CA Process Automation

Content Designer Reference
Service Pack 04.0.01

eeeeeeeeeeee

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2012 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

CA Catalyst for CA Service Desk Manager (CA Catalyst Connector for CA SDM)
CA Client Automation (formerly CA IT Client Manager)

CA Configuration Automation (formerly CA Cohesion® Application Configuration
Manager)

CA Configuration Management Database (CA CMDB)
CA eHealth®
CA Embedded Entitlements Manager (CA EEM)

CA Infrastructure Insight (formerly Bundle: CA Spectrum IM & CA NetQoS Reporter
Analyzer combined)

CA NSM

CA Process Automation (formerly CA IT Process Automation Manager)

CA Service Catalog

CA Service Desk Manager (CA SDM)

CA Service Operations Insight (CA SOI) (formerly CA Spectrum® Service Assurance)
CA SiteMinder®

CA Workload Automation AE

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Documentation Changes

The following documentation updates have been made since the last release of this
documentation:

The following topics have been added to document the new system functions:

getEEMArtifactTokenForUser(username,password) (see page 535)

getEEMCredentialsTokenForUser(username,password) (see page 535)

getEEMArtifactToken(certificateFilePath, certPasswordOrKeyFilePath) (see
page 536)

getEEMCredentialsToken(certificateFilePath, certPasswordOrKeyFilePath) (see
page 537)

getOrchestratorURL (see page 539)

getCountOfProcessStates (see page 542)

isFIPSMode (see page 544)

The following topics about the Catalyst Process Automation Connector have been
improved, particularly about Catalyst REST:

Catalyst Security Parameters (see page 83)

USM Model Mapping (see page 86)

Querying Capabilities (see page 88)

Usage (see page 89)
Catalyst REST (see page 90)
Display Processes (see page 91)

Display Process Instances (see page 94)

Display Process Relationships (see page 95)

Display a Specific Object (see page 97)

Catalyst Operators (see page 90)

Assign User Task operator topics have been updated. A new example on how you
can send a notification to a user to reply to a task using an embedded URL in an
email has been added.

Assign User Task Operator (see page 375)

User Task Parameters (Assign User Task Operator) (see page 377)

Output Parameters (Assign User Task Operator) (see page 379)

Example (Assign User Task operator) (see page 379)

Contents

Chapter 1: Introduction to CA Process Automation Operators 21
CA Process AUTOMation OPErator OVEIVIEWccieiiiiiiiiiiieiiiiieieieieieieteretererereteretererereterereretereeereterererererererereserererereren 21
[V oTe (V] LI T e MO o 1T | do] gl Ol o - oY= <L USSR 23
Where OPerators Can RUNcoceeiiieeiie ettt ettt ettt et e et st e e s st e e sab e e eab e e sabeeeabeesabeesabeesabeesateesabeesnseesareennneess 39
Common Properties Of @ll OPEratorsc.c.uii ettt sttt b e e s b e s bt e s beeesaeesbeeeneeeane 44
Execution SEttiNgS (All OPEIAtors)uiicciiieiciieeesitieeeiie e e erre e e sctee e e stte e e eetae e e staeeeasstaeesasssaeessseeeeansseeeasssaeesnnsnes 44
Common Properties Of OPErators iN PrOCESSEScciciieieiiiiieeiiiieeeiiteeeesteeeeessaeeesstbeeeestseeeassseesssseeesssssessanssaeessssees 49
PrOCESSING GIOUD cuieiiieiiiiie et e ettt ettt se e e st e s ettt e st e e s s b et e s em b et e s maa e e e saba e e e e s b et e s annn e e e snb e e e e anreresenreeesannneas 49
SIMUIGEION PrOPEITIES. ..ceiitiieieeitieee ettt ettt st e s bt e st e e st e e sae e e sabeesabeesabeesaneesabeesaneesabeesaneesn 51
INTOIMATION PrOPEITIES. . eeuiieiiieetee ettt ettt st e b e s bt et e s bt e bt e s bt e e bee s bt e e ssteebeeesnneenees 52
Common Properties of Operators in SCHEAUIESc..uei it e e s rre e e et e e e ear e e e eeanaeas 54
(07 1= o Lo E T Y=l 4 [T4 USSRt 54
ManNUAITY INCIUAEA DAES.....coiiiieiieiiieeiee ettt et sttt e st sb e s bt s bt e s bt e e bt e s beeebeesabeeesseesbeeenneesnees 55
ManNUAIY EXCIUAEA DAtESeeiurieeiieiiiieeiee ittt ettt ettt et s bt e be e s bt e bt e s bt e e bee s beeebee s bt e esneeebeeesneesaneas 56
I 11 S [1SS 56
Common Output Parameters for all OPEratorscccieeiciiiie et et e e e st e e e etae e e s ratee e e sabaeeeearaeeenanaeas 56
Chapter 2: Standard Operators 59
Y a0 1T =) o] RN 59
LY U T 10 o (= (=T PPNt 59
(000 00T g T=T (O] o 1] - | o | SO PP PPPPPTPPPPPPPPPPPPPRE 59
INPUL PArameEters ..cceiiiiiiiiiiiiiieieiieeeeeeeeeee ettt e e e et et et et et et et et et et e s et et et et et e s e s et et e s et eseseteterererererererererererererens 60
R (o] oIS U Lol ol T O] o 1] - | o] LSOO 60
LaY U T 10 o (= (=T PPt 61
R e ol 2= 11 (VT AN @ o= - | o | U UPPRRNt 62
INPUL PAramELers ..ccoeiiiiiiiiiiiiiieiiieeeeeeeeeeeeeee ettt e e e et et et et et et et et et et e s et et et et et e s e s e e ete s et esesereterererererererererenerererens 62
Y a Yo I @ o T=T =1 o TSR 63
(O 0] o T=] 1 (o] SH PPt 63
T = @ 1= = o TP 64
INPUL PAramELers ..ooieiieiiiiiiiiiiiiiieeeeeeeeeeeteeee ettt et e e et et e e et e tetererere e et et et e tere s et et erer et et erereeeserererererererererererererererens 64
How the Reset Operator Works with the LOOP OPeratorccueeeeciiie it e e e e s 65
[WoToT o @] o<1 =) o] o T T TP PP PTPTPT 66
LaY U A T 10 (=1 (=T PRt 67
(010} 4o 10N Al o [=T 4 =] =] TSRS 69
Reset the Loop Operator Manually iN @ PrOCESSceccuiiiiciieeeiiieeeestiee et e e stee e e stee e e saee e e ssneeeeesntaeeeensaeeennnneas 70
(O T o= LI I T TS @ 1= =1 o SR 70

Contents 7

INPUT PArameELEIS .o a e e s a e e e s a e s e e e e s aanaee 70

[el oL To] AT @ o1 =T =1 o] OO PP T PP OPPPP PPN 70
INPUL PAramMELEIS ..oiiiiiiiiiiiiiiiiiiiceeeeeeeeeeeee ettt et e e et et et et e eeeetete e et e te e et et et et et et et et ereraretereretererererererererererererererererens 71
[T 0 OO PPROPPTRPTT 71
[T Y S 2 o o 1= 1= 71
Chapter 3: Catalyst 73
LCT=T Tt o Toll U 1Y O] o 1T =L] O PP PPPRPP 73
(O =E) o O] o 1T L o] O P OO P PP OPPP PPN 73
(D= [y £l 0T o LT = o S PO PO TSRO P OO TP PPTOPPPTRPPO 75
ol UL O o 1=T =) (o] PPNt 76
(O A 0] o =T) o] TP TP 77
SUDSCrIDETOCHANEES OPEIAtON .. ciitiiitiietieeite ettt ettt sttt et e sttt e sbte s bt s bt e sabe e s bt e sabe e e st e sabeeesseesbeeenaeenane 78
NON-GENEIIC USIM OPEIATOIS ...eveeeiiitiieiitie sttt et e st e s et e e st e s sme e e e e s b e e e s e ase e e e snaeeeeanreeesansneeesnaeeeeanrenesannne 81
CatalySt SECUNILY PAramELEIS ...couiiiiiieiieeiee ettt ettt ettt ettt et s et b e s bt s bt e s be e e bt e sabeeeabeesabeeebeesabeesneesabeesneenane 83
[T [4] o (=TSRSS URRRN 84
The Catalyst Process AUtOMAtion CONNECIONccuiiiieiiiiecciiee e citeeeecte e eetee e e st e e e estteeesetbaeeesataeeeessseesnsseaeeasseeeannes 86
FEATUIES ..ttt ettt et et et et et et et e te e et et et et et et et et et et et et et et et e s e s et et e s et et et eter et et ereterererarenererarans 86
L0 = == PP OO PPPT PPN 89
Chapter 4: Command Execution 101
RUN PrOZram O Drator .. sasasasasesasesnss 101
FaY o0 Ll T 10 (= (=T PPNt 102
(1014 o1 0Ll o [=T 4 1= o] TR 105
U Y & W @e] o TaaF-TaTe IO o T=T o | o] U UPUPRPNE 105
INPUL PArameELers ..cciiiiiiiiiiiiiiieieieeeeeeeeeeeee ettt e e e et et et et et et et et et et et et et et e s et etete s et et et eseteserererarerererererererererens 106
OUTPUL ParamEers oo s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sasasasasasasasasasasasasesasesesnss 112
(0] 1=1) o] gl 2o] o {3 TP 114
1T 2] o] LSRR USURN 115
RUN SSH SCIIPT OPEIATON ..uuviiiiiiiiiiiiiittet e ettt e e e s ettt e e e s e sttt e e e s e ssasbateeeeesesassbesaeaesssssssnsaaaeesssansssaeeeesssnsnnnens 116
INPUL PArameELers ..cciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt et et et e e et et et et e s et et et et et et et et e s et e s et etereseteserererererererererererererene 117
OUTPUL ParamEers .o e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasasasasasasasasasasasasesnsnss 125
(0] 1=1) o] gl 2o] o £ J TP 126
T Y221 o] LTSS UUSURN 128
U I Yol g o A @ o= - | o | PP PPPPPRPNE 131
INPUL PAramMELErs ..ceeiiiiiiiiiiiiiiiiieiceeeeeeeeeeeeeeee ettt ettt e e et e e e e et e e e eetereteterereteter et et et e s e s et ereraretererarererererarerererererererererens 131
OUTPUL Paramers oo s e e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesasssasasasasasasesssssnsnsnsnsesnsnsnnnns 136
RUN TelNet CoOMMANT OPEIAtOruuiiiiiiee ettt ettt e e e e e st ae e e e e e e e setbateeeaeeesesbasaeaeeeesasssssesaaaesansssaessaessennnssens 137
LYoV A T 10 (= (=T PPNt 137
OUTPUL Paramers oo s e e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesasssasasasasasasesssssnsnsnsnsesnsnsnnnns 143
(0] o<1 =) o] gl 2o o £ Y T T T T T T T P P TP PT PP 146

8 Content Designer Reference

EXAIMIPIE ettt st e et s bt e e b e s b e e e bt e s bt e e bt e s be e e bee s bt e e nnee s beeenneenare 147

RUN TEINET SCHIPt OPEIAtor ...eeueeiiiieetieiiteete ettt ettt st e e st e et e st e e s bt e sabe e e bt e sabeeenbeesabeeenneesabeeeneenane 149
INPUL PAramMELEIS .ooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeete ettt et e et e e e e et e e et e eeeeteteee e et e eetete e et e ae e et e e et erereretereretererererererererererenerenenens 150
(O 1014 o1 0Ll o= [=T 4 = =] T PP 156
(0] 1=1) o] gl 2o] o £SO 157
EXAIMIPIE ettt ettt e e bt s bt e e b e s b e e e bt e s bt e e bt e s b e e e bt e e beeenee s beeenneenane 158

Chapter 5: Databases

(0] Yol 1ol T = 4 11 =T PP PR
IMISSQL SEIVET PAramMELEISciiiiiiiiiiteet e ettt e ettt e e e e e sttt e e e s e s abat e e eeeees e abebteeeeeesaababaeeeeeesannnnbaaeeenssanannneen
Y A O LI oY Ty 1= =T TP
Yl 2T [41 (=] USRSt

Operator Level Properties
Database Server Login Parameters
Bulk Insert into Database OPEratorc.eeeuiiiiiieiieiiee ettt ettt ettt e s bt e s bt e e nee s b e e s st e ebeeebeesbaeenneenane
LY o0 L T 10 (=1 (=T E PP PPPPPPTRt
(101 4o 1 0Ll o= [=T 4 =] o] TP
Delete from Database OPErator.o i iie ettt ettt et s e et e st e et esabe e s bt e sabeeebeesabeeebeesabeeeseesbaeenneenane
INPUT PAramETEIS it e e s r e e e e s e s e a et e e e s e st et e e e e e s e
(1014 o1 0Ll o= [= 4 1= o] PP
D] =] o I Yol a =T 4 o T 01 =T = o1 USRS
LY o0 L T 10 (=1 (=T E PPNt
OUTPUL ParamEers oo s s e s e s e s e s e s e s e s e s e s e se s e s e s e sesesesesasasasasasasasasasasasesesasnsnss
(O =T o To SN O o 1=T = Ko | G PP PP PP PPPPTPUPPPPPPPPPIRE
FaY o0 Ll T =10 (= (=T E PPNt
(1014 o1 0Ll o [=T 4 1= o] TP
Get Stored Procedure Operator
INPUL PArameELers ..ccciiiiiiiiiiiiiiieeeeieeeeeeeeeeeee ettt et et et et et et e e et et et e ter et et et e s et et et e s et etetesetesererarererererererererenerens
OUTPUL ParamEers oo s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sasasasasasasasasasasasasesasesesnss
(G A I 1 LI @] o T=T = o SRR
FaY o0 Ll T =10 (= (=T S PP P PRt
Output Parameters
O VI =To Y o = Tol =l 0 o T=T - | o 1 S
INPUL PArameEters ..ooiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee ettt et e e et et et et et et et et et et et et e s et et et et et e s et etereseteserererererererererererenerens
(O 1014 o 10 Ll o [=T 4 = =] TSR
Get Version Operator
Input Parameters
OUTPUL ParamBers oo e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasssasasasnsasssssssnsnsnsnsesnsnsnanss
(O Y TN T O 01T = o] S PSPPI
INPUL Par@mMETEIS ovuieeiiiiiiiiie ettt ettt e e e e et e et ta e s e e et eteaaa e e e e e e eataa s eeeeeaetaasseeeeasssansssseeesssssnnsseseeeessnnnns
(1014 o 10Nl o= [= 4 =] SRR

Contents 9

INSErt iNTO DAtabase OPEratorciouiiiiieiiie ittt ettt st e et e st e s bt e st e e e bt e s bt e eabeesabeeeaneesabeeeneenane 187

[INPUT PArameETersS ..o e e e e e s s a e e e e e aas 188
(O 1014 o1 0Ll o= [=T 4 = o] T T TP 188
QUETY Database OPEIatOr ..ccivii ittt ettt et e et e st e st e st e e s bt e sabeesbeesabeesabeesabeesabeesabeesaseesabeesabeesabaesnseesabaesaseens 190
FaY o0 L =TT (=1 (=T TP PPPTPPPPTPPPPPTPRt 190
OUTPUL PAramELerS .ottt s e e s s bt e s s s b e e e s b a e e s sb e e e s s sre e e sannneeesnaeeeeas 191
(U T T Ao =T I o o Yol=To [o I PSPPI 193
Select from Databhase OPEIAtONuieieciieeccieee e cieeeestee e et e e e st e e e e tteeessabaeeesateeeeassaeesssseeasstseeeassseesansaeessnsseeenne 195
Y] =Tot 0 o= = oYl o oY o 1= o SRS 195
OUTPUL PAramELeIS .ottt s e e s a e s e e s e s b et e s s b e e e s s anre e e sennneeesnaeeeeas 197
Update in Database OPeratorc.ueiiei ittt ettt ettt e st e e bt e e st e e s st e e sab e e sateesareesateesabeennnee s 198
INPUT PArameETEIS .ottt e et r e e e s e s e a e e e e s s b et e e e e e s 198
(1014 o1 0Ll o= [=T 4 =] o] TP 199
Chapter 6: Date-Time 201
(0 1=To 01 [T Ao F- Tl 0] o T-T - | o] (RSP 201
LY o0 L T 10 (=1 (=T E PPNt 201
OUTPUL PAramELErS ..ccoeiiiiiiieiiiei et et e e s e e e s e s e aa et e e s s e saranaeeeess 203
Check Date-TimMeE OPEIAtor «....eiiiuieeieeiiteetee ettt et e st e et e st e et e st e s bt e s bt e eabeesabeeeabeesabeesaseesabeeenseesabeesnseesabeesaneens 203
LY o0 L T 10 (=1 (=T E PPNt 203
(O 1014 o1 ULl o= [=T 4 =] o] TP 204
Chapter 7: Directory Services 205
(D 7Y o =T I T =T 0 1= 6= TSP 205
Fi¥e [M@oY 0T o]UNd=Ta ol BLeT a0 F=1 o W @] 1= - | o] RSP PURRRt 206
INPUL PArameELers ..cciiiiiiiiiiiiiiieieieeeeeeeeeeeee ettt e e e et et et et et et et et et et et et et et e s et etete s et et et eseteserererarerererererererererens 206
OUTPUL ParamEers oo s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sasasasasasasasasasasasasesasesesnss 206
1T 2] o] LSRR USURN 206
(0] 1= = o ol o= | (U] SRR 207
Fi¥o [0 U Y=Y o o €] o1 U o N @] oY1 > o o SRR 207
INPUL PArameELers ..cciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt et et et e e et et et et e s et et et et et et et et e s et e s et etereseteserererererererererererererene 207
OUTPUL ParamEers .o e s s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasasasasasasasasasasesasesesnss 208
Y21 o] LSRR USURN 208
(0] 1< = o ol o= | (U] U RURR 208
Create GrOUP OPErator ..o iiiiiiiiiiiiiieiiteieeeeeee ettt eee e ettt et ettt etetereteteteteretetetetetetetetereterens 209
INPUL PAramMELErs ..ceeiiiiiiiiiiiiiiiiieiceeeeeeeeeeeeeeee ettt ettt e e et e e e e et e e e eetereteterereteter et et et e s e s et ereraretererarererererarerererererererererens 209
OUTPUL Paramers oo s e e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesasssasasasasasasesssssnsnsnsnsesnsnsnnnns 211
T Y221 o] LTSS UUSURN 212
(0] 1< = o ol 2= | (U] o U UURR 212
(O T @] oJ Lot d @] o 1] = o | oSS 213
INPUL PAramMELers ..coeiiiiiiiiiiiiiiieieieeeeeeeeeee ettt e e e e e e et e s e e et e te e et et e rere s et et et et et et et e s et et et ererereserererererererererererererens 213

10 Content Designer Reference

OUTPUL PAramELEIS oottt et st e e s s et e s e e s et b e e e s sb b e e s s sre s e sennneeesnaeeeeas 215

EXAIMIPIE ettt st e e bt b e e bt e s bt e e bt e s bt e e bt e s bt e e bt e e bt e e anee s beeenreenane 215

(O] o1 =1 o T ol == 11 [0TSR 216
Create Organizational UNit OPEIatorcccuieeiiiiee e ctee ettt et e e e stae e e et e e s e taeeesatbeeeestaeessssaeesnsseeeanssaeessnseens 217

INPUL PAramMELEIS ..oiiiiiiiiiiiiiiiiieieeceeeeeee ettt ettt et e et et e e et e e et e eeeeteteteteeetete e et et e te e et et et eterereteretetererererererererererenenenerens

Output Parameters

Example.....cccceeeveennnen.

(O] o1 =1 o T ol == 11 [0 <RSP
(O = UL =T 0] 1= - | {0 SH PP PPPPPPPPPPPTPRE

INPUT PAramETEIS .ot e e s r e e e e s e s e a et e e e s e s b et e s e e e s
Output Parameters

Examples

Get Domain Controller Operator
LY o0 L T 10 (=1 (=T S PP PPNt 229
OUTPUL PAramELErS ..ceieiiiiiieiiiee ettt e e s e et e e e s e aa e e e e e s e saranaeeee s 230
EXAIMIPIE ettt e ettt e e bt e st e e e bt e s b e e e bt e s be e e bt e e be e e bee e beeennee s beeenneenare
Operator Failure

(CT=iap o] g aa b= Tl A Yol olo 1N o} O] o 1] o=} o] SRRt 232
FaY o0 L T =10 (=L (=T PPNt 232
OUTPUL ParamEers oo s e s s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasasasasnsssasasasasasesesnsnss 233

LGy @] o [=Tot A @] o =T =1 o USSR

Input Parameters
Output Parameters
T T2 o] LTSS USURN
(O] o1 1o T ol o= 11 [0 < USSP
(€T V=T g @] o T=T =} (o] PP PP PP PPPPTPPPPPPPPPPPIRE
Input Parameters
(1014 o1 0Ll o [=T 4 =] o] TP
ST [4 o] 1= SRS
(O] o1 = o Tl =11 [0 < SR
Y o)V @ oY =Tt @ o<1 -1 oY SN
INPUL ParamMETOrS ouuiieiiiiieiiiie ettt ettt e e e e e e et ta e e e e et eteaaa e e e eeeeataaa s eeeeeaetaassseeeeaessansssseeesssssnnnseseseesnnnnnn
(O 1014 o 10 Ll o= [=T 4 =] =] TR
3T [4T o =S RS
(O] o1 = o T ol =11 [0 < SR
Remove User from Group Operator

INPUL ParamMETEIS ouuieeieieiiiiiiee ettt e s e e et et e ta e e e e e e ateaaa e e e eeeaataa s eeeeeaetaasseeesesssanssseeenssssnnsseseeeesnnnnns

Contents 11

OUTPUL PAramELEIS oottt et st e e s s et e s e e s et b e e e s sb b e e s s sre s e sennneeesnaeeeeas

EXAIMPIE .ttt h et e e e bbbt e bt e e nan e e ne e snneeeneas
(O] o1 =1 o T ol == 11 [0TSR
Update Object AttriDULES OPEIatoriiic i e cceeee e ctee et e e e s e e e et e e e eeaere e e stbeeeesstaeeeesraeesrssseeesnsseeeestaeessnsees
INPUL PAramMELEIS ..oiiiiiiiiiiiiiiiiieieeceeeeeee ettt ettt et e et et e e et e e et e eeeeteteteteeetete e et et e te e et et et eterereteretetererererererererererenenenerens
OUTPUL PAramELerS .ottt s e e s s bt e s s s b e e e s b a e e s sb e e e s s sre e e sannneeesnaeeeeas
Operator Failure
Update User Home Directory Operator
INPUL PAramMELEIS .ooeiiiiiiiiiiiiiiiiiiieceeeeeeeeeee ettt ettt et e ee e et e e et e e e eeteeetetete e et e eetetetete e et et et et ererareteretetererererererererererenenenerens
OUTPUL PAramELeIS .ottt s e e s a e s e e s e s b et e s s b e e e s s anre e e sennneeesnaeeeeas
EXAIMIPIE ettt ettt e s bt bt e e b e s bt e e bt e s bt e e bt e s bt e e bee s beeennee s beeeneenane
Operator Failure
Add an SSL Certificate to CA Process Automation

Chapter 8: Email 267
CommOoN EMail OPerator PAramMELEIScccuieeiiiieeeeciieeeeitteeeesteeeeetteeestaeeeestbeeeeesaseessbeseanstseesasssasessseesenssaessnnsees 267
I Yo d B L =] @ g1 (=T o T- [P RSP 268
Mail SErVEr LOGIN PAramMEEErS ..cccuueiiuiieeiieiieeeiee sttt sttt st e st e st e st e e bt e sab e e s bt e sabeeeaneesabeeesneesbeeeneenane 270

Create Folder Operator
LY o0 L T 10 (=1 (=T E PPNt
Output Parameters

D] e P T O] oY= =1 o] SRS
INPUL PArameEters ..ooiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee ettt et e e et et et et et et et et et et et et e s et et et et et e s et etereseteserererererererererererenerens
Output Parameters

Delete Folder Operator
FaY o0 L e T =10 (=L (=T PPNt
Output Parameters

ST [4T o L= SR
Oyl o0 T R oY) =T o A O] o 1T | o SRR 274
FaY o0 Ll e T =10 (= (=T S PP PPNt
(1014 o1 0Ll o [=T 4 1= o] TR
Get Email Count Operator
INPUL PArameEters ..ccciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt e et et et et et et et et e s et et et et et et et et et et e s et etetesetesererereresererererererenerens

OUTPUL ParamEers oo s s s s e s e s e s e s e s e s e s e s e se s e s e s e sesesesesasasasasasasasnsasasasesasesnsnss
(O o L S V7T (o] o T @ J o T=T - | o oS 278
LY o TU N T €T 0 4 L1 (=] S OO PP PP PPPPPPPR
Output Parameters
Get Email List Operator
INPUL PAramMELOrsS ..ceeiiiiiiiiiiiiiiieieeieeeeeeeeeee ettt e et e e e e et et e eeretete e et e rete s e s et et e s e s e s et ereraretererarererererererererererererererens
Output Parameters

Y T Al o o T I O] 01T = oY SO P PUPPRRPNE

12 Content Designer Reference

INPUT PArameTersS ..o e e e e e e s s r b e e e e e e aas 283

(010 o TV L =T = T 4 1= =T PSP PP PO PPPRTRTN 283
=l o1 [[T g @] o T=T - | o] (SRS 284
FaY o0 L T 10 (=1 (=T ST PP PPP PPNt 284
(1014 o1 0Ll o= [=T 4 = o] T T PP 284
RENAME FOIART OPEIALON ..ueeieieieitteete ettt ettt et e s et s bt e et e skt e e bt e s beeeabee s bt e enbeesabeeeaneesabeeenseesane 284
Input Parameters
(O 1014 o1 0Ll o= [=T 4 = o] T T TP 285
Y=o B = o F= T I T=T = o SRSt 286
INPUL PArameETErsS ..o e e e s e e e s s r e s e s e e e s aas 286
OUTPUE PAramELEIS oneeiiiiiieee ittt e st a e e s s et e s s sb e s et ba e e s sb et e s s sre e e sennneeesnaeeeeas 288
Chapter 9: File Management 289
COMPIESS FIlE OPEIAtON c..ueeeitiiiiie ettt ettt ettt et e sttt e bt e st e e e bt e s beeeabeesabeeeabeesabeeeabeesabeesaseesabeesaneens 289
INPUT PAramETEIS it e et r e e e s e s e a et e e e s e st e e e e e e e s aas 290
(1014 o1 0Ll o= [=T 4 =] o] TR 290
(00o] o A 11 @ T=] =1 o USSR 290
INPUT PAramETEIS it e e s e e e e e s e s a et e e e s e s b et et e e e s e 291
OUTPUL PAramMeLErS ..ccieiiiiiiiiiiiei et e e e st e et e s e s e b e a et e e e s e s aranaeeee s 291
(O N o] (o LT @] o 1T &1 o (USRS 292
LY o0 L T 10 (=1 (=T S PPNt 292
(1014 o 10 Ll o= [=T 4 =] o] PP 293
B ToleY g Y o LT H 1 TSl @ o T=T - oY SRS 293
INPUL PArameELers ..cciiiiiiiiiiiiiiieieieeeeeeeeeeeee ettt e e e et et et et et et et et et et et et et et e s et etete s et et et eseteserererarerererererererererens
Output Parameters
DL Eoy N L @ T =T - | o | P UPSPPNE
Input Parameters
Output Parameters
(CT= B¢ Toi o) VA ®lo] gL =T o] AL O] oY== o] PP PP 295
FaY o0 Ll e T =10 (= (=T S PP PPNt
(1014 o1 0Ll o [=T 4 1= o] TR
Get File Attributes Operator
INPUL PArameEters ..ccciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt e et et et et et et et et e s et et et et et et et et et et e s et etetesetesererereresererererererenerens
OUTPUL ParamEers oo s s s s e s e s e s e s e s e s e s e s e se s e s e s e sesesesesasasasasasasasnsasasasesasesnsnss
T Y221 o] [T USSP
[V T o] o) gl 1 TN @] 1= = o] U UUP PSPPIt

Input Parameters
OUTPUL ParamBers oo e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasssasasasnsasssssssnsnsnsnsesnsnsnanss
3T [4 o =SSP
S CE Yo I o] s T a1 (SN 01T =1 o] U UPUPRRRPNE

INPUL Par@mMETEIS ouuieiieieieiiiee ettt e ettt e s e e et e et ta e e e e et eteaaa e e e eeeeataa s seeeeaaetaasseeeeesssansssseeenssssnnseseeeessnnnns

Contents 13

OUTPUL PAramELEIS oottt et st e e s s et e s e e s et b e e e s sb b e e s s sre s e sennneeesnaeeeeas 304

RENAME FIlE OPEIAtON ..ttt ettt st e et e st e et e skt e e bt e s be e e bt e sabeeeabeesabeeeabeesabaeenseesane 304
INPUL PAramMELEIS .ooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeete ettt et e et e e e e et e e et e eeeeteteee e et e eetete e et e ae e et e e et erereretereretererererererererererenerenenens 304
(O 1014 o1 0Ll o= [=T 4 = =] T PP 305

SEArCh File CONTENT OPEIATONuiiiiiiieeeiiieecetee e ctee e ettt e e e te e e e steeeestteeesaasaeeasatseeeasssaeessseeeasssseeaanssaeesnssaeeasssanennnnes 306
INPUL PArameETErsS ..o e e e e e a e e e s s r b e e s e e e aas
Output Parameters

Update File OWNErShip OPEIator.....cciuiieeeiiieeceitee e cttee et e e e e e e e sttt e e e stteeeeeasaeeessbeeeesstseeeasssasesssaaeeansseeesnssaeessnsees 308
INPUL PAramMELEIS .ooeiiiiiiiiiiiiiiiiiiieceeeeeeeeeee ettt ettt et e ee e et e e et e e e eeteeetetete e et e eetetetete e et et et et ererareteretetererererererererererenenenerens 309
OUTPUL PAramELeIS .ottt s e e s a e s e e s e s b et e s s b e e e s s anre e e sennneeesnaeeeeas 309

Update File PermisSion OP@rator......c.c.ui i ieiiiiiiiieeiet et ettt sit ettt sit e sttt sat e sae e e sabeesbee e sabeesaeeesabeeeabeesabeesaseesabeesaneess 310
Input Parameters
(1014 o1 0Ll o= [=T 4 =] o] TP 311

Update File TiIMeSTamP OPEIrator.......ccuiiieciiieiiieeeecitteeeestteeeeetteeesitaeeeestteeesessaeesassesaeastaeseenssseesassseasasseseanssseessnsens 311
INPUT PAramETEIS .ot e e s r e e e e s e s e a et e e e s e s b et e s e e e s
Output Parameters

Write File Operator
LY o0 L T 10 (=1 (=T E PPNt

Output Parameters

Chapter 10: File Transfer 315

(O =l D1 =Yoo T oY O o 1] =) o] AP PPPPPRPRE 315
INPUL PArameEters ..ooiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee ettt et e e et et et et et et et et et et et et e s et et et et et e s et etereseteserererererererererererenerens 316
OUTPUL ParamELers oo s s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesasasasasasasasasasasasesasasnsnss 317

DL Eoy Ll DT =Tor (o] AV O] o 1T =1 o 1 S P UPUPRNE 317
Delete ReEMOtE DirCtOry PrOPerties..ccccc i iiiiieee ettt e ee e e e e e e st e e e e e e e s abbtaeeeaeeseanntbaneeaesennns 317
Output Parameters

D] T FN @ o 1T] o oSS
INPUL PArameELers ..cciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt et et et e e et et et et e s et et et et et et et et e s et e s et etereseteserererererererererererererene

Output Parameters
B Lo XNV Y (oo I ST TN @ o= - 1 o] PP UPUPPNE

Get Remote File Properties
OUTPUL ParamEers oo s s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s s sesesasasasasasasasasasasasesesesesnss
Get File INFOrmation QP Iatoruiiiieiii et estee et e s tee e e st e e e et e e e st e e e s taeeseasaeeessaeeeesseeesasseeeesnsanesasseessnnsnens
LY o TU L T €T 0 4 L1 (=] E PP PP PP PPPPPPPPRT
Output Parameters
Move File Operator
INPUL PAramMELers ..oeeeiiiiiiiiiiiiiieieiiieeeeeeeeeete ettt ettt e et e e e e et e e e eeteretet et e reteter et et et e s et et e s e s et etererarererererererererererererererens
Output Parameters
TFTP DOWNIOQA FilE OPEIAtON ..eeiiiiiiiiiiiiee ettt ettt e e e e e e e e e e e s e s aba b e e e e e sessstaaaeaaaeeseassbtaeaaaessennseanneaaesannns
INPUL Par@mMETEIS ouuieiieieieiiiee ettt e ettt e s e e et e et ta e e e e et eteaaa e e e eeeeataa s seeeeaaetaasseeeeesssansssseeenssssnnseseeeessnnnns

14 Content Designer Reference

OUTPUL PAramELEIS oottt et st e e s s et e s e e s et b e e e s sb b e e s s sre s e sennneeesnaeeeeas 329

(O] o 1T | {o] gl o o £ PP TSP P PP OPPPROTRTN 329
BRIV o Lo =Tl ST [N 01 e T=T - | o SR 330
FaY o0 L T 10 (=1 (=T ST PP PPP PPNt 331
(1014 o1 0Ll o= [=T 4 = o] T T PP 331
(O] o 1T L (o gl o o £ PP PP PPPP TR 332
UPIOAA FIlE OPEIAtOr....ceiiiiiiieeiee ettt ettt ettt et b et e s at e e bt e e s ab e e bt e e s st e e bt e e sabeeeneeesabeesneeesateesabeesabeenaneess 333
INPUL PAramMELEIS «ooeiiiiiiiiiiiiiiiieiieeeeeee ettt ettt e et et et et et et e eeeeteteeeteee e et e te e et et et eretetererereteretereeererererererererererenererens 333
(O 101 4o 10 Ll o= [=T 4 = o] T T U PP 335
Chapter 11: Java Management 337
Y D G o AT I T - 110 (=] (=T 6 TR TR 337
Get MBEaN AttribDULES OPEIrator. .. couii ittt ettt e st e et e st e e b e e sabeeebeesabeesaseesabeesaneens 338
INPUT PArameETEIS i e e s r e e e e s e s a e e e e s s b et e s e e e s 338
OUTPUL PAramELErS ..ccieiiiiiiiiiiie ettt e e s s e et e e e s e b e e et e e e s e sranaeeee s 339
[T [4T o] (=TSSP 340
TV Y T T WA (= d oo T MO o 1T - 1 o | oS 341
INPUT PAramETEIS it e e s e e e e e s e s a et e e e s e s b et et e e e s e 341
OUTPUL PAramMeLErS ..ccieiiiiiiiiiiiei et e e e st e et e s e s e b e a et e e e s e s aranaeeee s 342
[T [4T o (=SSP 343
Update MBean AttribULES OPEIALONcccccuiiiiiiiieeectee ettt e st e e e stte e e e e tae e e stbeeeesataeseestaeesssaeeesssseaeessaeesnnsenas 344
LY o0 L T 10 (=1 (=T E PPNt 344
OUTPUL ParamEers oo s s e s e s e s e s e s e s e s e s e s e se s e s e s e sesesesesasasasasasasasasasasasesesasnsnss 345
3T [4T o L= SR 346
Chapter 12: Network Utilities 349
Get Local NetWork INterfaces OPEIatorccuiii i uieeeeiiee e cciee e ettt e eete e sttt e e et e e esate e e s baeeeesstaeesesseeeesnsaeesennseeesnnsees 349
FaY o0 Ll T =10 (= (=T PPNt 349
(1014 o1 0Ll o [= 4 1= o] TP 350
(0] o1=1 =) o] gl 2o o £ Y O T T T T T T T T T T P P T TP TP PP 351
3T [4T o L= SRS 352
Get NetWOrk SErVICE STAatUs OPEIatoruii i iieeeiiieeeeitieeescteeeeste e e ette e e staeeeessteeeseeeeesssaeeeensseeesasseeesansseesensseeesnnsnes 352
FaY o0 Ll e T =10 (=L (=T PPNt 353
(1014 o 10Nl o= [= 4 =] SRR 356
(0] 01=1 =) o] gl 2o o £ Y U T T T T T T T T TP TP PP PT PP 357
O S Y Y T T o] TSl @ =T = o S 359
INPUL PAramMELOrsS ..ceeiiiiiiiiiiiiiiieieeieeeeeeeeeee ettt e et e e e e et et e eeretete e et e rete s e s et et e s e s e s et ereraretererarererererererererererererererens 359
(O 1014 o 10 Ll o= [=T 4 =] =] TR 360
MONItOr SNIMIP Variable OPErator.......ueei i ciiiiiieee ettt e ettt e e e e e sttt e e e e e e e e bateeeeaeeessbataeeaeaesensssaessasssennssrens 361
INPUL PAramMELOrsS ..ceeiiiiiiiiiiiiiiieieeieeeeeeeeeee ettt e et e e e e et et e eeretete e et e rete s e s et et e s e s e s et ereraretererarererererererererererererererens 361
OULPUL ParamEers oo s s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasssssasasasssnsasssssnsnsnsasesnsnsnsnss 364

Contents 15

PING HOSE OPEIrator.....ciiiiiiiiiiiic e bbb s s 365

[INPUT PArameETersS ..o e e e e e s s a e e e e e aas 365
(O 1014 o1 0Ll o= [=T 4 = o] T T TP 367
(0] 1=1) o] gl 2o] o £SO 369
Nl B Y L L= Vo J O e T=T = o 1 (ST SSt 369
INPUL PArameETErsS ..o e e e e e a e e e s s r b e e s e e e aas 370
OUTPUE PAramELEIS ottt ettt st e s s e e e s s s e s e s b e e s sb et e s s sre e e sennneeesnaeeeeas 371
Update SNIVIP Variable OPEIator.......uuie e cceee e cttee et ee et e sttt e e et e e e eatte e e sabeeeesstaeeeenstaeesnsaeeesnsseeesstaeessnsees 372
INPUL PAramMELEIS .ooeiiiiiiiiiiiiiiiiiiieceeeeeeeeeee ettt ettt et e ee e et e e et e e e eeteeetetete e et e eetetetete e et et et et ererareteretetererererererererererenenenerens 372
OUTPUL PAramELeIS .ottt s e e s a e s e e s e s b et e s s b e e e s s anre e e sennneeesnaeeeeas 373
Chapter 13: Process Control 375
ASSIZN USEI TASK OPBIATON ..eeiuiiiiiitiiieeitie ettt ettt ettt et ettt ettt e st e e s bt e e sabe e bt e e sabeesbe e e sabeeabeeesabeesseeesabeenbeeesnneennnes 375
INPUT PArameETEIS i e e s r e e e e s e s a e e e e s s b et e s e e e s 376
OUTPUL PAramELErS ..ccieiiiiiiiiiiie ettt e e s s e et e e e s e b e e et e e e s e sranaeeee s 379
[T [4T o] (=TSSP 379
[V TaF T (ol A o JU T o= T @ o T=] - | o] (TSP 382
INPUT PAramETEIS it e e s e e e e e s e s a et e e e s e s b et et e e e s e 383
OUTPUL PAramMeLErS ..ccieiiiiiiiiiiiei et e e e st e et e s e s e b e a et e e e s e s aranaeeee s 385
YL oL O T o T=T - | o T TP 386
Y Lo Ta e g Y =T o A @] o 1=T =) o] PPNt 386
=0 Lo I V=T A O o T=T =] o] PR UPPRRRIE 388
USQEE PatterNS fOr EVENTS ...eiiiiiiieeeiiiieceitee e cttee et e e e sttt e e s te e e et e e e s teeesensteeesnseeeesnsaeesannteessnnsnaeessseeesannns 389
) - [o e oI N O T o T] - | o | SO PP PP PP PPPPUPPPPPPPPPPPRE 390
FaY o0 Ll T =10 (= (=T E PPNt 390
(1014 o1 0Ll o [=T 4 1= o] TP 392
Y Y[V Lol S o T =T] To T a N O o Y=] = o PP UPUPUPNE 392
INPUL PArameELers ..ccciiiiiiiiiiiiiiieeeeieeeeeeeeeeeee ettt et et et et et et e e et et et e ter et et et e s et et et e s et etetesetesererarererererererererenerens 393
OUTPUL ParamEers oo s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sasasasasasasasasasasasasesasesesnss 393
Chapter 14: Utilities 395
F AN oYY AV (o -1 o J O ¢ 1T o SRR 395
FaY o0 Ll e T =10 (=L (=T PPNt 396
(O 1014 o 10 Ll o= [=T 4 = =] TSR 397
[T YA @ ¢ 1T | o) S 398
INPUL PAramMELEIS ..ooeiiiiiiiiiiiiiiieieieeeeeeee ettt ettt e e e e e e et et e reteteeereteretet et et et et et et et ereraretereraseterererarerererererererenerene 398
OUTPUL Paramers oo s e e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesasssasasasasasasesssssnsnsnsnsesnsnsnnnns 399
TaN oY W NV W O T =T - | o | PP PUPPRRNE 400
LYoV A T 10 (= (=T PPNt 400
OUTPUL Paramers oo s e e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesasssasasasasasasesssssnsnsnsnsesnsnsnnnns 410
(0] o<1 =) o] gl 2o o £ Y T T T T T T T P P TP PT PP 411

16 Content Designer Reference

VT E NV Yol o A @1 e T=T -) o T OO PP PT P OPPPRTRTN 413

[INPUT PArameETersS ..o e e e e e s s a e e e e e aas 413

(O 1014 o1 0Ll o= [=T 4 = o] T T TP 413
Chapter 15: Web Services 415
HTTP Operators: COmmON INPUL ParameEters ... s s s s se s s s s s s s s ss s s s s s s s s ss s sesnsnsnsnsnsesasennns 415

HTTP URL INOIM@tioN ..ceiieiiieeeie ettt sttt e st e st e s be e sabe e s beesabeesabeesabeesnseesabaesnseesnse

HTTP Proxy Information
HTTP Headers Information
HTTP CoOKIES INFOrMAtION ooiuiiiieiiiiii ettt st e e s bae e e sabe e e ssataeeesabeeeesateeesnnaeas
HTTP Response Content INFOrmMation...........c.uiiiciiiii ittt e e e eate e e e eata e e e s ba e e e eeataeeeennaeas
HTTP Configuration INFOrMationcuiiiiiiiie ettt ettt e e e tae e e e ata e e eeataee e ebbaeeenataeesnnnaeas
HTTP Operators: Common Output Parameters
HTTP Operators: CommOon OULPUL POITS.........uviiiiiiiiiiiiiiiii ittt
HTTP DIt OPEIator .cueeiiiiieeiteeiitte ettt ettt ettt e et s bt e st e st e e bt e sa bt e e bt e sab e e s st e sabeeeaseesabeeenbeesabeeenseesabaeanneenane
LY o0 L T 10 (=1 (=T E PP PPPPPPTRt
(101 4o 1 0Ll o= [=T 4 =] o] TP
o I I CT=y A @ oT=T = | o | PSP OPPPPPRPTRRPIRE
INPUT PAramETEIS it e e s r e e e e s e s e a et e e e s e st et e e e e e s e
(101 4o 1 0Ll o= [=T 4 =] o] TP
(O] o1 =1 o ol == 11 [V T TSR RP SR
NI I o LT o [O o1l o= o PSPPIt
INPUL PArameEters ..ooiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee ettt et e e et et et et et et et et et et et et e s et et et et et e s et etereseteserererererererererererenerens
OUTPUL ParamEers oo s e s s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasasasasnsssasasasasasesesnsnss
(0] 1= = o ol o= | (U] SRR
[NI O] uTo] g TR @] o =T =) o] oSSR
Input Parameters
OUTPUL ParamEers oo s s s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesasasasasasasasasasasasesesasnsnss
HT TP POSE O atir . e s s s s s s e s s s s s s s s s s s s s s s s s s s e s sasasasasasasssasasennns
FaY o0 Ll e T =10 (= (=T S PP PPNt
(1014 o1 0Ll o [=T 4 1= o] TR
Operator Failure
HTTP POSE FOIM O eIator e s s s s s s s s s s s s s s s s s s e s nnsnsasesnss
INPUL PArameEters ..ooiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee ettt et e e et et et et et et et et et et et et e s et et et et et e s et etereseteserererererererererererenerens
(O 1014 o 10 Ll o [=T 4 = =] TSR
(0] 1< = o ol 2= | (1] SRR
HTTP Put Operator
INPUL PAramMELers ..oeeeiiiiiiiiiiiiiieieiiieeeeeeeeeete ettt ettt e et e e e e et e e e eeteretet et e reteter et et et e s et et e s e s et etererarererererererererererererererens
OUTPUL ParamEers oo s s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesesesesesssnsnsasasasasasasssssnsnsnsnsesnsnsnnnns
[N I S I oI O o T=T - | o] TSP
INPUL Par@mMETEIS ouuieiieieieiiiee ettt e ettt e s e e et e et ta e e e e et eteaaa e e e eeeeataa s seeeeaaetaasseeeeesssansssseeenssssnnseseeeessnnnns

Contents 17

OUTPUL PAramELEIS oottt et st e e s s et e s e e s et b e e e s sb b e e s s sre s e sennneeesnaeeeeas 468

INVOKE SOAP IMEEhOA OPEIator. ... uiieieiiiiiieeiie sttt s bttt e st e e bt e st e e s bt e s bt e eabeesabeeeabeesabeeeneesane 469

INPUL PAramMELEIS .ooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeete ettt et e et e e e e et e e et e eeeeteteee e et e eetete e et e ae e et e e et erereretereretererererererererererenerenenens 470

(O 1014 o1 0Ll o= [=T 4 = =] T PP 486
INVOke SOAP MEthod ASYNC OPEIAtON ..cc.uviiiiiiiieecctiee ettt e e e e st e e e e re e e sratre e e s taeeeeataeessasaeeesntaeaeassaeeesnsseeesnssenaans 490

INPUL PArameETErsS ..o e e e e e a e e e s s r b e e s e e e aas 491

OUTPUE PAramELEIS ottt ettt st e s s e e e s s s e s e s b e e s sb et e s s sre e e sennneeesnaeeeeas 507
Chapter 16: CA Process Automation System Functions 513
] o 1Y - 1 F PP 513
Lo U 0 D TSR 514
AAJUSTRESOUICEVAIS ...eeeeeiiii ettt e et e e et e e e et e e e e s abbeeeeabeaeesataeaeastaeeaaasaaeeansbeseanssaessasssaeeantaeesassaesennsanas 515
APPIYXPALN .ttt e b e st e bt bt e e bt e s b e e e bt e st e e e bt e s b e e e bee s beeeabeesabeenanee s 516
APPIYXPATNTOUIT ettt st e bt st e st e s et e e eab e e s a b e e eabeesab e e easeesabeesabeesabeeeaseesabeenaneens 517
ol V=Tl (@1 [T Yo =T B USSR 517
(ole] a1V =TV =Y (V10 o), €2 1 OO OO PORTTPR 519
(oo a1V =T (o o OO OO P ORTPTPRRP 520
oo Y1V a €' 1101 o SR 520
CrEATEHYPEILINK ettt ettt e s bt e st e et e st e e e bt e sab e e eabeesab e e e bt e s beeeabeesabeenanee s 521
CrEATERESOUICEODJECE ... uiiiiiiiiee ettt ettt ee e e sttt e e e ctte e e e rtte e e e tbeeeeebeaeestbea e e staeeeassaseesasbeseanstasesasssaeeansaeeeastaeesnnsanas 521
(o L=l =Y AN =Tl T 0 1= o OO PRSP 522
Lo L= 1y <T@ L o [Tt RSP 522
EIETERESOUITE ..eiitieeiite ettt ettt ettt e et e st e st e e s ab e e s bt e sab e e sabee s et e e eabeesabeeeaseesabeesaseesabeeeaseesabaesaneess 523
Lo L Ty oA (U= AV, =T o o= Lo R 524
L I £ AV =L=T o To F- [PP 524
L €10 | 1= g To =T S PO PO O OO PO OO SO P PRI OPPPPRRRP 525
[I £ GV] o] 41T o IO TP PP UPPPTRPTI 526
L I O U o] 0 10 o T=T =) o] SRR 526
Ly Y D | = 111 P PP OTPTPP 527
EXISTSFOIARI ettt et s bt e e e a bt e e e bt e e e sa b bt e e e a bt e e s abbe e e e bbeeeeanbe e e s abbe e e e bbeeeeaabaeeenaraeas 528
[Nl =T = T o] o] 2 Y=Y T T=1S d 2o] o o o PSSP PPPPPPRE 529
EXISTSPIOCESS ...ttt ettt et s et e e st e e e h b et e s b et e e s R et e s e R et e s n Rt e e s R ae e e e anr et e s n e e e e s raee e e nr e e e sanneeas 529
EXISESPIOCESSWALCN ...ttt sttt e sttt et e st e s bt e s bt e ea b e e sab e e e abeesabeeeaneesabeeeareesabeenanee s 530
EXISTSRESOUICEeiiiitiee ittt et s et e e s e e e s b et e s b e e e e s s et e s e s b et e s ann e e e saba e e s enr e e e snnneeesaraeeeenreeesnnneas 531
L £ Yol s T=To [LT O P SO PP PROTPTRRRRP 531
1oL a0 =14 D | (=IO OSSP PRTPUPOTPRRIRt 532
Lo L0 = 1 4 =SSR 533
o1 A | = 1= o o SRS 534
Loy =T o g 1T 0 o TN =T o | SRS 534
getEEMArtifactTokenForUser(username,passWord)oocueeeiiuieeeeiieeeeeieeeeeieeeeeeireeeeetaeeeestbeeeesaseeeeeasaeeeensaeaeenes 535
getEEMCredentialsTokenForUser(Username,PassWOrd)ecccueeececuieeeeeiieeeeiteeeeeeiteeeeeiaeeeesteeeeessseeeessseeeeesseaeenes 535

18 Content Designer Reference

getEEMArtifactToken(certificateFilePath, certPasswordOrKeyFilePath)ccccvevieiiiiinieesiieciecce e 536

getEEMCredentialsToken(certificateFilePath, certPasswordOrKeyFilePath).........cccooieiiiieniienieniiciieeeneeeee 537
L2 =L LY AY - | OSSOSO ORRRPRPON 538
oL@ L o 1Y A =1] o U 24 S SSNt 539
etPartial AttaChMENTCONTENT .. .eeiiiiiie et e e st e e et e e e s aba e e e sataeeeessaeessseeeesstseeeansseeesssaeeensaeennnnes 539
BEERESOUICEAVAIL...cneiiiieeie ettt et e b et e s bt e bt e e shb e e bt e e s bt e e abe e e s abe e bt e e sabeennneesaneennees 540
BETRESOUICENGIME ..ot e e e e s s aa e e e e e s e s aa e s e e e s e senanaes 541
Lo L0 2T TN ol Ko - SRSt 541
Lo O U L (O o Yol I - | Y- J S SSN 542
BEETOUCNPOINES ...ttt ettt e s bt e e bt e e s be e e bt e e e bt e e bt e e shbeebe e e sbb e e bt e e ssbeenteesabeennseesaneenneis 542
BEEVAIUBIMAPFIRIAS ...ttt ettt et e bt s bt e e bt e shb e e bt e e e bt e e bt e e s bt e e bt e e s areenab e e sareennes 543
T 1 211 Lo RS 543
Lol [o =SSP 544
L1 B L] 1Y, oo [OOSR ORTSTTPRRP 544
ISTOUCHPOTNEUD -ttt ettt ettt e bt e e bt e be e e bt e s bt e e bt e e be e e bt e e sabeebeeesabeeeseeesabeesnbeesabeesaseesabeennneess 545
[7= Lo RS 545
[To] 4R (T oL U o o USSR 546
Lo =4 V=T o | SRR 547
NEXEO P ENDATE e e e 548
NEWVAIUBIMAP ..ttt ettt ettt e he e bt e bt e e bt e bt e e bt e e s bt e e bt e e s abe e bt e e sabeeeseeesabeesateesabeesabeesabeennneens 548
1012 PP PPPPTRRPRRY 549
PANSED AT e e e e e e 549
FESETRESOUICE ...eeeeieeee ettt e ettt e e e e ettt e e e e e s b b ettt e e e e e s as b e et e e e e e e san s s e e et eeeeesaassnreeeeeeesansnseeeteeesannnnseneeeeesanann 550
o111 T | TP O PO P PSP OUPPRTOPUPRPP 550
o] 11 I o TP TP TSSO PSP PP TSP PPRRTP 551
SAVEATEACMENTTOFIIE. ..ttt sttt e et e st e st e st e e s bt e sabeesabeesabeesaseesabeesaneens 552
11O oL - L (o] o) - 1 AU LRt 553
1] 1 2(T o TU T ol PSP TP UPPTT PP 553
L0 o F- V2SR PURRRt 554
Index 557

Contents 19

Chapter 1: Introduction to CA Process
Automation Operators

This reference contains information about the CA Process Automation operators that
are included as part of CA Process Automation. Operators are grouped into categories.
This guide groups the descriptions of operator information by these categories.

The Content Designer Reference also describes system functions. Use the system
functions to write custom JavaScripts. These JavaScripts can be placed inside operators
to manipulate the data that is used inside CA Process Automation.

CA Process Automation Operator Overview

Containers for operator categories are exposed as folders in the Operators palette in the
Designer.

CA Process Automation contains the following categories of operators:

Note: Categories (formerly modules) and operators have been renamed and
redistributed for CA Process Automation 04.0.00. See Module and Operator Changes
(see page 23) to identify their new names and groupings in CA Process Automation
04.0.00.

Standard (see page 59)

Standard operators include essential functionality operators that control workflows
in processes. Simple functionality such as starting, stopping, linking, and
commenting, are provided with the Standard operators. You can also set looping
and reset options, and incorporate the lane changes using these operators.

Catalyst (see page 73)

Catalyst operators support the UCF create, read, update, delete (CRUD), and event
subscription interfaces. These operators expose Unified Service Model (USM) object
types and properties.

Command Execution (see page 101)

Command Execution operators run processes and scripts on the host operating
environment.

Chapter 1: Introduction to CA Process Automation Operators 21

CA Process Automation Operator Overview

Databases (see page 163)

Databases operators provide an avenue to communicate and run database queries
against different database servers.

Date-Time (see page 201)

Date-Time operators manage the date and time for the CA Process Automation
server.

Directory Services (see page 205)

Directory Services operators support the Lightweight Directory Access Protocol. All
of these operators work with different LDAP servers except for operators specific to
the Active Directory.

Email (see page 267)

Email operators automate tasks that are performed on emails and folders in an
email server. Email operators read emails from the mail server through IMAP/POP3.

File Management (see page 289)

File Management operators monitor directories, files, and their contents. File
Management operators can be run either locally or on a remote system. These
operators create, delete, rename, compress and uncompress local files, and watch
files on the touchpoint where the File Management category is running.

File Transfer (see page 315)
File Transfer operators let you use FTP and SFTP.

Java Management (see page 337)

Java Management operators provide a management interface for systems that
support JMX.

Network Utilities (see page 349)

Network Utilities operators allow the user to communicate to other network
devices through SNMP.

Process Control (see page 375)

Process Control operators run, monitor, and control CA Process Automation
processes.

Utilities (see page 395)
Utilities operators invoke external JARS in CA Process Automation.
Web Services (see page 415)

Web Services operators provide various standard network protocol utilities to the
automated business processes made possible by CA Process Automation.

22 Content Designer Reference

Module and Operator Changes

Module and Operator Chandes

Modules and operators have been renamed and redistributed in CA Process Automation
04.0.00. The following table identifies the modules and operators before this release
and their new names and categories in CA Process Automation 04.0.00.

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator

va Icon in v4
Common Operator Palette Standard

Loop Standard Loop

And q#n Standard And
Or E Standard Or
Derivation SE (Retired)
Reset |:+3] Standard Reset
h.ﬂ |
Start ' Standard Start
Normal Stop @ Standard Stop Success

Chapter 1: Introduction to CA Process Automation Operators 23

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator

va Icon in v4
Abnormal Stop é Standard Stop Failure

Exception

Standard

W

(u,.!

Lane Change

&’ Standard Change Lane

Comment

Standard Comment

Alert Module

(Module is retired and
operators
retired/redistributed)

Break Sound Alert

Retired

&

Email Alert

Moved to Email Send Email

K

Email

24 Content Designer Reference

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va Icon in v4
Sound Alert Retired
N
Telephony Alert %& Retired
Date-Time Module Date-Time
Calendar Date Test i Date-Time Check Calendar [—a]
31
L4
Date-Time Check Date-Time Check Date-Time 7 N
o
e
Date-Time Wait Retired

Delay

b D

Moved to Utilities

Del F
elay :.f‘

File Module

File Management

Change File Ownership

File Management

Update File Ownership

Change File Permission

File Management

Update File Permission

Chapter 1: Introduction to CA Process Automation Operators 25

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator

va Icon in v4
Change File Timestamp @ File Management Update File Timestamp

o

Compress File @ File Management Compress File E
Lo
Copy File % File Management Copy File
.
Delete File % File Management Delete File
&
Directory Entries - i File Management Get Directory Content
(r,
L
Get File Status @ File Management Get File Attributes
Ula}
Make Directory [E ﬁ File Management Create Folder
I'\ill_r'_._rl
Read from File File Management Read from File

26 Content Designer Reference

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va Icon in v4
Rename File [y? File Management Rename File
L
Scan File Contents (w) File Management Search File Content

Uncompress File ? File Management Decompress File

frariearie s |

:'x..:_/

Watch File @J File Management Monitor File

Write to File .E File Management Write File
ir
(a2
File Transfer Module File Transfer
Delete Directory %ﬂ File Transfer Delete Directory
Delete File r@ File Transfer Delete File
&
Get File m File Transfer Download File
LY

Chapter 1: Introduction to CA Process Automation Operators 27

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va Icon in v4
Get File Information File Transfer Get File Information
u@ h
i
Make Directory %ﬂ File Transfer Create Directory
I\.-!-.-rl
Move File % File Transfer Move File
S
Put File % File Transfer Upload File
W/
Interpreter Module (Module is retired and
operators
redistributed)
Calculation xf}r Moved to Utilities Run JavaScript
1 —-
@
Resources . B Moved to Process Manage Resources

Control

Wait for Condition

Moved to Process
Control

Evaluate Expression

28 Content Designer Reference

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va Icon in v4
JDBC Module Databases
Delete Operator %_ Databases Delete from Database
" I|
=
Display Version Operator Databases Get Version
N
Generic SQL Operator @ Databases Query Database
L an
Bulk Insert Operator — Databases Bulk Insert into Database
=) E
a
Insert Operator E' Databases Insert into Database
Ly
List Database/Schema Databases Get Database Schema =
Operator —
v
List Free Space Operator ILD{G Databases Get Free Space
]
List Procedures Operator Databases

Get Stored Procedure g

Chapter 1: Introduction to CA Process Automation Operators 29

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va Icon in v4
List Tables Operator IEl Databases Get Table
i
List Used Space Operator L Q Databases Get Used Space
{ Ea
]
List Views Operator Databases Get View @
Select Operator E' Databases Select from Database —
' a - WL
S
-
Update Operator E" Databases Update in Database —
" T e
1
o S
JMX Module Java Management
IMX Get s Java Management Get MBean Attributes
JMX @
W
JMX Invoke ’ Java Management Invoke MBean Method
JME @
ae
JMX Set w Java Management Update MBean Attributes
JE

30 Content Designer Reference

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va Icon in v4
LDAP Module Directory Services
AD Join Computer to Domain E Directory Services Add Computer to Domain
2,
=@

AD Retrieve Domain
Controllers

Directory Services

Get Domain Controller

AD Retrieve Dormant
Accounts

Directory Services

Get Dormant Account

AD Setup Share for User

Directory Services

Update User Home
Directory

Add LDAP User to Group

Directory Services

Add User to Group

,_;h Isb éﬂ[iﬁ

£

,
c

&

Create LDAP Group

Directory Services

Create Group

£

8]
Create LDAP Object 5:@ Directory Services Create Object
! I_J_.
Create LDAP Organizational 5:‘;@ Directory Services Create Organizational Unit
Unit

Chapter 1: Introduction to CA Process Automation Operators 31

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va Icon in v4
Create LDAP User ;:@:‘] Directory Services Create User -
Gk
Delete LDAP Objects % Directory Services Delete Object
o

Modify LDAP Object Attributes

Directory Services

Update Object Attributes

o
Move LDAP Object @ Directory Services Move Object
o
e
Remove LDAP User from Directory Services Remove User from Grou
@WB y P g

Group

-

Retrieve LDAP Objects @ Directory Services Get Object
o

o

Retrieve LDAP Users E‘ Directory Services Get User Y
,}
L1 4

Mail Module Email
Create Folder @ Email Create Folder

32 Content Designer Reference

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va Icon in v4
Delete Folder E Email Delete Folder
—@
Delete Messages % Email Delete Email
Expunge Folder % Email Purge Folder
Get Message Content % Email Get Email Content
L
Get Message Count 4 Email Get Email Count
b 22 |
]
Get Message Envelope I‘Q Email Get Email Envelope
L
Get Message List i,’% Email Get Email List
L
Move Messages @ Email Move Email

Chapter 1: Introduction to CA Process Automation Operators 33

Module and Operator Changes

Module and Operator Names Operator
Prior to v4 Icon Prior to

New Category in v4

New Operator Name inv4d New
Operator
Icon in v4

v4
Rename Folder @

Email

Rename Folder

A

les)

Network Utilities Module

Web Services

Get Local Network Interfaces

&0
mi

Moved to Network
Utilities

Get Local Network

Interfaces m

Get Network Service Status Moved to Network Get Network Service Status
Utilities 1ong|
. |
w
Ping Host Moved to Network Ping Host ’
Utilities —]
—rs
HTTP Delete E Web Services HTTP Delete
YR
HTTP Get @ Web Services HTTP Get
w
&/
HTTP Head % Web Services HTTP Head
I\u;‘l-
[
HTTP Options % Web Services HTTP Options
W

34 Content Designer Reference

Module and Operator Changes

Run SSH Command

Moved to Command

Run SSH Command

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va4 Icon in v4
HTTP Post % Web Services HTTP Post
W
g/
HTTP Post Form Web Services HTTP Post Form
= {
W/
HTTP Put m Web Services HTTP Put
w
\u/
HTTP Trace % Web Services HTTP Trace

Execution

.-@

Run SSH Script

&

Moved to Command
Execution

Run SSH Script

Run Telnet Command

el

Moved to Command
Execution

Run Telnet Command

Run Telnet Script

i s

Moved to Command
Execution

Run Telnet Script

Chapter 1: Introduction to CA Process Automation Operators 35

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va Icon in v4
TFTP Download File g Moved to File Transfer TFTP Download File
W&/
TFTP Upload File g Moved to File Transfer TFTP Upload File
W

Process Module

Command Execution

Start Script E

Command Execution

Run Script

@/
Start System Process 8 Command Execution Run Program
@/
SNMP Module Network Utilities
Get SNMP Variable CRE ™ Network Utilities Get SNMP Variable
St [EE
U
Put SNMP Variable CF Network Utilities Update SNMP Variable
bt [EE
L { '|_|"
Ry
Network Utilities Send SNMP Trap

Send SNMP Trap FH""’

I
TRAR

36 Content Designer Reference

Module and Operator Changes
Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator
va4 Icon in v4
Watch SNMP Variable <.>}'!n_\ Network Utilities Monitor SNMP Variable
EH.I'HF' m
S
SOAP Module Web Services
Asynchronous SOAP Client Call ;Hp Web Services Invoke SOAP Method Async
=
M = ||
p-=
SOAP Client Call ’;l;i]n Web Services Invoke SOAP Method
e
m "
XML Extraction LB Moved to Utilities Apply Xpath
L
<>
UCF-USM Module Catalyst
Unchanged
Workflow Module Process Control
Run Detached ITPAM Process %g' (Retired)
Run Inline ITPAM Process E“E (Retired)
LS
Run ITPAM Process %‘El Process Control Start Process C]

Chapter 1: Introduction to CA Process Automation Operators 37

Module and Operator Changes

Module and Operator Names Operator New Category in v4 New Operator Name inv4d New
Prior to v4 Icon Prior to Operator

va Icon in v4
Send Event Process Control Send Event

G

User Interaction

8e

Process Control

Assign User Task

Wait for Event

Process Control

Monitor Event

Utilities (new)

Utilities

Invoke Java (new)

38 Content Designer Reference

Where Operators Can Run

Where Operators Can Run

Operators perform actions such as running processes, transferring files, performing
calculations, and generating alerts. An operator runs on an Orchestrator by default, but
you can specify a specific location (target) in the execution settings.

Targets can be specified as a touchpoint, touchpoint group, agent ID, proxy touchpoint,
or an IP address or FQDN. See How Targets for an Operator Can Be Specified in the
Content Designer Guide for a description of each of these items. Each target ultimately
resolves to an Orchestrator, one or more agents, or a host. Where the operator runs has
significance because in some cases the process that is being designed must operate on a
specific host. Also, certain operators can only execute on Orchestrators; others can only
operate on either Orchestrators or agents; and others require only that the targeted
host support SSH access.

Note: Agents acting as proxy touchpoints have different category requirements.
Operations that target proxy touchpoints go through SSH.

Category Operator Orchestrator Agent SSH
Target

Catalyst (see page 73) All X

Command Execution
(see page 101)

Run Program X X X
Run SSH Command x X
Run SSH Script X X
Run Script X X X
Run Telnet X X
Command
Run Telnet Script X X
Databases (see
page 163)
Bulk Insert into X X X
Database
Delete from X X X
Database
Get Database X X X
Schema
Get Free Space X X X

Chapter 1: Introduction to CA Process Automation Operators 39

Where Operators Can Run

Category Operator Orchestrator Agent SSH
Target

Get Stored X X X
Procedure

Get Table X X X
Get Used Space X X X
Get Version X X X
Get View X X X
Insert into Database x X X
Query Database X X X
Select from X X X
Database

Update in Database x X X

Date-Time (see
page 201)

Check Calendar X

Check Date-Time X

Directory Services (see

page 205)
Add Computer to X X
Domain
Add User to Group X X
Create Group X X
Create Object X X
Create X X

Organizational Unit

Create User X X
Delete Object X X
Get Domain X X
Controller

Get Dormant X X
Account

Get Object X X
Get User X X

40 Content Designer Reference

Where Operators Can Run

Category Operator Orchestrator Agent SSH
Target

Move Object X X

Remove User from x X

Group

Update Object X X

Attributes

Update User Home x X

Directory

Email (see page 267)

Create Folder X X

Delete Email X X

Delete Folder X X

Get Email Content x X

Get Email Envelope x X

Get Email List X X

Move Email X X

Purge Folder X X

Rename Folder X X

Send Email X X

File Management (see
page 289)

Compress File X X X
Copy File X X X
Create Folder X X X
Decompress File X X X
Delete File X X X
Get Directory X X X
Content

Get File Attributes x X X
Monitor File X X X
Read from File X X X
Rename File X X X

Chapter 1: Introduction to CA Process Automation Operators 41

Where Operators Can Run

Category Operator Orchestrator Agent SSH
Target
Search File Content x X X
Update File X X X
Ownership
Update File X X X
Permission
Update File X X X
Timestamp
Write File X X X
File Transfer (see
page 315)
Create Directory X X X
Delete Directory X X X
Delete File X X X
Download File X X X
Get File Information x X X
Move File X X X
TFTP Download File x X
TFTP Upload File X X
Upload File X X X
Java Management (see
page 337)
Get MBean X X
Attributes
Invoke MBean X X
Method
Update MBean X X
Attributes
Network Utilities (see
page 349)
Get Local Network ~ x X
Interfaces
Get Network X X

Services Status

42 Content Designer Reference

Where Operators Can Run

Category Operator Orchestrator Agent SSH
Target
Get SNMP Variable x X
Monitor SNMP X X
Variable
Ping Host X X
Send SNMP Trap X X
Update SNMP X X
Variable
Process Control (see
page 375)
Assign User Task X
Evaluate Expression x
Manage Resources x
Monitor Event X
Send Event X
Start Process X
Standard (see page 59)
Start X
Comment X
Stop Success X
Stop Failure X
And X
Or X
Reset X
Loop X
Utilities (see page 395)
Apply Xpath X
Delay X
Invoke Java X
Run JavaScript X

Web Services (see
page 415)

Chapter 1: Introduction to CA Process Automation Operators 43

Common Properties of all Operators

Category Operator Orchestrator Agent SSH
Target

HTTP Delete X

HTTP Get X

HTTP Head X

HTTP Options X

HTTP Post X

HTTP Post Form X

HTTP Put X

HTTP Trace X

Invoke SOAP X X

Method

Invoke SOAP X X

Method Async

Common Properties of all Operators

Operator configuration options display in the Properties window when you double-click

an operator in a process or schedule object.

Configuration for operator categories is described in the Content Administrator Guide.

Note: Verify that the Properties check box is selected if the properties for an operator
do not display. Select View, Properties in the top right-hand corner of the Designer, then
maximize the Properties window at the bottom of the screen. If the operators
themselves do not display, click Operators under the View menu.

Execution Settings (ALl Operators)

Target

Specifies the target on which to run the operator. A target can be a touchpoint,
touchpoint group, Agent ID, proxy touchpoint, IP address, or FQDN. Be sure that
you enable the category for the operator on the touchpoint. To open the Object
Browser dialog and select a touchpoint, click Select.

44 Content Designer Reference

Common Properties of all Operators

Target is a calculated expression

Specifies the target using an expression. Use an expression to specify a target
dynamically at runtime. For instance, use either a string dataset variable containing
the name of the touchpoint, or an Object Reference dataset variable pointing to the
touchpoint.

Loop

CA Process Automation lets you loop an operator until some condition is met. The
Loop property specifies the number of times that an operator repeats.

The exit conditions and the connecting links from the operator that is running in a
loop are evaluated only when the loop completes.

Note: For more detailed information about using loops in CA Process Automation,
see the Content Designer Guide.

Repeat Count
Specifies the condition for looping. Two options are available:

m Specify an integer or a CA Process Automation expression that returns an
integer at run time. The default value of 1 executes a loop on an operator a
single time. To execute an infinite loop, click the Infinite loop check box.

m Specify a Boolean expression. The expression is evaluated after the
operator executes. If the expression evaluates to true, the loop continues.
If the expression evaluates to false, the loop completes.

Infinite Loop

When selected, Repeat Count is ignored and an infinite loop is created. The
operator keeps repeating until either:

m The process is interrupted.

m Theloop is stopped from a different branch of the process (by processing a
stop loop command link to the Loop Operator (see page 66)).

Delay between iterations

Specifies the delay in seconds between each loop iteration (the default value is
0).

Timeout

Lets you set a timeout as part of every operator. If the operator does not finish by
the specified time, this setting provides an exit strategy. The Timeout option
provides the choice to either:

m End the operator and take the alternate timeout path.
m Let the operator continue while taking the timeout path.

m Reset the operator (run the operator again).

Chapter 1: Introduction to CA Process Automation Operators 45

Common Properties of all Operators

No Timeout

Specifies that the operator has no timeout. This check box is selected by
default.

Type

Select either Duration or Target Date.
Duration/Target Date and Time
m If you select Duration:

Enter a timeout duration in seconds.

The proper format for this field is anything that can be treated as an
integer/long, or string literals (for example,"10").

The timeout is specific to each iteration of a loop. Therefore, a timeout occurs
only if a single iteration takes longer than the timeout duration.

m If you select Target Date:
Enter a date and time when you want the operator to time out.

When a string literal is entered in this field, it can be in one of the following
formats:

m JVM Format - The date/time format that the Java application understands.
This format varies with the Java installation.

m If the JVM format is unknown, enter as "MM/dd/yyyy HH:mm:ss".

m Any other format must use a CA Process Automation library method
named "parseDate". This method takes in two parameters: (a) Date as a
string literal and (b) Format in which the string must be parsed. For
example, parseDate("10/10/2010 10:10:10"," dd/MM/yyyy HH:mm:ss")
returns this date: 10th of October 2010 10 hrs 10 mins and 10 secs.

If Target is selected as the Type, the Reset option (under Action) is
disabled.

Note: Be sure to enter this data in the proper format or else the operator
ignores these timeout settings.

46 Content Designer Reference

Common Properties of all Operators

Action
Notes:
m This option is not available for schedules.

m When an operator is in a loop and a timeout is configured, then the
following options behave differently. See Loop and Timeout Scenarios (see
page 48) for the actions that are taken.

Select from one of the following actions:

Continue
If selected, the process proceeds in the following manner after a timeout:
1. The operator remains in running mode only.
2. The timeout path is taken.

3. The post-execution code only runs when the operator completes, not
when the timeout path was taken.

Reset
If selected, the process proceeds in the following manner after a timeout:
1. The operator is reset (that is, the operator starts executing again).
2. The timeout path is taken.

3. The post-execution code executes only if the operator completes (not
when the operator was reset).

Note: If Reset is selected, then the Target Date option is disabled in the
Type drop-down menu.

Abort
If selected, the process proceeds in the following manner after a timeout:
1. The operator aborts.
2. The post-execution code executes.
3. The timeout path is taken.
Abandon
If selected, the process proceeds in the following manner after a timeout:
1. The operator times out.
2. The process continues to run in detached mode.

Note: An instance of a process started in detached mode has no parent
relationship to the process that started it and is the root process in any call
sequence originating from that process.

3. The post-execution code executes immediately.

4. The timeout path is taken.

Chapter 1: Introduction to CA Process Automation Operators 47

Common Properties of all Operators

Loop and Timeout Scenarios

If an operator is in a loop and the timeout is configured, then the following scenarios
take place for the selected actions:

Action

Select from one of the following actions:

Continue

If selected, the process proceeds in the following manner after a timeout:
1. The next iteration executes.
2. The post-execution code only runs if the iteration is complete.

Using the OverallLoopDuration dataset variable to continue looping an
operator that times out:

At the end of execution, the OverallLoopDuration contains the number of
seconds from the start of the first iteration until the end of the last iteration. If
the operator times out, the OverallLoopDuration does not contain the number
of seconds from the start of the first iteration until the time the operator times
out.

Reset

If selected, the process proceeds in the following manner after a timeout:
1. The iteration resets (that is, the particular iteration starts executing again).

2. The post-execution code executes only when the current iteration completes
(not when the iteration was reset).

3. The next iteration executes only when the iteration completes.

Note: If Reset is selected, then the Target Date option is disabled in the Type
drop-down list.

Using the OverallLoopDuration dataset variable to reset a looping operator
that times out:

If you set an operator to loop with a timeout action of Reset, CA Process
Automation checks the loop condition when moving from one iteration to
another. The loop condition is not checked when resetting an iteration. Also,
the OverallLoopDuration contains the number of seconds from the start of the
first iteration, including the time spent in all the reset iterations. Iteration
resets do not affect the OverallLoopDuration.

Abort

If selected, the flow proceeds in the following manner after a timeout:
1. The iteration aborts.
2. The post-execution code executes.

3. The next iteration executes.

48 Content Designer Reference

Common Properties of Operators in Processes

Abandon
If selected, the process proceeds in the following manner after a timeout:
1. The iteration continues to run in detached mode.

Note: An instance of a process started in detached mode has no parent
relationship to the process that started it and is the root process in any call
sequence originating from that process.

2. The post-execution code executes.

3. The next iteration executes.

Common Properties of Operators in Processes

Processing Group

All operators have properties that configure their appearance and behavior when added
to a process.

A process does not have a limit on the number of operators it can include. However, CA
Technologies recommends that a process contains approximately 40-50 operators for
maximum performance. If a process starts to grow larger than 40-50 operators, consider
splitting the process into smaller components.

The properties described here are displayed in the Execution Settings, Simulation, and
Information properties only for an operator in a process.

Note: Operator-specific properties override the properties that are defined at the
category level.

The following properties specify conditions to meet before running an operator, and
actions to perform before and after the operator runs. These properties are found
inside the Execution Settings of an operator.

Pre-execution Code

The first option under Processing lets you add code (see Calculate Parameters (see
page 413)) that runs before the operator executes. Set a specific variable before
execution continues. Pre-execution code can perform various tasks, such as setting
Named Dataset and Operator Dataset variables, as illustrated in the following
example:

if(Process.username==null)

{

Process.username="testuser";

}

Chapter 1: Introduction to CA Process Automation Operators 49

Common Properties of Operators in Processes

Before the pre-execution code finished and the operator executes, it has to reach
the code CanExecute = 1. This requirement lets you verify the external conditions
and to proceed only when an expected condition is met. When there is no
pre-execution code, the operator executes immediately. A typical use-case for
pre-execution code is to set up loop variables or other variables that can be used as
part of the operator.

For the code executed here, you can access the operator dataset using the
following syntax:

Process[Opname] . fieldname

For example, the following code creates an operator dataset variable “iNow”
containing:

m The name of the host

m The current date

m The current time in a single string

Process[Opname] .iNow = System.Host + ":" + System.Date + ":" + System.Time;
Post-execution Code

Adds code that executes after completion of an operator. Typical use cases for
post-execution code are to modify loop variables or to process the results of an
operator.

For code executed here, you can access the operator dataset using the following
syntax:

Process[Opname] . field name

For example, the following code statement copies the value of the Operator
Dataset Result variable to a process dataset (or process) variable called iResult:

Process.iResult = Process[Opname].Result;
Run as Caller User

Specifies that the selected operator in a process must run under the identity of the
authorized user who started the process. This requirement is true whether the
entire process is running as its owner or not. Process designers can then deliver a
self-contained automation object (run as the owner), but still require control of
access rights to parts of the process such as child processes and touchpoints.

50 Content Designer Reference

Common Properties of Operators in Processes

Simulation Properties

The Simulation properties configure parameters for simulating execution of an operator
in a process. Simulation can be used for testing branches of a process or to allow normal
processing to skip an operator without having to reroute the process.

These properties display in the Operator Properties pane when you double-click any
operator in the Process Designer.

Type

This option specifies the simulation mode. The types are available when you select
the Override simulation options in Process check box.

off
Turns off simulation and enables normal processing of the operator.
Local

Disables the operator so that it is not processed. CA Process Automation does
not call the associated operator or monitor the operator parameters.
Parameter checks include looking for an application program or validating the
execution touchpoint for an operator.

Distant

Causes the engine to call the associated operator. The operator examines the
parameters before returning the result but does not actually run the operator.
If the parameters are incorrect, the simulated operator fails regardless of the
specified outcome. If the parameters are correct, the operator returns the
specified result.

Delay

Specifies the number of seconds to delay a process to simulate the time that the
operator uses during normal processing.

Custom Result

Specifies the integer value that the Result variable in the operator dataset returns.
You can set this parameter to any value (positive or negative) to activate a custom
port that tests for a particular value.

This option is available only when Custom Result is selected for End condition.
End Condition

Specifies the exit condition for the simulated operator. You can use this option to
test or troubleshoot different branches in a process. The actual conditions depend
on the operator. The following conditions are typical end conditions:

Chapter 1: Introduction to CA Process Automation Operators 51

Common Properties of Operators in Processes

Completed

Causes the standard successful outcome exit link from the operator to process.
The Result variable in the operator dataset is set to 1. Any positive integer
value activates a standard successful exit link.

Failed

Causes the standard failed outcome exit link from the operator to process. The
Result variable in the operator dataset is set to 0. Zero or any negative integer
value activates the standard failed link.

Timeout

Causes the operator to take the timeout path when the given time is elapsed.
The Result variable in the operator dataset displays as timeout.

Evaluate Pre-execution and Post-execution Code

Select this check box to evaluate the pre-execution and post-execution code even
when simulating the operator.

Override Simulation Options in a Process

Select this option to avoid having simulation options for the operator that are
affected by changes to the simulation options at the process level. This setting is
typically the first setting you change before the rest of the settings in this group.

Information Properties

The Icon properties determine the name of the operator and visual representation of
the operator and its comments. Default settings (for the entire process) are set by
selecting the Properties button on the Designer toolbar.

Override Object Preferences

Select this check box to override the default process settings and configure settings
specific to that operator.

52 Content Designer Reference

Common Properties of Operators in Processes

Icon
Name

Specifies the name of an operator. The Name property is especially important
when configuring an operator that other operators reference. The Name
property is used with the following syntax in an expression to access variables
in the operator dataset of another operator in a process:

Process.Operator name.variable name
Operator names must be unique within the same process.
Use Default Icon

If checked, the operator uses the default icon. Clear this check box to use a
custom icon object for the operator instead of the default.

Browse

Click to select the custom icon object that you want to use for this instance of
the operator.

Label Display
Show Labels

Displays any icon information for the operator that you enter in the Name field.
Select one of the following options:

Truncated
Displays only a partial amount of the Name field next to the operator icon.
Long
Displays the entire length of the Name field next to the operator icon.
off
No label displays.
Label Source
Object Name
Select to display the name of the operator as its label.
Comments

Select to display the operator comments (that you enter in the Comments text
box) as its label.

Label Colors
Click Choose Color to select a color for the following parts of the label:
m Text Color
m Background Color

m Border Color

Chapter 1: Introduction to CA Process Automation Operators 53

Common Properties of Operators in Schedules

Font

Configure the font properties of the operator icon label: Font Family, Font Style,
and Font Size.

Note: Select fonts that are generally available on computers hosting CA Process
Automation.

Preview
View your Font selections for the operator icon label before applying them.
Comments

Enter the comments that you want to display for the operator. If the value of Label
Source is Comments, this text displays in the label next to the operator.

Common Properties of Operators in Schedules

Calendar Settings

Operators in a schedule are started according to specified calendar and time conditions.
Properties groups for any operator added to a schedule associate calendar rules and

other time conditions with the operator. Click the Properties icon in the schedule
editor to view operator properties. General scheduling properties display on the
General tab. Operator-specific properties display on the Specific tab.

Specify the time to start the operator in the first drop-down menu in the Start Time
drop-down list. Specify repeating intervals through the Repeat Interval (minutes) check
box. Select this check box to execute the operator at fixed intervals. Select a time to
stop repeating the operator in the End Time drop-down.

Note: See the Content Designer Guide for more information about schedules.

The Calendar Settings properties let you include dates from a predefined calendar in a
schedule.

Include Calendar
Click the calendar icon to select a predefined calendar to include in your schedule.
Exclude Calendar

Click the calendar icon to select a predefined calendar to exclude in your schedule.

54 Content Designer Reference

Common Properties of Operators in Schedules

Days per Shift

The number of days to shift a scheduled date when the scheduled date falls on
a closed date. The shift can be negative or zero. When this value is negative the
date shifts forward. When this value is zero, closed dates are simply skipped
without rescheduling the task.

No excluded days

Select this check box to only count open days when shifting a scheduled date to
avoid a closed date.

Maximum Shift

When an original scheduled date falls on a closed day and the task is rescheduled,
the new date could also fall on a closed date. This parameter defines the maximum
number of shifts that are allowed.

Only manually selected

When a calendar is not specified in a schedule, CA Process Automation considers
the item scheduled every day. The exception is when you select this option. When
this option is selected, schedule the run dates (on the Manually Included Dates tab).

Manually Included Dates

The Manually Included Dates properties let you manually add dates to a schedule. These
properties display a list of dates that are manually scheduled. They also display a list of
dates that the calendar rules specify. Dates added here override closed days that the
Manually Excluded Dates properties specify.

When a schedule does not specify a calendar, the Manually Included Dates properties
can schedule dates; select the Only manually selected check box in the Calendar Settings
properties.

Click the appropriate option buttons to add, remove, or rearrange list items.

Add Item

Adds a date to include in the list. To set the date, click the entry, then click the
calendar icon to select the dates to include.

Delete Item

Removes a selected date from the list.
Move Up

Moves up a selected date in the list.
Move Down

Moves a selected date down in the list.

Chapter 1: Introduction to CA Process Automation Operators 55

Common Output Parameters for all Operators

Manually Excluded Dates

Task Name

The Manually Excluded Dates properties let you manually remove dates from a
schedule. The Manually Excluded Dates properties list dates that you do not schedule
under any circumstances, regardless of all other rules or conditions.

Click the appropriate option button to add, remove, or rearrange list items.

Add Item

Adds dates to exclude to the list. To set the date, click the entry, then click the
calendar icon to select the dates to include.

Delete Item

Removes a selected date from the list.
Move Up

Moves up a selected date in the list.
Move Down

Moves down a selected date in the list.

The Task Name specifies the name of the user defined task. When you add any operator
or process to the schedule, you can specify the custom name in this field. The
customized task name applies to corresponding runtime task instances.

Common Output Parameters for all Operators

All operators contain the following output properties. Any further output parameters
are specified for each operator.

StartTime
The time the operator began in the process or schedule.
StartDate

The date the operator began in the process or schedule.

56 Content Designer Reference

Common Output Parameters for all Operators

Reason
Specifies the reason if the operator fails after execution.
Result

Specifies the result of the operator execution.

Chapter 1: Introduction to CA Process Automation Operators 57

Chapter 2: Standard Operators

Start Operator

Input Parameters

Use the Standard operators to control workflows in processes.

Use the Start operator to start a workflow in a process. The Start operator is
automatically included in a process by default.

You can add more than one Start operator to a process. Each Start operator in a process
starts its own workflow when an Orchestrator starts the process.

You can also add a Start operator to terminate a cyclical sequence of operators. A Start
operator that terminates a workflow reinitializes the operators in the workflow. The
operator then loops processing back to the initial Start icon for the sequence of
operators that were executed between the Start operators.

Double-click the Start operator to configure its name and appearance using the
Information (see page 52) properties.

Comment Operator

-

The Comment operator adds comments to the process. Comments are important for
documenting steps in a process and allow more space than labels.

follow these steps:

1. Dragthe Comment operator from the Standard folder to a location on one of the
editor tabs (main, exception handler, lane change handler).

2. Double-click the comment text to display the comment properties.

Chapter 2: Standard Operators 59

Stop Success Operator

Input Parameters
Background
Border Color
Click the Choose Color drop-down to select the color for the comment border.
Background Color
Select the color and transparency of the background for the comment text.
m Transparent for a transparent background.

m Opaque for a colored background. When you select this option, you can
also change the Color setting for the background.

Comments
Lets you enter or change the text of a comment.

m Configure the font properties: font, font style, size, effects (bold, italic, and
underline), color, and highlighting.

Select fonts that are likely to be installed on computers that host CA Process
Automation.

m Configure the alignment: left, right, or center horizontal alignment of the
comment text. Bulleted and numbered lists are also available.

m Click Hyperlink to turn selected text into a hyperlink.

m Click Source Edit to switch to source editing mode.

Stop Success Operator

The Stop Success operator terminates a process and determines it a success. A Stop
Success operator can terminate a process:

m At the end of a sequence of operators on the Main Editor tab.

®m In an exception on the Exception Handler tab.

®m |nalane change on the Lane Change Handler tab.

A Stop Success operator can be configured as either a Stop Success or a Stop Failure
operator (through its properties). When a process is run, the Stop Success operator sets

the Result variable for an operator dataset to 1 by default. You can override the positive
default to a negative one to change the Stop Success operator to a failure.

60 Content Designer Reference

Stop Success Operator

Input Parameters
Result

Specifies a result parameter. The result parameter is an integer expression which is
used to determine whether the flow ended correctly (positive value) or incorrectly
(zero or negative).

The default when you select a Stop Success end type is 1. The default when you
select Stop Failure is -1. You can also enter some other integer value or enter an
expression that returns a calculated value for the result code at run time.

The Result value for the Stop Success operator that terminates an instance of a
process is saved to the Result variable in the process dataset of the instance.

End Type
Select one of the following options:
Stop Success

Processes a normal end for a workflow. This option sets the Result code to 1. If you
change the Result value, use a positive integer to be consistent with a normal finish.

Stop Failure

Processes an abnormal end for a flow. This option sets the Result value to -1. If you
change the Result value, enter a negative integer to be consistent with an abnormal
finish.

Break Calling Loop

When the flow is invoked from another process, select this check box to break a
calling loop. Clearing this check box allows a calling loop to continue. This check box
only applies if the flow was called from within a loop in another process.

Ignore Running Tasks (Immediate Stop)

Ends a flow immediately without waiting for other operators to finish processing.
Clear this check box to wait for any operators still processing to finish before ending
the flow.

Chapter 2: Standard Operators 61

Stop Failure Operator

Stop Failure Operator

Input Parameters

The Stop Failure operator terminates a process and determines it a failure. A Stop
Failure operator can terminate a process:

m At the end of a sequence of operators on the Main Editor tab.

®m |n an exception on the Exception Handler tab.

®m |nalane change on the Lane Change Handler tab.

A Stop Failure operator can be configured as either a Stop Success or a Stop Failure
operator (through its properties). When a process is run, the Stop Failure operator sets

the Result variable for an operator dataset to -1 by default. You can override the
negative default to a positive one to change the Stop Failure operator to a success.

Result

Specifies a result parameter. The result parameter is an integer expression which is
used to determine whether the flow ended correctly (positive value) or incorrectly
(zero or negative).

The default when you select a Stop Failure end type is -1. The default when you
select Stop Success is 1. You can also enter some other integer value or enter an
expression that returns a calculated value for the result code at run time.

The Result value for the Stop Failure operator that terminates an instance of a
process is saved to the Result variable in the process dataset of the instance.

End Type
Select one of the following options:
Stop Success

Processes a normal end for a workflow. This option sets the Result code to 1. If you
change the Result value, use a positive integer to be consistent with a normal finish.

Stop Failure

Processes an abnormal end for a flow. This option sets the Result value to -1. If you
change the Result value, enter a negative integer to be consistent with an abnormal
finish.

62 Content Designer Reference

And Operator

And Operator

Parameters

Or Operator

Break Calling Loop

When the flow is invoked from another process, select this check box to break a
calling loop. Clearing this check box allows a calling loop to continue. This check box
only applies if the flow was called from within a loop in another process.

Ignore Running Tasks (Immediate Stop)

Ends a flow immediately without waiting for other operators to finish processing.
Clear this check box to wait for any operators still processing to finish before ending
the flow.

The And operator defines a synchronization point between all entry links to it. Exit links
from an And operator are activated only after all its entry links are activated. Use the
And operator to synchronize multiple branches of a process with a logical And condition
when two or more separate branches of a flow must all be completed before beginning
one or more additional branches.

You can include an And operator in a process in various ways.

follow these steps:

1. Dragthe And operator from the Standard folder to one of the editor tabs (Main,
Exception Handler, Lane Change handler).

2. Link one or more input operators that the And operator can synchronize.

3. Link one or more output operators to follow completion of the And operator.

The And operator does not contain any parameters.

The Or operator defines a synchronization point between all entry links to it. Exit links
from an Or operator are activated after at least one entry link to the operator has been

activated. At least one of two or more separate branches of a flow leading to an Or
operator be completed before beginning one or more exit branches.

Chapter 2: Standard Operators 63

Reset Operator

Parameters

The Or operator can be added to sequences of operators in a process on one of the
editor tabs (Main, Exception Handler, Lane Change Handler). Place an Or operator in a
process by dragging it from the Standard folder to any of those three editors. Link one
or more input operators that the Or operator can synchronize and link one or more
output operators to follow completion of the Or operator.

The Or operator does not contain any parameters.

Reset Operator

Input Parameters

o

Use the Reset operator to reset selected operators (typically an operator that caused an
exception) in a suspended process to their initial states. These reset operators act as if
they had not been executed and the process continues.

This operator also lets a user ignore an exception and continue with a process anyway.
The Reset operator lets a user set an operator in simulate mode and continue the
process with that operator simulated.

Operators List

Click Add to add an operator to reset. A drop-down menu lets you select one of the
available operator names in the current process. Multiple operators can be added,
which can then be added, deleted, or sorted.

You can also enter an expression (instead of choosing an operator from the
drop-down menu) which resolves to a String (an operator name) or ValueArray (a
list of operator names) at runtime.

Continue with Result

If unchecked, when an error-condition is met at runtime, CA Process Automation
resets the selected operators. CA Process Automation then continues with the
process flow.

When selected, the End Condition drop-down menu and the Evaluate pre-execution
and post-execution code check box become available.

64 Content Designer Reference

Reset Operator

End Condition

When you select the Continue with Result check box, the End Condition drop-down
menu becomes available with the following options:

Successful

CA Process Automation assumes that the selected operators are successful if
no error condition is met at runtime. CA Process Automation then continues
with the rest of the process flow.

Unsuccessful

CA Process Automation assumes that the selected operators have failed when
an error condition is met at runtime. CA Process Automation then continues
with the rest of the process flow.

Evaluate Pre-execution and Post-execution Code

Select this check box to evaluate pre-execution and post-execution code.

How the Reset Operator Works with the Loop Operator

The Reset operator works with the Loop operator as follows.

1.

The Reset operator allows the Loop operator to be reset. The Reset operator resets
the Loop operator as follows:

m Resets all operators inside the Loop operator.
m Resets the Loop operator to the first iteration.

After the reset, the Loop operator restarts from the first iteration.

Note: The Loop operator does not support simulation. The Reset operator always resets
a Loop operator regardless of the values of the fields:

Continue with Result
End Condition

Evaluate pre-execution and post-execution code

Chapter 2: Standard Operators 65

Loop Operator

Loop Operator

The Loop operator loops an enclosed sequence of operators in a process either a
specified number of times or indefinitely. You can place it in a process and can resize the
box to accommodate any number of operators in the sequence.

.
fir'

‘\ﬁ (ﬁl.f P,
|

The Loop operator can enclose a sequence of operators in a process on the Main Editor
pane, the Exception Handler pane, or the Lane Change Handler pane of the Designer
tab.

To place a Loop operator in a process

1. Dragthe Loop operator from the Standard folder to an editor.

2. Dragone or more input links to the input portal, and one or more output links from
its output portal.

3. Add looped operators inside the Loop box.
4. Link the input portal to the first operator in the looped sequence.

5. Link the last operator in the sequence to the output portal.

66 Content Designer Reference

Loop Operator

Input Parameters
Repeat Count

Specifies the number of times that an operator repeats. The following two options
are available:

m This value can be specified with an integer or a CA Process Automation
expression that returns an integer at run time. The default value of 1 executes
a loop on an operator a single time in a workflow. To execute an infinite loop,
click the Infinite Loop check box.

m A Boolean expression can also be used. As long as the expression evaluates to
true, an operator in a workflow executes a continual loop. If the expression is
false, the operator exits.

This value can also be specified using the loop variables in the dataset of the Loop
operator:

- CurrentLooplteration: A loop counter that starts at 0 during the first
iteration of the loop and increments by 1 for each additional iteration. This
variable is updated at the beginning and end of every iteration.

If the operator is configured to loop three times, at the end of execution of
all iterations, CurrentLooplteration is equal to:

-0initeration 1

- 1liniteration 2

Chapter 2: Standard Operators 67

Loop Operator

- 2 initeration 3

- 3in the last iteration, which is not executed as it violates the loop
condition.

- OverallLoopDuration: A loop counter that specifies the amount of time (in
seconds) that has passed since the start of the first iteration of the loop.
This variable is updated at the beginning and end of every iteration and
includes any delay that is set between iterations of the loop.

Set the Repeat Count to:
Process[OpName].CurrentLooplteration < x
where

X is the number of times to run the operator.
Or, set Repeat Count to:
Process[OpName].OverallLoopDuration < x
where

x is the number of seconds to loop the operator. The operator does not stop at
the number of seconds specified when it is in the middle of an iteration.
Instead, if OverallLoopDuration is greater than the number of seconds
specified, the operator does not execute the next iteration.

CA Process Automation checks the loop condition between iterations.

Infinite Loop

When selected, Repeat Count is ignored and an infinite loop is created. The
operator keeps repeating until either:

The process is interrupted.

The loop is stopped from a different branch of the process (by processing a
stop loop command link to the Loop Operator).

68 Content Designer Reference

Loop Operator

Delay between iterations
Specifies the delay in seconds between each loop iteration.
While loop

When selected, the Loop operator behaves as a while loop. If unselected, the Loop
operator behaves as a do while loop.

While loop

The Loop operator checks the loop condition specified in the Repeat Count field
before it executes any iteration, including the first iteration.

Do while loop

The Loop operator checks the loop condition specified in the Repeat Count field
at the end of every iteration, so it is guaranteed to execute at least the first
iteration of the loop.

Note: All existing loop operators that are imported from CA Process Automation
before v4 have the While Loop field unchecked. These existing operators continue
to work as Do while loops, as they did in previous versions.

Pre- and Post execution Code

Use these fields to execute JavaScript code to execute with each iteration of the
loop.

The processing sequence of any Pre and Post condition depends on the type of
loop. See the Content Designer Guide to learn more about the logical sequence of a
loop.

Output Parameters
CurrentLooplteration

A loop counter that starts at 0 during the first iteration of the loop and increments
by 1 for each additional iteration. This variable is updated at the beginning and end
of every iteration. If the Loop operator is configured to loop three times, at the end
of execution of all iterations, CurrentLooplteration is equal to:

m Oiniteration1
m liniteration?2
m 2initeration 3

m 3inthe last iteration, which is not executed as it violates the condition of the
Loop operator.

OverallLoopDuration

A loop counter that specifies the amount of time (in seconds) that has passed since
the start of the first iteration of the loop. This variable is updated at the beginning
and end of every iteration and includes any delay that is set between iterations of
the loop.

Chapter 2: Standard Operators 69

Change Lane Operator

Reset the Loop Operator Manually in a Process

See the Content Designer Guide for details on how to reset the Loop operator manually
in a process.

Change Lane Operator

Input Parameters

The Change Lane operator initiates a series of lane changing rules in the Lane Change
Handler pane of the Designer.

To place the Change Lane operator in a process

Drag the Change Lane operator from the Standard folder onto one of the editors.

Name

This option displays the name of the lane change. You can change the name by
editing the Name property under the Information properties group for the lane
change.

Source

Specifies the source lane for the lane change. Select All for a lane change from any
lane.

Destination

Specifies the destination lane for the lane change. Select All for a lane change to
any lane.

Exception Operator

Ll

Use the Exception operator to initiate an exception, such as a termination due to system
errors or unidentified exit conditions. To place the Exception operator in a process, drag
it from the Standard folder onto the Exception Handler editor.

70 Content Designer Reference

Links

Input Parameters

Links

Link Properties

Name

Displays the name of the exception. To change the name, edit the Name property
under the Information properties group for the exception.

Exception type

Select System Error, Unidentified Response, Aborted, or Timeout from the
drop-down list to categorize the exception.

Links define the structure of a process by creating sequences of operators.

(

To create a link
Click an exit link on an operator and drag it to the subsequent operator in the sequence.

If the link you want does not display, right-click the operator and then click the link type
(such as Failed, Completed, or Custom) on the shortcut menu.

Link properties display when you right-click a link in a process, then select Link
Properties.

Weight
Specifies the thickness of lines between operators.
Color

Opens the Choose Link Color dialog, in which you can change the color of links in
the process.

Shapes
Specifies the line shape for links between operators:
Straight

Creates straight links between operators.

Chapter 2: Standard Operators 71

Links

Orthogonal
Creates right-angled links between operators.
Dashed

Click this check box to create a dashed (dotted) link.

72 Content Designer Reference

Chapter 3: Catalyst

The Catalyst operators include create, read, update, delete, and event subscription
operators that can be invoked on any Catalyst connector. All operator parameters can
contain expressions for maximum flexibility in building content. CA Process Automation
processes can be created using any combination of these operators to construct
integrations across multiple products. In addition, the Catalyst operators could be used
as base operators to build custom operators for product-specific solutions.

All Catalyst connectors expose objects that comply with the Unified Service Model (USM
model). This common model facilitates cross product integrations.

The Catalyst operators contain are generic to any USM type. These operators also
contains operators that are specific to each USM type. See the Connector guide that is
provided with the applicable Catalyst connector for more information.

Catalyst nodes contain a broker, which is a directory of connectors. In design mode, the
Catalyst operators query the broker and display the connector names in the
MdrProdinstance list.

Generic USM Operators

The following operators are the more commonly used operators that apply to all USM
types.

Create Operator

The Create operator supports the CRUD create and update operations on any USM type.

Input Parameters
UCFBrokerURL

Defines the UCF Broker URL of your Catalyst server. Defaults to the UCF Broker URL
in the Catalyst configuration.

Specify the Broker URL of the Catalyst Broker Service as:
http://<hostname>:7000/ucf/BrokerService
When using secure Catalyst communications, specify the secure broker URL as:
https://<hostname>:7443/ucf/BrokerService

MdrProduct

Unique identifier of the connecting product.

Chapter 3: Catalyst 73

Generic USM Operators

MdrProdinstance

Unique identifier of the instance of the connecting product as registered in the UCF
Broker. CA Process Automation queries the UCF Broker for the list of connectors
available and populate this field. You can then select your connector from the
drop-down list.

Create
Indicates whether the operator:
m Creates an object
Or
m Updates an existing object.
Itemtype
Specifies the USM type of the object that is created or updated.
Values:
Alert, ComputerSystem, Router, Service, and so on.
For example:
itemtype=ComputerSystem
Properties

The operator parameters contain the properties of the USM type.
Customizing the Properties

The Properties form can be customized using the "Product property configuration file
name". If the MdrProduct and itemtype values match an entry in the "Product property
configuration file name", then the form displays according to the following rules:

m | the property is not defined in the USM type, then it is a custom property and that
property is added to the form.

m [f the property is defined in the USM type, then it is added to the form.

m If the property is defined in the USM type and it has an alias name, then it is added
to the form using the alias name.

74 Content Designer Reference

Generic USM Operators

For example, this entry displays the Alert form as shown.

<!-- SCOM -->
<MdrTypes MdrProduct="CA:00031">
<TypeMap name="Alert">
<Mapping propName="MdrProdInstance" aliasName="siloHost" />
<Mapping propName="MdrElementId" aliasName="Id" />
<Mapping propName="UrlParams" aliasName="" />
<Mapping propName="SeverityTrend" aliasName="" />
<Mapping propName="RelatedAlerts" aliasName="" />
<Mapping propName="AlertedMdrProdInstance" aliasName="siloHost" />
<Mapping propName="AlertedMdrElementID" aliasName="MonitoringObjectId"

/>
<Mapping propName="Summary" aliasName="Name" />
<Mapping propName="Message" aliasName="Description" />
<Mapping propName="Assignee" aliasName="Owner" />
</TypeMap>
</MdrTypes>

The tooltip of properties with alias names indicates the USM property name.

Delete Operator

The Delete operator supports the CRUD delete operation on any USM type. The
parameters identify the MDR and the object to delete.

Input Parameters
UCFBrokerURL

Defines the UCF Broker URL of your Catalyst server. Defaults to the UCF Broker URL
in the Catalyst configuration.

Specify the Broker URL of the Catalyst Broker Service as:
http://<hostname>:7000/ucf/BrokerService
When using secure Catalyst communications, specify the secure broker URL as:
https://<hostname>:7443/ucf/BrokerService

MdrProduct

Unique identifier of the connecting product.

Chapter 3: Catalyst 75

Generic USM Operators

MdrProdinstance

Unique identifier of the instance of the connecting product as registered in the UCF
Broker. CA Process Automation queries the UCF Broker for the list of connectors
available and populate this field. You can then select your connector from the
drop-down list.

MdrElementID
Unique identifier of the object in the connecting product.
ClassName

Class name of the object (Alert, ComputerSystem, and so on.)

Execute Operator

The Execute operator supports custom operations on any UCF Connector. The
parameters identify the MDR, the operation, and the operation parameters.

Input Parameters
UCFBrokerURL

Defines the UCF Broker URL of your Catalyst server. Defaults to the UCF Broker URL
in the Catalyst configuration.

Specify the Broker URL of the Catalyst Broker Service as:
http://<hostname>:7000/ucf/BrokerService
When using secure Catalyst communications, specify the secure broker URL as:
https://<hostname>:7443/ucf/BrokerService

MdrProduct
Unique identifier of the connecting product.

MdrProdinstance

Unique identifier of the instance of the connecting product as registered in the UCF
Broker. CA Process Automation queries the UCF Broker for the list of connectors
available and populate this field. You can then select your connector from the
drop-down list.

Operation Category

Displays the loaded connector descriptors for the Catalyst operators. Select one
from the drop-down list.

76 Content Designer Reference

Generic USM Operators

Get Operator

Input Parameters

Operation

Once you select an Operation Category, the connector descriptor operations
display. Select one from the drop-down list.

Parameter Expression
Enter a value map matching the expected parameter structure.
Parameter Namespace Expression
Enter the namespaces used in the parameter expression.
Note: Parameter Expression and Parameter Namespace Expression are useful when the
Execute operator is used as a base operator of a custom operator and the values are

dynamically created in the pre-execution code. The values can be constructed using the
dataset of the Execute base operator as a reference.

Parameters

Once you select an Operation, click Parameters to specify the input parameters of
the selected operation.

Note: Do not use click this button to enter parameters if you already entered data
in the Parameter Expression and Parameter Namespace Expression fields.

The Get operator supports the CRUD read operation on any USM type. The parameters
identify the MDR and the UCF filter values (entitytype, itemtype, recursive, id, and
updatedAfter). In addition, the MaxNumberOfObjects parameter restricts the number
of objects that the operator returns.

UCFBrokerURL

Defines the UCF Broker URL of your Catalyst server. Defaults to the UCF Broker URL
in the Catalyst configuration.

Specify the Broker URL of the Catalyst Broker Service as:
http://<hostname>:7000/ucf/BrokerService
When using secure Catalyst communications, specify the secure broker URL as:
https://<hostname>:7443/ucf/BrokerService

MdrProduct

Unique identifier of the connecting product.

Chapter 3: Catalyst 77

Generic USM Operators

MdrProdinstance

Unique identifier of the instance of the connecting product as registered in the UCF
Broker. CA Process Automation queries the UCF Broker for the list of connectors
available and populate this field. You can then select your connector from the
drop-down list.

entitytype
Specifies the type of the entity. Values can be "Alert", "Item" or "Relationship".
For example:
entitytype=Item
itemtype
Specifies the type of item. If not specified, then all types are retrieved.
For example:
itemtype=ComputerSystem
recursive

Specifies if the connector recursively includes the item and its constituent children
and relationships.

Specifies a specific object identifier (same as the MdrElementID)
updatedAfter

Specifies only objects that are updated after a specific time.
MaxNumberOfObjects

Specifies the maximum number of objects to retrieve before the operator
completes.

SubscribeToChanges Operator

The SubscribeToChanges operator supports event subscriptions on any USM type using
UCF filters. The parameters identify the MDR and the UCF filter values (entitytype,
itemtype, recursive, id, and updatedAfter). In addition, the MaxNumberOfObjects
parameter restricts the number of objects that the operator returns. The timeOut
parameter specifies the number of seconds after which the subscription expires. The
operator completes when either the number of objects are returned or the timeout
expires.

78 Content Designer Reference

Generic USM Operators

Input Parameters

This operator takes the following input parameters:
UCFBrokerURL

Defines the UCF Broker URL of your Catalyst server. Defaults to the UCF Broker URL
in the Catalyst configuration.

Specify the Broker URL of the Catalyst Broker Service as:
http://<hostname>:7000/ucf/BrokerService
When using secure Catalyst communications, specify the secure broker URL as:
https://<hostname>:7443/ucf/BrokerService

MdrProduct
Unique identifier of the connecting product.

MdrProdinstance

Unique identifier of the instance of the connecting product as registered in the UCF
Broker. CA Process Automation queries the UCF Broker for the list of connectors
available and populate this field. You can then select your connector from the
drop-down list.

entitytype
Specifies the type of the entity. Values can be "Alert", "ltem" or "Relationship".
For example:
entitytype=Item
itemtype
Specifies the type of item. If not specified, then all types are retrieved.
For example:
itemtype=ComputerSystem
recursive

Specifies if the connector recursively includes the item and its constituent children
and relationships.

Specifies a specific object identifier (same as the MdrElementID).
updatedAfter

Specifies only objects that are updated after a specific time.

Chapter 3: Catalyst 79

Generic USM Operators

timeOut
Specifies the number of seconds after which the subscription expires.
MaxNumberOfObjects

Specifies the maximum number of objects to retrieve before the operator
completes.

80 Content Designer Reference

Non-Generic USM Operators

Non-Generic USM Operators

In addition to the generic CRUD operators, there are specific Create/Update operators
for each USM type. The operator parameters are created from the properties of the
USM types. These operators are dynamically constructed from the USM schema during

the initialization of the Catalyst initialization.

The following operators are generated specifically from USM types:

Alert Update
ApplicationServerUpdate
ApplicationSystemUpdate
ApplicationUpdate
AssetUpdate
BackgroundProcessUpdate
BinaryRelationshipsUpdate
BootSoftwareUpdate
BusinessProcessServerUpdate
BusinessTransactionUpdate
ChangeOrderUpdate
ChangePackageUpdate
ClusterUpdate
CommentUpdate
CommunicationServerUpdate
ComplianceStatusUpdate
ComputerSystemUpdate
ConnectorlDUpdate
ConnectorUpdate
ContractUpdate
DatabaselnstanceUpdate
DatabaseUpdate
DirectoryServerUpdate
DiskPartitionUpdate
EntitylDUpdate
EntityUpdate

EnvironmentSensorUpdate

Chapter 3: Catalyst 81

Non-Generic USM Operators

m ExtensionEntityUpdate

m ExtensionRunningHardwareUpdate
m FileUpdate

m GenericlPDeviceUpdate

m GroupUpdate

m HypervisorManagerUpdate
® [ncidentUpdate

m [nterfaceCardUpdate

m |PConfigUpdate

m |TActivityProfileUpdate

m |TActivityTemplateUpdate
m |TActivityUpdate

m LatestUsmBuildUpdate

® locationUpdate

m MailServerUpdate

m ManagedAccesssUpdate

® ManagementAgentUpdate
m MediaDriveUpdate

® MemoryUpdate

m MessageServerUpdate

® MultiFunctionEntityUpdate
m NetworkServerUpdate

m NetworkUpdate

m OperatingSystemUpdate

m OrganizationalEntityUpdate
m PersonUpdate

® PhysicalContainerUpdate
m PortUpdate

m PowerSupplyUpdate

m PrinterUpdate

m PrintServerUpdate

m ProblemUpdate

m ProcessorUpdate

82 Content Designer Reference

Catalyst Security Parameters

m ProjectUpdate

m ProvisionedSoftwareUpdate
m RequestUpdate

m ResourceServerUpdate

m RouterUpdate

m RunningHardwareUpdate

®m RunningSoftwareUpdate

m SecurityServerUpdate

m ServiceSpecificationUpdate
m ServiceUpdate

® SnmpV1AccessUpdate

® SnmpV3AccessUpdate

m SoftwareComponentUpdate
m StorageArrayUpdate

m StoragePoolUpdate

m StorageVolumeUpdate

m SwitchUpdate

m TablespaceUpdate

® TransactionContextUpdate
® TransactionSegmentUpdate
m TransactionServerUpdate

m VirtualizationManagerUpdate
m VirtualSystemUpdate

m VMDataStoreUpdate

Catalyst Security Parameters

Catalyst Security parameters are included in every Catalyst operator. These parameters
support authentication at both the Catalyst level and at the connector level.

Once access is granted to Catalyst nodes, you can (optionally) obtain connector-specific
security information through the use of claims. See the Connector guide that is provided
with the applicable Catalyst connector for information about connector-specific claims.

Chapter 3: Catalyst 83

Example

Username

Specifies the user ID to access Catalyst nodes.

Password

Specifies the password that is associated with the Username.

The password values are encrypted.

Claims

These claims are not password-protected.

Click Add and enter the first claim name with its value. Repeat this step for each
claim. Use the up and down arrows to sequence or delete the claims as needed.

Claim Name
Specifies the name of the claim.
Claim Value

Specifies the value for the named claim.

Passwordclaims

Example

These claims are password-protected. The password values are encrypted by CA
Process Automation.

Click Add and enter the first claim name with its value. Repeat this step for each
password claim. Use the up and down arrows to sequence or delete the claims as
needed.

Claim Name
Specifies the name of the claim.
Claim Value

Specifies the value for the named claim.

The Catalyst operators can be used directly in processes to build generic content. You

can

also use the operators as base operators of custom operators for product-specific

content.

This example describes how to create Service Desk Incidents from SCOM Alerts.

To build a simple solution

1.
2.

Add the SubscribeToChanges operator to a process.

Select the SCOM Connector from the MdrProduct/MdrProdinstance lists and Alert
from the entitytype list.

84 Content Designer Reference

Example

3. Add the IncidentUpdate operator to the process. Select the Create check box and
the Service Desk Connector from the list.

3]

SubscribeToChanges_1 Properties = F

UCF Security = |

SubscribeToChanges o
UCFBrokerURL:

| [subscribaTachanges_1 MdrProduct:

CA:00031 [MS-System Center Operations Manager) |~
MdrProdInstance:

"SCOMS00 {CA:00031)" -
entitytype:

alert -
itemtype:
recursive:
id:
updatedafter:

timeOut:
MaxNumberOfObjects:
Execution Settings -

Simulation =

Icon ~

Ll

4. Set the values of the Incident properties using the properties of the SCOM Alert
object as variable expressions.

IncidentUpdate_1 Properties =417 K

UCF Security = | —
A IncidentUpdate B
&
UCFErokerlRL:
\ Create:

"trug” T
MdrProduct:

= e . -
SubscribeTaChanges_1 CA:00020
[MdrProdInstance:

["CASD (CA:00020)" *
MdrElementID:
T ; UrlParams:

E-ﬁ ! [IncidentUpdate_t Namedaliases:
e e Labsl;
J— SubscribeToChanges_1.Results[0] Summary
Description:

E‘i\, &
(] TenantiD:
v

Tags:

The content is now available for use.

Chapter 3: Catalyst 85

The Catalyst Process Automation Connector

The Catalyst Process Automation Connector

The Catalyst Process Automation connector is an embedded connector that exposes
UCF interfaces. Any UCF client application (including the CA Process Automation
Catalyst operators) can consume these interfaces.

Any Catalyst client can consume the Catalyst Process Automation connector to:
m Query the status of CA Process Automation processes.
m Start, abort, suspend and resume a CA Process Automation process.

m Receive life cycle events about CA Process Automation processes.

Important! Do not install any additional connectors in the Catalyst Process Automation
connector. Communication is only optimized only between the Catalyst Process
Automation connector and CA Process Automation.

Features
The Catalyst Process Automation connector supports the following features.

USM Model Mapping

The Catalyst Process Automation connector supports these types of USM model

mapping:
USM Type and Property PA Type and Property
ITActivityTemplate Flowchart
MdrProduct "CA:00074"
MdrProdInstance "CA:00074:01"
MdrElementID ReferencePath + ReferenceName
UrlParams "Tear off" URL
CreationTimestamp CreationDate
LastModTimestamp ModifiedDate
LastModUserName EditedBy
ActivityTypes "Workflow"
DefinitionName ReferencePath + ReferenceName
DefinitionVersion Version

86 Content Designer Reference

The Catalyst Process Automation Connector

ITActivity Workflow
MdrProduct "CA:00074"
MdrProdInstance "CA:00074:01"
MdrElementID Instance

UrlParams

"Tear off" URL

CreationTimestamp

CreationDate

LastModTimestamp

ModifiedDate

LastModUserName EditedBy
ActivityID ROID
RuntimeName Instance
RuntimeDiscriminator ROID
ActivityTypes "Workflow"
StateDescription RunState
ActivityState: RunState:
"Finished-Completed" "Completed"

"Finished-Completed"

"completedResponse"

"Finished-Abandoned" "Aborted"
"Finished-Failed" "Failed"
"Normal-Running" "Running"
"Normal-Waiting" "Idle"
"Obstructed" "Suspended"
"Obstructed" "BreakPointSuspended"
"Normal-Waiting" "Blocked"
"AwaitingScheduling" "Queued"
BinaryRelationship Workflow
MdrProduct "CA:00074"
MdrProdinstance "CA:00074:01"

MdrElementID

Instance (of Workflow)

SourceMdrProduct

"CA:00074"

Chapter 3: Catalyst 87

The Catalyst Process Automation Connector

SourceMdrProdlInstance "CA:00074:01"
SourceMdrElementID Instance (of Workflow)
TargetMdrProduct "CA:00074"
TargetMdrProdInstance "CA:00074:01"
TargetMdrElementID ReferencePath + ReferenceName (of
Flowchart)
Semantic "IsinstanceOf"

Querying Capabilities

The Catalyst Process Automation connector can use the get() operation on the
supported USM types. The "id" and "updatedAfter" properties of the basic filter are
supported in queries.

Custom Operations

The Catalyst Process Automation connector supports custom operations:
m Start a process, using the MdrElementID of an ITActivityTemplate.
m Cancel (abort) a process, using the MdrElementID of an ITActivity.
m Hold (suspend) a process, using the MdrElementID of an ITActivity.

m Release (resume) a process, using the MdrElementID of an ITActivity.
Note: Custom operations require secure access.
Event Subscriptions

The Catalyst Process Automation connector supports event subscriptions.
m "Created" event whenever an ITActivity (process) is started.
m "Modified" event whenever an ITActivity (process) changes (that is, ActivityState

changed).

Note: The "Deleted" event is not applicable.

88 Content Designer Reference

The Catalyst Process Automation Connector

Usade

You can access the Catalyst Process Automation connector using any Catalyst client
interface. These client interfaces include the Catalyst REST interface and the Catalyst
operators included with CA Process Automation.

All Catalyst operators interact with Catalyst connectors, which interact with an MDR. A
Catalyst connector always resides in a Catalyst container. The Catalyst container has a
broker that publishes advertisements about each connector residing in the container.

Catalyst Container

Catalyst
Operators [———=—==~= Ldbe ===

MDR

A 4

> Connector

A 4

> Connector MDR

Connector > MDR

All Catalyst operators require the URL of the Catalyst broker and the MdrProdInstance
of the connector. When a UCF broker URL value is entered into a Catalyst operator, the
operator queries the broker for its advertisements and populates the MdrProdinstance
list.

Communications

When you use Catalyst communications, the broker URL of the Catalyst Process
Automation connector is:

http://<hostname>:7000/ucf/BrokerService

When you use secure Catalyst communications, the broker URL of the Catalyst Process
Automation connector is:

https://<hostname>:7443/ucf/BrokerService

The secure broker requires Catalyst credentials and, if configured in the
"use.catalyst.claims.credentials" setting of OasisConfig.properties, CA Process
Automation credentials. You can specify these credentials in the UCF Security section of
any Catalyst operator. These values are entered in the Catalyst Security (see page 83)
parameters for an operator. The claim names are Username and Password.

Chapter 3: Catalyst 89

The Catalyst Process Automation Connector

Catalyst Operators

You can build CA Process Automation processes that use the Catalyst operators to:
m Query the connector (Get operator (see page 77))
m |nvoke the operations of the connector (Execute operator (see page 76))

m Subscribe to changes from the connector (SubscribeToChanges operator (see
page 78)).

Note: The CA Process Automation connector descriptors are in
ucfpamconnector-descriptors.jar.

Catalyst REST

You can access the Catalyst Process Automation connector using Catalyst RESTful
services.

The general format of the Catalyst REST URL is:

http://<hostname>:< port>/node/rest/<module>

The status of the Catalyst container, including the broker and connectors, is:
http://<hostname>:7000/node/rest/broker/Entity

The URL of the Catalyst REST interface is:
http://<hostname>:7000/node/rest/

That URL contains the Catalyst Process Automation Connector URL, which is:

http://<hostname>:7000/node/rest/CA:00074:01/

90 Content Designer Reference

The Catalyst Process Automation Connector

Display Processes

Starting with the URL of the Catalyst REST interface, you can display the Catalyst Process
Automation Connector URL. The Catalyst Process Automation Connector URL contains
the URLs of the supported types and operations.

For example:

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="http://ns.ca.com/2010/11/coreapi">
<id>CA:00074:01</id>
<mdrProduct>CA:00074</mdrProduct>
<mdrProdInstance>CA:00074:01</mdrProdInstance>
<type>
<id>ITActivity</id>
<name>ITActivity</name>
<namespace>http://ns.ca.com/2009/07/usm-core</namespace>
<prefix/>
<link href="http://mulwi@l-w500:7000/node/rest/CA:00074:01/ITActivity"
rel="1list"/>
<link
href="http://mulwifl-w500:7000/node/rest/CA:00074:01/ITActivity;metadata"
rel="metadata"/>
</type>
<type>
<id>ITActivityTemplate</id>
<name>ITActivityTemplate</name>
<namespace>http://ns.ca.com/2009/07/usm-core</namespace>
<prefix/>
<link
href="http://mulwi0l-w500:7000/node/rest/CA:00074:01/ITActivityTemplate"
rel="1list"/>
<link
href="http://mulwifl-w500:7000/node/rest/CA:00074:01/ITActivityTemplate;metadata"
rel="metadata"/>
</type>
<operation>
<id>Release</id>
<name>Release</name>
<synchronous>true</synchronous>
<link href="http://mulwi0l-w500:7000/node/rest/CA:00074:01/ ops/Release"
rel="self"/>
</operation>

You can display CA Process Automation processes in a browser using this URL:

http://<hostname>:7000/node/rest/CA:00074:01/ITActivityTemplate

Chapter 3: Catalyst 91

The Catalyst Process Automation Connector

For example:
<?xml version="1.0" encoding="UTF-8"?>
<enumeration xmlns="http://ns.ca.com/2010/11/coreapi">

<link
href="http://mulwi®l-w500:7000/node/rest/CA:00074:01/ITActivityTemplate?count=-1&
amp;start=0" rel="all"/>

<usm-core:ITActivityTemplate
xmlns:usm-core="http://ns.ca.com/2009/07/usm-core">

<usm-core:MdrProduct>CA:00074</usm-core:MdrProduct>
<usm-core:MdrProdInstance>CA:00074:01</usm-core:MdrProdInstance>
<usm-core:MdrElementID>/Test/TestExecl</usm-core:MdrElementID>
<usm-core:Label>Workflow:/Test/TestExecl:1</usm-core:Label>
<usm-core:CreationTimestamp>2011-11-28T13:07:03</usm-core:CreationTimestamp>
<usm-core:LastModTimestamp>2011-11-28T13:07:19</usm-core:LastModTimestamp>
<usm-core: InstanceName>Workflow: 1</usm-core:InstanceName>
<usm-core:DefinitionName>/Test/TestExecl</usm-core:DefinitionName>
<usm-core:DefinitionVersion>1</usm-core:DefinitionVersion>
<usm-core:ActivityTypes>Workflow</usm-core:ActivityTypes>

<link
href="http://mulwi01-w500:7000/node/rest/CA:00074:01/ITActivityTemplate/Test/Test
Execl" rel="self"/>

</usm-core:ITActivityTemplate>

<usm-core:ITActivityTemplate
xmlns:usm-core="http://ns.ca.com/2009/07/usm-core">

<usm-core:MdrProduct>CA:00074</usm-core:MdrProduct>
<usm-core:MdrProdInstance>CA:00074:01</usm-core:MdrProdInstance>
<usm-core:MdrElementID>/Test/TestGetITActivity</usm-core:MdrElementID>
<usm-core:Label>Workflow:/Test/TestGetITActivity:1</usm-core:Label>
<usm-core:CreationTimestamp>2011-11-29T20:47:50</usm-core:CreationTimestamp>
<usm-core:LastModTimestamp>2011-11-29T20:48:02</usm-core:LastModTimestamp>

<usm-core:InstanceName>Workflow:1l</usm-core:InstanceName>

92 Content Designer Reference

The Catalyst Process Automation Connector

<usm-core:

<usm-core:

<usm-core:

<link

DefinitionName>/Test/TestGetITActivity</usm-core:DefinitionName>
DefinitionVersion>1</usm-core:DefinitionVersion>

ActivityTypes>Workflow</usm-core:ActivityTypes>

href="http://mulwi®1l-w500:7000/node/rest/CA:00074:01/ITActivityTemplate/Test/Test
GetITActivity" rel="self"/>

</usm-core:ITActivityTemplate>

<usm-core:ITActivityTemplate
xmlns:usm-core="http://ns.ca.com/2009/07/usm-core">

<usm-core:

<usm-core:

<usm-core

<usm-core:

<usm-core:

<usm-core

<usm-core:

<usm-core:

<usm-core:

<usm-core

<link

MdrProduct>CA:00074</usm-core:MdrProduct>

MdrProdInstance>CA:00074:01</usm-core:MdrProdInstance>

:MdrElementID>/Test/TestExecRelease</usm-core:MdrElementID>

Label>Workflow: /Test/TestExecRelease:1</usm-core:Label>

CreationTimestamp>2011-12-01T15:10:47</usm-core:CreationTimestamp>

:LastModTimestamp>2011-12-01T15:11:03</usm-core:LastModTimestamp>

InstanceName>Workflow: 1</usm-core:InstanceName>

DefinitionName>/Test/TestExecRelease</usm-core:DefinitionName>

DefinitionVersion>1</usm-core:DefinitionVersion>

:ActivityTypes>Workflow</usm-core:ActivityTypes>

href="http://mulwifl-w500:7000/node/rest/CA:00074:01/ITActivityTemplate/Test/Test
ExecRelease" rel="self"/>

</usm-core:ITActivityTemplate>

</enumeration>

Chapter 3: Catalyst 93

The Catalyst Process Automation Connector

Display Process Instances

You can display CA Process Automation process instances in a browser using this URL:

http://<hostname>:7000/node/rest/CA:00074:01/ITActivity

For example:

<?xml version=
<enumeration x
<link
href="http://m
t=0" rel="all"
<usm-core:IT
<usm-core:
<usm-core:
<usm-core
<usm-core:
<usm-core:
<usm-core
<usm-core:
<usm-core:
<usm-core
<usm-core:
<usm-core:
<usm-core
<usm-core
<usm-core:
<link
href="http://m
rel="self"/>
</usm-core:I
<usm-core:IT.
<usm-core:
<usm-core
<usm-core:
<usm-core:
<usm-core
<usm-core:
<usm-core:
<usm-core
<usm-core
<usm-core:
<usm-core
<usm-core
<usm-core
<usm-core
<link
href="http://m
rel="self"/>

"1.0" encoding="UTF-8"?7>
mlns="http://ns.ca.com/2010/11/coreapi">

ulwi0l-w500:7000/node/rest/CA:00074:01/ITActivity?count=-1&star
/>

Activity xmlns:usm-core="http://ns.ca.com/2009/07/usm-core">
MdrProduct>CA:00074</usm-core:MdrProduct>
MdrProdInstance>CA:00074:01</usm-core:MdrProdInstance>

:MdrElementID>TestGetPAM 140</usm-core:MdrElementID>

Label>Workflow:TestGetPAM 140:140:140</usm-core:Label>
CreationTimestamp>2011-12-01T12:43:12</usm-core:CreationTimestamp>

:LastModTimestamp>2011-12-01T12:44:01</usm-core:LastModTimestamp>

LastModUserName>pamadmin</usm-core:LastModUserName>
InstanceName>TestGetPAM 140:140:Workflow</usm-core:InstanceName>

:ActivityID>140</usm-core:ActivityID>

RuntimeName>TestGetPAM 140</usm-core:RuntimeName>
RuntimeDiscriminator>140</usm-core:RuntimeDiscriminator>

:ActivityTypes>Workflow</usm-core:ActivityTypes>
:ActivityState>Finished-Completed</usm-core:ActivityState>

StateDescription>Completed</usm-core:StateDescription>
ulwi0l-w500:7000/node/rest/CA:00074:01/ITActivity/TestGetPAM 140"
TActivity>

Activity xmlns:usm-core="http://ns.ca.com/2009/07/usm-core">
MdrProduct>CA:00074</usm-core:MdrProduct>

:MdrProdInstance>CA:00074:01</usm-core:MdrProdInstance>

MdrElementID>TestGetPAM 135</usm-core:MdrElementID>
Label>Workflow: TestGetPAM 135:135:135</usm-core:Label>

:CreationTimestamp>2011-12-01T11:59:53</usm-core:CreationTimestamp>

LastModTimestamp>2011-12-01T12:01:11</usm-core:LastModTimestamp>
LastModUserName>pamadmin</usm-core:LastModUserName>

:InstanceName>TestGetPAM 135:135:Workflow</usm-core:InstanceName>
:ActivityID>135</usm-core:ActivityID>

RuntimeName>TestGetPAM 135</usm-core:RuntimeName>

:RuntimeDiscriminator>135</usm-core:RuntimeDiscriminator>
:ActivityTypes>Workflow</usm-core:ActivityTypes>
:ActivityState>Finished-Failed</usm-core:ActivityState>
:StateDescription>Failed</usm-core:StateDescription>

ulwi0l-w500:7000/node/rest/CA:00074:01/ITActivity/TestGetPAM 135"

94 Content Designer Reference

The Catalyst Process Automation Connector

</usm-core:ITActivity>

<usm-core:ITActivity xmlns:usm-core="http://ns.ca.com/2009/07/usm-core">
<usm-core:MdrProduct>CA:00074</usm-core:MdrProduct>
<usm-core:MdrProdInstance>CA:00074:01</usm-core:MdrProdInstance>
<usm-core:MdrElementID>TestGetITActivity 130</usm-core:MdrElementID>
<usm-core:Label>Workflow:TestGetITActivity 130:130:130</usm-core:Label>
<usm-core:CreationTimestamp>2011-12-01T11:53:44</usm-core:CreationTimestamp>
<usm-core:LastModTimestamp>2011-12-01T11:59:14</usm-core:LastModTimestamp>
<usm-core:LastModUserName>pamadmin</usm-core:LastModUserName>

<usm-core:InstanceName>TestGetITActivity 130:130:Workflow</usm-core:InstanceName>
<usm-core:ActivityID>130</usm-core:ActivityID>
<usm-core:RuntimeName>TestGetITActivity 130</usm-core:RuntimeName>
<usm-core:RuntimeDiscriminator>130</usm-core:RuntimeDiscriminator>
<usm-core:ActivityTypes>Workflow</usm-core:ActivityTypes>
<usm-core:ActivityState>Finished-Completed</usm-core:ActivityState>
<usm-core:StateDescription>Completed</usm-core:StateDescription>
<link
href="http://mulwi0l-w500:7000/node/rest/CA:00074:01/ITActivity/TestGetITActivity
130" rel="self"/>
</usm-core:ITActivity>
</enumeration>

Display Process Relationships

You can display CA Process Automation process relationships in a browser using this
URL:

http://<hostname>:7000/node/rest/CA:00074:01/BinaryRelationship

Chapter 3: Catalyst 95

The Catalyst Process Automation Connector

For example:

<?xml version="1.0" encoding="utf-8"?>
<enumeration xmlns="http://ns.ca.com/2010/11/coreapi">
<link
href="http://mulwi01-w500:7000/node/rest/CA:00074_CA:00074:01/BinaryRelationship?
count=-1&start=0" rel="all"/>
<usm-core:BinaryRelationship
xmlns:usm-core="http://ns.ca.com/2009/07/usm-core">
<usm-core:MdrProduct>CA:00074</usm-core:MdrProduct>
<usm-core:MdrProdInstance>CA:00074:01</usm-core:MdrProdInstance>
<usm-core:MdrElementID>TestGetITActivityTemplate 1</usm-core:MdrElementID>
<usm-core:Label>IsInstanceOf</usm-core:Label>
<usm-core:InstanceName/>
<usm-core:SourceMdrProduct>CA:00074</usm-core:SourceMdrProduct>
<usm-core:SourceMdrProdInstance>CA:00074:01</usm-core:SourceMdrProdInstance>

<usm-core:SourceMdrElementID>TestGetITActivityTemplate 1</usm-core:SourceMdrEleme
ntID>
<usm-core:TargetMdrProduct>CA:00074</usm-core:TargetMdrProduct>
<usm-core:TargetMdrProdInstance>CA:00074:01</usm-core:TargetMdrProdInstance>

<usm-core:TargetMdrElementID>/Tests/TestGetITActivityTemplate</usm-core:TargetMdr
ElementID>
<usm-core:Semantic>IsInstanceOf</usm-core:Semantic>
<link
href="http://mulwi01-w500:7000/node/rest/CA:00074 CA:00074:01/BinaryRelationship/
TestGetITActivityTemplate 1" rel="self"/>
</usm-core:BinaryRelationship>
<usm-core:BinaryRelationship
xmlns:usm-core="http://ns.ca.com/2009/07/usm-core">
<usm-core:MdrProduct>CA:00074</usm-core:MdrProduct>
<usm-core:MdrProdInstance>CA:00074:01</usm-core:MdrProdInstance>
<usm-core:MdrElementID>TestGetITActivity 1</usm-core:MdrElementID>
<usm-core:Label>IsInstance0f</usm-core:Label>
<usm-core: InstanceName/>
<usm-core:SourceMdrProduct>CA:00074</usm-core:SourceMdrProduct>
<usm-core:SourceMdrProdInstance>CA:00074:01</usm-core:SourceMdrProdInstance>

<usm-core:SourceMdrElementID>TestGetITActivity 1</usm-core:SourceMdrElementID>
<usm-core:TargetMdrProduct>CA:00074</usm-core:TargetMdrProduct>
<usm-core:TargetMdrProdInstance>CA:00074:01</usm-core:TargetMdrProdInstance>

<usm-core:TargetMdrElementID>/Tests/TestGetITActivity</usm-core:TargetMdrElementI
D>
<usm-core:Semantic>IsInstanceOf</usm-core:Semantic>
<link
href="http://mulwi0l-w500:7000/node/rest/CA:00074 CA:00074:01/BinaryRelationship/
TestGetITActivity 1" rel="self"/>
</usm-core:BinaryRelationship>

96 Content Designer Reference

The Catalyst Process Automation Connector

</enumeration>
Display a Specific Object
You can display any specific object in a browser by appending the id value to the URL.

For example, to display a process, use this URL:

http://<hostname>:7000/node/rest/CA:00074:01/ITActivity/TestSubscribeAlert 59

By refreshing the browser, you can monitor the process status (in the ActivityState
property).

<?xml version="1.0" encoding="utf-8"7?>

<usm-core:ITActivity xmlns:usm-core="http://ns.ca.com/2009/07/usm-core">
<usm-core:MdrProduct>CA:00074</usm-core:MdrProduct>
<usm-core:MdrProdInstance>CA:00074:01</usm-core:MdrProdInstance>
<usm-core:MdrElementID>TestSubscribeAlert 59</usm-core:MdrElementID>
<usm-core:Label>Workflow:TestSubscribeAlert 59:59:59</usm-core:Label>
<usm-core:CreationTimestamp>2012-04-18T15:57:38</usm-core:CreationTimestamp>
<usm-core:LastModTimestamp>2012-04-18T15:59:18</usm-core:LastModTimestamp>
<usm-core:LastModUserName>pamadmin</usm-core:LastModUserName>

<usm-core: InstanceName>TestSubscribeAlert 59:59:Workflow</usm-core:InstanceName>
<usm-core:ActivityID>59</usm-core:ActivityID>
<usm-core:RuntimeName>TestSubscribeAlert 59</usm-core:RuntimeName>
<usm-core:RuntimeDiscriminator>59</usm-core:RuntimeDiscriminator>
<usm-core:ActivityTypes>Workflow</usm-core:ActivityTypes>
<usm-core:ActivityState>Finished-Completed</usm-core:ActivityState>
<usm-core:StateDescription>Completed</usm-core:StateDescription>
<link xmlns="http://ns.ca.com/2010/11/coreapi"

href="http://mulwi01-w500:7000/node/rest/CA:00074:01/ITActivity/TestSubscribeAler

t 59" rel="self"/>

</usm-core:ITActivity>

Chapter 3: Catalyst 97

The Catalyst Process Automation Connector

Execute Connector Operations

You can execute connector operations by sending HTTP POST requests using the URL of
the operation.

For example, to start a process, send an HTTP POST request to:

http://<hostname>:7000/node/rest/CA:00074:01/ ops/Start

Include a request header:
Content-Type=application/xml

Include a request body containing a StartRequest that includes:
m The process name in the MdrElementID element

m The parameters in the Arguments element

<StartRequest xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="pl:StartRequest" xmlns:pl="http://ns.ca.com/2011/09/pam-ops" >
<EntityID>
<MdrElementID>/Tests/TestGetITActivityTemplate</MdrElementID>
</EntityID>
<Arguments>
<Argument>
<Name>argl</Name>
<Value>vall</Value>
</Argument>
<Argument>
<Name>arg2</Name>
<Value>val2</Value>
</Argument>
<Argument>
<Name>arg3</Name>
<Value>val3</Value>
</Argument>
</Arguments>
</StartRequest>

98 Content Designer Reference

The Catalyst Process Automation Connector

Send the Request

You can use any HTTP Client tool or application to send the request, including the
Firefox Rest Client add-on:

—REST Request

Method: POST

Request Header:

Request Body:

j Ihttp:Il',l'mulwiDl-wSDD:?DDD,I'nDde,I'rest,I'CF\:DDD?4:DlI_0ps,fStart

Tarne | Yalue

Conkent-Type applicationxml

<SkartRequest xmins: xsi="http: [foaw w3, orgf2001 fZMLSchema-instance”
wsitkwpe="p1:3tartRequest”
|emins:p1="http:{{ns.ca.com2011/09/pam-ops" >
<EntityID =
<MdrElermentID = Tests/TestGetITackivity Template < MdrElementID>
<JEnkityID >
<Arguments =
<frgument =
<Mamexargl <fMame >
<Malue zvall < Mvalue =
<[Argument =
<Argument =
“Mame=argZ <[/Mame >
<Malue svalz < fvalue
<[Argument =
<Argument =
<Mame xarg3<fMame =
<Malue sval3<value
<lArgument =
<larguments
«/StartReguest =

Response Header I Response Body Formatbed XML

— <usm-core:EntityID xsi:type="usm-core:EntityID" =
<usm-core:MdrElementID > TestGetITActivity Template _41 <fusm-core:MdrElementID =
<fusm-core:EntityID >

The HTTP response contains the name of the process instance in the MdrElementID
element. You can monitor the progress of this process instance as described in Display a

Specific Object (see page 97).

Chapter 3: Catalyst 99

Chapter 4: Command Execution

The Command Execution operators run processes and scripts on host operating
environments.

Run Program Operator

The Run Program operator starts and monitors a program.

Run Fragram operator

@
wo
| ‘ |

0 Completed £ Failed & Custom
Frogram ran and Prograrm was not found, Boolean expression
finished narmally with could not ke run, ended returns True
exit code of zero. with exit code other than
Result=0 zero, ar other failure
ExitCode=10 Result = Alters hetween 1 and -1

Faor example: Invalid name returns result as 1
Mo input returns result as -1

ExitCode I=10

Note: For almost all operators, Result is set to 1 upon successful execution and a
number other than 1 upon a failed execution. For this specific operator, Result is set to
0 upon successful execution and a number other than 0 upon a failed execution.

Chapter 4: Command Execution 101

Run Program Operator

Input Parameters

Program name

UNIX target: The program must be either a binary file or a shell script following
UNIX conventions (the first line of the file must have the full path of the shell,
as in #!/bin/ksh).

Windows target: The program must be an executable file or a script. The file is
typically specified by:

— The name of the file to execute in the working directory for the operator
Or

- In one of the directories specified by the PATH environment variable on
the target host.

The path relative to the Working directory specified for the UNIX Command
Execution operators.

Profile

UNIX

Specifies a host system profile to be “sourced” to define parts of the execution
context of the process.

For example:
"/home/username/appli_1 profile"

If no profile is specified here, the profile specified in the UNIX Command
Execution property settings (at the category level) is used. If no profile is
specified in either the operator or operator settings, then only the user profile
that runs the process is used.

Windows

Specifies the path to a batch (.bat) file in Windows that sets environment
variables to run by the process.

The variable settings that are defined by the batch file specified here are in
addition to any variable settings defined for the user profile that runs the

process. If no file is specified for this option, the operator uses the settings
defined by the Shell profile parameter set for the Windows process service.

102 Content Designer Reference

Run Program Operator

Working directory

Typically, this field specifies the folder that contains the program file or some
related files required by the program. Any file that is specified without an explicit
path is created or looked for in this directory.

The default if you do not specify a working directory is the home or working
directory for the user account that runs the operator.

UNIX
Specifies the working directory for the operator.
For example: "/home/userl"
User ID

Specifies the system user name under which to run the program. The user must
have execute permissions on the file.

If you leave this field blank, the default is the default user specified in the
configuration settings at the category level.

User names and passwords can be specified at the category level, or stored in
named dataset variables so they can be updated centrally without changing process
values.

Password
Specifies the current password for the specified user ID.

Specifying the password as a literal string value is considered a bad practice. A
much better method is to have the password kept in a dataset variable of type
password and to pass that variable.

Parameters
Specifies parameters to pass to the process.

The parameters are passed to the process in the same order that they are listed
here. Use the buttons to add, remove, or reorder parameters.

Program parameters are passed individually to the program on startup.
Standard out file

Specifies the file to capture text that the program writes to STDOUT.

For example:

/tmp/trace.log

You can specify the same file for both the standard error and standard out files.
However, no order is maintained for the different types of output.

Chapter 4: Command Execution 103

Run Program Operator

Standard error file

Specifies the file to capture text that the program writes to STDERR.
For example:

/tmp/trace.err

You can specify the same file for both the standard error and standard out files.
However, no order is maintained for the different types of output.

Post output to logs

Logs process output to the global log files.

Post output to dataset variable

Copies output of an operation (stdout and stderr) to the operator dataset variable
processOutput.

Truncate log file used for standard out

Replaces an existing log file with the same name every time new output is written.
Clear this check box to append output to an existing error log file with the same
name.

This check box also replaces an existing file even if it is also used for standard error
and the Truncate log file used for standard error check box is not selected.

Truncate log file used for standard error

Replaces an existing error file with the same name every time new output is
written. Clear this check box to append output to an existing error file with the
same name.

This check box also replaces an existing file even if it is also used for standard
output and the Truncate log file used for standard out check box is not selected.

Load OS user profile

Loads the operating system (typically Windows) profile that is associated with the
user account. The User ID specifies the profile (in addition to the profile specified by
Profile, which specifies environment variables). Typically this profile is not used
except to establish associations and similar Windows registry-based constructs for a
particular user. A performance penalty is associated with downloading user
information from a Domain server.

Kill process on flow end

The OS process running the specified program is killed (if it has not already
terminated) once the CA Process Automation process completes.

104 Content Designer Reference

Run SSH Command Operator

Output Parameters
programName
profile
workingDir
userlD
password
parameters
stdOutFileName
stdErrFileName
isPostToGlobalLog
isPostToOutVar
isTruncateForStdOut
isTruncateForStdErr
isLoadOSProfile
isKillProcessOnFlowEnd
processOutput
ExitCode
PID

Warnings
Run SSH Command Operator
-
. | @

The Run SSH Command operator is designed for use with targets such as network
devices or other non-server devices.

For executing on remove servers using SSH, it can be simpler to use the proxy
touchpoint or host group concepts.

Chapter 4: Command Execution 105

Run SSH Command Operator

Note: This operator does not require the user to specify the login sequence.

The Run SSH Command operator takes the following actions:
®m Opens an SSH connection to the remote host.
m Sends one command at a time.

m Reads the output of the command until it sees the prompt to indicate that the
command is completed.

m Sends the next command.

You can set the maximum amount of time to wait for the prompt before failing the
operator. Verify that this setting is greater than the execution time of the longest
command that this operator can execute.

You can set this operator to switch to a different user (including root) after login and
before executing the commands. Switching users allows the commands to be executed
under a different user. Switching to a different user is done interactively.

Input Parameters

For all input that can be specified as a regular expression in this operator, the operator
matches the entire reply data against the pattern. The Run SSH Command operator does
not match the pattern as a substring of the reply data). A dot ‘.” matches a new line
terminator (can be used to match multiline reply data.

Commands
Remote Hostname
The host name or IP of the computer to connect to.
Use Indexed String Variable for Commands?

If this check box is not selected, you can enter commands in the Commands field.
Select this field to specify the commands as indexed String variables in the
Commands Indexed String Variable field.

Commands

List of commands to execute on the remote host. Do not end the list with an 'exit
command, as the operator automatically exits the SSH session after the last
command executes.

Commands Indexed String Variable

Name of the dataset variable that contains a list of commands to execute on the
remote host. Do not end the list with an 'exit' command, as the operator
automatically exits the SSH session after the last command executes.

106 Content Designer Reference

Run SSH Command Operator

Save Output to Dataset Variable?

Select this check box to copy the output of each command to the dataset of the
operator. The output of each command is stored in the SSHCommandsOutput
variable.

Commands Output Size limit

Specifies the maximum number of bytes of each command's output to save in the
dataset variable of the operator. If this number is not specified, the operator uses
value: 4096.

User Command Prompt
This field serves two purposes:

m Indicates that the user is logged in. The operator looks for this prompt after the
user logs in.

m Indicates that a command (in the list of Commands or Commands Array
executed on the SSH session under this user) has finished. The operator can
then send the next command in the list.

This field is generally an indication of the command prompt of the user. The field is
typically specified as "#", "S$", ">", and so on, but must be specified as a regular
expression. For example: ".*[$>?:#]" to match any input (including new lines)
followed by $ or > or ? or : or #. Specify all the prompts that you expect to see
during the execution of the commands.

Important! Start the regular expression with .* to match all data returned by the
command until the prompt shows up. This regular expression should match all
output from the command until the next prompt.

Note: The brackets are required around the $ to indicate the S character. $ has a
special meaning in regular expressions if it is not surrounded by brackets.

Time to Wait for Prompts (sec):

The amount of time (in seconds) to wait for a prompt before giving up on the
prompt to send the commands. If this field is left blank, the operator uses value: 60.

This field applies to the prompts expected after executing each command specified
in the operator. The operator cannot tell if a command that executed in the SSH
session returned all its data. The operator keeps reading the output of the
command until it matches the specified User or Switch User Command prompt or
until this timeout is up (whichever comes first). The operator then proceeds to
process the output of the command before moving to the next command or failing
the operator.

Important! Set this time to be greater than the execution time of the longest
command that the operator executes.

Chapter 4: Command Execution 107

Run SSH Command Operator

Remote Login Information
Pseudo Terminal Type

The type of pseudo terminal to request on the SSH connection. This field overrides
the value specified at the category level. If the field is left blank, the operator uses
the default value set at the category level. If that value is blank, the operator
defaults to VT100.

m VT100 works typically with most computers (especially Linux-based).

m VT400 works typically with Windows-based computers. VT400 is required for
Windows platforms, especially when the output retrieved from the SSH server
(commands output) contains control characters in the place of spaces. For
example, [19;1H in the place of a space in the output. VT400 interprets the
spaces correctly for Windows.

Other terminal types can be used. Ensure that you test them before moving the
operator into production. Some pseudo terminal types are:

m dumb
m xterm
= Vvi220
= vt320
m gogrid

Check your SSH server’s installation and configuration for the supported pseudo
terminals. Some SSH servers list the supported pseudo terminals in the TermInfo
folder.

The type of pseudo terminal controls how space characters appear in the
commands output. You should test this operator against the pseudo terminals
supported by the SSH server to find an appropriate pseudo terminal that returns
the spaces appropriately. If the spaces are not returned appropriately, and no
pseudo terminal is available that could remedy this issue, do the following:

m Modify the operator’s input to accommodate this SSH server’s limitation.
m Use JavaScript to polish/extract the output of the commands.

If you request a pseudo terminal that is not supported, some SSH servers return an
error while others ignore the requested pseudo terminal type and use another.
Review the SSH server’s logs for the pseudo terminal used when the operator is
running.

Port

The port to connect to on the remote host. This field overrides the value specified
at the operator category level. If this field is left blank, the operator uses the default
value set at the operator category level. If that default operator category value is
blank, the operator uses value: 22.

108 Content Designer Reference

Run SSH Command Operator

User name

The user name to use for logging in to the remote host. This field overrides the
value specified at the operator category level. If it is left blank, the operator uses
the default value set at the operator category level.

Use Private Key for Login?

Specifies if a private key should be used to log in to the remote host (rather than
the password information). This field overrides the value specified at the operator
category level. If it is left blank, the operator uses the default value set at the
operator category level. Select one of the following:

m True prompts the operator to use a private key.

Selecting true enables the following fields: Private Key Input Source, Private
Key Inline Content, Private Key Expression, Private Key File Path, Passphrase for
key. The Password field is disabled.

m False prompts the operator to use password information.

Selecting false disables the following fields: Private Key Input Source, Private
Key Inline Content, Private Key Expression, Private Key File Path, Passphrase for
key. The Password field is enabled.

Entering any other value prompts the operator to use false and enables all fields (to
accommodate the user entering an expression).

Password

The password used for logging in to the remote host. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the operator category level.

Private Key Input Source
Specifies how to provide the private key. Select from one of the following:

m Inline Content: Enables Private Key Inline Content and disables Private Key
Expression and Private Key File Path

m File Path: Enables Private Key File Path and disables Private Key Inline Content
and Private Key Expression

m Expression: Enables Private Key Expression and disables Private Key Inline
Content and Private Key File Path

Private Key Inline Content

The content of the private key for logging in to the remote host. This field overrides
the value specified at the operator category level. If it is left blank, and the Private
Key Input Source is set to Inline Content, the operator uses the default value set at
the operator category level.

Chapter 4: Command Execution 109

Run SSH Command Operator

Private Key Path

The path to the private key for logging in to the remote host. This field overrides
the value specified at the operator category level. If it is left blank, and the Private
Key Input Source is set to File Path, the operator uses the default value set at the
operator category level.

Private Key Expression

The dataset variable that contains the content of the private key for logging in to
the remote host.

Note: Ensure that the dataset variable is a multiline String.

Passphrase for key

Optional passphrase to unlock the content of the private key. This field is required if
the private key was created with a passphrase. This field overrides the value
specified at the operator category level.

A blank Passphrase for Key does not automatically prompt the operator to inherit
the Passphrase for Key value from the operator category settings. In fact, the
Passphrase for Key field is tied to the Private Key Inline Content, Private Key Path,
or Private Key Expression field as follows:

m If the operator’s Passphrase for Key is specified, it is used by the operator.

m If the operator’s Passphrase for Key is blank, Private Key Inline Content is
specified (not blank), and the Private Key Input Source is set to Inline Content,
then the operator uses a blank Passphrase for key (passphrase not set).

m If the operator’s Passphrase for Key is blank, Private Key File Path is specified
(not blank), and the Private Key Input Source is set to File Path, then the
operator uses a blank Passphrase for key (passphrase not set).

m If the operator’s Passphrase for Key is blank, the Private Key Expression is
specified (not blank), and the Private Key Input Source is set to Expression, then
the operator uses a blank Passphrase for key (passphrase not set).

m For all other cases, the Run SSH Command operator uses the Default

Passphrase for key.

Note: The creation of SSH private/public keys is described in the Administration Guide.

Switch User Information
Run Commands/Script as Another User?

Should the specified commands be run as a different user? Select true to switch
users upon login or false to continue execution as the login user.

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the operator category level.

110 Content Designer Reference

Run SSH Command Operator

Switch User Command
The command to switch the user on the remote host. This is generally:
m SU-username
or
m sudo su - username

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the operator category level.

Switch User Password Text Prompt

The text prompt that indicates that the remote host requires a password for
switching the user to another user. This is generally:

m Password:
or
m password:

This parameter must be specified as a regular expression. For example, ".*assword:
" to match any input (including new lines) followed by "assword: ".

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the operator category level.

If a password is not required for switching to another user (for example, when
switching from root to another user), you can enter any value in this field. The
operator attempts to match the data read from the SSH session after submitting
the Switch User Command against the Switch User Password Text Prompt first, and
if it does not match, it then attempts to match the data against and the Switch User
Command Prompt to check if a password is required.

Switch User Password

The password to switch the user to another user. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the operator category level.

This field is not used if switching to another user does not require a password.
Switch User Command Prompt

This field serves two purposes:

m Toindicate that the user switch occurred.

m Toindicate that a command in the list of Commands or Commands Array
executed on the SSH session under the new user (that the operator switched
to) has finished, and the operator can send the next command in the list.

Chapter 4: Command Execution 111

Run SSH Command Operator

This field is generally an indication of the command prompt of the new user (that
the operator switched to). It is generally "#","$", ">", etc. This field must be
specified as a regular expression. For example: ".*[$>?:#]" to match any input
(including new lines) followed by S or > or ? or : or #. Specify all the prompts that
you expect to see during the execution of the commands. Start the regular
expression with .* to match all data returned by the command until the prompt
shows up. This regular expression matches all output from the command until the

next prompt.

Note: The brackets are required around the $ to indicate the S character. $ has a
special meaning in regular expressions if it is not surrounded by brackets.

Be careful with the RegEx to avoid false positives, for example:
The user enters a bad password when switching to root:

su — root
Password:

The answer for a bad password ends with #:

su: Sorry
#

Which gives the same prompt as when the user enters a good password, where the
answer also ends with #:

Sun Microsystems Inc. SunOS 5.10 Generic January 2005
#

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the operator category level.

Output Parameters
SSHSwitchUserPasswordPrompt

The actual Switch User Pasword Text Prompt read from the SSH session within the
time to wait for prompts. This is the data that was matched against the pattern
specified in the Switch User Pasword Text Prompt field. This field is empty if
switching the user did not require a password, such as when switching from Root to
any other user, or if the operator is not set up to switch users.

SSHSwitchUserCommandPrompt

The actual Switch User Command Prompt read from the SSH session (within the
time to wait for prompts) the first time after switching to the new user. This is the
data that was matched against the pattern specified in the Switch User Command
Prompt field. This field is empty if the operator is not set up to switch users.

112 Content Designer Reference

Run SSH Command Operator

SSHCommandsOutput

An indexed String containing the output read from each command (within the time
to wait for prompts) that ran on the remote host. The output for each command is
truncated to the value specified in Commands Output Size limit.

The full output of each command contains the next prompt.

SSHHost
CommandsAsAnArray
parameters

CommandsArray
isPostToOutVar
PostToOutVarSizeLimit
SSHHostUserCommandPrompt
SSHHostWaitTimeout
SSHPseudoTerminalType
SSHPort

SSHUsername
SSHUsePrivateKey
SSHPassword
SSHPrivateKeyOption
SSHPrivateKey
SSHPrivateKeyVar
SSHPrivateKeyPath
SSHPrivateKeyPassphrase
SSHSwitchUser
SSHHostSwitchUserCommand
SSHHostSwitchUserPasswordPrompt
SSHHostSwitchUserPassword

SSHHostSwitchUserCommandPrompt

Chapter 4: Command Execution 113

Run SSH Command Operator

Operator Ports
Success
| |

Failure

The operator completed successfully.

The operator depends on the patterns specified in User Command Prompt and
Switch User Command Prompt to decide if a command (and the operator)
succeeds or fails.

For example, a pattern of ".*#" succeeds the following command: ‘badCmd’:
1. The operator executes it:

badCmd
2. The output is read (which matches .*# prompt):

badCmd: not found
#

3. Execute the next command.

The user provides invalid input; for example, negative prompts timeout, blank
user command prompt, and so on.

Unable to establish a connection to the remote host. Check the remote host,
user name, password, and keys provided to the operator.

The user provides an unknown host in the remote host.

Unable to authenticate the user on the remote host:

- User/password authentication: user name or password is invalid
- User/private key authentication:

- A bad passphrase is provided for a passphrase-protected private key: the
operator indicates it cannot read the key due to an internal |10 problem

- The passphrase is missing for a passphrase-protected private key: the
operator indicates that the passphrase required for key authentication is
not supplied.

- A bad private key is provided: the operator indicates that it is unable to
parse the private key, the key format is not supported, or that it cannot
read the key due to an internal |0 problem.

- The path to the private key file is invalid, non-existent, or cannot be read.

Unable to switch user. Could not match the data read from the SSH session
(within the time to wait for prompts), with the specified Switch User Command
Prompt pattern.

Unable to switch user. Could not match the data read from the SSH session
(within the time to wait for prompts), with the specified Switch User Password
Text Prompt pattern.

114 Content Designer Reference

Run SSH Command Operator

Example

The user name/password provided are not allowed to log in through SSH.

The operator could not match the command prompt (specified in User
Command Prompt, or Switch User Command Prompt) with the output read
from a command within the time to wait for prompts. In this case either:

— The command finished execution and returned data that did not match the
pattern in User Command Prompt, or Switch User Command Prompt.

— The command’s execution is taking longer than the time to wait for
prompts and the operator stopped reading the output data before the
command finished. As a result, it did not match the data read with the
pattern in User Command Prompt, or Switch User Command Prompt. In
this case, you must increase the Time to Wait for Prompts to be greater
than the execution time of the longest command in the list.

Note: In this case, any subsequent commands in the list are not executed and
the SSHCommandsOutput only contains the output of the commands that were
executed before (including the output read for the current command).

Custom Ports

If set by the user during the process design.

This example explains how the Run SSH Command operator operates interactively.

follow these steps:

1.
2.

Open an SSH connection to the remote host.

Log in non-interactively using one of the following:

A user name and password.
A user name and private key.

A user name, private key, and passphrase, if the private key was created with a
passphrase.

Read from the SSH session until one of the following occurs:

You match the pattern specified in User Command Prompt. Continue to step 4.

The Time to Wait for Prompts expires without matching the pattern specified in
User Command Prompt. Fail the operator.

Determine whether the operator is set to Run Commands as Another User.

If so, go to step 5.

If not, go to step 6.

Chapter 4: Command Execution 115

Run SSH Script Operator

5. Send the Switch User Command and read from the SSH session until one of the
following occurs:

You match the pattern specified in Switch User Password Text Prompt, which
requires a password to switch users.

- Send the Switch User Password.
- Read from the SSH session until one of the following occurs:

— You match the pattern specified in Switch User Command Prompt.
Continue to step 6.

— The Time to Wait for Prompts expires without matching the Switch User
Command Prompt. Fail the operator.

You match the pattern specified in Switch User Command Prompt, which
requires no password to switch users. Continue to step 6.

The Time to Wait for Prompts expires without matching the Switch User
Password Text Prompt and the Switch User Command Prompt. Fail the
operator.

6. The Run SSH Command operator has logged in and switched the user, if applicable.
The operator is now ready to execute the commands.

7. Loop through the commands, sending one command at a time, and read from the
SSH session until one of the following occurs:

You match the pattern specified in User Command Prompt, if we did not switch
to another user. Repeat step 7 and send the next command.

You match the pattern specified in Switch User Command Prompt, if we
switched to another user. Repeat step 7 and send the next command.

The Time to Wait for Prompts expires without matching the User Command
Prompt or the Switch User Command Prompt (whichever is applicable). Fail the
operator.

Run SSH Script Operator

116 Content Designer Reference

Run SSH Script Operator

Input Parameters

The Run SSH Script operator works in interactive mode to accommodate network
devices, where the presence of a file system is unknown.

Note: For non-interactive SSH communication, use a proxy touchpoint or a host group.

The operator uses the login credentials that you specify to do the following:

Open an SSH connection to the remote host.
Build a "conn" object.

Note: When you specify a script, either bean shell or JavaScript, the "conn" object is
made available in the scope of this script.

You can leverage the public methods of the "conn" object in the script. You can use
these public methods to automate operations executed on an SSH pseudo terminal.
Examples include sending commands to the remote SSH host, waiting for the
prompt after sending each command, and retrieving the output of each command
from the server through SSH.

Unlike the Run Telnet Script operator, the Run SSH Script operator provides you with
the "conn" object after logging in to the SSH host.

The difference between the Run SSH Script operator and the Run SSH Commands
operator is that in the Run SSH Commands operator:

The output of all commands can be automatically saved in the operator’s dataset.

The regular expression specified in the user command prompt field is used to match
the prompt after execution of all commands in the list.

The time to wait for prompts applies to all commands in the list, hence it should be
greater than the execution time of the longest command in the list.

While in the Run SSH Script:

You can specify which command output to view or save in the operator’s dataset by
calling the following commands in this sequence:

1. ‘conn.sendLine()’
2. ‘conn.waitFor()’
3. ‘conn.getlLastOutput()’

You can specify a different regular expression to match the prompt after execution
of each command.

You can specify a different time to wait for the prompt after execution of each
command.

Input parameters for the Run SSH Script operator include the following.

Chapter 4: Command Execution 117

Run SSH Script Operator

SSH Script Attributes
Remote Host name
The host name or IP of the computer to connect to.
Script Type:

The type of the script specified in the Inline Script field. Select from bean shell script
(.bsh) and JavaScript (.js). If this field is left blank, the operator defaults to .bsh.

Inline Script?

This operator provides two methods to provide the script: inline or as an
expression. Select this check box to provide the script inline.

Inline Script

The script, written in bean shell or javascript, uses the conn object and its APl as
follows:

m Send a command to the remote host
m Wait for the command to terminate
m Retrieve the output of the last command

The APIs that the conn object exposes are detailed in Run SSH Script Operator Inline

Script APIs (see page 119).
Script as Expression

Provides the script as an expression. See the Inline Script field for information about
the script itself.

Parameters

The CA Process Automation parameters to pass to the script. Only simple CA
Process Automation parameter types can be passed to the script as follows:

m PAM Boolean is passed as a Boolean object.

m PAM Date is passed as a Date object.

m PAM Double is passed as a Double object.

m PAM Integer is passed as an Integer object.

m PAM Long is passed as a Long object.

m PAM String is passed as a String object.

m PAM Object Reference is passed as a String object.

Complex CA Process Automation parameters types (indexed types, ValueMaps, and
so on) cannot be passed to the script.

The script can access these objects through the args array of objects, where args[0]
corresponds to the first parameter in the list, args[1] corresponds to the second
parameters, and so on.

118 Content Designer Reference

Run SSH Script Operator

Output Variable Names

The names of the variables, created in the script, to save in the operator dataset at
the end of the execution of the script.

The variables must be defined in the scope of the script so they are visible at the
end of the execution and can be saved in the operator’s dataset.

The output variables are saved as follows:

Boolean object saves as a PAM Boolean.

Date object saves as a PAM Date.

Integer object saves as a PAM Integer.

Number object saves as a PAM Long or Double object.
String object saves as a PAM string.

Character object saves as a PAM string.

An array of objects saves as an indexed PAM type, where the PAM type is
defined by the type of the first object in the array of objects.

Undefined saves as a PAM string with undefined as its value (the variable has
not been assigned a value).

Run SSH Script Operator Inline Script APIs

The script used for the Run SSH Script operator's Inline Script field is written in bean
shell or javascript. It uses the conn object which exposes the following APlIs:

void send (String str, boolean log) throws Exception

This method sends data to the remote host.

Parameters include:

String str: Data to send to the remote host.

Boolean log: Exposes/hides the data sent to remote host in the CA Process
Automation logs. For debugging purposes, follow the interaction between the
operator and the remote host. Set the following in the
<install_dir>/server/conf/log4j.xml file:

<category name="com.optinuity.c2o.servicegroup.netutils">
<priority value="DEBUG" />
</category>

You should also set the CA Process Automation log file (c2o.log) to accept
DEBUG statements in log4j.xml.

When the debug level is set, the Command Execution operator category starts
logging into the CA Process Automation log file (c20.log) at the DEBUG level.
Any data sent to the remote host through send or sendLine is exposed in the
CA Process Automation logs.

Chapter 4: Command Execution 119

Run SSH Script Operator

Set Boolean log to true if you want the String str to be visible in the CA Process
Automation logs when logging at DEBUG level. Set Boolean log to false if you
do not want the String str to logged.

Note: c20.log is the CA Process Automation log file, not the process logs. The
operators do not write messages into the process log.

This method has no return values. An exception is thrown if the APl is unable to
write the data to the remote host.
public void sendLine (String str, boolean log) throws Exception

This method sends data to the remote host. A new line character is appended to
the data. Use this method to force the remote host to start the execution of the
command sent in the parameter.

Parameters are the same as the void send (String str, boolean log) throws Exception
method.

This method has no return values. An exception is thrown if the APl is unable to
write the data to the remote host.
void send (String str) throws Exception

This method is equivalent to Send (String str, true).

void sendLine (String str) throws Exception

This APl is equivalent to SendLine (String str, true).

public boolean waitFor(String pattern, int timeout) throws Exception

This method reads the output from the remote host and stops when the output
read matches the pattern specified in the parameters, or when the timeout is up.

The output read from the remote host by each call to the waitFor method is stored
in a buffer accessible through the getLastOutput() method. Each call to waitFor
overrides the buffer content from the previous call.

The next call to waitFor begins reading the output from where the previous call to
waitFor stopped reading. Keep this in mind when using this method, along with
getlastOutput.(). For example, if a call to WaitFor does not match the entire output
of a command, then the next call may contain the remaining output from the
previous command.

Important! Call waitFor after each call to sendLine in order to avoid mixing previous
command output with the current command output.

120 Content Designer Reference

Run SSH Script Operator

The Telnet script and SSH script operators use different mechanisms to read data
from the remote host:

m Telnet’s waitFor starts reading data directly from the host and matches as it
reads from the host.

m SSH’s waitFor retrieves the data read so far from a buffer and matches it
against the pattern.

m Calling waitFor after each call to sendLine makes the SSH and Telnet operators
behave the same way.

Parameters include:

m String pattern: Regular expression used to match the data read from the
remote host. Typically, this pattern matches any data up to the next prompt
(for example: ".*[S]"). That way, you can match (and retrieve) the output data
of a command (including new lines up until the next prompt), so you should
start the pattern with .*

Note: The method matches the entire data read (during this call to waitFor)
against the pattern. It does not match the pattern as a substring of the data
read. Also a dot “.” can match a new line terminator (it can be used to match
multiline reply data).

m Inttimeout: The period of time (in seconds) to spend reading data from the
remote host and matching it against the pattern.

Returns are Boolean:
m True if the data read within the timeout matches the pattern.

m False if the data read during the entire timeout period does not match the
pattern.

Note: The method keeps reading the output from the remote host until it matches
the pattern, or until the timeout is up, whichever comes first. It does not wait the
entire timeout period to return true if a match is already found.

Exceptions are thrown when:

m "waitFor method does not allow timeout to be <= 0" if the timeout parameter
is less than or equal to 0.

m "waitFor method does not allow pattern to be null or empty" if the pattern
parameter is null or empty.

m "Error while reading from the SSH session..." if unable to read data from the
session.

m "Syntax error in pattern..." if the pattern is invalid

m "Error when matching pattern... with data received..." if an error occurred
when matching the pattern to the data received at that point in time.

Chapter 4: Command Execution 121

Run SSH Script Operator

public String getlLastOutput()

This APl returns the content of the buffer where the last call to the waitFor method
saved the data it read from the remote host. This data may or may not match the
waitFor’s pattern. The buffer simply stores whatever was read by the last waitFor,
whether waitFor matched the pattern and returned true, or timed out and returned
false.

There are no parameters for this API.

Returns are string. They include the content of the buffer where the last call to the
waitFor method saved the data it read from the remote host. This data may or may
not match the waitFor’s pattern. The buffer simply stores whatever was read by the
last waitFor, whether waitFor matched the pattern and returned true, or timed out
and returned false.

No exceptions are thrown.

Remote Login Information
Pseudo Terminal Type

The type of pseudo terminal to request on the SSH connection. This field overrides
the value specified at the operator category level. If the field is left blank, the
operator uses the default value set at the operator category level. If that value is
blank, the operator defaults to VT100.

m VT100 works typically with most computers (especially Linux-based).

m VT400 works typically with Windows-based computers. VT400 is required for
Windows platforms, especially when the output retrieved from the SSH server
(commands output) contains control characters in the place of spaces. For
example, [19;1H in the place of a space in the output. VT400 interprets the
spaces correctly for Windows.

Other terminal types can be used. Ensure that you test them before moving the
operator into production. Some pseudo terminal types are:

m dumb
m xterm
= vt220
= Vvt320
m gogrid

Check your SSH server’s installation and configuration for the supported pseudo
terminals. Some SSH servers list the supported pseudo terminals in the Terminfo
folder.

122 Content Designer Reference

Run SSH Script Operator

The type of pseudo terminal controls how space characters appear in the
commands output. You should test this operator against the pseudo terminals
supported by the SSH server to find an appropriate pseudo terminal that returns
the spaces appropriately. If the spaces are not returned appropriately, and no
pseudo terminal is available that could remedy this issue, do the following:

m Modify the operator’s input to accommodate this SSH server’s limitation.

m Use JavaScript to polish/extract the output of the commands.

If you request a pseudo terminal that is not supported, some SSH servers return an
error while others ignore the requested pseudo terminal type and use another.
Review the SSH server’s logs for the pseudo terminal used when the operator is
running.

Port

The port to log in to on the remote host. This field overrides the value specified at
the operator category level. If this field is left blank, the operator uses the default
value set at the operator category level; if that default operator category value is

blank, the operator uses value: 22.

User name

The user name used for logging into the remote host. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the operator category level.

Use Private Key for Login?

Specifies if a private key should be used to log in to the remote host (rather than
the password information). This field overrides the value specified at the operator
category level. If it is left blank, the operator uses the default value set at the
operator category level. Select one of the following:

m True prompts the operator to use a private key.

Selecting true enables the following fields: Private Key Input Source, Private
Key Inline Content, Private Key Expression, Private Key File Path, Passphrase for
key. The Password field is disabled.

m False prompts the operator to use password information.

Selecting false disables the following fields: Private Key Input Source, Private
Key Inline Content, Private Key Expression, Private Key File Path, Passphrase for
key. The Password field is enabled.

Entering any other value prompts the operator to use false and enables all fields (to
accommodate the user entering an expression).

Password

The password used for logging in to the remote host. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the operator category level.

Chapter 4: Command Execution 123

Run SSH Script Operator

Private Key Input Source
Specifies how to provide the private key. Select from one of the following:

m Inline Content: Enables Private Key Inline Content and disables Private Key
Expression and Private Key File Path

m Expression: Enables Private Key Expression and disables Private Key Inline
Content and Private Key File Path

m File Path: Enables Private Key File Path and disables Private Key Inline Content
and Private Key Expression

Private Key Inline Content

The content of the private key for logging in to the remote host. This field overrides
the value specified at the operator category level. If it is left blank, and the Private
Key Input Source is set to Inline Content, the operator uses the default value set at
the operator category level.

Private Key as Expression

The dataset variable that contains the content of the private key for logging in to
the remote host.

Note: Ensure that the dataset variable is a multiline String.
Private Key File Path

The path to the private key for logging in to the remote host. This field overrides
the value specified at the operator category level. If it is left blank, and the Private
Key Input Source is set to File Path, the operator uses the default value set at the
operator category level.

Passphrase for key

Optional passphrase to unlock the content of the private key. This field is required if
the private key was created with a passphrase. This field overrides the value
specified at the operator category level.

A blank Passphrase for key does not automatically prompt the operator to inherit
the Passphrase for Key value from the operator category. In fact, the Passphrase for
key field is tied to the Private Key Inline Content, Private Key File Path, or Private
Key as Expression field as follows:

m If the operator’s Passphrase for key is specified, the operator uses it.

m The operator uses a blank Passphrase for key (passphrase not set) if the
following conditions are set:

— The operator’s Passphrase for Key is blank
— Private Key Inline Content is specified (not blank)

— Private Key Input Source is set to Inline Content

124 Content Designer Reference

Run SSH Script Operator

m The operator uses a blank Passphrase for key (passphrase not set) if the
following conditions are set:

— The operator’s Passphrase for key is blank
— Private Key File Path is specified (not blank)
— Private Key Input Source is set to File Path

m The operator uses a blank Passphrase for key (passphrase not set) if the
following conditions are set:

— The operator’s Passphrase for Key is blank
- The Private Key Expression is specified (not blank)

— The Private Key Input Source is set to Expression

For all other cases, the Run SSH Script operator uses the Default Passphrase for key.

Note: The creation of SSH private/public keys is described in the CA Process Automation
Content Administrator Guide.

Output Parameters

Each variable in the Output Variable Names list is created with the corresponding CA
Process Automation type.

If a variable name in the Output Variable Names does not exist in the script, the
operator creates the corresponding variable as an empty String.

The bean shell interpreter provides a robust environment where if the script throws an
exception or contains an error, the variables defined and initialized in the script before
the occurrence of the error can be retrieved with their values. On the other hand, the
javascript interpreter does not allow for any variable to be retrieved with its value if the
script throws an exception or contains an error.

Chapter 4: Command Execution 125

Run SSH Script Operator

Output parameters include:
SSHHost
inLineScriptLanguage
inlineScriptType
inLineScript
scriptExpression
parameters
outputVariables
SSHPseudoTerminalType
SSHPort

SSHUsername
SSHUsePrivateKey
SSHPassword
SSHPrivateKeyOption
SSHPrivateKey
SSHPrivateKeyVar
SSHPrivateKeyPath

SSHPrivateKeyPassphrase

Operator Ports
Success
The operator completed successfully.
Failure
The operator fails for any of the following reasons

m The user provides invalid input; for example: empty inline script, empty remote
host, negative port, empty user name, and so on.

m The user specifies an Inline Script Type other than ‘.bsh’ and ‘.js’.

m Unable to establish a connection to the remote host. Verify the remote host
and port provided to the operator.

m The user provides an unknown host in the remote host.
m Unable to authenticate the user on the remote host:

- User/password authentication: user name or password is invalid.

126 Content Designer Reference

Run SSH Script Operator

User/private key authentication:

- A bad passphrase is provided for a passphrase-protected private key: the
operator indicates it cannot read the key due to an internal 10 problem

- The passphrase is missing for a passphrase-protected private key: the
operator indicates that the passphrase required for key authentication is
not supplied.

- A bad private key is provided: the operator indicates that it is unable to
parse the private key, the key format is not supported, or that it cannot
read the key due to an internal 10 problem.

- The path to the private key file is invalid, non-existent, or cannot be read.

m The username/password provided are not allowed to log in through SSH.

m The user provides a complex data type in the list of parameters. Complex value
types (arrays, ValueMaps, and so on) cannot be passed to the script. Use simple
value types such as Double, Integer, Long, String, Date, and Boolean.

m When executing a ‘.bsh’ or ‘.js’ script:

Parse or syntax error while evaluating the script.
The script threw an exception.
An error occurred when executing the script.

Error when retrieving a variable from the script’s scope (at the end of
execution).

Custom Ports

If set by the user during the process design.

Chapter 4: Command Execution 127

Run SSH Script Operator

Example
The following procedure is an example of how to use the Run SSH Script operator.

follow these steps:

1. The Run SSH Script operator reads the login credentials you specify and uses them
as follows:

m To connect and authenticate to the remote SSH host.
m To create the "conn" object.

An example of a completed Remote Login Information panel for this operator
follows:

Remote Login Information L

Pseudo Terminal Type:

WT1io0
Port:
22
User name:
admin
Use Private key for Login?:
False

Password:

Process.pwd
Private Key Input Source:

LﬂIﬁgﬁI}iﬁne Content I' @

Private Key Inline Content:

Private Key as Expression:

Private Key File Path:

Passphrase for key:

128 Content Designer Reference

Run SSH Script Operator

2. Complete the Script parameters as follows:

a.

b.

Specify the remote host name.

Specify the parameters to pass to the script, where the values in this example
follow:

A string whose value is the word: "date".

Specify the name of the output variables that you create in the script (bean
shell or javascript), and that you want saved to the operator’s dataset at the
end of execution (here, "svrDate").

Note: The creation of dataset variables directly from the script is currently not
supported.

Script £
Remote Hostname:

Process.RemoteHost
Script Type:

Lbsh |~|@

¥ Inline Script?

Infine Script:
Script as Expression:

Parameters:

Parameters

1 “date"

Page | 1 of 1

Quiput Variable Names:

las] | | [a2]

5]

Displaying 1 - 1 of 1

Output Yariable Names

1 syrDate

Page | 1 of 1

5]

Displaying 1 - 1 of 1

Chapter 4: Command Execution 129

Run SSH Script Operator

3. Intheinline script, you leverage the "conn" object as shown in the following bean
shell script example:

Private Key Inline Content H

String gyrDate - "

if (gonn.waitbor”.*[$] ",103) {
conn.sendlinelargs[0]);
if{zonn . waitFor” *[$]",10)} {
}mﬂgm = conn.getlastoutput();
ki

Cancel |: [T

a. Create the svrDate variable to be visible at the script scope, so it can be saved
to the dataset of the operator at the end of execution.

b. Use "conn.waitFor()" to wait for the first prompt “.*[$]” (Reg Ex) up to 10
seconds.

c. If the prompt is found within 10 seconds, then use "conn.sendLine()" to send
the value of the first parameter passed to the script, followed by a new line
character. In this example, the value is: args[0] = the word "date".

d. Use "conn.waitFor()" to wait for the next prompt ".*[S]” (Reg Ex) up to 10
seconds.

e. Ifthe prompt is found within 10 seconds, use ‘conn.getLastOutput()’ to retrieve
the output read during the last call of the method waitFor and store it in
svrDate.

At the end of execution, the operator saves the String object svrDate as a CA Process
Automation string in the dataset of the operator.

Note: The prompt that was matched appears in the output returned by
conn.getlastOutput(). Some SSH servers return this prompt twice in the output, while
others return it once.

130 Content Designer Reference

Run Script Operator

Run Script Operator

The Run Script operator runs a script on a touchpoint host computer.

E Run Script operator
e/

0o
| |

2 Completed

Script completed
Fesult =0
ExitCode=10

@ Cuskam
Boolean expression
returns True
) Failed
Script ahorted
Result = Alters between 1 and -1

For example: Invalid name returns result as 1
Mo input returns result as -1

ExitCode =10

Note: For almost all operators, Result is set to 1 upon successful execution and a
number other than 1 upon a failed execution. For this specific operator, Result is set to
0 upon successful execution and a number other than 0 upon a failed execution.

Input Parameters

Script extension

For Windows, specifies the extension indicating the type of script. Select one of the
options from the drop-down list or enter your own extension.

Inline script

Specifies the script to be run by the script. Click the (...) button to open the Inline
Script editor to enter the script to execute.

UNIX

The script must be an executable script according to UNIX protocols. The first
line of the script must indicate the full path of the shell used to interpret the
script (such as #!/bin/sh).

Windows

The script must be an executable script according to the Windows scripting
selected for Script extension.

Chapter 4: Command Execution 131

Run Script Operator

Profile

UNIX

Specifies a host system profile to be sourced to define parts of the execution
context of the script. For example: /home/username/appli_1_profile.

If no profile is specified here, the profile specified in the Command Execution
category property settings is used. If no profile is specified in either the
operator or operator settings, then only the user profile that runs the process is
used.

Windows

Specifies the path to a batch (.bat) file in Windows that sets environment
variables to be run by the process. The environment variable definitions in the
batch file are in the following format:

SET SOME_ENV_VAR=/tmp/PAM.exe
SET ANOTHER_ENV_VAR=/tmp/aaaa

The variable settings defined by the batch file specified here are in addition to
any variable settings defined for the user profile that runs the process. If no file
is specified for this option, the operator uses the settings defined by the Shell
profile parameter set for the Command Execution category.

Working directory

UNIX

Specifies the working directory for the operator. For example: /home/userl.
Typically, this is the folder that contains the program file or some related files
required by the program. Any file that is specified without an explicit path is
created or looked for in this directory.

The default if you do not specify a working directory is the home directory of
the user account that is running the script.

Windows

User ID

Specifies the working directory for the operator. Typically, this is the folder that
contains the script file or some related files required by the script.

The default if you do not specify a working directory is the working directory of
the user account that is running the script.

Specifies the user name under which to run the script. The expression must have
execute permissions on the file. For example: Process.Appli_1.User. If you leave this
field blank, the default is the default user specified in the Command Execution
category configuration.

Typically user names and passwords are stored in named dataset variables so they
can be updated centrally without changing process values.

132 Content Designer Reference

Run Script Operator

Password

Specifies the current password for the specified user ID. For example, the following
would set the password to the value of the Process variable Password:
Process.Password.

In general, the password is evaluated against system information. However, in cases
where nonstandard security mechanisms are defined on the target host, the CA
Process Automation administrators can turn off this checking.

Because the password must be specified as an expression, the text you enter must
be visible. Avoid using literal strings and instead refer to password dataset
variables.

Parameters
Specifies parameters to be passed to the program. For example:
/tmp/input_file
/tmp/output_file

The parameters are passed to the process in the same order that they are listed
here.

Program parameters are passed individually to the program on startup. They are
not concatenated with spaces between them. The following expression entered on
a single line returns a single parameter, “P1P2":

P1+P2

The following expressions entered on two lines pass two parameters, “P1” and
IIPZII:
llPlll
I|P2I|

Standard out file

Specifies the standard output file for the script. If you do not specify the full path,
the root directory for the path is the working directory specified by Working
directory. For example: /tmp/trace.log.

The Command Execution category directs the stdout stream from the process to the
specified file. You can specify the same file for both the standard error and standard
out files. However, no order relative to each other is maintained for the different
types of output.

Chapter 4: Command Execution 133

Run Script Operator

Standard error file

Specifies the standard error file for the script. If you do not specify the full path, the
root directory for the path is the working directory specified by Working directory.
For example: /tmp/trace.err.

The Command Execution category directs the stderr stream from the process to the
specified file. You can specify the same file for both the standard error and standard
out files, however, no order relative to each other is maintained for the different
types of output.

Post output to logs

Logs process output to the global log files.

Post output to dataset variable

Copies output of an operation (stdout and stderr) to an operator dataset variable
(scriptOutput).

Truncate log file used for standard out

If checked, replaces an existing log file with the same name every time new output
is written.

If checked, replaces an existing file even if it is also used for standard error and the
Truncate log file used for standard error check box is not selected.

If unchecked, appends output to an existing error log file with the same name.

Truncate log file used for standard error

If checked, replaces an existing error file with the same name every time new
output is written.

If checked, replaces an existing file even if it is also used for standard output and
the Truncate log file used for standard out check box is not selected.

If unchecked, appends output to an existing error file with the same name.

Load OS user profile

Loads the operating system (typically Windows) profile associated with the user
account specified by User ID (in addition to the profile specified by Profile, which
specifies environment variables). Typically this is not used except to establish
associations and similar Windows registry-based constructs for a particular user.
There is a performance penalty associated with downloading user information from
a Domain server.

Kill process on flow end

When selected, kills the process at the end of the process flow.

134 Content Designer Reference

Run Script Operator

PowerShell Execution Policy

To run PowerShell scripts, Windows imposes a security in terms of its execution policy.
The Windows PowerShell execution policy determines whether scripts are allowed to
run and, if they can run, whether they must be digitally signed. It also determines
whether configuration files can be loaded.

The default execution policy of PowerShell on Windows is Restricted. To run a
PowerShell script, change the execution policy to any one of the following:

m RemoteSigned

m AllSigned

m Unrestricted

CA Process Automation provides an option during the installation of the agent or
Orchestrator to set the execution policy of the PowerShell script to Remote Signed
(meaning downloaded scripts must be signed by a trusted publisher before they can

execute). However, you always have an option to change the execution policy through
command prompt using the following PowerShell command:

Set-ExecutionPolicy

...followed by the appropriate policy name. For example, this command sets the
execution policy to AllSigned:

Set-ExecutionPolicy AllSigned

Chapter 4: Command Execution 135

Run Script Operator

Output Parameters
scriptType
inLineScript
profile
workingDir
userlD
password
parameters
stdOutFileName
stdErrFileName
isPostToGlobalLog
isPostToOutVar
isTruncateForStdOut
isTruncateForStdErr
isLoadOSProfile
isKillProcessOnFlowEnd
processOutput
StartDate
StartTime
Result
ExitCode
PID
Reason

Warnings

136 Content Designer Reference

Run Telnet Command Operator

Run Telnet Command Operator

Input Parameters

-.I\M

The Run Telnet Command operator takes the following actions:
m Opens a Telnet connection to the remote host.
m Sends one command at a time.

m Reads the output of the command until it sees the prompt to indicate that the
command was completed.

m Sends the next command.
Note: The Run Telnet Command operator and the Run SSH Command operator log in to

the remote host differently. The Run Telnet Command operator performs the login in an
interactive way.

You can set the maximum amount of time to wait for the prompt before failing the
operator. Verify that this setting is greater than the execution time of the longest
command that this operator executes.

You can set the Run Telnet Command operator to switch to a different user (including
root) after login and before executing the commands. Switching users allows
subsequent commands to be executed under a different user. Switching to different
user is done interactively.

Notes:

m For all input that can be specified as a regular expression in the Run Telnet
Command operator:

— The operator matches the entire reply data against the pattern.
- The operator does not match the pattern as a substring of the reply data.

m Adot ‘. matches a new line terminator (it can be used to match multiline reply
data).

Chapter 4: Command Execution 137

Run Telnet Command Operator

Commands

Remote Hosthame
The host name or IP of the computer to connect to.
Use Indexed String Variable for Commands?

If this check box is not selected, you can enter commands in the Commands field.
Select this option to specify the commands as indexed String variables in the
Commands Indexed String Variable field.

Commands

List of commands to execute on the remote host. Do not end the list with an exit
command, as the operator automatically exits the Telnet session after the last
command executes.

Commands Indexed String Variable

Name of the dataset variable that contains a list of commands to execute on the
remote host. Do not end the list with an 'exit' command. The operator
automatically exits the Telnet session after the last command executes.

Save Output to Dataset Variable?

Select this check box to copy the output of each command to the dataset of the
operator. The output of each command is stored in the TelnetCommandsOutput
variable.

Commands Output Dataset Variable Size Limit (bytes)

Specify the maximum number of bytes of each command's output to save in the
dataset variable of the operator. If this number is not specified, the operator uses
value 4096.

Remote Login Information

Pseudo Terminal Type

The type of pseudo terminal to request on the Telnet connection. This field
overrides the value specified at the operator category level. If the field is left blank,
the operator uses the default value set at the operator category level. If that value
is blank, the operator defaults to VT100.

m VT100 works typically with most computers (especially Linux-based).

m VT400 works typically with Windows-based computers. VT400 is required for
Windows platforms, especially when the output retrieved from the Telnet
server (commands output) contains control characters in the place of spaces.
For example, [19;1H in the place of a space in the output. VT400 interprets the
spaces correctly for Windows.

138 Content Designer Reference

Run Telnet Command Operator

Other terminal types can be used. Ensure that you test them before moving the
operator into production. Some pseudo terminal types are:

m dumb
m xterm
= Vvi220
= Vvi320
m gogrid

Check your Telnet server’s installation and configuration for the supported pseudo
terminals.

The type of pseudo terminal controls how space characters appear in the
commands output. You should test this operator against the pseudo terminals
supported by the Telnet server to find an appropriate pseudo terminal that returns
the spaces appropriately. If the spaces are not returned appropriately, and no
pseudo terminal is available that could remedy this issue, do the following:

m Modify the operator’s input to accommodate this Telnet server’s limitation.
m Use JavaScript to polish/extract the output of the commands.

If you request a pseudo terminal that is not supported, some Telnet servers return
an error while others ignore the requested pseudo terminal type and use another.
Review the Telnet server’s logs for the pseudo terminal used when the operator is
running.

Remote Port

The port to connect to on the remote host. This field overrides the value specified
at the operator category level. If this field is left blank, the operator uses the default
value set at the operator category level; if that default category value is blank, the
operator uses value: 23.

Connection Timeout (sec)

The connection timeout in seconds before giving up on the connection. This field
overrides the value specified at the operator category level. If this field is left blank,
the operator uses the default value set at the operator category level; if that default
category value is blank, the operator uses value: 20.

Login Scheme
The login scheme; select from one of the following:
m 0 prompts the operator to use user name and password

m 1 prompts the operator to use password only, which disables the following
fields: Password Text Prompt, and Password

m 2 prompts the operator to use no user name and no password, which disables
the following fields: User login Text Prompt, User name, Password Text Prompt,
and Password

Chapter 4: Command Execution 139

Run Telnet Command Operator

This field overrides the value specified at the operator category level. If you do not
specify a value and leave the field blank, the operator uses the value set at the
operator category level. Any other value prompts the operator to use user name
and password.

User Login Text Prompt

The text prompt that indicates that the remote host requires a login ID for logging
in. This is generally:

m Login:
or
m login:

This parameter must be specified as a regular expression. For instance: ".*ogin: " to
match any input (including new lines) followed by "ogin: ".

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

User name

The user name to be used for logging into the remote host. This field overrides the
value specified at the operator category level. If it is left blank, the operator uses
the default value set at the category level.

User Password Text Prompt

The text prompt that indicates that the remote host requires a password for the
user logging in. This is generally:

m Password:
or

m password:

This parameter must be specified as a regular expression. For instance: ".*assword:
" to match any input (including new lines) followed by "assword: ". This field
overrides the value specified at the operator category level. If it is left blank, the
operator uses the default value set at the category level.

Password

The password used for logging into the remote host. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the category level.

User Command Prompt
This field serves two purposes:
m Toindicate that the user is logged in.

m Toindicate that a command in the list of Commands or Commands Array
executed on the Telnet session under this user has finished, and the operator
can send the next command in the list.

140 Content Designer Reference

Run Telnet Command Operator

This field is generally an indication of the command prompt of the user. It is
generally "#","$", ">", and so on, but must be specified as a regular expression. For
example, ".*[$>?:#]" to match any input (including new lines) followed by $ or > or ?
or : or #. You should specify all the prompts that you expect to see during the
execution of the commands. The regular expression should start with .* to be able
to match all data returned by the command until the prompt shows up. This regular
expression should be able to match all output from the command until the next
prompt.

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

Note: The brackets are required around the S to indicate the $ character. $ has a
special meaning in regular expressions if not surrounded by brackets.

Time to Wait for Prompt

Switch User Information

The amount of time (in seconds) to wait for a prompt before giving up on the
prompt to send the commands. This field overrides the value specified at the
operator category level. If it is left blank, the operator uses the default value set at
the category level. If that default value is blank, the operator uses value: 60.

This field applies to the prompts expected after each command in the login and
switch user commands, and also the prompts expected after executing each
command specified in the operator. The operator cannot tell if a command
executed in the Telnet session returned all its data; hence it keeps reading the
output of the command until it matches the specified User or Switch User
Command prompt or until this timeout is up (whichever comes first). It then
proceeds to process the output of the command before moving to the next
command or failing the operator.

Important! Set this time to be greater than the execution time of the longest
command to be executed by the operator.

Run Commands/Script as Another User?

Should the script or the specified commands be run as a different user? Select True
or False.

m [f true, the current logged in user switches to another user before executing
the commands.

m If false, the following fields are disabled: Switch User Command, Switch User
Password Text Prompt, Switch User Password, and Switch User Command
Prompt.

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

Chapter 4: Command Execution 141

Run Telnet Command Operator

Switch User Command
The command to switch the user on the remote host. This is generally:
m SU-username
or
m sudo su - username

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

Switch User Password Text Prompt

The text prompt that indicates that the remote host requires a password for
switching the user to another user. This is generally:

m Password:
or
m password:

This parameter must be specified as a regular expression. For example, ".*assword:
" to match any input (including new lines) followed by "assword: ".

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

If a password is not required for switching to another user (for example, when
switching from root to another user), you can enter any value in this field. The
operator attempts to match the data read from the Telnet session after submitting
the Switch User Command against the Switch User Password Text Prompt first, and
if it does not match, it then attempts to match the data against the Switch User
Command Prompt to check if a password is required.

Switch User Password

The password to switch the user to another user. This field overrides the value
specified at the operator category level. If it is left blank, the operator uses the
default value set at the category level.

This field is not used if switching to another user does not require a password.
Switch User Command Prompt

This field serves two purposes:

m Toindicate that the user switch occurred.

m Toindicate that a command in the list of Commands or Commands Array
executed on the Telnet session under the new user (that the operator switched
to) has finished, and the operator can send the next command in the list.

142 Content Designer Reference

Run Telnet Command Operator

This field is generally an indication of the command prompt of the new user (that
the operator switched to). It is generally "#","$", ">", etc. It must be specified as a
regular expression.

For example: ".*[$>?:#]" to match any input (including new lines) followed by S or >
or ? or : or #. Specify all the prompts that you expect to see during the execution of
the commands. The regular expression should also start with .* to match all data
returned by the command until the prompt shows up. This regular expression
should be able to match all output from the command until the next prompt.

Note: The brackets are required around the $ to indicate the S character. $ has a
special meaning in regular expressions if not surrounded by brackets.

Be careful with the RegEx to avoid false positives, for instance:
The user enters a bad password when switching to root:

su — root
Password:

The answer for a bad password ends with #:

su: Sorry
#

Which gives the same prompt as when the user enters a good password, where the
answer also ends with #:

Sun Microsystems Inc. SunOS 5.10 Generic January 2005
#

This field overrides the value specified at the operator category level. If it is left
blank, the operator uses the default value set at the category level.

Output Parameters
TelnetUserLoginPrompt

The actual User Login Text Prompt that was read from the Telnet session within the
time to wait for prompts. This is the data that was matched against the pattern
specified in the User Login Text Prompt field.

TelnetUserPasswordPrompt

The actual User Password Text Prompt that was read from the Telnet session within
the time to wait for prompts. This is the data that was matched against the pattern
specified in the User Password Text Prompt field.

TelnetUserCommandPrompt

The actual User Command Prompt that was read from the Telnet session (within
the time to wait for prompts) the first time, either after login or after connection (if
no login is required). This is the data that was matched against the pattern specified
in the User Command Prompt field.

Chapter 4: Command Execution 143

Run Telnet Command Operator

TelnetSwitchUserPasswordPrompt

The actual Switch User Password Text Prompt that was read from the Telnet session
within the time to wait for prompts. This is the data that was matched against the
pattern specified in the Switch User Password Text Prompt field.

This field is empty if switching the user did not require a password; for example,
when switching from Root to any other user, or if the operator is not set up to
switch users.

TelnetSwitchUserCommandPrompt

The actual Switch User Command Prompt that was read from the Telnet session
(within the time to wait for prompts) the first time after switching to the new user.
This is the data that was matched against the pattern specified in the Switch User
Command Prompt field. This field is empty if the operator is not set up to switch
users.

144 Content Designer Reference

Run Telnet Command Operator

TelnetCommandsOutput

An indexed String containing the output read from each command (within the time
to wait for prompts) that ran on the remote host. The output for each command is
truncated to the value specified in Commands Output Size limit.

The full output of each command contains the next prompt.

TelnetHost

CommandsAsAnArray

parameters

CommandsArray

isPostToOutVar
PostToOutVarSizeLimit
TelnetPseudoTerminalType
TelnetPort
TelnetHostConnectTimeout
TelnetloginScheme
TelnetHostUserLoginPrompt
TelnetUsername
TelnetHostUserPasswordPrompt
TelnetPassword
TelnetHostUserCommandPrompt
TelnetHostWaitTimeout
TelnetSwitchUser
TelnetHostSwitchUserCommand
TelnetHostSwitchUserPasswordPrompt
TelnetHostSwitchUserPassword
TelnetHostSwitchUserCommandPrompt
TelnetSwitchUserPasswordPrompt
TelnetSwitchUserCommandPrompt
TelnetUserLoginPrompt
TelnetUserPasswordPrompt

TelnetUserCommandPrompt

Chapter 4: Command Execution 145

Run Telnet Command Operator

Operator Ports
Success
| |

Failure

The operator completed successfully.

The operator depends on the patterns specified in User Command Prompt and
Switch User Command Prompt to decide if a command (and the operator)
succeeds or fails.

For example, a pattern of ".*#" succeeds the following command: ‘badCmd’:
1. The operator executes it:

badCmd
2. The output is read (which matches .*# prompt):

badCmd: not found
#

3. Execute the next command.

The user provides invalid input; for example, negative remote port, negative
connection timeout, 0 or negative prompts timeout, blank user command
prompt, and so on.

Unable to log in. Could not match the data read from the Telnet session (within
the time to wait for prompts), with the specified User Login Text Prompt
pattern.

Unable to log in. Could not match the data read from the Telnet session (within
the time to wait for prompts), with the specified User Password Text Prompt
pattern.

Unable to log in. Could not match the data read from the Telnet session (within
the time to wait for prompts), with the specified User Command Prompt
pattern.

Unable to switch user. Could not match the data read from the Telnet session
(within the time to wait for prompts), with the specified Switch User Command
Prompt pattern.

Unable to switch user. Could not match the data read from the Telnet session
(within the time to wait for prompts), with the specified Switch User Password
Text Prompt pattern.

The user provided incorrect username/password login credentials.
The user provided incorrect username/password credentials to switch the user.

Unable to switch to another user unless the username/password scheme is
used to log in to the Telnet session.

146 Content Designer Reference

Run Telnet Command Operator

Example

The user provided an unknown remote host.
Telnet connection to the remote host is refused (Telnet is not allowed).
The username/password provided are not allowed to log in through Telnet.

The operator could not match the command prompt (specified in User
Command Prompt, or Switch User Command Prompt) with the output read
from a command within the time to wait for prompts. In this case either:

— The command finished execution and returned data that did not match the
pattern in User Command Prompt, or Switch User Command Prompt.

- The command’s execution is taking longer than the time to wait for
prompts and the operator stopped reading the output data before the
command finished. As a result, it did not match the data read with the
pattern covered in User Command Prompt, or Switch User Command
Prompt. In this case, you must increase the Time to Wait for Prompts to be
greater than the execution time of the longest command in the list.

Note: In this case, any subsequent commands in the list are not executed and
the TelnetCommandsOutput only contains the output of the commands that
were executed before (including the output read for the current command).

Custom Ports

If set by the user during the process design.

Use the Run Telnet Command operator interactively

The Run Telnet Command operator operates in the following interactive manner:

1.
2.

Open a Telnet connection to the remote host.

Do one of the following:

If no login is required, go to step 8.
If password only login is required, go to step 4.

If user name and password login is required, then read from the Telnet session
until one of the following occurs:

- You match the pattern specified in User Login Text Prompt. (Go to Step 3.)

— The Time to Wait for Prompts is up. If this time elapses, the operator fails.

Send the User name.

Read from the Telnet session until one of the following occurs:

You match the pattern specified in User Password Text Prompt (go to Step 5).

The Time to Wait for Prompts expires. If this occurs, fail the operator.

Chapter 4: Command Execution 147

Run Telnet Command Operator

5. Send the password, then:
a. Read from the Telnet session until one of the following occurs:
— You match the pattern specified in User Command Prompt, and continue.
- The Time to Wait for Prompts expires, then fail the operator.
b. Determine if the operator is set to Run Commands as Another User:
- Ifso, go to step 6.
- Ifnot,gotostep 7.
6. Send the Switch User Command and then do the following:
a. Read from the Telnet session until one of the following occurs:
- You match the pattern specified in Switch User Password Text Prompt.
- You match the pattern specified in Switch User Command Prompt.
— The Time to Wait for Prompts expires.
b. Take one of the following actions, based on the outcome:

- If you match the pattern for Switch User Password Text Prompt (password
required to switch user), send the Switch User Password, and read from
the Telnet session until one of the following occurs:

- You match the pattern specified in Switch User Command Prompt. Go to
Step 7.

- The Time to Wait for Prompts expires and the operator fails.

- If you match the pattern for Switch User Command Prompt (no password
required to switch user), go to Step 7.

- If the Time to Wait for Prompts expires, fail the operator.

7. The Run Telnet Command operator has logged in and switched the user, if
applicable. The operator is now ready to execute the commands.

8. Loop through the commands, send one command at a time, and read from the
Telnet session until one of the following occurs:

m You match the pattern specified in User Command Prompt (if we did not switch
to another user). Repeat step 8 and send the next command.

m You match the pattern specified in Switch User Command Prompt (if we
switched to another user). Repeat step 8 and send the next command.

m The Time to Wait for Prompts expires without matching the User Command
Prompt or the Switch User Command Prompt (whichever is applicable). Fail the
operator.

148 Content Designer Reference

Run Telnet Script Operator

Run Telnet Script Operator

The Run Telnet Script operator uses the remote host and port you specify to do the
following:

m Open a Telnet connection to the remote host.
m Build a "conn" object.

Note: When you specify a script, either bean shell or javascript, the "conn" object is
made available in the scope of this script.

You can leverage the public methods of the "conn" object in the script. The public
methods are used to authenticate on the Telnet session and automate operations
executed on a Telnet pseudo terminal. Examples of automated operations include
the following:

m Sending commands to the remote Telnet host.

m Waiting for the prompt after sending each command.

m Retrieving the output of each command.
Unlike the Run SSH Script operator, the Run Telnet Script operator does not
authenticate a user ID on the Telnet connection. Instead, you must leverage the ‘conn’
object’s methods to authenticate on the Telnet connection at the beginning of your
script.
Unlike the Run Telnet Command operator, the Run Telnet Script operator:

m Lets you specify which command output to view or save in the dataset of the
operator. You call the following methods in this sequence:

1. ‘conn.sendLine()’
2. ‘conn.waitFor()’
3. ‘conn.getlastOutput()’

m Lets you specify a different regular expression to match the prompt after the
execution of each command.

m Lets you specify a different time to wait for the prompt after the execution of each
command.

Chapter 4: Command Execution 149

Run Telnet Script Operator

Input Parameters

Input parameters for the Run Telnet Script operator are as follows.

Script
Remote Host name
The host name or IP of the computer to connect to.
Script Type:

The type of the script specified in the Inline Script field. Select from bean shell script
(.bsh) and JavaScript (.js). If this field is left blank, the operator defaults to .bsh.

Inline Script?

This operator provides two methods to provide the script: inline or as an
expression. Select this check box to provide the script inline.

Inline Script

The script, written in bean shell or javascript, uses the conn object and its APl as
follows:

m Send a command to the remote host
m Wait for the command to terminate
m Retrieve the output of the last command

The APIs that the conn object exposes are detailed in Run Telnet Script Operator's
Inline Script APIs (see page 151).

Script as Expression

Provides the script as an expression. See the Inline Script field for information on
the script itself.

Parameters

The CA Process Automation parameters to pass to the script. Only simple CA
Process Automation parameter types can be passed to the script as follows:

m PAM Boolean is passed as a Boolean object
m PAM Date is passed as a Date object

m PAM Double is passed as a Double object.
m PAM Integer is passed as an Integer object.
m PAM Long is passed as a Long object.

m PAM String is passed as a String object.

m PAM Object Reference is passed as a String object.

150 Content Designer Reference

Run Telnet Script Operator

Complex CA Process Automation parameters types (indexed types, ValueMaps, and
so on) cannot be passed to the script.

The script can access these objects through the args array of objects, where args[0]
corresponds to the first parameter in the list, args[1] corresponds to the second
parameters, and so on.

Output Variable Names

The names of the variables, created in the script, to save in the operator's dataset
at the end of the execution of the script.

The variables must be defined in the scope of the script so they are visible at the
end of the execution and can be saved in the operator’s dataset.

The output variables are saved as follows:

Boolean object saves as a PAM Boolean

Date object saves as a PAM Date

Integer object saves as PAM Integer

Number object saves as PAM Long or Double object
String object saves as PAM string

Character object saves as PAM string

An array of objects saves as an indexed PAM type, where the PAM type is
defined by the type of the first object in the array of objects.

Undefined saves as a PAM string with ‘undefined’ as its value.

Run Telnet Script Operator Inline Script APIs

The script used for the Run SSH Script operator's Inline Script field is written in bean
shell or JavaScript. It uses the conn object which exposes the following APls:

void send (String str, boolean log) throws Exception

This method sends data to the remote host.

Chapter 4: Command Execution 151

Run Telnet Script Operator

Parameters include:

String str: Data to send to the remote host.

Boolean log: Exposes/hides the data sent to remote host in the CA Process
Automation logs. For debugging purposes, follow the interaction between the
operator and the remote host. Set the following in the
<install_dir>/server/conf/log4j.xml file:

<category name="com.optinuity.c2o.servicegroup.netutils">
<priority value="DEBUG" />
</category>

You should also set the CA Process Automation log file (c20.log) to accept
DEBUG statements in log4j.xml.

When the debug level is set, the Network Utilities operator category starts
logging in to the CA Process Automation log file (c20.log) at the DEBUG level.
Any data sent to the remote host through send or sendLine is exposed in the
CA Process Automation logs.

Set Boolean log to true if you want the String str to be visible in the CA Process
Automation logs when logging at DEBUG level. Set Boolean log to false if you
want the String str to be invisible in the CA Process Automation logs when
logging at the DEBUG level.

Note: c20.log is the CA Process Automation log file, not the process logs. The
operators do not write messages into the process log.

This method has no return values. An exception is thrown if the APl is unable to
write the data to the remote host.

public void sendLine (String str, boolean log) throws Exception

This method sends data to the remote host. A new line character is appended to
the data. Use this method to force the remote host to start the execution of the
command sent in the parameter.

Parameters include:

String str: Data to send to the remote host.

Boolean log: Exposes/hides the data sent to remote host in the CA Process
Automation logs. For debugging purposes, follow the interaction between the
operator and the remote host. You can set the following in the
<install_dir>/server/conf/log4j.xml file:

<category name="com.optinuity.c2o.servicegroup.netutils">
<priority value="DEBUG" />
</category>

152 Content Designer Reference

Run Telnet Script Operator

You should also set the CA Process Automation log file (c20.log) to accept
DEBUG statements in log4j.xml.

When the debug level is set, the Network Utilities operator category starts
logging in to the CA Process Automation log file (c20.log) at the DEBUG level.
Any data sent to the remote host through send or sendLine is exposed in the
CA Process Automation logs when logging at DEBUG level.

Set Boolean log to true if you want the String str to be visible in the CA Process
Automation logs when logging at DEBUG level. Set Boolean log to false if you
want the String str to be invisible in the CA Process Automation logs when
logging at DEBUG level.

Note: c20.log is the CA Process Automation log file, not the process logs. The
operators do not write messages into the process log.

This method has no return values. An exception is thrown if the APl is unable to
write the data to the remote host.
void send (String str) throws Exception

This method is equivalent to Send (String str, true).

void sendLine (String str) throws Exception

This method is equivalent to SendLine (String str, true).

public boolean waitFor(String pattern, int timeout) throws Exception

This method reads the output from the remote host and stops when the output
read matches the pattern specified in the parameters, or when the timeout expires.

The output read from the remote host by each call to the waitFor method is stored
in a buffer accessible through the getlLastOutput() method. Each call to waitFor
overrides the buffer content from the previous call.

The next call to waitFor begins reading the output from where the previous call to
waitFor stopped reading. Keep this in mind when using this method, along with
getLastOutput(). For example, if a call to WaitFor does not match the entire output
of a command, then the next call may contain the remaining output from the
previous command.

Important! Call waitFor after each call to sendLine to avoid mixing previous
command output with the current command output.

The Telnet script and SSH script operators use different mechanisms to read data
from the remote host:

m Telnet’s waitFor starts reading data directly from the host and matches as it
reads from the host.

m SSH’s waitFor retrieves the data read so far from a buffer and matches it
against the pattern.

m Calling waitFor after each call to sendLine makes the SSH and Telnet operators
behave the same way.

Chapter 4: Command Execution 153

Run Telnet Script Operator

Parameters include:

m String pattern: Regular expression used to match the data read from the
remote host. Typically, this pattern matches any data up to the next prompt
(for example: ".*[S]"). That way, you can match (and retrieve) the output data
of a command (including new lines up until the next prompt), so you should
start the pattern with .*

Note: The method matches the entire data read (during this call to waitFor)
against the pattern. The method does not match the pattern as a substring of
the data read. Also a dot ‘.’ can match a new line terminator (it can be used to
match multiline reply data).

m Int timeout: The time (in seconds) to spend reading data from the remote host
and matching it against the pattern.

Returns are Boolean:
m True if the data read within the timeout matches the pattern.

m False if the data read during the entire timeout period does not match the
pattern.

Note: The method keeps reading the output from the remote host until it matches
the pattern, or until the timeout is up, whichever comes first. It does not wait the
entire timeout period to return true if a match is already found.

Exceptions are thrown when:

m "waitFor method does not allow timeout to be <= 0" if the timeout parameter
is less than or equal to 0.

m "waitFor method does not allow pattern to be null or empty" if the pattern
parameter is null or empty.

m "lO error while reading from the Telnet session..." if an 10 error occurred while
reading data from the Telnet session.

m "Error while reading from the SSH session..." if unable to read data from the
session.

m "Syntax error in pattern..." if the pattern is invalid

m "Error when matching pattern... with data received..." if an error occurred
when matching the pattern to the data received at that point in time.

public String getlLastOutput()

This method returns the content of the buffer where the last call to the waitFor
method saved the data it read from the remote host. This data may or may not
match the pattern for waitFor. The buffer simply stores whatever is read by the last
waitFor, whether waitFor matched the pattern and returned true, or timed out and
returned false.

154 Content Designer Reference

Run Telnet Script Operator

This method contains no parameters.

Returns are string. They include the content of the buffer where the last call to the

waitFor method saved the data it read from the remote host. This data may or may
not match the pattern for waitFor. The buffer simply stores whatever is read by the
last waitFor, whether waitFor matched the pattern and returned true, or timed out
and returned false.

No exceptions are thrown.

Remote Login Information
Pseudo Terminal Type

The type of pseudo terminal to request on the Telnet connection. This field
overrides the value specified at the module level. If the field is left blank, the
operator uses the default value set at the module level. If that value is blank, the
operator defaults to VT100.

m VT100 works typically with most computers (especially Linux-based).

m VT400 works typically with Windows-based computers. VT400 is required for
Windows platforms, especially when the output retrieved from the Telnet
server (commands output) contains control characters in the place of spaces.
For example, [19;1H in the place of a space in the output. VT400 interprets the
spaces correctly for Windows.

Other terminal types can be used. Ensure that you test them before moving the
operator into production. Some pseudo terminal types are:

s dumb
m xterm
= vt220
= vt320
m gogrid

Check your Telnet server’s installation and configuration for the supported pseudo
terminals.

The type of pseudo terminal controls how space characters appear in the
commands output. You should test this operator against the pseudo terminals
supported by the Telnet server to find an appropriate pseudo terminal that returns
the spaces appropriately. If the spaces are not returned appropriately, and no
pseudo terminal is available that could remedy this issue, do the following:

m Modify the operator’s input to accommodate this Telnet server’s limitation.

m Use JavaScript to polish/extract the output of the commands.

Chapter 4: Command Execution 155

Run Telnet Script Operator

Output Parameters

If you request a pseudo terminal that is not supported, some Telnet servers return
an error while others ignore the requested pseudo terminal type and use another.
Review the Telnet server’s logs for the pseudo terminal used when the operator is
running.

Remote Port

The port to connect to on the remote host. This field overrides the value specified
at the module level. If this field is left blank, the operator uses the default value set
at the module level. If that default module value is blank, the operator uses value:
23.

Connection Timeout (sec)

The connection timeout in seconds before giving up on the connection. This field
overrides the value specified at the module level. If it is left blank, the operator uses
the default value set at the module level. If that default module value is blank, the
operator uses value: 20.

Each variable in the Output Variable Names list is created with the corresponding CA
Process Automation type.

If a variable name in the Output Variable Names does not exist in the script, the Run
Telnet Script operator creates the corresponding variable as an empty string.

The bean shell interpreter provides a robust environment for the script. For example, if
the bean shell script throws an exception or contains an error, the variables defined and
initialized in the script, before the occurrence of the error, can be retrieved with their
values. Alternatively, if the javascript script throws an exception or contains an error,
the javascript interpreter does not allow for any variable to be retrieved with its value.

Output parameters include the following:
TelnetHost

inLineScriptLanguage

inlineScriptType

inLineScript

scriptExpression

parameters

outputVariables
TelnetPseudoTerminalType

TelnetPort

TelnetHostConnectTimeout

156 Content Designer Reference

Run Telnet Script Operator

Operator Ports
Success
The operator completed successfully.
Failure
The operator fails for any of the following reasons

m The user provides invalid input; for example: empty inline script, empty remote
host, negative port, and so on.

m The user specifies an Inline Script Type other than ‘.bsh’ and ‘.js’.

m Unable to establish a connection to the remote host. Review the remote host
and port provided to the operator.

m The user provides an unknown host in the remote host.

m The user provides a complex data type in the list of parameters. Complex value
types (arrays, Value Maps, and so on) cannot be passed to the script. Use
simple value types such as Double, Integer, Long, String, Date, and Boolean.

m When executing a “.bsh’ or “.js’ script:
— Parse or syntax error while evaluating the script.
— The script threw an exception.
- An error occurred when executing the script.

— Error when retrieving a variable from the scope of the script (at the end of
execution).

Custom Ports

If set by the user during the process design.

Chapter 4: Command Execution 157

Run Telnet Script Operator

Example

The following procedure provides an example of how to use the Run Telnet Script
operator.

1. The Run Telnet Script operator reads the login information you specify. The
operator uses this login information to connect to the remote Telnet host and to

create the "conn" object. The following Remote Login Information example shows
typical entries:

Remote Login Information L
Pseudo Terminal Type:

WT100 i
Remote Port:

23
Connection Timeout {sec):

20

158 Content Designer Reference

Run Telnet Script Operator

2. You specify the following in the Script palette:
m The remote host name.

m The parameters to pass to the script. In the following example, the user, the
password, and a string whose value is the word: "'date".

m The name of the output variables that you create in the script (bean shell or
javascript) that you want saved to the operator’s dataset at the end of
execution. If you do not want a variable saved into the operator’s dataset at
the end of execution, then you do not need to specify it here.

Note: The creation of dataset variables directly from the script is currently not
supported. The Output Variable Names field plays the role of C20SVD in this
case.

In this example, the following output variable names are saved to the dataset of the
operator at the end of execution: 'svrDate’, 'loginStr', 'pwdStr', and '‘promptStr'.

Script £

Remote Hostname:

"hostname.com”
Script Type:

[bsh ~ @

[T 1nline Script?

Inline Script:

Script as Expression:

Parameters:
[l | | 5 || 4
Parameters

1 Process.user
2 Process.pwd

3 “date”

Page | 1 of 1

Ouiput Variable Names:

L] || L5 || 4

@

Displaying 1 - 3 of 3

Output ¥ariable Names
svrDate
loginstr
pwdstr

oo e

promptSte

Page | 1 af 1 = Displaying 1 - 4 of 4

Chapter 4: Command Execution 159

Run Telnet Script Operator

3. Inthe Inline script, you can leverage the 'conn' object, built by CA Process
Automation. How you can leverage the 'conn' object is shown in the following bean
shell script example:

Inline Script o
String syrRate, loainSty, pwdStn promptsStr = "

if (gann.waitfor(".*agin: ", 100} {
lagingtr gstlastoutputl;
sann.sendling gﬁa&[ﬂl);

= szgm(z
if (gonn.waitFor(” *assward: ", 1000 {
pudstr AstlastOutputll;

= conn. ;
cann.sendlinglargs[1], false);
if { gonn.waitfor(" *[$1", 15)) {

= conn. ;
conn.sendlinglaras(Z1;
if {conn.waitfor(".*[$]",10 3} {
) syrRate = conn.getlastoutput();
}
}
+

Cancel

a. Create the svrDate, loginStr, pwdStr, and promptStr variables to be visible at
the script scope, so they can be saved to the operator’s dataset at the end of
execution.

b. Use ‘conn.waitFor()’ to wait for the login prompt, “.*ogin: ” (Reg Ex) up to 10
seconds.

c. Ifthelogin prompt is found within 10 seconds, then use ‘conn.getLastOutput()’
to save the login prompt that was matched in the loginStr variable.

d. Use ‘conn.sendLine()’ to send the username passed as the first object in the list
of parameters: args/[0].

e. Use ‘conn.waitFor()’ to wait for the password prompt “. *assword: ” (Reg Ex) up
to 10 seconds

f. If the password prompt is found within 10 seconds, then use
‘conn.getlastOutput() to save the password prompt we matched in the pwdStr
variable.

g. Use ‘conn.sendLine() to send the password passed as the second object in the
list of parameters: args([1].

h. Use ‘conn.waitFor()’ to wait for the user prompt “.*[S] ” (Reg Ex) up to 15
seconds.

i. If the user prompt is found within 15 seconds, then use ‘conn.getLastOutput()’
to save the user prompt we matched in the promptStr variable.

160 Content Designer Reference

Run Telnet Script Operator

Use ‘conn.sendLine()’ to send the command passed as the third object in the
list of parameters: args[2].

Use ‘conn.waitFor()’ to wait for the user prompt “. */S] ” (Reg Ex) up to 10
seconds.

If the user prompt is found within 10 seconds, then use ‘conn.getLastOutput()’
to save the matched user prompt with the output of the command in the
svrDate variable.

At the end of execution, the Run Telnet Script operator saves the output
variables in the dataset of the operator as CA Process Automation objects.

The prompt that was matched appears in the output returned by
conn.getLastOutput().

Chapter 4: Command Execution 161

Chapter 5: Databases

Databases operators support JDBC type 2 drivers to communicate a database. Database
operators can perform different database operations such as queries on the database,
but they do not support administrative operations such as stopping a database server,
back up/recovery, and so on.

The connection string differs based on the server type.

The TNS name and thin driver type combination is supported only in Oracle 12.x
versions and up. CA Process Automation does not validate any combination or the
server credentials provided at the operator level.

Note: You can use the Databases operators with a different Relational Database
Management System (RDBMS) than the one used by the CA Process Automation
databases. For example, if CA Process Automation was installed using Microsoft SQL,
you can use the Databases operators with Oracle. However, the appropriate database
driver file must first be deployed correctly to your CA Process Automation installation.
See the Installation Guide for details.

Oracle Parameters

Inherit Settings

If checked, values shown reflect the current values of the Domain. At runtime, the
values are selected from the Environment (if defined).

Driver Type
Accepts one of the following options:
Thin
The thin driver is a pure Java implementation of Oracle's networking protocol

(Net8). Being self-contained, it may be used on any machine with or without
Oracle installed, or even distributed with application classes in an applet.

OcCl

The "OCI" (type 2) driver consists of Java wrappers to the low-level Oracle call
interface (OCI) libraries used by utilities like SQL*Plus to access the database
server. The OCI driver offers potentially better performance that the thin
driver. It however requires the OCl libraries to be installed on the local
machine.

KPRB

The "KPRB" driver is used for Java stored procedures and database JSP's.

Chapter 5: Databases 163

MSSQL Server Parameters

Driver

Specifies the Oracle JDBC driver.
Server Host

Specifies the host where the Oracle database is running.
UserName

Specifies the default Oracle database user.
Password

Specifies the password for the default Oracle user.
ServicelD

Specifies the Oracle service ID.
TNS Name

Oracle TNS Names translates a local database alias to all the connectivity
information needed to connect to the database. This includes IP address, port,
database Service ID or service name, and so on. This information is stored in a file
called tnsnames.ora in the Oracle directory.

Maximum Rows
Specifies the maximum rows to retrieve.
Client Encryption

Oracle supports multiple data encryptions for the client (RC4_40, RC4_56, RC4_128,
RC4_256, DES40C, DES56C, 3DES112, 3DES168, SSL, AES256, AES192, and AES128).
The user should provide one of these values. These values will be set as properties
as part of the connection. The encryption levels RC4_128 and RC4_256 are for
domestic editions only.

Client Checksum

Specifies checksums supported by Oracle. Refer to your Oracle documentation.

MSSQL Server Parameters

Inherit Settings

If checked, values shown reflect the current values of the Domain. At runtime, the
values are selected from the Environment (if defined).

Default Driver
Specifies the default MSSQL driver.
Default Server Host

Specifies the host where the MSSQL database is running.

164 Content Designer Reference

MySQL Parameters

Default Server Port

Specifies the default MSSQL database server port.
Default UserName

Specifies the default MSSQL database user.
Default Password

Specifies the password for the default MSSQL user.
Default Maximum Rows

Specifies the maximum number of rows to retrieve.
Default Database Name

Specifies the MSSQL database name.
Default Instance Name

Specifies the MSSQL instance name.

MySQL Parameters

Inherit Settings

If checked, values shown reflect the current values of the Domain. At runtime, the
values are selected from the Environment (if defined).

Default Driver

Specifies the default MySQL driver.
Default Server Host

Specifies the host where the MySQL database is running.
Default Server Port

Specifies the default MySQL database server port.
Default UserName

Specifies the default MySQL database user.
Default Password

Specifies the password for the default MySQL user.
Default Maximum Rows

Specifies the maximum number of rows to retrieve.
Default Database Name

Specifies the default MySQL database name.

Chapter 5: Databases 165

Sybase Parameters

Sybase Parameters

Inherit Settings

If checked, values shown reflect the current values of the Domain. At runtime, the
values are selected from the Environment (if defined).

Default Server Type

Specifies one of the following Sybase server types:

m Adaptive Server Anywhere (ASA) (the default value)

m Adaptive Server Enterprise (ASE)
Default Connection Protocol

Specifies the default connection protocol. The default value is Tds.
Default Driver

Specifies the default Sybase driver. The default value is
com.sybase.jdbc2.jdbc.SybDriver.

Default Server Host

Specifies the host were Sybase is running.
Default Server Port

Specifies the default Sybase server port.
Default UserName

Specifies the default Sybase username.
Default Password

Specifies the password for the Sybase user.
Default Maximum Rows

Specifies the maximum number of rows to retrieve. If blank, the default value is 10
rows.

Default Cache Buffer Size

The Sybase Cache Buffer Size is the amount of memory used by the driver to cache
insensitive result set data. Valid values are:

-1 = All data is cached.
0 = All data is cached up to 2GB.

X = Must be positive. This is the buffer size (must be a power of 2). This value is
specified in Kb.

After the limit is reached (if any), the result set data is written to disk.

166 Content Designer Reference

Operator Level Properties

Default Batch Performance Workaround
The Sybase batch performance workaround is one of the following:
m Trueisthe JDBC v3.0 compliant mechanism.

m False is the native batch mechanism. False is the default.

Operator Level Properties

The following are connection parameters for the Database operators.

Database Server Login Parameters

The Database Server Login parameters configure settings that are required to log into
the database server and communicate with the database server.

User Name
Specifies the database username.
Password

Specifies the password for the database user.

Notes:

m |f"Other" is selected as the Database Type, enter the User Name and
Password port and other information to use to connect to the database (if
necessary). The connection wizard constructs a URL that is populated under the
operator properties.

m |f you want to use Windows Authentication, do not specify a User Name/Password
when configuring a Databases operator. See the Content Administrator Guide for
more information about configuring Windows Authentication for the Databases
Operators.

Connection Wizard

A wizard that lets you specify connection properties. You can enter the properties
(see page 168) that configure how the operator connects to the database.

Chapter 5: Databases 167

Operator Level Properties

Connection URL

Represents a Universal Resource Locator (URL) that specifies a particular type of
database server (compatible with the local JDBC driver) and a particular host.

Notes:

m [f "Other" is selected as the Database Type (in the Connection Wizard), you
must enter a JDBC URL in this field.

m If you want to use Windows Authentication, append the following string to the
Connection URL:

;integratedSecurity=true

Connection Wizard Properties

Database Type

Select the type of database from the drop-down list:
MySQL (default)

m Oracle

m SQLSERVER
m Sybase

m Informix

m Hypersonic
m Postgres

m DB2

m Interbase

m Ingres

m Other

Database Type, Server Host, Server Port, Database Name, Driver Name and
Connection URL are always displayed in the Connection Wizard. The remaining
fields are shown/hidden based on the selection of Database Type.

For example, if you select "Oracle" as a database type, then all the fields related to
Oracle are shown and the remaining fields are hidden.

Note: If Other is selected as the Database Type, enter the User Name and Password
to be used to connect to the database (if required) in the Database Server Login
parameters.

Other Database Type

If your database is not listed in the Database Type drop-down list, enter it here.

168 Content Designer Reference

Operator Level Properties

Server Host
Specifies the host where database is running.
Server Port
Specifies the database server port.
Database Name
Specifies the name of the database.
Driver Name

Specifies the database driver name (the Java class that interfaces with the
database).

Connection URL

Specifies a database URL is a Universal Resource Locator (URL) that specifies a
particular type of database server (compatible with the local JDBC driver) and a
particular host.

This field is updated as information is entered into the Connection Wizard.

The following properties only display if they apply to specified Database Type.
Sybase Cache Buffer Size

Available when Sybase is selected as the database type. This field specifies the
amount of memory used by the driver to cache insensitive result set data. Valid
values are:

-1

All data is cached.

All data is cached, up to 2GB.

This is the buffer size; must be positive, and a power of 2. This value is specified
in kilobytes.

Sybase Batch Performance Workaround

Available when Sybase is selected as the database type. Select from either True or
False.

m False is the default (native batch mechanism).
m Trueis for JDBC v3.0 compliant mechanism.
Sybase Connection Protocol

Available when Sybase is selected as the database type. Specifies the connection
protocol for Sybase. The default connection protocol is Tds. The connection string
differs based on the server type.

Chapter 5: Databases 169

Operator Level Properties

Sybase Server Type

Available when Sybase is selected as the database type. Specifies the Sybase server
types. Select one of the following from the drop-down list:

m Adaptive Server Anywhere (ASA) (default)
m Adaptive Server Enterprise (ASE)
Oracle Driver Type

Available when Oracle is selected as the database type. Specifies the driver type for
Oracle. Select one of the following from the drop-down list:

thin
The thin driver is a pure Java implementation of the Oracle networking

protocol (Net8). Being self-contained, it may be used on any machine with or
without Oracle installed, or distributed with application classes in an applet.

OcCl

The OCI (type 2) driver consists of java wrappers to the low-level Oracle call
interface (OCI) libraries used by utilities such as SQL*Plus to access the
database server. The OCI driver can potentially improve performance over the
thin driver, however, it requires the OClI libraries to be installed on a local
machine.

KBRP
The KPRB driver is used for Java stored procedures and database JSPs.
Oracle Service ID

Available when Oracle is selected as the database type. A support expression that
specifies the Oracle service ID.

Oracle TNS Name

Available when Oracle is selected as the database type. Translates a local database
alias to all the connectivity information needed to connect to the database. This
includes IP address, port, database Service ID, or service name, and so on. This
information is stored in a file called tnsnames.ora in the Oracle directory.

Oracle Client Encryption

Available when Oracle is selected as the database type. Oracle supports the
following multiple data encryptions for the client:

RC4_40, RC4_56, RC4_128, RC4_256
DES40C, DES56C, 3DES112, 3DES168
SSL, AES256, AES192, AES128

Specify one of these values that will be set as properties as part of the connection.
The encryption levels RC4_128 and RC4_256 are for domestic editions only.

170 Content Designer Reference

Bulk Insert into Database Operator

Oracle Client Checksum

Available when Oracle is selected as the database type. Specifies the Oracle Client
Checksum value (a number calculated by the database from all the bytes stored in a
data or redo block). Oracle supports MD5 checksum. For more information, refer to
the Oracle documentation.

SQLServer Instance Name

Available when SQLServer is selected as the database type. On a given server, you
can run multiple SQLServer services, each with their own ports, logins, and
databases. Each of these services is called an instance of SQL Server. This field
specifies a particular instance name for SQLServer.

Hypersonic Database Type

Available when Hypersonic is selected as the database type. Select one of the
following from the drop-down list:

m Server
m File

m In-memory

Bulk Insert into Database Operator

=]

WL

The Bulk Insert into Database operator lets you quickly import a bulk number of rows
into a database table or view that you specify.

Chapter 5: Databases 171

Bulk Insert into Database Operator

Input Parameters
Data Source
The table name to supply in the SQL statement, as a String or Variable.
Insert map array

An array of ValueMaps; each one represents a row to insert into the database.
Important! Verify that single quotes encapsulate any string values.

The ValueMap parameter name that you want to insert into a table must be same as its
associated column name.

Each of the variables within the value map must correspond to the columns in the table.
For example, if you have a table with two columns: "Name" and "Number", then your
ValueMap must be organized the same way.

172 Content Designer Reference

Delete from Database Operator

Output Parameters
DataSource
JDBCInsertMapArray
UserName Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

Delete from Database Operator

Use the Delete from Database operator to delete rows in a table based on criteria that
you specify.

Chapter 5: Databases 173

Delete from Database Operator

Input Parameters

Input Source

Specifies that the user can choose to submit an SQL statement as an in-line
expression (the default) or data variable. Select either Inline Text or Expression
from the drop-down list.

Inline Text

Only available when Inline Text is selected as the Input Source. Specifies the generic
SQL statement as inline text. Click the Inline Text field to open the Inline Text editor,
where you can enter a literal SQL statement.

Expression

Only available when Expression is selected as the Input Source. Specifies the generic
SQL statement as an expression. Use this field to provide a variable.

Input Parameters

An array of input values. If the generic SQL statement specified uses JDBC escape
syntax and requires input parameters, they can be specified here.

Output Parameters

Query Results
Returns the number of rows deleted.
Reason

Specifies the reason if the Operator fails after execution.

174 Content Designer Reference

Delete from Database Operator

Result

Specifies the result of the Operator execution.InputSource
InlineText
InputSourceExpression
JDBCInputParamArray
IsConstructSQLStatement
CompleteSQLStatement
DataSource
SelectionCriteria
UserName

Password

DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType

DriverType

ServicelD

TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost

ServerPort

ConnectionString

Chapter 5: Databases 175

Get Database Schema Operator

Get Database Schema Operator

=

| o |
o

Use the Get Database Schema operator to retrieve schema names from the database.

Input Parameters

The Database Server Login parameters (see page 167) are required for this operator.

Output Parameters
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

176 Content Designer Reference

Get Free Space Operator

Get Free Space Operator

Use the Get Free Space operator to return the free space (in MB) available in the
database.

Input Parameters
Schema Name

Specifies the name of the schema for which free space must be calculated.

Output Parameters
Query Results
Returns free space (in MB).
Reason

Specifies the reason if the operator fails after execution.

Chapter 5: Databases 177

Get Stored Procedure Operator

Result

Specifies the result of the operator execution.
SchemaName
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort
ConnectionString

When the required input parameters are provided, ConnectionString is
automatically constructed.

Get Stored Procedure Operator

=

Use the Get Stored Procedure operator to return the stored procedure names available
in the database.

178 Content Designer Reference

Get Stored Procedure Operator

Input Parameters

Catalog Name

Must match the same catalog name as it is stored in the database. The values ""

and null indicate that the catalog name should not be used to narrow the search
Schema Pattern

Must match the same schema name as it is stored in the database. The values ""

and null indicate that the schema name should not be used to narrow the search
The pattern should be a regular expression.

Procedure Name Pattern

Must match the same procedure name as it is stored in the database. The pattern
should be a database-supported regular expression.

Output Parameters
Query Results

Returns an array in which each row is a procedure name.
Reason

Specifies the reason if the operator fails after execution.

Chapter 5: Databases 179

Get Table Operator

Result

Specifies the result of the executed operator.
CatalogName
SchemaPattern
TableNamePattern
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerTypeDriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

Get Table Operator

O

Use the Get Table operator to return the list of tables from the database.

180 Content Designer Reference

Get Table Operator

Input Parameters
Catalog Name

The catalog name must match the catalog name as it is stored in the database. The
values "" and null indicate that the catalog name should not be used to narrow the
search.

Schema Pattern

The schema pattern must match the schema name as it is stored in the database.
The values "" and null indicate that the schema name should not be used to narrow
the search. The pattern should be a regular expression.

Table Name Pattern

The table name pattern must match the table name as it is stored in the database.
The pattern should be a database-supported regular expression.

Output Parameters
Query Results
Returns an array in which each row is a table name.
Reason

Specifies the reason if the operator fails after execution.

Chapter 5: Databases 181

Get Used Space Operator

Result

Specifies the result of the executed operator.
CatalogName
SchemaPattern
TableNamePattern
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

Get Used Space Operator

This Get Used Space operator returns the used space (in MB) in the database.

182 Content Designer Reference

Get Used Space Operator

Input Parameters
Schema Name

Specifies the name of the schema for which the operation must return the used
space.

Output Parameters
Query Results
Returns free space (in MB).
Reason

Specifies the reason if the operator fails after execution.

Chapter 5: Databases 183

Get Version Operator

Result

Specifies the result of the operator execution.
SchemaName
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

Get Version Operator

Use the Get Version operator to return the name and version number of the database.

184 Content Designer Reference

Get View Operator

Input Parameters

The Database Server Login parameters (see page 167) are required for this operator.

Output Parameters

UserName

Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType

ServicelD

TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost

ServerPort

ConnectionString

Get View Operator

=

Use the Get View operator to return a list of views from the database.

Chapter 5: Databases 185

Get View Operator

Input Parameters
Catalog Name

The catalog name must match the catalog name as it is stored in the database. The
values "" and null indicate that the catalog name should not be used to narrow the
search.

Schema Pattern

The schema pattern must match the schema name as it is stored in the database.
The values "" and null indicate that the schema name should not be used to narrow
the search. The pattern should be a regular expression.

View Name Pattern

The view name pattern must match the view name as it is stored in the database.
The pattern should be a regular expression.

Output Parameters
Query Results
Returns an array in which each row is a view name.
Reason

Specifies the reason if the operator fails after execution.

186 Content Designer Reference

Insert into Database Operator

Result

Specifies the result of the executed operator.
CatalogName
SchemaPattern
TableNamePattern
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost
ServerPort

ConnectionString

Insert into Database Operator

=]

LUy

Use the Insert into Database operator to insert a new row in a table.

Chapter 5: Databases 187

Insert into Database Operator

Input Parameters

Input Source

Specifies that the user can choose to submit an SQL statement as an in-line
expression (the default) or data variable. Select either Inline Text or Expression
from the drop-down list.

Inline Text

Only available when Inline Text is selected as the input source. Specifies the generic
SQL statement as inline text. Click the Inline Text field to open the Inline Text editor,
where you can enter a literal SQL statement.

Expression

Only available when Expression is selected as the input source. Specifies the generic
SQL statement as an expression. Use this field to provide a variable.

Input Parameters

An array of input values. If the generic SQL statement specified uses JDBC escape
syntax and requires input parameters, they can be specified here.

Output Parameters

Query Results
Returns the number of rows inserted into a table.
Reason

Specifies the reason if the operator fails after execution.

188 Content Designer Reference

Insert into Database Operator

Result

Specifies the result of the executed operator.
InputSource
InlineText
InputSourceExpression
JDBCInputParamArray
IsConstructSQLStatement
CompleteSQLStatement
DataSource
ColumnNameMode
ColumnNames
ColumnNameAsArray
ColumnValueMode
ColumnValues
ColumnValueAsArray
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType
ServicelD
TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType

ServerHost

Chapter 5: Databases 189

Query Database Operator

ServerPort

ConnectionString

Query Database Operator

Input Parameters

=

g/

Use the Query Database operator to issue a single SQL statement against the database.
This operator supports the JDBC escape syntax. The Query Database operator uses
CallableStatement and ParameterMetaData to gather information about the input and
output parameters prior to and after statement execution. If the JDBC driver does not
support this behavior, the Generic SQL operator may not be able to gather all of the
results from the SQL statements. Additionally, the JDBC driver supplied by the database
vendor may not support the use of all data types with the JDBC driver. For example, the
SQL Server JDBC driver does not support the SQL Server sgl_variant data type. Always
refer to your JDBC driver documentation for more information on what JDBC features
and data types are supported by the driver.

Input Source

Specifies that the user can choose to submit SQL statement as an in-line expression
(the default) or data variable. Select either Inline Text or Expression from the
drop-down list.

Inline Text

Only available when Inline Text is selected as the Input Source. Specifies the generic
SQL statement as inline text.

Click the Inline Text field to open the Inline Text editor, where you can enter a
literal SQL statement.

Expression

Only available when Expression is selected as the Input Source. Specifies the generic
SQL statement as an expression. Use this field to provide a variable.

Maximum rows to retrieve

Specifies the maximum number of rows to retrieve. If blank, the default value is 10
rows. The Generic SQL Operator retrieves a maximum of 512 rows. Additional rows
will be truncated.

190 Content Designer Reference

Query Database Operator

Input parameters

An array of input values. If the generic SQL statement specified uses JDBC escape
syntax and requires input parameters, they can be specified here.

Display null values

If checked, the Generic SQL Operator results will contain the field NullFieldFlags. If
the generic SQL statement returns results sets, this field can be used to distinguish
null values from default values.

For example, querying an integer column that contains a null value returns 0. The
NullFieldFlags value for this column would be true. However, if the table actually
stored the value 0, then the NullFieldFlags value would be false.

Output Parameters
ResultsSets

An array of indexed ValueMaps where each item contains the results of a query.
The size of ResultsSets matches the number of results sets returned by the SQL
statement. Each ValueMap contains the following fields:

Rows

An array of ValueMaps representing the rows of the result set. Each ValueMap
contains a field for each column and the value of the column in that particular
row.

NullFieldFlags

An array of ValueMaps. The fields of each ValueMap correspond to the fields in
rows. The value of each field is either true. The corresponding value in rows is
null, or false otherwise. This output only displays if Display null values is
selected.

UpdatedRowCounters

An array of integers representing the number of rows updated by the generic SQL
statement. If the generic SQL statement performs multiple updates, then this value
contains multiple values.

RowCount

(Deprecated) Returns either the row count for SQL Data Manipulation Language
(DML) statements or the number of rows in the first result set in ResultSets. If the
generic SQL statement performs no updates and returns no results sets, then this
value will be set to -1. This field is included for backward compatibility.

OutputParam

The value of the output parameter of the generic SQL statement. If the generic SQL
statement does not return any output parameters then this field will not be
included in the operator results. The outputParam fields are numbered; for
example: outputParam1l, outputParam?2.

Chapter 5: Databases 191

Query Database Operator

isNullOutputParam

A Boolean value indicating if the corresponding OutputParam value is null. This field
only displays if the generic SQL statement returns an output parameter and Display
null values is selected.

Reason
Specifies the reason if the operator fails after execution.
Result

Specifies the result of the executed operator.

192 Content Designer Reference

Query Database Operator

InputSource
InlineText
InputSourceExpression
MaximumRows
JDBCInputParamArray
JDBCReportNull
UserName

Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType

ServicelD

TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost

ServerPort

ConnectionString

Run a Stored Procedure

You can use the Query Database operator to run a stored procedure against a database.

Chapter 5: Databases 193

Query Database Operator

This example uses the SQL Server driver. CA Process Automation provides this driver
during installation. If you want to run the process against any other database, upload
the corresponding JDBC driver (Manage Versions under the Configuration tab). CA
Process Automation can access the driver when you restart the Orchestrator service.
See the Installation Guide for more information.

You can create this example in the SQL Server Management Studio in the database
PAMReporting. PAMReporting is the database name that was given during the
installation for the CA Process Automation Reporting tables. You can have a different
name. You can also use any database of your choice.

Follow these steps:

1. Create a stored procedure with the following body:

USE PAMReporting
GO

-- Template generated from Template Explorer using:
-- Create Procedure (New Menu).SQL

-- Use the Specify Values for Template Parameters
-- command (Ctrl-Shift-M) to fill in the parameter
-- values below.

-- This block of comments will not be included in
-- the definition of the procedure.
SET ANSI NULLS ON
GO
SET QUOTED IDENTIFIER ON
GO
CREATE PROCEDURE sp getSOAPRows
-- Add the parameters for the stored procedure here

AS
BEGIN

-- SET NOCOUNT ON added to prevent extra result sets from

-- Interfering with SELECT statements.

-- SET NOCOUNT ON;

-- Insert statements for procedure here
select count(*) from SOAPClientCall;

END
GO

194 Content Designer Reference

Select from Database Operator

2. The procedure returns the number of rows in a table that was called as a
SOAPClientCall.

3. Click Parse in the SQL Server Management Studio.
4. Click Execute in the SQL Server Management Studio.
Now your new stored procedure is saved in the PAMReporting database.

5. Create a process with the Query Database operator. Enter the following line in the
operator's Inline text:

EXECUTE sp_getSOAPRows

6. Inthe Database Server Login (see page 167) parameters, enter relevant details for
CA Process Automation to talk to your database.

7. Save the process.
8. Execute the process.
9. Open the operator dataset.
The number of rows the procedure returns is displayed as a result of the execution.

Note: Your result varies depending on the number of rows in the SOAPClientCall
table.

Select from Database Operator

=

g/

Use the Select from Database operator to selectively retrieve data from one or more
data sources with optional selection criteria.

Select Operator Properties
Input Source

Specifies that the user can choose to submit SQL statement as an in-line expression
(the default) or data variable. Select either Inline Text or Expression from the
drop-down list.

Inline text

Only available when Inline Text is selected as the Input Source. Specifies the generic
SQL statement as inline text. Click the Inline Text field to open the Inline Text editor,
where you can enter a literal SQL statement.

Chapter 5: Databases 195

Select from Database Operator

Expression

Only available when Expression is selected as the Input Source. Specifies the generic
SQL statement as an expression. Use this field to provide a variable.

Maximum rows to retrieve

Specifies the maximum number of rows to be retrieved by the select statement.
This parameter overrides the property set at the operator category level.

Input parameters

An array of input values. If the generic SQL statement specified uses JDBC escape
syntax and requires input parameters, they can be specified here.

Display null values

If checked, the Generic SQL Operator results contain the field NullFieldFlags. If the
generic SQL statement returns results sets, this field can be used to distinguish null
values from default values.

For example, querying an integer column that contains a null value returns 0. The
NullFieldFlags value for this column is true. However, if the table actually stored the
value 0, then the NullFieldFlags value are false.

196 Content Designer Reference

Select from Database Operator

Output Parameters
QueryResults

An array of ValueMaps representing the rows of the result set. Each ValueMap
contains a field for each column and the value of the column in that particular row.

NullFieldFlags

An array of ValueMaps. The fields of each ValueMap correspond to the fields in
rows. The value of each field is either true (the corresponding value in rows is null)
or false (the corresponding field is not null). This output only displays if Display null
values is selected.

InputSource

InlineText
InputSourceExpression
MaximumRows
JDBCInputParamArray
JDBCReportNull
IsConstructSQLStatement
CompleteSQLStatement
ReturnValueMode ReturnValues
ReturnValuesAsArray
DataSourceMode
DataSources
DataSourcesAsArray
SelectionCriteria
SortCriteriaMode
SortCriteria
SortCriteriaAsArray
UserName Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName
CacheBufferSize
BatchPerfWorkaround

ConnectionProtocol

Chapter 5: Databases 197

Update in Database Operator

ServerType

DriverType

ServicelD

TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost

ServerPort

ConnectionString

Update in Database Operator

=2

Use the Update in Database operator to update records in a table.

Input Parameters
Input Source

Specifies that the user can choose to submit an SQL statement as an in-line
expression (the default) or data variable. Select either Inline Text or Expression
from the drop-down list.

Inline text

Only available when Inline Text is selected as the Input Source. Specifies the generic
SQL statement as inline text. Click the Inline Text field to open the Inline Text editor,
where you can enter a literal SQL statement.

Expression

Only available when Expression is selected as the Input Source. Specifies the generic
SQL statement as an expression. Use this field to provide a variable.

Input parameters

An array of input values. If the generic SQL statement specified uses JDBC escape
syntax and requires input parameters, they can be specified here.

198 Content Designer Reference

Update in Database Operator

Output Parameters

Query Results

Returns the number of rows updated.
Reason

Specifies the reason if the operator fails after execution.
Result

Specifies the results of the executed operator.
InputSource
InlineText
InputSourceExpression
JDBCInputParamArray
IsConstructSQLStatement
CompleteSQLStatement
FieldValueModeArray
FieldvalueModeC20ValueMap
DataSource
FieldsValues
FieldsAsArray
ValuesAsArray
FieldvalueMap
SelectionCriteria
UserName
Password
DatabaseType
OtherDatabaseType
DriverName
DatabaseName

CacheBufferSize

Chapter 5: Databases 199

Update in Database Operator

BatchPerfWorkaround
ConnectionProtocol
ServerType
DriverType

ServicelD

TNSName
ClientEncryption
ClientChecksum
InstanceName
HypersonicDatabaseType
ServerHost

ServerPort

ConnectionString

200 Content Designer Reference

Chapter 6: Date-Time

The Date-Time operators execute time and calendar constraints in processes. All
operators in this group can only be run on an Orchestrator.

Check Calendar Operator

The Check Calendar operator determines whether a date falls within a set of calendar

rules.
-]
b ¢
C e *]
[|
i Inside Calendar I Outside Calendar © Failed
Branch when the evaluated Branch when the evaluated Operation aborted
isinside ofthe specified date iz outside ofthe Result 20
calendar rules specified calendar rules
Result=1 Result=2

Input Parameters
Allow dates Calendar

Specifies the full path of the calendar. This expression defines the allowed dates for
subsequent branches in the process to be processed.

Click £ to locate a calendar object. After you select a calendar, click Open to open
the calendar object in the calendar designer.

Exclude dates Calendar

Specifies the full path of the calendar used to define excluded days. Excluded days
are days when subsequent branches in the process may not be processed.

There are no excluded days when no calendar is specified.

Click £ to locate a calendar object. After you select a calendar, click Open to open
the calendar object in the calendar designer.

Chapter 6: Date-Time 201

Check Calendar Operator

Delta

Specifies the number of days an allowed date is shifted when it falls on an excluded
date.

The shift depends on whether the value is positive, negative, or zero. A negative
value shifts forward (earlier), and a positive value shifts backward (later). When this
value is zero, the allowed date is skipped.

Open days only
Counts only open days when shifting an eligible date that falls on an excluded date.

Open days are those days not specified by a condition or rule that closes or
excludes dates.

Maximum shifts

This option defines the maximum number of shifts that are allowed if subsequent
shifts fall on a closed date.

This setting is only relevant if Open days only is selected.
Date
Specifies the date to test against the calendar rules.

Click the calendar icon to select a date. This option is unavailable if you select either
the Use current date or the Use calculated date check box.

Use current date
Specifies to use the current date to test against the calendar rules.

Clear this check box to specify a particular date in the Date field. This check box is
initially selected.

Use calculated date
Specifies to use the date from the Calculated date field.
Calculated date

If Use calculated date is selected, this parameter returns a date. Typical uses
include calculating a future date based on the current date.

202 Content Designer Reference

Check Date-Time Operator

Output Parameters

CalenderDate
VacationsDate
Delta

OpenDays
MaxShifts

Date
UseCurrentDate
UseCalculatedDate

CalculatedDate

Check Date-Time Operator

Input Parameters

The Check-Date Time operator conditionally executes branches in a process depending
on whether a specified date and time has passed. The Check-Date Time operator places
a date-time check condition in a process.

A date-time check condition allows processing to continue to subsequent branches in a
process before and after the date specified in the operator properties. The operator can
be used to place date and time conditions on different segments of processes that are
run several times a day. With this setting, you can add extra links on the operator to
specify branches that are to be processed before (<) or after (>) a date and time.

In contrast, when the Wait for specified date and time check box is initially selected, the
operator creates a date-time wait condition. Then, the operator only processes after (>)
extra links while ignoring any before (<) extra links.

Date

Specifies the date when to determine eligibility for processing subsequent branches
in the process.

Click the Calendar icon to open the calendar and select a date. This option is
unavailable if you select either the Use current date or the Use calculated date
check box.

Chapter 6: Date-Time 203

Check Date-Time Operator

Use current date

Specifies the date that the process is run to determine eligibility for processing
subsequent branches in the process.

Clear this check box to specify a particular date in the Date field. This check box is
initially selected.

Use calculated date

Returns a date. This expression lets you use the CA Process Automation date
variables and functions to return a date.

Calculated date

If Use calculated date is selected, this parameter specifies an expression that
returns a date. Typical uses include calculating a future date based on the current
date.

Time
Specifies a time in a 12-hour HH:MM PM/AM format.
For example: 07:30 PM

Wait for specified date and time

Creates a date-time wait condition. This property delays processing of subsequent
operators in a branch of the process until the specified time. Only exit links
designated to occur after (>) the specified time are processed.

Clear this check box to divert processing to different branches before or after the
specified date and time. The operator imposes the following conditions when the
Wait for specified date and time check box is cleared:

If the specified date and time are in the future, only exit links specified to be
processed before (<) are processed.

Output Parameters

Date
UseCurrentDate
UseCalculatedDate
CalculatedDate
Time

WaitForSpecifiedDate

204 Content Designer Reference

Chapter 7: Directory Services

The Directory Services operators provide an interface to support Lightweight Directory
Access Protocol (LDAP). You can automate the operations that are performed on LDAP
servers. All of these operators work with different LDAP servers except for operators
specific to the Active Directory. The Directory Services operators run on a CA Process
Automation Orchestrator or agent with the same results, regardless of the operating
system platform on which CA Process Automation is running.

LDAP Login Parameters

The default LDAP fields specified at the Directory Services category level can be
overridden on the LDAP Login Parameters page. This page is part of the input for each
Directory Services operator. If a field contains a value, it will override the value specified
for the same field at the category configuration level.

Remote LDAP Host

Specifies the LDAP Server URL or IP.
Remote LDAP Server Port

Specifies the LDAP Server Port.
LDAP User

Specifies that the LDAP User who has access to the LDAP server should be able to
log in. However, the operations that can be performed by this user are limited by
the ACls set on the LDAP entries.

LDAP Password for User
Specifies the password for the LDAP user.
Base DN

Specifies the base Distinguished Name (DN) to be used. This is the base DN where
the LDAP User is located.

User Prefix

Specifies the user Prefix to be used which may be either uid or cn.

Chapter 7: Directory Services 205

Add Computer to Domain Operator

Add Computer to Domain Operator

=

=
\/

The Add Computer to Domain operator to create a new computer object in the Active
Directory server. This operator applies to an Active Directory server only.

Input Parameters
Computer Path

Specifies the distinguished name of the object under which you want to create the
new computer object.

Computer Name

Specifies the name of the new computer object.

Output Parameters
LDAPADComputerBaseDn
LDAPADComputerName
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Example

Active Directory Join Computer to Domain Parameters =

Computer Path:

"CHN=Computers,DC=itpam,DC=local"
Computer Name:

"cn=PAM Computer 1"

206 Content Designer Reference

Add User to Group Operator

Be sure to add the LDAP attribute to the name of the new computer object. Usually
computer objects use the attribute "cn" as part of the name's RDN (relative
distinguished name).

Operator Failure

This operator fails in the following cases:
m The name of the new computer object is already used.

m Some of the mandatory attributes necessary to create the new computer object is
missing

m The path, under which computer object is to be created, is invalid.

m Unable to connect to the Active Directory server.

Add User to Group Operator

)

&

The Add User to Group operator adds an LDAP user to an LDAP group on the LDAP
server.

Input Parameters
User DN
Specifies the distinguished name of the user that you want to add to the group.
Group DN

Specifies the distinguished name of the group to which you want to add the user.

Chapter 7: Directory Services 207

Add User to Group Operator

Output Parameters
LDAPUserDn
LDAPGroupDn
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Example

Add _User to Group_1 Properties g o

Add User to Group Parameters £

User DM

"uid=1=mith,ou=Ildapconnector,dc=ca,dc=com"
Group DN

cn=Users, de=ca, doc=com

Operator Failure

This operator fails in the following cases:
m The useris already a member of the group.
m The group does not exist in the LDAP server.

m The Group DN points to an LDAP object that is not of type group, groupofnames or
groupofuniquenames.

m Unable to connect to the LDAP server.

208 Content Designer Reference

Create Group Operator

Create Group Operator

Input Parameters

£}

The Create Group operator creates an LDAP group object on the LDAP server. This group
object can be of type: group, group of names, or group of unique names.

Group Path

Specifies the distinguished name of the object under which you want to create the
new group object.

Group Name

Specifies the name of the group you want to create. This is the CN attribute of the
group.

LDAP Group Type

Specifies the type of LDAP group. Select either group, group of names, or group of
uniqgue names.

Use the specified array field for the Group Members
When checked, then the Array of members will be used for this request.
LDAP Group Members Array

Specifies the array of members of the group (required for Group of Names or Group
of Unique Names in Active Directory). This field is enabled only when the Use the
specified array field for the Group Members field is checked.

LDAP Group Members

Specifies the members of the group (required for Group of Names or Group of
Unique Names in Active Directory). This field is enabled only when the Use the
specified array field for the Group Members field is unchecked.

Creating an object of type 'Group' in Active Directory?

Check if we are creating an object of type 'Group’, as specified in the LDAP Group
Type, in an Active Directory server. For an object 'Group' in Active Directory, we can
set two additional attributes: Group Scope and Group Type.

Active Directory Group Scope

Specifies the scope of the group created in an Active Directory. Select either
Domain Local, Global, or Universal. This field is enabled only when you select the
Creating an object of type 'Group' in Active Directory? check box.

Chapter 7: Directory Services 209

Create Group Operator

Active Directory Group Type

Specifies the type of the group created in an Active Directory. Select either Security
or Distribution. This field is enabled only when the Creating an object of type
'Group' in Active Directory? field is checked.

Notes

The Active Directory does not allow for a group of Universal scope to be of type
Security. The operation fails in this case.

The values specified in the Active Directory Group Scope and Active Directory Group
Type fields are ignored when the LDAP Group Type field is not set to the value 'Group'.

AD Group Scope & AD Group Type fields are not ignored when LDAP Group Type is not
set to value 'Group'.

Those fields are activated when you select the check box with title 'Creating an object of
type Group in AD'.

That is true because there is no way to do multiple selections in CA Process Automation.
The important thing here is that the values of these fields are only relevant when you
create a 'Group' in Active Directory. In the Ul, they might still be active but, in the back
end, they are ignored in all other cases.

210 Content Designer Reference

Create Group Operator

Output Parameters
LDAPGroupBaseDn
LDAPGroupName
LDAPGroupType
LDAPGroupMembersType
LDAPGroupMembersArray
LDAPGroupMembers
LDAPISADGroup
LDAPADGroupScope
LDAPADGroupType
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Chapter 7: Directory Services 211

Create Group Operator

Example

Operator Failure

Create Group Parameters =]

Group Path:

"OU=testlnit,DC=itpam,DC=ca,DC=local"
Group Name:

"cn=Users"
LDAP Group Type:

Group of Unique Names .

[T Use the specified array field for the Group Members
LDAP Group Members Array:

LDAP Group Members:

laa] || a2 || B

LDAP Group Members
1 "uid=memberl,ou=ldapconnector,dc=ca,dc=com”

2 "uwid=memberz,ou=ldapconnector,dc=ca,dc=com"

Page [1 of 1 & »

[T Creating an object of type 'Group' in Active Directory?

Active Directory Group Scope:

Universal .

Active Directory Group Type:

Security .

This operator fails in the following cases:

The group exists already.

Some of the mandatory attributes necessary to create the new group object are
missing.

The path, under which the new group object is to be created, is invalid.

212 Content Designer Reference

Create Object Operator

m The LDAP server does not support the group type specified: group, groupofnames,
or groupofuniqguenames.

m The group is created in an Active Directory server with a 'Universal' scope and a
'Security' type.

m The object is created as a 'Group of Names' in Active Directory without any
members set in the operation.

m The object is created as a 'Group of unique Names' in Active Directory without any
members set in the operation.

m Unable to connect to the LDAP server.

Create Object Operator

The Create Object operator creates an LDAP object of any type on the LDAP server.

Input Parameters
Object Path

Specifies the distinguished name of the object under which you want to create the
new LDAP object.

Object Name
Specifies the name of the new LDAP object.

Be sure to add the LDAP attribute to the name of the new LDAP object. The
attribute could be "ou", "cn", "uid", and so on, and depends on the type of LDAP
object being created.

Use the specified array field for the Object's "objectclass" Attributes Values
If checked, the "objectclass" Attribute Values Array will be used for this request.
Object's "objectclass" Attribute Values Array

Specifies the array containing the values of the "objectclass" Attribute. This dataset
field must be defined as an array (indexed string). If Use the specified array field for
Object's "objectclass" Attributes Values is checked, this field will be used.

Object's "objectclass" Attribute Values

Specifies the values of the "objectclass" Attribute. If the Use the specified array field
for Object's "objectclass" Attributes Values is unchecked, this field will be used.

The "objectclass" is the LDAP attribute that defines the type of the new object.

Chapter 7: Directory Services 213

Create Object Operator

Additional Object's LDAP Attributes Value Maps

This is an array of value maps containing additional LDAP attributes to be set for the
new object. Each value map's Key must be of type string, Value must be of type
string or array of strings (indexed string). The key must be named Keys and the
value must be named Values.

The user can set the Values field to be of type string to create single-valued LDAP
attributes for the new LDAP object being created. For example:

4[5l newOhjattributes [1]
- [Element Type
4= [0]
4 (3 Parameters
keys description
Values This is an org unit that represents the unit test

The object newObjAttributes is an indexed ValueMap whose key fields are called
Keys and are of type string and value fields are called Values and are of type string.

Alternatively, the user can set the Values field to be of type array of strings (indexed
string) to create multi-valued LDAP attributes for the new LDAP object being
created.

The object newObjAttributes2 is an indexed ValueMap whose key fields are called
Keys and are of type string and value fields are called Values and are of type
indexed string. In this case the user can create both single-valued and multi-valued
LDAP attributes for the new LDAP object being created.

For example:
4 = newdbjattributesz [2]
- [Elernent Type
4 [3[0]

4[5l Parameters

Keys telephonenurmber
4 [=1 values (2]
(o] 555-55-5555
[1] 555-55-0000
4[211]
F Eparameters
Keys description
4 [=l values [1]
(o] The test unit organization

214 Content Designer Reference

Create Object Operator

Within the same newObjAttributes2 object, we have a multi-valued
telephonenumber attribute and also a single-valued description attribute.

Note that if the same key appears multiple times within the indexed ValueMap,
only the last value associated with the key will remain.

Note that the attribute names entered in the Additional Object's LDAP Attributes Value
Maps must be the LDAP names of these attributes as specified in the LDAP server
schema. For instance, to set the value of the attribute "Last name" you must use the
LDAP name of this attribute: "sn", to set the value of the attribute "First Name", you
must use the attribute "givenname", and so on. See "Common LDAP Attribute Names
(see page 239)".

The LDAP names are different from the attributes display names.

Most LDAP servers differ in the display names of the LDAP attributes, but they all must
support the LDAP names of these attributes, thus the reason why we require the usage
of the LDAP names of the attributes instead of the display names.

Output Parameters
LDAPCreateObjectBaseDn
LDAPCreateObjectName
LDAPCreateObjObjectClassUseArray
LDAPCreateObjObjectClassArray
LDAPCreateObjObjectClass
LDAPCreateObjectAttributes
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Example

In this example, we are creating an organizational unit called Testing Unit. The
objectclass attribute defines the object to be of type 'top' and 'organizationalunit'. The
'top' type is the root of all LDAP types.

Chapter 7: Directory Services 215

Create Object Operator

We are also adding additional attributes to the new organizational unit through the
Process.newObjAttributes indexed value map.

Operator Failure

Create Object Parameters

Object Path:

"crn-testaroup,ou=ldapconnector,dc=ca,dc=com”

Object Name:

"ou=Testing Unit"

[Use the specified array field for the Object's "objectclass" attribute VYalues

Object's "objectclass™ Attribute ¥Yalues Array:

Object's "objectclass™ Attribute ¥Yalues:

i | | 55 || 4

Object's "objectclass™ Attribute ¥alues
1 “tap”

2 "organizationalunit"

Page | 1 of 1 e Displaying 1 -2 of 2

Additional Object's LDAP Attributes Yalue Maps:

Process.newdbjattributes

This operator fails in the following cases:

The name of the new LDAP object is already used.

Some of the mandatory attributes necessary to create the new LDAP object are
missing.

The "objectclass" of the new LDAP object is missing or incorrect.
Some of the attributes being created for the object contain invalid values.

Some of the attributes being created for the object do not apply to this type of
object, for instance, you cannot add a 'mail' attribute to an LDAP object of type
Organizational Unit.

The path, under which the LDAP object is to be created, is invalid.

216 Content Designer Reference

Create Ordanizational Unit Operator

m The user checked that an array of attributes is used for the "objectclass" attribute,
but the CA Process Automation object entered in the array field is actually not of
type array (indexed strings).

m Unable to connect to the LDAP server.

Create Ordanizational Unit Operator

Input Parameters

The Create Organizational Unit operator allows a user to create an LDAP object of type
Organizational Unit on the LDAP server.

Organizational Unit Path

Specifies the distinguished name of the object under which to create the new
organizational unit object.

Organizational Unit Name

Specifies the name of the new organizational unit object.

Output Parameters

Example

LDAPOrgUnitBaseDn
LDAPOrgUnitName
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Chapter 7: Directory Services 217

Create User Operator

Example

Organizational Unit Parameters o

Organizational Unit Path:

"ou=ldapconnector,dec=ca,dc=com"
Organizational Unit Name:

"pu=fssets"”

Important! Make sure to add the LDAP attribute to the name of the new organizational
unit. Organizational units usually use the attribute "ou" as part of the name's RDN
(relative distinguished name).

Operator Failure

This operator fails in the following cases:
m The name of the new organizational unit is already used.

m Some of the mandatory attributes necessary to create the new organizational unit
is missing.

m The path, under which the organizational unit is to be created, is invalid.

m Unable to connect to the LDAP server.

Create User Operator

-
&J_'

The Create User operator creates an LDAP object of type user account on the LDAP
server.

Input Parameters
User Account Path

Specifies the distinguished name of the object under which you want to create the
new user account.

First Name

Specifies the first name of the user.

218 Content Designer Reference

Create User Operator

Middle initials

Specifies the middle initials of the user. Note that Active Directory does not allow
middle initials to be over six characters long.

Last name

Specifies the last name of the user.
UserlD

Specifies the user ID for the user.
Password

Make sure you specify a password that conforms to the Password Policy
Requirements set in your LDAP server, especially for an Active Directory Server.

Active Directory?
Check if you are creating the new user account in an Active Directory server.
Create UserID as User Logon Name

Specifies whether you want the UserID to also be the user's logon name. In this
case, create a User Logon Name of the form "UserID@domain" where domain
represents the Active Directory's Domain. This field is enabled only when the Active
Directory? field is checked.

Enable user?

Select yes to make the new user active or no to make the new user inactive. This
field is enabled only when the Active Directory? field is checked.

Password Expires for User

Select whether the user password expires as per the Domain Policy or Never
expires. This field is enabled only when the Active Directory? field is checked.

When the user password is set to never expire, you are not be forced to change a
password at the first logon.

Password Change at First Login?

Forces the User to change password at first logon, this option is applicable only
when the password is chosen to expire. Note that the user could set the
combination Password to not expire and Password change required at first login. In
this case, CA Process Automation sets the password to not expire and ignores the
password change at first login request. This field is enabled only when the Active
Directory? field is checked.

Note that Active Directory will not allow for a user's password to be set unless CA
Process Automation is connected to the Active Directory server through SSL. If CA
Process Automation is not connected through SSL, the user account will be created
without a password and without the specified account controls (account
enabled/disabled, password expiration, password change at logon) and the operation
will fail in CA Process Automation

Chapter 7: Directory Services 219

Create User Operator

See the topic Add an SSL Certificate to CA Process Automation (see page 264) to find out
how to import an Active Directory certificate to CA Process Automation. Once the
certificate is imported, you can change the Directory Services category's properties to
establish an SSL connection with the Active Directory server.

Output Parameters
LDAPUserBaseDn
LDAPUserFirstName
LDAPUserMiddlelnits
LDAPUserLastName
LDAPUserld
LDAPUserPwd
LDAPISAD
LDAPAsUserLogon
LDAPEnableUser
LDAPPwdExpire
LDAPForcePwdChg
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

220 Content Designer Reference

Create User Operator

Example

Operator Failure

Create User Account Parameters o

User Account Path:
"en=Users,ou=|ldapcannectondo=ca,de=com”
First Name:

"Iohn"
Middle Initials:

"Michael"
Last Name:

"Smith"
UserID:

"jsmith"
Password:

"ismithpwd”

W active Directory?

Create UserID as User Logon Name:

Use Specified Dornain Controller o
Enable User?:

Tes h

Password Expires for User:

Mewver N
Password Change at First Login?:

Mo e

This operator fails in the following cases:

The user exists already.

Some of the mandatory attributes necessary to create the new user account are
missing.

The value of one of the attributes used to create the user account is invalid.
The path, under which the new user account is to be created, is invalid.

The new user account is created in an Active Directory server and not connected
through SSL.

Unable to connect to the LDAP server.

You specified a user password that does not conform to the Password Policy
Requirements set in your LDAP server, especially if it is for an Active Directory. In
this case, Active Directory returns a generic error message: WILL_NOT_PERFORM to
indicate that it cannot perform the operation.

Chapter 7: Directory Services 221

Delete Object Operator

Delete Object Operator

Input Parameters

S

e

The Delete Object operator deletes a single LDAP object or multiple LDAP objects from
the LDAP server.

Use the specified array field for the Objects Distinguished Names

If this is checked, then the Array of Distinguished Names will be used for this
request.

Objects Distinguished Names Array

Specifies the array of DNs of the objects you want to delete. This field is enabled
only when the Use the specified array field for the Objects Distinguished Names
field is checked.

Objects Distinguished Names

Specifies the DNs of the objects you want to delete. This window is enabled only
when the Use the specified array field for the Objects Distinguished Names field is
unchecked.

Objects Deletion Scope
Select one of the following:
Delete object (return an error if children exist)

To attempt to delete each object (from the list of objects in the Objects
Distinguished Names Array or Objects Distinguished Names fields) as if it does
not have a subtree under it in the LDAP tree. If a subtree exists for an object in
the list, then CA Process Automation will fail the operation; but will also
continue to delete all the other objects in the list of objects to be deleted.

Delete object and subtree (if exists)

To attempt to delete each object (from the list of objects in the Objects
Distinguished Names Array or Objects Distinguished Names fields) and the
entire subtree under it if such a subtree exists.

222 Content Designer Reference

Delete Object Operator

Output Parameters
NumberOfObjectsToDelete
Specifies the number of objects found to be deleted.

m [f the Objects Deletion Scope is set to Delete object and subtree then this
variable will return the number of all the objects found in the subtrees as well.

m If the Objects Deletion Scope is set to Delete object then this variable will
return the number of objects set in the operation.

NumberOfDeletedObjects
Contains the number of objects actually deleted.
DeletionFailures

Specifies an array of value maps created only when the operation fails. In this case,
this array of value maps will contain the DNs of the objects that were not deleted
along with error messages indicating why each object was not deleted.

Note that the delete operation will succeed when trying to delete an object that does
not exist in the LDAP server.
LDAPDeleteObjsUseArray
LDAPDeleteObjsArray
LDAPDeleteObjs
LDAPDeleteObjectsScope
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Examples

Examples of both a successful and failed deletion are provided here.

Chapter 7: Directory Services 223

Delete Object Operator

Operator Failure

This operator fails in the following cases:

m The operator was unable to delete any of the objects entered in the operation.

m Unable to connect to the LDAP server.

Failed Deletion

Delete a single object and set the operation to fail if any child objects (subtree) exist
under this object.

Delete Object Parameters

[Use the specified array field for the Objects Distinguished Mames
Objects Distinguished Names Array:

Zibjects Distinguished Mames:
|| &L

Objects Distinguished Names

0 "ou=ldaptestunit,dc=itpam,dc=cam"

Page | 1 of 1 et Displaying 1 -1 of 1
Ohjects Deletion Soope!

Delete object (return an error if children exist)

224 Content Designer Reference

Delete Object Operator

This is the operator dataset of a runtime instance:

4 [2 Delstionrailures [1]

- [Flement Tyoe

43 o7
Pl BROWO
D ou=ldaptestunit,de=itparn,dc=com
Reason [LDAP: error code 66 - Not Allowed ©n Mon-leaf]

After the operator runs, it fails and following data displays on the Operation Results tab.

Systemn Celete Object Par LODAF Login Paran Cperation Results
a

MurnberOfObiects ToDelete:

1
MurnberOfDeletedDbjects:

u]
DeletionFailures:

DM Reason
0 ou=ldaptestunit,dc=itparm,dc=com [LDAFP: error code 66 - Mot Allawed On Non-leaf]

Cancel

NumberOfObjectsToDelete

1 (as we only attempted to delete one object).

NumberOfDeletedObjects

0 (as we were unable to delete the object).

DeletionFailures
Specifies an array of ValueMaps with a single object that contains the DN of the
object you tried to delete, and the LDAP error message stating why it was not

deleted.

4 (A DeletionFailures
[0 &lerment Tyoe
=Yk
43 rowo
o

Regson

[1]

ou=ldaptestunit,dc=itpam,dc=com

[LDAP: error code 66 - Not allowed On Non-leaf]

The LDAP message indicates that this object has a subtree under it (it is a non-leaf).

Chapter 7: Directory Services 225

Delete Object Operator

Another failed deletion

Suppose you want to delete three objects within the same operation: two objects do
not have subtrees under them in the LDAP tree, and one object has a subtree under it.

Delete Object Parameters ES

[T Use the specified array field for the Objects Distinguished Mames
Objects Distinguished Narmes Array;

Objects Distinguished Names:
& 5| | ¥

Dbjects Distinguished Names
0 ou=testunitl,dc=itpam,dc=com
1 ou=testunitZ,dc=itpam,dc=com

Z ou=testunitd,dc=itpam,dc=com

Page | 1 of 1 e Displaying 1 - 3 of 3
Ohiects Deletion Soope;

Delete object (return an ervor if children exist)

In this example, the first and second objects do not have any subtrees under them. The
third object in the list has a subtree under it.

Note that you specified to delete the object (and return an error if children exist).
After the operation ran, it failed and the Operation Results page contains the following
data:
NumberOfObjectsToDelete

3 (as we attempted to delete 3 objects)
NumberOfDeletedObjects

2 (as we were able to delete only two objects)

226 Content Designer Reference

Delete Object Operator

DeletionFailures
Array of ValueMaps with a single object that contains:
m The DN of the object that we were unable to delete

m The LDAP error message stating why it was not deleted
[cperation Results

MomberOfObjects ToDelsts 3
MormnberOfDeletedObiects z
a4 (3 Deletionfailures [1]
- [0 Element Type
a3
a [AL mown

o ou=testunit3,dec=itparn,dc=com
Reason [LDAP: error code 66 - Mot Allowed On Mon-leaf]

Properties

Celete Object Par LDAP Login Paran Systemn Cperation Results

MurnberOfObiscts ToDelste!

3
MurnberOfDeletedObjocts:

2
DeletionFailures:

DN Reason

0 ou=testunit3,dc=itparn,dc=com [LDAF: error code 66 - Not Allowed On Non-leaf] —

Cancel

The LDAP message indicates that this object has a subtree under it (it is a non-leaf).

Keep in mind that the delete operation searches the entire list of objects to be deleted.
If an object fails to be deleted, the operation continues deleting all other objects in the
list, but the operation will also fail when it is over.

Chapter 7: Directory Services 227

Delete Object Operator

Operator Success

Attempt to delete the same object and all its children (subtree under it):

Delete Object Parameters £

[T Use the specified array field for the Objects Distinguished Marmes
Objects Distinguished Mames Array;

Ohjects Distinguished Marnes:
=S

Objects Distinguished Mames
0 "ou=testunit3,dc=itpam,dc=com"”

Page | 1 of 1 = Cisplaying 1 -1 of 1
Objects Deletion Scope!

Delete object and subtree (if exists) v

After the operation ran, the Operation Results show the following data:

4 [Al Cperation Results
Momberfiobjects ToDelete 25
MumberfDeletedDbiocts 25

NumberOfObjectsToDelete: 25 (as the object had 24 child objects in the subtree under
it).

228 Content Designer Reference

Get Domain Controller Operator

NumberOfDeletedObjects: 25 (as we were able to delete the object and all the child
objects in the subtree under it).

Properties
Delete Object Par LOAR Login Paran Systemn Cperation Results
MumberfObisctsToDelste:
25
MormberCfDeletedOhjects:
25
Cancel

Notice the DeletionFailures variable was not created.

If you had attempted to delete more than one object in the previous examples,
NumberOfObjectsToDelete and NumberOfDeletedObjects will represent the sum of all
'objects deleted' and 'objects to be deleted' for all objects entered in the operation
(including all their subtrees, if applicable).

Get Domain Controller Operator

Input Parameters

%I_U[f:

The Get Domain Controller operator retrieves all domain controllers from the Active
Directory server. This operator applies to Active Directory only.

The Get Domain Controller operator does not include any input parameters. The
operator simply retrieves the Active Directory server information from the LDAP Login
Parameters page associated with the operation or from the default LDAP Login
information set at the Directory Services category level.

Chapter 7: Directory Services 229

Get Domain Controller Operator

Output Parameters
DomainControllers

Specifies an array of strings (indexed string) that contains all the domain controllers
retrieved from the Active Directory server. This variable is created if the operation
succeeds.

remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

230 Content Designer Reference

Get Domain Controller Operator

Example

This example shows a successful instance of the operator retrieving the
DomainControllers from an Active Directory server. The operator succeeds and the
DomainControllers variable is created with the following data:
4 [Operation Results
4 [DomainControllers [1]

fof SEA-ITC-AD.ssaitc.com

Properties
LOAFP Login Paran System Operation Results
DomainControlers! LI
DomainControllers

0 SSA-ITC-AD.ssaitc.com

Page | 1 of 1 = Displaying 1 -1 of 1

Cancel

In this example, we now have a single domain controller in this Domain.

Operator Failure

This operator fails in the following cases:

CA Process Automation is unable to retrieve the configurationNamingContext from
the Active Directory server.

No objects of type TDSDSA exist in the Active Directory server.

Unable to connect to the LDAP server.

Chapter 7: Directory Services 231

Get Dormant Account Operator

Get Dormant Account Operator

Input Parameters

A

s

Use the Get Dormant Account operator to retrieve all dormant accounts from the Active
Directory. You can specify a date and number of days as a dormant range, any user
account whose last logon date falls earlier than this range is considered dormant. This
operator applies to Active Directory only.

Days Dormant
Specifies the number of dormant days
Date

Specifies the designated date for dormant accounts. This field is enabled when the
Use Calculated Date? is unchecked. Click the calendar icon to select a date.

Use Calculated Date?

Specifies that the user can supply a dataset variable that contains a date value in
the Calculated Date field.

Calculated Date

Specifies the calculated date for dormant accounts. This field is enabled when the
Use Calculated Date? is checked.

232 Content Designer Reference

Get Dormant Account Operator

Last Logon Attribute
LastLogonTimeStamp

Select this field when retrieving dormant accounts from Active Directory
2003/2008 (NOT Active Directory 2000).

The LastLogonTimeStamp attribute contains the last logon date of a user; but it
is replicated across all Domain controllers only after a period of time defined in
the msDS-LogonTimeSynclinterval attribute of the Active Directory.

If the dormant date falls before "today's date - msDS-LogonTimeSyncinterval",
then using the lastLogonTimestamp retrieved from a single Domain controller
retrieves all the dormant accounts.

The msDS-LogonTimeSyncinterval attribute specifies the frequency (in days)
with which the last logon time for a user/computer, recorded in the
lastLogonTimestamp attribute, is replicated to all Domain Controllers in a
Domain.

When using LastLogonTimeStamp, CA Process Automation retrieves the
LastLogonTimeStamp information for each user from only one Domain
controller and uses it to determine if the user is dormant or not.

LastLogon

Select this field when retrieving dormant accounts from Active Directory 2000,
2003, and 2008.

The LastLogon attribute contains the last logon date of a user but it is NOT

replicated across all domain controllers.

In this case, CA Process Automation begins to retrieve the list of all domain controllers,
then review them to save the most recent lastLogon attribute value for each user.
Finally, the most recent lastLogon value for each user is used to determine the dormant
accounts.

Output Parameters
DormantAccounts

Specifies an array of value maps, where each value map represents a dormant
account. Each value map contains the following keys/values:

DN

Specifies the distinguished name of the dormant user account.

Chapter 7: Directory Services 233

Get Object Operator

Last Logon Date
Specifies the last logon date of the dormant user account.
Dormant Days

Specifies the number of days between the dormant user account's last logon date
and the dormant date set in the operation. Note that this number is rounded up,
for instance if a user's last logon date is May 15, 2009 12:25:49 PM and we have a
dormant date of: May 18, 2009, then the Dormant Days will be 4 (not 3).

The Last Logon Date and Dormant Days will both be set to -1 for each dormant user
account that's never logged in before.

NolLogonParameterAccounts

Specifies an array of strings (indexed string) that contains the DNs of the user
accounts that do not have the LastLogonTimeStamp or LastLogon attribute set in
the Active Directory (depending on which attribute was selected by the user for the
search). If all user accounts do have the selected attribute set then this variable will
be empty.

LDAPADDormantDays
LDAPADDormantDate
LDAPADUseCalculatedDate
LDAPADCalculatedDate
LDAPADLastLogonAttr
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Get Object Operator

i,
a i)

The Get Object operator retrieves any type of LDAP objects from the LDAP server. You
can specify the search path, the search filter (see page 238), the search scope, the
attributes (see page 239) to retrieve with each object, and the sort criteria.

234 Content Designer Reference

Get Object Operator

Input Parameters

Get Criteria
Start Search Path

Specifies the start location for the search, such as Like
CN=Users,dc=domainpart,dc=company-name,dc=top-level-domain-name

Retrieve Scope
Select one of the following options:
Subtree Scope
Search the entire subtree (including the object at the search path).
One Level Scope
Search the objects directly under the object at the search path.
Object Scope
Search the object at the search path only.
Results Limit Count
Maximum number of entries to return.

m If you enter 0 or nothing in this field, CA Process Automation uses the value set
in the Max Number of Search Results field (from the Directory Services
category configuration).

m If you enter a value in this field, CA Process Automation uses the smaller value
between this field's value and the value set in the Max Number of Search
Results field (from the Directory Services category configuration).

Time Limit for Retrieve

Time in seconds to wait before timing out of this search. If this limit is O (or nothing
is entered), there is no time limit set on the search.

Retrieve Object Type
Select one of the following options:
m User
m Computer
m Group
m Organizational Unit
m Role
m Other

This field controls the filter value displayed in the Retrieve Filter field.

Chapter 7: Directory Services 235

Get Object Operator

Sort Criteria

Retrieve Filter
Choose the search filter to use for this search.
You can:

Use a generic filter by selecting User, Group, Organizational Unit, Role, or Computer
in the Retrieve Object Type field, which displays the associated filter value in the
Retrieve Filter field and makes this field read-only.

or

Enter your own filter by selecting Other in the Retrieve Object Type field, which
displays "objectclass=" in the Retrieve Filter field and makes this field writable so
you can fill out your own filter value. The expression must be syntactically correct
otherwise the search can fail. See "LDAP Search Filter Basics (see page 238)" for a
primer on LDAP search filters syntax.

Note that you can use different filters for User, Group, Organizational Unit, Role, or
Computer by selecting Other in the Retrieve Object Type field and entering his/her
filter value in the Retrieve Filter field. The provided generic search filters may not
work with some LDAP servers, especially if the LDAP server does not support some
of the object classes listed in the filters.

Retrieve Attributes specified as an Array Variable?

If checked, you can supply a dataset variable that contains an array of attributes to
retrieve.

Retrieve Attributes Array Variable

The dataset variable that supplies an array of attributes to retrieve. This field is
enabled when the Retrieve Attributes specified as an Array Variable? field is
checked.

Retrieve Attributes List

Specifies a list of attributes to retrieve for this search filter. This list is enabled when
the Retrieve Attributes specified as an Array Variable? field is unchecked.

Sort Fields specified as an Array Variable?

If checked, you can supply a dataset variable that contains an array of attributes
used for sorting the retrieved data.

Sort List Fields Array Variable

The dataset variable that supplies an array of attributes to use for the sort order.
This field is enabled when Sort Fields specified as an Array Variable? is checked.

236 Content Designer Reference

Get Object Operator

Sort List Order

List of attributes to use for the sort order. This list is enabled when the Sort Fields
specified as an Array Variable?: field is unchecked.

If nothing is entered in the Sort Criteria section, the retrieved objects are not
sorted.

Note that some LDAP servers (for instance OpenLdap) do not support "Sorting" of
data. In this case, the operator might fail with the following reason: [LDAP: error
code 12 - critical extension is not recognized]. Do not provide any sorting criteria in
this case. This is a limitation in the LDAP server, not CA Process Automation.

Chapter 7: Directory Services 237

Get Object Operator

LDAP Search Filter Basics

The LDAP search filter syntax is a logical expression in prefix notation, where the logical
operator appears before the associated arguments.

For example: (&(givenname=John)(sn=Green))

In the filter above & is the And operator and it appears before its arguments. In this
example, we are searching for LDAP objects with John as the givenname (givenname is
the LDAP attribute for first name), and sn as Green (sn is the LDAP attribute for last
name).

Each item in the filter is composed using an LDAP attribute identifier and either an
attribute value or symbols that denote the attribute value. Each item must also be
enclosed within a set of parentheses, as in "(sn=Green)".

Items within a filter are combined together using logical operators to create logical
expressions. Each logical expression can be further combined with other items that
themselves are logical expressions, as in some of the filters used in CA Process
Automation:

(&(| (objectclass=user) (objectclass=person)) (! (objectclass=computer)))

In this filter, we are searching for all objects where the objectclass is either user OR
person:

(| (objectclass=user) (objectclass=person))

AND the objectclass is not computer
(! (objectclass=computer))

Note the & at the beginning of the filter that combines these two segments together in
a logical AND.

Note that the LDAP attribute objectclass stores the type(s) of an LDAP object in the
LDAP directory.

Some of the logical operators used for creating filters are listed in the following table:

Symbol Description

= Equality
Example: (givenname=John)

Search for objects with John as first name.

238 Content Designer Reference

Get Object Operator

& Logical AND
Example: (&(givenname=John)(sn=Green))
Search for objects with John as first name and Green as last name

Logical OR
Example: (| (givenname=John)(givenname=Michael))

Search for objects with either John or Michael as first name

! Logical NOT
Example: (&(givenname=John)(!(sn=Green)))

Search for objects with John as first name and Green is not the last
name

>= Greater than
Example: (numsubordinates>=2)

Search for objects with 2 or more child nodes in the LDAP tree.

<= Less than
Example: (numsubordinates<=2)

Search for objects with 2 or less child nodes in the LDAP tree.

=* Presence
The object must have the attribute but its value is irrelevant.
Example: (givenname=%)

Search for objects with the givenname attribute.

* Wildcard
Example: (givenname=Joh*)

Search for objects whose givenname starts with Joh

Common LDAP Attribute Names

Some common LDAP attributes are listed below. The complete list of LDAP object
classes and attributes used in the LDAP server schema is located on the LDAP server.

LDAP Attribute Name Description

cn Common Name attribute, which contains the name of
the object

dc Domain Component attribute

objectClass Object Class attribute, which contains the LDAP

type(s) of the object

Chapter 7: Directory Services 239

Get Object Operator

LDAP Attribute Name

Description

distinguishedName

Distinguished Name attribute in Active Directory

This is the attribute that uniquely identifies the object
in the Active Directory.

entrydn Distinguished Name attribute in LDAP servers (other
than Active Directory)
This is the attribute that uniquely identifies the object
in an LDAP server.

o Organization Name attribute which contains the
name of the organization

ou Organizational Unit Name attribute which contains
the name of the organizational unit

sn Surname attribute which contains the family name of
an individual

givenName First name attribute which contains the first name of

an individual

personalTitle

Personal Title attribute which contains the personal
title of a person

Examples of personal titles are "Mr", "Dr", "Prof" and
llReVII.

initials Initials attribute which contains the initials of some or
all of an individual's names, but not the surname(s)

uid User ID attribute

userPassword Password attribute which contains a user's password
Passwords are stored using an Octet String syntax
and are not encrypted.

title Title attribute which specifies the designated position
or function of the object within the organization

mail Mail attribute which contains a user's email address

company Company or organization name attribute

department Department Name attribute

manager Boss, manager attribute

mobile Mobile Phone number attribute

homephone Home Phone number attribute

telephoneNumber

Telephone Number attribute

facsimileTelephoneNumber

Fax Number attribute

240 Content Designer Reference

Get Object Operator

LDAP Attribute Name

Description

postalAddress

Postal Address attribute, which contains information
required for the physical delivery of postal messages

postalCode Postal Code attribute
If this attribute value is present it will be part of the
object's postal address.

c Country Name attribute which contains a two-letter
ISO 3166 country code

| Locality Name attribute which contains the name of a
locality, such as a city, county or other geographic
region

st State Or Province Name attribute

street Street attribute which contains the physical address
of the object, such as an address for package delivery

owner Owner attribute which specifies the name of some
object which has some responsibility for the
associated object
The value is a Distinguished Name

description Description attribute which contains a
human-readable description of the object

seeAlso See Also attribute.

serialNumber

Serial Number attribute which stores the serial
number of a device

member

The member attribute is used in entries defining
groups

It has Distinguished Name syntax, so each value is
effectively a pointer to another entry in the directory.
Note that the standard groupOfNames object class
makes the member attribute mandatory. As
attributes cannot have empty values, this effectively
requires all groups to have at least one member at all
times.

uniqueMember

The uniqueMember attribute is similar to the
Member attribute stated above, and it is used to
store the unique members in a groupOfUniqueNames
object

sAMAccountName

Old NT 4.0 logon name attribute (Active Directory
only), which must be unique in an Active Directory
domain

Chapter 7: Directory Services 241

Get Object Operator

LDAP Attribute Name Description

LastLogonTimeStamp Last Logon Time Stamp attribute (Active Directory
2003/2008 only), which contains the last logon date
of a user; but it is replicated across all domain
controllers only after a period of time defined in the
msDS-LogonTimeSynclnterval attribute of the Active
Directory

LastLogon Last Logon attribute (Active Directory only), which
contains the last logon date of a user but it is NOT
replicated across all domain controllers

Output Parameters
RetrievedObjects

An array of value maps, where each value map contains the attributes retrieved for
each object. This variable is created only when the operation succeeds.

LDAPSearchPath
LDAPSearchScope
ResultsLimit
LDAPGetTimeLimit
LDAPSearchType
LDAPGetFilter
LDAPGetAttributesType
LDAPGetAttributesArray
LDAPGetAttributes
LDAPGetSortAttributesType
LDAPGetSortAttributesArray
LDAPGetSortAttributes
remoteLDAPHost
remotelLDAPPort
remotelLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

242 Content Designer Reference

Get Object Operator

Notes:

The attribute names entered in the sort and retrieve sections must be the LDAP
names of these attributes as specified in the LDAP server schema. For example, to
retrieve the attribute "Last name" you must use the LDAP name of this attribute:
"sn", to retrieve the attribute "First Name", you must use the attribute
"givenname", and so on. See "Common LDAP Attribute Names (see page 239)".

The LDAP names are different from the attributes display names.

Most LDAP servers differ in the display names of the LDAP attributes, but they all
must support the LDAP names of these attributes, thus the reason why we require
the usage of the LDAP names of the attributes instead of the display names.

You must provide the names of the attributes to be retrieved; otherwise CA Process
Automation will not return any data in the RetrievedObjects variable.

If no object was found under the specified search path, the search operation will
succeed and the RetrievedObjects variable will be empty. The search operation will
not fail in this case.

Chapter 7: Directory Services 243

Get Object Operator

Examples

Example - Use a generic filter

Retrieve Criteria
Start Search Path:

"CN=Computers, DC=itpam,DC=ca,DC=local"
Retrieve Scope:

Subtree Scope i
Results Limit Count:

Time Limit for Retrieve:

Retrieve Object Type:

Computer v
Retrieve Filter:

"objectclass=computer”

[T Retrieve attributes specifisd as an Array Variable?

Retrieve Attributes Array Variable:

Retrieve Attributes List:
Laa] || a2 || 4

Retrieve Attributes List
"distinguishedname"
"objectCategory”
"objectClass"

Bowor e

e

Page |1 of 1

&

Displaying 1 - 4 of 4

In this example, we are trying to retrieve all computer accounts under the
"CN=Computers,DC=itpam,DC=ca,DC=local" path. We are specifically asking for the "cn",
"distinguishedname", "objectcategory", and "objectclass" attributes of these accounts.

Sort Criteria

[T Sort Fields specified as an Array Variabls?
Sort List Fields Array ¥ariable:

Sort List Order:
o8] | Lot

Sort List Order

1 en

Page |1 of 1

&

Displaying 1 -1 of 1

We are also sorting the returned user accounts by “cn”.

After the operation ran, it ended successfully and the RetrievedObjects variable was
created as follows:

244 Content Designer Reference

Get Object Operator

4 [A Cperation Results
4 [A RetrievedObiects (8]
4 [A Element Type

F] ERGWD

on

objectC ategory

objectClass

AisHnoushediame

For each value map in the RetrievedObjects variable, we now have the values retrieved
for each computer account attribute. In this example, the RetrievedObjects variable

contains eight objects.

Dataset

= Save Add Wariable X Delete Wariable

4 (A Cperation Resutts
4 [2 retrievedObiscts
4 [Flement Trpe
> [RowD
a3 o]
4 [Rowo
cn
objectCategory
objectCizss
distinguishedhame
R=Ye3
a[R gown
1 cn
objectCateqory
obiectCizss
qistinguishediame

> (3427

<

[2]

ALISYO5-SC0OM
CHN=Computer,CH=%chema,CN=Configurat

top|person|organizationalPerson|user|com..

CH=ALISY05-3COM,CN=Computers,DC=ss

BOBSRO1-CADE
CH=Computer,CH=5chema, CN=Configurat

Add Page X Delete Page

d General

Type:
Page:

Description:

Operation Results -

- array

Array
Dimension:

top|person|organizationalPerson|user|com..

CHN=BOBSRO1-CADE,CN=Computers,DC=5

| ot

Cancel

Also note that the values of multi-valued attributes (objectclass in this example) are
returned with a "|" between the multiple values:

abfectClass

top|person|organizationalPerson|user|computer

Chapter 7: Directory Services 245

Get Object Operator

Example - Use your own filter

Retrieve Criteria o

Start Search Path:

"DC=itpam,DC=ca,DC=local"
Retrieve Scope:

Zubtree Scope i
Results Limit Count:

Time Limit for Retrieve:

Retrieve Object Type:
Other -
Retrieve Filter:

"objectclass=container”

[T Retrieve attributes specified as an Array Variable?
Retrieve Attributes Array Yariable:

Retrieve Attributes List:
L L&) & || &

Retrieve Attributes List
"distinguishedname"
"objectCategory”
"objectClass"

Bow o omoR

et

Page |1 of 1 & Displaying 1 - 4 of 4

In this example, we are using our own filter (note retrieve Object Type is set to Other) to
retrieve all container accounts under the "DC=itpam,DC=ca,DC=local" path. We are
specifically asking for the "cn", "distinguishedname", "objectcategory", and
"objectclass" attributes of these accounts.

Sort Criteria &

[Sort Fields specified as an Array Variable?
Sort List Fields Array ¥ariable:

Sort List Order:

Sort List Order

1 et

Page |1 of 1

&

Displaying 1 -1 of 1

We are also sorting the returned user accounts by "cn".

After the operation ran, it ended successfully and the RetrievedObjects variable was
created as follows:

246 Content Designer Reference

Get Object Operator

4 [A Cperation Results
4 [A BetrisvedOhbiects [&]
4 [A Element Type
F] E Haowd
on
objectC ategory
objectClass

AisHnoushediame

4 | ol Qperation Hesults

4[4 RetrievedObiects [a]
- [0 Etement Type
4= oF
4 BROWG‘
[l {31B2F340-0160-1102-945F-00C04FB934F3
ohijects ateqor)y CHM=Group-Falicy-Caontainer, CN=5chema, CH=Configuratia...
objectllass top|container|groupPolicy Container
FistinguishedNarme CN={31B2F340-0160-1102-945F-00C04FB984F9} ,ChN=Foli...
4227
F BROWG‘
o {6AC17E6C-016F-11D2-945F-00C04fB984F 9} i
ohiectC ateqory CMN=Group-Policy-Container, CN=5chema,CHN=Configuratio...
ohjectllass top|container|groupPolicy Container

Properties

Retrieve Criteria Sort Criteria LOAP Login Paran System Operation Results

RetrievedObjects:

cn objectCategory objectClass disting

0 {31B2F340-0160-11.. CH=Group-Policy-Co... top|container|groupPolicyContainer CH={31
1 {6AC1786C-016F-11... CN=Group-Policy-Co... top|container|groupPolicyContainer CH={6{
Z Oe66lea3-8a5e-4495. CH=Container,CHN=5.. top|container CHM=0ef
3 10b3adZa-6883-4fa?.. CN=Container,CN=%.. top|container CH=10f
4 13d15cf0-e6c8-11d6-.. CHM=Container,CH=5.. top|container CHM=13¢
4| | I
Page | 1 lofza | bk M & Displaying 1 -5 of &

Cancel

Chapter 7: Directory Services 247

Get User Operator

In each value map in the RetrievedObijects variable, we now have the values retrieved
for each container account attribute. The RetrievedObjects variable contains 86 objects
in this example.

Please also note that the values of multi-valued attributes (objectclass in this example)
are returned with a "|" between the multiple values:

objectCiass top|container|groupPolicy Container

Operator Failure

This operator fails in the following cases:

m The search path does not exist on the LDAP server.

m The search time limit was exceeded.

m Unable to connect to the LDAP server.

This operation may fail in the following cases, depending on the LDAP server as some
LDAP servers consider these as errors while others do not:

m The search filter is invalid.

m The returning attributes are invalid.

m The sorting attributes are invalid.

Get User Operator

P
[%'g

L1

The Get User operator retrieves LDAP objects of type user account from the LDAP
server. You can specify the search path, the search filter, the search scope, the
attributes to retrieve with each object, and the sort criteria.

Input Parameters

Input parameters for the Get User operator include retrieve criteria and sort criteria.

248 Content Designer Reference

Get User Operator

Get Criteria
Start Search Path

Specifies the start location for the search, Like
CN=Users,dc=domainpart,dc=company-name,dc=top-level-domain-name.

Retrieve Scope
Select one of the following options:
Subtree Scope
Searches the entire subtree (including the object at the search path).
One Level Scope
Searches the objects directly under the object at the search path.
Object Scope
Searches the object at the search path only.
Results Limit Count
Maximum number of entries to return.

m Enter 0 or nothing in this field to use the value set in the Max Number of
Search Results field (from the Directory Services category configuration).

m Enter avalue in this field to use the smaller value between this field's value and
the value set in the Max Number of Search Results field (from the Directory
Services category configuration).

Time Limit for Retrieve
Specifies time in seconds to wait before timing out of this search.
If 0 or nothing is entered, there is no time limit set on the search.
Retrieve Filter
Specifies the search filter to use for this search.

m The generic search filter searches for user accounts in LDAP, and you can tweak
this filter as necessary. This field is writable (can be modified).See the topic
"LDAP Search Filter Basics (see page 238)" for a primer on LDAP search filters
syntax.

m The generic search filter may not work with some LDAP servers, especially if
the LDAP server does not support some of the objectclasses listed in the filter:

"(&(] (objectclass=user)(objectclass=person))(!(objectclass=computer)))"

Chapter 7: Directory Services 249

Get User Operator

m The expression must be syntactically correct, otherwise the search can fail.

m Consult with your LDAP administrator regarding the supported LDAP
objectclasses.

Retrieve Attributes specified as an Array Variable?

Check this box to supply a dataset variable that contains an array of attributes to
retrieve.

Retrieve Attributes Array Variable

Specifies the dataset variable that supplies an array of attributes to retrieve. This
field is enabled when the Retrieve Attributes specified as an Array Variable? check
box is enabled.

Retrieve Attributes List

Specifies a list of attributes to retrieve for this search filter. This list is enabled when
the Retrieve Attributes specified as an Array Variable? field is unchecked.

Sort Criteria
Sort Fields specified as an Array Variable?

Check this box to supply a dataset variable that contains an array of attributes used
for sorting the retrieved data.

Sort List Fields Array Variable

Specifies the dataset variable that supplies an array of attributes to be used for the
sort order. This field is enabled when the Sort Fields specified as an Array Variable?
check box is selected.

Sort List Order

List of attributes to be used for the sort order. This field is enabled when the Sort
Fields specified as an Array Variable? check box is unchecked.

If nothing is entered in the Sort Criteria section, the retrieved objects will not be
sorted.

Note: Some LDAP servers (such as OpenLdap) do not support "Sorting" of data. In
this case, the operation might fail with the following reason: [LDAP: error code 12 -
critical extension is not recognized]. Do not provide any sorting criteria in this case.
This is a limitation in the LDAP server, not CA Process Automation.

250 Content Designer Reference

Get User Operator

Output Parameters
UserAccounts

This is an array of value maps, where each value map contains the attributes
retrieved for the user. This variable is created only when the operation succeeds.

LDAPSearchPath
LDAPSearchScope
ResultsLimit
LDAPGetTimeLimit
LDAPGetFilter
LDAPGetAttributesType
LDAPGetAttributesArray
LDAPGetAttributes
LDAPGetSortAttributesType
LDAPGetSortAttributesArray
LDAPGetSortAttributes
remoteLDAPHost
remotelLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Chapter 7: Directory Services 251

Get User Operator

Attribute names entered in the sort and retrieve sections must be the LDAP names of
these attributes as specified in the LDAP server schema. For instance, to retrieve the
attribute "Last name" you must use the LDAP name of this attribute: "sn", to retrieve
the attribute "First Name", you must use the attribute "givenname", and so on. For
more information, see the topic "Common LDAP Attribute Names (see page 239)".

LDAP names are different from the attributes display names.

Most LDAP servers differ in the display names of the LDAP attributes, but they all must
support the LDAP names of these attributes, thus the reason why we require the usage
of the LDAP names of the attributes instead of the display names.

You must provide the names of the attributes to be retrieved; otherwise CA Process
Automation will not return any data in the UserAccounts variable.

If no user accounts were found under the specified search path, the search operation
will succeed and the UserAccounts variable will be empty. The search operation will not
fail in this case.

252 Content Designer Reference

Get User Operator

Examples

In this example, we are trying to retrieve all user accounts under the
"ou=Ildapconnector,dc=ca,dc=com" path. We specifically asked for the "entrydn", "uid",
and "objectclass" attributes of these accounts.

Retrieve Criteria =

Start Search Path:

"ou=ldapconnector,dc=ca,dc=com"
Retrieve Scope:

Subtree Scope
Results Limit Count:

10
Time Limit for Retrieve:

10
Retrieve Filter:

"{&(|{objectclass=useri{objectclass=person}){l{objectclass=computer)))"

[T Retrieve Attributes specified as an Array Variable?
Retrieve Attributes Array Yariable:

Retrieve Attributes List:
Lat] || Lo ¥
Retrieve Attributes List
1 “entryDn"
2 id"
3 "objectclass”

Pagell of 1

&

Displaying 1 - 3 of 3

We are also sorting the returned user accounts by "entryDn" then "uid".

Sort Criteria o

[T Sort Figlds specified as an Array Variahbls?
Sort List Fields Array Yariable:

Sort List Order:
[ad] || a5 +

Sort List Order
1 "entryDn"
2 midh

Pagell of 1 e Displaying 1 -2 of 2

After the operator ran, it ended successfully and the UserAccounts variable was created
as follows:

Chapter 7: Directory Services 253

Get User Operator

a [3 Operation Resufts
4 B Liserdooounts
4 [AL Flement Type
4 B Ropd
wid
endrpin
objectClass
4 =2 o7
4 [A rowo
wid
entrpin
objectllass
a3

a = rowd

[10]

cn=testunituser,ou=testunit3,dc=itpam,dc=com

organizationalPerson|person|top

Properties
Retrieve Criteria Sort Criteria LD&FP Login Paran
Userdccounts:
uid entryDn

a cn=testunituser,ou=testunit3...
1 seealso=test,dc=itpam,de=c...
z abarnes uid=abarnes,ou=people,dc=...
3 abergin uid=abergin,ou=peaple,de=i...
4 achassin uid=achassin,ou=people,dc...

FPage | 1 of 2

b

Mo &

Operation Results

[

Systerm

objectClass
organizationalPerson|person...
top|person|inetdrgPerson|or...
top|person|organizationalPe...
top|person|arganizationalPe...

top|person|organizationalPe..

Displaying 1 - 5 of 10

[«

Cancel

Each ValueMap in the UserAccounts variable now shows the values retrieved for each
user account attribute. The operator returned only ten user accounts because we
specified our search results limit to be ten. The values of multi-valued attributes
(objectclass in this example) are also returned with a "|" between the multiple values:

objectClzss

organizationalPerson|person|top

254 Content Designer Reference

Move Object Operator

Operator Failure

This operator fails in the following cases:

m The search path does not exist on the LDAP server.

m The search time limit was exceeded.

= Unable to connect to the LDAP server.

This operation may fail in the following cases, depending on the LDAP server as some
LDAP servers consider these as errors while others do not:

m The search filter is invalid.

m The returning attributes are invalid.

m The sorting attributes are invalid.

Move Object Operator

L~

The Move Object operator moves an LDAP object from one location to another within
the LDAP server.

Input Parameters
Object Old DN

Specifies the distinguished name of the object that you want to move.

Object New DN

Specifies the destination for the distinguished name where you want the object to
be moved.

Chapter 7: Directory Services 255

Remove User from Group Operator

Output Parameters

LDAPMoveObjectOldDn

LDAPMoveObjectNewDn

remoteLDAPHost

remoteLDAPPort

remoteLDAPUser

remoteLDAPPassword

LDAPBaseDN

LDAPUserPrefix

Example

Operator Failure

Move Object Parameters

Object 0ld DN:

"cn=testgroup,ou=Ildapconnector,dc=ca,dc=com"

Object New DN:

"cn=testgroup,ou=groups,ou=ldapconnector,dc=ca,dc=com”

This operator fails in the following cases:

The old DN of the object does not exist in the LDAP server.
The new DN of the object exists already.

The LDAP server is setup to prevent a 'Move' Operator from occurring
programmatically.

Unable to connect to the LDAP server.

Remove User from Group Operator

s

The Remove User from Group operator lets you remove an LDAP user from an LDAP
group on the LDAP server.

256 Content Designer Reference

Remove User from Group Operator

Input Parameters
User DN

Specifies the distinguished name of the user that you want to remove from the
group.

Group DN

Specifies the distinguished name of the group from which you want to remove the
user.

Output Parameters
LDAPUserDn
LDAPGroupDn
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Example

Remove User from Group Parameters o

User DN:

"cn=JSmith,ou=Ildapconnector,de=ca,de=com”
Group DN:

"cn=Users,dc=ca,dc=com”

Operator Failure

This operator fails in the following cases:
m The user is not a member of the group.
m The group does not exist in the LDAP server.

m The Group DN points to an LDAP object that is not of type group, groupofnames or
groupofuniquenames.

m Unable to connect to the LDAP server.

Chapter 7: Directory Services 257

Update Object Attributes Operator

Update Object Attributes Operator

S

The Update Object Attributes operator performs all of the following tasks
simultaneously:

m Add new attributes to an existing LDAP object.
m Replace the values of attributes of an existing LDAP object.

m Remove attributes from an existing LDAP object.

You can perform all three operations on the same object at the same time, or you can
choose to ignore any of the operations by not entering anything in the operator's
parameters.

Note: The Active Directory will not allow for a user's password to be modified unless CA
Process Automation is connected to the Active Directory server through SSL. If CA
Process Automation is not connected through SSL, a replace operator on a user
password will fail.

For more information about how to import an Active Directory's certificate to CA
Process Automation, see "Add an SSL Certificate to CA Process Automation (see
page 264)". Once the certificate is imported, you can change the Directory Services
category's properties to establish an SSL connection with the Active Directory server.

Input Parameters
Input parameters for the Update Object Attributes operator are as follows.

Objects Parameters
Object Distinguished Name
Specifies the distinguished name of the LDAP object whose attributes you want to
modify.
Add Attributes Parameters Page

Use the Add Attributes Parameters page to enter all the attributes that you want to
create for the LDAP object.

Use specified array fields for the LDAP attributes to be added

Check this box to use the Attributes and Attributes Values arrays for this request.

258 Content Designer Reference

Update Object Attributes Operator

LDAP Attributes Array

The array containing the LDAP names of the attributes to be added to the object.
This Dataset field must be defined as an array (indexed string). If Use specified array
fields for the LDAP attributes to be added is checked, this field will be used.

LDAP Attributes Values Array

The array containing the values of the attributes to be added to the object. This
Dataset field must be defined as an array (indexed string). If Use specified array
fields for the LDAP attributes to be added is checked, this field will be used.

LDAP Attributes

The LDAP names of the attributes to be added to the object. If Use specified array
fields for the LDAP attributes to be added is unchecked, this field will be used.

LDAP Attributes Values

The values of the attributes to be added to the object. If Use specified array fields
for the LDAP attributes to be added is unchecked, this field will be used.

LDAP Attributes Value Maps

This is an array of value maps containing additional LDAP attributes to be added to
the object. Each value map's Key and Value must be of type string; moreover, the
key must be named Keys and the value must be named Values.

Example
Dataset Properties Wersions audit Trail
Filter: X General
Name Yalue Type: P =
- BParameters
4 [21 addattrHashMaparray [1] Page: Parameters v
4 [A Elemnent Type Description:
Fl BParameterS
keys
Values M Array
‘B Array Single v
4[5l parameters . Dimension:
leeys rmanager ;
Values Jnseph Srith

In this example, the object addAttrHashMapArray is an indexed ValueMap whose key
fields are called Keys and value fields are called Values.

Note that the user can use the LDAP Attributes Value Maps alone or as an addition to
any attributes (and associated attribute values) entered in the other fields of the page.

Chapter 7: Directory Services 259

Update Object Attributes Operator

Replace Attributes Parameters Page

Use the Replace Attributes Parameters page to enter all the attributes whose values you
want to replace in the LDAP object.

Use specified array fields for the LDAP attributes to be added

If this is checked, then the Attributes and Attributes Values arrays will be used for
this request.

LDAP Attributes Array

Specifies the array containing the LDAP names of the attributes whose values are to
be replaced in the object. This Dataset field must be defined as an array (indexed
string). If Use specified array fields for the LDAP attributes to be added is checked,
this field will be used.

LDAP Attributes Values Array

Specifies the array containing the new values of the attributes to be replaced in the
object. This Dataset field must be defined as an array (indexed string). If Use
specified array fields for the LDAP attributes to be added is checked, this field will
be used.

LDAP Attributes

Specifies the LDAP names of the attributes whose values are to be replaced in the
object. If Use specified array fields for the LDAP attributes to be added is
unchecked, this field will be used.

LDAP Attributes Values

Specifies the new values of the attributes to be replaced in the object. If Use
specified array fields for the LDAP attributes to be added is unchecked, this field will
be used.

LDAP Attributes Value Maps

Specifies an array of value maps containing the LDAP names and new values of the
attributes whose values are to be replaced in the object. Each value maps Key and
Value must be of type string; moreover, the key must be named Keys and the value
must be named Values.

Remove Attributes Parameters Page

The Remove Attributes Parameters page is used to enter all the attributes that you want
to remove from the LDAP object.

Use specified array field for the LDAP attributes to be removed

Check this box to use Attributes arrays for this request.

260 Content Designer Reference

Update Object Attributes Operator

LDAP Attributes Array

Specifies the array containing the LDAP names of the attributes to be removed from
the object. This Dataset field must be defined as an array (indexed string). If Use
specified array field for the LDAP attributes to be added is checked, this field will be
used.

LDAP Attributes

Specifies the LDAP names of the attributes to be removed from the object. If Use
specified array field for the LDAP attributes to be added is unchecked, this field will
be used.

Output Parameters
LDAPModifyObjAttrsDN
LDAPAddAttributesType
LDAPAddAttributesKeyArray
LDAPAddAttributesValueArray
LDAPAddAttributesKeys
LDAPAddAttributesValues
LDAPAddAttributesMap
LDAPRemoveAttributesType
LDAPRemoveAttributesKeyArray
LDAPRemoveAttributesKeys
LDAPReplaceAttributesType
LDAPReplaceAttributesKeyArray
LDAPReplaceAttributesValueArray
LDAPReplaceAttributesKeys
LDAPReplaceAttributesValues
LDAPReplaceAttributesMap
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Chapter 7: Directory Services 261

Update User Home Directory Operator

Operator Failure

This operator fails in the following cases:
m The LDAP object specified does not exist.
m One of the LDAP attribute you want to add, replace, or remove does not exist

m The list of attributes and attribute values of the 'Add' or 'Modify' pages do not
match in length.

m The user checked that an array of attributes and an array of attribute values are
used for the 'Add’, 'Replace’, or '/Remove' pages, but the CA Process Automation
object entered in the array field is actually not of type array (indexed strings).

m The LDAP server is setup to prevent any modifications of LDAP objects done
programmatically.

m Unable to connect to the LDAP server.

Update User Home Directory Operator

A
&b

The Update User Home Directory operator sets up a share for a user in an Active
Directory server. The share includes a home drive, home directory, and log in script.

Input Parameters
User DN

Specifies the distinguished name of the user object for which you want to set the
home directory, home drive, and logon script.

Home Directory

Specifies the new home directory of the user.
Home Drive

Specifies the new home drive of the user.
Logon Script

Specifies the new logon script of the user.

262 Content Designer Reference

Update User Home Directory Operator

Output Parameters
LDAPUserDn
LDAPADHomeDirectory
LDAPADHomeDrive
LDAPADLogonScript
remoteLDAPHost
remoteLDAPPort
remoteLDAPUser
remoteLDAPPassword
LDAPBaseDN
LDAPUserPrefix

Example

Active Directory Setup Share for User Parameters o

User DN:

"cn=lohn Srmith,DC=Users,DC=itparn,DC=ca,DC=local"
Home Directory:

"CivwDocuments and settingsi\\jsmith"
Home Drive:

Hy
Lagon Script:

"Chscriptsihlogon.vbs”

Operator Failure

This operator fails in the following cases:
m The user object does not exist.

m The Active Directory is setup to prevent any modifications of LDAP objects to occur
programmatically.

Chapter 7: Directory Services 263

Add an SSL Certificate to CA Process Automation

Add an SSL Certificate to CA Process Automation

To add an SSL certificate to CA Process Automation
1. Retrieve the certificate file from the Active Directory server.

For instance, to establish an SSL connection between CA Process Automation and
an Active Directory server, retrieve the certificate. Log in to the http://i.p./certsrv
where i.p. is the IP address of the Active Directory server, then download the
certificate.

2. Copy the certificate file to the computer where the CA Process Automation
Directory Services operators are running.

3. Import the certificate using the keytool command:

keytool -import -alias PAM -file certnew.cer -keystore "C:\\Program
Files\\Java\\jdk1l.6.0 03\\jre\\lib\\security\\cacerts"

Where certnew.cer is the path to the certificate file retrieved in step 1.

"C:\\Program Files\\Java\\jdk1.6.0_03\\jre\\lib\\security\\cacerts" is the path to
the cacerts file within the Java JRE or JDK.

m The keytool program is part of the Java installation.
m Keytool prompts for a password. The password is 'changeit' by default.
m Keytool prompts whether to 'Trust this certificate?[no]'. Enter yes.

4. Add the following lines in the CA Process Automation file:
PAM\server\c2o\bin\c2osvcw.conf
(or in the case of an upgrade): |
PAM DIR%\server\c2o\bin\c2osvcw.conf:

wrapper.java.additional.1ll=-Djavax.net.ssl.trustStore="C:\Program
Files\Java\jdkl.6.0 03\jre\lib\security\cacerts"
wrapper.java.additional.12=-Djavax.net.ssl.trustStorePassword="changeit"

The numbers might be different for you. Start with the next available number. If
wrapper.java.additional.11 is already defined, use 12 and 13.

The program folder is different for your JDK installation.
The password is "changeit".

5. Restart the CA Process Automation Touchpoint that contains the Directory Services
operators.

264 Content Designer Reference

Add an SSL Certificate to CA Process Automation

Set Up the Active Directory Server

To establish an SSL connection between the CA Process Automation-Directory Services
operators and an Active Directory server, verify that the Active Directory server is set

up:

1. The Certificate Services are installed on your Active Directory server (consult your
Active Directory admin for this task).

2. The Automatic Certificate Request is configured for Domain Controllers (consult
your Active Directory admin for this task).

Note: When you create a new user account or modify the password of an existing user
account in Active Directory, the Active Directory does not allow you to create or modify
a user password unless CA Process Automation is connected to the Active Directory
server through SSL.

Chapter 7: Directory Services 265

Chapter 8: Email

The Email operators can automate tasks that are performed on messages and folders in
an email server. Email operators communicate with your mail server remotely using one
of the following protocols:

Post Office Protocol version 3 (POP3)

POP3, suitable for single-user access to a mailbox, allows you to download email
messages to your local computer. By default, POP3 servers listen on TCP Port 110.

POP-SSL
By default, POP-SSL servers listen on TCP Port 995.
Internet Message Access Protocol (IMAP)

IMAP, suitable for multi-user access to a mailbox, allows simultaneous access by
multiple clients. By default, IMAP servers listen on TCP Port 143.

IMAP-SSL

By default, IMAP-SSL servers listen on TCP Port 993.
The Email operators can communicate with your mail server only if it supports either
IMAP or POP3. The Email operators perform actions such as get email counts. Both

protocols support this type of action. Some actions, such as delete folder, are supported
only by the IMAP protocol.

Common Email Operator Parameters

The following properties apply for various Email operators:
m Message Filter Criteria

m Mail Server Login Parameters

Chapter 8: Email 267

Common Email Operator Parameters

Messagde Filter Criteria
Message ID

Specifies the unique ID of the email to filter. You can also pass a substring of the
Message ID. If the IDs for the desired emails are not known, you can retrieve
Message IDs for messages using the Get Email List operator (see page 281). Action
is taken on all the emails that match the subject substring.

Note: This parameter is not available for all Email operators.
Message Number

Specifies the message number of the email to filter. This parameter is not a static
number for a message. If emails are deleted and moved to different folders, the
message number changes. If there are parallel actions taking place on the same
mailbox folder, we recommend using Message ID (rather than Message Number) to
specify messages.

Note: This parameter is not available for all Email operators.
Message Subject

Specifies the subject of the email that you want to match. This parameter can be a
substring or regular expression. Action is taken on all the emails that match the
subject substring.

Message Sender

Specifies the email sender that you want to match. This parameter can be a
substring or regular expression. Action is taken on all the emails that match the
subject substring.

Message Subject and Sender values are regular expressions

Select this check box to specify that Message Subject and Message Sender values as
regular expressions (rather than a simple string) when filtering email.

Important! To parse emails for the Email operators using regular expressions, all
emails must be retrieved from the mailbox and parsed at the client side. That is, on
the touchpoint where the operator runs. We recommend that you do not select this
field and use regular expressions only if it is required.

Message Body

Specifies as a substring of the email body that you want to match.

268 Content Designer Reference

Common Email Operator Parameters

Earliest Message Sent Time

Match emails that are sent after the time specified. This parameter identifies the
earliest time the email that you want to match was sent, specified in an CA Process
Automation variable.

Latest Message Sent Time

Match messages that are sent before the time specified. This parameter identifies
the latest time the message that you want to match was sent, specified in an CA
Process Automation variable.

Note: Earliest Message Sent Time and Latest Message Sent Time fields are CA Process
Automation date type variables. System functions like now() (see page 549) or today()
(see page 554) generate date type variables. A system function named parseDate (see
page 549) (stringDate, simpleDateFormat) creates the date properly. stringDate is the
date in string format and simpleDateFormat is the format to use to parse the date. This
function can be used to parse a string to a CA Process Automation date type variable.
For example:

parseDate("2010/07/28 13:00:01", "yyyy/MM/dd HH:mm:ss")
IMAP Message Flag

IMAP uses message flags to monitor the state of an email. These flags are stored on
the server. Different clients accessing the same mailbox at different times can
detect the changes that other clients make.

The following flags are valid and can be set programmatic by setting the values to
name of flags. The name of the flags is case-sensitive and is passed with all upper
cases.

Select the flag that you want to set for your message:

m ANSWERED
m DELETED

m DRAFT

m FLAGGED

m RECENT

m SEEN

IMAP Message Flag is set to true

If the flag selected for filtering is set to true, select this check box. Do not select this
option if the filter on the flag is set as false. This feature is only available for IMAP.

For example, to filter all answered messages, select ANSWERED as the flag, then
select this check box. To filter all unseen messages, select SEEN as the flag, then
clear this option.

Chapter 8: Email 269

Create Folder Operator

Mail Server Login Parameters
Protocol for Connection

Select the email protocol to use to connect to the server:

. IMAP
m IMAP-SSL
m POP3
m POP3-SSL

Mail Server Host

Specifies the hostname/IP address of the mail server.
Mail Server Port

Specifies the port of the mail server.
Username

Specifies the username of the user to access the mail server.
Password

Specifies the password for the user to access the mail server.

Create Folder Operator

w

The Create Folder operator creates a folder on the mail server. Folders are created
recursively using the IMAP protocol.

If the folder exists, an exception is thrown that cites "Folder already exists".

Input Parameters
Mailbox Folder Name
Name of the folder to create in the mail server.

Mail Server Login Parameters (see page 270)

270 Content Designer Reference

Delete Email Operator

Output Parameters
FolderCreated
Returns true when the folder gets created successfully and false otherwise.
FolderName
Protocol
ServerHost
ServerPort
UserName

Password

Delete Email Operator

o

This operator deletes messages from the mailbox and returns the number of messages
deleted. This operator uses the IMAP protocol.

Note: If all fields are left blank, this operator deletes all messages from the mailbox (the
specified mailbox folder name).

Input Parameters
Mailbox Folder Name

Specifies the name of the folder that contains messages to delete in the mail server.

Message Filter Criteria (see page 268)

Mail Server Login Parameters (see page 270)

Chapter 8: Email 271

Delete Folder Operator

Output Parameters

DeletedCount
Returns the number of messages deleted.

FolderName
MessagelD
MessageNumber
Subject
From
IsRegExp
Body
SentFromDate
SentToDate
FlagField
FlagValue
Protocol
ServerHost
ServerPort
UserName

Password

Delete Folder Operator

(L5
e

The Delete Folder operator deletes a folder on the server using the IMAP protocol. The
folder is deleted even if it contains subfolders.

Input Parameters
Mailbox Folder Name
Specifies the name of the folder to delete on the mail server.

Mail Server Login Parameters (see page 270)

272 Content Designer Reference

Delete Folder Operator

Output Parameters
FolderCreated
Returns true when the folder is deleted successfully and false otherwise.
FolderName
Protocol
ServerHost
ServerPort
UserName

Password

Example
Important! The following scenario uses a hmail mail server. This scenario does not work
when a Dominos server is used.
1. Create hierarchy of folders, such as test1\test2\test3\test4 (parallel to "Inbox").
2. Create another hierarchy, test2\test5\test6 (parallel to "Inbox").
3. Delete "test2" folder using the Delete Folder operator.

Delete Folder o

Mailbox Folder Mame:

testz

Expected result
The hierarchy "test2\test5\test6" is deleted.
Actual result

The process runs successfully and returns false. Ideally it returns true. The folder
still exists on the mail server.

Chapter 8: Email 273

Get Email Content Operator

Get Email Content Operator

Q

The Get Email Content operator retrieves the email body and attachments. If the
message number field is not blank or null, then the operator retrieves a single email
(based on the message number) and the operator returns the details. Otherwise, the
operator returns the content of all the emails within the folder.

Note: If all fields are left blank, this operator retrieves the content of all the emails from
the specified mailbox folder.

Input Parameters
Mailbox Folder Name
Specifies the name of the folder that contains emails to process.
Set messages retrieved as seen
When selected, sets the retrieved messages as seen.
Start index of mail content to get in Dataset variable

If you enter an index in this field, content starting from that index displays in the
Dataset variable. Leave blank to start from the beginning.

Length of mail content to get in Dataset variable

If you enter an index in this field, content until that index displays in the Dataset
variable. Leave this blank to get the maximum mail content possible.

Process attachments of mail
When selected, attachments are also processed. The default is unchecked.
Attachment Operation

Specifies one of the following operations that can be performed on the attachment.
This option is enabled when the user selects the Process attachments of mail check
box.

Save attachment to a file

Saves the attachment in the destination folder.
Get attachment content in Dataset variable

Writes the attachment contents to a dataset variable.
Both

Performs both the save and Write Contents to Dataset variable operations.

274 Content Designer Reference

Get Email Content Operator

Destination Folder Name
Specifies the destination folder where the attachment is saved.
Generate unique filenames to save attachment

When selected, provides the option to generate unique file names when saving
attachments.

Start index of attachment content to get in Dataset variable

If you enter an index in this field, attachment content starting from that index
displays in the Dataset variable. Leave blank to start from the beginning.

Length of attachment content to get in Dataset variable

If you enter an index in this field, attachment content until that index displays in the
Dataset variable. Leave this blank to get the maximum mail content possible.

Message Filter Criteria (see page 268)

Mail Server Login Parameters (see page 270)

Chapter 8: Email 275

Get Email Content Operator

Output Parameters
MessageContent

(ValueMap) Returns the message contents and attachment contents.

Contains:

ResultRow
AttachmentContents
MailContents
AttachmentFiles

FolderName
MarkMessagesAsSeen
MessageContentStartindex
MessageContentLength
IsProcessAttachement
ProcessAttachmentType
DestinationFolderName
GenerateUniqueName
MessageAttachmentStartindex
MessageAttachmentLength
MessagelD
MessageNumber

Subject

From

IsRegExp

Body

SentFromDate

SentToDate

FlagField

FlagValue

Protocol

ServerHost

ServerPort

UserName

Password

276 Content Designer Reference

Get Email Count Operator

Get Email Count Operator

Input Parameters

The Get Email Count operator returns the number of emails in the folder.

You can connect to the mail server either through the POP3 protocol or the IMAP
Protocol and, based on the protocol, the user must provide the appropriate port
number.

m The default port for POP3 is 110.
m The default port for IMAP is 143.

The default port for POP-SSL is 995.

The default port for IMAP-SSL is 993.

Mailbox Folder Name
Specifies the name of the folder that contains emails to process.

Message Filter Criteria (see page 268)

Mail Server Login Parameters (see page 270)

Chapter 8: Email 277

Get Email Envelope Operator

Output Parameters

MessageCount
Returns the number of emails in the folder.
FolderName
MessagelD
MessageNumber
Subject
From
IsRegExp
Body
SentFromDate
SentToDate
FlagField
FlagValue
Protocol
ServerHost
ServerPort
UserName

Password

Get Email Envelope Operator

w

The Get Email Envelope operator retrieves the email envelopes from the specified filter
criteria. If the message number is not blank or null (specified in the Message Filter
Criteria (see page 268)), then this operator retrieves a single email (based on the
message number) and the operator returns the details. Otherwise, this operator returns

envelopes of all the emails within the folder.

Note: If all fields are left blank, this operator retrieves the content of all the emails from

the specified mailbox folder.

278 Content Designer Reference

Get Email Envelope Operator

Input Parameters
Mailbox Folder Name
Specifies the name of the folder that contains emails to process.
Set messages retrieved as seen
When selected, sets retrieved emails as seen.

Message Filter Criteria (see page 268)

Mail Server Login Parameters (see page 270)

Chapter 8: Email 279

Get Email Envelope Operator

Output Parameters
MessageEnvelope
(ValueMap) Returns the envelope of messages in the folder.
Contains:
ResultRow
SentDate
Subject
To
Bcc
Cc
From
FolderName
MarkMessagesAsSeen
MessagelD
MessageNumber
Subject
From
IsRegExp
Body
SentFromDate
SentToDate
FlagField
FlagValue
Protocol
ServerHost
ServerPort
UserName

Password

280 Content Designer Reference

Get Email List Operator

Get Email List Operator

The Get Email List operator retrieves a list of emails that match certain filter criteria. You
can configure fields described in the Message Filter Criteria (see page 268) to filter only
the emails you want to retrieve envelopes from. This operator can use both IMAP and
POP3 protocol. Use the Get Email List operator specifically to retrieve basic information
of emails. This information includes Message ID and Message Number that can be used
in other operators.

Note: The Get Email List operator can retrieve envelopes of a maximum of 512 emails in
one iteration.

Input Parameters
Mailbox Folder Name

Specifies the name of the target mailbox folder name that contains emails to be
processed. This field cannot be left blank.

Message Filter Criteria (see page 268)

Mail Server Login Parameters (see page 270)

Output Parameters
Messagelist

An array of ValueMaps. Each index of the array is a CA Process Automation
ValueMap data type. The ValueMap contains the following fields that hold the
following information in a single message:

MessagelD
UniquelD of the message.
MessageNumber

This message number can vary for the same email if emails are moved from the
folder to anther folder or deleted and expunged. We recommended using
MessagelD to specify emails uniquely.

Chapter 8: Email 281

Move Email Operator

Subject

Subject of the email.
SenderAddress

Address of the sender of the email.
SentDate

A CA Process Automation date type variable with date when the email was
sent.

ReceivedDate

A CA Process Automation date type variable with the date that the server
received the email. This value is only populated when using IMAP protocol to
connect to the server.

NumOfAttachments
An integer type variable to give number of attachments present in the email.
FolderName
Subject
From
IsRegExp
Body
SentFromDate
SentToDate
FlagField
FlagValue
Protocol
ServerHost
ServerPort
UserName

Password

Move Email Operator

&

The Move Email operator moves the emails from one folder to another.

282 Content Designer Reference

Move Email Operator

Input Parameters
Mailbox Source Folder Name
Name of the source folder that contains the emails to move.
Mailbox Destination Folder Name

Specifies the name of the destination folder where the emails are copied.

Notes:

m [f the source folder does not exist, CA Process Automation throws an exception
saying "Source folder does not exist".

m If the destination folder does not exist, CA Process Automation creates the
destination folder and then moves the emails from the source folder to the
destination folder.

Message Filter Criteria (see page 268)

Mail Server Login Parameters (see page 270)

Output Parameters
MovedCount
SourceFolderName
DestinationFolderName
MessagelD
MessageNumber
Subject
From
IsRegExp
Body
SentFromDate
SentToDate
FlagField
FlagValue
Protocol
ServerHost
ServerPort
UserName

Password

Chapter 8: Email 283

Purge Folder Operator

Purde Folder Operator

[i
1 [

The Purge Folder operator expunges (permanently removes) folders marked DELETED
and returns the number of emails expunged. This operator uses the IMAP protocol.

Input Parameters
Mailbox Folder Name

Specifies the name of the folder on the mail server that contains emails to delete
permanently.

Mail Server Login Parameters (see page 270)

Output Parameters
ExpungedCount
Returns the number of emails deleted.
FolderName
Protocol
ServerHost
ServerPort
UserName

Password

Rename Folder Operator

— b

The Rename Folder operator renames the folder in the mail server. The operator uses
the IMAP protocol.

284 Content Designer Reference

Rename Folder Operator

Input Parameters

Current Mailbox Folder Name

Specifies the old name of the folder to be renamed.

New Mailbox Folder Name
Specifies the new name for the folder.

Mail Server Login Parameters (see page 270)

Output Parameters

FolderRenamed

Returns true when the folder is renamed successfully and false otherwise.

OldFolderName
NewFolderName
Protocol
ServerHost
ServerPort
UserName

Password

Chapter 8: Email 285

Send Email Operator

Send Email Operator

Use the Send Email operator to deliver email notifications to specified recipients.

The CA Process Automation email implementation supports sending mail through an
SMTP server. You can specify any valid email address that is supported by the SMTP
server. These addresses can include aliases, a mailing list, a fax address, or a digital
pager. The SMTP server, rather than CA Process Automation, handles the actual delivery
of a message.

-
| |
 izompleted & Failed
Operation succeadead Cperation Failed
Result=1 Result =0

The Send Email operator can include attached files. You can specify attachments to send
dynamically updated files rather than static information specified when you added a
Send Email operator to a process. This feature is useful for sending attachments such as
log and exception files.

The Send Email operator also supports HTTP/HTTPS URLs as an attachment path. The
Send Email operator fails if a path name is not valid at run time.

Tip: Specify that locations for attachments are relative to the touchpoint running the
Email operators.

Input Parameters
User Name

Specifies a valid user name or profile for sending mail on the SMTP server. For
example, Process.Email.Username.

Password
Specifies the password for the user name. For example, Process.Email.Password.
From

The email address to appear in the sender field of the outgoing email.

286 Content Designer Reference

Send Email Operator

To

Cc

Specifies the addresses of email recipients. Separate multiple email addresses with
either commas or semi-colons. For example, support@PAM.com, sales@PAM.com.

Specifies the addresses of recipients who receive copies of this email alert. Separate
multiple email addresses with either commas or semi-colons. For example,
system_administrator@PAM.com; support@PAM.com.

Subject

Specifies a brief description to appear in the subject of the email message. For
example, CA Process Automation Alert.

Message

Specifies the message that the email delivered. For example,

Notice
Backup problems on a Touchpoint: + Process.TouchpointName.

Send in HTML Format

When selected, CA Process Automation uses HTML text in the Message field. If this
option is not selected, CA Process Automation uses plain text.

For example, use the following text to display "Notice" in red font:

Notice

Attachment

Specifies the full paths for files to attach to the email. Separate multiple path names
by commas or semi-colons. You can also specify HTTP/HTTPS URLs for local and
remote locations.

This parameter must specify locations that are valid for the Email operators at
runtime, and on the touchpoint where the Email operators are running. For
example, C:\\CA Process Automation\\Data\\Log\\Global.log.

Receipt

Select this check box to request a delivery receipt for the message. The receipt is
typically a service that the recipient mail client provides. CA Process Automation
cannot guarantee the receipt.

Encoding

Specifies the encoding scheme that the reader receives the text in (UTF-8, UTF-16,
US-ASCII, Windows-1250, Windows-1252, Shift_JIS).

Chapter 8: Email 287

Send Email Operator

Output Parameters
user
password
from
to
cc
subject
text
isContentHtml
attachment

recpt

288 Content Designer Reference

Chapter 9: File Management

The File Management operators monitor directories, files, and their contents. These
operators can be run either locally or on a remote system. The File Management
operators also support operations on a proxy node. The process takes either a success
or a failure path, based on the results of the operation.

Use the File Management operators to create, delete, rename, compress and
uncompress local files. You can also use the File Management operators to watch files
on the touchpoint where the operators are running. All File Management operators run
under the same user name that is running the touchpoint, such as administrator on a
Windows touchpoint or root on a UNIX touchpoint.

The File Management operators can run on proxy agents. Properties in a normal and
proxy service are the same, but some behavior is different. For example, if the Process
Proxy Service is running with the log output option checked, then the log file is created
on the file system where the agent is running. The log file is not created on the machine
where the proxy agent resides.

Important! The following conditions apply to all operators in this category when running
them on a remote Windows host through a proxy touchpoint::

- Use UNIX-style paths for fields which are path-related (forward slashes and no
drive letter).

- Each SSH server can have a different location for its "root" directory. The
permitted commands that are relative to that root directory can vary too.

Compress File Operator

Prerequisites

I

The Compress File operator compresses a file or directory. In a Windows environment, it
is compressed using the WINZIP Command Line Utility. In UNIX environments, it is
compressed using the gzip utility.

m The WZZIP command line utility must be installed on the target host if it is a
Windows host. The WZZIP command line utility is a free add-on for users of WinZip
12 standard or pro with a valid license.

m The gzip utility is required for UNIX environments.

Chapter 9: File Management 289

Copy File Operator

Input Parameters
Source File/Directory Name
Specifies the name of file or directory to be compressed.
Notes: On the Windows host, the compressed file extension is ".zip".

On a UNIX host, if the source is a directory, then every file under that directory is
compressed and is replaced one with the extension ".gz".

Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user's home directory will be
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to be used while executing the operator on the host.
Overrides the user specified in the operator category level properties.

Password

Specifies the password for the user.

Output Parameters
fileName
workingDir
useriD

password

Copy File Operator

W

The Copy File operator copies source to destination. The source and destination can be
a file or a directory.

290 Content Designer Reference

Copy File Operator

Input Parameters

Source File/Directory Name
Specifies the file or directory to copy.
Destination File/Directory
Specifies the file or directory to copy.
Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides the user specified at the operator category level.

Password

Specifies the password for the user.

Notes:

m If the destination does not exist and the source is a file, then the destination is
assumed to be a file.

m |f the destination does not exist and the source is a directory, then the destination
is assumed to be a directory.

m Ona Windows host, a "cannot perform cyclic copy" error is thrown if the source
directory contains the destination directory.

Output Parameters

fileName
destinationFileName
workingDir

useriD

password

Chapter 9: File Management 291

Create Folder Operator

Create Folder Operator

W

The Create Folder operator provides the functionality to create a directory. The
operator does not throw an error if the directory already exists and the operator creates
directories recursively as needed.

Input Parameters
Directory Name
Specifies the directory to create.

Default Shell

Permission Modes (for UNIX only)

Sets permission mode. This input is valid for a UNIX host only.
Working Directory

Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides user specified in the operator category level properties.

Password

Specifies the password for the user.

292 Content Designer Reference

Decompress File Operator

Output Parameters
fileName
defaultShell
permission
workingDir
useriD

password

Decompress File Operator

A
The Decompress File operator extracts a compressed file/directory.

Prerequisites

® On a Windows host, the target computer must have the WZZIP command line utility
installed. The WZZIP command line utility is a free add-on for users of WinZip 12
standard or pro with a valid license.

® On UNIX environments, this operator uses the gzip utility.

Input Parameters
File/Directory Name to be Uncompressed
Specifies the file/directory to uncompress.
Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user home directory is the
working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides user specified in the operator category level properties.

Password

Specifies the password for the user.

Chapter 9: File Management 293

Delete File Operator

Output Parameters
compressFileName
workingDir
userID

password

Delete File Operator

&

The Delete File operator removes (deletes) a file or directory.

Input Parameters
Source File/Directory Name
Specifies the file or directory to delete.
Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the home directory of the user is the
working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides the user specified in the operator category--level properties.

Password

Specifies the password for the user.

Notes:
m An attempt to delete a non-existent file or directory results in an error.

m An attempt to delete a file or directory with insufficient permission results in an
error.

294 Content Designer Reference

Get Directory Content Operator

Output Parameters
fileName
workingDir
userID

password

Get Directory Content Operator

The Get Directory Content operator builds a list of paths for all folders or files within a
specified directory that match a search condition.

Build a path list of matching
folders and files under a
hase directory

o
O © @
2 Completed @ Failed @ Timeout & Custom
Patterns matched Patterns not Timed out Boolean expression
Result=2 matched Result=1 returns True

Fesult=10

Input Parameters
Base directory
Specifies the path for the directory in which to start the search.
File path/name mask
Specifies the pattern that the operator detected.
Case sensitive pattern matching

When checked, matches upper-case and lower-case characters when searching for
a pattern. If unchecked, the letters in a pattern match both upper and lower-case
characters.

Sort items by last modification time

When checked, sorts the folders or files within a specified directory by the last
modification time.

Chapter 9: File Management 295

Get Directory Content Operator

Match pattern on file/directory name

When checked, matches only file or directory names, instead of anywhere in a path.
Directories included in results

Select from one of the following options:

m All directories under the base directory

m Directories that include matching files

m Directories with matching path or name
Recursion level

The number of directory levels to go down to when matching files or directories.
State timer (secs)

The minimum interval for which the condition must be maintained.

Output Parameters
DirectoryCount
DirectorylList
FilesCount
FilesList
fileName
Pattern
caseSensitive
timeSort
matchPath
dirFilterOptions
recursionlLevel
stateTimer

timeOut

296 Content Designer Reference

Get File Attributes Operator

Get File Attributes Operator

The Get File Attributes operator reads the attributes for a specified file and saves them
as variables (such as FileExists, FileSize, IsFile, IsLink) in its operator dataset.

Retrieve file attributes in
icon datasetwvariables

0o
| |

2 Completed

File exists and attributes
retrieved successfully
Result=2

£ Failed @ Cushtom

Linahle to read file
attributes.
Fesult=10

Boolean expressian
returns True

To access an attribute in a CA Process Automation expression, use the following syntax:

Process.Operator name.field name

Process accesses the process dataset.

Operator_name specifies the operator dataset.

field_name specifies the attribute in the operator dataset.

Input Parameters

File/directory name

Specifies the full path for a file or directory. The location must be accessible to the
File Management operators on the touchpoint where they are running at run time.

For example:

/tmp/IT PAM/scripts/backup oral.log

If you specify a file or directory without specifying the full path, the File
Management operators use <install_dir>\server\c2o as the relative path for the
specified file or directory. In most cases, you can use the slash mark (/) character in

a path.

Chapter 9: File Management 297

Get File Attributes Operator

Output Parameters
@FileName
The full path for the file as calculated from the "File Name" expression.
FileExists
1 if a file exists, 0 if it does not exist.
FileName
FileTime
Specifies the file time.
FileDate
Specifies a file date.
IsDirectory
1 if describing a directory, 0 if not describing a directory.
IsFile
1 if describing a file, 0 if not describing a file.
IsLink
1 if the item is a symbolic link in UNIX, O otherwise.
FileOtherRead
FileOtherWrite
FilePermission
FileSize
The size of the file in bytes.
FileSizeKB

The size of the file in kilobytes (KB = 1,024 bytes). A fraction of a kilobyte is counted
as one kilobyte.

FileSizeMB

The size of the file in megabytes (MB = 1,024 KB). A fraction of a megabyte is
counted as one megabyte.

298 Content Designer Reference

Get File Attributes Operator

Example

FileGroup
FileOwner
FileGroupExec

1 if the group can execute, 0 if the group cannot execute.
FileGroupRead

1 if the group can read, 0 if the group cannot read.
FileGroupWrite

1 if the group can write, O if the group cannot write.
FileOtherExec

1 if others can execute, 0 if other cannot execute.
FileOwnerExec

1 if the owner can execute, 0 if the owner cannot execute.
FileOwnerRead

1 if the owner can read, 0 if the owner cannot read.
FileOwnerWrite

1 if the owner can write, 0 if the owner cannot write.
IsSpecial

1 if a special system file, O if not a special system file.

Note: The definition of a special system file is platform-dependent.

This operator can correspond to a socket or fifo on UNIX platforms.

Others (for example, FileOtherExec) refer to users that are not the owner or not in the
defined group for the specified permission.

Chapter 9: File Management 299

Monitor File Operator

Monitor File Operator

The Monitor File operator defines a wait for a condition on a file or directory. This
operator lets you delay processing in a process for the existence or absence of a file or

directory.
Wiait for a file condition to be satisfied
A
O 6 ¢
2 Completed & Failed & Timeouk & Custom
Operator successful - Operatorfailed Operator timed Boolean expression
Fesult=2 Result=0 out returns True
Fesult=1

The available conditions are:
m The existence of a file, and optionally, a minimum size (in bytes).
m The absence of a file.

m The presence of strings matching a pattern in a file.

A stability timer specifies the minimum delay during which the condition must
continuously hold before returning that the operator is successfully completed. For
example, this operator can specify the minimum size of a file that an FTP transfer sends.

Tests on a file are discrete. This operator does not indicate that a condition is
continuously present. Rather, the Watch File operator indicates that the condition is
met at every test interval that the operator performs.

Input Parameters
File/directory name

Specifies the full path for a file or directory to watch. The location must be
accessible to the File Management operators on the touchpoint where they are
running at run time.

If you specify a file or directory without specifying the full path, the File
Management operators use the CA Process Automation Bin directory as the relative
path for the specified file or directory. Typically, you can use the slash mark (/)
character in a path.

300 Content Designer Reference

Monitor File Operator

State timer (secs)

Specifies the minimum delay in seconds during which the specified condition must
continuously hold before CA Process Automation executes branches for the
Completed state.

Condition
Specifies the condition to execute branches for the Completed state:

m Presence requires that the file exists and the file size is greater than the
"Minimum file size".

m Absence requires that the file does not exist.

m Pattern Matching specifies that a pattern of characters occurs in the contents
of a specified file or in the names of files in a specified directory.

Minimum file size

If "Presence" is specified for Condition, this option specifies the minimum file size in
bytes for this operator to execute branches for the Completed condition.

Pattern

If Pattern matching is specified for Condition, this option specifies a regular
expression that returns the pattern searched for by the operator (see Using Masks
to Specify Patterns in Strings in the Content Designer Guide).

To match any number of multiple lines, you can use the \n escape in the Pattern
field. The following example matches lines starting with “Log”, followed by any
number of intervening new lines and a string of text ending in “Error=89":

"Log.*\n.*Error=89"

If you are accustomed to using escape characters in programming languages, this \n
escape matches any number of new lines on either Windows or UNIX. This escape
does not match a single-line feed character.

Separator

Specifies the character that delimits the zone in Pattern to save to the variables that
Variable names specify.

Start from end of file

Starts searching from the end of a specified file to find the last occurrence of a
pattern in a file. This option lets you match the newest messages in a file.

Case sensitive pattern matching

Considers upper-case and lower-case characters when searching for a pattern. If
you do not select this check box, the letters in a pattern match both upper and
lower-case characters.

Chapter 9: File Management 301

Monitor File Operator

File Search Offset
Specifies a starting position for a search.

To perform a looped pattern match, you can use the MatchPos and MatchEntry
variables from the operator dataset to start where the previous match left off:

Process.Operator _name. MatchedPos+ Len(Process.Operator name.MatchedEntry)
Variable names

Specifies the variable names in which to save text that matches the delimited zones
in the pattern. Operator dataset variables are accessed through the process
dataset, using the keyword Process. For example, specifying the variable names
Level and Code would assign extracted substring values to the operator dataset
variables Process.Operator_name.Level and Process.Operator_name.Code. You can
add, remove, and order the variables that are used to store matched strings using
the toolbar.

Output Parameters
LastRead POs
MatchedEnd
MatchedEntry
MatchedPos
fileName
stateTimer
condition
minFileSize
Pattern
Separator
startFromEnd
caseSensitive
fileSearchOffset

variableNames

Example

This operator can wait for an outbound operator to spool and to delete a file. A problem
would be indicated if a file exists in the spool directory longer than a specified duration.
The process could then execute an alert to notify an operator of the problem.

302 Content Designer Reference

Read from File Operator

Read from File Operator

Input Parameters

F

The Read from File operator reads the content of the file into a dataset variable. The
user can also read specific lines.

The dataset variable can be a string or a string array. If the dataset variable is an array,
the maximum length can be 1024. Lines exceeding this limit are ignored and new
dataset variable field "warnings" are created after execution. This new warnings dataset
contains the warning message.

Source File Name
Specifies the file to read.
Return file contents in a string array

Specifies if the dataset variable is a string array. If checked, the dataset variable is
assumed to be a string.

From Line Number

Specifies the line number in the file from which the file content must be read. If this
field is left blank, this operator reads from line number 1. This field must contain
positive non-zero values only.

To Line Number

Specifies the line number in the file until where the content must be read. This field
must contain positive non-zero values only. If it is left blank, this operator reads to
the end of file.

Dataset Variable Name
Specifies the name for the dataset variable.

This field length can be a maximum of 1024. Lines exceeding this limit are ignored
and a new dataset variable field named "warnings" is created after execution
(which contains the warning message).

Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.

Chapter 9: File Management 303

Rename File Operator

User ID

Specifies the user account to use while executing the operator on the host.
Overrides the user who is specified in the operator category configuration.

Password
Specifies the password for the user ID.
File Encoding

Specifies the encoding scheme that is used to read from the file (UTF-8, UTF-16,
US-ASCII, Windows-1250, Windows-1252, Shift_JIS).

Output Parameters
DatasetVariable

The dataset variable length can be a maximum of 1024 for an array. Lines exceeding
this limit will be ignored and a new dataset variable field "warnings" will be created
after execution, which contains the warning message.

fileName
isReturnAsStringArray
fromLineNumber
toLineNumber
datasetVariableName
workingDir

useriD

password

fileencoding

Rename File Operator

The Rename File operator provides functionality to rename a file or a directory.

Input Parameters
Source File/Directory Name

Specifies the file/directory to rename.

304 Content Designer Reference

Rename File Operator

New File/Directory Name
Specifies the new name for the file/directory.
Working Directory
Specifies the working directory to execute the operator.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides user specified in the operator category level parameters.

Password
Specifies the password for the user ID.

Note: For UNIX, if the destination location is other than the source, the file moves to the
destination location.

Output Parameters
fileName
newFileName
workingDir
userlD

password

Chapter 9: File Management 305

Search File Content Operator

Search File Content Operator

The Search File Content operator extracts information from fairly small files. This
operator searches the content of a text file or directory for a string that matches a
specified pattern. The pattern can indicate substrings to extract into operator dataset
variables. Delimiters in the pattern can indicate the zones to extract into the variables.

m For afile, this operator searches the contents of the file for the specified pattern.

m Agroup search is recommended to search large files that contain gigabytes of
information efficiently.

Scan file for matching string pattern
and extract specified substrings into
icon datasetvariables.

w o
|‘|

o Completed © Failed & Custom
String pattern found String pattern not found Boolean exprassion
Result=2 Result=0 returns True

Input Parameters
File/directory name

Specifies the path for the file or directory to scan for pattern matches. The path
must be accessible to the File Management operators on the touchpoint where
they are running. For a file, the operator searches the contents of the file for the
specified pattern.

If you specify a file or directory without specifying the full path, the File
Management operators use <install_dir>\server\c2o as the relative path for the
specified file or directory. In most cases, you can use the slash mark (/) character in
a path.

306 Content Designer Reference

Search File Content Operator

Pattern

Specifies the pattern searched for by the operator (see Using Masks to Specify
Patterns in Strings in the Content Designer Guide).

The pattern uses the number symbol (#) used as the separator to return values for
the variables Level and Code:

"BACKUP LEVEL #.*# - CODE #.*#"

From the string “BACKUP LEVEL A400 - CODE FSC137.0359”, this pattern would
assign the substrings “A400” to the variable Level and “FSC731.0359” to the
variable Code. The assignment is made in the same order as the variables are
defined under Variable names.

To match any number of multiple lines, you can use the \n escape in the Pattern
field. The following example matches lines starting with “Log”, followed by any
number of intervening new lines and a string of text ending in “Error=89":

"Log.*\n.*Error=89"

If you are accustomed to using escape characters in programming languages, this \n
escape matches any number of new lines on either Windows or UNIX. This escape
does not match a single line feed character.

Separator

Specifies a character that is used to delimit the zone to save to the variables that
the variable names specify, such as the # symbol.

Start from end of file

Select this check box to start searching from the end of a specified file. This option
is used to find the last occurrence of pattern in a file. This option lets you match the
newest messages in a file.

Case sensitive pattern matching

Select this check box to take into account upper-case and lower-case characters
when searching for a pattern. If you do not select this check box, the letters in a
pattern match both upper and lower case characters.

File Search Offset

Specifies a starting position for a search. The value represents the number of
characters from the start of the file unless you select the Start from end of file
check box. In that case, the value represents the number of characters from the end
of the file.

To perform a looped pattern match, you can use the MatchPos and MatchEntry
variables from the operator dataset of an earlier Search File Content operator to
start where the previous match left off:

Process.Operator name.MatchPos + Len(Process.Operator name.MatchEntry)

Chapter 9: File Management 307

Update File Ownership Operator

Variable names

Specifies the variable names in which to save text that matches the delimited zones
in the pattern. Delimited zones are saved to the listed variables in the order defined
in the variable list. Operator dataset variables are accessed through the process
dataset, using the keyword process.

For example, specifying the variable names Level and Code to assign extracted
substring values to the operator dataset variables Process.Operator_name.Level
and Process.Operator_name.Code.

You can add, remove, and order the variables that are used to store matched
strings using the toolbar.

Output Parameters
fileName
Pattern
Separator
startFromEnd
caseSensitive
fileSearchOffset
variableNames
LastReadPos
MatchedEnd
MatchedEntry
MatchedPos

Update File Ownership Operator

=
£l

The Update File Ownership operator changes the user and/or group ownership of each
given file. Only a super-user can change the owner and group to which a file belongs.
This operator is supported on a UNIX host only.

308 Content Designer Reference

Update File Ownership Operator

Input Parameters

User Name
Specifies the owner of the file.
Group Name
Specifies the group to which the file belongs.
Note: The user must provide an input for at least one of the User name or Group name
fields.
Source File/Directory Name
Specifies the name of the file or directory whose ownership is changing.
Recursive
When checked, specifies to change file ownership recursively.
Working Directory
Specifies the working directory to execute this operation.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host. This
field overrides the user specified in the operator category- level properties.

Password

Specifies the password for the user ID.

Output Parameters

userName
groupName
fileName
isRecursive
workingDir
useriD

password

Chapter 9: File Management 309

Update File Permission Operator

Update File Permission Operator

Input Parameters

The Update File Permission operator changes the permissions of each given file
according to mode, which can be either an octal number representing the bit pattern for
the new permissions or a symbolic representation of changes to make, (+-=
rwxXstugoa). This operator is supported on a UNIX host only.

Source File/Directory Name
Specifies the name of file or directory whose permission is changing.
Permission (Modes)

Specifies permission or mode for the file, which can be either an octal number
representing the bit pattern for the new permissions or a symbolic representation
of changes to make, (+-= rwxXstugoa).

Recursive

When checked, specifies to change files and directories recursively.
Working Directory

Specifies the working directory to execute this operator.

Notes: If the working directory is not specified, the user home directory becomes
the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides the user specified in the operator category level properties.

Password

Specifies the password for the user ID.

310 Content Designer Reference

Update File Timestamp Operator

Output Parameters
fileName
permission
isRecursive
workingDir
useriD

password

Update File Timestamp Operator

O

The Update File Timestamp operator changes file timestamps, such as, update the
access and modification times of each file to the current time or user- specified
timestamp. This operator is supported on a UNIX host only.

Input Parameters
Source File/Directory Name
Specifies the name of file or directory whose timestamp is changing.
Timestamp ([[CC]YY]IMMDDhhmm([.ss]):
Use this field in ([[CC]YY]MMDDhhmm[.ss]) format instead of the current time.
Where each pair of letters represents the following information:
cC
Specifies the first two digits of the year (the century).
YY

Specifies the second two digits of the year. If "YY" is specified, but "CC" is not, a
value for "YY" between 69 and 99 results in a "CC" value of 19. Otherwise, a
"CC" value of 20 is used.

If the "CC" and "YY" letter pairs are not specified, the values default to the
current year.

MM

Specifies the month of the year, from 1 to 12.

Chapter 9: File Management 311

Update File Timestamp Operator

DD
Specifies the day of the month, from 1 to 31.
hh
Specifies the hour of the day, from 0 to 23.
mm
Specifies the minute of the hour, from 0 to 59.
ss
The second of the minute, from 0 to 61.
If the "ss" letter pair is not specified, the value defaults to 0.
Change Access Time
Specifies to change the access time. The default is checked.
Change Modification Time
Specifies to change the modification time. The default is checked.
Working Directory
Specifies the working directory to use to execute this operator.

Notes: If the working directory is not specified, the home directory of the user is the
working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides user specified in the operator category- level properties.

Password

Specifies the password for the user ID.

Output Parameters
fileName
timeStamp
isChangeAccessTime
isChangeModificationTime
workingDir
userlD

password

312 Content Designer Reference

Write File Operator

Write File Operator

Input Parameters

{ L J)
N

The Write File operator writes the content of the dataset variable to a file. The dataset
variable can be a string or a string array. This operator also provides an option to either
overwrite or append contents to an existing file.

File Contents as Array
When checked, specifies that the dataset variable is a string array.
File Contents

If you do not select the File Contents As Array check box, write the contents in this
field to the specified file.

File Contents as Array

If you select the File Contents As Array check box, write the contents in this field to
the specified file, with each index as a new line in the file.

You can add, remove, and order the variables using the toolbar.
Destination File Name
Specifies the name of the destination file.

Note: If the destination file does not exist, the file is created before writing data to
the file.

Append (if file exists)

Specifies that the content of the dataset variable is appended to a file if it already
exists. The default is checked.

Working Directory
Specifies the working directory to execute this operator.

Notes: If the working directory is not specified, the home directory of the user
becomes the working directory.

The file path can be absolute or relative to the working directory.
User ID

Specifies the user account to use while executing the operator on the host.
Overrides the user-specified in the operator category level parameters.

Chapter 9: File Management 313

Write File Operator

Password
Specifies the password for the user ID.
File Encoding

Specifies the encoding scheme that is used to write to the file (UTF-8, UTF-16,
US-ASCII, Windows-1250, Windows-1252, Shift_JIS).

Output Parameters
fileContentsMode
fileContents
fileContentsAsArray
fileName
isFileAppend
workingDir
userlD
password

fileencoding

314 Content Designer Reference

Chapter 10: File Transfer

The File Transfer operators provide file transfer operators (FTP/SFTP).

Use the File Transfer operators to manage directories and files such as FTP or an SFTP
client. These operators connect to standard FTP servers on target computers. The
remote host for all File Transfer operators must have a configured FTP server.

Important! With the exception of the TFTP Download File operator and the TFTP Upload
File operator, the following conditions apply to all operators in this category when
running them on a remote Windows host through a proxy touchpoint:

- Use UNIX-style paths for fields which are path-related (forward slashes and no
drive letter).

- Each SSH server can have a different location for its "root" directory. The
permitted commands that are relative to that root directory can vary too.

Create Directory Operator

The Create Directory operator creates a directory on the remote file system.
To allow the operator to create a directory, the specified user credentials must have the

appropriate change directory and write permissions on the remote host. The remote
host must have a configured FTP server.

Create a directony
@
T

) Succeeded 2 Failed
Cperator succeeded Cperator failed
Fesult=1 Result=10

Chapter 10: File Transfer 315

Create Directory Operator

Input Parameters
Remote path
Specifies the path for the directory to create on the remote host. For example:
/temp/IT PAM/scripts

The parent directory (/temp/IT PAM in the example) must exist for the File Transfer
operators to complete this operator successfully. The relative path can also be
specified in this field and the path is relative to the home directory of the FTP user.

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, other ports can be assigned to an FTP
site. To specify a non-default FTP port, add a colon (:) and then the port number to
the end of the address. For example, the following specifies port 78 on a remote
FTP server using the IP address 1##.1.1.1: 1##.1.1.1:78.

Remote user ID

Specifies a user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Use secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

Specify an optional SITE command

Specifies to use the SITE command to invoke services that are specific to the host
system. Then use the Site parameters field to specify an expression that returns
parameters for the SITE command.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

316 Content Designer Reference

Delete Directory Operator

Output Parameters
remotedir
remoteHost
remoteUserld
remoteUserPassword
secureFtp
siteCommand

siteParameters

Delete Directory Operator

The Delete Directory operator deletes a specified directory from the remote file system.
The specified directory must be empty before the process performs this operator.

The remote host must have a configured FTP server. To allow the operator to delete a
directory, the specified user credentials must have the appropriate change directory and
write permissions on the remote host.

Delete a directony

@

1
i Succeeded @ Failed
Cperator succeeded Dperatar failed
Result=1 Result=0

Delete Remote Directory Properties
Remote path

Specifies the path for the directory to delete on the remote host. For example:
/temp/IT PAM/scripts. The specified directory must be empty for the File Transfer
operators to complete this operator.

Chapter 10: File Transfer 317

Delete Directory Operator

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, other ports can be assigned to an FTP
site. To specify a non-default FTP port, add a colon (:) and then the port number to
the end of the address. For example, the following specifies port 78 on a remote
FTP server using the IP address 192.#.#.1: "192.#.#.1:78"

Remote user ID

Specifies a user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Use Secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

Specify an optional SITE command

Specifies to use the SITE command to invoke services that are specific to the host
system. Then use the Site parameters field to specify a CA Process Automation
expression that returns parameters for the SITE command.

Remove all files/subdirectories under the target directory

This option is used to delete a directory that is not empty. If this check box is
selected, all the directories under the specified directory are deleted including the
specified directory. If this check box is unchecked, any attempt to delete a directory
that is not empty results in service operator failure.

Site Parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

318 Content Designer Reference

Delete File Operator

Output Parameters
remotedir
remoteHost
remoteUserld
remoteUserPassword
secureFtp
siteCommand
forceDelete

siteParameters

Delete File Operator

The Delete File operator removes a specified file from a remote location. The remote
host must have a configured FTP server. To allow the operator to delete a file, the
specified user credentials must have the appropriate write permissions on the remote

host.
Delete afile
1
o Succeeded & Failed
File rermoved successfully Cperator failed
Result=1 Result=10

Input Parameters
Remote path

Specifies the path for the file to delete on the remote FTP host. For example:
/tmp/IT PAM/scripts/script_oral.sh.

Chapter 10: File Transfer 319

Delete File Operator

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, other ports can be assigned to an FTP
site. To specify a non-default FTP port, add a colon (:) and then the port number to
the end of the address. For example, the following specifies port 78 on a remote
FTP server using the IP address 192.#.1.1: 192.#.1.1:78.

Remote user ID

Specifies a user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Use Secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

Specify an optional SITE command

Specifies to use the SITE command to invoke services that are specific to the host
system. Then use the Site parameters field to specify an expression that returns
parameters for the SITE command.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

Output Parameters
remoteFile
remoteHost
remoteUserld
remoteUserPassword
secureFtp
siteCommand

siteParameters

320 Content Designer Reference

Download File Operator

Download File Operator

The Download File operator copies a file from a remote location. This operator
corresponds to the FTP get command.

The remote host must have a configured FTP server. To get a remote file, the specified
user credentials must have the appropriate change directory and read rights on the file.

Diwenload remote file

1
2 Succeeded @ Failed
File retrieved successiully Dperator failed
Result=1 Result=0

Get Remote File Properties
Local file

Specifies the location to save the file locally. For example: /IT
PAM/import/script_oral.sh.

The location must be valid at run time on the touchpoint running the File Transfer
operators.

When you use Windows file nomenclature, backslashes must be escaped as follows:
C:\\IT PAM\\import\\script_oral.bat

We recommend using “normalized” file names, with slash marks (/), even when
specifying a path on a Windows host. For example: C:/IT
PAM/import/script_oral.bat.

Remote file

Specifies the full path for the file on the remote FTP host. For example: /tmp/IT
PAM/scripts/script_oral.sh.

Chapter 10: File Transfer 321

Download File Operator

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, other ports can be assigned to an FTP
site. To specify a non-default FTP port, add a colon (:) and then the port number to
the end of the address. For example, the following specifies port 78 on a remote
FTP server using the IP address 192.#.1.1: 192.#.1.1:78.

Remote user ID

Specifies the user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Binary transfer

Specifies to use the FTP binary mode for transferring binary files. For example:

Select a check box with the following types of files:

m Executable files

m SPSS System files

m SAS Transport files

m Stata datasets

m Graphics files
Convert from ASCII to EBCDIC

Specifies to convert ASCIl character code to EBCDIC before the file transfer. EBCDIC
is used in a z/OS environment, where the file needs to be readable in a z/OS host.

Use Secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

CA Process Automation uses the SSH2/SFTP protocol with user name/password
authentication. The SSH2/SFTP protocol only supports binary transfers.

Specify an optional SITE command

Uses the SITE command to invoke services that are specific to the host system. Then
use the SITE parameters field to specify a CA Process Automation expression that
returns parameters for the SITE command. This option is used, for example, to
dimension files on a target MVS system.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

322 Content Designer Reference

Get File Information Operator

Output Parameters
localFile
remoteFile
remoteHost
remoteUserld
remoteUserPassword
transferMode
secureFtp
siteCommand

siteParameters

Get File Information Operator

The Get File Information operator gets file attributes for a remote file and saves them to
variables (such as Permissions, Size, and Group) in its operator dataset.

The list of meaningful attributes is file system-dependent. To view the attributes for a
specified file or folder, view the operator's dataset.

The remote host must have a configured FTP server. The specified user credentials must
have the appropriate read permissions on the remote host.

Copies file information
into icon dataset variables
v
XM
| I

2 Completed @ Failed & Cuskom
File infarmation Operator failed Boolean expression
retrieved successiully Fesult=10 returns True
Fesult=1

Chapter 10: File Transfer 323

Get File Information Operator

Input Parameters
Remote file

Specifies the path for the file on the remote FTP host. For example: "/tmp/IT
PAM/scripts/script_oral.sh"

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, other ports can be assigned to an FTP
site. To specify a non-default FTP port, add a colon (:) and then the port number to
the end of the address. For example, the following specifies port 78 on a remote
FTP server using the IP address 192.#1.1: 192.#.1.1:78.

Remote user ID

Specifies a user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Use secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

Specify an optional SITE command

Specifies to use the SITE command to invoke services that are specific to the host
system. Then use the Site parameters field to specify a CA Process Automation
expression that returns parameters for the SITE command.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

324 Content Designer Reference

Get File Information Operator

Output Parameters
remoteFile
remoteHost
remoteUserld
remoteUserPassword
secureFtp
siteCommand
siteParameters
FileExists
FileName
FileTime
IsDirectory
IsFile
IsSpecial
FileGroup
FileGroupExec
FileGroupRead
FileGroupWrite
FileOtherExec
FileOtherRead
FileOtherWrite
FileOwner
FileOwnerExec
FileOwnerRead
FileOwnerWrite
FilePermission
FileSize
FileSizeKB
FileSizeMB

Chapter 10: File Transfer 325

Move File Operator

Move File Operator

The Move File operator moves a file from one remote location to another remote
location on the same server. You can use it to rename a file by specifying the same paths
for both the old name and the new name.

The remote host must have a configured FTP server. To move a file, the specified user
credentials must have the appropriate change directory and read rights on the file.

Maove file between locations

o
1
2 Succeeded @ Failed
File moved successiully Dperator failed
Fesult=1 Result=0

Input Parameters
New name
Specifies the path and new name for the file on the remote FTP server.
"/tmp/IT PAM/scripts/archived/IT PAM.new"
Current name

Specifies the existing path and name for the file on the remote FTP host. For
example: /tmp/IT PAM/scripts/IT PAM.old.

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, other ports can be assigned to an FTP
site. To specify a non-default FTP port, add a colon (:) and then the port number to
the end of the address. For example, the following specifies port 78 on a remote
FTP server using the IP address 192.#.1.1: 192.#.1.1:78.

Remote user ID

Specifies a user ID to access the remote FTP host.

326 Content Designer Reference

TFTP Download File Operator

Remote user password
Specifies the password to access the remote FTP host.
Use secure FTP (SFTP)

Opens a secure FTP (SFTP) session. SFTP is similar to FTP, but unlike FTP, the entire
session is encrypted. No passwords are sent in clear text form, so they are much
less vulnerable to third-party interception.

Specify an optional SITE command

Specifies to use the SITE command to invoke services that are specific to the host
system. Then use the Site parameters field to specify a CA Process Automation
expression that returns parameters for the SITE command.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

Output Parameters
newName
currentName
remoteHost
remoteUserld
remoteUserPassword
secureFtp
siteCommand

siteParameters

TFTP Download File Operator

s Al
el

The TFTP Download File operator receives a file from a host on a network through the
TFTP protocol. The host must have a running TFTP server.

Details on the TFTP protocol follow:

m Uses UDP to transfer the data.

®m |ssues sends and waits for ACKs.

Chapter 10: File Transfer 327

TFTP Download File Operator

Input Parameters

Typically initiates data transfer on port 69.

Typically sends data in a block size of 512b or smaller.

m Uses no authentication or authorization.

Important! Test TFTP functionality outside CA Process Automation before incorporating
it into CA Process Automation process flows. Firewalls or routing can block UDP to port
69 by default. Typically, the TFTP service is also either not installed or disabled.

Remote Hosthame
The host name or the IP address of the remote host.
Remote UDP Port for TFTP

The UDP port of the TFTP service on the remote host. If this parameter is specified,
this value overrides the value of the operator category field: Default UDP Port for
Trivial FTP. If none of these fields are specified, the operator uses the default value
of 69.

Remote File name

The name of the remote file to obtain from the remote host. This parameter is not
the path of the remote file on the remote host. Depending on its setup, the TFTP
server retrieves the file from its base directory in the remote host.

Data Transfer Type

BIN for binary or ASCII for ASCII (text). If this type is not specified, the operator uses
the default value: ASCILI. If any other value is specified (other than ASCII or BIN), the
operator uses the default value of ASCII.

Local File to Download

The fully qualified path of the local file (where you save the file retrieved through
TFTP).

Local Port Number (0 for anonymous port)

The local port number to use when retrieving data from the remote host/port. If 0,
an anonymous port is used. If the port is specified and the port is unavailable, the
operation could fail. If this number is not specified, the operator uses the default
value: 0.

328 Content Designer Reference

TFTP Download File Operator

Timeout (sec)

The timeout value to use when opening the connection to the TFTP server. If this

number is not specified, the value defaults to 20.

Maximum Retries after TFTP Timeout

The maximum number of times to retry the download file operation (not the entire
CA Process Automation operator) after a TFTP timeout. If this number is not

specified, the operator uses the default value: 5.

Output Parameters

Operator Ports

Result:

m 1:If the operator finished successfully.
m -1:If the operator failed.

Reason:

m Completed: If the operator finished successfully,
m An error message if the operator failed.
remoteSSHHost

PORT

RemoteURL

TransferType

LocalFileName

LocalPort

Timeout

MaxRetries

Success
The operator completes successfully.

Failure

The operator fails for any of the following reasons:

m Invalid input parameter from the user. The reason field contains an error

message specifying the problem.

m Thelocal file exists but cannot be written to.

Chapter 10: File Transfer 329

TFTP Upload File Operator

m Thelocalfile is a directory.

m The local file does not exist. Its parent directory cannot be written to due to the

current privileges and restrictions preventing CA Process Automation from
writing to the directory.

m The current privileges and restrictions prevent CA Process Automation from
writing to the local file.

m Unknown host specified.
m 10 error when receiving the remote file.

m Timeout error if CA Process Automation is unable to connect to the remote
host at the specified remote port. In such a case, the operator does not time
out, as the TFTP client reports this issue as an 10 error (not a timeout error).

m Others (specified in the reason field).

Custom Ports

If set by the user during the process design.

TFTP Upload File Operator

LUy

The TFTP Upload File operator sends a file to a host on a network through the TFTP
protocol. The host must have a running TFTP server.

Details on the TFTP protocol follow:

Important! Test TFTP functionality outside CA Process Automation before incorporating

Uses UDP to transfer the data.
Issues sends and waits for ACKs.
Typically initiates data transfer on port 69.

Typically sends data in a block size of 512b or smaller.

Uses no authentication or authorization.

it into CA Process Automation process flows. Firewalls or routing can block UDP to port
69 by default. Typically, the TFTP service is either not installed or disabled.

330 Content Designer Reference

TFTP Upload File Operator

Input Parameters

Remote Hosthame
The host name or the IP address of the remote host.
Remote UDP Port for TFTP

The UDP port of the TFTP service on the remote host. If this port is specified, this
value overrides the value of the operator category field: Default UDP Port for Trivial
FTP. If none of these fields are specified, the operator uses the default value of 69.

Remote File name

The name to use when creating the file (being sent) on the remote host. This
parameter is not the path of the remote file on the remote host. Depending on its
setup, the TFTP server saves the file in its base directory in the remote host.

Data Transfer Type

BIN for binary or ASCII for ASCII (text). If not specified, the operator uses the default
value: ASCILI. If any other value is specified (other than ASCII or BIN), the operator
uses the default value of ASCII.

Local File to Upload
The fully qualified path of the local file to send through TFTP.
Local Port Number (0 for anonymous port)

The local port number to use when sending data to the remote host/port. If 0, an
anonymous port is used. If the port is specified and the port is unavailable, the
operation could fail. If this number is not specified, the operator uses the default
value: 0.

Timeout (sec)

The timeout value to use when opening the connection to the TFTP server. If this
number is not specified, the value defaults to 20.

Maximum Retries after TFTP Timeout

The maximum number of times to retry the upload file operation (not the entire CA
Process Automation operator) after a TFTP timeout. If this number is not specified,
the operator uses the default value: 5.

Output Parameters

Result:
m 1:If the operator finished successfully.

m -1:If the operator failed.

Chapter 10: File Transfer 331

TFTP Upload File Operator

Reason:

m Completed: If the operator finished successfully,

®m An error message if the operator failed.

remoteSSHHost

PORT

RemoteURL

TransferType

LocalFileName

LocalPort

Timeout

MaxRetries

Operator Ports

Success

The operator completes successfully.

Failure

The operator fails for any of the following reasons:

Invalid input parameter from the user. The reason field contains an error
message specifying the problem.

The local file is either non-existent, invalid, or cannot be read.

The current privileges and restrictions prevent CA Process Automation from
reading the local file.

10 error when sending the local file.
Unknown host specified.

Timeout error if CA Process Automation is unable to connect to the remote
host at the specified remote port. In such a case, the operator does not time
out, as the TFTP client reports this issue as an 10 error (not a timeout error).

Others (specified in the reason field).

Custom Ports

If set by the user during the process design.

332 Content Designer Reference

Upload File Operator

Upload File Operator

Input Parameters

The Upload File operator copies a file from a local location to a remote location. This
action corresponds to the FTP put command.

To upload a remote file, the specified user credentials must have the appropriate
change directory and write permissions on the remote host. The remote host must have
a configured FTP server.

Transfer afile to a remaote location

Uy
| L
2 Succeeded & Failed
File transferred successiully Operatar failed
Fesult=1 Result=0

Local file

Specifies the full path for the local file to transfer. For example: C:\\IT
PAM\\import\\script_oral.sh. This option is unavailable if you select the Is inline
data check box.

Is inline data

When selected, transfers text stored with the operator in the library. Click the Inline
data field to enter data.

Inline data

Click this field to open the Inline data editor where you can enter the data to
transfer.

Remote file

Specifies the path for the file on the remote FTP host. For example: /tmp/IT
PAM/scripts/script_oral.sh. If you do not specify a file name, the operator saves
the file using the same name as the copied file. The location must be valid at run
time on the touchpoint running the File Transfer operators.

Chapter 10: File Transfer 333

Upload File Operator

Remote host

Specifies the IP address or FTP URL for the remote host. For an FTP site on your
company intranet, you can specify the server name (//servername) for the FTP site.

By default, FTP sites use port 21. However, other ports can be assigned to an FTP
site.

To specify a non-default FTP port, add a colon (:) and then the port number to the
end of the address. For example, the following specifies port 78 on a remote FTP
server using the IP address 192.#.1.1: 192.#.1.1:78.

Remote user ID

Specifies a user ID to access the remote FTP host.
Remote user password

Specifies the password to access the remote FTP host.
Binary transfer

Uses the FTP binary mode for transferring binary files. For example, if selected, uses
the following types of files:

m Executable files
m SPSS System files
m SAS Transport files
m Stata datasets
m Graphics files

Use Secure FTP (SFTP)

Select this check box to open a secure FTP (SFTP) session. SFTP is similar to FTP but,
unlike FTP, the entire session is encrypted. No passwords are sent in clear text
form, and are much less vulnerable to third-party interception.

Specify an optional SITE command

Select this check box to use the SITE command to invoke services that are specific to
the host system. Then use the Site parameters field to specify a CA Process
Automation expression that returns parameters for the SITE command.

Site parameters

Enter a CA Process Automation expression that returns parameters for the SITE
command.

334 Content Designer Reference

Upload File Operator

Output Parameters
localFile
isinline
Inline Data
remoteFile
remoteHost
remoteUserld
remoteUserPassword
transferMode
secureFtp
siteCommand

siteParameters

Chapter 10: File Transfer 335

Chapter 11: Java Management

The Java Management operators provide a management interface to external systems
that support JMX.

JMX Login Parameters

The JMX Login parameters display for each of the Java Management operators. These
parameters configure the settings that are required to log in to and communicate with
the JMX server.

Use user-specified JMX Service URL
Select this check box to specify a JMX Service URL instead of specifying a server.
When you select this check box, the following fields are enabled:
m JMXService URL
m Remote JMX User
m Remote JMX Password
When you select this check box, the following fields are disabled:
m Remote JMX Host
m Remote Registry Port
m Remote JMX Server
JMX Service URL
Specifies a JMX Service URL.

URL Pattern:

service:jmx:rmi:///jndi/rmi://<TARGET_MACHINE>:<RMI_REGISTRY_PORT>/JMXRM
IServer

For example:

TARGET_MACHINE: PA-w2k3-3
RMI_REGISTRY_PORT: 9999

JMX RMI Server: server

The URL looks like:
service:jmx:rmi:///jndi/rmi://PA-w2k3-2:9999/server

Chapter 11: Java Management 337

Get MBean Attributes Operator

Remote JMX Host

Specifies the host machine name for the JMX agent. You can specify the full
machine name or an IP address on your network.

When the JMX agent is running on the same machine as CA Process Automation,
localhost is the default.

RMI Registry Port
Specifies the connection port for the JMX agent.

The default port is 12345. However, you can run the JMX agent on an RMI Registry
port that you define.

Remote JMX Server
Specifies the name of the JMX server.
Remote JMX User

Specifies the user name to connect to the JMX agent on the MBean server. If
security is disabled for the JIMX agent, leave this option blank.

Remote JMX Password

Specifies the password to connect to the JMX agent on the MBean server. If security
is disabled for the JMX agent, leave this option blank.

Get MBean Attributes Operator

Input Parameters

7,

W

The Get MBean Attributes operator gets the value of an MBean through JMX on a node.
The template operator requires the name of the MBean and contact information and
credentials for the JMX server. The retrieved values are placed in the process dataset.
The operator dataset variable is assigned the same name as the attribute and its value is
the retrieved value.

Managed Bean Name
Specifies the name of the management Bean to access.

From the drop-down list, select the name of the management Bean to access or you
can type in the user-defined Mbean name manually.

338 Content Designer Reference

Get MBean Attributes Operator

Managed Bean Attribute

Select or type the name of the attribute to fetch from the list.

JMX Login Parameters (see page 337)

Output Parameters
ManagedBeanName
ManagedBeanAttribute
State
UserSpecifiedURL
RemoteJMXURL
RemoteHost
RemoteRMIRegistryPort
RemoteJMXServer
RemoteUser

RemotePassword

Chapter 11: Java Management 339

Get MBean Attributes Operator

Example
This example shows a user-defined Managed Bean Name and Managed Bean Attribute.
Get MBean Attributes s

Managed Bean Mame:

"DefaultDomain:type=5Simplestandard,index=1" v
Managed Bean Attribute:

"State” v

In the JMX Login Parameters, a remote JMX Service URL is provided. The Remote JMX
Host, RMI Registry Port, and Remote JMX Server fields are disabled as a result.

The Remote JMX User and Remote JMX Password fields are blank, as the server does
not have security enabled.

IMX Login Parameters e

W Use user-specified IMX Service URL
MK Service URL:

"service:jrmx i AAAndifrmi Akomsr0l-w 2k 3-2:9999 server”
Rermote JMiK Host:

RMI Registry Port:

Remote JMx Server:

Rermote JMiK User:

Rerote JMx Password:

After the operator successfully executes, the State parameter returns as initial state
from the MBean, as shown in the output dataset of the operator from the Dataset
panel:

4 [Al Page JMXGetParameters

ManagedBeaniame DefaultDomaintype=SimpleStandard,index=1
ManagedBeanditribute State
State initial state

This information also appears in the operator output variable properties from the log
panel:

340 Content Designer Reference

Invoke MBean Method Operator

Properties

Get MBean Attrib M Login Parame System

Managed Bean Name:

DefaultDomain:type=SimpleStandard,index=1
Managed Bean Altrbute:

State
Stade:

initial state

Cancel

Invoke MBean Method Operator

7,

=
=
This Invoke MBean Method operator invokes a method on a JMX server.

Input Parameters
Managed Bean Name
Specifies the name of the management Bean to access.

From the drop-down list, select the name of the management Bean to access or you
can type in the user-defined MBean name manually.

Managed Bean Method

Specifies the method to invoke.
Method Parameters

Specifies parameters for the method.

Use the buttons on this field to add, remove, or reorder parameters.

JMX Login Parameters (see page 337)

Chapter 11: Java Management 341

Invoke MBean Method Operator

Output Parameters

ManagedBeanName
ManagedBeanMethod
ManagedBeanMethodParams
InvokeResults
UserSpecifiedURL
RemoteJMXURL

RemoteHost
RemoteRMIRegistryPort
RemoteJMXServer
RemoteUser

RemotePassword

342 Content Designer Reference

Invoke MBean Method Operator

Example

This example invokes the MBean method "sayHello" without any parameters from the
user-defined MBean.

Invoke MBean Method &

Managed Bean Name:

"DefaultDomain:type=Simplestandard,index=1" v
Managed Bean Method:

"zayHello"

Method Parameters:

Method Parameters

Page | 1 of 1 = Mo data to display

After the operator successfully executes, the MBean method returns the value to the
InvokeResults parameter, as shown in the output dataset of the operator from the
Dataset panel:

(2 rage maxinvoketarametears

ManagedBeaniame DefaultDornain:type=SimpleStandard,index=1
ManagedBeanMethod sayHello

ManagedBeanMethadFarams [o]

Invokefesuits ganbanz

This information also appears in the operator output variable properties from the log
panel:

Chapter 11: Java Management 343

Update MBean Attributes Operator

Properties

Invoke MBean ... IM¥ Login Para... Systern

Managed Bean Mame!
Managed Bean Mathod!

Method Parameters!
5| B | M| | W

Method Parameters

% 0 Page |1 of 1| b Bl & Mo data to display

InvokeResults!

[
LR Sove und Cluzz

Update MBean Attributes Operator

&

w

The Update MBean Attributes operator sets the MBean attribute value to the MBean
attribute.

Input Parameters
Managed Bean name
Specifies the name of the management Bean to access.

From the drop-down list, select the name of the management Bean to access or you
can type in the user-defined Mbean name manually.

Managed Bean Attribute

Specifies the name of a JIMX MBean attribute to update.

344 Content Designer Reference

Update MBean Attributes Operator

Attribute Value

Specifies a value which is set as the value of the JMX attribute.

JMX Login Parameters (see page 337)

Output Parameters
ManagedBeanName
ManagedBeanAttribute
ManagedBeanAttributeValue
UserSpecifiedURL
RemoteJMXURL
RemoteHost
RemoteRMIRegistryPort
RemoteJMXServer
RemoteUser

RemotePassword

Chapter 11: Java Management 345

Update MBean Attributes Operator

Example

This example illustrates:

m Updating the MBean attribute value from initial to intermediate using the Update
MBean Attribute operator.

m Obtaining the updated value of the MBean attribute state using the Get MBean
Attributes operator.

-4

@. Update MBean_Attributes State to_intermediate
L
oo
@' Get_MBean_Attributes_Updated State
LV
L X

346 Content Designer Reference

Update MBean Attributes Operator

These parameters are the Update MBean Attributes operator input parameters:

Update MBean Attributes o

Managed Bean Mame:
"DefaultDomain:type=SimpleStandard,index=1"
Managed Bean Attribute:

"State”

attribute Value:

"intermediate"

After the operator successfully executes, the MBean attribute State value is set to
intermediate, as shown in the output dataset of the operator from the Dataset panel:

4 [Al Page. JMXEetParameters

ManagedBeaniarme DefaultDomain:type=Simplestandard,index=1
ManagedBeandttribute State
ManagedBeandttributel aive intermediate

This information also appears in the operator output variable properties from the log
panel:

Properties

System Update MBean ... 1M Login Para...

Managed Bean Name!

Managed Bean Altrbute:

Aftribite lVaiue:

Cance! [ERPERTRII

Chapter 11: Java Management 347

Update MBean Attributes Operator

These variables are the operator output dataset variables from Dataset Panel of the Get
MBean Attributes. The State Value has been updated to intermediate.

4 [Al Fage JM¥Gettarameters

ManagedBeaniame DefaultDomain:itype=SimpleStandard,index=1
ManagedBeanditributes State
State intermediate

348 Content Designer Reference

Chapter 12: Network Utilities

The Network Utilities operators provide various standard network protocol utilities to
the automated business processes made possible by CA Process Automation. These
operators provide general utilities that validate various network interfaces and devices.
These operators also operate on remote services and servers and moves data as part of
the general automation process, thus reducing manual validation and verification.

The Network Utilities operators have the option to create custom exit ports. You can set
custom ports (nonautomatic exit ports) on the operator when you are creating the
process. These ports are in addition to the automatic exit ports that all operators have
(success and failure ports).

Use the Network Utilities operators to use native network interface utilities (rather than
use host- based scripting languages and other host-based utilities).

Get Local Network Interfaces Operator

Input Parameters

oo

The Get Local Network Interfaces operator lists all the network interfaces in the local
host. The local host is the host on which the touchpoint for the operator is running.

For each network interface, the operator lists the following information:
m Interface name

® Mac address

m Display name

m List of inetaddresses that are associated with the interface.

Note: Each InetAddress consists of its canonical name, host name, and IP address.

No operator input is required.

Chapter 12: Network Utilities 349

Get Local Network Interfaces Operator

Output Parameters
StartTime
StartDate
Networkinterfaces

Specifies an array of value maps containing the network interfaces associated with
the local host.

Each value map in NetworklInterfaces contains the following information:
Name
Specifies the name of the network interface.
Display
Specifies the display name of the network interface.
MacAddress

Specifies the hardware address, usually MAC address, of the network interface.
A blank in this field indicates that the operator is unable to retrieve the MAC
address from the network interface. The retrieve failure can be due to lack of
privileges or can be due to the lack of a MAC address for this network interface.

InetAddresses

Specifies an array of value maps containing the InetAddresses associated with
the network interface. Each value map in InetAddresses contains the following
information:

IpAddress
Specifies the IP address.
Host

Specifies the host name. The IP address is returned if the operator is
unable to perform a reverse lookup due to network setup.

CanonicalName

Specifies the canonical name. If the operator is unable to retrieve the
FQDN, an IP address is returned.

Result
One of the following items:
1

Indicates that the operator finished successfully.

Indicates that the operator failed.

350 Content Designer Reference

Get Local Network Interfaces Operator

Reason
One of the following items:
Completed
Indicates that the operator finished successfully.
<error message>

Specifies why the operator failed in an error message.

Operator Ports

Success
The operator finished successfully.

Failure
The operator failed for one of the following reasons:
m Unable to retrieve the list of local network interfaces of the local host.
m Other reasons specified in error messages.

Custom Ports

If set by the user during the process design.

Chapter 12: Network Utilities 351

Get Network Service Status Operator

Example

Example ValueMap: Network Interfaces and InetAddresses

Dataset

E Save @ Add ¥Yariable % Delete ¥Yariable Add Page

Get_Local_Metwork_Interfaces | =

Name
» [System
4 [3 Operation Results
F E NetworkInterfaces
F] B Element Type
4 E’ Sy=stem
"

Name

Filter:

Value

[18]

[o]

*

|13

m

Get Network Service Status Operator

el

The Get Network Service Status operator lets you communicate with a local or remote
service, over TCP or UDP. You can use this operator to send data and then receive a
reply. This operator can validate the reply against a predetermined pattern to
determine if the network service is up. This type of validation enables the operator to
report the status of the service and the computer that is hosting that service.

Note: You cannot send a binary message using this operator, because only strings (text)

are supported.

352 Content Designer Reference

Get Network Service Status Operator

Input Parameters

TCP is a connection-oriented protocol. The operator lets you connect to the service,
send data, then receive a reply that can be matched against a pattern. Another service
can listen on the same port. Therefore, a successful connection does not necessarily
mean that a given service is running.

UDP is a connection-less protocol. The operator does not connect to the service to get
its status through UDP. To get the status, the operator sends a UDP message, reads the
reply, and verifies that the reply data matches a pattern.

Remote Hosthame
Specifies the hostname or FQDN of the computer that hosts the service.
Default

Blank - Indicates that the operator assumes that the service is running on the
touchpoint host.

Remote Port

Specifies the host port on which the service is listening. Some well-known and
registered ports include the following:

m 21: FTP - File Transfer

m 22:SSH - The Secure Shell (SSH) Protocol

m 23:Telnet

m 2483:Oracle TTC

m 25:SMTP - Simple Mail Transfer

= 3306: MySQL

m 69: TFTP - Trivial File Transfer

m 80:HTTP

m 1433: Microsoft SQL Server

You can specify any valid port in this field.
Local Port Number (0 for anonymous port)

Specifies the local port that the Get Network Service Status operator uses on the
touchpoint host to connect to the remote port.

Values
m 0 -Indicates that an anonymous port is used.
m Blank-Same as 0.

Note: If the specified port is unavailable, the operator fails.

Chapter 12: Network Utilities 353

Get Network Service Status Operator

Protocol to Use

Specifies the protocol to use when verifying the status of the service and sending
data. If UDP is specified, the Connection Timeout (sec) field is disabled because UDP
is a connectionless protocol.

Values

This value can be one of the following:

m TCP
s UDP
Default

TCP (if left blank).

Connection Timeout (sec)

Specifies the maximum amount of time that the operator waits for a connection to
the service before timing out. This field is applicable to TCP protocol only.

Values
This value can be one of the following:
m 0 (zero) - Indicates no timeout.
m Any positive integer (in seconds)
Default
20 seconds (if blank)
Data to send

(Optional) Specifies data to send to the service. Most services do not expect any
data.

Read Data from Service?
Specifies whether the operator reads data from the service after contacting it.
Values
This value can be one of the following:

m Selected - Indicates that the operator reads data from the service after
contacting it. Select this option to enable Time to Read Data (sec), Max
Data to Read (bytes), and Reply Pattern to match fields.

m Cleared - Indicates that the operator does not read data from the service
after contacting it. This value is appropriate for services that do not return
data.

354 Content Designer Reference

Get Network Service Status Operator

Notes:

m With UDP, all the data (if any) is read at once. If there is no data, the operator
waits until the Time to Read Data is up. All the Max Data to Read is read at
once in a string of length Max Data to Read.

m With TCP, the operator reads the data in chunks until it reaches one of the
following thresholds:

— Time to Read Data
- Max Data to Read
Time to Read Data (sec)

Specifies the amount of time to spend waiting for reply data from the service. This
field is specified because the data from the service does not have an EOF at the
end.

Values

This value is a positive integer. Zero (0) is not allowed. Otherwise, the operator
would wait for a long time until the service closes the socket.

Default
20 seconds (if blank).
Max Data to Read (bytes)
Specifies the maximum amount of data to read from the service.
Default
4096 bytes
Reply Pattern to match

(Optional) Specifies a pattern to use to match the data returned from the service. If
specified, pattern matching determines whether the operator succeeds or fails.

The operator matches the pattern against the data read during the time period
specified in Time to Read Data up to the number of bytes specified in Max Data to
Read.

The operator matches the pattern as a substring of the reply data.

m To match reply data that starts with a specific sequence, use » at the beginning
of the pattern.

m To match reply data that ends with a specific sequence, use $ at the end of the
pattern.

m To match a new line terminator, use dot (.). Dot is used to match multiline reply
data.

Chapter 12: Network Utilities 355

Get Network Service Status Operator

Output Parameters
ReplyMessage

Contains the data received from the service. This field is empty if the service did not
send data or if the operator does not read data from the service.

LocalAddressinfo

Information regarding the local address used to connect to the service, in the form
of:

localhost/IP:port

This information lets you identify the actual local port number used when the Local
Port Number (see page 353) is set to 0 for anonymous.

RemoteAddressinfo

Information regarding the remote address that the operator connected to, in the
form of:

Hostname/IP:port

Note: UDP is a connection-less protocol; this field is empty when UDP is selected in
Protocol to Use (see page 353).

Result
m 1: The operator succeeded.
m -1: The operator failed.
Reason
m Completed, if the operator finished successfully.
m An error message returns if the operator fails.
remoteSSHHost
PORT
LocalPort
SendProtocol
ConnTimeout
CommandData
IsReadData
ReadDataPeriod
ReadDataBytes
ReplyPattern
StartTime

StartDate

356 Content Designer Reference

Get Network Service Status Operator

Operator Ports
Success
m The operator finished successfully.

m If the operator is configured to read data from the service, then the operator
succeeds if:

- TCP:

a. It binds to the local port (if specified)

b. Connects to the remote host at the specified remote port

c. Writes data to the service (if specified)

d. Reads the reply data from the service

e. Verifies that the reply data matches the pattern (if specified).
- UDP:

a. It binds to the local port (if specified)

b. Sends a UDP message to the remote host at the specified remote port

c. Reads the reply from the service

d. Verifies that the reply data matches the pattern (if specified).

m If the operator is configured so it does not read data from the service, the
operator succeeds if:

- TCP:
a. It binds to the local port (if specified)
b. Connects to the remote host at the specified remote port
c. Writes data to the service (if specified).
- UDFP:
a. It binds to the local port (if specified)
b. Sends a UDP message to the remote host at the specified remote port.

This process does not mean that the UDP service is operational. We
recommend configuring the operator to read the response from the
service and match it to a pattern. Then, you can be sure that the UDP
service is up and running. You cannot be sure that a service is verified
properly through UDP when that service does not return any data.

Timeout

Timeout occurs when attempting to open a connection to the service through TCP.
The timeout value is specified in Connection Timeout (sec) (see page 353).

Chapter 12: Network Utilities 357

Get Network Service Status Operator

Failure

Reasons include:

The operator is set to read data from the service, but the data read did not
match the pattern specified by the user.

The user specifies invalid data. For instance: negative remote/local ports,
negative Connection Timeout (for TCP only), 0 or negative Time to Read Data
(sec).

The remote host is not known.

Cannot connect to the remote host at the remote port (or connection refused)
through TCP; the service could be down in this case.

Cannot bind to the specified local port.

Error when sending or receiving data to/from the service.

Custom Ports

Returned if set by the user during the process design.

358 Content Designer Reference

Get SNMP Variable Operator

Input Parameters

Get SNMP Variable Operator

The Get SNMP Variable operator reads the value of a remote management information
base (MIB) variable. The object IDs (OIDs) and semantics of SNMP variables are

documented in the MIB of the remote SNMP Agent.

SNMP is a connectionless, unreliable protocol. A timeout option specifies the time that
is allowed for the request to reach the destination address. A retry option specifies the
number of times that a request is sent in case of failures. This operator may fail for
various error conditions, such as the SNMP variable is not found, read permission is

denied, or a device is unavailable.

|
Iong

]
LY
(X © O
— |
2 Failed (= Tirneout
Failed to retrieve Tirmed out
the value Result=1
Fesult=10
2 Completed

Retrieved the value and placed itin a local
flowechart variable for furher processing (such
as to activate an alarm for certain conditions)
Fesult=2

Agent host

Retrieve the value of an SHMP variable
frarm the MIB of a remote devicelhost

—

& Custom

Boolean expression
returns True

Specifies the IP address or fully qualified domain name for the agent host. For

example: 192.168.1.254.

You can specify a port along with the host name using either of the following

formats:
m host:port

m host/port

For example: comet.hg.optinuity.com:10162

Chapter 12: Network Utilities 359

Get SNMP Variable Operator

Community

Specifies the community under which the variable is to be accessed. For example:
public.

Object ID (OID)

Specifies the object ID for the variable. Object IDs (OIDs) are documented in the
management information base (MIB) associated with a remote agent.

Retry count

Specifies the number of times the request is sent in case it fails.
Time-out interval (secs)

Specifies the number of seconds until the operator times out.
SNMP version

Specifies the version number for the SNMP agent. Select “Version 1” or “Version 2”
from the list.

Output Parameters
Object_ID
Retry_Count
Timeout
SNMP_Version
Community
Agent_Host
Port
OIDValue
Agent_Host
Community
Requestid
Errorindex

ErrorStatus

360 Content Designer Reference

Monitor SNMP Variable Operator

Monitor SNMP Variable Operator

The Monitor SNMP Variable operator waits until an SNMP variable has a value that
satisfied specified conditions. These conditions are defined by a pattern or a range of
values. The operator can extract substrings from a matched pattern.

This operator is implemented with an iterative Get SNMP Variable operator until the
specified condition is satisfied.

Wiait for a device to be in some state
LIC as reflected by selected walues of an
=" E MIB variable

v/ © o
& Custom (1 Timneout 2 Failed
Boolean expression Timed out Operatar failed
returns True Fesult=1 (unreachahle device or
some other ermar condition)
Fesult=0
= Completed

Dperator succeeded:
run dependent process
Result=2

Input Parameters
Agent host
Specifies the IP address or fully qualified Domain name for the agent host.
For example: 192.#68.1.254

You can specify a port along with the host name using either of the following
formats:

m host:port
m host/port
For example: comet.hq.optinuity.com:10162
Community
Specifies the community under which the variable is accessed.

For example: public

Chapter 12: Network Utilities 361

Monitor SNMP Variable Operator

Object ID

Specifies the object ID for the variable. Object IDs (OIDs) are documented in the
management information base (MIB) associated with a remote agent.

For example: 1.3.6.1.2.1.1.1.0
Retry count

Specifies the number of times the watch retries in case of failure.
Time-out interval (secs)

Specifies the number of seconds to wait for an individual Get SNMP variable before
timing out the operator.

Variable type

Specifies a data type for the variable. Select a value from the drop-down list to
configure this operator parameter.

Sleep time (secs)

Specifies the maximum interval in seconds between attempts to check the value of
the watched variable.

SNMP version

Specifies the version number for the SNMP agent. Select“Version 1” or “Version 2”
from the list.

Low value

Specifies the low end of the expected range for numerical values.
High value

Specifies the high end of the expected range for numerical values.
Mask

Specifies the pattern searched for by the operator (see Using Masks to Specify
Patterns in Strings in the Content Designer Guide).

Separators (#) in the pattern delimit the text to save to operator dataset variables.
Separator

Specifies the character that delimits the zone to save to the variables that are
specified by variable names.

362 Content Designer Reference

Monitor SNMP Variable Operator

Variable names

Specifies the variable names in which to save text that matches the delimited zones
in the pattern. Delimited zones are saved in order to the listed variables. Operator
dataset variables are accessed through the process dataset, using the keyword
process.

For example, specifying the variable names V1 and V2 would assign extracted
substring values to the operator dataset variables Process.Operator_name.V1 and
Process.Operator_name.V2. Use the toolbar to add, remove, and order the
variables to store the matched strings.

Case Sensitive Pattern Matching

Select this check box to only match upper-case and lower-case letters in a pattern
with letters of the same case. Clear this check box to ignore upper-case and
lower-case characters when matching the pattern.

Chapter 12: Network Utilities 363

Monitor SNMP Variable Operator

Output Parameters
Object_OID
Retry_Count
Timeout
Variable_Type
Sleep Time
SNMP_Version
Low_Value
High_Value
Mask
Seperator
Variable_Names
IsCaseSensitivePatternMatching
Watch Expiration
Community
Agent_Host
Port
MatchedEntry
LastReadPos
Requestid
Errorindex
ErrorStatsu
Port
OIDValue

364 Content Designer Reference

Ping Host Operator

Ping Host Operator

Input Parameters

The Ping Host operator lets you evaluate access to a given host or IP Address. You can
specify the number of requests to make to the remote host, as well as the timeout and
TTL values. You can also specify the local IP address of the computer on which the
operator is running. In this case, the operator uses the local network interface that is
associated with the local IP address to initiate the ping operation.

The output variable: "isHostReachable" indicates whether the host is reachable.

m If any of the ping requests indicates that the host is reachable, then
"isHostReachable" is set to True.

m [f all ping requests indicate that the host is not reachable, then "isHostReachable" is

set to False and the operator fails.

The Ping Host operator fails when an error occurs or when all ping requests to a host
fail.

Remote Hosthame

Specifies the host name or the IP address to ping. For IPv6 address, use either the
form defined in RFC 2732 or the literal IPv6 address format defined in RFC 2373. If
not specified, the default is used.

Default
The loopback address of the host associated with the touchpoint.
Local IP Address

Specifies the local IP address of the host with the agent associated with the
touchpoint, whose network interface initiates the ping. If not specified, the Ping
Host operator uses the default.

Default

Blank - Indicates any interface.

Chapter 12: Network Utilities 365

Ping Host Operator

Number of Requests

Specifies the number of times to run the operation that determines whether the
remote host is reachable. The Ping Host operator deems the remote host to be
unreachable when all of these requests return that the host is unreachable. If not
specified, the operator uses the default.

m If any of the ping requests indicates that the host is reachable, then
“'sHostReachable’ is set to True.

m

m If all ping requests indicate that the host is not reachable, then
"isHostReachasble" is set to False and the Ping Host operator fails.
Default

1
Time to Live

Specifies the maximum time to live value for each request in the specified number
of requests. For pings (ICMP requests), it specifies the maximum number of hops
the packets should go through before giving up and deeming the remote host
unreachable. If not specified, the operator uses the default.

Default
30

Timeout (secs)

Specifies the time out in seconds, where the value applies to each request in the
specified number of requests. If a request times out before getting an answer, that
request deems the remote host to be unreachable. If not specified, the operator
uses the default.

Default
5

366 Content Designer Reference

Ping Host Operator

Output Parameters
isHostReachable
isHostReachable is set to one of the following:
True
Indicates that at least one of the ping requests reached the host.
False
Indicates that none of the ping requests reached the host. The operator fails.
A request deems the host to be unreachable if:
m The host is not reachable
m TTL expires
m Timeout expires
HostlpAddress
The IP address of the remote host.
HostCanonicalName

The canonical name of the remote host. The operator retrieves either the FQDN or
the IP address depending on the underlying system configuration.

LocalNetworkinterface
One of the following:

The name of the local network interface used to send the requests to the remote
host.

Indicates the user specified a local IP Address.
Blank
Indicates that no local IP Address was specified in the operator input.
TotalRequests
The number of requests issued by the operator.

If no error occurs when running the operator, the TotalRequests should be equal to
the value of the Number of Requests.

SuccessfulRequests
The number of requests that reached the remote host.
FailedRequests

The number of requests that found the remote host to be unreachable.

Chapter 12: Network Utilities 367

Ping Host Operator

FailurePercentage

FailedRequests * 100 / TotalRequests.

Result
1
Indicates that the operator finished successfully.
-1
Indicates that the operator failed.
Reason

One of the following:
Completed

Indicates that the operator finished successfully.
<error message>
Specifies why the operator failed in an error message.
remoteSSHHost

locallp

NUMBER_OF_REQUESTS
TTL

Timeout

368 Content Designer Reference

Send SNMP Trap Operator

Operator Ports

Success

The operator finished successfully.

Failure

The operator failed for one of the following reasons:

isHostReachable is false.

A firewall or a network issue prevents CA Process Automation from looking up
or connecting to the machine.

Unknown remote hostname.
Invalid local IP address.

Unable to retrieve the local Network Interface associated with the local IP
address.

The local Network Interface associated with the local IP address is not up.
Timeout, number of requests, or time to live is less than or equal to O (zero).

Another reason, specified in the reason field.

Custom Ports

If set by the user during the process design.

Send SNMP Trap Operator

This operator generates SNMP traps. A trap is an unsolicited message that an SNMP
agent sends to an SNMP management system when the agent detects that a certain
type of event has occurred locally on the managed host. For example, a trap message
might be sent on a system restart event. SNMP traps are typically used to trigger alarms
and notifications or to cause predefined actions by remote devices (such as a device
reboot or reset).

Chapter 12: Network Utilities 369

Send SNMP Trap Operator

The precise semantics of specific traps are defined in the documentation of the SNMP
agent MIBs. For custom traps, consult the documentation for the destination agents.

m Send an SHMP trap to a network
rmaonitoring station (or to 2 device)
=
0o
| I

2 Completed £ Failed & Cushtom
Trap sent successiully Failed to send trap Boolean expression
Result=1 (host unreachable or returns True
some other error condition)
Fesult=0
Input Parameters
Agent host

Specifies the IP address or fully qualified domain name for the agent host.
You can specify a port with the host name using either of the following formats:
m host:port
m host/port
For example: comet.hq.optinuity.com: #####
Community
Specifies the SNMP trap community name. For example: public.
SNMP version

Specifies the version number for the SNMP agent. Select Version 2 from the list.

370 Content Designer Reference

Send SNMP Trap Operator

Trap ID

Specifies:

m One of the standard Trap IDs:

Cold Start

An enterprise-specific “Custom” Trap ID
Egp Neighbor Loss

Link Down

Link Up

Warm Start

Authentication Failure

Custom trap ID

Specifies the enterprise-specific Custom Trap ID when “Custom” is selected for Trap
ID. For custom traps, consult the documentation of the destination agents.

Payload trap ID

Specifies the payload Trap ID.

Payload trap type

Specifies the data type for the payload of the SNMP Trap message. Select one of the
data types in the drop-down list.

Payload trap value

Specifies the payload value of an SNMP Trap.

Output Parameters

SNMP_Version

Trap_ID

Custom_Trap_ID

Payload_Trap_ID

Payload_Trap_Type

Payload_Trap_Value

Community

Agent_Host

Port

Requestid

Chapter 12: Network Utilities 371

Update SNMP Variable Operator

Update SNMP Variable Operator

The Update SNMP Variable operator sets the value of an SNMP variable that a remote
SNMP agent manages. In general, SNMP variables control the behavior of IP devices.
The precise semantics of SNMP variables are defined in the MIB associated with a
device.

To set the variable, the user account executing the Update SNMP Variable operator
must have write permission on the SNMP server to change the value of the OID.

Set an MIB variable of a device manage-
i ' I'I ahle through SKMP (asthe resualt of
=" some previous action

W
09

2 Completed) Failed @ Cusham

Set ShMP variahle Failed to et SMMP variable Boolean expression

of device ofdevice (unreachable, returns True

Result=1 permission denied, or some
other failure condition)
Result=0

Input Parameters
Agent host

Specifies the IP address or fully qualified domain name for the agent host. For
example: 192.#68.1.254.

You can specify a port along with the host name using either of the following
formats:

m host:port

m host/port
Community

Specifies the community under which the variable is accessed (for example, public).
Object ID (OID)

Specifies the object ID for the variable. Object IDs (OIDs) are documented in the
management information base (MIB) associated with a remote agent.

372 Content Designer Reference

Update SNMP Variable Operator

Variable type

Specifies a data type for the variable. Select one of the list values to configure this
operator parameter.

Variable value
Specifies the value for the variable.
SNMP version

Specifies the version number for the remote SNMP Agent. Select Version 1 or
Version 2 from the list.

Output Parameters
Object_ID
Variable_Type
Variable_Value
SNMP_Version
Community
Agent_Host
Port
Requestid
Errorindex

ErrorStatus

Chapter 12: Network Utilities 373

Chapter 13: Process Control

The Process Control operators run, monitor, and control CA Process Automation
processes. The Process Control operators start system processes from within a process.
The Assign User Task operator prompts users for information during execution of a
process.

All of the Process Control operators run only on Orchestrators, not on agents.

Assign User Task Operator

The Assign User Task operator displays a CA Process Automation interaction request
form to prompt a user and waits for input. The last page of an interaction request form
dialog prompts the user to approve or reject the interaction request form. You can
specify a time-out or can wait indefinitely. The user input values are saved to variables
in the Assign User Task operator dataset.

You can also use the Assign User Task operator to notify a user to respond to a specific
task through an embedded URL.

FPrompt user far input

“ and start flowechart
X ICH
— | [
0 Completed @ Failed @ Timeouk & Custom
Operatar succeeded Operator failed Operator tirmed out Boalean expression
Result=1 Result=-1 Result=-1 returns True

The Assign User Task operator has three standard (noncustomized) exit links:
Completed

Processed when a user does the following things:

m Successfully completes the interaction request form.

m Approves the user prompt on the last page of the interaction request form.

The parameter values are assigned to operator dataset variables. The Result
variable is set to “1” and the Reason variable is set to “COMPLETED.”

Chapter 13: Process Control 375

Assign User Task Operator

Aborted

Processed when the user rejects the user prompt on the last page of the interaction
request form. Any parameter values are assigned to operator dataset variables. The
Result variable is set to “-1” and the Reason variable is set to “REJECTED.”

Timeout

Processed if the user does not complete the interaction request form within an
optionally specified time-out interval. Any parameter values are assigned to
operator dataset variables. The Result variable is set to “-1” and the Reason variable
is set to “TIMEOUT.”

Input Parameters
The Assign User Task operator includes the following input parameters.
Assignees Parameters

The Assignees parameters specify authorized CA Process Automation users or groups to
approve or reject the user prompt. The Assign User Task operator only verifies user
credentials when a user or group is specified.

Users

Specifies the names of authorized CA Process Automation users who can approve or
reject the user prompt. Delimit multiple users with the colon (:) character. For
example: malcolm:samirab:sam:seren.

To open the Users dialog to select users, click P . Select individuals from the
Available Users list to move to the Selected Users list using the arrow buttons (or
the other way around). You can also enter a user name to search for in the text box.

Groups

Specifies the names of authorized CA Process Automation groups who can approve
or reject the user prompt. Delimit multiple groups with the colon (:) character. For
example: domainadmin:pamuser:envconfigadmin (or in the case of an upgrade:
domainadmin:pamuser:envconfigadmin).

To open the Groups dialog to select groups, click P . Select individuals from the
Available Groups list to move to the Selected Groups list using the arrow buttons
(or the other way around). You can also enter a group name to search for in the text
box.

Transfer/Delegates Parameters
The Transfer/Delegates parameters specify those individuals that are authorized by CA

Process Automation users or groups to approve or reject the user prompt. The Assign
User Task operator only verifies user credentials when a user or group is specified.

376 Content Designer Reference

Assign User Task Operator

User Task Parameters

Users

Specifies the names of authorized CA Process Automation users who can approve or
reject the user prompt. Delimit multiple users with the colon (:) character. For
example: malcolm:samirab:sam:seren.

To open the Users dialog to select users, click P . Select individuals from the
Available Users list to move to the Selected Users list using the arrow buttons (or
the other way around). You can also enter a group name to search for in the text
box.

Groups

Specifies the names of authorized CA Process Automation groups who can approve
or reject the user prompt. Delimit multiple groups with the colon (:) character. For
example: domainadmin:pamuser:envconfigadmin (or in the case of an upgrade:
domainadmin:pamuser:envconfigadmin).

To open the Groups dialog to select groups, click P . Select individuals from the
Available Groups list to move to the Selected Groups list using the arrow buttons
(or the other way around). You can also enter a group name to search for in the text
box.

Title

Specifies a title for the user task (optional). This string describes the title of the form
to present to the user.

Description

Provides an optional description for the user task.

Interaction Request Form

Specifies the path in the CA Process Automation library for the interaction request
form object that prompts the user. The interaction request form must be in the
same library as the process. For example: /Backups/Forms/Input.

To locate an interaction request form in the CA Process Automation Library, click

p .

To view the interaction request form in the Form Browser once one has been
selected, click Open.

Chapter 13: Process Control 377

Assign User Task Operator

Form data initialization code

Allows you to add code that dynamically initializes form fields at run time. This
allows you to display information in read-only fields or change default values for
editable fields.

To add CA Process Automation expressions to change field values, open a code
editor window.

In the editor, use the Form keyword to access operator dataset variables in the
following format:

Form.fieldname
Where:

fieldname represents the name of the field in the user interaction form object
definition. For example:

Form.DateTomorrow = System.tomorrow;
For the current operator.

Note: For more information about creating calculated expressions in CA Process
Automation, see the input parameters (see page 413) for the Run JavaScript
operator.

You can also use this field to dynamically initialize form fields at run time. The
initialization is not the same for simple and complex types.

m For simple types, if the interaction request form has a simple element (text
field) Var_0, this element can be initialized by providing:

Form.Var 0="text'

m For a ValueMap, if the interaction request form has a ValueMap that contains
ID value_map, along with a text field with ID text_field, the text_field must be
initialized in the following way:

Form.value map= newValueMap();
Form.valuemap.text field="test";

m [f the interaction request form has a nested ValueMap - specifically, if there is a
ValueMap inside a ValueMap with ID value_map_nested, and a variable inside
the same nested ValueMap with ID text_field_nested, the initialization must
be:

Form.value map.value map nested= newValueMap();
Form.value map.value map nested.text field nested="test";

Show approval page

Lets you approve or reject the task. If selected, the included form is presented with
an approval/rejected page at the end when replying, to decide the final outcome of
the form.

378 Content Designer Reference

Assign User Task Operator

Output Parameters

Example

Title

Description

inputForm

showAcceptanceScreen

Userinfo
InitialAssignedUsers
initialAssignedGroups
assignedUsersFilter
assignedGroupsFilter

Approve

RepliedBy

Task ID

initCode

dueDateTime

This example explains how you can send a notification to a user to reply to a task using
an embedded URL in an email. You can include the Task ID output parameter of the

Assign User Task operator in the embedded URL to access a direct task. You can include
the embedded URL in the Send Email operator to notify the user through email to reply

to a task.

Chapter 13: Process Control 379

Assign User Task Operator

The Assign User Task remains in a waiting state until the user responds. You can run a
notification process in parallel to notify the user with the direct URL to reply to the task
triggered from the Assign User Task operator, as shown here:

Evaluate_Expression_1

o

*I Assign_User_Task_1

L] %]

|
5

-

Send_Email_1

=\
o

X

You can use the Evaluate Expression operator to wait until the Assign User Task

expression evaluates to true while refreshing and evaluating the expression every five
seconds.

The Evaluate Expression parameters can be:

Evaluate Expression

Expression

Process.&ssign User Task 1.TaskID!=0

Refresh rate (secs)

]

380 Content Designer Reference

Assign User Task Operator

Ensure that you select the No Timeout check box in the Assign User Task Timeout
parameters to avoid a timeout for this operator until the expression evaluates to true.

""" Timeout

Mo Timeout
Type
Curation
DurationfTargel Timeout Delay Type
u]

Action

abandon

Next, once the Task ID is calculated and is no longer zero, the expression evaluates to
true and the Send Email operator sends an email with the following embedded URL as
part of the message:

getOrchestratorURL() + "itpam" + "?ROID=" + Process.Assign User Task 1.TaskID +
"&page=replytask"

The And operator synchronizes the two branches of the process into a single one.

When the user receives the email, the task is presented in a URL that the user clicks to
continue to the Login page of CA Process Automation. After authentication, the user is
taken directly to the form attached to the task, and the user can then directly reply to
the specific task.

Chapter 13: Process Control 381

Manage Resources Operator

Manade Resources Operator

The Manage Resources operator executes actions on CA Process Automation resources.
These actions include taking resource units, freeing resource units, and locking and
unlocking resources.

The Manage Resources operator provides a way to validate and wait for particular
resources and to affect the state of such resources. The operator can make processing
of any branch of a process contingent on resource availability. Within an environment,
resource operators can be used to regulate and coordinate the processing of multiple
processes. The operators assure that individual processes have exclusive access to
external resources.

”:u ! Take arfree resource Units

W
| |
) Completed D Failed () Tirneout
Cperator succerded Cperatar failed Cperatar timed out
Result=1 Result=-1 Result=-1

The Manage Resources operator has three possible exit links:
m Successful when actions are executed successfully before any specified timeout.
m Failed when resources do not exist or in the event of some other error condition.

m Timeout when the specified time-out expires before the required resources become
valid.

382 Content Designer Reference

Manage Resources Operator

Resources are typically taken from a resource quota before processing other operators
and then replaced when the operators are completed:

B

Take 1 resource from process quota

—

E\U/; Run application 1

Free 1 resource to process quota

Conditions on a resource must be evaluated periodically for possible changes. Be careful
to avoid specifying a refresh interval that is too short. Use a Check Date-Time operator
(see page 203) to add a delay before executing the Manage Resources operator if the
required resources are not available before:

m A specified interval of time has passed.

Or

m Before a specific date or time.

Input Parameters

Action

Lists the actions to execute. The Add, Delete, and Edit buttons add, remove, or
modify actions in this list. Each action specifies:

A resources object
The name of the resource in the object to use

The action to perform on the resource (take resources units, free units, lock, or
free a resource)

How many units of the resource to take or free

Chapter 13: Process Control 383

Manage Resources Operator

Action Properties

This dialog defines an action to perform on a resource. Click either the Add or
the Edit button next to the Action list box. This dialog opens the resources
properties for a Resources operator.

ResourcePath
Specifies a resources object. Enter the full path to the resource in the CA

Process Automation library or click £ to locate the object. Double
quotation marks must enclose a literal string. You can use a dataset
variable or an expression to specify the resources object. To open the
object in the resources editor, click the Open button.

ResourceName

Specifies the resource in the resources object on which to perform the
action. Type the name exactly as it is defined in the resources object.
Double quotation marks must enclose a literal string. You can use a dataset
variable or an expression to specify the resource.

Action
Select the action to perform on the resource:
TakeUnits
Takes the number of resource units specified in the Amount field.
FreeUnits
Returns the number of resource units specified in the Amount field.
LockResource

Locks the resource so other Resources operators cannot take resource
units or cannot lock the resource. This action effectively takes all unused
resource units for a resource. Actions can still free resource units that were
taken before a resource was locked. However, the freed units are only
available when the resource is unlocked.

UnlockResource
Unlocks a locked resource.
Amount

For the TakeUnits or FreeUnits actions, this value specifies the number of
resource units to take or free. Amount is disabled for the rest of the two
options, such as UnlockResource and LockResource.

384 Content Designer Reference

Manage Resources Operator

All resources must be available

If selected, all of the resources that are required by the actions that are listed under
Actions must become available within the constraints that the Timeout options
impose. The operator succeeds only if all of the resources become available within
the time-out constraints of the Timeout setting.

If unchecked, the operator completes successfully when the resources that are
required by at least one of the actions that are listed under Actions becomes
available within the constraints of the Timeout option. If resources for any of the
listed actions are available, the Process Control operator category processes the
Successful exit link for this operator.

Execute actions

Output Parameters

Determines whether the actions listed under Actions are executed. To only verify
whether resources are available without executing actions, clear this check box. The
operator then executes the Successful exit link. This link only executes if resources
are available within the constraints of the "Timeout" and "All resources must be
available" settings without executing any action.

This setting can be used with a resource that is set to enable or disable a whole set
of processes. Those processes verify that there is no lock on the resource before
starting their tasks. This lock check is done by attempting to take a single resource
unit from the resource. Depending on the outcome of the test, some other
mechanism can lock or unlock the resource, such as:

m Schedule tasks (where enabling or disabling of the processes is based on time
constraints)

m Manually started tasks (using a start request form)

m A process that an external monitoring application starts (using the CA Process
Automation Web services daemon)

m A process that monitors an internal or external condition in a loop.

ActionProperties

ResourcePath
ResourceName
Action

Amount

All resources must be available

Execute actions

TimeOut

Chapter 13: Process Control 385

Event Operators

Event Operators

CA Process Automation provides event management through two operators:
® Monitor Event
m Send Event

Other processes can post events. In addition, the Web services that are exposed by CA
Process Automation can also post events.

Note: These two operators run only on Orchestrators, not on agents.

Monitor Event Operator

BT

The Monitor Event operator is used in a process to wait for certain events before
continuing down a path of execution. For example, a process can wait for an event that
signals that a ticket has been approved, instead of periodically querying the ticket and
checking the approval status.

The Monitor Event operator consumes the available/matching events as its default
behavior.

Note: Monitor Event cannot be scheduled (that is, it cannot be used in schedules).
However, a user can design a process with Monitor Event and then schedule the process
from the schedule editor.

Input Parameters

Event name

Specifies the name of the event. This expression is matched against Name of the
Event. This name can be a regular expression, a partial match that is based on user
choice, or both.

Event type

Specifies the type of event (optional). This expression is matched against Type of
the Event. This type can be a regular expression, a partial match that is based on
user choice, or both.

386 Content Designer Reference

Event Operators

Output Parameters

Event source

Specifies the source of the event. This expression is matched against Source of the
Event. This source can be a regular expression, a partial match that is based on user
choice, or both.

Event destination

Specifies the name of the Event destination (optional). This expression is matched
against Destination of the event. This destination can be a regular expression, a
partial match that is based on user choice, or both.

Expression

Specifies a CA Process Automation Boolean expression for additional event
parameters (optional). This expression is matched against Event Parameters field of
Event. Event Parameters can be accessed using a "payload" keyword (for example,
payload.ticketld=="1443132").

Note: This field includes dataset assistance when using of any of the keywords.

Retrieve all matching events

When selected, the Monitor Event operator receives all events, instead of the first
one that matches. Once these events are delivered, they are never sent to you
again. Any event that is delivered to you and is also marked as ‘deliver to single
subscriber’ is invalidated and is not delivered to anybody else.

Enable pattern matching

Enables pattern matching against the respective event attributes like Name, Type,
Source and Destination.

Allow partial match

Allows a partial match against the respective event attributes like Name, Type,
Source and Destination.

eventid
eventName
eventType
eventSource
eventDestination
toSingleSubsriber
payload
creationTime
expirationTime

user

Chapter 13: Process Control 387

Event Operators

Send Event Operator

Input Parameters

The Send Event operator is used to publish an event to the CA Process Automation
Orchestrator. The event manager running on the CA Process Automation Orchestrator
(which holds all the subscribers) receives an event. The event is checked against any
interested subscribers by matching the event parameters. All subscribers who are
waiting for this type of event are then notified. As a result, the Monitor Event operator
is completed and the process continues down the path of execution.

Send Event cannot be scheduled (that is, it cannot be used in schedules). However, a
user can design a process with Send Event and then schedule the process from the
schedule designer.

Note: The same event never gets delivered twice to the same operator, in the same
process instance.

Event name
Specifies the name of the event (mandatory).
Event type
Specifies the type of event (optional).
Event source
Specifies the Event Source (optional).
Event destination
Specifies the Event Destination (optional).

Subscribers of the event match a regular expression against these fields to decide if
they are interested in this event.

Deliver to single subscriber

When set to true, indicates that the events are not delivered to more than one
waiting process. The event is "consumed" by the first event handler that is
"consuming" events.

388 Content Designer Reference

Event Operators

Event parameters

Specifies additional event parameters that can be a CA Process Automation data
type (optional).

The Expression parameter in the Monitor Event operator is evaluated against Event
Parameters. These parameters can be accessed using a payload Keyword (for
example, payload.ticketld=="1443132").

Expire after (sec)

Specifies the number of seconds that an event can take to match with any
subscribers.

Output Parameters
expirationDuration
eventld
eventName
eventType
eventSource
eventDestination
toSingleSubsriber
payload
creationTime
expirationTime

user

Usade Patterns for Events

The following two usage patterns are available for events:
Queue pattern

Every event is delivered to a single consumer. You must mark the event accordingly
on the sending side (deliver to single subscriber). Events of this type are cleared as
soon as they are delivered or expire.

Note: This pattern affects triggers; see the Content Administrator Guide for more
information.

Chapter 13: Process Control 389

Start Process Operator

Notification Mechanism

The event is intended to signal a state to an arbitrary number of interested parties.
For instance, a notification signifies that something has changed, a system is
shutting down, and so on. Such an event is delivered once to all subscribers, until
the event times out.

Start Process Operator

)

Use the Start Process operator to start a process from within another process. The Start
Process operator creates an instance of a process on a touchpoint and queues a start
request with the appropriate engine. You can reference the child process dataset by the
operator name in the process dataset for the parent process. Use the following syntax:

Process.OperatorName.FieldName
OperatorName represents the name of the Start Process operator in the parent process.

FieldName is the dataset variable that you want to access in the child process.

Input Parameters
Process name

Specifies the path for the process in the CA Process Automation Library. The
process must be in the CA Process Automation Library of the touchpoint on which
the operator is configured to be executed.

For example: "/Doc/NT_Charts/Alert"
Je)

To select a process from the library, click
Open

Opens the process that is specified by process name for editing. This button is
available only after you enter the path to a process in the adjacent box.

390 Content Designer Reference

Start Process Operator

Process Dataset initialization code

Specifies statements that initialize dataset variables in the process that is being
started. For example:

m Process.WorkDir = "C:\temp";
m Process.User= Caller.User;
m Process.DatabaseServer=Caller.DatabaseServer;

In this box, the keyword Process refers to the dataset in the new instance of the
process that is specified by Process name. The keyword Caller refers to the dataset
of the process containing the Start Process operator.

The Process or Caller keyword is mandatory for referencing or creating variables in
the parent or child process dataset. Without either keyword, the dataset
initialization script always creates or attempts to reference a calculation variable.

Mode
Select from one of the following options:
Attached
Runs the child process as a separate process.

The Start Process operator does not complete until after the new instance
finishes processing. The process executing the operator is the parent process.

Detached
Runs a process in detached mode.

An instance of a process started in detached mode has no parent relationship
to the process that started it and is the root process in any call sequence
originating from that process.

Inline

Runs a child process as a part of parent process itself (that is, it is expanded
into the parent process).

Inherit Lane Change Handler from parent process

When selected, the child process inherits the lane change handler from the
parent process (if not already defined in the child process).

Start date

Specifies the date on which to start a detached instance of the process. The default
value is the date on which the operator is executed (System.Date). This option is
only available when Detached is selected as the process mode.

Chapter 13: Process Control 391

Evaluate Expression Operator

Start time

Specifies the time at which to start a detached instance of the process. The default
value is the time at which the operator is executed (System.Time). This option is
only available when Detached is selected as the process mode. Combined with the
Start date option, Start time allows a process to schedule the execution of another
process.

Output Parameters
32WorkflowName
Local (Process Dataset Initialization Code)
processMode (Attached, Detached, or Inline)

inheritLaneChangeFromParentProcess

Evaluate Expression Operator

The Evaluate Expression operator delays processing on the branch of a process until a
condition that is represented by a Boolean expression evaluates to true. This operator
provides a mechanism to pause a process while waiting for a condition to change. The
operator is often used to synchronize interdependent processes or to control the use of
shared resources that are represented by variables.

= = ‘ait for Boolean expression to be True

-

©

w
| |
) Completed @ Failed (& Tirmeout
Qperator succeeded Qperator failed Cperator timed out
Result=1 Result=-1 Fesult=-1

The condition is evaluated periodically according to a specified rate. The rate must be
long enough to increase CPU usage within acceptable limits. When there is a condition
for some minimum known amount of time, the load can be further reduced by putting a
Delay operator (see page 398) before the Evaluate Expression operator. An example of
this situation occurs when another process uses a resource and the process does not
release the resource before a certain time of the day.

392 Content Designer Reference

Evaluate Expression Operator

Input Parameters
Expression

A Boolean expression that specifies a True condition when some condition is
satisfied. Here are two examples:

(Datasets["/exploit/variables/set 1"].varl = 1)

System.Time >= Process.FinishTime

Note: This field includes dataset assistance when using of any of the keywords.
Refresh rate (secs)

The interval in seconds at which to evaluate the condition for a True condition.

Output Parameters
Expression
RefreshRate
TimeOutSec

TimeOut

Chapter 13: Process Control 393

Chapter 14: Utilities

The Utilities operators can be used for utility purposes in processes.

Apply Xpath Operator

The Apply Xpath operator parses and retrieves data from an XML document. This
operator supports the following functions:

m Parses an XML document and retrieves specified data from the document.
m Stores the results into CA Process Automation datasets that subsequent operators
in a process can access.
Loads ¥ML data from a
<[> specified file into icon dataset
(variahles
L
2 Succeeded @ Failed

Operatar successiul

Cperatar failed
Fesult=1

Fesult=10

Chapter 14: Utilities 395

Apply Xpath Operator

Input Parameters

Input Source

Select the source for the SOAP service input request: Expression or Input File Name.

Expression

Specify the expression to load XML content. For example:

Process.xmlContent

or

Datasets["xmlData"].xmlContent

XML input file

Specifies the XML document from which to extract data. Enter an expression that
returns the path of the XML file for a valid XML document.

Strip Namespace in XML Structure

CA Process Automation provides an option to strip XML namespaces from a
response so that a user can provide simpler XPath expressions to look for a value of
specific element. This option is available in all the SOAP operators.

The following javascript functions are provided:
m applyXPath(xmldata,xpath_query,namespaceAware)
m applyXPathToUrl(urls,xpath_query,namespaceAware)

Note: The default value of namespaceAware is true. The value of namespaceAware
is false if you want stripping of Namespace in XML Structure (and true otherwise).

Process.x="<getMatchingEventsResponse
xmlns="http://www.ca.com/itpam'><events> <event
><eventName>test</eventName></event></events></getMatchingEventsResponse>";
Process.s=applyXPath(Process.x,"//eventName", true);
Process.aal=applyXPathToUrl("file:C:/test.xml","//message",true);
Process.aa2=applyXPathToUrl("file:C:/test.xml","//message", false);
Process.sl=applyXPath(Process.x,"//eventName", false);
Process.s2=applyXPath(Process.x,"//eventName") ;

Additional extracted data

Specifies XPath expressions to extract data from the XML document. For each
expression specified here, specify a dataset variable to which to store the extracted
data and a data type.

Use the Add, Edit, and Delete buttons to add, edit, or delete expressions from the
list box. The Add and Edit buttons open the Additional Extracted Data dialog.

396 Content Designer Reference

Apply Xpath Operator

Specify values for the following options:
Xpath expression

Specifies the XPath expression selected under Additional extracted data.
Dataset variable

Specifies the name of an operator dataset variable in which to save values
extracted based on the selected XPath expression.

Type

Specifies the type of element being extracted from the response. Select one of
the following currently supported types:

m Integer

Integer Array

m String

m String Array

m XML Fragment

m XML Fragment Array

Output Parameters
inputSource
ExtractedVarinfo (ValueMap)
xPathQuery
dataSetVa
type
expressionVal
xmlinputFileName

isStripXMLNamespaces

Chapter 14: Utilities 397

Delay Operator

Delay Operator

The Delay operator delays processing subsequent branches of a process until a specified
interval of days, hours, minutes and seconds has passed. The delay can be relative to
either when processing starts for the Delay operator or when processing starts for the

process.
(:) Fause in execution of the flow
o6
T T
I I
£ Failed 0 After
Operator aborted Delay completed normally
Fesult=0 Result=1
Input Parameters
Days
Specifies the number of days to delay processing subsequent branches of the
process.
Hours

Specifies any additional hours to delay processing subsequent branches of the
process.

To specify the portion of a day in hours, enter 0 to 23.
Note: The number of hours is an expression so there are no validations.

Minutes

Specifies any additional minutes to delay processing subsequent branches of the
process.

To specify the portion of an hour in minutes, enter 0 to 59.

Note: The number of minutes is an expression so there are no validations.

398 Content Designer Reference

Delay Operator

Seconds

Specifies any additional seconds to delay processing subsequent branches of the
process.

To specify the portion of a minute in seconds, enter 0 to 59.

Note: The number of seconds is an expression so there are no validations.

Relative to Process start time
Makes the delay relative to starting the process.

When this check box is cleared, the delay is after the process starts processing the
operator. For example, this option can be used to trigger an alarm if the process
does not end (reach a Stop operator) within a specified period of time.

Output Parameters
flowchart_start_time
Days
Hours
Minutes
Seconds
Relative_to_Flowchart
TargetTime

targetDate

Chapter 14: Utilities 399

Invoke Java Operator

Invoke Java Operator

7,

A4

The Invoke Java operator leverages the functionality contained in external JAR files (or
.class files) in CA Process Automation. You identify the JAR files or .class files by
specifying their location in the operator input parameters.

Once the JAR file is located, you can write Java code that references classes in the JAR
file. Use the input parameters of the Invoke Java operator to define this code.

You can specify to save a Java object in the operator dataset after execution of the code
by the operator. The Java object is saved in CA Process Automation under data type:
JavaObject. You can make this JavaObject data type available to subsequent operators
of the Utilities category.

For example, say that you want to use the Invoke Java operator in a process. You include
it in a process in the process editor and name it Java Operator 1. Once the operator
runs, the Java object is saved to the operator dataset and displays as a JavaObject data
type. Now you have another Invoke Java operator later in your process. You can use that
same JavaObject from Java Operator 1 in your new Java Operator 2. You pass the saved
object from Java Operator 1 to Java Operator 2 as a JavaObject data type.

Input Parameters

Input parameters for the Invoke Java Operator are as follows.

Code
Inline External Jars?

Select to provide the list of paths to the external JARS inline in the Inline External
Jars field.

Do not select to provide the list of paths to the external JARS as a dataset variable
in the External Jars as Expression field. This check box is selected by default.

Inline External Jars
Specifies the list of paths to the external jars required by the code of the operator.

The Invoke Java operator loads the JARS listed in this field. Any JAR entered in this
list is available to the Java code executed by the operator. The classes defined in the
operator-level JARS override the same classes specified in the JARS at the operator
category level.

400 Content Designer Reference

Invoke Java Operator

For each path, you can:

m Enter the full path to a jar file that resides on the host where the CA Process
Automation Orchestrator/agent (mapped to the touchpoint) is running. The full
path is specified as follows:

— Starts with: /
— Starts with: \\

- Of the form: A.:.* (a regular expression that starts with one character
followed by a colon - : - and then the rest of the string.)

m Enter the path to a JAR file that is downloadable over HTTP. Verify that the
HTTP path does not require authentication and is not through an HTTP proxy.
The path to the JAR must start with http:// or https://.

m Any other path is assumed to be a relative path to a JAR file that was uploaded
in the CA Process Automation user resources. CA Process Automation appends
the JAR file path to the path of the "CA Process Automation User Resources"
directory of the Orchestrator/agent (that is mapped to the touchpoint) running
the operator.

Do not start the JAR file path with:

-/

-\

Otherwise, CA Process Automation assumes that the JAR file path is a full path,

as previously mentioned.

Resources within CA Process Automation, including user resources, are mirrored within
the mirroring interval of the orchestrator/agent. Verify that the JARS uploaded in the
user resources are already mirrored before using them in the Invoke Java operator.

Chapter 14: Utilities 401

Invoke Java Operator

Class Files
In addition to external JARS, you could load .class files as follows:

m For .class files in an unnamed package, enter a path that ends with the
directory that contains the .class files.

For example, if MyAccount.java does not belong to a package, and
MyAccount.class is located at:

C:\java\tests\MyAccount.class
...then set the operator to use the following path:
C:\\java\\tests

m For .class files in a named package, enter a path that ends with the
directory that contains the "root" package. This package is also known as
the first package in the full package name.

For example, if MyAccount.java belongs to package com.ca.tech, and
MyAccount .class is located at:
C:\java\othertests\com\ca\tech\MyAccount.class

...then set the operator to use the following path:
C:\\java\\othertests

If you specify the path to a directory (to load .class files), enter it as a full path.
You can also enter it as a relative path to CA Process Automation User
Resources. Do not enter the path as an HTTP path.

Specify the path to a directory to load .class files, not JAR files. Unlike .class
files, each JAR file requires a separate path that ends with the JAR file (not the
directory where it resides).

External Jars as Expression

The indexed string dataset variable that contains the list of paths to the external
JARS required by the code of the operator. Read the description of the paths under
the Inline External Jars field.

Inline Code?
Select to provide the Java code in the Inline Code field.

Do not select to provide the Java code as a dataset variable in the Code as
Expression field. This check box is selected by default.

Inline Code
Specifies the Java code text. You can browse to locate any file that contains code.

Note: CA Process Automation parses the code and checks for its structural
validation when you click OK. An error message displays if an error is found in the
structure of the code. The Strict Java Mode does not affect the structural validation.

See Java Code in the Invoke Java Operator (see page 403).

402 Content Designer Reference

Invoke Java Operator

Code as Expression

Specifies the dataset variable that contains the java code text. Unlike the Inline
Code field, no structural validation is performed.

See Java Code in the Invoke Java Operator (see page 403).

Use Strict Java Mode?

Select to enforce the following in the Java code of the operator at runtime:
m Typed variable declarations
m Method arguments

m Return types

CA Process Automation executes the Java code of the operator in a BeanShell
interpreter, which supports BeanShell scripting syntax and Java syntax. When you
select this field, the bean shell interpreter runs under the strict Java mode, which:

1. Enforces typed variable declarations, method arguments, and return types.

2. Modifies the scoping of variables to look for the variable declaration first in the
parent namespace. For example, a Java method inside a Java class.

3. Most BeanShell commands do not work in strict Java mode.

This check box is selected by default.

Java Code in the Run Java Code Operator

When using the Invoke Java operator, use the following guidelines for implementing
Java code:

CA Process Automation executes the Java code in a BeanShell interpreter. Use this
operator with Java code syntax or BeanShell scripting syntax without use of
BeanShell commands, in the following cases:

- BeanShell commands do not work under Strict Java Mode (set at the operator
level).

- BeanShell commands that modify the classpath are not recommended. They
can affect the way CA Process Automation saves Java Object instances from the
running Java code into the dataset of the operator.

— BeanShell commands that modify the classpath can affect the way CA Process
Automation loads Java Object instances from a CA Process Automation dataset
into the code.

For more information about BeanShell syntax and commands, see the following
site: http://www.beanshell.org/

Chapter 14: Utilities 403

Invoke Java Operator

® You can use the standard Java variable modifiers on typed variables:

- private / protected / public

- transient

- volatile

- static

- final

The BeanShell interpreter only implements "final" (and ignores the others).

® You can use the standard Java modifiers on methods:

- private / protected / public

- final

- native

- abstract

- static

- synchronized

Only "synchronized’ is currently implemented. The BeanShell interpreter
ignores the others.

m Complete all class definitions in external JARS and use them in the Java code of the
operator.

m The java rt.jar, which contains all the core java libraries, is automatically placed in
the classpath of the operator at runtime.

m The JAR files used by CA Process Automation are in the classpath of the operator at
runtime. Your code can work, even without listing all the needed JARS in the
operator/category, if you happen to use classes already used by CA Process
Automation.

m Common Java core packages and some extensions are automatically imported into
your Java code at runtime. You do not need to import them in your code. Packages
are as follows:

- javax.swing.event
- javax.swing

- java.awt.event

- java.awt

- java.net

404 Content Designer Reference

Invoke Java Operator

java.util
java.io
java.lang
bsh.EvalError

bsh.Interpreter

The Java code can consist of normal Java statements and expressions. You can also
define your own methods and use them inside the code. An example is as follows:

// Import the classes that you want to use
import ca.tech.pam.MyAccount;

/!
/!
/!
/!
/!
/!
/!

Note: no need to import StringBuffer and Date because they are part of the
automatically imported packages

import java.lang.StringBuffer;

import java.util.Date;

Note: the jar that contains the ca.tech.pam.MyAccount class

must be in the list of External Jars of the operator or the module;

but java lang and java util are in rt.jar, which is automatically put in the

classpath

MyAccount acct = new MyAccount(1000.00);

// Use the public methods of the MyAccount object
acct.addFunds(34.44);

acct.subFunds(10);

// Define your own method

String getStatement(MyAccount acc) {

StringBuffer strBuff = new StringBuffer("Account Balance: " +

acc.getBalance());

}

Date dt = new Date(System.currentTimeMillis());
strBuff.append(" on date: " + dt);
return strBuff.toString();

// Use the method you defined

// also print the statement using the 'logger' object that you
// setup in the 'Logger' page of the operator
logger.info(getStatement(acct));

Note: To execute this statement, set the logger to true and provide the log file
name. Otherwise an error occurs during execution.

At the end of execution, the log message contains:

Account Balance: 124.44. on date: Wed Jul 13 12:53:37 EDT 2011

(The message includes the correct date and time of execution.)

Chapter 14: Utilities 405

Invoke Java Operator

Input/Output

Parameters

The CA Process Automation parameters to pass to the Java code. Only simple CA
Process Automation parameter types pass to the Java code as follows:

m PAM Boolean is passed as a Boolean object.

m PAM Date is passed as a Date object.

m PAM Double is passed as a Double object

m PAM Integer is passed as an Integer object.

m PAM Long is passed as a Long object.

m PAM String is passed as a String object.

m PAM Object Reference is passed as a String object

m PAM JavaObject is deserialized and loaded into a Java object instance of its
original class type, and then passed to the Java code.

Note: The operator (or operator category) must contain the path to the JAR file that
contains the class definition of this object. Otherwise, the operator fails with the
reason:

Class Not Found Error when deserializing object. Make sure the class jar is in the
operator or module list of jars.

Complex CA Process Automation parameters types (indexed types, ValueMaps, and
so on) cannot pass to the Java code.

The Java code can access these objects through the args array of objects:
m args[0] corresponds to the first parameter in the list.

m args[1] corresponds to the second parameter in the list, and so on.

Output Variable Names

The names of the variables that are saved in the dataset of the operator at the end
of execution of the code. These variables must be defined in the scope of the Java
code. The variables are then visible at the end of execution and can be saved in the
dataset of the operator.

The output variables are saved as follows:

m Boolean object is saved as a PAM Boolean

m Date object is saved as a PAM Date

m Integer object is saved as a PAM Integer

m Number object is saved as PAM Long or Double object
m String object is saved as PAM string

m Character object is saved as PAM string

406 Content Designer Reference

Invoke Java Operator

Lodger

m Anarray of any of these listed objects is saved as an indexed CA Process
Automation type. The type of the first object in the array of objects defines the
CA Process Automation type.

m Undefined is saved as a CA Process Automation string with 'undefined’ as its
value.

m Any other Java object not listed here is serialized and saved as a CA Process
Automation JavaObject.

Note: The Java object must be serializable (implements java.io.Serializable) to
save it as a CA Process Automation JavaObject. Otherwise, the operator fails
with the reason:

Error when serializing object of class: x. Object is not serializable.

Where x is the class name of the object.

Use Logger?

Set this field to true to use an instance of an org.apache.log4j.Logger object (named
logger) to log data in the log file.

True
Prompts the operator to use true. The operator uses an instance of ‘logger’.
False

Prompts the operator to use false. The operator does not use an instance of
‘logger’.

Blank

Prompts the operator to use the value set in the Use Default Logger field of the
operator category. If this value is blank at the operator category level, Use
logger? is set to false by default.

Any other value prompts the operator to use false, and the operator does not use
an instance of ‘logger’.

If an instance of ‘logger’ is used, then it is available in the context of the Java code
of the operator. 'logger' is used as follows:

m logger.debug("my log message")
m logger.info("my log message")

m logger.warn("my log message")
m logger.error("my log message")
m logger.fatal("my log message")

If an instance of ‘logger’ is not used, the 'logger' object does not exist in the context
of the Java code of the operator.

Chapter 14: Utilities 407

Invoke Java Operator

Log File Path

The path to the log file used by the logger. If this field is empty, the operator
inherits the value set in the Default Log File Path field of the operator category.

Log Level

Specify the log level of the logger.

0
Prompts the operator to use DEBUG, which causes the logger to write Debug,
Info, Warn, Error, and Fatal log messages.

1
Prompts the operator to use INFO, which causes the logger to write Info, Warn,
Error, and Fatal log messages.

2
Prompts the operator to use WARN, which causes the logger to write Warn,
Error, and Fatal log messages.

3
Prompts the operator to use ERROR, which causes the logger to write Error,
and Fatal log messages.

4
Prompts the operator to use FATAL, which causes the logger to write Fatal log
messages.

Blank

Prompts the operator to inherit the value set in the Default Log Level of the
operator category. If this value is blank at the operator category level, Log Level
is set to Debug by default.

Any other integer value
Prompts the operator to use DEBUG.

Note: You can overwrite the log level at run time in the Java code of the operator.
This example sets the log level to Fatal:

import org.apache.log4j.Level;
logger.setlLevel((Level) Level.FATAL);

408 Content Designer Reference

Invoke Java Operator

Append to Log File?

Set this field to true to append any data from this operator to the log file (if it
exists).

True
Prompts the operator to use true. The operator appends to the log file.
False

Prompts the operator to use false. The operator overwrites any pre-existing
content of the log file with the data from the operator.

Blank

Prompts the operator to use the value set in the Append to Default Log File?
field of the operator category. The operator can append to the log file
depending on what the value is set at. If this value is blank at the operator
category level also, Append to Log File? is set to false by default.

Any other value prompts the operator to use false, and the operator does not
append to the log file.

Log Data Without Logging Info?

Set to true to let the logger write the data with no additional logging information.
Only the log message is written.

Set to false to write additional logging information in the following format:

Day Month Year Hours:Minutes:Secs Log level [UUID of the Run_Java Code operator
that logged this message]: log message

True

Prompts the operator to use true. The logger writes data with no additional
logging information.

False

Prompts the operator to use false. The logger writes data with additional
logging information.

Blank

Prompts the operator to use the value set in the Default Log Data Without
Logging Info? field of the operator category. If this value is blank at the
operator category level, Log Data Without Logging Info? is set to false by
default.

Any other value prompts the operator to use false. The logger writes data with
additional logging information.

Chapter 14: Utilities 409

Invoke Java Operator

Output Parameters
ErrorLineNumber

If an error occurs due to the executing Java code, this variable contains the number
of the line of code that caused an error (if available). This field is empty if no error
occurs due to the executing Java code.

ErrorMessage

If an error occurs due to the executing Java code, this variable contains the error
message. This field is empty if no error occurs due to the executing Java code.

ErrorRoot

If an error occurs due to the executing Java code, this variable contains the line of
code that caused the error (if available). This field is empty if no error occurs due to
the executing Java code.

ErrorException

If the executing Java code throws an exception, this variable contains the exception
that was thrown. This field is empty if no error occurs due to the executing Java
code.

Result
1

The operator finishes successfully.
-1

The operator fails.

410 Content Designer Reference

Invoke Java Operator

Reason
Completed
The operator finishes successfully.
Error Message

The operator fails. If an error occurs due to the executing Java code, this
variable contains the ErrorMessage, the ErrorLineNumber, the ErrorRoot, and
the ErrorException (when applicable).

externalOplarsType
externalOplars
externalOpJarsExpression
inlineScriptType
inLineScript
scriptExpression
useStrictlava
parameters
outputVariables
uselogger

logFile

logLevel
appendTologFile

useSimpleLoggerLayout

Operator Ports
Success
The operator finishes successfully.
Failure
The operator fails due to any of the following reasons:

m You use a BeanShell command in the operator code when the operator is set to
run in Strict Java Mode. A BeanShell command may not be supported in strict
Java mode.

m You use untyped variable declarations in the operator code when the operator
is set to run in Strict Java Mode.

Chapter 14: Utilities 411

Invoke Java Operator

An error occurs due to the executing code. For example: calling the wrong
method on a Java object.

The operator code threw an exception while it was executing.

You try to use the logger in the code of the operator while the operator is set
not to use the logger. The logger is not defined in the operator code context,
and the operator cannot resolve any of methods of the logger.

The logger is configured to use a read-only file.
The logger is configured to use a log file that is actually a directory.
You enter a bad path in the external JAR files of the operator category.

The Java object that CA Process Automation attempts to save in the operator at
the end of execution is not serializable. The operator fails with an error
message.

You pass a dataset variable of type: JavaObject to the operator. However, you
do not specify the JAR file where the class definition of the Java object resides.
An error indicates that the operator failed to read the class descriptor when
deserializing the object.

You pass an empty dataset variable of type: JavaObject (value: ‘[JavaObject]’)
to the operator. The operator fails with an error indicating that it failed when
deserializing object Null.

The list of JARS for the operator contains a JAR file that does not exist.

The list of JARS for the operator category contains a jar file that does not exist.

Custom Ports

Available if set by the user during the process design.

412 Content Designer Reference

Run JavaScript Operator

Run JavaScript Operator

The Run JavaScript operator executes calculations and performs dataset variable
assignments. The operator performs the following actions:

m Interprets JavaScript statements in its source code.

m Allows computations to set values for variables. These values can then be used for
parameter settings in subsequent operators in the same process or in other

processes.

— Frogramming computations using
- the G20 interpreted language
W/
0o
I I

' Completed

Cperator successul
Result=2

Input Parameters

SourceCode

& Failed & Custom

Cperatar failed
Result=0

Boolean expression
returns True

Click the SourceCode field to open the Source Code editor.

Use this dialog to specify a series of JavaScript statements. Each statement ends
with a semicolon (;). For example, the following statements set the day, month,
year variables in a named dataset, and date:

m Datasets["/exploit/variables/date"].day = "31";

m Datasets["/exploit/variables/date"].month = "July";

m Datasets["/exploit/variables/date"].year = "2005";

Output Parameters

SourceCode

Chapter 14: Utilities 413

Chapter 15: Web Services

The Web Services operators support calls to remote services using SOAP or XML. These
operators also retrieve responses and save information from the response for use by
other operators in a process.

The Web Services operators also provide data management facilities over a network
using standard and widely available protocols like HTTP. Support for RESTful services is
also provided through the HTTP operators.

HTTP Operators: Common Input Parameters

The input parameters that apply to all HTTP operators fall into separate categories as
follows:

m HTTP URL Information (see page 416)

m HTTP Proxy Information (see page 419)

m HTTP Headers Information (see page 422)

m HTTP Cookies Information (see page 423)

m HTTP Response Content Information (see page 423)

m HTTP Configuration Information (see page 425)

The properties of HTTP operators require the following input parameters:
m HTTP Delete - Common only
m HTTP Get - Common and Get Information (see page 437)

m HTTP Head - Common and Head Information (see page 441)

m HTTP Options - Common only
m HTTP Post - Common and Post information (see page 449)

m HTTP Post Form - Common and Post Form information (see page 455)

m HTTP Put - Common and Put information (see page 462)

m HTTP Trace - Common only

Note: Unless otherwise specified, field entries override corresponding field values that
are inherited from the operator category level configuration.

Chapter 15: Web Services 415

HTTP Operators: Common Input Parameters

HTTP URL Information

HTTP URL Information includes input parameters that apply to the following operators:
m HTTP Delete
m HTTP Get
m HTTP Head
m HTTP Options
m HTTP Post
m HTTP Post to Form
m HTTP Put
m HTTP Trace
URL
Specifies the URL of the HTTP request. The URL starts with http:// or https://.
Valid SSL Certificate?

Specifies whether a valid SSL certificate is found. This field is relevant when
querying an HTTPS URL.

Values

m True - Validates the SSL certificate and fail the operator if the certificate is
invalid.

m False - Accepts the SSL certificate even if it is invalid and continue to make the
HTTP call.

m Empty - Uses the value set for "Default Validate SSL Certificate?" at the
operator category level.

416 Content Designer Reference

HTTP Operators: Common Input Parameters

HTTP Authentication?

Specifies whether the HTTP server, at the specified URL, requires authentication.
The HTTP operators support either Basic HTTP authentication or NTLM
authentication. If either type of authentication is needed, set this value to true.

Values
One of the following:
m True - Specifies that the HTTP server requires authentication.
m False - Specifies that the HTTP server does not require authentication.
m Blank - Specifies to use the value set at the operator category level.
m Any other value - Same as false.
Default
Blank - Specifies to use the value set at the operator category level.
Notes

m If HTTP authentication is set to false in the operator, then NTLM
Authentication, User name, Password, and Domain name are all disabled.

m If HTTP authentication is not set to false in the operator (true, dataset variable
or any other value), then the following are enabled:

- NTLM authentication
- User name
- Password
- Domain name
NTLM Authentication?

Specifies whether the HTTP server at the specified URL requires NTLM
authentication. CA Process Automation uses basic HTTP authentication if NTLM
authentication is not selected.

Values
True - Specifies that the HTTP server requires NTLM authentication.

False - Specifies that the HTTP server does not require NTLM authentication.
The server uses basic HTTP authentication

Blank - Specifies to use the value set at the operator category level.
Any other value - Same as false.
User name
Specifies the username to use when authenticating against the specified URL.
Password

Specifies the password for the specified User name.

Chapter 15: Web Services 417

HTTP Operators: Common Input

Parameters

Domain name

Specifies the name of the domain to use when authenticating against the specified
URL.

Use the following guidelines:
m Enter the Domain name (required) if the operator uses NTLM authentication.

m Leave blank if the Domain name is not required for authentication. A Domain
name may not be required if the operator uses basic HTTP authentication.

Usage Notes for Domain name, User name, and NTLM authentication

A blank Domain name field does not automatically prompt the operator to
inherit the Domain name value from the operator category. The Domain name
field is tied to the User name field as follows:

m If the Domain name for the operator is specified, the operator uses it.

m If the Domain name of the operator is blank and the user name of the
operator is specified (not blank), the operator uses a blank Domain name.

The operator uses the default Domain name from the operator category if the
following are blank (not specified):

m The Domain name of the operator.
m The User name for the operator.
A specified Domain name is used as follows:

m If the operator uses NTLM authentication, the Domain name is used as
provided without being appended to the user name.

m If the operator uses Basic HTTP authentication, the Domain name is
appended to the user name as: User name = user name@domain name

418 Content Designer Reference

HTTP Operators: Common Input Parameters

HTTP Proxy Information

HTTP Proxy Information includes input parameters that apply to the following

operators:

m HTTP Delete

m HTTP Get

m HTTP Head

m HTTP Options

m HTTP Post

m HTTP Post to Form
m HTTP Put

m HTTP Trace

Note: Unless otherwise specified, field entries override corresponding field values
inherited from the operator category level configuration.

Use Proxy?

Specifies whether the HTTP calls go through a proxy server. This field overrides the
modaule field. If left blank, the operator uses the default value set at the module
level.

Values
One of the following:
m True - Indicates to route HTTP calls through a proxy server.
m False - Indicates that HTTP calls do not go through a proxy server.

m Blank - Indicates to use the value set at the module level.

Any other value - Same as False.
Notes:

m Setting this field to False disables the remaining fields in HTTP Proxy
Information.

m Not setting this field to False in the operator (true, dataset variable or any
other value) enables the remaining fields in HTTP Proxy Information.

Proxy Host

Specifies either the URL (with http or https) of the proxy server or the FQDN of the
proxy server.

Note: If the FQDN is entered, the HTTP scheme is used to contact the Proxy server,
that is, http://<FQDN of proxy>:<port>.

Chapter 15: Web Services 419

HTTP Operators: Common Input Parameters

Proxy Port

Specifies the port of the specified Proxy Host.
Values
One of the following:

m Blank - Inherits the Default Proxy Port value set at the module level, if
present. Otherwise, port 80.

m The specified port number.

Proxy Authentication?

Specifies whether the proxy server, at the specified proxy URL, requires
authentication. Proxy authentication can be either Basic HTTP authentication or

NTLM authentication. If either type of authentication is needed, set this value to
true.

Values
One of the following:
m True - Indicates the proxy server requires authentication.
m False - Indicates the proxy server does not require authentication.
m Blank - Indicates to use the default value set at the module level.

m Any other value - Same as False.

420 Content Designer Reference

HTTP Operators: Common Input Parameters

Proxy NTLM Authentication?

Indicates whether the specified Proxy Host requires NTLM authentication.

Values

One of the following:

m True - Indicates that the specified Proxy Host requires NTLM
authentication.

m False - Indicates that the specified Proxy Host does not require NTLM
authentication. The proxy host uses basic HTTP authentication.

m Blank - Specifies to use the value set at the module level.

m Any other value - Same as False.

Note

If Proxy Authentication is set to false in the operator then the following are

disabled:

m Proxy NTLM authentication

m Proxy User name

m Proxy Password

m Proxy Domain name

If Proxy Authentication is not set to false in the operator (true, dataset variable
or any other value) then the following are enabled:

Proxy NTLM Authentication
Proxy User name
Proxy Password

Proxy Domain name

Proxy User name

Specifies the username to use when authenticating with the proxy.

Proxy Password

Specifies that password associated with the Proxy User name.

Chapter 15: Web Services 421

HTTP Operators: Common Input Parameters

Proxy Domain name

Specifies the name of the domain to use when authenticating against the specified
Proxy server.

Use the following guidelines:

m Enter the proxy domain name (required) if the operator uses NTLM
authentication against the Proxy server.

m Leave blank if the Proxy Domain name is not required for authentication. If the
operator uses basic HTTP authentication against the Proxy server, a domain
name is typically not required.

Usage Notes for Proxy Domain name, Proxy User name, and Proxy NTLM
authentication

m Ablank Proxy Domain name field does not automatically prompt the operator
to inherit the proxy domain name value from the module.

m The Proxy Domain Name field of the operator is tied to the Proxy User name
field of the operator as follows:

- If the Proxy Domain name of the operator is specified, the operator uses
this name.

- If the Proxy Domain name is blank and the Proxy User name is specified
(not blank), the operator uses a blank Proxy Domain name.

- If the Proxy Domain name is blank and the Proxy User name is not
specified (blank), the operator uses the inherited Default Proxy Domain
name.

m A specified Proxy Domain name is used as follows:

- If the operator uses NTLM authentication against the proxy server, the
specified Proxy Domain name is used as provided. The Proxy Domain name
is not appended to the Proxy User name.

- If the operator uses Basic HTTP authentication against the proxy server,
the specified Proxy Domain name is appended to the Proxy User name as:

User name = user name@domain name

HTTP Headers Information
Use Indexed Value Map for HTTP Headers?
Specifies whether to use an indexed value map for HTTP request headers.
Values:

m Selected - Indicates to enter HTTP request headers as an indexed value
map in the HTTP Headers Indexed Value Map field.

m Cleared - Indicates to enter the HTTP request headers in the HTTP Headers
field.

422 Content Designer Reference

HTTP Operators: Common Input Parameters

HTTP Headers

Specifies the names of the HTTP headers in the Key column and the values of the
HTTP headers in the Value column. Headers must be in US-ASCII format.

Use the buttons to add, remove, or reorder headers.

Note: The operator ignores any header where the Key is blank, that is, where no
header name is specified.

HTTP Headers Indexed Value Map

Specifies the name of an indexed ValueMap that contains the HTTP header names
and corresponding values. The indexed ValueMap must be of the same format as
the one listed in the HTTP Headers field. The indexed value map must have both the
Key and Value parameters.

Note: The operator ignores any header where the Key is blank, that is, where no
header name is specified.

HTTP Cookies Information
HTTP Cookies Store Indexed Value Map

Type an indexed value map that contains the HTTP cookies to set in this operator.

This field enables HTTP state management by allowing users to pass the
HTTPCookiesStore from one operator to another who is targeting the same cookie
domain. The indexed value map must be of the same format as the ones returned
in the HTTPCookiesStore output variable of other HTTP operators. Typically, this
field has the following format:

PreviousHttpOperator.HTTPCookiesStore

By getting the HTTPCookiesStore of another operator, this operator can send any
applicable cookies. Applicable cookies include those set in the HTTP request or
HTTP response of the previous operator. This operator sends only the unexpired
cookies (from the HTTPCookiesStore) whose attributes are applicable to the URL of
this operator. Example attributes include domain, path, and isSecure.

HTTP Response Content Information
Save HTTP Response Content to File?

Specifies whether to save the body of the HTTP response message to a file. Select
this field to enable the HTTP Response Content File Path field and the If Text
Response, Save it Using Encoding field.

Values
m Selected - Saves the body of the HTTP response message to a file.

m Cleared - Does not save the body of the HTTP response message to a file.

Chapter 15: Web Services 423

HTTP Operators: Common Input Parameters

HTTP Response Content File Path

Specifies where to save the HTTP response message body. Type the path of the
local file on the host where the touchpoint is running.

If Response File exists?

Specifies the action to take if the response file exists. Available actions are to create
a file or overwrite the content of the existing file.

The path of the file is listed in the HTTPResponseContentFilePath operator output
variable.

Values
This value can be:
m createFile - Indicates to create a file.

m overwriteFile - Indicates to overwrite the content of the response file with
the new HTTP response message body.

m Blank - Same as createFile.
m Any other integer - Same as createFile.
If Text Response, Save it Using Encoding

Specify this encoding if you are expecting a text response. The content-type of the
response is of the format:

text/XXXX
This encoding is used to write the response in the Response File.
If the response received is not of type text/XXXX, this field is ignored.
Values
This value can be:

m 0:Specified in HTTP Response Header - Enter O to use the encoding
specified in the HTTP response header.

m 1:PAM's Default System Encoding - Enter 1 to use CA Process
Automation's default system encoding.

m 2 :Specify an Encoding in 'User Specified Text Response Encoding' - Enter 2
to specify the encoding (to be used) in the User Specified Text Response
Encoding field.

m Blank - Prompts the operator to use 0 (use the encoding specified in the
HTTP Response Header).

m Any other integer - Prompts the operator to use 0 (use the encoding
specified in the HTTP Response Header).

If this field is set to 0 or 1, then field User Specified Text Response Encoding is
disabled.

424 Content Designer Reference

HTTP Operators: Common Input Parameters

User Specified Text Response Encoding
Specify an encoding to use when writing the text response in the Response File.
Save HTTP Response Content to Dataset Variable?

Specifies whether to save the body of the HTTP response message to the
HTTPResponseContent variable in the dataset of the operator. When saving is
selected, the HTTP Response Dataset Field Size Limit field is enabled.

Values

m Selected - Saves the body of the HTTP response content to the
HTTPResponseContent variable in the dataset of the operator.

m Cleared - Does not save the HTTP response content.
HTTP Response Dataset Variable Size Limit (bytes)

Specifies the maximum number of bytes (of the HTTP response message body) to
save in the HTTPResponseContent dataset variable of the operator.

Value

A numerical value.
Default

4096 bytes (if left blank)

HTTP Configuration Information
HTTP Version
Specifies the HTTP protocol version.
Values:
One of the following:
m 1.0 -Indicates that the operator is to use HTTP protocol version 1.0.
m 1.1-Indicates that the operator is to use HTTP protocol version 1.1

m Blank - Indicates the operator is to use the value set at the operator
category level, where blank or any value other than 1.1 or 1.0 at the
category level prompts the operator to use 1.1.

m Anyvalue other than 1.0 or 1.1 - use HTTP protocol 1.1
Default:
Blank

Chapter 15: Web Services 425

HTTP Operators: Common Input Parameters

Connection Timeout (sec)

Specifies the maximum amount of time to wait for an HTTP connection to establish
before the operator times out.

Values:
One of the following:
m A numeric value indicating the connection timeout in seconds.
m Oindicates no timeout, that is, zero seconds.

m Blank indicates the Default Connection Timeout set at the operator
category level, if available, otherwise 0 seconds.

Default:
Blank.
Socket Timeout (sec)

Specifies the maximum amount of time to wait between two consecutive HTTP
response data packets.

Values:
One of the following:
m A numeric value indicating the socket timeout in seconds.
m Oindicates no timeout, that is, zero seconds.

m Blank - Indicates the Default Socket Timeout set at the operator category
level, if available, otherwise 0 seconds.

Default:
Blank.
Handle Redirects?
Indicates whether to handle redirects automatically.
Values:
One of the following:
m True - Handle redirects automatically.
m False - Do not handle redirects automatically.

m Blank - Use the Default Handle Redirects? value set at the operator
category level.

m Any other value - Indicates false.
Default:
Blank.

426 Content Designer Reference

HTTP Operators: Common Output Parameters

Maximum Number of Redirects

Specifies the maximum number of redirects to follow, when Handle Redirects? is
setto True.

Values:

One of the following:

m A numeric value indicating the maximum number of redirects to allow.

m Blank - The Default Maximum Number of Redirects, if set. Otherwise, 100.
Default:

Blank.

HTTP Operators: Common Output Parameters

Output variables do not contain data when the operator does not receive an HTTP
response due to an error such as the following:

m Input contains an unknown URL.
m The HTTP connection times out.
m The socket times out.
HTTPRequestUrl
Specifies the HTTP request URL, including any URL parameters.
HTTPResponseStatusLine

Specifies the status line of the HTTP response. The status line is the first line of the
HTTP response message. The status line consists of the protocol version, the status
code, and the associated reason phrase.

HTTPResponseStatusCode

Specifies the status code of the HTTP response. The operator fails or succeeds
depending on this status code.

m The operator fails if the status code is greater than or equal to 300.

m The operator succeeds if the status code is less than 300.
HTTPResponseReasonPhrase

Specifies the reason phrase of the HTTP response.
HTTPResponseProtocolVersion

Specifies the protocol version of the HTTP response.
HTTPResponseContentType

Specifies the content-type header of the HTTP response content.

Chapter 15: Web Services 427

HTTP Operators: Common Output Parameters

HTTPResponseContentCharset

Specifies the character encoding of the HTTP response content. This character
encoding is part of the content-type header, and appears in the following form:

“content-type= xxxxx; charset=xxxx"
This charset is only set with an all character content-type such as text/xxx.
HTTPResponseContentLength

Specifies the number of bytes of the HTTP response content. A negative number
means that the content length is not known.

HTTPResponseContentEncoding

Specifies the content-encoding header of the HTTP response content. Blank
indicates that the content-encoding is unknown.

HTTPResponseContentlsChunked

True indicates that the HTTP response content was received with chunked
encoding. False is returned if the True condition is not met.

HTTPResponseContentFilePath

Specifies the path to the file where the HTTP response content was saved. Blank
indicates that the operator is not set up to save the HTTP response content
(message body) to a file.

m If the input for If Response File exists? was O and the file path that was
specified as input in HTTP Response Content File Path exists, then the
HTTPResponseContentFilePath field contains the path to the new file where
the HTTP response content was saved.

m If the input for If Response File exists? was 1 and the file path that was
provided as input in HTTP Response Content File Path exists, then the
HTTPResponseContentFilePath field contains the path provided in HTTP
Response Content File Path.

HTTPResponseContent

Specifies the HTTP response content, up to the number of bytes entered in HTTP
Response Dataset Variable Size Limit (bytes) field. Blank can indicate that the
operator is not set up to save the HTTP response content (message body) to its
dataset. Blank also can indicate that the HTTP response content is empty.

428 Content Designer Reference

HTTP Operators: Common Output Parameters

HTTPResponseHtmIContent

Specifies the HTTP response content rendered as HTML in the dataset of the
operator. The content-type header starting with "text/html" indicates that the HTTP
response content is HTML. When CA Process Automation detects that the HTTP
response content is HTML, the HTTP response content is rendered as HTML in the
dataset of the operator. The raw data remains accessible for javascript code in
HTTPResponseContent. Blank can indicate that the operator is not set up to save
the HTTP response content (message body) to a dataset. Blank can also mean that
CA Process Automation detects that the HTTP response content is not HTML or that
the HTTP response content is empty.

Note: CA Process Automation renders only basic HTML pages. CA Process
Automation does not render complex HTML pages.

HTTPResponseHeaders

Specifies the HTTP headers of the HTTP response. The headers are returned as an
indexed ValueMap where each ValueMap contains a single header and the
following two parameters:

Key
Specifies the name of the HTTP header.
Value
Specifies the value of the HTTP header.
HTTPRequestHeaders

Specifies the HTTP headers of the HTTP request that was sent. This field contains
the HTTP headers that were provided as input in the HTTP Headers or HTTP
Headers ValueMap fields of the operator. This field also contains the HTTP headers
for authentication, proxy, and others that the operator added before sending the
request.

The headers are returned as an indexed ValueMap where each ValueMap contains
a single header and the following parameters:

Key
Specifies the name of the HTTP header.
Value
Specifies the value of the HTTP header.
HTTPRequestLine

Specifies the request line of the HTTP request that was sent. The HTTP request line
contains the HTTP method, the URL, and the HTTP version.

Chapter 15: Web Services 429

HTTP Operators: Common Output Parameters

HTTPCookiesStore

Specifies the parsed version of the HTTP cookies sent in the request and the HTTP
cookies embedded in the response headers. The cookies are returned as an indexed
ValueMap where each ValueMap contains a single cookie that was defined with the
following parameters:

Name

Specifies the name of this HTTP cookie.
Value

Specifies the value of this HTTP cookie.
Version

Specifies the version of the cookie specification that this HTTP cookie conforms
to.

Domain

Specifies the domain of this HTTP cookie. The HTTP cookie is valid in this
Domain.

Path

Specifies the path of this HTTP cookie. This value specifies the subset of URLs,
for which this HTTP cookie applies, on the original HTTP server.

ExpirationDate

Specifies the expiration date of this HTTP cookie. Some cookies return an
expiration date, while others return a maximum age. The expiration date is
returned in the following format:

"yyyy.MM.dd 'at' HH:mm:ss z"
MaxAge

Specifies the maximum age of this HTTP cookie. Some cookies return a
maximum age, while others return an expiration date.

Comment
Specifies the purpose of this HTTP cookie.
Ports

Specifies the ports of this HTTP cookie. The ports are returned as a string of
comma-separated values. This value specifies the ports on which this HTTP
cookie can be sent back in a request header.

430 Content Designer Reference

HTTP Operators: Common Output Ports

IsSecure
One of the following options:

m True - Indicates that this HTTP cookie can be sent only on a secure
connection.

m False - Indicates that a secure connection is not necessary for sending this
cookie.

ResponseHeaderName

Specifies the name of the response header that contains this HTTP cookie. This
value can be “Set-Cookie” or “Set-Cookie2”.

Result

This value is one of the following options:

1
Indicates that the operator finished successfully.
-1
Indicates that the operator failed.
Reason

This value is one of the following options:
Completed

This reason is associated with the result of 1, successful completion.
<error message>

An explanation of why the error occurred; associated with the result of -1,
where the operator failed.

HTTP Operators: Common Output Ports

Success
The operator finished successfully.
Timeout

A connection timeout or a socket timeout occurred.

Chapter 15: Web Services 431

HTTP Operators: Common Output Ports

Failure
The HTTP response has a status code greater than or equal to 300.

The HTTP Response Content can contain the HTTP status code and the reason for
operator failure. The HTTPResponseReasonPhrase can contain a generic reason of
failure. A generic reason for failure is returned in the HTTP response Status Line.
Examine the HTTPResponseContent for details.

Descriptions for status codes 401 and 407 and other failure reasons follow:
401

Status code 401 indicates one of the following conditions:

m Incorrect URL authentication credentials.

m Incorrect URL authentication scheme (Basic vs NTLM)

m No authentication credentials are provided when the HTTP URL requires
authentication.

m URL authentication failure.

With a 401 error code, the HTTP server typically returns the
WWW-Authenticate response header. This response header contains the
authentication scheme that the HTTP server is using. Use this information to
determine which authentication scheme to use against the URL. Basic HTTP
authentication and NTLM authentication are the two schemes that HTTP
operators support.

407
Status code 407 indicates one of the following conditions:
m Incorrect proxy authentication credentials.
m Incorrect proxy authentication scheme (Basic vs NTLM).

m No authentication credentials are provided when the proxy requires
authentication.

m Proxy authentication failure.

With a 407 error code, the HTTP proxy typically returns the Proxy-Authenticate
response header. This response header contains the authentication scheme
that the proxy server is using. Use this information to determine which
authentication scheme to use against the proxy. Basic HTTP authentication and
NTLM authentication are the two schemes that HTTP operators support.

432 Content Designer Reference

HTTP Delete Operator

m The URL or Proxy Host that was specified as input is unknown.

m The HTTP call goes through a proxy but the input did not include specification
of a proxy. In this case, the operator can specify that the connection to the
HTTP URL is refused.

m Inputincluded an invalid proxy port. In this case, the operator can specify that
the connection to the ‘ProxyHost:ProxyPort’ is refused.

m Invalid input, such as the following information, was detected:
- Negative connection or socket time outs.
- Negative maximum number of redirects.
- Negative response data set field size limit.
- Save response to file with no file path provided.
Custom Ports

If set by the user during the process design.

HTTP Delete Operator

Input Parameters

Y%

The HTTP Delete operator sends an HTTP Delete to a URL. The HTTP Delete operation
causes the HTTP server to delete the resource that is located at the requested URL.

The HTTP Delete operator can be used for RESTful services.
Important! Use the HTTP Options operator to determine whether the HTTP Delete

method is supported. Typically, the HTTP Delete method is disabled on public HTTP
servers to prevent deletion of files on the HTTP servers.

See the following sections for descriptions of the input parameters for the HTTP Delete
operator:

HTTP URL Information

See HTTP URL Information (see page 416) for descriptions of input parameters.

HTTP Proxy Information

See HTTP Proxy Information (see page 419) for descriptions of input parameters.

Chapter 15: Web Services 433

HTTP Delete Operator

HTTP Headers Information

See HTTP Headers Information (see page 422) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 423) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 423) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 425) for descriptions of input
parameters.

434 Content Designer Reference

HTTP Delete Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion
HttpConnectionTimeout
HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode

Chapter 15: Web Services 435

HTTP Get Operator

HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmIContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 427) for more information.

Output Ports

Output ports for the HTTP Delete operator consist of only the common output port (see
page 431) for HTTP operators.

HTTP Get Operator

The HTTP Get operator sends an HTTP Get request to a URL.

If the specified URL points to a resource, then the HTTP Get operator retrieves the
resource. Use the HTTP Get operator to download a file from an HTTP server by
specifying the URL of the file.

If the specified URL points to a process that produces data, then the HTTP Get operator
retrieves the data produced by the process. The HTTP Get operator does not retrieve

data from the process source.

The HTTP Get operator can be used for RESTful services.

436 Content Designer Reference

HTTP Get Operator

Input Parameters

HTTP URL Information

See HTTP URL Information (see page 416) for descriptions of input parameters.

HTTP Get Information
URL Parameters Encoding

Specifies the character encoding to use when encoding the URL parameters. ASClI is
the recommended encoding for URL parameters in an HTTP Get operation. The URL
parameters are transferred in the URL. Encodings other than ASCII, UTF-8, and
ISO-8859-1 typically do not work.

Values

One of the following:

m ASCl

s UTF-8

m ISO-8859-1
Default

Blank - Same as ASCII.
Use Indexed Value Map for URL Parameters?

Indicates which of the following fields to use for entry of URL parameters: URL
Parameters Indexed ValueMap or URL Parameters.

Values

Selected - Enter the URL parameters as an indexed Value Map in the URL
Parameters Indexed ValueMap field.

Cleared - Enter the URL parameters in the URL Parameters field.
URL Parameters

Specifies the names of the URL parameters in the Key column, and the values of the
URL parameters in the Value column.

Use the buttons to add, remove, or reorder parameters.

Note: The operator ignores any URL parameter where the Key is blank, that is, one
where no URL parameter name specified.

Chapter 15: Web Services 437

HTTP Get Operator

URL Parameters Indexed Value Map

Specifies the name of an indexed ValueMap. This name is a dataset variable of type
indexed value map with keys and values, where the keys are URL parameter names.
The indexed ValueMap must consist of Key and Value parameters. The indexed
ValueMap must be in the same format as the one listed in the URL Parameters field.
The operator ignores any URL parameter with a blank Key.

HTTP Proxy Information

See HTTP Proxy Information (see page 419) for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 422) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 423) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 423) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 425) for descriptions of input
parameters.

438 Content Designer Reference

HTTP Get Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpReqUrlParamsEncoding
HttpReqUrlParamsType
HttpReqUrlParamsValueMap
HttpRegUrlParamsVarValueMap
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion
HttpConnectionTimeout
HttpSocketTimeout

HttpHandleRedirects

Chapter 15: Web Services 439

HTTP Get Operator

HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode
HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmlContent
HTTPResponseHeaders
TTPResponseContentisChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 427) for more information.

Output Ports

Output ports for the HTTP Get operator consist of the common output ports for HTTP
operators plus an additional failure case.

Operator Failure

The HTTP Get operator can fail for the following reasons:
m Failures that are common to output ports for all HTTP operators.

Note: See HTTP Operators: Common Output Ports (see page 431) for descriptions.

m You specified an invalid encoding in the URL Parameters Encoding field.

440 Content Designer Reference

HTTP Head Operator

HTTP Head Operator

Input Parameters

W
L

The HTTP Head operator sends an HTTP Head request to a URL. The HTTP Head method
is similar to the HTTP Get method. The difference between the two methods is that with
HTTP Head, the HTTP server does not return the resource located at the URL. The HTTP

headers of the response are the same for the Head method and the Get method.

The HTTP Head method is typically used to obtain information about a resource without
actually getting (transferring) it.

HTTP URL Information

See HTTP URL Information (see page 416) for descriptions of input parameters.

HTTP Head Information
URL Parameters Encoding

Specifies the character encoding to use when encoding the URL parameters. ASClI is
the recommended encoding for URL parameters in an HTTP Head operation. The
URL parameters are transferred in the URL. Encodings other than ASCII, UTF-8, and
ISO-8859-1 typically do not work.

Values

One of the following:

m ASCl

m UTF-8

m ISO-8859-1
Default

Blank - Same as ASCII.

Chapter 15: Web Services 441

HTTP Head Operator

Use Indexed Value Map for URL Parameters?

Indicates which of the following fields to use for entry of URL parameters.
Specifically, indicates whether to specify URL parameters as an indexed ValueMap
in the URL Parameters Indexed ValueMap field or to enter the URL parameters in
the URL Parameters field.

Values

Selected - Enter the URL parameters as an indexed ValueMap in the URL
Parameters Indexed ValueMabp field.

Cleared - Enter the URL parameters in the URL Parameters field.
URL Parameters

Specifies the names of the URL parameters in the Key column, and the values of the
URL parameters in the Value column.

Use the buttons to add, remove, or reorder parameters.

Note: The operator ignores any URL parameter where the Key is blank, that is, one
where no URL parameter name is specified.

URL Parameters Indexed Value Map

Specifies the name of an indexed ValueMap. This name is a dataset variable of type
indexed ValueMap with keys and values, where the keys are URL parameter names.
The indexed ValueMap must consist of Key and Value parameters. The indexed
ValueMap must be in the same format as the one listed in the URL Parameters field.
The operator ignores any URL parameter with a blank Key.

HTTP Proxy Information

See HTTP Proxy Information (see page 419) for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 422) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 423) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 423) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 425) for descriptions of input
parameters.

442 Content Designer Reference

HTTP Head Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpReqUrlParamsEncoding
HttpReqUrlParamsType
HttpReqUrlParamsValueMap
HttpRegUrlParamsVarValueMap
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion
HttpConnectionTimeout
HttpSocketTimeout

HttpHandleRedirects

Chapter 15: Web Services 443

HTTP Head Operator

HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode
HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmlContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 427) for more information.

Note: The HTTP Head operator does not transfer the resource located at the specified
URL. Therefore, output variables such as HTTPResponseContentType and
HTTPResponseContentLength are blank. To find the information about the resource at
the specified URL, view the HTTPResponseHeaders. The HTTPResponseHeaders contain
information on headers such as content-type and content-length. This is information
returned by the HTTP server on this resource.

Output Ports

Output ports for the HTTP Head operator consist of the common output ports for HTTP
operators plus an additional failure case.

444 Content Designer Reference

HTTP Options Operator

Operator Failure

The HTTP Head operator can fail for the following reasons:
m Failures that are common to output ports for all HTTP operators.

Note: See HTTP Operators: Common Output Ports (see page 431) for descriptions.

m The user specified an invalid encoding in the URL Parameters Encoding field.

HTTP Options Operator

Input Parameters

W
The HTTP Options operator sends an HTTP Options request to a URL. The HTTP Options
lets you determine what HTTP methods the HTTP server supports.

The supported HTTP methods are listed in the HTTPAllowedMethods output variable at
the end of the execution of the operator.

See the following sections for descriptions of the input parameters for the HTTP Options
operator:

HTTP URL Information

See HTTP URL Information (see page 416) for descriptions of input parameters.

HTTP Proxy Information

See HTTP Proxy Information (see page 419) for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 422) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 423) for descriptions of input parameters.

Chapter 15: Web Services 445

HTTP Options Operator

HTTP Response Content Information

See HTTP Response Content Information (see page 423) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 425) for descriptions of input
parameters.

446 Content Designer Reference

HTTP Options Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion
HttpConnectionTimeout
HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode

Chapter 15: Web Services 447

HTTP Post Operator

HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmIContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore
HTTPAllowedMethods

Specifies an indexed string containing the names of the methods that are supported

by the resource or server located at the specified URL.

See HTTP Operators: Common Output Parameters (see page 427) for more information.

Output Ports

Output ports for the HTTP Options operator consist of only the common output ports
for HTTP operators.

See HTTP Operators: Common Output Ports (see page 431) for descriptions.

HTTP Post Operator

The HTTP Post operator sends an HTTP Post request to a URL. The HTTP Post operator
typically requests that the HTTP server store the resource that is enclosed as the HTTP
request content. The HTTP server process at the specified URL then processes the
resource.

448 Content Designer Reference

HTTP Post Operator

Input Parameters

Note: Unlike the HTTP Put operator, the URL of an HTTP Post operator points to the
process that can handle the enclosed resource.

The HTTP Post operator can be used for RESTful services.

HTTP URL Information

See HTTP URL Information (see page 416) for descriptions of input parameters.

HTTP Post Information

HTTP Post Information specifies the body of the HTTP request.
Is Chunked?
Specifies whether to send the HTTP request chunked.

When chunk coding is set, the HTTP request does not contain the "content-length"
header.

Note: HTTP 1.0 does not support chunk coding. The HTTP Post operator fails with
an 'HTTP client protocol error' if chunk coding is set and the HTTP version is 1.0.

Values
One of the following:
m True - Indicates to send the HTTP request chunked.
m False - Indicates that the HTTP request is not to be sent chunked.
m Any other value - Same as False.
Default

Blank - Same as False.

Chapter 15: Web Services 449

HTTP Post Operator

Content Type

Specifies the type of the content that composes the HTTP request body, which is set
as a header (content-type) in the HTTP request.

Values
This value is one of the following:
m A media type selected from the drop-down list.

m Blank, where the content is retrieved from a file specified in ‘Content File
Path.’

CA Process Automation sets the value to application/octet-stream. The
HTTP server is responsible for interpreting this generic content-type.

m Blank, where content is retrieved from the ‘Content’ field.

CA Process Automation does not set the content-type. The HTTP server is
responsible for interpreting the no content-type header.

m Avalid media type that you type into the field.

For valid media types, see the IANA website pages on
assignments/media-types.

Note: Make sure to set the right content-type, especially when the content is
not retrieved from a file.

Content Character Encoding

Specifies the character encoding of the content of the HTTP request body. Set this
field only if the content type is all characters, for example: ‘text/XXX’.

Values
This value is one of the following:
m Acharacter set selected from the drop-down list.
m Avalid character set (encoding) that you type into the field.

For valid encodings, see the IANA website pages on
assignments/character-sets.

Note: Make sure to set the right character encoding, especially when the
content is not retrieved from a file.

450 Content Designer Reference

HTTP Post Operator

Retrieve Content From File?

Specifies whether to retrieve the HTTP request body from a local file on the host
where the touchpoint is running.

Values
This value is one of the following:

m Selected - Indicates to retrieve the HTTP request body from a local file on
the host where the touchpoint is running.

m Cleared - Indicates to retrieve the HTTP request body from the Content
field.

Content File Path

Specifies the path to a local file on the host where the touchpoint is running. The
local file contains the HTTP request body.

Content

Specifies the HTTP request body.

HTTP Proxy Information

See HTTP Proxy Information (see page 419) for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 422) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 423) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 423) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 425) for descriptions of input
parameters.

Chapter 15: Web Services 451

HTTP Post Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpReglsChunked
HttpReqContentType
HttpRegContentCharset
HttpRegContentFromFile
HttpRegContentFilePath
HttpReqContent
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion

HttpConnectionTimeout

452 Content Designer Reference

HTTP Post Operator

HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode
HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmlContent

HTTPResponseHeaders

HTTPResponseContentlsChunked

HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 427) for more information.

Output Ports

Output ports for the HTTP Post operator consist of the common output ports for HTTP

operators plus an additional failure case.

Chapter 15: Web Services 453

HTTP Post Form Operator

Operator Failure

The HTTP Post operator can fail for the following reasons:
m Failures that are common to output ports for all HTTP operators.

Note: See HTTP Operators: Common Output Ports (see page 431) for descriptions.

m ‘HTTP client protocol error’ can occur if chunk coding is set and the HTTP version is
1.0. This can cause a ClientProtocolException.

m Theinput includes invalid encoding in the Content Character Encoding field.

Note: CA Process Automation does not verify that the Content Type value specified
in the input is valid when the content is retrieved from a file. The receiving HTTP
server is responsible for returning an error code if it detects an invalid Content
Type.

HTTP Post Form Operator

The HTTP Post Form operator posts data to an HTTP form. The data is of type
name-value pairs that can include values that are files.

Unlike the HTTP Post operator, the HTTP Post Form operator sends the HTTP post
request to an HTTP form. The URL of the operator is the action element of the form. For
example:

<form name="myForm” method="post” action ="XXXXXXXX">

Express the destination URL as the full path to the script or process on the HTTP server
that the action element points to. Do not use a relative path for the destination URL.

The script or process where the action element points must be publicly available for the
HTTP Post Form operator to call it.

454 Content Designer Reference

HTTP Post Form Operator

Input Parameters

HTTP URL Information

See HTTP URL Information (see page 416) for descriptions of input parameters.

HTTP Post Form Information
Form Fields Encoding

Specifies the character encoding to use when encoding the form fields parameters.
The data in the HTTP Post Form operator goes in the body of the request.

Values
This field accepts the following values:
m Avalue from the drop-down list.
m Avalue entered by the user.
m Blank-1S0O-8859-1

Default
ISO-8859-1

Use Indexed Value Map for Form Fields?

Specifies whether to specify form fields in the Form Fields Indexed Value Map field
or in the Form Fields field. The choice enables entry to the corresponding field.

Values

m Selected - Indicates that the form fields are specified as an indexed Value
Map in the Form Fields Indexed Value Map field.

m Cleared - Indicates that the form fields are specified in the Form Fields
field.

Form Fields

Specifies the combination of key and value for each form field. The Key column
contains the names of the form fields and the Value column contains the values of
the form fields.

Use the buttons to add, remove, or reorder parameters.

Note: The HTTP Post Form operator ignores any form field with a blank Key.

Form Fields Indexed Value Map
Specifies the name of an indexed ValueMap.

This Value Map consists of Key and Value. A Key entry is the name of a form field;
the corresponding Value entry is the value of that form field. The indexed
ValueMap is in the same format as the one listed in the Form Fields field.

Note: The HTTP Post Form operator ignores any form field with a blank Key.

Chapter 15: Web Services 455

HTTP Post Form Operator

File Fields in Form?

Indicates whether the form contains fields that allow for files to be uploaded to the
form. Selecting this check box lets you enter related data in the following fields: Use
Indexed Value Map for Form Files?, Form Files, and Form Files Indexed Value Map.

Note: The HTTP request header content-type depends on how the File Fields in
Form? field is set.

Values
This field is set in one of the following ways:

m Selected - The content type of the HTTP request follows, where XXXXXXX is the
boundary string that separates the different parts of the HTTP request. Each
part in the HTTP request body can have its own content-type.

content-type=multipart/form-data;boundary=XXXXXXX

- The form fields are encoded using the encoding specified in Form Fields
Encoding. Each form field is placed as a separate part in the request body.

- Each form field part has a content-type=text/plain; charset="encoding’
where ‘encoding’ is the value (or default value) of Form Fields Encoding.

— The form files are encoded using the encoding specified in the
ContentType and ContentCharacterEncoding (if applicable) columns
associated with each form file. Each form file is placed as a separate part in
the request body.

- The content-type of each form file part is specified in the ContentType
column of the Form Files or Form Files Value Map. If applicable, this
specification is combined with ContentCharacterEncoding.

m Cleared - The content type of the HTTP request follows, where ‘encoding’ is the
type of encoding specified in Form Fields Encoding.

content-type=application/x-www-form-urlencoded;charset="enc
oding'

— The form fields are URL encoded (using the ‘encoding’).

- The form fields are placed in the body of the request.

Use Indexed Value Map for Form Files?

Indicates whether to specify the form file fields in the Form Files field or in the Form
Files Indexed Value Map field.

m Selected - Indicates that the form file fields are specified as an indexed Value
Map in the Form Files Indexed Value Map field.

m Cleared - Indicates that the form file fields are specified in the Form Files field.

456 Content Designer Reference

HTTP Post Form Operator

Form Files

Specifies each form file with four fields: Key, File Path, Content Type, and Content
Character Encoding. Descriptions of each field of a form file follow:

Key
Specifies the names of the form file fields.
FilePath

Specifies the path to the file to upload. (This field is required.) The operator
ignores any form file field with a blank FilePath.

ContentType

Specifies the content type of the file to upload. Valid content-types are listed
on the IANA website under assignments/media-types. If left blank, the
content-type of the corresponding file’s part in the HTTP request body is set to
application/octet-stream. It is then the responsibility of the HTTP server to
interpret this generic content-type.

ContentCharacterEncoding

Specifies the character set of the content of the files to upload, if the
corresponding content type is all characters such as ‘text/XXX’. Leave blank for
other kinds of content types.

Note: For a list of different character sets (encodings), see the IANA website
pages under assignments/character-sets.

Form Files Indexed Value Map
Specifies the name of an indexed ValueMap that contains the form file fields names
and corresponding values. The indexed ValueMap must be of the same format as
the one listed in the Form Files field. That is, it must consist of Key, FilePath,
ContentType, and ContentCharacterEncoding.

HTTP Proxy Information

See HTTP Proxy Information for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 422) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 423) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 423) for descriptions of input
parameters.

Chapter 15: Web Services 457

HTTP Post Form Operator

HTTP Configuration Information

See HTTP Configuration Information (see page 425) for descriptions of input
parameters.

458 Content Designer Reference

HTTP Post Form Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpFormFieldsEncoding
HttpFormFieldsType
HttpFormFieldsValueMap
HttpFormFieldsVarValueMap
HttpFormMultipartPost
HttpFormFilesToMultipartType
HttpFormFilesToMultipartValueMap
HttpFormFilesToMultipartVarValueMap
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset

HttpRespDatasetVarLimit

Chapter 15: Web Services 459

HTTP Post Form Operator

HttpVersion
HttpConnectionTimeout
HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode
HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmlContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 427) for more information.

Output Ports

Output ports for the HTTP Post Operator consist of the common output ports for HTTP
Operators plus an additional failure case.

460 Content Designer Reference

HTTP Put Operator

Operator Failure

The HTTP Post Form operator can fail for the following reasons:
m Failures that are common to output ports for all HTTP Operators.

Note: See HTTP Operators: Common Output Ports (see page 431) for descriptions.

m The input includes invalid encoding in the Form Fields Encoding or the
ContentCharacterEncoding fields.

Note: CA Process Automation does not verify that the ContentType input is valid
when the content is retrieved from a file. The receiving HTTP server is responsible
for returning an error code if it detects an invalid content type.

HTTP Put Operator

The HTTP Put operator sends an HTTP Put request to a URL. The HTTP Put operator
requests that the resource, enclosed as the HTTP request content, be stored at the
specified URL on the HTTP server. The URL must allow CA Process Automation to create
a resource or replace an existing one.

If the URL points to an existing resource, the HTTP server handles the enclosed resource
as a modified version of the existing resource.

If the URL does not point to an existing resource, then the HTTP server creates a
resource with the HTTP request content. The HTTP server then saves the new resource

at the specified URL.

Note: Unlike the HTTP Post operator, the URL of an HTTP Put operator identifies the
resource enclosed in the HTTP request content.

The HTTP Put operator can be used for RESTful services.

Important! Use the HTTP Options operator to determine whether you can use the HTTP
Put operator. The HTTP Put method is typically disabled on public HTTP servers.

Chapter 15: Web Services 461

HTTP Put Operator

Input Parameters

HTTP URL Information

See HTTP URL Information (see page 416) for descriptions of input parameters.

HTTP Put Information

HTTP Put Information specifies the body of the HTTP request
Is Chunked?

Specifies whether to send the HTTP request chunked.

When chunk coding is set, the HTTP request does not contain the "content-length"
header.

Note: HTTP 1.0 does not support chunk coding. The HTTP Put operator fails with an
'HTTP client protocol error' if chunk coding is set and the HTTP version is 1.0.

Values
m True - Indicates to send the HTTP request chunked.
m False - Indicates that the HTTP request is not to be sent chunked.
m Any other value - Same as False.

Default

Blank - Same as False.

Content Type

Specifies the type of the content that composes the HTTP request body, which is set
as a header (content-type) in the HTTP request.

Values
This value is one of the following:
m Avalue selected from the drop-down list of different media types.

m Blank, where the content is retrieved from a file specified in ‘Content File
Path.’

CA Process Automation sets the value to application/octet-stream. The
HTTP server is then responsible for interpreting this generic content-type.

m Blank, where content is retrieved from the ‘Content’ field.

CA Process Automation does not set the content-type. The HTTP server is
then responsible for interpreting the no content-type header.

462 Content Designer Reference

HTTP Put Operator

m Avalid media type that you manually enter into the field.

For valid media types, see the IANA website pages on
assignments/media-types.

Note: Ensure that you set the right content-type, especially when the content is
not retrieved from a file.

Content Character Encoding

Specifies the character encoding of the content of the HTTP request body. Set this
field only if the content type is all characters, for example: ‘text/XXX'.

Values
This value is one of the following:

m Avalue selected from the drop-down list of different character sets
(encodings).

m Avalid character set (encoding) that you manually enter into the field.

You can find valid encodings on the IANA website pages on
assignments/character-sets.

Note: Ensure that you set the right character encoding, especially when the
content is not retrieved from a file.

Retrieve Content From File?

Specifies whether to retrieve the HTTP request body from a local file on the host
where the touchpoint is running.

Values

m Selected - Indicates to retrieve the HTTP request body from a local file on
the host where the touchpoint is running.

m Cleared - Indicates to retrieve the HTTP request body from the Content
field.

Content File Path

Specifies the path to a local file on the host where the touchpoint is running. The
local file contains the HTTP request body.

Content

Specifies the HTTP request body.
HTTP Proxy Information
See HTTP Proxy Information for descriptions of input parameters.
HTTP Headers Information

See HTTP Headers Information (see page 422) for descriptions of input parameters.

Chapter 15: Web Services 463

HTTP Put Operator

HTTP Cookies Information

See HTTP Cookies Information (see page 423) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 423) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 425) for descriptions of input
parameters.

464 Content Designer Reference

HTTP Put Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpReglsChunked
HttpReqContentType
HttpRegContentCharset
HttpRegContentFromFile
HttpRegContentFilePath
HttpReqContent
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion

HttpConnectionTimeout

Chapter 15: Web Services 465

HTTP Put Operator

HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode
HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmlContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 427) for more information.

Output Ports

Output ports for the HTTP Post operator consist of the common output ports for HTTP
operators plus an additional failure case.

466 Content Designer Reference

HTTP Trace Operator

HTTP Trace Operator

Input Parameters

tq
The HTTP Trace operator sends an HTTP Trace to a URL. The trace method requests that
the HTTP server sends back the request that it received. This process can be beneficial
for testing purposes and for identifying changes that were made to the request by

proxies. The request is sent back as the Response content.

Use the HTTP Options operator to verify if the HTTP Trace is enabled.

See the following sections for descriptions of the input parameters for the HTTP Options
operator:

HTTP URL Information

See HTTP URL Information (see page 416) for descriptions of input parameters.

HTTP Proxy Information

See HTTP Proxy Information (see page 419) for descriptions of input parameters.

HTTP Headers Information

See HTTP Headers Information (see page 422) for descriptions of input parameters.

HTTP Cookies Information

See HTTP Cookies Information (see page 423) for descriptions of input parameters.

HTTP Response Content Information

See HTTP Response Content Information (see page 423) for descriptions of input
parameters.

HTTP Configuration Information

See HTTP Configuration Information (see page 425) for descriptions of input
parameters.

Chapter 15: Web Services 467

HTTP Trace Operator

Output Parameters
HttpRemoteURL
HttpValidateSSLCert
HttpSvrAuth
HttpSvrNtimAuth
HttpAuthUser
HttpAuthPwd
HttpAuthDomain
HttpProxy
HttpProxyHost
HttpProxyPort
HttpProxyAuth
HttpProxyNtimAuth
HttpProxyUser
HttpProxyPwd
HttpProxyDomain
HttpHeaderFieldsType
HttpHeaderFieldsValueMap
HttpHeaderFieldsVarValueMap
HttpCookieFieldsVarValueMap
HttpRespSaveToFile
HttpRespLocalFile
HttpRespLocalFileExists
HttpRespSaveToDataset
HttpRespDatasetVarLimit
HttpVersion
HttpConnectionTimeout
HttpSocketTimeout
HttpHandleRedirects
HttpMaxRedirects
HTTPRequestUrl
HTTPResponseStatusLine
HTTPResponseStatusCode

468 Content Designer Reference

Invoke SOAP Method Operator

HTTPResponseReasonPhrase
HTTPResponseProtocolVersion
HTTPResponseContentType
HTTPResponseContentCharset
HTTPResponseContentLength
HTTPResponseContentEncoding
HTTPResponseContentFilePath
HTTPResponseContent
HTTPResponseHtmIContent
HTTPResponseHeaders
HTTPResponseContentlsChunked
HTTPRequestHeaders
HTTPRequestLine
HTTPCookiesStore

See HTTP Operators: Common Output Parameters (see page 427) for more information.

Invoke SOAP Method Operator

The Invoke SOAP Method operator invokes SOAP-based Web service methods, either to
trigger an action or to retrieve information. A SOAP request can also be generated using

a WSDL.
Irvoke SOAP-hased application
e
|
2 Completed 2 Failed
Operation was successful Dperation failed
Fesult=1 Result =0

Chapter 15: Web Services 469

Invoke SOAP Method Operator

Input Parameters
Input parameters for the Invoke SOAP Method operator are as follows.

WSDL Explorer
WSDL Wizard

A wizard that lets you select SOAP methods. Click to open the WSDL Explorer
window, where you can enter:

m WSDL URL (Enter a WSDL URL, then click Load. The wizard populates the
remaining fields.)

m WSDL services
m WSDL ports

m WSDL operations

SOAP Call Data Parameters
Service URL

Specifies the URL for the SOAP service. The URL is typically accessed over HTTP or
HTTPS. The URL is typically an entry point for one or more methods.

Method name

Specifies the method or function to invoke. The method is passed to the SOAP
service as a MIME SOAPAction header.

Authorized User for Basic SOAP or HTTP Authentication

A user name authorized to perform the call on the SOAP server. This user name is
used for basic SOAP authentication or basic HTTP authentication. Leave this field
blank if basic SOAP and HTTP authentications are not required.

Password for Basic SOAP or HTTP Authentication

The password for the user authentication. This password is used for basic SOAP
authentication or basic HTTP authentication. Leave this field blank if basic SOAP and
HTTP authentications are not required.

Use HTTP Basic Authentication?

Select this check box to use the authorized user/password for HTTP authentication.
Disable it to use the authorized user/password for basic SOAP authentication.

If this feature is enabled and the Authorized User/Password are provided, then
these credentials are used for basic HTTP authentication. WS Security applies if it is
provided by the user in the WS Security input page (see page 475).

If this field is disabled and the Authorized User/Password are provided, then these
credentials are used for basic SOAP authentication. WS Security does not apply
even if it is provided by the user in the WS Security input page (see page 475).

470 Content Designer Reference

Invoke SOAP Method Operator

SOAP Version

Select the version of the SOAP server on which the call is made from the drop-down
list. This option provides a hint to the underlying logic, which uses the appropriate
SOAP MessageFactory to use when making the SOAP request. Specify one of the
following options:

m SOAP1.1
m SOAP1.2
Input source

Specifies the source for the SOAP service input request. Any of the following
methods includes a complete properly formatted XML message, which may or may
not include a SOAP envelope:

Inline Text

Specifies that the input request is specified with the Invoke SOAP Method
operator. If you select this option, use the Inline text option to specify the
formatted SOAP input message.

Preformatted SOAP File

Specifies that the input request is specified in a preformatted SOAP file. If you
select this option, specify the path to the file in the File name field. The file
should contain a message in a valid XML document.

Expression

Specifies that the SOAP request is contained in a CA Process Automation
expression. If you select this option, specify the CA Process Automation
expression in the Expression field.

The input request can contain macros and XPath assignments that dynamically
modify the SOAP request at runtime. If necessary, these XPath assignments allow
the SOAP request to be updated with values obtained at runtime.

Inline text

If Input source is set to “Inline Text,” click the Browse button (...) to open the Inline
Text dialog and type a formatted SOAP input message. To read in a SOAP message
from a text file, click the Browse button (...) in the Inline Text dialog to specify an
existing file on a local or network drive.

File name

If the Input source is set to Preformatted SOAP File, this field specifies the fully
qualified name of the file relative to the touchpoint running the Web Services
operators.

Expression

Specifies a CA Process Automation expression from which to extract the SOAP
request.

Chapter 15: Web Services 471

Invoke SOAP Method Operator

Saved call file

Dynamic Parameters

Specifies the full path to the file to which to write the final outbound SOAP request.
This file is useful for validating that the data was sent to the Web Services
operators. If the SOAP request is rejected due to erroneous values, the saved file
can assist in debugging the request before transmitting it to the Web Services
operators again.

The Dynamic Parameters provide update values in a SOAP request.

Parameter style

Specifies the method with which to update values in a SOAP request. The Web
Services operators support two mechanisms at run time:

Macro Expansions

Specifies that macros are used in the Parameters list to update values in a
SOAP request.

XPath Assignments

Specifies that XPath expressions are used in the Parameters list to update
values in a SOAP request.

Parameters list

Specifies the unique data entries within the SOAP request.

m Click the Add button to add a parameter.

m Click the Edit button to edit the currently selected parameter.

m Click the Delete button to delete the currently elected parameter.

A best practice is to add the parameters in the same order that the WSDL specifies
them for the SOAP call.

Click the Add or Edit button to open the Parameters List dialog, and set the
following parameter values:

Macro name/XPath query

Specifies the name of the macro or the XPath query. If it is the name of a
macro, the macro name is substituted by the value. If it is an XPath query, the
node that is returned by the query is updated with the value.

Value

Specifies a run-time value for the parameter.

472 Content Designer Reference

Invoke SOAP Method Operator

Type
Specifies one of the following data types for the parameter:
m String Value
m Integer Value

m XML Fragment
Call Results Parameters

The following Call Results parameters determine how to save the results of a SOAP call.
Response save file

Specifies the fully qualified path for the file that restores the response to the SOAP
request. Any existing file is overwritten by a new response.

Extract SOAP response body first-level elements to individual Dataset variables

Saves the first level element within the body of the SOAP response to a separate
dataset variable if the SOAP response exceeds 12 kilobytes.

Extract SOAP response body to Dataset variable
Saves the body of the response to a dataset variable.
Extract SOAP Header to Dataset variable
Saves the header of the response to a dataset variable.
Extract SOAP Header first-level elements into individual Dataset variables
Saves the first-level headers of the response into an individual dataset variable.
Strip XML Namespaces from Response

Provides a clickable option to strip namespaces from a response so that a user can
provide simpler XPath expressions to look for a value of specific element. This
option is available in all the SOAP operators.

Additional extracted data (from entire response)

Specifies XPath expressions to extract data from the body of the SOAP response.
For each expression specified here, specify a dataset variable to which to store the
extracted data and a data type. Click the Add button to add an expression, the Edit
button to edit a selected existing expression, or the Delete button to delete a
selected expression. The ordering of the expressions has no significance to CA
Process Automation.

After you click the Add or Edit button, you can edit the parameter settings:
XPath expression

Specifies the XPath expression.

Chapter 15: Web Services 473

Invoke SOAP Method Operator

MIME Attachments

WS Security

Dataset Variable

Specifies the name of an operator dataset variable in which to save values
extracted based on the selected XPath expression.

Type

Specifies the type of element being extracted from the response. Select one of
the following currently supported types:

m Integer

m String

m Integer Array

m String Array

m XML Fragment

m XML Fragment Array

If the content that you want to send is already in a dataset variable, use the Expression
field.

Is an expression?
If selected, an expression must resolve the attachment.
Expression
Specifies the MIME (Multipurpose Internet Mail Extensions) expression to extract
the attachment from the body of the SOAP response. For each expression specified
here, specify a dataset variable to which to store the extracted data and a data
type. The ordering of the expressions has no significance to CA Process Automation.
Use the Add/Delete/Edit buttons to add MIME attachments.
Content Type
Specifies the content type of the MIME attachment (for example: text).
Content ID
Specifies the unique identifier for the MIME attachment.
File URL

Specifies the URL of the MIME attachment. Click the Browse button (...) to locate a
URL on a local or network drive.

Web services (WS) security enables CA Process Automation to conduct secure SOAP
message exchanges with a Web service that requires additional security.

474 Content Designer Reference

Invoke SOAP Method Operator

WS security features:
® Timestamps

m UsernameTokens
® Signatures

® Encryption

Note: The WS security parameters can only be set in the operators. No operator
category parameters for WS security are available.

Once defined, the following parameters (or portions of the parameters) are included in
the SOAP request header's <wsse:Security> tag. The Web service then:
m Reviews these parameters for authentication.
m Verifies that the SOAP request was not modified at any point while in transit
between the client and the server.
Common WS Security Parameters
Actor

Sets the actor attribute of the <wsse:Security> header of the SOAP request. Leave
this field blank if no actor is specified or if you use SOAP 1.2. This attribute is set in
the <wsse:Security> header if Add Timestamp, Add Username Token, Add
Signature, or Add Encryption are set.

Must Understand

Sets the mustUnderstand attribute of the <wsse:Security> header if Add
Timestamp, Add Username Token, Add Signature, or Add Encryption are set.

Timestamp
Add Timestamp

If this check box is selected, CA Process Automation adds a new timestamp to the
<wsse:Security> header, and all of the Timestamp Parameters are enabled.

Timestamp Parameters
Click the Timestamp Parameters field to open the timestamp parameters.
Time to Live (sec)

The time difference between when the SOAP request was created and when it
expires. If this field is left blank, it defaults to 0 and the Expires time is not set.
If the timestamp expires, the Web service rejects the SOAP request.

Set Timestamp Precision to milliseconds

If this check box is selected, CA Process Automation sets the timestamp
precision to milliseconds.

Chapter 15: Web Services 475

Invoke SOAP Method Operator

Username Token
Add Username Token

If this check box is selected, CA Process Automation adds a new Username token to
the <wsse:Security> header. All of the Username Token parameters are enabled.

Username Token Parameters

Click the Username Token Parameters field to open the Username Token
parameters.

User name
The user name of the Username Token.
Password
The password of the Username Token.
Password Type
The type of password:
m Oforclear text
m 1 fordigest (the password is encrypted and not delivered in clear text)
m 2 (or any other value) for no password
Add Nonce?

If this check box is selected, adds a nonce element (such as a hash value) to the
Username Token. This element may not be required by the Web service.

Add Created?

If this check box is selected, adds a Created element to the Username Token for
when the Username Token was created. This element may not be required by
the Web service.

Note: The Nonce and Created elements are automatically added to the Username
Token if Digest is selected as the password type.

Keystore Parameters

When you sign and/or encrypt a SOAP request, many keys are necessary to handle
various responsibilities. CA Process Automation uses keys in WS Security to sign and/or
encrypt the SOAP request and to validate the signature/decryption of the SOAP
response (if applicable).

CA Process Automation uses a keystore (a repository of security certificates) to maintain
the numerous keys used in WS Security. Keystores provide organization and
consolidation for keys, and prevent other users from accessing the unique private keys.
You must create a keystore (see page 477) yourself or use an existing one.

476 Content Designer Reference

Invoke SOAP Method Operator

Create a Keystore

When using WS Security, keystore options include the following options:
m |f you sign the SOAP request (or parts of it), this keystore contains:
— The private key to use to sign the request.

- The associated public key to use by the receiver to validate the signature. A
reference to this public key is added to the signed SOAP request.

m [f you encrypt the SOAP request (or parts of it), this keystore contains the public key
to use to encrypt the symmetric key (used to encrypt the request).

m [f you validate the signature of the SOAP response, this keystore contains the public
key to use to validate the signature (if applicable).

m [f you decrypt the SOAP response, this keystore contains the private key to use to
decrypt the response.

The parameters to define the keystore that is used to sign or encrypt a SOAP request are

as follows.

Signature/Encryption Keystore Path

The path to the keystore.

Signature/Encryption Keystore Password
The password to access the keystore (clear text).

Note: This parameter is not the password to access a private key in the keystore,
but rather the password to access the keystore itself.

Signature/Encryption Keystore Type

The type of keystore. Select either JKS or PKCS12 (which typically has a .p12
extension). If this field is left blank, CA Process Automation uses the default value:
JKS.

You can use a third-party tool to create and build your keystore, or import new
certificates/private keys to an existing keystore. One keystore management tool is
Keytool, which comes with the Java JRE or JDK. Some keytool commands can be found
here:

m http://download.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

m http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html

You can also execute:

keytool —help

Chapter 15: Web Services 477

Invoke SOAP Method Operator

Signature
Add Signature

If this check box is selected, CA Process Automation signs the SOAP request and
adds a signature to the <wsse:Security> header. A private key in the keystore signs
the content of the SOAP request. Also, all the fields in the Signature Parameters are
enabled.

Signature Parameters
Click the Signature Parameters field to open the Signature Parameters.
Private Key Alias
The alias of the key to use for signing (the key alias inside the keystore).
Private Key Password

The password of the key to use for signing. This parameter represents the key
password inside the keystore.

Canonicalization Algorithm

The canonicalization method that is used to serialize the data (SOAP request
body or the parts specified to be signed) before applying the signature. Leave
this field blank to use the implementation default exclusive XML
canonicalization algorithm: xml-exc-c14n#.

Signature Algorithm

The signature algorithm to use. If this field is blank, an attempt is made to
detect and use a signature algorithm that matches the data stored in the key.

Public Key Identifier Type

The key identifier used to set up the certificate (public key) identification
elements in the signature. The receiver uses this identifier to identify the
signature certificate (public key) used to validate the signature of the SOAP
request.

If this field is left blank, it defaults to 0. The operator uses the default key
identifier (the Issuer Name and Serial Number) from the implementation.

Select one of the following integer inputs:

m 1 for Binary Security Token: Adds <wsse:SecurityTokenReference> to the
Signature element, which references the signature certificate (public key)
using a URI fragment in a <wsse:Reference> element. The URI fragment
references the signature public key, which is included (as binary data) in
the <wsse:BinarySecurityToken> element of the <wsse:Security> header.

m 2 forIssuer Name and Serial Number: Adds a
<wsse:SecurityTokenReference> to the Signature element, which
references the signature certificate (public key) using a
<ds:X509Data><ds:X509:IssuerSerial> element. This element uniquely
identifies a certificate by its X.509 issuer name and serial number.

478 Content Designer Reference

Invoke SOAP Method Operator

m 3 for X509 Certificate Identifier: Adds a <wsse:SecurityTokenReference> to
the Signature element, which references the signature certificate (public
key) using a <wsse:Keyldentifier
ValueType="0asis-200401-wss-x509-token-profile-1.04X509v3"> element.

m 4 for Subject Key Identifier: Adds a <wsse:SecurityTokenReference> to the
Signature element, which references the signature certificate (public key)
using a <wsse:Keyldentifier
ValueType="#oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeylde
ntifier"> element.

Parts to Sign

Select the parts of the SOAP request to sign. Click Add to enter either a security
ID or a Name/Namespace combination of the element to sign.

Note: Leave the Parts to Sign field blank to sign the body of the SOAP request.

m WSU ID: The wsu:id attribute of the element to sign. You can add wsu:id as
an attribute of an element in the SOAP request and you can specify your
own value. For example:

<token wsu:id="123"> </token>
The definition of the WSU namespace is shown in the following statement:

xmins:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-w
ssecurity-utility-1.0.xsd"

m Name: The name of the element to sign.

m Namespace: The namespace URI (not the local name of the namespace) of
the element to sign. For example:

"http://www.ca.com/itpam"

If the WSU ID is specified, then the Name and Namespace are both ignored.

Encryption
Add Encryption

If this check box is selected, CA Process Automation encrypts the SOAP request and
adds a new encrypted symmetric key to the <wsse:Security> header of the SOAP
request. CA Process Automation uses a symmetric key to encrypt the content of the
SOAP request. The certificate (public key), provided in the keystore, encrypts the
symmetric key itself and includes it in the <wsse:Security> header. If this field is
selected, then all the fields in the Encryption Parameters are enabled.

Encryption Parameters
Click the Encryption Parameters field to open the Encryption Parameters.
Public Key Alias

The alias of the certificate (public key) to use for encrypting the symmetric key.
This parameter defines the certificate's (public key) alias inside the keystore.

Chapter 15: Web Services 479

Invoke SOAP Method Operator

Canonicalization Algorithm

The canonicalization method used to serialize the data before applying the
encryption. Leave this field blank to use a standard serialization.

Symmetric Encryption Algorithm

The symmetric encryption algorithm to use to encrypt the data. If blank, then
AES128 is used. This algorithm defines the type of symmetric key to use to
encrypt the data.

m Tripledes-cbc: Encryption method to use triple DES as the symmetric
algorithm to encrypt data. This method uses a key that is 8 bytes - 24 bits
long.

m aesl28-cbc: Encryption method to use AES with a 128-bit key as the
symmetric algorithm to encrypt data.

m aesl92-cbc: Encryption method to use AES with a 192-bit key as the
symmetric algorithm to encrypt data.

m aes256-cbc: Encryption method to use AES with 256-bit key as the
symmetric algorithm to encrypt data.

Note: You must upgrade two Java security library jars before using the
aes192-cbc and aes256-cbc encryption algorithms, or you receive an error:

Illegal key size or default parameters.

To upgrade the jars, download the Java Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Policy Files:

m US_export_policy.jar
m local_policy.jar

They can be downloaded from Oracle's web site.
http://www.oracle.com/technetwork/java/javase/downloads/index.html
Overwrite the current (same) jars (located at
C:\path_to_JRE_used_by_PAM\lib\security) with these new ones.

Encrypt the symmetric key?

If this check box is selected, CA Process Automation encrypts the symmetric
key that was used to encrypt the data and includes it in the
<wsse:security><xenc:EncryptedKey> header.

Symmetric Key Encryption Algorithm

The algorithm used to encrypt the symmetric key and is only applicable if the
key is to be encrypted. If no algorithm is specified, then RSA15 is used.

480 Content Designer Reference

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Invoke SOAP Method Operator

Public Key Identifier Type

The key identifier used to set up the certificate (public key) identification
elements in the <xenc:EncryptedKey> element. The receiver uses the private
key that corresponds to this certificate (public key) to decrypt the symmetric
key. The symmetric key is then used to decrypt the SOAP request.

If this field is left blank, it defaults to 0. The operator uses the default key
identifier of the implementation: Issuer Name and Serial Number.

Select one of the following integer inputs:

1 for Binary Security Token: Adds a <wsse:SecurityTokenReference> to the
<xenc:EncryptedKey> element, which references the certificate (public
key) using a URI fragment in a <wsse:Reference> element. The URI
fragment references the public key. The public key is included (as binary
data) in the <wsse:BinarySecurityToken> element of the <wsse:Security>
header.

2 for Issuer Name and Serial Number: Adds a
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element,
which references the certificate (public key) using a
<ds:X509Data><ds:X509:IssuerSerial> element. This element uniquely
identifies a certificate by its X.509 issuer name and serial number.

3 for X509 Certificate Identifier: Adds a <wsse:SecurityTokenReference> to
the <xenc:EncryptedKey> element, which references the certificate (public
key) using a <wsse:Keyldentifier

ValueType="0asis-200401-wss-x509-token-profile-1.04X509v3"> element.

4 for Subject Key Identifier: Adds a <wsse:SecurityTokenReference> to the
<xenc:EncryptedKey> element, which references the certificate (public
key) using a <wsse:Keyldentifier
ValueType="#oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeylde
ntifier"> element.

8 Thumbprint SHA1 Identifier: Adds a <wsse:SecurityTokenReference> to
the <xenc:EncryptedKey> element, which references the certificate (public
key) using a <wsse:Keyldentifier
ValueType="#oasis-wss-soap-message-security-1.1#ThumbprintSHA1">
element.

Chapter 15: Web Services 481

Invoke SOAP Method Operator

Parts to Encrypt

Select the parts of the SOAP request to encrypt. Click Add to enter either a
security ID (WSU ID) or a Name/Namespace combination of the element to
encrypt.

Note: Leave this field blank to encrypt the body content of the SOAP request.

WSU ID: The wsu:id attribute of the element to encrypt. You can add the
wsu:id as an attribute of an element in the SOAP request and specify your
own value. For example:

<token wsu:id="123"> </token>
The definition of the WSU namespace is the following:

xmins:wsu=http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-ws
security-utility-1.0.xsd

Note: If the WSU ID is specified, then the Name and Namespace are both
ignored.

Name: The name of the element to encrypt.

Namespace: The namespace URI (not the local name of the namespace) of
the element to encrypt.

For example:
http://www.ca.com/pam

Encode: Select Content to encrypt the content of the element, or Element
to encrypt the entire element.

Signature First?

If this check box is selected, CA Process Automation applies the signature before
the encryption. If this check box is not selected, CA Process Automation applies the
encryption before the signature. This field is useful if the same data in the SOAP
request is encrypted and signed.

Decrypt and Validate Signature of SOAP Response

If this check box is selected, CA Process Automation decrypts the content of the
SOAP Response and also validates its signature (if applicable). Select this check box
to enable the Decryption Private Key Password field.

Decryption Private Key Password

The password to access the decryption private key inside the keystore. Use this
password to access the private key to use when decrypting an encrypted SOAP
response.

482 Content Designer Reference

Invoke SOAP Method Operator

Encryption/Signature Process for the SOAP Request

The Invoke SOAP Method operator and the Invoke SOAP Method Async operator sign
and/or encrypt the SOAP request body (or any parts of the request) in the following

manner:
Encryption

1. CA Process Automation uses the Canonicalization Algorithm to serialize the
data to be encrypted. This data includes either the entire request body or the
parts specified in Parts to Encrypt.

2. CA Process Automation uses a symmetric key (depending on the Symmetric
Encryption Algorithm) to encrypt the data. This data includes either the entire
request body or the parts specified in Parts to Encrypt.

3. CA Process Automation uses the Public Key Alias to retrieve the public key from
the keystore. The public key then encrypts the symmetric key using the
algorithm specified in the Symmetric Key Encryption Algorithm.

4. CA Process Automation adds the encrypted symmetric key to the SOAP request
in the <xenc:EncryptedKey> element.

5. CA Process Automation adds a reference to the public key (which was used to
encrypt the symmetric key) to the SOAP request depending on the type of
reference specified in the Public Key Identifier Type.

6. The receiver decrypts the symmetric key, then uses the decrypted symmetric
key to decrypt the SOAP request.

Signature

1. CA Process Automation uses the Private Key Alias and Private Key Password to
retrieve the private key from the keystore.

2. CA Process Automation uses the Canonicalization Algorithm to serialize the
data to sign. This data includes either the entire request body or the parts
specified in Parts to Sign.

3. CA Process Automation uses the private key from the keystore to sign the
content of the SOAP request using the Signature Algorithm specified by the
user. Either the entire request body or the parts specified in Parts to Sign are
signed.

4. CA Process Automation adds a reference to the certificate/public key,
associated with the private key, to the SOAP request. The type of reference is
specified by the user in the Public Key Identifier Type.

5. The receiver uses the public key to validate the signature in the SOAP request.

Troubleshooting WS Security

The Invoke SOAP Method and Invoke SOAP Method Async operators can fail when
applying WS Security in the following cases.

Chapter 15: Web Services 483

Invoke SOAP Method Operator

Unable to Build a Crypto to Managde the Keystore

An error displays if the operator is unable to build a crypto to manage the keystore:

SOAP invocation failed: Unable to build a Crypto for the keystore containing the
Signature/Encryption keys..

This error can be due to:

m Bad keystore password

m Bad keystore type

m The keystore path points to a file that is not a keystore.

Monitor the CA Process Automation logs, in the error stack, to gain an indication of the
nature of the problem. For instance:

m Bad keystore password: Keystore was tampered with, or password was incorrect.

m Bad keystore type: java.security.KeyStoreException: x not found (where x is the
type provided)

m Keystore path points to a file that is not a keystore: Invalid keystore format.

Signature Errors

When signing the SOAP request, problems can occur when:

m The keystore path does not exist on the computer that contains the touchpoint.
m The keystore path is missing.

m The private key alias is missing.

®m You attempt to sign a non-existent part of the SOAP request. The reason field
contains a message:

Element to encrypt/sign not found..

m The private key alias does not exist in the keystore. The reason field contains a
message:

No certificates for user x were found for signature..

Where x is the private key alias provided.

m The private key password is required but not provided, or the provided password is
wrong. The reason contains a message:

Cannot recover key..
®m You provide a bad canonicalization algorithm. The reason field contains a message:
Unknown canonicalizer. No handler installed for URI x..

Where x is the name of the canonicalization algorithm provided.

484 Content Designer Reference

Invoke SOAP Method Operator

Encryption Errors

You provide a bad signature algorithm. The reason field contains a message:
The requested algorithm x does not exist...

Where x is the name of the signature algorithm provided.
You provide a bad public key identifier type. The reason field contains a message:

Unsupported key identification..

When encrypting the SOAP request, problems can occur when:

The keystore path does not exist on the computer that contains the touchpoint.
The keystore path is missing.

You attempt to encrypt a non-existent part of the SOAP request. The reason field
contains a message:

Element to encrypt/sign not found..

You attempt to use symmetric encryption algorithm aes192-cbc or aes256-cbc
without upgrading to the unlimited strength jurisdiction policy jars. The reason field
contains a message:

Illegal key size or default parameters.

The public key alias does not exist in the keystore. The reason field contains a
message:

No certificates for user x were found for encryption..

Where x is the public key alias provided.

You provide a bad encryption algorithm. The reason field contains a message:
SOAP invocation failed: Unable to encrypt the SOAP message.null.

The WSS4) library throws a null pointer error in this case.

You provide a bad symmetric key encryption algorithm. The reason field contains a
message:

unsupported key transport encryption algorithm: x
Where x is the symmetric key encryption algorithm provided.
You provide a bad public key identifier type. The reason field contains a message:

Unsupported key identification..

Chapter 15: Web Services 485

Invoke SOAP Method Operator

Decryption Errors

Note: If you are encrypting a part of the SOAP request, then signing it, be sure to
encrypt it as content. This action ensures its wsu:id (or name and namespace) remains
in the SOAP request after encryption and before signing. Otherwise, that part is not
found when attempting to sign it.

A bad password specified in the Decryption Private Key Password field fails the
operator. The reason field contains a message:

Unable to apply WSS security on incoming message (SOAP Response).

The signature or decryption is invalid. The nested exception is: java.security.

UnrecoverableKeyException: Get Key failed:

The given final block is not properly padded.

Output Parameters

SOAP Call Data

The Invoke SOAP Method operator includes the following output parameters.

serviceURL

The service URL the SOAP call uses.
methodName

Method name to call.
userName

Username for HTTP basic authentication.
password

Password for HTTP basic authentication.

486 Content Designer Reference

Invoke SOAP Method Operator

httpAuth

Either true or false, depending on your selection of the "Use HTTP Basic
Authentication?" check box.

soapVersion

SOAP version to use while making a SOAP call. Values can be SOAP 1.1 or SOAP 1.2.
inputSource

Input source for the SOAP call. This value can be:

m InlineText

m Preformatted SOAP File

m Expression

inlineText

Contains the inline text data that is used for the SOAP call. This variable only
populates when you select Inline Text as the input source.

Example:

<checkServerStatus xmlns="http://www.ca.com/itpam">
<auth>

<token>token _</token>

<user>user__</user>

<password>password _</password>

</auth>

</checkServerStatus>

FileName

Contains the inline text data that is used for the SOAP call. This variable is only
populated when you select Preformatted SOAP File as the input source.

Chapter 15: Web Services 487

Invoke SOAP Method Operator

Expression Value

Contains the inline text data used for the SOAP call. This variable is only populated
when you select Expression as the input source.

SavedCallFileName

Populated with the file name provided in the Saved Call File field. This file contains
the actual SOAP envelope that is used to make a SOAP call.

Example of a saved call file:

<?xml version="1.0" encoding="UTF-8"?><S0AP-ENV:Envelope

xmlns :SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"><S0AP-ENV:Header/><S0AP
-ENV:Body><checkServerStatus xmlns="http://www.ca.com/itpam">
<auth><token>token </token><user>user </user><password>password </password
></auth></checkServerStatus></SOAP-ENV:Body></SOAP-ENV:Envelope>

Dynamic Parameters
Paramsyle

Returns the parameter style that you selected under the Dynamic Parameter field:
Xpath Assignments or MacroExpansion.

DynamicParamsinfo
An array of value maps; displays the number of value maps it contains.
DynamicParamsdata

Returns query, value, and type.

Call Results Parameters
responseFileName

The file name that you provided in the Response File field. This file contains the
Response received by doing a SOAP call.

xPathQuery

The xpath query that is defined for extracting the data from the call results.
datasetVar

The variable that is created to hold the extracted call results.
Type

The variable that holds the data type that the user defined to hold the call results.

488 Content Designer Reference

Invoke SOAP Method Operator

isExtractToDataSet

This variable returns true when you check "Extract SOAP response body to Dataset
variable", or false otherwise.

isExtractHeadersToDataSet

This variable returns true when you check "Extract SOAP Header to Dataset
variable", or false otherwise.

isExtractHeadersTolndividualDataSet

This variable returns true when you check "Extract first-level SOAP Header elements
into individual Dataset variable", or false otherwise.

isExtractTolndividualDataSet

This variable holds "true" when you check "Extract first-level SOAP Header elements
into individual Dataset variables", or false otherwise.

isStripXMLNamespaces

This variable holds true you check "Strip XML name Spaces from Response", or false
otherwise.

Operation Results
Depending on the selection of check boxes in the Call Results parameters, the operation
results holds the output of the SOAP Call Results.
Soap Response Body
Stores the complete SOAP response body.
Soap Response Header Data
Stores the response header.
SoapResponseHeader
Contains the stripped data of the SOAP header response.
Soap Response Data

Contains the stripped data of the SOAP call results.

Chapter 15: Web Services 489

Invoke SOAP Method Async Operator

MIME Attachments

isResolvedByExpression

Returns false when Is an expression? check box under the MIME Attachment is
unchecked, or true if checked.

Selecting this check box means that the MIME attachment is given as an expression
and that expression refers the actual MIME attachment.

Expressionfield

This variable holds the expression that refers to the actual MIME attachment.
attachmentFields

This parameter is an ValueMap array that holds the number of elements it contains.
Content type

Contains the content type of the MIME attachment.
ContentID

Contains the ContentID that the MIME attachment is uniquely identified with.
FileURL

Path of the MIME attachment.

Invoke SOAP Method Async Operator

The Invoke SOAP Method Async operator supports asynchronous SOAP-based Web
service methods. The operator in this case sends a message asynchronously to a
receiver expecting a response at a later time. The sender tags the request with an
identifier allowing the response to be correlated with the originating request. This
operator is used and configured very much like the Invoke SOAP Method operator.

Imvoke S0AP-hased application

|_|'__.-|
1
2 Campleted &) Failed
Operation was successiul Cperation failed
Result=1 Fesult =0

490 Content Designer Reference

Invoke SOAP Method Async Operator

Input Parameters
The Invoke SOAP Method Async operator provides the following input parameters:

WSDL Explorer
WSDL Wizard

A wizard that lets you select SOAP methods. Click to open the WSDL Explorer
window, where you can enter:

m WSDL URL (Enter a WSDL URL, then click Load. The wizard populates the
remaining fields.)

m WSDL services
m WSDL ports

m WSDL operations

SOAP Call Data Properties
Service URL

Specifies the URL for the SOAP service. The URL is typically accessed over HTTP or
HTTPS. The URL is typically an entry point for one or more methods.

Method name

Specifies the method or function to invoke. The method is passed to the SOAP
service as a MIME SOAPAction header.

Authorized User for Basic SOAP or HTTP Authentication

A user name authorized to perform the call on the SOAP server. This user name is
used for basic SOAP authentication or basic HTTP authentication. Leave this field
blank if basic SOAP and HTTP authentications are not required.

Password for Basic SOAP or HTTP Authentication

The password for the user authentication. This password is used for basic SOAP
authentication or basic HTTP authentication. Leave this field blank if basic SOAP and
HTTP authentications are not required.

Use HTTP Basic Authentication?

Select this check box to use the authorized user/password for HTTP authentication.
Disable it to use the authorized user/password for basic SOAP authentication.

If this feature is enabled and the Authorized User/Password are provided, then
these credentials are used for basic HTTP authentication. WS Security applies if the
user provides the security in the WS Security parameters (see page 475).

If this field is disabled and the Authorized User/Password are provided, then these
credentials are used for basic SOAP authentication. WS Security does not apply
even if the user provides the security in the WS Security parameters (see page 475).

Chapter 15: Web Services 491

Invoke SOAP Method Async Operator

SOAP Version

Select the version of the SOAP server on which the call is made from the drop-down
list. This option provides a hint to the underlying logic, which uses the appropriate
SOAP MessageFactory to use in making the SOAP request. Specify one of the
following options:

m SOAP1.1
m SOAP1.2

Input source

Specifies the source for the SOAP service input request. Any of the following
methods should include a complete properly formatted XML message, which may
or may not include a SOAP envelope:

Preformatted SOAP File

Specifies that the input request is specified in a preformatted SOAP file. If you
select this option, specify the path to the file in the File name field. The file
should contain a message in a valid XML document.

Inline Text

Specifies that the input request is specified with the SOAP Client Call operator.
If you select this option, use the Inline text option to specify the formatted
SOAP input message.

Expression

Specifies that the SOAP request is contained in a CA Process Automation
expression. If you select this option, specify the CA Process Automation
expression in the Expression field.

The input request may contain macros and XPath assignments that dynamically
modify the SOAP request at runtime. If necessary, these macros and XPath
assignments allow the SOAP request to be updated with values obtained at
runtime.

Inline text

If Input source is set to Inline Text, click the Browse button (...) to open the Inline
Text dialog and enter a formatted SOAP input message. To read in a SOAP message
from a text file, click the Browse button (...) in the Inline Text dialog to specify an
existing file on a local or network drive.

File name

If Input source is set to Preformatted SOAP File, this field specifies the fully qualified
name of the file relative to the touchpoint running the Web Services operators.

Expression

Specifies a CA Process Automation expression from which to extract the SOAP
request.

492 Content Designer Reference

Invoke SOAP Method Async Operator

Dynamic Parameters

Saved call file

Specifies the full path to the file to which to write the final outbound SOAP request.
This option is useful for validating that the data was sent to the Web Services
operators. If the SOAP request is rejected due to erroneous values, the saved file
can assist in debugging the request before transmitting it to the Web Services
operators again.

The Dynamic Parameters specify which values to update in a SOAP request.

Parameter style

Specifies the method with which to update values in a SOAP request. The Web
Services operators support two mechanisms at run time:

Macro Expansion

Specifies that macros are used in the Parameters list to update values in a
SOAP request.

XPath Assignments

Specifies that XPath expressions are used in the Parameters list to update
values in a SOAP request.

Parameters list

Specifies the parameters that specify unique data entries within the SOAP request.
Click the Add button to add a parameter, the Edit button to edit the currently
selected parameter, or the Delete button to delete the currently selected
parameter. It is a best practice to add the parameters in the same order that they
are specified by the WSDL for the SOAP call.

To open the Parameters List dialog, click the Add or Edit button, and set the
following parameter values:

Macro name-X-Path

Specifies the name of the macro or the XPath query. If it is the name of a
macro, then the macro name will be substituted by the value. If it is an XPath
query, then the node that is returned by the query will be updated with the
value.

Value

Specifies an expression that returns a run-time value for the parameter.
Type

Specifies one of the following three data types for the parameter:

m Integer Value

m String Value

m XML Fragment

Chapter 15: Web Services 493

Invoke SOAP Method Async Operator

Call Results Properties

The following Call Results parameters determine how to save the results of a SOAP call.
Response save file

Specifies the fully qualified path for the file that restores the response to the SOAP
request. Any existing file is overwritten by a new response.

Extract SOAP response first-level elements to individual Dataset variables

Saves the first level element within the body of the SOAP response to separate
dataset variable if the SOAP response exceeds 12 kilobytes.

Extract SOAP response body to Dataset variable
Saves the body of the response to a dataset variable.
Extract SOAP Header to Dataset variable
Saves the header of a response to a dataset variable.
Extract SOAP Header first-level elements to individual Dataset variables
Saves the header of the response to individual dataset variables.
Strip XML Namespaces from Response

Strips the XML namespaces from the response so that you do not need to use the
local-name() function.

Additional extracted data

Specifies XPath expressions to extract data from the body of the SOAP response.
For each expression specified here, specify a dataset variable to which to store the
extracted data and a data type. Click the Add button to add an expression, the Edit
button to edit a selected existing expression, or the Delete button to delete a
selected expression. The ordering of the expressions has no significance to CA
Process Automation.

To edit the following parameter settings, click the Add or Edit button.
XPath expression
Specifies the XPath expression.

Dataset variable

Specifies the name of an operator dataset variable in which to save values extracted
based on the selected XPath expression.

494 Content Designer Reference

Invoke SOAP Method Async Operator

MIME Attachments

WS Security

Type

Specifies the type of element being extracted from the response. Select one of the
following currently supported types:

m Integer

m String

m Integer Array

m String Array

m XML Fragment

m XML Fragment Array

If the content that you want to send is already in a dataset variable, use the Expression
field.

Is an expression?
If selected, an expression must resolve the attachment.
Expression
Specifies the MIME (Multipurpose Internet Mail Extensions) expression to extract
the attachment from the body of the SOAP response. For each expression specified
here, specify a dataset variable to which to store the extracted data and a data
type. The ordering of the expressions has no significance to CA Process Automation.
Use the Add/Delete/Edit buttons to add MIME attachments.
Content Type
Specifies the content type of the MIME attachment (for example: text).
Content ID
Specifies the unique identifier for the MIME attachment.
File URL

Specifies the URL of the MIME attachment. Click the Browse button (...) to locate a
URL on a local or network drive.

Web services (WS) security enables CA Process Automation to conduct secure SOAP
message exchanges with a Web service that requires additional security.

WS security features:

® Timestamps

m UsernameTokens

Chapter 15: Web Services 495

Invoke SOAP Method Async Operator

m Signatures

® Encryption

Note: The WS security parameters can only be set in the operators. No operator
category parameters for WS security are available.

Once defined, the following parameters (or portions of the parameters) are included in
the SOAP request header's <wsse:Security> tag. The Web service then:
m Reviews these parameters for authentication.

m Verifies that the SOAP request was not modified at any point while in transit
between the client and the server.

Common WS Security Parameters
Actor

Sets the actor attribute of the <wsse:Security> header of the SOAP request. Leave
this field blank if no actor is specified or if you use SOAP 1.2. This attribute is set in
the <wsse:Security> header if Add Timestamp, Add Username Token, Add
Signature, or Add Encryption are set.

Must Understand
Sets the mustUnderstand attribute of the <wsse:Security> header if Add
Timestamp, Add Username Token, Add Signature, or Add Encryption are set.
Timestamp
Add Timestamp

If this check box is selected, CA Process Automation adds a new timestamp to the
<wsse:Security> header, and all of the Timestamp Parameters are enabled.

Timestamp Parameters

Click the Timestamp Parameters field to open the timestamp parameters.

Time to Live (sec)

The time difference between when the SOAP request was created and when it
expires. If this field is left blank, it defaults to 0 and the Expires time is not set.
If the timestamp expires, the Web service rejects the SOAP request.

Set Timestamp Precision to milliseconds

If this check box is selected, CA Process Automation sets the timestamp
precision to milliseconds.

496 Content Designer Reference

Invoke SOAP Method Async Operator

Username Token

Keystore Parameters

Add Username Token

If this check box is selected, CA Process Automation adds a new Username token to
the <wsse:Security> header. All of the Username Token parameters are enabled.

Username Token Parameters

Click the Username Token Parameters field to open the Username Token
parameters.

User name
The user name of the Username Token.
Password
The password of the Username Token.
Password Type
The type of password:
m Oforclear text
m 1 fordigest (the password is encrypted and not delivered in clear text)
m 2 (or any other value) for no password
Add Nonce?

If this check box is selected, adds a nonce element (such as a hash value) to the
Username Token. This element may not be required by the Web service.

Add Created?

If this check box is selected, adds a Created element to the Username Token for
when the Username Token was created. This element may not be required by
the Web service.

Note: The Nonce and Created elements are automatically added to the Username
Token if Digest is selected as the password type.

When you sign and/or encrypt a SOAP request, many keys are necessary to handle
various responsibilities. CA Process Automation uses keys in WS Security to sign and/or
encrypt the SOAP request and to validate the signature/decryption of the SOAP
response (if applicable).

CA Process Automation uses a keystore (a repository of security certificates) to maintain
the numerous keys used in WS Security. Keystores provide organization and
consolidation for keys, and prevent other users from accessing the unique private keys.
You must create a keystore (see page 477) yourself or use an existing one.

Chapter 15: Web Services 497

Invoke SOAP Method Async Operator

Create a Keystore

When using WS Security, keystore options include the following options:
m |f you sign the SOAP request (or parts of it), this keystore contains:
— The private key to use to sign the request.

- The associated public key to use by the receiver to validate the signature. A
reference to this public key is added to the signed SOAP request.

m [f you encrypt the SOAP request (or parts of it), this keystore contains the public key
to use to encrypt the symmetric key (used to encrypt the request).

m [f you validate the signature of the SOAP response, this keystore contains the public
key to use to validate the signature (if applicable).

m [f you decrypt the SOAP response, this keystore contains the private key to use to
decrypt the response.

The parameters to define the keystore that is used to sign or encrypt a SOAP request are

as follows.

Signature/Encryption Keystore Path

The path to the keystore.

Signature/Encryption Keystore Password
The password to access the keystore (clear text).

Note: This parameter is not the password to access a private key in the keystore,
but rather the password to access the keystore itself.

Signature/Encryption Keystore Type

The type of keystore. Select either JKS or PKCS12 (which typically has a .p12
extension). If this field is left blank, CA Process Automation uses the default value:
JKS.

You can use a third-party tool to create and build your keystore, or import new
certificates/private keys to an existing keystore. One keystore management tool is
Keytool, which comes with the Java JRE or JDK. Some keytool commands can be found
here:

m http://download.oracle.com/javase/1.5.0/docs/tooldocs/solaris/keytool.html

m http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/keytool.html

You can also execute:

keytool —help

498 Content Designer Reference

Invoke SOAP Method Async Operator

Signature
Add Signature

If this check box is selected, CA Process Automation signs the SOAP request and
adds a signature to the <wsse:Security> header. A private key in the keystore signs
the content of the SOAP request. Also, all the fields in the Signature Parameters are
enabled.

Signature Parameters
Click the Signature Parameters field to open the Signature Parameters.
Private Key Alias
The alias of the key to use for signing (the key alias inside the keystore).
Private Key Password

The password of the key to use for signing. This parameter represents the key
password inside the keystore.

Canonicalization Algorithm

The canonicalization method that is used to serialize the data (SOAP request
body or the parts specified to be signed) before applying the signature. Leave
this field blank to use the implementation default exclusive XML
canonicalization algorithm: xml-exc-c14n#.

Signature Algorithm

The signature algorithm to use. If this field is blank, an attempt is made to
detect and use a signature algorithm that matches the data stored in the key.

Public Key Identifier Type

The key identifier used to set up the certificate (public key) identification
elements in the signature. The receiver uses this identifier to identify the
signature certificate (public key) used to validate the signature of the SOAP
request.

If this field is left blank, it defaults to 0. The operator uses the default key
identifier (the Issuer Name and Serial Number) from the implementation.

Select one of the following integer inputs:

m 1 for Binary Security Token: Adds <wsse:SecurityTokenReference> to the
Signature element, which references the signature certificate (public key)
using a URI fragment in a <wsse:Reference> element. The URI fragment
references the signature public key, which is included (as binary data) in
the <wsse:BinarySecurityToken> element of the <wsse:Security> header.

m 2 forIssuer Name and Serial Number: Adds a
<wsse:SecurityTokenReference> to the Signature element, which
references the signature certificate (public key) using a
<ds:X509Data><ds:X509:IssuerSerial> element. This element uniquely
identifies a certificate by its X.509 issuer name and serial number.

Chapter 15: Web Services 499

Invoke SOAP Method Async Operator

3 for X509 Certificate Identifier: Adds a <wsse:SecurityTokenReference> to
the Signature element, which references the signature certificate (public
key) using a <wsse:Keyldentifier
ValueType="0asis-200401-wss-x509-token-profile-1.04X509v3"> element.

4 for Subject Key Identifier: Adds a <wsse:SecurityTokenReference> to the
Signature element, which references the signature certificate (public key)
using a <wsse:Keyldentifier
ValueType="#oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeylde
ntifier"> element.

Parts to Sign

Select the parts of the SOAP request to sign. Click Add to enter either a security
ID or a Name/Namespace combination of the element to sign.

Note: Leave the Parts to Sign field blank to sign the body of the SOAP request.

WSU ID: The wsu:id attribute of the element to sign. You can add wsu:id as
an attribute of an element in the SOAP request and you can specify your
own value. For example:

<token wsu:id="123"> </token>
The definition of the WSU namespace is shown in the following statement:

xmins:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-w
ssecurity-utility-1.0.xsd"

Name: The name of the element to sign.

Namespace: The namespace URI (not the local name of the namespace) of
the element to sign. For example:

"http://www.ca.com/itpam"

If the WSU ID is specified, then the Name and Namespace are both ignored.

Encryption

Add Encryption

If this check box is selected, CA Process Automation encrypts the SOAP request and
adds a new encrypted symmetric key to the <wsse:Security> header of the SOAP
request. CA Process Automation uses a symmetric key to encrypt the content of the
SOAP request. The certificate (public key), provided in the keystore, encrypts the
symmetric key itself and includes it in the <wsse:Security> header. If this field is
selected, then all the fields in the Encryption Parameters are enabled.

Encryption Parameters

Click the Encryption Parameters field to open the Encryption Parameters.

Public Key Alias

The alias of the certificate (public key) to use for encrypting the symmetric key.
This parameter defines the certificate's (public key) alias inside the keystore.

500 Content Designer Reference

Invoke SOAP Method Async Operator

Canonicalization Algorithm

The canonicalization method used to serialize the data before applying the
encryption. Leave this field blank to use a standard serialization.

Symmetric Encryption Algorithm

The symmetric encryption algorithm to use to encrypt the data. If blank, then
AES128 is used. This algorithm defines the type of symmetric key to use to
encrypt the data.

m Tripledes-cbc: Encryption method to use triple DES as the symmetric
algorithm to encrypt data. This method uses a key that is 8 bytes - 24 bits
long.

m aesl28-cbc: Encryption method to use AES with a 128-bit key as the
symmetric algorithm to encrypt data.

m aesl92-cbc: Encryption method to use AES with a 192-bit key as the
symmetric algorithm to encrypt data.

m aes256-cbc: Encryption method to use AES with 256-bit key as the
symmetric algorithm to encrypt data.

Note: You must upgrade two Java security library jars before using the
aes192-cbc and aes256-cbc encryption algorithms, or you receive an error:

Illegal key size or default parameters.

To upgrade the jars, download the Java Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Policy Files:

m US_export_policy.jar
m local_policy.jar

They can be downloaded from Oracle's web site.
http://www.oracle.com/technetwork/java/javase/downloads/index.html
Overwrite the current (same) jars (located at
C:\path_to_JRE_used_by_PAM\lib\security) with these new ones.

Encrypt the symmetric key?

If this check box is selected, CA Process Automation encrypts the symmetric
key that was used to encrypt the data and includes it in the
<wsse:security><xenc:EncryptedKey> header.

Symmetric Key Encryption Algorithm

The algorithm used to encrypt the symmetric key and is only applicable if the
key is to be encrypted. If no algorithm is specified, then RSA15 is used.

Chapter 15: Web Services 501

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Invoke SOAP Method Async Operator

Public Key Identifier Type

The key identifier used to set up the certificate (public key) identification
elements in the <xenc:EncryptedKey> element. The receiver uses the private
key that corresponds to this certificate (public key) to decrypt the symmetric
key. The symmetric key is then used to decrypt the SOAP request.

If this field is left blank, it defaults to 0. The operator uses the default key
identifier of the implementation: Issuer Name and Serial Number.

Select one of the following integer inputs:

1 for Binary Security Token: Adds a <wsse:SecurityTokenReference> to the
<xenc:EncryptedKey> element, which references the certificate (public
key) using a URI fragment in a <wsse:Reference> element. The URI
fragment references the public key. The public key is included (as binary
data) in the <wsse:BinarySecurityToken> element of the <wsse:Security>
header.

2 for Issuer Name and Serial Number: Adds a
<wsse:SecurityTokenReference> to the <xenc:EncryptedKey> element,
which references the certificate (public key) using a
<ds:X509Data><ds:X509:IssuerSerial> element. This element uniquely
identifies a certificate by its X.509 issuer name and serial number.

3 for X509 Certificate Identifier: Adds a <wsse:SecurityTokenReference> to
the <xenc:EncryptedKey> element, which references the certificate (public
key) using a <wsse:Keyldentifier

ValueType="0asis-200401-wss-x509-token-profile-1.04X509v3"> element.

4 for Subject Key Identifier: Adds a <wsse:SecurityTokenReference> to the
<xenc:EncryptedKey> element, which references the certificate (public
key) using a <wsse:Keyldentifier
ValueType="#oasis-200401-wss-x509-token-profile-1.0#X509SubjectKeylde
ntifier"> element.

8 Thumbprint SHA1 Identifier: Adds a <wsse:SecurityTokenReference> to
the <xenc:EncryptedKey> element, which references the certificate (public
key) using a <wsse:Keyldentifier
ValueType="#oasis-wss-soap-message-security-1.1#ThumbprintSHA1">
element.

502 Content Designer Reference

Invoke SOAP Method Async Operator

Parts to Encrypt

Select the parts of the SOAP request to encrypt. Click Add to enter either a
security ID (WSU ID) or a Name/Namespace combination of the element to
encrypt.

Note: Leave this field blank to encrypt the body content of the SOAP request.

m WSU ID: The wsu:id attribute of the element to encrypt. You can add the
wsu:id as an attribute of an element in the SOAP request and specify your
own value. For example:

<token wsu:id="123"> </token>
The definition of the WSU namespace is the following:

xmins:wsu=http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-ws
security-utility-1.0.xsd

Note: If the WSU ID is specified, then the Name and Namespace are both
ignored.

m Name: The name of the element to encrypt.

m Namespace: The namespace URI (not the local name of the namespace) of
the element to encrypt.

For example:
http://www.ca.com/pam

m Encode: Select Content to encrypt the content of the element, or Element
to encrypt the entire element.

Signature First?

If this check box is selected, CA Process Automation applies the signature before
the encryption. If this check box is not selected, CA Process Automation applies the
encryption before the signature. This field is useful if the same data in the SOAP
request is encrypted and signed.

Decrypt and Validate Signature of SOAP Response

If this check box is selected, CA Process Automation decrypts the content of the
SOAP Response and also validates its signature (if applicable). Select this check box
to enable the Decryption Private Key Password field.

Decryption Private Key Password

The password to access the decryption private key inside the keystore. Use this
password to access the private key to use when decrypting an encrypted SOAP
response.

Chapter 15: Web Services 503

Invoke SOAP Method Async Operator

Encryption/Signature Process for the SOAP Request

The Invoke SOAP Method operator and the Invoke SOAP Method Async operator sign
and/or encrypt the SOAP request body (or any parts of the request) in the following
manner:

Encryption

1. CA Process Automation uses the Canonicalization Algorithm to serialize the
data to be encrypted. This data includes either the entire request body or the
parts specified in Parts to Encrypt.

2. CA Process Automation uses a symmetric key (depending on the Symmetric
Encryption Algorithm) to encrypt the data. This data includes either the entire
request body or the parts specified in Parts to Encrypt.

3. CA Process Automation uses the Public Key Alias to retrieve the public key from
the keystore. The public key then encrypts the symmetric key using the
algorithm specified in the Symmetric Key Encryption Algorithm.

4. CA Process Automation adds the encrypted symmetric key to the SOAP request
in the <xenc:EncryptedKey> element.

5. CA Process Automation adds a reference to the public key (which was used to
encrypt the symmetric key) to the SOAP request depending on the type of
reference specified in the Public Key Identifier Type.

6. The receiver decrypts the symmetric key, then uses the decrypted symmetric
key to decrypt the SOAP request.

Signature

1. CA Process Automation uses the Private Key Alias and Private Key Password to
retrieve the private key from the keystore.

2. CA Process Automation uses the Canonicalization Algorithm to serialize the
data to sign. This data includes either the entire request body or the parts
specified in Parts to Sign.

3. CA Process Automation uses the private key from the keystore to sign the
content of the SOAP request using the Signature Algorithm specified by the
user. Either the entire request body or the parts specified in Parts to Sign are
signed.

4. CA Process Automation adds a reference to the certificate/public key,
associated with the private key, to the SOAP request. The type of reference is
specified by the user in the Public Key Identifier Type.

5. The receiver uses the public key to validate the signature in the SOAP request.

Troubleshooting WS Security

The Invoke SOAP Method and Invoke SOAP Method Async operators can fail when

applying

WS Security in the following cases.

504 Content Designer Reference

Invoke SOAP Method Async Operator

Unable to Build a Crypto to Managde the Keystore

Signature Errors

An error displays if the operator is unable to build a crypto to manage the keystore:

SOAP invocation failed: Unable to build a Crypto for the keystore containing the
Signature/Encryption keys..

This error can be due to:

m Bad keystore password

m Bad keystore type

m The keystore path points to a file that is not a keystore.

Monitor the CA Process Automation logs, in the error stack, to gain an indication of the
nature of the problem. For instance:

m Bad keystore password: Keystore was tampered with, or password was incorrect.

m Bad keystore type: java.security.KeyStoreException: x not found (where x is the
type provided)

m Keystore path points to a file that is not a keystore: Invalid keystore format.

When signing the SOAP request, problems can occur when:

m The keystore path does not exist on the computer that contains the touchpoint.
m The keystore path is missing.

m The private key alias is missing.

®m You attempt to sign a non-existent part of the SOAP request. The reason field
contains a message:

Element to encrypt/sign not found..

m The private key alias does not exist in the keystore. The reason field contains a
message:

No certificates for user x were found for signature..

Where x is the private key alias provided.

m The private key password is required but not provided, or the provided password is
wrong. The reason contains a message:

Cannot recover key..
®m You provide a bad canonicalization algorithm. The reason field contains a message:
Unknown canonicalizer. No handler installed for URI x..

Where x is the name of the canonicalization algorithm provided.

Chapter 15: Web Services 505

Invoke SOAP Method Async Operator

Encryption Errors

You provide a bad signature algorithm. The reason field contains a message:
The requested algorithm x does not exist...

Where x is the name of the signature algorithm provided.
You provide a bad public key identifier type. The reason field contains a message:

Unsupported key identification..

When encrypting the SOAP request, problems can occur when:

The keystore path does not exist on the computer that contains the touchpoint.
The keystore path is missing.

You attempt to encrypt a non-existent part of the SOAP request. The reason field
contains a message:

Element to encrypt/sign not found..

You attempt to use symmetric encryption algorithm aes192-cbc or aes256-cbc
without upgrading to the unlimited strength jurisdiction policy jars. The reason field
contains a message:

Illegal key size or default parameters.

The public key alias does not exist in the keystore. The reason field contains a
message:

No certificates for user x were found for encryption..

Where x is the public key alias provided.

You provide a bad encryption algorithm. The reason field contains a message:
SOAP invocation failed: Unable to encrypt the SOAP message.null.

The WSS4) library throws a null pointer error in this case.

You provide a bad symmetric key encryption algorithm. The reason field contains a
message:

unsupported key transport encryption algorithm: x
Where x is the symmetric key encryption algorithm provided.
You provide a bad public key identifier type. The reason field contains a message:

Unsupported key identification..

506 Content Designer Reference

Invoke SOAP Method Async Operator

Note: If you are encrypting a part of the SOAP request, then signing it, be sure to
encrypt it as content. This action ensures its wsu:id (or name and namespace) remains
in the SOAP request after encryption and before signing. Otherwise, that part is not
found when attempting to sign it.

Decryption Errors

A bad password specified in the Decryption Private Key Password field fails the
operator. The reason field contains a message:

Unable to apply WSS security on incoming message (SOAP Response).

The signature or decryption is invalid. The nested exception is: java.security.

UnrecoverableKeyException: Get Key failed:

The given final block is not properly padded.

Output Parameters
serviceURL
methodName
userName
password
httpAuth
soapVersion
inputSource

inlineText

SOAP Call Data
serviceURL
The service URL the SOAP call uses.
methodName
Method name to call.
userName
Username for HTTP basic authentication.
password

Password for HTTP basic authentication.

Chapter 15: Web Services 507

Invoke SOAP Method Async Operator

httpAuth

Either true or false, depending on your selection of the "Use HTTP Basic
Authentication?" check box.

soapVersion

SOAP version to use while making a SOAP call. Values can be SOAP 1.1 or SOAP 1.2.
inputSource

Input source for the SOAP call. This value can be:

m InlineText

m Preformatted SOAP File

m Expression

inlineText

Contains the inline text data that is used for the SOAP call. This variable only
populates when you select Inline Text as the input source.

Example:

<checkServerStatus xmlns="http://www.ca.com/itpam">
<auth>

<token>token _</token>

<user>user__</user>

<password>password _</password>

</auth>

</checkServerStatus>

FileName

Contains the inline text data that is used for the SOAP call. This variable is only
populated when you select Preformatted SOAP File as the input source.

508 Content Designer Reference

Invoke SOAP Method Async Operator

Expression Value

Contains the inline text data used for the SOAP call. This variable is only populated
when you select Expression as the input source.

SavedCallFileName

Populated with the file name provided in the Saved Call File field. This file contains
the actual SOAP envelope that is used to make a SOAP call.

Example of a saved call file:

<?xml version="1.0" encoding="UTF-8"?><S0AP-ENV:Envelope

xmlns :SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"><S0AP-ENV:Header/><S0AP
-ENV:Body><checkServerStatus xmlns="http://www.ca.com/itpam">
<auth><token>token </token><user>user </user><password>password </password
></auth></checkServerStatus></SOAP-ENV:Body></SOAP-ENV:Envelope>

Dynamic Parameters
Paramsyle

Returns the parameter style that you selected under the Dynamic Parameter field:
Xpath Assignments or MacroExpansion.

DynamicParamsinfo
An array of value maps; displays the number of value maps it contains.
DynamicParamsdata

Returns query, value, and type.

Call Results Parameters
responseFileName

The file name that you provided in the Response File field. This file contains the
Response received by doing a SOAP call.

xPathQuery

The xpath query that is defined for extracting the data from the call results.
datasetVar

The variable that is created to hold the extracted call results.
Type

The variable that holds the data type that the user defined to hold the call results.

Chapter 15: Web Services 509

Invoke SOAP Method Async Operator

isExtractToDataSet

This variable returns true when you check "Extract SOAP response body to Dataset
variable", or false otherwise.

isExtractHeadersToDataSet

This variable returns true when you check "Extract SOAP Header to Dataset
variable", or false otherwise.

isExtractHeadersTolndividualDataSet

This variable returns true when you check "Extract first-level SOAP Header elements
into individual Dataset variable", or false otherwise.

isExtractTolndividualDataSet

This variable holds "true" when you check "Extract first-level SOAP Header elements
into individual Dataset variables", or false otherwise.

isStripXMLNamespaces

This variable holds true you check "Strip XML name Spaces from Response", or false
otherwise.

Operation Results
Depending on the selection of check boxes in the Call Results parameters, the operation
results holds the output of the SOAP Call Results.
Soap Response Body
Stores the complete SOAP response body.
Soap Response Header Data
Stores the response header.
SoapResponseHeader
Contains the stripped data of the SOAP header response.
Soap Response Data

Contains the stripped data of the SOAP call results.

510 Content Designer Reference

Invoke SOAP Method Async Operator

MIME Attachments

AsyncSoaplntermediateResponse

Contains the complete response along with the headers received from the SOAP
call.

Example (using the CheckServerStatus method):

<SOAP-ENV: Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<checkServerStatusResponse xmlns="http://www.ca.com/itpam">
<serverStatus>Server status ok.</serverStatus>
</checkServerStatusResponse>

</SOAP-ENV: Body>

</SOAP-ENV:Envelope>

AsyncSoaplnterimResponseBody

Contains the body of the SOAP call response.
Example (using the CheckServerStatus method):

<checkServerStatusResponse xmlns="http://www.ca.com/itpam">
<serverStatus>Server status ok.</serverStatus>
</checkServerStatusResponse>

AsyncSoaplinterimResponseHeader

Contains the header of the SOAP call response.
Example (using the CheckServerStatus method):

<SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"/>

isResolvedByExpression

Returns false when Is an expression? check box under the MIME Attachment is
unchecked, or true if checked.

Selecting this check box means that the MIME attachment is given as an expression
and that expression refers the actual MIME attachment.

Expressionfield

This variable holds the expression that refers to the actual MIME attachment.

attachmentFields

This parameter is an ValueMap array that holds the number of elements it contains.

Content type

Contains the content type of the MIME attachment.

Chapter 15: Web Services 511

Invoke SOAP Method Async Operator

ContentID

Contains the ContentID that the MIME attachment is uniquely identified with.
FileURL

Path of the MIME attachment.

512 Content Designer Reference

Chapter 16: CA Process Automation System

Functions

absPath

Syntax

Arguments

Return Value

Examples

System functions can be used in:
m Pre-execution and post-execution of any operator.
m The source code of the Run JavaScript operator.

m Any field that accepts an expression.

In each of these areas, system functions can be accessed by pressing Ctrl+Alt.

This function returns the absolute path that was created with the help of base path and
relative path. If the base path is not provided, the base path to the current process is
used.

sAbsPath
sAbsPath

absPath (path2).
absPath (pathl, path2).

pathl (String)
Specifies the base path.
path2 (String)

Specifies the relative path.

String sAbsPath

The absolute path is returned as a String.

1. sPath = absPath('Processl’)

A process "Process" is in a folder "Folder". To get the full path of a "Process1"
Object (present in the same folder) inside "Process" Object, use absPath('Process1').
In this case, the base path is automatically taken as the base path of "Process"
object.

Chapter 16: CA Process Automation System Functions 513

adjustDate

2. absPath("/folderl/folder2","../process");

Here, the first path is the base path of the object, and then the second is the
relative path with respect to the base path. The answer in this case is
/folder1/process.

adjustDate

This function adjusts a date by a specified number of days, weeks, months or years.
Syntax
newDt = adjustDate(dt, ber, type)

Arguments

dt (java.util.Date)
Specifies the date that needs to be adjusted.

number (Int)
Specifies the value that needs to be adjusted.

type
Specifies the type of the value to be adjusted. Can be one of the following types:
= "y"(year)
s "d"(day)
m "w"(week)

m "m"(month)

Return Value
java.util.Date newDt

The adjusted date is returned as a java.util.Date.
Examples

Assume that today is 2/16/2012.

1. adjustDate(today(),2,'d") returns 2/18/2012, which is two days after today.

2. adjustDate(today(),1'y') returns 2/16/2013, which is one year after today.
This example returns a date.

3. adjustDate(today(),-1,'w') returns 2/9/2012, which is one week before today.

4. adjustDate(today(),-1,'m') returns 1/16/2012, which is one month before today.

514 Content Designer Reference

adjustResourceVals

adjustResourceVals

Syntax

Arguments

Return Value

This function modifies the values and state of a resource.

For more information about Resources, see the Content Designer Guide.

bSuccess = adjustResourceVals(resourcePath, resourceName, freeAmount, total, lock,
unlock, reset)

resPath (String)

Specifies the path of the resources object.
resName (String)

Specifies the name of the resource in the resources object which must be adjusted.
freeAmount (Int)

Specifies the amount of free resources.
total (Int)

The value given in this argument adds up to the existing number of total resources.
lock (boolean)

Specifies True if the resource must be locked. When Lock is set to true, the values
freeamount and total for that resource cannot be set, and the system function
returns false.

unlock (Boolean)
Specifies True if the resource must be unlocked.
Note: You cannot lock and unlock the same resource. Switch between lock and unlock
when using this system function.
reset (Boolean)
Specifies True if the resources object must be reset.

Note: Specifying true takes precedence over all the other operators. All the
parameters of the respective resource are reset to the default values (regardless of
the given inputs in the system function).

bSuccess (Boolean)

This function returns true if successful or false if it fails.

Chapter 16: CA Process Automation System Functions 515

applyXPath

Example

respath = "\Resources";

renName = "LockResource";

freeAmount = 20;

total = 20;

lock = false;

unlock = false;

reset = true;

bSuccess = adjustResourceVals(resPath, resName, freeAmount, total, lock,unlock, reset);

applyXPath

This function extracts XML data using an XPath query and returns an XML fragment with
the list of nodes that were returned by the query.

Syntax

sXML = applyXPath(xmlData, xpathQuery, namespaceAware)

Arguments
xmiData (String)
Specifies the XML on which the XPath query needs to be executed.
xpathQuery (String)
Specifies the XPath query that needs to be executed.
namespaceAware (Boolean)
Specify false to strip namespaces before applying the XPath query, making the
query more simple. This parameter is optional and the default value is true.
Return Value
sXML (String)

An XML fragment containing the list of nodes that were returned by the query.

Example

Process.xpathResult = applyXPath(Process.bookXML, "/bookstore/book[2]");

516 Content Designer Reference

applyXPathToUrl

applyXPathToUrl

Syntax

Arguments

Return Value

This function extracts XML data using an XPath query. The XML is read from the
provided URL. Returns an XML fragment with the list of nodes that were returned by the
query.

sXML = applyXPathToUrl(url, xpathQuery)

url (String)

Specifies the URL of the XML document on which the XPath needs to be executed.
xpath_query (String)

Specifies the XPath query.
namespaceAware (Boolean)

Lets the user provide simpler Xpath expressions (the default value is true). This
option should be false if you want to strip namespaces before applying the XPath
query.

sXML (String)

This function returns an XML fragment containing the list of nodes that were
returned by the query.

Example
sXML = applyXPathToUrl("http://localhost:8080/itpam tutorials/book.xml";,
"/bookstore/book[2]");
checkCalendarDate
This function checks whether the specified date is inside the specified condition. The
condition includes the Include Calendar, Exclude Calendar, Delta, Open Days and Max
shifts. See Calendar Properties for more information about these parameters.
Syntax

bIsAvail = checkCalendarDate(date, includeCalendar, excludeCalendar, delta,
openDays, maxShifts)

Chapter 16: CA Process Automation System Functions 517

checkCalendarDate

Arguments
date (java.util.Date)
Specifies the input date.
includeCalendar (String)
Specifies the path of the include calendar object.
excludeCalendar (String)
Specifies the path of the exclude calendar object.
delta (Int)
Specifies the delta.
openDays (Int)
Specifies the openDays value.
maxShifts (Int)

Specifies the maxshifts value.

Return Value
bisAvail (Boolean)

This function returns true if the specified date is open and false if it not.

Example

Process.sIncCal=absPath("IncCal");
Process.sExcCal=absPath("ExcCal") ;Process.bCaldate =
checkCalendarDate(today(),sIncCal,sExcCal,0,false,0);

518 Content Designer Reference

convertValueToXml

convertValueToXml

Syntax

Arguments

Examples

This function returns an XML fragment based on an array of simple types or a ValueMap
of simple types.

When using a ValueMap, the XML elements are created using field names as tags and
field values as the contents. You can specify a string or null for the tag parameter when
using ValueMaps. If you specify a string, the string is used to create a root element with
the specified tag. The elements that were created from the ValueMap are contained
within that root element. If you specify null, the elements are at the root level.

When using an array, specify a string for the tag parameter. That string is used to create
the element tags with the array values as the element contents.

sXML = convertValueToXml(arrayOrVmap, tag)

arrayOrVmap (Object)
Specifies an array or ValueMap.
tag (String)

Specifies the mandatory tag to use with an array or the optional tag to use with a
ValueMap.

1. Inthis example, Process.array contains values 1, 2, and 3.

Process.xml = convertValueToXml(Process.array, "test")

Process.xml contains the following XML fragment:
<test>l<test><test>2<test><test>3<test>

2. Inthis example, Process.valuemap has two fields with the names "field1" and
"field2" and values "valuel" and "value2".

Process.xml = convertValueToXml(Process.valuemap, null)

Process.xml contains the following XML fragment:
<fieldl>valuel</fieldl><field2>value2</field2>

Chapter 16: CA Process Automation System Functions 519

convertXml

convertXml

Syntax

Arguments

Return Value

This function converts an XML fragment to a ValueMap.

vmResult = convertXml(xmlString)

xmlString (String)

Specifies the XML that needs to be parsed.

vmValue (ValueMap)

ValueMap representation of the data contained in the XML string.

Example
vmResult = convertXml(Process.xmlString)
convertXmlUrl
This function converts the XML document accessible through a URL into a ValueMap.
Syntax
vmResult = convertXmlUrl(url)
Arguments

Return Value

Example

url (String)
Specifies the URL of the XML document that needs to be parsed.

vmResult (ValueMap)

ValueMap representation of the data that was retrieved from the XML document
that the URL identifies.

vmResult = convertXmlUrl(" http://localhost:8080/itpam tutorials/book.xml");

520 Content Designer Reference

createHyperlink

createHyperLink

This function creates an HTML hyperlink element with the specified parameters and
returns a string that will be formatted as ""+name+"".

Syntax
sLink = createHyperLink(url, name)
Arguments
url (String)
Specifies the HTTP URL whose hyperlink needs to be created.

name (String)

Specifies the name of the hyperlink.

Return Value
sLink (String)

A hyperlink with a URL and name as defined by the arguments passed into the
function.

Example

sLink = createHyperLink("http://www.ca.com","CA Technologies");

createResourceObject

This function creates a resources object.

Syntax
bSuccess = createResourceObject(resourcePath)
Arguments

resourcePath (String)

Specifies the path of the resources object.

Return Value
bSuccess (Boolean)

This function returns true if successful or false if it fails.

Chapter 16: CA Process Automation System Functions 521

deleteAttachments

Example
bSuccess = createResourceObject("SyncRes")
deleteAttachments
This function deletes attachments from the CA Process Automation database given an
array of unique IDs.
Syntax
bSuccess = deleteAttachments(AttachmentIDArray)
Arguments

Return Value

Examples

deleteObject

Syntax

AttachmentIDArray (Array)

Specifies an array of unique IDs. The IDs can be Strings, longs, or integers.

bSuccess (Boolean)
m This function returns false only if its arguments are an empty array.

m This function throws an exception (that is, the operator fails) if it is unable to
delete attachments or if invalid arguments are passed.

m This function returns true if it is able to process the delete attachment request
successfully (including the case where the function is unable to delete a few or
all of the attachments).

Process.rglAttachIDs = new Array(1,2,3,4,5);
Process.del = deleteAttachments(Process.rglAttachIDs);

This function deletes and purges the library object specified by the "objectName"
parameter. The input parameter can be a full or relative path. The relative path is
relative to the process in which the script is executed.

bSuccess = deleteObject(objectName)

522 Content Designer Reference

deleteResource

Arguments
objectName (String)
Specifies the full/relative path of the library object which must be deleted and
purged.
Return Value
bSuccess (Boolean)

This function returns true if successful or false if it fails.

Examples
1. deleteObject('/folder/Process')
This example deletes the process object found on the path /folder/Process.
2. deleteObject('Process')
This function is being executed inside the process "Process_1", and Process_1 is in
folder "Folder1" which is present inside the root folder. This function deletes the
process with full path "/Folderl/Process".
deleteResource
This function deletes a resource from a resources object.
Syntax
bSuccess = deleteResource(resourcePath, resourceName)
Arguments

resourcePath (String)

Specifies the path of the resources object.

resourceName (String)
Specifies the name of the resource in the resources object which needs to be
deleted.
Return Value
bSuccess (Boolean)

This function returns true if successful or false if it fails.

Chapter 16: CA Process Automation System Functions 523

deleteValueMapField

Example

bSuccess = deleteResource("/folder/ResObject", "fileLock");

deleteValueMapField

Syntax

Arguments

Return Value

Example

existsAdenda

Syntax

This function deletes a field from a ValueMap.

bSuccess = deleteValueMapField(vMap, fieldName)

vMap (ValueMap)
Specifies the ValueMap whose field needs to be deleted.
fieldName (String)

Specifies the name of the field that needs to be deleted.

bSuccess (Boolean)

Returns true if the deletion was successful and false otherwise.

bSuccess = deleteValueMapField(Process.vMap,"price");

This function checks whether an agenda object exists in the given path. The path can be
an absolute/relative path. The relative path is relative to the process in which the script
is executed.

Note: This system function remains functional only to support backward-compatibility;
use existsSchedule (see page 531) instead.

bExists = existsAgenda(Agendapath)

524 Content Designer Reference

existsCalendar

Arguments

Return Value

Agendapath (String)

Specifies the full/relative path of the agenda object that you want to check the
existence of.

bExists (Boolean)

Returns true if the agenda object exists or false if it does not.

Example
if (existsAgenda("testAgenda"))
{
Process.mseg agenda= "testAgenda exists" ;
}
else
{
Process.mseg agenda= "testAgenda does not exist" ;
}
existsCalendar
This function checks whether a calendar object exists in the given path. The path can be
an absolute/relative path. The relative path is relative to the process in which the script
is executed.
Syntax
bExists = existsCalendar(calendarPath)
Arguments

Return Value

Example

calendarPath (String)

Specifies the full/relative path of the calendar object whose existence needs to be
checked.

bExists (Boolean)

Returns true if the calendar object exists or false if it does not.

bExists = existsCalendar("WorkCalendar");

Chapter 16: CA Process Automation System Functions 525

existsCustomIcon

existsCustomIcon

Syntax

Arguments

Return Value

Example

This function checks whether a custom icon object exists in the given path. The path can
be an absolute/relative path. The relative path is relative to the process in which the
script is executed.

bExists = existsCustomIcon(customIconPath)

customlconPath (String)

Specifies the full/relative path of the custom icon object whose existence needs to
be checked.

bExists (Boolean)

Returns true if the custom icon object exists or false if it does not.

if (existsCustomIcon(customIconPath))

{
Process.mseg_custom icon= "CustomIcon exists" ;
}
else
{
Process.mseg_custom icon= "CustomIcon does not exist" ;
}

existsCustomOperator

Syntax

This function checks whether a custom operator object exists in the given path. The
path can be an absolute/relative path. The relative path is relative to the process in
which the script is executed.

bExists = existsCustomOperator(customOperatorPath)

526 Content Designer Reference

existsDataset

Arguments

Return Value

Example

existsDataset

Syntax

Arguments

Return Value

customOperatorPath (String)

Specifies the full/relative path of the custom operator whose existence needs to be
checked.

bExists (Boolean)

Returns true if the custom operator exists or false if it does not.

if (existsCustomOperator(customOperatorpath))

{
Process.mseg custom operator= "CustomOperator exists" ;
}
else
{
Process.mseg_custom operator= "CustomOperator does not exist" ;
}

This function checks whether a dataset object exists in the given path. The path can be
an absolute/relative path. The relative path is relative to the process in which the script
is executed.

bExists = existsDataset(datasetPath)

datasetPath (String)

Specifies the full/relative path of the dataset whose existence needs to be checked.

bExists (Boolean)

Returns true if the dataset object exists or false if it does not.

Chapter 16: CA Process Automation System Functions 527

existsFolder

Example

existsFolder

Syntax

Arguments

Return Value

Example

if (existsDataset(datasetPath))

{
Process.mseg dataset= "Dataset Common exists" ;
}
else
{
Process.mseg dataset= "Dataset Common does not exist" ;
}

This function checks whether a folder object exists in the given path. The path can be an
absolute/relative path. The relative path is relative to the process in which the script is
executed.

bExists = existsFolder(folderPath)

folderPath (String)

Specifies the full/relative path of the folder whose existence must be verified.

bExists (Boolean)

Returns true if the folder object exists or false if it does not.

if (existsFolder(folderpath))
{

Process.mesg_folder

}

else

{

Process.mesg_folder

}

"Folder test exists";

"Folder test does not exist";

528 Content Designer Reference

existsInteractionRequestForm

existsInteractionRequestForm

Syntax

Arguments

Return Value

Example

existsProcess

Syntax

This function checks whether an interaction request form object exists in the given path.
The path can be an absolute/relative path. The relative path is relative to the process in
which the script is executed.

bExists = existsInteractionRequestForm(irfPath)

irfPath (String)

Specifies the full/relative path of interaction request form object whose existence
needs to be checked.

bExists (Boolean)

Returns true if the interaction request form object exists or false if it does not.

if (existsInteractionRequestForm(irfPath))

{
Process.mseg irf= "Interaction Request Form exists" ;
}
else
{
Process.mseg irf= "Interaction Request Form does not exist" ;
}

This function checks whether a process object exists in the given path. The path can be
an absolute/relative path. The relative path is relative to the process in which the script
is executed.

bExists = existsProcess(processpathprocessPath)

Chapter 16: CA Process Automation System Functions 529

existsProcessWatch

Arguments

Return Value

processPath (String)

Specifies the full/relative path of the process object whose existence needs to be
checked.

bExists (Boolean)

Returns true if the process object exists or false if it does not.

Example
if (existsProcess(processPath))
{
Process.mseg process= "\'Pass control to previous oper.\' exists" ;
}
else
{
Process.mseg _process= "\'Pass control to previous oper.\' does not exist" ;
}
existsProcessWatch
This function checks whether a process watch object exists in the given path. The path
can be an absolute/relative path. The relative path is relative to the process in which the
script is executed.
Syntax
bExists = existsProcessWatch(processWatchPath)
Arguments

Return Value

processWatchPath (String)

Specifies the full/relative path of process watch object whose existence needs to be
checked.

bExists (Boolean)

Returns true if the process watch object exists or false if it does not.

530 Content Designer Reference

existsResource

Example
if (existsProcessWatch(processWatchPath))
{
Process.mseg process watch= "ProcessWatch exists" ;
}
else
{
Process.mseg process watch= "ProcessWatch does not exist" ;
}
existsResource
This function checks whether a resources object exists in the given path. The path can
be an absolute/relative path. The relative path is relative to the process in which the
script is executed.
Syntax
bExists = existsResource(resourcePath)
Arguments

Return Value

resourcePath (String)

Specifies the full/relative path of resources object whose existence needs to be
checked.

bExists (Boolean)

Returns true if the resource object exists or false if it does not.

Example
bExists = existsResource("/Resources/Locks");

existsSchedule
This function checks whether a schedule object exists in the given path. The path can be
an absolute/relative path. The relative path is relative to the process in which the script
is executed.

Syntax

bExists = existsSchedule(schedulepath)

Chapter 16: CA Process Automation System Functions 531

formatDate

Arguments
schedulepath (String)
Specifies the full/relative path of the schedule object whose existence needs to be
checked.
Return Value
bExists (Boolean)

Returns true if the scheduleobject exists or false if it does not.

Example

if (existsSchedule("testSchedule"))

{

Process.mseg_schedule="testSchedule exists" ;

}

else

{

Process.mseg_schedule= "testSchedule does not exist" ;

}if (existsSchedule("testSchedule"))

{

Process.mseg_schedule= "testSchedule exists" ;

}

else

{

Process.mseg_Schedule= "testSchedule does not exist" ;
formatDate

Returns a string based on a date and a format specifier. Time is not returned here.
Syntax

dateString = formatDate(dt, format)
Arguments

dt (java.util.Date)
Specifies the date object to be formatted.
format (String)

Specifies the format required (for example, MM/dd/yyyy).

532 Content Designer Reference

formatString

Return Value

Example

formatString

Syntax

Arguments

Return Value

Example

dateString (String)

This function returns the date as a string using the format specifier.

sDate = formatDate(today(), 'MM/yyyy')

This function returns a string after formatting the specified string with the mentioned
arguments.

resultString = formatString(format, args)

format (String)
Specifies the format string.
args (Array)

Specifies the arguments for formatting.

resultString (String)

This function returns a string, formatted according to the arguments provided in the
function arguments.

var myArray = new Array();

myArray[0] "a";

myArray[1] "b";

myArray[2] = "c";

myArray[3] = "d";

sString = formatString("%4$s %3$2s %2$2s %1$2s", myArray);

This results in sString="d cb a".

Chapter 16: CA Process Automation System Functions 533

getAllAttachments

detAllAttachments

Syntax

Return Value

Example

Returns the following information for all attachments that are present in the CA Process
Automation database:

contentType
Attachment content type.
contentID
Attachment contentID, if present.
fileURL
URL that can be used to view or download the attachment.
name
Name of the attachment.
attachmentID

Unique ID for this attachment. This ID can be passed to other system functions.

vmArrayAttachments = getAllAttachments()

vmArrayAttachments (C20valueArray)

Process.attachments = getAllAttachments();

detAttachmentContent

Syntax

This function retrieves the content from an attachment and places it in a CA Process
Automation dataset variable. This function has a 64KB limit to the size of the content it
can retrieve.

sAttachment = getAttachmentContent(1AttachmentID)

534 Content Designer Reference

getEEMArtifactTokenForUser(username,password)

Arguments
IAttachmentID (long)

The unique ID that identifies the attachment where the content resides that is
being retrieved.

Return Value
sAttachment (String)

The content is returned as a string.

Example

var i = Process.attachments[0].attachmentID;
Process.cont = getAttachmentContent(i);

detEEMArtifactTokenForUser(username,password)

This function generates a CA EEM token for a single use.
Syntax

getEEMArtifactTokenForUser (username , password)

Arduments
username
The username for a CA EEM user.
password

The password for a CA EEM user.

Return Value

CA EEM artifact token (String)

Example

Process.artifactToken = getEEMArtifactTokenForUser ("pamadmin", "pamadmin")

detEEMCredentialsTokenForUser(username,password)

This function generates a CA EEM token for multiple uses.

Chapter 16: CA Process Automation System Functions 535

getEEMArtifactToken(certificateFilePath, certPasswordOrKeyFilePath)

Syntax

Arguments

Return Value

Example

getEEMCredentialsTokenForUser (username , password)

username
The username for a CA EEM user.
password

The password for a CA EEM user.

CA EEM artifact token (String)

Process.credentialToken = getEEMCredentialsTokenForUser("pamadmin", "pamadmin")

detEEMArtifactToken(certificateFilePath,
certPasswordOrKeyFilePath)

Syntax

This function generates a CA EEM artifact token, typically for a single use. The
certificateFilePath argument expects a relative path (File Path) of the certificate file. This
file is uploaded using Manage User Resources within the Configuration tab.

In the case where FIPS is not enabled, the second argument is the certificate password.
This password is used as a String for the certificate referred within the first argument
(certificateFilePath).

In the case where FIPS support is enabled within CA EEM, the second argument is

KeyFilePath. KeyFilePath is the relative path of the key file. This file is uploaded to CA
Process Automation using Manage User Resources.

getEEMArtifactToken (certificateFilePath, certificatePassword / KeyFilePath)

536 Content Designer Reference

getEEMCredentialsToken(certificateFilePath, certPasswordOrKeyFilePath)

Ardguments

Return Value

Examples

certificateFilePath
The relative path of the certificate file.
certificatePassword

In case of non-FIPS mode, this argument should be the certificate password. In case
of FIPS-enabled mode, this argument should be the certificate KeyFilePath. The
KeyFilePath is file is uploaded to CA Process Automation using Manage User
Resources.

CA EEM artifact token (String)

Process.artifactToken

getEEMArtifactToken ("/mycerts/pam.12", "mypassword")

Process.artifactToken = getEEMArtifactToken ("/mycerts/upload/pam.cer",
"/mycerts/keys/pam.key")

detEEMCredentialsToken(certificateFilePath,
certPasswordOrKeyFilePath)

Syntax

This function generates a CA EEM credential token, typically for multiple uses. The
certificateFilePath argument expects a relative path (File Path) of the certificate file. This
file is uploaded using Manage User Resources within the Configuration tab.

In the case where FIPS is not enabled, the second argument is the certificate password.
This password is used as a String for the certificate referred within the first argument
(certificateFilePath).

In the case where FIPS support is enabled within CA EEM, the second argument is

KeyFilePath. KeyFilePath is the relative path of the key file. This file is uploaded to CA
Process Automation using Manage User Resources.

getEEMCredentialsToken (certificateFilePath, certificatePassword / KeyFilePath)

Chapter 16: CA Process Automation System Functions 537

getEnvVar

Arguments

Return Value

Example

detEnvVar

Syntax

Arguments

certificateFilePath
The relative path of the certificate file.
certificatePassword

In case of non-FIPS mode, this argument should be the certificate password. In case
of FIPS-enabled mode, this argument should be the certificate KeyFilePath. The
KeyFilePath is file is uploaded to CA Process Automation using Manage User
Resources.

CA EEM artifact token (String)

Before you write the code, first verify if CA EEM is FIPS-enabled or not by using the
isFIPSMode (see page 544) () function, so you can pass certificateFilePath,
certificatePassword, or certificatepath and KeyFilePath.

For example:

If (isFIPSMode ().equals(‘true’)){

Process.credentialToken = getEEMCredentialsToken("/mycerts/upload/pam.cer",
"/mycerts/keys/pam.key")

} else {

Process.credentialToken = getEEMCredentialsToken("/mycerts/pam.12", "mypassword")

}

This function returns the value of environment variable from the (OS) environment
which must have been set before starting the JVM.

sEnvValue = getEnvVar(vname)

vname (String)

Specifies the name of the environment variable whose value is required.

538 Content Designer Reference

getOrchestratorURL

Return Value

Example

sEnvValue (String)

The value of the specified environment variable, in string form.

Process.username=getEnvVar("username");
Process.path = getEnvwVar("path");

detOrchestratorURL

Syntax

Return Value

Example

This function returns the name of the Orchestrator.

getOrchestratorURL()

URL of the Orchestrator (String)

Specifies the URL of the Orchestrator or the Load balancer (in the case of a cluster).

Process.x = getOrchestratorURL();

Where x is the process name. Once the process runs, variable x inside the process
dataset includes the Orchestrator name.

detPartialAttachmentContent

Syntax

Arguments

This function is used to retrieve content from an attachment. The function has a 64 KB
limit to the amount of content it can retrieve. Its purpose is to allow the retrieval of a
subset of the content.

sContent = getPartialAttachmentContent(lAttachmentID,nStartIndex, nRetrievelength)

IAttachmentID (long)

The unique ID that identifies the attachment where the content resides that is
being retrieved.

Chapter 16: CA Process Automation System Functions 539

getResourceAvail

Return Value

nStartindex (Int)
The location, in bytes

nRetrievelength (Int)

sContent (String)

Contains the content, from the specified attachment, beginning with the
nStartindex byte and containing at most nRetrievelLength bytes.

Example
var 1 = Process.attachments[0].attachmentID;
Process.part=getPartialAttachmentContent(i,i+1,100000);
detResourceAvail
This function returns the value of the free field of a resource in a resources object.
Syntax
nAvail = getResourceAvail(resourcePath, resourceName)
Arguments

Return Value

Example

resourcePath (String)
Specifies the path of the resource object.
resourceName (String)

Specifies the name of the resource in the resources object whose free field needs to
be returned.

nAvail (Int)

This function returns the number of resources available from the specified resource
in the resource object found on the specified path.

nAvail = getResourceAvail ("/Resources/Locks", "DiskLock");

540 Content Designer Reference

getResourceName

detResourceName

This function returns an array of strings containing the names of the resources inside a
resources object.

Syntax

resourceNames = getResourceNames (resourcePath)

Arguments
resourcePath (String)

Specifies the path of the resource object.

Return Value
resourceNames (String Array)

Array of resource names contained in the specified resources object.

Example
resourceNames = getResourceNames("/Resources/Locks");
detResourceTotal
This function returns the value of total amount for a particular resource in a resources
automation object.
Syntax
nTotal = getResourceTotal(resourcePath, resourceName)
Arguments

resourcePath (String)
Specifies the path of the resource object.
resourceName (String)
Specifies the name of the resource in the resources object whose total amount
needs to be returned.
Return Value
nTotal (Int)

Returns the total number for the specified resource. If the resource does not exist,
-lis returned.

Chapter 16: CA Process Automation System Functions 541

getCountOfProcessStates

Example

nTotal = getResourceTotal("/Resources/Locks", "DiskLock");

detCountOfProcessStates

This function returns the count of processes in all possible states.

Syntax

Process.processStates = getCountOfProcessStates();

Return Value

processStates (ValueMap)

Returns a ValueMap consisting of all the states and the number of processes in that
state. If no processes are in the specified state, the count is 0.

Example

Process.processStates = getCountOfProcessStates();

detTouchpoints

This function returns a list of touchpoints referenced by a touchpoint name, or a
touchpoint group name. This method returns an array of strings. An empty array means
that the touchpoint group is empty, or the touchpoint with the given name does not
exist.

Syntax

rgsTouchpoints = getTouchpoints(TouchpointOrGroupName)

Arguments
TouchpointOrGroupName (String)

Specifies the touchpoint or touchpoint group name.

Return Value
rgsTouchpoints (String Array)

An array of touchpoint string names.

542 Content Designer Reference

getValueMapFields

Example

rgsTouchpoints = getTouchpoints("localhost");

detValueMapFields

This function returns the list of field names inside a ValueMap as an array of string
variables.

Syntax

fieldNames = getValueMapFields(vmap)

Arguments
vmap (ValueMap)

Specifies the ValueMap object whose field names needs to be returned.

Return Value
fieldNames (String Array)
An array of Strings containing the names of the fields found in the ValueMap.
Example

fieldNames = getValueMapFields(Process.vmBooks);

hasField

This function determines if a field exists in a ValueMap.

Syntax

bHasField = hasField(valuemap, fieldName)

Arguments
valuemap (ValueMap)
Specifies the input ValueMap.
fieldName (String)

Specifies the field name.

Chapter 16: CA Process Automation System Functions 543

include

Return Value
bHasField (Boolean)

Returns true if the field exists in the ValueMap or false otherwise.

Example
bHasField = hasField(Process.vmBooks, "author");
include
This function loads JavaScript code that is defined in a file for use in the pre-execution or
post-execution section of any operator or in the SourceCode section (see page 413) of
the Run JavaScript operator. The loaded JavaScript code is only good for the duration of
the pre-execution, post-execution or SourceCode section that it is loaded in.
Syntax
include(jsFile)
Arguments
jslib (String)
This parameter must refer to a JavaScript file. This parameter can be an HTTP URL in
which case the parameter must start with a file URL or it can be a path inside the
c2ouserresources folder. The path must be relative to the ".c2ouserresources"
folder itself. ".c2ouserresources "is present inside the c2orepository folder in the CA
Process Automation installation folder.
Examples

1. include('http://test.ca.com/test.js')
2. include('file://c:/test.js'")
3. Include('test.js')

This syntax loads the file from the c2ouserresources folder.

isFIPSMode

This function lets you programmatically determine whether the CA EEM server has FIPS
mode enabled. This function returns true if the CA EEM server is running when FIPS
mode is enabled, and false if the server is not running.

544 Content Designer Reference

isTouchpointUp

Syntax

Return Value

isFIPSMode()

True
Returned if the CA EEM server is running when FIPS mode is enabled. (String)
False

Returned if the CA EEM server is running when FIPS mode is not enabled. (String)

isTouchpointUp

Syntax

Arguments

Return Value

Example

load

Syntax

This function determines if a touchpoint is active.

bIsUp = isTouchpointUp(touchpointName)

touchpointName (String)

Specifies name of the touchpoint.

bisUP (Boolean)

Returns true if the touchpoint is active or false otherwise.

bIsUp = isTouchpointUp("AccountingTouch");

This function loads JavaScript code that is defined in a dataset variable for use in the
pre-execution or post-execution section of any operator or in the SourceCode section
(see page 413) of the Run JavaScript Operator. The loaded JavaScript code is only good
for the duration of the pre-execution, post-execution, or SourceCode section where it is
loaded.

load(jsCode)

Chapter 16: CA Process Automation System Functions 545

lockResource

Arguments

Example

lockResource

Syntax

Arguments

jsCode (String)

Specifies the JavaScript code to load.

Define a dataset object that is called Common with a parameter jsCode that contains
the following JavaScript:

function convertToUpperCase(sValue) {return sValue.toUpperCase()};

Use the load function to load that piece of code and make functions in that code
available to you:

load (Datasets["Common"].jsCode);
Process.ucValue = convertToUpperCase("helloworld");

This function locks or unlocks one or more resources in a resource object. If you specify
a value for resourceName, it resets only that resource. If you leave resourceName
empty, it resets all of the resources in the resources object.
Notes:

m If resources that do not exist are provided as input, resources are still created.

m If you specify a value for resourceName and that resource does not exist, the
resource is created with an amount of zero and set to the specified state.

bSuccess = lockResource(resourcePath, resourceName, state)

resourcePath (String)

Specifies the path of the resources object.
resourceName (String)

Specifies the name of the resource in the resources object.
state (Boolean)

Specifies whether the resource should be locked or unlocked. Set to true for locked
and false for unlocked.

546 Content Designer Reference

logEvent

Return Value

Example

logEvent

Syntax

Arguments

bSuccess (Boolean)

Returns true if the function succeeds or false if it fails.

bSuccess

= lockResource("/Resources/Locks", "InvLock", true);

This function inserts a custom message into the logs of a process instance.

logEvent (level, category, msg)

level (Int)

Specifies one of the following log levels:

4 = Error

3 =Warning

2 = Notice

1 =Normal

category (String) (this value is optional)

Specifies one of the following log categories:

"CUSTOM" (the default)
"FLOW_CATEGORY"
"AGENDA_CATEGORY"
"ICON_CATEGORY"
"HANDLERS_CATEGORY"
"RESPONSE_CATEGORY"

"OTHERS_CATEGORY" (PROCESS,AGENDA,OPERATOR,HANDLER,
RESPONSE,OTHERS, CUSTOM,OTHERS)

msg (String)

Specifies the log message.

Chapter 16: CA Process Automation System Functions 547

nextOpenDate

Example

nextOpenDate

Syntax

Arguments

Return Value

newValueMap

Syntax

logEvent (1, "FLOW CATEGORY", "Start New Hire Process has completed");

This function returns an open date given a targetDate by considering the
includeCalendar, excludeCalendar, and maxShifts. If no open date is found with the
given inputs, the result is null.

dtNextOpenDate = nextOpenDate(targetDate, includeCalendar, excludeCalendar,
maxshift)

targetDate (java.util.Date)

Specifies the desired date.
include_calendar (String)

Specifies the path of the include calendar object.
exclude_calendar (String)

Specifies the path of the exclude calendar object.
maxshifts (Int)

Specifies the maximum acceptable number of shifts when searching for an open
date. Specify positive numbers to increment the date and negative numbers to
decrement the date. The system caps the maximum number of shifts at 5.

dtNextOpenDate (java.util.Date)

This function creates and returns a new ValueMap.

vmData = newValueMap()

548 Content Designer Reference

now

Arguments
None.

Example

Process.myVmap = newValueMap()
Return Value

vmbData (ValueMap)

now

This function returns the current date including the time.
Syntax

dtNow = now()
Arguments

None.

Return Value

dtNow (java.util.Date)

parseDate

Returns a date object after parsing the specified string in the required format.
Syntax

dtDate = parseDate(dateStr, format)
Arguments

dateStr (String)
Specifies the string that needs to be parsed as a date.
format (String)

Specifies the format required to interpret the date string provided; for example:
MM/dd/yyyy.

Chapter 16: CA Process Automation System Functions 549

resetResource

Example
dtDate = parseDate('12-10-2009', 'MM/dd/yyyy"')

resetResource
This function resets one or more resources in a resource object by unlocking them and
setting the used count to zero. If you specify a value for resourceName, only that
resource is reset. If you leave resourceName empty, all of the resources in the resources
object are reset.
Note: If you specify a value for resourceName and that resource does not exist, the
resource is created with an amount of zero and set to the unlocked state.

Syntax
bSuccess = resetResource(resourcePath, resourceName)

Arguments

resourcePath (String)
Specifies the path of the resources object.
resourceName (String)

Specifies the name of the resource in the resources object.

Return Value
bSuccess (Boolean)

Returns true if the function call is successful and false if it fails.

rollDate

This function is used to roll a particular value that is based on a date. For example,
perhaps you want to send a feedback email one day after a service desk request was
closed. In that case, to write the automation logic, use this function.

When this function is executed, the value num is added to the date dt based on the
type.

Syntax

dtRollDate = rollDate(dt, num, type)

550 Content Designer Reference

rollTime

Arguments
dt (java.util.Date)
Specifies the date object that is based on the rolling to take place.
num (Int)
Specifies the value that must be rolled.
type (String)
Specifies the one of the following values:
= Y'(year)
m "d"(day)
m "w"(week)

= "m"(month)
Return Value

dtRollDate (java.util.Date)

Examples
1. dtRollDate = rollDate(today(),2,'d")
Returns the date which is two days from today.
2. dtRollDate = rollDate(today(),1'y')
Returns the next year from today; for example, if today is November 12, 2009, this
example will return January 1, 2010.
3. dtRollDate = rollDate(today(), -1,'w')
Returns the first day of the previous week.
4. dtRollDate = rollDate(today(),-1,'m")
Returns the first day of the previous month.
rollTime
This function rolls the current hour into the provided value and returns the value in
hours based on a 24-hour clock. In this convention of timekeeping, the day runs from
midnight to midnight and is divided into 24 hours, numbered from 0 to 23.
Syntax

nHTime = rollTime(num, type)

Chapter 16: CA Process Automation System Functions 551

saveAttachmentToFile

Arguments

Return Value

Example

num (Int)
Specifies the value that needs to be rolled.
type (String)

This value can only be "h".

nHTime (Int)

nHTime = rollTime(-3 ,'h')

Returns the time three hours before the current time. For example, if it is currently 9
PM, this example returns 18.

saveAttachmentToFile

Arguments

This function saves the content of an attachment, identified by a unique ID, to the
specified file location. The function returns the absolute path of the new file with the
attachment content.

Syntax

sFileName = saveAttachmentToFile(nAttachmentID, sFileDirName)

IAttachmentID (long)

Specifies a unique ID that identifies the attachment containing the desired content.
sFileDirName (String)

Full path and file name to the location where the file will be written.

If a file path is not provided, then the file will be written to the
<install_dir>/server/c2o directory.

If a file is not specified, a unique file will be generated.

If only a path is specified, the path must include the path separator character at the
end of the path (‘\’ for Windows or ‘/” for UNIX).

552 Content Designer Reference

setOperatorStatus

Return Value

Example

sFileName (String)

The full path to the file, including the file name, is returned if the function is
successful. If the function fails, NULL is returned.

var 1 = Process.attachments[0].attachmentID;
Process.save = saveAttachmentToFile(i, "attach.txt");

setOperatorStatus

Syntax

Arguments

Example

setResource

This function is used to either force fail or force pass the operator.

setOperatorStatus (Operator Status,Operation Result,Reason)

Operator Status (String)

Specifies the state of the operator. This argument can take either success or failure
values only.

Operation Result (Int)

Specifies the operation result. This argument overrides the operator result in the
operator dataset.

Reason (String)

Specifies the reason that overrides the operator reason in the operator dataset.

setOperatorStatus("success",1,"force success")

This example performs a force success on the operator with an operation result of 1 and
the reason as "force success".

This function sets the total amount in the resource with name "resName" to "amount"
in the resource object on the path "resPath".

Chapter 16: CA Process Automation System Functions 553

today

Syntax

Arguments

Return Value

Example

today

Syntax

Arguments

Return Value

Notes:
m If resources that do not exist are provided as input, resources are still created.

m If the resName is blank, the specified operation is done on all the resources
inside the resources object.

bSuccess = setResource(resPath, resName, amount)

resPath (String)

Specifies the path of the resource object.
resName (String)

Specifies the name of the resource in the resources object which must be set.
amount (Int)

Specifies the total amount that must be set on the resource.

bSuccess (Boolean)

Returns true if the function is successful or false if it fails.

bSuccessl=setResource(Process.ResObjName, Process.ResName 1, 1);
bSuccess2=setResource(Process.ResObjName, Process.ResName 3, 3);

Returns the current date and time. The time returned is 12:00 AM.

dtToday = today()

None.

dtToday (java.util.Date)

554 Content Designer Reference

today

Example

If today is December 12, 2009, returns the date December 12, 2009 12:00 AM.

Chapter 16: CA Process Automation System Functions 555

Index

A

absolute path
absPath system function ¢ 513
retrieving with system function ¢ 513
Run Java Code operator ¢ 400

absPath system function
defined ¢ 513

Active Directory operator
set up share for user in ¢ 262

AD Join Computer to Domain operator
defined ¢ 206

AD Retrieve Domain Controllers operator
defined ¢ 229

Add User to Group operator
defined ¢ 207

adjustDate system function
defined « 514

adjustResourceVals system function
defined ¢ 515

And operator
defined ¢ 63

Apply Xpath operator
defined ¢ 395

applyXPath system function
defined ¢ 516

applyXPathToUrl system function
defined ¢ 517

Assign User Task operator
defined ¢ 375

Asynchronous SOAP Client Call operator
defined ¢ 490

authentication
JDBC Module » 167

B

Bulk Insert into Database operator
defined ¢ 171

C

Calculation operator

defined ¢ 413
calendar

checkCalendarDate system function ¢ 517
certificate for CA Process Automation

SSL for AD (LDAP module) » 264
Change Lane operator
defined « 70
Check Calendar operator
defined ¢ 201
Check Date-Time operator
defined ¢ 203
checkCalendarDate system function
defined ¢ 517
Comment operator
defined ¢ 59
Compress File operator
defined ¢ 289
convertValueToXml system function
defined ¢ 519
convertXml system function
defined 520
convertXmlUrl system function
defined ¢ 520
Copy File operator
defined ¢ 290
Create Folder operator
defined » 270
defined for File Management Module ¢ 292
defined for File Transfer module ¢ 315
Create Group operator
defined ¢ 209
Create LDAP User operator
defined » 218
Create Object operator
defined » 213
Create operator
defined » 73
Create Organizational Unit operator
defined ¢ 217
createHyperLink system function
defined ¢ 521
createResourceObject system function
defined ¢ 521

D

Databases module

Run Java Code operator ¢ 400
Delay operator

defined ¢ 398

Index 557

Delete Directory operator
defined ¢ 317

Delete File operator
defined for File Module « 294

defined for File Transfer module 319

Delete Folder operator
defined ¢ 272
Delete from Database operator
defined ¢ 173
Delete Messages operator
defined ¢ 271
Delete Objects operator
defined ¢ 222
Delete operator
defined for Catalyst e 75
deleteAttachments system function
defined ¢ 522
deleteObject system function
defined ¢ 522
deleteResource system function
defined ¢ 523
deleteValueMapField system function
defined ¢ 524
Download File operator
defined ¢ 321

E

Email module
defined ¢ 267

Evaluate Expression operator
defined ¢ 392

Exception operator
defined ¢ 70

Execute operator (ICF-USM)
defined * 76

Execution Settings
defined ¢ 44

existsAgenda system function
defined » 524

existsCalendar system function
defined ¢ 525

existsCustomlcon system function
defined ¢ 526

existsCustomOperator system function
defined ¢ 526

existsDataset system function
defined ¢ 527

existsFolder system function

defined ¢ 528

existsInteractionRequestForm system function

defined ¢ 529

existsProcess system function
defined ¢ 529

existsProcessWatch system function
defined « 530

existsResource system function
defined ¢ 531

F

formatDate system function
defined ¢ 532

formatString system function
defined ¢ 533

G

Get Database Schema operator
defined 176

Get Directory Content operator
defined ¢ 295

Get Dormant Account operator
defined ¢ 232

Get Email Content operator
defined » 274

Get Email Count operator
defined » 277

Get Email Envelope operator
defined * 278

Get Email List operator
defined ¢ 281

Get File Attributes operator
defined » 297

Get File Information operator
defined ¢ 323

Get Free Space operator
defined ¢ 177

Get Local Network Interfaces operator
defined ¢ 349

Get Network Service Status operator
defined ¢ 352

Get Object operator
defined ¢ 234

Get operator (UCF-USM)
defined ¢ 77

Get SNMP Variable operator
defined ¢ 359

Get Strored Procedure operator

558 Content Designer Reference

defined 178
Get Table operator
defined ¢ 180
Get Used Space operator
defined ¢ 182
Get Version operator
defined « 184
Get View operator
defined ¢ 185
getAllAttachments system function
defined * 534
getAttachmentContent system function
defined « 534
getCountOfProcessStates
getCountOfProcessStates, defined ¢ 542
getEEMArtifactToken(certificateFilePath,
certPasswordOrKeyFilePath)
getEEMArtifactToken(certificateFilePath,
certPasswordOrKeyFilePath), defined ® 536
getEEMArtifactTokenForUser(username,password)
system function
getEEMArtifactTokenForUser(username,passwor
d), defined ¢ 535
getEEMCredentialsToken(certificateFilePath,
certPasswordOrKeyFilePath)
getEEMCredentialsToken(certificateFilePath,
certPasswordOrKeyFilePath), defined ¢ 537
getEEMCredentialsTokenForUser(username,passwor
d)
getEEMCredentialsTokenForUser(username,pass
word), defined 535
getEnvVar system function
defined ¢ 538
getPartialAttachmentContent system function
defined ¢ 539
getResourceAvail system function
defined ¢ 540
getResourceNames system function
defined ¢ 541
getResourceTotal system function
defined ¢ 541
getTouchpoints system function
defined ¢ 542
getValueMapFields system function
defined ¢ 543

H

hasField system function

defined ¢ 543

HTTP Delete operator
defined ¢ 433

HTTP Get operator
defined * 436

HTTP Head operator
defined ¢ 441

HTTP Options operator
defined ¢ 445

HTTP Post Form operator
defined » 454

HTTP Post operator
defined « 448

HTTP Put operator
defined ¢ 461

HTTP Trace operator
defined ¢ 467

I

include system function
defined ¢ 544
Insert operator
defined » 187
Invoke Java operator
defined ¢ 400
Invoke MBean Method operator
defined ¢ 341
Invoke SOAP Method operator
defined ¢ 469
isFIPSMode
isFIPSMode, defined » 544
isTouchpointUp system function
defined ¢ 545

J

Java Management

defined ¢ 337
Javascript

in system functions ¢ 513
JMX Get operator

defined ¢ 338

L

LDAP login parameters
defined ¢ 205

link
defined ¢ 71

load system function

Index 559

defined ¢ 545
lockResource system function
defined ¢ 546
logEvent system function
defined ¢ 547
Loop operator
defined ¢ 66

M

Manage Resources operator
defined ¢ 382

module
overview ¢ 21

Monitor Event operator
defined * 386

Monitor File operator
defined * 300

Monitor SNMP Variable operator
defined ¢ 361

Move Email operator
defined ¢ 282

Move File operator
defined ¢ 326

Move Object operator
defined ¢ 255

N

Network Utilities module
defined ¢ 349
newValueMap system function
defined ¢ 548
nextOpenDate system function
defined ¢ 548
now system function
defined ¢ 549

0]

operator common properties
for operators in agendas ¢ 54
for operators in processes ¢ 49
operator common properties, for all operators
44
operators
adding to a Process ® 49
using in Agendas ¢ 54
Or operator
defined ¢ 63

P

parseDate system function
defined ¢ 549

Ping Host operator
defined ¢ 365

Post-execution Code
defined ¢ 49

Pre-execution Code
defined ¢ 49

Purge Folder operator
defined ¢ 284

Q

Query Database operator
defined ¢ 190

R

Read from File operator
defined ¢ 303
Remove User from Group operator
defined * 256
Rename File operator
defined * 304
Rename Folder operator
defined « 284
Reset operator
defined * 64
resetResource system function
defined ¢ 550
resources, system functions
adjust free and total amounts ¢ 515
check for existence 531
create object ¢ 521
delete object ¢ 523
get object names ¢ 541
get total available ¢ 540
get total for a named resource ¢ 541
lock named resource ¢ 546
reset named resource ¢ 550
set total for named resource ¢ 553
Retrieve LDAP Users operator
defined « 248
rollDate system function
defined ¢ 550
rollTime system function
defined ¢ 551
Run Program operator

560 Content Designer Reference

defined ¢ 101

Run Script operator
defined ¢ 131

Run SSH Command operator
defined ¢ 105

Run SSH Script operator
defined ¢ 116

Run Telnet Command operator
defined ¢ 137

Run Telnet Script operator
defined ¢ 149

S

saveAttachmentToFile system function
saveAttachmentToFile system function, defined
552
Search File Content operator
defined ¢ 306
Select from Database operator
defined ¢ 195
Send Email operator
defined ¢ 286
files, how to include » 286
Send Event operator
defined ¢ 388
Send SNMP Trap operator
defined ¢ 369
setResource system function
defined ¢ 553
SOAP
securing messages ¢ 474
Standard operators
defined ¢ 59
Start operator
defined ¢ 59
Start Process operator
defined ¢ 390
Stop Failure operator
defined ¢ 62
Stop Success operator
defined ¢ 60
SubscribeToChanges operator
defined ¢ 78
system functions
defined ¢ 513

T

TFTP Download File operator

defined ¢ 327

TFTP Upload File operator
defined ¢ 330

today system function
defined 554

u

Uncompress File operator
defined ¢ 293

Update File Ownership operator
defined « 308

Update File Permission operator
defined ¢ 310

Update File Timestamp operator
defined » 311

Update in Database operator
defined 198

Update MBean Attributes operator

defined » 344

Update Object Attributes operator

defined ¢ 258
Update SNMP Variable operator
defined ¢ 372

Update User Home Directory Operator

defined ¢ 262
Upload File operator
defined ¢ 333

W

Write File operator
defined ¢ 313

Index 561

	CA Process Automation Content Designer Reference
	Contents
	1: Introduction to CA Process Automation Operators
	CA Process Automation Operator Overview
	Module and Operator Changes
	Where Operators Can Run
	Common Properties of all Operators
	Execution Settings (All Operators)
	Loop and Timeout Scenarios

	Common Properties of Operators in Processes
	Processing Group
	Simulation Properties
	Information Properties

	Common Properties of Operators in Schedules
	Calendar Settings
	Manually Included Dates
	Manually Excluded Dates
	Task Name

	Common Output Parameters for all Operators

	2: Standard Operators
	Start Operator
	Input Parameters

	Comment Operator
	Input Parameters

	Stop Success Operator
	Input Parameters

	Stop Failure Operator
	Input Parameters

	And Operator
	Parameters

	Or Operator
	Parameters

	Reset Operator
	Input Parameters
	How the Reset Operator Works with the Loop Operator

	Loop Operator
	Input Parameters
	Output Parameters
	Reset the Loop Operator Manually in a Process

	Change Lane Operator
	Input Parameters

	Exception Operator
	Input Parameters

	Links
	Link Properties

	3: Catalyst
	Generic USM Operators
	Create Operator
	Input Parameters
	Customizing the Properties

	Delete Operator
	Input Parameters

	Execute Operator
	Input Parameters

	Get Operator
	Input Parameters

	SubscribeToChanges Operator
	Input Parameters

	Non-Generic USM Operators
	Catalyst Security Parameters
	Example
	The Catalyst Process Automation Connector
	Features
	USM Model Mapping
	Querying Capabilities
	Custom Operations
	Event Subscriptions

	Usage
	Communications
	Catalyst Operators
	Catalyst REST
	Display Processes
	Display Process Instances
	Display Process Relationships
	Display a Specific Object
	Execute Connector Operations
	Send the Request

	4: Command Execution
	Run Program Operator
	Input Parameters
	Output Parameters

	Run SSH Command Operator
	Input Parameters
	Commands
	Remote Login Information
	Switch User Information

	Output Parameters
	Operator Ports
	Example

	Run SSH Script Operator
	Input Parameters
	SSH Script Attributes
	Run SSH Script Operator Inline Script APIs

	Remote Login Information

	Output Parameters
	Operator Ports
	Example

	Run Script Operator
	Input Parameters
	PowerShell Execution Policy

	Output Parameters

	Run Telnet Command Operator
	Input Parameters
	Commands
	Remote Login Information
	Switch User Information

	Output Parameters
	Operator Ports
	Example

	Run Telnet Script Operator
	Input Parameters
	Script
	Run Telnet Script Operator Inline Script APIs

	Remote Login Information

	Output Parameters
	Operator Ports
	Example

	5: Databases
	Oracle Parameters
	MSSQL Server Parameters
	MySQL Parameters
	Sybase Parameters
	Operator Level Properties
	Database Server Login Parameters
	Connection Wizard Properties

	Bulk Insert into Database Operator
	Input Parameters
	Output Parameters

	Delete from Database Operator
	Input Parameters
	Output Parameters

	Get Database Schema Operator
	Input Parameters
	Output Parameters

	Get Free Space Operator
	Input Parameters
	Output Parameters

	Get Stored Procedure Operator
	Input Parameters
	Output Parameters

	Get Table Operator
	Input Parameters
	Output Parameters

	Get Used Space Operator
	Input Parameters
	Output Parameters

	Get Version Operator
	Input Parameters
	Output Parameters

	Get View Operator
	Input Parameters
	Output Parameters

	Insert into Database Operator
	Input Parameters
	Output Parameters

	Query Database Operator
	Input Parameters
	Output Parameters
	Run a Stored Procedure

	Select from Database Operator
	Select Operator Properties
	Output Parameters

	Update in Database Operator
	Input Parameters
	Output Parameters

	6: Date-Time
	Check Calendar Operator
	Input Parameters
	Output Parameters

	Check Date-Time Operator
	Input Parameters
	Output Parameters

	7: Directory Services
	LDAP Login Parameters
	Add Computer to Domain Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Add User to Group Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Create Group Operator
	Input Parameters
	Notes

	Output Parameters
	Example
	Operator Failure

	Create Object Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Create Organizational Unit Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Create User Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Delete Object Operator
	Input Parameters
	Output Parameters
	Examples
	Operator Failure
	Failed Deletion
	Another failed deletion
	Operator Success

	Get Domain Controller Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Get Dormant Account Operator
	Input Parameters
	Output Parameters

	Get Object Operator
	Input Parameters
	Get Criteria
	Sort Criteria
	LDAP Search Filter Basics
	Common LDAP Attribute Names

	Output Parameters
	Examples
	Example - Use a generic filter
	Example - Use your own filter

	Operator Failure

	Get User Operator
	Input Parameters
	Get Criteria
	Sort Criteria

	Output Parameters
	Examples
	Operator Failure

	Move Object Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Remove User from Group Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Update Object Attributes Operator
	Input Parameters
	Objects Parameters
	Add Attributes Parameters Page
	Replace Attributes Parameters Page
	Remove Attributes Parameters Page

	Output Parameters
	Operator Failure

	Update User Home Directory Operator
	Input Parameters
	Output Parameters
	Example
	Operator Failure

	Add an SSL Certificate to CA Process Automation

	8: Email
	Common Email Operator Parameters
	Message Filter Criteria
	Mail Server Login Parameters

	Create Folder Operator
	Input Parameters
	Output Parameters

	Delete Email Operator
	Input Parameters
	Output Parameters

	Delete Folder Operator
	Input Parameters
	Output Parameters
	Example

	Get Email Content Operator
	Input Parameters
	Output Parameters

	Get Email Count Operator
	Input Parameters
	Output Parameters

	Get Email Envelope Operator
	Input Parameters
	Output Parameters

	Get Email List Operator
	Input Parameters
	Output Parameters

	Move Email Operator
	Input Parameters
	Output Parameters

	Purge Folder Operator
	Input Parameters
	Output Parameters

	Rename Folder Operator
	Input Parameters
	Output Parameters

	Send Email Operator
	Input Parameters
	Output Parameters

	9: File Management
	Compress File Operator
	Prerequisites
	Input Parameters
	Output Parameters

	Copy File Operator
	Input Parameters
	Output Parameters

	Create Folder Operator
	Input Parameters
	Output Parameters

	Decompress File Operator
	Prerequisites
	Input Parameters
	Output Parameters

	Delete File Operator
	Input Parameters
	Output Parameters

	Get Directory Content Operator
	Input Parameters
	Output Parameters

	Get File Attributes Operator
	Input Parameters
	Output Parameters
	Example

	Monitor File Operator
	Input Parameters
	Output Parameters
	Example

	Read from File Operator
	Input Parameters
	Output Parameters

	Rename File Operator
	Input Parameters
	Output Parameters

	Search File Content Operator
	Input Parameters
	Output Parameters

	Update File Ownership Operator
	Input Parameters
	Output Parameters

	Update File Permission Operator
	Input Parameters
	Output Parameters

	Update File Timestamp Operator
	Input Parameters
	Output Parameters

	Write File Operator
	Input Parameters
	Output Parameters

	10: File Transfer
	Create Directory Operator
	Input Parameters
	Output Parameters

	Delete Directory Operator
	Delete Remote Directory Properties
	Output Parameters

	Delete File Operator
	Input Parameters
	Output Parameters

	Download File Operator
	Get Remote File Properties
	Output Parameters

	Get File Information Operator
	Input Parameters
	Output Parameters

	Move File Operator
	Input Parameters
	Output Parameters

	TFTP Download File Operator
	Input Parameters
	Output Parameters
	Operator Ports

	TFTP Upload File Operator
	Input Parameters
	Output Parameters
	Operator Ports

	Upload File Operator
	Input Parameters
	Output Parameters

	11: Java Management
	JMX Login Parameters
	Get MBean Attributes Operator
	Input Parameters
	JMX Login Parameters (see page 337)

	Output Parameters
	Example

	Invoke MBean Method Operator
	Input Parameters
	JMX Login Parameters (see page 337)

	Output Parameters
	Example

	Update MBean Attributes Operator
	Input Parameters
	JMX Login Parameters (see page 337)

	Output Parameters
	Example

	12: Network Utilities
	Get Local Network Interfaces Operator
	Input Parameters
	Output Parameters
	Operator Ports
	Example

	Get Network Service Status Operator
	Input Parameters
	Output Parameters
	Operator Ports

	Get SNMP Variable Operator
	Input Parameters
	Output Parameters

	Monitor SNMP Variable Operator
	Input Parameters
	Output Parameters

	Ping Host Operator
	Input Parameters
	Output Parameters
	Operator Ports

	Send SNMP Trap Operator
	Input Parameters
	Output Parameters

	Update SNMP Variable Operator
	Input Parameters
	Output Parameters

	13: Process Control
	Assign User Task Operator
	Input Parameters
	Assignees Parameters
	Transfer/Delegates Parameters
	User Task Parameters

	Output Parameters
	Example

	Manage Resources Operator
	Input Parameters
	Output Parameters

	Event Operators
	Monitor Event Operator
	Input Parameters
	Output Parameters

	Send Event Operator
	Input Parameters
	Output Parameters

	Usage Patterns for Events

	Start Process Operator
	Input Parameters
	Output Parameters

	Evaluate Expression Operator
	Input Parameters
	Output Parameters

	14: Utilities
	Apply Xpath Operator
	Input Parameters
	Output Parameters

	Delay Operator
	Input Parameters
	Output Parameters

	Invoke Java Operator
	Input Parameters
	Code
	Java Code in the Run Java Code Operator

	Input/Output
	Logger

	Output Parameters
	Operator Ports

	Run JavaScript Operator
	Input Parameters
	Output Parameters

	15: Web Services
	HTTP Operators: Common Input Parameters
	HTTP URL Information
	HTTP Proxy Information
	HTTP Headers Information
	HTTP Cookies Information
	HTTP Response Content Information
	HTTP Configuration Information

	HTTP Operators: Common Output Parameters
	HTTP Operators: Common Output Ports
	HTTP Delete Operator
	Input Parameters
	Output Parameters

	HTTP Get Operator
	Input Parameters
	Output Parameters
	Operator Failure

	HTTP Head Operator
	Input Parameters
	Output Parameters
	Operator Failure

	HTTP Options Operator
	Input Parameters
	Output Parameters

	HTTP Post Operator
	Input Parameters
	Output Parameters
	Operator Failure

	HTTP Post Form Operator
	Input Parameters
	Output Parameters
	Operator Failure

	HTTP Put Operator
	Input Parameters
	Output Parameters

	HTTP Trace Operator
	Input Parameters
	Output Parameters

	Invoke SOAP Method Operator
	Input Parameters
	WSDL Explorer
	SOAP Call Data Parameters
	Dynamic Parameters
	Call Results Parameters
	MIME Attachments
	WS Security
	Common WS Security Parameters
	Timestamp
	Username Token
	Keystore Parameters
	Create a Keystore

	Signature
	Encryption

	Encryption/Signature Process for the SOAP Request
	Troubleshooting WS Security
	Unable to Build a Crypto to Manage the Keystore
	Signature Errors
	Encryption Errors
	Decryption Errors

	Output Parameters
	SOAP Call Data
	Dynamic Parameters
	Call Results Parameters
	Operation Results
	MIME Attachments

	Invoke SOAP Method Async Operator
	Input Parameters
	WSDL Explorer
	SOAP Call Data Properties
	Dynamic Parameters
	Call Results Properties
	MIME Attachments
	WS Security
	Common WS Security Parameters
	Timestamp
	Username Token
	Keystore Parameters
	Create a Keystore

	Signature
	Encryption

	Encryption/Signature Process for the SOAP Request
	Troubleshooting WS Security
	Unable to Build a Crypto to Manage the Keystore
	Signature Errors
	Encryption Errors
	Decryption Errors

	Output Parameters
	SOAP Call Data
	Dynamic Parameters
	Call Results Parameters
	Operation Results
	MIME Attachments

	16: CA Process Automation System Functions
	absPath
	Syntax
	Arguments
	Return Value
	Examples

	adjustDate
	Syntax
	Arguments
	Return Value
	Examples

	adjustResourceVals
	Syntax
	Arguments
	Return Value
	Example

	applyXPath
	Syntax
	Arguments
	Return Value
	Example

	applyXPathToUrl
	Syntax
	Arguments
	Return Value
	Example

	checkCalendarDate
	Syntax
	Arguments
	Return Value
	Example

	convertValueToXml
	Syntax
	Arguments
	Examples

	convertXml
	Syntax
	Arguments
	Return Value
	Example

	convertXmlUrl
	Syntax
	Arguments
	Return Value
	Example

	createHyperLink
	Syntax
	Arguments
	Return Value
	Example

	createResourceObject
	Syntax
	Arguments
	Return Value
	Example

	deleteAttachments
	Syntax
	Arguments
	Return Value
	Examples

	deleteObject
	Syntax
	Arguments
	Return Value
	Examples

	deleteResource
	Syntax
	Arguments
	Return Value
	Example

	deleteValueMapField
	Syntax
	Arguments
	Return Value
	Example

	existsAgenda
	Syntax
	Arguments
	Return Value
	Example

	existsCalendar
	Syntax
	Arguments
	Return Value
	Example

	existsCustomIcon
	Syntax
	Arguments
	Return Value
	Example

	existsCustomOperator
	Syntax
	Arguments
	Return Value
	Example

	existsDataset
	Syntax
	Arguments
	Return Value
	Example

	existsFolder
	Syntax
	Arguments
	Return Value
	Example

	existsInteractionRequestForm
	Syntax
	Arguments
	Return Value
	Example

	existsProcess
	Syntax
	Arguments
	Return Value
	Example

	existsProcessWatch
	Syntax
	Arguments
	Return Value
	Example

	existsResource
	Syntax
	Arguments
	Return Value
	Example

	existsSchedule
	Syntax
	Arguments
	Return Value
	Example

	formatDate
	Syntax
	Arguments
	Return Value
	Example

	formatString
	Syntax
	Arguments
	Return Value
	Example

	getAllAttachments
	Syntax
	Return Value
	Example

	getAttachmentContent
	Syntax
	Arguments
	Return Value
	Example

	getEEMArtifactTokenForUser(username,password)
	Syntax
	Arguments
	Return Value
	Example

	getEEMCredentialsTokenForUser(username,password)
	Syntax
	Arguments
	Return Value
	Example

	getEEMArtifactToken(certificateFilePath, certPasswordOrKeyFilePath)
	Syntax
	Arguments
	Return Value
	Examples

	getEEMCredentialsToken(certificateFilePath, certPasswordOrKeyFilePath)
	Syntax
	Arguments
	Return Value
	Example

	getEnvVar
	Syntax
	Arguments
	Return Value
	Example

	getOrchestratorURL
	Syntax
	Return Value
	Example

	getPartialAttachmentContent
	Syntax
	Arguments
	Return Value
	Example

	getResourceAvail
	Syntax
	Arguments
	Return Value
	Example

	getResourceName
	Syntax
	Arguments
	Return Value
	Example

	getResourceTotal
	Syntax
	Arguments
	Return Value
	Example

	getCountOfProcessStates
	Syntax
	Return Value
	Example

	getTouchpoints
	Syntax
	Arguments
	Return Value
	Example

	getValueMapFields
	Syntax
	Arguments
	Return Value
	Example

	hasField
	Syntax
	Arguments
	Return Value
	Example

	include
	Syntax
	Arguments
	Examples

	isFIPSMode
	Syntax
	Return Value

	isTouchpointUp
	Syntax
	Arguments
	Return Value
	Example

	load
	Syntax
	Arguments
	Example

	lockResource
	Syntax
	Arguments
	Return Value
	Example

	logEvent
	Syntax
	Arguments
	Example

	nextOpenDate
	Syntax
	Arguments
	Return Value

	newValueMap
	Syntax
	Arguments
	Example
	Return Value

	now
	Syntax
	Arguments
	Return Value

	parseDate
	Syntax
	Arguments
	Example

	resetResource
	Syntax
	Arguments
	Return Value

	rollDate
	Syntax
	Arguments
	Return Value
	Examples

	rollTime
	Syntax
	Arguments
	Return Value
	Example

	saveAttachmentToFile
	Arguments
	Return Value
	Example

	setOperatorStatus
	Syntax
	Arguments
	Example

	setResource
	Syntax
	Arguments
	Return Value
	Example

	today
	Syntax
	Arguments
	Return Value
	Example

	Index

