CA Emhedded Entitiements
Manager

Programming Guide
18.4

This documentation and any related computer software help programs (hereinafter referred to as the
“Documentation”) is for the end user’s informational purposes only and is subject to change or withdrawal by CA at
any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in
part, without the prior written consent of CA. This Documentation is confidential and proprietary information of CA
and protected by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of the Documentation for
their own internal use, and may make one copy of the related software as reasonably required for back-up and
disaster recovery purposes, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the provisions of the license for
the Product are permitted to have access to such copies.

The right to print copies of the Documentation and to make a copy of the related software is limited to the period
during which the applicable license for the Product remains in full force and effect. Should the license terminate for
any reason, it shall be the user’s responsibility to certify in writing to CA that all copies and partial copies of the
Documentation have been returned to CA or destroyed.

EXCEPT AS OTHERWISE STATED IN THE APPLICABLE LICENSE AGREEMENT, TO THE EXTENT PERMITTED BY
APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT
LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY
ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in the Documentation is governed by the end user’s applicable license
agreement.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the
restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-
7014(b)(3), as applicable, or their successors.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Copyright © 2008 CA. All rights reserved.

CA Product References

Contact CA

This document references the following CA products:

CA® Embedded Entitlements Manager (CA EEM)

CA® Directory

CA® SiteMinder® Web Access Manager (CA SiteMinder)
CA® Identity Manager

CA® Security Command Center

CA® Integrated Threat Management

CA® Enterprise Log Manager

Contact Technical Support

For your convenience, CA provides one site where you can access the
information you need for your Home Office, Small Business, and Enterprise CA
products. At http://ca.com/support, you can access:

Online and telephone contact information for technical assistance and
customer services

Information about user communities and forums
Product and documentation downloads
CA Support policies and guidelines

Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA product documentation, you can
send a message to techpubs@ca.com.

If you would like to provide feedback about CA product documentation, please
complete our short customer survey, which is also available on the CA support
website, found at http://ca.com/support.

http://www.ca.com/support
mailto:techpubs@ca.com
http://tinyurl.com/6j6ugb
http://tinyurl.com/6j6ugb

Contents

Chapter 1: Introduction 11
Who Should Read ThisS GUIAEiueiieiiiiii i e e e e e e s e s e e e s e ae e e e neenes 11
g Y= L = PP 12

101 50 =1 13

(@ TT=T Loy AY o] o Lot o o] o 1= P 14

[0 1oy = V=T 14
Chapter 2: Application Instances 15
L YT Y= 15
How to Register an AppliCation ..o e 15
P\ = ol g o B T Yol A= g o ST =T oY= N 16
Create an Application INSTaNCe . i e et a et as 17
Define User AttriDULES. ..v it 18
DefiNe RESOUICE ClaSSES . uiuuiiiiiiiiiii ittt ettt st s e st e st et st s e s e s e e e st s e s e s e e e annanens 20
(D] H 1 T=I @ o] [Ta = | o] I3 P 21
LYo 1= Y o] o] 1= o o 22

Modify an Application INSEANCE .. .ot e e 23

Unregister an Application INSTanCe . .iviiiiiii i e 24
Chapter 3: Users 25
L T Y= 25
(Ot | oI €] o] = | LU =TT =P 26
Create Application-SpeCifiCc USErIS.ot e e e e e 27

Associate Global User with Application-Specific Detailscoovviiiiiiiiiii s 28

1o 1LV N4 =T a 0 =T = 1o 1P 29
Search Users Using AttribDULES ... e 30
Retrieve @ GloDal USEI . vttt ettt st st s et e e e s e et e e e e 31
Retrieve an Application-SPeCifiC USEr vt i i e e e e 32
[T 1 o= T U EY =T 33
Chapter 4: Groups 35
L YT Y= 35
Create GloDal USEr GIOUPSiuiueeieieitie it e e et e et e s et e ase e e s e e s e e ea s e aa s eananenenae e aneees 36
Create Application-SpeCific USEr GrOUPS «..veiireiireiitiiteiitae s e et e s asesaesaesaesaeeaeeseeanneannenns 37
Search Groups UsiNg AtEribDULES . ..o e 38

Contents 5

g AV R C1 o] o = I U €] o 18 o
LS W [T T U F=T =T] o T o
[1] 1= == T] oo 1 o

Chapter 5: Access Management

L@ YT Y=
Build Filters t0 USe iN S@arCNES .. uiiiei ittt ittt e e e s aeesan e s an e s aneraneraneraneranernnens
Build Filters t0 Use iN POlICIES ..vuviieiieii ittt e e e e e e e e e e e ennaeas
SErUCEUIE Of @ il Ol et ettt ettt et et e e a e tannanes
Y B a0 o | T o PP
1S 5 Q=T 1= PP
RS Lo o PP

Chapter 6: Authentication

Pluggable Authentication MOdUIEcuiiiiii i e e anes

L= 1T o] S PP
Prerequisites for Single SigN-0On.......oo it
Generate PassTiCKEL. .. .ttt e
How Applications Communicate with Mainframe SystemsS.........cccooiiiiiiiiiii e

LGS 0= o 1= P
L1 1= 1 o R) I
Using Kerberos Principal @nd PasSWOIdoeieiiieiiiiiiieie e re e s r e e e e e e e e eees

Chapter 7: Policy Evaluation

L LYo YT
HOW POliCIiES Are EValUated .. o vttt ettt a e et e e e e et e nannaen
Gathering Identity AttribDULES ...
Assembling Environment INformationoooviiiiiiii i e e
[00] [TVl 1 = (e 1 T [PP
Evaluating Matching Algorithm. ... e
How the Best Match Algorithm is Evaluated ... e
Best Match Handling for Regular EXpression POlICIEScciiiiiiiiiiiiii e
Policy Filter EValuation ..ot e
Delegated Authority Evaluation ... e reea

41

41
a1
42
44
44
49
49
50
54
58
62
62
63

65

65
65
66
69
70
70
70
74

6 Programming Guide

How Obligations Are Calculatedoviiiiiiiii i e ea 84

Chapter 8: Exception Handling 85
L YT Y 85
L= LS ==Y o) o Lo o P 86
SE1=IANU o] g 4= Y (o] o W = edel= o' o] o NP 88
Safe BackendServer EXCEPTIONuiui ittt ettt 88
Safe PassSWOord EXCEPIION . ittt e 89
Chapter 9: Identity Management 21
Administration Methods ..o e s s a e 91

Administering Global Users, Groups, and FOlIAers......cuuiiiiiiiiiiiii i e 92

APPIYING PassSWOrd POIICIESueie it e e e e e e e e e e e e e e as 93

Identity Self AdmMIinNiStrationcoi i 95
Configure Externally Generated CertifiCatesooiiiiiiiii i i e as 96
Enable Trace 0N CA EEM SeIVer ..ottt ettt e et et et e et ettt et e et e e e e e e aeanes 96
Enable Trace 0N CA EEM SDK . ..uuiiiuiiitii sttt st saaesaaesane s e sane s anesasesan e saneaaneeaneaaneanneanneennes 97
D2V A o 1= T (ol =T gl e | o 11 o = 97
How Offline AUthentiCation WOrKS . .. ettt a e e e e e nnaeas 98
Chapter 10: Configure Directories 99
L T Y= 99
(@0e] o) o [I Eot e o= g g =1 I D1 =T o] PP 100

ReStart iGAtEWAY (LINUX) «ueieeiniiiii ittt et ettt st et e st st s et e e s e s e et s n e e e e enenes 101
(OIF1 o] 0 g I\ F=T 0] o =T I D11 =Tt o] VA PP 101

Example: Configure UPN Using Custom Mapped DireCtory......ocvuvieieiiiiiiiiiiiiiie e e eeeeeeees 102
B A o] o e [=1 oo o P 103
(@7 NS 10117 1 o 1= PP 103

How You Integrate CA SiteMinder with CA EEM ..o e 104

CA SiteMinder Configuration Parameterscoieiiiiiii i 104

How Single Sign-on Works between CA SiteMinder and CAEEM......ccooiiiiiiiiiiiiiiiiiicienens 105

How Authentication Works Using CA SiteMinder Authentication Schemesc.ccovveviiieinnne. 105
Chapter 11: Integrate Web Services with CA EEM 107
WeED ServiCes ArChitECtUIE ... e et e et ranes 108
Configure Web Services for CA EEM ...ttt et ettt et et a e e aeaaeanes 110
(0o oY T 18T =L [0} o T |1 112
Sample Configuration File. ...t e r e e e as 114
1o To] £ 115

Contents 7

XACML Profile for CA EEM .. v e 116

XA CML INtegration ot 116
WSDL fOr CA EEM XACMLttt et et et s et e e e e e e e e e e s a e e e e e e s e e e e een e enee e neneaenns 117
XACML Services for CA EEM .. e 117
DAY 01 =T [T 118
D AN I S =T=] o Yo g 1= == PP 120
Export and IMport USING XACML ...ttt et et e e et et et s et s e s e s e e e nean e anannanes 121
Mapping CA EEM Operations to XACML FUNCLIONS......ouiiiiiiiiiiiiii e a e 126
Mapping CA EEM Data Types to XACML Data TyPeS...uiuiieiiiitiitiiieiiee e ee e aeeee s 127
XPATH EXpressions for CA EEM Fillers. ..o i e e as 127
Attributeld Values for XACML AttributeDesignator Elementsc.coiviiiiiiiiiiiiieeas 128
L= 0 0 o =P 128
1] o I o o) T = o O] 135
SPML INtEgratioN c.u st 135
LIS .01 0 LT PN 135
WSDL fOr CA EEM SPML ...ttt ettt s e e s st s e e s e e s et s r e e s e e aanes 136
1] o I o o T PP 137
Example SPML Requests and RESPONSES. . ..uiiuiiiiiit ittt st r e e e e e e e e e eeenes 146
Chapter 12: Event Management 153
V7= oL ol o [=P 153
How Event Policies are Evaluatedoooiiiiiiii i 153
(o]l u o] | [TaTe I SVZ=T o | Wl B L= [V 2= o PP 154
Default EVENT POIICY vttt et e e e e 155
V=T ol = = 1 o T [156
AdMINISEratiVe EVENTS. ..ttt 157
RUNEIME EVENES Lt 159
(@0 =] L=t Yol=Ta I V=T o | =P 161
ReEliable EVENE DIIVEIY ittt i e e ettt r e r e r e 161
Enable Reliable EVENt DEIIVEIY ...t et et e e et e a e e e e neeaeanes 162
ROUEE BV ENES 1ttt 163
Chapter 13: Server Configuration 165
1< V=] gl @] oY Te [U] or= o o PPN 165
Using Java Authentication and Authorization Service ... 166
Chapter 14: Managing with CA Products 169
Provisioning through CA AdMiN ...t e e e e e e e e e e e aeaeas 169
Security Management With CA SCC ... ittt e et e e e e neeeanes 170
REPOrtiNG @nNd ANy SIS « vttt i 171

8 Programming Guide

LT o g T Lol A0 T R Y= = 171

Chapter 15: Sample WorkFlow 173
L@ L= YT 173
Defining Identity and ACCeSS ReqQUITEMENESuiiiii it e s e e e eanes 174
Designing Safe Objects to IMPIemMENnt ... e e e 175

Defining the Application INSTANCEo.iiiiii e e 177

DEfiNiNG Calendars. . c ittt e 182

(D= T a1 o [o] [T == T 185
Designing the User Interface. ... e e e 188

HOW t0 Design User TNt At vttt ettt e e e e e et e e an e e e nnenes 188
7T o= T 188

o [T o 0 189
MOodifying SEOredOD ECES .. v e 190

(o] o L=t == o Lo I == o o = PP 192

ST T o S .2 = P 192
Appendix A: Safex Command Line Reference 193
T o Yo [194
Appendix B: Example Safex XML Scripts 197
=T 1] o= P 198
L =0T = 198
4510 199
Lo g s Yo Y ol 1 LU 1L o] = PP 199
CreatedEXPOrEMUITIPIE. ...ttt e e e e e eaa 200
EXPOrt GIobal SettiNGS . .civiiii e 201
(€ oTo L= | IS =] 1 [I PP 201
QLI 1 15 = 1 oo = 201
L] (0] o =1 LU L= = o 202
LT 203
LT =T o U 203
(€] (0] o =1 LU =1=T € o] U o 203
[0 1TV P 204
(@F=] 11 T F= o PP 205
Extended User AttribDULES. ... s 206
1SY= 100101 1STAY o] o] [ot=1 o [0 o 1 RPN 207

Contents 9

Appendix C: Reference Matrix 219

Index 225

10 Programming Guide

Chapter 1: Infroduction

CA Embedded Entitlements Manager (CA EEM) allows applications to:
m Securely manage users

m Share common access policy management

m Authenticate and authorize from a data source

It provides a common web interface for policy definition, user management,
and means to audit user's activities.

CA EEM allows several applications to share a single source to authenticate
users and manage their access rights.

Who Should Read This Guide

This guide is intended for system programmers, administrators, and
integrators who are responsible for defining, monitoring, and managing CA
EEM users and tasks. It describes how to integrate CA EEM with your
application.

This guide assumes you have already installed the CA EEM and are familiar
with the UNIX or Windows operating environment in which the tasks are
performed. This guide also assumes you have knowledge on any of the
following programming languages:

m C

m C#
. C++
® Java

Chapter 1: Introduction 11

Architecture

Architecture

App 1

Client

S0k

Anp 2

Client

S0k

App M

Client

S0k

The following illustration depicts the relationship between CA EEM Server,
applications, shared server, and database:

100X
e BM e Fpetes Dem o o -
D = 3 - (v F :_,n—nn-—-e" &2 E@nﬂ
R oo, esrort i e pa IR it

8 eTrnss"Embedded identty and Access Maragement

tioma | mansge hisatiiies | Masags iress Pulcies | Comigus

iy el o 1w Mlamamnerand G 8 Wl
marmge Idrelfies

Shared VWefb LI

]
] e

) o i

CA EEM Shared
Folicy Server

Glohal Users stored
either intemally, ar

l

referenced from an
external directory

CA EEM Store

App 1 .-"JNFIFI i App]
Lser info, userinfo, |----- user infa, Q|I|:|t:|a|I
[]I:Ilil:iES DDliEiES leiEiES Lsers, roles

More Information:

SDK Contents (see page 13)
Client Applications (see page 14)

Policy Server (see page 14)

12 Programming Guide

Architecture

SDK Contents

The CA EEM SDK provides means to authenticate external user sources,
develop access policies, and deliver security events. It provides a command-
line interface that application administrators can use for silent administration.

The SDK APIs lets you manage application instances, resource classes, access
policies, calendars, folders, and sessions. The APIs are in C, C#, C++, and

Java languages.

The CA EEM SDK provides the following:

Content

Default Install Path

Sample application
'RBC_Hospital'

C:\Program Files\CA\Embedded 1AM
SDK\elsewhere\safex

Safetool source

m C

n C#
m C++
m_ Java

C:\Program Files\CA\Embedded IAM
SDK\safetool

C# Unit Tests

<SDK_Installed_directory>/unittests/cshar
p

Note: For more information on C# Unit
Tests, see readme.txt under
<SDK_Installed_directory>/unittests/cshar

p

C++ Unit Tests

<SDK_Installed_directory>/unittests/cpp

Note: For more information on C# Unit
Tests, see readme.txt under
<SDK_Installed_directory>/unittests/cpp

JUnit Unit Tests

<SDK_Installed_directory>/unittests/java

Note: For more information on C# Unit
Tests, see readme.txt under
<SDK_Installed_directory>/unittests/java

Chapter 1: Introduction 13

Architecture

Documentation

The SDK documentation is installed along with the CA EEM SDK. The CA EEM
SDK documentation is at: <install_path>\CA\Embedded IAM SDK\Doc

Default: C:\Program Files\CA\Embedded IAM SDK\Doc

It provides the following:
m Java reference
m C# reference

m C/C++ reference

Note: For information on installing CA EEM SDK, see Getting Started.

Client Applications

Policy Server

A business application that uses the CA EEM SDK is a client. When an
application requires users to authenticate themselves, evaluate business
policies, or to log a significant event, the application invokes one of the CA
EEM SDK methods.

When an application instance is created with the CA EEM policy server, all
application policies, calendars, and session-specific user groups are sent from
the server, and are cached in the client for use during policy evaluation. The
cache updates itself frequently.

More Information

SDK Cache (see page 62)

The CA EEM Policy Server is shared by all the applications and is used to:
m Authenticate users

m Deliver audit events to audit collection tools

m Store application-specific information

m Set application-level user attributes

m Configure external user store

m Set calendars

14 Programming Guide

Chapter 2: Application Instances

This section contains the following topics:

Overview (see page 15)

How to Register an Application (see page 15)
Attach to Backend Server (see page 16)
Create an Application Instance (see page 17)
Define User Attributes (see page 18)

Define Resource Classes (see page 20)
Define Obligations (see page 21)

Register Application (see page 22)

Overview

CA EEM provides its services to the applications registered with it. When an
application registers with CA EEM, an application instance is created. This
application instance stores user details, access policies, calendars, and
application-specific user groups and folders.

How to Register an Application

To register an application with CA EEM, perform the following tasks:
Attach to the backend server

Create an application instance

Define user attributes

Define resource classes

(Optional) Define obligations

AU

Register the application

Note: You need administrative privileges to register an application with CA
EEM. The Eiamadmin user has the administrative privileges.

Chapter 2: Application Instances 15

Attach to Backend Server

Attach to Backend Server

You must attach to the CA EEM Policy Server to get the application-specific
policies and resources to the client.

To attach an application to the backend server
1. Instantiate a SafeContext Class.
2. Set the backend server to the host where CA EEM Policy Server is running.

3. Call the authenticateWithpassword method to verify the authenticity of the
user.

The method returns an instance of SafeSession, which is used during
policy evaluation.

4. Attach to the global space using the session.

This session is valid for 24 hours, after which CA EEM refreshes the session
automatically.

Example: Attach to backend server

The following example attaches an application to the backend server
generating a session, and attaches to global space using the generated
session:

/Nnstantiate a SafeContext Class.

SafeContext safecontext = new SafeContext();

/ISet the backend to the host where Server is running.
safecontext.setBackend("<hostname>");

/ICall the authenticateWithXXX to verify the authenticity.

SafeSession safesession = safecontext.authenticateWithPassword("usemame", "password");
/IAttach to global space using the session.

safecontext.attach(null,safesession);

16 Programming Guide

Create an Application Instance

Create an Application Instance

You must create an application instance to add application data. The
application instance is used to store application-specific user details, access
policies, calendars, and application-specific user groups and folders.

To create an application instance
1. Instantiate a SafeApplicationInstance class.

2. Assign a context to the application by calling the setContext method within
the SafeApplicationInstance class.

The SafeApplicationInstance (sai) object is created, when a login is
authenticated.

3. (Optional) Add additional information about the application, such as, major
version, minor version, brand, application name, and description.

Example: Create an application instance

The following example creates an application instance:

INnstantiate a SafeApplicationinstance class.
SafeApplicationinstance sai = new SafeApplicationIinstance();
/IAssign a context to the application by calling the setContext method.
sai.setContext(safecontext);

/IAdd additional information about the application

/ISet a label to the application.

sai.setlabel("xyzBank");

/ISet a name for the application.

sai.setApplicationName("XYZ Bank Management");

/ISet the major version.

sai.setMajorVersion("1");

/ISet the minor version.

sai.setMinorVersion("0");

/ISet the brand.

sai.setBrand("ABC");

/ISet the description to the application.

sai.setDescription("For managing bank's resources/identities and define the access policies");

More Information:

Define User Attributes (see page 18)
Define Resource Classes (see page 20)
Define Obligations (see page 21)
Register Application (see page 22)

Chapter 2: Application Instances 17

Define User Attributes

Define User Attributes

In CA EEM, every user of an application has application-specific attributes. You
can define the application-specific user attributes while creating an application
and refer to them in policies, or create application users by adding these
attributes to a global user.

Note: You must attach to the backend server and create an application
instance, before defining the user attributes.

To define user attributes, add the attributes by calling the addUserAttribute
method, which has the following syntax:

addUserAttribute(attribute:field:value)

The addUserAttribute method supports the following types:
Text

Specifies a field that contains a text value.
Number

Specifies a field that contains a humeric value. You can use the following
characters: 0-9, comma (,), or hyphen (-).

Password

Specifies a field that contains a masked value as you might see in a
password field. Use the type to mask the content of the field from a user.

Boolean

Specifies a check box for user to select.
Select

Specifies a drop-down list from which a user can choose a value.
Multi-valued

Specifies the field can have multiple values. When assigning user
attributes, the user is presented with multiple fields to enter values.

18 Programming Guide

Define User Attributes

Example: Define user attributes

The following example defines the user attributes:

sai.addUserAttribute("text:memberlD");
sai.addUserAttribute("select:member:customer”);
sai.addUserAttribute("select:member:staff');
sai.addUserAttribute("mvtext:memberlD");

More Information:
Attach to Backend Server (see page 16)

Create an Application Instance (see page 17)
Users (see page 25)

Chapter 2: Application Instances 19

Define Resource Classes

Define Resource Classes

Resource classes are used in application instances to classify resources. You
can identify the resource classes in an application and define access policies to
restrict the access. Every resource class has a name, actions, and attributes
associated.

Example: Consider a banking application in which you must restrict access to
a resource called Loanrecords. In this scenario, LoanRecords is the resource
class name, actions will be either read or write, and the resource class
attributes will be amount, account ID, owner name, and so on.

Note: You must attach to the backend server and create an application
instance, before adding the resource class.

To define resource classes
1. Identify all the resource classes in an application.
2. Add the resource classes to the safeApplicationInstance.

3. Protect the resources by defining access policies.
Example: Define resource class

The following example defines a LoanRecod resource class in a banking
application.

/Nnstantiate a safe resource class object.
SafeResourceClass res = new SafeResourceClass();

/ISet the name of resource class to loanrecord.
res.setName("loanrecord");

/IAdd an action 'read' to the resource class.
res.addAction("read");

/IAdd an action 'write' to the resource class.
res.addAction("write");

/IAdd a named attribute 'amount' to the resource class.
res.addNamedAttr(“amount");

/IAdd a named attribute ‘accountlD' to the resource class.
res.addNamedAttr("accountlD");

/IAdd a named attribute 'Ownemame' to the resource class.
res.addNamedAttr("ownerName");

/IAdd the resource class to the safe application instance object.
sai.addResourceClass(res);

More Information:
Attach to Backend Server (see page 16)

Create an Application Instance (see page 17)
Modify an Application Instance (see page 23)

20 Programming Guide

Define Obligations

Define Obligations

You can define obligations to policies that return actions to the application
after an authorization check. Obligation policies are application-specific. A
policy can contain one or more obligation names and attributes.

Using obligations, applications can control the actions it can perform when
access is granted or denied. For example, the application might send an event
or start a workflow process, or send an email.

Note: You must attach to the backend server and create an application
instance, before adding obligations.

To define obligations

1. Define the obligation names in the ObligationName attribute of the
ApplicationInstance object.

2. Create a new safe obligation policy.

3. Attach obligatory actions to the SafeObligations used in policies based on
the authorization requests.

Example: Add an obligation

The following example adds an obligation to send email to the manager when
a loan is approved. On successful loan approval, during policy evaluation, an
obligatory action of sending email must happen. You can define an obligation
named email and add it to the safeApplicationInstance.

/ICreate a safecontext (obj), attach to an application instance, and get the safe application instance (sai) object.
sai.addObligationName("email");
sai.somodify();

SafePolicy sp = new SafePolicy();
sp.setContext(obj);
sp.setResourceClassName("SafeObligation");
sp.setPath("New Oblig Policy");
sp.setDescription("New Oblig Policy");
sp.addidentity("erdoctor");
sp.addResource("admit/patient/*");
sp.addAction("FulfillOnGrant");

More Information:
How Obligations Are Calculated (see page 84)

Define User Attributes (see page 18)
Policies (see page 41)

Chapter 2: Application Instances 21

Register Application

Register Application

You must register an application with CA EEM to use its services. When an
application registers with CA EEM, an application instance is created.

Note: You must attach to the backend server and create an application
instance, before you register an application.

To register an application
1. Create a safeapplicationinstance object.

2. Assign a context to the application by calling the setContext method and
set the label, path, and name.

3. Add additional details like user attributes, resource classes, obligations,
and translations.

4. Call the registerApplicationInstance method.
Example: Register an application

The following example registers an application:

INnstantiate a SafeApplicationinstance class.

SafeApplicationinstance sai = new SafeApplicationinstance();

/IAssign a context to the application by calling the setContext method.
sai.setContext(safecontext);

/IAdd additional information about the application.

/ISet a label to the application.

sai.setlabel("xyzBank");

/IAdd additional details like user attributes, resource classes, obligations, and translations.
/ISet a name for the application.

sai.setApplicationName("XYZ Bank Management");

/IRegister the application
safecontext.registerApplicationinstance(sai,"samplecertfile.p12","samplepassword");

More Information:
How to Register an Application (see page 15)

Attach to Backend Server (see page 16)
Create an Application Instance (see page 17)

22 Programming Guide

Register Application

Modify an Application Instance
You can modify an application instance that is registered with CA EEM.

The following is a sample procedure to modify a resource class by adding a
new attribute.

To modify an application instance

Attach to the application with administrative privileges.

Retrieve the application instance object.

Instantiate the safe resource class object.

Set the resource class name

Add a new attribute to the resource class.

o v kAW N

Commit the changes by calling the soModify method.

The changes are applied to the application instance.
Example: Modify an application instance

The following example modifies a banking applications 'loan record' resource
class by adding 'OwnerName' attribute:

/IAttach to XYZ Bank Application
safecontext.attach("xyzBank",ss);

/IGet Application Instance.

SafeApplicationlnstance sai = safecontext.getApplicationlnstanceObject();
INnstantiate the safe resource class object.
SafeResourceClass res = new SafeResourceClass();

/ISet the name of resource class to loanrecord.
res.setName("loan record");

/IAdd a named attribute 'OwnerName' to the resource class.
res.addNamedAttr("OwnerName");

/IAdd the resource class to the safe application instance object.
sai.addResourceClass(res);

/ICommit the modifications.

sai.soModify();

More Information:

Create an Application Instance (see page 17)
Define Resource Classes (see page 20)

Chapter 2: Application Instances 23

Register Application

Unregister an Application Instance

You can unregister an application instance that is registered with CA EEM from
the global application space. Application instances must be unregistered before
you uninstall CA EEM.

To unregister an application instance
1. Instantiate a SafeContext Class.

2. Set the backend server to the host where CA EEM Policy Server is running.

3. Call the authenticateWithpassword method to verify the authenticity of the
user.

4. Log into the <global> application space by calling the attach method.

5. Call the UnregisterApplicationInstance method.
Example: Unregister an application instance

The following example unregisters an application instance:

/Nnstantiate a SafeContext Class.

SafeContext safecontext = new SafeContext();

/ISet the backend to the host where Server is running.

safecontext.setBackend("<hostname>");

/ICall the authenticateWithpassword to verify the authenticity.

SafeSession safesession = safecontext.authenticateWithPassword("EiamAdmin", "EiamAdminpassword"),
/IAttach to the global space.

safecontext.attach(null, session);

/MUnregister the application instance.

safecontext.unregisterApplicationinstance("Application name");

More Information

Modify an Application Instance (see page 23)
Register Application (see page 22)

24 Programming Guide

Chapter 3: Users

Overview

This section contains the following topics:

Overview (see page 25)

Create Global Users (see page 26)

Create Application-Specific Users (see page 27)
Search Users Using Attributes (see page 30)
Retrieve a Global User (see page 31)

Retrieve an Application-Specific User (see page 32)
Delete a User (see page 33)

CA EEM lets you authenticate and authorize users. It lets you create policies
that control the user access privileges to use applications. You can use CA EEM
to support application-specific authentication and authorization.

Users in CA EEM are classified as follows:
Global users

Global users are users that are available for sharing across all application
instances registered with CA EEM. Every user in CA EEM is a global user by
default.

Application-specific users

Application users are specific to the application instance. The application-
specific users are not shared across other application instances.
Application-specific user attributes are defined when creating an
application instance. You can add a global user to an application-specific
group. Every global user can have application-specific user attributes.

Chapter 3: Users 25

Create Global Users

Create Global Users

You can create global users that are available for all applications.

Note: You can create global users only if you store the global users and global
groups in the CA Management Database (CA-MDB). If you reference from an
external user source the global users are considered read-only.

To create global users

1.
2.
3.

5.

Create a SafeGloablUser object.
Set the context by calling the setContext method.
Set the path where you want to create the user.

If you want users to be created under a folder, and if the folders are
already created for users, you can call the setPath method to specify the
folder name where the user must be stored, for example,
/foldername/username.

Set a unique username and add additional information about the user,
such as, FirstName, LastName, DisplayName, Password, Description, and
JobTitle.

Call the solnsert method to add user to the database.

Example: Create global user

The following creates a global user:

/ICreate a SafeGlobalUser object.
SafeGlobalUser gu = new SafeGlobalUser();
/ISet the context.
gu.setContext(safecontext);

/ISet the path.

gu.setPath("/Asia/JohnDoe");

/ISet the usemame.

gu.setUserName("JohnDoe");
/IAdd additional information.
gu.setFirstName("John");

gu.setLastName("Doe");

gu.setDisplayName("John Doe");

gu.setPassword("johndoe");
gu.setDescription("Application Administrator");
gu.setJobTitle("Captain");

/ICall the solnsert method.

gu.solnsert();

26 Programming Guide

Create Application-Specific Users

Create Application-Specific Users

You can create application-specific users for an application.

To create application-specific users

Instantiate a SafeUser object.

Set the context by calling the setContext method.
Attach to the application using the session.

Set the required application-specific attributes.

Set the path and define the user by calling the setpath method.

o v AN e

Call the solnsert method.
Example: Create application-specific user

The following example creates an application-specific user:

/Nnstantiate a SafeContext Class.

SafeContext obj = new SafeContext();
SafeSession session = safecontext.authenticate\WithPassword("EiamAdmin", "password")
/IAttach to the application using the session.
obj.attach("RBC_Hospital", session);

SafeUser obj2 = new SafeUser();
obj2.setContext(obyj);

/ISet the required application-specifc attributes.
obj2.insertXAttr("memberiD","000369");

/ISet path and define the user you want to create.
obj2.setPath("erdoctor");

INnsert the Application-specific User.
obj2.solnsert();

Chapter 3: Users 27

Create Application-Specific Users

Associate Global User with Application-Specific Details

You can associate global user with application-specific details

To associate global user with application-specific details

1. Instantiate the SafeGlobalUser(user) class, which inherits from the
SafeStoredObject class.

2. Set the context by calling the setContext method.

3. Set the path and retrieve the user by calling the setpath and soretrive
methods.

Note: The path set for the application path must be same as the global
user path.

4. Associate application-specific information.
Example: Associate application details to a global user

The following example associates application details to a global user:

/Nnstantiate the SafeContext Class.
SafeGlobalUser obj = new SafeGlobalUser();
//Set the context.

obj.setContext(sc);

/IPath should be same as global user.
obj.setpath("erdoctor");

obj.soRetrieve()

IIAssociate with a application-specific group name.
obj.addgroup("Staff");

obj.soModify();

28 Programming Guide

Create Application-Specific Users

Modify Membership
You can modify the user group for a user.

Note: You must have write access for the User or the GlobalUser object that
you want to modify.
To modify user group
1. Instantiate the SafeContext Class.
2. Set the context.
3. Retrieve the user using the setpath and soretrive methods
4. Modify the user group by calling any of the methods:
addGroup
Adds a user to a particular user group.
delGroup
Removes a user from a particular user group.
getGroupQ
Displays the list of available groups.
clearGroupQ
Removes all the users from the associated group.

5. Call the soModify method to apply the changes.
Example: Modify membership

The following example modifies the user group by adding user to a 'Staff':

SafeUser u = new SafeUser();

u.setContext(sc);

/IPath should be same as globaluser:UserName
u.setPath("JohnDoe");

//Add the user to a group

u.addGroup("Staff");

/ICall the soModify method.

u.soModify();

Chapter 3: Users 29

Search Users Using Attributes

Search Users Using Attributes

You can use filters to search users using attributes. To search for users using
attributes, prefix the attribute names with 'A:'.

Note: You must prefix the 'A:' for standard LDAP attributes. For custom
attributes, you can provide the attribute name without the prefix. For values to
prefix before field type, see Build Filters to Use in Policies (see page 54).

Example: Search for global users

The following example searches all global users whose Job Title attribute is set
to Captain:

List filterq = new ArrayList();
filterg.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "A:JobTitle", SafeEnum.OpType.STRING,
SafeEnum.Oper.EQUAL, "Captain”, 0));

List globalUsers = safecontext.searchGlobalUsers(filterq);

Iterator itr = globalUsers.begin();

While(itr.hasNext(){
SafeGloabalUser gu = (SafeGloablUser) itr.next();
System.out.printin(gu.getName());

}

A list of matching global user objects based on the attributes is returned as a
list.

Example: Search for application-specific users

The following example searches all the application-specific users by whose age
is greater than 20:

List filterq = new ArrayList();
filterg.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "A:Age", SafeEnum.OpType.INT32,
SafeEnum.Oper.GREATER "20", 0));
List globalUserGroups = safecontext.searchUsers(filterq);
Iterator itr = users.begin();
While(itr.hasNext(){
SafeUser user = (SafeUser) itr.next();
System.out.printin(user.getName());

}

A list of matching application-specific user objects whose age is greater than
20 is returned as a list.

30 Programming Guide

Retrieve a Global User

Retrieve a Global User

You can retrieve a global user by the name.

To retrieve a global user

1.

2
3
4,
5

Instantiate a SafeContext Class.

Set the backend server to the host where CA EEM Policy Server is running.
Instantiate the SafeGlobalUser.

Set the context.

Call the soRetrieveByName method.

All the attributes of the user are populated with the data from server.

Note: You must use the soRetrieveByUserName method if the user's display
name (cn) is not same as the User ID.

Example: Retrieve a global user

The following example retrieves a global user:

SafeContext safecontext = new SafeContext();
Safecontext.attach("<hostname>");

SafeGlobalUser ug = new SafeGlobalUser();
gu.setContext(safecontext);
gu.soRetrieveByName("JohnDoe");
System.out.printin("Global User: " + gug.getJobTitle());

Chapter 3: Users 31

Retrieve an Application-Specific User

Retrieve an Application-Specific User

You can retrieve an application-specific user by name.

To retrieve an application-specific user

1.

2
3
4,
5

Instantiate a SafeContext Class.

Set the backend server to the host where CA EEM Policy Server is running.
Instantiate a SafeUser.

Set the context.

Call the soRetrieveByName method.

All the attributes of the user are populated with the data from server.

Example: Retrieve an application-specific user

The following example retrieves an application-specific user:

SafeContext safecontext = new SafeContext();
Safecontext.attach("<hostname>");

SafeUser u = new SafeUser();

u.setContext(safecontext);

u.soRetrieveByName("JohnDoe");
System.out.printin("Application user: " + u.getGroupQ());

32 Programming Guide

Delete a User

Delete a User

You can delete an existing user in CA EEM.
To delete any existing user, retrieve the user and call the soRemove method.
Example: Delete a global user

The following example deletes a global user:

SafeGlobalUser gu = new SafeGlobalUser();
gu.setContext(safecontext);
gu.soRetrieveByUserName("JohnDoe");
gu.soRemove();

Example: Delete an application-specific user

The following example deletes an application-specific user:

SafeUser u = new SafeUser();
u.setContext(safecontext);
u.soRetrieveByName("JohnDoe");
u.soRemove();

More Information:

Retrieve a Global User (see page 31)
Retrieve an Application-Specific User (see page 32)

Chapter 3: Users 33

Chapter 4: Groups

Overview

This section contains the following topics:

Overview (see page 35)

Create Global User Groups (see page 36)

Create Application-Specific User Groups (see page 37)
Search Groups Using Attributes (see page 38)
Retrieve a Global User Group (see page 39)

Retrieve a User Group (see page 39)

Delete a Group (see page 40)

CA EEM supports global user groups and application-specific user groups.
Global User Groups are shared among all application instances. Application-
specific groups are accessible only by their owning application instance,
created based on the requirements of the application.

You can write access policies against attributes and group memberships of
both global and application groups.

Groups in CA EEM are classified as follows:

SafeGlobalUserGroup

GlobalUserGroup are groups that are available for sharing across all
application instances registered with CA EEM.

SafeUserGroup

UserGroups are specific to the application instance. The application-specific

groups are not shared across other application instances.

Chapter 4: Groups 35

Create Global User Groups

Create Global User Groups

Global User Groups are groups that are available for sharing across all
application instances registered with CA EEM.

Note: You can create GlobalUserGroup only in the CA Management Database
(CA-MDB).

To create global user groups

1. Instantiate the SafeGlobalUserGroup(global user group) class, which
inherits from the SafeStoredObject class.

2. Set the context by calling the setContext method.

3. Specify the path name of the Global User Group by calling the setPath
method.

The name is set as the name of the group.

Note: You can also provide description to the group by calling the
setDescription method.

4. Insert the safeglobalusergroup by calling the solnsert method.
Example: Create global user groups

The following example creates a global user group:

/Nnstantiate the SafeContext Class.

SafeContext safecontext = new SafeContext();

/ISafecontext through which you are authenticated to the safebackend server.
SafeGlobalUserGroup gug = new SafeGlobalUserGroup();

/ISet the context.

gug.setContext(safecontext);

/ISet the path.

gug.setPath("Engineers");

/IProvide the description.

gug.setDescription("This global user group is for users who are engineers by profession");
I/Nnsert the safeglobalusergroup.

gug.solnsert();

36 Programming Guide

Create Application-Specific User Groups

Create Application-Specific User Groups

Application-Specific User Groups are specific to the application instance. These
groups are not shared across other application instances.

Note: You can create application-specific user groups only in the CA
Management Database (CA-MDB).

To create application-specific user groups

1. Instantiate the SafeUserGroup(user group) that inherits the
SafeStoredObject class.

2. Set the context by calling the setContext method.
3. Specify the path name of the User Group by calling the setPath method.
The name is set as the name of the user group.

Note: You can also provide description to the group by calling the
setDescription method.

4. Insert the application-specific SafeUserGroup by calling the solnsert
method.

Example: Create application-specific user group

The following example creates an application-specific user group:

/Nnstantiate the SafeContext Class.
SafeContext safecontext = new SafeContext();
/IAttach to global space using the session.
safecontext.attach(null,safesession);
/ISafecontext through which you are authenticated to the safebackend server.
SafeUserGroup ug = new SafeUserGroup();
ug.setContext(safecontext);

/ISet the path.

ug.setPath("Staff");

/IProvide the description.
ug.setDescription("Staff");

Il Insert the application-specific safeusergroup.
ug.solnsert();

More Information

Modify Membership (see page 29)

Chapter 4: Groups 37

Search Groups Using Attributes

Search Groups Using Atfributes

You can use filters to search groups using attributes. To search for groups
using attributes, prefix the attribute names with 'A:'

Note: You must prefix the 'A:' for standard LDAP attributes. For custom
attributes, you can provide the attribute name without the prefix. For values to
prefix before field type, see Build Filters to Use in Policies (see page 54).

Example: Search for a global users

The following example searches for global users by description:

List filterq = new ArrayList();

filterg.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "A:Description", SafeEnum.OpType.STRING,
SafeEnum.Oper.LIKE, "™engineers*", 0));

List globalUserGroups = safecontext.searchGlobalUserGroups(filterq);

A list of all matching global users based on the attributes is returned as a list.
Example: Search for a application-specific user groups

The following example searches for all application-specific users groups by
description:

List filterq = new ArrayList();

filterg.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "A:Description", SafeEnum.OpType.STRING,
SafeEnum.Oper.EQUAL, ™engineers*", 0));

List UserGroups = safecontext.searchUserGroups(filterq);

A list of all matching application-specific user groups based on the attributes is
returned as a list.

38 Programming Guide

Retrieve a Global User Group

Retrieve a Global User Group

You can retrieve a global user group with the name by calling the

soRetrieveByName method.

To retrieve a global user group

1. Instantiate the SafeGlobalUserGroup.

2. Set the context.

3. Call the soRetrieveByName method.
All the attributes of the global user groups are populated with the data
from server.

Example: Retrieve a global user group

The following example retrieves a global user group:

SafeGlobalUserGroup gug = new SafeGlobalUserGroup();
gug.setContext(safecontext);
gug.soRetrieveByName("Engineers");
System.out.printin("Description : " + gug.getDescription());

Retrieve a User Group

You can retrieve a application-specific user group with the name by calling the

soRetrieveByName method.

To retrieve a user group

1. Instantiate the SafeUserGroup.

2. Set the context.

3. Call the soRetrieveByName method.
All the attributes of the user group are populated with the data from
server.

Example: Retrieve a user group

The following example retrieves a user group:

SafeUserGroup ug = new SafeUserGroup();
ug.setContext(safecontext);

ug.soRetrieveByName("Staff");

System.out.printin("Group Membership : " + ug.getGroupQ());

Chapter 4: Groups 39

Delete a Group

Delete a Group

You must retrieve a group to delete any existing group and use the soRemove
method.

Note: Before deleting a group, ensure it is not referenced by any user or
group.

Example: Delete a global user group

The following example deletes a global user group:

SafeGlobalUserGroup gug = new SafeGlobalUserGroup();
gug.setContext(safecontext);
gug.soRetrieveByName("Engineers");

gug.soRemove();

Example: Delete a user group

The following example deletes a user group:

SafeUserGroup ug = new SafeUserGroup();
ug.setContext(safecontext);
ug.soRetrieveByName("Staff");
ug.soRemove();

More Information:

Retrieve a Global User Group (see page 39)

Retrieve a User Group (see page 39)

40 Programming Guide

Chapter 5: Access Management

This section contains the following topics:

Policies (see page 41)
Filters (see page 49)
Authorization (see page 62)
SDK Cache (see page 62)

Policies

Overview

CA EEM access policies are rules associated with users to define access to a
particular resource of an application or a group. CA EEM determines whether
policies apply to the particular user by matching identities, resources, resource
classes, and evaluating the filters.
Access polices are divided into six parts:
Identities

Specifies the identities to which policy are applicable.
Calendar

Specifies a time for which the policies will be applicable.
Resources

Specifies the resources on which the policy will apply.
Actions

Specifies the type of access to resources (depends on kind of policy).
Filters

Specifies additional conditions for restricting the policy better.
ResourceClassName

Specifies the type of resource, which will come under a resource class.
More Information
Filters (see page 49)

Policy Evaluation (see page 75)
How Policies Are Evaluated (see page 76)

Chapter 5: Access Management 41

Policies

Types of Policies
Policies are broadly divided into the following six categories based on resource
class names:
m Access Policies
m Delegation Policies
m Dynamic User Group Policies
m Obligation Policies
m Event Policies
m Scoping Policies
To classify a policy into any of these categories, you must mention the

appropriate resource class name by calling the setResourceClassName method
of the SafePolicy class.

The following table provides details on the actions that can be performed on a

policy:
Type of Policy SafeResourceClass Actions Description
Access Policy User-defined safe User-defined actions for Defines access rules for
resource class the resource class application-specific
resources
Delegation Policy SafeDelegation inherit Allows users to delegate
their authority
Dynamic User Group SafeDynamicUserGroup belong Defines application-
Policy specific groups and their
memberships based on
rules
Event Policy SafeEvent submit, view Defines who can submit
and view events
Obligation Policy SafeObligation FulfillOnGrant, Defines the obligation
FulfilOnDeny that can be carried out
Scoping Policy SafeObject read, write Define who has access

to which objects

42 Programming Guide

Policies

The following are the available resources for the SafeObject resource class:
m ApplicationInstance
m Calendar

m Policy

m User

m UserGroup

m GlobalUser

m GlobalUserGroup

m Folder

m GlobalFolder

= AppObject

m Poz

m Notify

Chapter 5: Access Management 43

Policies

Types of Authorization Checks

The following table provides a list of methods to perform authorization check
against user-defined policies:

Method Description

a SafeContext.authorizeWithSession Performs authorization check against a single
resource, accepting a character string as the

m SafeContext.authorizeWithIdentity identity/session

m SafeContext.authorizeWithSessionDebug Performs debug authorization check against a
single resource, accepting a character string as

m SafeContext.authorizeWithIdentityDebug the identity/session

m SafeContext.authorizeQWithSession Performs authorization check against a list of
resources, using a valid SafeSession as the

m SafeContext.authorizeQWithIdentity identity/session

m SafeContext.processAuthorizationQ Performs authorization checks for a queue of

authorization objects
m SafeContext.processAuthorizationMatrix

Example: Perform an authorization check

The following example performs an authorization check to determine whether
erdoctor can admit John:

SafeContext sc;

sc.synchronize();

SafeAuthorizationResult sar = sc.authorizeWithldentity("erdoctor”, "admit", "patient”, "John", null, null);
System.out.printin("Result :" + sar.getResult());

System.out.printin("PolicyName: " + sar.getPolicyName());

The results are displayed for the permission check and return a value.

Create, Modify, and Verify Policies

You can create, modify, and verify policies. The following examples describe
the process for detail:

m Anybody can admit John (see page 45)

m Anybody can admit John or John* (see page 46)

m Staff can admit anyone except Sam (see page 47)

m Nobody can admit Sam (see page 48)

44 Programming Guide

Policies

How You Create Anybody Can Admit John Policy

The following example describes the process for creating a policy 'AnyBody can
admit John'.

Note: To write this policy, you must instantiate a SafePolicy class and set its
context.
The policy consists of the following parts:
m Name of the policy: AnyBody can admit John
m Identities: AnyBody (all identities)

Note: If you do not set any identity, the policy applies to all identities.
m Calendar: Any time

Note: If you do not set a time, the policy applies to all times.

If you do not set any time, it is applicable at all times.
m ResourceClassName: Patient (since the resource "john" is a "patient")
m Resources: John
m Action: Admit

m Filters: No restrictions (No filters)
Example: Create a policy

The following example creates 'AnyBody Can Admit John' policy:

SafeContext sc = new SafeContext();

sc.setBackend("hostname");

SafeSession ss = sc.authenticate\WithPassword("usemame","password");
sc.attach("elsewhere",ss); // you are attaching to elsewhere application
SafePolicy sp = new SafePolicy();

sp.setContext(sc);

sp.setPath("Anybody can admit john"); // name
sp.setResourceClassName("patient"); // resource class name
sp.addResource("John"); // resource

sp.addAction("admit"); / action

sp.solnsert();

The authorization check for the resource that starts with John will return 'true'.
More Information:

Types of Authorization Checks (see page 44)
How You Create Anybody Can Admit John or John* Policy (see page 46)

Chapter 5: Access Management 45

Policies

How You Create Anybody Can Admit John or John* Policy

The following example describes the process for creating a policy 'Anybody can
admit John or John*'.
The policy consists of the following parts:
m Name of the policy: AnyBody can admit John or John*
m Identities: AnyBody (all identities)

Note: If you do not set any identity, the policy applies to all identities.
m Calendar: Any time

Note: If you do not set a time, the policy applies to all times.
m ResourceClassName: Patient (since the resource "john" is a "patient")
m Resources: John, John*
m Action: Admit

m Filters: No restrictions (No Filters)
Example: Create this policy

The following example creates 'Anybody Can Admit John or John*' policy:

safeContext.sc

SafePolicy sp = new SafePolicy();

sp.setContext(sc);

sp.soRetrieveByName("AnyBody can admit John or John*");
sp.addResource("John*™");

sp.soModify();

The authorization check for the resource 'Johnathan' or 'Johnxyz' or any
resource that starts with John will return 'true’.

More Information:

Types of Authorization Checks (see page 44)
How You Create Anybody Can Admit John Policy (see page 45)

46 Programming Guide

Policies

How You Create Staff Can Admit Anyone Except Sam

The following example describes the process for creating a policy 'Staff can
admit anyone except Sam'.
The policy consists of the following parts:
m Name of the policy: Staff can admit anyone except Sam
m Identities: Staff Group
m Calendar: Any time
Note: If you do not set a time, the policy applies to all times.
m ResourceClassName: Patient
m Resources: Not mentioned
Note: If you do not set any resource, the policy applies to all resources.
m Action: Admit
m Filters: "requested resource" should "not be equal"” to "value Sam"

You will have to restrict the policy using filters. For more information about
filters see, Filters (see page 49).

Example: Create policy using filters

The following example creates 'Staff Can Admit Anyone Except Sam' policy:

SafePolicy sp = new SafePolicy();

sp.setContext(safecontext);

sp.setPath("Staff can admit anyone except Sam"); /name

sp.setResourceClassName("patient"); //resource class name

sp.addindentity(ug:Staff);

sp.addAction("admit"); /action

SafeFilter safefilter0 = new SafeFilter(SafeEnum.Logic.NONE, 0, "req:resource”, SafeEnum.OpType.STRING,
SafeEnum.Oper.NOTEQUAL, "val:Sam", 0));

sp.addFilter(safefilter0); //add the above built filter to safepolicy

sp.solnsert();

The results are displayed for the permission check and return a value.
More Information:

Filters (see page 49)
Types of Authorization Checks (see page 44)

Chapter 5: Access Management 47

Policies

How You Create Nobody Can Admit Sam Policy

The following example describes the process to create a deny policy for
'Nobody can admit Sam'.

Set the resources in the policy to explicitly deny and flag the 'setExplicitDeny'
to 'true’, to create a deny policy.

Note: By default, CA EEM denies permission unless a granting access policy is
written.

CA EEM authorization evaluation gives priority to deny policies. If an explicit
deny policy is set, CA EEM will deny the permission even if a granting policy is
available. For more information on Policy Evaluation, see Policy Evaluation
(see page 75).

The policy consists of the following parts:
m Name of the policy: Nobody can admit Sam
m Identities: AnyBody (all identities)
Note: If you do not set any identity, the policy applies to all identities.
m Calendar: Any time
Note: If you do not set a time, the policy applies to all times.
m ResourceClassName: Patient
m Resources: Sam
m Action: Admit
m Filters: None

m Policy: Explicit Deny
Example: Create policy using explicit deny

The following example creates an explicit deny for Nobody Can Admit Sam
Policy:

SafePolicy sp = new SafePolicy();
sp.setContext(safecontext);

sp.setExplicitDeny(true);

sp.setPath("Nobody can admit Sam"); //name
sp.setResourceClassName("patient"); //resource class name
sp.addResource("Sam");

sp.addAction("admit"); /action

sp.solnsert();

The results are displayed for the permission check and return a value.

48 Programming Guide

Filters

More Information:

Create, Modify, and Verify Policies (see page 44)
Policy Evaluation (see page 75)
Types of Authorization Checks (see page 44)

Filters

Overview

Filters are attached to the policies to limit the scope of a policy. CA EEM uses
filters during the evaluation phase of the policy evaluation process.

Each filter consists of the following components:

m The connector to the previous filter (logic)

m The number of left parentheses before the expression

m A sub-expression, consisting of a left hand side value, operator, and a
right hand side value

m The number of right parentheses after the expression
More Information

Policies (see page 41)
Policy Evaluation (see page 75)

Chapter 5: Access Management 49

Filters

Build Filters to Use in Searches

You can use filters to manage searches. Filters are similar to the 'where' clause
in the databases when used in searches. You can define multiple filters by
combining groups using the AND and OR operators.

In the SafeContext class, you can use search methods to locate stored objects.

The following objects are stored objects:
m Application Instances

m Calendars

= AppObjects

m Policies

m User Groups

m Global User Groups

m Global Users

m Users

By default, all the objects inherit from the SafeStoredObject class.

When searching for stored objects, use 'cn' to refer the name of the object.
Example: Search Stored Objects

The following example searches for stored objects:

List filterq = new ArrayList();

filterg.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "cn", SafeEnum.OpType.STRING,
SafeEnum.Oper.LIKE, "app™, 0));

// Build the filter and just call the appropriate search method.

List globalUserGroups = safecontext.searchApplicationinstances(fiterq);

Note: During searches, in column field, you can prefix attributes names with
'A:' and specify the value in value field.

50 Programming Guide

Filters

Following are the available attributes for each one of the stored objects:

Stored Object

Method to Invoke

MappedAttributes

Application Instance

searchApplicationInstances

string ApplicationName
string Label

string Brand

string MajorVersion
string MinorVersion

Date InstallDate

string Installldentity
string InstallHost

string InstallHostAddress
string InstallHostInfo
string History

string Translations
portableobject ResourceClass
string UserAttribute
string Description

int CacheUpdateTime

string ObligationName

App Object

searchAppObjects

Calendars

searchCalendars

Date EffectiveStart
Date EffectiveStop
portableobject IncludeTimeBlock
portableobject ExcludeTimeBlock

string Description

Global User Groups

searchGlobalUserGroups

string GroupMembership

string Description

Chapter 5: Access Management 51

Filters

Stored Object Method to Invoke MappedAttributes

Global Users searchGlobalUsers = string GroupMembership

m boolean Suspended

m string UserName

m string PasswordDigest

m string OldPasswordDigest
m Date PasswordChangeDate
m int IncorrectLoginCount

m Date SuspendedDate

m Date DisableDate

m Date EnableDate

m string Description

m string Comments

m string JobTitle

m string MailStop

m string FirstName

m string MiddleName

m__ string LastName

52 Programming Guide

Filters

Stored Object

Method to Invoke

MappedAttributes

Global Users

searchGlobalUsers

m string Alias

m string Department

m string DisplayName

m string HomePhoneNumber

m string WorkPhoneNumber

m string MobilePhoneNumber

m string FaxPhoneNumber

m string EmailAddress

m string Address

m string City

m string State

m string PostalCode

m string Country

m string Office

m string Company

m boolean ChangePasswordNextLogin
m boolean PasswordTimeToWarn
m Date PasswordExpireTime

m boolean

m OverridePasswordPolicy

Chapter 5: Access Management 53

Filters

Stored Object

Method to Invoke MappedAttributes

Policies

searchPolicies m string Resource

m string Action

m string Identity

m string Calendar

m portableobject Filter

m string ResourceClassName
m string Description

m int PolicyType

m boolean Disabled

m string Delegator

m boolean PreDeployment
m boolean ExplicitDeny

m boolean RegexCompare
m string Label

m portableobject Obligation

User Groups

searchUserGroups m string GroupMembership

m string Description

Users

searchUsers m string GroupMembership

m boolean Suspended

Build Filters to Use in Policies

You can use filters in policies by specifying conditions and providing access
policy. You must prefix the specific row values with the column field, different
stored objects use with different values.

The following table displays the field name and the value that must be prefixed
along with the filters evaluated during policy are presented below:

54 Programming Guide

Filters

Column Field Type

Value to Prefix

Filter Evaluation

Attributes

GlobalUserGroup gug: gug:{name} = string Name
evaluates to the
value(s) of the m string Parent
SafeGlobalUserGroup g string Path
object attributes
matching {name} m string[] GroupMembership
m__ string Description
UserGroup gu: gu:{name} = string Name
evaluates to the
value(s) of the m string Parent
SafeGlobalUser m string Path
object attributes
matching {name} m string[] GroupMembership
m boolean Suspended
User u: u:{name} evaluates , string Name
to the value(s) of the
SafeUser object = string Parent
attributes matching string Path
{name}
m string[] GroupMembership
m boolean Suspended
Named Attributes name: name:{name} String value from namedattrq
evaluates to the
value(s) of the
named attributeq
(namedattrq)
(sessionattrq)
matching {name}
Session ses: ses:{name} String value from sessionattrq
evaluates to the
value(s) of the
session's attributeq
(sessionattrq)
matching {name}
Environment env: env:{name} String value from envattrg

evaluates to the
value(s) of the
environment
attributeq (envattrq)
matching {name}

Chapter 5: Access Management 55

Filters

Column Field Type Value to Prefix Filter Evaluation Attributes

Request req: req:{identity|action| String data
resource|when|deleg
ator} evaluates to
the corresponding
values from the
permission check

request

Value val: val:{data} evaluates String data
to the single value of
{data}

Dynamic User Group dug: dug:Name evaluates String Name

to the name(s) of
the Dynamic
UserGroups the
identity belongs to

Request time when: when:{offset} String data
evaluates to
req:when offset by
the {offset}
({offset} is specified
in minutes). Sets the
offset in minutes
from the current
request time. For
example, "-360"
means 10 hours
before the current
request, and "60"
means one hour
after the current
request.

Custom variable var: var:{name} String data
evaluates to the
value(s) of the
custom variableq
matching {name}

Calculation calc: calc:{calculation} String data
evaluates to result of
the {calculation}

56 Programming Guide

Filters

Column Field Type Value to Prefix

Filter Evaluation

Attributes

Global user

gu:

gu:{name}
evaluates to the
value(s) of the
SafeGlobalUser
object attributes
matching {name}

m string Name

m string Parent

m string Path

m string[] GroupMembership
m boolean Suspended

m string UserName

m string PasswordDigest

m string[] OldPasswordDigest
m Date PasswordChangeDate
m int IncorrectLoginCount

m Date SuspendedDate

m Date DisableDate

m Date EnableDate

m string Description

m string[] Comments

m string JobTitle

m string MailStop

m string FirstName

m string MiddleName

m string LastName

m string Alias

m string Department

m string DisplayName

m string HomePhoneNumber
m string WorkPhoneNumber
m string MobilePhoneNumber
m string FaxPhoneNumber

m string EmailAddress

m string[] Address

Chapter 5: Access Management 57

Filters

Column Field Type Value to Prefix

Filter Evaluation Attributes

Global user

gu: gu:{name} m string City
evaluates to the _
value(s) of the m string State

SafeGlobalUser

m string PostalCode

object attributes _
matching {name} = string Country

m string Office
m string Company

m boolean
ChangePasswordNextLogin

m boolean PasswordTimeToWarn
m Date PasswordExpireTime

m boolean OverridePasswordPolicy

Structure of a Filter

The following table displays the SafeFilter constructor parameters and their

description in order:

Parameter Description Overview
logic Constant integer value from Represents the logic between each ordered
SafeEnum.Logic filter. The available SafeEnum.Logic values
are AND, OR, LAST, NONE.
Iparens Number of left parenthesis Represents the logical grouping of filters.
Works together with right parenthesis.
col The column field Represents the left side value of the
condition.
optype Constant integer value from Operator Type (OpType) is used to set the
SafeEnum.OpType operator's data type. This data type is used
for evaluation of filters.
oper Constant integer value from Operators (oper) are used to compare
SafeEnum.Operator values. Available operators are like, notlike,
equal, notequal, match, notmatch, withinset,
notinset, startswith, endswith, greater,
greaterequal, less, lessequal, and contains.
val The value field Represents the left side value of the

condition.

58 Programming Guide

Filters

Parameter Description Overview

rparens Number of right parenthesis Represents the count, number of closing
braces to end a group of conditions.

The following are the samples to create filters based on attributes:

m How to Search on First Name (see page 59)

m How to Search on First Name and Designation (see page 60)

m How to Search on First Name, Designation, and Department (see page 61)

Note: For information on how to create Filters using CA EEM web interface,
see Online Help.

Example: How to Search on First Name

The following is an example to create a filter to search for condition where
FirstName equal to 'ABC'.

Example: Search for condition where FirstName equal to 'ABC'

The following example searches on a condition where FirstName is equal to
'ABC":

new SafeFilter(SafeEnum.Logic.NONE, 0, "A:FirstName", SafeEnum.OpType.STRING,
SafeEnum.Oper.EQUAL, "ABC", 0);

More Information:

Structure of a Filter (see page 58)

Example: How to Search on First Name and Designation (see page 60)
Example: How to Search on First Name, Designation, and Department (see
page 61)

Chapter 5: Access Management 59

Filters

Example: How to Search on First Name and Designation

The process to build a filter to search for users based on job title involves
three steps:

m Build a filter to search on first name field, see Search on First Name (see
page 59)

m Build a filter to search on designation field

m Combine the filters using AND logic.
Example: Search on designation

The following example searches based on designation:

new SafeFilter(SafeEnum.Logic.NONE, 0, "A:JobTitle", SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL,
"Manager", 0);

Note: To combine two filters you can use the 'AND' logic instead of 'NONE'
logic for the designation filter.

Example: Combine filters and search for users based on first name and
designation

The following example searches for users based on first name and designation:

List filterq = new ArrayList();

filterg.add(new SafeFilter(SafeEnum.Logic.NONE, O, "A:FirstName", SafeEnum.OpType.STRING,
SafeEnum.Oper.EQUAL, "ABC", 0));

filterg.add(new SafeFilter(SafeEnum.Logic.AND, 0, "A:JobTitle", SafeEnum.OpType.STRING,
SafeEnum.Oper.EQUAL, "Manager", 0));

List globalUsers = safecontext.searchGlobalUser((filterq);

A list of users with matching designation is displayed.
More Information:

Structure of a Filter (see page 58)

Example: How to Search on First Name (see page 59)

Example: How to Search on First Name, Designation, and Department (see
page 61)

60 Programming Guide

Filters

Example: How to Search on First Name, Designation, and Department

To search for users based on firsthame, designation, and department involves
three steps:

Build a filter to search on first name field, see Search on First Name (see
page 59).

Build a filter to search on designation field, see Search on First Name and
Designation (see page 60).

Build a filter to search on department field.

Example: Search for department

The following example searches for department:

new SafeFilter(SafeEnum.Logic.OR, 0, "A:Department"”, SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL,
"Finance", 1);

Note: Ensure the opening and closing braces in count are set properly.

Example: Search users based on first name, designation, and
department

The following example searches for users based on first name, designation,
and department:

List filterq = new ArrayList();
filterg.add(new SafeFilter(SafeEnum.Logic.NONE, O, "A:FirstName", SafeEnum.OpType.STRING,

SafeEnum.Oper like, "Sam*”, 0));

fiterg.add(new SafeFilter(SafeEnum.Logic.AND, 0, "A:Designation”, SafeEnum.OpType.STRING,

SafeEnum.Oper.EQUAL, "Manager”, 0));

filterg.add(new SafeFilter(SafeEnum.Logic.AND,0, "A:Department”, SafeEnum.OpType.STRING,

SafeEnum.Oper.EQUAL, "Finance", 0));

List globalUsers = safecontext.searchGlobalUser(filterq);

A list of users with matching designation and department are displayed.

More Information:

Structure of a Filter (see page 58)

Example: How to Search on First Name (see page 59)

Example: How to Search on First Name and Designation (see page 60)

Chapter 5: Access Management 61

Authorization

Avuthorization

SDK Cache

You can check access rights for user-defined policies by calling the following
methods:

m Safe::Context::authorizeWithSession

m Safe::Context::authorizeWithIdentity

m Safe::Context::authorizeWithSessionDebug

m Safe::Context::authorizationWithIdentityDebug
m Safe::Context::authorizeQWithSession

m Safe::Context::authorizeQWithIdentity

m Safe::Context::processAuthorizationQ

m Safe::Context::processAuthorizationMatrix
Additionally, you can check access for CA EEM stored objects by calling the
following methods:

m Safe::StoredObject::canContextRead

m Safe::StoredObject::canContextWrite

m Safe::StoredObject::canldentityRead

m Safe::StoredObject::canldentityWrite

CA EEM will cache all the policies, calendars, sessions, and user groups for
every 30 seconds, by default. If you want to change the default cache update
time, call the setCacheUpdateTime method.

You can manually update the cache by calling the Safe::Context::synchronize
method.

Note: The cache update does not include sessions by default. To set cache
update to perform a full synchronization, you must call the
setCacheUpdateSessionsAtSync method.

62 Programming Guide

SDK Cache

Session

CA EEM associates every user with a safesession. It has two kinds of sessions:
Authenticated sessions

Session maintains the user details such as name and groups, along with
the user authentication information. You can generate authenticated
sessions by calling any of the following methods:

m authenticateWithPassword
m authenticateWithCertificate
m authenticateWithArtifact

m authenticateWithNative

m authenticateWithDigest

m authenticateWithCredentials

Note: Each authentication call returns a session object. You can use the
session object to determine the authenticated users.

Unauthenticated sessions

Sessions maintains only the user details such as name and groups
information. These sessions are used only during authorization checks.
Unauthenticated sessions are generated by calling any of the following
methods:

m authorizeWithIdentity
m authorizeQWithIdentity
m authorizeWithIdentityDebug

Note: The default size of unauthenticated session's cache is ten. You can
modify the default size by calling the setCacheUnauthenticatedQSize
method.

Chapter 5: Access Management 63

Chapter 6: Authentication

This section contains the following topics:

Pluggable Authentication Module (see page 65)
PassTicket (see page 65)
Kerberos (see page 70)

Pluggable Authentication Module

PassTicket

CA EEM allows client applications to verify the user authentication from a UNIX
system. The CA EEM SDK calls communicate with the Pluggable Authentication
Module (PAM) APIs to verify the authenticity.

Client applications can call the authenticateWithPam method to verify the
authentication. The PAM APIs will communicate with the PAM service running
on the UNIX system and return a boolean value.

Note: The authentication verification calls are directed to the UNIX system
and not to the CA EEM Server.

Example: Authentication verification with PAM

The following example performs the authentication verification using PAM.

boolean Safe::Context::authenticateWithPam(const char *usemame, const char *password, const char *service,
Safe::Error &ee);

CA EEM supports single sign-on between client applications and mainframe
applications by generating a PassTicket. A PassTicket is a system-generated
password used to authenticate the client applications to access a Mainframe
application without re-authentication.

More Information:

Client Applications (see page 14)

Chapter é: Authentication 65

PassTicket

Prerequisites for Single Sign-On

Before you enable single sign-on, you must perform the following tasks:
m Configure the mainframe system

m Configure the client application in CA EEM Server

Configure the Mainframe System
You must configure the mainframe application profile to define the record ID
(recid) and the Secure Sign-on (SSKEY) fields.

Record ID

Defines the 1 - 26 character profile name of the corresponding application.
The record ID is determined by four distinct combinations of an application
name, group name, and user ID. The combinations are as follows:

m application.group.userid
m application.userid
m application.group
m application
Secure Sign-on Key
Defines the 16-character hexadecimal representation of the eight-byte
encryption key for the mainframe application.
Configure the Client Application in CA EEM
You must perform the following tasks to configure the client application in CA
EEM for single sign-on:
m Configure PassTicket

m Create a Scoping Policy

66 Programming Guide

PassTicket

Configure PassTicket

You must configure the recid and SSKEY values, defined in the mainframe
application, in the CA EEM before the client applications can communicate with
the Mainframe application.

Note: You can also configure the recid and SSKEY values in CA EEM Server
PassTicket Configuration window of the user interface. For more information,
see the Online Help.

To configure a PassTicket, you must call the configurePassTicket method.
Example: Configure PassTicket

The following example configures a PassTicket:

/Nnstantiate the SafeContext Class.

Safe::Context sc;

/ISet the backend to the host where Server is running.

sc.setBackend("localhost");

/IProvide the authentication details

std::string usemame = "EiamAdmin”;

std::string password = "*Eiampassword";

/IAttach to an application space.

std::string applicationname = “ABC Application”;

Safe::Session *session = sc.authenticate WithPassword(usemame.c_str(), password.c_str(), ee);

if('sc.attach(applicationname.c_str(), session, ee)) {
showerror(ee);
retum false;

}

/IProvide any additional information, if required

/IConfigure PassTicket

std::string profile = "CICS",;

std::string key = "0123456789ABCDEF";

if ('sc.configurePassTicket(profile.c_str(),key.c_str(),session,ee)) {
printf("unable to configure passticket");

showerror(ee);
}
else {

printf("passticket configured successfully\n");
}

You will receive a confirmation message if the PassTicket is successfully
generated.

Chapter é: Authentication 67

PassTicket

Create Scoping Policy

You must create a scoping policy for the client application in CA EEM server to
configure or generate a PassTicket.

To configure scoping policy

1.

Log into the CA EEM Server as EiamAdmin for the application you want to
generate PassTicket.

The CA EEM home page appears.
Click Manage Access Policies, Explicit Grant, New Scoping Policy ‘=,
The New Scoping Policy page appears.

In Access Policy Configuration pane, select PassTicket in the Resources
drop-down, and click Add Resource®.

The PassTicket resource is added.
Set the required actions.
Read

Specifies the user can generate PassTicket for the attached
application.

Write
Specifies the user can configure CA EEM for PassTicket.
Click Save.

The policy creation confirmation message appears.

68 Programming Guide

PassTicket

Generate PassTicket

You can generate a Passticket when the client applications want to
communicate with the mainframe application.

Note: Every client application registered with CA EEM must generate a
separate PassTicket.

To generate a PassTicket, you must call the generatePassTicket method.
Example: Generate PassTicket

The following example generates a PassTicket:

/Nnstantiate the SafeContext Class.

Safe::Context sc;

/ISet the backend to the host where Server is running.
sc.setBackend("localhost");

/IProvide authentication details

std::string usemame = "EiamAdmin";

std::string password = "Eiampassword";

/IAttach to an application space.

std::string applicationname = “ABC Application”;

/ICall the authenticateWithXXX to verify the authenticity.
Safe::Session *session = sc.authenticate\WithPassword(usemame.c_str(), password.c_str(), ee);
if(sc.attach(applicationname.c_str(), session, ee)) {
showerror(ee);

retum false;

}

/[Provide any additional information, if required
/IGenerate PassTicket

std::string identity = "bacan01";

char passticket[9] = {0};

if (!sc.generatePassTicket(passticket,(char *) identity.c_str(),session,ee)) {
printf("unable to generate passticket\n");

showerror(ee);

}

else {

printf("PassTicket: %s\n",passticket);

}

You will receive a confirmation message if the PassTicket is successfully
generated.

Chapter é: Authentication 69

Kerberos

How Applications Communicate with Mainframe Systems

Kerberos

Using TGT

The following process describes how a client application authorized by CA EEM
communicates with a mainframe system:

1. Client application sends a request to CA EEM Server through CA EEM SDK
to generate a PassTicket.

2. CA EEM Server generates a PassTicket based on the user ID, application
profile, secret key, and timestamp values of the mainframe application.

3. CA EEM Server sends the PassTicket to the client application through CA
EEM SDK.

4. Client application uses the PassTicket to authenticate with the mainframe
application.

CA EEM lets client applications perform authentication for users stored in a
UNIX-based Key Distribution Center (KDC) using Kerberos authentication.

Client applications can use Kerberos authenticate with a UNIX KDC in two

ways:

m Ticket Granting Ticket (TGT) (see page 70)

m Kerberos Principal Name (see page 74)

The Ticket Granting Ticket (TGT) is an encrypted identification file. The TGT
file that contains the session key, expiration date, and user's IP address.

To use Kerberos authentication using TGT, you must perform the following
tasks:
m Setup CA EEM Server

m Setup client system

70 Programming Guide

Kerberos

Prerequisites
Following are the client and server requirements for Kerberos authentication
using TGT.
Server

Following are the operating system requirements for Kerberos
authentication on the server for using TGT:

m Red Hat Enterprise Linux 4 and 5 with krb5-server<version>.rpm
package

m AIX 5.2 or 5.3 with krb5.server
m Solaris 10
Client

Following are the operating system requirements for Kerberos
authentication on the client for using TGT:

m AIX 5.2 or 5.3 with krb5.client package

m Solaris 10
Setup CA EEM Server

To setup the CA EEM Server for Kerberos authentication, you must perform
the following tasks:
m Add the service principal to Kerberos KDC

m Create a keytab file and add it

Chapter é: Authentication 71

Kerberos

Add Service Principal name
You should add the service principal to the Kerberos KDC.

The service principal will have the following format:

<service name>/<hostname>@<realm>
Note: CA EEM has eiam as its service name and is in lowercase.

Example: If the CA EEM Server is running on a host server.ca.com with realm
CA.COM, then the service principal will be:

eiam/server.ca.com@CA.COM

Note: The host name must be in lowercase and the realm name must be in
uppercase.

To add the service principal to the Kerberos KDC:
1. Login as administrator.

2. Add the Service Principal to the Kerberos KDC.
Example: Add Service Principal Name

The following example adds a Service Principal Name to the Linux Kerberos
KDC.

[root@materkdc rootl# kadmin.local

kadmin.local: addprinc eiam/eiambuild--v4.ca.com@CA.COM

Enter password for principal "eiam/EEMserver.ca.com@CA.COM": <Enter Password>
Re-enter password for principal "eiam/EEMserver.ca.com@CA.COM": <Enter Password>
Principal "eiam/EEMserver.ca.com@CA.COM" created.

You receive a service principal creation confirmation message.
Create Keytab File

After you add the service principal to the Kerberos database, you should
create a keytab file for the service principal.

To create a keytab file on Linux, enter the following command:

kadmin.local: ktadd -k EEMserver.ktab eiam/EEMserver.ca.com@CA.COM

A keytab creation confirmation message appears.

72 Programming Guide

Kerberos

Add Keytab File

Setup Client

Generate TGT

You must add the Kerberos keytab file to the default operating system keytab
file of the CA EEM Server as follows:

Note: If the key tab file is not in the default location, you must export the
KRB5_KTNAME environment variable. For example, export KRB5_KTNAME=
FILE:/root/eiam.keytab.

[root@eiambuild-1-v4 rootl# kiutil
ktutil: rkt eiam_CACOM.ktab
ktutil: wkt /etc/krbb.keytab

The Kerberos keytabs are added to the default keytab file on the operating
system and the CA EEM server is ready to validate the users using Kerberos
tickets.

Note: Install CA EEM Server, if it is not already installed. If it is already
installed and iGateway is running then restart iGateway service.

To authenticate the client with Kerberos, configure the krb5.conf file existing
on the computer where CA EEM Server is installed and generate a TGT for the
user principal in realm.

Note: For information on how to configure krb5.conf file, see the Kerberos
documentation.

TGT is generated when the user is authenticated by the KDC subsystem of
Kerberos.

To generate a TGT for a userprincipal in realm, provide the user principal
details with password as follows:

#kinit -p userprincipal@realm
Password for userprincipal@realm:<Password>

After you generate a TGT,use the authNative method to authenticate with CA
EEM Server.

Note: For an existing TGT of a userprincipal, view the TGT using the klist
command.

Chapter é: Authentication 73

Kerberos

Using Kerberos Principal and Password

Prerequisites

Configure Server

You can authenticate CA EEM using Kerberos principal and password.

Following are the operating system requirements for Kerberos authentication
on the server for using the principal name and password:

m Red Hat Enterprise Linux 4 and 5
m AIX5.20r5.3

Note: The computer on which CA EEM server must be installed must have
Kerberos.client package installed. This package exists in AIX expansion
pack.

m Solaris 10 with kernel patch level 120011-14 or higher

To authenticate CA EEM using Kerberos principal and password, you must
modify the krb5.conf file existing on the computer where CA EEM Server is
installed.

Note: For information on how to edit krb5.conf file, see the Kerberos
documentation.

74 Programming Guide

Chapter 7: Policy Evaluation

Overview

This section contains the following topics:

Overview (see page 75)

How Policies Are Evaluated (see page 76)

Gathering Identity Attributes (see page 77)

Policy Matching (see page 78)

CA EEM performs policy evaluation by calling the Safe::Context::authorize
method. This method is invoked with the following parameters:

Identity to check
Resource class hame
Resource name
Action requested

Queue of named attributes

Chapter 7: Policy Evaluation 75

How Policies Are Evaluated

How Policies Are Evaluated

Policies are evaluated in the following process:

1. Check for explicit denies:

a.
b.

C.

Match for explicit denies.
Evaluate matched policy filters.

In case of explicit deny, stop checking, and return a denied
recommendation specifying the policy.

2. Check for explicit grants:

Match for explicit grants policies.
Evaluate matched policy filters.

In case of explicit grants, stop checking, and return a granted
recommendation specifying the policy.

3. Check for delegated authority:

a.

a.

Match/evaluate the delegated authority. For each delegator, find a
grant with no explicit deny.

For each delegator, repeat step 1and search for explicit grants.

If a grant was returned by delegation, return a granted
recommendation specifying the policy and the delegator chain.

Calculate obligations for this access check:

Add the following attributes to the ones passed in the authorization
call:

m PolicyName, the name of the obligation policy that caused the
response

m DelegationChain, the name of the delegation chain returned
Match and evaluate each SafeObligation as follows:
m ResourceClass set to SafeObligation.

m Resource name set to {action} + "/" + {original resource class} +
"/" {original resource name}.

m Action set to FulfillOnGrant (if the authorization results in a grant),
or FulfillOnDeny (if the authorization results in a deny).

76 Programming Guide

Gathering Identity Aftributes

c. Do the following for each matching or evaluating SafeObligation policy:
m Append each obligation to the authorization results.

m Calculate the values of the obligation attributes and append them
to the authorization results.

Note: Applications must handle the obligations returned from an
authorization check. The application should not grant or deny access
until and unless the obligations could not be performed.

5. Return a denied recommendation, in case of no matches.
Note: All the policies are not evaluated for every request. Since CA EEM

supports explicit policies (explicit grant or explicit deny), policy evaluation is
performed only at the first instance.

Gathering Identity Attributes

Identity attributes are collected and stored in the identity's session as a local
cache. Identity attributes are used during evaluation.

Identity attributes are collected as a cache for the following actions:

m Authentication (Safe::Context: :authenticateXXX)

m First invocation of Safe::Context::authorizeWithIdentity (an
unauthenticated session)

m Attach application, all identity attributes contained in the cached sessions
rebuilt/re-synchronized

m Detach application, all identity attributes contained in the cached sessions
are destroyed

Assembling Environment Information
Environment attributes are used during evaluation. Environment attributes can
be modified by invoking the following methods:
m Safe::Context::insertEnvAttr

m Safe::Context::removeEnvAttr

Chapter 7: Policy Evaluation 77

Policy Matching

Policy Matching

Evaluating Matching Algorithm

CA EEM uses an algorithm to match policies against a request. A policy match
can be against an identity, groups, action, resourceclassname, resource, and
time. A policy is matched and returns a value 'true' only if all of the following
conditions are satisfied:

m Policy must not be disabled.

m Policy must not be pre-deployed (If it is pre-deployed, one of the policy's
labels must match a label in Safe::Context::getPreDeploymentLabels).

m Policy must match the resource name.

m Policy must match the action or must contain no actions.

m Policy must match the identity (user/group) or must contain no identities.
m Policy must be within the calendar's scope or must contain no calendars.
m Policy must match the resource ("like" expression) or must contain no

resources.

Note: Matching does not check the policy's filters. Filters are matched during
evaluation.

78 Programming Guide

Policy Matching

How the Best Match Algorithm is Evaluated

The best match algorithm is evaluated in the following process:

m Determine the characters matched (total number of non-asterisk
characters) in the policy's resource name mask

m Determine the number of asterisks in the policy's resource name mask

m Policies with the matching characters and least asterisks are retained

noonxn

m Empty masks ("", , and "**") all evaluate to 0 matching characters, 0

asterisks

The following table displays how four policies with resource name masks of
"PAY", IIPAY*II, “*PAY", "*PAY*", "P*“, and II*II match:

Resource Policies Matched Matching Asterisks
Name Characters

PAY123 PAY* 3 1

PAY PAY 3 0

1PAY1 *PAY* 3 2

PAYPAY PAY*, *PAY 3 1

P1AY p* 1 0

QAY * 0 1

123PAY *PAY 3 1

Chapter 7: Policy Evaluation 79

Policy Matching

Best Match Handling for Regular Expression Policies

Regular expression (Regex) policies are policies that are treated as regular
expressions. The regex policies have 'regexcompare' flag enabled.

The best match algorithm for regular expression policies are evaluated in the
following process:

Start with matching character count set to the length of the resource
name mask, and reset the asterisk count zero

If the last character of the resource name mask is '$', decrement matching
character count, else increment asterisk count

If the first character of the resource name mask is '', decrement
matching character count, else increment asterisk count

For each ".*" found in the resource name mask, decrement matching
character count by two, and increment asterisk count

For each ".?" found in the resource name mask, decrement matching
character count by two, and increment asterisk count

For each ".+" found in the resource name mask, decrement matching
character count by two, and increment asterisk count

For each non-escaped backslash ('\'), decrement matching character count

The following table displays how regex policies with resource name masks of
IIPAYII’ IIPAY*II, |I*PAYII, II*PAY*II’ IIP*II, and nxn matCh:

Resource Policies Matched Matching Asterisks
Name characters

PAY123 APAY 3 1

PAY ~PAY$ 3 0

1PAY1 PAY 3 2

PAYPAY ~PAY, PAY$ 3 1

P1AY ~P 1 1

QAY K 0 0

123PAY PAY$ 3 1

80 Programming Guide

Policy Matching

Policy Filter Evaluation
CA EEM evaluates filters only if no 'empty filter' policies matched.

Policies are evaluated against the identity, session, environment, and named
attributes. Each filter in the policy is evaluated based on
order/parentheses/logic as follows:

m calculate list of "col" values

m calculate list of "val" values

m for each col/val pair, apply "oper" based on "optype"

Note: If any policies containing no filters match the authorization request, the
evaluation step is not invoked.

Calculating lists of values:

m val:{data} evaluates to the single value of {data}

m env:{name} evaluates to the value(s) of the environment attributeq
(envattrg) matching {name}

m u:{name} evaluates to the value(s) of the Safe::User object attributes
matching {name}

m gu:{name} evaluates to the value(s) of the Safe::GlobalUser object
attributes matching {name}

m ug:{name} evaluates to the value(s) of the Safe::UserGroup object
attributes matching {name}

m gug:{name} evaluates to the value(s) of the Safe::GlobalUserGroup
object attributes matching {name?}

m dug:Name evaluates to the name(s) of the Dynamic UserGroups the
identity belongs to

m ses:{name} evaluates to the value(s) of the session's attributeq
(sessionattrq) matching {name}

m name:{name} evaluates to the value(s) of the named attributeq
(namedattrq) (sessionattrq) matching {name}

m req:{identity|action|resource|when|delegator} evaluates to the
corresponding values from the permission check request

m when:{offset} evaluates to req:when offset by the {offset} ({offset} is
specified in minutes)

m calc:{calculation} evaluates to result of the {calculation}

Chapter 7: Policy Evaluation 81

Policy Matching

Delegated Authority Evaluation

CA EEM evaluates delegated authority if no grants are found during policy
match, evaluation, and if the request was not already for the SafeDelegation
resource class name.

CA EEM invokes Safe::Context::authorizeWithSession with the following

attributes:

m Session set to the request session

m Resourceclassname set to SafeDelegation

m Resource set to the original action + "/" + resourceclassname + "/" +
original resource
Example:
[read|write}/SafeObject/[Calendar|Policy|User|UserGroup|GlobalUser|GlobalUserGroup|Applicationinstance|
AppObiject|iPoz]action/application-resource-class-name/resourcename

m Action set to inherit

m The original named attribute queue, with an additional named attribute

added: "DelegationLevel", set to the depth of the delegation (starting at 1)

If access is granted, the 'Delegator' identity of the policy is retrieved. If an
authorization request is not submitted against this identity (prevents infinite
recursion), the original authorization request is re-submitted using the new
identity.

If the (possibly recursive) authorization request comes with a GRANT, then
access to the object will be allowed.

82 Programming Guide

Policy Matching

How Delegated Policies Are Evaluated

CA EEM performs a policy evaluation using delegated authority on an identity's
authorization request for a specific resourceclass, action, and resource, in the
following process:

1. CA EEM evaluates permissions for the identity based on the specified
resourceclass, resource, and action.

2. If a grantis not found, CA EEM searches for a Delegated Authorization by
issuing an authorization request for the following:

identity "{original identity}"
resource class "SafeDelegation”,

resource name "{original action}/{original resource class}/{original
resource name}"

action "inherit"

the original named attribute queue, with an additional named
attribute:

- "DelegationLevel" set to the depth of the delegation level (starting
at 1)

3. For each matching Delegated Authorization retrieved, CA EEM issues an
authorization request for:

identity "{Delegator}" (from the Delegated Authority Policy)
resource class "{original resource class}"

resource "{original resource}"

action "{original action}".

the original named attribute queue

4. If a grantis found, access is granted to the original identity.

Chapter 7: Policy Evaluation 83

Policy Matching

How Obligations Are Calculated
After an authorization check is complete, CA EEM determines if any obligations
must be attached to the authorization result in the following process:
1. Add two named attributes to the ones passed in the authorization call:

a. PolicyName, set to the name of the policy that caused the response
(may be empty on a default deny)

b. DelegationChain, set to the delegation chain returned (may be empty)
2. For each SafeObligation policy, match and evaluate as follows:
a. ResourceClass set to SafeObligation

b. Resource name set to {action} + "/" + {original resource class} + "/"
+ {original resource name}

c. Action set to "FulfillOnGrant" if the authorization check resulted in a
Grant, or "FulfilOnDeny" if the authorization check resulted in a Deny.

3. For each matching/evaluating SafeObligation Policy:
a. Append each attached obligation to the authorization results

b. Calculate the values of the obligation attributes, and append these to
the authorization results (if unable to calculate, attach an empty result
attribute).

84 Programming Guide

Chapter 8: Exception Handling

Overview

This section contains the following topics:

Overview (see page 85)

Safe Exception (see page 86)

Safe Authorization Exception (see page 88)
Safe BackendServer Exception (see page 88)
Safe Password Exception (see page 89)

Exceptions indicate unusual error conditions that occur during the execution of
an application. When you call an object method, and an 'exceptional' event
occurs (such as being unable to access a file or network resource), the method
can stop execution, and 'throws' an exception. When exception is thrown, it
passes an object (the exception), back to the calling code. The code can then
handle the event, and deal with the condition.

CA EEM supports four types of exception handling:

m Safe Exception

m Safe Authorization Exception

m Safe BackendServer Exception

m Safe Password Exception

Chapter 8: Exception Handling 85

Safe Exception

Safe Exception

The Safe Exception is the generic exception of CA EEM. Most of the exceptions
thrown are using the safe exception. Exceptions are thrown when you
encounter issues while performing the following tasks:

m Insert an object

m Retrieve an object

® Modify an object

m Delete an object

m Authentications

m Ping the backend server

m Add or remove the folder or global folders
m Synchronization

m Change password and so on

The hierarchy of the safe exception classes in Java is as follows:

java.lang.Object
+- java.lang. Throwable
+- java.lang.Exception
+- com.ca.eiam.SafeException

Methods such as getException and getExceptionString provide details on the
kinds of exceptions that are tagged in the Safe API layer. All these exceptions
are available as SafeEnum.Errorcode.

The following table displays all the possible Safe API exceptions with the safe
enumeration return values and their descriptions:

Return Value Description

int SUCCESS = 0; EE_SUCCESS Success

int EXCEPTION = 1; EE_EXCEPTION Exception

int NOCREDS = 2; EE_NOCREDS No Credentials

int NOBACKEND = 3; EE_NOEIAMNODES No SafeNodes
Defined

int SPONSORERROR = 4; EE_SPONSORERROR iSponsor Error

int NOTATTACHED = 5; EE_NOTATTACHED Not Attached to
Repository

int NOTFOUND = 6; EE_NOTFOUND Object Not Found

86 Programming Guide

Safe Exception

Return Value

Description

int EXISTS = 7;

EE_EXISTS Object Already Exists

int BADOBJECT = 8;

EE_BADOBJECT Bad Object

int AUTHFAILED = 9,

EE_AUTHFAILED Authentication Failed

int EIAMUNREACHABLE = 10;

EE_EIAMUNREACHABLE Backend
Unreachable

int POZERROR = 11,

EE_POZERROR Repository Error

int SESSIONEXPIRED = 12;

EE_SESSIONEXPIRED Session Expired

int ALREADYATTACHED = 13;

EE_ALREADYATTACHED Already
Attached

int MAXSIZEEXCEEDED = 14;

EE_MAXSIZEEXCEEDED Max Search
Size Exceeded

int CHANGEPASSWORD = 15;

EE_CHANGEPASSWORD User needs
password changed

int TRYAGAIN = 16;

EE_TRYAGAIN Try again

int MAINTENANCE = 17;

EE_MAINTENANCE Backend down for
maintenance

int NOTALLOWED = 18;

EE_NOTALLOWED Operation not
allowed

int PW_TOOSHORT = 19;

EE_PW_TOOSHORT Password too
short

int PW_TOOLONG = 20;

EE_PW_TOOLONG Password too long

int PW_BADMIX = 21,

EE_PW_BADMIX Password doesn't
contain enough special characters

int PW_MATCHESID = 22;

EE_PW_MATCHESID Password
matches account name

int PW_TOOSOON = 23;

EE_PW_TOOSOON Password cannot
be changed yet

int PW_REUSED = 24;

EE_PW_REUSED Password already
used

int PW_USERLOCKED = 25;

EE_PW_USERLOCKED Account locked

int PW_REPETITION = 26;

EE_PW_REPETITION Password has
too many repeating chars

int PW_EXPIRED = 27;

EE_PW_EXPIRED Password has
expired

Chapter 8: Exception Handling 87

Safe Authorization Exception

Return Value Description

int REFERENCED = 28; EE_REFERENCED Object still
referenced

int LAST = REFERENCED; To obtain the highest error code value

Safe Authorization Exception

The Safe Authorization Exception is inherited from the SafeException.
Exceptions caused during the authorization calls are thrown as
SafeAuthorizationExceptions. These exceptions occurs when you try to
authorize against a null session or when an identity passed for authorization is
either null or empty.

The hierarchy of the safe authorization exception classes in Java is as follows:

java.lang.Object
+- java.lang.Throwable
+- java.lang.Exception
+- com.ca.eiam.SafeException
+- com.ca.eiam.SafeAuthorizationException

Safe BackendServer Exception

The Safe BackendServer Exception is inherited from the SafeException. This
exception is thrown when you try to make calls to CA EEM without setting the
backend server.

The hierarchy of the safe backendserver exception classes in Java is as
follows:

java.lang.Object
+-java.lang.Throwable
+- java.lang.Exception
+- com.ca.eiam.SafeException
+- com.ca.eiam.SafeBackendServerException

88 Programming Guide

Safe Password Exception

Safe Password Exception

The Safe Password exception is inherited from SafeException. You may receive
this exception during authentication calls, change password, change password
for an identity, and unlockUser method calls. You will receive the Safe
Password exception even when the user is locked, an incorrect password is
provided, or if the password is expired.

The hierarchy of the safe password exception classes in Java is as follows:

java.lang.Object
+- java.lang. Throwable
+- java.lang.Exception
+- com.ca.eiam.SafeException
+- com.ca.eiam.SafePasswordException

Chapter 8: Exception Handling 89

Chapter 9: Identity Management

This section contains the following topics:

Administration Methods (see page 91)

Configure Externally Generated Certificates (see page 96)
Enable Trace on CA EEM Server (see page 96)

Enable Trace on CA EEM SDK (see page 97)

Dynamic user groups (see page 97)

How Offline Authentication Works (see page 98)

Administration Methods

CA EEM Server enables the following features when you configure CA EEM to

store global users and global groups in the CA Management Database (CA-
MDB):

m Administering Global Users, Groups, and Folders (see page 92)

m Applying password policies (see page 93)

m Identity self-administration (see page 95)

Chapter 9: Identity Management 91

Administration Methods

Administering Global Users, Groups, and Folders

Note: If CA EEM is configured to reference global users from an external
directory, the Global Users and Global User Groups are read-only. You cannot
perform insert, modify, or delete operations on the Global Users and Global
User Groups when referenced from an external directory.

CA EEM lets you assign user privileges to perform insert, modify, and delete
actions on global users, groups and folders. You can also perform the following
actions on global users:

Suspend

Specifies the user is suspended, and cannot login.
Reset Password

Prompts to reset the user's password.
Override Password Policies

Specifies whether to permit the user to have passwords that do not meet
the password policy.

Modify Global Group Membership

You can control the Global user group membership by using the GroupQ in
the Global User Object and Global User Group objects by calling the
following methods:

m getGroupQ
s addGroup

m delGroup

m clearGroupQ

Note: If you want to modify Global User's group membership, you must
have write access to the Global User object and Global User Group.

92 Programming Guide

Administration Methods

Applying Password Policies

You can set the password policies for internal global users. Password policies
are applied only when the users change their passwords.

Note: Password policies can administered only by the administrator.
To set the password policies, call the SafeContext.pozConfigure method using
the following pozConfigure parameters:
nameq

Specifies an istringQ that specifies the name of the field.
valueq

Specifies an istringQ that specifies the value of the corresponding field.
ee

Specifies error object, if any.

Note: This parameter is specific to C++ environment.
Example: Change maximum password length

The following example changes the maximum password of length.

obj = new SafeContext();

obj.setBackend(backend);

SafeSession session = obj.authenticateWithPassword("EiamAdmin", adminPwd);
obj.attach("RBC_Hospital", session);

List nameq = new ArrayList();

List valueq = new ArrayList();

nameq.add("PwMaxLength");

valueg.add("5");

obj.pozConfigure(nameq, valueq);

The maximum password length is now set to five.

Chapter 9: Identity Management 93

Administration Methods

Password Policy Attributes

You can use the password policy attributes if the global users and global
usergroups are stored internally.

Note: The password policy attributes cannot be applied if global users and
global user groups are stored in an external directory.
PwUnlockAllowed

Specifies if the users can unlock their accounts.
PwMinLength

Defines the minimum length in characters for a password. Zero indicates
there is no minimum length.

PwMaxLength

Defines the maximum length in characters for a password. Zero indicates
there is no maximum length.

PwMinNumeric

Defines the minimum number of numeric characters in a password. Zero
indicates there is no minimum length.

PwAllowId
Specifies if the users can use their 'User Name' as their password.
PwMinAge

Defines the minimum number of days before a password can be changed.
Zero indicates there is no minimum number of days.

PwMaxAge

Defines the maximum number of days before a password must be
changed. Zero indicates there is no maximum number of days.

PwReuseCount

Defines the number of new passwords before a password can be re-used.
Zero indicates this rule is not applicable.

PwFailureCount

Defines the number of bad authentication attempts before the Global User
account is locked. Zero indicates this rule is not applicable.

PwWarningAge

Defines the number of days before the user is prompted to change their
password. Zero indicates no warning.

PwMaxRepeatChar

Defines the number of characters that can be sequentially repeated in a
password. Zero indicates no limit.

94 Programming Guide

Administration Methods

Identity Self Administration
You can self-administer the accounts of global users stored in the CA-MDB and
perform the following tasks:
m Reset EiamAdmin Password
m Change passwords
m Unlock accounts

For more information to Changing passwords and Unlocking accounts, see
Online Help.

Reset EiamAdmin Password

CA EEM lets you reset the password for EiamAdmin user, if the password is
lost.
To reset ElamAdmin password

1. In the command prompt, goto the iTechnology folder and run the safex
command.

safex.exe -munge <newpassword>

The password is displayed in encrypted format.
2. Stop the iGateway service.

/S99igateway stop

3. Open the iPoz.conf file and add the encrypted password that is generated
in step 2 to the following tag:
<EiamAdminPassword><Newpassword></EiamAdminPassword>

Save the iPoz.conf file.
4. Start the iGateway service.
/S99igateway start

Use the new password to login as EiamAdmin user.

Chapter 9: Identity Management 95

Configure Externally Generated Certificates

Configure Externally Generated Certificates

CA EEM lets you use an externally generated certificate for user
authentication. To use an externally generated certificate, you must configure
iGateway to trust the root certification authority.
To configure iGateway
1. Enter the URL http://<hostname>:5250/spin.

Where hostname is the name of the host where iGateway is installed.
2. Select iTech Administrator.

3. Log in as root or administrator by selecting Host or as eiamadmin by
selecting iAuthority.

4. Click the iAuthority tab, in the Add Trusted Root section, add the root
certification authority as trusted.

5. In the client application, call the AuthenticateWithCertificate method
passing the personal certificate (pkcs12) issued by the root certification
authority and the password of the certificate.

Enable Trace on CA EEM Server

CA EEM lets you enable tracing for the CA EEM Server to log events.

To enable trace on CA EEM Server

1. Stop the iGateway service.
/S99%igateway stop

2. Open the iPoz.conf file and add the following tag:
<DebuglLevel>ISP_FILE</DebugLevel>

3. (Optional) Specify the level of logging by adding one of the following tags:
m To log all the error messages, add the following tag:
<LoglLevel>ERRORS</LogLevel>
m To log all the warnings and error messages, add the following tag:
<LogLevel>WARNING</LogLevel>
m To log all the messages, add the following tag:
<LogLevel>INFO</LogLevel>

4. Start the iGateway service.
/S99%igateway start

CA EEM Server stores the log file in the iTechnology installation folder.

96 Programming Guide

Enable Trace on CA EEM SDK

Enable Trace on CA EEM SDK

CA EEM lets you enable tracing for the CA EEM SDK to log events. To enable
tracing, you must call the enableDebug method.

Example: Enable Trace on CA EEM SDK

The following example enables trace on CA EEM SDK.

SafeUtil.enableDebug();

/I The logging level to be used

SafeUtil.setDebugl evel(SafeEnum.DebuglLevel WARNING);
/I'if you want to dump log to a file

SafeUtil.setDebugFile(new java.io.File("c:\eiam-sdk.log"));

Note: To disable trace, you can call the SafeUtil.disableDebug method.

Dynamic user groups

You can use dynamic user groups to specify membership policies instead of
explicitly adding each user or group into a user group. Dynamic user groups
are created using dynamic user group policies. Dynamic user groups attributes
include, name of the dynamic user group (name of the resource in the policy)
and filters.

Example: If you have a dynamic group with the country name as United
States, adding a new user with country name United States will automatically
be included in the dynamic user group and the group membership policies will
be implied to the user.

Dynamic user groups are useful to an application in the following ways:

m To use the same set of filters for several policies by separating them using
the dynamic user groups

m To achieve application-specific user groups by writing dynamic user group
policies against global user attributes without creating a user object for an
application

m To increase the execution speed of authorizations, as dynamic user groups
are validated when the user session is built

Chapter 9: Identity Management 97

How Offline Authentication Works

How Offline Authentication Works

CA EEM supports offline authentication for users authenticating with
passwords. The authentication process works in the follows process:

1.

For each SafeContext, the last successful session object is saved for each
authenticated user, along with a hash of the user's password.

authenticateWithPassword verifies with the hashed password, if the
backend server is not reachable.

If the password is valid, CA EEM authenticates the previously saved
session and the object is returned.

98 Programming Guide

Chapter 10: Configure Directories

Overview

This section contains the following topics:

Overview (see page 99)
Configure External Directory (see page 100)

Custom Mapped Directory (see page 101)

Test Configuration (see page 103)

CA SiteMinder (see page 103)

CA EEM supports referencing external LDAP directories as its authoritative
source of global users and groups. Pointing to an external LDAP directory for
the global user and group information allows applications to share and reuse
the global user information and passwords already configured.

Note: You must select the source of global users before registering the
application instances, as changing the source later affects the applications
sharing the same backend server and leads to unmapped user information in
applications.

CA EEM supports the following external directories:

CA Admin

Microsoft Active Directory
Novell eDirectory

Novell eDirectory-CN

Sun One Directory

Custom Mapped Directory

Chapter 10: Configure Directories 99

Configure External Directory

Configure External Directory

You can configure CA EEM to any of the supported external directory as its
authoritative source of global users and groups.
To configure an external directory

1. Log into CA EEM Server as the EiamAdmin user using the Application
<Global>.

The CA EEM home page appears. For information on how to log on, see
Getting Started guide.

2. Select Configure, Embedded IAM Server, Global Users/Global Groups.
The Global Users/Global Groups pane appears.

3. Select Reference from an external directory.
The external directory page appears.

4. Select the type of external directory and set the values.

For information on values for the selected external directory fields, see
Online Help.

5. (Optional) Select Use Transport Layer Security (TLS).

Note: On Linux, if enabling TLS is unsuccessful, restart iGateway service
to start TLS connection. To restart iGateway, see Restart iGateway (see
page 101).

6. Click Save.

The configuration is saved for CA EEM to use the external directory as its
authoritative source.

The status icons on the screen will indicate whether the configuration is
successful. If the status does not update automatically, click Refresh
status.

More Information:

Custom Mapped Directory (see page 101)
Test Configuration (see page 103)

100 Programming Guide

Custom Mapped Directory

Restart iGateway (Linux)

To restart igateway
1. Go to the iTechnology installation folder.
Default location: /opt/CA/SharedComponents/iTechnology
2. Type the following to stop iGateway:
/S99igateway stop
3. Type the following to start iGateway:

/S99igateway start
More Information:

Example: Configure UPN Using Custom Mapped Directory (see page 102)
Test Configuration (see page 103)

Custom Mapped Directory

You can configure CA EEM to communicate with an external directory server
using LDAP v3 by providing the required mapping to object classes, user
attributes, group attributes, and search filters.

Every LDAP directory refers the attributes in a unique way. CA EEM provides
mapping for default LDAP directories, for other directories you must provide
the custom mapping and search filters. The mapping for custom mapped
directory is stored in the iPoz.map file, which is located at C:\Program
Files\CA\SharedComponents\iTechnology, by default.

For information on fields to configure a Custom Mapped Directory, see Online
Help.

Chapter 10: Configure Directories 101

Custom Mapped Directory

Example: Configure UPN Using Custom Mapped Directory

You can log into CA EEM using the User Principal Name (UPN) by mapping the
User Name and setting the User Filter. The User Filter obtains the user
distinguished name (DN). The user filter has two component pre-filter and post
filter.

The user look up is performed against Active Directory as {Pre-user
filter}{UserName}{Post-user filter}.

Example: If the UserName is mapped to UPN, the pre-filter would be
"(&(userPrincipalName=" and pos-filter will be "))". A user with UPN
"john@foo.com" will be searched as "(&(userPrincipalName=john@foo.com))"
against the Active Directory.

To configure CA EEM to use UPN

1. Log into CA EEM Server as the EiamAdmin user using the Application
<Global>.

The CA EEM home page appears. For information on how to log on, see
Getting Started guide.

2. Select Configure, Embedded IAM Server.

The Embedded IAM Server Configuration pane appears.
3. Select Reference from an external directory.

The external directory page appears.
4. Select Type as Custom Mapped Directory and click Label.

A list of available tags are displayed in the Custom Directory Mapping
pane.

Note: You can define your own tag or customize the existing tags.

5. Change the User Name mapping by modifying the User Name attribute to
'userPrincipalName'.

6. Change the User Filter.
7. Click Save Label, Save.

A confirmation message appears.

102 Programming Guide

Test Configuration

Test Configuration

After configuring directories, you can test the CA EEM configuration.

To test the configuration

1. Log into CA EEM Server as the EiamAdmin user using the Application
<Global>.

The CA EEM home page appears. For information on how to log on, see
Getting Started guide.

2. Click Manage Identities, Users.
3. Search for a user.

All the global users are displayed under the 'Users' folder, based on the
hierarchy of the external directory.

Note: If CA EEM is configured to use UPN, the User Name will display the
UPN based on the search.

CA SiteMinder

You can configure CA EEM to use the existing CA SiteMinder data store for
retrieving user and group information. You can use CA EEM with CA SiteMinder
to perform the following:

Retrieve user and group information from CA SiteMinder data store

Applications that embed CA EEM can access the user and group
information from CA SiteMinder data store and define policies using CA
EEM interface.

Authenticate users against CA SiteMinder user store

User with existing CA SiteMinder login credentials can log into any CA EEM
enabled application.

Use the CA SiteMinder session information for user authentication

CA EEM supports single sign-on for CA SiteMinder users. If you have an
existing CA SiteMinder session, you can access a CA EEM protected
application without being prompted for authentication.

More Information:

How You Integrate CA SiteMinder with CA EEM (see page 104)

CA SiteMinder Configuration Parameters (see page 104)

How Single Sign-on Works between CA SiteMinder and CA EEM (see page 105)
How Authentication Works Using CA SiteMinder Authentication Schemes (see
page 105)

Chapter 10: Configure Directories 103

CA SiteMinder

How You Integrate CA SiteMinder with CA EEM

To integrate CA SiteMinder with CA EEM, perform the following in CA
SiteMinder Administrator:

m Create an agent in CA SiteMinder for communication between CA EEM and
CA SiteMinder policy server. Ensure the agent supports 4.x agents.

m Create an administrator or use the existing default administrator
"SiteMinder" with system level scope.

m Create a CA SiteMinder User Directory for authorization, which is used by
CA EEM to retrieve LDAP attributes. Ensure the UniversallD field uniquely
identifies a user in the directory on the User attributes tab.

m Create a CA SiteMinder data store for authentication, which is used by CA
EEM to authenticate users.

Note: If the authentication and authorization user store is same, use the
existing user store created for authorization.

m Create a Realm with the Resource Filter as “/iamt.html”.
m Create a CA SiteMinder domain and add the User Directories,

administrator, and Realm to the domain.

For more information about CA SiteMinder, see the CA SiteMinder
documentation.

CA SiteMinder Configuration Parameters

CA SiteMinder consists of two components, policy server and web agents.
Policy server

Policy server provides policy management, authentication, authorization
and accounting.

Web agents
Web agents assist CA SiteMinder to access to Web applications and
content according to defined security policies.

To enable the protocol between the agent and server, the agent must have a
unique name and a shared secret key along with information to define a
connection between the client application and the policy server.

For information on parameters to define between the client application and the
policy server, see Online Help.

104 Programming Guide

CA SiteMinder

How Single Sign-on Works between CA SiteMinder and CA EEM

If you use an application that has an existing CA SiteMinder session to access
an CA EEM enabled application, CA EEM recognizes the CA SiteMinder session
ticket and creates an CA EEM session without re-authentication.

The following is the basic flow of events for application created using CA EEM
with CA SiteMinder integration:

Example: Protecting a web application using CA SiteMinder
A web application using CA EEM with web server pages protected by CA
SiteMinder is considered.

1. A user accesses a web application.

2. CA SiteMinder prompts for user authentication and the user submits
credentials and is authenticated.

3. The user tries to access the original web application created using CA EEM.

4. Servlet code accesses the HTTPServietRequest context and sends the CA
SiteMinder session token to the CA EEM using authenticateWithArtifact.

5. CA EEM Server validates the CA SiteMinder session against the CA
SiteMinder Policy Server.

6. An CA EEM session is created and the user identity is loaded, if validation
succeeds.

How Authentication Works Using CA SiteMinder Authentication Schemes
The following process describes how authentication is performed using CA
SiteMinder APIs:

m A user calls the authenticateWithPassword method by providing the
username and password.

m CA EEM sends this information to the CA EEM Server.

m Based on the information, the authentication is performed by calling the
CA SiteMinder APIs.

m The group and user information is loaded for the authenticated user.

Note: When CA EEM is connected to a CA SiteMinder user directory, the
search calls use the CA SiteMinder APIs instead of the CA EEM search calls.

Chapter 10: Configure Directories 105

Chapter 11: Integrate Web Services with
CA EEM

This section contains the following topics:

Web Services Architecture (see page 108)
Configure Web Services for CA EEM (see page 110)
Configuration File (see page 112)

Sample Configuration File (see page 114)

Tools (see page 115)

XACML Profile for CA EEM (see page 116)

SPML Profile for CA EEM (see page 135)

Chapter 11: Integrate Web Services with CA EEM 107

Web Services Architecture

Web Services Architecture

The following illustration depicts one of the deployment architectures of
implementing SPML integration with CA EEM:

Web Services Client 1 Web Services Client 1

Servlet Filter

/\

Appl App2

\/’

HACML/SPML Processor

& EEM SDE

T~

Ca EEM Server 1 Ca EEM Server 2

108 Programming Guide

Web Services Architecture

The following process details how a web service request is implemented in CA
EEM:

1.

A client application sends an XACML or an SPML to the application's web
service. CA EEM implements web services using oasis tools. The oasis tools
are deployed on the web server for CA EEM server.

The servlet filter on the web server processes the XACML and SPML and
extracts the application information. The web service processor deployed
in the servlet filter maps the application to a CA EEM server using the
eiam-oasis.xml configuration file.

The web service processor engine in the web server parses the client
application's request and calls the appropriate CA EEM APIs.

The corresponding CA EEM server implements the request and sends a
response to the web server, and the web server will forward the response
to the client application.

Chapter 11: Integrate Web Services with CA EEM 109

Configure Web Services for CA EEM

Configure Web Services for CA EEM

You must register your client application with CA EEM server before you
configure web services for SPML and XACML usage. CA EEM provides the
following tools that you can use to access the web services.

Oasis.war

An archive file that provides the implementation of CA EEM web services.

Oasis-tools

A compressed file that provides the administrative tools required to
configure the service.

To configure Web Services for CA EEM

1.

Copy Oasis.war file from the following location to your Web server root
directory:

<CAEEMSDK_InstallDirectory>\oasis

Copy tools.jar from jdk1.5/lib to the following directory:
Tomcat\web Apps\Oasis\WEB-INF\lib

Untar or unzip oasis-tools.zip file found at the following location:
<CAEEMSDK_InstallDirectory>\oasis

Generate certificates for your client applications using the following tools
based on your operating system

Windows
GenCert.bat
UNIX/Linux
GenCert.sh
Copy the generated certificates to the following location:
Tomcat\web Apps\Oasis\WEB-INF\certs

Munge the passwords for the certificates generated in previously by using
the following tools based on your operating system:

Windows
MungePwd.bat

UNIX/Linux
MungePwd.sh

Edit the eiam-oasis.xml file found at the following location to configure the
oasis services:

Tomcat\web Apps\Oasis\WEB-INF\classes

110 Programming Guide

Configure Web Services for CA EEM

Note: For more information on eiam-oasis.xml configuration file, see
Configuration File (see page 112).

More Information:

Configuration File (see page 112)
Tools (see page 115)

Chapter 11: Integrate Web Services with CA EEM 111

Configuration File

Configuration File

To interact with the CA EEM web service, the web service relies on a
configuration file eiam-oasis.xml. The eiam-oasis.xml file contains
authentication details and CA EEM server connection details for each client
application.

The following are the descriptions for the tags that are used the eiam-
oasis.xml file:
<eiam-oasis>
Specifies the root tag of the eiam-oasis.xml file.
app

Specifies the application specific details. You can include one or more
applications in the eiam-oasis.xml file. All details for a particular
application must be mentioned between <app> and </app> tags.

name

Specifies the application name. The application name should be unique in
the eiam-oasis.xml configuration file.

cert-file

Specifies the certificate name that should be used to authenticate the
current application. The certificates for applications that intend to use CA
EEM web services must be available at the following location:

Tomcat\web Apps\Oasis\WEB-INF\certs
password

Specifies the munged password to be used with a certificate.
backend-url

Specifies the IP address or hosthame of CA EEM server.
locale

Specifies the language and country. The format is <language
code>_<country code>. Language is in lowercase and is represented by a
two-lettered ISO 639 code. Country is in uppercase and is represented by
a two-lettered ISO-3166 code. For example if English is the language and
the US as the country, locale will be en_US. This tag is optional and a
default locale is used if left blank.

cacheUnauthenticatedSessionQSize
Specifies the maximum size of the cache's unauthenticated session queue.
Default: 10.

cacheUpdateTime

Specifies the interval between successful cache updates.

112 Programming Guide

Configuration File

Default: 30 seconds.
eventCoalesceTime

Specifies the interval in seconds between successful coalesce event
generation.

Default: 300 seconds.
eventDeliveryHost
Specifies host name of the event delivery host.
Default: Value mentioned in <backend-url>.
eventDrainTime
Specifies the event drain time in seconds.
Default: 10 seconds.
maxSearchSize
Specifies the maximum queue size that is returned from searches.
Default: 2000.
maxContextCount

Specifies the maximum number of SafeContext instances of the given
application.

Chapter 11: Integrate Web Services with CA EEM 113

Sample Configuration File

Sample Configuration File

The following code is an example configuration file:

<?xml version="1.0" standalone="no" ?>

<eiam-oasis>

<app>

</app>

<app>

</app>

</eiam-oasis>

<name>App1</name>
<cert-file>App1.p12</cert-file>
<password>EwASHKYCAg==</password>
<backend-ur>localhost</backend-uri>
<locale>en_US</locale>
<cacheUnauthenticatedSessionQSize>1</cacheUnauthenticatedSessionQSize>
<cacheUpdateTime>1</cacheUpdateTime>
<eventCoalesceTime>1</eventCoalesceTime>
<eventDeliveryHost>localhost</eventDeliveryHost>
<eventDrainTime>1</eventDrainTime>
<maxSearchSize>1</maxSearchSize>

<name>RBC_Hospital</name>
<cert-fle>RBC_Hospital.p12</cert-file>
<password>EwASHKYCAg==</password>
<backend-ur>localhost</backend-uri>
<locale>en_US</locale>
<maxContextCount>2</maxContextCount>

114 Programming Guide

Tools

Tools

The following tools are packaged as part of oasis-tools.zip or oasis-tools.tar.
You must use the following tools when you configure web services for CA EEM.

GenCert

GenCert.tools are used to generate certificates that are used to
authenticate a client application with a CA EEM server. The tools must be
run with the following arguments as inputs to generate a certificate:

Windows

GenCert.bat <CAEEMserver_hostname> <application name>
<CAEEM_username> <password> <certificatename>
<password_certificate>

For example:
GenCert.bat localhost RBC_Hospital eiamadmin a RBC_Hospital.p12 a

UNIX/Linux

GenCert.sh <CAEEMserver_hostname> <application name>
<CAEEM_username> <password> <certificatename>
<password_certificate>

For example:
Gencert.sh localhost RBC_Hospital eiamadmin a RBC_Hospital.p12 a

MungePwd

MungePwd tools are used to munge the certificate password. The tools
take in a password in clear text as input argument. You must run this tool
on the host that has the eiam-oasis.xml configuration file.

ExportEiam

ExportEiam is used to export a CA EEM application to an XACML Policy
Decision Point (PDP). The tools must be run with the following arguments
as inputs:

Windows

ExportEiam.bat <WebServices_hostname> <application name>
<CAEEM_username> <password> <path_destinationfolder>
<password_certificate>

UNIX/Linux

ExportEiam.sh <WebServices_hostname> <application name>
<CAEEM_username> <password> <path_destinationfolder>
<password_certificate>

ImportXacml

ImportXacml is used to export an XACML application, a set of resource
classes and policies to a CA EEM application. to an XACML Policy Decision
Point (PDP). The tools must be run with the following arguments as inputs:

Chapter 11: Integrate Web Services with CA EEM 115

XACML Profile for CA EEM

Windows

ImportXacml.bat <WebServices_hostname> <application name>
<CAEEM_username> <password> <path_XacmlPoliciesFile>

UNIX/Linux
ImportXacml.sh <WebServices _hostname> <application name>

<CAEEM_username> <password> <path_XacmlPoliciesFile>

Note: If you are using an IPv6 environment, IPv6 address provided as an
input argument to the preceding tools must be enclosed in [] (Square
brackets).

XACML Profile for CA EEM

XACML Integration

CA EEM provides support for the OASIS eXtensible Access Control Markup
Language 1.0 (XACML) as a web service. Using XACML,CA EEM supports the
following operations:

m Authorization checks
m Import of external policies
m Export of policies

Note: To use XACML Web services, you must have JRE 1.5.1 and Tomcat 5.5
to be installed.

116 Programming Guide

XACML Profile for CA EEM

WSDL for CA EEM XACML

Web Services Description Language (WSDL) is an XML format that is used to
describe the network services that are provided by an application. CA EEM
publishes the XACML operations it supports using WSDL. After you have
deployed the oasis tools, you can access web services for CA EEM using the
following URL:

http://<hostname>:8080/oasis/<app name>.jws.
For example, if you have deployed your web server on your localhost and
App1l is the application name, you can access web services for Appl by using

the URL, http://localhost:8080/0asis/Appl.jws.

You can access the WSDL provided by an application deployed on a Web
server using the following URL:

http://<hostname>:8080/0asis/<app name>.jws?wsdl

The WSDL for CA EEM supports the following default XACML functions:

XACML Function Input Parameters for Return Value in XACML
Name XACML Request Response

checkAccess XACML request string XACML response string
exportEiamPolicies XACML response string
importXacmlPolicies =~ XACML policy set string boolean

XACML Services for CA EEM

You must register your client application with CA EEM server before you
configure XACML requests or responses. The following sections explain the
following XACML services:

= XACML Requests
= XACML Responses

m Export or Import resource classes or policies

Chapter 11: Integrate Web Services with CA EEM 117

XACML Profile for CA EEM

XACML Requests

The following section explains how you map CA EEM objects to XACML
requests. You can create XACML requests for the following:

m Users and User Groups
m Actions
m Resource and Named Attributes

m Calendar and Environmental Variables
Users and User Groups

You can authorize only one identity, one action, and one resource at a time
using XACML. The CA EEM users are mapped to XACML Subject element in a
XACML request. You should follow the following instructions when creating
XACML requests for authorizing users and user groups:

m A XACML request element must have at least one Subject element.

m If a XACML request has multiple subject elements, only the first Subject
element is considered. Also, the request must have at least one attribute.
All other attribute and subject elements are ignored.

m The Attributeld of the only attribute must be
urn:oasis:names:tc:xacml:1.0:subject:subject-id.

m DataType attribute in Attribute element must be
http://www.w3.0rg/2001/XMLSchema#string.

m AttributeValue element in Attribute element must be a valid identity.

Actions

You must map CA EEM actions to XACML Action element to force some action
on any of the CA EEM objects. You must follow the following instructions when
creating XACML requests:

m A XACML Request element must have at least one Action element.

m If a XACML request has multiple action elements, only the first action
element is considered. Also, the request must have at least one attribute.
All other attribute and action elements are ignored.

m Attributeld attribute in Attribute element must be
urn:oasis:names:tc:xacml:1.0:action:action-id

m DataType attribute in Attribute element must be
http://www.w3.0rg/2001/XMLSchema#string.

m AttributeValue element in Attribute element must be a valid action.

118 Programming Guide

XACML Profile for CA EEM

Resources and Named Atiributes

You must map CA EEM resources to XACML Resource element. You must
express any Named attributes as XPATH expressions. These expressions are
evaluated against XACML ResourceContent element. You must follow the
following instructions when creating XACML requests:

A XACML Request element must have one Resource element.
The Resource element must have at least one Attribute.

Attributeld attribute in Attribute element must be
urn:oasis:names:tc:xacml:1.0:resource:resource-id in case of resource
class name and name.

Attributeld attribute in Attribute element must be
urn:oasis:names:tc:xacml:1.0:resource:xpath for named attributes

DataType attribute in Attribute element must be
http://www.w3.0rg/2001/XMLSchema#string for all attributes.

AttributeValue element in Attribute element should be the resource class
name, resource name, or named attribute. For resource class name and
name the syntax is resource class name/resource nhame. For named
attributes, the syntax must be a valid XPath expression in the form of
named attribute name/named attribute value.

Calendars and Environment Variables

You must map CA EEM calendars and environment variables to XACML
Environment. You must follow the following instructions when creating XACML

requests:

m An environment element is optional in a XACML request element.

m The environment element can optionally have attributes.

m Attributeld attribute in an Attribute element can be anything for
environment attributes. For example, the name of the environment
Attribute.

m DataType attribute in Attribute element for calendar object must be
http://www.w3.0rg/2001/XMLSchema#dateTime.

m DataType attribute in Attribute element for envrionment object must be
and http://www.w3.0rg/2001/XMLSchema#string.

m AttributeValue element in Attribute element must be a valid date time

object in case of calendars and can be anything for environment
attributes.

Chapter 11: Integrate Web Services with CA EEM 119

XACML Profile for CA EEM

XACML Responses

The following are the elements in a XACML response:
Resourceld

A XACML Response element may or may not have a Resourceld attribute.
If access is granted to an object, the value for Resourceld will be set to
the allowed resource name with the following syntax:

resource class name/resource name.
If access is denied, Resourceld attribute is ignored.
Decision

A XACML Response element should have at least one Decision element.
The values for the Decision element will be set to the one of the following:

m PERMIT, if the result is true

m DENY, if the result is false

m INDETERMINATE, if an exception has occurred
Status

An XACML Response element should have at least one Status element. The
Status element has the following syntax based on the Decision element
and exceptions:

m StatusCode element will be set to
urn:oasis:names:tc:xacml:1.0:status:ok if Decision element is set to
PERMIT or DENY. The other elements StatusDetail and StatusMessage
are ignored.

m StatusCode element will be set to
urn:oasis:names:tc:xacml:1.0:status: missing-attribute if the attribute
is either missing or invalid. The StatusMessage element will be set to
the message arising out of the exception.

m StatusCode element will be set to
urn:oasis:names:tc:xacml:1.0:status:processing-error if an exception
has occurred other than a missing or invalid attribute. The
StatusMessage element will be set to the message arising out of the
exception.

Obligations
An XACML Response element may or may not have an Obligation element.

m An obligation element is added only if Decision element is set to
PERMIT or DENY.

m Obligationld element will be of syntax <obligation hame>/<obligation
content>.

120 Programming Guide

XACML Profile for CA EEM

m The Obligation element will have at least one AttributeAssignment
element. All Attributeld elements will be <obligation attribute name>
and the content will be <obligation attribute value>. However, one
AttributeAssignment will be same as Obligationld element.

m DataType of AttributeAssignment element will be
http://www.w3.0rg/2001/XMLSchema#string.

m FulfillOn will be according to the Decision element.
Restrictions

m Does not support all XACML data types for subjects, actions and
resources.

m All other immediate and descendant elements and XACML functions
are ignored.

Export and Import Using XACML

Policy Name

Policy Description

You can export or import resource classes and policies to CA EEM using
XACML. The following are the prerequisites for exporting or importing.

m Before exporting an application's resource classes and policies, you must
register the application with CA EEM server.

m Before importing resource classes and policies to an application, you must
register the application, without any resource classes and policies, with CA
EEM server.

The following sections describe the mappings of a CA EEM server policies to an
XACML policy set.

CA EEM policy name is mapped to Policyld attribute of the XACML Policy
element. Blank spaces in the policy name are replaced with a*_".

CA EEM policy description is mapped to Description element of XACML Policy
element. Empty descriptions are replaced with a blank space.

Chapter 11: Integrate Web Services with CA EEM 121

XACML Profile for CA EEM

Users and User Groups

CA EEM users and user groups are mapped to XACML Subject elements. For
each CA EEM user or user group mentioned in an CA EEM policy there is an
XACML Subject element.

Actions

Users are mapped to SubjectAttributeDesignator element.
User groups are mapped to AttributeSelector element.

Matchld attribute of SubjectMatch element is a
urn:oasis:names:tc:xacml:1.0:function: string-equal.

AttributeValue element should be valid a CA EEM identity in case of users.

CA EEM Allldentities is mapped to XACML AnySubject element. In case of
user groups its syntax is CA EEM group type/group name.

XACML SubjectAttributeDesignator has the data type as
http://www.w3.0rg/2001/XMLSchema#string.

Attributeld is set to urn:oasis:names:tc:xacml:1.0:subject:subject-id.

XACML AttributeSelector has the data type as
http://www.w3.0rg/2001/XMLSchema#string with the RequestContextPath
set to //CA EEM group type/group name.

CA EEM actions are mapped to the XACML Action element. For each CA EEM
action mentioned in an CA EEM policy there is an XACML Action element.

The MatchlId attribute of ActionMatch element is
urn:oasis:names:tc:xacml:1.0:function: string-equal.

AttributeValue element should be a valid CA EEM action. CA EEM AllActions
is mapped to XACML AnyActions.

XACML ActionAttributeDesignator has the data type as
http://www.w3.0rg/2001/XMLSchema#string.

The Attributeld is set to urn:oasis:names:tc:xacml:1.0:action:action-id.

122 Programming Guide

XACML Profile for CA EEM

Resource Class and Resources

CA EEM resources class and resources are mapped to the XACML Resources
element. For each CA EEM resource mentioned in an CA EEM policy there is an
XACML Resource element.

m The Matchld attribute of ResourceMatch element is a
urn:oasis:names:tc:xacml:1.0:function:regexp-string-match.

m AttributeValue element uses the syntax resource class name/resource
name. In case of CA EEM AllResources the resource name is ‘*’ (asterisk).

m XACML ResourceAttributeDesignator has the data type as
http://www.w3.0rg/2001/XMLSchema#string.

m The Attributeld is set to urn:oasis:names:tc:xacml:1.0:resource:resource-
id.

Chapter 11: Integrate Web Services with CA EEM 123

XACML Profile for CA EEM

Filters

CA EEM filters are represented using XACML Rule and Apply elements. If there
is no CA EEM filter in a policy a default XACML Rule is added with the
EffectType of the XACML Rule same as the CA EEM policy type, that is explicit
grant/deny. Each CA EEM filter is wrapped in a XACML Apply element which
has a XACML type any-of-any function.

The XACML Condition element has the function as
urn:oasis:names:tc:xacml:1.0:function:boolean-equal. This wraps the
outer most XACML Apply element and an XACML AttributeValue element.

The AttributeValue element has the data type as
http://www.w3.0rg/2001/XMLSchema#boolean with content set to true.

Ruleld attribute is same as the policy name with a suffix of *-Rule’. All
blank spaces are replaced witha*_".

CA EEM filter operation is mapped to an XACML function. NOT operations
are expressed as a negation of the actual operation; eg. neq is not + equal
i.e. equal operation wrapped inside a not operation.

CA EEM filter value is mapped to XACML AttributeValue element in case of
simple values, CA EEM identities, resources, and actions. The data type of
the AttributeValue element is the same as the CA EEM filter operation
type. The content of AttributeValue is a simple value is of syntax CA EEM
filter column name/CA EEM filter value. For a set based CA EEM operation
each element of the set is mapped to an XACML AttributeValue. All the
AttributeValue elements are wrapped in an XACML Apply element whose
function is an XACML of the CA EEM operation type.

CA EEM filter value is mapped to XACML AttributeSelector element for CA
EEM named attributes, custom attributes, session attributes, request time,
users, and user groups. The data type of the AttributeSelector element is
same as the CA EEM filter operation type. The RequestContextPath is set
to an XPath //CA EEM filter column prefix/CA EEM column suffix.

CA EEM filter column is mapped to XACML AttributeSelector for CA EEM
named attributes, custom attributes, session attributes, request time,
users and user groups. The data type of the AttributeSelector element is
same as the CA EEM filter operation type. The value of the XPath
expression should be of the syntax CA EEM filter column suffix/value.

CA EEM filter column is mapped to a SubjectAttributeDesignator in case of
simple identity; ActionAttributeDesignator in case of simple action;
ResourceAttributeDesignator in case of simple resource. The data type of
the AttributeDesignator is http://www.w3.0rg/2001/XMLSchema#string.

124 Programming Guide

XACML Profile for CA EEM

Miscellaneous

CA EEM filter column with a prefix of req: mapping is based on the CA EEM
filter column suffix. If the suffix is identity it is mapped to
SubjectAttributeDesignator; action is mapped to
ActionAttributeDesignator; resource is mapped to
ResourceAttributeDesignator. In this case the data type of the designator
is set to http://www.w3.0rg/2001/XMLSchema#string. All other suffixes of
request are mapped to AttributeSelector with the RequestContextPath.

CA EEM filter column with a prefix of env: is mapped to XACML
EnvironmentAttributeDesignator. The data type of the AttributeDesignator
is http://www.w3.0rg/2001/XMLSchema#string. The Attributeld is set to
env/column suffix.

Other XACML elements have the following values.

The XPathVersion element is http://www.w3.0rg.TR/1999/Rec-xpath-
19991116.

The rule combining algorithm is urn:oasis:names:tc:xacml:1.0:rule-
combining-algorithm:deny-overrides.

The policy combining algorithm is urn:oasis:names:tc:xacml:1.0:policy-
combining-algorithm:deny-overrides.

All the policies are wrapped in XACML PolicySet element where PolicySetld
is the same as the CA EEM application name.

The Target element in PolicySet element is set to AnySubject,
AnyResource and AnyAction.

Chapter 11: Integrate Web Services with CA EEM 125

XACML Profile for CA EEM

Restrictions for Exporting or Importing fo XACML

An existing CA EEM application can be exported or imported with the following

restrictions:

m Only access and dynamic user group CA EEM policies are exported.

m Policies are exported as simple access policies.

m Exported policies are not marked as 'Use best match algorithm'.

m Disabled polices are not exported.

m Pre-Deployment policies are not exported.

m Calendar objects are not exported.

m CA EEM calc objects are not supported.

m CA EEM regex and xpath as a data type are not supported.

m During an import, CA EEM resource class and action information is updated
from filters. Hence the import may not be complete.

m During an import, CA EEM named attributes and user attributes available
in the imported application are not created.

m During an import, XACML Target defined in XACML Rule elements is

ignored.

Mapping CA EEM Operations to XACML Functions

The following table explains the mappings of CA EEM operations to XACML

functions:

CA EEM Operation Name

XACML Function Name

Equal equal

Neq not + equal

Less less-than

Greater greater-than

Lessequal less-than-or-equal
Greaterequal greater-than-or-equal

like regexp-string-match
notlike not + regexp-string-match
withinset is-in

notinset not + is-in

126 Programming Guide

XACML Profile for CA EEM

CA EEM Operation Name XACML Function Name
startswith regexp-string-match + *
endswith * + regexp-string-match
contains * + regexp-string-match + *
match regexp-string-match
notmatch not + regexp-string-match

Mapping CA EEM Data Types to XACML Data Types

The following table explains the mappings of CA EEM operations to XACML

functions:
CA EEM Data Type XACML Data Type
string http://www.w3.0rg/2001/XMLSchema#string
int32 http://www.w3.0rg/2001/XMLSchema#integer
int64 http://www.w3.0rg/2001/XMLSchema#integer
real32 http://www.w3.0rg/2001/XMLSchema#double
real64 http://www.w3.0rg/2001/XMLSchema#double
boolean http://www.w3.0rg/2001/XMLSchema#boolean
timestamp http://www.w3.0rg/2001/XMLSchema#dateTime

XPATH Expressions for CA EEM Filters

The following table explains the XPATH expressions for CA EEM filters:

CA EEM Filter Column XPATh Expression

Users and user groups //CA EEM column prefix/CA EEM column suffix

Named attributes //namedAttributes/namedAttribute/column suffix

Custom attributes //customAttributes/customAttribute/column suffix

Session attributes //sessionAttributes/sessionAttribute/column suffix

Request (other than identity/action/resource) //requestAttributes/requestAttribute/column
suffix

Request time //when

Chapter 11: Integrate Web Services with CA EEM 127

XACML Profile for CA EEM

Attributeld Values

for XACML AttributeDesignator Elements

The following table explains the AttributeId values you must use withe
AttributeDesignator elements in XACML policies:

CA EEM Column Suffix Attributeld

Identity urn:oasis:names:tc:xacml:1.0:subject:subject-id

Action urn:oasis:names:tc:xacml:1.0:resource:action-id

Resource urn:oasis:names:tc:xacml:1.0:resource:resource
-id

Examples

The examples in this section describe some sample XACML requests and
responses that are sent to a web service. The examples in this section use the
RBC_Hospital application that is installed with CA EEM. For these examples it is
assumed that the web services are running on localhost. Hence, the request
URL for the RBC_Hospital application is:
http://localhost:8080/0asis/RBC_Hospital.jws.

XACML Request to Add Patient to ER Ward

The following is an example of an XACML request for a policy that states that
only an Emergency Response nurse (ernurse) or erdoctor can admit a patient
to the ER ward.

In the following example, a client application sends a request from a user
ernurse to admit a patient 'John' to the ER ward. This XACML request is
processed by CA EEM server and based on the admit policy, a response is sent
to the client application.

The following table explains the mappings of CA EEM objecte to XACML
elements:

CA EEM Object XACML Element
ernurse Subject

John Resource
ward/ER ResourceContent

128 Programming Guide

XACML Profile for CA EEM

The following is the example:

<Request>
<Subject>
<Attribute Attributeld="um:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://iww.w3.0rg/2001/XMLSchematstring">
<AttributeValue>emurse</AttributeValue>
</Attribute>
</Subject>
<Resource>
<Attribute Attributeld="um:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://iwww.w3.0rg/2001/XMLSchematstring">
<AttributeValue>patient/john</AttributeValue>
</Attribute>
<ResourceContent>
<namedAttributes>
<namedAttribute>
<ward>ward/ER</ward>
</namedAttribute>
</namedAttributes>
<u>
<ward>ward/ER</ward>
</u>
<ug>
<Nurses>ug/Nurses</Nurses>
<Mug>
</ResourceContent>
<Attribute Attributeld="urmn:oasis:names:tc:xacml:1.0:resource:xpath"
DataType="http:/iwww.w3.0rg/2001/XMLSchema#string">

<AttributeValue>namedAttributes/namedAttribute[1]/ward</AttributeValue>
</Attribute>
</Resource>
<Action>
<Attribute Attributeld="um:oasis:names:tc:xacmi:1.0:action:action-id"
DataType="http:/iwww.w3.0rg/2001/XMLSchema#string">
<AttributeValue>admit</AttributeValue>
</Attribute>
</Action>
</Request>

CA EEM server returns the following XACML response for the preceding
request:

<?xml version="1.0" encoding="UTF-8" ?>
<Response xmIns="urn:oasis:names:tc:xacml:1.0:context" xmins:xsi="http:/www.w3. org/2001/XMLSchema-
instance" xsi:type="Response">
<Result Resourceld="patient/john">
<Decision>Permit</Decision>
<Status>

Chapter 11: Integrate Web Services with CA EEM 129

XACML Profile for CA EEM

<StatusCode Value="um:oasis:names:tc:xacm l:1.0:status:ok" />
</Status>

</Result>

</Response>

130 Programming Guide

XACML Profile for CA EEM

XACML Request to Locate Patient During Visiting Hours

The example in this section is an XACML request that requests access based
on the following policy:

A receptionist can locate a patient only during the visiting hours. The visiting
hours are from 9:00 AM to 11:00 AM and 4:00 PM to 6:00 PM.

The following is the XACML request that details a receptionist trying to locate a
patient John at 10:23 AM:

<Request>
<Subject>
<Attribute Attributeld="um:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://iww.w3.0rg/2001/XMLSchematstring">
<AttributeValue>receptionist</AttributeValue>
</Attribute>
</Subject>
<Resource>
<Attribute Attributeld="um:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://iww.w3.0rg/2001/XMLSchematstring">
<AttributeValue>patient/John</AttributeValue>
</Attribute>
<ResourceContent>
<gu>
<UserName>UserName/receptionist</UserName>
</lgu>
<ug>
<Staff>ug/Staff</Staff>
<lug>
</ResourceContent>
</Resource>
<Action>
<Attribute Attributeld="um:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http:/iwww.w3.0rg/2001/XMLSchema#string">
<AttributeValue>locate</AttributeValue>
</Attribute>
</Action>
<Environment>
<Attribute Attributeld="um:oasis:names:tc:xacml:1.0:environment:current-date Time"
DataType="http://iwww.w3.0rg/2001/XMLSchema#date Time">
<AttributeValue>2006-02-15T10:23:47-05:00</Attribute Value>
</Attribute>
</Environment>
</Request>

The CA EEM server evaluates XACML request based on the policy and grants a
PERMIT action. Following is the XACML response for the preceding request:

<?xml version="1.0" encoding="UTF-8" ?>

Chapter 11: Integrate Web Services with CA EEM 131

XACML Profile for CA EEM

<Response xmIns="umn:oasis:names:tc:xacml:1.0:context" xmins:xsi="http:/Awww.w3.
0rg/2001/XMLSchema-instance" xsi:type="Response">
<Result Resourceld="patient/Joh n">
<Decision>Permit</Decision>
<Status>
<StatusCode Value="um:oasis:names:tc:xacm I:1.0:status:ok" />
</Status>
</Result>
</Response>

132 Programming Guide

XACML Profile for CA EEM

Admit a Patient to a Ward

The example in this section explains how to import an XACML request that
describes the following policy:

The policy states that in RBC_Hospital, a patient can be admitted to the ER
ward only by staff that are assigned to ER ward.policy according to which a
patient can be admitted to ER ward only by any staff assigned to ER ward or
by the patient's doctor.

Following is the XACML request for the preceding policy.

<Policy Policyld="patient_er_admission" RuleCombiningAlgld="um:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:deny-overrides">
<Description>patient can be admitted to the ER by any staff assigned to ER, or the patient's
doctor</Description>
<PolicyDefaults>
<XPathVersion>http://imww.w3.org/TR/1999/Rec-xpath-19991116</XPathVersion>
</PolicyDefaults>

<Target>
<Subjects>
<Subject>
<SubjectMatch Matchld="um:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue

DataType="http://iwww.w3.0rg/2001/XMLSchematstring">ug/Doctors</Attribute Value>
<AttributeSelector RequestContextPath="//ug/Doctors"
DataType="http://imww.w3.0rg/2001/XMLSchematstring" />
</SubjectMatch>
</Subject>
<Subject>
<SubjectMatch Matchld="um:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchemat#string">ug/Nurses</AttributeValue>
<AttributeSelector RequestContextPath="//ug/Nurses"
DataType="http://iwww.w3.0rg/2001/XMLSchemat#string" />
</SubjectMatch>
</Subject>
</Subjects>
<Resources>
<Resource>
<ResourceMatch Matchld="um:oasis:names:tc:xacml:1.0:function:regexp-string-match">
<AttributeValue DataType="http:/www.w3.0rg/2001/XMLSchemat#string">patient/*</AttributeValue>
<ResourceAttributeDesignator Attributeld="um:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://iwww.w3.0rg/2001/XMLSchema#string" />
</ResourceMatch>
</Resource>
</Resources>
<Actions>
<Action>
<ActionMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal™>

Chapter 11: Integrate Web Services with CA EEM 133

XACML Profile for CA EEM

<AttributeValue
DataType="http:/Amww.w3.0rg/2001/XMLSchemat#string">admit</AttributeValue>
<ActionAttributeDesignator
Attributeld="um:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http:/Aww.w3.0rg/2001/XMLSchemat#string" />
</ActionMatch>
</Action>
</Actions>
<[Target>
<Rule Ruleld="patient_er_admission-Rule" Effect="Permit">
<Condition Functionld="um:oasis:names:tc:xacml:1.0:function:boolean-equal">
<AttributeValue DataType="http:/mww.w3.0rg/2001/XMLSchema#boolean">true</AttributeValue>
<Apply Functionld="um:oasis:names:tc:xacml:1.0:function:and">
<Apply Functionld="um:oasis:names:tc:xacml:1.0:function:any-of-any">
<Function Functionld="um:oasis:names:tc:xacml:1.0:function:string-equal" />
<AttributeSelector
RequestContextPath="//namedAttributes/namedAttribute/ward"
DataType="http://imww.w3.0org/2001/XMLSchemat#string" />

<Apply Functionld="um:oasis:names:tc:xacmi:1.0:function:string-bag">
<AttributeValue
DataType="http://iwww.w3.0rg/2001/XMLSchemat#string">ward/ER</AttributeValue>
</Apply>
</Apply>
<Apply Functionld="um:oasis:names:tc:xacml:1.0:function:or">
<Apply Functionld="um:oasis:names:tc:xacml:1.0:function:any-of-any">
<Function Functionld="um:oasis:names:tc:xacml:1.0:function:string-equal” />
<AttributeSelector RequestContextPath="//namedAttributes/namedAttribute/ward"
DataType="http://iwww.w3.0rg/2001/XMLSchemat#string" />
<AttributeSelector RequestContextPath="//u/ward"
DataType="http://imvww.w3.0rg/2001/XMLSchemat#string" />
</Apply>
<Apply Functionld="um:oasis:names:tc:xacml:1.0:function:and">
<Apply Functionld="um:oasis:names:tc:xacml:1.0:function:any-of-any">
<Function Functionld="um:oasis:names:tc:xacml:1.0:function:string-equal” />
<AttributeSelector RequestContextPath="//namedAttributes/namedAttribute/doctor”
DataType="http://imww.w3.0rg/2001/XMLSchemat#string" />
<AttributeSelector RequestContextPath="//gu/UserName"
DataType="http://imww.w3.0rg/2001/XMLSchemat#string" />
</Apply>
<Apply Functionld="um:oasis:names:tc:xacml:1.0:function:any-of-any">
<Function Functionld="um:oasis:names:tc:xacml:1.0:function:string-equal” />
<AttributeSelector RequestContextPath="//ug/Name"
DataType="http://imww.w3.0rg/2001/XMLSchemat#string" />
<Apply Functionld="um:oasis:names:tc:xacmi:1.0:function:string-bag">
<AttributeValue
DataType="http://iwww.w3.0rg/2001/XMLSchemat#string">Name/Doctors</AttributeValue>
</Apply>
</Apply>

134 Programming Guide

SPML Profile for CA EEM

</Apply>
</Apply>
</Apply>
</Condition>
</Rule>
</Policy>

SPML Profile for CA EEM

SPML Integration

Terminology

SPML 1.0 is an OASIS standard to automate provisioning requirements.CA EEM
provides an SPML profile that you can use to implement your provisioning
setup.

CA EEM provides support for the OASIS Service Provisioning Markup Language
1.0 (SPML) as a web service. You can create, modify, delete, and search on
the following CA EEM objects:

m Global Users and Application specific Users

m Global Groups and Application specific Groups
m Policies

m Application Instances

m Calendars

Note: To use SPML Web services, you must have JRE 1.5.1 and Tomcat 5.5 to
be installed.

The terminology used in SPML implementations is documented as part of
OASIS specifications for SPML 1.0. For more information on terminology for
SPML, see http://www.oasis-open.org/committees/download.php/3032/cs-
pstc-spml-core-1.0.pdf.

Chapter 11: Integrate Web Services with CA EEM 135

SPML Profile for CA EEM

WSDL for CA EEM SPML

Web Services Description Language (WSDL) is an XML format that is used to
describe the network services that are provided by an application. CA EEM
publishes the SPML operations it supports using WSDL. After you have
deployed the oasis tools, you can access web services for CA EEM using the
following URL:

http://<hostname>:8080/oasis/<app name>.jws.
For example, if you have deployed your web server on your localhost and
App1l is the application name, you can access web services for Appl by using

the URL, http://localhost:8080/0asis/Appl.jws.

You can access the WSDL provided by an application deployed on a Web
server using the following URL:

http://<hostname>:8080/0asis/<app name>.jws?wsdl

The WSDL for CA EEM supports the following SPML operations:

SPML Operation Input Parameters for SPML Return Value in SPML
Request Response
add SPML request string SPML response string
modify SPML request string SPML response string
delete SPML request string SPML response string
search SPML request string SPML response string
schema SPML request string SPML response string
batch SPML request string SPML response string

136 Programming Guide

SPML Profile for CA EEM

SPML Profile

You must register your client application with CA EEM server before you
configure SPML requests. CA EEM supports the following operations on SPML

requests:

= Add

= Modify
m Delete
m Search
m Schema
= Batch

CA EEM has the following constraints when processing the preceding
operations on SPML requests:

CA EEM does not support parallel processing in an SPML batch request.
Also, SPML extendedRequest is not supported for SPML batch request.

A schema request should include one of the valid objectclass attribute
values. The schemaid and providerid should be set to the following values:

schemaid

urn:oasis:names:tc:SPML:1:0#GenericString. and may have one of
the valid objectclass attribute values and the

providerId
eiam.

The schema request may include one of the valid objectclass and its
attribute values.

A search request must include one of the valid objectclass attribute
values. Also, the IdentifierType must be:
urn:oasis:names:tc:SPML:1:0#GenericString

A modify request must include one of the valid objectclass attribute
values. The valid objectclass attribute value must be mentioned as an
attribute under IdentifierAttribute. The SPML attribute operation under
modification element must be replace. The IdentifierType must be:

urn:oasis:names:tc:SPML:1:0#GenericString.

A delete request must include one of the valid objectclass attribute values.
The valid objectclass attribute value must be mentioned as an attribute
under IdentifierAttribute. The IdentifierType must be:

urn:oasis:names:tc:SPML:1:0#GenericString.

An add request must include a valid objectclass attribute value.

Chapter 11: Integrate Web Services with CA EEM 137

SPML Profile for CA EEM

The following table maps the SPML functions to the corresponding CA EEM
operations:

SPML Function CA EEM Operation Name
approxmatch match

equalitymatch equal

greaterequal greaterequal

lessorequal lessequal

intial-substring startswith

finalsubstring endswith

anysubstring contains

138 Programming Guide

SPML Profile for CA EEM

Global Users and Application Users in SPML Profile

Add, Modify, and Delete operations are not supported when connected to an
external directory as the user source.

The following are the mappings from CA EEM object attributes for global and
application users to SPML profile attributes:

All CA EEM Safe::GlobalUser and Safe::User object attributes mentioned in
the CA EEM SDK are supported.

CA EEM global users have the SPML objectclass attribute as
SafeGlobalUser.

CA EEM application users have the SPML objectclass attribute as SafeUser.

All single valued CA EEM object attributes have only a single SPML value
element for a SPML attr element.

All multi valued CA EEM object attributes can have multiple SPML value
elements for a single SPML attr element.

Username and cn are the synonyms for CA EEM object attribute 'name’.

CA EEM object attributes password and oldpassword are mapped to SPML
attributes PasswordDigest and OldPasswordDigest respectively.

A SPML request can have multiple attr elements with the same name. If
there are multiple attr elements with the same name, the last attr element
overrides the other elements.

Other than the defined CA EEM object attributes, an CA EEM object can
also have extended attributes. For extended attributes, a SPML attr
element should have the name of the attribute and value element should
have the value of the attribute. An example of such a case is user
attributes.

The values of attributes can be mentioned as valid XPATH expressions.
These expressions are evaluated against an XML element under SPML
<attributes> element.

CA EEM object attributes PasswordDigest and OldPasswordDigest should
be simple base64 encoded password and oldpassword respectively.

CA EEM object attributes of type time or date-time must be valid.
CA EEM object attributes of type boolean must be valid.
CA EEM object attributes of type integer must be valid.

Note: For more information on the format for type time or date-time, type
integer, or type boolean, see
http://www.w3.0rg/2001/XMLSchema#dateTime.

Chapter 11: Integrate Web Services with CA EEM 139

SPML Profile for CA EEM

Global User Groups and Application User Groups in SPML Profile

Add, Modify, and Delete operations are not supported when connected to an
external directory as the user source.

The following are the mappings from CA EEM object attributes for global and
application users to SPML profile attributes:

All CA EEM Safe::GlobalUserGroup and Safe::UserGroup object attributes
mentioned in the CA EEM SDK are supported.

CA EEM global user groups have the SPML objectclass attribute as
SafeGlobalUserGroup.

CA EEM application user groups have the SPML objectclass attribute as
SafeUserGroup.

All single valued CA EEM object attributes have only a single SPML value
element for a SPML attr element.

All multi valued CA EEM object attributes can have multiple SPML value
elements for a single SPML attr element.

cn is a synonym for CA EEM object attribute name.

An SPML request can have multiple attr elements with the same name. If
there are multiple attr elements with the same name, the last attr element
overrides the other elements.

A CA EEM object can also have extended attributes other than the defined
CA EEM object attributes. For extended attributes, a SPML attr element
should have the name of the attribute and value element should have the
value of the attribute. An example of such a case is user attributes.

The values of attributes can be mentioned as valid XPATH expressions. .
These expressions are evaluated against an XML element under SPML
<attributes> element.

CA EEM object attributes of type time or date-time must be valid.
CA EEM object attributes of type boolean must be valid.
CA EEM object attributes of type integer must be valid.

Note: For more information on the format for type time or date-time, type
integer, or type boolean, see
http://www.w3.0rg/2001/XMLSchema#dateTime.

140 Programming Guide

SPML Profile for CA EEM

Policies in SPML Profile

The following are the mappings from CA EEM object attributes for policies to
SPML profile attributes:

All CA EEM Safe::Policy object attributes mentioned in the CA EEM SDK
are supported.

CA EEM policies have the SPML objectclass attribute as SafePolicy.

All single valued CA EEM object attributes have only a single SPML value
element for a SPML attr element.

All multi valued CA EEM object attributes can have multiple SPML value
elements for a single SPML attr element.

cn is a synonym for CA EEM object attribute name.

An SPML request can have multiple attr elements with the same name. If
there are multiple attr elements with the same name, the last attr element
overrides the other elements.

The values of attributes can be mentioned as valid XPATH expressions.
These expressions are evaluated against an XML element under SPML
<attributes> element.

A CA EEM object can also have extended attributes other than the defined
CA EEM object attributes. For extended attributes, a SPML attr element
should have the name of the attribute and value element should have the
value of the attribute. An example of such a case is user attributes.

The attr element <value> of the filter attribute of CA EEM Safe::Policy
object must start with filter. The properties of a filter can be expressed
using multiple <value> elements. The syntax of the value must be filter
property/property value. Table 3 describes various filter properties.

The attr element <value> of the obligation filter attribute of CA EEM
Safe::Policy object should start with obligation. The properties of an
obligation can be expressed using multiple <value> elements. The syntax
of the value should be obligation property/property value.

CA EEM object attributes of type time or date-time must be valid.
CA EEM object attributes of type boolean must be valid.
CA EEM object attributes of type integer must be valid.

Note: For more information on the format for type time or date-time, type
integer, or type boolean, see
http://www.w3.0rg/2001/XMLSchema#dateTime.

Chapter 11: Integrate Web Services with CA EEM 141

SPML Profile for CA EEM

The following are the Filter properties:

Filter Property Name Filter Property Value
logic And, OR

Iparens Number of left parenthesis
col Column Name

optype Valid CA EEM operation type
oper Valid CA EEM operation type
val Column value

tag Name of the Filter

rparens Number of right parenthesis
order Order of evaluation of filter

The following are the obligation properties:

Obligation Property Name Obligation Property Value

name

Name of the obligation

attribute

Comment about obligation

comment

User defined attribute; must be of the form
attribute name/attribute value

142 Programming Guide

SPML Profile for CA EEM

Calendars in SPML Profile

The following are the mappings from CA EEM object attributes for policies to
SPML profile attributes:

m All CA EEM Safe::Calendar object attributes mentioned in the CA EEM SDK
are supported.

m CA EEM calendars have the SPML objectclass attribute as SafeCalendar.

m All single valued CA EEM object attributes have only a single SPML value
element for a SPML attr element.

= All multi valued CA EEM object attributes can have multiple SPML value
elements for a single SPML attr element.

m cnis a synonym for CA EEM object attribute name.

m An SPML request can have multiple attr elements with the same name. If
there are multiple attr elements with the same name, the last attr element
overrides the other elements.

m The values of attributes can be mentioned as valid XPATH expressions.
These expressions are evaluated against an XML element under SPML
<attributes> element.

m A CA EEM object can also have extended attributes other than the defined
CA EEM object attributes. For extended attributes, a SPML attr element
should have the name of the attribute and value element should have the
value of the attribute. An example of such a case is user attributes.

m The attr element <value> of the includetimeblock attribute and
excludetimeblock attribute of CA EEM Safe::Calendar object should start
with includetimeblock and excludetimeblock respectively. The properties of
includetimeblock or excludetimeblock can be expressed using multiple
<value> elements. The syntax of the value must be includetimeblock or
excludetimeblock property/property value.

m CA EEM object attributes of type time or date-time must be valid.
m CA EEM object attributes of type boolean must be valid.
m CA EEM object attributes of type integer must be valid.

Note: For more information on the format for type time or date-time, type
integer, or type boolean, see http://www.w3.0rg/2001/XMLSchema

The following table describes the includetimeblock and excludetimeblock
properties to be used with web services:

Timeblock Property Name Timeblock Property Value
name Name of includetimeblock or excludetimeblock
duration Duration of the time block

Chapter 11: Integrate Web Services with CA EEM 143

SPML Profile for CA EEM

Timeblock Property Name

Timeblock Property Value

monthdaymask Comma separated list of month days; Valid
month days are between 1 and 31

monthmask Comma separated list of month names; Valid
month names are from January through
December

weekdaymask Comma separated list of week days; Valid week

days are from Sunday though Saturday

recurringtimeinterval

Recurring time interval of the time block

starttime

Start time of the time block

144 Programming Guide

SPML Profile for CA EEM

Application Instances in SPML Profile

All CA EEM Safe::ApplicationInstance object attributes mentioned in the CA
EEM SDK are supported. During add operation of Safe::ApplicationIlnstance
object attributes, certfile and certpwd are also required.

CA EEM application instances have the SPML objectclass attribute as
SafeApplicationInstance.

During the add operation, a certificate is generated that is placed under
certs directory under WEB-INF. Attribute certfile is the name of the
certificate file. If not mentioned it defaults to the label attribute of
Safe::ApplicationInstance. Attribute certpwd is the password of the
generated certificate file and must be base64 encoded.

All single valued CA EEM object attributes have only a single SPML value
element for a SPML attr element.

All multi valued CA EEM object attributes can have multiple SPML value
elements for a single SPML attr element.

Application name and cn are synonyms for CA EEM object attribute name.

An SPML request can have multiple attr elements with the same name. If
there are multiple attr elements with the same name, the last attr element
overrides the other elements.

The values of attributes can be mentioned as valid XPATH expressions.
These expressions are evaluated against an XML element under SPML
<attributes> element.

A CA EEM object can also have extended attributes other than the defined
CA EEM object attributes. For extended attributes, a SPML attr element
should have the name of the attribute and value element should have the
value of the attribute. An example of such a case is user attributes.

The attr element <value> of the resourceclass attribute of CA EEM
Safe::ApplicationInstance object should start with resourceclass. The
properties of a resourceclass can be expressed using multiple <value>
elements. The syntax of the value must be resourceclass
property/property value.

CA EEM object attributes of type time or date-time must be valid.
CA EEM object attributes of type boolean must be valid.
CA EEM object attributes of type integer must be valid.

Note: For more information on the format for type time or date-time, type
integer, or type boolean, see http://www.w3.0rg/2001/XMLSchema.

Chapter 11: Integrate Web Services with CA EEM 145

SPML Profile for CA EEM

The following are the resourceclass properties to be used with web services:

Resourceclass Property Name Resourceclass Property Value

action Comma separated list of actions

namedattribute Comma separated list of named
attributes

name Name of the resource class

bestmatchevaluation True or false

Example SPML Requests and Responses

The examples in this section describe some sample SPML requests and
responses that are sent to a web service. The examples in this section use the
RBC_Hospital application that is installed with CA EEM. For these examples it is
assumed that the web services are running on localhost. Hence, the request
URL for the RBC_Hospital application is:
http://localhost:8080/0asis/RBC_Hospital.jws.

146 Programming Guide

SPML Profile for CA EEM

Add Global Users

</addResponse>

The following request adds a global user.
<?xml version="1.0" encoding="UTF-8" 7>

<attributes>

<attr name="objectclass">
<value>SafeGlobalUser</value>

</attr>

<attr name="usemame">
<value>JohnDoe</value>

</attr>

<attr name="firsthame">
<value>John</value>

</attr>

<attr name="workphone">
<value>123456</value>

</attr>

<attr name="description">
<value>a sample user</value>
</attr>
<attr name="address">
<value>1500 Dexter Ave</value>
<value>Seattle</value>
<value>USA</value>
</attr>
<attr name="GroupMembership">
<value>GRP1</value>
</attr>

</attributes>
</addRequest>

The following is the response to the preceding request:
<?xml version="1.0" encoding="UTF-8" 7>
<addResponse xmins="um:oasis:names:tc:SPML:1:0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" result="um:oasis :names:tc:SPML.:1:0#success"
xsi:type="addResponse">
<identifier type="um:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
<id xsi:type="java;java.lang.String">usr1</id>

Chapter 11: Integrate Web Services with CA EEM

SPML Profile for CA EEM

Delete Global Users

The following example deletes a global user:

<?xml version="1.0" encoding="UTF-8" 7>
<deleteRequest>
<identifier type="um:oasis:names:tc:SPML.:1:0#GenericString">
<id>/info/data/groupname</id>
<identifierAttributes>
<attr name="objectclass">
<value>/info/data/clsName</value>
</attr>
</identifierAttributes>
<fidentifier>
<info>
<data>
<groupname>abc</groupname>
<clsName>SafeGlobalUserGroup</clsName>
</data>
<finfo>
</deleteRequest>

The following is the response for the preceding delete global user request:
<?xml version="1.0" encoding="UTF-8" 7>

<deleteResponse xmins="um:oasis:names:tc:SPML:1:0" xmIns:xsi="http://iwww.w3.0rg/2001/XMLSchema-
instance" result="um:oasis:names:tc:SPML:1:0#success" xsi:type="deleteResponse" />

148 Programming Guide

SPML Profile for CA EEM

Modify Global User

The following request modifies a global user:

<?xml version="1.0" encoding="UTF-8" 7>
<modifyRequest>
<identifier type="um:oasis:names:tc:SPML.:1:0#GenericString">
<id>/info/data/usemame</id>
<identifierAttributes>
<attr name="objectclass">
<value>finfo/data/clsName</value>

</attr>
</identifierAttributes>

<fidentifier>

<maodifications>
<modification name="office" operation="replace">

<value>ER1</value>

</modification>

</modifications>

<info>
<data>
<usermname>usr1</usemame>
<clsName>SafeGlobalUser</clsName>
</data>

<finfo>

</modifyRequest>

The following is the response for the preceding modify global user request:
<?xml version="1.0" encoding="UTF-8" 7>

<modifyResponse xmins="um:oasis:names:tc:SPML:1:0" xmins:xsi="http:/www.w3.0rg/2001/XMLSchema-
instance" result="um:oasis:names:tc:SPML:1:0#success" xsi:type="modifyResponse" />

Chapter 11: Integrate Web Services with CA EEM 149

SPML Profile for CA EEM

Search for Global User

The following request searches for a global user.

<?xml version="1.0" encoding="UTF-8" 7>
<searchRequest>
<searchBase type="um:oasis:names:tc:SPML.:1:0#GenericString">
<id>SafeGlobalUserGroup</id>

</searchBase>

<filter>
<approxMatch name="cn">

<value>*</value>

</approxMatch>

<ffilter>

<attributes>
<attribute name="name" />
<attribute name="path" />
<attribute name="description" />

</attributes>

</searchRequest>

The following is the response for the preceding request to search for a global
user:

<?xml version="1.0" encoding="UTF-8" ?>
<searchResponse xmins="urm:oasis:names:tc:SPML:1:0" xmIns:xsi="http://mww.w3.0rg/2001/XMLSchema-
instance" result="um:oasis:names:tc:SPML:1:0#success" xsi:type="searchResponse">
<searchResultEntry>
<attributes>
<attr name="name">
<ns1:value
xmins:ns1="um:oasis:names:tc:DSML:2:0:core">Chiefs</ns1:value>
</attr>
<attr name="path">
<ns2:value
xmins:ns2="um:oasis:names:tc:DSML.:2:0:core">/Chiefs</ns2:value>
</attr>
<attr name="description">
<ns3:value
xmins:ns3="um:oasis:names:tc:DSML.:2:0:core">Chiefs</ns3:value>
</attr>
</attributes>
</searchResultEntry>
</searchResponse>

150 Programming Guide

SPML Profile for CA EEM

Schema for a Global User

The following is a request for the schema of a global user.

<?xml version="1.0" encoding="UTF-8" 7>
<schemaRequest execution="um:oasis:names:tc:SPML.:1:0#synchronous">
<providerldentifier providerlDType="um:oasis:names:tc:SPML:1:04URN">
<providerlD>eiam</providerlD>
</providerldentifier>
<schemaldentifier schemalDType="um:oasis:names:tc:SPML:1:0#GenericString">
<schemalD>SafeGlobalUser</schemalD>
</schemaldentifier>
</schemaRequest>

The following is the response for the preceding request for the schema of a
global user:

<?xml version="1.0" encoding="UTF-8" 7>

<schemaResponse xmins="um:oasis:names:tc:SPML:1:0" xmins:xsi="http://mww.w3.0rg/2001/XMLSchema-

instance" result="umn:oasis:names:tc:SPML:1:0#success" xsi:type="schemaResponse">

<schema>
<providerldentifier providerlDType="um:oasis:names:tc:SPML:1:0#URN">

<providerlD xsi:type="java:java.lang.String">CA EEM</providerID>
</providerldentifier>
<schemaldentifier schemalDType="um:oasis:names:tc:SPML:1:0#GenericString">
<schemalD xsi:type="java:;java.lang.String">SafeGlobalUser</schemalD>

</schemaldentifier>
<attributeDefinition name="UserName" multivalued="false" type="string" />
<attributeDefinition name="JobTitle" multivalued="false" type="string" />
<attributeDefinition name="MiddleName" multivalued="false" type="string" />
<attributeDefinition name="ChangePasswordNextLogin" multivalued="false" type="boolean" />
<attributeDefinition name="FirstName" multivalued="false" type="string" />
<attributeDefinition name="PasswordTimeToWam" multivalued="false" type="boolean" />
<attributeDefinition name="SuspendedDate" multivalued="false" type="date-time" />
<attributeDefinition name="OldPasswordDigest" multivalued="true" type="string" />
<attributeDefinition name="MobilePhoneNumber" multivalued="false" type="string" />
<attributeDefinition name="MailStop" multivalued="false" type="string" />
<attributeDefinition name="Name" multivalued="false" type="string" />
<attributeDefinition name="Department" multivalued="false" type="string" />
<attributeDefinition name="DisableDate" multivalued="false" type="date-time" />
<attributeDefinition name="Company" multivalued="false" type="string" />
<attributeDefinition name="Office" multivalued="false" type="string" />
<attributeDefinition name="City" multivalued="false" type="string" />
<attributeDefinition name="Description" multivalued="false" type="string" />
<attributeDefinition name="OverridePasswordPolicy" multivalued="false" type="boolean" />
<attributeDefinition name="PasswordExpireTime" multivalued="false" type="date-time" />
<attributeDefinition name="IncorrectLoginCount" multivalued="false" type="integer" />
<attributeDefinition name="PasswordChangeDate" multivalued="false" type="date-time" />
<attributeDefinition name="Alias" multivalued="false" type="string" />
<attributeDefinition name="Suspended" multivalued="false" type="boolean" />

Chapter 11: Integrate Web Services with CA EEM 151

SPML Profile for CA EEM

<attributeDefinition name="Comments" multivalued="true" type="string" />
<attributeDefinition name="DisplayName" multivalued="false" type="string" />
<attributeDefinition name="PostalCode" multivalued="false" type="string" />
<attributeDefinition name="Path" multivalued="false" type="string" />
<attributeDefinition name="Country" multivalued="false" type="string" />
<attributeDefinition name="State" multivalued="false" type="string" />
<attributeDefinition name="Address" multivalued="true" type="string" />
<attributeDefinition name="GroupMembership" multivalued="true" type="string" />
<attributeDefinition name="FaxPhoneNumber" multivalued="false" type="string" />
<attributeDefinition name="EmailAddress" multivalued="false" type="string" />
<attributeDefinition name="EnableDate" multivalued="false" type="date-time" />
<attributeDefinition name="PasswordDigest" multivalued="false" type="string" />
<attributeDefinition name="WorkPhoneNumber" multivalued="false" type="string" />
<attributeDefinition name="LastName" multivalued="false" type="string" />
<attributeDefinition name="HomePhoneNumber" multivalued="false" type="string" />
</schema>

</schemaResponse>

152 Programming Guide

Chapter 12: Event Management

This section contains the following topics:

Event Policies (see page 153)

Event Data Model (see page 156)
Reliable Event Delivery (see page 161)
Route Events (see page 163)

Event Policies

CA EEM generates events based on the event policies defined in the
application. Event policies are used to determine which events are delivered,
and which ones are combined (coalesced) into summaries. By using event
policies, you can configure the events that must be reported in detail.

How Event Policies are Evaluated

CA EEM generates combined events for both administrative and runtime
events. The events generated by CA EEM are recognized by CA Audit and can
be delivered to a configured CA Audit system.

The event policies are evaluated as follows:

m All events are coalesced and sent out based on the time set in
Safe::Context::setEventCoalesceTime.

m By default, events are delivered to the backend server. This can be
overridden by setting a new event host in the Safe::Context::setEventHost

m When a event is received, an access check is performed to determine if the
event must be sent in detail based on the following:

m ResourceClassName set to SafeEvent
m Action set to submit
m ResourceName set to {action} from the event

m Named attribute queue of the event details (Taxonomy, Identity,
ResourceClass (for admin) Resource, Error (for runtime))

If the access check is passed, a detailed event is sent.

Chapter 12: Event Management 153

Event Policies

Controlling Event Delivery

CA EEM coalesces events by unique instances of the host, application instance,
and taxonomy (action + success/fail/deny) and forwards the events to the
backend server. You can configure the time of delivery for these events. The
default value to generate coalesces event is 300 seconds.

Note: Even if the event policies are set to 'not submit' a specified event,
Coalesced Events are still generated on a regular interval (defaults to 300
seconds).
The following parameters can be used to modify the default values of events:
Safe::Context::setEventCoalesceTime

Specifies the time span for delivering combined events.
Safe::Context::setEventDeliveryHost

Specifies the Audit host to send the events.
Safe::Context::setEventDrainTime

Specifies time to wait before thrashing the un-sent events.

More Information

Event Data Model (see page 156)

154 Programming Guide

Event Policies

Default Event Policy

When registering an Application Instance, a default event policy (named
DefaultEventPolicy) is created. The default policy sends detailed information on
events for the following actions:

m unregisterApplicationInstance
m issueCertificate

m authenticateWithPassword

m authenticateWithCertificate

m authenticateWithArtifact

m authenticateWithDigest

m authenticateWithNative

m authenticateWithCredentials

m fastAuthenticateWithPassword
m fastAuthenticateWithCertificate
m fastAuthenticateWithArtifact

m fastAuthenticateWithDigest

m fastAuthenticateWithNative

m refreshSession

m changePassword

m unlockUser

m pozConfigure

m solnsert

m soRemove

= soModify

Chapter 12: Event Management 155

Event Data Model

Event Data Model

You can view the following events that are cached by CA EEM for the attached
application instance:

m Administrative Events
m Runtime Events

m Coalesced Events
Note: The events are displayed based on your rights view.

The following are the standard fields in Audit:
Taxonomy
IAM.eventname.{action}.[S|F].I {action}
Where eventname is based on the event model.
Src

Specifies the applicationinstance label from
Safe::ApplicationInstace::getLabel method.

Log

Specifies the log file name.

Example: EiamSdk
TimeZone

Specifies the local time offset from GMT.
Location

Specifies the fully qualified hostname (\domain for windows,
host.domain.com for *nix).

RecorderHost

Specifies the fully qualified hostname (\domain for windows,
host.domain.com for *nix).

Recorder

Specifies the "application name" from
Safe::ApplicationInstance::getApplcationName method.

Version
Specifies the version.

Example: 1.0

156 Programming Guide

Event Data Model

Administrative Events

Administrative events occur when any SafeStoredObject or folder is inserted,
removed, or modified in the policy server store. Admin Events are generated
through the following administrative actions:

m pozConfigure
m solnsert (includes addFolder and addGlobalFolder)

m soRemove (includes removeFolder and removeGlobalFolder)

soModify (includes emptyFolder and emptyGlobalFolder)

Each administrative action generates events along with a 'Tag' field. Each
event represents a collection of attributes that are updated, inserted, or
removed.

Note: Administrative events use the standard audit fields with Taxonomy set
to IAM.Admin.{action}.S.I.
The following are the CA EEM specific fields for administrative events:
Identity
Specifies the identity of the user attached to the context.
Tag
Specifies a unique ID that anchors the group of events together.
Method
Specifies the action.
ResourceClass:

Specifies the resource class being acted upon. Such as, Folder,
GlobalFolder, User, GlobalUser, UserGroup, GlobalUserGroup,
ApplicationInstance, Calendar, and Policy.

Resource
Specifies the fully qualified name of the resource.
Attribute:

Specifies the name of the field being modified.

Chapter 12: Event Management 157

Event Data Model

Oldval

Specifies the previous value of the attribute.
NewVal

Specifies the new value of the attribute.
Severity

Specifies severity information.
Status

Specifies the status.

158 Programming Guide

Event Data Model

Runtime Events

Runtime events are generated when CA EEM methods are invoked, such as
authentication and authorization calls. Runtime events are generated through
the following runtime actions:

m registerApplicationInstance
m unregisterApplicationInstance
m issueCertificate
m attach
m detach
m authenticateWith*
m fastAuthenticateWith*
m authorizeWithSession
m refreshSession
® removeSession
m changePassword
m changePasswordForldentity
m unlockUser
Note: Runtime events use the standard audit fields with Taxonomy set to
IAM.Runtime.{action}.[S|F].I {action}.
The following are the CA EEM specific fields for runtime events:
Identity
Specifies the identity of the user attached to the context.

Note: If you use authorizeWithSession, then it specifies the identity being
checked.

Action
Specifies the action.
Resource

Specifies the resource being acted upon (identity, application instance, or
resource).

For authorizeWithSession the resource is the action + '/' +
ResourceClassName + '/' + Resource

Example: read/file//tmp/myfile.doc

Chapter 12: Event Management 159

Event Data Model

Error

Specifies the error in numerics.
ErrorCode

Specifies the error code (nmemonic).
Severity

Specifies severity information.
Status

Specifies the status.

160 Programming Guide

Reliable Event Delivery

Coalesced Events

Coalesced Events are runtime and administrative events, coalesced into
‘counts’. Each unique instance of action and success/failure generates a
bucket, into which the events are coalesced. Coalesced Events are delivered
on a configurable basis to the CA EEM policy server.

Note: Coalesced events use the standard audit fields with Taxonomy set to
IAM.Coalesced.{action}.[S|F].I {action}.
The following are the CA EEM specific fields for coalesced events:
Method

Specifies the action.
StartTime

Specifies the time to start coalescing.
StopTime

Specifies the time to stop coalescing.
Count

Specifies the number of these events received/coalesced.
Severity

Specifies severity information.
Status

Specifies the status.

Reliable Event Delivery

CA EEM generates events based on the event policies defined in the
application. To ensure all the events generated from the clients reach the CA
EEM Server, you must enable Reliable Event Delivery.

Note: All admin events are captured and delivered by default. The admin
events cannot be controlled using event policies.

Chapter 12: Event Management 161

Reliable Event Delivery

Enable Reliable Event Delivery

Using SDK Method

Using Web Interface

You can enable Reliable Event Delivery by using one of the following methods:

Note: Reliable Event Delivery is not enabled by default.

m Calling setSaflLocation Method (see page 162)

m Using Web Interface (see page 162)

You can enable Reliable Event Delivery only once for each safecontext session.

To enable Reliable Event Delivery, you must specify the path to store events
by calling the setSaflLocation method.

Example: Enable Reliable Event Delivery

The following example enables reliable event delivery in CA EEM

/Nnstantiate a SafeContext Class.

SafeContext safecontext = new SafeContext();

/ICall the setSaflocation method to enable reliable event delivery
safecontext.setSafl.ocation ("C:\<Folder Name>")

/ISet the backend to the host where Server is running.
safecontext.setBackend("hostname");

You can enable Reliable Event Delivery by providing the SAF location using the
web interface.

To set the SAF location

1. Log on to the CA EEM Server as EiamAdmin user.

The CA EEM home page appears. For information on how to log on see,
Getting Started guide.

2. Click Configure and click Embedded IAM Server.
The Embedded IAM Server pane appears.

3. Click Configure SAF Location.
The SAF Configuration page appears.

4. Specify the SAF File Location and Save.
Example: C:\\<Folder Name>

The location is set to enable Reliable Event Delivery.

162 Programming Guide

Route Events

Route Events

Events that are generated in CA EEM can be routed to another server through
the iGateway iControl configuration settings. You must perform the following
steps in the server from where you want the events to be routed.

Note: After you enable event routing, events will still be available on the CA
EEM Server.

To route events from CA EEM

1.

Stop the iGateway service:
Windows
net stop igateway
Linux and UNIX
$IGW_LOC/S99igateway stop
Go to the iTechnology installation folder.
Windows (Default)
\CA\SharedComponents\iTechnology
Linux and UNIX
/opt/CA/SharedComponents/iTechnology

Edit the iControl.conf file and modify the RouteEvent and RouteEventHost
tags.

Example:
<RouteEvent>false</RouteEvent>
Change to:
<RouteEvent>true</RouteEvent>
Example:
<RouteEventHost>localhost</RouteEventHost>
Change to:

<RouteEventHost><hosthame></RouteEventHost>

Chapter 12: Event Management 163

Route Events

4. Start the iGateway service:
Windows
net stop igateway
Linux and UNIX
SIGW_LOC/S99igateway stop

All the events that are generated after configuring will be routed to the
specified host.

164 Programming Guide

Chapter 13: Server Configuration

This section contains the following topics:

Server Configuration (see page 165)
Using Java Authentication and Authorization Service (see page 166)

Server Configuration

You can retrieve and modify the CA EEM Server configuration. To retrieve
information on CA EEM Server configuration you must use the
SafeContext.pozInfo method.

Note: To use these methods, you must have administrative scoping privileges
to read (pozInfo) and write (pozConfigure) the "iPoz" object.

To configure CA EEM Server configuration you must use the following methods
based on the environment:
C++
Safe::Context::pozConfigure
Java
SafeContext.pozConfigure
C#
SafeContext.pozConfigure
Safex

<GlobalSettings>

Chapter 13: Server Configuration 165

Using Java Authentication and Authorization Service

Using Java Authentication and Authorization Service

You can use the Java Authentication and Authorization Service (JAAS) with CA
EEM. CA EEM has a JAAS LoginModule (com.ca.eiam.jaas.EiamLoginModule)
that authenticates against CA EEM. The EiamLoginModule implements the
following LoginModule interface methods:

Initialize

The initialize method initializes the EiamLoginModule with relevant CA EEM
authentication information.

Login

The login method authenticates the credentials using CA EEM. It will get
the credentials and attempt to use one of the AuthenticateWith method to
authenticate the user. Upon a successful authentication, the users group is
loaded (global and non-global).

Logout

The logout method logs out a subject.
Commit

The commit method commits the authentication process.
Abort

The Abort method stops the authentication process.
Example: Using LoginModule for a Non-Web Application

The following example displays how to use the LoginModule for a non-web
application:

LoginContext Ic = null;
try

{
/lthe EiamLoginModule must be configured as ca_portal_security

Ic = new LoginContext("ca_portal_security”, new TextCallbackHandler());
}
catch (LoginException le)
{
logger.error("Cannot create LoginContext. ", le);
System.exit(-1);
}
catch (SecurityException se)
{
logger.error("Cannot create LoginContext. ", se);
System.exit(-1);
}
try
{

166 Programming Guide

Using Java Authentication and Authorization Service

Ic.login();
}
catch (LoginException e)
{
logger.error("Login failed.");
System.exit(-1);
}
logger.info("Login Successful: "+lc.getSubject());

In the case of the sample above, the configuration file would contain:

ca_portal_security {
com.ca.eiam.jaas.EiamLoginModule required;

h

Chapter 13: Server Configuration 167

Chapter 14: Managing with CA Products

This section contains the following topics:

Provisioning through CA Admin (see page 169)
Security Management with CA SCC (see page 170)

Provisioning through CA Admin

CA Admin is a user-provisioning product that is used to manage, manipulate,
and provision to multiple namespaces.

CA EEM is a CA Admin-managed namespace, as a result, any application that
integrates with CA EEM can have its users and user groups provisioned by CA
Admin.

CA Admin offers enterprise administrators the following identity and access
management features:

m Set up a single provisioning policy for multiple CA EEM application
instances

m Synchronize CA EEM global user information with other namespaces (when
global users are stored in the CA-MDB)

m Manage the external directory that CA EEM references (when referencing
global users in an external directory)

For more information on configuring CA Admin to provision to CA EEM
applications, see CA Admin's documentation.

Chapter 14: Managing with CA Products 169

Security Management with CA SCC

Security Management with CA SCC

The CA Security Command Center (CA SCC) provides enterprises with a
centralized security management console from which you can monitor and
manage multiple security applications.

CA EEM is a CA SCC-managed security application, as a result, any application
that integrates with CA EEM can be managed by CA SCC.

CA SCC offers the enterprise administrator the following security management
features:

m Reporting and Analysis of the backend server
m Event viewing
m Backend server status

m Access to product administration tasks

The following illustration displays the basic architecture:

g

I’ ’_'_‘_,_,_,—-—‘-""’—' Collect Event
SCC Ser Wiew collected
Users Events
E-rnail
alerts
Generate reports
Product sﬁgl;r:glstratmn Route 1o
Unicentar

Route CA EEM

events Execute Program

Screen
Abert

CA BEM

Backend Server

170 Programming Guide

Security Management with CA SCC

Reporting and Analysis

The reporting and analysis component contains general backend configuration
information, repository information, and application data. The following are the
details:

General Configuration

Provides details about the backend configuration settings and event
settings for the given backend server.

Repository Information

Provides backend statistics, directory information, password policy
information, session data, and application statistics.

Application Details

Application details include the name, label, brand, version, and install
information (host name, address, identity, and date).

Work with Audit Events

You can perform the following tasks using the audit events by configuring and
customizing CA EEM events:

m Take direct action on an event. This includes sending an e-mail alert,
executing a program, and routing events

m Save the event in the collector database
m Send the event to the security monitor
Note: The status monitor overview displays the status of all the backend

servers administered by SCC. You can monitor the status to the component
level of CA EEM.

Chapter 14: Managing with CA Products 171

Chapter 15: Sample WorkFlow

Overview

This section contains the following topics:

Overview (see page 173)

Defining Identity and Access Requirements (see page 174)
Designing Safe Objects to Implement (see page 175)
Designing the User Interface (see page 188)

Migrating (see page 188)

Modifying StoredObjects (see page 190)

To explain the workflow, a sample hospital management software package is
created.

To create the software package, enable, and embed the application in CA EEM,
you must define the following objects:

1. Identity and access requirements

2. Safe objects to implement

3. User interfaces

4. Migrate existing application data
More Information

Defining Identity and Access Requirements (see page 174)
Designing Safe Objects to Implement (see page 175)
Designing the User Interface (see page 188)

Migrating (see page 188)

Chapter 15: Sample WorkFlow 173

Defining Identity and Access Requirements

Defining Identity and Access Requirements

To specify the application's identity and access requirements you must define
the business policies for your application.

The following are the sample business policies for the hospital management
software:

m Business policies for medical records

Medical records can be read/written by a patient's doctor

Any doctor or nurse in the patient's ward can read a patient's medical
record

The chief doctor and nurse can read any patient's medical records

m Business policies for patients

Patients can only be admitted to the ER, and only by ER staff or the
patient's doctor

A patient's doctor can discharge the patient, and prescribe them
medicine

The Chief doctor and nurse can transfer patients between wards

Any doctor in patient's ward can discharge and prescribe medication to
a patient

Any doctor or nurse can locate any patient

Receptionists can locate patients during visiting hours

m Business policies for wards

Maintenance and security can enter any ward
Any employee can enter their assigned ward

The chief doctor and nurse can enter all wards except the office

m Business policies for billing records

Office employees can read/write billing data

The chief doctor and nurse can read billing data

174 Programming Guide

Designing Safe Objects to Implement

Designing Safe Objects to Implement

After the business policies are defined, you must identify and define the
various Safe Objects. The objects to define include:

ResourceClasses

The resource names to use, actions and 'named attributes' that are used in
policy evaluation.

User Attributes

The application-specific user attributes that is used in policy evaluation.
Calendars

To limit when policies are effective.
Policies

Rules attached to the users that define their access.

The following table provides the resource classes names, actions/attributes
identified based on the business policies:

Resource Class Business Policies Safe Information

Name

medicalrecords

read/write by patient's doctor ResourceClassName: medicalrecord
ResourceName: patientid

read by any doctor/nurse Actions: read, write

assigned to the patient's ward Named Attributes: patient's ward, patient's

read by Chiefs doctor

User Attributes: staff's ward
User Groups: Chiefs, Doctors, Nurses

Chapter 15: Sample WorkFlow 175

Designing Safe Objects to Implement

Resource Class
Name

Business Policies

Safe Information

admit to ER by any staff
assigned to ER, or the patient's
doctor

discharge/prescribe by patient's
doctor, or any doctor assigned
to patient's ward

discharge/transfer by global
usergroup Chiefs

locate by Doctors and Nurses

locate by JobTitle Receptionist,
during visiting hours

ResourceClassName: patient
ResourceName: patientid

Actions: admit, discharge, prescribe,
transfer, locate

Named Attributes: patient's ward, patient's
doctor

User Attributes: staff's ward, staff JobTitle
User Groups: Chiefs, Doctors, Nurses
Calendar: visitinghours

wards entry by Maintenance and ResourceClassName: ward
Security ResourceName: wardname
] Actions: enter
entry by anybody to their User Attributes: staff's ward
assigned wards User Groups: Chiefs, Maintenance, Security
entry by Chiefs to everywhere
except the office
billingdata read/write by Office users ResourceClassName: billingdata

read by Chiefs

ResourceName: patientid
Actions: read, write
User Groups: Chiefs, Office

More Information

Defining the Application Instance (see page 177)

Defining Calendars (see page 182)

Defining Policies (see page 185)

176 Programming Guide

Designing Safe Objects to Implement

Defining the Application Instance

After defining the SafeObjects, you can build your ApplicationInstance object
with the resource classes and user attributes.

Example code to register an application using Safex script

<Safex>
<Attach/>
<Register>

<Applicationlnstance name="HospitalMgmt" label="elsewhere">

<Brand>ABC</Brand>
<MajorVersion>1</MajorVersion>
<MinorVersion>0</MinorVersion>
<Description>Demo App</Description>
<UserAttribute>text:ward</UserAttribute>

<ResourceClass>

<Name>medicalrecord</Name>
<Action>read</Action>
<Action>write</Action>
<NamedAttr>doctor</NamedAttr>
<NamedAttr>ward</NamedAttr>

</ResourceClass>
<ResourceClass>

<Name>patient</Name>
<Action>admit</Action>
<Action>discharge</Action>
<Action>prescribe</Action>
<Action>transfer</Action>
<Action>locate</Action>
<NamedAttr>ward</NamedAttr>
<NamedAttr>doctor</NamedAttr>

</ResourceClass>
<ResourceClass>

<Name>ward</Name>
<Action>enter</Action>

</ResourceClass>
<ResourceClass>

<Name>bilingdata</Name>
<Action>read</Action>
<Action>write</Action>

</ResourceClass>
</Applicationinstance>
</Register>
</Safex>

Chapter 15: Sample WorkFlow 177

Designing Safe Objects to Implement

Example code to register an application using C#

/I new application instance
SafeApplicationinstance ai = null;

ai = new SafeApplicationinstance();
ai.Context = sc;

ai.Label = "elsewhere";
ai.ApplicationName = "HospitalMgmt";
ai.MajorVersion ="1";

ai.MinorVersion ="0";

ai.Brand = "ABC";

ai.Description = "Demo App";

I user attribute "ward"
ai.addUserAttribute("text:ward");

/I resourceclass medicalrecord

SafeResourceClass rc_medicalrecord = new SafeResourceClass();
rc_medicalrecord.Name = "medicalrecord";
rc_medicalrecord.addAction("read");
rc_medicalrecord.addAction("write");
rc_medicalrecord.addNamedAttr("doctor");
rc_medicalrecord.addNamedAttr("ward");
ai.addResourceClass(rc_medicalrecord);

Il resourceclass patient
SafeResourceClass rc_patient = new SafeResourceClass();
rc_patient.Name = "patient”;
rc_patient.addAction("admit");
rc_patient.addAction("discharge");
rc_patient.addAction("prescribe");
rc_patient.addAction("transfer");
rc_patient.addAction("locate");
rc_patient.addNamedAttr("doctor");
rc_patient.addNamedAttr("ward");
ai.addResourceClass(rc_patient);

/I resourceclass ward

SafeResourceClass rc_ward = new SafeResourceClass();
rc_ward.Name = "ward";

rc_ward.addAction("enter");
ai.addResourceClass(rc_ward);

/I resourceclass billingdata

SafeResourceClass rc_billingdata = new SafeResourceClass();
rc_billingdata.Name = "billingdata";
rc_billingdata.addAction("read");
rc_billingdata.addAction("write");
ai.addResourceClass(rc_billingdata);

178 Programming Guide

Designing Safe Objects to Implement

/I register product instance

try
{
sc.registerApplicationinstance(ai, "mycert.p12", "certpass")
}
catch(SafeException e)

{

/I handle error

Example code to register an application using Java

/I new application instance
SafeApplicationinstance ai = null;

ai = new SafeApplicationinstance();
ai.setContext(sc);
ai.setLabel("elsewhere");
ai.setApplicationName("HospitalMgmt");
ai.setMajorVersion("1");
ai.setMinorVersion("0");
ai.setBrand("ABC");
ai.setDescription("Demo App");

I user attribute "ward"
ai.addUserAttribute("text:ward");

/I resourceclass medicalrecord

SafeResourceClass rc_medicalrecord = new SafeResourceClass();
rc_medicalrecord.setName("medicalrecord");
rc_medicalrecord.addAction("read");
rc_medicalrecord.addAction("write");
rc_medicalrecord.addNamedAttr("doctor");
rc_medicalrecord.addNamedAttr("ward");
ai.addResourceClass(rc_medicalrecord);

Il resourceclass patient
SafeResourceClass rc_patient = new SafeResourceClass();
rc_patient.setName("patient");
rc_patient.addAction("admit");
rc_patient.addAction("discharge");
rc_patient.addAction("prescribe");
rc_patient.addAction("transfer");
rc_patient.addAction("locate");
rc_patient.addNamedAttr("doctor");
rc_patient.addNamedAttr("ward");
ai.addResourceClass(rc_patient);

/I resourceclass ward
SafeResourceClass rc_ward = new SafeResourceClass();
rc_ward.setName("ward");

Chapter 15: Sample WorkFlow 179

Designing Safe Objects to Implement

rc_ward.addAction("enter");
ai.addResourceClass(rc_ward);

/I resourceclass billingdata

SafeResourceClass rc_billingdata = new SafeResourceClass();
rc_billingdata.setName("billingdata");
rc_billingdata.addAction("read");
rc_billingdata.addAction("write");
ai.addResourceClass(rc_billingdata);

Il register product instance
try
{
sc.registerApplicationinstance(ai, "mycert.p12", "certpass")
}
catch(SafeException e)

{

/I handle error

Example code to register an application using C++

/I new application instance
Safe::Applicationinstance ai;
ai.setContext(sc);
ai.setLabel("elsewhere");
ai.setApplicationName("HospitalMgmt");
ai.setMajorVersion("1");
ai.setMinorVersion("0");
ai.setBrand("ABC");
ai.setDescription("Demo App");

I user attribute "ward"
ai.addUserAttribute("text:ward");

/I resourceclass medicalrecord

Safe::ResourceClass *rc_medicalrecord = new Safe::ResourceClass;
rc_medicalrecord->setName("medicalrecord");
rc_medicalrecord->addAction("read");
rc_medicalrecord->addAction("write");
rc_medicalrecord->addNamedAttr("doctor");
rc_medicalrecord->addNamedAftr("ward");
ai.addResourceClass(rc_medicalrecord);

Il resourceclass patient

Safe::ResourceClass *rc_patient = new Safe::ResourceClass;
rc_patient->setName("patient");
rc_patient->addAction("admit");
rc_patient->addAction("discharge");
rc_patient->addAction("prescribe");

180 Programming Guide

Designing Safe Objects to Implement

rc_patient->addAction("transfer");
rc_patient->addAction("locate");
rc_patient->addNamedAttr("doctor");
rc_patient->addNamedAttr("ward");
ai.addResourceClass(rc_patient);

Il resourceclass ward

Safe::ResourceClass *rc_ward = new Safe::ResourceClass;
rc_ward->setName("ward");

rc_ward->addAction("enter");
ai.addResourceClass(rc_ward);

/I resourceclass billingdata

Safe::ResourceClass *rc_bilingdata = new Safe::ResourceClass;
rc_billingdata->setName("billingdata");
rc_billingdata->addAction("read");
rc_billingdata->addAction("write");
ai.addResourceClass(rc_billingdata);

/I register product instance
if('sc.registerApplicationinstance(ai, "mycert.p12", "certpass”, ee))
{
/I handle error
}
else
{

/I successful registration

}

Chapter 15: Sample WorkFlow 181

Designing Safe Objects to Implement

Defining Calendars

You can use calendars to control access to a resource for a selected period.
You can create a calendar with label 'visiting hours' and limit the Receptionist's
right to locate patients by implementing policies.

Example code to create a calendar using Safex script

<Safex>
<Attach label="elsewhere"/>
<Add>
<Calendar folder="" name="visitinghours">
<Description>Visiting hours calendar: 10am to noon; 8pm to 9pm</Description>
<TimeBlock name="morning" type="include" starttime="600" duration="120" recurringtimeinterval="0"
weekdaymask="ALL" monthdaymask="ALL" monthmask="ALL"/>
<TimeBlock name="evening" type="include" starttime="1200" duration="60" recurringtimeinterval="0"
weekdaymask="ALL" monthdaymask="ALL" monthmask="ALL"/>
</Calendar>
</Add>
</Safex>

Example code to create a calendar using C#

/I new calendar

SafeCalendar cal = new SafeCalendar();

cal.Context = sc;

cal.Path = "Mvisitinghours";

cal.Description = "Visiting hours calendar: 10am to noon; 8pm to 9pm";
/I Timeblocks

SafeTimeBlock momings = new SafeTimeBlock();

momings.Name = "moming";

momings.StartTime = 10*60;

momings.Duration = 2*60;
momings.setMask(SafeEnum.WeekDay.WD_ALL, SafeEnum.MonthDay.MD_ALL, SafeEnum.Month.M_ALL);
cal.addIncludeTimeBlock(momings);

SafeTimeBlock evenings = new SafeTimeBlock();

evenings.Name = "evening";

evenings.StartTime = 20*60;

evenings.Duration = 1*60;
evenings.setMask(SafeEnum.WeekDay.WD_ALL, SafeEnum.MonthDay.MD_ALL, SafeEnum.Month.M_ALL);
cal.addInclude TimeBlock(evenings);

/linsert calendar

try

{

cal.solnsert()

}

Catch (SafeException e)

{

/Ihandle error

}

182 Programming Guide

Designing Safe Objects to Implement

Example code to create a calendar using Java

/I new calendar

SafeCalendar cal = new SafeCalendar();

cal.setContext(sc);

cal.setPath("/visitinghours");

cal.setDescription("Visiting hours calendar: 10am to noon; 8pm to 9pm");
/I Timeblocks

SafeTimeBlock momings = new SafeTimeBlock();
momings.setName("moming");

momings.setStartTime(10%60);

momings.setDuration(2+60);
momings.setMask(SafeEnum.WeekDay.WD_ALL, SafeEnum.MonthDay.MD_ALL, SafeEnum.Month.M_ALL);
cal.addIncludeTimeBlock(momings);

SafeTimeBlock evenings = new SafeTimeBlock();
evenings.setName("evening");

evenings.setStartTime(20*60);

evenings.setDuration(1*60);
evenings.setMask(SafeEnum.WeekDay.WD_ALL, SafeEnum.MonthDay.MD_ALL, SafeEnum.Month.M_ALL);
cal.addIncludeTimeBlock(evenings);

Il insert calendar

try

{

cal.solnsert()

}

Catch (SafeException e)

{

/Ihandle error

}

Example code to create a calendar using C++

/I new calendar

Safe::Calendar cal;

cal.setContext(sc);

cal.setPath("/visitinghours");

cal.setDescription("Visiting hours calendar: 10am to noon; 8pm to 9pm");
/I Timeblocks

Safe::TimeBlock *momings = new Safe:: TimeBlock;
momings->setName("moming");

momings->setStartTime(10*60);

momings->setDuration(2*60);

momings->setMask(Safe:WD_ALL, Safe:MD_ALL, Safe:M_ALL);
cal.addIncludeTimeBlock(momings);

Safe::TimeBlock *evenings = new Safe:: TimeBlock;
evenings->setName("evening");

evenings->setStartTime(20%60);

evenings->setDuration(1*60);

evenings->setMask(Safe:WD_ALL, Safe:MD_ALL, Safe:M_ALL);
cal.addInclude TimeBlock(evenings);

Chapter 15: Sample WorkFlow 183

Designing Safe Objects to Implement

Ilinsert calendar
if(cal.solnsert())
{
/I handle error
}
else
{
/I successful insert

}

184 Programming Guide

Designing Safe Objects to Implement

Defining Policies

The policies implement the business rules. The following are the policies
implementing the 'patient’ resource class.

Example code to create policy using Safex Script

<Safex>
<Attach label="elsewhere"/>
<Add>
<Policy folder="/" name="patient er admission">
<Description>patient can be admitted to the ER by any staff assigned to ER, or the patient's
doctor</Description>
<Action>admit</Action>
<Identity>ug:Doctors</Identity>
<Identity>ug:Nurses</Identity>
<ResourceClassName>patient</ResourceClassName>
<Filter logic="AND" Iparens="0" col="name:ward" optype="STRING" oper="EQUAL" val="val:ER"
rparens="0"/>
<Filter logic="AND" Iparens="1" col="name:ward" optype="STRING" oper="EQUAL" val="u:ward"
rparens="0"/>
<Filter logic="OR" Iparens="1" col="name:doctor" optype="STRING" oper="EQUAL" val="gu:UserName"
rparens="1"/>
<Filter logic="AND" Iparens="0" col="ug:Name" optype="STRING" oper="EQUAL" val="val:Doctors"
rparens="2"/>
</Policy>
<Policy folder="/" name="patient discharge-prescribe">
<Description>patient can be discharged/prescribed by patient's doctor, or any doctor assigned to patient's
ward</Description>
<Action>discharge</Action>
<Action>prescribe</Action>
<Identity>ug:Doctors</Identity>
<ResourceClassName>patient</ResourceClassName>
<Filter logic="AND" Iparens="0" col="name:ward" optype="STRING" oper="EQUAL" val="u:ward"
rparens="0"/>
<Filter logic="OR" Iparens="0" col="name:doctor" optype="STRING" oper="EQUAL" val="gu:UserName"
rparens="0"/>
</Policy>
<Policy folder="/" name="patient discharge-transfer">
<Description>patient can be discharged/transferred by Chiefs</Description>
<Action>discharge</Action>
<Action>transfer</Action>
<Identity>gug:Chiefs</Identity>
<ResourceClassName>patient</ResourceClassName>
</Policy>
<Policy folder="/" name="patient locate doctor-nurse">
<Description>patient can be located by any doctor or nurse</Description>
<Action>locate</Action>
<Identity>ug:Doctors</Identity>
<Identity>ug:Nurses</Identity>

Chapter 15: Sample WorkFlow 185

Designing Safe Objects to Implement

<ResourceClassName>patient</ResourceClassName>
</Policy>
<Policy folder="/" name="patient locate receptionist">
<Description>patient can be located by any Staff receptionist during visiting hours</Description>
<Action>locate</Action>
<ResourceClassName>patient</ResourceClassName>
<Calendar>visitinghours</Calendar>
<Identity>ug:Staff</Identity>
<Filter logic="AND" Iparens="0" col="gu:JobTitle" optype="STRING" oper="EQUAL" val="val:Receptionist"
rparens="0"/>
</Policy>
</Add>
</Safex>

Example code to create policy using C#

/I new policy

SafePolicy pol = new SafePolicy();

pol.Context = sc;

pol.Path = "/patient er admission";

pol.Description = "patient can be admitted to the ER by any staff assigned to ER, or the patient's doctor";

pol.ResourceClassName = "patient”;

pol.addldentity("ug:Doctors");

pol.addldentity("ug:Nurses");

pol.addAction("admit");

pol.addFilter(new SafeFilter(SafeEnum.Logic.AND, 0, "name:ward",
SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "val:ER", 0);

pol.addFilter(new SafeFilter(SafeEnum.Logic.SAFE_LOGIC_AND, 1, "name:ward",
SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "u:ward", 0);

pol.addFilter(new SafeFilter(SafeEnum.Logic.OR, 1, "name:doctor”,
SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "gu:UserName", 1);

pol.addFilter(new SafeFilter(SafeEnum.Logic.AND, 0, "ug:Name",
Safe.Enum.OpType.STRING, Safe.Enum.Oper.EQUAL, "val:Doctors", 2);

Ilinsert policy

try

{

pol.solnsert()

}

Catch (SafeException e)

{

/Ihandle error

}

186 Programming Guide

Designing Safe Objects to Implement

Example code to create policy using Java

/I new policy

SafePolicy pol = new SafePolicy();

pol.setContext(sc);

pol.setPath("/patient er admission");

pol.setDescription("patient can be admitted to the ER by any staff assigned to ER, or the patient's doctor");

pol.setResourceClassName("patient");

pol.addldentity("ug:Doctors");

pol.addldentity("ug:Nurses");

pol.addAction("admit");

pol.addFilter(new SafeFilter(SafeEnum.Logic.AND, 0, "name:ward",
SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "val:ER", 0);

pol.addFilter(new SafeFilter(SafeEnum.Logic.SAFE_LOGIC_AND, 1, "name:ward",
SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "u:ward", 0);

pol.addFilter(new SafeFilter(SafeEnum.Logic.OR, 1, "name:doctor”,
SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "gu:UserName", 1);

pol.addFilter(new SafeFilter(SafeEnum.Logic.AND, 0, "ug:Name",
Safe.Enum.OpType.STRING, Safe.Enum.Oper.EQUAL, "val:Doctors", 2);

/l'insert policy

try

{

pol.solnsert()

}

Catch (SafeException e)

{

/Ihandle error

}
Example code to create policy using C++

/I new policy

Safe::Policy pol;

pol.setContext(sc);

pol.setPath("/patient er admission");

pol.setDescription("patient can be admitted to the ER by any staff assigned to ER, or the patient's doctor");

pol.setResourceClassName("patient");

pol.addldentity("ug:Doctors");

pol.addldentity("ug:Nurses");

pol.addAction("admit");

pol.addFilter(new Safe::Filter(Safe::SAFE_LOGIC_AND, 0, "name:ward",
Safe:SAFE_OPTYPE_STRING, Safe::SAFE_OPER_EQUAL, "val:ER", 0);

pol.addFilter(new Safe::Filter(Safe::SAFE_LOGIC_AND, 1, "name:ward",
Safe:SAFE_OPTYPE_STRING, Safe::SAFE_OPER_EQUAL, "u:ward", 0);

pol.addFilter(new Safe::Filter(Safe::SAFE_LOGIC_OR, 1, "name:doctor”,
Safe:SAFE_OPTYPE_STRING, Safe::SAFE_OPER_EQUAL, "gu:UserName", 1);

pol.addFilter(new Safe::Filter(Safe::SAFE_LOGIC_AND, 0, "ug:Name",
Safe:SAFE_OPTYPE_STRING, Safe::SAFE_OPER_EQUAL, "val:Doctors", 2);

Il'insert policy

if(pol.solnsert())

Chapter 15: Sample WorkFlow

187

Designing the User Interface

{

/I handle error

}

else

{

/I successful insert

}

Designing the User Interface

After designing and building safe objects, you must integrate the applications
user interface with CA EEM web interface. The integration of the user interface
avoids applications to create individual screens to manage identities and
access policies.

How to Design User Interface

Migrating

To integrate the user interface, CA EEM supports launch in context from the
web application in the following process:

1. Log into the interface using the Safe::Context::authenticateWithPassword
or ::authenticateWithCertificate. Application will track the session object
associated with the user.

2. Build a Safe LaunchRequest object with the requested page, object, action,
return page, and other attributes.

3. Application invokes the Safe::Context::generateURI method to export the
user's session and LaunchRequest and return artifacts to the session and
request 'encoded' in URI string.

4. Application sends a redirect back to the user's browser, specifying the URI.

CA EEM Web user interface receives the request, obtains the
session/request artifacts, looks up the objects, and presents the
appropriate page.

Upon exiting, CA EEM Web user interface redirects to the specified return
page.

You can migrate an application from using its product's internal identity and
access management to CA EEM. Migration of an application involves
understanding and converting the information based on the migrating
application's data format and storage methods to create XML files that can
then be imported into CA EEM through the Safex utility.

188 Programming Guide

Migrating

Identity

You can migrate application identities into CA EEM.

To migrate identities

1.
2.

Create an XML file that represents the applications global users.

Map data into the associated fields for each global user represented in the
XML file.

Note: During migration, if the application prompts global users to be
referenced from an external directory (Microsoft Active Directory) you can
move to step three.

Import this data into CA EEM using the XML file created, using the
following command:

safex -h hostname -u user -p pw -f globaluserimport.xml

Note: Do not attach CA EEM with an application instance.
Define the following parameters for the application:

m Prompt user to provide a name of the application instance

Example: If the product is Harvest, the instance might be 'Harvest -
Engineering Dept'.

m For each resource class determine the associated actions, and the
attributes.

m Determine the user attributes for the application. You can use this
information to create an XML file for registration.

m Import information into CA EEM

Note: You must have global users (internally or externally) and your
application instance must be defined.

Determine the attributes stored in the application for each user (not the
global user mode). For each user stored in the application, you must
format the XML file by mapping the user data and formatting an Al
extended attribute user load file.

If the application's internal identity management includes group
management, you must add a group membership to each of the users
defined and define the Al user group.

More Information

Access Management (see page 41)

Chapter 15: Sample WorkFlow 189

Modifying StoredObjects

Accessing

If the application includes an internal access control method and you want to
implement it using CA EEM, automation can be used to create an CA EEM
representation of the application's policies, depending on the complexity and
structure of your current ACLs or policies. Alternatively, you can also create
the corresponding CA EEM policies through the Web UI.

If the application uses calendars along with access policies, you may can
automation for converting them to CA EEM clendars.

Modifying StoredObjects

The StoredObject class provides the interface to the repository on the CA EEM
backend server. The following CA EEM objects are derived from the
StoredObject class:

m ApplicationInstance
m GlobalUser

m GlobalUserGroup

m User

m UserGroup

m Policy

m Calendar

m AppObject

You can modify StoredObjects as follows, based on the environment:

Action C++ Java C# Safex

Set Context Safe::StoredObject: SafeStoredObject.s SafeStoredObject.C
:setContext etContext ontext

Set Name Safe::StoredObject: SafeStoredObject.s SafeStoredObject.P <Object
:setPath("/folder/na etPath("/folder/na ath = name="name"
me") me") "/folder/name" folder="/folder">

190 Programming Guide

Modifying StoredObjects

Action C++ Java C# Safex

Check Access Safe::StoredObject: SafeStoredObject.c SafeStoredObject.c
:canldentityRead anldentityRead anldentityRead
Safe::StoredObject: SafeStoredObject.c SafeStoredObject.c
:canldentityWrite anldentityWrite anldentityWrite
Safe::StoredObject: SafeStoredObject.c SafeStoredObject.c
:canContextRead anContextRead anContextRead
Safe::StoredObject: SafeStoredObject.c SafeStoredObject.c
:canContextWrite anContextWrite anContextWrite

Retrieve Safe::StoredObject: SafeStoredObject.s SafeStoredObject.s
:soRetrieve oRetrieve ORetrieve
Safe::StoredObject: SafeStoredObject.s SafeStoredObject.s
:soRetrieveByName oRetrieveByName oRetrieveByName
Safe::StoredObject: SafeStoredObject.s SafeStoredObject.s
:soRetrieveByUserN oRetrieveByUserNa oRetrieveByUserNa
ame me me

Insert Safe::StoredObject: SafeStoredObject.s SafeStoredObject.s <Add>
:solnsert olnsert olnsert

Modify Safe::StoredObject: SafeStoredObject.s SafeStoredObject.s <Modify>
:soModify oModify oModify

Delete Safe::StoredObject: SafeStoredObject.s SafeStoredObject.s <Remove>

:soRemove

oRemove

oRemove

Chapter 15: Sample WorkFlow 191

Modifying StoredObjects

Folders and Paths

Search Size

StoredObjects folder path must be named with a fully qualified path. The path
is a concatenation of the folder hierarchy (separated by '/"), and the object
name. The paths on objects are useful for sorting and organizing objects, and
for setting access rights on folders.

Example: Qualified path
A GlobalUser can have the path of "/North America/Users" and a name of

"johndoe".

m The fully qualified path (::getPath) is "/North America/Users/johndoe", and
is passed as "pozPath" in access checks.

m The parent (::getParent) is "/North America/Users", and is passed as
"pozFolder" in access checks

m The name (::getName) is "johndoe", and is passed as "cn" in access
checks

You can split a fully qualified path into the parent and name by invoking
Safe::Util::splitPath method.

CA EEM limits the number of objects returned in a search to 2000. You can
adjust the search size by invoking the Safe::Context::setMaxSearchSize
method.

If the number of objects returned exceeds the maximum search size, CA EEM
will do the following:

Note: These actions are specific to C++ environment.

m Return results upto the maximum size

m Set the Safe::Error object error to EE_MAXSIZEEXCEEDED (retrieve with
::getErrorCode)

m Set the Safe::Error object's search size to the actual size returned
(retrieve with ::getSearchSize)

192 Programming Guide

Appendix A: Safex Command Line
Reference

Safex is a Command Line Interface (CLI) provided by CA EEM. Safex lets you
generate XML files to perform product registration, include objects such as
policies, users, and calendars. It can also be used to export the data from CA
EEM to an XML file.

The safex syntax has the following format:

{path} safex [-h backend] [locale] [-u user -p password] [-c cert -p password] [-n]
[-v verbose level (0-4)] [-s simulate] [-pause] [-b bulk insert] [-f xml_file]

Example: C:\Program Files\CA\Embedded IAM SDK\bin\>safex -h localhost -u
eiamAdmin -p eiam -f abc.xml
Where:
- h backend
Specifies the hostname of the CA EEM backend server to communicate.
Note: You can set localhost as your backend server.
- | locale (Optional)
Specifies the language to be used.
Default: us-en
- u user
Specifies the username to attach.
- c certificate
Specifies the certificate filename.
- p password

Specifies the password of the user specified or password used to encrypt
the certificate passed with the -c option.

- n (Optional)
Specifies CA EEM to use existing the native authentication.

Note: This parameter is valid only on Windows.

Appendix A: Safex Command Line Reference 193

Exit Codes

- v verbose (Optional)

Specifies the level of feedback provided by the utility. Higher levels are
useful for support personnel.

Limits: 0 - 4
- s simulate (Optional)

Specifies safex to scan the XML file. You can scan the file to verify the
syntax and logic, however issues such as trying to add a duplicate object,
will not be flagged.

- b bulk (Optional)
Processes large number of objects.
- pause (Optional)

Specifies safex to pause before processing the data and prior to
completion.

- f XML file
Specifies the XML file to process.
- munge (Optional)
Converts plaintext password to encrypted versions and displays.
Example: [-munge passwordl (password2 ...)]
- digest (Optional)
Converts plaintext password to MD5 hash equivalent and displays.

Note: CA EEM uses MD5 hash format to store global user passwords,
when stored in CA-MDB.

Exit Codes

Exit codes are generated when an application encounters an error. The
following are the exit codes that are generated by CA EEM and their
descriptions:

Exit Code Description
0 Indicates CA EEM successfully processed the XML input.
1 Indicates usage error.
Example: An invalid or incorrect number of parameters
entered.
2 Indicates the XML file is not found or an error occurred

reading or writing a file.

194 Programming Guide

Exit Codes

Exit Code Description

3 Indicates an error in authentication.
Example: Invalid user, certificate, or password.

4 Indicates XML parsing error. XML file line and column
number is listed.
Example: Tags not matching.

5 Indicates an internal logic error.

6 Indicates no XML data is available to process,
Example: Empty file

7 Indicates memory allocation failed.

8 Indicates backend server hostname is invalid or backend

server is inactive

Appendix A: Safex Command Line Reference 195

Appendix B: Example Safex XML Scripts

This section contains the following topics:

Register (see page 198)

Unregister (see page 198)

Export (see page 199)

Export Multiple (see page 199)
CreatedExportMultiple (see page 200)
Export Global Settings (see page 201)
Global Settings (see page 201)
Translations (see page 201)

Global User (see page 202)

User (see page 203)

UserGroups (see page 203)
GlobalUserGroup (see page 203)
Policy (see page 204)

Calendar (see page 205)

Extended User Attributes (see page 206)
Sample Application (see page 207)

Appendix B: Example Safex XML Scripts 197

Register

Register

<Safex>
<Attach/>
<Register certfile="appcertfile.p12" password="123">

<Applicationlnstance name="product name" label="application instance label">
<Brand>brand_name</Brand>

<MajorVersion>12</MajorVersion>

<MinorVersion>0</MinorVersion>
<Translations>product_trans_file</Translations>

<Description>description of the product</Description>

<ResourceClass>
<Name>file</Name>
<Action>read</Action>
<Action>write</Action>
<Action>delete</Action>
<NamedAttr>Size</NamedAttr>
<NamedAttr>Count</NamedAttr>
</ResourceClass>

<ResourceClass>
<Name>menu</Name>
<Action>open</Action>
<Action>update</Action>
<NamedAttr>Name</NamedAttr>
</ResourceClass>

<UserAttribute>text:location</UserAttribute>
<UserAttribute>password:extrapassword</UserAttribute>
<UserAttribute>number:pagesize</UserAttribute>
<UserAttribute>text:menu_preference</UserAttribute>
<UserAttribute>number:writefilecount</UserAttribute>

</Applicationinstance>
</Register>
</Safex>

Unregister

<Safex>

<Attach/>

<UnRegister>

<Applicationinstance name="product name" label="application instance label" I>
</UnRegister>

</Safex>

198 Programming Guide

Export

Export

<Safex>
<Attach label="application name registered with CA EEM'I>

<I-- You can control the data to be exported by specifing the Yes(Y) or No(N). If you store the global users and
global groups in CA's Management Database (CA-MDB) all the objects are exported.

You can override the maximum number of items that are retumed by the backend server. The default is 2000. To
change the maximum number of items to return, include the maxsearchsize="Value" —>

<Export file="path of XML file to be exported " globalfolders="y" globalusergroups="y" globalusers="y"
globalsettings="y" folders="y" usergroups="y" users="y" calendars="y" policies="y" appobjects="y"/>
<Detach/>

</Safex>

Export Multiple

<Safex>
<Attach/>

<l ExportMultiple creates an Export XML file for all of the application instances which match "labelmask”.

The mask can contain a leading and/or trailing asterisk to match a subset of the registered application instances. A
mask of "*" or omitting label will create an Export file for all application instances. In addition to file= and label=, all
of the "y/n" object attribute switches that can be passed to Export can also be specifed on the ExportMultiple line.
These switches are then passed on to the created Export lines. These include:

globalsettings="y/n"
globalfolders="y/n"
globalusergroups="y/n"
globalusers="y/n"
folders="y/n"
usergroups="y/n"
users="y/n"
calendars="y/n"
policies="y/n" >

<ExportMultiple file="filename" label="labelmask*"' />
</Safex>

Appendix B: Example Safex XML Scripts 199

CreatedExportMultiple

CreatedExportMultiple

<Safex>

<l-- This file was created using the ExportMultiple action and a label of "jjd*". All global objects are processed in the
first Export pass (note global Attach). This can further controled with the ExportMultiple acion by specifying the
overriding the associated global switches. By default, all global objects will be exported unless an external directory
is being used in which case on the globalsettings will be exported. To support exporting multiple application
instance data to a single file, two additional attributes were introduced:

Truncate="y/n" - this sets the file pointer to the begining of the file but leaves it open for subsequent
Export actions. This is used by the initial Export action which handles global objects in order to reset the file while
leaving it open.

Append="y/n" - positions the file pointer at the end of the file for the subsequent Export actions. —>

<Attach />

<Export file="_expmuitixml" truncate="y" globalfolders="n" globalusergroups="n" globalusers="n"
globalsettings="y" />

<Detach />

<Attach label="jjd test app" />

<Export file="_expmulti.xmI” append="y" globalfolders="n" globalusergroups="n" globalusers="n"
globalsettings="n"folders="y" usergroups="y" users="y" calendars="y" policies="y" />

<Detach />

<Attach label="jjd2 test app" />

<Export file="_expmulti.xml" append="y" globalfolders="n" globalusergroups="n" globalusers="n"
globalsettings="n" folders="y" usergroups="y" users="y" calendars="y" policies="y" />

<Detach />

<Attach label="jjd3 test app" />

<Export file="_expmulti.xml" append="y" globalfolders="n" globalusergroups="n" globalusers="n"
globalsettings="n" folders="y" usergroups="y" users="y" calendars="y" policies="y" />

<Detach />

<Attach label="jjd4 test app" />

<Export file="_expmulti.xml" append="y" globalfolders="n" globalusergroups="n" globalusers="n"
globalsettings="n" folders="y" usergroups="y" users="y" calendars="y" policies="y" />

<Detach />

<Attach label="jjd elsewhere" />

<Export file="_expmulti.xml" append="y" globalfolders="n" globalusergroups="n" globalusers="n"
globalsettings="n" folders="y" usergroups="y" users="y" calendars="y" policies="y" />

<Detach />

</Safex>

200 Programming Guide

Export Global Settings

Export Global Settings

<Safex>

<Attach />

<!l Export only GlobalSettings to the GlobalSettings.xml file —>

<Export file="GlobalSettings.xml" globalsettings="y" globalfolders="n" globalusergroups="n" globalusers="n"
folders="n" usergroups="n" users="n" calendars="n" policies="n" />

</Safex>

Global Settings

Translations

<Safex>

<Attach />

<Add>

<GlobalSettings>
<UseExtemalDirectory>true</UseExternalDirectory>
<ExternalDirType>ADS</ExtemalDirType>
<ExternalDirHost>usildcO4</ExternalDirHost>
<ExternalDirPort>389</ExternalDirPort>
<ExternalDirExchangeGroups>true</ExtemnalDirExchangeGroups>
<PwUnlockAllowed>true</PwUnlockAllowed>
<PwMinLength>0</PwMinLength>
<PwMaxLength>0</PwMaxLength>
<PwMinNumeric>0</PwMinNumeric>
<PwAllowld>true</PwAllowld>
<PwMinAge>0</PwMinAge>
<PwMaxAge>0</PwMaxAge>
<PwReuseCount>0</PwReuseCount>
<PwFailureCount>0</PwFailureCount>
<PwWarningAge>0</Pw\WarmingAge>
<PwMaxRepeatChar>0</PwMaxRepeatChar>
</GlobalSettings>

</Add>

</Safex>

<Safex>

<Attach label="application specific label" />

<I-- Create a file containing all the target strings for translation for a given application —>
<GenerateTranslations file="translations.xml" />

</Safex>

Appendix B: Example Safex XML Scripts 201

Global User

Global User

<Safex>

<Attach>

<Add>

<GlobalUser folder="/GlobalUsers" name="doejo33">
<UserName>doejo33</UserName>
<GroupMembership>Administrators</GroupMembership>
<FirstName>john</FirstName>
<MiddleName>dennis</MiddleName>
<LastName>doe</LastName>
<EmailAddress>jdoe@acme.com</EmailAddress>
<Alias>jdoe</Alias>
<Department>accounting</Department>
<DisplayName>John D Doe</DisplayName>
<HomePhoneNumber>718-264-8966</HomePhoneNumber>
<WorkPhoneNumber>508-628-7076</WorkPhoneNumber>
<MobilePhoneNumber>508-593-0963</MobilePhoneNumber>
<FaxPhoneNumber>508-628-2319</FaxPhoneNumber>
<Address>331 Main St</Address>

<Address>Jones Building</Address>

<Address>Suite 3200</Address>

<Address>Acme Corp.</Address>
<City>Smallville</City>

<State>Quebec</State>
<PostalCode>H4M2X4</PostalCode>
<Country>Canada</Country>

<Office>C-42</Office>

<Company>Acme</Company>
<PasswordDigest>xxooooooocooox</PasswordDigest>
<IncorrectLoginCount>0</IncorrectLoginCount>
<SuspendDate>0</SuspendDate>
<DisableDate>0</DisableDate>
<EnableDate>0</EnableDate>

<Description>Working in Finance</Description>
<Comments>12 month temp</Comments>
<JobTitle>Biling Manaeger</JobTitle>
<MailStop>C-42-2-12</MailStop>

</GlobalUser>

</Add>

</Safex>

202 Programming Guide

User

User

<Safex>

<Add>

<User folder="/Users" name="doejo33">

<l-- UserAttribues follow (see the Register file)—>
<location>Cube 333</location>

<menu_preference>Accounts Receivable</menu_preference>
</User>

</Add>

</Safex>

UserGroups

<Safex>

<Attach label="application instance label" />
<Add>

<UserGroup folder="/" name="salesman">
<Description>Sales team</Description>
</UserGroup>

<UserGroup folder="" name="marketing">
<Description>Marketing team</Description>
</UserGroup>

<UserGroup folder="/" name="engineering">
<Description>Marketing team</Description>
</UserGroup>

</Add>

</Safex>

GlobalUserGroup

<Safex>

<Attach />

<Add>

<GlobalUserGroup folder="/" name="Staff">
<Description>Staff group description</Description>
</GlobalUserGroup>

<GlobalUserGroup folder="/" name="Administrators">
<GroupMembership>Staff</GroupMembership>
<Description>Administrator group description</Description>
</GlobalUserGroup>

</Add>

</Safex>

Appendix B: Example Safex XML Scripts 203

Policy

Policy

<Safex>

<Attach label="application instance label" />
<Add>

<Policy folder="/Policies" name="policyname">
<Description>policy description</Description>
<Calendar>workday</Calendar>
<Identity>u:name</Identity>
<Identity>ug:ProductAdministrators</Identity>
<Identity>gug:Administrators</Identity>
<Action>read</Action>

<Action>write</Action>
<ResourceClassName>file</ResourceClassName>
<Resource>*.doc</Resource>

<Resource>* txt</Resource>

<l You can set filters for further enhancement of policy —>

<Filter logic="OR" Iparens="1" col="size" optype="INT32" oper="GREATER" val="10240" rparens="1" />
<Filter logic="AND" Iparens="1" col="count" optype="INT32" oper="EQUAL" val="1" rparens="1" />
</Policy>

</Add>

</Safex>

204 Programming Guide

Calendar

Calendar

<Safex>

<Attach label="application specific label" localtimeoffset="0" />
<Add>

<Calendar folder="/Calendars" name="workday">

<!-- EffectiveStart and EffectiveStop:
You can specify date and time when the calendar must effective by specifying an integer value.

NOTE: If you want to set as be permanently effective, specify as zero or remove the tags

—>

<EffectiveStart>nnnnnnn</EffectiveStart>
<EffectiveStop>nnnnnnn</EffectiveStop>
<Description>workdays except xmas</Description>

<I-- Timeblock values:

Name : Provide a descriptive name

Type : Include or Exclude

Starttime : Minutes from midnight

Duration : Specify the duration

Recurringtimeinterval : Repeat interval.

weekdaymask : 0...7|ALL (1=Sunday, 7=Saturday)

monthdaymask : 0...31|LAST|ALL (LAST is the last day of the month
Example: monthdaymask="15 LAST"

monthmask : 0...12JALL (1=January, 12=December)

->

<TimeBlock type="include" name="weekdays" starttime="480" duration="600" recurringtimeinterval="0"
weekdaymask="2 3 4 5 6" monthdaymask="ALL" monthmask="ALL" />

<TimeBlock type="exclude" name="xmas" starttime="0" duration="1440" recurringtimeinterval="0"
weekdaymask="ALL" monthdaymask="25" monthmask="12" />

</Calendar>

</Add>
</Safex>

Appendix B: Example Safex XML Scripts 205

Extended User Attributes

Extended User Atitributes

<Safex>

<Attach label="application instance label"/>
<Add>

<User folder="users" name="Doe">

<Attribute name="favorite color">Red</Attribute>
<Attribute name="make of car">PSK</Attribute>
</User>

<User folder="users" name="John">

<Attribute name="favorite color">Blue</Attribute>
<Attribute name="make of car">MWR</Attribute>
</User>

<User folder="users" name="Jane">

<Attribute name="favorite color">Green</Attribute>
<Attribute name="make of car">ABC</Attribute>
</User>

</Add>

</Safex>

206 Programming Guide

Sample Application

Sample Application

<Safex>
<Attach />
<Register>

<Applicationlnstance name="HospitalMgmt" label="elsewhere">
<Brand>eTrust</Brand>

<MajorVersion>1</MajorVersion>
<MinorVersion>0</MinorVersion>

<Description>Demo App</Description>
<UserAttribute>text:ward</UserAttribute>

<ResourceClass>
<Name>medicalrecord</Name>
<EventOnAllow>false</EventOnAllow>
<EventOnDeny>true</EventOnDeny>
<Action>read</Action>
<Action>write</Action>
<NamedAttr>doctor</NamedAttr>
<NamedAttr>ward</NamedAttr>
</ResourceClass>

<ResourceClass>
<Name>patient</Name>
<EventOnAllow>false</EventOnAllow>
<EventOnDeny>true</EventOnDeny>
<Action>admit</Action>
<Action>discharge</Action>
<Action>prescribe</Action>
<Action>transfer</Action>
<Action>locate</Action>
<NamedAttr>ward</NamedAttr>
<NamedAttr>doctor</NamedAttr>
<NamedAttr>severity</NamedAttr>
</ResourceClass>

<ResourceClass>
<Name>ward</Name>
<EventOnAllow>false</EventOnAllow>
<EventOnDeny>true</EventOnDeny>
<Action>enter</Action>
</ResourceClass>

<ResourceClass>

<Name>bilingdata</Name>
<EventOnAllow>false</EventOnAllow>
<EventOnDeny>true</EventOnDeny>
<Action>read</Action>
<Action>write</Action>

Appendix B: Example Safex XML Scripts 207

Sample Application

</ResourceClass>
</Applicationlnstance>
</Register>

<Attach label="elsewhere" />
<Add>

<GlobalFolder name="/Medical" />
<GlobalFolder name="/Support" />

<GlobalUserGroup>

<Name>Chiefs</Name>
<Description>Chiefs</Description>
</GlobalUserGroup>

<GlobalUser>

<UserName>itworker</UserName>
<PasswordDigest>1bb60096 TKFkhGcPLdGBaStf+ydWPA==</PasswordDigest>
<Description>Application Administrator</Description>
<JobTitle>Programmer</JobTitle>
<FirstName>I</FirstName>
<MiddleName>T</MiddleName>
<LastName>Worker</LastName>

<DisplayName>| T Worder</DisplayName>
</GlobalUser>

<GlobalUser>

<UserName>securityguard</UserName>
<PasswordDigest>a11bda10VyQoaxE3XNXIvi0e TDKdHg==</PasswordDigest>
<Description>Security Guard</Description>

<JobTitle>Lieutenant</JobTitle>

<FirstName>Security</FirstName>

<LastName>Guard</LastName>

<DisplayName>Security Guard</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>icudoctor</UserName>
<PasswordDigest>72d7414aM0c/8wP8K3kSgYulBom8Rg==</PasswordDigest>
<Description>Doctor in the ICU ward</Description>

<JobTitle>Doctor</JobTitle>

<FirstName>ICU</FirstName>

<LastName>Doctor</LastName>

<DisplayName>ICU Doctor</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>headnurse</UserName>
<PasswordDigest>2d400f64hGOwGZrUnpj6AAAA2HNIAA==</PasswordDigest>
<Description>Head Nurse</Description>

<JobTitle>Nurse</JobTitle>

208 Programming Guide

Sample Application

<FirstName>Head</FirstName>
<LastName>Nurse</LastName>
<DisplayName>Head Nurse</DisplayName>
<GroupMembership>Chiefs</GroupMembership>
</GlobalUser>

<GlobalUser>
<UserName>ernurse</UserName>

<PasswordDigest>40196fd78Mj9sBQyTNS6Dq//pJS/PQ==</PasswordDigest>

<Description>Nurse in the ER ward</Description>
<JobTitle>Nurse</JobTitle>
<FirstName>E</FirstName>
<MiddleName>R</MiddleName>
<LastName>Nurse</LastName>
<DisplayName>E R Nurse</DisplayName>
</GlobalUser>

<GlobalUser>
<UserName>erdoctor</UserName>

<PasswordDigest>ab64688dtMG3DwPWcK9B0jco76RDSA==</PasswordDigest>

<Description>Doctor in the ER ward</Description>
<JobTitle>Doctor</JobTitle>
<FirstName>E</FirstName>
<MiddleName>R</MiddleName>
<LastName>Doctor</LastName>
<DisplayName>E R Doctor</DisplayName>
</GlobalUser>

<GlobalUser>
<UserName>janitor</UserName>

<PasswordDigest>183fe80cesXJZuUIFND5KJ7EdgaYDw==</PasswordDigest>

<Description>maintenance employee</Description>

<JobTitle>Sanitary Engineer</JobTitle>
<FirstName>Jan</FirstName>
<LastName>itor</LastName>
<DisplayName>Jan ltor</DisplayName>
</GlobalUser>

<GlobalUser>
<UserName>receptionist</UserName>

<PasswordDigest>b42b2b99x32WOS+DI4z2cpQqGPOCyg==</PasswordDigest>

<Description>Receptionist</Description>
<JobTitle>Receptionist</JobTitle>
<FirstName>Re</FirstName>
<LastName>Ceptionist</LastName>
<DisplayName>Re Ceptionist</DisplayName>
</GlobalUser>

<GlobalUser>
<UserName>officeworker</UserName>

<PasswordDigest>8a612830IC/0rsm9J/iaY JXGCOTXtA==</PasswordDigest>

Appendix B: Example Safex XML Scripts 209

Sample Application

<Description>Office Worker for billing</Description>
<JobTitle>Accountant</JobTitle>
<FirstName>Office</FirstName>
<LastName>Worker</LastName>
<DisplayName>Office Worker</DisplayName>
</GlobalUser>

<GlobalUser>

<UserName>icunurse</UserName>
<PasswordDigest>6e02fe6-ZaV/tKavOPm76Q3RjonIKA==</PasswordDigest>
<Description>Nurse in the ICU ward</Description>

<JobTitle>Nurse</JobTitle>

<FirstName>ICU</FirstName>

<LastName>Nurse</LastName>

<DisplayName>ICU Nurse</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>headdoctor</UserName>
<PasswordDigest>e0f29323E99Xd4QECegSKnHDrdWhA==</PasswordDigest>
<Description>Head Doctor</Description>

<JobTitle>Doctor</JobTitle>

<FirstName>Head</FirstName>

<LastName>Doctor</LastName>

<DisplayName>Head Doctor</DisplayName>
<GroupMembership>Chiefs</GroupMembership>

</GlobalUser>

<Folder name="/Support" />
<Folder name="/System" />
<Folder name="/Medical" />

<UserGroup>

<Name>Office</Name>
<Description>Office Workers</Description>
</UserGroup>

<UserGroup>
<Name>Nurses</Name>
<Description>Nurses</Description>
</UserGroup>

<UserGroup>
<Name>Maintenance</Name>
<Description>Maintenance</Description>
</UserGroup>

<UserGroup>
<Name>Security</Name>
<Description>Security Personnel</Description>

210 Programming Guide

Sample Application

</UserGroup>

<UserGroup>
<Name>Staff</Name>
<Description>All Staff</Description>
</UserGroup>

<UserGroup>
<Name>Doctors</Name>
<Description>Doctors</Description>
</UserGroup>

<User>

<Name>itworker</Name>
<GroupMembership>Staff</GroupMembership>
<ward>Office</ward>

</User>

<User>

<Name>icudoctor</Name>
<GroupMembership>Doctors</GroupMembership>
<ward>ICU</ward>

</User>

<User>

<Name>headdoctor</Name>
<GroupMembership>Doctors</GroupMembership>
</User>

<User>

<Name>officeworker</Name>
<GroupMembership>Office</GroupMembership>
<ward>Office</ward>

</User>

<User>

<Name>janitor</Name>
<GroupMembership>Maintenance</GroupMembership>
</User>

<User>

<Name>erdoctor</Name>
<GroupMembership>Doctors</GroupMembership>
<ward>ER</ward>

</User>

<User>

<Name>icunurse</Name>
<GroupMembership>Nurses</GroupMembership>
<ward>|CU</ward>

</User>

Appendix B: Example Safex XML Scripts 211

Sample Application

<User>

<Name>emurse</Name>
<GroupMembership>Nurses</GroupMembership>
<GroupMembership>Staff</GroupMembership>
<ward>ER</ward>

</User>

<User>

<Name>headnurse</Name>
<GroupMembership>Nurses</GroupMembership>
</User>

<User>

<Name>securityguard</Name>
<GroupMembership>Security</GroupMembership>
</User>

<User>

<Name>receptionist</Name>
<GroupMembership>Staff</GroupMembership>
</User>

<Calendar>

<Description>Visiting hours calendar: 10am to noon; 8pm to 9pm</Description>
<EffectiveStart>0</EffectiveStart>

<EffectiveStop>0</EffectiveStop>

<TimeBlock type="include" name="morning" starttime="600" duration="120" recurringtimeinterval="0"
weekdaymask="ALL" monthdaymask="ALL" monthmask="ALL" />

<TimeBlock type="include" name="evening" starttime="1200" duration="60" recurringtimeinterval="0"
weekdaymask="ALL" monthdaymask="ALL" monthmask="ALL" />

</Calendar>

<Policy>

<Description>patient's doctor has read/write access to medical record</Description>
<ResourceClassName>medicalrecord</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>read</Action>

<Action>write</Action>

<ldentity>ug:Doctors</Identity>

<Filter logic="AND" Iparens="0" col="name:doctor" optype="STRING" oper="EQUAL" val="gu:UserName"
rparens="0" />

</Policy>

<Policy>

<Description>office workers can read/write any safeobject except policies</Description>
<ResourceClassName>SafeObject</ResourceClassName>

<Palicy Type>policy</Policy Type>

212 Programming Guide

Sample Application

<Disabled>False</Disabled>

<Action>read</Action>

<Action>write</Action>

<Identity>ug:Office</Identity>

<Filter logic="AND" Iparens="0" col="req:resource" optype="STRING" oper="NEQ" val="val:Policy" rparens="0" />
</Policy>

<Policy>

<Description>patient can be admitted to the ER by any staff assigned to ER, or the patient's doctor</Description>
<ResourceClassName>patient</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>admit</Action>

<Identity>ug:Doctors</Identity>

<Identity>ug:Nurses</Identity>

<Filter logic="AND" Iparens="0" col="name:ward" optype="STRING" oper="EQUAL" val="val:ER" rparens="0" />
<Filter logic="AND" Iparens="1" col="name:ward" optype="STRING" oper="EQUAL" val="u:ward" rparens="0" />
<Filter logic="OR" Iparens="1" col="name:doctor" optype="STRING" oper="EQUAL" val="gu:UserName"
rparens="1" />

<Filter logic="AND" Iparens="0" col="ug:Name" optype="STRING" oper="EQUAL" val="val:Doctors" rparens="2"
>

</Policy>

<Policy>

<Description>maintenace and security can enter any ward</Description>
<ResourceClassName>ward</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>enter</Action>

<Identity>ug:Maintenance</Identity>

<Identity>ug:Security</Identity>

</Policy>

<Policy>

<Description>Chiefs can enter any ward except the office</Description>
<ResourceClassName>ward</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>enter</Action>

<ldentity>gug:Chiefs</Identity>

<Filter logic="AND" Iparens="0" col="req:resource" optype="STRING" oper="NEQ" val="val:OF FICE" rparens="0"
>

</Policy>

<Policy>

<Description>anybody can enter their assigned ward</Description>
<ResourceClassName>ward</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

Appendix B: Example Safex XML Scripts 213

Sample Application

<Action>enter</Action>

<Identity>ug:Staff</Identity>

<Filter logic="AND" Iparens="0" col="req:resource" optype="STRING" oper="EQUAL" val="u:ward" rparens="0" />
</Policy>

<Policy>

<Description>it worker who manages the elsewhere application</Description>
<ResourceClassName>SafeObject</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>read</Action>

<Action>write</Action>

<ldentity>itworker</Identity>

</Policy>

<Policy>

<Description>System Default: everybody gets access to their own delegated policies</Description>
<ResourceClassName>SafeObject</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Resource>*</Resource>

<Resource>Policy</Resource>

<Action>read</Action>

<Action>write</Action>

<Filter logic="AND" Iparens="1" col="name:ResourceClassName" optype="STRING" oper="EQUAL"
val="val:SafeDelegation" rparens="0" />

<Filter logic="AND" Iparens="0" col="gu:UserName" optype="STRING" oper="EQUAL" val="name:Delegator"
rparens="1" />

</Policy>

<Policy>

<Description>Chiefs can read any billing data</Description>
<ResourceClassName>bilingdata</ResourceClassName>
<Palicy Type>policy</Policy Type>
<Disabled>False</Disabled>

<Action>read</Action>

<ldentity>gug:Chiefs</Identity>

</Policy>

<Policy>

<Description>Global usergroup Chiefs have read access to all medical records</Description>
<ResourceClassName>medicalrecord</ResourceClassName>

<Palicy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>read</Action>

<ldentity>gug:Chiefs</Identity>

</Policy>

<Policy>

214 Programming Guide

Sample Application

<Description>patient can be discharged/prescribed by patient's doctor, or any doctor assigned to patient's
ward</Description>

<ResourceClassName>patient</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>discharge</Action>

<Action>prescribe</Action>

<ldentity>ug:Doctors</Identity>

<Filter logic="AND" Iparens="0" col="name:ward" optype="STRING" oper="EQUAL" val="u:ward" rparens="0" />
<Filter logic="OR" Iparens="0" col="name:doctor" optype="STRING" oper="EQUAL" val="gu:UserName"
rparens="0" />

</Policy>

<Policy>

<Description>patient's ward staff has read access to medical record</Description>
<ResourceClassName>medicalrecord</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>read</Action>

<Identity>ug:Doctors</Identity>

<Identity>ug:Nurses</Identity>

<Filter logic="AND" Iparens="0" col="name:ward" optype="STRING" oper="EQUAL" val="u:ward" rparens="0" />
</Policy>

<Policy>

<Description>System Default: administrative access for the installer and the application instance
certificate</Description>
<ResourceClassName>SafeObject</ResourceClassName>
<Policy Type>acl</Policy Type>
<Disabled>False</Disabled>
<Resource>Applicationinstance</Resource>
<Resource>Calendar</Resource>
<Resource>Policy</Resource>
<Resource>User</Resource>
<Resource>UserGroup</Resource>
<Resource>GlobalUser</Resource>
<Resource>GlobalUserGroup</Resource>
<Resource>Folder</Resource>
<Resource>GlobalFolder</Resource>
<Resource>iPoz</Resource>
<Action>read</Action>
<Action>write</Action>
<ldentity>EiamAdmin</Identity>
<ldentity>CERT-elsewhere</Identity>
</Policy>

<Policy>
<Description>office workers can read/write any billing data</Description>
<ResourceClassName>bilingdata</ResourceClassName>

Appendix B: Example Safex XML Scripts 215

Sample Application

<Policy Type>policy</Policy Type>
<Disabled>False</Disabled>
<Action>read</Action>
<Action>write</Action>
<Identity>ug:Office</Identity>
</Policy>

<Policy>

<Description>Any staff member can attach to elsewhere</Description>
<ResourceClassName>SafeObject</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>
<Resource>Applicationinstance</Resource>

<Action>read</Action>

<ldentity>ug:Staff</Identity>

</Policy>

<Policy>

<Description>patient can be located by any doctor or nurse</Description>
<ResourceClassName>patient</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>locate</Action>

<ldentity>ug:Doctors</Identity>

<Identity>ug:Nurses</Identity>

</Policy>

<Policy>

<Description>patient can be discharged/transferred by Chiefs</Description>
<ResourceClassName>patient</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>discharge</Action>

<Action>transfer</Action>

<ldentity>gug:Chiefs</Identity>

</Policy>

<Policy>

<Description=>it worker delgates his rights to the head doctor for global users and users in the Medical
subfolder</Description>
<ResourceClassName>SafeDelegation</ResourceClassName>
<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Delegator>itworker</Delegator>
<Resource>SafeObject/GlobalUser</Resource>
<Resource>SafeObject/User</Resource>
<Action>inherit</Action>

<ldentity>headdoctor</Identity>

216 Programming Guide

Sample Application

<Filter logic="AND" Iparens="1" col="req:resource" optype="STRING" oper="EQUAL"
val="val:SafeObject/GlobalUser" rparens="0" />

<Filter logic="AND" Iparens="0" col="name:pozPath" optype="STRING" oper="LIKE" val="val:/Medical/*"
rparens="1" />

<Filter logic="OR" Iparens="1" col="req:resource" optype="STRING" oper="EQUAL" val="val:SafeObject/User"
rparens="0" />

<Filter logic="AND" Iparens="0" col="name:pozPath" optype="STRING" oper="LIKE" val="val:/Medical/"
rparens="1" />

</Policy>

<Policy>

<Description>patient can be located by any Staff receptionist during visiting hours</Description>
<ResourceClassName>patient</ResourceClassName>

<Policy Type>policy</Policy Type>

<Disabled>False</Disabled>

<Action>locate</Action>

<Identity>ug:Staff</Identity>

<Calendar>visitinghours</Calendar>

<Filter logic="AND" Iparens="0" col="gu:JobTitle" optype="STRING" oper="EQUAL" val="val:Receptionist"
rparens="0" />

</Policy>

</Add>

</Safex>

Appendix B: Example Safex XML Scripts 217

Appendix C: Reference Matrix

The reference matrix lists the actions and the method that must used to

perform the action.

Action Safex Java C# C++

Attach to <Attach/ SafeContext.attach SafeContext.attach Safe::Context::attach

an >

Application

Instance

Login <Authen SafeContext.authenticat SafeContext.authenticat Safe::Context::authentic

ticate/> eWithPassword eWithPassword ateWithPassword

SafeContext.authenticat SafeContext.authenticat Safe::Context::authentic
eWithCertificate eWithCertificate ateWithCertificate
SafeContext.authenticat SafeContext.authenticat Safe::Context::authentic
eWithArtifact eWithArtifact ateWithArtifact
SafeContext.authenticat SafeContext.authenticat Safe::Context::authentic
eWithNative eWithNative ateWithNative
SafeContext.authenticat SafeContext.authenticat Safe::Context::authentic
eWithDigest eWithDigest ateWithDigest
SafeContext.authenticat SafeContext.authenticat Safe::Context::authentic
eWithCredentials eWithCredentials ateWithCredentials
SafeContext.fastAuthent SafeContext.fastAuthenti Safe::Context::fastAuthe
icateWithPassword cateWithPassword nticateWithPassword
SafeContext.fastAuthent SafeContext.fastAuthenti Safe::Context::fastAuthe
icateWithCertificate cateWithCertificate nticateWithCertificate
SafeContext.fastAuthent SafeContext.fastAuthenti Safe::Context::fastAuthe
icateWithArtifact cateWithArtifact nticateWithArtifact
SafeContext.fastAuthent SafeContext.fastAuthenti Safe::Context::fastAuthe
icateWithNative cateWithNative nticateWithNative
SafeContext.fastAuthent SafeContext.fastAuthenti Safe::Context::fastAuthe
icateWithDigest cateWithDigest nticateWithDigest

Logout SafeContext.removeSes SafeContext.removeSess Safe::Context::removeS

sion

ion

ession

Appendix C: Reference Matrix 219

Sample Application

Action Safex Java C# C++

Permission <Perm/ SafeContext.authorizeW SafeContext.authorizeWi Safe::Context::authorize

Check > ithIdentity thldentity WithIdentity
SafeContext.authorizeW SafeContext.authorizeWI Safe::Context::authorize
IthSession thSession WithSession
SafeContext.authorizeQ SafeContext.authorizeQ Safe::Context::authorize
WithIdentity Withldentity QWithldentity
SafeContext.authorizeQ SafeContext.authorizeQ Safe::Context::authorize
WithSession WithSession QWithSession
SafeContext.processAut SafeContext.processAuth Safe::Context::processA
horizationQ orizationQ uthorizationQ
SafeContext.processAut SafeContext.processAuth Safe::Context::processA
horizationMatrix orizationMatrix uthorizationMatrix
SafeContext.authorizeW SafeContext.authorizeWi Safe::Context::authorize
ithSessionDebug thSessionDebug WithSessionDebug
SafeContext.authorizeW SafeContext.authorizeWi Safe::Context::authorize
ithIdentityDebug thldentityDebug WithIdentityDebug

Register <Registe SafeContext.registerApp SafeContext.registerAppl Safe::Context::registerA

Application r/> licationInstance icationInstance pplicationInstance

Instance

Unregister <UnRegi SafeContext.unregisterA SafeContext.unregisterA Safe::Context::unregiste

Application ster/> pplicationInstance pplicationInstance rApplicationInstance

Instance

Define User <Registe SafeApplicationInstance. SafeApplicationInstance. Safe::ApplicationInstanc

Attributes /> soModify soModify e.soModify

Define <Registe SafeResourceClass SafeResourceClass Safe::ResourceClass

Resource r/> L L I

Classes SafeApplicationInstace.a SafeApplicationlnstace.a Safe::ApplicationInstanc
ddResourceClass ddResourceClass e.addResourceClass
SafeApplicationInstance. SafeApplicationInstance. Safe::ApplicationInstanc
soModify soModify e.soModify

Change SafeContext.changePass SafeContext.changePass Safe::Context::changePa

Password word word ssword

Unlock SafeContext.unlockUser SafeContext.unlockUser Safe::Context::unlockUs

User er

Account

Insert a <Add> SafeGlobalUser.solnsert SafeGlobalUser.solnsert Safe::GlobalUser::solnse

Global User <Global rt

User/>
</Add>

220 Programming Guide

Sample Application

Action Safex Java C# C++
Search SafeContext.searchGlob SafeContext.searchGloba Safe::Context::searchGlo
Global User alUsers |Users balUsers
Retrieve SafeGlobalUser.soRetrie SafeGlobalUser.soRetrie Safe::GlobalUser::soRetr
Global User veByName veByName ieveByName
SafeGlobalUser.soRetrie SafeGlobalUser.soRetrie Safe::GlobalUser::soRetr
veByUserName veByUserName ieveByUserName
SafeGlobalUser.soRetrie SafeGlobalUser.soRetrie Safe::GlobalUser::soRetr
ve ve ieve
SafeContext.searchGlob SafeContext.searchGloba Safe::Context::searchGlo
alUsers |Users balUsers
Modify <Modify SafeGlobalUser.soModif SafeGlobalUser.soModify Safe::GlobalUser::soModi
Global User > y fy
<Global
User/>
</Modify
>
Remove <Remov SafeGlobalUser.soRemo SafeGlobalUser.soRemov Safe::GlobalUser::soRem
Global User e> ve e ove
<Global
User/>
</Remo
ve>
Insert User <Add> SafeUser.solnsert SafeUser.solnsert Safe::User::solnsert
Details <User/>
</Add>
Search SafeContext.searchUser SafeContext.searchUsers Safe::Context::searchUs
User S ers
Details
Retrieve SafeUser.soRetrieveByN SafeUser.soRetrieveByN Safe::User::soRetrieveBy
User ame ame Name
Details

SafeUser.soRetrieve

SafeContext.searchUser
s

SafeUser.soRetrieve

SafeContext.searchUsers

Safe::User::soRetrieve

Safe::Context::searchUs
ers

Appendix C: Reference Matrix 221

Sample Application

Action

Safex

Java C#

C++

Modify User <Modify

SafeUser.soModify SafeUser.soModify

Safe::User::soModify

Details >

<User/>

</Modify

>
Remove <Remov SafeUser.soRemove SafeUser.soRemove Safe::User::soRemove
User e>
Details <User/>

</Remo

ve>
Add Global <Add> SafeContext.addGlobalF SafeContext.addGlobalFo Safe::Context::addGloba
User <GlobalF older Ider IFolder

older/>

</Add>
List Global SafeContext.getGlobalF SafeContext.GlobalFolde Safe::Context::getGlobal
Folders olders rs Folders
Remove a <Remov SafeContext.removeGlo SafeContext.removeGlob Safe::Context::removeGl
Global e> balFolder alFolder obalFolder
Folder <GlobalF

older/>

</Remo

ve>
Empty a SafeContext.emptyGlob SafeContext.emptyGloba Safe::Context::emptyGlo
Global alFolder IFolder balFolder
Folder
Add a <Add> SafeContext.addFolder SafeContext.addFolder Safe::Context::addFolder
Folder <Folder/

>

</Add>
List Folders SafeContext.getFolders SafeContext.Folders Safe::Context::getFolder

S

Remove a <Remov SafeContext.removeFold SafeContext.removeFold Safe::Context::removeFo
Folder e> er er Ider

<Folder/

>

</Remo

ve>

222 Programming Guide

Sample Application

Action Safex Java C# C++
Empty a SafeContext.emptyFolde SafeContext.emptyFolde Safe::Context::emptyFol
Folder r r der
Insert an <Add> SafePolicy.solnsert SafePolicy.solnsert Safe::Policy::solnsert
Access <Policy/
Policy Y
>
</Add>
Search SafeContext.searchPolici SafeContext.searchPolici Safe::Context::searchPol
Access es es icies
Policies
Retrieve an SafePolicy.soRetrieveBy SafePolicy.soRetrieveBy Safe::Policy::soRetrieveB
Access Name Name yName
olicy SafePolicy.soRetrieve SafePolicy.soRetrieve Safe::Policy::soRetrieve
SafeContext.searchPolici SafeContext.searchPolici Safe::Context::searchPol
es es icies
Modify an <Modify SafePolicy.soModify SafePolicy.soModify Safe::Policy::soModify
Access >
Policy <Policy/
>
</Modify
>
Remove an <Remov SafePolicy.soRemove SafePolicy.soRemove Safe::Policy::soRemove
Access e>
Policy <Policy/
>
</Remo
ve>
Search for SafeContext.searchMatc SafeContext.searchMatc Safe::Context::searchMa
Access hingPoliciesBySession hingPoliciesBySession tchingPoliciesBySession
Policies SafeContext.searchMatc SafeContext.searchMatc Safe::Context::searchMa
hingPoliciesByldentity hingPoliciesByldentity tchingPoliciesByldentity
SafeContext.searchMatc SafeContext.searchMatc Safe::Context::searchMa
hingPoliciesByResource hingPoliciesByResource tchingPoliciesByResource
Insert a <Add> SafeCalendar.solnsert SafeCalendar.solnsert Safe::Calendar::solnsert
Calendar <Calend
ar/>
</Add>

Appendix C: Reference Matrix 223

Sample Application

Action Safex Java C# C++
Search SafeContext.searchCale SafeContext.searchCalen Safe::Context::searchCal
Access ndars dars endars
Policies
Retrieve a SafeCalendar.soRetrieve SafeCalendar.soRetrieve Safe::Calendar::soRetrie
Calendar ByName ByName veByName
SafeCalendar.soRetrieve SafeCalendar.soRetrieve Safe::Calendar::soRetrie
SafeContext.searchCale SafeContext.searchCalen ve
ndars dars Safe::Context::searchCal
endars
Modify a <Modify SafeCalendar.soModify = SafeCalendar.soModify = Safe::Calendar::soModify
Calendar >
<Calend
ar/>
</Modify
>
Remove a <Remov SafeCalendar.soRemove SafeCalendar.soRemove Safe::Calendar::soRemo
Calendar e> ve
<Calend
ar/>
</Remo
ve>
Launch In SafeLaunchRequest SafeLaunchRequest Safe::LaunchRequest
Context SafeContext.generateUR SafeContext.generateUR Safe::Context::generate
I I URI
Export a SafeSession.exportSessi SafeSession.exportSessi Safe::Session::exportSes
Session on on ssion
Import a SafeContext.authenticat SafeContext.authenticat Safe::Context::authentic
Session eWithArtifact eWithArtifact ateWithArtifact

224 Programming Guide

Index

A

application instance
attach back end server ¢ 16
create an instance o 17
creating » 16
definition e 15
obligations e 21
register application e 22
resource class o 20
user attributes 18

C

cache e 62

configure external directory
configure external directory e 100
configure siteminder ¢ 103

E

exceptions
safe authorization exception « 88
safe backendserver exception ¢ 88
safe exception e 86
safe password exception e 89

F

Filters
policies 54
searches ¢ 50
structure ¢ 58

G

groups
application specfic groups ¢ 37
delete o 40
global user groups ¢ 36
retrieve ¢ 39

H
how policies are evaluated ¢ 76

integrating with xacml and spml
spml e 135

xacml e 116
P

Policies
types of policies ¢ 42

policy evaluation
best matching algorithm e 79
best matching for regex policies ¢ 80
calculating obligations ¢ 84
delegated authority evaluation e 82
matching algorithm evaluation ¢ 78
policy filter evaluation e 81

U

User Principal Name (UPN) e 102
users
application specific e 27
delete « 33
global users ¢ 26
retrieve ¢ 31

Index 225

	CA Embedded Entitlements Manager Programming Guide
	Contents
	1: Introduction
	Who Should Read This Guide
	Architecture
	SDK Contents
	Client Applications
	Policy Server

	2: Application Instances
	Overview
	How to Register an Application
	Attach to Backend Server
	Create an Application Instance
	Define User Attributes
	Define Resource Classes
	Define Obligations
	Register Application
	Modify an Application Instance
	Unregister an Application Instance

	3: Users
	Overview
	Create Global Users
	Create Application-Specific Users
	Associate Global User with Application-Specific Details
	Modify Membership

	Search Users Using Attributes
	Retrieve a Global User
	Retrieve an Application-Specific User
	Delete a User

	4: Groups
	Overview
	Create Global User Groups
	Create Application-Specific User Groups
	Search Groups Using Attributes
	Retrieve a Global User Group
	Retrieve a User Group
	Delete a Group

	5: Access Management
	Policies
	Overview
	Types of Policies
	Types of Authorization Checks
	Create, Modify, and Verify Policies

	Filters
	Overview
	Build Filters to Use in Searches
	Build Filters to Use in Policies
	Structure of a Filter

	Authorization
	SDK Cache
	Session

	6: Authentication
	Pluggable Authentication Module
	PassTicket
	Prerequisites for Single Sign-On
	Generate PassTicket
	How Applications Communicate with Mainframe Systems

	Kerberos
	Using TGT
	Using Kerberos Principal and Password

	7: Policy Evaluation
	Overview
	How Policies Are Evaluated
	Gathering Identity Attributes
	Assembling Environment Information

	Policy Matching
	Evaluating Matching Algorithm
	How the Best Match Algorithm is Evaluated
	Best Match Handling for Regular Expression Policies
	Policy Filter Evaluation
	Delegated Authority Evaluation
	How Obligations Are Calculated

	8: Exception Handling
	Overview
	Safe Exception
	Safe Authorization Exception
	Safe BackendServer Exception
	Safe Password Exception

	9: Identity Management
	Administration Methods
	Administering Global Users, Groups, and Folders
	Applying Password Policies
	Identity Self Administration

	Configure Externally Generated Certificates
	Enable Trace on CA EEM Server
	Enable Trace on CA EEM SDK
	Dynamic user groups
	How Offline Authentication Works

	10: Configure Directories
	Overview
	Configure External Directory
	Restart iGateway (Linux)

	Custom Mapped Directory
	Example: Configure UPN Using Custom Mapped Directory

	Test Configuration
	CA SiteMinder
	How You Integrate CA SiteMinder with CA EEM
	CA SiteMinder Configuration Parameters
	How Single Sign-on Works between CA SiteMinder and CA EEM
	How Authentication Works Using CA SiteMinder Authentication Schemes

	11: Integrate Web Services with CA EEM
	Web Services Architecture
	Configure Web Services for CA EEM
	Configuration File
	Sample Configuration File
	Tools
	XACML Profile for CA EEM
	XACML Integration
	WSDL for CA EEM XACML
	XACML Services for CA EEM
	XACML Requests
	XACML Responses
	Export and Import Using XACML
	Mapping CA EEM Operations to XACML Functions
	Mapping CA EEM Data Types to XACML Data Types
	XPATH Expressions for CA EEM Filters
	AttributeId Values for XACML AttributeDesignator Elements
	Examples

	SPML Profile for CA EEM
	SPML Integration
	Terminology
	WSDL for CA EEM SPML
	SPML Profile
	Example SPML Requests and Responses

	12: Event Management
	Event Policies
	How Event Policies are Evaluated
	Controlling Event Delivery
	Default Event Policy

	Event Data Model
	Administrative Events
	Runtime Events
	Coalesced Events

	Reliable Event Delivery
	Enable Reliable Event Delivery

	Route Events

	13: Server Configuration
	Server Configuration
	Using Java Authentication and Authorization Service

	14: Managing with CA Products
	Provisioning through CA Admin
	Security Management with CA SCC
	Reporting and Analysis
	Work with Audit Events

	15: Sample WorkFlow
	Overview
	Defining Identity and Access Requirements
	Designing Safe Objects to Implement
	Defining the Application Instance
	Defining Calendars
	Defining Policies

	Designing the User Interface
	How to Design User Interface

	Migrating
	Identity

	Modifying StoredObjects
	Folders and Paths
	Search Size

	A: Safex Command Line Reference
	Exit Codes

	B: Example Safex XML Scripts
	Register
	Unregister
	Export
	Export Multiple
	CreatedExportMultiple
	Export Global Settings
	Global Settings
	Translations
	Global User
	User
	UserGroups
	GlobalUserGroup
	Policy
	Calendar
	Extended User Attributes
	Sample Application

	C: Reference Matrix
	Index

