Windows script uses the C2OSVD variable to create the
file %C2OSVD%\NumRowsRead. CA Process Automation creates a corresponding
variable after running the script, NumFilesRead, in the script Operator Dataset and
assigns the contents of the NumFilesRead file to the variable.

When a script operator finishes, it deletes the C2OSVD folder and its contents. The
post-execution code on the script operator can access the operator dataset variables.
Typically, the post-execution code copies the operator dataset variable values to local
variables in the process dataset or to operator dataset variables in subsequent
operators in the process. The three example scripts included in this chapter show how
the example illustrated previously is implemented using UNIX script, VBScript, or
PerlScript.

Datasets

Chapter 6: Datasets and Parameters 187

Sample Scripts for Reading Operating System Values into Dataset Variables

A process can read operating system variables into operator dataset variables using
UNIX script, VBScript, or PerlScript. Each script reads in lines from a text file specifying a
host name and the operating system running on the host with a single space separating
the two strings, as follows:

JAMES Windows

INDUS Linux

NILE Windows

AMAZON UNIX

YANGTZE Solaris

GILA UNIX

The three scripts all save the host names to an indexed field named HostList and the
operating system names to an indexed field named OSList.

The process incorporates these steps:

1. The UNIX or Windows module passes the name of a text file specified by a
parameter defined in the Parameters field on the UNIX Process or Windows Process
tab of the script operator properties.

2. The UNIX or Windows module creates and initializes the C2OSVD environment
variable with a path to a unique folder.

The folder specified by the C2OSVD environment variable is used by only one
instance of a script Operator and not repeated or overwritten by any subsequent
instance of that or any other script Operator .

3. The UNIX or Windows module creates the folder pointed to by the C2OSVD
environment variable.

4. The script creates folders named HostList and OSList in the folder pointed to by the
C2OSVD environment variable.

5. The script reads each line of the text file and writes the host names to sequentially
numbered files in the %C2OSVD%\HostList folder and the operating system names
to sequentially numbered files in the %C2OSVD%\OSList folder.

These files generate two indexed Operator Dataset variables HostList and OSList.

6. The script finishes by writing the number of lines read to the files to a file named
%C2OSVD%/NumRowsRead.

This file generates an operator dataset variable NumRowsRead.

UNIX Script Example: UNIXGetInfo Script Operator

The UNIXGetInfo Operator runs UNIX script on a UNIX Touchpoint.

Datasets

188 Content Designer Guide

Script (UNIX)

The UNIX script example creates two indexed fields, HostList and OSList in the
UnixGetInfo operator dataset. It reads the source file line-by-line and assigns host
names ($host) to indexed values in sequential HostList fields and operating systems
($opsys) to indexed values in sequentially numbered OSList fields, starting with 0, and
finishing at one less than the number of rows read from the source file.

The UNIX Shell script parameter variables $1, $2, etc. are set by the first, second, etc.,
entries of the Parameters input area of the calling Run Script operator. In this case, only
one parameter is being passed, which is used to set SourceFile. The number of rows
read are assigned to the operator dataset variable named NumRowsRead. The sleep 30
line has no purpose other than to pause the operator and give the user 30 seconds to
examine the folders and files created in the C2OSVD location. This line would not be
included in a production script.

#!/bin/ksh

SourceFile=$1

#known to be reading 2 variables, host and operating system

mkdir $C2OSVD/HostList

mkdir $C2OSVD/OSList

integer counter=0

while read host opsys; do

 echo -n $host > $C2OSVD/HostList/${counter}

 echo -n $opsys > $C2OSVD/OSList/${counter}

 counter=$counter+1

done < $SourceFile

echo -n $counter > $C2OSVD/NumRowsRead

sleep 30

exit 0

VBScript Example: WinGetInfo Script Information

The WinGetInfo script operator runs VBScript on a Windows Touchpoint.

Datasets

Chapter 6: Datasets and Parameters 189

Script (VBScript)

The WinGetInfo Operator creates two indexed fields, HostList and OSList in the
WinGetInfo operator dataset. It reads the source file line-by-line and assigns host names
(strHost) to indexed values in sequential HostList fields and operating systems (strOS) to
indexed values in sequentially numbered OSList fields, starting with 0, and finishing at
one less than the number of rows read from the source file.

The oArgs.Item variable is populated by the entries of the Parameters input area of the
calling Run Script operator, with the first entry populating oArgs.Item(0). The number of
rows read are assigned to the operator dataset variable named NumRowsRead. The
Wscript.sleep 30000 line has no purpose other than to pause the operator and give the
user 30 seconds to examine the folders and files created in the C2OSVD location. This
line would not be included in a production script.

Dim oArgs

Dim oShell

Dim colProcessEnv

Dim objFSO

Dim objDir

Dim objFileIn

Dim objFileOut

Dim intCounter

Dim intExitCode

Dim strLine

Dim intSpacePos

Dim strHost

Dim strOS

on error resume next

set oArgs = WScript.Arguments

set oShell = WScript.CreateObject("WScript.Shell")

Set colProcessEnv = oShell.Environment("Process")

if oArgs.Count = 1 then 'must have the required argument

 to proceed normally,

 fails if more arguments are present

 strSourceFile = oArgs.Item(0)

 Set objFSO = CreateObject("Scripting.FileSystemObject")

 Set objDir = objFSO.CreateFolder(colProcessEnv("C2OSVD"))

 Set objDir = objFSO.CreateFolder(colProcessEnv("C2OSVD") & "\HostList")

 Set objDir = objFSO.CreateFolder(colProcessEnv("C2OSVD") & "\OSList")

 intCounter = 0

 Set objFileIn = objFSO.OpenTextFile(strSourceFile, 1)

 Do Until objFileIn.AtEndOfStream

 strLine = objFileIn.ReadLine

 intSpacePos = InStr(strLine, " ")

 strHost = Left(strLine, intSpacePos - 1)

 strOS = Right(strLine, Len(strLine) - intSpacePos)

 Set objFileOut = objFSO.CreateTextFile(colProcessEnv("C2OSVD") &

"\HostList\" & intCounter)

Datasets

190 Content Designer Guide

 objFileOut.Write strHost

 objFileOut.Close

 Set objFileOut = objFSO.CreateTextFile(colProcessEnv("C2OSVD") &

"\OSList\" & intCounter)

 objFileOut.Write strOS

 objFileOut.Close

 intCounter = intCounter + 1

 Loop

 objFileIn.close

 Set objFileOut = objFSO.CreateTextFile(colProcessEnv("C2OSVD") &

"\NumRowsRead")

 objFileOut.Write intCounter

 objFileOut.Close

 intExitCode = 0

else

 'Wscript.echo "bad argument or required argument NOT present"

 intExitCode = 5

end if

Wscript.sleep 30000

on error goto 0

Wscript.Quit intExitCode

PerlScript Example: WinGetInfoPerl Script Operator

The WinGetInfoPerl operator runs PerlScript on a Windows touchpoint. In the example
process, PerlScript runs on a Windows touchpoint, although it could also be run on a
UNIX touchpoint.

Script (PerlScript)

The script creates two indexed fields, HostList and OSList in the WinGetInfoPerl operator
dataset. It reads the source file line-by-line and assigns host names ($host) to indexed
values in sequential HostList fields and operating systems ($opsys) to indexed values in
sequentially numbered OSList fields, starting with 0, and finishing at one less than the
number of rows read from the source file. ARGV is populated by the entries of the
Parameters input area of the calling Run Script operator. The number of rows read are
assigned to the Operator Dataset variable named NumRowsRead. The sleep 30 line has
no purpose other than to pause the Operator and give the user 30 seconds to examine
the folders and files created in the C2OSVD location. This line would not be included in a
production script.

Datasets

Chapter 6: Datasets and Parameters 191

use strict;

my $filename = "";

print " sample script to retrieve OS level data into variables within C2O\n\n";

my $numargs = @ARGV;

if ($numargs == 1) {

 $filename = shift @ARGV;

} else {

 print "enter path and filename to process:\n";

 chomp($filename = <STDIN>);

}

my $c2osvd = $ENV{'C2OSVD'};

mkdir $c2osvd;

mkdir $c2osvd . "/HostList";

mkdir $c2osvd . "/OSList";

open HANDLE, $filename or die "ERROR: unable to open $filename: $!\n";

my $counter = 0;

while (<HANDLE>) {

 my @fields = split;

 my $host = $fields[0];

 my $opsys = $fields[1];

 my $filename1 = $c2osvd . "/HostList/" . $counter;

 open HH, "> $filename1" or die "ERROR: unable to open $filename1: $!\n";

 print HH $host;

 close HH;

 my $filename2 = $c2osvd . "/OSList/" . $counter;

 open HH, "> $filename2" or die "ERROR: unable to open $filename2: $!\n";

 print HH $opsys;

 close HH;

 $counter++;

}

my $filename3 = $c2osvd . "/NumRowsRead";

open HH, "> $filename3" or die "ERROR: unable to open $filename3: $!\n";

print HH $counter;

close HH;

close HANDLE;

sleep 30;

Process Parameters

192 Content Designer Guide

Process Parameters

You can define parameters for process operators. The parameters can accept either
literal strings or expressions. You can enter a value as a string without delimiting it in
any way. Calculated parameters accept values as JavaScript expressions. Use single or
double quotation marks to delimit literal strings in JavaScript.

Note: To help you identify CA Process Automation fields that do not accept expressions,
their labels appear in italics.

Calculated parameters allow the following:

■ Manipulation of module invocation results and other variables.

■ Parameterization of operators.

■ Definition of wait conditions based on Boolean expressions (preconditions and wait
conditions). Wait conditions can be used to delay processing and synchronize the
use of resources by different sequences of operators running simultaneously.

You can define parameters using dataset variables. Dataset variables are available to
processes in the following contexts:

■ In the CA Process Automation orchestrator context, datasets are referred to as
named datasets. Named datasets define variables that are accessible to any process
on the same orchestrator. A named dataset is accessed by specifying its full path
name in an expression. To view or edit a named dataset, you double-click the
dataset object in the Library Browser to open the object in the Dataset Designer.

■ In the process context, there is the process dataset. The process dataset is available
to any operator in a process. The process dataset is accessed by specifying the
keyword process in an expression. To view or edit variables in the process dataset,
click the Dataset tab at the bottom of the Process Designer window.

■ For each operator in a process, there is an operator dataset. Variables in an
operator dataset are available to the operator and to other operators in the same
process. An operator dataset is accessed by specifying the operator name in an
expression. To view or edit operator dataset variables, click the Operator Dataset
button on the Service Parameters properties sheet in the Properties pane. You can
also click the Dataset tab and select the operator name from the drop-down menu
in the palette.

More information:

Datasets (see page 173)
Calculated Parameters (see page 206)

Process Parameters

Chapter 6: Datasets and Parameters 193

Operator Properties

This section provides information about types of operator properties.

Literal Strings

To use a literal string value in a field that accepts an expression (its label is not in italics),
enclose the string between delimiters. Use either single or double quotation marks. For
example, you could type a literal string that specifies the path to a program to start a
UNIX process as follows:

"/usr/smart/program"

The Escape Character in Literal Strings

You can use the escape character (\) in literal strings. Instead of being parsed by the CA
Process Automation language interpreter, the character you enter after the escape
character is interpreted literally. If a semantic action is attached to an escape character,
the interpreter converts the action to its character equivalent rather than performing
the semantic action.

For example, say that you want to include a double quotation mark character within a
string delimited by double quotation marks. Precede your quotation character with the
escape character, so that the parser does not interpret it as the string delimiter:

\"

To include the backslash character in a string, precede it with the escape character:

\\

More information:

String Data Type (see page 213)

Specify Paths in Literal Strings

When you use Microsoft Windows file nomenclature in a literal string to specify a path
in an expression, backslashes must be escaped, as follows:

"C:\\IT PAM\\import\\script_ora1.bat"

In most cases, use normalized file names, with slash marks (/), even when specifying a
path on a Microsoft Windows computer. For example:

"C:/IT PAM/import/script_ora1.bat"

When you specify a path to a folder or object in a library, the root folder is represented
by an initial slash mark, followed by the slash delimited folder hierarchy. For example:

"/Production/Processes/failover_process"

Process Parameters

194 Content Designer Guide

Dataset Variables in Parameters

In addition to literal strings, you can use dataset variables in a calculated expression.
Variables in an expression are not enclosed between quotations marks. The name of the
program in the following calculated expression includes variables and literal text:

"/usr/bin" + Datasets["/Application1/Settings"].ProgramName

Item: Description:

 Dataset Variables and Values: Hover over a dataset variable value to view a
tooltip description for the variable if one is available.

 Dataset Variable in Pre-Execution Code: You can drag and drop variables from
datasets to property pages. Instead of keying in expressions that reference
variables from datasets, you can drag the variable to generate the expression.
This saves time and reduces potential errors.

When you want to use the output of one operator as the input for another operator,
use the same variable reference by name. All input parameters are automatically
converted to output dataset variables after the process finishes.

Process Parameters

Chapter 6: Datasets and Parameters 195

Relative Paths for Datasets

CA Process Automation can use either absolute or relative paths when accessing named
datasets. Absolute paths are also known as full or fixed paths.

Example 1

Folder1 is under the root folder in the library. Folder1 contains two objects: Process1
and Dataset1. You open Process1, double-click the Start Process operator, and locate
the Process Name field in the Properties palette.

Rather than enter a value, you want to use or reference the value in a field that is called
ProcessName in Dataset1. For the absolute path, you would specify:

Datasets["/Folder1/Dataset1"].ProcessName

You can also specify the path of Dataset1 relative to Process1. The same expression
using a relative path is:

Datasets["Dataset1"].ProcessName

While CA Process Automation evaluates the relative path expression, it looks for
Dataset1 in the same folder as Process1.

If you move Dataset1, the absolute path is no longer valid. To correct this situation, you
would have to update it. However, as long as they are in the same folder, you can move
Dataset1 and Process1 anywhere and the relative path is still valid.

Example 2

Similar to Example 1, you want to use a field in a dataset. This time, you want to use
Dataset2, at the root level of the library. For the absolute path, you would specify:

Datasets["/Dataset2"].ProcessName.

The same expression using a relative path is:

Datasets["../Dataset2"].ProcessName.

This path expression tells the application to look in the folder which is the parent for
Folder1 (the folder containing the process). Folder1 is the starting point. The code,
"../Dataset2," literally says to go up one level in the folder hierarchy and look for
Dataset2. In this case, the parent folder of Folder1 is the root folder and the application
looks for Dataset2 there.

These concepts, summarized in the following two points, also apply to Linux/UNIX,
Windows, and any environment that supports uniform naming conventions.

■ A parent folder "/" exists.

■ All other folders are children of the parent folder.

Process Parameters

196 Content Designer Guide

When these conditions exist, you can simplify complex expressions using relative paths.
For example:

 "../../"

Note: Relative or absolute paths can be used as expressions in any object.

Process Parameters

Chapter 6: Datasets and Parameters 197

Dataset Variable Name Assistance

CA Process Automation datasets define and store groups of variables shared across
process instances. CA Process Automation allows you to use the variables as input
parameters in the execution of process instances.

After creating dataset variables for processes and operators, you might not remember
variable names. Variables that are part of an operator and not something that you have
defined are easy to forget. To assist you in referencing these process and operator
dataset variables without going back and forth between operators, the application
provides an in-context editing assistant. Known as Dataset Variable Name Assistance
and invoked by pressing Ctrl+Space, this feature helps you:

■ Identify dataset variables and apply them to any field that accepts expressions.

■ Reduce your process development time

■ Reduce errors in scope or syntax.

Most of the text fields that accept expressions as input support Dataset Variable Name
Assistance. Refer to the following graphic for examples.

Item: Description:

 Suggested Values for Run Program Operator: In this example, the user has pressed Ctrl+Space to
pop-up Dataset Variable Name Assistance. A list of values at the global and root levels appears.

Process Parameters

198 Content Designer Guide

Item: Description:

 Suggested Operators: After entering

Process.

a list of operators appears at the process level.

 Suggested Variables: After specifying the process scope and operator, a list of variables appears at the
operator level.

 Suggestions Based on Scope: When you first enter the field, the suggestions are appropriate at that
level or scope. After specifying the process parameter, the scope of suggestions is reduced to
appropriate variables at the process level.

 Updates Based on User Input: As you enter text, the application dynamically updates suggestions. In
this example, typing

Va

reduces the possible choices to only the matching entries that begin with Va.

 Multiple Datasets: The application dynamically updates the scope of the suggestions when you specify
expressions that span more than one dataset.

 Smart Suggestions: When appropriate, the application will include additional parameters based on
scope and context. For example, a form operator may include the Form parameter and a Start Process
operator may include the reserved word Caller. The application also automatically supports value map
and array variables.

Use Dataset Variable Name Assistance

Use the Dataset Variable Name Assistance feature in various supported contexts
throughout the application.

Follow these steps:

1. Open and check out the automation object to edit. For example, a process, form, or
dataset.

2. Press Tab or click in a text field that accepts expressions.

3. Press Ctrl + Space.

A list of suggested values appears.

4. Select the value to use. To select process or operator dataset variables, enter the
following string value in the text field:

Process.

5. Enter an operator name for operator-specific variable name assistance.

6. To filter data based on text input, begin typing or entering characters.

The list of suggestions dynamically updates as you enter text.

7. Select the values to use.

Process Parameters

Chapter 6: Datasets and Parameters 199

Password Parameters

Characters entered in the password field show as asterisks (*). Passwords saved to a
password type dataset field are encrypted. An expression in a calculated parameter can
only assign the value of a password field to another password field.

Execution Settings

Execution Settings specify how and where to execute an operator. The Target and
Timeout settings are available for operators in both processes and schedules. The
Processing and Loop groups are only available for operators in processes.

Target Settings

The Target field in the Execution Settings section of the Properties palette specifies
where the operator runs. Determine the most efficient way to reference the target:

■ If the target is an orchestrator, enter its touchpoint.

Note: Do not specify the IP address of a computer hosting a clustered orchestrator.
This is not a valid way to specify that an operator should run on that orchestrator.

■ If the target is an agent, enter its touchpoint. If the touchpoint is mapped to
multiple agents with the same priority, the exact execution target is selected for
load balancing.

■ If the target is a specific agent where the touchpoint is mapped to multiple agents,
enters its agent ID.

■ If the target has no agent but has a proxy touchpoint, enter its proxy touchpoint.

■ If the target meets none of the previous criteria, but is a remote host referenced by
a host group, enter its IP address or FQDN.

■ If you specify no target, the operator runs on the orchestrator where the process or
schedule is being evaluated.

Important! Observe these guidelines to help ensure the most efficient processing. Enter
an IP address or FQDN for a target only if the target has no associated orchestrator,
touchpoint, or proxy touchpoint.

More information:

How Targets for an Operator Can Be Specified (see page 372)
Processing a Target Specified as an IP Address or FQDN (see page 373)

Process Parameters

200 Content Designer Guide

Operator Dataset Variables

The operator dataset contains variables associated with an operator. You can view,
create, edit, or delete variables and their associated values during design time. Those
variables are available to the operator or any other operator in your process as soon as
the process starts. After the operator runs, it automatically creates other variables in
the operator dataset. Some of these variables are standard and define information such
as start time, stop time, and result, while other variables are information specific to
each operator.

You can use dot syntax or bracketed notation with expressions to access an operator
dataset variable from any operator in a process:

Process_name.Operator_name.field_name

Process_name[OpName_expression].field_name

Process_name[OpName_expression][field_name_expression]

Note: You can also use IconName in place of OpName.

The expressions return the name of the operator or variable, as indicated. An element in
an indexed field is returned by the following syntax where n is the element number:

field_name[n]

The pre-execution and post-execution code for an operator can access the name of the
current operator using the OpName keyword. Use the following syntax to specify an
operator dataset variable in the pre- or post-execution code of that same operator:

Process[OpName].field_name

For example, the following statements in the post-execution code assign the operator
name and the value of its Result variable to the process dataset variables iName and
iResult and create an operator dataset variable named World:

Process.iName = OpName

Process.iResult = Process[OpName].Result

Process[OpName].World = "Hello world!";

If you know the name of an operator at design time, you can use the literal name of the
operator when referring to its dataset variables in an expression. Occasionally, however,
you do not know the operator name at design time.

Process Parameters

Chapter 6: Datasets and Parameters 201

This can occur when you are editing pre- or post-execution actions for a Custom
Operator object. This also occurs when you must access operator dataset variables in
one of several operators, but you do not know which operator has executed until
runtime. You can then use pre-execution or post-execution code in each operator to
save its name to a variable, as we did with the iName variable in the previous example.
It could be a process dataset variable or it could be an operator dataset variable
belonging to the operator that requires the name. For example, in the following
illustration, the process executes either Operator A or Operator B before reaching
Operator C. Operator C can then use the operation name saved to a process variable by
Operator A or Operator B to access dataset variables.

Using variables instead of fixed names makes code modular and interchangeable among
operators in a process.

More information:

Create a Named Dataset Object (see page 175)
Calculated Parameters (see page 206)

Processing Properties Settings

Processing Properties define the pre-execution code and post-execution code.

Process Parameters

202 Content Designer Guide

Pre-Execution Code and Post-Execution Code

Pre-execution and post-execution JavaScript code is processed before and after an
operator runs. Pre-execution code is typically used to set up loop variables or other
variables that can be used as part of the operator. Post-execution code is typically used
to process the results of an operator or to increase loops indexes.

The OpName keyword can be used to access the operator dataset. For example, the
following statement inserts the operator name into a message and assigns the string to
a new operator dataset variable named operatorMsg:

Process[OpName].operatorMsg = “Recovery Operator” + OpName + “restructuring main

server at “+System[“Date”]+ “:” + System[“Time”];

Typically, you must include code that is closely associated with processing of your
specific operator.

For unrelated code, a best practice is to add a separate Calculation operator to the
process.

More information:

Specify Operator Dataset Variables (see page 230)

Set Operator Status

During the processing of pre- and post-execution code you have the option of specifying
a value for setOperatorStatus. You can force the operator to either fail or pass.

To specify the success of the operator:

setOperatorStatus ("Success""Operation Result","reason").

To specify the failure of the operator:

setOperatorStatus ("Failure",Operation Result,"reason").

Process Parameters

Chapter 6: Datasets and Parameters 203

Loop Settings

The Loop property specifies the number of times that an operator is repeated. When an
operator is run in a loop, the exit conditions and the connecting links from the operator
are evaluated only when the loop is terminated.

Loop settings have the following properties:

Repeat count

Specifies the number of times that an operator should be repeated. This value can
be specified with an integer or a CA Process Automation expression that returns an
integer at run time. The default value of 1 executes a loop on an operator a single
time in a workflow. To execute an infinite loop, click the Infinite loop check box.

A Boolean expression can also be used. The expression is evaluated after the
operator has executed. As long as the expression evaluates to true, an operator in a
workflow executes a continual loop. If the expression is false, the operator exits.

Infinite Loop

Creates an infinite loop. The operator or process keeps repeating until either the
process is interrupted or the loop is stopped from a different branch using a stop
loop command link to the Loop operator.

Delay between iterations

CA Process Automation supports an inherent delay option for every operator that
has a loop option. The Delay between iterations text field takes an expression. The
expression is evaluated into an integer and the value is taken as delay in seconds.
Before the next iteration is run, there is a delay as specified by the user after an
iteration in the loop.

The minimum value for delay is zero. The default delay is zero seconds. CA Process
Automation takes delay as zero seconds for all invalid inputs.

Process Parameters

204 Content Designer Guide

Timeout Settings

Timeout settings give the users ability to set a timeout as part of every operator. If the
operator has not finished by the specified time defined in the Timeout settings, the
execution takes a timeout exit port. Users still retain the choice to end the execution of
the operator and take the timeout path or let the operator continue with the execution.

Timeout settings have the following properties:

No Timeout

Specifies that there is no timeout set for the operator (enabled by default).

To specify a timeout value, clear the No Timeout check-box.

Type

Specifies the type of timeout. Select one of the following timeout types.

Duration

Specifies the timeout duration in seconds.

Target Date

Specifies the timeout date (MM/DD/YYYY) and time (24 hours).

Duration/Target Date-Time

Defines the timeout duration or the target date for the operator.

Process Parameters

Chapter 6: Datasets and Parameters 205

Action

You can select a timeout action from the following:

Abandon

Specifies the flow is abandoned after the timeout of the operator. The
following actions are performed:

■ The operation executes in detached mode.

■ Operator will timeout.

■ Post-execution code is executed.

■ Process flow is through the timeout branch.

■ The delay operator is executed.

Abort

Specifies the flow is aborted after the timeout of the operator. The following
actions are performed:

■ The operator is aborted.

■ The process is terminated.

■ Post-execution code is executed.

■ Process flow is through the timeout branch.

■ The delay operator is executed.

Continue

Specifies the flow continues after the timeout of the operator. The following
actions are performed:

■ The operator and the operation are in running state.

■ Process flow is through the timeout branch.

■ The delay operator is executed.

■ Post-execution code is executed after the operator is executed.

Reset

Specifies the flow is reset after the timeout of the operator. The following
actions are performed:

■ The operator and the operation are in running state and are reset.

■ Post-execution code is executed.

■ Process flow is through the timeout branch.

■ The delay operator is executed.

Process Parameters

206 Content Designer Guide

Calculated Parameters

Parameters in dialogs and properties pages that accept expressions are called calculated
parameters. Values for calculated parameters must be entered as JavaScript
expressions. You can use JavaScript expressions to set dataset values, perform
calculations in the Interpreter Service Operators, as part of pre- and post-execution
code, and to specify parameters wherever an expression is allowed. Most fields accept
calculated parameters. Fields that do not accept expressions as input have italicized
labels.

Expressions

An expression is any logical statement the application can evaluate to return a value. It
can include any combination of the following types of data:

■ integers (including long, double, and so forth)

■ strings

■ functions

■ variables

■ references to other operators

■ JavaScript

■ dates and times

■ valuemaps

■ literal values

■ calculated values

■ logical And, Or, and Not keywords or symbols (&&, ||, !)

■ comparison operators (==, !=, <, >, <=, >=, <>)

■ enclosing parentheses

Expressions are valid input for all fields, including JavaScript operators, functions,
custom exit ports, and operator property fields, except for fields labeled in italics.

Reserved Words in Expressions

A number of words are reserved in CA Process Automation expressions. These include
CA Process Automation reserved words, system functions, and JavaScript keywords. Do
not use these words as identifiers (such as for variable or other object names) in
expressions.

Process Parameters

Chapter 6: Datasets and Parameters 207

CA Process Automation Reserved Words

■ Caller

■ DateAdjust

■ Process

■ CurrentIndex

■ FreeRes

■ Size

■ Datasets

■ OpName

■ System

Process Parameters

208 Content Designer Guide

CA Process Automation System Functions

■ today

■ formatDate

■ parseDate

■ rolldate

■ adjdate

■ now

■ rolltime

■ convertXml

■ convertXmlURL

■ applyXPath

■ applyXPathURL

■ convertValueToXml

■ getEnvVar

■ checkCalDate

■ nextOpenDate

■ hasField

■ deleteValueMapField

■ setElementValueByKey

■ setFieldValueByKey

■ setValByKey

■ include

■ load

■ resolveNode

■ isTouchpointUp

■ absolutePath

■ absPath

■ absolutePath

■ createRscDoc

■ adjustResourceVals

■ lockResource

■ resetResource

■ setResource

Process Parameters

Chapter 6: Datasets and Parameters 209

■ getResourceTotal

■ getResourceAvail

■ newValueMap

■ getValueMapFields

■ deleteValueMapField

■ deleteObject

■ getSoapAttachments

■ deleteSoapAttachments

■ formatString

■ logEvent

■ existsDataset

■ existsFolder

■ existsAgenda

■ existsCalendar

■ existsProcess

■ existsCustomOperator

■ existsCustomIcon

■ existsResource

■ existsInteractionRequestForm

■ existsProcessWatch

■ existsSystem

Process Parameters

210 Content Designer Guide

Reserved JavaScript keywords

■ break

■ do

■ if

■ switch

■ var

■ case

■ else

■ in

■ this

■ void

■ catch

■ false

■ instanceof

■ throw

■ while

■ continue

■ finally

■ new

■ true

■ with

■ default

■ for

■ null

■ try

■ delete

■ function

■ return

■ typeof

Data Types

CA Process Automation expressions support JavaScript data types. Variables or
constants represent data.

Process Parameters

Chapter 6: Datasets and Parameters 211

Boolean Data Type

Boolean values have two possible values: true and false. JavaScript converts the true
and false literals to 1 and 0 when necessary.

Boolean values are usually the result of comparison made in your JavaScript
expressions. Boolean values are typically used in control structures. For example, the
JavaScript if-then statement performs one action if it is true and a different action if it is
false.

The following examples are all valid Boolean expressions:

Process.A == 1

!(Process.A == 1)

(Process.A != 1)

(Process.A == 1) && (Process.B > 0)

Date Data Type

The date type stores and returns dates from Dataset variables. The format of Date type
can be specified as part of the data type. For example, you can specify that it represents
a date as month then day or day then month.

Double Data Type

The double numeric data type can have a decimal point. The traditional syntax is used
for real numbers. A real value is represented as the part of the number, followed by a
decimal point and the fractional part of the number. This type can store real numbers
from -1.7976931348623157E308 to 1.7976931348623157E308.

Floating-point literals can be represented using exponential notation—a real number
followed by the letter e (or E), followed by an optional plus (+) or minus (-) sign,
followed by an integral exponent, in the following format:

[digits][.digits][{E|e}[{+|-}]digits]

Examples

2.718

2345.789

7.748E-5

Process Parameters

212 Content Designer Guide

Integer Data Type

The 16-bit integer data type can be typed as literal values in an expression. You can
exactly represent all integers from -2,147,483,647 to +2,147,483,647.

JavaObject Data Type

This data type lets you store Java objects in CA Process Automation.

All JavaObject variables are read-only. Their CurrentValue and Read-Only fields are
disabled. You can only edit the following fields:

■ Type

■ Page

■ Description

■ Array

A JavaObject that is not empty shows its class type in the associated CurrentValue field.
The CurrentValue field for an empty JavaObject is set to [JavaObject].

The actual JavaObject variable value is the serialized string version of the Java object,
but CA Process Automation does not show this serialized string. Instead, it shows the
Java class type of the object.

A manually created JavaObject is always empty because you cannot enter its value
directly in CA Process Automation. JavaObject variables are typically saved into a
dataset after a Run Java Code operator finishes running.

Long Data Type

The Long Data type is a 32-bit field that can be typed as literal values in an expression.
You can exactly represent all integers from -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,808.

Password Data Type

The Password data type stores passwords in an encrypted format in Dataset variables.
The value stored in a password type variable is not viewed by users.

Object Reference Data Type

The Object Reference data type stores the complete or reference path to an object in a
Library. You can use it anywhere that an expression requires the path to an object. The
Object Reference Filter on the object reference type constrains it to referencing one or
more specified object types.

Process Parameters

Chapter 6: Datasets and Parameters 213

String Data Type

Strings can be typed as literal values in an expression. Functions and JavaScript
Operators in an expression also return them. To distinguish between identifiers (such as
variable names) and literal strings, enclose the literal strings between string delimiters.
You can select to use either single quotation marks or double quotation marks as string
delimiters. For example, to use a literal string for the name of a program to start a UNIX
process, you would type it as follows:

"/usr/smart/program"

In any text box that an asterisk (*) marks, enter either an expression or a literal string
between a pair of quotation marks. The asterisk indicates that CA Process Automation
evaluates the contents of the text box as an expression. Do not delimit expressions
between quotation marks.

Any text box that expects literal values is not labeled with an asterisk (*). In this case, do
not delimit strings between quotation marks.

JavaScript uses the backslash character (\) as the escape character within literal strings.
If a semantic action is attached to an escaped character, the character is converted to its
character equivalent instead of performing the semantic action. For example, 'C:\\pam'
is converted to 'C:\pam'.

Any character following the escape character is interpreted literally rather than parsing
by the CA Process Automation language interpreter. For example, to include a double
quotation mark character in a string, precede it with the escape character, \”, so that
the parser does not interpret it as the string delimiter. To include the backslash in a
string, precede it with the escape character, \\.

If you want your string to include the same character as you are using as your delimiter
(either single or double quotes), escape the character when not using it as a delimiter.
For example, the following string that is delimited with single quotation marks includes
single quotation marks as escaped characters and double quotation marks as literal
characters:

'Database engine can\’t find database \'CHECKERS\' on server "GAMES"'

The same string, delimited with double quotation marks, includes the single quotation
marks as literal characters and the double quotation marks as escaped characters:

"Database engine can't find database 'CHECKERS' on server \"GAMES\""

The following table shows JavaScript escape sequences:

Sequence Character Represented

\0 The NUL character (\u0000)

Process Parameters

214 Content Designer Guide

Sequence Character Represented

\b Backspace (\u0008)

\t Horizontal tab (\u0009)

\n Newline (\u000A)

\v Vertical tab (\u000B)

\f Form feed (\u000C)

\r Carriage return (\u000D)

\" Double quotation mark (\0022)

\' Apostrophe or single quotation mark
(\0u0027)

\\ The Latin-1 character specified by two
hexadecimal digits NN

ValueMap Data Type

The ValueMap data type contains a collection of variables of various data types. You can
use it to create a group of variables within a dataset. This type is also known as a record
or a structure.

JavaScript Operators

Strings, integer, Boolean, and logical expressions can be built from a combination of
entities (integers, strings, functions, and Datasets) using JavaScript Operators. JavaScript
Operators are characterized by the number of operands that they expect. Most
JavaScript operators are binary operators that combine two expressions into a single,
more complex, expression.

JavaScript also supports several unary operators that convert a single expression into a
single more complex expression. This section covers several sets of operators that are
most commonly used in CA Process Automation expressions.

Process Parameters

Chapter 6: Datasets and Parameters 215

Array and Object Access Operators

JavaScript uses the dot (.) operator as an array element and object access operator. You
can access elements of an array using either square brackets ([]) and elements of an
object using a dot (.). JavaScript treats both [] and . as operators.

The . operator uses the following format:

object.identifier

■ The identifier operand should not be a string or variable containing a string; it
should be the literal name of the property, method, or variable name (in a Dataset),
without quotation marks of any kind.

■ The [] operator allows access to array elements and object properties. It also allows
access to object properties without restrictions placed on the identifier operand by
the . operator.

The [] operator uses the following formats:

■ array[expression] // where expression evaluates to an array index

In this case the first operand refers to an array, and the second operand (between
brackets) is an expression that evaluates to an integer value for an array index.

■ object[expression] // where expression evaluates to a property name

In this case the first operand references an object, and the second operand
(between brackets) is an expression that evaluates to a string that names a
property of the object. Note that unlike the dot operator the second operand is a
string instead of an identifier.

Assignment Operators

JavaScript provides the normal assignment operator and arithmetic assignment
operators that provide shortcuts for common arithmetic operators.

Operator Example Equivalent

= a = b

+= a += b a = a + b

-= a -= b a = a - b

*= a *= b a = a * b

/= a /= b a = a / b

%= a %= b a = a % b

Process Parameters

216 Content Designer Guide

Arithmetic Operators

The JavaScript has the following operators for combining integer values.

Operator Description

* Multiplication

/ Division

+ Addition or unary plus

- Subtraction or unary minus

% Modulo

++ Increment

-- Decrement

Arithmetic calculations in an expression follow algebraic rules:

■ When there is more than one arithmetic operator in an expression, multiplication,
and division are calculated first, followed by subtraction and addition.

■ When Operators are of the same order, they are calculated from left to right.

■ You can use parentheses to change the precedence. Calculations inside parentheses
are evaluated first. If parentheses are nested, the most deeply nested calculation
has precedence.

String Concatenation Operator

The interpreted language has the following operator for combining string values.

Operator Description

+ (strings) String concatenation

Use the string operator to combine, or concatenate, two or more character strings into
a single character string. For example, the expression "ABCD" + "123" returns the
concatenated string “ABCD123”.

Process Parameters

Chapter 6: Datasets and Parameters 217

Logical Operators

The interpreted language has the following logical (or Boolean) operators for combining
the outcomes of Boolean functions or Operators.

Operator Description

&& Logical AND

|| Logical OR

! Logical NOT

The logical operators return True or False. The logical operators recognize null, 0, "", or
undefined as False and any other non-zero operand as True.

Equality and Comparison Operators

Comparison operators are used with strings and numeric data. Comparison operators
evaluate to a Boolean value. They return True or False based on the outcome of the
tested condition.

Operator Description

== Equal to

=== Identity

!= Not equal to

!== Non-identity

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

?: Tertiary conditional operator

The expression

x1 ? x2 : x3

returns x2 when x1 is True or x3 when x1 is False.

Process Parameters

218 Content Designer Guide

Operator Precedence

The CA Process Automation interpreted language operators follow standard
computational precedence rules, as shown in the following table. Operators at the same
level of precedence are executed from left to right.

Precedence Operator

1 . () []

2 ++ -- - (unary) + (unary) !

3 * / %

4 + (addition) - (subtraction) + (string concatenation)

5 < <= > >=

6 == != === !==

7 &&

8 ||

9 ?:

10 = *= /= %= += -=

Keywords for Accessing Datasets

The following table describes the keywords that reference Datasets in various contexts:

Dataset Dataset Context Description

Datasets Named Dataset Accesses a Named Dataset in a CA Process Automation
Library using the following format:

Datasets[dataset_path].field

_name

where dataset_path is a CA Process Automation
expression that evaluates to the full path for a Named
Dataset in the current Library.

For example, the following path would reference a
Dataset named CxLinuxDev located in the Data folder
which, in turn, is located in the Demo folder in the
Library:

Datasets["/Demo/Data/]

Process Parameters

Chapter 6: Datasets and Parameters 219

Dataset Dataset Context Description

Process Dataset of a Process Accesses a Process Dataset in the following format:

Process.field_name

or

Process[expression]

Process.field_name

or

Process[expression]

where field_name is the Dataset variable and expression
is a variable or other expression that returns the name of
a field. For example:

Process.x = 5;

Process.fn = "x";

Process.y =

Process[Process.fn];

A process dataset is defined in a process. Each time a
process starts, it creates a copy of itself (called an
instance of process) including its process dataset. The
original process object determines the initial values for
the dataset. Changes to a dataset in any instance of the
process do not affect the original copy.

Process Parameters

220 Content Designer Guide

Dataset Dataset Context Description

Caller Process Dataset for a parent
Process when it is starting a
child Process.

Passes values between Processes in a call hierarchy when
one Process starts another Process using either the Run
Process or the Run Detached Process Operator that the
Workflow Module supports. The Process Dataset
initialization code option of the Start Process operator
specifies these assignments.

For example, when Process A calling Process B needs to
initialize fields in the Process B Dataset, Process A
specifies Process B as part of the Process Dataset
initialization code. In this context, Caller refers to the
Dataset of the parent Process A, and Process refers to the
Dataset of the child Process B.

In the context of the Process Dataset initiation code, the
Process keyword is always required to reference a
variable in the child Process Dataset.

If you omit both the Process and Caller keywords on a
variable name in the Process Dataset initiation code
script, CA Process Automation only looks for a
calculation-scope variable. The product does not check
for a similarly-named variable in either the parent or child
Dataset. For example, the following code fails if no
calculation-scope X was previously created in the
calculation context:

Process.X = Caller.X;

Process.Y = X + 100;

Process Parameters

Chapter 6: Datasets and Parameters 221

Dataset Dataset Context Description

none The current calculation and, in
some cases, the Process
Dataset

If you omit the Process keyword on the left side of an
assignment statement, CA Process Automation always
creates or assigns a value in the scope of the current
calculation (a calculation variable). A calculation variable
exists as long as CA Process Automation is processing a
calculation field. For example, the following code creates
a calculation variable equal to the value 5:

a = 5

If you omit the Process keyword in other contexts (such
as on the right side of an assignment statement), CA
Process Automation looks first for a calculation scope
variable or a Process variable with the same name.

Consider the following example:

Process.a = 1

Process.b = 2

a = 5

x = a

y = b

CA Process Automation creates two variables in the
Process Dataset (a=1 and b=2), and two calculation
variables (x=5, y=2).

Process Parameters

222 Content Designer Guide

Dataset Dataset Context Description

Process.operator_na
me

or

Process[expression]

Operator Dataset in a Process Enables access to an Operator Dataset, where
operator_name is a string that specifies the name of an
Operator in a Process. For example:

Process.y =

Process.emailOp.subject

Expression returns the name of an Operator in a Process,
for example:

Process.opName = “emailOp”

Process.y =

Process[Process.opName].subj

ect

Notes:

■ For information about
specifying Operator
dataset fields and for a list
of system generated fields
in Operator Datasets, see
Specify Operator Dataset
Variables (see page 230).

■ For more information
about specifying Operator
variables in Operator
properties settings, see
Dataset Variables in
Parameters (see
page 194).

System System Dataset Enables access to the System Dataset.

Fields in the System Dataset represent CA Process
Automation system information, such as the host name,
date, and time. The System Dataset is read-only. For
descriptions of the fields in the system Dataset, see
Specify System Dataset Variables (see page 231).

Note: For more information about specifying system
variables and for a list of system variables, see Specify
System Dataset Variables (see page 231).

Process Parameters

Chapter 6: Datasets and Parameters 223

Dataset Dataset Context Description

Root Parent Dataset Enables access to the Process Dataset of a parent
instance to an Inline child Process.

You can access the Process dataset of the root instance
using the keyword Root.

Examples: Root Process.

■ Process A starts an Inline process Process B. Process
B starts another Inline process Process C. Process C
has access to the dataset of Process A using the
keyword Root.

■ Process A starts Process B in a non-Inline mode and
Process B starts Process C in Inline mode. Process C
has access to the dataset of Process B only and not
Process A using the keyword Root.

Access Dataset Fields in Expressions

Dataset field values are specified in an expression using either (or both) the bracket
([expression]) or dot (.field) operators to specify a Dataset or a field in a Dataset.

Syntax for Specifying the Value of a Field

A value in a single non-indexed field is accessed in an expression using the dot syntax:

dataset_reference.field_name

The dataset_reference parameter corresponds to one of the keywords described
previously. The field_name parameter is a field name in the Dataset. The following
example returns the value of field Y in a Process Dataset:

Process.Y

Alternatively, a value can be accessed using the bracket syntax:

dataset_reference[field_name_expression]

The parameter field_name_expression is an expression that returns the name of a field
in the referenced dataset. The following example returns the value for field Y in a
Process Dataset:

Process["Y"]

In general, always use bracketed notation to use an expression to specify a Dataset or
field name in a Dataset.

Specify the Value of an Element in an Indexed Field

A value in an indexed field (array) is accessed using the following syntax:

dataset_reference.indexed_field_name[index]

Process Parameters

224 Content Designer Guide

The indexed_field_name parameter specifies the field name in the Dataset. Index is an
integer that addresses an indexed element in the array.

If you use a bracket notation to specify the indexed_field_name string, then use the
following syntax. In the example, indexed_field_name_expression is a CA Process
Automation expression that returns the indexed_field_name string.

dataset_reference[indexed_field_name_expression][index]

Like JavaScript arrays, CA Process Automation indexed fields are arrays of arrays rather
than true arrays. To access an element in an array of arrays, simply use the [] operator
twice. For example, for the two-dimensional indexed integer-field called integers, every
list element integers[x] is itself an indexed list of integers. To access a particular integer
within the indexed field, you would write the expression integers[x][y]. In general, for
any indexed field of n-dimensions, you use the following syntax to access any data
element:

dataset_reference.indexed_field_name[index1][index2] ... [indexn]

The index parameter is an integer or an expression that returns an integer. The
parameter has a value from 0 (for the first value in an indexed list) to the length of the
list minus 1. Evaluation of the index is circular, so when the index value exceeds the
length of an indexed list, the following formula determines its value:

Actual-index = index % length-of-the-list;

In other words, for n elements in an indexed field, you get the following results:

■ An index of n returns element 0

■ An index of n+1 returns element 1

■ An index of n-1 returns the last element

The following table illustrates the results of accessing elements of an indexed field in a
Process Dataset:

Expression Description

value = Process.X[2] Refers to the third element of an indexed field X of
the Process Dataset.

value = Process.X[18] For an indexed field X with a size of 19, this
expression refers to element 19 of X, the same as
Process.X[18].

value = Process.X[Process.Y + 2] An expression calculates the index.

value = Process.A[5][2] Returns the value in a two-dimensional array. The
third element in the sixth indexed list that the array
defines addresses the array.

Process Parameters

Chapter 6: Datasets and Parameters 225

Access the Length of an Indexed Field

For accessing the length of an indexed field, CA Process Automation supports the
JavaScript length property for arrays and its own size property. The length property is
read-only while the size property allows you to change the number of elements in an
indexed field. The JavaScript length property returns the number of elements in an
indexed field using either dot or bracket notation:

dataset_reference.indexed_field_name.length

dataset_reference[indexed_field_name_expression].length

The size property works the same way, using either dot or bracket notation:

dataset_reference.indexed_field_name.size

dataset_reference[indexed_field_name_expression].size

Because an indexed field is a zero-based array, both the length and size properties
always return one more than the index for the last element in a field. So when either
length or size returns n, a field contains 0, 1, ..., n-1 indexed elements, and the index for
the last element in the array is n-1.

Assigning a new value to the size property extends or truncates the number of elements
in an indexed field. Decreasing the value for the size property removes elements from
the upper end of an indexed field and deletes any values stored in the deleted elements.
The following code uses the size property to increment the length of an array X by one
element, and then assigns 25 to the new element:

Process.X.size = Process.X.size + 1;

Process.X[Process.X.size - 1] = 25;

For a multidimensional array, the size or length property returns the number of
elements in an array address to which it is appended. For example, for a
two-dimensional array called matrix[a][b]:

size1 = matrix.length

returns the size of the first dimension of matrix, with a containing elements 0...size1 - 1.

size2 = matrix[2].length

returns the size of the second dimension of matrix, given first dimension element 2,
with b containing elements 0...size2 - 1 when a = 2.containing elements 0...size1 - 1.

Process Parameters

226 Content Designer Guide

The following example illustrates how to address elements of a multidimensional
indexed field by looping through all elements in a two-dimensional indexed field (an
array of arrays) in the Process Dataset variable called matrix. The code assigns the value
for each element to a one-dimensional indexed field in the Process Dataset variable
called values:

var i; j; k=0;

for (i=0; i < Process.matrix.length; i++)

{

 for (j=0; j < Process.matrix[i].length; j++)

 {

 Process.values[k] = Process.matrix[i][j]

 k++

 }

}

Access Methods on an Indexed Field

Indexed fields support JavaScript array methods as listed in the following table.

Method Description

concat() Concatenates elements to an array.

join() Converts all array elements to strings and concatenates them.

pop() Removes an item from the end of an array.

Note: If the array belongs to the Operator dataset of another
Operator, then the pop function for javascript arrays should not
be used in the evaluation of Operator parameters.

push() Pushes an item onto the end of an array.

reverse() Reverses the order of elements in an array.

shift() Shifts an element off the beginning of an array.

slice() Returns a subarray slice of an array.

sort() Sorts elements of an array.

splice() Inserts, deletes, or replaces array elements.

toLocaleString() Converts an array to a localized string.

toString() Converts an array to a string.

unshift() Inserts elements at the beginning of an array.

For information about using these properties, refer to a JavaScript reference guide.

Process Parameters

Chapter 6: Datasets and Parameters 227

Specify Named Dataset Variables

Fields in Dataset objects (called Named Datasets) are identified in expressions using
either dot (.string) or bracketed ([expression]) notation:

Datasets[path_expression][variable_name_expression]

or

Datasets[path_expression].variable_name

The arguments represent the following:

■ path_expression is any JavaScript expression that evaluates to a path descriptor for
a Dataset object in the current CA Process Automation Library. A path to any object
in the Library starts with a forward slash (/) for the root element, followed by the
slash-delimited folder hierarchy, and ending with the object name.

■ variable_name_expression argument represents an expression that returns the
name of a field in the Dataset object.

■ variable_name is the actual name of a field in the Dataset object.

Either of the following would work for referencing field Y in the Named Dataset
Coordinates located in the /MathValues folder:

Datasets["/MathValues/Coordinates"].Y

or

Datasets["/MathValues/Coordinates"]["Y"]

More information:

Relative Paths for Datasets (see page 195)

Process Parameters

228 Content Designer Guide

Specify Process Dataset Variables

The Process Dataset contains variables defined by the developer or defined
automatically by CA Process Automation when an instance of a Process is started. The
Process keyword is used to access variables in the Process Dataset. You can specify a
process variable in an expression using either the dot (.) or bracketed ([expression])
notation:

Process.variable_name

Process[expression]

The expression can specify the variable name as a literal string in the format:

Process["variable_name"]

For example:

Process[“StartDate”]

or

Process.StartDate

The following table lists process system variables defined automatically by CA Process
Automation when it runs a process.

Process Variable Description

CallerUser The user ID that started this instance of a process. When a
parent process uses a Start Process operator to start a
child process, the value of CallerUser is passed forward
from the parent process. When a Start Process operator in
a scheduled task starts another process, this variable is
blank.

DisplayName The name of the process object as seen in the library.

effectiveUser The current owner of the process object.

EndDate Returns the date when this instance of the process ended
in the format:

MM/DD/YYYY

EndTime Returns the time when this instance of the process ended
in the following format:

HH:MM:SS

InstanceName The name of the original process object ending in a unique
runtime object identifier used to identify each instance of a
process. For example 372 is appended to process_1
resulting in an InstanceName of process_1_372.

InstanceUUID For internal use only.

Process Parameters

Chapter 6: Datasets and Parameters 229

Process Variable Description

ObjectID Object identifier for internal use only.

ParentProcessROID The unique runtime object identifier for the parent
process, if applicable, that started this process.

rootUUID For internal use only.

RuntimeROID A unique object identifier appended to the process
DisplayName following an underscore to identify each
instance of a process. For example RuntimeROID 372 is
appended to process_1 resulting in an InstanceName of
process_1_372.

ScheduledStartTime The date and time when the process was scheduled to
start.

ServerName The name of the server that is associated with the
touchpoint.

ServerID For internal use only.

StartDate The date when this instance of the process was created in
the format:

MM/DD/YYYY

StartTime The time when this instance of the process was created in
the following format:

HH:MM:SS

TouchpointName The name of the orchestrator managing the running
process.

Process Parameters

230 Content Designer Guide

Specify Operator Dataset Variables

Operator Datasets contain variables defined by the developer at the time of design or
by CA Process Automation at runtime for a specific Operator. Design-time variables are
available immediately after a Process is started. Runtime variables are added when an
Operator is executed.

Operator Datasets are labeled by the Operator name in the local Dataset at runtime, so
you can specify an Operator variable in an expression using the dot (.) or bracketed
([expression]) notation:

Operator.field_name

or

Process["Operator_name"].field_name

or

Process["Operator_name"]["field_name"]

The preexecution and postexecution code for an Operator can access the name of the
current Operator using the OpName keyword. You can use this keyword to access or
create an Operator Dataset. Use the following syntax to specify an Operator Dataset
variable in the preexecution or postexecution code:

Process[OpName].field_name

The following list shows common Operator Dataset System variables defined
automatically by CA Process Automation. Additional variables may be defined for
specific Operators.

Operator Dataset
Variable

Runtime Scope Description

AgentName during, after Name of the machine associated with
the Touchpoint that executes the
Operator.

AgentID during, after For internal use only.

EndDate after The date when the execution of the
operator ended in the format:

MM/DD/YYYY

EndTime after The time when the operator stopped
running in the format:

HH:MM:SS

Reason after String describing the result.

ResponseCode after String describing the result.

Process Parameters

Chapter 6: Datasets and Parameters 231

Operator Dataset
Variable

Runtime Scope Description

StartDate during, after The date when execution of the
Operator started in the format:

MM/DD/YYYY

StartTime during, after The time when execution of the
Operator started in the format:

HH:MM:SS

ServiceType during, after The CA Process Automation module
that ran the Operator.

TargetName during, after The name of the target, for example,
Orchestrator.

TouchpointName during, after Name of the Touchpoint that executes
the Operator.

UUID during, after For internal use only.

Specify System Dataset Variables

The System Dataset for a Process contains a number of variables that return system
information. The System keyword is used to access the System Dataset. You can specify
a system variable in an expression using either the dot (.) or bracketed ([expression])
notation:

System.variable_name

or

System[expression]

The following format specifies a system variable name with a literal string using the
bracket notation:

System["variable_name"]

The following table lists the fields in the System Dataset.

System Variable Description

DATE The current date in the format MM/DD/YY

DAY The day of the month

FIRSTDAYMONTH The first day of the current month in the format
MM/DD/YY

FIRSTDAYNEXTMONTH The date of the first day of the next month in the format
MM/DD/YY

Process Parameters

232 Content Designer Guide

System Variable Description

FIRSTDAYPREVMONTH The date of the first day of the previous month in the
format MM/DD/YY

HOST The name of the current host

LASTDAYMONTH The date of the last day of the current month in the
format MM/DD/YY

LASTDAYNEXTMONTH The date of the last day of the next month in the format
MM/DD/YY

LASTDAYPREVMONTH The date of the last day of the next month in the format
MM/DD/YY

MONTH The current month represented as a 0-based number
(for example, returns 0 for January).

TIME The current time of day in minutes (for example, returns
600 for 10 AM)

TIMES The current time of day in the format HHMM

TOMORROW The date of the day following the current date in the
format MM/DD/YY

WEEK The week of the month

YEAR The current year

YESTERDAY The date of the day preceding the current day in the
format MM/DD/YY

Statements

Expressions are JavaScript phrases that are evaluated to yield a value. JavaScript
statements execute commands or combine one or more expressions to do things or
yield values. A JavaScript program is a collection of statements.

This section briefly describes variable declaration and variable assignment, iterations,
and loops that are commonly used in CA Process Automation calculations. The following
table lists JavaScript statements, some of which are not documented in this section.

JavaScript Statements

Statement Syntax Description

break break; break label_name: Exit from a switch or iterative
statement; or exit from the
statement named by a label
statement.

Process Parameters

Chapter 6: Datasets and Parameters 233

Statement Syntax Description

case case expression: Labels a statement within a
switch statement.

continue continue; continue
label_name:

Restart the loop, or the loop
named by a label statement.

default default; Label the default statement
within a switch statement.

do/while do statement while
(expression)

Perform expressions in a
while statement until an
expression evaluates False.

empty ; Do nothing.

for for (initialize ; test ;
increment) statement

Loop while a test is True.

for/in for (variable_in_object)
statement Loop
through properties of an
object.

See “The for/in Loop
Statement."

function function
function_name(a1,a2,...an)
{statements}

Declares a function. See
“Include Common Resources
in CA Process Automation
Scripts” .

if/else if (expression) statement1
else statement2

Execute conditionally. See
“The if Statement.”

label identifier: statement Assign an identifier to a
statement.

return return[expression]; Return from a function or
return a value from a
function.

switch switch (expression) {
statements }

Multiway conditional branch
to case or default
statements. See “The switch
Statement.”

throw throw expression; Throw an exception.

try try { statements } Catch an exception.

Process Parameters

234 Content Designer Guide

Statement Syntax Description

var var name_1[=value1][, ...,
name_n [=value_n]];

Declare and optionally
initialize variables. See
“Variable Declaration.”

while while (expression) statement

Perform expressions in a
while statement while an
expression evaluates True.
See “The while Loop
Statement.”

More information:

Include Common Resources in CA Process Automation Scripts (see page 241)
The if Statement (see page 236)
The for/in Loop Statement (see page 239)
The switch Statement (see page 237)
Variable Declaration (see page 234)
The while loop Statement (see page 238)

Variable Declaration

The JavaScript var statement creates a variable in the Process Dataset. Optionally, you
can use the = assignment Operator to initialize a variable at the same time that you
create it. The JavaScript variable definition uses the following syntax:

var variable_name [= initial_value];

The following lines create variables but leave the initial values undefined until
subsequent code assigns values to the variables:

var x

var s

You can initialize a variable as either an integer or a string. In the following example, x is
initialized as an integer and s is initialized as an empty string.

var x = 0

var s = ""

You can create multiple variables at the same time:

var i = 0, j = 0, k = 0

Process Parameters

Chapter 6: Datasets and Parameters 235

Variable Assignment

Use the = assignment operator to assign values to Dataset variables. The variable
assignment uses the following syntax:

[dataset_reference.]variable_name = expression;

The expression is any combination of functions, variables, values, and operators that
returns a string or integer value. Here are a few examples:

Process.S = "ABCDEF" + '_' + "123"

Datasets[“ThisDataset”].x = 18 * I

x = 18 * I

If the Dataset reference is omitted, the Process Dataset is referenced automatically. If
the variable does not exist in the Process Dataset, then a temporary variable is created.
If you want to create a Process Dataset variable, use the Process reference.

Reuse Variables

Parent–Child Process Variable Selection: Ability for a child process to query the variables
initialized by the parent process

Conditional Statements

The CA Process Automation expressions recognize the JavaScript conditional
statements. The if conditional selection evaluates a single Boolean condition while the
else if conditional evaluates a series of Boolean conditions. CA Process Automation
conditional statements expecting a Boolean value recognize 0 as False and any non-zero
integer as True. CA Process Automation expressions also support the switch statement,
which allows for multiple outcomes when evaluating a single variable.

Process Parameters

236 Content Designer Guide

The if Statement

The if conditional selection statement uses the following syntax:

if (Boolean_expression)

 statement

The Boolean_expression is any combination of functions, variables, values, and
operators that returns a single True or False value. For example:

if (i <= 18) {

 y = 18 * I

 z = y * 56

}

The second form of the if conditional selection statement allows for two outcomes of
the Boolean expression. It uses the following syntax:

if (Boolean_expression)

 statement1

else

 statement2

For example:

if (i <= 18)

 Process.Date = System.Date

else

 Process.Date = "2006/01/23"

The else if Statement

For multiple outcomes, you can nest if/else statements. However, the logic can become
cumbersome to follow with too many nestings. You can therefore use the following
construction for a series of if/else statements:

if (Boolean_expression_1)

 statement_1

else if (Boolean_expression_2)

 statement_2

else if (Boolean_expression_3)

 statement_3

...

else if (Boolean_expression_n)

 statement_n

else

 statement_else

The final else statement is optional. It merely specifies code to be executed if none of
the Boolean expressions is True.

Process Parameters

Chapter 6: Datasets and Parameters 237

The switch Statement

The switch statement performs a multiway branch, useful when all branches of a
conditional statement depend on the same variable. In this case, it is cumbersome to
check the value of the same variable repeatedly using multiple if statements. The switch
statement uses the following syntax to do the same thing more efficiently:

switch(variable)

{

 case value_1:

 statements

 break;

 case value_2:

 statements

 break

 ...

 case value_n:

 statements

 break

 default:

 statements

 break

}

The switch statement executes the code within the case statement that matches the
current value of variable. If there is no match, the switch statement executes the default
code or skips to the next statement if there is no default code. The break statements
optionally delimit one case block of code from the next case. In the absence of a break
statement, execution falls from one case to the next. This is a legal action, so be careful
not to omit a break statement unless you actually intend for execution to fall through to
the next case statement.

Iterative Statements

JavaScript has several iterative loop statements, a continue statement, and a break
statement. The while and do-while loops perform one or more statements as long as
some condition is True. The for and for loops perform one or more statements a
specified number of times. The break statement exits an iterative statement. The
continue statement restarts a loop in a new iteration.

Process Parameters

238 Content Designer Guide

The while loop Statement

The while loop has the following syntax:

while (Boolean_expression)

 statement

The while loop performs a sequence of statements as long as the Boolean expression
tested at the start of the loop returns a True value. For example:

var n = 0

while (n < 10)

{

 Process.square[n] = n * n

 n++

}

The do/while Loop Statement

The do-while loop has the following syntax:

do

 statement

while (Boolean_expression);

The do-while loop is similar to the while loop except that it tests at the bottom of the
loop rather than at the start of the loop. The while loop performs a sequence of
statements as long as the Boolean expression returns a True value. For example:

var n = 0

do {

 Process.square[n] = n * n

} while (n++ < 10)

The for Loop Statement

The for loop performs a sequence of statements for a specified number of times. The for
loop has the following syntax:

for (initialize ; test ; increment)

 statement

The for loop is similar to the while loop except that an initialization and increment is
included in the loop syntax. Each iteration of the for loop increases the increment,
performs the test, and performs the statement.

For example, given an indexed variable Process.square containing 35 values, you could
use the following lines of code to set every value to the square of its index:

for (var i = 0; i < 34; i++)

 Process.square[i] = i * i

Process Parameters

Chapter 6: Datasets and Parameters 239

The for/in Loop Statement

The for/in loop performs a sequence of statements for all values of a variable in an
object. The for/in loop has the following syntax:

for (variable in object)

 statement

The variable should be either the name of a variable, a var statement declaring a
variable, an element of an array, or a property of an object. In other words, it should be
suitable as the left side of an assignment expression. The object should be the name of
an object or an expression that evaluates to an object.

For example, you can loop through elements of an indexed field in a Dataset by defining
an index variable and specifying the indexed field as the object.

for (var i in Process.square)

 Process.square[i] = i * i

The break Statement

The break statement can be used to exit out of a loop, as illustrated in the following
lines of code.

var l = 0;

while (l < 10) {

 n = n++;

 if (n > 102)

 break;

}

Process Parameters

240 Content Designer Guide

The continue Statement

The continue statement can be used to skip to the next iteration of a loop. The following
(rather trivial) example illustrates the use of the continue statement to assign even
numbers to an indexed local (Process) variable.

var i = 0, j = 0

for (j=0; j < 102; j++)

{

 if (j%2) continue

 // following statement executed only for even values of j

 Process.evens[i] = j

 i++

 // following stops the loop when all elements of array are completed

 if (i >= Process.evens.Size) break

}

Specify System Paths in CA Process Automation Expressions

Calculations generally accept either UNIX or Microsoft Windows paths. The UNIX path
works for locations on both UNIX and Microsoft Windows host systems. For example:

Process.Path = "/tmp/files/myfile"

The preceding example specifies the location on the current drive for a Microsoft
Windows host or the Root for a UNIX host. Specify a network path as follows:

Process.NetPath = “//myhost/tmp/files/myfile.txt”

Include the drive specification in a path for a Microsoft Windows system as follows:

Process.Path = "C:/tmp/files/myfile.txt"

If a working directory (such as C:\tmp) is specified for a Microsoft Windows process,
specify a path within the working directory without any leading slash character, as
follows:

Process.Subdir = "files/myfile.txt"

If you use a Microsoft Windows path in a calculation, verify that you escape the
backslash character so that the interpreter correctly evaluates it as a literal character, as
follows:

Process.Path = "C:\\tmp\\files\\myfile.fm"

Process Parameters

Chapter 6: Datasets and Parameters 241

Include Common Resources in CA Process Automation Scripts

You can include previously defined scripts in a CA Process Automation script. This allows
a script to read in and access saved functions at runtime. Use the include statement on
any line of a script dialog to add a previously saved script to the file. The include
statement uses the following syntax:

include(expression)

The expression argument can be any path that references an appropriate resource.
Recognized paths include:

■ A relative path, such as include(“Scripts/functions.js"), specifies a common user
resource (c2ouserresources) in the CA Process Automation Repository.

Note: For more information on adding or managing resources in the CA Process
Automation Repository see “Manage Common Resources” in the Administration
Guide.

■ A directory path, such as include(“/scripts/functions.js"), specifies a script on the
current drive for a Microsoft Windows host or the Root for a UNIX host.

■ Including the drive letter in an explicit path, such as
include(“D:\\scripts\\functions.js"), specifies a script on a specified drive.

■ A network path, such as include("//share/scripts/function.js"), specifies a script on a
shared network resource.

■ A URL, such as include(“http://james:8080/itpam/scripts/functions.js"), specifies a
path to a web resource.

Lines in an included script are added to a script as if they were typed in place of the
include statement. Note that it is a best practice to include only necessary functions or
other code instead of lengthy function libraries in an included script. Included scripts are
compiled at runtime, so many unused lines of code unnecessarily increases the time
required to run a script.

Comments in CA Process Automation Calculations

JavaScript comments are delimited in lines by the character pair //. The start of a
comment always signifies the end of a logical line. A comment starts at the end of the
logical line and terminates at the end of the physical line. Comments are ignored by the
JavaScript language interpreter.

Chapter 7: Forms 243

Chapter 7: Forms

CA Process Automation supports two main types of interactive form objects:

■ Start Request Forms

■ Interaction Request Forms

Design these forms at strategic points in your process to allow users to provide input
and control the process.

Custom operators also include forms with pages and data fields that appear in the
Properties palette of the Process Designer.

This section contains the following topics:

Start Request Forms (see page 243)
Interaction Request Forms (see page 245)
Create and Edit a Start Request Form Object (see page 246)
The Form Designer (see page 247)
Initialize Form Variables (see page 287)

Start Request Forms

The Start Request Form object enables you to create an interface that allows other
users to launch a process and to provide input at startup in a structured manner. You
design and maintain the layout and behavior of the form. Users fill out the form when
prompted. For example, you can give someone at a Help Desk or in Human Resources
the ability to provide information that influences how a related process starts.

You can group a series of related form elements on a specific page or in a specific
section of the page. You can add any number of pages. You can use functions and events
to get or set other field values. Design the form to gather all the information that is
required from the user to start the process.

Start Request Forms

244 Content Designer Guide

Monitor Start Request Form Instances and Process Instances

After you create and design a Start Request Form, it must start as part of another
process, or you can manually start it. When a form starts, it results in a new form
instance with a unique name consisting of the form name plus the form's runtime object
ID. When a process starts, it results in a new process instance with a unique name
consisting of the process name plus the process runtime object ID. Examples follow:

MyStartRequestForm_239

MyProcess_241

Follow these steps:

1. Click the Operations tab.

2. In the Operations pane, navigate to any of the following locations to view form and
process instances:

a. Exand Start Requests, expand folders, and click a Start Request Form.

b. Expand Process Watch, expand folders, expand a Process Watch object, and
click on an optional Start Request Form that you previously added to the
object.

c. Expand Links and click Start Requests.

3. In the Operations pane, navigate to one of the following locations to start a form
and its associated process:

a. Exand Start Requests, expand folders, and click a Start Request Form.
Right-click the form and choose Start.

b. Expand Process Watch, expand folders, expand a Process Watch object, and
click on an optional Start Request Form that you previously added to the
object. Right-click the form and choose Start.

4. Repeat step 2 to view both the form instance and the process instance.

5. To monitor the actual process instance, click a row and then click Open Process
Instance in the toolbar.

Interaction Request Forms

Chapter 7: Forms 245

Notes:

■ The Process Instance column shows no data for any forms in the Queued state.
Queued forms do not instantiate a process instance until the form starts Running.

■ You can change the process instance name while the process is running by using
Process.UserInstName. Click Refresh to view the new Process Instance name.

■ The Process Instance column does not include any forms that were already running
before an upgrade to the current version of CA Process Automation.

Interaction Request Forms

The Interaction Request Form enables you to create an interface that can be used
during the execution of a process to interact with a user in a structured manner. The
form is accessed in a web browser by a user who either administers processes within CA
Process Automation or performs some other business objective.

Typical use cases for Interaction Request Forms include:

■ Getting approval before you continue with a process or a path within a process.

■ Letting a user select a course of action.

■ Retrieving information that is only available from a person at runtime.

■ Requesting manual actions (for example, physically connecting a server to a switch)
to be performed and marked as completed before proceeding with a process.

The Interaction Request Form object defines the pages, parameters, and other
characteristics of the form. Parameters can be configured to display edit boxes,
drop-down lists, list boxes, and check box lists on form pages. You can have multiple
pages in the form, letting you group related parameters on separate pages. Users click
the Next and Back buttons to step through the pages in an Interaction Request Form.
You can add any number of pages to an Interaction Request Form to gather all the
information required during the execution of a process that uses the form.

Interaction Request Forms are saved as separate objects in the automation library. After
creating and checking in an Interaction Request Form, it can then be added to any
process using the Assign User Task operator.

When a process executes the Assign User Task operator, the Interaction Request Form is
listed as a pending user prompt in CA Process Automation. The User Interaction
operator does not complete until an authorized user responds to the prompt by filling in
and submitting the Interaction Request Form, or the timeout specified in the Assign
User Task operator is reached.

Create and Edit a Start Request Form Object

246 Content Designer Guide

Create and Edit a Start Request Form Object

Use the following procedure to create a form. You can also double-click an existing
form, check it out, and edit it.

Follow these steps:

1. Click the Library tab.

2. Select a folder.

3. In the toolbar, click New and then select one of the following:

a. Start Request Form

b. Interaction Request Form

c. Custom Operator

4. Double-click the new object.

The object opens in a dialog that shows the Form tab.

5. In the Form Elements pane at left:

a. Expand Form Elements to view the available list of controls that you can add to
the pages of the form.

b. Below Form Elements, expand the name of your form or custom operator to
view its pages and existing form structure.

c. Drag a form element down the list and drop it on an appropriate parent. For
example:

■ Drag a text field onto a page.

■ Drag a check list item onto a check list.

■ Drag a new page onto the page layout for your form to add a new page to
your form.

Note: You cannot drag and drop directly to the form page layout in the center
of the page. You must drag elements to the form structure at the bottom of the
left pane.

d. Click one of the form elements that you added to your structure.

A border appears around the form element in the center of the page. The
properties for the form element appear in the right pane.

6. In the Properties pane at right:

a. Select a property or event.

b. Specify a value. Most properties accept input strings or pop-up menus for true
or false. For events, select from a list of predefined functions.

7. Click Save.

The Form Designer

Chapter 7: Forms 247

The Form Designer

When you open a form from the Library Browser, the Form Designer dialog appears. It
features a standard toolbar and series of tabs. Use the Form tab to design a form and
use the Preview tab to check its appearance.

 Form Elements

The top part of this pane displays all the possible types of controls that are
available.

 Form Structure

The bottom part of this pane shows the structure of your form. Drag and drop form
elements to the pages of your form here.

 Form Pages

The layout for the pages of your form appears here. Click a control to edit its
properties. For forms with more than one page, click the Back and Next buttons to
view other pages. Later, when your users need to view the form pages, they also
click the Next and Back buttons.

The Form Designer

248 Content Designer Guide

 Property Pane

Use this pane to view or edit the variables in the form elements. For example, set
the Required property to true, change the Label used to identify a field, or specify a
function for an event. In this example, you want the onFocus event for a date field
to set the value of a text field named Form.Var_3 to 500. Specify the following
arguments in the function:

ca_pam_setTextFieldValue(Form.Var_3, 500)

Form Elements

This topic presents basic examples of each type of form element.

Item: Description:

 Form Structure: While you design the form, the arrangement of pages and form elements appears at
the bottom of the Form tab.

 Page Layout: You can set the layout to display pages as cards or tabs. Cards appear in sequence when
the user chooses Back or Next. Tabbed pages allow the user to select any tab to view the page.

 Check Boxes and Radio Buttons: Use a group of check list items when a user can select multiple
related items. Use a radio group of items when a user must select only one related item. Use individual
check boxes to control settings for unrelated items.

 Orientation: Check lists and radio groups can appear in vertical or horizontal orientations.

 Labels: Use labels to identify specific fields or regions of the form.

The Form Designer

Chapter 7: Forms 249

Item: Description:

 Images: Use an image element to specify a graphic. You can use images to display logos, icons, status
indicators, or as buttons that users can click. When the form cannot locate an image, the broken link
icon appears.

 HTML: Use this form element to specify HTML code to render for the form user.

 Object Reference: Use this form element to provide form users with an easy way to select another
object in the library browser. An Object Reference stores the path to an object in a library. For
example, a form user can specify a touchpoint on an orchestrator and then run a process on the
selected touchpoint. As a form designer, you can limit the available types of objects that an Object
Reference allows.

Item: Description:

 Field Set: Use field sets to group related form elements. Users can expand and collapse field sets to
avoid clutter by focusing on specific parts of a form.

 Text Field and Text Area: Use text fields for basic data entry including names, addresses, email
accounts, phone numbers, and other details. Use Text Area form elements when you want to allow
users to enter multiple lines of text. They can view a fixed amount of text on the form (set the height
property) and scroll the remainder of the field.

 Multi-line Text: Use this form element for large amounts of text that appear in their own resizeable
scrolling window. On the form, this text element only occupies a single line of space. On the form, it
appears as a button with ellipsis (...) to indicate you can click it to browse the full window.

 Date Field: Use this form element to store a date. Users can enter a date or select one from the
integrated calendar control.

 Spinner: Use this type of field to allow the user to nudge or adjust a value up or down in predefined
increments.

The Form Designer

250 Content Designer Guide

Item: Description:

 Lookup: Use a lookup to present a one-column table of values in a popup window. You can use a
dataset or external datasource to provide the values. A user can click a value and then click OK to
populate the lookup field and store the value.

 Select: Use this form element to present a drop-down list of options to the user.

 Simple Array and Table: Use a simple array to store a single type of data in a table. Use a table when
you need to store multiple columns of data. These types of form elements include options for adding,
deleting, and moving rows.

You can insert the following elements in a table:

■ check box

■ date

■ lookup

■ select field

■ text field

■ object reference

■ spinner

The Form Designer

Chapter 7: Forms 251

Form Element Properties

Allow Adding of Rows

A Boolean (true or false) value for tables and simple arrays. When true, a tool
button allows form users to create rows in the table. When false, users cannot add
new rows to the table.

Allow Decimals

A Boolean (true or false) value for spinner fields. When true, users can enter
numbers with decimals such as 12.25 or 0.003. When false, users cannot enter
decimal numbers in the field; only whole numbers.

Allow Deletion of Rows

A Boolean (true or false) value for tables and simple arrays. When true, a tool
button allows form users to remove entries from the table. When false, users
cannot remove rows from the table.

Allow Negative Numbers

A Boolean (true or false) value for spinner fields. When true, users can enter
numbers less than zero such as -10. When false, users cannot enter negative
numbers; only 0 or positive numbers.

Allow Reordering of Rows

A Boolean (true or false) value for tables and simple arrays. When true, two tool
buttons allow form users to move entries up and down in the table. When false,
users cannot move rows up or down in the table.

Calendar

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

CheckBox Label

The text string or name applied to a single check box or check box item in a group.

Created By

The name of the user or user account responsible for the creation of the form.

Created On

The date and time when the form was created.

Custom Icon

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

The Form Designer

252 Content Designer Guide

Custom Operator

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

Dataset

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

Dataset Expression

A reference to a specific array variable in a dataset object in the library. For
example:

Datasets["/MyFolder/MyForm/MyDatasetObject"].MyArray

Date Format

The preferred format for dates. For example, enter MMM dd, yyyy to format the
date 05/01/2014 as May 01, 2014. Enter yyyyMMdd to display the same date as
20140501. The default date format is MM/dd/yyyy.

You can also store time in a Date field. For example, you can set the Date Format
property to dd/MM/yyyy hh:mm:ss a to display the date and time value
05/01/2014 10:17:43 AM.

Description

Additional information about the form element beyond its name or short label. A
tooltip for a field displays the label; however, if you provide a description, the
tooltip displays that instead to assist the user in completing the form.

Disabled

An optional mode or setting for a form element characterized by the following
behavior:

■ The form element cannot receive focus.

■ The form element appears grayed-out or unavailable.

■ You cannot change the value of a disabled form element; however, you may be
able to copy its value.

Disable a form element to apply business logic and prevent invalid data.

Editable

A Boolean (true or false) value for a field. When true, users can edit the field. When
false, the data is read-only.

Height

The Form Designer

Chapter 7: Forms 253

The amount of vertical space that you want the form element to occupy. Specify a
value for this property in pixels from the top of the form element extending down.

Hidden

A Boolean (true or false) value for a field. When true, the field is not visible to users
when it loads. When false or empty, the field is visible.

Hide Label

A Boolean (true or false) value for a field or table with a label. When true, the label
is hidden. When false or empty, the label appears.

_id

A unique read-only identifier for a specific instance of a form element. The _id joins
the name of the form, the name of any parent object such as a table, and the name
of the form element with a dot separator. For example, Form1 has two radio button
groups with the following _id properties:

Form1.rgName1

Form1.rgName2

An actual radio button would have the following _id:

Form1.rgName2.RadioOptionA

A form element in a table named Table_2 might have the following _id:

Form_1.Table_2.Var_3

The _id for a form is equal to its Name property.

Note: The _id is used in any JavaScript functions. When you rename or move an
element, be aware that you are also changing its _id.

Increment

For spinner fields, the value of an incremental adjustment, up or down. For
example, if the field displays 6.55 and the increment is .02, one click up in value
would result in 6.57 and one click down would yield 6.53.

Interaction Request Form

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

Label

The short descriptive name for a form element that is displayed to the user.

Label Align

The Form Designer

254 Content Designer Guide

A read-only property that indicates how field labels appear relative to the form
elements that they describe. When you click a form in the form designer, you can
choose buttons in the toolbar to align labels to the left, right, or on top of their
associated form elements.

Label Width

The size of a line of label text in pixels. Long labels wrap to the next line.

Layout

A design-time only property that determines how multiple pages on a form appear
on the Form and Preview tabs. Select card to view a single page at a time with Back
and Next buttons to navigate between pages in sequence. This setting is the
default. It is how the pages of every form appear to form users. Select tab to view
the names of available pages in their own tab. As a convenience, designers can click
a tab to navigate to the selected page in any order.

Maximum Length

The greatest number of characters a user can enter in the field. For example, if your
company requires an 8-digit number in a given field, you can constrain input by
setting the Maximum Length and Minimum Length properties to 8.

Maximum Rows

The highest number of entries allowed in a table.

Minimum Length

The least amount of characters a user can enter in the field. For example, if your
company requires an 8-digit number in a given field, you can constrain input by
setting the Maximum Length and Minimum Length properties to 8.

Minimum Rows

The lowest number of entries allowed in a table.

Modified By

The name of the user or user account responsible for the modification of the form.

Modified On

The date when this version of the form object was most recently changed.

Name

A unique string that identifies a form element. The system assigns an initial name
such as Var_3; however, you can modify this value. Changing the name also
changes the _id.

Form elements can have two separate names. A Name property and an internal
name used to identify the form element in the Form Designer.

■ Change the value of the Name property to set the value of the _id variable used
to identify the form element.

The Form Designer

Chapter 7: Forms 255

■ Click the Rename button to change the internal name for an element that
appears in the hierarchical form structure layout at design time. This internal
name is the default value given to the Label of a form element. This label does
appear to form users at runtime.

Number Format

Indicates the format for numeric input in the field. For example, enter $#.## to
display $3.14.

Orientation

Specifies whether radio groups and check lists appear in a horizontal or vertical
arrangement on the form. Vertical orientation is preferred and is the default
selection.

Package

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

Page Size

The number of rows to display on each page of a table or simple array.

Password

A Boolean (true or false) value for a text field, often used with Password fields.
When true, user input appears using bullet characters to hide input from other
users. When false or empty, data appears exactly as keyed.

Pattern

An input constraint or validation requirement you can place on the values a user
enters for a text field or text area. For example, enter [a-z] to require only
lowercase alphabetic characters in a field.

Pattern Message

The on-screen alert or hint that you want to appear when a user's entry does not
meet the pattern that you specified for the text field or text area.

Process

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

Process Watch

The Form Designer

256 Content Designer Guide

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

Render as HTML

A Boolean (true or false) value for multi-line text fields. When true, the form
interprets the content of the multi-line text field as HTML code and displays it much
like a web browser does. For example, text that you tag with <H2> would appear as
a second-level heading and text that you tag with would appear bold.

Required

A Boolean (true or false) value that indicates whether the form element must
contain a value or can remain empty.

Resource

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

Schedule

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

Start Request Form

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of this type. When false or
empty, this type of automation object does not appear. The object properties of
object reference fields work together like a filter to include only certain types of
automation objects when the user views the available choices.

Style

One or more statements that determine how text attributes in a field appear to
users. Format style attribute assignments in mixed case. Examples include:

color:blue;

textAlign:center;

textDecoration:underline;

textTransform:uppercase

textIndent:30px;

fontStyle:italic;

fontFamily:"Courier";

fontSize:14px;

The Form Designer

Chapter 7: Forms 257

Tab Index

A sequential number that you can assign to control the tab order of the form at
both design time and runtime. Because the application does not enforce
uniqueness, you can use multiples of 5 or 10 as you set the tab order. When a new
field is inserted in the layout between, for example, field 20 and field 25, you can
assign its tab index to 22.

You can also leave the Tab Index value empty and click Move Up or Move Down in
the toolbar to adjust the tab order. By default, the form tab order is top to bottom
in the layout.

Text Align

Specifies how an image file appears in the portion of the form layout that it
occupies. Images can be aligned left or right, centered, or justified.

Text Direction

Specifies how characters appear in a field relative to the left and right borders of
the field. Choose ltr or leave empty (the default) to display text from left to right.
This is the default text direction for ISO-8859 Latin I codesets. Choose rtl to display
text from right to left.

Touchpoint

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes any automation object types that are set to true
and allows the user to browse touchpoints by domain, environment, and
orchestrator. When false or empty, objects from only the default touchpoint
appear; the user cannot select another touchpoint.

Touchpoint Group

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes any automation object types that are set to true
and allows the user to browse touchpoint groups by domain, environment, and
orchestrator. When false or empty, objects from only the default touchpoint group
appear; the user cannot select another touchpoint group.

URL

For Image form elements, the URL path to an image file. For example:

https://www.<company_name>.com/images/logo1.png

or

http://my.intranet.site/Corporate%20Images/Big2.jpg

Use images to display data, to indicate status, or to provide buttons that users can
click.

Value

The Form Designer

258 Content Designer Guide

A form element's stored data. All elements on a form store their values directly in
their visual borders temporarily before committing to the database. Value appears
as a property for two specific form elements:

■ Each option for a Select field has its own value property. Use this value
property to store a string or number for each option. For example, the user
might see the options listed as Easy, Moderate, and Difficult. The values for
each option might be set to 0.8, 1.0, and 1.2; and these values would be used in
additional calculations.

■ An HTML form element displays a value property. Use this property to specify
the actual text including any code that you want to store in the field. For
example, enter the following in the Value property for an HTML form element:

1, 2, 3, 4, 5, <i>6</i>, ... <H2>CA Process Automation</H2>

The form user sees the following rendered data in the same field:

1, 2, 3, 4, 5, 6, ...

CA Process Automation

Width

The amount of horizontal space that you want the form element to occupy. Specify
a value for this property in pixels from the left edge of the form element extending
to the right.

The Form Designer

Chapter 7: Forms 259

View Form Properties in a Separate Window

When form properties do not fit in the single line of the Form Designer Property pane,
you can view form properties in a separate window.

Follow these steps:

1. Click the Library tab.

2. Open a form.

3. In the Form Designer:

a. Drag a field to a page in the layout.

b. Click the field listed in the form structure.

c. Identify a property or event that can store multiple lines of text, such as Style
or onMouseOver.

d. Right-click inside the property or event value and choose Expand.

The expanded properties appears in a separate window.

Note: When you expand an event, you can press Ctrl+Space to view code completion
assistance suggestions. Press Ctrl+Alt to view a list of the functions.

The Form Designer

260 Content Designer Guide

Form Element Events

onBlur

The event that occurs when a form element loses focus. For example, a form
contains a field called User Name. A user first establishes focus in the field by
tabbing to it or clicking it. The onBlur event occurs when the user takes either of the
following actions:

■ The user clicks another object or clicks another window.

■ The user presses the Tab key to navigate to the next field (for example, the
Password field).

onChange

The event that occurs when a form element loses focus and determines that its new
value is not the same as its old value. For example, a form contains a field called
Quantity with a value of 10. After changing the value to 15, the user remains in the
field. The onChange event does not occur until the user takes either of the following
actions:

■ The user clicks another object or clicks another window.

■ The user presses the Tab key to navigate to the next field.

onClick

The event that occurs when a user clicks a form element. A valid click by the user
must include both the onMouseDown and onMouseUp events on the same object.
This requirement helps prevent calling functions or other code accidentally since
the user's mouse must remain on the clickable object.

onFocus

The event that occurs when a form element receives focus. A user establishes focus
in a field by tabbing to it or clicking in it. You can also write scripts or code to
establish focus in a field.

onKeyDown

The event that occurs when a user first presses down on a key. For example, a user
clicks or tabs into a Name field. A script associated with the onKeyDown event for
the Name field alerts users when they attempt to type number keys.

onKeyPress

The event that occurs after a user presses a key down and continues to hold that
key down. For example, a user clicks or tabs into a Select field called Name. A script
associated with the onKeyPress event for the Name field cycles through names that
match the pressed alphabetic key.

onKeyUp

The event that occurs when a user releases a key. For example, a user clicks or tabs
into a Spinner field called Temperature. A script associated with the onKeyUp event
for the field adjusts its value up or down incrementally each time the user presses
and releases a specific key.

The Form Designer

Chapter 7: Forms 261

onLoad

The event that occurs when the form first appears for the user to complete.

onLookup

The event that occurs when a user clicks the Browse button in a Lookup field to
view the available values that are calculated (or "looked up") based on other field
values.

onMouseDown

The event that occurs when a user presses the left mouse button down on a form
element.

onMouseMove

The event that occurs when a user moves the mouse cursor inside the boundary of
a form element.

onMouseOut

The event that occurs when a user moves the mouse cursor outside the boundary
of a form element.

onMouseOver

The event that occurs when a user positions the mouse over a form element and
stops moving the mouse.

onMouseUp

The event that occurs when a user releases the left mouse button on a form
element after it was down.

onMouseWheel

The event that occurs when a user equipped with an optional mouse wheel rolls the
wheel forward or back to scroll a form element.

onSubmit

The event that occurs when the user submits the form. Any of the following actions
can submit the form:

■ The user clicks a Submit button.

■ The user presses a specific key or combination of keys.

■ A change in the value of a field.

■ The user reaches the end of the form in the tab order.

onValidate

The Form Designer

262 Content Designer Guide

The event that occurs when the value of a field is verified against business rules
before it is stored in the data buffer or written to the database. For example, the
user enters a Serial Number field that must start with the letters SN and contain 10
numeric digits. Before the user can tab to the next field or click away from the field,
the onValidate event and its associated code verify the data. You might alert the
user if the serial number does not meet validation rules so they can adjust their
entry.

Form Element Functions

A user completing a form causes, often unknowingly, any number of user interface
events to occur. Events, such as changing a field value (onChange) or positioning the
mouse pointer over a table (onMouseOver) can then initiate JavaScript functions. As a
form designer, use functions to achieve the following sample goals:

■ Change the appearance of fields on a form.

■ Get data from a field or table.

■ Set the data in a field or table.

■ Help users navigate through potentially complex choices, based on logic. For
example, update a list of cities based on the user's selection of Country.

■ Help users minimize data-entry errors.

The remainder of this reference topic lists the predefined JavaScript functions that you
can use in fields on start request and interaction request forms.

The Form Designer

Chapter 7: Forms 263

User Interface

ca_pam_disableField(_id, isDisable)

Use this function to enable or disable a field. When a field is enabled, users can
enter the field and can provide input. Disabled fields are still visible but appear
unavailable and do not accept user focus or input.

Parameters:

■ _id: The unique identifier for the field that you want to enable or disable.

■ isDisable: A Boolean (true or false) value that is used to indicate whether
the field is disabled (true) or enabled (false).

Example:

ca_pam_disableField('Form.ckListField27', true)

■ This example disables the specified check list field including all check list
items inside it.

ca_pam_hideField(_id, isHide)

Use this function to show or hide a field. When a field is visible and enabled users
can enter the field and can provide input. Hidden fields are not visible to the user.
The user cannot enter a hidden field. The tab order of the form skips hidden fields.

Parameters:

■ _id: The unique identifier for the field that you want to show or hide.

■ isHide: A Boolean (true or false) value used to indicate if the field is hidden
(true) or shown (false).

Example:

ca_pam_hideField('Form.Var_0', true)

■ This example hides the specified field. The hidden field is effectively
removed from the form although it can still hold a value.

The Form Designer

264 Content Designer Guide

Selected Values

ca_pam_getSelectedOptions(_id)

Use this function to retrieve the index value of the currently selected option in a
Select field.

Parameters:

■ _id: The unique identifier for the field with options that you want to
retrieve.

Example:

ca_pam_getSelectedOptions('Form.VarFillerType')

■ This example retrieves the index value of the user's current choice of Filler
Type.

■ Filler Type is a Select field with options for Rocks [0], Sand [1], and Water
[2].

■ When the user selects Sand from the Filler Type drop-down list, this
function returns the index value 1.

The Form Designer

Chapter 7: Forms 265

ca_pam_getSelectedOptionValues(_id)

Use this function to retrieve the option value of the currently selected option in a
Select field.

Parameters:

■ _id:The unique identifier for the field with option values that you want to
retrieve.

Example:

alert(ca_pam_getSelectedOptionValues('Form.VarFillerType'))

■ This example retrieves the option value number or text string for the user's
current choice of Filler Type.

■ The alert command displays the option value result to the user in a
browser pop-up dialog or message box.

■ Filler Type is a Select field with the following options, index values shown
in brackets, and values:

 Rocks [0], $50

 Sand [1], $100

 Water [2], Call for details.

■ Update Order Form is a button image with this function in its onMouseUp
event.

■ When the form user clicks the Update Order Form button, this function
retrieves the value for the option they chose in the Filler Type drop-down
list.

■ When the form user chooses Sand in the Filler Type field, and clicks the
update button, the pop-up alert box displays the value $100.

The Form Designer

266 Content Designer Guide

ca_pam_getTextFieldValue(_id)

Use this function to retrieve a numeric value or text string from a Text field.

Parameters:

■ _id: The unique identifier for a Text field.

Examples:

ca_pam_getTextFieldValue('Form.top_vendors')

■ This example retrieves the value of the top_vendors Text field.

ca_pam_setTextFieldValue('Form.dynamic_field',

ca_pam_getTextFieldValue('Form.top_vendors'))

■ This example retrieves the value of the top_vendors field and sets the
dynamic_field Text field to that retrieved value.

ca_pam_isSelectedCheckBox(_id)

Use this function to determine whether a check box field is selected or checked
(true), or clear (false).

Parameters:

■ _id: The unique identifier for the Check Box field that you want to
evaluate.

Example:

ca_pam_isSelectedCheckBox('Form.ckbxInsBuy')

■ This example returns the value true when the Purchase Insurance check
box is selected. It returns false when the check box is clear.

■ The check box named ckbxInsBuy has a label the user sees as Purchase
Insurance.

ca_pam_isSelectRadio (_id, radio_id)

Use this function to determine if a specific radio button option is selected.

Parameters:

■ _id: The unique identifier for a Radio Group field.

■ radio_id: The unique identifier for a specific radio button option in a radio
group.

Example:

ca_pam_isSelectRadio('Form.Transportation',

'Form.Transportation.Option_01_Air')

■ This example returns a value of true when the Transportation radio group
is set to Air. The function returns false when the user selects Rail.

■ Transportation is a radio group with two radio button options:
Option_01_Air and Option_02_Rail.

The Form Designer

Chapter 7: Forms 267

ca_pam_selectCheckBox(_id, isSelect)

Use this function to select or clear a check box.

Parameters:

■ _id: The unique identifier for the Check Box field that you want to select
(check) or clear (uncheck).

■ isSelect: A Boolean (true or false) value that is used to indicate whether
the field is checked (true) or cleared (false).

Example:

ca_pam_selectCheckBox('Form.ckbxInsBuy',true)

■ This example marks the ckbxInsBuy check box field on the form.

■ The check box named ckbxInsBuy has a label the user sees as Purchase
Insurance.

■ This function might be used if the user selects some other options on the
form that require the purchase of insurance.

ca_pam_selectOption(_id, name, value, isSelect)

Use this function to set a Select field to one of its specific options. The function can
also be used to prevent the selection of a specific option.

Parameters:

■ _id: The unique identifier for the Select field that you want to set to a
specific value.

■ name: The name of a specific Option listed under the Select field.

■ value: The specific numeric or text string already assigned in the Value
property on the Form tab of the Form Designer dialog.

■ isSelect: A Boolean (true or false) value that is used to indicate whether
the Select field option is applied (true) or cleared (false).

Example:

ca_pam_selectOption('Form.City', 'Regional Hub', 'Sydney', true);

■ This example sets the City field to the option named Regional Hub.

■ If more than one option is named Regional Hub, this function applies the
option with the specified value. This distinction is important. You can use
ca_pam_getSelectedOptionValues(_id) to identify the specific value for a
field option, even when multiple options have the same name. For
example, users can continue to direct business to the Regional Hub using a
set of standard forms. However, for 2014, the regional hub city value is
Sydney and for 2015 the city value is Seoul.

The Form Designer

268 Content Designer Guide

ca_pam_selectOptionByIndex(_id, index, isSelect)

Use this function to select or clear a specific option in a field identified by the index
value for the option.

Parameters:

■ _id: The unique identifier for the field with options that you want to select
or clear.

■ index: The fixed identifier for each option in a field.

■ isSelect: A Boolean (true or false) value that is used to indicate whether
the Select field option is applied (true) or cleared (false).

Examples:

ca_pam_selectOptionByIndex('Form.VarFillerType', 2,true)

■ This example sets the current choice of Filler Type to the value at index
position 2.

■ Filler Type is a Select field with options for Rocks [0], Sand [1], and Water
[2].

■ Economy Option is a check box with this function in its onClick event.

■ When the user selects the Economy Option check box, this function sets
the Filler Type field to the option at index position 2, Water.

ca_pam_selectOptionByIndex('Form.VarFillerType', 2,false)

■ When Filler Type is already set to Water, this function clears the Filler Type
field.

ca_pam_selectRadio(_id, radio_id)

Use this function to select a specific radio button option in a radio group.

Parameters:

■ _id: The unique identifier for a Radio Group field.

■ radio_id: The unique identifier for a specific radio button option in a radio
group.

Example:

ca_pam_selectRadio('Form.Transportation',

'Form.Transportation.Option_01_Air')

■ This example selects the Air radio button option in the Transportation
radio group.

■ Transportation is a radio group with two radio button options:
Option_01_Air and Option_02_Rail.

The Form Designer

Chapter 7: Forms 269

ca_pam_setTextFieldValue(_id, val)

Use this function to insert a numeric value or text string into a Text field. This
function replaces any existing value in the target field with the specified value.

Parameters:

■ _id: The unique identifier for a field that you want to set to a specific value.

■ val: A numeric or text value.

Examples:

ca_pam_setTextFieldValue('Form.top_vendors', 'I vote for vendor 3 because: ')

■ This example sets the top_vendors Text field to the following string: I vote
for vendor 3 because:

■ To continue this example, after users enter their reasons, use
ca_pam_getTextFieldValue('Form.top_vendors') to submit their full
statements.

ca_pam_setTextFieldValue('Form.dynamic_field',

ca_pam_getTextFieldValue('Form.top_vendors'))

■ This example retrieves the value of the top_vendors field and sets the
dynamic_field to that retrieved value.

The Form Designer

270 Content Designer Guide

Select Fields and Options

Use the following six functions for working with the possible options that appear in a
Select field.

ca_pam_addValuesInSelectStore(_id, values)

Use this function to replace the list of options available in a Select field with a
simple set of values that you define in code. The options that appear at design time
on the form are not used.

Parameters:

■ _id: The unique identifier for a Select field.

■ values: An array or reference to an array of the series of values in the two
fields necessary to represent the list of options for a Select field. The two
fields are Name and Value. In the example below, the two fields are
cityOptionNames and cityOptionValues.

Examples:

if('West'==regionChoice)

 var cityOptionNames =["New York","Rio De Janeiro","Mexico City"]

 var cityOptionValues =["West_01","West_02","West_03"];

if('North'==regionChoice)

 var cityOptionNames =["Madrid","Moscow","Copenhagen"]

 var cityOptionValues =["North_04","North_05","North_06"];

ca_pam_addValuesInSelectStore('Form1.City',

ca_pam_createSelectStore(cityOptionNames ,cityOptionValues))

■ This example dynamically updates the available list of options in the City
field based on the user's selection of West or North in a separate Region
field.

ca_pam_clearSelectStore(_id)

Use this function to clear any current value in a Select field.

Parameters:

■ _id: The unique identifier for a Select field that you want to clear.

Examples:

ca_pam_clearSelectStore(Form1.City)

■ This example clears any existing value previously selected in the City field
on Form1.

The Form Designer

Chapter 7: Forms 271

ca_pam_convertToJavaScriptObject(resultFromSQLQuery)

Use this function to convert a limited Process Automation array
(C2OValueArrayDTO) into a Javascript object array.

Parameters:

■ resultFromSQLquery: The resulting array of data from a query.

Examples:

var array = ca_pam_convertToJavaScriptObject(result);

■ This example declares a variable called array and sets it to the converted
JavaScript array.

ca_pam_convertToSimpleArray(objectArray,fieldName)

Use this function to create a simple array of text or numeric strings from any more
complex JavaScript array of objects.

Parameters:

■ objectArray: A reference to a complex JavaScript array of JavaScript
objects.

■ fieldName: The single field in the complex array that you want to convert
to a simple array.

Examples:

ca_pam_convertToSimpleArray(LocationArray,BuildingCode)

■ This example converts the complex LocationArray to a simple array of
building codes based on the BuildingCode field.

ca_pam_createSelectStore(nameArray,valueArray)

Use this function to specify a list of options, or store, for a Select field. The options you
specify in code replace any design-time options set for the form elements.

Parameters:

■ nameArray: A numeric or text value.

■ valueArray: An optional text or numeric string that you want to associate
with each option. The option names appear to the user to select on the
form. The option values are hidden from the user. If you do not provide or
specify these values, by default, the form uses the names as values.

Examples:

ca_pam_addValuesInSelectStore('Form1.City',

ca_pam_createSelectStore(cityOptionNames ,cityOptionValues))

■ This example sets the available list of options for the City field to the
specified names and associated values.

The Form Designer

272 Content Designer Guide

ca_pam_createSelectStoreFromSQLResult(resultFromSQLQuery,nameColumnID,value
ColumnID)

Use this function to directly create a a list of options, or store, for a Select field from
the result of a SQL query. valueColumnId is not mandatory if same as
nameColumnID.

Parameters:

■ resultFromSQLQuery: The resulting array of data that the SQL statement
retrieves.

■ nameColumnID: A field that stores the options used to build the
drop-down list for a Select field.

■ valueColumnID: An optional field that stores the values associated with
the options in a Select field.

Examples:

ca_pam_addValuesInSelectStore('Form1.City',ca_pam_createSelectStoreFromSQLRes

ult(result,'txtRegion'));

■ This example sets the options for the City field based on the results of a
query to an external datasource. The user, without necessarily knowing it,
initiates the query by selecting an option from the Region field.

Date Fields

Note: Except for functions that return a value in milliseconds, all date functions return
the date as a string value in the format that you specify in the Date Format property.

ca_pam_getDateFieldMaxValue(_id)

Use this function to retrieve the value of the Date field property called Maximum
Value.

Parameters:

■ _id: The unique identifier for a Date field.

Example:

ca_pam_getDateFieldMaxValue('Form.DateDeparture')

■ This example returns the maximum value allowed for the DateDeparture
field as a date string, such as 05/20/2025.

The Form Designer

Chapter 7: Forms 273

ca_pam_getDateFieldMaxValueInMillis(_id)

Use this function to retrieve the value of the Date field property called Maximum
Value expressed as an integer. This integer represents the number of milliseconds
before or after January 1, 1970 00:00:00 UTC (known as the Unix Epoch).

Parameters:

■ _id: The unique identifier for a Date field.

Example:

ca_pam_getDateFieldMaxValueInMillis('Form.DateDeparture')

■ This example returns the maximum value allowed for the DateDeparture
field as a numeric string measured in milliseconds. For a Date field with a
maximum value of 05/25/2025, this function would return
1748188800000. (Shown with commas as a thousands separator, this is
1,748,188,800,000 or 1.7 trillion milliseconds.)

■ For dates before 1970, this function returns a negative result.

ca_pam_getDateFieldMinValue(_id)

Use this function to retrieve the value of the Date field property called Minimum
Value.

Parameters:

■ _id: The unique identifier for a Date field.

Example:

ca_pam_getDateFieldMinValue('Form.DateDeparture')

■ This example returns the minimum value allowed for the DateDeparture
field as a date string, such as 05/05/2025.

ca_pam_getDateFieldMinValueInMillis(_id)

Use this function to retrieve the value of the Date field property called Minimum
Value expressed as an integer. This integer represents the number of milliseconds
before or after January 1, 1970 00:00:00 UTC (known as the Unix Epoch).

Parameters:

■ _id: The unique identifier for a Date field.

Example:

ca_pam_getDateFieldMinValueInMillis('Form.DateofBirth')

■ This example returns the minimum value allowed for the DateofBirth field
as a numeric string measured in milliseconds. For a Date field with a
minimum value of 01/01/1974, this function would return about
126291600000. (Shown with commas as a thousands separator, this is
126,291,600,000 or 126 billion milliseconds.)

■ For dates before 1970, this function returns a negative result.

The Form Designer

274 Content Designer Guide

ca_pam_getDateFieldValue(_id)

Use this function to retrieve the value of a Date field as a date string, such as
05/05/2025.

Parameters:

■ _id: The unique identifier for a Date field.

Example:

var LastDay =ca_pam_getDateFieldValue('Form.TripEndDate');

ca_pam_setDateFieldMaxValue('Form.DateDeparture',LastDay);

■ The first line of this example gets the TripEndDate, for example
05/15/2014, and stores it in the LastDay variable.

■ The second line of this example sets the Maximum Value of the
DateDeparture field to LastDay.

ca_pam_getDateFieldValueInMillis(_id)

Use this function to retrieve the value of a Date field as an integer, such as
61238000. This integer represents the number of milliseconds before or after
January 1, 1970 00:00:00 UTC (known as the Unix Epoch).

Parameters:

■ _id: The unique identifier for a Date field.

Example:

ca_pam_getDateFieldValueInMillis('Form.DateofBirth')

■ This example returns the value for the DateofBirth field as a numeric string
measured in milliseconds. For a Date field with a value of 08/22/1965, this
function would return about -132307200000. (Shown with commas as a
thousands separator, this is -132,307,200,000 or -132 billion milliseconds.)

■ For dates before 1970, this function returns a negative result.

ca_pam_setDateFieldMaxValue(_id, val)

Use this function to set the value of the Date field property called Maximum Value.
Form users cannot enter a date in the Date field beyond the Maximum Value.

Parameters:

■ _id: The unique identifier for a Date field.

■ val: The value that you want to use as a maximum, expressed as a date
string such as 05/20/2014.

Example:

ca_pam_setDateFieldMaxValue('Form.DateDeparture',LastDay);

■ This example sets the Maximum Value property of the DateDeparture field
to the date stored in the LastDay variable.

The Form Designer

Chapter 7: Forms 275

ca_pam_setDateFieldMinValue(_id, val)

Use this function to set the value of the Date field property called Minimum Value.
Form users cannot enter a date in the Date field that occurs before the Minimum
Value.

Parameters:

■ _id: The unique identifier for a Date field.

■ val: The value that you want to use as a minimum, expressed as a date
string such as 05/05/2012.

Example:

ca_pam_setDateFieldMinValue('Form.DateArrival',today);

■ This example sets the Minimum Value property of the DateArrival field to
the date stored in the today variable.

■ Form users receive a message when they enter a date below the minimum
value.

■ Popup calendars on the form display invalid dates outside the permitted
range in gray and do not allow users to click on invalid dates.

ca_pam_setDateFieldValue(_id, val)

Use this function to set the value of a Date field to a date string such as
05/15/2014.

Parameters:

■ _id: A unique identifier for a Date field.

■ val: A date value that you specify, such as 05/05/2014.

Example:

ca_pam_setDateFieldValue('Form.DateArrival','05/05/2014');

■ This example sets the DateArrival field to 05/05/2014.

The Form Designer

276 Content Designer Guide

Tables

ca_pam_clearTableData(_id, startIndex, endIndex)

Use this function to delete one or more rows of data from a table.

Parameters:

■ _id: A unique identifier for a Table form element.

■ startIndex: The numeric index value of the first row of table data that you
want to delete.

■ endIndex: The numeric index value of the last row of table data that you
want to delete.

Example:

ca_pam_clearTableData('Form.employeeList',0,ca_pam_getTableRowCount('Form.emp

loyeeList')-1);

■ This example deletes all rows in the employeeList table.

■ The specified range begins with row 0 and ends with the last row.

■ The last row is calculated by getting the current row count for the table
and subtracting 1 because the table index begins at row 0.

The Form Designer

Chapter 7: Forms 277

ca_pam_getTableData(_id, startIndex, endIndex)

Use this function to retrieve one or more values from a Text Field form element in a
Table form element.

Parameters:

■ _id: The unique identifier for a table on a form.

Example:

ca_fd.js.PassData(ca_pam_getTableData('Form.tableRaceResults',0,4))

■ This example passes the finishing time values for the top five winners in a
race from a table on a form to a custom database with the RecordResults()
function.

■ The Record Race Times check box onClick event initiates function calls to
get the table data, pass the data, and record the results.

■ The form script is:

 {

 PassData : function(result) {

 for(i=0;i<result.length;i++)

 {

 var firstRow = result[i];

 var topFive = firstRow['Var_0'];

 RecordResults(topFive);

 }

 },

 }

■ The graphic below demonstrates how the form appears during design.

The Form Designer

278 Content Designer Guide

ca_pam_getTableRowCount(_id)

Use this function to retrieve the total number of rows of data from a table.

Parameters:

■ _id: A unique identifier for a table on a form.

Example:

ca_pam_clearTableData('Form.employeeList',0,ca_pam_getTableRowCount('Form.emp

loyeeList')-1);

■ This example specifies rows to delete beginning with row 0 and ending
with a calculated result to determine the last row. Using the function to
calculate the last row permits the same code to be used for all tables of all
sizes.

■ The last row is calculated by getting the current row count for the
employeeList table and subtracting 1 because the table index begins at row
0. For example, when ca_pam_getTableRowCount returns 100, the first
row is row 0 and the last row is row 99.

ca_pam_setTableData(_id, values)

Use this function to set the data in a table.

Parameters:

■ _id: A unique identifier for a table on a form.

■ values: The data that you want to display in the rows and columns of the
table.

Example:

ca_pam_setTableData('Form.employeeList',result);

■ This example sets the employeeList table to the values retrieved by the
result variable.

■ This function is part of Example 1: A Form Script at the end of this topic.

The Form Designer

Chapter 7: Forms 279

ca_pam_showDataInTable(result,_id,tableHeader)

Use this function to display resulting rows of data in a Lookup Field as a single
column table with the specified header or title.

Parameters:

■ result: A function call with a result set of the values that you want to show
in a table.

■ _id: The unique identifier for the Lookup Field table where you want to
show the result set.

■ tableHeader: A text string to display to the user above the Lookup Field
table on the form.

Example:

ca_pam_showDataInTable(result,'Form.office','Office');

■ This example shows an Office table listing the results of a separate query
to get the names of offices. In this example, the list of offices to display
varies based on the user's selection of Region.

■ This function is called by the onLookup event for a Lookup Field called
Office.

■ This function is part of Example 1: A Form Script at the end of this topic.

Data Sources

ca_pam_getDataUsingDatasetExpression(datasetExpression,callBack)

Use this function to retrieve all the field values for all index entries of a specific
ValueMap array variable from a dataset. The callBack variable stores the values.

Parameters:

■ datasetExpression: A string, expression, or function call that results in an
absolute path to a dataset. This parameter includes the Datasets keyword,
the library path to a dataset object, and the ValueMap array variable
name.
Datasets["/BR412-DATA-FOLDER-20111214/Folder_FORMS_20120328/dat
aset_forms_demo/My_Dataset55"].MyVal

■ callBack: A reference to the function object, including its onSuccess and
onFailure methods, that you want to call after retrieving the data.

Example:

ca_pam_getDataUsingDatasetExpression(ca_pam_getTextFieldValue('Form.TxtFieldW

ithDatasetPath'),callBack)

■ This example uses a Text field called TxtFieldWithDatasetPath to store the
dataset expression.

■ The getTextFieldValue function gets the value of the dataset expression.

The Form Designer

280 Content Designer Guide

■ The getDataUsingDatasetExpression function retrieves the values from the
dataset and calls the callBack function to determine what happens next.

■ To continue with this example, you can apply the data to a table or Lookup
field, respectively, using the following functions in the callBack.onSuccess
declaration:

 ca_pam_setTableData('Form.employeeList',result);

 ca_pam_showDataInTable(result,'Form.Results','Dataset results');

The Form Designer

Chapter 7: Forms 281

ca_pam_getDataUsingSQLQuery(driverName,connectionURL,userName,password,que
ry,callBack)

Use this function to retrieve data from an external datasource using SQL and to
store that data in a variable you define named callBack.

Parameters:

■ driverName: The class name for the installed SQL driver that you are using.
For example, com.mysql.jdbc.driver.

■ connectionURL: The URL for the database application that you want to
query. For example, jdbc:mysql://myPC-xp.myCompany.com:CA
Portal/<path> or https://<server>:CA Portal/.

■ userName: A user name or login name credentials for a predefined user
account with sufficient permissions to run the query.

■ password: The corresponding password for the specified user name.

■ query: A specific SQL query statement or a reference to one. The following
line represents a sample SQL query:

 return "select * from employeedatatable where empName like

 '%"+ca_pam_getTextFieldValue('Form.empName')+"%'";

■ callBack: A variable that you define to store the data that the query
retrieves.

Example:

ca_pam_getDataUsingSQLQuery(ca_fd.js.driverName

(),ca_fd.js.connectionURL(),ca_fd.js.userName(),ca_fd.js.password(),ca_fd.js.

queryEmployeeName(),callBack);

■ This example queries an external data source and stores the resulting data
in the callBack variable.

■ The SQL query function is part of Example 1: A Form Script at the end of
this topic.

Example 1: A Form Script

{ populateDataInTable : function()

 { var callBack = new Object();

callBack.onSuccess = function(result)

 { ca_pam_setTableData('Form.employeeList',result); }

callBack.onFailure = function(caught)

 { alert(caught); }

ca_pam_clearTableData('Form.employeeList',0,ca_pam_getTableRowCount('Form.emp

loyeeList')-1);

 var useEnteredValue = ca_pam_getTextFieldValue('Form.empName');

 if(!(useEnteredValue == ''))

The Form Designer

282 Content Designer Guide

 { ca_pam_getDataUsingSQLQuery(ca_fd.js.driverName

(),ca_fd.js.connectionURL(),ca_fd.js.userName(),ca_fd.js.password(),ca_fd.js.

queryEmployeeName(),callBack); }

 },

driverName : function()

 { return 'com.mysql.jdbc.Driver'; },

connectionURL : function()

 { return 'jdbc:mysql://myPC-xp.myCompany.com:1234/example'; },

userName: function()

 { return 'root'; },

password: function()

 { return 'root'; },

queryEmployeeName:function()

 { return "select * from employeedatatable where empName like

'%"+ca_pam_getTextFieldValue('Form.empName')+"%'"; },

queryRegion:function()

 { var array = ca_pam_getSelectedOptionValues('Form.country');

 var country = array[0];

 return "select region from regiontable where country = '"+country+"'";

 },

populateRegion :function()

 { var callBack = new Object();

 callBack.onSuccess = function(result)

 { ca_pam_showDataInTable(result,'Form.office','Office'); }

 callBack.onFailure = function(caught)

 { alert(caught); }

 ca_pam_getDataUsingSQLQuery(ca_fd.js.driverName

(),ca_fd.js.connectionURL() ,ca_fd.js.userName() ,ca_fd.js.password()

,ca_fd.js.queryRegion(),callBack);

 },

}

The Form Designer

Chapter 7: Forms 283

Create a Simple Form with Basic Functions

In this second example, you are developing a form for a company that operates in three
primary regions. The regions are the states of California, Pennsylvania, and North
Carolina. In each state, the company has a primary and secondary office location
identified by the name of the city. The stakeholders responsible for implementing
company policy want the form to meet the following business requirements:

■ All business originating in California must be routed by default to the Anaheim
office.

■ All business originating in Pennsylvania must be routed by default to the
Philadelphia office.

■ All business originating in North Carolina must be routed by default to the Raleigh
office.

■ All business originating in any other state must be routed by default to the
Pittsburgh office.

■ The user has the option of specifying another state or city.

Example 2: A Basic Form

Follow these steps:

1. Click the Library tab.

2. Create an Interaction Request Form object or locate an existing one to use for this
sample procedure.

3. Double-click the form object.

The Interaction Request Form dialog, or Forms Designer, appears.

4. If not already checked out, click Check Out.

5. In the Form Elements pane, expand the following entries:

a. Form Elements

b. Your form (e.g., Interaction_Request_Form_4)

c. Page Layout

d. Page

The Form Designer

284 Content Designer Guide

6. Click Page. In the toolbar, click Rename. Enter the name Location: and click OK.

7. In the Form Elements pane, drag a Select field down to the Location page.

8. Repeat the last step.

Two Select fields appear under your Location page layout.

9. In the Form Elements pane:

a. Drag a Select Option down to the first of your two Select fields.

b. Drag two more Select Options under the same Select field.

c. Drag six Select Options under the second Select field.

10. Click each of the following form elements and then click the Rename toolbutton to
rename each object as indicated:

a. Rename the first Select field to State.

■ Rename the first option to CA.

■ Rename the second option to PA.

■ Rename the third option to NC.

b. Rename the second Select field to City.

■ Rename the first option to Anaheim.

■ Rename the second option to Los Angeles.

■ Rename the third option to Pittsburgh.

■ Rename the fourth option to Philadelphia.

■ Rename the fifth option to Charlotte.

■ Rename the sixth option to Raleigh.

The Form Designer

Chapter 7: Forms 285

11. Click each of the following form elements and make the following property settings
in the Properties (Name and Value) pane.

a. For State:

■ Set Name to State.

■ Set the onChange event value to ca_fd.js.selectRegion().

■ Set the value of the CA option to California.

■ Set the value of the PA option to Pennsylvania.

■ Set the value of the NC option to North Carolina.

b. For City:

■ Set Name to City.

■ Set the value property for each city option to the city name. For example,
set Anaheim to Anaheim, Los Angeles to Los Angeles, and so on.

12. In the Form Elements pane, click the name of your form and then, in the toolbar,
click Script.

The Script dialog appears.

13. In the Script dialog, copy and paste the following code:

{

 selectRegion: function()

 {

 var selectedState = ca_pam_getSelectedOptionValues('Form.State')[0];

 if(selectedState == 'North Carolina')

 {

 ca_pam_selectOption('Form.City', 'Raleigh', 'Raleigh', true);

 }

 else if(selectedState == 'California')

 {

 ca_pam_selectOption('Form.City', 'Anaheim', 'Anaheim', true);

 }

 else if(selectedState == 'Pennsylvania')

 {

 ca_pam_selectOption('Form.City', 'Philadelphia', 'Philadelphia', true);

 }

 else

 {

 ca_pam_selectOption('Form.City', 'Pittsburgh', 'Pittsburgh', true);

 }

 }

}

Click Save. The Script dialog closes.

14. In the Forms Designer, click Save.

The Form Designer

286 Content Designer Guide

15. Click the Preview tab.

16. Confirm your results are similar to the sample form results and table values shown.

State: Default City:

CA Anaheim

PA Philadelphia

NC Raleigh

Any other state. For example, NY. Pittsburgh

Initialize Form Variables

Chapter 7: Forms 287

Initialize Form Variables

After designing an interaction request form, you can set it to a specific Assign User Task
operator in a process. You can also add code to initialize form fields at runtime.

Follow these steps:

1. Click the Designer tab.

2. In the Process Designer, open a process or create one.

3. In the Operators palette Process Control group, drag an Assign User Task operator
to your process.

4. Double-click the Assign User Task operator to open its Properties palette.

5. In the Properties palette:

a. Expand User Task.

b. In the Interaction Request Form field, click the lookup button to browse for a
form. Click OK.

c. Click the Form Data Initialization Code field to expand it.

6. In the Form Data Initialization Code window, initialize any form variables. For the
following examples, myTextField is the _id of the form element that you want to
initialize.

■ For simple data types, enter:

Form.myTextField='welcome'.

■ If the simple field is inside a ValueMap or field set, enter:

Form.value_map= newValueMap();

Form.valuemap.myTextField="welcome";

■ If the simple field is inside a complex value map in a valueMap, enter:

Form.value_map.value_map_nested= newValueMap();

Form.value_map.value_map_nested.text_field_nested="test";

7. In the Form Data Initialization Code window, click OK.

Chapter 8: Resources 289

Chapter 8: Resources

Use Resource objects to synchronize independent processes that rely on common
elements of the infrastructure. Resource objects are models representing elements of
your system architecture. Use resources to quantify and control access to particular IT
entities. Include multiple resources representing related entities in a single Resource
object.

Use Resource objects to:

■ Balance the processing load across all processes running on a touchpoint.

■ Synchronize the execution of processes that cannot execute in parallel.

■ Implement environment level locks that simultaneously enable or disable multiple
resources.

■ Strategically manage processes and systems with common security rights.

You group resources because they are related to each other in some way. Examples
include shared databases, transmission links, simultaneous access to a limited number
of software licenses, concurrent processes on a touchpoint, numeric quotas, and other
resources. After measuring performance, you can allocate system resources to
processes required by mission critical tasks. You can limit the number of simultaneous
FTP connections used by CA Process Automation. You can use resources to start a
successor process only after an antecedent process has released a resource. Resources
can also be used to represent and control access to a particular IT environment entity
such as a log file that receives updates from multiple processes.

This section contains the following topics:

How Resources Work (see page 289)
Create a Resource Object (see page 291)
Edit a Resource Object (see page 292)
Monitor and Edit Resources (see page 294)
Add a Manage Resources Operator to a Process (see page 295)
Define Resource Actions (see page 296)
Check for and Respond to Unavailable Resources (see page 297)

How Resources Work

The Manage Resources operator is in the Process Control operator group. A process can
use the Manage Resources operator to take available units from a specified resource. If
all units of the specified resource are taken (in the same or different processes), the
Manage Resources operator delays processing along that branch until the resource has
free units.

How Resources Work

290 Content Designer Guide

The following design shows a process taking one unit from the process quota resource
before running an application. If there are available units in the process quota resource,
processing continues to Run Application 1. If there are no available resource units,
processing does not start until either units become available or the operator times out.
After the Run Application 1 operator ends, the resource unit is freed back to the process
quota resource, and processing continues with subsequent operators in the process.

Resources let you define the number of units available and how many units are
consumed. A resource consists of a maximum number of units, the current value of
available units, and a flag indicating whether the resource is locked.

You can take the following actions with resources:

■ Take a specified quantity of units of an available resource. Enter a higher value in
the Used field.

■ Free a specified quantity of units of an available resource. Enter a lower value in the
Used field.

■ Lock a resource

■ Unlock a resource

A Manage Resources operator can consume or free any specified number of resources.
As a developer or administrator, you can use Manage Resources operators to tune the
load balancing on a particular touchpoint. You can also lock a resource to prevent
consumption of resource units by any other process.

Create a Resource Object

Chapter 8: Resources 291

The following constraints apply to resources:

■ The maximum number of units of any resource is an arbitrary value that you can
calibrate and fine-tune for your system requirements. The number of resources that
a process uses is also arbitrary. The maximum limit is 9,999; however, let
performance and architecture be your guide. Allocate resource units to processes
to best suit your implementation requirements.

■ The currently used value of resource units is always less than or equal to the
maximum value of the resource.

■ A resource-dependent process must wait until its specified number of units is
available.

■ Operators cannot consume units from a locked resource.

■ Operators cannot lock a resource that another process has locked.

Create a Resource Object

Create and define as many Resource objects as required in each orchestrator. The
Resource operator performs resource operations in a process. The Resource operator
uses the current versions of specified Resource objects. Any modifications made to the
Resource object in its current state are immediately available to the Resource operator
upon check-in.

Follow these steps:

1. Click the Library tab.

2. In the left pane, click a folder, and select New and then Resources.

A new resource appears.

3. Click the resource name and rename it to a more meaningful name.

4. Edit the Resource object.

Note: You can also create Resource objects dynamically using code.

Edit a Resource Object

292 Content Designer Guide

Edit a Resource Object

Edit a Resource object to manage individual resources within it. You can also manage
versions, view properties, and examine the object's history.

Add individual resource entries for applications, connections, or other instances you
want to control. This enables you to:

■ Set a maximum number of instances that can be run at any moment.

■ Track the number of instances or units running concurrently.

■ Track the number of available instances or free units that can be started at any
time.

Follow these steps:

1. Click the Library tab.

2. Double-click a Resource object.

The Resources dialog appears. The Resources tab opens by default.

3. Click Add to add an individual resource.

4. Review any of the values in the columns of the Resources tab. Click in the editable
cells to enter new values.

Name

Lists the names of individual resources in a Resource object.

Amount

Lists the total number of units assigned to a resource. A unit is an arbitrary
number that serves as a quota in a process.

Used

Indicates the number of assigned units.

Free

Indicates the number of unassigned units. Defined by the formula:

Free = Amount - Used

State

Specifies whether a resource is locked or unlocked. Click the lock icon in this
column to toggle the locked or unlocked state for a resource. You can also use
a Resource operator to lock a resource programmatically in a schedule or
process. Other Manage Resource operators cannot lock, unlock, take, or return
resource units for a locked resource until the lock is released. A lock allows a
process or schedule to monopolize a resource while it processes operators.

% Usage

Edit a Resource Object

Chapter 8: Resources 293

Position your mouse over this visual indicator to view the numeric percentage
of the resource currently being utilized. Any remaining portion is free.

Description

Provides a description of the resource. The Description column allows you to
enter text that describes a resource.

5. Click Check In or Save and Close.

Notes:

■ In the Amount field, specify the quantity for the resource. Quotas for operators in
processes are drawn from this number. The quantity is an arbitrary value that is not
by itself related to units of any actual computer or system resource (such as CPU,
memory, or bandwidth). You can use it to apportion a resource to processes in
whatever manner that you require. There are no rules about the quantity of a
resource. You might specify an amount of 1, so only one instance of a CPU-intensive
operator can be run by any process at any given time.

■ Dataset variables can be used to set resource use, so usage can be fine-tuned on a
touchpoint without opening and configuring processes that consume a resource.
For example, if you set the amount to 100, you could change a usage variable from
10, to 20, to 50, or even to 100 to accommodate demands on a touchpoint.

■ The Used and Free columns show how many units of a resource are currently
consumed and available. You can enter a value in the Used field between 0 and the
total number of units shown in the Amount field. More commonly, a Resource
operator changes these settings programmatically in a process or schedule.

Monitor and Edit Resources

294 Content Designer Guide

Monitor and Edit Resources

You can monitor and edit the resources in a Resource object on the Operations page.
The Operations page allows you to modify the current version of a Resource object.
Your changes are automatically applied to any Manage Resource operators using the
Resource object.

Follow these steps:

1. Click the Operations tab.

2. In the Links pane:

a. Expand Process Watch or Resources.

b. Expand the list of folders or search for a specific process watch or resource
object.

c. Select a resource object.

The current version of the Resource object appears.

3. Select a resource and then make any of the following changes.

a. In the toolbar, click Lock to lock the resource. Click Unlock to unlock a resource.
You can also click the lock icon in the State column to toggle this setting.

b. Click Clear to release any used resources and reset free resources to the
maximum amount available.

c. Click the Amount, Used, and Description fields to edit their values.

d. Click Refresh to view the latest system data.

Your changes are available to Manage Resource operators.

4. To add or edit resources in a Manage Resource operator in a Schedule:

a. Expand Links and click Active or Global Schedules.

b. In the list of schedules, double-click a schedule.

c. In a Manage Resources item of the schedule, click Properties.

d. Click the Specific tab.

e. Click Check Out.

f. Click Add, Edit, or Delete to configure the resources.

g. Click Check In or click Save and Close.

Add a Manage Resources Operator to a Process

Chapter 8: Resources 295

Add a Manage Resources Operator to a Process

After creating a resource object with one or more resources within it, add a Resource
operator to a process. For example, place one Resource operator before and another
one after other operators to balance load. The first Resource operator uses or takes
resources and the second operator frees or gives back units, making them available to
other waiting processes.

Follow these steps:

1. Open a process in the Process Designer.

2. Open the Process Control operator palette for your resource.

3. Drag and drop the Manage Resources operator to a location in the process.

4. Define the entry and exit links. The Manage Resources operator has four possible
exit links:

■ Completed is processed when the operator succeeds. The Result variable is set
to 1 and the Reason variable is set to COMPLETED.

■ Failed is processed when the Interpreter module is unable to complete the
operator successfully. The Result variable is set to -1 and the Reason variable is
set to FAILED.

■ Timeout is processed if the resource operator is not completed within an
optional specified time-out interval. The Result variable is set to 1 and the
Reason variable is set to TIMEOUT.

■ Custom Result is processed when execution settings determine the result. The
Result variable is set to 0 and the Reason variable is set to CUSTOM.

5. Double-click the Resource operator to configure options.

The Dataset and Resource Properties palettes appear.

Define Resource Actions

296 Content Designer Guide

Define Resource Actions

You can set the action you want each Manage Resources operator to take. Possible
actions include taking and freeing units or locking and unlocking resources.

Follow these steps:

1. In the Process Designer, double-click a Manage Resources operator.

2. In the Properties palette, click the Add button. You can create multiple actions for
multiple resources within one resource operator.

The Action Properties dialog appears.

3. In the Resources object field, specify the resource object that you want to use. You
can either enter the full path to the object in the automation library or click the
browse button to locate the object.

4. (Optional) Click Open to view or edit the resources in the object.

5. In the Resource name field, enter the name of the resource or an expression.

Note: Both the Resource Path and Resource Name fields accept expressions.
Enclose any literal strings between double quotation marks.

6. In the Action field, select the action that you want the resource to perform from the
drop-down list:

Take Units

Takes the number of resource units specified in the Amount field.

Free Units

Makes the number of resources specified in the Amount field available.

Lock Resource

Locks the resource so other resource operators cannot take resource units or
lock the resource. Actions can still free resource units that were taken before a
resource was locked, but the freed units will not be available until after the
resource is unlocked.

Unlock Resource

Unlocks a locked resource.

7. When taking or freeing resource units, specify a quantity in the Amount field.

8. Click Save and Close.

The new action is added to the Action list.

Notes: To remove an action from the Action list, click the action, and then click the
Delete button. To edit an existing action, click the action and then click the Edit
button. To view a selected action in a process that is not checked out, click the View
button.

Check for and Respond to Unavailable Resources

Chapter 8: Resources 297

The following graphic shows two examples.

Check for and Respond to Unavailable Resources

The following properties determine what resources are executed by the operator and
how it responds when resources are unavailable:

■ Time-out field

■ All resources must be available check box

■ Execute actions check box

Specify a Time-Out Interval

Sometimes an action attempts to take more units of a resource than are available or
tries to lock an already locked resource. In these situations, set the Time-out interval to
determine how long the operator waits for resources to become available. After the
time-out interval expires, the operator checks one final time if the resource is available
before it times out. After a Resources operator times out, the process module processes
the time-out exit link on the operator.

Follow these steps:

1. Open a process.

2. Drag a Manage Resources operator into the process.

3. Double-click the Manage Resources operator to view its properties.

Check for and Respond to Unavailable Resources

298 Content Designer Guide

4. In the Execution Settings palette, configure the options available in the Timeout
group.

No Timeout

When checked, the operator waits indefinitely until all resources including all
the actions listed under Actions can be executed and are available.

When clear, a Duration or Target Date timeout setting is applied.

Type

Select Duration or Target Date. The operator waits before timing out. For
example, to specify a time-out interval, select Duration and enter the number
of seconds. When you specify a time-out duration of 0 seconds, the operator
does not wait. If resources are unavailable, it immediately times out. The
operator succeeds only if resources are immediately available.

Duration/Target Date and Time

Specify the numeric quantity of seconds or a fixed date and time to serve as the
timeout period.

Action

Select Continue, Reset, Abort, or Abandon. If you choose Abort, the operator
processes the Failed exit link.

5. Save the process.

Specify Resource Availability and Action Settings

The following properties determine which resources the operator runs. They also
determine how the operator responds when resources are unavailable. Set the All
resources must be available check box to determine how CA Process Automation
handles resource availability. Set the Execute Actions option to determine how CA
Process Automation behaves with respect to resource availability and predefined
actions.

Follow these steps:

1. Open a process.

2. Drag a Manage Resources operator into the process.

3. Double-click the Manage Resources operator to view its properties.

Check for and Respond to Unavailable Resources

Chapter 8: Resources 299

4. Set the All resources must be available check box:

Checked

Specifies that all resources that the actions listed in the Action field require
must be available before any action is applied. The operator succeeds only if all
the resources become available within the Timeout setting constraints.

Clear

Allows the operator to complete only those actions for which resources are
available. The operator then succeeds if one or more of the listed actions is
successfully executed within the Timeout setting constraints.

5. Set the Execute Actions check box:

Checked

The operator runs all the actions, if it can.

Clear

The operator does not run any actions. If resources are available within the
Timeout constraints, the operator runs the Successful exit link without
performing any actions.

6. Save the process.

Note: These settings can be used with a resource that is set to enable or disable a whole
set of processes. Before they start their tasks, those processes check that there is no
lock on the resource by attempting to take a single resource unit from the resource.
Depending on the outcome of the test, some other mechanism can lock or unlock the
resource, such as:

■ Schedule tasks (where enabling or disabling of the processes is based on time
constraints)

■ Manually started tasks (using a Start Request Form)

■ A process that an external monitoring application starts

■ A process that monitors some internal or external condition in a loop

Check for Resource Availability without Executing Actions

Set the Execute Actions option to determine how CA Process Automation behaves with
respect to resource availability and predefined actions.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 301

Chapter 9: Calendars, Schedules, Tasks, and
Triggers

In general, any process can be scheduled by a Run Process task in a Schedule object
according to valid dates defined in a Calendar object. A task in a schedule specifies a
selected operator to run on a specified touchpoint. Triggers allow external applications
to start a process.

This section describes calendars, schedules, tasks, and triggers.

This section contains the following topics:

Calendars (see page 301)
Schedules (see page 316)
Task Management (see page 324)
Administer Triggers (see page 327)

Calendars

Calendars define rules for dates that are applied to tasks so that they run or do not run
when you expect. For example, you can create a Calendar object named
LastOpenDayofMonth and use it to schedule complete backups and monthly reports on
the last available day of each month.

After defining Calendar objects, use them in Schedule objects to determine when tasks
run. The scheduling of tasks or processes on certain days requires a Schedule object.
Schedules coordinate times for tasks or processes with the valid dates defined by a
calendar.

You can create multiple calendars and associate any single calendar with any number of
scheduled tasks. The separation of calendars from schedules allows you to define
common rules for dates that can be reused in many scheduling contexts. To change the
rules (for example, those representing closed days) for all the tasks that use (include or
exclude) a calendar, edit the calendar describing those dates. Schedules automatically
apply any changes you make to a calendar.

Calendars

302 Content Designer Guide

Create a Calendar Object

You can create a Calendar object in any folder in the Library Browser.

Follow these steps:

1. Click the Library tab.

2. Click a folder.

3. In the toolbar, click New, select Object, and then choose Calendar.

A new Calendar object appears.

4. Click the Calendar name to rename it.

5. Double-click the calendar to edit it.

The Calendar Designer opens.

6. Define calendar rules that the application uses to build a calendar of included and
excluded dates. Choose one of the following:

■ Click the Basic tab to define basic rules.

■ Click the Advanced tab to define advanced rules.

Calendars

Chapter 9: Calendars, Schedules, Tasks, and Triggers 303

The Basic Calendar Designer

The Calendar Designer opens when you edit a Calendar object. Use the Basic tab to
define rules that generate included dates. You can then exclude certain dates. Another
approach is to create a calendar specifically for excluded dates that you want to apply
and manage separately.

Item: Description:

 Calendar Rule Recurrence: Select an option representing the recurrence
pattern for the calendar dates that you want to define. Options include Daily,
Weekly, Monthly, Annually, or your own manually selected dates. You can also
define a date range or set the rule to repeat indefinitely.

Calendars

304 Content Designer Guide

Item: Description:

 Detailed Settings: This portion of the Basic tab bases its appearance on your
Calendar Rule selection. For example, a weekly recurrence results in detailed
settings for the days of the week and weeks of the month. As another example,
a monthly recurrence shows settings for specific days of the month.

 Summary of Included and Excluded Dates: This area lists all the days in your
calendar rule. Clear the check box from a date to exclude it from the calendar.

The Advanced Calendar Designer

Advanced calendar rules are hierarchical tree structures. The Advanced tab for a
Calendar object always shows three sets of calendar rules:

■ Manually Included Dates

■ Manually Excluded Dates

■ Calendar Rule

These three root elements for a calendar rule are fixed. These three sets cannot be
deleted. Define rules by building date conditions in the root elements. A calendar rule
combines date operators (such as day of the month, month of the year, or week of the
year) with logical operators (Intersection, Union, Exclusion, and Like). The Calendar Rule
is actually the root Union operator for all Calendar rules.

Start building a calendar rule by dragging a rule arranged by icon under All Rules to the
Calendar Rule set. You can also manually include or exclude dates.

After you place a rule under Calendar Rules, you configure its properties.

Properties for a date condition object in a calendar rule also have properties that you
can expand to configure the date condition, such as the Month Interval properties.

For example, if the Month Interval properties sets Step to “3”, it specifies that every
third month in a year is valid. Because the interval starts in January and ends in
December, this three-month interval repeats throughout the year. This rule defines a
condition for performing tasks each trimester.

The following task example shows this condition in a rule and adds a condition that
specifies the fifth day of every month. The Intersection operator behaves as a logical
And to combine these two conditions in a single rule that specifies the fifth day of every
trimester.

Example: Create a rule specifying the fifth day of every trimester

1. Drag Intersection operator to Calendar Rule.

Calendars

Chapter 9: Calendars, Schedules, Tasks, and Triggers 305

2. Drag Month Interval under Intersection.

3. Click the Month Interval operator. Define a Month Interval from January to
December with the Step set to 3.

4. Drag a Day Interval operator under Intersection and specify an interval from 5 to 5
with the Step set to 1.

5. To save your changes to the working version of the Calendar object, click Save and
Close.

6. To test the Calendar click the Preview tab.

You can continue to add additional operators and conditions to define a rule further.
The logical hierarchy defines the order in which conditions are applied.

In terms of a Boolean equation, you can picture a Calendar object as enclosing
parentheses around and applying Boolean constraints to subordinate operators and
conditions.

■ The Union operator applies a Boolean OR to subordinate operators and conditions.

■ The Intersection operator applies a Boolean AND to subordinate operators and
conditions.

■ The Exclusion operator applies a Boolean NOT to an excluded condition.

■ The Like operator inserts another calendar rule into an equation, so you can think
of it as inserting a user-created Boolean function. A Calendar rule or combination of
Calendar rules can handle virtually any scheduling problem.

Note that depending on the needs of a particular scheduling problem, there are multiple
ways to build calendar rules. You can also define a set of dates in a separate calendar.
You can use a Like operator to specify the calendar object, and add it directly under the
Calendar Rule. You can also use a Union, Intersection, or Exclusion operator to include a
Like operator in a calendar rule.

Calendars

306 Content Designer Guide

Calendar Rule Logical Operators

Use the four logical set operators to include and exclude dates in calendar rules. The
Union, Intersection, and Exclusion operators provide a way to include and exclude dates
represented by basic date conditions or by branching combinations of conditions and
operators. The following list describes each logical operator:

 Union

Indicates that one or more of the linked conditions must be satisfied for the
combined condition to be satisfied.

Place one or more branches or basic conditions under this icon.

 Intersection

Indicates that the linked conditions must all be satisfied for the combined condition
to be satisfied.

Place one or more branches or basic conditions under this icon.

 Exclusion

Indicates a basic condition or a branch to be excluded from a rule.

All dates are excluded that are not otherwise selected. It is therefore only useful to
exclude days when they are selected by another part of the rule. For example, no
purpose is served by excluding Tuesdays unless they are defined as valid days by
other conditions and operators in a rule. So if a condition specifies the work week
(Monday through Friday) as valid days, you could use the Exclusion operator to
exclude Tuesdays from this set.

Expand the Exclusion operator to show the Included and Excluded branches.

Click a branch and then add a condition or operator to define included or excluded
dates.This operator has two sets of branched arguments:

Included: One or more basic conditions or branches that represent dates to be
included in the rule.

Excluded: One or more basic conditions or branches representing dates to be
excluded from the dates defined by the Included set.

 Like

Use the Like operator to use an existing set of dates defined by another calendar
object in your rule. This operator has the following parameters:

Calendar Name: The name of the referenced calendar.

Delta: Shifts the valid dates defined by the referenced Calendar by the specified
number of days. Enter a negative number to move the dates earlier, or a positive
number to move the dates later.

Open Days: When checked, indicates that the delta or shift only applies to open
days.

Calendars

Chapter 9: Calendars, Schedules, Tasks, and Triggers 307

For example, a new calendar rule could reference another calendar specifying
backup days with a delta of 1. The resulting condition in the new calendar rule
specifies the day immediately following backup days.

Calendars

308 Content Designer Guide

Calendar Rule Date Operators

This section describes the elementary conditions on dates and their parameters. The
conditions can be placed in the rule pane of the Calendar Designer. To select a date in
any operator's properties, click the calendar icon to open the calendar viewer and select
a date.

 Dates List

Specifies individual dates. For example:

■ March 1, 2014

■ July 15, 2014

■ September 23, 2015

Parameters

■ A list of dates with years.

■ To add a date, click the Add Date button.

■ To delete a date in the list, select the date and then click the Delete Date
button.

■ Click the Move Up and Move Down buttons to reorder dates in the list.

 Date Interval

Specifies a regular daily, weekly, or monthly interval in a range of dates from
beginning to end.

For example, every week from March 1, 2015 to July 1, 2016.

Parameters

■ Beginning: The starting date for the range.

■ End: The ending date for the range.

■ Repeat Forever: Check this box to ignore the End date and extend the interval
indefinitely.

■ Step: Indicates the quantity of units (days, weeks, or months) in each interval.
For example, an interval with a unit of week and default Step of 1 occurs once
in week 1, again in week 2, and a third time in week 3. When Step is set to 3,
the interval occurs once in weeks 1 to 3, again in weeks 4 to 6, and a third time
in weeks 7 to 9.

■ Unit: Specifies the recurrence frequency or interval. Select Day, Week, or
Month.

 Date Without Year List

Specifies a list of explicit anniversary dates.

This condition is commonly used to specify holidays that fall on the same day every
year. Examples include January 1st and December 25th.

Calendars

Chapter 9: Calendars, Schedules, Tasks, and Triggers 309

Parameters

■ A list of dates without years.

■ To add a date, click the Add Parameter (+) button. Click the browse (...) button
on the new parameter to add open the Select Date calendar control and select
a date.

■ To delete a date in the list, select the date and then click the Delete Parameter
(x) button. You can click the Move Up and Move Down buttons to reorder
dates in the list.

 Date Without Year Interval

Specifies an anniversary interval of dates without a year.

For example, from March 21st to June 20th (for Spring).

Parameters

■ Beginning: The starting date without a year for the interval.

■ End: The ending date without a year for the interval.

 Year Interval

Specifies an interval of years.

You can specify leap years by starting an interval on a leap year and specifying a
step of 4 (such as 2000 to 2024 with a step of 4).

Parameters

■ Beginning: The starting year for the interval.

■ End: The ending year for the interval.

■ Step: The number of years from one valid year to the next valid year.

 Month Interval

Specifies one or more months in the year.

The first semester is specified with a range from 1 to 6 with a step of 1. The second
semester is specified with a range from 7 to 12 with a step of 1.

Parameters

■ Beginning: The starting month for the interval.

■ End: The ending month for the interval.

■ Step: The number of months from one valid month to the next valid month.

 Week of the Month Interval

Specifies one or more weeks in the month.

Calendars

310 Content Designer Guide

CA Process Automation implements ISO standards for partial weeks. A week which
intersects with a given month is considered to be part of the month if the Thursday
of that week falls in the month.

For example, if June 1st is a Friday, the First week of the month starts on June 4th. If
June 1st is a Wednesday, the first week of the month starts on May 30th.

It is possible to have the “first Monday of the month” not be “Monday of the first
week of the month.” To define the former, it is simpler to combine “Day of the
month” and “Day of the Week” conditions.

Parameters

Beginning: The starting week for the interval.

End: The ending week for the interval.

Step: The number of weeks from one valid week to the next valid week.

Reverse: Counting starts with the last week of the month and goes backwards.

 Week of the Year Interval

Specifies one or more weeks in the year.

CA Process Automation implement ISO standards for partial weeks. A week which
intersects with a given year is considered to be part of the year if the Thursday of
that week falls in the year.

For example, if January 1st is a Friday, the First week of the year starts on January
4th. If January 1st is a Wednesday, the first week of the year starts on December
30th of the previous year.

It is therefore possible to have the “first Monday of the year” not be “Monday of
the first week of the year.” To define the former, it is simpler to combine “Day of
the year” and “Day of the Week” conditions.

Parameters

Beginning: The starting week for the interval.

End: The ending week for the interval.

Step: The number of weeks from one valid week to the next valid week.

Reverse: Counting starts with the last week of the year and goes backwards.

 Day Interval

Specifies an interval of valid days (between 1 to 31) in a month with a starting day,
an ending day, and a step.

You can also specify that the iteration start from the end of the month or that only
open days are counted in each step. Open days are those days not specified by a
condition or rule that closes or excludes dates.

Calendars

Chapter 9: Calendars, Schedules, Tasks, and Triggers 311

For example, the last day of the month is specified by the interval beginning and
ending with 1 with Reverse selected. The last weekday of the month would be
specified when the Open check box is also selected and a Weekday Interval
specifying Monday through Friday is added with an And operator.

Parameters

Beginning: The starting day for the interval.

End: The ending day for the interval.

Step: The number of days from one valid day to the next valid day.

Reverse: Counting in steps starts with the last day of the month and goes
backwards.

Open Days: Counting in steps includes only open days when days are closed by a
condition or rule.

 Day of the Year Interval

Specifies an interval of valid days (between 1 and 366) in a year with a starting day,
an ending day, and a step. The day 366 is valid on leap years.

You can also specify that the iteration start from the end of the year or that only
open days are counted in each step. Open days are those days not specified by a
condition or rule that closes or excludes dates.

For example, you can specify winter as the interval from December 21st to March
20th.

Or for a slightly more complicated example, to specify every 10th day throughout
the entire year, you could use a range from 1 to 365 (or 366 for a leap) with a step
of 1. You could specify the last ten open days of the year with a starting day of 1, an
ending day of 10, with Reverse and Open selected.

Parameters

Beginning: The starting day for the interval.

End: The ending day for the interval.

Step: The number of days from one valid day to the next valid day.

Reverse: Counting in steps starts with the last day of the year and goes backwards.

Open: Counting in steps includes only open days.

 Day of the Week Interval

Specifies one or more days of the week (from Monday through Sunday) as an
interval with a starting day, an ending day, and a step.

For example, weekends are specified by the interval beginning on Saturday and
ending on Sunday with a step of 1.

Parameters

Beginning: The starting day for the interval

Calendars

312 Content Designer Guide

End: The ending day for the interval.

Step: The number of days from one valid day to the next valid day.

 Weekday of the Month

Specifies a weekday in an indexed week of a particular month. The week is indexed
from either the beginning or the end of the month.

Parameters

Weekday: Specifies the day of the week.

Month: Specifies the month for which the week day is applicable.

Week Index: Specifies the index of the week for which the week day would be
applicable. (Value can be 1 to 5 because in any month there cannot be more than 5
weeks)

Reverse: If you select this check box, the counting for the week index starts from
the last week.

For example, if you select Monday as a weekday, September as a month, and 3 as a
Week Index: in September, the third Monday is included in the calendar. If you
selected the reverse check box, in September, the third Monday from the last is
included in the calendar.

 Weekday of the Year

Specifies a weekday in an indexed week of the year. The week is indexed from
either the beginning or the end of the year.

Parameters

Weekday: Specifies the day of the week.

Week Index: Specifies the index of the week for which the week day is applicable.
(Value can be 1 to 53 because in a year there cannot be more than 53 weeks)

Reverse: If you select this check box, the week index counting starts from the last
week.

For example, if you select Monday as a weekday, 43 as the Week Index, the forty
third Monday of the year is included in the calendar. If you selected the reverse
check box then the forty third Monday from the last week is included in the
calendar.

Add and Remove Calendar Dates Manually

You may sometimes require dates in a Calendar object that are not easily specified by a
calendar rule. Similarly, a rule can include dates that for some reason you do not want in
a calendar. You can use the Manually Included Dates and Manually Excluded Dates in
the Selected Calendar Rules pane to add or remove selected dates manually.

Calendars

Chapter 9: Calendars, Schedules, Tasks, and Triggers 313

To add or remove dates

1. Open a calendar.

2. Click the Advanced tab.

3. Expand Manually Included Dates or Manually Excluded Dates.

4. In the month viewer in the Properties pane, right-click a selected date and click one
of the include or exclude date commands on the shortcut menu.

■ To include specific dates for a particular year, click the Include Full Date
Command.

■ To include anniversary dates for all years, click the Include Anniversary Date
Command.

■ To exclude specific dates for a particular year, click the Exclude Full Date
Command.

■ To exclude anniversary dates for all years, click the Exclude Anniversary Date
Command.

The Include Full Date command is only available when excluded dates are selected
in the pane. The Exclude Full Date command is only available when included dates
are selected in the pane.

Calendars

314 Content Designer Guide

The Calendar Designer: Preview Tab

Use the Preview tab to visually inspect the dates that you want included and excluded
from a calendar.

You can also examine the set of dates in one calendar against another set of dates in a
second calendar. For example, define a standard work calendar that needs to omit the
holidays or vacation days that you defined in another exclusion calendar. While you are
editing the standard work calendar, you can test how a vacation exclusion calendar
would affect dates.

Item: Description:

 Preview Tab and Year: After defining a calendar on the Basic or Advanced tab, click
the Preview tab to view the dates. Click Previous Year, Next Year, or select a year.

 Included Dates: This panel displays all the dates included in your calendar rule
settings.

Calendars

Chapter 9: Calendars, Schedules, Tasks, and Triggers 315

Item: Description:

 Exclusion Calendar: (Optional) Select any separate calendar to easily detect any
conflicts shown in red.

 Included Dates: Dates that are included in your calendar appear using dark blue bold
numbers.

 Excluded Dates: Dates that are manually or automatically omitted from the calendar
rules appear with light blue numbers.

 Dates in Conflict with the Optional Exclusion Calendar: Dates that overlap or conflict
with the dates defined by an optional exclusion calendar appear in red.

 Conflict Resolution Fields: Use the Delta field to specify the number of days an eligible
date is shifted when it falls on an omitted or excluded date. A negative Delta value
shifts forward (earlier), and a positive value shifts backward (later). When this value is
zero (the default), the eligible date, normally included in the calendar rule, is marked
in red and omitted. Mark the Open Days check box to count only included days when
shifting the schedule to avoid an excluded or omitted date. Open days are those days
not specified by a condition or rule that omits or excludes dates. If the Open Days
check box is not selected, a shifted date can potentially fall on another excluded or
omitted day. Use the Max Shift field to define the maximum number of shifts or
adjustments that are allowed if repeated shifts fall on closed days.

Exclude Calendars

Closed days are those days on which a group of scheduled tasks cannot be performed.
Closed days can be specified in a calendar (for example, weekends are implicitly closed
when a rule specifies weekdays) or in a separate vacation calendar. A vacation calendar
is created with rules specifying valid dates, like any other calendar. Specifying a calendar
as a vacation or exclude calendar closes out dates that would otherwise be defined as
valid dates for performing tasks.

For example, certain tasks cannot be performed on company holidays. In this event, you
create a calendar that specifies all company holidays. Then, for each task in a schedule
you want to skip on company holidays, specify the company holiday calendar as the
Exclude Calendar. The company holidays are then closed days for those tasks.

Schedules

316 Content Designer Guide

Schedules

Use Schedule objects to configure when process or operator tasks run. Specify valid days
in the schedule or by reference to previously defined Calendar objects. Schedule objects
allow you to group, coordinate, and schedule the execution of tasks related to
organizational or architectural elements of an enterprise, such as applications,
ownership, monitoring, maintenance, and functional processes.

Schedule objects specify:

■ The tasks (processes and operators) you want to run

■ The time of day when each task starts

■ The repeat interval for multiple occurrences of a task

■ The days when tasks start (using a calendar, specifying explicit days, or some
combination)

■ The days when tasks are not permitted to start (using vacation calendars and/or
specifying excluded days)

■ The time of day when each task ends

Schedules

Chapter 9: Calendars, Schedules, Tasks, and Triggers 317

You can create a schedule with or without specifying a calendar. Processes and other
tasks that run every day or on explicitly specified days, do not require a calendar object.
To schedule dates using calendar rules, first create calendar objects and then specify the
calendars in schedule objects. Calendars define rules that specify valid dates for
performing tasks and closed days on which the tasks cannot be run. Use a schedule
object to associate operationally related tasks with a calendar and to specify the times
at which the tasks are run on the valid days defined by the calendar rules.

Item: Description:

 Schedule Editor: When you open a schedule from the Library Browser, the
Schedule dialog appears. Use the toolbar to activate, set validity, check in, or
save the schedule. Click any of the five tabs including Schedule Editor.

 Processes Pane: Select the processes that you want to include and drag them
into the Schedule Items list.

 Scheduled Process:Set the duration and frequency for running the process
within a single day from 12:00 a.m. to 11:45 p.m.

 Process Properties: Click the Properties button to view process properties on
the General and Specific tabs.

Schedules

318 Content Designer Guide

Item: Description:

 Operators Pane: Select the operators that you want to include and drag them
into the Schedule Items list.

 Operator Properties: Click the Properties button to view operator properties
on the General and Specific tabs.

Create a Schedule Object

To create any automation object in CA Process Automation refer to Create an Object
(see page 59).

Schedules

Chapter 9: Calendars, Schedules, Tasks, and Triggers 319

Schedule Process and Operator Tasks

You can configure a process or operator to run as a single task or a series of tasks in a
schedule. The difference between specifying an operator as a task in a schedule and
specifying an operator in a process is that the scheduled operator starts at a scheduled
time rather than as a step in a process. You can also schedule any process to start by
using a Start Process operator in a schedule.

Follow these steps:

1. In the Library, double-click a Schedule object.

2. In the Schedule Editor, identify the processes and operators you want to schedule.

3. Expand the Processes or Operators pane and drag any available process or operator
to the Schedule Items list. You can also right-click a process or operator and choose
Add.

4. For each item, complete the following fields:

Start Time

The starting time for a task to begin running on scheduled days.

Repeat Interval (minutes)

Indicates whether a task runs repeatedly between the start and end times, and
if so, how frequently. For example, every 2 minutes, or every 120 minutes (2
hours). Each time the task is repeated, a new instance of the task is created.
Specify the number of minutes from one start to the next in the adjacent
(minutes) field. For example, the value 120 in the minutes box repeats a task
every two hours.

Make sure that the End Time is later than the last time that you want the task
to repeat. For example, you configure a task as follows:

■ Start Time is 00:00

■ Repeat Interval check box is selected

■ The (minutes) field is set to 120 minutes

■ End Time is 16:00

These settings schedule the process or operator to start for the first time at
12:00 a.m., repeat every two hours, and run for the last time before 4:00 p.m.

End Time

For a repeating task, the time that the task stops repeating on any scheduled
day.

5. At this point, you have scheduled a task to repeat at the specified interval every day
from the specified start time to the specified end time. Continue with the remaining
steps only if you need to make detailed changes to schedule dates or properties.

6. Expand an item group or click Properties.

Schedules

320 Content Designer Guide

The General and Specific tabs appear.

7. On the General tab:

a. Expand Calendar Settings and select from the following fields:

■ Only Manually Selected: Only consider manually scheduled dates. When
no Calendar is specified in a scheduled item, the item is considered to be
scheduled every day, except when this option is selected. When this option
is selected, run dates need to be explicitly scheduled under Manually
Included or Manually Excluded or both.

■ Include Calendar: A Calendar object that schedules dates to run the task.

■ Exclude Calendar: A vacation Calendar object that specifies closed days on
which tasks are not run. The full path of the Calendar used to specify
closed days (those on which a task may not be scheduled). There are no
closed days when no vacation Calendar is specified here.

■ Days per shift: Activates rules that shift the dates that tasks are run when
a date specified by the Calendar object falls on a closed date. The number
of days to shift a scheduled date when the scheduled date falls on a closed
date. The shift can be negative or zero. When this value is negative the
date shifts forward. When this value is zero, closed dates are simply
skipped without rescheduling the task.

■ No excluded days: Select this check box to only count open days when
shifting the a scheduled date to avoid a closed date.

■ Maximum Shifts: When a task is rescheduled because the original
scheduled date falls on a closed day, it is possible that the new date also
falls on a closed date. This parameter defines the maximum number of
shifts that are allowed.This situation does not occur when the No Excluded
Days check box is selected.

b. Expand Manually Included Dates to list individual dates for inclusion in the
schedule.

c. Expand Manually Excluded Dates to list individual dates to exclude, even to
exclude dates from previously specified include calendars.

d. Expand Task Name to enter a more meaningful name for the task.

8. Click the Specific tab and expand the groups of fields that vary by operator or
process. For a process, the Start Process and Execution Settings groups appear. For
an operator, Execution Settings and other parameters appear. Configure the fields.

9. To set the valid date range for the entire schedule, click Validity. Specify a date far
in the future such as 12/31/2050 to continue evaluating dates indefinitely or until
the schedule is manually deactivated.

10. To delete a task, click X along the right edge.

11. Click Activate to initiate your scheduled items.

12. Click Check In and then close the Schedule dialog.

Schedules

Chapter 9: Calendars, Schedules, Tasks, and Triggers 321

13. Monitor scheduled items on the Operations tab.

Preview All Occurrences of a Scheduled Task

You can preview the scheduled occurrences of tasks for a specific day. When you
configure a task to repeat on a particular day, the application tracks each occurrence of
the task. For example, if a task repeats every 10 minutes for half an hour, three
occurrences of the task appear in the preview. Use this procedure to plan for a future
date or to view the results of tasks scheduled on a specific date in the past.

Follow these steps:

1. On the Schedule dialog, click the Schedule Editor tab to configure the list of
scheduled items for the entire period of validity.

2. Click the Preview tab. If your task repeats, multiple occurrences on the same day
appear on the Preview tab.

3. On the Preview tab:

a. In the Preview Date field, select a date in the valid range for the schedule.

b. In the Nodes drop-down list, select All Nodes or a particular orchestrator
touchpoint.

c. Select the Current or Archived options.

d. Click Refresh.

The application evaluates calendar rules and the validity period associated with
tasks before displaying the appropriate occurrences in the list.

■ When you select a past date, the Preview tab includes tasks that were started,
their state, their actual start time, and their end time.

■ When you select the current date, the Preview tab indicates whether
occurrences have started and their actual start time, state, and end time.

■ When you select a future date, the Preview tab includes all occurrences for the
selected date if the schedule is active on the selected Touchpoint.

4. Double-click an occurrence to view a read-only Properties pane showing the
configuration settings for the task.

5. Click the Schedule Editor tab to make any changes.

6. To set the valid date range for the entire schedule, click Validity.

7. Click Activate to initiate your scheduled items.

8. Click Check In and then close the Schedule dialog.

9. Monitor scheduled items on the Operations tab.

Schedules

322 Content Designer Guide

Using Schedules

You must activate and check in a schedule to use it. You can activate a schedule on the
particular orchestrator touchpoint on which it resides. When a schedule is active on
multiple touchpoints, it behaves as a separate instance on each touchpoint. This allows
you to schedule the same tasks on multiple computers simultaneously. Examples of
these types of tasks include log tidying, software installations, updates, and file backups.

Note: When you run a schedule, the schedule and any operators in the schedule use
only the checked-in copies of objects they reference.

Monitor Active Schedules

After you activate a schedule, you can monitor it using the Active Schedules link on the
Operations page.

Follow these steps:

1. Click the Operations tab.

2. On the Operations page, expand the Links pane.

3. Click Active Schedules.

4. In the toolbar, select an orchestrator and environment and then click Refresh.

5. In the Active Schedules table, double-click a schedule.

The Schedule dialog opens.

6. On the Schedule dialog:

a. Edit the scheduled items. See Schedule Process and Operator Tasks (see
page 319).

b. In the toolbar, click Activate to enable the schedule.

c. In the toolbar, click Deactivate to disable the schedule. You can also deactivate
a schedule on the Operations page.

Note: Your assigned permissions determine whether you can list, open, or edit a
specific schedule object. A content administrator or automation object owner can
change permissions on an automation object.

7. Click Check In or Save and Close.

Schedules

Chapter 9: Calendars, Schedules, Tasks, and Triggers 323

Monitor All Occurrences of All Scheduled Tasks

You can monitor the scheduled occurrences of all tasks for a specific day. When you
configure a task to repeat multiple times per day for more than one day, the application
tracks each occurrence of the task. For example, if a task repeats every 10 minutes for
half an hour (3 occurrences) every day for 1 year, the application tracks all 3 x 365 =
1,095 occurrences of the task. Use this procedure to plan for a future date or to view
the results of all tasks scheduled on a specific date in the past.

Follow these steps:

1. Click the Operations tab.

2. On the Operations page, expand the Links pane.

3. Click Global Schedules.

4. In the toolbar, select an orchestrator and environment and then click Refresh.

5. In the Global Schedules table:

a. In the Preview Date field, select a date in the valid range for the schedule.

b. In the Nodes drop-down list, select All Nodes or a particular orchestrator
touchpoint.

c. Select the Current or Archived option.

d. Click Refresh.

The application evaluates calendar rules and the validity period associated with
tasks before displaying the appropriate occurrences in the list. If your task repeats,
multiple occurrences on the same day appear.

■ When you select a past date, the list includes tasks that were started, their
state, their actual start time, and their end time.

■ When you select the current date, the list indicates whether occurrences have
started and their actual start time, state, and end time.

■ When you select a future date, the list includes all occurrences for the selected
date if the schedule is active on the selected Touchpoint.

6. Double-click an occurrence to view a read-only Properties window showing the
configuration settings for the scheduled task.

7. In the toolbar:

■ Click Dataset to view the process or operator dataset.

■ Click On Hold or Release Hold to hold or release the occurrence.

■ Click Reset to start an occurrence over.

Task Management

324 Content Designer Guide

Task Management

You can manage CA Process Automation tasks by designing user interaction forms to
enable users to control tasks or provide custom input. On the Operations page Task List
or the Home page My Tasks list, right-click a task to:

Reply

Modify the process in some way using a form in the Reply dialog. For example, you
can change field parameters or values before clicking Finish to complete the task.

Take

Temporarily assign yourself complete ownership and responsibility for the pending
task.

Return

For tasks with a status of Taken only, releases your exclusive ownership of the task.
The task is returned to its designated assignee or delegate users or groups.

Delegate

Assign the task to a secondary user or group, known as a delegate.

Transfer

Assign the task to a different assignee.

Open Process Instance

View the task in the context of the parent process instance and review the process
design.

Refresh

Update the task list with the latest changes from all users and system activity.

Properties

View more information about the task including its description, due date, status,
and its assignees and delegates.

Assign a Task to a User

To create a task, create a process using the Assign User Task operator, then start it.

You can specify the following attributes when creating a task:

1. Open a process in the Process Designer.

2. In the Operators palette, expand Process Control or search for the Assign User Task
operator.

3. Drag the Assign User Task operator to your process.

Task Management

Chapter 9: Calendars, Schedules, Tasks, and Triggers 325

4. Double-click the Assign User Task operator.

5. In the Properties palette:

a. Expand Assignees, and enter the users and groups to assign to this task.

b. Expand Transfer/Delegate Filters to permit delegation of the task, which is
restricted to the specified users or groups.

c. Expand User Task and complete the following fields:

Title

The title of the task.

Description

A description for the task.

Interaction Request Form

The library path to the interaction request form.

Form Data Initialization Code

You can write JavaScript to populate this field.

Show approval page

A check box that specifies if an approval screen must be displayed at the
end of the interaction request form. The user working on the task can
approve or reject the task using the approval page.

d. Expand the following common operator property groups to specify any
designer information about the Assign User Task operator:

■ Execution Settings

■ Simulation

■ Information

6. In the Designer toolbar, click Save.

Task Management

326 Content Designer Guide

The Task List

You can work with tasks on either the Home page or the Operations page. The Home
page displays only the Status, Title, Description, and Due Date fields in the convenient
My Tasks table. Use the Task List on the Operations page to view the most detailed
information about tasks.

Tasks originate from processes that include an Assign User Task operator and an
Interaction Request Form. You can sort the Task List in ascending/descending order by
clicking the column headers. Use the Status column to determine if a task is pending,
completed, approved, rejected, or taken.

On the Operations page, you can filter the task list to show the following:

■ Only your tasks (My Tasks, the tasks that are assigned to the current user)

■ Only the tasks assigned to any groups that you belong to

■ All tasks

The Task List on the Operations page displays the following field columns for each task:

■ Task ID

■ Title

■ Description

■ Start Time

■ Due Date

■ Completion Date

■ Status

■ Assignees

■ Delegates

Administer Triggers

Chapter 9: Calendars, Schedules, Tasks, and Triggers 327

Administer Triggers

You can control processes with external applications using any of the following
methods:

■ Triggers

■ Web services (SOAP)

■ Command line utility

■ Scripts

SOAP calls are recommended over triggers because Web services are more robust.
Applications that cannot make SOAP calls can use triggers as an alternative.

Triggers allow external applications to start a process in CA Process Automation. A
trigger invokes the CA Process Automation process that is defined in XML content or in
an SNMP trap. The XML content can be delivered to the configured file location or to
the configured email address. SNMP trap content can be sent in an OID matching a
configured regular expression. CA Process Automation listens for incoming SNMP traps
on the configured SNMP trap port, 162 by default.

Whenever you start a process, begin an operation such as run the Start Process
operator, or use a trigger or SOAP call, you are acting on behalf of some user or owner.
For triggers or SOAP calls, information about the content owner is in the payload or
messages. This information determines the versions of automation objects that are run:

■ If you check out a process and then run, call, or trigger it (you are both the content
owner and initiator), CA Process Automation uses your private checked-out version.

■ Otherwise, CA Process Automation uses the current versions of the automation
objects. This includes processes that are not checked out or checked out by another
user.

You can run and verify your own checked-out version before checking the objects back
in or making them current.

Administer Triggers

328 Content Designer Guide

Controlling Processes from an External Application with SOAP Calls

The CA Process Automation Orchestrator exposes Web services that allow external
applications to start and control processes in a library. SOAP calls require valid XML. The
Web services methods and parameters exposed are described in the WSDL. For details,
retrieve the WSDL from the appropriate domain URL, depending on whether CA Process
Automation supports secure communication and is clustered. In the following examples,
load_balancer_hostname is the host name or IP address for the Apache load balancer.

■ Secure and unclustered:

https://<DomainOrchestrator_hostname>:8443/itpam/soap?wsdl

■ Unsecure and unclustered:

http://<DomainOrchestrator_hostname>:8080/itpam/soap?wsdl

■ Secure and clustered:

https://<load_balancer_hostname>:<Apache_secure_port>/itpam/soap?wsdl

Note: The secure port of Apache is typically 443.

■ Unsecure and clustered:

http://<load_balancer_hostname>:<Apache_unsecure_port>/itpam/soap?wsdl

Note: The unsecure port of Apache is typically 80.

For sample scripts that use SOAP calls to the CA Process Automation Orchestrator to
start processes, navigate to the following folder:

<install_dir>/server/c2o/.c2orepository/public/scripts/trigger

Note: The <install_dir> path is typically C:\Program Files\CA\PAM.

The Java subfolder contains a Java-based tool and all the resources the tool requires to
start CA Process Automation processes remotely using SOAP. The path to the Java
subfolder follows:

<install_dir>/server/c2o/.c2orepository/public/scripts/trigger/java

How File and Mail Triggers Work

This topic provides a description of the processing sequence for triggers. It uses file and
mail triggers as examples.

Administer Triggers

Chapter 9: Calendars, Schedules, Tasks, and Triggers 329

File and Mail Trigger Example:

1. At the configured frequency, CA Process Automation searches for new content in
the configured folder and the configured email account.

2. If a new file object or mail object is found, CA Process Automation attempts to run
the process, based on the XML content.

An illustration of valid XML content for the file trigger follows:

3. When the trigger executes the process specified in the trigger instance, the process
dataset is populated with the values contained in the XML. The following example
demonstrates how the values in the XML content are used to populate the file
trigger process dataset.

Administer Triggers

330 Content Designer Guide

4. The results are posted to the processed folder in the configured path.

5. Emails received at the configured email account are processed in much the same
way as XML content received in files. In addition confirmation emails are sent,
where the content states whether the XML content was found in the body of the
email or in an attachment. The following example shows both messages:

Monitor the FileTrigger Dataset of a Process Started by a File Trigger

When valid XML content in a file triggers a process instance, you can monitor the file
trigger process dataset in the Process Watch. Use the following field descriptions to
interpret the displayed values.

FileName

The name of the file with the content that triggered the process.

<additional_parameters>

Additional parameters that are passed under the <params> tag in the triggering
XML content of the file.

Monitor the SMTP Dataset of a Process Started by a Mail Trigger

When valid XML content in email triggers a process instance, you can monitor the SMTP
process dataset with Process Watch. Use the following field descriptions to interpret the
displayed values.

SenderAddress

The email address of the account from which the triggering email is sent.

SentDate

The date and time when the email was sent.

ReceivedDate

The date and time when the server received the email.

MailSubject

Subject of the triggering mail.

Administer Triggers

Chapter 9: Calendars, Schedules, Tasks, and Triggers 331

MessageNumber

Message number of the triggering mail at the time when the process was triggered.

Note: This number can change for the same mail, if messages are deleted or moved
from the Inbox.

MessageID

Unique ID of the mail in the server.

MailBody

The body of the email message in these cases:

■ When valid XML content in an attachment triggers the process.

■ When the default trigger process is started, that is, when no valid XML content
is found in either the email body or attachment.

Note: This string value is truncated to the first 64k characters in the mail body.

MailAttachments

A ValueMap array type variable which holds ValueMaps with the following
information about the attachments:

a. contentType: Attachment content type.

b. contentID: Attachment contentID if present.

c. fileURL: URL from which attachment can be viewed or downloaded.

d. name: Name of the attachment.

e. attachmentID: Unique ID for this attachment. This ID can be passed to
JavaScript system functions.

Note: See the Reference Guide for details about the JavaScript system
functions.

<additional parameters>

These parameters, passed under the <params> tag in the triggering XML content,
exist only when valid XML content in the mail body or attachment starts the CA
Process Automation process.

Administer Triggers

332 Content Designer Guide

XML Content Format for File and Mail Triggers

External applications that use file or mail triggers to start CA Process Automation
processes must create input in a valid XML format. XML content can be written to the
body of an email or sent as an attachment. If the XML is copied to the email body, it can
contain no more than what is required to trigger a process. For file triggers, the
triggering file must include the entire content.

An example of valid XML format follows:

<c2oflow version="1.0">

 <flow name="/Test/RunNotepad" action="start"> <!-- Full path of the process -->

 <auth>

 <user>pamadmin</user> <!-- CA Process Automation Username -->

 <password>pamadmin</password> <!-- CA Process Automation Password -->

 </auth>

 <options> <!-- Optional parameters for delayed execution -->

 <startDate></startDate> <!—Start Date in [MM/dd/yyyy] format -->

 <startTime></startTime> <!-- Start Time in [HH:mm] format; HH in 24 hrs -->

 </options>

 <params> <!-- Process initialization parameters, if needed -->

 <param name="ParamOne">Using file trigger</param>

 <param name="ParamTwo">Second parameter from file trigger</param>

 </params>

 </flow>

</c2oflow>

SNMP Trap Input Considerations

CA Process Automation supports SNMPv1 and SNMPv2 traps; however, it does not
process SNMPv3 traps. When a network device or an enterprise application sends an
SNMPv1 or SNMPv2 trap that CA Process Automation detects on the configured port,
CA Process Automation processes the content.

Administer Triggers

Chapter 9: Calendars, Schedules, Tasks, and Triggers 333

Change the SNMP Traps Listener Port

By default, CA Process Automation listens on port 162 for SNMP traps designed to start
CA Process Automation processes. If you have closed port 162 at your site and
configured an alternative port, change the CA Process Automation configuration for this
port in the OasisConfig.properties file. Then restart the Orchestrator service.

You can change the port on which CA Process Automation listens for SNMP traps.

Follow these steps:

1. Log on to the server on which the Domain Orchestrator is configured.

2. Navigate to the following folder or directory:

install_dir/server/c2o/.config/

3. Open the OasisConfig.properties file.

4. Change the value in the following line from 162 to the port number you are using
for SNMP traps.

oasis.snmptrigger.service.port=162

5. Save the file.

6. Restart the Orchestrator service.

a. Stop the Orchestrator.

b. Start the Orchestrator.

As soon as the service restarts, CA Process Automation begins listening on the port
you configured. CA Process Automation listens for new SNMP traps that meet the
criteria configured in the SNMP trigger.

Administer Triggers

334 Content Designer Guide

Monitor the SNMP Dataset of a Process Started by an SNMP Trap Trigger

When an SNMP trap triggers a process instance, you can monitor the SNMP process
dataset with Process Watch. Use the following field descriptions to interpret the
displayed values.

SenderAddress

IP address of the source.

AgentIPAddress

IP address of the SNMP agent, if available in the trap.

SNMPVersion

Version of the SNMP trap.

ErrorIndex

Error Index of the trap.

AgentUptime

Uptime of the agent sending the trap.

EnterpriseOID

Object identifier (OID) of the managed object that generated the SNMP trap.

PayloadOIDs

Object IDs present in the payload of the trap. The payload object IDs represent a CA
Process Automation string array variable.

PayloadValues

Values in the payload that correspond to the values in PayloadOIDs. This data is also
a CA Process Automation string array variable.

Note: If there are several filters, the first match is processed.

Chapter 10: Running, Testing, and Debugging Processes 335

Chapter 10: Running, Testing, and
Debugging Processes

This chapter describes how to run, test, and debug processes interactively during
development. The same methods can be used to run processes in a production
environment.

When you want to run a process, you can initiate it using any of the following methods:

■ Manual process initiation

■ Start Request Form

■ Call from other processes

■ Trigger using external applications, FTP, SOAP calls, SNMP traps, or SMTP (email)
messages

The Workflow module on an orchestrator runs processes. When you start a process on
an orchestrator, the Workflow module creates and runs a copy of the process object in
the orchestrator automation library. This running copy is an instance of the process. The
Workflow module creates a separate instance of a process each time you start a process
(or another process or application starts a process).

You can open, view, and work with an instance of a process while it is running or after it
finishes. Changes made to an instance of a process affect only that instance and do not
affect the original process object stored in an automation library.

When a process starts, it connects to the correct agent or orchestrator modules on
managed network computers. A process performs its designated operator functionality,
tests conditions, and exercises dependencies. When error conditions arise, a process
performs corrective actions and notifies operators and administrators when necessary.
An administrator can use the Application Monitor to monitor running processes and to
perform corrective actions.

This section contains the following topics:

Process Watch Objects (see page 336)
Execution Rules (see page 341)
Runtime Security (see page 342)
Exception Handling (see page 344)
Run Processes Interactively (see page 348)
Process States (see page 352)
Debug a Process (see page 352)
Control a Process Branch (see page 356)
Simulate Processing of Operators (see page 359)

Process Watch Objects

336 Content Designer Guide

Process Watch Objects

The Operations page monitors selected tasks and system elements managed by CA
Process Automation. The Operations page display all process activities such as process
instances, schedules, module invocations, datasets, and user prompts for a selected
automation library.

Item: Description:

 Operations Tab: Click this tab to navigate to the Operations page, a high-level automation dashboard.
In the toolbar you can choose an orchestrator, open a process instance, and control it.

 Links Pane: Select a link to view its associated items. For example, click Process Instances to view all
processes by state. Expand any of the groups to make a selection by browsing folders. Some objects
include a shortcut menu of commands that you can invoke by right-clicking. In this example, the user
has clicked Start Process for a subprocess in a process watch object.

 Chart Area: Hover over a bar to view the number of items matching a given state. Click a bar to apply a
filter that shows only items matching the selected state.

 Operations Table or List: Depending on your selection in the left pane, this area displays the resulting
data in a table or list.

Process Watch Objects

Chapter 10: Running, Testing, and Debugging Processes 337

Filter Objects Displayed by a Shortcut

You can apply any of the following filters to a Touchpoint Manager shortcut in a Process
Watch object to define the objects displayed by the shortcut. The following table lists
the available filters.

All Instances

Displays all the process instances in the current orchestrator.

Abnormally Ended Instances

Displays abnormally ended instances of Processes on the Touchpoint. Examine this
folder to quickly identity the Processes with problems. Open the abnormally ended
instance of a Process to troubleshoot the Process.

Active Schedules

Lists all the active schedules in the orchestrator.

Active Operators

Lists all operators that are being executed.

Active Systems

Lists all the active system objects in the orchestrator.

Ended Instances

Displays ended instances of Processes on the Touchpoint.

Normally Ended Instances

Displays all instances of Processes that completed without any issues.

Queued Instances

Displays all instances of start requests that are in a queued state and waiting for the
execution to start.

Running Instances

Displays running instances of Processes on the Touchpoint. This filter does not fetch
Waiting, Suspended, or Breakpoint suspended instances.

Suspended Instances

Displays instances of Processes currently suspended by a user or by the application
on the Touchpoint.

User Interactions

Displays all tasks pending user action.

Waiting Instances

Displays instances of Processes with an inactive run state. These are processes
where all active Operators are waiting for an external asynchronous event. The
event could be a user interaction, target date and time, or other long running
operation.

Process Watch Objects

338 Content Designer Guide

Blocked Instances

Displays instances of Processes which are blocked because there is not another
path to take. For a blocked process instance to complete, a user must suspend the
process and provide a path that permits the process to complete. This state not
only reflects situations where user intervention is required, but also situations
where a process instance cannot proceed because it met an unexpected condition.

The Default Process Watch (opened by clicking an Automation Library in the CA Process
Automation Client and then clicking the Default Process Watch button on the toolbar)
includes a shortcut for each of these filters. You can use the following procedure to filter
any shortcut in a Process Watch object:

To apply a filter to a Process Watch shortcut

1. Expand a shortcut on the Filter palette of the Process Watch window.

2. Click the filter that you want to apply to the shortcut.

You can add several shortcuts to the same Process Watch object and apply a
different filter to each one. This allows your users to quickly view different objects
in the same container.

Process Watch Objects

A Process Watch object provides an easy way to monitor the status of other automation
objects. You create Process Watch objects in the Library Browser. You can add objects
(technically pointers to objects) from multiple domains, touchpoints, orchestrators, and
other libraries. When you view the Process Watch object on the Operations page, it
displays the current state of the monitored objects.

Process Watch Objects

Chapter 10: Running, Testing, and Debugging Processes 339

Create a New Process Watch Object

Define a new Process Watch object in the Library Browser and monitor the status of
each object that it includes on the Operations page.

Note: We recommend that you organize objects in folders to set rights, export them,
and perform other tasks. Do not create objects at the root level because there is no way
to manage them as a group.

Follow these steps:

1. Click the Library tab.

2. In the Library folders pane

a. Select an orchestrator in the design or production environment.

b. Select a folder.

3. In the toolbar, click New and select Process Watch.

A new process watch object appears in the selected folder.

4. In the Name field, enter a name for the process watch.

5. Double-click the new process watch.

The Process Watch dialog appears.

6. In the left pane

a. Select the domain, environment, orchestrator, touchpoint, host group, and
folder for the object you want to add to the process watch.

b. Select the object that you want to include in the process watch.

7. In the toolbar, click Add New.

The selected object is added to the process watch. The name, object type,
reference path, mode, and description of the selected object appears.

8. If you added a process, select one or more States that you want to display in
process watch, for example, queued, suspended, and blocked.

9. Click Save.

Edit Objects from within a Process Watch

You can right-click the shortcut to an object in the Filter palette of a Process Watch
object, and click Open to open the object in its corresponding Designer. You can also
open an instance of a Process shown in the details pane of the Process Watch window.

Process Watch Objects

340 Content Designer Guide

Opening an object by right-clicking a shortcut in the Filter palette opens the object
definition on the Orchestrator. Any changes you make to the object pointed to by the
shortcut are saved to the object definition in the Automation Library. All future versions
of the object will then incorporate the changes, which is the same as opening the object
definition inside the Orchestrator object using CA Process Automation Client.

Opening an instance of a Process in the details pane of the Process Watch window
opens the instance of the object. Doing so allows you to monitor execution of the
instance closely and change it. Any changes you make to an instance of a Process object
affects only the execution of that instance of the object and does not change the object
definition in the Automation Library.

Note: A CA Process Automation user must have sufficient permissions to view or edit an
object in the Process Watch window.

To save changes to an instance of a Process, you must export it to a CA Process
Automation export file. To do this, right-click the instance of the Process in Process
Watch, and click Export.

Note: For more information about working with instances of Processes in Process
Watch, see “Monitor Processes” in the Administration Guide.

Extended Relative Path Support

An automation solution developed in CA Process Automation consists of various
automation object types that can include Processes, Datasets, Start Request Forms, and
Interaction Request Forms.

CA Process Automation allows the users to move an automation solution from any level
throughout the library hierarchy. For example, moving objects from one folder to
another folder or moving the automation objects to different domain library. When you
move the automation solutions through a library, the root path of the objects changes.
To move an automation solution without breaking or changing the relation between the
objects though the root folder changes, use the Extended relative path option.

Note: CA Process Automation provides Use Relative Path for Objects check box in
Process Watch and Package Object Browser windows. Select the Use Relative Path for
Objects check box to add the relative path to Package or Process watch automatically.

Execution Rules

Chapter 10: Running, Testing, and Debugging Processes 341

Execution Rules

Operators in a process can have multiple entry and exit links. An entry link serves as an
execution order and invokes the operator. Each exit link corresponds to a particular
outcome of the operator. Operators have predefined exit links (such as Aborted,
Completed, Failed, or Successful). Some operators also allow you to use a Boolean
expression to define a custom exit link based on the results and the value of variables
accessible to operators in a process.

The execution rules of a process are as follows:

■ Start operators in the main flow can have an entry link. If it has an entry link, it
cannot have an exit link and act as a Reset operator (for example, used to reset a
complete process).

■ Stop operators have no exit and complete the execution of a process.

■ All exit links with Boolean conditions evaluated as True are enabled and lead to
activation of subsequent exit operators. Default exit links are mutually exclusive
with one another. All custom links for which the Boolean expression evaluates to
true are enabled and lead to subsequent exit operators.

■ Operators (other than recapitalized operators in a looped branch of a process) are
processed only once during execution of a branch of a process. When a link from a
completed operator leads to an operator that has already been activated, then the
activated operator is not processed a second time. After activation, the processed
link is unavailable to subsequent processing of a process.

Some operators support looped processing, in which the Workflow module
executes the operator either a specified number of times or indefinitely. The exit
conditions and the connecting links from the operator are evaluated only when the
loop is terminated. The Loop operator further allows you to apply looped
processing and its exit conditions to an embedded sequence of operators.

■ Break links interrupt execution of a loop in operators that support the use of looped
processing.

Runtime Security

342 Content Designer Guide

Runtime Security

The optional Runtime Security feature, when enabled, helps verify the identity of the
user who is running the secure process or schedule. The user for any process is either
the owner or the one calling the process. The user for any schedule is always the owner.
The caller user identity is the user identity that starts a process, schedule, or operator.

Runtime security enforcement is used when a process starts, regardless of how the
process is invoked. For example, runtime security enforcement applies to child
processes started by parent processes.

See Specify Runtime Security Properties.

You can also configure an operator in a process to run in the context of the user who
called it by checking the Run as Caller User check box listed under Execution Settings.
Marking this option indicates that you want the operator to run as if the user who
started the process was in control. Operator settings override process property settings,
if different.

Properties Affecting Security of Running Processes

Only the process owner or environment content administrators can set Runtime
Security. Two process properties impact runtime security for instances of this process:

■ Runtime Security

■ Run as Owner

Runtime Security

Chapter 10: Running, Testing, and Debugging Processes 343

Runtime Security

Specifies whether to enforce runtime security for this process. Runtime security can
be enabled or disabled either explicitly or through inheritance. When set explicitly,
changes to inherited settings have no impact.

Inherit from Orchestrator

Applies the same setting that is currently configured on the orchestrator.
Enable Runtime Security can be selected or cleared on the Policies tab of the
parent orchestrator.

Enable

Indicates you want to enable Runtime Security. When a user attempts to start
an instance of this process, CA Process Automation examines the setting for
Run As Owner for the user.

■ If Run As Owner is selected, CA Process Automation determines the user
currently set as owner and starts the process under the identity of the
owner. If this process calls another process, that process runs under the
identity of the owner of the parent process.

 Note: This setting can be overridden at the operator level if Run as caller
user is selected.

■ If Run As Owner is cleared, CA Process Automation examines permissions
for the user that is attempting to start an instance of the process. If that
user has start rights, CA Process Automation allows the process instance to
start under the caller user identity. If this process invokes another process
set as caller user, CA Process Automation checks start rights for the child
process.

Disable

Indicates you want to disable Runtime Security. The Run As Owner check box is
disabled.

Run As Owner

This check box is enabled only if Runtime Security is enabled either explicitly or
through inheritance.

Selected

Specifies that all instances of the current process can run under the identity of
the owner (run as owner). When an authorized user starts the process, the
owner gains access to child processes and other objects. Access by the owner
can include objects that the caller user, who launched the instance, is not
permitted to access. Only the process owner or environment content
administrator can set this property.

Cleared

Specifies that start permission is verified at runtime for the caller user that
attempts to start the process instance .

Exception Handling

344 Content Designer Guide

Guidelines for Setting Runtime Security for a Process

At startup, a process instance can assume one of the following identities:

■ The caller user, that is, the user who started the process instance.

■ The process owner.

When configuring runtime security at the process level, consider the following
guidelines.

Your Objective: Required Configuration:

Run the process as the caller user.

Enforce runtime security rights with the
identity of the user who starts the process
instance.

■ Select Enable in the Runtime Security
field.

■ Clear Run as Owner.

Run the process as owner.

Enforce runtime security by running
process instances under the identity of the
owner, regardless of who starts it.

■ Select Enable in the Runtime Security
field.

■ Select Run as Owner.

Disable validating and enforcing process
ownership at runtime.

Select Disable in the Runtime Security
field. This option helps ensure backward
compatibility for existing processes.

Exception Handling

Exception handling allows you to define sequences of operators for predefined
exceptions on operators in a process, such as Failure, Abort, or Unexpected outcome.
You can also create a default sequence of operators to perform for any exceptions
lacking an explicit sequence. While the Workflow module processes an exception, it
pauses execution of any other operators in the process.

Exception handling uses priorities when evaluating exit conditions on an operator. The
following table lists the exception types:

Priority Exception Type Occurs When

1 System Exception There is an incorrect touchpoint name, an
unreachable agent, or any type of
communications failure.

2 Unexpected Results There is no exit link for a particular exit
condition.

3 Abort An operator aborts or a user aborts an
operator.

Exception Handling

Chapter 10: Running, Testing, and Debugging Processes 345

Priority Exception Type Occurs When

4 Timeout An operation times out and there is no path
defined from the timeout port to the main
flow.

When a process operator experiences an exception, the Workflow module takes the
following actions:

■ Suspends processing of the process after executing the current operators.

■ Tries to match and run an exception in the following order:

Priority Matches Action

1 Exception handler
defined in the process
object.

Runs the exception handler defined in the
process object.

2 Exception handler
defined on the default
process object for the
orchestrator running the
Workflow module.

Runs the exception handler defined in the
default process object for the orchestrator.

3 None Ignores the exception.

The Workflow module continues processing
the process.

Exception Handling

346 Content Designer Guide

Create Exception Handlers

Exception handlers let you create sequences of operators for the following predefined
exceptions in a process:

■ Aborted: Occurs on a user-specified or operator abort.

■ System Error: Occurs with any type of communication failure. For example, when
the process contains an incorrect touchpoint name or refers to an agent that is not
running.

■ Timeout: Occurs when the operator has not finished by the specified time and the
operator is configured to take the timeout path and either end or continue with
result. The exception handler defines the timeout path.

■ Unidentified Response: Occurs when there is no output connector corresponding
to the response.

To create exception handling rules

1. Click the Design tab.

2. Click Open, navigate to the folder with the process to open, select the process and
click Open.

3. Select the Exception Handler tab.

4. Expand the Standard folder in the Operators palette and drag the Exception
operator onto the process.

5. Expand the Exception operator properties dialog.

6. Expand Information and type a name in the Name field.

Note: We recommend that you name operators in a default exception handler with
a prefix so that they do not match operator names in the process that loads the
default exception handler.

7. Expand Exception occurred.

8. Select an exception type from the drop-down list.

9. From the palette, drag additional operators onto the process that completes the
rule for the exception. Link the operators in the execution sequence.

Note: If you finish the sequence without adding any Stop operators, the main
process resumes. Optionally, you can stop process execution for one or more paths
in the Exception Handler.

10. In the toolbar, click the Save button.

The new exception rule is added.

Exception Handling

Chapter 10: Running, Testing, and Debugging Processes 347

As part of exception handling, you can reset the operator and continue with the
process. Additionally, you can select to ignore an exception and continue with the
process. To ignore an exception, you must set the operator in simulate mode and
continue with the process. You can find the Reset operator on the Common palette. You
can use the Reset operator in the process pane, exception handler, and lane change
handler.

To configure a Reset operator

1. Right-click Add, Reset to add a Reset operator.

An entry is shown in the text box with a drop-down to select one of the available
Operator names in the current Process. You can add multiple Operator names.

2. Click the Delete, Move Up, and Move Down buttons to manipulate an operator
name.

3. Enter an expression (instead of choosing an operator name from the drop-down)
which resolves to a string (for example, operator name) or a list of values (for
example, a list of operator names) at runtime.

4. Select Continue with Result selected to use Successful or Unsuccessful.

■ When Continue with Result is unchecked, when an error condition is met at
runtime, CA Process Automation resets the selected Operators and continues
with the process flow.

■ When Continue with Result is selected, the EndCondition option is made
available to select either Successful or Unsuccessful. When Successful is
selected and if an error condition is met at runtime, CA Process Automation
assumes that the selected Operators are successful and continues with the rest
of the Process flow. When Unsuccessful is selected and an error condition is
met at runtime, CA Process Automation assumes that the selected Operators
failed and continues with the rest of the Process flow.

5. (Optional) To ignore an exception and continue with the process, add a Reset
operator in the exception handler mode to ignore the exception by specifying the
following in the operator list:

exceptionStart-<operator-name>.Source

Note: When you add a new field to the Operators List of the Reset operator, the names
of the process Loop operators appear in the drop-down menu of the new field. The
Reset operator resets all operators inside the loop operator and resets the loop
operator to the first iteration. After the reset, the Loop operator will restart from the
first iteration. Because the Loop operator does not support simulation, the Reset
operator will always reset a Loop operator. The Loop operator will reset and the
following field values will be ignored:

■ Continue with Result

■ End condition

■ Pre-execution and Post-execution code

Run Processes Interactively

348 Content Designer Guide

Run Processes Interactively

You can start an instance of a process immediately or in suspended mode.

When a process starts immediately, the Workflow module creates an instance of the
process, loads it to memory, and immediately starts processing operators. If a process is
started in suspended mode, the Workflow module loads the instance of the process to
memory, but it does not start processing.

You can put a shortcut to a process in a Process Watch object. If you are an authorized
user, you can start and monitor the process from within the Process Watch object.

You can start the current version of a process by accessing the process object in the
Library Browser. You can also start a process while you are editing it in the Process
Designer. While you are editing a process, you can check in changes and start the
current version of the process without leaving the Process Designer.

When a process starts, CA Process Automation creates a copy or instance of it in the
automation library. Changes to an instance do not affect the base definition of the
process. You can access the base definition through the Library Browser. Process
instances are available using Process Watch. You can open Process Watch using either
the default Process Watch or with a Process Watch object.

More information:

Process Watch Objects (see page 336)

Run Processes Interactively

Chapter 10: Running, Testing, and Debugging Processes 349

Start a Process from the Library

You can start a process from the Library tab. Starting a process immediately lets you
perform a task in a production environment.

Follow these steps:

1. Click the Library tab.

2. Click Orchestrator and select the appropriate Orchestrator:environment
combination.

3. Navigate to the folder that contains the process to start.

4. Take one of the following actions:

■ Right-click the process and select Start Process.

■ Select the process and select Start Process from the More Actions drop-down
list on the toolbar.

The Monitor Process Instance prompt opens.

5. Take one of the following actions:

■ Click Yes to open a new window to monitor the running instance of the
process.

■ Click No to run an instance of the process. The process is not displayed.

The process starts immediately.

Run Processes Interactively

350 Content Designer Guide

Start a Process as Suspended from the Library

You can start an instance of a process in a suspended state to achieve any of the
following objectives:

■ Insert breakpoints.

■ Set parameters.

■ Make other changes before the process runs.

■ Monitor or control the execution of a process.

■ Debug the sequence of steps in the process.

Follow these steps:

1. Click the Library tab.

2. Click Orchestrator and select the appropriate Orchestrator:environment.

3. Navigate to the folder that contains the process to start in suspended state.

4. Take one of the following actions:

■ Right-click the process and select Start Suspended.

■ Select the process and select Start Suspended from the More Actions
drop-down list on the toolbar.

The Monitor Process Instance prompt opens.

5. Take one of the following actions:

■ Click Yes to open the Designer tab with the debug toolbar. You can begin
working with the suspended instance immediately.

■ Click No to load the process into the Operations tab. The Designer tab does not
open. You can later navigate to the instance in the Process Watch palette in the
Operations tab. To continue, right-click that instance and select Start
Suspended.

More information:

Debug a Process (see page 352)

Run Processes Interactively

Chapter 10: Running, Testing, and Debugging Processes 351

Start a Process While Editing

While you are editing a process object, you can start the current version without leaving
the Process Designer. The Start and Start Suspended commands are available on the File
menu. Start and Start Suspended buttons are also available on the Process Designer
toolbar.

The Start and Start Suspended commands in the Process Designer run the current
version of the process, including any changes you have made.

The Process Designer Start and Start Suspended commands create an instance of the
current process in memory, like starting a process in the Library Browser. If you click
Start, the Workflow module creates the instance and starts executing the process
immediately. If you click Start Suspended, the Workflow module creates the instance
but does not start execution of the process.

Both the Start and Start Suspended commands prompt for the touchpoint on which to
run the process and then prompt whether you want to monitor execution of the
process. If you monitor execution of the process, CA Process Automation opens a
separate Process Designer window to work with the new instance in debug mode.

Open an Instance of a Process

The Process Watch object and Operations page let you view instances of processes on
an orchestrator. You can:

■ Recover and restart the processes that are suspended after an incident.

■ Assess the values of dataset variables and the status of operators in running,
suspended, or ended processes.

You can create Process Watch objects or use the Operations page to monitor and edit
instances of processes. Click the Operations tab to monitor all instances of processes on
an orchestrator. You can also set filters to monitor only selected objects.

More information:

Process Watch Objects (see page 336)

Process States

352 Content Designer Guide

Process States

The Process Designer periodically updates the current state of the process. Color-coded
icons are used to indicate the state of every operator. You can edit the process while it
is running or suspended. After a process has completed or aborted you can no longer
change the instance.

Debug a Process

When you open an instance of a process, the Process Designer helps you monitor the
status and debug a process. Debug buttons are available on the Process Designer
toolbar. When processing is suspended, you can edit the process and change parameter
values in operators.

A process can be suspended in several ways:

■ When an instance is started in a suspended state.

■ When you click the Suspend Process button.

■ When a process ends and you click the Keep Process Loaded on Completion button
on the Process Designer toolbar. The process is suspended but the status appears
as Blocked.

■ When there are no valid operators left on any branch of a running process. The
process is suspended but the status appears as Blocked.

Suspend a Process

When a process is in the suspended state, you can do any of the following:

■ Change whether a process is unloaded after completion

■ Reset the process

■ Reset operators in a process

■ Add or remove breakpoints

■ Modify the process

■ Click the Resume Process button to continue processing

■ Abort the process

Modifying a process in a suspended state lets you work on an unanticipated issue, and
then resume automated execution while still tracking any changes that you have made.
Switch to a Process Watch to export a modified instance of a process and permanently
save any changes made at runtime.

Debug a Process

Chapter 10: Running, Testing, and Debugging Processes 353

To suspend execution of an instance of a process while working in debug mode, click the
Suspend Process button on the toolbar of the Process Designer.

The execution of the process instance stops. No further dependencies are examined
until you resume execution of the process. You can edit a process in a suspended state.
Any modifications to operator parameters or other elements of the process affect only
that instance of the process.

To restart execution in a suspended instance of a process, click the Resume Process
button. The Resume Process button restarts a suspended process from where it
stopped executing unless it is reset. If an instance of a suspended process is reset,
execution restarts from the beginning of the process.

Change whether Processes are Unloaded on Completion

When running a process in debug mode, the Workflow module typically does not unload
the process instance when it reaches a Stop operator. This allows you to modify and
restart the process.

To force the Workflow module to unload a process when it reaches a Stop operator,
click Keep State on the Control menu to clear the check mark next to the command. You
can also use the Keep Process Loaded on Completion button on the toolbar to switch
this command on or off. The toolbar button remains inactive while the command is
toggled on.

Set and Remove Breakpoints in a Process

You can use breakpoints to identify errors. Breakpoints help you check variable values
and operator parameters. Set a breakpoint on an operator to interrupt a process
immediately before the operator starts. You can then set parameter values and examine
processing of an operator as it occurs.

When a breakpoint is set, the entire process is suspended when it reaches the operator
with the breakpoint. An exclamation point (!) symbol appears near the operator that has
suspended the process.

Debug a Process

354 Content Designer Guide

You can set and remove breakpoints in a process object or in a suspended process
instance. Breakpoints you set in the original process object definition automatically
appear in any instances of that process.

Follow these steps:

1. Open a process in the Process Designer.

2. Select one or more operators in the process.

3. On the toolbar, click Set Breakpoints.

The breakpoint symbol appears next to the selected operator.

4. To remove existing breakpoints, select one or more operators, and click the
Remove Breakpoints button on the Debug toolbar.

Debug a Process

Chapter 10: Running, Testing, and Debugging Processes 355

Debug a Java Process

The Java connector uses Apache Log4j to capture the connector’s log messages. When
troubleshooting an issue with a Java process, debug it by enabling and then reviewing
the log files. The log messages captured at the DEBUG level are very detailed and should
help system engineers define the root cause of an issue.

Note: The paths to the log4j.xml and c2o.log files change when running the Java module
on a CA Process Automation agent.

Follow these steps:

1. Locate the log4j.xml file at the following path:

CA Process Automation_Installation_path\Domain\server\c2o\conf\log4j.xml

2. Set the Java module’s log4j threshold level to DEBUG.

An example showing the specific section and line (shown in bold) of the log4j.xml
file follows:

<!-- A size based file rolling appender for C2O and JXTA Logs-->

 <appender name="C2OFILE"

class="org.jboss.logging.appender.RollingFileAppender">

 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>

 <param name="File" value="${jboss.server.home.dir}/log/c2o.log"/>

 <param name="Threshold" value="DEBUG"/>

 <param name="Append" value="true"/>

 <param name="MaxFileSize" value="50000KB"/>

 <param name="MaxBackupIndex" value="3"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%c] [%15.15t] %m%n"/>

 </layout>

 </appender>

3. Insert the following section in the log4j.xml file:

<category name="com.optinuity.c2o.servicegroup.javaobject">

 <priority value="DEBUG" />

</category>

4. Open the Java connector’s messages captured in the c2o.log file located at the
following path:

CA Process Automation_Installation_path\Domain\server\c2o\log\c2o.log

Control a Process Branch

356 Content Designer Guide

Reset a Process

You can reset a suspended instance of a process to restart execution. All variables,
parameters, and operators in a suspended instance of a process are reset to their initial
states, with one exception. The application does not reset user-defined parameters.

If you resume execution of a process after resetting it, processing restarts at the Start
operator. You can reset a process during testing or debugging to rerun chains of
operators. In production, you can reset a process following an incident. You can modify
a reset process before restarting it to avoid redoing some tasks or to perform some
additional tasks. For example, you can:

■ Set or remove breakpoints

■ Use a different process

■ Set operator parameter settings

Abort a Process

To stop an instance of a process, click the Abort Process button on the toolbar of the
Process Designer.

Note: You cannot modify a process instance after executing the abort command.

Control a Process Branch

The following commands allow you to control individual branches of a process without
affecting the entire process.

■ enable and disable operators

■ abort execution of operators

■ reset individual operators and resume execution of operators in a process.

These commands appear in the Process Designer toolbar for both process designs and
instances.

Control a Process Branch

Chapter 10: Running, Testing, and Debugging Processes 357

Disable Operators or Deactivate Branches

You can use the Disable Operators command to disable an operator and temporarily
disable part of a process without otherwise modifying the process. Disabling an
operator stops execution of the operator and all subsequent operators in a branch of a
process. An operator is inaccessible to a process when every path to it from any Start
operator passes through a deactivated operator. The Disable Operators command is
available when editing either the definition object for a process or an instance of a
process.

To disable an operator in a process

1. Open either a process object or an instance of a process.

Note: For a running instance of a process, suspend execution before proceeding to
the next step of the procedure.

2. Select one or more operators that you want to disable.

3. Click Disable Operators on the Process Designer toolbar to disable an operator.

The disabled symbol appears next to the operator.

Note: To enable disabled operators, select one or more disabled operators, and click
Enable Operators on the toolbar.

You can also deactivate an entire branch by right-clicking a link and selecting Disable
Link from the menu.

More information:

Simulate Processing of Operators (see page 359)

Abort an Operator

The Abort Operators command aborts processing of one or more selected operators
that are in a Running state. An aborted operator enters a Failed state. Processing does
not continue on an aborted branch of a process, but you can still continue on other
branches. If you defined an exception handler, it is executed to handle an abort
exception.

Follow these steps:

1. Open a running instance of a process.

2. Select the running operator that you want to abort.

3. Click the Abort Operators button on the Process Designer toolbar:

Processing for the operator is aborted.

Control a Process Branch

358 Content Designer Guide

Reset Operators in a Process

The Reset Operators command resets selected operators in a suspended process to
their initial states as if they had not been executed. This command is typically used to
allow operators in an instance of a process to run again without resetting the entire
process. You can modify the operators with different parameter settings, or modify the
process in other ways.

Follow these steps:

1. Open a suspended instance of a process.

If necessary, suspend execution of a running instance.

2. Select one or more operators that you want to reset.

3. Click the Reset Operators button on the Process Designer toolbar.

The operators are reset.

Any Loop operators are reset as follows:

■ Resets all operators inside the Loop operator.

■ Resets the Loop operator to its first iteration.

After the reset, the Loop operator will restart from the first iteration.

Resume Execution of a Suspended Process

The Resume Process command resumes processing of operators you have reset in a
suspended instance of a process.

To resume execution of a suspended process

1. Open a suspended instance of a process.

2. Click the Resume Process button on the Process Designer toolbar.

The process is resumed.

Simulate Processing of Operators

Chapter 10: Running, Testing, and Debugging Processes 359

Simulate Processing of Operators

To bypass an operator while executing subsequent operators in a process, you can
simulate execution of the operator, rather than disable it. You can simulate processing
of selected operators or an entire process. You can use the process simulation
properties for every operator in a process. You can also override the process settings for
individual process operators.

Simulation mode is often used during development to verify the flow within a process or
to verify the synchronization of interdependent processes. In the production
environment, the local mode is often used to skip individual tasks to accommodate
transient conditions in the system, such as an unavailable agent, orchestrator, or a
suspended application. The distant simulation mode is used mostly in the development
phase to verify the configuration and parameters of operators in a process. The distant
simulation mode can also be used to run simulated tasks in production periodically, for
the sole purpose of verifying dataset field values.

Simulation mode controls the results and duration of an operator in a process. You can
use it during development to avoid executing an operator while testing operators in
subsequent branches of a process. Simulation is useful in a production environment
when an operator should not run. The operators do not run when the processes or
resources are unavailable. In either case, simulation of an operator lets you run a
process without changing entry or exit links on the operator. In other words, you are
able to avoid running the operator temporarily while preserving the structure and
dependencies in your process.

Simulate Processing of Operators

360 Content Designer Guide

Simulate Processing of a Selected Operator

You can simulate the processing of a selected operator.

Follow these steps:

1. Open any operator in the Library Browser or an open process.

2. Configure the Simulation properties for any operator.

3. If simulation is not turned on for the process, first select the Override simulation
options in the Process check box.

4. To activate simulation, specify either a Local or Distant simulation type.

– Local: The operator is not processed. CA Process Automation does not call the
associated module or verify the module parameters. The simulated operator
returns the result and processes the link specified by the End condition option.

– Distant: The Workflow module calls the associated module. The module verifies
parameters before returning the result but does not actually run the operator.
If the parameters are incorrect, the simulated operator fails regardless of the
specified outcome. If the parameters are correct, the simulated operator
returns the result and processes the link specified by the End condition option.

The simulation symbol appears next to an operator when either the local or distant
simulation is activated:

5. (Optional) Select the Evaluate preconditions and post-execution code check box to
prevent side effects generated by ignoring preconditions or post-execution code.
Select this option to evaluate the operator’s preconditions and execute its
post-execution code.

6. Set the End condition parameter. It specifies the simulated outcome of an operator.
The End condition determines which exit link is processed after the simulated
processing of the operator. Setting this parameter determines subsequent
processing of dependent branches in the process. This setting determines the value
returned by the Result variable of an operator. The Successful or Completed setting
returns a positive value, which activates a Successful exit link on an operator. The
Failed setting returns zero or a negative value, which activates a Failure or Abort
exit link. The Custom Outcome setting allows you to return an arbitrary value,
typically used to test a custom exit link on an operator.

7. (Optional) Specify a delay in seconds to simulate the duration of the task. Change
the Delay field from the default value of zero if the time typically required to
execute an operator could affect the behavior or outcome of other operators in the
process.

Simulate Processing of Operators

Chapter 10: Running, Testing, and Debugging Processes 361

More information:

Pre-Execution Code and Post-Execution Code (see page 202)

Simulate Processing of an Entire Process

You can simulate processing for all steps of a process. The Process simulation settings
apply to all operators in the process that are not configured to override the simulation
settings for the process.

To simulate processing of an entire process

1. Open the process.

2. From the File menu, click Properties or click the Properties button on the Process
Designer toolbar:

3. On the Simulation tab of the Properties pane, configure the default simulation
settings for all operators in the process:

■ Type

■ Delay

■ End Condition

■ Evaluate pre-conditions and post-execution code

Except for the option to override the process settings, these settings are the same as
described for configuring an operator.

The simulation parameters for a process are the same for an operator, except that they
are the default settings for every operator in a process. You can always change the
simulation property settings for an individual operator by selecting the Override
simulation options in the Process check box on the Simulation properties pages for an
operator.

Appendix A: Format Specifiers for Dates 363

Appendix A: Format Specifiers for Dates

CA Process Automation uses standard Java date and time format pattern strings. Within
date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are
interpreted as pattern letters representing the components of a date or time string. Text
can be quoted using single quotes (') or double quotes (") to avoid interpretation. "''"
represents a single quote. All other characters are not interpreted; they are copied into
the output string during formatting or matched against the input string during parsing.

Letter Date or Time Component Presentation Examples

G Era designator Text AD

y Year Year 2009; 09

M Month in year Month July; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day of week Text Tuesday; Tue

a AM/PM marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in AM/PM (0-11) Number 0

h Hour in AM/PM (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time zone Pacific Standard Time; PST;
GMT-08:00

Z Time zone RFC 822 time zone -0800

Simulate Processing of Operators

364 Content Designer Guide

Patterns are usually repeated; their number determines the exact presentation as
shown in the following table:

Presentation Formatting

Text If the number of pattern letters is 4 or more, the full form is used;
otherwise a short or abbreviated form is accepted, independent of
the number of pattern letters.

Number The number of pattern letters is the minimum number of digits, and
shorter numbers are zero-padded to this amount. During parsing
the number of pattern letters is ignored unless it is needed to
separate two adjacent fields.

Year If the number of pattern letters is 2, the year is truncated to 2
digits; otherwise it is interpreted as a number.

During parsing, if the number of pattern letters is more than 2, the
year is interpreted literally, regardless of the number of digits. So
using the pattern "MM/dd/yyyy", "01/11/12" parses to Jan 11, 12
A.D.

Month If the number of pattern letters is 3 or more, the month is
interpreted as text; otherwise, it is interpreted as a number.

General Time
Zone

Time zones are interpreted as text if they have names. For time
zones representing a GMT offset value, the following syntax is used:

■ GMTOffsetTimeZone:

■ GMT Sign Hours : Minutes

■ Sign is either + or -

■ Hours must be between 0 and 23, and one of the following
formats:

 Digit

 Digit Digit

■ Minutes must be between 00 and 59 and in the following
format:

 Digit Digit

■ Digit is one of the following:

 0 1 2 3 4 5 6 7 8 9

The format is locale independent and must be taken from the Basic
Latin block of the Unicode standard.

Simulate Processing of Operators

Appendix A: Format Specifiers for Dates 365

Presentation Formatting

RFC 822 time
zone

A four digit time zone format is used:

■ RFC822TimeZone:

 Sing TwoDigitHours Minutes

■ TwoDigitHours must be between 00 and 23. Other definitions
are as for general time zones.

SimpleDateFormat also supports localized date and time pattern strings. In these
strings, the pattern letters described above may be replaced with other, locale
dependent, and pattern letters. SimpleDateFormat does not deal with the localization of
text other than the pattern letters; that is up to the client of the class.

The following examples show how date and time patterns are interpreted in the US
English locale. The given date and time are 2009-07-04 12:08:56 in the US Pacific time
zone.

Date and Time Pattern Result

"yyyy.MM.dd G 'at' HH:mm:ss z" 2009.07.04 AD at 12:08:56 PDT

"EEE, MMM d, ''yy" Wed, Jul 4, '09

"h:mm a" 12:08 PM

"hh 'o''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time

"K:mm a, z" 0:08 PM, PDT

"yyyyy.MMMMM.dd GGG hh:mm aaa" 02009.July.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss Z" Wed, 4 Jul 2009 12:08:56 -0700

"yyMMddHHmmssZ" 010704120856-0700

"yyyy-MM-dd'T'HH:mm:ss.SSSZ" 2009-07-04T12:08:56.235-0700

Appendix B: Using Masks to Specify Patterns in Strings 367

Appendix B: Using Masks to Specify
Patterns in Strings

Masks are used for Operator parameters that monitor messages and file contents.
Masks used by CA Process Automation are JavaScript regular expressions that describe
sets of strings without actually listing their contents.

Masks can be used to determine whether a particular pattern is matched and to extract
parts of the matched string. Extracted substrings are placed in variables and can in turn
be used to specify values for parameters of other Operators. Examples of Operators that
use masks are Directory Entries Operator and extraction Macros. Masks are also used
for text input fields to specify permissible strings such as date formats.

This section contains the following topics:

Mask Syntax (see page 367)
Sample Mask (see page 370)

Mask Syntax

A regular expression consists of a sequence of characters that must correspond to ones
that appear in matched strings. Characters shown in the following table serve as regular
expression operators

Regular Expression
Operator

Description Example

. The dot operator represents any
character except an end of line character.

The expression a.b matches any string of
three characters starting with “a” and
ending with “b”.

Mask Syntax

368 Content Designer Guide

Regular Expression
Operator

Description Example

\ The escape enables the use of the
operator as literal characters instead of
being recognized as operators.

If a mask is specified as a literal string in a
CA Process Automation expression, the
escape operator must itself be escaped to
avoid having the escape character
stripped by the CA Process Automation
expression interpreter before the mask is
passed to the regular expression parser.

The escaped character \\ matches the
backslash character \.

The escaped operator \| matches the
vertical bar.

For a literal string in a CA Process
Automation expression, "\\?" matches the
question mark.

\n End of line escape character sequence.

If a mask is specified as a literal string in a
CA Process Automation expression, the
end of line escape character sequence
must itself be escaped to avoid having
the escape character stripped off by the
CA Process Automation expression
interpreter before the mask is passed to
the regular expression parser.

The expression

first line\nsecond line

matches strings where “first line” appears
at the end of a line and “second line”
appears at the start of the next line.

If the same expression is specified by a
literal string in a CA Process Automation
expression, the operator is escaped as
follows:

"first line\\nsecond line"

| Alternative. This operator creates an
alternative between characters or
groups. It applies to the character or
groups immediately adjacent to it on its
left or right.

(a|b) matches the character “a” or the
character “b”.

(abcd)|(efgh) matches the string “abcd” or
the string “efgh”.

(ab|Bc) matches the string “abc” or the
string “aBc”.

() Group. This operator groups characters in
a sub-expression that applies to
alternative and repetition operators.

(abcd)|(efgh) matches the string “abcd” or
the string “efgh”.

(abcde)* matches zero, one or several
successive occurrences of the string
“abcde”, whereas abcde* matches strings
starting with “abcd” followed by an zero or
more “e” characters.

Mask Syntax

Appendix B: Using Masks to Specify Patterns in Strings 369

Regular Expression
Operator

Description Example

[] Used to define a class of characters by
inclusion. It is composed of a list of
individual characters and intervals
(ranges).

This construct matches a single character.
[0-9] matches one digit.

[aeiou] matches one vowel.

[a-cx-z9] matches a letter among the first
three and the last three characters of the
alphabet or the digit 9.

[0-9]+ matches an integer.

[^] Used to define a class of characters by
exclusion.

This construct matches a single character.
[^0-9] matches any character except a digit.

[^aeiou] matches any character except a
vowel.

* Repetition. Defines zero or more
occurrences of the character or group
that appears next to the operator. The
series can be empty. a* matches zero or
more “a” characters.

(123)* matches zero or more repetitions of
the string “123”.

123* matches the digits 12 followed by zero
or more “3” characters.

+ Repetition. Defines one or more
occurrences of the character or group
that appears next to the operator. The
series cannot be empty.

a+ matches one or more “a” characters.

(ab)+ matches a series one or more
repetitions of the string “ab”.

[a-z , |.] matches a series of words in small
letters, separated by blanks, commas, or
periods.

? Used to indicate that the character or
group preceding the operator is optional.
ab?c matches the strings “abc” and “ac”.

a(X|Y)?b matches strings “ab”, “aXb”, and
“aYb”.

{n} Used to define a precise number of
repetitions of the character or group
preceding the operator.

[0-9]{,2} matches a number made of exactly
two digits.

(ab){2} matches the string “abab”.

abc{2} matches the string “abcc”.

(a{2})* matches the strings made of an even
number of “a” characters.

{n,m} Used to specify that the number of
occurrences of the character or group
preceding the operator is between n and
m.

[0-9]{2,3} matches a number made of two
or three digits.

(ab){1,2} matches the string “ab” or “abab”.

Sample Mask

370 Content Designer Guide

Regular Expression
Operator

Description Example

{n,} Used to specify that the number of
occurrences of the character or group
preceding the operator is n or more.

0-9]{2,} matches a number made of at least
two digits.

{,n} Used to specify that the number of
occurrences of the character or group
preceding the operator is n or fewer.

[0-9]{,2} matches numbers equal to or less
than 99, including the empty string.

Sample Mask

The following pattern allows precise filtering of the output of the DIR command in the
Windows command shell:

([0-9]{2}/){2}[0-9]{2} *[0-9]{2}:[0-9]{2}(a|p) *[0-9,]+ [_~0-9a-zA-Z]*(\.[_0-9a-zA-Z]*)?

The following lines match this pattern:

10/26/05 07:03p 134,217,723 pagefile.sys

10/26/05 07:03p 1,024 testfile

The preceding lines are made up of the following elements:

■ ([0-9]{2}/) represents character strings composed of two digits and a slash mark (/),
as in “10/”.

■ ([0-9]{2}/){2}[0-9]{2} builds on the previous element and specifies that the two-digit
sequence can be repeated 3 times, each sequence being separated from the next
by a slash mark, as in “10/26/05”.

■ *[0-9]{2}:[0-9]{2}(a|p) matches any number of spaces followed by the time in the
format hh:mm followed by “a” for AM or “p” for PM.

■ *[0-9,]+ matches any number of spaces followed by any number of digits and
commas for the file size.

■ [_~0-9a-zA-Z]*(\.[_~0-9a-zA-Z]*)? represents a sequence of alphanumerical
characters, underscores (_) and tildes (~), optionally followed by a period and
another sequence. Because the period (.) is the dot operator, it is necessary to
escape it using the escape character (\) when we intend to match it as a character.

The pattern in a mask may differ depending on the exact characters to be matched. For
example, [\._~0-9a-zA-Z]* instead of [_~0-9a-zA-Z]*(\.[_~0-9a-zA-Z]*)? could also match
the file names in our example outputs, but without imposing any restraints on the
number of periods (.) in the file name.

Appendix C: How Targets of an Operator are Processed 371

Appendix C: How Targets of an Operator are
Processed

This appendix describes how CA Process Automation processes each of the following
entries as an Operator target:

■ IP address or FQDN.

You could know the IP address or FQDN of a host that you want to target without
knowing its Touchpoint or Proxy Touchpoint. Because of the robust processing logic
for IP addresses and FQDNs, you can specify any target with its IP address or FQDN.
In this case, CA Process Automation searches active Orchestrators and Agents in the
Environment for an enabled Touchpoint, Proxy Touchpoint, or Host Group that
supports processing on this host. If found, CA Process Automation executes the
Operator on that Touchpoint, Proxy Touchpoint, or Host Group. Processing a target
specified with its IP address or FQDN is more costly than processing that same
target expressed with a Touchpoint or Proxy Touchpoint. Processing a target
specified as an IP address or FQDN requires time consuming queries of the DNS. The
advantage of this option outweighs the cost in certain circumstances.

■ AgentID identifier of the target Orchestrator or Agent.

You could need to target a specific host with an installed Agent, where the
Touchpoint for that Agent is not an acceptable target because it is mapped to
multiple Agents. As a target, AgentID is an alternative to Touchpoint. For example, if
you need consecutive Operators to target the same host, specify the AgentID as the
target for both Operators.

This section contains the following topics:

How Targets for an Operator Can Be Specified (see page 372)
Processing a Target Specified as an IP Address or FQDN (see page 373)
Processing a Target Specified as the ID of an Agent or Orchestrator (see page 375)
Use Case: Track Recovered Processes through Logs (see page 377)
Operators Auto Recovery Example (see page 377)

How Targets for an Operator Can Be Specified

372 Content Designer Guide

How Targets for an Operator Can Be Specified

The target of an Operator is the host on which the Operator executes. A host that can
be a target of an Operator must be configured with a Touchpoint, a Proxy Touchpoint,
or a Host Group. When determining the execution settings for an Operator, content
designers typically specify the target host based on how that target is configured. The
exception to specifying a Touchpoint is when the Process requires that the Operator
executes on the same host as the previous Operator or the same host on every
execution.

Specify the Target as When

Touchpoint The target host has an Orchestrator or Agent installed.

Touchpoint Group The Operator is to execute on all of the hosts associated
with Touchpoints in the specified Touchpoint Group.

<AgentID> Exception to Touchpoint:

The Operator must execute on a specific host each time it
runs. Specify the same AgentID for consecutive Operators
when the Touchpoint is mapped to multiple hosts, but the
same host must be used as the target for both Operators.

Proxy Touchpoint The target host is specified as the remote host in a Proxy
Touchpoint configuration. Typically, this host does not
have an installed Agent or an Orchestrator.

IP address or FQDN

Note: The host name can
be used, but FQDN is
preferred.

The target host has an IP address or FQDN that can be
matched to a pattern in a configured Host Group.
Typically, this host does not have an installed Agent or an
Orchestrator.

Important! If you specify the target with a Touchpoint that has a name that is also a
hostname of a computer in the Environment, unexpected results can occur. Unexpected
results occur if the Agent associated with that Touchpoint is inactive when you run the
Operator. In this case, CA Process Automation does run the Operator on the
Touchpoint. Instead, CA Process Automation attempts to resolve the target (intended to
be the Touchpoint) to the name of a host in the Environment. If found, CA Process
Automation searches for another Touchpoint, Orchestrator, Proxy Touchpoint, or Host
Group that runs its Operators on this host. CA Process Automation runs the Operator on
the first occurrence found.

Processing a Target Specified as an IP Address or FQDN

Appendix C: How Targets of an Operator are Processed 373

Processing a Target Specified as an IP Address or FQDN

When you specify the target host of an Operator with an IP address or an FQDN, CA
Process Automation queries the Domain Name Server (DNS) multiple times. If you
specify an FQDN as the target, the first search returns the IP addresses defined on the
host with that FQDN. If you specify an IP address, the first search returns the FQDN for
that host and any additional IP addresses associated with that FQDN. Subsequent
searches test against all of the host specifiers retrieved in the initial search.

CA Process Automation looks for all of the ways that the target host is configured in the
current CA Process Automation Environment. Because Host Groups define remote hosts
with subnet and host name patterns, Host Groups can include hosts with Orchestrators
or Agents that are mapped to Touchpoints. Host Groups can also include individual
hosts that are mapped to a Proxy Touchpoint. This means that a host identified with its
IP address or FQDN could be processed with a Touchpoint name or Proxy Touchpoint
name, if it exists.

Some searches find any active Orchestrators or Agents defined on that host that have
enabled Touchpoints. Another search finds any enabled Proxy Touchpoint on an active
Agent that is mapped to this host. This same search finds any enabled Host Group on an
active Agent with host name patterns or IP address subnets that match the FQDN or an
IP address of this host. When search criteria are met, these queries delay the start of
execution of the Operator. CA Process Automation executes the Operator on the first
found enabled Touchpoint, Proxy Touchpoint, or Host Group that is running on an active
Orchestrator or Agent on the target host. The Touchpoint, Proxy Touchpoint, or Host
Group must belong to the current Environment. When none of the search criteria are
met, the Operator fails and an error message is generated.

The following processing resolves whether to run the Operator on a Touchpoint, Proxy
Touchpoint, or Host Group, given the target IP address or FQDN:

1. Searches the DNS to find all the identifiers for the specified target. If the target is
specified as an FQDN, searches for all the IP addresses for that FQDN. If the target is
specified as an IP address, searches for the FQDN associated with the target IP
address and any additional IP addresses for that FQDN.

■ If connection to the DNS fails, writes an error to the log file and exits.

■ If the query returns the FQDN and additional IP addresses, uses not only the
specified IP address but the FQDN and the additional IP addresses in all
subsequent searches.

■ If the query returns one or more IP addresses, uses not only the specified FQDN
but also the associated IP addresses in all subsequent searches.

Processing a Target Specified as an IP Address or FQDN

374 Content Designer Guide

2. Searches for an active Orchestrator with an enabled Touchpoint in the current
Environment that is installed on a host with an identifier retrieved in Step 1.

■ If found, uses that Orchestrator Touchpoint to execute the Operator.

■ If not found, continues processing.

Note: Clustered Orchestrators are not detected because hosts with clustered
Orchestrators do not appear in the CA Process Automation Domain.xml file.

3. Searches for an active Agent with an enabled Touchpoint in the current
Environment that is installed on a host with an identifier retrieved in Step 1.

■ If a host with an identifier retrieved in Step 1 exists that has an active Agent
with one enabled Touchpoint, uses that Touchpoint to execute the Operator.

■ If a host with an identifier retrieved in Step 1 exists that has an active Agent
with more than one enabled Touchpoints, uses one of the enabled Touchpoints
to execute the Operator.

■ If not found, continues processing.

4. Searches for an active Agent with an enabled Proxy Touchpoint or Host Group in
the current Environment that is mapped to the target host as a remote host. For
Host Groups, the queries use pattern matching to find whether the referenced
subnet or the referenced host name pattern includes any of the host identifiers
retrieved in Step 1. For Proxy Touchpoints, searches for an exact match to any of
the host identifiers retrieved in Step 1.

■ If the only match is a Proxy Touchpoint, uses that Proxy Touchpoint to execute
the Operator.

■ If the only match is a Host Group, uses that Host Group to execute the
Operator.

■ If multiple matches are found, uses the first found Proxy Touchpoint or Host
Group to execute the Operator.

■ If there are no matches to the search criteria, continues processing.

Processing a Target Specified as the ID of an Agent or Orchestrator

Appendix C: How Targets of an Operator are Processed 375

5. Determines why the Operator is not executed, then fails the Operator with a
message explaining the failure.

■ If none of the identifiers retrieved in Step 1 belongs to any host in the current
Environment, fails the Operator. The error message follows:

Message could not be posted to the node.

■ If one or more identifiers retrieved in Step 1 belong to a host where all
Orchestrators and Agents are inactive, the Operator fails with the following
error message:

Message could not be posted to the node.

■ If one or more identifiers retrieved in Step 1 belong to a host with all disabled
Touchpoints or are referenced with only disabled Proxy Touchpoints or Host
Groups, proceeds as follows. First, returns a disabled Touchpoint or Host Group
in the TouchpointName field of the Operator dataset system output variables.
Then, fails the Operator with the following error message:

Node is disabled.

More information:

Target Settings (see page 199)

Processing a Target Specified as the ID of an Agent or
Orchestrator

When you specify a touchpoint as the target for an operator, and that touchpoint is
enabled and associated with an active orchestrator or agent, CA Process Automation
executes the operator on the specified touchpoint. If a targeted touchpoint is associated
with only one agent or with an orchestrator, each execution targets the same host. If a
targeted touchpoint is associated with multiple agents with the same priority, each
execution could target different agents on different hosts.

Suppose you want an operator to target the same host every time it runs. In such a case,
you can specify the AgentID data as a target. Unique AgentID data is set during the
installation of each orchestrator and each agent. At runtime, CA Process Automation
retrieves the ID for the orchestrator or agent and saves it to the AgentID field in the
system dataset.

After a test execution of an operator, you can copy the AgentID string displayed in the
system dataset into the Target field.

Processing a Target Specified as the ID of an Agent or Orchestrator

376 Content Designer Guide

When you need two consecutive operators to run on the same agent host, specify the
same AgentID as the target for both operators. You can use AgentID as an alternative
target for any given touchpoint.

Important! Use of AgentID refers to the local host where the agent or orchestrator is
installed. When you specify AgentID, CA Process Automation does not use any proxy
touchpoint or host group running on the agent to run on remote hosts. Consider the
case where Operator_1 executes on a proxy touchpoint configured on an agent with a
specified AgentID. Do not use this AgentID as the target for Operator_2. If the AgentID is
specified, CA Process Automation does not execute on that proxy touchpoint for
Operator_2.

CA Process Automation fails the operator when encountering any of the following
conditions:

■ The target agent or orchestrator is inactive. CA Process Automation posts the
following message:

Message could not be posted to the node.

■ All touchpoints mapped to the target are disabled. CA Process Automation posts
the following message with one of the disabled touchpoints:

Node is disabled.

Use Case: Track Recovered Processes through Logs

Appendix C: How Targets of an Operator are Processed 377

Use Case: Track Recovered Processes through Logs

Consider the following scenario, which offers an alternative to opening hundreds of
Processes to identify the Processes that had been recovered through auto Operator
recovery. In this scenario, you examine the log files.

Assumptions:

■ An Agent is mapped to two Touchpoints.

■ Over 1000 Processes are running concurrently.

■ Operators Auto Recovery is configured for the Touchpoints.

Scenario:

1. The Agent suddenly becomes inactive.

2. While the Agent is inactive, 300 of the 1000 Processes attempt to run Operators on
the two Touchpoints.

3. Three hundred Processes go into BLOCKED state.

4. The Agent becomes active.

5. Operators recovery, which is initiated automatically, recovers the 300 Processes.

6. A few hours later, you notice that 1000 Processes finished executing. You open one
of them to examine its logs and learn that it was automatically recovered.

7. To find out which of the 1000 Process that finished executing, finished after being
recovered, do one of the following:

– Open each of the 1000 Processes to determine which were auto recovered.

– Examine the log file.

Note: The following topic walks you through the preferred alternative, examining
the log file.

Operators Auto Recovery Example

If Operators Auto Recovery is selected, the default setting, you do not have to initiate
the recovery. Each orchestrator within the environment detects that the agent or
orchestrator is active again and runs the recovery. Each orchestrator runs recovery on
any enabled touchpoint, host group, or orchestrator that is mapped to the agent or
orchestrator within the environment.

When an agent is mapped to many touchpoints, the orchestrators run the recovery on
all enabled touchpoints that are mapped to the agent. When an agent or orchestrator
becomes active, the domain orchestrator broadcasts the changes to the other
orchestrators. In a clustered setup, only the primary node runs the recovery.

Operators Auto Recovery Example

378 Content Designer Guide

Automatic Recovery Example

Consider the following scenario where an agent is mapped to the following touchpoints
and host groups in an environment:

■ TP_user01-w500,

■ TP_user01-w500_2

■ TP_user01-w500_3

■ TP_manyAgents

■ HG_user01-w500

Assume that all touchpoints and host groups are enabled and only the following
touchpoints and host groups are set to Operators Auto Recovery:

■ TP_user01-w500

■ TP_user01-w500_3

■ HG_user01-w500

When the agent becomes active, each orchestrator in the environment attempts to run
the automatic recovery on the three touchpoints.

Assume that there are two orchestrators in the environment:

Orchestrator1 log file contains:

■ Message to signal the agent that became active again:

2010-06-28 19:22:59,984 DEBUG

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Checking whether
to initiate Touchpoint/Orchestrator Recovery of 'System_Error' operators in
'Waiting' or 'Running' or 'Blocked' Processes (with auto recovery flag set), that ran
against Agent/Server ID: f3492322-5517-4a21-8a19-92838ccb3f65

■ Orchestrator mapped the agent to HG_user01-w500:

2011-03-28 19:22:59,984 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: HG_user01-w500 Recovery... Recovering 'System_Error'
Operators that ran against: HG_user01-w500 and belong to 'Waiting' or 'Running' or
'Blocked' Processes (with auto recovery flag set).

2011-03-28 19:22:59,984 DEBUG

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieve the processes (with enabled auto recovery
flag) that are in 'Waiting' or ‘Running’ or 'Blocked' states and contain operators in
'System Error' when ran against: HG_user01-w500

Operators Auto Recovery Example

Appendix C: How Targets of an Operator are Processed 379

■ Orchestrator signals 0 processes to be recovered for HG_user01-w500:

2011-03-28 19:23:00,000 WARN

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 0 processes to recover for
HG_user01-w500 recovery.

2011-03-28 19:23:00,000 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Found no
Processes to recover for Touchpoint/Orchestrator: HG_user01-w500 Recovery.

■ Orchestrator mapped the agent to TP_user01-w500:

2011-03-28 19:23:00,000 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: TP_user01-w500 Recovery... Recovering 'System_Error'
Operators that ran against: TP_user01-w500 and belong to 'Waiting' or 'Running' or
'Blocked' Processes (with auto recovery flag set).

2011-03-28 19:23:00,000 DEBUG

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieve the processes (with enabled auto recovery
flag) that are in 'Waiting' or ‘Running’ or 'Blocked' states and contain operators in
'System Error' when ran against: TP_user01-w500.

■ Orchestrator signals 1 process to be recovered for TP_user01-w500:

2011-03-28 19:23:00,015 WARN

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 1 processes to recover for
TP_user01-w500 recovery.

■ Orchestrator queues recovery request for the 1 process (ROID: 2889) to be
recovered for TP_user01-w500:

2011-03-28 19:23:00,015 WARN

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Queueing recovery of process with ROID - 2889 for
TP_user01-w500 recovery.

2011-03-28 19:23:00,015 DEBUG

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Special Response for process recovery. ROID is 2889
UUID is 3fe95f08-a347-4d6d-a0a3-b3639836e130

2011-03-28 19:23:00,015 DEBUG

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Special Response for process recovery was posted.
ROID is 2889 UUID is 3fe95f08-a347-4d6d-a0a3-b3639836e130

Operators Auto Recovery Example

380 Content Designer Guide

2011-03-28 19:23:00,015 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Queued requests
for Touchpoint: TP_user01-w500 Recovery... Recovering Processes with the
following ROIDs: 2889

■ Orchestrator signals that Touchpoint TP_user01-w500_2 is mapped to the Agent
but it is not set to automatic recovery:

2011-03-28 19:23:00,015 DEBUG

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Touchpoint:
TP_user01-w500_2 mapped to Agent: f3492322-5517-4a21-8a19-92838ccb3f65 is
not set to Automatic Recovery of 'System_Error' operators in 'Waiting' or ‘Running’
or 'Blocked' Processes.

■ Orchestrator mapped the agent to TP_user01-w500_3:

2011-03-28 19:23:00,015 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: TP_user01-w500_3 Recovery. Recovering 'System_Error'
Operators that ran against: TP_user01-w500_3 and belong to 'Waiting' or 'Running'
or 'Blocked' Processes (with auto recovery flag set).

2011-03-28 19:23:00,015 DEBUG

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieve the processes (with enabled auto recovery
flag) that are in 'Waiting' or ‘Running’ or 'Blocked' states and contain operators in
'System Error' when ran against:: TP_user01-w500_3

■ Orchestrator signals 0 processes to be recovered for TP_user01-w500_3:

2011-03-28 19:23:00,015 WARN

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 0 processes to recover for
TP_user01-w500_3 recovery.

2011-03-28 19:23:00,031 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Found no
Processes to recover for Touchpoint/Orchestrator: TP_user01-w500_3 Recovery.

■ Orchestrator signals that Touchpoint TP_manyAgents is mapped to the Agent but it
is not set to automatic recovery:

2011-03-28 19:23:00,031 DEBUG

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Touchpoint:
TP_manyAgents mapped to Agent: f3492322-5517-4a21-8a19-92838ccb3f65 is not
set to Automatic Recovery of 'System_Error' operators in 'Waiting' or ‘Running’ or
'Blocked' Processes

Operators Auto Recovery Example

Appendix C: How Targets of an Operator are Processed 381

■ Orchestrator picks up the recovery request from the queue for process 2889:

2011-03-28 19:23:30,015 INFO

[com.optinuity.c2o.workflowengine.FlowManagerCache] [onPool Worker-3]
Registering flow manager: 2889

2011-03-28 19:23:30,015 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [onPool Worker-3]
Handling Response: [$$TouchpointRecovery&&]. flow id is 2889

2011-03-28 19:23:30,171 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [onPool Worker-3] Start
Recovery of Process with ROID:2889, for TP_user01-w500 Recovery.

■ Orchestrator resets the operator(s) with System_Error when ran against
TP_user01-w500 within the process 2889:

2011-03-28 19:23:30,171 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [onPool Worker-3]
Resetting System_Error Operators in Process with ROID: 2889 for TP_user01-w500
Recovery.

2011-03-28 19:23:30,203 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [onPool Worker-3]
Resetting Operator with ROID: 2912 in Process with ROID: 2889 for
TP_user01-w500 Recovery.

■ Orchestrator resumes the entire process 2889 after resetting the appropriate
operators:

2011-03-28 19:23:30,343 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [onPool Worker-3]
Resuming Process with ROID: 2889 for TP_user01-w500 Recovery.

2011-03-28 19:23:30,343 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [onPool Worker-3]
Resuming WorkFlow - ROID is 2889

2011-03-28 19:23:30,703 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [onPool Worker-3] Done
resuming Process with ROID: 2889 for TP_user01-w500 Recovery.

Process 2889 completes successfully. Because the recovery process was started
automatically, the process logs state that the Engine initiated the recovery. For
manual recovery, logs include the name of the user who started the recovery.

Operators Auto Recovery Example

382 Content Designer Guide

Orchestrator2: OrchestratorD610b log file contains:

■ The following for OrchestratorD610b is similar to Orchestrator:

2011-03-28 19:23:41,444 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: HG_user01-w500 Recovery. Recovering 'System_Error'
Operators that ran against: HG_user01-w500 and belong to 'Waiting' or 'Running' or
'Blocked' Processes (with auto recovery flag set).

2011-03-28 19:23:41,444 WARN

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 0 processes to recover for
HG_user01-w500 recovery.

2011-03-28 19:23:41,444 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Found no
Processes to recover for Touchpoint/Orchestrator: HG_user01-w500 Recovery...

2011-03-28 19:23:41,444 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: TP_user01-w500 Recovery... Recovering 'System_Error'
Operators that ran against: TP_user01-w500 and belong to 'Waiting' or 'Running' or
'Blocked' Processes (with auto recovery flag set).

2011-03-28 19:23:41,444 WARN

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 0 processes to recover for
TP_user01-w500 recovery.

2011-03-28 19:23:41,444 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Found no
Processes to recover for Touchpoint/Orchestrator: TP_user01-w500 Recovery...

2011-03-28 19:23:41,444 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: TP_user01-w500_3 Recovery... Recovering 'System_Error'
Operators that ran against: TP_user01-w500_3 and belong to 'Waiting' or 'Running'
or 'Blocked' Processes (with auto recovery flag set).

■ OrchestratorD610b finds 1 process to recover for TP_user01-W500_3 (process
ROID: 541) and queues its recovery request:

2011-03-28 19:23:41,444 WARN

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 1 processes to recover for
TP_user01-w500_3 recovery.

Operators Auto Recovery Example

Appendix C: How Targets of an Operator are Processed 383

2011-03-28 19:23:41,444 WARN

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Queueing recovery of process with ROID - 541 for
TP_user01-w500_3 recovery.

2011-03-28 19:23:41,444 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Queued requests
for Touchpoint: TP_user01-w500_3 Recovery... Recovering Processes with the
following ROIDs: 541

2011-03-28 19:23:41,444 WARN

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 1 processes to recover for
TP_user01-w500_3 recovery.

2011-03-28 19:23:41,444 WARN

[com.optinuity.c2o.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Queueing recovery of process with ROID - 541 for
TP_user01-w500_3 recovery.

2011-03-28 19:23:41,444 INFO

[com.optinuity.c2o.c2oserver.ServerManager] [aListenerThread] Queued requests
for Touchpoint: TP_user01-w500_3 Recovery... Recovering Processes with the
following ROIDs: 541

■ OrchestratorD610b picks up the recovery request, resets the Operators with
System_Error, which ran against TP_user01-w500_3, within the process and finally
resumes the process:

2011-03-28 19:24:11,461 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [nPool Worker-63]
Handling Response: [$$TouchpointRecovery&&]. flow id is 541

2011-03-28 19:24:11,804 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [nPool Worker-63] Start
Recovery of Process with ROID:541, for TP_user01-w500_3 Recovery.

2011-03-28 19:24:11,820 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [nPool Worker-63]
Resetting System_Error Operators in Process with ROID: 541 for TP_user01-w500_3
Recovery.

2011-03-28 19:24:11,883 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [nPool Worker-63]
Resetting Operator with ROID: 564 in Process with ROID: 541 for
TP_user01-w500_3 Recovery.

Operators Auto Recovery Example

384 Content Designer Guide

2011-03-28 19:24:12,039 INFO

[com.optinuity.c2o.workflowengine.C2OSvcIconInstanceRefObject] [nPool
Worker-63] Inside Update ConnectorTraversed, Current/destination is
Start_System_Process_1 Source is Start_1

2011-03-28 19:24:12,117 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [nPool Worker-63]
Resuming Process with ROID: 541 for TP_user01-w500_3 Recovery.

2011-03-28 19:24:12,117 INFO

[com.optinuity.c2o.workflowengine.WorkflowManager] [nPool Worker-63]
Resuming WorkFlow - ROID is 541

2011-03-28 19:24:12,133 INFO

[com.optinuity.c2o.workflowengine.C2OSvcIconInstanceRefObject] [nPool
Worker-63] Inside Update ConnectorTraversed, Current/destination is
Start_System_Process_1 Source is Start_1

2011-03-28 19:24:12,648 INFO
[com.optinuity.c2o.workflowengine.WorkflowManager] [nPool Worker-63] Done
resuming Process with ROID: 541 for TP_user01-w500_3 Recovery.

Index 385

Index

A

agenda
Operator support in, • 318
see schedules • 316

AgentID
how processed • 375
when to use • 372

asterisk usage
as Operator parameter notation • 193

attached mode
calling Processes recursively in, • 119

automation object
checking in • 75
checking out • 74
copying • 77
moving • 340
opening • 73
ownership • 63
packaging • 81
relative path support • 340
versioning • 68

C

calendar
building, rule • 304
creating, object • 302

custom icon
implementing for a custom operator • 170
implementing for an operator in a process • 169

custom operator
invisible parameter • 151
pre and post execution code • 154

D

dataset
accessing by keywords • 218
creating • 175
reading operating system value into, • 184
returning variables to parent Process • 119
types • 175
using, in expressions • 223
variable name assistance • 197

date and time format
specifying • 363

Default Process Watch
starting • 351

detached mode
starting Process instance in, • 119

E

exception handling
adding rule • 346
types and priorities • 344

expressions
data types • 210
expressions, using Datasets in, • 23
in JavaScript statements • 232
masks • 367
reserved words • 206
system paths in, • 240

F

File trigger
example • 328
monitoring dataset for • 330
XML content for, • 332

I

icon
creating • 163

indexed field
creating • 181

interaction request forms
defined • 245

L

link
breaking • 105

logging on
<Global> in CA EEM • 52

M

Mail trigger
example • 328
monitoring dataset for • 330
XML content for • 332

masks
example • 370

386 Content Designer Guide

syntax • 367
multi-tenancy

creating policy for, • 132

O

Operator recovery
automated example • 377

operators
adding to a Process • 96
assigning values to, • 193
configuring • 138
controlling execution • 356
defining parameters for, • 187
JavaScript • 214
linking • 101
logical and derivation • 97
looping • 105
simulating processing • 359
using in Agendas • 318
using in Calendars • 306

P

password
changing in CA EEM • 52

process
aborting • 356
adding comments • 126
breakpoints • 353
debugging • 352
deployment • 29
execution rules • 341
icons representing states • 352
initializing • 133
inline • 120
resetting • 356
starting a child • 117
starting directly • 349
starting while editing • 351
suspending • 352
terminating • 100

Process Control module
Process version run by • 126

R

regular expressions
masks • 367
strings in Dataset • 180

requirements

analyzing • 16
resources

checking for availability • 299
creating • 291
using quotas • 289

Runtime Security
defined • 342
setting process properties • 344

S

scripts
comments • 241
including common resources in • 241

security, application
setting for Automation Objects • 63

SNMP trigger
changing the listening port • 333
input • 332
monitoring Dataset for • 334

SOAP
use in starting Processes from external

applications • 328
start request form

creating • 246
statements, JavaScript

conditional • 235
iterative • 237
types • 232

swim lanes
adding • 124
processing • 122

T

target of Operator
critieria for selecting • 372
how Agent ID or Operator ID is processed • 375
how FQDN is processed • 373
how IP address is processed • 373
settings • 199

timeout
setting for a Resource Operator • 297

trigger
alternative • 328

V

variable
assignment • 235
declaration • 234

Index 387

	CA Process Automation Content Designer Guide
	Contents
	1: Introduction to Process Automation
	Process Development Phases
	Phase I: Requirements Analysis
	Identify Processes to Automate
	Identify Where Processes Run
	Identify Steps in Processes
	Identify Interdependencies
	Identify External Dependencies
	Identify Runtime Constraints

	Phase II: Design and Implementation
	Identify Process Objects and Operators
	Configure Operators and Steps
	Named Datasets
	Resources
	Assign Exit Conditions to Outcomes

	Optimize for Modularity and Component Reuse
	Custom Operators

	Define Process Initiation and Monitoring
	Process Initiation
	Process Control
	Schedule Processes
	On Demand Processes
	Triggered Processes

	Monitor Processes
	Define Permissions

	Define Alerts

	Phase III: Testing and Deployment
	Assemble the Solution
	Test Components
	Export a Package
	Specify Import Instructions

	2: Getting Started
	Log In to CA Process Automation
	Configure User Settings
	The CA Process Automation User Interface
	Main Application Pages
	Home
	Library Browser
	Designer
	Operations
	Configuration
	Reports

	Common User Interface Controls

	Change Your Own Password in CA EEM
	Web Browsers

	3: The Library Browser
	Automation Object Types
	Create a Folder
	Create an Object
	Working with Objects
	Edit an Object
	View General Properties for a Library Object
	Specify Tags or Keywords for Objects
	Change Ownership for Automation Objects
	Specify an Archival Policy
	Specify ROI Properties
	Specify Runtime Security Properties
	Versions
	Understanding Versions
	View Version Information
	Set the Current Version of an Object
	Open the Current or Working Version of an Object
	Open a Selected Version of an Object
	Check Out an Object
	Save Changes to a Checked-Out Object
	Check in Objects
	Create a Baseline Version of an Object
	Discard Changes to the Working Version of an Object

	Copy an Object
	Copy Objects Using Export and Import
	Copy Objects in Packages Using Export and Import
	Package Objects

	Delete or Restore an Object or Folder
	Search the Library Browser
	Customize the Library Browser
	Auto Recovery

	4: Designing Processes
	The Process Designer
	Operators and Links: The Building Blocks
	Create a Process Object
	Design a Process
	Process Operators
	The Start Operator
	Add Operators to a Process
	Logical Operators
	The And Operator
	The Or Operator
	The Derivation Operator

	The Stop Operator: Success or Failure

	Process Operator Ports and Links
	Add Operator Ports and Links
	Custom Exit Ports and Expressions
	Break a Link for Readability

	Process Loops and Iterations
	System Variables for Looping
	Loop an Operator in a Process
	Interrupt a Looping Operation
	Loop Through Indexed Elements of a Dataset Field
	Index the Loop Count for Other Purposes
	Loop Errors and Exceptions

	Loop a Series of Operators
	While and Do While Loops
	The Logical Sequence of a Loop Operator

	Loop a Process
	Daemons and Other Looping Processes

	Process Control
	Child Processes
	Configure a Child Process
	Return Dataset Variables to the Parent Process
	Start Processes Recursively

	Inline Process
	Configure an Inline Process
	View an Inline Child Process

	Process Lanes
	Create Horizontal or Vertical Lanes
	Manage Swim Lanes
	Lane Handling Rules

	Process Versions
	Document a Process
	Add Comments to a Process
	Set the Name for an Operator in a Process
	Change and Display Operator Information in a Process

	Embedded Content
	Embedded Content Links

	Navigate to a Specific Part of a Process
	Multi-Tenancy and CA Process Automation
	Make a Process Aware of Multiple Tenants
	Inherit Security in Sub-Processes
	Add Variables at Time of Initialization
	Multi-Tenant Processes Using Process Watch

	5: Operators and Icons
	Operators
	Configure Operator Properties
	Java and External JARs
	Configure the Java Module
	Configure the Run Java Code Operator
	Using a JavaObject

	Custom Operators
	Create a Custom Operator Object
	Custom Operator Properties
	Custom Operator: Form Tab
	Add Property Pages
	Add Custom Parameters
	Invisible Parameter Option
	Expand Macro in the Value Property
	Test the Custom Operator Interface

	Custom Operator: Preview Tab
	Custom Operator: Settings Tab
	Custom Operator Specific Pre and Post Execution Code
	Define Custom Operator-specific Pre and Post Execution Code
	Order of Execution for Custom Operator-specific Pre-Execution Code

	Custom Operator: Dataset Tab
	Custom Operator: Custom Panels Tab
	Macro Expansion Syntax

	Custom Operator: Properties Tab
	Custom Operator: Versions Tab
	Custom Operator: Audit Trail Tab

	Set Custom Operator Availability to All Users
	Using Custom Operators

	Your Favorite Operators
	Add or Remove Your Favorite Operators

	Connectors

	Operator Icons
	Operator Status Icons
	Creating, Editing, and Applying Custom Icons
	Create a Custom Icon
	Edit a Custom Icon
	Apply a Custom Icon to Any Operator in a Process
	Apply a Custom Icon to a Custom Operator
	Custom Icon Examples

	6: Datasets and Parameters
	Datasets
	Create a Named Dataset Object
	Dataset Types

	Define Dataset Pages and Variables
	Variable Data Types
	Edit Validation Settings for a Dataset Field
	Arrays with Indexed Values
	Define a ValueMap as an Array

	Modify a Dataset
	View a Dataset Expression
	Read Operating System Values into Dataset Variables
	Sample Scripts for Reading Operating System Values into Dataset Variables
	UNIX Script Example: UNIXGetInfo Script Operator
	Script (UNIX)

	VBScript Example: WinGetInfo Script Information
	Script (VBScript)

	PerlScript Example: WinGetInfoPerl Script Operator
	Script (PerlScript)

	Process Parameters
	Operator Properties
	Literal Strings
	The Escape Character in Literal Strings
	Specify Paths in Literal Strings

	Dataset Variables in Parameters
	Relative Paths for Datasets
	Dataset Variable Name Assistance
	Use Dataset Variable Name Assistance

	Password Parameters
	Execution Settings
	Target Settings
	Operator Dataset Variables

	Processing Properties Settings
	Pre-Execution Code and Post-Execution Code
	Set Operator Status

	Loop Settings
	Timeout Settings

	Calculated Parameters
	Expressions
	Reserved Words in Expressions

	CA Process Automation Reserved Words
	CA Process Automation System Functions
	Reserved JavaScript keywords
	Data Types
	Boolean Data Type
	Date Data Type
	Double Data Type
	Integer Data Type
	JavaObject Data Type
	Long Data Type
	Password Data Type
	Object Reference Data Type
	String Data Type
	ValueMap Data Type

	JavaScript Operators
	Array and Object Access Operators
	Assignment Operators
	Arithmetic Operators
	String Concatenation Operator
	Logical Operators
	Equality and Comparison Operators
	Operator Precedence

	Keywords for Accessing Datasets
	Access Dataset Fields in Expressions
	Syntax for Specifying the Value of a Field
	Specify the Value of an Element in an Indexed Field
	Access the Length of an Indexed Field
	Access Methods on an Indexed Field
	Specify Named Dataset Variables
	Specify Process Dataset Variables
	Specify Operator Dataset Variables
	Specify System Dataset Variables

	Statements
	Variable Declaration
	Variable Assignment
	Reuse Variables
	Conditional Statements
	The if Statement
	The else if Statement
	The switch Statement

	Iterative Statements
	The while loop Statement
	The do/while Loop Statement
	The for Loop Statement
	The for/in Loop Statement
	The break Statement
	The continue Statement

	Specify System Paths in CA Process Automation Expressions
	Include Common Resources in CA Process Automation Scripts
	Comments in CA Process Automation Calculations

	7: Forms
	Start Request Forms
	Monitor Start Request Form Instances and Process Instances

	Interaction Request Forms
	Create and Edit a Start Request Form Object
	The Form Designer
	Form Elements
	Form Element Properties
	View Form Properties in a Separate Window

	Form Element Events
	Form Element Functions
	User Interface
	Create a Simple Form with Basic Functions

	Initialize Form Variables

	8: Resources
	How Resources Work
	Create a Resource Object
	Edit a Resource Object
	Monitor and Edit Resources
	Add a Manage Resources Operator to a Process
	Define Resource Actions
	Check for and Respond to Unavailable Resources
	Specify a Time-Out Interval
	Specify Resource Availability and Action Settings
	Check for Resource Availability without Executing Actions

	9: Calendars, Schedules, Tasks, and Triggers
	Calendars
	Create a Calendar Object
	The Basic Calendar Designer
	The Advanced Calendar Designer
	Calendar Rule Logical Operators
	Calendar Rule Date Operators
	Add and Remove Calendar Dates Manually

	The Calendar Designer: Preview Tab
	Exclude Calendars

	Schedules
	Create a Schedule Object
	Schedule Process and Operator Tasks
	Preview All Occurrences of a Scheduled Task
	Using Schedules
	Monitor Active Schedules
	Monitor All Occurrences of All Scheduled Tasks

	Task Management
	Assign a Task to a User
	The Task List

	Administer Triggers
	Controlling Processes from an External Application with SOAP Calls
	How File and Mail Triggers Work
	Monitor the FileTrigger Dataset of a Process Started by a File Trigger
	Monitor the SMTP Dataset of a Process Started by a Mail Trigger
	XML Content Format for File and Mail Triggers

	SNMP Trap Input Considerations
	Change the SNMP Traps Listener Port
	Monitor the SNMP Dataset of a Process Started by an SNMP Trap Trigger

	10: Running, Testing, and Debugging Processes
	Process Watch Objects
	Filter Objects Displayed by a Shortcut
	Process Watch Objects
	Create a New Process Watch Object
	Edit Objects from within a Process Watch
	Extended Relative Path Support

	Execution Rules
	Runtime Security
	Properties Affecting Security of Running Processes
	Guidelines for Setting Runtime Security for a Process

	Exception Handling
	Create Exception Handlers

	Run Processes Interactively
	Start a Process from the Library
	Start a Process as Suspended from the Library
	Start a Process While Editing
	Open an Instance of a Process

	Process States
	Debug a Process
	Suspend a Process
	Change whether Processes are Unloaded on Completion
	Set and Remove Breakpoints in a Process
	Debug a Java Process
	Reset a Process
	Abort a Process

	Control a Process Branch
	Disable Operators or Deactivate Branches
	Abort an Operator
	Reset Operators in a Process
	Resume Execution of a Suspended Process

	Simulate Processing of Operators
	Simulate Processing of a Selected Operator
	Simulate Processing of an Entire Process

	A: Format Specifiers for Dates
	B: Using Masks to Specify Patterns in Strings
	Mask Syntax
	Sample Mask

	C: How Targets of an Operator are Processed
	How Targets for an Operator Can Be Specified
	Processing a Target Specified as an IP Address or FQDN
	Processing a Target Specified as the ID of an Agent or Orchestrator
	Use Case: Track Recovered Processes through Logs
	Operators Auto Recovery Example
	Orchestrator1 log file contains:
	Orchestrator2: OrchestratorD610b log file contains:

	Index

