CA Process Automation

Content Designer Guide
Release 04.2.00

eeeeeeeeeeee

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document is part of a bookshelf with references the following CA Technologies

products:

m CA Catalyst for CA Service Desk Manager (CA Catalyst Connector for CA SDM)

m CAClient Automation (formerly CA IT Client Manager)

m CA Configuration Automation (formerly CA Cohesion® Application Configuration
Manager)

m CA Configuration Management Database (CA CMDB)

m CAeHealth®

m CA Embedded Entitlements Manager (CA EEM)

m CA Infrastructure Insight (formerly Bundle: CA Spectrum IM & CA NetQoS Reporter
Analyzer combined)

m CANSM

m CA Process Automation (formerly CA IT Process Automation Manager)

m CA Service Catalog

m CA Service Desk Manager (CA SDM)

m CA Service Operations Insight (CA SOI) (formerly CA Spectrum® Service Assurance)

m CASiteMinder®

m CA Workload Automation AE

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents

Chapter 1: Introduction to Process Automation 11
ProCesS DEVEIOPMENT PRaSES......uiiiiiiiieieiiie sttt e ettt e et e e e st e e e ettt e e seeteeesaseee e staeesasseaeesasseeeastaeesansseeesanseeesnssaeenannns 13
Phase |: REQUITEMENTS ANGIYSIS....eiiiiiiieieiiieeiiieeeeiteeeeeteeesiteeeestteeesesaeeesaseeeesstaeesaseaeessseeeasstaeesassesesasseseanssseennnns 14
[dentify Processes t0 AULOMATEcoouuiiiiie ettt st et sbee s be e saneessee e saneenees 15
[dentify WHere ProCESSES RUNeiiiiiiiieiiie ettt ettt et sttt e bt e s bt e bee s bt e e saneesbeeesaneenees 15
To JY N VA (=] T g T ad ool Ty LS 16
To TY N o AV [=Y o [=T o 1T a Vo L= o Tl =SSR 16
Identify EXtErnal DEPENUENCIEScc..iiiiieiiieeie ettt ettt et s bt s be e st e bt e s bt e e sbee s bt e e sateesbeeesaneenees 17
[dentify RUNTIME CONSTIAINTS ...eiiiiiiiiieiie ettt sttt et e e bt e e sate e be e e saneesbteesaneenees 17
Phase II: Design and IMplementation ...ttt sttt e st sar e e sbe e e saneenees 17
Identify Process ObJects and OPErators.......ccueeiicuiieeeiiiieceiiee et e e et e e ee e e e s tbe e e e sttaeeeesaaeessseeeessteeeeesraeesnnsenas 18
CoNfiGUIE OPErators AN0 STEPS ...uuiiieiiiieiiiieeeiitieeeeite e e ertteeestaeeeestteeeseaeeeestseaeestseesassaaeaassaeesanssssesasseesessseeennse 20
Optimize for Modularity and COMPONENT REUSEcccueiriiiiiiieiiie ettt sttt ettt et e b saee e 22
Define Process Initiation @and IMONITOMINGcccueeiiiiiiiieiiie ettt e aee b e sareenees 23
[T T A [T PR 26
Phase [1l: Testing and DEPIOYMENT.......ccoccuiiiiiiee et eeeee et e e e ee e e e st e e e e s tbeeeeeaseaeessseeaaastaeeeessseeeasseeasanssaeensns 27
Test the Process With Related OB ECES.......ccccuiiiiiiiee et et e e e tre e e e tta e e e s atr e e e entae e eennaeas 27
Generate the Process DOCUMENTAtIONiiiiiiieeieier et cee ettt e s e e st e e ssaae e e e s taeesenreeesnaeeeesnseeesnnnes 29
Set the Release Version of the Process and Related ObjJectS.......cccciiiiieieriiciie et e 29
Assemble the Process With Related ObjJECEScoouuiiiiiieii i e e e e s r e e e e e e s e sannees 29
Deploy a Release Version of the Process with Related ObjJECEScccuvvieeciiiiiiiieecciee e e e 30
SPECITY IMPOIT INSTIUCTIONSeiiiiiiiie ettt ettt eetee e e st e e e et e e e eebaeeesbbeeeeastaeeseasaaeessseseeansaeseanssaaessrenanns 30
Chapter 2: Getting Started 31
Browse to CA Process AUtOmMAtion @nNd LOZ [Neeiiiiiiiiiieie ettt e e e e srree e e e s e sabaae e e e e e e senasrtaeeeeeesennnnsnns 32
(00T T {0 T I 8T Y =1 [=& ST 33
The CA Process AUtomMation USer INTEI ACEc.uiiiuiiiiiiiieee ettt ettt et sat e sareennees 34
Y YW AN o] o I Tor A o] T 2= V= TS PURROt 35
ComMMON USEr INTEITACE CONTIOIS ...eiiiiiiiieiitie et ettt esiee et et e st e srte e et e s tee s be e s sbeesabeesbeesabeeeseesssaeenseessaeenseeenes 48
Browse OUL-OF-Th@-BOX CONTENTeiiiiiiiiiiiie ittt sttt sttt sttt st e e sae e s bt e s bt e s be e e sstesabeeesateesbeeesabeesbeeennseenneas 50
Use CA EEM to Change Your CA Process AUtomMation PassWOrdcccccveeieieeeiiieeeeiiieeeeieeeesveeeeseteeessnnneessnneeeens 51
WWED BIrOWSE'S ..ttt ettt ettt set e sttt e sat e e sttt e sate e s ate e sateesuteesabeesateesabeessbeesa b e e sateesabeesabeesabeesabeesabeesabeesabeesaseesasaesaseesn 52
Chapter 3: Library Browser 53
CUSLOMIZE The LIDIary BrOWSETceiiiiiiieeieteitte ettt ettt et s ettt e st e s bt e sbe e saeesabe e saeesabeesnbeesabeesseesabaesseesabeesneenane 53
SEANCN T LIDIary BIrOWSEN ...ccii ittt ettt e e e e e st e e e e e e e s ettt ta e e e e e e seaaataaeeaaesessstaaaeaeeeesassaasaeaeeesnnnsrens 53

Contents 5

Search for Release Version INfOrmMationcouvvviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt 55

Search for Version INformMation ... ssaee e s sbae e e s sabae e ssaaeeesnaeeeens 56
Search for Audit Trail INfOrMatioNooviiiiiiiieee e st be e saae e sbe e sabeesabeesaree s 57
Working With OBJECtS @Nd FOIABISciiceiiiiciiee ettt e et e e e e e e et e e e s tb e e e asteeeseasaeeesasseeeansaeesnnnneas 58
AULOMALION ODJECE TYPES e eiiiee ettt et e et e e et e e e eta e e e s b e e e e ataeeseasaeeesasseeeastasesansseeesnsseeeassaeesnnsaeeessseaeans 58
(@17 oI I o) o L= RSP UPPPPPIN 60
CrEate AN ODJECE c.uteiiiieeiie ettt ettt et ettt bt e e bt e bt e s bt e e ht e s bt e e bt e s bt e e bt e s b et e bt e s beeebee e beeenneenane 61
[0 TR T IO] oY= ot SR 62
RV L= 5] o LSOO PP PPPRTRPPOt 71
Delete or Restore an ObJeCt OF FOIAENc.uiiiiiiiiiieeee ettt sbe e s nees 83
Copy and Paste an ObjJect OF @ FOIATcoiiiiiieiiie ettt sttt see s b e aee e 83
Cut and Paste an ObJECt OF @ FOIAENcouiiiiiieiiecie ettt sttt st st ebe e st e bt e sbeeesaeesans 84
How to Work with Nonmodifiable CONTENTcovviiiiiiiiii et sba e saaeenaees 85
Chapter 4: Designing Processes 87
TE PrOCESS DESIZNEN ..eiiuviiiiititeeiieeeitee sttt estee sttt e steesbeesabteebeessbteeabeeebeeeabeeesaeeabeesbeesabaesseesabeeensaeenseeensbeesseensseeses 88
Operators and Links: The BUIldiNg BIOCKScocuiiiiiiiiecciece ettt et e e et e e e etae e s s aba e e e saba e e e eataeeeeanaeas 90
Create @ ProCESS ODJECE «.oviiiiiiiiieeiee ettt ettt et s bt e bt e s bt s bt e s bt e e bt e st e e ebeesabe e e bt e sabeeeneesbeeennenane 91
DIBSIEN @ PrOCESS ...eeeeiiiiieeiitiee ettt ettt e e et e e sttt e s et e e e b b et e s b et e e s b et e e e R E e e e s b et e e s R e e e e e nr et e s e nr e e e sanateeeareeesennne 92
o oo =TT @ o =T -] o] 3PP TT TR 93
BT =L A O] o111 o USSR 95
ViV [o MO o 1T =) oY g Ao JF- I xd o 1ol L1 J PR PPRROt 96
(oY ={Tor | I 0] o =1 -1 o] PSS 97
The Stop Operator: SUCCESS OF FAIIUTEccicciiii ettt e ettt e st e e e st e e e s ate e e snaeeeessbeeeeennneeesnnneeas 99
Process Operator POrtS @nd LINKSeeiiiiiiiiiiiiiiee ettt e e e e sttt e e e e e e seabar e e e e e e e senabstaeeeeaesennnsssassasssennsnsens 100
Add Operator POrtS @nd LINKSeeiiiiiiiiiiiieie ettt e ettt e e e sesatee e e e e e s e seaabaaeeeeesesensbaaseeaeeesensssssessesssanssssnns 102
Custom EXit POrts and EXPreSSIONSuuiiiiiieiiiiiiiieieeeceiiitee e e e s sesttrree e e s e seattaaeeeeesesastaaaeeseeessnstasneeeeessnassreneeeens 103
Break a Link for REAability.......ceiecuiiiiiiiiiccee ettt e e et e et e st e e et e e e s eanaeas 105
[o 1ol oToY o 13- [[o I L =1 1 4 oo -3 SR 105
SYStEM Variables fOr LOOPINGccciieiiiiiie ettt ettt ettt e e e st e e e et e e e s etaeeeeeabaeeeessseeeeabaaeesnsbeseestaeesnnsaens 106
[WeTol o AN O] o =T - L (e Tl o 1= T o fo Yol =11 S PRt 107
[WoToT oI INY=T 1o o}l 01 o 1=T - o 5P 111
[WoYoT o I TN o o Lol =2 P PP PT PP PPPPPPPPPTPPPPPPPRt 114
PrOCESS CONTION ..neeiiiiiiite ettt sttt sttt st e st e sa bt e s bt e sa b e e s abeesabeesabeesabeesabeesabeeeaseesabeeenseesabaeenseesabaeanneesane 116
Gl PrOCESSES. .. uettieieiiee ettt ettt ettt ettt sttt e e sttt e e sttt e e s bt e e e s s be e e s abtaeesabaeeeeabeee s asbeeesabbeeeesbeeesannbaeessbeeanns 117
INIINE PIOCESS . netteiiiiet ettt ettt ettt ettt e e sttt e sttt e e s sabe e e s abte e e sabbeeesabe e e s abbeeesabbaeesabteesaasteessasbaeesanbaeesnasaeas 120
PrOCESS LANES ...ttt ettt e et e e e e s e et e et e s e s e e et e e e s e e e e et e e e s e r e e et e e e seennnaeeeeeeseannnaee 123
Create HOrizontal OF VErtiCal LANEScooviiriiiiiieeiieeiee ettt ettt sttt st st st st esate e sabeesaseesabaesanee s 124
IMIANAEE SWIIM LANES...uuuiiiiiiiee ittt e e ee sttt e e e s e sttt e e e e e se e teeeeeeesasssbaaaeeeesesassbaeeaaeesesassssaeeseessasssssnneeessennns 125
(Y Yol o - T o |11 a Y= (U TSP PUSURN 126
PrOCESS VBISIONS....ceeeeeeeeee ettt et e ettt e e e e ettt et e e e e e s s be bt e e e e e e s asbae e e eeeeeaannbe bt e eeeeeaanssbbeeeeaesaansnaeeeeeesasannreee 126

6 Content Designer Guide

(Do Tol¥ [90 1=] o) =T od o Lol K1 S RUPTRTON 127

Fi¥o o I @foT g g1l oY 3 de - T ad o Yol Y-y SRR 127
Set the Name for an OPerator iN @ PrOCESS.cuuiiiiiiieeeciee e eciee e sre e e et e e srte e e e s treeeeaaeeesnbaeeesataeeeesraeesnnnnens 128
Change and Display Operator INformation iN @ PrOCESSccuueeieiiiieiiiiie e ciee et e re e sree e et e e e eara e e saneeeens 128
Y=Y @e Yok =1 1=Te I 6eT g 1= o L A PP P P POTRRPR 129
Self-Contained CoONTENT LINKS ...ciiiiiieiiiiie ettt et sttt e e e s e e e s s sate e e sabaeessnbaeeesnsaeesnnnaeas 129
Navigate to a SPeCific PArt Of @ PrOCESScouiiiiiieiieiieeee ettt st et e s s bt e s b e e nee s 132
Multi-Tenancy and CA ProcCess AULOMATIONccciiiieieiiieeccieee e cteeeere e e ertre e e st e e e s ate e e ssneaeeesataeeeestaeesenssaeesnsrenaans 132
Make a Process Aware of MUIIPIE TENANTS.....ccccuiiiiiiiee et e e e tr e e e eaer e e e s tr e e e enreeesnnneas 133
INherit SECUNILY IN SUDPIOCESSES ...conuviiiiieiiiee ettt ettt et e st e et e s be e e saeesbeeenneesane 134
Add Variables at Time of INitialiZationceeii it e s e s e s ranaeas 134
Multi-Tenant Processes UsSing ProCess WatChcoccueoiiiiiiiiiiiiiieniee ettt st s s 134
The CA Process AUtOMAtioN COOE EITOr ...iiuiiiiiiiiiieiiieiiee sttt sttt e st e s e e sbe e sbeesabeessbaesbaeenseesnns 134
Chapter 5: Operators and Icons 141
(O 01=1 =) o] &P PPPPPPPPPPRE 142
CoNfigUre OPErator PrOPEITIEScciiciiiiecciiee ettt e ettt e eete e e st e e e e bt e e e e eataeeesbbeeeesstaeeeessaaeessseeesassaeeeassaeesasseeaans 144
AUTO RECOVEIY ..ottt e et e e et e e et e e e s e s b aas e e e e s e searanaeeeesesennnnaee 145
N T L e B = g =T I 7Y R URTSRRN 146
(G0 L o] 0 W O] o 1T - 1 {0 & PP 152
Ao T0 o o] a1 =N O] o T=T - 1 £ o] £ PP PPPPPPPPPRt 175
(60o] o g T<Tol o] TSRO PPPR PP 177
(O] o<1 =) (o] gl [olo] o SR PP PP PP PPPTPPPPPPPPPPPIRE 178
OPEIALON STATUS ICONS e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e sesesasasasasasasnsnsesnsnss 179
Creating, Editing, and ApPIYiNg CUSTOM ICONS ...uviiiiiiiiciiiiiee ettt e e e et e e e e e e s bar e e e e s e e sasaaaneeeens 180
Chapter 6: Datasets and Parameters 189
D) = 1= £SO PPP U UPPPPPPPTRURPIOE 189
Create a Named Dataset ObjJECTuiiiiiiii e e e e e e e e e e e e s bbbt e e e e e e e seansraaeeaens 191
Define Dataset Pages and Variables..........oouiii ittt e e e e s e e et 193
[V oTe 1 YA T D | = 1Y\ SRR 199
View OF COPY @ Dataset EXPreSSION . ccviuuiiiiiiiee ittt ettt e et e e s s et e e e e e s e s baaaeeeseessnssnseaeeesssensnnens 200
Read Operating System Values into Dataset Variables........cccuuveeiiiiiiciiiiii et 200
PrOCESS PalamM LIS ...ttt e ettt e e e e e s b et e e e e s e e a b e bt e eee e e s e abe bt e e e e e e e e abnbeeeeeaeaa e nnraeeeeeeeaaannraee 208
(0] 1= =) o gl e o] o J=T o A [PPSR 208
(6 (o] Y =Te W T =T =] =] PO OO P PO PSORUS PP 222
Chapter 7: Forms 257
Y [l 2 0=To TU =T o oo T o OO SRORO PPN 257
Monitor Start Request Form Instances and Process INStANCEeS........cceccuiiiiiieiieiciiiieeee et e e e e 258

Contents 7

INTEraCtioN REQUEST FOIMMS ...uiiiiiiiiiiiiiie ittt et s e s e e e s e et s e s eab e e e s sb et e s e br e e e senbneessanbeeeeas 259

THE FOMM DESIGNEN .ttt ettt ettt ettt e bt e st e e bt e s bt e e bt e s a bt e e bt e s ek e e e bt e sabeeeabeesabeeeabeesabeeeabeesabeeenseesabaeeneenane 260
o g 0l = 1T o =T o £ OO OO UPO PP OPPRRPRNE 261
(o] o g T S [T o T= ol oY T =T o A =SSR 264
FOPM ElEMENT EVENTS 1.utiiiiieiieece ettt ettt ettt s be e st e s abe e sabe e s abeesabeeeabeesabaesnbeesabeesseesabeesseesase 275
(o] o g W S [T 0 o 1<) oYl ST o Vot [Y o I3 PRSPPI 277

INIIAlIZE FOIM VAriableS . e ettt et e e et e sttt e e s st b e e e sabe e e saaseeeesnbaeeeesbaeesassneessnsseeenns 342

Chapter 8: Resources 343

HOW RESOUICES WOTK ...veieiiiieieiiiee ettt ettt ettt e s sttt e e sttt e e s sttt e e eate e e saaaeessabeeeesasbeeesaasaeesanbaeeesnstaeesasneeessnsseeenns 343

(O T I o 1T ¢ oL @] o] [Tt USSR 345

o T I o 10 ol @] o 1=t AU 346

[V oY i oY g TaTo I oo L1 a2 =T oYU ol S UU 348

Add a Manage Resources Operator 10 @ PrOCESSccccuiiiierriieiieeniiteiteesit sttt st e sttt satessbe e e sabessneeesanessbeeesaneesnees 349

B2y Tl AT o U ot I Yot o o [S SPIP 350

Check for and Respond to Unavailable RESOUICESccicuiiieeiiiie ettt ettt et e e et e e saaa e e e sba e e e earae e enreeas 351
SPECify @ TIME-OUL INTEIVAL......oi i e et e e et te e e s tte e e e s aba e e eeateeeseabaaeesasbeaeenraeesnnneens 351
Specify Resource Availability and Action SETtINGS......cc.eeiiiiiiiiiii e 352
Check for Resource Availability without EXeCUting ACtiONSc.eiiiiiiiiieiieeeee e 353

Chapter 9: Calendars, Schedules, Tasks, and Triggers 355

(67 [T T - OO OO OO OO PP PPORUPT PP 355
Create @ Calendar ODJECTuii ittt e e st e e s sa bt e e s abte e e sbb e e e e abeeesebbeeesbreeeens 356
The BasiC Calendar DESIZNENcooiuiieieiiiee ettt e ettt e st e e e sttt e e e sabe e e seabbe e s sabbeeeeabeeesenbeeesnbeeessabaeesannes 357
The Advanced Calendar DESIZNETcuiii it e e e e sttt e e e e e e e sebbtreeeeessenssstaaeeeessensnnsraneaessanes 358
The Calendar DesSigNer: PreVIEW Tabciiiiri ettt see et ste e e st e e et e e s ate e e snaeeeesnsaeeennnes 368
EXCIUAE CIENAAIS ...ttt s e st e st e st e e bt e st e e e bt e s ke e sabeesabeeenbeesabeesneesabeesnneesane 369

SCREAUIES ..ttt ettt e e e ettt e sttt e e s aab e e e e e aabe e e s ubteeeaabbeeeaasbeee s sateeeanbeeeeeabbeeesnbeeeeanbaeeeeanee 370
(O1g 1=l INYel o [=Te (U] (SN 0] o =Tt dr U RPR 372
Schedule Process and OPErator TASKSccuiiiicieeeeiiieeeeiiteeesiteeeesieeessaeeeessuaeessssteeessssseeesnsseasassseeesssssesssssseeeens 373
Preview All Occurrences of @ SCheduled Taskcouiiiiiiriier e e 375
L1 F = Yol =T L] =SSN 376
MONILOr ACEIVE SChEAUIES ...ttt st e e st e e sttt e s sabte e s sabbeeeeabeeesnneeas 376
Monitor All Occurrences of All SChedUled Tasks........cuieiiiiiiiie e sraeeas 377

LI 1SS =T F= =T 0 1= o S 378
F N = T L 1 45 o - LU £ S 378
THE TASK LISt c.eteeriieeiieestee ettt sttt sa e et e st e s bt e sabeesabeesabeesabeesabeesaseesabaesabeesabaeebeesbaessaesane 380

F ¥ [a1 T AT g W g =4 ==Y PR PURPRE 381
Controlling Processes from an External Application with SOAP Calls.........ccvvvieeiiiiiiiiiiieec e, 382
HoW File and Mail TrgEEIS WOTKccocueieiiiiiieeeiee ettt et s e te e s te e e et e e e saete e e s tae e e snteeessnneaeesnnseeeannsaeesnnnnnns 382
SNMP Trap INPUt CONSIAEIATIONSeeiiieiiieeeiee e cciee e ettt e e ee st e e e e e e e ere e e s taeeeesntaeeeesteeesnseeeesnsseeeenseeesnnnnes 386

8 Content Designer Guide

Chapter 10: Running, Testing, and Debugging Processes 389

THE OPEIATIONS PAGE ..veiutieiiiieiiee ittt ettt s e et e st e et e s bt e bt e s b e e e bt e s beeeabeesab e e e bt e sabeeeabeesabeesabeesabeeenneenane 390
FIlLErs fOr ProCESS INSEANCES ... tiiiiiiiiieiiee ittt sttt sttt s e st e st e e s bt e sabeessbeesabeesbeesabaesnbaesabeeenseesbaesnseesase 391
Filter Objects Displayed by @ SHOMCULcccuviii i e e e e etre e e st e e e e rata e e eennaeas 392
[o Tl T T Y] o T @ o 1= SRS 393
CoONLENt PACKABE ODJECES ...ttt ettt e st e st e st e e et e e sabeesareesabeesanee s 394

EXECULION RUIES ...ttt ettt ettt e ettt e e sttt e sttt e e e be e e e s aste e e saaeeeeesnbeeeeeaabeeesaaseeessabaeeeessaeesanseeessnsseeenns 396

RUNTIMIE SBOUIITY e e e n s s e s s s s s s sssssssssssnsnsssssssnsnsnsnsnsnnnns 397
Properties Affecting Security of RUNNING PrOCESSEScccciiiiieiiieeiiee ettt e svee e e e e e eare e e s arae e e eatae e esnnneas 397
Guidelines for Setting Runtime Security fOr @ PrOCESS.......ciiicuiieieiiiie ettt e e retre e e eae e e s aaeeeens 399

EXCEPLION HaNAIING . etiiiiiiiieee ettt e e st e st e st e st esab e e s bt e s beeeabeesabeeeabeesabeeeseesabaeanseesane 399
Create EXCEPLION HANGIBIS. . ..o ittt sttt st e e st e st e st e e s bt e sabeesaseesabeesaneens 401

RUN ProCESSES INTEIACTIVEIY...ciiiiiieiciiiee ettt e et e e e e te e e s e tta e e e st bbeeeeataeeeeabaaeesataeaeenstaeesanseeeesnsreeaans 404
Start @ Process from the LIDIary ...ttt e et e e sttt e e e e ta e e eeata e e s abaeeesatbeeeenraeesnnnaens 405
Start a Process as Suspended from the LIbrary..........coeo i 406
Start @ Process WHhile EQItINGeooeiiiiiiiieiieee ettt ettt e s it sbe e s an e sat e saneesateesaneenaes 407
OPEN AN INSTANCE Of @ PrOCESS ...eiiueieiiiiiiieitte ettt ettt ettt e et sa e et e st e e st e s beesabeesabeesaseesabeesaseesabeesaneens 407

PrOCESS STALES ...ttt ettt e e e ettt e e e e s et bt et e e e s e e b b e e et e e e e e e e b e e e e e e e e e aa b areeeeeeesaannraeeeeeeeaannraee 408

DEDUG @ PrOCESS ...vvieeiiiieeeeiiee e eittee e ettt e eetteeesetteeeestbeeeeebaaeesasssaaastaeaeasssasesssaaeeassseeeanssssesassaaeeantaeeeanssaessansseeesnsrenanns 408
SUSPENT @ PrOCESS ...eeeuueieitieite ettt ettt ettt e stte e sttt e sat e bt e s bt e e ebe e e sab e e ebe e e sab e e bt e e sabe e bt e e sabe e bt e e sabeebeeesateesteesaneenris 408
Change whether Processes are Unloaded on Completion.........c.eieveeriiieieeiiieeiee ettt 409
Set and Remove Breakpoints iN @ PrOCESScocuiiiieiriiieiieeitie sttt sttt ettt ettt sbe e e st e sbe e e saneesnees 409
DL oJU T T Y T o o Yol Ty USSR 411
RESET @ PrOCESS ..ceiiiiiiiiieiee ettt ettt et e e e sttt et e e e s et ettt e e e seaaae bbb et eeeseansbe et eeeeeesanbnseeeeeeesaannnreeeeeeesanann 412
FiY o Yo o - T o Fe Yol T TP P PP PP PU PP 412

CONLrOl @ ProCESS BIrANCH ..ottt ettt ettt st s bt e st e st e s bt e sab e e sabeesabeesabeesabeesaseesabeesaneens 412
Disable Operators or Deactivate BranChesccccuiiiiieiii et e e e e e st e e e s e e s e aaraaeaeaeeeenes 413
FiN o Jo o A 1o W O o= - | o B PUUPURPRE 413
RESET OPEIrators iN @ PrOCESS ..ciiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeee et et e et e e et et et e e et e te e et e eeeeeeteeeeeeaeeteeeeeeeeeretererereeerereeerenenenens 414
Resume EXecution Of @ SUSPENUEA PrOCESSccccuuiiiiiiieeeiiieeeeiiee e stteeeste e e ssete e e s taeeeesateeessaseeeesnsaeesanseeesnnnneas 414

SiMUIate ProCesSiNg Of OPEIatorsccicciiiiiciiee et eeee sttt e ree e eeere e e stae e e e st eeseaeeeessaeeeensseeesansaeeesnsaeesansseeesnnsens 415
Simulate Processing of @ SIeCted OPEIatorc.uiiiiiiiie ettt eete e et e e e et e e eeetbe e e e abeeeesabaeeeensraeesnsaens 416
Simulate Processing Of @ ENTIrE PrOCESS........cciiiieeiirieeeeciiee e eeieeeeeiteeeeetteeesetaeeeeetaeeeessteeeseabaeeesabseeeesraeesnsseens 417

Chapter 11: Generating and Using Process Documentation 419

ADOUL ProcCess DOCUMENTATION ...ciiiuiiiiiiiiiie ittt ettt et ettt e e sttt e sttt e e s st e e e e s abe e e sbtaeeesabbeeseasteeesnbaeesanbaeesnnnee 419

Generate Process DOCUMENTATION ...cciiuiiiiiiiiee ittt s e e s e s e nr e e e snnr e e e saneeeeenreeesnneeas 420

Chapter 12: Release Objects to Another Environment 423

REIEASE VEISIONS ...eeiiiiieiieeiiie ettt sttt s bt e st sa e s bt e sa bt e sabeesa b e e saseesabeesabeesabeesabeesabeesaseesabaesnseesabaeenseesnbaeenseesane 424

Contents 9

View Release Version INfOrMatioNcoovviiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt e e e e eeees 424

Set the Release Version of ObJects t0 EXPOItooiieiiiiiiiiiiieieet sttt e 425
Baseline the Release Version of the ODJECES......cccciiii it e e e e e sre e e s are e e e satreeeennes 426
Set the Release Version of Content Package as CUITENT.........ccuiieeiiiieieiiee et eree et e e e nra e s nnneas 427
[t oo ua[aT=ar=Y Vo I T gT'o o o £ oY 428
EXPOIEING ottt e e et s bt e e e a e e s e ae e s enbe e e e s b e e e s anne 428
[Laa] oTo] 1o ¥ ST PP PP PPRPOPRTR 442
Values Maintained in the Initial Version of a Copied ODbjJECTccccvieieiiiie e 449
Appendix A: Format Specifiers for Dates 451
Appendix B: Using Masks to Specify Patterns in Strings 455
Y T 3] = USSR 455
SAMIPIE IVIASK ..ottt et e sae e s h et e bt e e s bt e e b et e s bt e e bt e e sas e e bt e e sab e e bt e e Rt e e be e e eabeeent e e sabeeenbeesareennes 458
Appendix C: How Targets of an Operator are Processed 459
How Targets for an Operator Can Be SPeCified.......cuiuiiiiiiiiiiiiieeeeeee ettt et et 459
Processing a Target Specified as an IP Address or FODNcooiiiiiieiniieiieerit ettt sre et e e s sreesanee s 460
Processing a Target Specified as the ID of an Agent or Orchestratorc.coviiiiieiiie i 463
Use Case: Track Recovered Processes throUgh LOZSccccuuiiiiiiii ittt ettt e e et e e et e et e e e 465
Operators AULO RECOVENY EXAMPIE ..occuuiiiiiiiee ettt ettt e et e e e s tae e e e ab e e e eeataee e s tbeeeestaeesassbaeesnsseeeanntaeesnnsenas 465
Index 473

10 Content Designer Guide

Chapter 1: Introduction to Process
Automation

Information Technology teams like yours are automating their IT processes. By defining,
automating, and orchestrating processes across systems, you can improve productivity
while enforcing standards across departments. Automation helps your organization to:

m Reduce operational expenses

m [ncrease staff productivity

m Speed IT service delivery

m [mprove service quality

m Enforce compliance policies

Automate operational processes that are otherwise manual, time-consuming,

inconsistent, or error-prone. You can automate IT processes that span multiple systems
across multiple organizations.

Chapter 1: Introduction to Process Automation 11

Process Development Phases

Welcome to CA Process Automation

'2 CA Process Automation

Use CA Process Automation to design, test, manage, and report on automated
processes that support IT operations and production environments. CA Process
Automation speeds the delivery of IT services while reducing manual errors. You can

Use CA Process Automation in your web browser to manage, design, and deploy
processes in an easy-to-use interface that supports the following essential features:

Visual authoring including familiar drag-and-drop icon-based designs.

Enterprise process monitoring with the ability to pause, modify, and resume live
running processes.

Role-based views with flexible layout options.

User-friendly objects. Processes, calendars, schedules, datasets, forms, and other
automation objects are represented as objects you can click.

Easy organization of automation objects through a library of hierarchical folders.

Object version control including check in, check out, and selection of current and
baseline versions.

Active assistance features to help you work with datasets, variables, and
expressions.

Process operators that integrate with other applications and systems.

This section contains the following topics:

Process Development Phases (see page 13)

Phase |: Requirements Analysis (see page 14)

Phase II: Design and Implementation (see page 17)

Phase lll: Testing and Deployment (see page 27)

12 Content Designer Guide

Process Development Phases

Process Development Phases

Before working with CA Process Automation, it is important for you as a content developer or designer to be
familiar with the concepts behind process development. The remainder of this section walks you through the
phases and steps involved in automating IT processes.

Process Development Phases

Process development includes the following phases:

Phase I: Requirements Analysis (see page 14)

Identify and characterize the automation processes required at your organization.

Phase II: Design and Implementation (see page 17)

Map requirements to automation objects and configure the elements. Identify
existing elements to reuse, modules you need from other parties (for example,
database-related processes or data from database administrators), and modules
you must develop yourself. You can then use CA Process Automation development
tools to import or define those automation objects in your library.

Phase lll: Testing and Deployment (see page 27)

Export all relevant automation objects to a file and facilitate their import into the
CA Process Automation production environment. Provide production administrators
with instructions explaining how to configure the elements to work in the
production environment.

Chapter 1: Introduction to Process Automation 13

Phase I: Requirements Analysis

Phase I: Requirements Analysis

This phase focuses on what information to gather and which issues to address before
you design a CA Process Automation management package or process. Your specific
sites and management solutions could require additional tasks.

Include the following tasks in a typical requirements analysis:

O Identify processes to automate.

Identify where the processes run.

Identify steps in the processes and describe the outcomes of each step.

Identify the interdependencies.

Identify the external dependencies.

O0O0oo0oan

Identify the runtime constraints.

Good candidates for process automation meet one or more of the following initiation
requirements:

®m You can identify multiple, often interdependent, tasks.

®m You can identify overlapping resource requirements.

m The process can run over the network or on different platforms.

®m You can apply date and time constraints to schedule the process.

m Other processes, applications, or users can trigger the process.

m System or database administrators, operators, or other users can run the process
on demand.

14 Content Designer Guide

Phase I: Requirements Analysis

Identify Processes to Automate

The first step in the CA Process Automation development process is to identify
processes for automation. A process typically consists of multiple subprocesses.
Follow these steps:

1. Identify the primary task or use case, such as move data from distributed
transactional databases to a single data warehouse.

2. Identify subprocesses for subordinate tasks, such as:
a. Extract data from different sources
b. Transform extracted data
c. Load the transformed data

3. Separate the components that are common to multiple processes into modular
subprocesses. Similar to code reuse, modularization of shared subprocesses saves
development and maintenance time.

Note: Later in this guide, you will learn that subprocesses correspond to separate
process objects (see page 58) in the Library Browser.

Identify Where Processes Run

Identify where you want to run the following components:

m The process itself

m Subprocesses

m Tasksin the process and subprocesses

Note: Later in this guide, you will learn that these locations correspond to touchpoints

running processes or individual steps in processes. Your administrator configures
touchpoints for you.

Chapter 1: Introduction to Process Automation 15

Phase I: Requirements Analysis

Identify Steps in Processes
List each step that is performed as part of the process or subprocess.

Follow these steps:
1. Identify each step. Examples include:
m Running an application
m Obtaining data from a remote source
m Performing one or more calculations
m Prompting a user for information with a form
m Starting a subprocess
2. For each step, determine the following possible results or outcomes:
a. Normal outcomes
b. Abnormal outcomes
c. Any conditional outcomes

A step can produce a result with conditional outcomes. When the result is greater
than a specified value, the step yields one particular outcome. When the result is
less than a specified value, the step yields a different outcome. Multiple calculated
outcomes determine the subsequent paths through the branches of a process.

Note: Later in this guide, you learn that steps in a process design correspond to
operators (see page 90).

Identify Interdependencies
Interdependencies determine the logical flow through a process.

Follow these steps:
1. Determine which steps in a process must precede or follow other steps.
2. Determine how the outcome of each step affects subsequent steps.

3. For a step with more than one outcome, identify each outcome and list the
separate sequence of steps that must run after each outcome.

Note: The application performs each outcome separately. For example, an
abnormal outcome of a step can cause a process to alert another step to wait for
input. For the same step or operator, a custom outcome could activate a separate
branch of the process to handle an error condition.

16 Content Designer Guide

Phase I1: Design and Implementation

Identify External Dependencies

Identify external dependencies of steps in a process, such as:

Remote systems and applications.
Shared resources such as file systems or databases.

Synchronized processes, and other processes that run in parallel.

Identify Runtime Constraints

Identify the resources that a process requires at runtime. Because they are shared,
resources are always in limited supply; for example, processors, memory, or access to
other files, databases, or hardware. Be aware of two main types of runtime constraints:

Time constraints define when a process must be completed. Examples include
backups that run at night or system maintenance activities that run only during a
specific time window.

Configuration constraints include process environment requirements. For example,
data that must be available to a process, including files, programs, user profiles, and
account data such as user names and passwords.

Phase I1: Design and Implementation

In the design phase of process development, you map requirements to CA Process
Automation automation objects and operator functionality. The steps in the design and
implementation of a process include:

O
O

Identify the automation objects and process operators to implement the process.

Configure all operators and logical steps, including all tasks, parameters, outcomes,
resources, and dependencies. Define any required runtime configuration
information (such as user names, passwords, and file names).

Optimize your design for modularity and component reuse.

Define process initiation and monitoring including the permissions for starting,
monitoring, and modifying the process.

Define the alerts and determine which users or groups are alerted.

Chapter 1: Introduction to Process Automation 17

Phase II: Design and Implementation

Identify Process Objects and Operators

Each process or subprocess that you identify corresponds to a process object in the
Library Browser. Process objects define a sequence of linked steps. A process operator
represents each step. After you map a step-by-step process, identify the operators that
perform each step. Sometimes a single operator can perform a given step. Other times,
a step can require two or more separate operators.

Define steps in a process by placing icon-based operators that represent actions that CA
Process Automation performs. Start operators begin processes. Stop operators end
processes. Logical and control operators define starting and stopping points, branching,
and iterations in a process. The design for a process reveals its structure and also maps,
synchronizes, and defines both the sequence and dependencies between tasks.

Example: Operators in a Process

L
= =
A Wait 10 A Wait 20
seconds seconds
1

o\~
:
0=,

18 Content Designer Guide

Phase II: Design and Implementation

Item:

Description:

Start: The Start operator represents the single entry point where the process
begins. Start operators can also indicate the first step in an independent
branch.

Delay: The Delay operator delays processing subsequent branches of a
process until a specified interval of days, hours, minutes and seconds passes.

Or Operator: Or and And operators control steps logically. The Or operator
only completes (and lets processing continue) when one of the input
operators completes. The And operator only completes (and lets processing
continue) when all of the input operators complete.

Get SNMP Variable: This operator returns the value of an SNMP variable.

Send Email: Use this operator to notify other users by email.

Write File: This operator writes a dataset variable to a file.

The custom exit port @ specifies a predefined course of action for a specific
exit condition.

Start Process: This operator starts another process. You can set an optional
Loop property to run another process repeatedly.

Stop Failure: The Stop Failure operator stops all branches in a process and
sets the process to a Failed state. Use a Stop Failure operator for the
abnormal outcome of a process or branch.

®

Stop Success: The Stop Success operator stops all branches in a process and
sets the process to a Completed state. Use a Stop Success operator for the
normal outcome of a process or branch.

More information:

Getting Started (see page 31)
Designing Processes (see page 87)

Chapter 1: Introduction to Process Automation 19

Phase II: Design and Implementation

Configure Operators and Steps

After you identify operators for each step, define their properties. Think about the types
of data they need and the source of that data. Some operator properties are common to
all operators and others are limited to specific types of operators. For example, a
database operator requires parameters for the type of database, the database name, a
valid user name, and password.

You can set the value of a property to a literal entity such as 5 or Australia or to an
expression such as Varl.quantity or GetCountry. Expressions often include variables or
functions. A variable stores a value. For example, a variable can contain a password or a
threshold setting. A function inspects some logical statement and returns a value. For
example, a function can get or set a field value.

Expressions can include any of the following items:

m User and system variables

® Functions

m Literal values

m Logical, string, arithmetic, and comparison operators

®m JavaScript expressions

Some fields accept only literal values. The labels for these fields appear in italics. Most
fields support calculated expressions.

Note: Previous versions of CA Process Automation identify fields that accept calculated
expressions with an asterisk (*).

Operators also share the following common properties:

m Execution target: Where should this operator run?

m Time-out settings: What should happen when the operator takes too long to run?

To learn more about the functionality and properties of each operator, see the Content
Designer Reference.

Datasets store CA Process Automation variables. You can add and edit variables in any
of the three dataset types:

® Named Datasets: The dataset objects that you create and maintain in the Library
Browser.

®m Process Datasets: The dataset for each process.

m Operator Datasets: The dataset for each operator in a process.

20 Content Designer Guide

Phase II: Design and Implementation

Named Datasets

Resources

Additionally, the read-only system dataset makes system data available to any
expression. Use variables and more complicated expressions to define values that can
change, such as user credentials. You can assign values for expressions and variables
globally or dynamically change a value in code. Use literal values to configure
parameters only if the values are unlikely to change.

Use global variables in named datasets to define parameter settings. Named datasets
are automation objects that define variables having scope across the entire library.
Depending on the security settings for a dataset object, its variables are globally
accessible to any expression in any automation object. A field in another dataset can
reference a dataset variable.

Use named datasets to specify information such as accounts and passwords used in
multiple processes. When information saved in a named dataset changes, you only have
to change it once, in the named dataset, instead of in each automation object that uses
it.

You can use Start Request Forms to gather information from authorized users and then
update the values of dataset variables. You can use a Run JavaScript operator in a
process to calculate and store values in named variables.

More information:

Start Request Forms (see page 257)
Access Dataset Fields in Expressions (see page 236)

Some operators or processes draw heavily on memory, processor time, or other limited
resources. For example, if a child process calls on other processes, monopolizing many
CPU cycles, you can limit the number of instances of the child process running at any
given time.

To manage resources, define a resource object that the process draws on. When the
resource is locked or consumed by running processes, additional requests for the
resource must wait until the resource is available or free. Use resources to handle load
balancing in your processes.

More information:

Resources (see page 343)

Chapter 1: Introduction to Process Automation 21

Phase II: Design and Implementation

Assign Exit Conditions to Outcomes

Optimize for Modu

You can define an exit condition for each outcome of the operator. An operator can
have multiple exit conditions for different outcomes, such as Completed or Failed.

Operators support specific exit conditions. Some operators also allow you to define a
custom port. For example, you can define a custom port that only runs if the operator
result is True, False, "blue", 500, -2, or some other designated value.

Define a custom port when you have a distinct course of action in mind for a particular
exit condition. One such condition is when a database import fails for a particular
reason. When a process runs and you encounter a situation with no specific exit
condition, the process is suspended and switches into a blocked state, pending user
action. An administrator or other user with sufficient permissions can change parameter
settings if necessary and can restart a suspended process either where it failed or from
the beginning.

larity and Component Reuse

Break processes into separate subprocesses or child process objects. Use a main parent
process to control the subprocesses. Each subprocess performs a distinct task or set of
tasks, such as extracting data from a database and writing it to separate files. When
multiple processes share a common subprocess, maintain flexibility in the design to
allow the subprocess to continue to be used in the different parent processes.

Add flexibility by using variables or expressions to set parameters on the process and on
each operator. This way, if a process is reused in different environments or systems,
adjusting the process is as easy as updating only the relevant variables.

CA Process Automation also helps you control the flow among different paths or
subprocesses. For example, when processes require input at runtime, you can use
Interaction Request Forms to prompt users for information. Use one or more interaction
request forms to implement process checkpoints where specific users or groups are
required to authorize a specific subprocess before it can proceed. The Assign User Task
operator in a process object pauses the process and then opens the form. The user can
then enter the required values.

22 Content Designer Guide

Phase II: Design and Implementation

Custom Operators

You can base a custom operator object on any of the other operators available in your
environment. Use custom operators to:

Facilitate reuse: Use the same operator with the same configuration settings in
different processes.

Save the settings for a task: You can preconfigure custom operators to perform
specific tasks. For example, you can define a custom operator to work with an
application that is already installed on your system.

Interact with enterprise applications: You can export a folder as a content package
to support common enterprise applications.

You can modify your custom operator without changing the original operator.

Define Process Initiation and Monitoring

Process Initiation

When designing processes, decide how each process starts. You can design a process to
start in several ways:

Manual Start: You can manually start a process in the Library Browser or the
Process Designer. As a designer and content developer working in CA Process
Automation, you routinely start processes manually while designing and testing
them.

Automatic Start: You can construct a process that automatically starts another
process using the Start Process operator.

Automatic Start by External Entity: You can set a process to start from an external
application or system using Web services, a command line utility, or triggers. For
example, you can specify that another program starts a process using Web Services
(executeProcess or executeStartRequest). You can set a process to start by an
external event through the use of supported triggers including file creation,
incoming e-mail, SNMP traps, and events from UCF connectors.

Start by Schedule: You can schedule a process to start by using a Schedule object.

Start by User and Form: You can design a Start Request Form object or Interaction
Request Form object that can prompt a user to respond to the form resulting in the
initiation of another process. An example of this method for starting a process is an
expense report submission form. An employee can fill out the form and start an
UpdateExpenses process on demand.

Chapter 1: Introduction to Process Automation 23

Phase II: Design and Implementation

Process Control

Schedule Processes

Designers, administrators, and production staff use CA Process Automation to control
processes. To learn more, refer to the following content for your role:

m Designers: To run, test, and debug processes, see Running, Testing, and Debugging
Processes (see page 389).

m Administrators: To administer application or system content, see the CA Process
Automation Content Administrator Guide.

m Production Users: To start processes interactively in a production environment, see
the CA Process Automation Production User Guide.

Two automation objects that are used for scheduling processes are calendars and
schedules. Use calendar objects to define date conditions for starting tasks that launch
processes or individual operators. Use schedule objects to schedule tasks using calendar
objects and/or explicit dates.

m Creating date conditions with calendar objects is described in Calendars (see
page 355).

m Scheduling tasks with schedule objects is described in Schedules (see page 370).
More information:

Calendars (see page 355)

On Demand Processes

The development and administrative tools available on the Operations tab expose the
underlying structure and logic of libraries and applications. The Operations tab might
feature a Start Request Form object to prompt a user for information required to start a
process. Authorized users can use Start Request Forms to run on-demand processes
without knowing the technical details behind:

m How CA Process Automation works.
m How the system architecture is designed.

m How each process is structured.
More information:

Start Request Forms (see page 257)

24 Content Designer Guide

Phase I1: Design and Implementation

Triggered Processes

Monitor Processes

CA Process Automation supports events and triggers that can start processes from
external applications and systems. You can designate applications, email messages, web
pages, or other processes to trigger a process. Any of the following methods can be
used to trigger a process:

= FTP

m HTTP/SOAP post

m Custom SNMP traps
m SMTP (email)

m UCF event

To learn more, see Triggers (see page 381).

You can graphically monitor processes using a process watch object. Process watch
objects provide portals or shortcuts to all processes and related objects for a particular
category of ownership. For example, a data warehouse team requires access to a
process watch object containing shortcuts to all extract, transform, and load (ETL)
processes for populating data warehouses.

Consider roles and ownership when managing a process watch. For example, an end
user must typically see and respond to processes as they are occurring. In contrast, an
administrator might need to view history. A process watch accounts for ownership by
including only those objects that the person using it must monitor.

More information:

The Operations Page (see page 390)

Chapter 1: Introduction to Process Automation 25

Phase II: Design and Implementation

Define Permissions

Define Alerts

Permissions depend on who owns the components being managed or who is
responsible for particular management functions. You can assign permissions by
functional group (such as administrators, operators, or a data warehouse team) or by
ownership. You can then add or remove individual users in a group.

For example, a data warehouse team would monitor the extraction, transformation, and
loading (ETL) processes to populate a data warehouse. Create a DW group containing
the data warehouse team members. Then, give this group List and Open permissions to
a process watch object providing all shortcuts related to the ETL processes.

Administrators are assigned greater permissions than general users. A database
administrator can have control over processes to update a data warehouse or to restore
or back up certain databases. If you are developing for a complicated enterprise
environment with many different roles and ownership, consider this approach. Map out
ownership in a spreadsheet or other format for the groups, users, and roles to assign
appropriate permissions.

Ownership for a process (or any automation object) is initially assigned to the user
under which it is created. Ownership can be changed.

Defining permissions for actions users can take at runtime is handled by the permissions
editor in CA EEM. Members of the default PAMAdmins group have full permissions on
all folders and all automation objects. Members of the default PAMUsers group have no
permissions on any folder or automation object. Content designers are typically
members of the Designers group.

A content administrator or the owner of a folder can assign you permissions on the
folder with the Set Owner property. Folder permissions are inherited by automation
objects added to the folder. An administrator with CA EEM credentials can assign you
permissions on automation objects and folders in CA EEM.

Note: See the Content Administrator Guide for details.

You can use email alerts in processes to notify users or administrators about errors or
incidents, or to inform users that a process or task is complete.

When you design alerts in a process, first define the critical recipients. For example, you
might notify a single administrator when a process succeeds, fails, or is waiting for user
input. You can also create a recipient group to alert managers that might need to
receive monthly reports.

26 Content Designer Guide

Phase Il1: Testing and Deployment

Create separate processes that not only send alerts, but handle escalation and perform
other tasks related to the alert. Then, invoke the alert process from other processes as
needed using the Start Process operator.

Always use named dataset variables in CA Process Automation to specify email
recipients, users, groups, profiles, and account passwords. Use the variables to set
parameters in the Send Email operator. When changes occur, you need only edit the
variables in a named dataset rather than in all the processes using the values.

Because individuals change, you can define user email groups or email aliases based on
function or role. When personnel change, you can then change individuals assigned to
the aliases without having to edit variables. Your organization may already have aliases
for the appropriate roles or groups.

Phase I11: Testing and Deployment

Deploying your CA Process Automation management package to a production
environment includes the following activities:

1. Assemble the automation objects in a folder. Administrators deploy a folder to
another Orchestrator, typically in a different environment.

Test, debug, and verify all content for transitioning.
Export the folder as a content package from the development environment.

Import the content package to a production environment.

v W

Provide the instructions and training so users can activate schedules, and use forms
to start processes on demand.

Test the Process with Related Objects

Testing is essential to deploying the CA Process Automation management package that
represents the processes you want to automate. Verify that all components work
together as designed before you deploy the content package from the design
environment to the production environment.

Chapter 1: Introduction to Process Automation 27

Phase IlI; Testing and Deployment

CA Process Automation has several features for testing processes:

®m You can start a process in suspended mode in the Design palette and conduct
runtime testing. You can start and pause the process instance as it runs.

®m You can set breakpoints to pause and debug process steps.

®m You can run processes in simulation mode, which lets you define specific outcomes
for a step. Simulation mode returns the simulated results of each step without
performing any real actions.

Testing occurs on the following levels:

m Content designers test and verify that each process and the automation objects it
uses work properly in the design environment.

= Administrators test the deployment after export and import to verify that each
process and the automation objects it uses work properly in the production
environment. This process is seamless when administrators create touchpoints in
the production environment with the same names as in the design environment.
Each member of the touchpoint pair targets agents in their respective
environments.

The entire deployment can pass all tests and can be operational while a specific form is
still being redesigned and tested. The following terms reflect this difference:

m Unit testing as opposed to integration testing

m Aninternal release candidate build as opposed to a customer proof-of-concept build
m Development as opposed to production

Periodically retest mission-critical processes that do not run frequently (such as system

failovers). Periodic testing verifies that the processes and users stay current and
functional in the production environment and prevents incidents from becoming crises.

More information:

Run Processes Interactively (see page 404)

Debug a Process (see page 408)
Simulate Processing of Operators (see page 415)

28 Content Designer Guide

Phase I11: Testing and Deployment

Generate the Process Documentation

Several roles can generate the process documentation at various times during testing
and deployment:

During design, process documentation is useful for one content designer to hand
off the development of an in-progress automation to another designer. The content
administrator can also use the process documentation to track progress of the
automation process.

At the end of the design process, content designers can generate the process
documentation to reference later.

During subsequent process planning, content administrators can refer to the
process documentation for information about datasets or other reusable
components.

When a new process is imported into the production environment, the production
administrator can generate the process documentation to review before running
the process for the first time.

After using an automated process for a while, the production administrator can use
the generated production documentation when requesting enhancements. With
the process flow diagram, the administrator can easily indicate exactly where in a
process a change is requested.

Set the Release Version of the Process and Related Objects

You can set a value for the Release Version attribute when you prepare to deploy
release-specific objects to a production environment. The file that you export contains
only the selected version of each object being exported. If you export objects in a
content package, users cannot modify their release versions after import. All objects are
baselined during the import. As a result, users cannot modify the imported version of
any object. if production users need to modify an imported object, they must save it as a
new version.

Assemble the Process with Related Objects

A folder assembles the automation objects that are related to a process or processes
being deployed. A folder object includes objects the process uses (such as datasets) and
objects that use the process (such as start request forms).

Chapter 1: Introduction to Process Automation 29

Phase III; Testing and Deployment

Deploy a Release Version of the Process with Related Objects

After designers test a process in the design environment, they set a release version on
the process object and all related objects. Related objects include all objects that the
process uses and all objects that use the process.

An administrator or designer assembles the version of each object to release in a folder.
An administrator exports a folder of related automation content to an XML file. The
administrator then imports this XML file to the production environment.

Specify Import Instructions

To help facilitate the deployment of the content package, provide import instructions.
Write your instructions for production environment administrators and any other
process users. Indicate how the process elements must be configured to work in the
production environment.

These instructions can include the following sample topics:

m How to Install Any Required Applications or Updates

m How to Set Up User Names, Groups, and Passwords

m How to Set Permissions for Users or Groups

m How to Configure Datasets for the Production Environment

m How to Configure Additional Hardware for Operators

m How to Activate Schedules

m How to Set Up External Triggers

m How to Use a Form to Start Processes On Demand

30 Content Designer Guide

Chapter 2: Getting Started

This section orients you to CA Process Automation and provides basic information about
logging in and becoming familiar with the user interface.

This section contains the following topics:

Browse to CA Process Automation and Log In (see page 32)

Configure User Settings (see page 33)

The CA Process Automation User Interface (see page 34)

Browse Out-of-the-Box Content (see page 50)

Use CA EEM to Change Your CA Process Automation Password (see page 51)
Web Browsers (see page 52)

Chapter 2: Getting Started 31

Browse to CA Process Automation and Log In

Browse to CA Process Automation and Log In

The URL you use to access CA Process Automation depends on whether the Domain
Orchestrator is configured with one node (nonclustered) or multiple nodes (clustered).
You can browse directly to a nonclustered CA Process Automation. For a clustered CA
Process Automation, browse to the associated load balancer. You can reach all
Orchestrators in the domain by launching the URL to the Domain Orchestrator or to the
load balancer for the Domain Orchestrator.

Follow these steps:

1. Browse the CA Process Automation.

m For secure communication, use the following syntax:
https://server:port/itpam

Examples:
https://0rchestrator host:8443/itpam
https://loadBalancer host:443/itpam

m For basic communication, use the following syntax:
http://server:port/itpam

Examples:
http://0rchestrator host:8080/itpam
http://loadBalancer host:80/itpam

The CA Process Automation login page opens.
2. Enter the credentials from your user account.

Note: If CA EEM is configured to reference users from multiple Microsoft Active
Directories and CA Process Automation does not accept your unqualified user
name, enter your principal name. One format for a principal name is
domain_name\user_name.

3. Click Log In.

CA Process Automation opens. The Home tab displays.

32 Content Designer Guide

Configure User Settings

Configure User Settings

After you log in for the first time, configure your user interface display settings.

A username LogOut | Help

.ra= CA Process Automation
te .

Home Library Designer Operations Configuration Reports

ecent Activity (refresh)

i ed in at : May 7, 2012 7:25:42 AM
User Settings

Monday_435 is Aborted

Time Format h:mm:ss a v |
D12 5:41:43 AM
Date Format MMM d, yyyy -
Monday_419 is Aborted
»ss Cloud Commons Short Time Format h:mm a ¥ | | Bo12 5:24:50 Am
@ Language English (United States) || | B... 414 Faled to run

012 5:01:16 AM

(oclils=ll Save and Close ess_409 ran Successfully

012 5:00:35 AM

My Tasks (refresh)

Status Title - Description Due Date Process_Interpreter_Calc_208 ran

Follow these steps:
1. From the list of links at the top of the main page, click your username.

2. Onthe User Settings dialog, indicate your display preferences for the date and time
formats, and language.

3. Click Save and Close.
Note: CA Process Automation automatically saves and restores other personalized

adjustments that you make as you work. For example, if you dock a palette or customize
the columns you want to view in a table or list.

Chapter 2: Getting Started 33

The CA Process Automation User Interface

The CA Process Automation User Interface

The CA Process Automation interface provides an integrated development and
administrative environment to view, manage, and run all objects in your automation
systems. CA Process Automation is a web application that can be opened on any
computer with access to the CA Process Automation Orchestrator.

Each major tab at the top of the page presents a unique section or functional area of the
application. Common controls throughout the application make it easy to use. For
example, you use the same basic steps to sort a list of entries and configure which
columns appear.

Equation 1: This graphic highlights how to work with the user interface to perform CA
Process Automation functions.

A CA Process Automation

() Add New ov [raste

Orchestrator

Dualt Objects
My Objects
2 [Organizational Objects
43 Project P
[Automation Library
[Live Objects
[Froject P02

[Prejec
1 Proj
1 Proj et

Tean Folder
Tean Templates
3 User Designer 01 25
User Designer 8172
3 user Jane Folder
Uses Bon Folder

¥ Delote More Actions * | & Refresh [l Properties

Contents

User X0100 [CCalendar Objects Project Pi1]
hhoevak Henry Hoevak
User X0150 = Ccalendar, v Objects Project PO ..
User %0200
User X0250 éh Coustamd, Cance| i —— Objects /Project P01 ..
User %0300 & Coustoml Dbjects Project PO
e —
L User 70350 O CCustomOperator 002 Custom Oparator Avalzble User %0300 | Drganizational Objects /Prajeet PO ..
User 20400
. @ CoustomOperator_003 Custom Operator avallable User 70350 [Organizational Objects /Project P01,
(3 user 70450
User %0250 [Chataset 003 Biataset User 20400 Organizational Objects (Project P01,
Uses ¥0300 [Chotaset_003 Detaset Uses Z0450) Organizational Objects (Prejeet P01,
Uses 20350 § CIRF_002 Interaction Aequest farm - User X0250 | Dnganizational Objects (Project P01,
Uses 70400 =
L 70450 Page 1 of2| b M |50 ™ RowsOn Each Page Displaying 1 - 50 of 88

username | Log ©

G ..

Hame Type State Gwner Path Date Hodified Checked Out By Curr.. Latest Version
B creon Interaction Request farm - weiname Organizational Objects Praject PO1.. 10/31/2011 02:18:58 1
g CCustomicon_001 Custor lcon - wsemame anjpmsignal Objects Froject P01 .. 1102:18:58 1
B CDataset_001 Dataset - admin? | Objects /Project PO1... 1
£ Chrocess_001 Process - Team F al Objects (Prejeet PO .. 1
B csrr_on Start Request Farm - Design_25 /Organizational Objects /Praject POT .. 1
Cagends_001 Agenda Deactivated Design 72 | Organizational Objects Froject P01 10/33/200 : 1
2 CCalendsr_061 Calendar - Uses Jane) Organizational Objects (Praject P01 10/31/2011 02:18:00 o= 1

CProcassy bjects (Project 01| Warning

fObjects / Project PO1. Are you sure you want to delete

[
5/ selected object(s)?

@
& coustomSl | pvailable Users:
]

User X x Objescts [Pragect P01

Dbjects (Prject PO1.
User ID = User Name
tjones Ran Jones

aprasad Amanda Prasad

Cagenda_ Objects Project P01

Chganda_| Objects (Praject PO1 ...

Item: Description:

@ 0OS and Browser Controls: Although not part of CA Process Automation, your
operating system provides controls for working with the current window for
tasks such as Minimize, Maximize, Restore, and Close. Your browser also
displays its own menus, toolbars, panes, and search areas. You can sometimes
use browser features to supplement built-in CA Process Automation features
such as refreshing a page or adjusting the view magnification (Zoom).

@ Links: CA Process Automation provides common application links including
User Settings, Help, and Log Out. Individual pages include appropriate links to
related content.

34 Content Designer Guide

The CA Process Automation User Interface

Item: Description:

@ Main Application Tabs: Click a tab to focus on a specific CA Process Automation
section. The Library tab is selected in the sample image, so the application
displays folders and objects in the Library Browser.

@ Toolbar: Many pages and dialogs display specific toolbars with appropriate tool
buttons and icons.

@ Panes: Panes divide a window or page. In this example, the Library Browser
pane appears at left and features both a filter input field and an expandable
folder hierarchy. The main page displays detailed information about the entry
you select from a pane.

@ Main Page: The main area of a page displays essential information about an
item selected from a pane. CA Process Automation typically presents the data
in a table, list, form, design canvas, or chart. As necessary, the main area is
further divided into palettes, tabs, panes, or other visual controls.

@ Dialog: When you click specific buttons, apply actions, or issue commands, the
application often presents dialog boxes to collect additional input.

Message: Predefined logic and events that you or the system initiate can result
in the appearance of messages. Most of these alerts are informative and
provide necessary feedback. However, some messages display critical warnings
designed to protect your data. Error messages provide useful information that
you can combine with log file data to troubleshoot issues.

Main Application Pages

Click any of the six main tabs to navigate within the main pages of the application. As
you work, CA Process Automation applies logic and permissions to determine what you
can view. At times, CA Process Automation automatically changes your current tab
selection, or opens another window. For example, when you open a process in the
Library Browser you automatically see the process in the Designer. When you open a
schedule object from the Library tab, you see the Schedule Editor window. When you
click a process instance from the Operations tab, you automatically see a separate
Process Instance window.

Chapter 2: Getting Started 35

The CA Process Automation User Interface

Home

Use this page as a convenient starting point and personal dashboard for your CA Process
Automation work session. Available features are highlighted in the following example.

a CA Process Automation

My Recent Activity

User logged in &t : Feb 21, 2012 11:45:10 AM
Create a New Process Browse Out-of-the-Box Content

— « Process Interpreter Cale 208 ren Successhully

- Click here to start creating & new process using the | Cantent that demonstrates CA Process Automation's
drag & drop designer key concepts and features Feb 21, 2012 7:46:25 AM
o Operator Post Failure Process 314 ran
Suceassfully
A Pracess Automation Global User Community view Tutarlals Fob 21, 2012 Fea5:35 AM
1’{;} Automation Glabal User Cammunity u View tutarials that show how to implement commen % Operator Pre Success Process 219 ran
4 customer community focused 4 Procsss dutomation use cases

Succossfully
Feb 21, 2012 7:45:33 AM

Automation solutions

% Opcrator Post Success Process 108 ran
My Tasks (Refresh Successfully
Feb 21, 2012 7:45:30 AM

Status Title Description
@ Completed TaskNamal Lorem ipsumn delor sit amet + Operator Pre Fall Process 8 ran Suctessfully

. Feb 21, 2012 7:45:29 AM

Waiting Lorem ipsum dodor sit amet

. % StartContent 1 ran Sucoessfully

Waiting Larem psumn delor it amet

Fab 21, 2012 7:45:20 AM
i Suspended TaskNamed Lorem ipsurm dodor sit amet
kNarme I psurn dof L & calc 203 ran Successfully -
A&_Suspended TackilamaC e insaare dolee rit soost
Things I Have Checked Qut (reires Quick Links
Date Name Description Action Help
Feb 21, 2012 10:25:05 AM Process Watch apen - Pecumentation
o Book Shelf
Feb 21, 2012 9:45:28 &AM Chisu Open
Feb 21, 2012 9:45:28 AM Process open
ca.com

Feb 21, 2012 9:40:56 AM Lakesh Open
Feb 21, 2012 9:40:56 AM Intaraction Reguest Form_4 Open
ERAECRE TR L P Puabaret

Item: Description:

@ Home Tab: Click the Home tab to view the Home page. The Home page
appears when you log in to CA Process Automation.

@ Quick Buttons: CA Process Automation provides options to help you save time
and start working. The lower right corner of the page also lists Quick Links.

@ Tasks and Automation Objects: CA Process Automation displays tables that
list your tasks and the automation objects you have checked out (that is, the
working versions of objects).

@ My Recent Activity: A list of recent process activity appears sorted by date
and time. Click a link to open the process instance.

36 Content Designer Guide

The CA Process Automation User Interface

Library Browser

To manage automation objects in folders, use the Library Browser.

> CA Process Automation

=liel R
username | Log Out | Help + |

Configuration Reports

T3 New = | By Copy [3 & check in Undo Check Out & Set Owner [more 4 + | [@ Properties 03 Refresh (D Help
Orchestrator Contents of Folder
=Y, r~Creation Date ~ Tags
[Draft Oibjects Name: | |
3 My Dbjects o | From: B oR
- wner: i
4 [3 Crganizational Objects | To: [AND
43 Project P01 .
= —Modification Date
- —= Type: Select Object Type -
) roe | From: E
By co State: Select Object State - {
B Copy 1 | Tes &
I Search | Reset |- - search
gmices Mame Type State Owner Path Date Hodified Checked Out By Curr... Latest Version
= Dataset
[& mpor -h CPack_001 Package User X0200 (Organizational Objects/Froject P01 10/31/2011 02:19:01 Design_25 1 1
§ Inkeraction Request Form
A s owner I process wekch 1 (] a9 scheduled Tasks] e Acivaed Uses X0250 (Drganizational Ohjects, Project POI .. T . _
- - " Edit
0 User Ran | %3 Resources Cagenda_003 Deactivated User X0300 [Organizational ObjectsFraject POI_. L “ 1
= By copy
3 user XOVCEH Scheduls B CCalendar_o02 r User Z0350 | Organizational Objects /Project PFOL... 10/31/2011 02:18) . 1 1
3 User X014, Start Request Form Fage 1 ef1 15 ™ Rows On Each Page Displaying 1 - 19 of 19
Useer X020
(3 User X0250 Properties
L (3 User X0300 Genara ags || Versions | dudit Trail
s ' [Recycle Bin Last Updated Username Action Type ® Version N
h 11/08/2011 13:48:20 Designer 72 Keywords updsted 1
username Keywords updated. J
v
username Checked out.
ehoon Created 1

Library Tab: Click this tab to navigate to the Library Browser. Use the Library
Browser to view, create, edit, or remove automation objects and folders.

Folder Pane: CA Process Automation displays the orchestrators and folders
that you can access in this resizeable pane. Apply a filter to view only matching
folders. For example, Folder_2 would find Folder_2, Folder_200, and
MyFolder_2.

Search Area: Enter criteria to perform a basic or advanced search. For
example, locate one or more objects by name, type, or keyword. You can also
search for and replace objects.

Create Automation Objects: In the Library Browser, you can create folders to
store automation objects. Right-click a folder to view a menu of commands
you can perform in that folder. You can also create new automation objects
such as a processes, schedules, or start request forms.

Rename an Object: Right-click an object and select Rename from the shortcut
menu to edit its name.

Edit an Object: Use the toolbar or right-click an object to view a shortcut
menu of commands.

Chapter 2: Getting Started 37

The CA Process Automation User Interface

Item: Description:

@ Properties: This tabbed panel displays general data, tags, versions, release,
and an audit trail for each object.

Recycle Bin: Use the Recycle Bin to manage objects and folders that have been
deleted. The application lets you restore them, leave them in the Recycle Bin,
or permanently purge them.

Note: For information about configuring security for objects and folders, see the Content Administrator Guide.

38 Content Designer Guide

The CA Process Automation User Interface

Designer

To design, edit, and test a process, use the Designer page. The Designer supports the
following process details:

m Basic operator flow
m Documenting the process objects
m Logical results
m Connecting lines
m Browsing datasets
m Defining properties
m Writing code
® Monitoring process instances
m Stepping through, debugging, testing, and controlling process instances
ol@ B
"g CA Process Automation
Designer
IO AL
Process | Process 2 Process 3 Process 4 V| Operators
ANE 1 7| Dataset
~Operators(218) - Properties
7 Get - S) | Navigation
@ ‘ Update_in_Database_2 Properties | [] DOck Bottom
— =G
} @v ~SQL Update Statement] Dock Right
gt ©)
b 5SS ‘ Qt Inline text:
] iv - 2l lUEEsi | Expramstacs
L L T - E:» (=
e 1 ~ et P Input parameters:
[k B 48 ¢ Y Tt J W,
+ A4
@] s L9 TT =S
— [i 0
7?T k 4 g Page 1 of1 @ »
Dataset L‘J [\] 9o—
, SE—— Q.
Update_in_Ostabse_2 x % 2 1 J
whame value 4 4
4.3 Page.UpdateStatement = a -
InputSource "\inero\datascurce w { T v Deprecated Input
JOBCInputParamarray (0] Complete SQU Statement:
1sConstructSQLStatement false
CompieteSQLStatement B
FieldvalueModeArray false u
FieldvalueModeC20Valuel false
e Data Source:
= Fields/Values: _ -
| dtor | - der | L - e

Description:

Designer Tab: When you open a new process or edit an existing one from the
Library Browser, this tab appears. If this tab is not available, it means you have
not yet opened a process or do not have security permissions to open a
process.

Chapter 2: Getting Started 39

The CA Process Automation User Interface

Item:

Description:

Process Designer Toolbar: Use the tool buttons to design and test processes.
Use the View settings at right to show or hide the Operators, Dataset,
Properties, and Navigation palettes.

Process Tabs: Each process you open appears in its own tab. You can copy and
paste objects between tabs.

Process Designer: The actual process design appears in this work area, canvas,
or layout. The process designer includes the grid, lanes, all operators, ports,
and connecting lines.

Operators Palette: Drag and drop operators with specific functions from this
palette to your process layout.

Dataset Palette: Use this palette to view or edit the variables in process or
operator datasets.

Properties Palette: Use this palette and its links and windows to manage the
properties for an operator. This example displays Run Script operator
properties. The user has also added code in the Post-execution Code dialog.

Navigation Palette: Use this palette to navigate to specific regions in larger
processes. To save time, try panning within this palette instead of scrolling the
main designer layout.

40 Content Designer Guide

The CA Process Automation User Interface

You can also run process instances on the Designer page.

- — — — - - — - - - -

a CA Process Automation

7 (2) Help

b » = @ Q H . ;
A - A
t Process 1 Instance_1 Process 2 Instance_2 7 ko
| Mierarchy Instance_l b Completed 00:00:00
V| Dataset
Navigat Run_JavaScript_1 Properties
Operators(226) Javigation V| Properties
o Target
. - Target: 7| Navigation
Target is a calculated expre V| Logs
Dock Bottom
Processing
— . Dock Right
3 anD Conditon e
&3 o8 Condition Run as Caller User
©
G Reset 2
& wooe
) Alert Module Loop
Repeat Count:
W
Dataset < Delay between iterations:
| | [Process_28_sa -2 X x Timeout =
Name Value 1 |
=, Event Description Category
Process_28_441” instance was created Process
cess_ is in "Queued” state. Process
I L Tt 5 /112011 11:59:31" by “pamadmin”. Process

_1" i enabled following “Start_1". Cperator
pleted” on “Current Server”, Operator
1 S 8: Operator
‘Run_JavaScript_1" is "Running” on “Current Server Operator
Run_lavaScript 1" is cistad Cperator
“Stop_1" is enabled following “Run_JavaScript_1". Operator
St

Process_28_d41

s “Completed” on “Current Server’ Operator

Fri Nov 11 01:14:31 GNT-500 2013 Process is “Completed Process

Item: Description:

® Designer Tab: This tab appears when you open an existing process instance
from another page in the application. If this tab is not available, you have not
yet opened a process instance or do not have security permissions to open a
process instance.

(@) Process Instance Toolbar: Use the tool buttons to stop, start, debug, and test
actual instances of a process. Use the View settings at right to show or hide the
Operators, Dataset, Properties, Navigation, and Logs palettes.

@ Process and Instance Tabs: Each process and each instance of a process that
you open appears in its own tab. Process instance tabs appear adjacent to their
source process design tab. Process tabs show an icon. Process instance tabs do
not show an icon. CA Process Automation assigns a unique process ID number
to each instance name to help you identify different instances. You can copy
and paste objects between tabs.

@ Process Instance Status Bar: This bar displays the status of the instance. When
applicable, the status duration also appears. For example, a Waiting instance
will also show a live clock indicating how long the instance has been in this
state. You can also use the Hierarchy control to focus on specific subprocesses.

Chapter 2: Getting Started 41

The CA Process Automation User Interface

Item: Description:

@ Process Instance: The design for the process instance appears in this work area,
canvas, or layout. The process instance includes the grid, lanes, and all
operators, ports, and connecting lines. Use it to trace the path of your process
asitruns.

@ Logs Palette: Use this palette to verify or troubleshoot process instances.

Operations

The Operations page displays a dashboard of the following key elements:
m Links to operators, processes, and other objects

m Content packages

m Process Watch

m Start request forms

m Datasets

m Resources

42 Content Designer Guide

The CA Process Automation User Interface

The Operations page helps you manage running or completed processes. Start the
processes on demand and interact with running processes through interactive forms.
The Operations page is an automation dashboard that answers the following types of
questions:

m What is running in my environment?
m What has been running in my environment?
m Which of the processes are available to start on demand?

m Which of the processes are waiting for user input or approval?

usemame | Log Out | Help + |

2 CA Process Automation

Library Browser Designer Runtime Instance Operations Configuration Reports
e h s 2 Retresh cascasca ¥ @) nele
Links @ Process Instances @ Current Archived
Process Instances
Operators SE
Task List
40
Active Agendas
Global Agends
Start Requests o @
Content Packages el
Process Watch i
!q] ~Process Watch 4| @
N | | | | | |] [L |]
Werox kh Queued Running Suspended Waiting Blocked Complated Failed Aborted
- j;?;.uw:m Tnstance v © State © Start Time + End Time 4 User Touchpoint Caontent Package Name Content Package Release Version
- StartContent_1 Completed $ 10/21/2011 02:42:29 User 01 touchaoint 01 Package 1.4 via
?""’b Frocess_Interpeeter_lntegrated_108 Completed 011 02 User 02 touchooint 01 Package 1.4 vi4
L Process_Interpreter_CustomOps_327 Queued User 03 touchpoint 01 Package 1.4 via
Start Request Process_Interpreter_Calc_221 Runaiag User 04 touchpoint 01 Package 1.4 via
Oparator_Pre_Success_Process_232 Completed User 02 touchpaint 01 Package 1.4 via
3) boysuo1 i Operator_Pre_Fad_Process_8 Suspended User 02 touchpaint 01 Package 1.4 via
3) PAM Hardware Procurement Oparator_Post_Success_Process_121 Suspended User 03 touchpaint 02 Package 1.3 Vi3
«Jasa Operstor_Past_Failure_Process_334 Waiting 112011 User 04 touchpoint02 Package 1.3 Vi3
4 3 Search_Automation = Create ValueMap Dynamically_103 Waiting 10/11/2011 User 01 touchpoint 02 Package 1.3 vis
[} Stao vaniact Faem 2 calc_216 8locked 10/11/2011 02:42:28 User 02 touchpoint02 Package 1.3 Vi3
[y 5 {b Process_lnterpecter_tntegrated_108 Failed 10/11/2011 02:42:37 User 03 Youchpoint02 Package 1.3 vi3
|5 Start Request F 1 - Prof
Dataset ~.|/AAA_1/My Resource2
Resources o Name State Amount Used % Usage Description
Mv«;:;:u::w“ s . " Server 02 Resource a8 4 3 Project Labor Resources Database
4 Hana g Server 01 Resource 3 2 1 Project Nonlabor Resources Database
& My Resource2
4 ana_1
i My Resource2
Schedules @ < Page 1 of2 » Pl 25 ~ Row On Each Page Displaying 1 - 22 of 22

Item: Description:

@ Operations Tab: Click this tab to view the Operations page.

(@) Operations Toolbar: Use these commands to work with items in the various
Operations page lists.

Chapter 2: Getting Started 43

The CA Process Automation User Interface

Item:

Description:

Operations Pane: Select an entry from the expandable list in this pane. For
example:

m Click Process Instances to view a chart and list of instances.

m Click Content Packages to view a list of the content packages that were
imported and the objects they contain.

m Click a Start Request Form to start it.

m Enter an optional filter to find a resource object.

In the illustration, the user has entered My Resource to find matching entries
arranged in folders in the Resources section of the pane.

Graph or Chart Area: The product displays the data as a graph or chart for
process instances, process watches, and process instances that are in content
packages. In the illustration, the user is pointing to the Completed instances
bar to see the total count (11). Click a bar in the chart to add the associated
status value to the filter for the result list below it. Click the bar again to
remove the value from the filter.

Main Page or List: The main area of the Operations page displays essential
information. In addition to the chart, the product often presents this data in a
table, list, or form. For example, you can view, filter, and sort a list of instances
by their state. Click a resource object to view the current status of the
resources it represents.

44 Content Designer Guide

The CA Process Automation User Interface

Configuration

The Configuration Browser palette displays the logical hierarchy of the Domain.
Administrators use the Configuration tab to install and configure multiple agents and
orchestrators. Content designers have read-only access to the Configuration Browser
palette on the Configuration tab.

CA Process Automation

Home Library

Configuration Browser

4 [y Domnain
4 Qg Default Enviranment
E Orchestrator
3 &% All Touchpoints
&% all Host Groups
4 Orchestrators
EEDomain Orchestrator

% Agents

Manage User Resources
Installation

Lock a Inlock o Refresh @Help

= Contents of “Default Environment"*

= Security Auto-admit Properties Madules Triggers Audit trails

[¥] Inherit

|[7] FIPS-compliant certificate

CA EEM Backend Server @

A EEM Application Name
Pracess Automation
CA EEM Certificate Mame

CA FEM Certificate Passwnrd
Installation

Install Agent ®

Hlgz)

4
Log on to the host where you want to install the Agent. Before you begin the installation, verify that this computer has

Install | the required configuration and software to support a CA Process Automation Agent. Review the prereguisites in the
Tastaliation Guide.,

Read More...

k Install Orchestrator

7 =
Log on to the server where you want to install the new Orchestratar. Typically, standard Orchestrators are installed on

+®. Install | separate servers. Before you beqin the installation, verify that this server has the required configuration and software

Item: Description:

®

Configuration Tab: Only administrators can use this
tab to update configuration settings.

Configuration Toolbar: Only administrators can lock objects in the
Configuration Browser, save configuration changes, and unlock the objects.

Configuration Browser Domain hierarchy: Only administrators can configure
the product.

Configuration Browser Main Pane: The main pane displays configuration data.

®e ®© ®

Installation and Manage User Resources: Only administrators can view these
palettes. The Installation and Manage User Resources palettes do not appear
when content designers click the Configuration tab.

Chapter 2: Getting Started 45

The CA Process Automation User Interface

Reports
Use this page to perform reporting tasks. These include:
®m Generate an existing report
m Upload a new report
m Set custom parameters

m Export report data

A

username | Log Out

CA Process Automation

e I
| Davow | M osiere B B

| Al Reports

Add New Report: “Untitled™

Report Name® Short Description”
My Regart Name Menthly automaticn repart for the Board meeting, 4 Add Report as Predefined
Upload the Repeort Design*
by = AR
M save and Close
| Name Description Repart Type Created By Date Modified Shared
Referance object Repart This "BPOMT SNOKS TE FETarence CBJacs by category Fredefined System 04/10/2011 D1243:25

Compieied Process Repert This repert shows the status of Processes @ Frecefined System 04/10/2011 01:43:25

P " it shaows Processes by Stste Presefined
Ret Pt sh 1
Parameters marked with * ane required. FPIE] iy maport wiewer
M how: = 2 e
1L} Process full path (use % wikdcard). * Jrt srows | il .:..‘.:; Refarmnce Qbgects by Catogory
I e Enretin iy Exsution Time feport)
Weon gurersied oovers 1, 3011827 P
{ ¥ Process start time from (VY Y-M-DD nh:mmss): = | ‘
[1smoo1a1 120000 Ee :
{3 Process start time to (vYYY-MM-DD hiemsa): * H
[2070-12-30 11:45:00 H
{3 Process end time from (¥YYY-MM-D0 hhmm:ss): * z
=

[1970-01-07 12:00:00
{ ¥ Process end time to (vYYY-MM-0O hnmemcss): ©

|2070-12-30 11:45:00 r—
{} Process state: * ®

) Siates 1 ————

Inacive e e

[o][coma |

Description:

Reports Tab: Click the Reports tab to view or create reports.

standard toolbar is also available for working with report output.

Add New Report Area: If you click New in the toolbar, this area appears so you
can define and save report details.

Item
@ Reports Toolbar: Use this toolbar to work with the Reports page. A separate

Reports List: Lists available reports.

46 Content Designer Guide

The CA Process Automation User Interface

Item: Description:

@ Parameter Dialog: With the exception of the Reference Object Report, when
you click a report in the list, this dialog appears. Use it to define the range of
data to include in the selected instance of the report. In this example, the user
has selected All States from the { } Process State field.

@ Report Output: Once you click OK, an on-screen preview of the output
appears on the Parameter dialog. You can use this output as is, print it to
another device, or export it for use in another application.

Note: To design new reports, install the BIRT designer on a separate application server
and connect it to the reporting database.

Chapter 2: Getting Started 47

The CA Process Automation User Interface

Common User Interface Contro

Is

The CA Process Automation web interface offers a consistent set of controls. Tables,
lists, pages, commands, and filters work in the same standard way from page to page.

Note: Some features are not available on all pages.

s ~
s G custom_jdbe o o osoniae Custom Oper... Avail
8 Transfer [Propecties| ¢ =3 Open Process Instance & Refres & Oataset_java 25 111/2011 08:08:30 Dataset -
“ Task List My Tosks @& Datsbase 1 50 111/2011 00:53:53 Custom Icon
2 Oataset 100 11/2011 04:24:55 Dataset -
| TaskID Title Description Start Time Comyp — 150 -
7| as1 tact It oF narame bact 11/11/2011 17:19:17 m 0
(*) Rept
43 g wid 11/11/2011 09:32:02 200 | ¥ \Rows On Each Page Displaying 1 - 170 of 170
& Toke
@ Delegate
& s (3) PAM Hardware Procure.. 04/11/2011 05:5.. Folder - pam.. / O 1
=3 Open Process Instance 3 PasswordDataset 04/11/2011 05:3 Dataset - pam.. / O 2 2
& Refresh & Process 04/11/2011 0S5:2 Process pam. / O 2 2
Page 1 of 1 10 ¥ Rows On Each Page <« M 4 page7 of17 » »l [E '~ Rows On Each Page Displaying 61 - 70 of 170
~)
y [Paste X Delete (@) Checkin (% Undo Check-out & Set Owner | More Actions v | & Refresh (@) Properties
Contents of " /Content"
Bl Search
, (o] el
Name ¥ ¥ State Path — Date Created ate
Dataset t ©Tyre @teny 04/11/2011 07:04:15 @ 04/
Dataset 702 - /Content/ 03/11/2011 05:15:08 11
netstat /Content/ 28/10/2011 12:08:56 04/1
netstatw N /Content/ 04/11/2011 06:07:14 04,
%@ Resources /Content/ 04/11/2011 01:26:09 04/
. >
o state © Start Time ~ ™ End Time ¢ User 07:15AM |2
7:30 AM P Calryaie
Completed 41 Sort Ascending 11/11/2011 01:14:31 pamadmin 07:
%} sort Descending s
9 tnstance
Filters » | ¥ state
| Start Time
¢! End Time
V] User ° Aborte
vl T hpoint
el = Sl * endrime
@8 Columns 3 F -
2 Queued 26 27 28 2930 21 sort Ascending
ach Pege Running O %) sort Descending
T — S R Columns »
Suspended a 10345 AM = s
e From | 30/13/2082 5 [10:00am v
Hoghad To 30/11/2013 1seem v
. J

Item:

Description:

48 Content Designer Guide

The CA Process Automation User Interface

Item:

Description:

Commands: As a shortcut, you can right-click a list item to select the same commands
that are available on a toolbar. In this example, you can click Properties in the toolbar
or right-click a task row in the table and choose Properties from the resulting shortcut
menu.

Pagination: When CA Process Automation presents tables of data, you can control
how much fits on a page. The top and bottom tables in this example both display 170
items. On the top page, the user has selected 200 Rows On Each Page. This condenses
all 170 items to a single page. For the bottom page, the user has elected to view 10
rows. This setting increases the number of pages required to display all 170 items to
17 pages.

Use the controls at the bottom of the window to navigate to the first, last, previous, or
next on-screen page. You can also jump to a specific page by entering the page
number in the Page field.

Multi-Select: Check one or more rows to apply the same command to similar items.
The application will only allow you to perform valid commands for multiple items at
the same time.

Filters: Enter an optional word or text string and press the Enter key to view only
matching items. For example, type net and only the netstat and netstatw objects
appear in the list. Click the X to clear the filter.

Sort Order: Click ™ in a field column header row to select Sort Ascending or Sort
Descending. As a shortcut, just click the column header to toggle the sort order. A
small triangle indicates the sort order direction: ascending (down), descending (up), or
unsorted (no triangle).

Column Arrangement: Click and drag an entire column to change the sequence of
columns in a table. In this example, the user has elected to position the Type column in
between Name and State.

Column Size: Position your mouse over the borderline dividing two columns. When it
changes to a resize cursor, drag the column edge left or right to adjust the width of the
column and its data.

Show or Hide Columns: You can show (checked) or hide (not checked) the listed fields
to control the columns that appear in a table.

Quick Filters: If available, you can apply a quick filter to a column. Check the field
values you want to include and clear the values you want to exclude.

Date-Time Filters: For date-time fields in a table, you can define a filter as a range or
span in time. The filter excludes data not in the range. In this example, the user only
wants to include rows with End Time values from November 30, 2012 at 10:00 a.m. to
November 30, 2013 at 11:59 p.m.

Chapter 2: Getting Started 49

Browse Out-of-the-Box Content

Browse Out-of-the-Box Content

The Out-of-the-Box Content link on the Home page links the content designer to sample
content. Sample content illustrates what you can do with various automation objects.
Follow these steps:

1. Click the Home tab and then click Browse Out-of-the-Box Content.

The Library tab opens with the PAM_PreDefinedContent folder selected in the
navigation pane.

2. Expand the folder that is titled PAM_PreDefined Content.

3. Expand the subfolder that represents the operator, the object, or the design
process of interest.

4. Inthe main pane, double-click an object where the Type is Process.

The process opens in the Designer tab. The process includes annotations describing
the purpose of the process, other relevant information, and directions for
customizing the process.

5. Use the selected sample process as a learning tool or as a model for a process of
your own.

50 Content Designer Guide

Use CA EEM to Change Your CA Process Automation Password

Use CA EEM to Change Your CA Process Automation Password

The administrator typically assigns a temporary password when setting up user accounts
for the internal user store. All CA Process Automation users with user accounts created
in CA EEM can change this password before you log in to CA Process Automation. Then,
you can change your CA Process Automation password at the interval that password
policies define.

Note: This ability does not apply when CA EEM references user accounts from an
external user store such as Microsoft Active Directory. In this case, maintain your
password within the referenced directory.

Use CA EEM to change your CA Process Automation password.

Follow these steps:

1. Open a browser and enter the URL for the CA EEM server that CA Process
Automation uses. For example:
https://hostname or IPaddress:5250/spin/eiam/

To identify the host name or IP address of the CA EEM that CA Process Automation
uses, see the CA EEM Backend Server field on the CA Process Automation
Configuration tab Security subtab.

2. Loginto CA Embedded Entitlements Manager (CA EEM) from the log In dialog:
a. For Application, select <Global>.
b. Delete EilamAdmin if this default name appears in the User Name field.
c. Enter your CA Process Automation user name and password.
d. Click Log In.
3. Under Self Administration, click Change Password.
4. Reset your password:
a. Enter your CA Process Automation user name and old password.

b. Enter your new password in both the New password and Confirm password
fields.

c. Click OK.

CA Process Automation accepts your updated credentials when you log in.

Chapter 2: Getting Started 51

Web Browsers

Web Browsers

Even among supported web browsers, CA Process Automation may behave differently
due to differences in third party products. For example, when you attempt to leave a
page or tab with unsaved changes, each of the following supported browsers may
display a slightly different message:

m Microsoft Internet Explorer
m Google Chrome

m Mozilla Firefox

Essentially, all three give you the option of remaining on the page to save your data or
leaving the page and discarding any changes.

Microsoft Internet Explorer

When you set Microsoft Internet Explorer 8 or 9 to Compatibility Mode (CM), CA
Process Automation may exhibit poor performance or behavior. For example, the
drop-down menus for the field columns on the Operations page may disappear if you
click Start Requests (or another option in the Operations pane) and then go back to
Links and choose Process Instances. Once in this state, the column header drop-down
menu button may not appear for other views. This may result in the inability to set a
filter.

We recommend that you do not explicitly enable CM or Intranet Settings. If you observe
odd behavior when using Internet Explorer, ensure that CM is not enabled.

Note: If you must enable Intranet settings, manually disable the Display intranet sites in
Compatibilty View option in Compatibility View Settings under the Tools menu in
Internet Explorer.

52 Content Designer Guide

Chapter 3: Library Browser

This section contains the following topics:

Customize the Library Browser (see page 53)
Search the Library Browser (see page 53)
Working with Objects and Folders (see page 58)

Customize the Library Browser

You can customize your view of the columns in the Library Browser. Columns display
field values for entries in a table.

Follow these steps:

1. Click the Library tab.

2. Inthe Library Browser folders pane, select a folder.

3. Inthe main window, to show or hide a column, click ™ in the column header and
choose Columns.

A checklist of available field names appears.

4. Clear the field columns you want to hide. Check the field columns you want to
show.

5. Tosort the list, click ™ in a specific column header and choose Sort Ascending or
Sort Descending.

6. To rearrange the columns, click a column header and drag it to the left or right.

Search the Library Browser

Use the search features to find specific items in the Library Browser. You can then

perform actions on multiple related objects in the search results.

Follow these steps:

1. Click the Library tab.

2. Inthe Library Browser folder pane, select the root folder or a specific subfolder.
The product limits your search to objects and folders in the selected folder.

3. Inthe Search field, enter the name of an operator or folder.

Chapter 3: Library Browser 53

Search the Library Browser

(Optional) Click Advanced Search to base a refined search on any of the following
properties:

m Name
m Owner
m Type

m Check-In State

m Creation Date

m Modification Date

m Tags

Click Search.

The search results appear.

Note: If you search in a folder hierarchy with a content package, the product
returns only objects in the current release version of the content package. The
product also returns objects that reside in the folder hierarchy but are not in the
content package.

Work with objects and folders in the search results as you would in any other library
folder.

m Toopen an item for editing, double-click it.
m To view a shortcut menu of available commands, right-click a single item.

m To apply an action to multiple objects simultaneously, select the items and
then right-click a selected item.

To begin a new search, take one of the following actions:

m Click Reset.

m Click Basic Search or Advanced Search.

m Clear or modify the criteria that are specified in the search fields.

m Click the x in the Basic Search box.

54 Content Designer Guide

Search the Library Browser

Search for Release Version Information

You can optionally associate each object version with a release version. The Versions tab
uses its displayed associations to filter for those objects and versions that are associated
with a string you specify. You can search a specific release version to display a version of
interest. Alternatively, you can search for a generic string that returns multiple object
versions. The Versions tab supports wildcard searches with or without a wildcard
character (*), as the following example shows:

Search String Search Results

5

*g Any object version in which the Version field or the
Release Version field contains the character 5.

5*

5

Follow these steps:

1.
2.

Click the Library tab.

Right-click an object, and then select Edit.

On the object editor, click the Versions tab.

Note: See the tooltips or the User Interface Reference for field descriptions and
examples.

On the Version toolbar, click the magnifying glass icon on the rightmost side.
Enter search criteria in the search field, and then click Search.

The search returns the objects and versions that are associated with the specified
string.

Chapter 3: Library Browser 55

Search the Library Browser

Search for Version Information

The Version tab lets you filter the displayed versions to objects that contain the string
you specify.

For search criteria other than dates, the search results include rows for object
versions that contain the specified string in any of the following fields:

- Version
- Modified By
- Created By

Note: To display objects containing 5, for example, specify 5, *5, 5%, or *5* as
search criteria.

For date search criteria, the search results include rows for object versions that
have the date you entered in either of the following fields:

- Created On
— Last Modified On

Follow these steps:

1.
2.

Click the Library tab.

Right-click an object and select Edit.

The object editor appears.

Click the Versions tab.

Click the magnifying glass icon on the right-hand side of the Version toolbar.
The search field and Search button appear.

Enter search criteria in the search field and click Search.

The search process displays objects meeting the specified search criteria. Search
criteria other than dates returns all versions containing the specified string in the
Version, Modified By, and Created By fields. Date search criteria returns all versions
with an exact match in the Created On and Last Modified On fields.

56 Content Designer Guide

Search the Library Browser

Search for Audit Trail Information

The Audit Trail tab lets you display only object versions that meet one or both of the
following search criteria:

The Version field or the Username field contains the string that you specify in the
Filter field.

For example, if you specify 5 in the Filter field, the search returns any Audit Trail
object that has 5 in the Version field or has 5 in the Username field

The Last Updated field contains a date within the date range that you specify in the
From and To fields.

Follow these steps:

1.
2.

Click the Library tab.

Right-click an object and select Edit.

The object editor appears.

Click the Audit Trail tab.

Click the magnifying glass icon on the right-hand side of the Audit Trail toolbar.
The search fields and Search button appear.

Enter search criteria in either the Filter field, the From and To fields, or both. Then,
click Search.

Filter

Specifies the numeric or alphanumeric search criteria for the following fields,
where the search results include any object versions that contain the specified
string.

m Version
m Username
From - To
Specifies date range criteria for searching the Last Updated data.

The search process displays objects meeting the specified search criteria.

Chapter 3: Library Browser 57

Working with Objects and Folders

Working with Objects and Folders

Folders are containers for objects.

Use this process to edit an object:
Identify the location of an object or folder in the Library Browser.
Open the object.
Check out the object to a working version you can edit.

1

2

3

4. Edit the object.
5. Save the changes.
6

Check in the object (in this step you also decide whether to apply the changes to
the same or a new version of the object).

When you only want to inspect an object, either click Properties or open it. You can then
view its properties in detail and decide whether to edit it.

Objects open in an editor or designer that is based on the object type. For example, a
process opens in the Process Designer and a dataset object opens in a Dataset dialog.
Each editor has specific tabs, palettes, and toolbar buttons.

Note: This section includes only basic information about opening and editing objects
and managing versions. Other sections describe in greater detail how to edit various
types of objects.

Automation Object Types

The Automation objects are application components that define configurable elements
of a CA Process Automation package. These objects define system operations and
include runnable software. Create and configure CA Process Automation automation
objects in the Library Browser in specific automation library folders that are associated
with a specific Orchestrator.

You can take the following actions in an automation library:
m Browse an automation library that is associated with an Orchestrator.

m Create, edit, and view objects in an automation library.

m Create folders in a library to group related objects. Folders let you define a
hierarchical structure so you and your coworkers can locate objects. This structure
is similar to computer operating system directories or folders.

58 Content Designer Guide

Working with Objects and Folders

You can create the following automation object types in the Library Browser:
& Process

A process object graphically depicts the order of and the dependencies between
operators and some other processes. Processes represent operators graphically
with links that show the sequence and logic behind the steps that the process
performs.

¥ Schedule

A schedule object applies date and time conditions to when modules (including
processes) run. To group tasks by application, ownership, or other criteria, use
multiple schedules.

£H Calendar

A calendar object defines rules that describe complex date conditions. A calendar
object graphically specifies dates, time intervals, and conditional elements that
determine when and how frequently the product performs operations.

EI Custom Icon
A custom icon object specifies graphic images that uniquely identify operators.
Custom Operator

A custom operator object lets you extend the presentation and configuration of
existing operators. You can base a custom operator on an existing operator and
then optimize it with specific parameters that are designed for reuse in various
processes.

Dataset

A dataset object defines and groups variables that the product uses as parameters
that other processes, operators, and resources require. Examples include
application locations, passwords, and profile names. You can easily configure these
variables so that the product can update processes and scheduling efficiently to
reflect changes in an application environment.

e Package

Beginning in CA Process Automation 04.2.00, the package object is no longer
available to bundle shortcuts to other automation objects. Packages are not
available for reference through any of the CA Process Automation object browsers.
To export and then import content that is unmodifiable from one environment to
another in release 04.2.00, use a content package.

£ Content Package

The content package automation object bundles the CA Process Automation objects
that a content designer exported as a content package. The content designer adds
the automation objects to a folder and exports the folder as a content package. The
production user can view the imported content packages from the Library or from
the Operations tab.

Chapter 3: Library Browser 59

Working with Objects and Folders

Create a Folder

Process Watch

A Process Watch object lets users define and monitor selected applications in the
production environment. A Process Watch object is a collection of shortcuts to
other automation library elements. A user can open a Process Watch object to view
the state of process instances and other objects. A Process Watch object lets a user
monitor operators without necessarily permitting access to underlying objects or
data.

% Resource

A Resource object is a model that represents elements of your system architecture.
Use them to synchronize independent processes that rely on common
infrastructure elements and to quantify and control access to the specific IT
entities. Include multiple resources that represent related entities in a single
Resource object.

Eb start Request Form

A Start Request Form object defines shortcuts to let a production user start
processes manually. A custom dialog prompts users for the values of parameters
that are required to start their associated processes.

[3 Interaction Request Form

An Interaction Request Form object lets you prompt users to provide responses in
data fields and other user interface controls. Users enter the required information
to continue a process. For example, use an Interaction Request Form to prompt a

stakeholder to review each step in an approval process.

Folder hierarchies let you categorize and organize related objects and allow you to apply
selected permissions recursively to subordinate objects and folders. To organize and
secure groups of objects, you can add folders to structure the library hierarchy.

Follow these steps:

1.
2.

Click the Library tab.

In the Library Browser folder pane, select the folder where you want to create a
new folder.

In the toolbar click New, and then choose Folder.
The new folder appears.

Rename the folder.

60 Content Designer Guide

Working with Objects and Folders

Create an Object

Note: To set rights and perform other object tasks, the best practice is to organize the
objects in folders. Do not create objects at the root level because you cannot manage
such objects as a group.

Create new automation objects in specific folders in the library that is associated with
an orchestrator. After you create an object, you can edit its properties.
Follow these steps:
1. Click the Library tab.
2. Inthe Library Browser folder pane, select a folder to store the new object.
3. Inthe toolbar click New, and select an object type.
A new object is created.
4. Provide a unique name for the object.
The application alerts you when the specified name is already associated with

another object in the folder.

Note: To set rights and perform other object tasks, the best practice is to organize the
objects in folders. Do not create objects at the root level because you cannot manage
such objects as a group.

Note: The package object is no longer supported CA Process Automation 4.2.00. A
content designer can now bundle the automation objects in a folder and export objects
as content package for deployment in a production environment. The usage of the
existing package object is kept for backward compatibility. See How to Migrate Objects
From a Package to a New Folder to Prepare for Export.

Chapter 3: Library Browser 61

Working with Objects and Folders

Edit an Object

After you create an object, you can modify its configuration at any time. For example,
you can:

m Edit the tags for an object
m Add aresource to a resource object

m Remove an object from a process watch.

CA Process Automation stores multiple versions of an object. By default, when you
check out and you edit an object, the application uses the designated current version.
After you edit it, check in the object. You can specify whether to apply the changes to
the same version or a new version when you check in the object. In either case, the
application applies the changes by default.

Each object can have an associated release version (see page 424). The release version
identifies the specific version of an object to deploy to a production environment. CA
Process Automation requires that the object is delivered to the production environment
in a content package object (see page 432). You can set a flag that prevents the release
version from being modified, and then CA Process Automation baselines the object
upon import to the production environment. When you set a release version for an
object, the internal object version becomes associated with that release number.

Follow these steps:
1. Click the Library tab.
2. Inthe Library Browser folder pane, click a folder.
3. Double-click an object.
The current version of the object opens.
4. If the object is not already checked out, click Check Out.
5. Edit the object.
6. Click Save or click Save and Close.

The application saves your changes. Because the object remains checked out, you
can continue to edit it.

7. Click Check In.
8. Complete the following procedure on the Check In dialog:
a. Inthe Check In As field, select New Version or Same Version.

b. (Optional) Enter comments about the changes made in this version.

62 Content Designer Guide

Working with Objects and Folders

c. (Optional) Select the Baseline check box to use this version as a baseline.

d. (Optional) Clear the Current check box if you want a new version but you do
not want to mark it as current. The previously current version remains current.

e. Click Check In.

View or Change General Properties of an Object

You can view the general properties of any library object or process.

Follow these steps:

1.
2.

3.

Click the Library tab.

Select a folder, right-click an object, and then select Properties.

On the Properties pane, click the General tab.

View the read-only object properties.

Note: See the tooltips or the User Interface Reference for field descriptions.

(Optional) Edit the Description field for a checked-out or checked-in object. Click
Save to store your changes.

Specify Tags or Keywords for Objects

The Tags tab lets you assign keywords to organize objects according to any meaningful
naming system that your organization recognizes. You and other users can then perform
an advanced search for objects or folders that use the tags or keywords.

Follow these steps:

1.
2.

3.

Click the Library tab.

Select a folder, right-click an object, and then select Properties.
On the Properties pane, click the Tags tab.

On the Tags tab:

a. Click Edit.

b. Enter one or more comma-separated text values with no spaces between the
list items. For example:

testing,security,Project Code Beta

c. Click Save.

Chapter 3: Library Browser 63

Working with Objects and Folders

Change Ownership for Automation Objects

The user who creates an automation object or folder is, by default, the owner. The
owner has full control of the automation object or folder. An owner can switch the
ownership to another CA Process Automation user.

Note: The CA EEM Environment_Content_Administrator permission grants full control
of all automation objects and folders. All administrators who belong to the PAMAdmins
group have this permission.

If you enable Runtime Security, then only the process owner (or an administrator) can
start that process.

Follow these steps:

1. Click the Library tab.

2. Select one or more objects including folders.

3. Click the Set Owner toolbar button.

4. Inthe Available Users list, select the user account to set as the new owner. Use
search to find matching user accounts.

5. Click Save and Close.

Specify an Archival Policy

After an automated process runs and completes successfully, the product archives the
run-time data for reference and metrics. By default, the object inherits Archival Policy
properties from the Orchestrator. You can, however, define manually the number of
days the server retains completed or failed process instances or schedule objects. You
can also define the number of completed and failed process instances that the product
retains.

Follow these steps:

1. Click the Library tab.

2. Select a folder, and then select a Process or Schedule object.

3. Right-click the object, and then select Properties.

4. On the Properties pane, click the Archival Policy tab.

5. Clear the Inherit Archival Policy From Orchestrator check box. This task activates
the other fields.

Note: See the tooltips or the User Interface Reference for field descriptions and
examples.

64 Content Designer Guide

Working with Objects and Folders

Enter a value for Process History.

This value defines the interval (in days) that the product retains completed and
failed process instances in the archive before automatically purging the records.
The product maintains the process history for this interval regardless of the number
of instances in the archive.

Enter the values for failed and finished instances.

These values define the number of process instances that the product retains
before automatically purging records with the following statuses:

- Failed status only
- Finished status

From the instances that exceed the specified retention limit, the product deletes
the oldest first.

Click Save.

Specify the Folder Release

A content designer can provide release information for a folder. The Release tab in the
folder properties provides the release version of the folder. Specifying the release
version for a folder is required to export the folder as a content package. Adding
information that describes the folder content can help the content package consumer
when the content is imported to a new environment.

Follow these steps:

1.
2.
3.

Click the Library tab.

Right-click the folder on the right pane of the Library, and then select Properties.
On the Properties pane, click the Release tab to display the folder properties.
Click the ReleaseVersion attribute Value field.

On the Value window, enter the folder Release Version, and then click OK.

Note: You cannot delete or edit the ReleaseVersion attribute, but you can insert the
appropriate release version in the Value column.

Click Save.

Click Add Property or Remove Property to define or remove more folder properties.
For example, you can add the following information in the Release tab:

m Owner who created the content package.

m Users who can use the content package objects after it is imported to a new
environment.

m Support information.

m Online help (URL to online help).

Chapter 3: Library Browser 65

Working with Objects and Folders

Specify ROl Properties

When you set the Return on Investment (ROI) properties for a process object, the values
you enter appear in the process instances dataset.

Follow these steps:

1.
2.

Click the Library tab.

Select a folder, right-click a process object, and then select Properties.
On the Properties pane, click the ROl tab.

Select the Enable ROI check box.

Enter the following values:

m Inthe Manual Labor Time field, enter the total staff time (in hours and
minutes) required to trigger multiple process operations manually.

m Inthe Manual Process Elapsed Time field, enter the total staff time (in hours
and minutes) required to run the entire process manually.

m From the Criticality drop-down list, select the process criticality that appears on
the ROl report (High, Medium, or Low).

m (Optional) In the App/System Group Name field, enter the common group
name through which the product aggregates processes in the ROl report.

Note: See the tooltips or the User Interface Reference for field descriptions and
examples.

Click Save.

66 Content Designer Guide

Working with Objects and Folders

Determine When to Select Run as Owner

CA Process Automation provides fine-grained access control to operations on specific
automation objects such as processes, datasets, and schedules. Access control includes
not only traditional read and write rights but also rights to start a process and monitor
its instances. Access to other objects such as child processes, datasets, or calendars is
also controlled. The access rights are enforced at all external interfaces, including the
Uls and Web Services.

Consider the following example with these assumptions:
m Process P1 has a child process P2.
m Owner X owns P1 and P2.

m Plrequires access to other elements that Owner X does not want to expose directly
to other users.

m The default access is that a process runs as the user who starts the process.

If User A starts a P1 instance, P1 can start P2 only if User A is authorized to start P2
directly. To protect automation objects from exposure, Owner X can require process P1
(or any of its child processes or operators) to run as owner, that is, to run under the
identity of Owner X. When Owner X configures a process to Run as Owner, owner X is
authorizing other users to run process P1 without granting them access to the elements
P1 needs.

Similarly, Owner X can force operators to run under the identity of the user who started
the process instance. Although process P1 is configured to Run as Owner, Owner X can
force the child process P2 to run under the identity of the user who directly or indirectly
starts process P1. In this case, CA Process Automation uses the identity of the
originating user to validate access to child process P2.

Consider this scenario: A DBA user creates a database administration process that
requires externalizing the DBA credentials to a named Dataset. The DBA configures this
process to run as the owner. Run as Owner grants instances of the process access to the
dataset that stores the DBA credentials. The DBA authorizes selected users to execute a
specific DBA process, without granting these users direct access to the DBA credentials.

In summary, a running process instance has two related identities:

m The real user who starts the process instance from the Ul, an agenda, or a web
service.

m The effective user who is determined by how Run as Owner is applied to process
definitions and operators in those processes.

Note: The identity of the current, effective user is used to validate access to child
processes, operators, and datasets.

Chapter 3: Library Browser 67

Working with Objects and Folders

More information:

Guidelines for Setting Runtime Security for a Process (see page 399)

Specify Run-Time Security Properties

You can specify run-time security properties for both Process and Schedule objects.
These properties establish whether and how the system verifies user permissions when
users attempt to access automation objects from the database.

Follow these steps:

1.
2.

Click the Library tab.

Select a folder, right-click a Process or Schedule object, and then select Properties.

From the Properties pane, click the Runtime Security tab.

Note: See the tooltips or the User Interface Reference for field descriptions.

Under Runtime Security, perform one of the following tasks:

Inherit enabled security settings from the Orchestrator, if applicable. This value
is the default.

Select Enable from the drop-down list. This option lets the product verify user
permissions when accessing objects in the process.

The Process objects are typically designed to access other objects to read or
run while it runs, such as when one process triggers another process. If it is
enabled, the product uses run-time security to verify that the user (the owner
or caller) has permissions to access the object. For example, User A has
permissions to start a process. This process attempts to access Object B and
Object C. The product cross-checks permissions for each object. If the run-time
security determines that the user does not have permissions to Object B, the
process fails.

Select Disable to disable the validation and enforcement of process ownership
at run time. This option provides backward compatibility for existing processes
and lets these processes run as they did before this release.

68 Content Designer Guide

Working with Objects and Folders

6.

Complete the run-time security configuration for your Process objects using the
following options. Maintenance of the Run as Owner check box requires that you

either own the process or are an Environment Content Administrator.

Run the process as the user who started the process instance.
a. From the Runtime Security field, click Enable.
b. Clear Run as Owner.

This option enforces run-time security rights with the identity of the user who
starts the process instance.

Run the process as the owner.
a. From the Runtime Security field, click Enable.
b. Select Run as Owner.

This option enforces run-time security rights with the identity of the owner,
regardless of who starts the process instance. This allows users to start a
process that gains access to elements that the owner wishes to protect.

Select the Enable Operator Recovery check box to recover automatically
specific operators that fail with a SYSTEM_ERROR.

Click Save.

More information:

Guidelines for Setting Runtime Security for a Process (see page 399)

Define the Run Duration for a Process

You can define the expected run duration for a process. If the process run time exceeds
the defined duration, the Operations tab displays a red (warning) indicator.

Follow these steps:

1.
2.

Click the Library tab.

Select a folder and then select a process object for which to define the run
duration.

Note: If the appropriate process object does not exist, create it. For more
information about creating a process, see Designing Processes (see page 87).

Right-click the process object and then select Properties.

On the Properties pane, click the Duration tab.

Note: See the tooltips or the User Interface Reference for field descriptions and
examples.

Chapter 3: Library Browser 69

Working with Objects and Folders

5. Select the Enabled check box.
The product enables the Duration tab fields.
6. Set the expected process duration.

7. Set how long before the process run exceeds the expected duration that the
product warns the user.

8. Click Save.

The Duration Status displays one of the following status indicators for the associated
runtime process instance:

m Red: The process run has exceeded the expected duration.

m Yellow: The process is running but is nearing end of the expected duration.

m Green: The process ran during the expected duration. The status is green while a
process is completed and while a process is running and not in yellow or red status.

m No indicator: The process has no expected duration set.

..g CA Process Automation

Home Library Operations Configuration
Jn 3 Fa'l
open (1) Suspend Resume Abort [A Export [Archive Dataset me Refresh Orchestrator &
Links & 5
Process Instances © Current
Process Instances
5
Operatars
Tasks 4
active Schedules N

Global Schedules

2
Start Requests

1

Content Packages = o
Process Watch . Queued Running suspended W aiting Elocked completed Failed Aborted
Start Requests - |[] Instance ~ State Progress Duration St.. Start Time End Time User Touchpoint Content Package Name Content Package Release
—_— [» Process_1_z4z Running @ Good Apr 22, 2013 113 parnadmin content vid
T . [[] » ProcessStarter_232 Running g Good Apr 22, 2013 11:.. parmadmin
Schedul . [T] v ProcessStarter_222 Running o Good Apr 22, 2013 11:.. pamadmin cantent V14

chedules

70 Content Designer Guide

Working with Objects and Folders

Versions

CA Process Automation uses a version control system that tracks your changes to the
objects in your library. The version tracking system always maintains a single current
version for each object. When you open an object, the application automatically uses
the object that you designated as the current version. The application retains other
versions of an object for backup or archive. You can open archived versions of an object
to view, edit, or designate as the current version. The object owner or another user with
sufficient permission can change which version is the current version.

You can check out then edit any version of an object. When your edits are complete,
you can check in changes either to that version or to a new version of the object. To
prevent users from changing a specific version, you can designate it as a baseline
version. A baseline version can be used like any other version. You can also check out a
baseline version and edit it, but you can only check in the object as a new version.
Baseline versions are a benchmark or template for further development.

To release a new version of a process with all of its components, set the release version
attribute for the process and each associated object. The release version (see page 424)
typically identifies a version of an object that you deploy to a production environment.
CA Process Automation maintains the release version attribute that was set before
export in the import environment. You set a release version attribute for each object,
add each object to the folder, and initiate the export of the folder. If you export the
folder as a content package, the release version is nonmodifiable in the production
environment. The import process automatically baselines the release version of a
content package to prevent users from checking in changes in the imported version.

Chapter 3: Library Browser 71

Working with Objects and Folders

; .‘ CA Process Automation
@ add New = | By X Delete () CheckIn ¥\ Undo Check-ot &7 Set Onne re Ac v | & Refresh (@ melo |
Library Browser Contents of Folder [
- Name Type Date Created Date Modified Checked Out By Current Version Latest Version
J Draft Objects 7) [Phase 3 Dataset 002) Dataset 18/11/2011 11:42:39 18/11/2011 14:46:21 Design_01 2 4
Y N
oy Chgest & Phase 3 Custom 5"@’:45:5"\::“\ 18/11/2011 14:50:17 Design_02 1 2
4[3 Organizational Objects
403 Project POT 4 Phase I Process_001 Process 18/11/2011 14:45:17 4 s
4[5 Automation Library
3 Live Objects Page 1 of1i 10 ¥ Rows On Each Page Oisplaying 1 - 4 of &
] Project P02
1 Project P14 Propertics
] Project P37
P: M Projectt, O Hold Version ReleaseVersion Current Baseline Last Modified on Hodified by Created on Created by
Teamn Folder s 4 folse false s 6:57 Design_01 1 1 Design_01
Team Templates S G
& 3 e 4:53:56 Design_01 User X
(3 User X0250 5 g =
i o 2 ve ser rigi .,‘
2 oc 8 User X Original_1
[Recycle Bin : : _— B el
Phase 3 Dataset_002 (Ve)-Dataset Editor %X
&=
8 check In @ Help
Phase 3 Dataset_002 (Version 2)-Dataset Editor
- - - Dataset Properties ver Audit Trail
@) Check In %) Add Variable X (¥) Add Page Delete Page e
© 04 © e 2 Audit Trail @
Dataset Object Propert: Versions Audit Tral Last Updated Username Action Type Version
Version 3 ul 21, 2012 5:24:27 AM Design_01 Checked out
The object s checked out esstul
Version~ Release Vers Curren Baseine LastModifiedon Modificd by Created on Createdb e R L
B ul 21, 2012 1:46:44 AM Design_01 Checked in with new version
o 4 4 ([146:!
R Corrent | [Baseline] 18/11/2011 11:46:5 Design 01 18/11/2011 1 Design 0 | 3o soosaeiad am s i
Ver wos made the current version successfully.
2 3 R3 premmmmS 18/11/2011 14:53:5 Design_01 18/11/2011 11; User X @ 012 7:20:47 PM Design_01 Release vorsion set
¥ 7:00:24 PN Design_01 Release version set,
3 8/11/2011 14:46:2 8/11/201
2 R2 18/11/2011 14:46; User_X 18/11/2011 11: Original_ @ Jul 20, 2012 6:59:55 PM Design_o1 Cresked
o 8/11/201 142 &/11/;
1 Rl (Ccumant] [[Bassline) 1¥/11/2011 11:42:3 User X 18/11/2011 11: Original_
Page |1 of 1 25 * Rows On Each Page Oisplaying 1 - 6 of 6
. I
Item: Description:

®

Object Versions: For each object, the library browser displays the user who
checked out the object and the current and latest object versions. In this
example, the current version of the selected dataset is 2, which is the version
that user Design_01 checked out. The latest version of the object is version 4.

@

Versions Tab of the Properties Panel: The Versions tab of the Properties panel
lists the original and all subsequent versions of an object. You can see which
version is current, which version or versions are baselines, and creation and
modification information.

The Versions tab of the Properties panel also provides an editable Release
Version field. Optionally, you can take the following action:

1. Add a release-specific value to the Release

Version field as part of preparing for export.
2.

Note: If you exported the object as part of a content package, then the
Release Version field is nonmodifiable once the object is imported into a new
environment. A tooltip on the field indicates that it is locked.

Select this version of the object for export.

Versions Tab in an Object Editor: When you open or edit an object, the
Versions tab lets you select a single current version and one or more baseline
versions. The other information is the same as the information displayed in
the Properties panel.

72 Content Designer Guide

Working with Objects and Folders

Item: Description:

Audit Trail Tab in the Object Editor: The Audit Trail tab provides a history of
all changes to each automation object.

Chapter 3: Library Browser 73

Working with Objects and Folders

Understanding Versions

Refer to the following graphics and examples to learn the essential concepts about
working with versions.

Symbols:
Object version. . Current version.
Working version. @ Discard working version.
Open a previous version. @ Baseline version.
Version checked out by user 1. . Latest version checked out by user 2.

—@ = 2 Or—

e

-_-"‘—"

(3)

ol - X

®
O
@

©®©

®
@

B
.

C>®

N

0
O
O

Item: Description:

@ Typical Versioning Sequence: A new automation object begins at O version 0. The

object is checked out as O working version 0, with the option of applying pending
changes to the same version 0 or new version 1.

74 Content Designer Guide

Working with Objects and Folders

Item:

Description:

Current Version: In this typical sequence, O working version 0 is checked in as new
version 1. The new version is also typically designated as the O current version. The

current version is the one that is used when the process actually runs. The original O
version 0 is now considered just a backup or archive.

Changes Applied to the Same Version: In this example, O version 2 is checked out
multiple times. Each time, the user has elected to apply the changes to the same
version rather than create a new one. Although changes were made in O working
versions 3(0), 3(i), and 3(ii), the user has decided to group them all together into the
same single version. The user cannot go back to view the object in between changes
3(0) and 3(i). No separate version exists to go back to.

Baseline Version: Version 4 has been designated by the user as a @ baseline version.
Any checked-out working version must be checked in as a new version, version 5.
When you specify one or more baseline versions, you are essentially locking each
version. This practice prevents any modifications to the actual baseline versions. They
can only be used as templates or ancestor class objects to facilitate the creation of
new versions.

Current, Working, and Open Versions: O current version 5 has three simultaneous
branches users might follow. In branch A, its changes are applied as O new and
current version 6. In branch B, O working version 5 can be checked in as O new
version 6, with O version 5 remaining as the current version. In branch C, the user
elects to O open version 5. The user can view the version but cannot save any
changes to it.

Multiple Users: While running processes use O current version 6, it is possible for the
object to also be checked out to O user 1 with pending changes in O working
version 7. While running processes use O current version 6, the latest changes to the
object may be made by user 2 and reflected as . latest version 7.

Discard Working Version: The changes to @ working version 7 can be discarded.
Similar to an Undo Checkout operation, this rolls back the object to the last checked in
version.

New Current Version: The . latest version 7 can be checked out as O working
version 7. During check-in, the user can elect to make it the new O current version 8.

Chapter 3: Library Browser 75

Working with Objects and Folders

Set the Object Version as Current or as a Baseline

The Versions tab displays information about the versions of an object. You can perform
the following tasks on this tab:

m Determine when and by whom a specific version was created and last updated

m Determine which is the current version of an object and, optionally, designate a
different version as current

m Determine which versions are baselined and, optionally, designate one or more
versions as baselined

The product initially designates an object that you create as (working) Version 0. When
you save the object and you check it in for the first time, the product designates it as
(current) Version 1. From this point on, the product designates one version as current
and uses this version whenever the process runs. The product starts the current version
by default when you open the object from the Library. By default, modified versions of
objects assume a status of current upon check-in. Optionally, you can use the Current
button to assign the status of current to any previous version. This option lets you
create a version of the object that the product does not access or open by default. You
do not have to check out an object to set the current version. Only the object owner or
a user in the Environment Content Administrator role has permissions to designate a
version as current.

You can baseline an object version to lock it from further updates. Users can use the
baselined version as a template from which to create a checked-in, newer version.
Consider baselining a version when you do not anticipate making more changes to the
object. For example, it is a good practice to baseline objects before you package them
for export. The version that you baseline can be the current version or another version.

Follow these steps:
1. Click the Library tab.
2. Select a folder, right-click an object, and then select Properties.

3. Onthe Properties pane, click the Versions tab.

Note: See the tooltips or the User Interface Reference for field descriptions and
examples.

4. (Optional) Click the active Current button of a version to set it as the current version
and deactivate the button.

5. (Optional) Click the active Baseline button for one or more versions to set them as
baseline versions and deactivate the button.

Note: You cannot revert setting a version as a baseline. If you update a baselined
version, you must save it as a new version.

76 Content Designer Guide

Working with Objects and Folders

Set the Current Version of an Object

The current version of an object is the default version used by CA Process Automation in
development or production. You do not have to check out an object to set the current
version, but you must be the owner of the object or a member of the Environment
Content Administrator role.
Follow these steps:
1. Click the Library Browser tab.
2. Double-click an object.
The object opens in its editor.
3. Click the Versions tab.
4. Inthe row for a specific version, click the Current button.
The disabled Current button indicates that the selected version is now current. You
can directly change the current version by clicking the Current button in any row.

Open the Current or Working Version of an Object

When you double-click an object in the library that you have checked out, the working
version opens. The working version will display the changes you make. If the object has
not been checked out, the current version will open in read-only mode. Check out the
object to edit it.

Open a Selected Version of an Object

You can open a selected version of any object to view or edit it instead of opening the
current version. For example, you can open a previous version or open a new branch of
the object with your latest changes.

To open a selected version of an object

1. Click the Library Browser tab.

2. Inthe Library Browser folders pane, click a folder.

3. Right-click an object and choose Versions and then Open a Version.

4. Inthe Edit Version dialog, click a version of the object and then click Open.

The object opens in its editor.

Chapter 3: Library Browser 77

Working with Objects and Folders

Check Out an Object

To edit and save changes to an object, check it out. Checking out an object allows you to
edit versions of the object while preventing other users from changing it at the same
time. You can open and view an object without checking it out, but you cannot edit it.

You can check out one or more objects before you open them.

Follow these steps:
1. Inthe Library Browser, select one or more objects.
2. Click Check Out.

You can now double-click the checked-out object to open and edit it.
You can also check out a single object after you open it.

Follow these steps:
1. Inthe Library Browser, double-click an object.
The object opens in its editor.
2. From the object editor or the Process Designer, click Check Out.

You can check out, edit, check in, test the changes, and then check out and
continue editing the object.

Save Changes to a Checked-Out Object

Saving the working version of an object prevents you from losing changes as you work.
For example, you could inadvertently close the object editor. Saving changes for a
checked-out object affects only the working version of the object. A new version of the
object is not created and the object is not checked in.

Follow these steps:

1. Check out an object (see page 78).

2. Edit the working version.

3. Click Save.

Once changes are saved to the working version, you can close the editor. The object is
still checked out. The working version remains editable and continues to reflect your
changes as long as it is still checked out. When you open the object again, the
application automatically opens the working version.

78 Content Designer Guide

Working with Objects and Folders

Discard Changes to a Checked-Out Object

Check In an Object

After you check out, modify, and save an object, you may decide that you do not want
to continue working with that specific version. Even if you saved the working version
numerous times, you can perform an "Undo Checkout" to discard the saved working
version.

Follow these steps:

1.
2.
3.

Click the Library tab.
Right-click the object in the main window and select Check In/Out.
Select Undo Check Out.

The application ignores the changes that you saved to the working version and
checks in the object.

To continue working with the object, check it out again.

When you complete your changes, check in the object to save them to the same or a
new object version.

After you complete the following procedure, the Designer remains open and you can
continue viewing the object in read-only mode. Check out the object again to make
more changes.

Follow these steps:

1.
2.

3.

Check Out an Object (see page 78).

Edit the object.

Save Changes to a Checked-Out Object (see page 78).

On the object editor toolbar or Library Browser toolbar, click Check In.

The Check In dialog appears with the object name in the Object Name field.

Chapter 3: Library Browser 79

Working with Objects and Folders

5. To specify how to check in your changes, configure the following settings:
Current

Selected: Make the checked-in version the current version of the object. The
current version is the version that CA Process Automation uses.

Cleared: Retain the previously current version as the current version. Clear the
check box if you are checking in an object for which design is in progress.

Baseline

Selected: The object version that you are checking in cannot be changed during
a future checkout. Baseline versions can only be the basis of new versions. You
can check out a baseline version, change it, and check in the object as a new
version.

Cleared: The object version that you are checking in can be changed during a
future checkout.

Version

Displays the object version that you are checking in.

Release Version

Defines a unique indicator for an object version that is selected for export as
part of a release.

If the Release Version field is read-only, the object was imported previously
with the release version in nonmodifiable mode. The tooltip provides details.

Enter a value for Release Version only when you are preparing the object
version for export (alone, in a folder). Enter a release-specific value so that
there is no conflict with any release version value for an existing object in the
import environment.

Note: If a conflict occurs, the import fails. Specifically, the import fails under
the following conditions:

m The object is imported with the option Import as a New Version and Keep
Existing Object.

m The existing object has a version that has the same Release Version value
as the value you enter in the Release Version field.

80 Content Designer Guide

Working with Objects and Folders

Understanding Baselines

Comments
(Optional) Enter descriptive comments to save with this version of the object.
Check In As

Specifies whether to create a version of the object or apply the changes to the
same version.

New Version: Creates a version of the object.

Same Version: Overwrites the current version of the object with changes made
since it was last checked out.

Click Check In.

Note: If you try to check in changes for a baselined object, CA Process Automation
displays an error message.

The purpose of baselining an object is to lock a version.

Consider the case where you are editing some version of an automation object and
saving the changes. After you complete all the planned changes, you baseline the
current version of the object to prevent future changes to that version. You can check
out a baseline version, modify it, and save the changes, but you cannot check in the
object as the same version. You must check in the changes as a new version.

For example, assume you baseline version 0 of a process, then continue as follows:

1.
2.

You check out version 0.
You edit version 0.

You save version 0.

You check in version 0.

m If you check in the changes as New Version, CA Process Automation creates the
version successfully.

m If you try to check in the changes as Same Version, the product displays the
following message:

You checked out a baseline version. To check in your changes,
you must select New Version.

You cannot overwrite a baseline version by checking in changes to the same
version.

Chapter 3: Library Browser 81

Working with Objects and Folders

Consider baselining a version when you do not anticipate making more changes to the
object. For example, it is good practice to baseline objects before you export them in a
content package. You can equate the packaging process to a release process. So, before
you release an object, you can lock it by selecting baseline at the final check-in. You can
still modify the object later as long as you check in your changes to a different version.

Note: During an export of a folder as a content package, CA Process Automation exports
Release Version attributes in nonmodifiable mode. The import process baselines all
objects so that users in the target environment cannot modify the exported object
versions.

Create a Baseline Version of an Object

To prevent users from changing a particular version, you can designate it as a baseline
version. Users can check out a baseline version and edit it, but can only check it in as a
new version.

You do not have to check out objects to set them as baselines, but you must be the
owner or have administrative permission to the object.
Follow these steps:
1. Click the Library Browser tab.
2. Double-click an object.
The object opens in its editor.
3. Click the Versions tab.
4. Inthe row for a specific version, click the Baseline button.
The selected version is now a baseline indicated by the disabling of the Baseline

button. You can select multiple baseline versions of an object.

Note: You cannot undo or reverse the baseline status of a version. If you want to reset a
version so that it is no longer a baseline, set it to current, check it out, and then check it
in as a new version with the Baseline check box not marked.

82 Content Designer Guide

Working with Objects and Folders

Delete or Restore an Object or Folder

You can delete an automation object, an empty folder, or a folder that contains objects
that you no longer need. The application moves deleted items to the Recycle Bin.

If you inadvertently delete an object you need (or a folder containing an object you
need), you can restore that object with its folder structure.

Note: Only an administrator can permanently purge objects (and their folders) from the
Recycle Bin.

Follow these steps:

1. Click the Library tab.

2. Select one or more objects or folders.

3. Click Delete.

To prevent immediate loss of data, the items automatically move to the Recycle
Bin.

4. Inthe Library Browser folders pane, click Recycle Bin.

5. (Optional) Sort by Date, Name, or Type, or use the search features to locate specific
items.

6. To restore objects or folders, select them and click Restore Selected.
7. To delete objects or folders permanently, select them and click Purge Selected.

Important! After objects or folders are purged, you cannot recover them. When
you select folders or a set of objects for purging, the purge process lists any
checked-out objects. The administrator reviews the list. The administrator then
continues or cancels the purge based on analysis results.

Copy and Paste an Object or a Folder

You can copy objects or folders. You can use a current object version as the basis for
similarly configured objects on the same Orchestrator. Copy a current object version to
the same or a different folder where you can rename and edit it as a new object. For
example, you can configure a custom operator object and then add copies of it within a
library.

Follow these steps:

1. Click the Library tab.

2. Identify the objects to copy in the main window. Verify that the version you want is
marked as the current version.

Chapter 3: Library Browser 83

Working with Objects and Folders

3. Select one or more source objects or folders and click ¥ Copy.

4. Inthe Library Browser folder pane, click a destination folder in the same
automation library, then click = Paste.

Notice the following results:

m CA Process Automation adds the copied objects with the same names as the
original objects.

m Each object has one version, the version that was copied.
m [f the copied version has a Release Version value, the copy retains that value.
m [f the copied version was baselined, the copy is baselined.

m [f this location is the same as the source folder, then CA Process Automation
appends a number to each object name (for example, Process_1).

5. (Optional) Rename the new objects.

Cut and Paste an Object or a Folder

You can cut objects or folders and then paste them to the same or a different folder. For
example, you can cut a custom operator object and then paste it within the same
library.

Follow these steps:

1. Click the Library tab.

2. Identify the objects to cut in the main window.

3. Select one or more source objects or folders and click Cut.

4. Inthe Library Browser folder pane, click the destination folder in the same
automation library and click Paste.

If the names of the objects to paste exist at the target location, select objects at the
target location to replace with the objects you cut.

84 Content Designer Guide

Working with Objects and Folders

How to Work with Nonmodifiable Content

CA Technologies can release nonmodifiable content. The not icon indicates that the
content is nonmodifiable:

C)

i

o
O

The use of nonmodifiable objects is different from the use of modifiable objects in the
following respects:
®m You cannot modify the imported version.

®m You can copy and paste the imported version to another folder and then modify the
copy.

® You cannot modify the release version of an imported object.

®m You cannot modify the release version of a copy of the imported object.
Action-level Details on the Use of Nonmodifiable Content

The following actions are permitted on nonmodifiable content:
m Copy the object with a new name and paste it in a different folder.

m Cut the object and paste it in a different folder.

m Delete the imported object.
m View the object properties.
m Perform any actions shown in the More Actions drop-down list for imported

objects.

The following actions are not permitted on nonmodifiable content:
m Edit the object.

m Rename the object.

m Check in or check out the object.

m Open the object version for edit.

m Edit the object properties.
m Set the owner on the object.
m Export the object.

If nonmodifiable content is exported in a folder, the following actions are not permitted
in the folder:

Chapter 3: Library Browser 85

Working with Objects and Folders

® |mport
m Create object

m Paste

86 Content Designer Guide

Chapter 4: Designing Processes

CA Process Automation process objects graphically represent operators, ports, links,
logic, and constraints. Each process contains one or more chains of operators that you
can run in a sequence or in parallel. Lanes separate parent processes from any triggered
secondary processes. For example, a branch of a process that switches to a subprocess
is often depicted in a separate lane. Exception handlers control operators that abort or
terminate due to system errors or unidentified exit conditions.

Each process defines the configuration and management of operators on touchpoints in
an environment. Process objects are stored with other objects in a library that is
associated with an orchestrator. You can create process objects in the Library Browser
or directly in the Designer. You also open them from the Library Browser. However, you
view and edit processes in the Process Designer.

This section contains the following topics:

The Process Designer (see page 88)

Operators and Links: The Building Blocks (see page 90)
Create a Process Object (see page 91)

Design a Process (see page 92)

Process Operators (see page 93)

Process Operator Ports and Links (see page 100)
Process Loops and Iterations (see page 105)

Process Control (see page 116)

Process Lanes (see page 123)

Process Versions (see page 126)

Document a Process (see page 127)

Self-Contained Content (see page 129)

Navigate to a Specific Part of a Process (see page 132)
Multi-Tenancy and CA Process Automation (see page 132)
The CA Process Automation Code Editor (see page 134)

Chapter 4: Designing Processes 87

The Process Designer

The Process Designer

The Process Designer provides an integrated development environment where you can
drag and drop operators and links to design processes. The Process Designer also
provides property and dataset configuration, testing, and debugging capabilities.

Use the Process Designer to:

m Design and edit processes.

m Run, monitor, and control the execution of processes in production or test
environments.

m Modify a running instance of a process to recover from an incident.

Add an operator by dragging it from the Operators palette to the design layout. You can
also directly view and configure the properties or dataset values for an operator or
process.

The process designer layout includes the following process elements:

m Canvas: Drag an operator to view guides to help your operator snap to positions in
the grid.

®m Lanes: The example process shows two lanes to arrange segments. You can add
more, merge, or remove lanes. You can also refer to lanes as swim lanes.

m Operators: The functional entities within a process. Each operator except for those
operators at the end shows its exit ports and other smaller status icons.

m Ports: These small connection points represent the exit ports for each operator.
Every operator except the Start operator also has a single entry port.

m Links: These lines connect the exit port from one operator to the entry port of
another operator. You can customize the appearance of these lines.

m Handler Editors: In addition to the Main Editor, the designer also includes two
other tabs along the bottom for editing exception and lane change handlers.

The following graphic depicts the Process Designer.

88 Content Designer Guide

The Process Designer

semame | Log Out | Help v |

2. cAProcess Automation

BaHiDEDSAMEX| -

Process | Process 2 Process 3 Process 4

9] Navigation
Dock Bottom
Dock Right

Item: Description:

@ Designer Toolbar and Process Tabs: When you open a process from the Library
Browser, the Designer tab appears. Each open process appears in its own tab.
Use the toolbar buttons to check out, edit, zoom in or out, save, test, and check
in the selected process object. You can copy and paste operators from one
process tab to another. The toolbar also features icons for creating a process or
opening an existing process (screen images may vary).

@ View Menu: Use the View settings at top right to show or hide the Operators,
Dataset, Properties, and Navigation palettes. You can also dock the properties
and datasets palettes to the right or bottom. Click Tear Off to open the current
page in its own window in your browser to maximize your view.

@ Operators Palette: Drag and drop operators from this palette to your process
layout. You can also enter search criteria (for example, "Get") to filter out
nonmatching operators.

@ Dataset Palette: Use this palette to view, edit, and add variables in process or
operator datasets.

@ Properties Palette: Use this palette and its additional buttons and windows to
manage the properties of the currently selected operator.

@ Navigation Palette: Use this palette to navigate to specific regions inside large
processes with multiple lanes. As a convenience, you can pan in any direction
within this palette instead of scrolling the main designer layout up or down.

® Process Designer: The actual process design appears in this work area, canvas,
or layout. The Process Designer includes the background grid and one or more
lanes.

Chapter 4: Designing Processes 89

Operators and Links: The Building Blocks

Operators and Links: The Building Blocks

The general structure of a CA Process Automation process consists of two basic items:
operators and links. Operators perform tasks or conditional tests. Links connect
operators and determine the processing sequence.

The following list describes some examples of operators:

m File Management operators monitor file sizes, patterns, and other parameters
relative to files on a system.

m File Transfer operators use FTP to perform file transfers and remote file operators.

m Email operators notify system administrators in the event of errors or other
conditional states requiring human intervention.

m Network Utilities interface operators get, update, and monitor SNMP variables and
send SNMP traps for network devices and monitors.

m Resource operators represent resources in limited supply.
m Web Services (SOAP methods) represent an interface between third party products

and CA Process Automation.

Links connect operators and carry out the processing flow. The point where an operator
and link intersect is called a port. A link originates at the exit port for one operator and
ends at the entry port for another operator.

When a process between two operators runs, the processing sequence can be
summarized as follows:

m Activate the first operator.

m Apply logic, get a result, and flow to the appropriate exit port.

m Activate the second operator.

90 Content Designer Guide

Create a Process Object

An operator can have multiple exit ports to handle various results. Each exit link can
initiate a separate branch of operators in a subprocess or child process. Exit and entry
ports enforce a linear sequence in which operators are processed. They can direct the
process flow to a particular branch of a process depending on the outcome of a single
operator.

To direct processing based on the outcomes of multiple operators, use the following
operators:

m The Loop operator.

m The Exception operator in Exception Handler mode.

m Conditional operators, such as the And operator or the Or operator.

These operators allow you to design multiple entry and exit branches for other
operators. You can also create links that depend on the outcomes of multiple operators.

Create a Process Object

Use the Library Browser to create a Process object in a folder. You can also create a
process in the Designer and specify a folder when you save it. Create a Process object
for every discrete automation sequence, flow, or subprocess that you want to
automate. After creating the Process object, design the process by adding operators and
connecting them with links.

Note: To set rights and perform other object tasks, the best practice is to organize the
objects in folders. Do not create objects at the root level because you cannot manage
such objects as a group.

Follow these steps:

1. Click the Library tab.

2. Inthe Library Browser folders pane, select a folder.

3. Inthe toolbar, click New and then choose # Process.

A new process object appears with a default name. The process is automatically
checked out to you to capture your exclusive changes.

4. Click the process name and change it to a unique name. The name is directly
editable until you deselect it. To edit it again, right-click it and choose Rename.

You have created a new process object. Next, you can design the process.

Chapter 4: Designing Processes 91

Design a Process

Design a Process

Complete the steps in Create a Process Object (see page 91) first. After you understand
the concepts and steps behind creating your first few new process, you can easily edit
any process. Use the Process Designer to design and configure all process objects.

Follow these steps:

1.

Double-click the process in the Library or open it from the Process Designer.
The Process Designer opens with a default set of basic start and stop operators.

Use the Process Designer to design and configure the process. This includes adding
operators, ports, and links. Refer to the remaining topics in this section in any order
to guide you.

To configure properties for a process, click any neutral space in the canvas, and
choose Properties from the View menu in the toolbar.

The Properties palette opens. The process properties determine the default
behavior for all operators added to the process.

Configuration

Specifies whether to display horizontal or vertical swim lanes.
Link

Specifies the weight, color, and shape of the lines that link operators.
Simulation

Specifies the default simulation options for operators added to a process. You
can also override these settings for a specific operator.

Label Options

Specifies the default display options for operators added to a process. You can
also override these settings for a specific operator.

When finished, click Apply to view the changes.
Continue with any other tasks in this section of this guide.

When you are done editing an object click Save and then Check In.

Process Design Tips

Keep the following tips in mind when working with processes:

You can repeat any of the topics in this entire chapter in almost any order. For
example, add a swim lane, add a port, or connect a link.

As a basic rule, you can edit a process using the same steps for editing any
automation object in the library. See Working with Objects (see page 58).

92 Content Designer Guide

Process Operators

Always check out the process to prevent others from overwriting your changes. You
can check out a process before opening it (in the Library Browser) or after opening
it (in the Process Designer).

CA Process Automation always runs the current version of a process; however, if
you have an object checked out, CA Process Automation is smart enough to run
your working version.

When you check in a changed process, decide how its versions are handled. You can
either replace the version that you opened or you can create a separate distinct
new version.

Before you test changes to a process, check in the edited version that you had
previously checked out.

Process Operators

Process operators apply functions or perform actions to yield a result. The collective
results of a series of operators determine the automated flow through the process.

@®

= ¥ . O] o
®'\. gl R L : iy o on
s :
________________ 17, -'“"""""""" I"""""""""-
é [.® (6)
Y : L e ‘ ®
0[;./]) §

Item: Description:

Start Operator: All processes include at least one Start operator with no entry port and a single exit
port. It is possible, although rare, to have more than one Start operator in a process.

Stop Success Operator: All processes include at least one Stop operator. Stop operators come in two
flavors or types: success (shown here) or failure.

Chapter 4: Designing Processes 93

Process Operators

Item:

Description:

Selected Operator: The currently selected operator border appears as a dashed outline. The Properties
palette displays the currently selected operator's settings.

Database Query Operator with Multiple Exit Ports: As you add ports, they appear around the
operator's bottom and right edges. Each port represents the process flow for a particular result.

Note: Right-click an operator to add a port.

Delay Operator with After Port: Delay operators do not include successful Completed or Timeout ports.
In addition to a custom result port, they feature just two default ports: After and Failed. Different
operators include different ports.

Send Event Operator with Breakpoint Indicator: Status indicators appear when you click Set
Breakpoint.

Disabled Operator: When you disable an operator, the designer gives it a transparent appearance. You
can decide later to enable it.

94 Content Designer Guide

Process Operators

The Start Operator

A default Start operator is automatically applied when you create and open a new
process. The Start operator has no entry port. Configure the properties for the Start
operator in the Properties palette. For example, you can change the name, specify a
custom icon, or change the location and text in the icon label.

The Start operator starts a chain of operators in any process. When a new process
begins, it immediately activates the Start operator. All operators must be linked either
directly or indirectly to this chain of operators. A process can have multiple Start
operators to initiate multiple processing paths. These paths are also known as branches
or subprocesses. However, as a general rule, a process really only needs one Start
operator. As the example shown at right illustrates, a more efficient design utilizes the
same Start operator and perhaps even the same Stop Success operator. Multiple links
can share the same operator.

<D
2%
i
| =) L1 feet
A, - (o o o oy
J
04 oy 0 |
r r -
| o %y =
V| 0¢ o 0y
2 w0 t— | s J
o .
o Q 04

Note: Running multiple branches in parallel with multiple Start operators can result in
confusing log entries. The logs may be difficult to analyze because the run sequence of
branches with multiple starts may appear to be in random order. In most cases, use a
single Start operator for each process.

Chapter 4: Designing Processes 95

Process Operators

Add Operators to a Process

After you place the Start operator in a process, drag the next operator, and then join the
links that determine the process flow.
Follow these steps:
1. Do one of the following to open a process
a. Inthe Library Browser, double-click a Process object.
b. In the Designer toolbar, click Open.
The Process Designer tab appears. If not already checked out, click Check Out.

2. Drag an operator from the Operators palette onto the process layout anywhere
below or to the right of the Start operator. Operators are arranged in folders for
each module or operator category supported by CA Process Automation. Enter the
name of an operator in the Search field to search for matching operators.

3. Repeat the previous step as often as necessary to create a chain of operators.

4. Create the first link in the chain. Click the small exit port under the Start operator
and drag the link to the destination operator's entry port.

5. Continue to logically connect exit ports to the entry ports of operators in sequence.

6. Configure each operator by double-clicking it to open its Property palette.

96 Content Designer Guide

Process Operators

Logical Operators

The logical operators (And, Or) are used to synchronize, unite, and split processing
according to conditions. In this release, the And and Or operators are available in the
Standard folder in the Operators palette.

Note: Beginning in CA Process Automation r4.0, the Derivation operator is no longer
available. When imported or migrated to this release from a previous release, the
Derivation operator is converted to an Or operator.

Example: Conditional Logic

The following process example shows eight operators and nine links (two blue, four
green, and three red).

‘;A ﬂ'.u
-] .] -2
e 9
- 3 H
l |
AND
 S—

m The Start operator at the top initiates simultaneous processing of the first two
linked operators (Task 1 and Task 2).

m Task 3 starts only after Task 2 successfully completes.

m The And operator on the Task 1 and Task 3 exit links is activated only after both
Task 1 and Task 3 successfully complete. This path ends at the green Stop Success
operator.

m The Or operator on the Task 2 and Task 3 exit links is activated after an abnormal

exit from either Task 2 or Task 3. This path ends at the red Stop Failure operator.

m The Process Control operators running on an orchestrator run a process. You can

run individual process tasks on any agent touchpoint that is in the same
environment as the Orchestrator. For example, Task 1 can flow on a Windows
touchpoint while Task 2 and Task 3 flow on a UNIX touchpoint.

Chapter 4: Designing Processes 97

Process Operators

The And Operator

The Or Operator

The And operator defines a synchronization point between all entry links to it. Exit links
from an And operator are activated only after all the entry links to it have been
activated. Use an And operator to synchronize multiple branches of a process when all
branches must be completed before beginning one or more additional branches.

The Or operator activates exit links when any one of its entry links are activated. The Or
operator can also be implemented with a single entry link to enable two or more output
links for separate parallel branches.

You do not have to use an Or operator to implement a logical "or" condition in a
process. Two or more links entering the same operator behave the same as an Or
operator. However, to reduce confusion, and to document the logic in a process, it is
recommended that you use an Or operator rather than merging links in an operation.
The Name property on an Or operator allows you label the operator and document it in
context of the logical sequence of operators in the process.

98 Content Designer Guide

Process Operators

The Stop Operator: Success or Failure

Terminate a process by linking the final operator in a sequence to a Stop operator. A
process can have multiple Stop operators on different branches. A Stop operator
processed on any branch has no exit and terminates processing of the entire process.
Stop operators can optionally be configured to terminate a calling loop in another
process.

Follow these steps:

1.
2.

Open and check out a process.

In the Operators palette, drag a Stop Success or a Stop Failure operator to your
process.

Double-click the Stop operator to open the Properties palette.

In the Stop section, specify the integer value returned by the process in the Result
field and choose a value for the End Type field.

m To end the process normally, click Stop Success and enter a Result value of 1.
The Result value 1 causes a completed process to exit when the process is
called from a Start Process operator in a parent process.

m To end the process abnormally, click Stop Failure and enter a Result value of 0.
The Result value 0 causes an aborted process to exit when the process is called
from a Start Process operator in a parent process.

(Optional) Instead of using these default result settings, you can specify any
expression that returns an integer. The expression should return a non-zero integer
to indicate that the process completed normally or zero to indicate that the process
completed abnormally.

Select the Break Calling Loop check box to break a calling loop. If the process was
called from a looping operator in another process, this option breaks the loop when
processing returns from this Stop to the other process. Clearing this check box
allows a calling loop to continue.

Select the Ignore Running Tasks (Immediate Stop) check box to stop processing the
process immediately when the Stop is executed. This interrupts any other operators
that are still active elsewhere in the process. Clear this check box to allow ongoing
operators to terminate normally before stopping the process.

Chapter 4: Designing Processes 99

Process Operator Ports and Links

Process Operator Ports and Links

Links between operators define dependencies. The links act on the results that each
operator produces. Links define the order and logic of a process as it flows.

Different kinds of actions have different predefined results or outcomes:

m Successful

m Completed

m Aborted

m Failed

m Timed out

The application calculates these outcomes to determine the next exit conditions, ports,
and links to activate, in a logical sequence. For example, you can add a custom port on

some operators and can define the port to activate when an expression returns a True
value.

Exit conditions on an operator are not mutually exclusive. If the product evaluates more
than one exit condition as True, all of exit conditions are processed. Processing multiple
exit conditions on a single operator can start subsequent simultaneous processing of
multiple branches.

When a process runs, the product activates its operators only once. When a link leads to
a previously activated operator, the product does not reprocess the destination

operator and the branch that the link extends ends.

Note: Links are joined to operators at small connection points called ports.

100 Content Designer Guide

Process Operator Ports and Links

9 CA Process Automation

 ARRRRRRRRRLRRRRRRRES li@lllllllllllll‘

@ < Link Properties f
weeel 4R Joveee " Weight J

ke 3 ; ,

-9

E
®

“»

Color

“eececcecscnnces y Choose Color ~ -
Shapes
&) Straight .

oo |t | e e s B 7] Dsbed

0K

Cancel

Item: Description:

@ Selected Operator: Click an operator to view its dataset variables, pages, and
properties. Right-click an operator to add an exit port.

@ Link Properties: Do one of the following to adjust the appearance of a link:
m Double-click a link
m Right-click a link, then select Link Properties

Select the thickness, color, shape, and dashed
appearance of each link.

@ Link Line Shape: Instead of ordinary orthogonal lines, this purple link appears
with straight line segments. You can stretch and position all links as necessary.

@ Stopped Link: This link has been forced to stop. As an example, consider a
process that is looping, waiting for some event, processing that event, and
looping repeatedly. When a parallel process branch determines that the
original looping process must stop, it can use the stopped port and link to stop
the loop.

@ Broken Link: Break a link to split a long circuitous route into two numbered
stubs. The split links are easier to view and manage. To rejoin the numbered
stubs, right-click the circled link number, then select Join Links.

Chapter 4: Designing Processes 101

Process Operator Ports and Links

Item: Description:

@ Disabled Link: This dashed gray link to indicates that it is temporarily disabled.
Right-click the link to re-enable it.

Add Operator Ports and Links

Place a link between operators to establish the logical flow. For example, link the Start
operator to the next operator to begin a process flow. Links connect one of any number
of exit ports on one operator to the single fixed entry port of another.
Follow these steps:
1. Open a process.

The Process Designer tab appears. If not already checked out, click Check Out.
2. Identify a source operator, its exit port, and a destination operator's entry port.

3. Onthe source operator, if the exit port you want does not appear, right-click the
operator and then click the port you want to add. Port types vary by operator.
Examples include Failed, Completed, After, and Custom.

A new color-coded exit port appears on the operator's border.

4. Click the exit port on the source operator and drag the link to the entry port of the
destination operator.

A new link appears between the two operators.

5. Repeat these steps, adding links and, if necessary, ports between operators to
define the process flow.

6. Inthe toolbar, click Save.

102 Content Designer Guide

Process Operator Ports and Links

Custom Exit Ports and Expressions

Most CA Process Automation operators support custom exit ports. When you add a
custom port, specify the following:

® a3 name for the condition
®m anicon to distinguish it from other ports on the operator

m 3 valid Boolean expression that returns True or False when the operator finishes
processing

®m an optional description
You can also move the port to improve your view of the link. Press the Ctrl key while

clicking the port to move it to supported positions along the right or bottom edges of
the operator.

&%

(] / Expression: (Process.GoJava.Result == 1) && (P2.0pM != 1)
/ - Icon

|| Custom Port X

Name: CustomExitPort

(7} Select
()
g, Description: | Custom port for Invoke Java operator called Golava
) =0

In the Expression field, enter any valid JavaScript expression that returns a Boolean
value, either True or False. You can use the custom port expression to evaluate the
result code of an operator. The result code indicates the outcome of the operator and is
returned by the Result variable in the operator dataset. The custom link is activated only
if the expression returns a True condition.

To activate a link based on a specific value for the result code, use the following syntax:
Process.Operator.Result == value
The keyword Process refers to the process dataset. Operator is the value specified by

the Name parameter of the operator. Result is the field name for the result code
variable in the operator dataset.

Chapter 4: Designing Processes 103

Process Operator Ports and Links

To activate a port, you can also construct an expression as a comparison between
multiple statements. In this example, the value for GoJava must be 1 and the value for
operator OpM in process P2 must not be 1:

(Process.GoJava.Result == 1) && (P2.0pM != 1)

When a process runs and encounters an operator with no defined exit port, the process
goes to a Blocked state.

When an operator has multiple custom ports, the application runs all the ports with an
exit condition that returns a True value. Avoid overlapping logic for exit ports if you do
not want to activate more than one exit link at a time. This condition is more likely to
occur if you include both standard and custom ports on the same operator. For
example, if you include a custom port activated by the expression Process.A==5 and a
standard successful port on an operator, an operator activates both exit links when
Process.A returns 5. To trap values and route processing to a single port, it would be
better to use more than one custom exit port to specify exclusive expressions, such as:

(Process.A == 5) AND (Process.OperatorName.Result == 5)
(Process.A == 5) AND (Process.OperatorName.Result != 5)
(Process.B == "finance") AND (Process.OperatorName.Result == 7)
(

Process.OperatorName.Result == 1) AND (Process.A <> 5)

In this example you could also include the standard failure link to cover when the
operator result variable returns 0. If you are uncertain about the results of different
outcomes, you can use the simulation function on an operator to test outcomes of
different permutations of settings and values.

Note: Use variable assistance features (press Ctrl + Space) to ease constructing these
expressions.

You can edit a custom port any time after you add it to an operator by double-clicking
the port. If you cannot predefine a course of action for a particular exit condition (for
example, when a database import fails), you can omit a link for it. When an exit
condition for an operator is not specified by any exit link, the process enters a
suspended state until a user can take corrective action.

More information:

Simulate Processing of Operators (see page 415)

104 Content Designer Guide

Process Loops and Iterations

Break a Link for Readability

Links can become tangled in a complicated process and clutter your view. If you have
many links crossing one area, or you want to link an operator across other branches to a
distant operator, you can break a link.

Note: The link itself is not broken; only the visual representation of the link. Instead of a
full line winding its way between two operators, the line is split into two matching
numbered link symbols at the source and destination operators.

Follow these steps:

1. Identify the link you want to break between a source operator and a destination
operator.

2. Right-click the link, and select Break Link.

The link is broken, replaced by matching link markers at both ends of the link. The
split link behaves the same way as an unbroken link.

Note: To rejoin a broken link, right-click either numbered link marker, and click Join
Link.

Process Loops and Iterations

Surveillance, monitoring, and other cyclical processes often run repeatedly. You can
control these cycles using loops. You can apply one or more methods for running
operators in loops:

® You can cycle through or loop an operator until some condition is met.
m You can use the Loop operator to loop a sequence of operators.

®m You can loop an entire process. A looped process can consist of multiple linked
operators.

Chapter 4: Designing Processes 105

Process Loops and Iterations

System Variables for Looping

You can create custom loop variables and manage them yourself, or use the available
system variables for loops included with this release of CA Process Automation.

For example, you could create logic to calculate the duration from the start time of the
first iteration of a loop to the current time for each loop. You could even use pre and
post execution code to set up input into a loop such as

m initializing variables
m setting loop counts

m processing results when the loop is complete

Instead of creating and updating your own loop counter variables, you can take
advantage of built-in loop variables. The Loop operator and any other operator with
loop settings support the following dataset variables:

m CurrentLooplteration

m OverallLoopDuration

Use CurrentLooplteration when you need a standard loop counter. The
CurrentlLooplteration variable contains the value 0 during the first iteration of the loop
and increments by 1 at the beginning or end of each additional iteration. For example, if
the operator is configured to loop 3 times, at the end of execution of all iterations,
CurrentLooplteration is equal to 3. Specifically, it is 0 in the first iteration, 1 in the
second iteration, 2 in the third iteration, and 3 in the last iteration. The last iteration is
not executed because it violates the loop condition.

Use OverallLoopDuration when you need to loop for some fixed time duration; for
example, to loop for a maximum of 5 minutes and then exit. This variable contains the
number of seconds between the start of the first iteration of the loop and the end of the
last iteration. OverallLoopDuration is updated at the beginning and end of every loop
iteration. It includes any delay set between iterations of the loop.

Note: You cannot modify the CurrentLooplteration and OverallLoopDuration system
variables. Although they appear in the operator dataset, their values do not change
unless they are looping (operator Repeat Count > 1).

106 Content Designer Guide

Process Loops and Iterations

Loop an Operator in a Process

A simple method for looping a process is to set the Loop parameters on an operator that
supports looping. Open the Properties palette for the operator. In the Execution
Settings section, in the Repeat Count field, enter the number of times for the operator
to repeat. Repeat Count is a calculated field, so you can use a variable or expression to
specify the count at runtime. Repeat Count accepts either an integer (the number of
times to loop) or a Boolean (the loop continues as long as the condition evaluates to
true). Examples of valid entries include:

3

Process.var < 3

Process.var == false

You can repeat the operator indefinitely by selecting the Infinite Loop check box.

The @ Loop indicator appears on operators that you have decided to loop:

StartProcess Propertics
Run Process
Execution Settings
Target
Target: il

Target is a calculated expression.

wProcessin 9

Run as Caller User

Run as Caller User

Loop —
Repeat Count: 3
Infinite Loop —
Delay between iterations:
rimeont i L'J- OpStartProce
9 o Timeaut 1
=a X}

You can configure the loop parameter on the Start Process operator to run a process
repeatedly. This works well for looping a few iterations of a process and saving a
historical snapshot of the process for each loop. However, avoid calling a process many
times (as in an infinite loop) from another process. CA Process Automation keeps a
history of all process instances. Calling a process in an infinite loop from another process
can use a considerable amount of disk space to save irrelevant data.

Chapter 4: Designing Processes 107

Process Loops and Iterations

The preferred method for running a process repeatedly is to loop cyclically within a
process. When necessary, you can still save a historical snapshot of a looping process by
branching to a Start Process operator that starts a new detached instance of the process
before executing a Stop operator at the end of the branch.

You can specify the retention period, or length of time to save for the history, in the
library policy settings for an orchestrator or its associated touchpoint.

Note: If you set an operator to loop with a timeout followed by an action of Reset, the
loop condition is checked when moving from one iteration to another, not when
resetting an iteration. The OverallLoopDuration variable contains the number of seconds
since the start of the first iteration, including time spent in all the reset iterations. Loop
iteration resets do not also reset OverallLoopDuration.

If you set an operator to loop with a timeout followed by an action of Continue,
OverallLoopDuration will contain the number of seconds from the start of the first
iteration until the end of the last successful iteration. If the operator times out,
OverallLoopDuration will not contain the number of seconds from the start of the first
iteration until the time the operator times out.

Interrupt a Looping Operation

You can interrupt a looping operator by adding a stop link from another branch of the
process.

Follow these steps:

1. Open and check out a process.

2. Create a link from an operator in an independent branch and attach it to a looping
operator.

3. Right-click the link, and click Stop Link.

The link appears as a dashed red line with a red stop symbol near the looping
operator.

4. Click Save.

At runtime, the separate branch reaches the looping operator, and the following actions
occur:

m The looping operator runs and completes itself.
®m Any post-execution actions for the operator are performed.

m The now-merged processing from the two branches proceeds to the next operator
in the process.

108 Content Designer Guide

Process Loops and Iterations

Loop Through Indexed Elements of a Dataset Field

Instead of using the built-in CurrentLooplteration and OverallLoopDuration system
variables, you can create custom loop variables and manage them yourself. Previous
versions of CA Process Automation required this method. For example, you could create
logic to calculate the duration from the start time of the first iteration of a loop to the
current time for each loop. You could even use pre and post execution code to set up
input into a loop such as

m initializing variables
m setting loop counts

m processing results when the loop is complete

To loop through all the elements of an indexed dataset field, first use a Run JavaScript
operator in the Utilities group to initialize the Currentindex element for the dataset field
to 0. For example, the following expression initializes the Currentindex element on the
process variable X to 0:

Process.X.CurrentIndex=0;

To loop through indexed elements of a dataset field

1. Connect the Successful exit link from the Run JavaScript operator to the operator
you want to process in a loop.

2. Inthe Dataset palette of the operator that you want to loop, use a Size element
setting for the indexed field as the Repeat Count value on the Loop tab. For
example:

Process.X.Size.

3. Toincrease the Currentindex setting after completing each iteration of the loop,
use a post-execution code expression. For example:
Process.X.CurrentIndex=Process.X.CurrentIndex+1;

In this case, the Currentindex element is the counter for the loop. You can use the
Currentindex setting to access elements of the indexed field in calculated
expressions. For example:

Process.X[Process.X.CurrentIndex];

Note: If you are accustomed to programming languages such as Visual BASIC that
use one-based arrays, remember that an indexed dataset field is a zero-based array.
In one-based arrays the first element is indexed by 1 and the last element is
indexed by the number of elements. The first element of an indexed dataset field is
indexed by 0 and the last element is indexed by one less than the value of the Size
element for the field.

In addition to accessing elements in an indexed dataset field, you can track the iteration
number during loop processing for other purposes. Use a process variable such as
process.i for the index variable. In an Interpreter Module Calculation operator that
precedes the looped operator, initialize the process variable to its starting value. For
example, process.i=1. To increase the index variable after completing each iteration of
the loop, use an expression in the post-execution code for the operator. For example:

Chapter 4: Designing Processes 109

Process Loops and Iterations

Process.i=Process.i+l;

Note: The steps in this topic are considered no longer necessary; however, they are
included for reference with legacy code. If using the newer system variables, only step 2
applies and step 3 is replaced as follows. Use the CurrentLooplteration variable of the
looping operator to access elements of the indexed field in calculated expressions. For
example:

Process.X[Process[OpName] .CurrentLoopIteration];

Index the Loop Count for Other Purposes

You can track the iteration number during loop processing for accessing elements in an
indexed dataset field, or for other purposes. Use a process variable for the index
variable (for example, process.i). In an Interpreter module Calculation operator that
precedes the looped operator, initialize the process variable to its starting value for the
loop:

Process.i=1;

To increase the index variable after completing each iteration of the loop, use an
expression on the Post-Execution Actions tab of the operator properties. For example:

Process.i=Process.i+l;

Note: This topic is considered no longer necessary; however, it is included for reference
when working with legacy code.

Loop Errors and Exceptions

If an error occurs with respect to the pre or post-execution code:

m The process logs indicate that the Loop operator pre or post condition failed to
execute.

m The process exception handler is triggered with an abort exception. The Source and
SourceROID point to the Loop operator.

110 Content Designer Guide

Process Loops and Iterations

Loop a Series of Operators

You can also loop a series of operators inside a Loop operator.

Follow these steps:

1.
2.

Open a process.
Drag the Loop operator from the Standard operators group onto the process.

Resize the bounding box for the Loop operator to accommodate the sequence of
operators that you want to add to the loop.

Drag operators into the box.

The bounding box color changes to indicate it is the selected destination for
operators you drag.

Add ports and links.

Link the entry point on the box to the first icon in the branch and link the last icon
to the exit port on the box.

Add links to and from the Loop operator:
a. Link at least one operator outside the box to the entry port.

b. Link the exit port to at least one operator outside the box.

Loop Operator Properties

Operators(225
L 222 Loop Property

e Repeat Caunt ;
& Delete File - < i s

Infinite Laop
. 1 Delay between erations:

while loop

& TFTP Uplead File ie [

O Uplead File

T EElE L y«(an"@

0 Proce
[ucFuUSM Module

- o Icon
1 Uncategorized =

Override Object Preferences:
[0 Utilities

T

3 weooeen |

| Name Laop Operator

{ ~ Label Display
&y { | Show Labels: o

— lobdl source_________Ji&

Double-click the Loop operator to view its Properties.

The Properties palette for the Loop operator appears. If it does not appear, choose
Properties from the View menu.

Set the Loop Properties and click Apply.

Note: You can create an infinitely looping branch by selecting the Infinite Loop
check box. As with any infinitely looping operator, you can stop the loop by adding
a Stop link from another operator.

Chapter 4: Designing Processes 111

Process Loops and Iterations

Note: Values for the CurrentLooplteration and OverallLoopDuration system
variables are updated for each process instance and appear in the dataset. Even if
the Repeat Count for the Loop operator is set to 1, CurrentLooplteration shows 1
and OverallLoopDuration shows 10 at the end of a single instance. By contrast, the
CurrentLooplteration and OverallLoopDuration system variables are only updated
for other operators when Repeat Count is greater than 1. This is because the Loop
operator always loops, even if it is only one time.

More information:

Interrupt a Looping Operation (see page 108)

While and Do While Loops

Use the While Loop check box of the Loop operator to manage loop behavior. When
checked, the Loop operator behaves as a while loop. When unchecked the Loop
operator behaves as a do while loop.

Any existing Loop operators in content developed before an upgrade to CA Process
Automation 4.0 will have the While Loop field unchecked. They will continue to behave
as do while loops. You can turn these Loop operators into while loops by checking the
associated While Loop box.

The two main differences between while and do while Loop operators are:

While loops check the loop condition specified in the Repeat Count field before it
executes the first iteration and each subsequent iteration.

Do while loops check the loop condition specified in the Repeat Count field at the
end of every iteration, so it is guaranteed to always execute at least the first
iteration of the loop.

Note: A Loop operator can be set to behave as a while or do while loop. The other
operators that support looping can only behave as do while loops.

112 Content Designer Guide

Process Loops and Iterations

The Logical Sequence of a Loop Operator

A Pre-execution code and Post-execution code field are available in the Loop operator
properties. You can enter JavaScript code in these fields to run with each iteration of the
loop. CA Process Automation runs any pre and post execution code for a Loop operator
for each iteration of the loop.

Note: In content developed before an upgrade to CA Process Automation 4.0, loop
operators will have empty Pre-execution code and Post-execution code fields.

The processing sequence of any Pre and Post conditions depends on the type of loop.

While Loop Operators:
1. Run Pre condition.
2. Check while loop condition as indicated by the Repeat Count field.
m If the loop condition succeeds:
a. Reset the operators inside the Loop operator.
b. Execute the operators inside the Loop operator.
c. Execute the Post Condition at the end of the Loop iteration.
d. Loop backto step 1.
m If the loop condition fails:
Get out of the Loop operator without executing the Post condition then
execute the next operator after the loop operator.
Do While Loop Operators:
1. Reset the operators inside the Loop operator.
2. Execute Pre condition.
3. Execute the operators inside the Loop operator.
4. Execute Post condition.
5. Check do while loop condition as indicated by the Repeat Count field.
m If the loop condition succeeds, loop back to step 1.

m [f the loop condition fails, get out of the Loop operator then execute the next
operator after the Loop operator.

Chapter 4: Designing Processes 113

Process Loops and Iterations

Loop a Process

To run a process many times, create a cyclical branch in a process object instead of using
the Start Process operator to call a process repeatedly from another process. This
method involves looping a process cyclically by placing two Start operators. One Start
operator goes at the beginning and another Start operator goes at the end.

Follow these steps:

1. Open and check out a process.

2. Place the following operators:

a.
b.
c.

d.

Start
Stop Success
Stop Failure

A series of operators that you want to repeat.

3. Add a Start operator at the point in the sequence where it ends and where you
want to restart the branch.

4. Link the last operator in the branch to the second Start operator. The Start operator
has an entry link that allows it to be placed at the end of a sequence of steps.

Note: When the processing sequence arrives at the second Start operator shown in
the figure, it reinitializes all operators and restarts the process.

5. Tointerrupt this type of cyclical process, incorporate logic that leads out of the
cyclical branch. Add an exit port on an operator which leads directly to a Stop
operator or a different branch.

114 Content Designer Guide

Process Loops and Iterations

Daemons and Other Looping Processes

When you want to run a process over and over repeatedly, create a cyclical branch in a
process object instead of using the Start Process operator to call a second process
repeatedly. A cyclical process runs in an infinite loop. Each iteration does not create new
instances of the process object. The primary advantage for implementing a cyclical
branch is that the logic that exits the loop is in the process itself. The process does not
depend on external factors in a parent process. The process performs as an autonomous
object.

Examples of looping processes that run indefinitely include:

m Continuously looping processes for monitoring system or network usage

m Polling the state of networks or system components

m Organizing and checking events or messages

® Daemons

m Services

Looping Process Example

Item: Description:

® Start Operator 1: Begin the process with a standard Start operator.

@ Start Process Operator: Design a sequence of operators that represent the
functionality you want to repeat or loop. This branch can even include a Start
Process operator to launch instances of a second process.

Chapter 4: Designing Processes 115

Process Control

Item: Description:

(3) start Operator 2: The Start operator has an optional entry link. When the
process flows to the second Start operator, it reinitializes all other operators
and restarts the process back at Start Operator 1.

@ Exit Port and Link: To exit this looping sequence, specify an exit condition.

Note: An alternate method for interrupting a cyclical process is to use an independent
branch with its own Start operator. The branch can wait for the looping portion of the
process to change a variable or free a resource. After those events occur, the
independent branch runs; for example, by sending an email alert or processing a Stop
operator.

Process Control

Complex processes often require a hierarchy of subprocesses. In traditional
programming, functionality is modular. Teams break down complexity into procedures,
methods, or libraries that you can use repeatedly. Similarly, in CA Process Automation
there are methods to simplify complex processes. You can model subordinate processes
as branches or as separate processes. A separate subordinate or child process can then
be called from a parent process by a Start Process operator. For example, a parent
process managing computer systems for a bank could incorporate the following child
processes using Start Process operators:

m During each business day, process automatic bill payments.

m During each night, perform a daily backup.

m At the end of each day, process and verify checks.

m At the end of each month, calculate interest for accounts.

Subordinate processes define logically or physically distinct child processes within a
system. The structure of a parent process synchronizes child processes, manages

resources that are shared across processes, and defines error handling and
dependencies between processes on a system-wide scale.

116 Content Designer Guide

Process Control

Child Processes

Use the Start Process operator to start a secondary or child process from a running
instance of a primary or parent process. The Start Process operator starts a new process
instance on a specified touchpoint. The Start Process operator initiates process variables
that are associated with the new instance.

The Start Process operator can start a new instance of a process in attached mode,
detached mode, or as an inline process:

Attached mode: The process that starts the new instance is referred to as the
parent process. The new instance is referred to as the child process. The application
finishes processing the entire new instance. A child process finishing its flow in
attached mode can copy its dataset values to the dataset in the calling parent
process.

If a parent process activates a Stop operator on a branch before a child activates its
own Stop operator, it is possible for the parent instance to finish before the child
instance.

Detached mode: The Start Process operator launches a new child process instance
that behaves as if it has no parent. In detached mode, the workflow that starts a
new instance of another process completes immediately after queuing the start
request. A process finishing in detached mode cannot copy its dataset values to the
dataset in the calling parent process.

Inline process: The child process runs as a separate instance. A parent process has
limited control over the child process. The inline child process is tightly linked to the
parent with access to the parent context and lifecycle such as instantiation or
archiving. You cannot run an inline process in detached mode.

Chapter 4: Designing Processes 117

Process Control

Configure a Child Process

Configure the Start Process operator in a parent process to control the behavior of the
child process it is starting.

Follow these steps:

1.
2.

Open and check out a process in the Process Designer.

In the Operators palette, expand Process Control and drag a Start Process operator
into your process.

Double-click the Start Process operator to view its properties in the Properties
palette.

Expand the Start Process group.
In the Process Name field, enter the full path to the process.

In the Process Dataset Initialization Code field, click the Browse button indicated by
... (ellipsis) to open the full scripting dialog.

Enter JavaScript statements to initialize variables in the dataset of the child process
that you are starting. In this context, the Process keyword refers to the process
dataset of the new instance being started. The Caller keyword refers to the dataset
of the parent instance containing the Start Process operator. This context is the only
one in which the Caller keyword is available. This context is also the only one in
which the Process keyword does not refer to the process that contains an operator.

m Parent Process: Process A

m Child Process: Process B

m Start Process operator in A starts child process B

m Initialization of local dataset B occurs with dataset A as the Caller

The Process and Caller keywords are mandatory for referring to parent or child
process dataset variables. If you omit both keywords on a variable name, the
application looks for a calculation-scope variable. It does not check for a similarly
named variable in either the parent or child dataset. For example, the following
code fails if no calculation-scope variable X was previously created in the local script
dialog:

Process.X = Caller.X;
Process.Y = X + 100;

Click Save to close the Initialization Code dialog.
In the Mode field, select Attached, Detached, or Inline.

If you select Detached, the Start Date field becomes enabled. It specifies the date
when the detached instance of the process starts. The default value is the date
when the operator runs, indicated as System.Date. Similarly, the Start Time field
specifies the time when the detached instance starts. The default value is
System.Time.

118 Content Designer Guide

Process Control

Note: Previous versions of this application included separate Run Process operators for
attached mode and detached mode. Both operators actually performed the same
function. The only difference was that for the operator placed with Run Process, the
Detach after start or after queuing request check box is initially cleared. For the Run
Detached Process operator, the check box was initially selected. In either case, you
could select or clear the Detach After Start or After Queuing Request check box anytime
after you placed the Run Process operator to change its start mode. In this release, all of
these operators are imported as Start Process operators.

Initialize Child Process Variables with the Caller and Process Keywords

To enter a script to initialize Process variables in the child Process, click the Process
Dataset Initialization Code browse button to open the Process script dialog. In the
Process script dialog, you can enter JavaScript statements to initialize variables in the
Dataset of the Process that you are starting.

Process keyword

Refers to the Process Dataset of the new instance being started. This context is the
only one in which the Process keyword does not refer to the Process that contains
an Operator.

Caller keyword

Refers to the Dataset of the parent instance that contains the Run Process
Operator. This context is the only one in which the Caller keyword is available.

Flawchar A

Run Workflow to Start Flowchart B
Initialization Dataset B

Caller = Dataset A
Local = Dataset B

In the Process script dialog, the Process and Caller keywords are mandatory for referring
to parent or child Process Dataset variables. If you omit both keywords on a variable
name in the Process script dialog, the Interpreter Module looks for a calculation-scope
variable. The Interpreter Modules does not look for a similarly named variable in either
the parent or child Dataset. For example, the following code fails if no calculation-scope
variable X was previously created in the Local script dialog:

Process.X
Process.Y

Caller.X;
X + 100;

Chapter 4: Designing Processes 119

Process Control

Return Dataset Variables to the Parent Process

The dataset for a completed child process can be accessed by using an expression in the
parent process. The name of the Start Process operator references the child process
dataset in the local dataset of the parent process. The following code in the parent
process references a dataset variable of a child process:

Process.Operator Name.Field Name

Operator_Name represents the name of the Start Process operator in the parent
process and Field_Name is the dataset variable that you want to access in the child
process.

This only works for processes started in attached mode. Processes started in detached
mode become the root process in a call sequence and do not copy their datasets to the
process that started them.

Start Processes Recursively

Inline Process

Other than memory usage, there is no restriction on the number of processes you can
start in a chain. A process can even start another instance of itself recursively.

Avoid calling processes recursively in attached mode because this practice can result in
an infinite call chain. However, it is often useful for a process to start another instance
of itself in detached mode. For example, you can save an image of a monitoring process
in a certain state, and continue running the process. In this case, the monitoring process
can start a new instance of itself in detached mode, and then execute a Stop operator to
terminate itself. The terminated instance is then saved and an administrator can
examine it in its preterminated state.

The Start Process operator is used to invoke child processes. The child process that is
invoked runs as a separate instance. A parent process has limited control over the child
process and may lead to a performance overhead at execution time.

Inline mode lets you execute a child process and expand it into the parent process. An
inline child process has access to the parent context. The lifecycle of the inline child,
including instantiation, archiving, and so on, is tightly linked to the parent.

CA Process Automation also permits users to decide whether they want to run a process
as an inline process.

120 Content Designer Guide

Process Control

Configure an Inline Process

You can configure a process operator to run a child process in inline mode.

Follow these steps:

1.

In the Start Process operator Properties palette, click the Object Browser (...)
button.

The Object Browser appears.

Select the child process.

In the Mode field, select Inline.

The child process is configured to run as an inline process.

Select the Inherit Lane Change Handler from parent process check box.
The lane change handlers of the parent are loaded for the child process.

Note: The Inherit Lane Change Handler from parent process check box is enabled
only for inline child processes. CA Process Automation evaluates the child process
when the parent process starts. The inline child process is loaded and expanded in
the parent process.

Chapter 4: Designing Processes 121

Process Control

View an Inline Child Process

You can view an inline child process at runtime using one of the following methods:

m In the Designer, click the plus icon on the top right-hand side of the Start Process
operator in the parent instance.

m |nthe Designer, click the Hierarchy drop-down list and select a child process listed
under the parent.

m On the Operations page, click a parent instance.

The following graphic demonstrates these three methods.

——;‘ CA Process Automation

Operations

3 open (il & Expoct B Archive @ Dataset 3 Refresh
Links
Process Instances
Process Instances
0
Operators
Task List
w0
Active Schedules
Global Schedule
Start Requests » DSB i & X « « QU Q B
AA A2 < As AcC
20 =
Process Watch Hierarchy A_1 Completed 00:00:49
Start Request Operators(] @ AL @ =
L 2% e_s
Dataset
sc.t
Resources i
o 2% o1
Schedules Complated Running 8%ea 0
Instance « 2% 26 u
€138 sa%¥en
8_133 8 ‘ﬁ H_36
a 5%1a
2% 146
A_128 W
S S5 K_S1
7 4 A1 e
. =%Ls &
66 v
. 2% - Start_Process 1
s C_11 =%
« 3
‘o =] i
sen }

122 Content Designer Guide

Process Lanes

Process Lanes

The lanes in a process, often called swim lanes, provide a way for you to divide your
process into different logical parts. You can add, insert, resize, and remove swim lanes in
the Process Designer. You can define rules that are triggered when links between steps
in a process cross a boundary between lanes. The rules define additional steps to run
when processing crosses swim lane boundaries.

You arrange process operators visually in one or more swim lanes. Parallel lines show
the lane boundaries. The default lane orientation for a new process is vertical. Initially, a
new process has a single lane, labeled Lane_0. Additional lanes are named in sequence
as you add them, for example, Lane_1, Lane_2, and so forth. You can customize the
names to arrange branches of a process in your own meaningful way.

When there are multiple lanes in a process, you can define lane change rules. These
rules specify operator sequences that are invoked only when execution of a process
crosses between two lanes. A lane change rule looks like any sequence of operators on
the Main Editor tab, except that each rule starts with a Change Lane operator instead of
the Start operator. Properties on the Change Lane operator define the transition
between source and destination lanes that invoke the sequence of operators linked to
the Change Lane operator.

You can add any number of lanes on the Main Editor tab and then form links that cross
lane boundaries between operators in the process. Then, on the Lane Change Handler
tab, you define sequences of operators invoked when execution crosses boundaries.
When execution of a process crosses a lane boundary, it invokes a process on the lane
change handler that is defined to occur for the particular transition (such as from lane A
to lane B).

If you define more than one rule for a particular transition, the application uses the first
existing rule in the following order of priority:

Priority Matches and runs

1 Rule defined for specific source and destination lanes (A to B)
2 Rule defined for a specific source lane (A to any)

3 Rule defined for a specific destination lane (any to B)

4 Rule defined for any two lanes (any to any)

5 No rule if none of the matches listed above exist.

Chapter 4: Designing Processes 123

Process Lanes

If no lane change rules are defined in the process object for the current instance of a
process, the application looks for a matching lane change rule in the default process
object specified in the property settings for the orchestrator. This occurs only if no lane
change rules are defined in the current process object. The application does not check
the default process object if there is any lane change rule defined in the current process
object, even when no match occurs.

When processing crosses a transition between lanes, the application:

m Suspends the process after completing currently executing operators.

m Tries to match a rule defined in the process object or in the default process for the
orchestrator in the following order:

Lane Change Rules Matches Action
Are defined in the Arule in the process object Run the rule defined in the
process object in the order of priority listed process object.

above
Are not defined in the Arule in the default process Run the rule defined in the
process object object for the orchestrator in default process object.

the order of priority listed

above.

No match. Ignore the transition.

Then, the application continues processing the process.

Create Horizontal or Vertical Lanes

Swim lanes are oriented either horizontally or vertically, as configured in the process
properties. Select the orientation of swim lanes before you start to add operators to a
process. You must configure the orientation before you add additional swim lanes to a
process because you cannot change the orientation of multiple swim lanes in a process.

Follow these steps:

1. Open and checkout a process.

2. Inthe Process Designer, click Properties.

3. Inthe Process Properties palette, expand the Configuration section.
4. Under Lane Orientation, click Horizontal or Vertical.

5. Click Apply.

124 Content Designer Guide

Process Lanes

Manage Swim Lanes

You can add, insert, resize, and remove swim lanes in the Process Designer.

To add a new lane to the right of vertically orientated lanes or to the bottom of
horizontally orientated lanes:

1.
2.

On the Main Editor panel of the Process Designer, right-click the Process pane.
Click Lanes, Add Lane.
Note: Alternately, you can click the Add Lane button on the toolbar.

A new lane is added to the Main Editor panel.

To insert a lane anywhere else on the Main Editor tab:

1.

On the Main Editor panel of the Process Designer, right-click the lane adjacent to
where you want to add the new lane.

Click Lanes, Insert Lane, click Insert Lane on Left Side or Insert Lane on Right Side.
A new lane is inserted.

If lanes are oriented horizontally, click Insert Lane Above or Insert Lane Below

A lane is inserted above or below the existing lane based on your selection.

To resize an existing lane, click the separator line between lanes and drag it left or
right for vertically arranged lanes or up or down for horizontally orientated lanes.

Note: The minimum width of a swim lane is 50 pixels.

You can remove a lane from a process by merging it into an existing lane. When merging
a lane, you can merge with a lane either to the left or right of a vertically oriented lane
or to above or below a horizontally orientated lane.

To remove a lane from a process

1.

On the Main Editor panel of the Process Designer, right-click within the lane that
you want to delete.

Click Lanes, click Merge Lanes, and click either Merge with Left Side or Merge with
Right Side.

Note: If lanes are oriented horizontally, click Merge Lane Above or Merge Lane
Below to merge.

Chapter 4: Designing Processes 125

Process Versions

Lane Handling Rules

When a process contains multiple lanes, you can define lane change rules. These rules
specify operator sequences that are invoked only when running a process crosses a lane
boundary. Each rule is defined to occur for one of the following lane transitions:

m From a specific lane to another specific lane (from lane A to lane B)

m From a specific lane to any other lane (lane A to any)

®m From any lane to a specific lane (any to lane B)

®m From any lane to any other lane (any to any)

Lane change rules look like any operator sequence on the Main Editor tab, except each
rule starts with a Lane Change operator instead of a Start operator. Lane Change
operator properties define the transition between source and destination lanes that
invoke the operator sequence that is linked to the Lane Change operator.

Follow these steps:

1. Atthe bottom of the Process Designer, select the Lane Change Handler tab.

2. From the Operators palette Standard group, drag a Change Lane operator to the
Lane Change Handler panel.

3. Double-click the Change Lane icon, and click the Properties pane Change Lane
properties panel.

In the Name field, type a name to identify the rule.
For Source and Destination, select the combination of lanes that triggers the rule.

Click Apply.

N o v &

From the palette, drag more operators to the process that completes the rule for
the transition, and configure each one as necessary.

8. Inthe toolbar, click the Save button.

The new transition rule is complete.

Process Versions

CA Process Automation always runs the checked-in copy of the current version of a
process object. When the orchestrator starts running the current version of a Process
object, it creates a copy of that version of the process in the automation library. The
system processes operators in an instance and creates or references process dataset
variables within the instance. Changes to an instance of a process do not affect the base
definition of the process. Base definitions are accessed using the Library Browser. You
view or edit both the base definition and instances of a version of a process using the
Process Designer.

126 Content Designer Guide

Document a Process

Document a Process

You can generate process documentation. The process documentation can include a
graphic of the process design as it appears on the canvas in the Designer tab.

Use comments, your own operator names, and object labels to supplement the process
documentation you generate. Appropriate comments, naming, and labels help other
designers understand what your process does and how it is constructed. Inserting
comments in a process provides details on chains, processes, or regions in a process.
Comments remain stationary in a process. Do not use comments to label specific
operators because operators are often relocated on the workspace to adjust for links
and other operators. Instead, use the Name property in the Information properties of
the specific operator to label it.

More information:

Generating and Using Process Documentation (see page 419)

Add Comments to a Process

Use the Comment operator in the Standard group of the Operators palette to add
comments to a process. You can change the Name property string for the operator.
Comments are important for documenting steps in a process and allow more space than
labels.
To add a comment to a process
1. Draga Comment operator from the Standard group onto the process.

A comment object appears with a default name of Comment.

2. Double-click the comment to open the Comment Properties dialog.

3. Replace the initial text of the comment with the text that you want to appear on
the canvas.

You can change the background color, text format, and alignment.
4. Click OK to apply your changes.

5. Click Save to save your process design.

Chapter 4: Designing Processes 127

Document a Process

Set the Name for an Operator in a Process

The operator Name property identifies an operator placed in a process. Expressions use
the name to access the operator dataset in the format:
Process.operator name.field name

By default, the Name property is also used to label an operator in the Process Designer
when you turn on the Icon Information option for a process.

When you add an operator to the process, a default name is generated, indicating the
task performed by the operator. You can change this text to provide more meaningful or
specific information about the operator relative to your system.

To change the name of an operator

1. Double-click an operator in a process or click the operator and choose Properties
from the View menu.

2. Inthe Information properties on the Properties pane, in the Name field, enter a
short description for the operator.

Operator names can be composed of alphanumeric characters and the underscore

(L)

Change and Display Operator Information in a Process

The name is included in a text field that optionally labels an operator on a process. The
operator Text property defines this field. The Operator Information option on the View
menu hides or displays this text field next to operators in a process.

To generate a default value for the Text property, CA Process Automation combines the

Operator Name and Operator Parameter settings.

Follow these steps:

1. Double-click an operator in a process.

2. Inthe Information properties Name field on the Properties palette, enter the text to
appear next to the operator in the process.

Note: Use the other settings on the Properties pane Information tab to:

m Specify a custom icon instead of the default icon for the operator.

m Override the object preferences for automatically or manually updated text that is
displayed with the operator.

m Set the text position, background color, font, and alignment.

128 Content Designer Guide

Self-Contained Content

Self-Contained Content

You can embed a process design, runtime instance, automation object, or a particular
view into other products and dynamic interfaces using designated URLs. This seemless
integration offers the following functionality:

m Other development teams can adopt products and solutions that leverage CA
Process Automation and that offer integrated views on one page in one window.
For example, as a customer, administrator, or service provider, you can integrate
specific portions of the CA Process Automation user interface into existing portals
such as web sites, intranets, and Sharepoint repositories.

m Asa process designer, you can construct a process workflow that sends email with a
direct link to a specific task so that the task can be approved directly.

m Self-contained content facilitated by shortcut links to specific views saves time
accessing important and relevant information.

Self-Contained Content Links

The following links support self-contained content in other views, frames, web parts, or

portals. You can also send email with these links to facilitate direct views on specific

objects.

Instead of [Server URL], use the URL for your CA Process Automation deployment:
http://server:port/itpam/Web.jsp

Instead of <path>, specify the absolute path to the automation object and its name in

the Library Browser:

/MyProjectFolder/Folder_1/MyStartForm

Note: These links are case-sensitive.

Automation Objects:

CA Process Automation objects are URL addressable. These tear off URLs can be
embedded within iframe or portlets of other products. For example, you can trigger a
process and have the tracking Ul for that instance embedded into a custom portlet.

Interaction Request Form

[Server URL]?page=Form&refPath=<path>
Start Request Form

[Server URL]?page=Commander&refPath=<path>
Schedule

[Server URL]?page=Agenda&refPath=<path>

Chapter 4: Designing Processes 129

Self-Contained Content

Calendar

[Server URL]?page=Calendar&refPath=<path>
Custom Icon

[Server URL]?page=CustomIcon&refPath=<path>
Custom Operator

[Server URL]?page=Template&refPath=<path>
DataSet

[Server URL]?page=Dataset&refPath=<path>
Package

[Server URL]?page=C20Package&refPath=<path>
Process Watch

[Server URL]?page=AppMonitor&refPath=<path>
Resource

[Server URL]?page=Resources&refPath=<path>

Process

[Server URL]?page=processeditor&refPath=<path>

Other Entities:

Process Watch (default)

The following format accesses the Process Watch as seen on the Operations tab:

[Server URL]?page=processwatch

Task Lists

The following format accesses all tasks as seen on the Operations tab:
[Server URL]?page=tasklist&tasklist=alltasks

The following format accesses group tasks as seen on the Operations tab:
[Server URL]?page=tasklist&tasklist=grouptasks

The following format accesses my tasks as seen on the Operations tab or the Home

tab:
[Server URL]?page=tasklist

Process Instances

The following format accesses a runtime instance of a process in its own window:

[Server URL]?page=runtimeeditor&ROID=<runtime_instance ID>

130 Content Designer Guide

Self-Contained Content

Forms

The following format accesses the Start Request Form or Interaction Request Form
that is used to reply to a task:

[Server
URL]?ROID=<runtime object ID>&tasklist=ALL TASK FILTER
&page=replytask

The following format accesses a list of Start Request Form instances as seen on the
Operations tab:

[Server URL]?refPath=<path_to SRF object>&page=srflist
Object Versions

To access a specific checked-in version of any library object except a process,
append the versionid parameter to the URL:

&versionid=<version number>
For example, to access version 3 of the MyResource object:

[Server
URL] ?page=Resources&refPath=/TestFolder/MyResource&versioni
d=3

Process Versions

To access a specific checked-in version of a process, append the version parameter
to the URL:

&version=<version_number>
For example, to access version 4 of the MyProcess object:

[Server
URL] ?page=processeditor&refPath=/TestFolder/MyProcess&versi
on=4

Chapter 4: Designing Processes 131

Navigate to a Specific Part of a Process

Navigate to a Specific Part of a Process

When working with long processes, use the Navigator window to help you adjust your
current view. Panning a smaller view of a process is more convenient than scrolling
through the entire process in the main window.

Follow these steps:

1. Open a process.

2. Inthe Process Designer, check Navigator from the View menu.
The Navigator window shows a miniature image of your process.

3. Drag the rectangular frame over the portion of the process that you want to view.
The main window shows an enlarged view of the selected area.

4. To adjust the miniature view of your process, drag the square at the bottom right
corner.

5. Toresize the Navigation palette, drag any edge or corner the same way you resize
any palette.

Multi-Tenancy and CA Process Automation

In a multi-tenant deployment, administrators want to control user access to process
instances based on a tenant or a set of tenants. You can use common CA Process
Automation processes across multiple tenants. This feature allows for access control of
process instances. You can prevent a user with access to one tenant from accessing an
instance related to a different tenant. This feature also results in enhanced process
duplication and synchronization and reduces related maintenance tasks.

You can limit access to the process instances, based on access to a tenant, using
common processes across tenants. This is accomplished by setting a tenant ID (as a new
well-defined variable) as part of a process instance. Then validate access to that tenant
ID when access to that process instance is requested.

Note: Setting the tenant ID is up to the process designer as part of designing the process
or as part of the input parameters to the process. Any process that does not have a
tenant ID already set must follow the current access control restriction based on the
process definition.

132 Content Designer Guide

Multi-Tenancy and CA Process Automation

Make a Process Aware of Multiple Tenants

Making an existing process aware of multiple tenants involves the following steps:

m Add a security-related variable to the context of a running process instance at run
time

m Create a policy for multi-tenancy

Follow these steps:

1. To add a security-related variable to the context of a running process instance at
run time, do one of the following actions:

m Add a security-related variable to the context of a running process instance at
run time using JavaScript:

Process.SECURITY CONTEXT ID=<ID>;
Process.SECURITY CONTEXT GRP=[set the product group or family];

For example:

Process.SECURITY CONTEXT ID="myid";
Process.SECURITY CONTEXT GRP="mygrp";

m Pass values to the process instance using <params> tags while starting the
process through the executeProcess web service. For example:

<executeProcess xmlns="http://www.ca.com/itpam">

<flow>

<params>
<param name="SECURITY CONTEXT ID">myid</param>
<param name="SECURITY CONTEXT GRP">mygrp</param>
</params>
</executeProcess>

2. To create a policy for multi-tenancy, complete the following steps:
a. Add a policy in EEM using Object as the Resource Class Name.
b. Specify the Identities for which this policy is valid.

c. Specify Resources so that this policy matches the path of the process for which
you are creating the policy.

d. Specify the required policy actions.

e. Add filters and specify values for the Security Context ID and Security Context
Group named attributes.

Chapter 4: Designing Processes 133

The CA Process Automation Code Editor

=] Filters
Logic { Left type fvalue Operator Right type,;
[MOME 1+ | +| |named attribute | [=TRING ~ | value
Security Context ID v | [EquaL == v | [ryid
[aND »| | +| |named attribute | [STRING ~ | value
Security Context Group V| | EQUAL == V| mygrp

This policy applies to all process instances when the values of the named attributes
match the ones in the process instance at run time.

Inherit Security in Subprocesses

Subprocesses automatically inherit the values of security attributes (that is,
SECURITY_CONTEXT_ID and SECURITY_CONTEXT_GRP) from their parent process.

Add Variables at Time of Initialization

You can specify new values in the Process Dataset Initialization Code option of the Run
Process service operator. Values for the security context specified in the Process Dataset
Initialization Code take precedence over those specified in the parent process.

Multi-Tenant Processes Using Process Watch

You can view runtime process instances in Process Watch if a policy for multi-tenancy
allows it. You can also perform required actions such as Open, Abort, Suspend, and so
on, if a policy allows it.

The CA Process Automation Code Editor

The advanced Code Editor in CA Process Automation lets you easily create, edit, and
debug code for various scripting languages in the following places:

m The pre- and post execution code of an operator.

m The Source Code input parameter for the Run Script operator.

134 Content Designer Guide

The CA Process Automation Code Editor

The Source Code input parameter for the Run JavaScript operator.

The Data Initialization Code parameter for the Start Process operator.

Form script editors for the interaction request form and start request form.
The Source code input parameter for the Invoke SOAP Method operator.

The Source code input parameter for the Invoke SOAP Method Async operator.
The Source code input parameter for the Apply XSLT operator.

The Source Code input parameter for any custom operators where the base
operator is one of the previously mentioned operators.

The Code Editor supports the following languages:

JavaScript (.js) (available for both client-side JavaScript and server-side JavaScript)
XML (.xml)

sQL (.sql)

Java (.java)

batch (.bat)

Windows Command File (.cmd)
Visual Basic script (.vbs)

Windows Script Host Settings (.wsh)
PerlScript File (.ps)

HTML (.html)

Shell (.sh)

Some additional operators contain text editors that use the Code Editor functionality,
when applicable. When the specific language used within the operator is supported by
the Code Editor and CA Process Automation, their text editors automatically adapt to
the specified language. Specifically, their text editors highlight language-specific
keywords. However, if the operators use a language that is not supported by the Code
Editor or not implemented by CA Process Automation, a plain-text editor is available for
coding.

If a process is checked in, the Code Editor starts in read-only mode and the editor and
toolbar are disabled. However, some toolbar buttons (for example, Search, Help, and
Script validation) are still available.

Chapter 4: Designing Processes 135

The CA Process Automation Code Editor

The Code Editor includes the following features:
Drag and Drop

Drag any file or selected text (from inside or outside of CA Process Automation) and
drop it into the editor to populate the editor.

Search/Replace

Locate specific code (with Case Sensitive and Regular Expressions options), then
replace specific instances or all occurrences.

Undo

Reverse your previous action.
Redo

Reverse your previous Undo action.
Jump to line number

Advance to a specified line of code.
Reformat selection

Adjust indentation of the selected text.
Reformat whole document

Adjust indentation of the entire code document.
Import from file

Browse to locate a specific file to import into the editor.

Supported editor modes for imported files include:

m .bat
s .cmd
s

m vbs
m .wsh
m .psl
m sh
s .pl

. .xml

CA Process Automation provides an error if any other file extensions are imported
in the advanced Code Editor.

Note: Any file type can be imported for the generic editor.
Export to file

Save the file to your CA Process Automation downloads.

136 Content Designer Guide

The CA Process Automation Code Editor

Show Error Log
Display errors in your code. This feature is only available in the following cases:
m The pre- and post execution code of an operator.
m The Source Code input parameter for the Run JavaScript operator.
m The Data Initialization Code parameter for the Start Process operator.

The editor highlights incorrect code in a scrollable error log at the bottom of the
editor. Each error contains the line number and a hyperlink to navigate to the
specific line of code. When you fix the error, the editor automatically clears it from
the error log.

Note: The code should be entered properly, in valid expressions. However, you can
save code even if it contains errors, although CA Process Automation issues a
warning. Some validations (such as the following examples) are skipped:

“strict"
Expects ‘Use Strict’ in the JavaScript function declaration.
"eqeqeq"
Expects ‘==="instead of ‘=="in the condition.
"smarttabs"
Validates a mix of tabs and spaces.
Code folding

When you click the line number of any "{", the Code Editor folds the code up to its
matching bracket "}".

When editing XML, code folding is based on the matching tags. You can expand or
collapse the XML fragment based on the matching tags. The Code Editor
automatically closes the ending tags for you while editing.

The Code Editor also uses the following conventions:

m Displays line numbers.

m Removes empty lines.

m Highlights matching text across the document when you select specific text.

m Highlights the current line.

Chapter 4: Designing Processes 137

The CA Process Automation Code Editor

Color Coding

The Code Editor uses the following colors to display JavaScript:
Orange

Indicates:

m Dataset keywords for server-side JavaScript

m Form variables for client-side JavaScript

Example: Datazets

Blue

Indicates CA Process Automation system functions. Client-side and server-side
JavaScript have different sets of system functions.

Example: adjustResourceVals

Purple
Indicates JavaScript keywords.

Example: comment

Shortcuts

The Code Editor uses the following shortcuts:

m Ctrl+C (copy)

m Ctrl+V (paste)

m Ctrl+X (cut)

m Ctrl+Z (undo)

m Ctrl+Y (redo)

m Ctrl+A (Select All)

m Delete (to delete selected text)

m Home (to go to the beginning of the current line)

End (to go to the end of the current line)

138 Content Designer Guide

The CA Process Automation Code Editor

The following shortcuts are only valid for JavaScript:
m Press Ctrl+Space to display the following items:

- Alist of dataset keywords (displayed first) and JavaScript keywords for
server-side JavaScript.

- Alist of form variables (displayed first) and JavaScript keywords for client-side
JavaScript

m Press Ctrl+Alt to display a list of system functions. Client-side and server-side
JavaScript have different sets of system functions.

Note: Only client-side JavaScript can be used in the Forms Designer (for start
request forms and interaction request forms). CA Process Automation-specific
system functions are not available. However, form functions are available.

Chapter 4: Designing Processes 139

Chapter 5: Operators and lcons

CA Process Automation carries out the instructions in the operators that you add to a
process or to a schedule. This section describes how to configure operators after you
have added them to a process or schedule object. This section also includes information
on custom operators and connectors.

This section contains the following topics:

Operators (see page 142)
Operator Icons (see page 178)

Chapter 5: Operators and Icons 141

Operators

Operators

a_ CA Process Automation

A previous section of this guide introduced process operators (see page 93). To learn
more about each operator, see the Content Designer Reference.

This section provides general guidelines for configuring properties and working with
different types of operators, including custom operators.

username | Help | Log Out

D9 B8 X000 %
Operators(236)

4 3 Favorites
% Check Calendar
R, stort Script
L) Standard

@

() CA Automated Run Book
[catalyst
Command Execution
Databases
] Date-Time
[Directory Services
[Emait
File Management
[File Transfer

JOBC_Customn_Operators

@

] Java Management
43 MyNewGroup
& Soaplistener

B _Custsoap

A

~

8 _Custsoap

@ rddtaFaver
& _soaptest 4) Add to Favorites
Hetwork ites Q1) :

8 8

@
Invoke_MBean_Method_1 Properties

Invoke MBean Method

IMX Login Parameters

Execution Settings
Target

Target:

Processing

Run as Caller User

Loop

Repeat Count:

Delay between iterations:

Timeout

Type :

*Duration/Target Date and
Time:

Action :

@

Target is a calculated expression.

View -

Run a3 Caller User

Infinite Loop

Select Target

[Domain

g Default Environment
B orchestrator

i

¥) No Timeout

Item: Description:

®

Designer Tab and Toolbar: When you open a new
process or you edit an existing one from the Library
Browser, the Designer tab appears. In the toolbar,
click View and select the Operators and Properties

palettes.

Operators Palette: Search for operators by folder or name.

© ®

Custom Operators in a Custom Group: Drag-and-drop a custom operator from
this palette to your process layout. Right-click an operator to add or remove it

from the Favorites group.

Properties Palette: Use this palette and its buttons, links, and windows to
manage the properties of the currently selected operator. Expand and collapse
panels as you work. Each panel consists of similar properties.

142 Content Designer Guide

Operators

Item: Description:

@ Additional Windows: Some properties appear in their own windows.

You also work with operators to configure schedules.

@) Schedule 1 (Version 1)-Schedule Editor - Moaills Finefox = =]

) Check In B2 validay

Schedule Editor Provies Properties Versions

Processes Schedule Ttems

*|2 pracess: Pracess_Schedule@localnade # X
3 LOAPAD - Start Time End Time 3
- —— T laazoa |7 ¥ Repestlnterval (minutes) |30 & |pMania0 |7 =
4 4 Process_Module Test
A Test racess: Testiblacalnode
2, Glabal Pr
34 Glabal Proce Start Time End Time
4 start scriot process wi -

aM3:30 - Repeat Interval (minutes) 0 T amizioo T

[
£ start system process_ @
i sta _pracess: Sansrallf] Specific
s winger
Run Process
£ starl m process | o
£ Process_madule_Cust Process name:

£ start_scriot [Process_Module/Test 8] [_open
8 Interpreter_Maduie Process Dataset Initialization Code::

4 FileMadule

4 Mail Module Made:
3 UCF-USH-Module Attached
(5 Procsdesign_editor
B sonrTest Inhari Lane Changs Handler from parent process.
- Start date:
Operators
System Date
e Start time:
A autormated Run Bogk Syetem Tme
Catalyst
Comenand Execution Execution Settings
) Databases
) Dirctory Services
4 3 Email " "
Write File: #lacalnade
Create Folder
- Start Time End Time
. P
@ Delete Email AM1Z:00 - Repaat Intarval (minutes) o v AM12:00 = =
& D] er
4 & ntent Send Email: ®localnode
= Get Email Count Start Time End Time 7
& Get Email Envelope @ AmMiz00 b Repeat Interval (minutes) o = AML2:00 - 0]
Get Email List ral < c
General || Specific
< Mave Email
3 Purge Folder Calendar Settings
" . Important Note:
41 Rename Folder Include Calendar:
© Send Email - - If you don't select any thing on the
; /20111222_Folder_by_Damon/Calendar_01 = calendar, this will repeat every
] Fibs Managermant Exclude Calendar: day.
— FreTranster fFalder/Calendar =
JBBE_Custorn_Cperators Days per shift:
Java Management 2 :
MyNewGroup @ No excluded days

43 Hetwork Utilities Haximum Shifts:

Item: Description:

® Schedule Editor: When you open a schedule from the Library Browser, the
Schedule Editor appears. Use the toolbar to activate, set validity of, check in, or
save the schedule.

@ Processes Pane: Select the processes to include and drag them to the Schedule
Items page.

®

Scheduled Process in Queue:Set the duration and frequency for running the
process in a single day.

@ Process Properties: Click Properties to view process properties on the General
and Specific tabs.

Chapter 5: Operators and Icons 143

Operators

Item: Description:

®

Operators Pane: Select the operators to include and drag them to the Schedule
Items page.

®

Operator Properties: Click Properties to view operator properties on the
General and Specific tabs.

Configure Operator Properties

Operator properties appear in the Process Designer on the Properties palette. Similar
fields are organized in group boxes on expandable panels with familiar titles such as
Process, Execution Settings, Simulation, and Icon. Some panels and groups are common
to all operators and others are unique to a particular operator. For example, the
properties for every operator include an Icon panel. The Asynchronous SOAP Call Data
panel however, only appears for the Invoke SOAP Method Async operator.

Operator properties are also available when you include operators in Schedule objects.

Follow these steps:

1.
2.

Click the Library tab.
Open a process object or open a schedule object.

Processes open in the Process Designer. Schedules open in the Schedule Editor
dialog.

In the toolbar, click Check Out if the object is not already checked out.
Add an operator to the process or schedule:

a. For a process, drag an operator onto the process layout from the Operators
palette.

b. For a schedule, collapse the Processes pane, expand the Operators pane, and
drag an operator into the list of Schedule Items.

View the operator properties:
a. Inaprocess, double-click the operator.
The Properties palette appears.
b. Inaschedule, click Properties and then click the General or Specific tabs.
Click Save.

The properties values you entered for the selected operator are saved.

Note: For detailed information about operator properties, see the Content Designer
Reference Guide.

144 Content Designer Guide

Operators

Auto Recovery

The Operator Recovery feature controls what processes can recover as part of the
manual or automatic recovery of a touchpoint, orchestrator, or host group. You can
enable or disable this feature.

m Enable recovery on a process and define an exception handler that notifies you
of a failure.

m Disable recovery on a process and define an exception handler that remedies
the system error. For example, the handler could run the operator on a
different touchpoint.

Note:For more information see Exception Handling (see page 399).

CA Process Automation checks the Enable Operator Recovery Settings for each object
before running a process instance. CA Process Automation uses the settings to
determine whether the process instance is recoverable. The process instance is not
affected if the object settings change after running the process instance.

If enabled, the recovery procedure acts on operators and recovers process instances
that fail with a SYSTEM_ERROR. The operators' processes must be set to be recoverable
and must be in the Blocked, Running,or Waiting state when the recovery is triggered.
Operator recovery resets the operator and then resumes the processes. An operator in
the Blocked state should resume operation and run again during touchpoint recovery.

New processes created in CA Process Automation version 4.0 or later have this option
selected by default. Enable Operator Recovery is unchecked by default only for existing
processes created before a CA Process Automation version 4.0 upgrade.

Chapter 5: Operators and Icons 145

Operators

Java and External JARs

The Java module allows you to specify Java code to run inside a BeanShell Interpreter in
the CA Process Automation JVM. BeanShell is an embedded dynamic Java source
interpreter, scripting language, and flexible environment. Using the CA Process
Automation Java module and operators, you can:

Import and reference JAR files at the module or operator level.

Configure global settings for all Run Java Code operators or specific settings for a
particular operator. You can specify paths to the external JAR files that operators
can use. You can also set the default log setting in the module. For each operator,
you can specify the code that you want to run, the input parameters, and the
output variable names. Log settings you specify for a single Run Java Code operator
override the module-level log settings.

Write Java code that references classes in these JARs. CA Process Automation
automatically creates new Java Object data types when you run a Java program.
Because new Java objects are invoked inside the Run Java Code operator, you do
not need to use any create or destroy object methods. After execution of the
operator, CA Process Automation automatically collects any garbage resources,
classes, and objects in memory.

Run the Java code using the Run Java Code operator. You can invoke classes in an
external Java Archive (JAR) file from a Run Java Code operator. Use this operator to
leverage the functionality that your existing Java code provides.

Save Java objects to the operator dataset to make them available to subsequent
Run Java Code operators. You have the option of saving an entire Java object in the
operator dataset before the end of execution of the operator. You can then
leverage the Java object saved in the operator dataset in subsequent operators by
passing it to them.

146 Content Designer Guide

Operators

Configure the Java Module

You can invoke classes in an external Java Archive (JAR) file from all Run Java Code
operators. Configure the Java module to apply settings to these operators to leverage
the functionality that your existing Java code provides. Then use the Run Java Code
operator to create a Java object.

Follow these steps:

1.

Specify the JARs you want to work with on a CA Process Automation orchestrator or
agent machine. Locate the Default External Jars field for the module. Enter the
paths to the external JARs to load for use by all the Run Java Code operators
running on the orchestrator or agent. For each path, you can enter:

a. The full path to a JAR file that resides on the machine where the orchestrator
or agent is running. The full path starts with either of the following slash marks:

/
\\

You can also designate the full path using a regular expression that starts with
one character, then a colon (:), and then the rest of the string, including dot
syntax asin:

A . %k

b. The full path to a JAR file available over http:// or https://. The path does not
require authentication and is not accessible through an http proxy.

c. Avrelative path to a JAR file that was uploaded to the CA Process Automation
User Resources folder. Unless you specify a full path, the application considers
the path that you enter to be a relative path.

The Java Module Class Loader, which all the running Run Java Code operators of the
Java module share, loads the JARs that you list in this field. The JARs are loaded
once when executing the first Java module operator, and later after any changes
made to the default external JARs. Any JAR entered in this list are available to the
Java code that the Run Java Code operators run. Any classes you define in the
operator-level JARs override the same classes specified in the module-level JARs.

In addition to external JARs, enter paths to any .class files that any Run Java Code
operators running on the orchestrator or agent are using.

a. For .class files in an unnamed package, enter a path that ends with the
directory that contains the .class files. For example, MyAccount.java does not
belong to a package, and MyAccount.class is in the following location:

C:\java\tests\MyAccount.class

Set the operator to use the following path:
C:\\java\\tests

Chapter 5: Operators and Icons 147

Operators

b. For .class files in a named package, enter a path that ends with the directory
that contains the root package. The root package is the first package in the full
package name. For example, MyAccount.java belongs to package com.ca.tech.
MyAccount.class is at the following path:

C:\java\othertests\com\ca\tech\MyAccount.class

Set the operator to use the following path:
C:\\java\\othertests

Note: Specify the path to a folder as a full path or as a relative path to CA Process
Automation User Resources. Do not specify an http path. Specify the path to a
folder to load .class files, not JAR files. Unlike .class files, each JAR file requires a
separate path that ends with the JAR file (not the directory where it resides).

(Optional) Upload the JARs you want to work with to the CA Process Automation
User Resources.

CA Process Automation automatically mirrors the JARs.

Note: Resources, including user resources, are mirrored within the mirroring
interval of the orchestrator or agent. Ensure that the JAR files you upload in the
user resources are already mirrored before using them in the Java module
operators.

Verify that the JAR files containing the Java classes you want to work with are
available to the orchestrator/agent whose touchpoint is running the operator.

(Optional) Configure the module default logger. You can override this configuration
at the operator level.

(Optional) Override any module level settings by configuring individual operators.
See the next procedure, Configure a Run Java Code Operator (see page 149).

Run any Run Java Code operators. The Java module captures any exceptions or
errors that are encountered during an operation and alerts the user in the Reason
field of the problem operator.

148 Content Designer Guide

Operators

Configure the Run Java Code Operator

You can invoke classes in an external Java Archive (JAR) file from a Run Java Code
operator. The Run Java Code operator can use both operator-level and module-level
JARs. You can also configure the Run Java Code operator to override module-level
settings. Use the operator to leverage the functionality in your existing Java code.

Follow these steps:

1.

If you did not already configure the Java module, complete this task first. See
Configure the Java Module (see page 147).

Configure the Run Java Code operator.

Specify the paths to the external JARs that the Run Java Code operator uses. For
each path, you can enter:

m The full path to a JAR file that resides on the host where the orchestrator or
agent is running. The full path starts with either of the following slash marks:

/
\\

You can also use a regular expression (including dot notation) that starts with
one character, then a colon (:), then the remaining string as in:

n L ox
m The full path to a JAR file available over http:// or https://. The path cannot

require authentication and must not be accessible through an http proxy.

m Avrelative path to a JAR file that resides in to the CA Process Automation User
Resources folder.

Unless you specify a full path, the application interprets the path that you enter as a
relative path.

The operator loads the JARs listed in this field and makes them available to the Java
code in the running operator. The classes defined in these JARs override the same
classes specified in the module-level JARs.

In addition to external JARs, enter paths to any .class files for the Run Java Code
operator.

a. For .class files in an unnamed package, enter a path that ends with the
directory that contains the .class files. For example, if MyAccount.java does not
belong to a package, and MyAccount.class is in:

C:\java\tests\MyAccount.class

Set the operator so it uses the following path:

C:\\java\\tests

Chapter 5: Operators and Icons 149

Operators

b. For .class files in a named package, enter a path that ends with the directory
that contains the root package. The root package is the first package in the full
package name. For example, if MyAccount.java belongs to the package
com.ca.tech and MyAccount.class is in:

C:\java\othertests\com\ca\tech\MyAccount.class
Set the operator so it uses the following path:
C:\\java\\othertests

Note: Specify the path to a folder as a full path or as a relative path to CA Process
Automation User Resources. Do not specify an http path. Specify the path to a
folder so it loads .class files, not JAR files. Unlike .class files, each JAR file requires a
separate path that ends with the JAR file (not the directory where it resides).

(Optional) Upload the JARs you want to work with to the CA Process Automation
User Resources.

CA Process Automation automatically mirrors the JARs.

Note: Resources, including user resources, are mirrored during the mirroring
interval of the orchestrator or agent. Ensure that the JAR files you upload in the
user resources are already mirrored before using them in the Java module
operators.

Specify the code to run.
Specify the input parameters to pass to the Java code.

Specify the output names of the variables created in the operator Java code. The
output variable names must be saved in the operator dataset when the code
finishes running.

Note: CA Process Automation serializes Java objects that are not Boolean, date,
integer, number, string, character, or an array of these types and saves them as
JavaObjects.

(Optional) Specify the logger setting of this Run Java Code operator. These settings
override the module-level logger settings.

Run the Run Java Code operator.

The Java module captures exceptions or errors that are encountered during an
operation and alerts the user in the Reason field of the problem operator.

150 Content Designer Guide

Operators

Using a JavaObject

Java objects are saved after a Run Java Code operator has completed in a JavaObject
data type. You can use a JavaObject dataset variable in the following ways:

Pass the JavaObject dataset variable in the parameters list of the Run Java Code
operator.

Pass the path of the JavaObject dataset variable in a string variable from an
Interaction Request Form or Start Request Form. For example:
JavaObjectPath = Datasets["/GlobalDatasets"].acct

Then, you can use the eval function when passing the JavaObjectPath variable to
the parameters list of the Run Java Code operator. For example:
eval(Process.IRF.JavaObjectPath)

Copy a JavaObject in Javascript. You can also assign one JavaObject to another.

Note: Do not modify the actual value of a CA Process Automation JavaObject (the
serialized string of the original Java object). Your changes could prevent the Run
Java Code operator from loading the JavaObject.

Observe the following constraints when working in JavaScript:

Similar to passwords, you cannot concatenate a JavaObject to a string.

You cannot load a JavaObject and use its methods in JavaScript. Instead, pass the
JavaObject in the Run Java Code operator parameters list and access it in the
operator Java code.

Chapter 5: Operators and Icons 151

Operators

The Java code that you write can consist of normal Java statements and expressions.
You can also define your own methods and use them inside the code. For example:
// Import the classes that you want to use
import ca.tech.pam.MyAccount;
// Note: no need to import StringBuffer and Date because they are part of the
// automatically imported packages
// import java.lang.StringBuffer;
// import java.util.Date;
// Note: the jar that contains the ca.tech.pam.MyAccount class
// must be in the list of External Jars of the operator or the module;
// but java lang and java util are in rt.jar, which is automatically put in the
classpath

MyAccount acct = new MyAccount(1000.00);

// Use the public methods of the MyAccount object
acct.addFunds(34.44);
acct.subFunds(10);

// Define your own method
String getStatement(MyAccount acc) {
StringBuffer strBuff = new StringBuffer("Account Balance: " +
acc.getBalance());
Date dt = new Date(System.currentTimeMillis());
strBuff.append(" on date: " + dt);
return strBuff.toString();
}
// Use the method you defined
// also print the statement using the 'logger' object that you
// setup in the 'Logger' page of the operator
logger.info(getStatement(acct));

After you run this Java code, the log message shows the account balance, the date, and
the time:

Account Balance: 124.44 on date: Wed Jul 13 12:53:37 EDT 2011

Custom Operators

You can define custom operator objects that users can add to their processes or
schedules as they would add any other operator. You create custom operators by
reusing an existing base operator. Configure the settings of that base operator in the
Properties palette. Use custom operators to share new functionality across your IT
organization.

152 Content Designer Guide

Operators

For example, you could use the Get SNMP Variable operator as the basis for a custom
operator that retrieves specific information from a network router. Configure the
appropriate SNMP variable OID and community string, then set the properties so a user
can configure the IP address of the SNMP variable. After it is published, users can add
the custom operator to a process or schedule, then configure the IP address to access
specific network router information. Users do not have to know the SNMP variable OID
or the community string. Those values have already been configured and are probably
hidden from the user.

A more powerful use of custom operators is to develop interfaces to new enterprise
applications and systems including:

m Mission-critical applications; organizations often develop and deploy such
applications internally

m Web services (SOAP and RESTful)
m Command line and scripting applications
m Databases

® Java

Develop custom operators that perform common actions that interface with your
applications and systems. Reuse your own custom operators to enable your
organization to work easily with these applications and systems from automated
processes. Users can perform actions without expert knowledge of all application and
system interfaces.

Custom operators also provide the advantage of easily adapting to changes in your IT
environment. For example, you need change only the original custom operator object if
IT environment changes require you to change how you interface with an application.
All processes and schedules that use the custom operator automatically apply the
changes in the latest designated version. Therefore, changes in the IT environment are
transparent to all processes and schedules.

Create a Custom Operator Object

You can create custom operators in any library folder.

Chapter 5: Operators and Icons 153

Operators

Follow these steps:

1. Click the Library tab.

2. Click a folder.

3. Inthe toolbar, click New and then choose Custom Operator.
The Select Base Operator dialog appears.

4. Select the base operator for your custom operator and click OK. Expand folders or
enter an operator name to search.

A custom operator object with a default name is created in the library.
5. Rename the custom operator.
Note: The application identifies custom operators by a unique location in the library
using the object path and name. Avoid changing the location and custom operator

object name if it is currently being used in a process. Renaming or moving a custom
operator while it is used in a process can result in the loss of changes or updates.

Custom Operator Properties

You can configure a custom operator by modifying the default settings available for the
base operator. You can also add input pages and parameters to present a user of the
custom operator with specific input settings.

Seven main types of properties exist for each custom operator:

® Form

® Preview

m Settings

m Dataset

m Group Config

m Properties

m Versions

m Audit Trail

154 Content Designer Guide

Operators

For each setting, you would typically:

m Leave it blank and let the user configure it when they use your custom operator.

m Configure it with a predefined value and mark it as invisible, which hides the setting
altogether from the user when they use your custom operator.

You can also:

m Configure it with a predefined value, but let the user change the value.

m Configure it with a predefined value and mark it as read-only, which lets the user
see but not edit the value.

Example: A Basic Custom Operator

You can create a custom operator that retrieves a specific piece of information from a
network router using the Get SNMP Variable operator as its base. As part of your
custom operator, configure the appropriate SNMP variable OID and community string,
and then set the properties so a user can configure the IP address of the SNMP variable.
The Get SNMP Variable operator has the following specific settings:

m Agent Host (IP Address)
® Community

m Object ID (OID)

m Retry Count

® Timeout

m SNMP Version

You would typically configure predefined values and mark as invisible all the settings
except for Agent Host. Another designer using this custom operator only sees the Agent
Host setting in the Properties palette. All other settings are hidden. Other users can
specify the Agent Host to determine the network router where information is sourced.
But other users do not need to know the other settings for a Get SNMP Variable
operator. As long as they configure the correct IP address, the information in question
appears.

Chapter 5: Operators and Icons 155

Operators

Example: An Advanced Custom Operator

As for a more advanced example, you can create an interface to an in-house application
using scripting. In this example, you would use the Start Script operator as the base for
your custom operator. Then, you would typically specify the extension of the script, the
script itself, and other settings such as the parameters to pass to the script. You would
typically set these parameters (in fact, every parameter that comes from the base
operator) as invisible. You can also create your own settings page to ask a user of your
custom operator for some settings that are specific to your operator. As in the simple
example above, an end user can then use your custom operator to act upon your
in-house application. This technique extends integrated processes without the need to
know specifics about how you interface with that application.

More information:

Custom Operator: Properties Tab (see page 171)

Custom Operator: Form Tab

Add Property Pages

When designing a custom operator, you can permit custom parameters and pages to
receive input from end users as they configure your custom operator in a process or
schedule. Use the Custom Operator Form tab to:

m Add, remove, and rename property pages

m Add, remove, and rename parameters on the property pages

m Configure the characteristics of a parameter

m Reorder parameters on a property page

m Move parameters between pages

Each custom operator can have one or more pages of parameters that are based on its
ancestor or base operator. You can modify and configure these parameters. For

example, if the base is the Run Script operator, you can configure the following
parameters:

m The scriptType field to define the extension of the script
m The inLineScript field to define the script itself

m The other fields and parameters standard for the Run Script operator

The Custom Operator Settings tab includes the standard base operator properties.
These settings correspond to the parameters found on the Properties palette in the
Process Designer. Use the Properties palette to configure the custom operator’s base
properties and the custom properties that you assign to it.

156 Content Designer Guide

Operators

A custom operator may require additional parameters as input into the function of the
operator. You can add property pages to group these additional parameters. When you
add pages to the custom operator on the Form tab, they appear as expandable sections
in the Properties palette of the Process Designer.

Follow these steps:
1. Inthe Library Browser, double-click a custom operator.
2. Inthe toolbar, click Check Out.
3. Inthe Custom Operator designer window, click the Form tab.
4. Inthe Form Elements pane, expand all of the following:
a. Form Elements
b. Page Layout under Form Elements
c. Page Layout under your custom operator

5. Drag a Page element from the Form Elements Page Layout down to the Page Layout
level for your custom operator.

6. Click the new page and then click Rename in the toolbar. Rename the new page to a
meaningful identifier.

Each page name corresponds to a named expandable section in the Custom
Operator Properties palette in the Process Designer.

7. The order of the pages in the Properties palette also corresponds to the order
shown on the Form tab. Select a page and click Move Up or Move Down from the
toolbar to move the page up or down in the list.

To remove a property page including all parameters:
1. Select the page.

2. Inthe toolbar, click Delete.

Add Custom Parameters

After creating property pages, you can add parameters (fields) to them. Custom
parameters are often used to give users a different presentation for a parameter
needed for the base operator. For example, you can add a parameter to present a list of
values that you want users to select from, rather than using an edit box with no defined
values. Parameters are also used to capture input that is then used in an expression to
calculate one or more base operator parameters. Also, parameters are used to present
an interface to users with appropriate terminology.

Unless you set their Read Only, Disabled, or Hidden properties to true, custom
parameters that you add to your custom operator are visible and configurable by end
users in your Custom Operator Properties palette in the Process Designer or in the
Schedule Editor.

Chapter 5: Operators and Icons 157

Operators

Follow these steps:
In the Library Browser, double-click a custom operator.
In the toolbar, click Check Out.

In the Custom Operator designer window, click the Form tab.

Ll

In the Form Elements pane, expand all of the following:
a. Form Elements
b. Page Layout and any pages under your custom operator

5. Dragaform element from the Form Elements down to the page for your custom
operator. You cannot drag a field directly onto the form layout.

6. Click the new field to edit its properties. Rename the new field to a meaningful
identifier using the Label property. Use the Rename toolbar button to rename
certain fields such as check boxes.

Each field name corresponds to a named field in the Custom Operator Properties
palette in the Process Designer.

7. The order of the fields in the Properties palette also corresponds to the order
shown on the Form tab. Select an element and click Move Up or Move Down from
the toolbar to move it up or down in the list.

To remove a parameter:
1. Select the page.

2. Inthe toolbar, click Remove.

Invisible Parameter Option

CA Process Automation allows you to configure and hide custom operator parameters
from the end user. You can set the custom operator parameters to be invisible,
read-only, or editable at run time. To pass information to the custom operator
parameter, add macros to the custom operator. You can hide input parameters from the
user and use macros to access the input values of the hidden custom operator
parameters. Changes you make to custom operator parameters cascade down to all the
processes using the custom operator.

Unless you set their Read Only, Disabled, or Hidden properties to true, custom
parameters that you add to your custom operator are visible and configurable by end
users in your Custom Operator Properties palette in the Process Designer or in the
Schedule Editor.

158 Content Designer Guide

Operators

Expand Macro in the Value Property

To use a custom parameter to define the value of a base operator parameter (a typical
reason for using custom parameters), you must treat it as a macro. Use the Expand
macro in the value property to permit user input for a custom operator field to be used
as the value for the base operator parameter.

To do this, set the Hidden property first. Then configure the base operator parameter
with the Expand macro in the value option. CA Process Automation searches the base
operator parameter values (for any parameter with the Expand macro in the value set)
for any custom parameter name, and replaces the custom parameter name with the
customer parameter value. While this is a powerful feature, take care to determine
which base operator parameters should have the Expand macro in the value option set
and in naming your custom parameters so that they are unique enough that you do not
accidentally replace a string with your custom parameter sharing the same name.

For example, you created a custom operator using the Run Script operator as a base.
The script is defined to pass some parameters based on input supplied by a user of the
custom operator. A form field is added to obtain this input from the end user and that
field is named for. In the base operator, add one parameter and enter the value for and
set the Expand macro in the value property to true. This correctly passes the user's input
configured in the custom operator form field to the script as a parameter.

If a user enters the value Steve for this custom parameter, the script would receive one
parameter with the value Steve. However, if you set the Expand macro in the value
property for the base operator parameter inLineScript, this replaces the word for
anywhere in the script with the word Steve. This is undesirable, as the scripting code for
any For loops would be accidentally replaced with an unintended term, resulting in a
syntax error in your script.

More information:

Custom Operator: Properties Tab (see page 171)

Test the Custom Operator Interface

After you add and configure pages and parameters, you can use the Test feature to
preview the Custom Operator Properties pane.

Follow these steps:

1. Click Test on the toolbar.

The parameters appear on the tabs in the same order that is listed on the
corresponding pages in the Custom Operator Parameters palette.

2. Review the pages and parameters.

You can preview the end-user view of the customer operator and available options
for it.

Chapter 5: Operators and Icons 159

Operators

Example: Retrieve Valuemap Array Values with an Operator System Function

This example uses the following operator system function to retrieve the values of a
valuemap array. The function returns one field or column from an array that is based on
the provided parameters.

getValueFromValueMapArray(groupName, arrName, fieldName,
fieldValue, requiredFieldName)

Follow these steps:

1. Create a custom operator named CustOp_GetDBVersion with Get Version as the
base operator.

2. Design the form as the following illustration shows:
E@ Check In
Forrm Preview Settings Dataset Custamn Panels Group Configur.. Properties
- B3 Form Elements
4 (5 CustOp_GetDBWersion
NamedConnection
4 (5| Page Layout
) Page Named Connection
4 MarmedConnection
] Named Connection Host Name
] HostName
] UserMame UserName
] Password
T Port Password

] Database Mame

] Database Type Fort

] Driver Name
Database Name

Database Type

Driver Name

160 Content Designer Guide

Operators

Name the form elements as mNamedConnection, mHostName, mUserName,
mPassword, mPort, mDBName, mDBType, and mDriverName. Ensure that the form
elements names are similar to the variable names defined in the Group
Configuration tab.

Click the Settings tab and create a group named NamedConnectionGroupDemo.
Click the Custom Operator Pre-execution tab and enter the following code:

Process.HostName =

getValueFromValueMapArray ("NamedConnectionGroupDemo",
"ConnArray", "mNamedConnection", Operator.mNamedConnection,
"mHostName") ;

Process.UserName =

getValueFromValueMapArray ("NamedConnectionGroupDemo",
"ConnArray", "mNamedConnection", Operator.mNamedConnection,
"mUserName") ;

Process.Password =

getValueFromValueMapArray ("NamedConnectionGroupDemo",
"ConnArray", "mNamedConnection", Operator.mNamedConnection,
"mPassword") ;

Process.Port =

getValueFromValueMapArray ("NamedConnectionGroupDemo",
"ConnArray", "mNamedConnection", Operator.mNamedConnection,
"mPort");

Process.DBName =

getValueFromValueMapArray ("NamedConnectionGroupDemo",
"ConnArray", "mNamedConnection", Operator.mNamedConnection,
"mDBName") ;

Process.DBType =

getValueFromValueMapArray ("NamedConnectionGroupDemo",
"ConnArray", "mNamedConnection", Operator.mNamedConnection,
"mDBType");

Process.DriverName =

getValueFromValueMapArray ("NamedConnectionGroupDemo",
"ConnArray", "mNamedConnection", Operator.mNamedConnection,
"mDriverName") ;

Select the Group Configuration tab and click Lock to lock the group.

Create a valuemap array named ConArray and add the parameters shown in the
following illustration:

Chapter 5: Operators and Icons 161

Operators

E Save @ Check In Check O
Farrm Prewview

Sawve Configuration B Lock

Filter X
Mame
4 Al Parameters
4 E>C-:urn‘n':'.rrmr
4[4l Element Type
4 E Pararmeters
mMamedConnection
mHosthame
mUserMarme
mPassword
mPort
mbOBMame
mOBType

mOriverMane

162 Content Designer Guide

Operators

7. Click Save Configuration to save the group configuration.

8. Click Unlock to publish the NamedConnectionGroupDemo group at the Domain and
Environment level.

9. Open the group from the Configuration Browser, Modules tab.

10. Add the parameter values to the array as the following illustration shows and save
the array.

NamedConnectionGroupDemo

Parameters ConnArray

| (B

mMame... mHostN... mUser... mPass... mPort mDBENa... mDEType mDrive...

0 mysql chakidg-xp root Aok ok 3306 test mysgl corn.mysqgl.
1 sglserver chaki0é-w7sa FAckkckkkk 14373 test sqlserver com.micros
2 mysgl_1l sinrazz root Hokk 3306 test mysgl corn.mysqgl.
Page |1 of 1 = Displaying 1 - 3 of 3

After the valuemap array values are retrieved, a production user can use the
NamedConnectionGroupDemo operator in a process to reference a named connection.

1. Create a process that uses the CustOp_GetDBVersion custom operator.

2. Provide "mysql" as the connection field value in the custom operator properties to
retrieve the related values from the array ConArray.

3. Runthe process.

The script in the custom operator pre-execution code runs. The process retrieves
the values for the "mysgl" connection field value entered in the named connection
property and displays it in the Dataset palette.

Custom Operator: Preview Tab

Use the Preview tab to test the form elements.

Chapter 5: Operators and Icons 163

Operators

Custom Operator: Settings Tab

Use the Settings tab to configure settings that are common to all operators. The Custom
Operator Settings tab includes the standard base operator properties. These settings
correspond to the parameters found on the Properties palette in the Process Designer.

Target

Defines where the custom operator runs.
Target is a calculated expression

Indicates the target uses a calculated expression.
Target is Read-Only

Indicates the target is read-only and cannot be changed.
Run as Caller User

Indicates the operator runs as if it were the calling entity,
'Run as Caller User' is Read-Only

Indicates the operator runs as if it were the calling entity, but as read-only so that it
cannot be changed.

Group

Specifies a group name for your custom operator. This setting is used as the title of
the group or folder in the Operators palette. You can use the same group name for
related custom operators so that they all appear under the same folder in the
Operators palette. The Custom Operator Group configuration defines common
parameters and values for custom operators in the group.

Display Name

Indicates the name that is shown in the Operators palette with the icon for your
custom operator. The name should be short and based on the function of your
operator. Display Name is also used to provide the initial value for the Name field
on the Information page of the Operator Properties. You can use any combination
of letters, digits, spaces, and underscore characters.

Custom Operator Pre-execution

Specifies any code that must be performed before the custom operator runs.
Custom Operator Post-execution

Specifies any code that must be performed after the custom operator runs.
Current Display Icon

Specifies the icon that represents the operator. By default, the icon of your custom
operator is the icon of the base operator.

164 Content Designer Guide

Operators

Create a Custom Operator Group

Content designers or administrators can use the Settings tab to create a custom
operator group. Only administrators can then configure the custom operator group on
the Group Configuration tab.

Follow these steps:

1. Click the Library tab and navigate to the folder containing the custom operator on
which you want to base the custom operator group.

2. Double-click the target custom operator.
3. Click the Settings tab.

4. Enter the custom operator group name in the Group field, and then click Save.

Assign the Group to Other Custom Operators

Content designers who are adding custom operators can use the Settings tab to assign
an appropriate group to the custom operator.
Follow these steps:

1. To open the custom operator editor, double-click a custom operator on the Library
tab.

2. On the custom operator editor, click the Settings tab.
3. From the Group drop-down list, select the group name.

4. Click Save.

Custom Operator-Specific Pre-execution and Post-execution Code

CA Process Automation lets you define pre-execution and post-execution JavaScript
code for custom operators. Pre-execution code is processed before an operator runs;
post-execution code is processed after an operator runs. Custom operator users cannot
override pre-execution or post-execution code that designers or developers with more
permissions have already defined.

The code runs in the following order:

1. User-defined pre-execution code.

2. Custom operator-specific pre-execution code.

3. The custom operator.

4. Custom operator-specific post-execution code.

5. User-defined post-execution code.
Define Custom Operator-specific Pre and Post Execution Code

Chapter 5: Operators and Icons 165

Operators

To prevent accidental deletion or modification of execution code, you can define
specific code for each custom operator. You can also use the custom operator input or
output data in your code.
Follow these steps:
1. Click the Library tab.
2. Double-click a custom operator.
The Custom Operator dialog appears.
3. Click the Settings tab.
4. Click one of the following two long buttons:
m Click Custom Operator Pre-execution to enter pre-execution code.
m Click Custom Operator Post-execution to enter post-execution code.
A code dialog appears.
5. Enter your code. Click OK.
6. Click Save.
Run Order for Custom Operator-specific Pre-Execution Code
The run order for the custom operator-specific pre-execution code is as follows:

1. Run the user-defined pre-execution code (that is, the pre-execution code defined in
the process).

2. Evaluate the User Parameters (this step includes evaluating expressions and
expanding macros).

3. Run the custom defined pre-execution code. The User Parameters are exposed and
you can use the Operator keyword to access the parameters.

Note: The designer does not have the permissions to change User Parameter
values.

4. Evaluate the Standard Parameters (this step includes evaluating expressions and
expanding macros).

5. Evaluate the Base operator.

Custom Operator: Dataset Tab

To define and group operator dataset variables that contain information that a custom
operator returns, use the Dataset tab.

For example, assume that your custom operator retrieves fields from a ticket in an
in-house ticketing system. You can create a page to group all the retrieved fields and put
the parameters in the page that corresponds to the returned fields.

166 Content Designer Guide

Operators

Using the Dataset tab in this way provides the following benefits:

m Custom operator users can easily see how the output is defined without having to
run the operator first to create the parameters at run time.

®m You can group related parameters in a page with a descriptive name, which is not

possible at run time.

In the Dataset palette, you can add, rename, delete, and move pages and parameters.
You can also configure the parameter definitions to set the type, initial value, and other
characteristics. The configurations and settings in the Dataset palette of a custom
operator are the same as for any other dataset.

For each output parameter name/value pair on the left, you can configure whether to
hide the parameter value from output.
Hide from output

Specifies whether to include the parameter with the output.

m Selected: Indicates to hide the parameter; the output parameter is not
displayed in the dataset.

m Cleared: Indicates that the parameter is to be included in output parameters;
the dataset includes the output parameter.

More information:

Datasets (see page 189)

Custom Operator: Group Configuration Tab

From the Settings tab, content designers or content administrators

m Create a custom operator group (see page 165) for a custom operator.

m Assign the group to other custom operators (see page 165).

From the Group Configuration tab, content administrators

m Configure a custom operator group (see page 168).

m Edit a custom operator group configuration (see page 169).

From the Modules tab in the Configuration Browser, administrators add default values
for the configured variables, which are then inherited. Inheritance proceeds from the
Domain to the environments, and from each environment to the operators that run in
the environment. Administrators can override Domain level values at the environment
level. Content designers can override environment level settings at the custom operator
level.

Chapter 5: Operators and Icons 167

Operators

Configure and Publish a Custom Operator Group

A custom operator group defines the parameters that are common to a group of custom
operators. Content designers (or administrators) use the Settings tab to create a custom
operator group. Administrators then use the Group Configuration tab to add the
appropriate variables and publish the group to the Domain and its environments.
Publication adds the custom operator group to the Modules tab in the Configuration
Browser.

Note: After you publish the variables, you configure their values from the Configuration
tab. Custom operators automatically inherit the default values of the custom operator
group to which the custom operator belongs.

Follow these steps:

1.

v

N oo

To open the custom operator editor, double-click a custom operator on the Library
tab.

On the custom operator editor, click the Group Configuration tab.

Note: You do not need to check out the custom operator to configure a group.

Click Lock to lock the group.

The Add Variable and Add Page options are enabled.

Add variables or pages as appropriate.

Click Save Configuration.

Click Unlock.

Click OK on the following message:

Group configuration variables published to domain and environment.

CA Process Automation adds the new custom operator group to the Modules tab
for the Domain and for each environment in the Domain.

From the Modules tab in the Configuration Browser, administrators can open the
custom operator group that you defined on the Settings tab. From an open custom
operator group, administrators can add values to the variables you defined in the
Group Configuration tab.

Note: For more information about configuring values for custom operator groups,
see the Content Administrator Guide.

168 Content Designer Guide

Operators

Edit a Custom Operator Group Configuration

Administrators can edit a custom operator group configuration. Republishing does not
update all changes that you make in the Modules tab of the Configuration Browser. If a
group you edit was already published at least once or another user is using it, CA
Process Automation only publishes parameters new to the group. The delete or change
of data type operations on variables that were already published are not updated at the
Domain or environment level when you republish. However, CA Process Automation
does save the changes at the custom operator level. You can view the changed data
type variables when you open the custom operator in a group.

Follow these steps:

1.

To open the custom operator editor, double-click a custom operator on the Library
tab.

Click the Group Configuration tab.

Click Lock to lock the group.

CA Process Automation enables the Add Variable and Add Page options.
Add, delete, or edit variables or pages as appropriate.

Click Save Configuration.

Click Unlock.

When you use a custom operator in the edited group in the Designer tab, verify that
the custom operator includes all of your group changes (including data type
changes).

Chapter 5: Operators and Icons 169

Operators

Custom Operator: Custom Panels Tab

The Custom Panels tab appears for a limited subset of base operators only, such as the
Assign User Task or Invoke SOAP Method operators. The sections on the tab vary by
base operator. Two common base operators appear in the following examples.

For custom operators based on the Assign User Task operator, the Custom Panels tab is
divided into the following sections:
Assignees

Specifies the users or groups that can interact with the custom operator and its
form.

Transfer/Delegate Filters
Specifies the users or groups that are available for task transfer or delegation.
User Task
Specifies the Title, Description, and Form Data Initialization Code for the associated
Interaction Request Form.
For custom operators based on the Invoke SOAP Method operator, the Custom Panels
tab is divided into the following sections:
SOAP Call Data

Use this group of fields to specify the Service URL, method name, user name,
password, version, source, and other details for basic SOAP or HTTP authentication.
Use the WSDL Wizard to load a URL and select WSDL services, ports, and
operations.

Dynamic Parameters

Use this group of fields to specify the parameter style and add, edit, or delete
macros or XPath queries.

Call Results

Use this group of fields to specify the saved SOAP request response file path and
add, edit, or delete additional extracted data. You can also check options to
determine how portions of the extracted SOAP body, header, and XML namespaces
are handled.

MIME Attachment

Use this group of fields to specify an expression or add, edit, and delete content as
MIME attachments.

WS Security

Use this large group of fields to manage security details. Expand each group box by
clicking its title to view all the fields.

170 Content Designer Guide

Operators

Macro Expansion Syntax

In previous releases of CA Process Automation, you could use a variable in a custom
operator field that accepted an expression as input. The base operator supported the
use of variables and dynamically replaced them with actual values, a concept that is
known as macro expansion. Custom operators that you import from previous releases
continue to support dynamic variables and macro expansion in this release of CA
Process Automation.

For certain base operators, however, namely the ones with a Custom Panels tab, the
fields do not support macro expansion with just a variable name alone. Examples
include the Assign User Task and Invoke SOAP Method operators. Add the term
operator to the field for evaluation of the expression and macro expansion, if
supported. The following graphic demonstrates the syntax that is required to replace
the variables varUserID and varUserPassword dynamically:

Operator.varUserID

Operator.varUserPassword

o (=
(== & 2) Help
SOAP Call Data =
oo
= .
Save [4d Check In Test (¥) Make Available 2
Service URL B &4 = @
"hitps:// <server>:port/itpam/soap” - Preview Settings Dataset Custom Panels -
Method name -
SOAP Call Data -
“getProcTest”
Authorized User for Basic SOAP or HTTP Authentication
varUserID WSDL wizard =
Password for Basic S Br HTTP Authentication Service URL
varUserPassword “https:// <server>:<port>/itpam/soap”
Method name
Use HTTP Basic Authentication? “getProcTest”
Authorized User for Basic SOAP or HTTF Authentication
Operator.varUserlD
Password for Basic SOAP or HTTP Authentication
Inline text Operator.varUserPassword
Inline text -
4 1 »
‘

Custom Operator: Properties Tab

Use this tab to store the name, description, and keyword tags for your custom operator.
Basic properties on this tab function the same way for all automation objects.

Custom Operator: Versions Tab

Use this tab to manage the versions of your custom operator. Versions function the
same way for all automation objects.

Chapter 5: Operators and Icons 171

Operators

Custom Operator: Audit Trail Tab

Use this tab to examine the history of your custom operator. Audit Trails function the
same way for all automation objects.

Set Custom Operator Availability to All Users

By default, a custom operator is not available to other CA Process Automation
designers. You can set the availability of custom operators for all users.

The availability of a custom operator only affects the ability to see and add the custom
operator to a process or schedule. Once a custom operator has been added to a process
or schedule, making it unavailable does not affect its existing inclusion and use.
Follow these steps:
1. Click the Library tab.
2. Double-click a custom operator.
The Custom Operator dialog appears.
3. Inthe toolbar:
a. Click Make Available to allow all users to see and use the operator.
b. Click Make Unavailable to hide the operator from other users.

The change in availability is instant whether you click Save or not.

Publish a Custom Operator Group Configuration to Another Domain

When you define a custom operator group, the group automatically publishes to the
current Domain and to all environments in the Domain.

When you import to a different Domain, the process lets you publish the custom
operator group to that Domain and to all of its environments. The Publish Custom
Operator Group Configuration option requires Group_Config_Admin rights.
Administrators (members of the PAMAdmins group) have this right.

Follow these steps:

1. Inthe Library browser for the selected Orchestrator, select the destination for the
imported items.

2. Right-click the parent folder, then click Import.

3. Click Browse, browse for the XML file in the Open window, then click Open.

172 Content Designer Guide

Operators

4. Select one of the following options that specify how to handle objects with
conflicting names. If you import into an empty folder, there can be no conflicts.

m Import
m Import and Replace
m Do Not Import
5. (Optional) Select the Set Imported Version as Current check box.

This option applies if you selected Import as a New Version and Keep the Existing
Object in Step 4.

6. Select the Make Imported Custom Operators Available check box.
You cannot use custom operators until they are made available.
7. Select the Publish Custom Operator Group Configuration check box.

Publication publishes the custom operator groups to the import Domain and to all
environments in this Domain.

8. Click Submit.
9. Click OK on the successful import confirmation message.

The import recreates the exported folder structure in the selected location, imports
the custom operators, and publishes the custom operator group and related
variables.

More information:

Custom Operator: Group Configuration Tab (see page 167)

Example: Retrieve Valuemap Array Values with an Operator System Function (see page
160)

Release Objects to Another Environment (see page 423)

Chapter 5: Operators and Icons 173

Operators

Using Custom Operators

You can use a custom operator in a process or schedule like any other operator. Keep
these points in mind when working with custom operators:

m [nitial values for the custom operator parameters may be pre-configured or hidden.

m New custom parameter inputs may exist that require configuration.

®m Your custom operator will appear in a folder called Uncategorized unless you set a
custom group name on the Custom Operator dialog Settings tab.

m [f a custom operator is not available at the time that your process was opened for

editing, make the custom operator available, and refresh the operator group folder

again.

m [f a custom operator is not available at the time that your schedule was opened for

editing, make the custom operator available, and refresh the operator group folder

again.

®m You must refresh the operator group folder in a process or schedule to see any
changes made to the custom operator's name or other settings.

® You must close and re-open a process or schedule to see any changes to existing
custom operators.

m Any process or schedule using a custom operator uses the latest checked-in version

that is marked as Current in the Library Browser.

174 Content Designer Guide

Operators

Edit Custom Operator Values

Custom operator groups provide custom variables with default values. Custom
operators that you assign to a custom operator group share those variables and values.
You can accept the group-level values or you can assign different values to the variables
for a custom operator.

Note: Group values are set at the Domain level. All environments in the Domain inherit
these group values. Unlike operator categories, you cannot override values for custom
operator groups at the Orchestrator or agent level. However, you can change inherited
values at the custom operator level.

Follow these steps:

1. Click the Designer tab.

2. Click the View drop-down list and select Operators, Dataset, and Properties.

3. Expand the custom operator group name in the Operators list and drag the selected
custom operator to the canvas.

4. Double-click the custom operator.

5. Review the value for each custom variable. Either accept the inherited value or type
the value that you require.

6. Click Save.

How to Work with Protected Custom Operators

CA Technologies can release protected custom operators. The lock icon indicates that
the custom operator is protected:

La

The use of protected custom operators is restricted in the following respects:

®m You cannot view any code defined to the protected custom operator. The input
parameters, pre-execution code, and post-execution code are encrypted.

® You cannot modify the imported version.

® You cannot modify or view the code in a copy of the imported version.

Your Favorite Operators

As a convenience, you can add your favorite operators to the Favorites folder or group.
The Favorites group appears at the top of the Operators palette in the Process Designer.

Click Refresh in the Operators palette to view your favorite operators when you design a
process.

Chapter 5: Operators and Icons 175

Operators

Add or Remove Your Favorite Operators

You can add and remove your favorite operators from the Favorites group folder in the
Operators palette.

Follow these steps:

1.
2.

Click the Designer tab.

Open a process or create a process.

In the toolbar, click the View menu and select Operators.

The Operators palette appears.

In the filter area at the top of the Operators palette, click Refresh.

The list of operators, custom operators, and favorite operators is updated.

Expand the Favorites folder to view the operators you have added. For new users,
no operators appear.

To add an operator to your Favorites folder:

a. Expand any other folder of operators.

b. Right-click an operator and select Add to Favorites.

c. Click Refresh.

To remove an operator from your Favorites folder:

a. Click Refresh.

b. Expand the Favorites folder to view the operators you have added.

c. Right-click an operator and select Remove from Favorites.

176 Content Designer Guide

Operators

Connectors

Connectors are optional extensions to CA Process Automation that enable operators
that interface with other CA and third-party solutions. When your administrator
configures a connector, a new group of operators appears in the Operators palette in
the Process Designer.

Connectors integrate CA and third-party products into workflow processes and provide
bridge services from other products to CA products and solutions that embed CA
Catalyst. You can download other connectors in addition to the connectors provided on
the CA Process Automation installation media. Licensing restrictions may apply. A list of
the most popular connectors follows:

m Amazon Web Services (AWS)
m BMC Remedy

m CAClient Automation

= CACMDB

m CA Configuration Automation
m CAeHealth

m CANSM

m CA Service Desk Manager

m CASpectrum IM

m CA Workload Automation AE
= IBM AS/400

= IBMz/0S

m Microsoft Hyper-V

® VMware vSphere

Use application-specific connectors to perform tasks such as gathering data or applying

actions on target systems and target applications. Connectors provide operators that
run in the following locations:

m On the Orchestrator

® On agents that reside on the application server

m On proxy agents that can remotely perform the required task or collect the data on
the application server

Each connector module typically includes multiple operators. Each operator performs

one of the following specialized tasks:

Decision Tree Support

Chapter 5: Operators and Icons 177

Operator Icons

Returns a binary (true/false, success/failure) value that can be used to decide how
to branch in the process. In some situations, the returned value can have more than
two options. However, the returned value is always a small and well-defined set of
possible values.

Data Collection

Collects more complex datasets from the target application. The result is typically
stored in a local dataset where other operators can further analyze it. If so required,
the data can also be made global so that other processes can use it.

Active Management

Performs actions on the target system, including all operators that change the
behavior of the target system in any way. For example:

m Sending an event
m Reconfiguring the application
m Starting or stopping a related service
In some cases, a single operator can perform more than one of these functions. For

example, a connector can run, then return a result set that is based on the connector
action.

CA Process Automation includes many connectors. You can create connectors and
related operators easily in either of the following ways:

m By calling standard, application-specific executables that are on the agent

m By using standard scripting languages for more complex functions

To minimize the application footprint and user interface complexity, only a set of
generic and commonly used connectors are installed by default. Best practice is to
install other connectors only when necessary.

Operator Icons

CA Process Automation supplies default icons that are displayed for operators when
they are placed in a process or schedule. You can replace the default icon with an icon
that you specify (a custom icon). You can assign a custom icon to any operator in a
process, including custom operators.

CA Process Automation automatically handles the smaller visual indicators that
represent the status of an operator in a process. For example, smaller graphics in the
corners of all icons represent different execution states (such as idle, running,
completed, and failed) in a process.

178 Content Designer Guide

Operator Icons

Operator Status Icons

The following graphic details the smaller subset of icons that an operator can display to
indicate status and port options.

®
=4

¥]

Get Directq

yvvl

PEEE

8[Goo’

@

b ¢

Item:

Description:

Breakpoint: This icon indicates that you set a breakpoint in the process at this
operator. Click Set Breakpoint in the toolbar.

Simulation Mode: This icon indicates that you are overriding simulation
options and have set the operator simulation type to local or distant. In the
Properties palette, expand Simulation.

Pre-Execution Code: This icon indicates the presence of JavaScript code that
runs before the operator runs. In the Properties palette, expand Execution
Settings.

€]

Post-Execution Code: This icon indicates the presence of JavaScript code that
runs after the operator runs. In the Properties palette, expand Execution
Settings.

Custom Port: The process flows through a custom port when its predefined
expression is true.

Timeout Port: The process flows through this port when the operator times
out.

W @ @

Failed Port: The process flows through this port when the operator yields an
unsuccessful result or fails.

©

Completed Port: The process flows through this port when the operator yields
a successful result.

Chapter 5: Operators and Icons 179

Operator Icons

When you run a process, the following icons indicate the status of each operator.

C

Item: Description:

Aborted: The process has been stopped.

Running: The process is currently running.

Failed: The process failed at this particular operator.

Completed: The process has successfully passed this particular operator.

Timeout: The process has timed out at this particular operator.

COHOHCHONC,

Creating, Editing, and Applying Custom Icons

Custom icons are visual identifiers for an operator. They assist you in identifying the
specific function of an operator. You can create custom icons in any automation library
folder, and then apply them to any operator. Each icon displays your chosen base image
with a modifier image overlaid in the lower right corner. The base (object) and modifier
(action) provide a consistent structure for all icons.

The topics in this section describe why and how a CA Process Automation Content
Designer uses custom icons to customize the appearance of operators. This section also
provides examples.

As a process designer, you rely on the visual cues that icons provide to determine the
purpose of each operator. For example, what would you guess is the function of the
following operator icon?

&

Even without a label, you can infer from the image that this icon represents a Delete
Email operator. An appropriate icon helps you and other designers understand the
functionality of an operator.

180 Content Designer Guide

Operator Icons

The initial investment of time you make in assigning an appropriate icon yields many
benefits, including the following:

Standardization

Using a standard set of base and modifier images helps designers understand the
object performing the action.

Simplicity

Designers can readily identify distinct operators in even the largest, most complex,
processes.

Sharing

Teams of designers working in other native languages can share process designs
because they are easier to understand.

Use the following flowchart as a guide when customizing icons for your process
operators:

Applying Custom Icons
Q
!I’ ‘ Does the current icon
~ h > Done
~ represent its operator?)
ux
Content
Designer

Apply a Custom Icon
to Any Operator
in a Process

Did you find an
appropriate icon?

Apply a Custom Icon
to a Custom Operator

Will modifying an
existing icon work?

Edita
Custom Icon

|Create a

Custom Icon

Chapter 5: Operators and Icons 181

Operator Icons

No sequence is required for performing the listed tasks. At any time, you have the
following options for customizing icons:

Apply a Custom Icon to Any Operator in a Process (see page 184): While you design
a process, you can change the icon for any operator to customize its appearance
only for a single instance. Select a specific instance of an operator and change its
icon to one of the predefined custom icon objects in the library.

Apply a Custom Icon to a Custom Operator (see page 185): When you change a
custom operator icon, your choice of icon is applied to all future instances of that
operator. In addition, all designers can see the new icon for the custom operator in
the Operator palette.

Edit a Custom Icon (see page 183): As time goes by, you can edit one or more
predefined custom icons. Your changes apply wherever that custom icon is already
used.

Create a Custom Icon (see page 183): You can define one or more custom icons. You
can create a series of custom icons that you plan to assign to operators or custom
operators. Or, you can simply create and save custom icons without knowing in
advance exactly where they will be used.

182 Content Designer Guide

Operator Icons

Create a Custom Icon

Edit a Custom Icon

You can create custom icons in any automation library folder. Each icon pairs your
choice of base image with a modifier image overlaid in the lower-right corner of the
base. The base and modifier provide a consistent structure for all icons.

Follow these steps:

1. Click the Library tab.

A hierarchical list of folders appears in the left pane and all your automation objects
appear in the main window.

2. (Optional) If the new custom icon you want to create is similar to an existing custom
icon object, select it, click Copy, and then Paste.
You can now edit the copy to complete your custom icon. Skip the next step.

3. Right-click any folder in the Library Browser pane and click New Object, Custom

Icon.

The new icon appears in the browser with a default name.
4. Double-click the icon.

The Custom Icon Editor opens

5. Select one base and one modifier image. You can browse the icons one by one,
filter by the category drop-down menu, or enter a keyword search.

6. Click the Object Properties tab, enter or edit the icon name, and then click Save &
Close.

Your new custom icon is available in the library.

For example, if you want to represent an operator named Upload Report, you would:
m Select a base image that represents a report.

m Select a modifier image that represents the upload action.

Over time, the custom icons you and other designers create can be modified to align
with other icons. You can edit custom icons in any automation library folder. Each icon
pairs your choice of base image with a modifier image overlaid in the lower-right corner
of the base. The base and modifier provide a consistent structure for all icons.

Follow these steps:

1. Click the Library tab.

A hierarchical list of folders appears in the left pane and all your automation objects
appear in the main window.

2. Right-click a custom icon.

Chapter 5: Operators and Icons 183

Operator Icons

3.

4.

Click Action, Edit.
The Custom Icon Editor opens.
Select a base and a modifier image, edit the icon name, and then click Save.

Your modifications to the custom icon are applied.

For example, if you want to represent an operator named Upload Report, you would:

Select a base image that represents a report.

Select a modifier image that represents the upload action.

Apply a Custom Icon to Any Operator in a Process

You can change the icon for any single operator used in a process.

Follow these steps:

1.
2.

Click the Designer tab.

Click Open.

The Open Process dialog opens.

Navigate to your process and click Open.

The process that you open appears on a new tab.

Double-click a specific operator already shown on the canvas to view its Properties.
In the toolbar, click the View menu and check Properties to view the Properties
palette.

In the Properties palette, expand the Information section.
In the Information section:
a. Clear the Use default Icon check box.
A border appears around the current icon and a Browse button is available.
b. Click the Browse button.
The Select Custom Icon dialog appears.

c. Select the custom icon object that you want to use for this specific occurrence
of the operator.

d. Click OK.

In the toolbar, click Save.

Note: You cannot change the icons that are associated with the execution state of an
operator. For example, waiting or completed. CA Process Automation automatically
manages these icons.

184 Content Designer Guide

Operator Icons

Apply a Custom Icon to a Custom Operator

You can change the icon for a custom operator. The icon that you select applies to all
future occurrences of the custom operator in processes. Existing occurrences of the
custom operator in processes continue to show the original default icon for the base

operator.

Follow these steps:

1.

o

® N o

Click the Library tab

A hierarchical list of folders appears in the left pane and all your automation objects
are listed in the main window by type.

Double-click a custom operator.

The Custom Operator window appears.

In the toolbar, click Check Out.

Click the Settings tab.

On the Settings tab, click the Change Icon link.

In the Select Custom Icon dialog, browse to the custom icon, select it, and click OK.
Click Save.

(Optional) If none of the existing icons are appropriate, edit a custom icon or create
a new one.

Note: You cannot change the icons that are associated with the execution state of a
custom operator. For example, waiting or completed. CA Process Automation
automatically manages these icons.

Custom Icon Examples

The following list shows examples of custom icons and the potential operators they
could represent.

Diagnose (or Monitor) Performance

Add User Account

Debug Script or Code

Chapter 5: Operators and Icons 185

Operator Icons

Example: Create or Edit a Custom Icon

This example demonstrates the key concepts behind the CA Process Automation
Custom Icon Editor. The graphic shows the selection of a base icon that is combined
with a smaller modifier icon to create a custom icon. The resulting combination is saved
as a Custom Icon object that can later be applied to any operator.

(I - [-
RaaN [|

~

Il
. |

W v C =l
o) .
b g "..‘/

186 Content Designer Guide

Operator Icons

Example: Apply a Custom Icon

In the following example, the designer has decided to change one of the two identical
icons. The custom operator is based on the Assign User Task operator. However, it has a
distinct new purpose. The operator prompts a user to approve a report. The old default
icon appears within the process at left (Before) and the new custom icon appears at
right (After). The new icon better represents the function of the currently selected
operator within the process. In this example, the designer has also elected to show the
long name for the operator.

Before

Imagine a process with many similar operators arranged in a series. Each operator could
perform a different action. In this situation, use custom icons to help you to identify
each distinct operator.

Chapter 5: Operators and Icons 187

Chapter 6: Datasets and Parameters

This section contains the following topics:

Datasets (see page 189)
Process Parameters (see page 208)

Datasets

Datasets let you define groups of variables to store and organize data. Datasets provide
a way to share data across multiple process instances.

A dataset object defines a collection of variables that you can reference by name. You
create and manage datasets in the Library Browser just like any other automation
objects for an orchestrator. A dataset can contain any number of fields, called variables.
Assign each variable to one of the following data types by the kind of data the variable

stores:

m Boolean
m Date

m String

m Integer

® Java Object

m long

m Double

m Password

m Object Reference
m ValueMap

You can configure all data types to contain a single value or multiple indexed values
(called an array). You can define an indexed field as an array of one or more dimensions.

Chapter 6: Datasets and Parameters 189

Datasets

You can edit dataset objects and custom operator datasets from the Library Browser.
You can edit datasets for processes and each operator in the Process Designer.

©). CA Process Automation

B save @ CheckIn

@ Add Variable X Delete Variable @ Add Page @ Help
Dataset Properties Versions Audit Trail
Type State Filter: X # || General
Dataset Chackod Ot &
he Name value
- Type: String »
4 |2} Parameters
Page: v
4 (3 Simple_RootvM @ L] Parameters
4 3 Parameters Descrption:
Simple_Str Testi@#123
Lng_Str T123456789T123456789T1234567 .
Flevodde - o/ Array o
£adute R 4 |2 Str_SDimArray [4] ©
Add Indexed value i Array Single i
(0] strl 3 Dimension:
11 T12345 XX Delete Indexed value
2 123456 -
Heme, L B CustomSOAP (Version 1)-CustomOperator @ x
@ Process watch Process Wik = = -
jar_by @ tnteraction Request Form /_m‘e'}:«mnx o Bisave @checkin @1 (%) Add variable X 1 (®) add Page X D¢ ® Test »
G CustomGetrileatributes”™ Custom Operator For Preview Settings Dataset Custom Panels | Properties Vers -
7 O customsoa® [l Custom Operator| | Fitor: ® General
& PROCESS-00: PERTIES Fracess Name Value -
) DATASET_20120127 \ Dataset
\ Page: -
& PROCESS-HOW-HOOK-DA.. Process @
Py escription:
dule
it Mo: { (Page 1 loft b bl RS |+ Rows o L
¢ 1 (0]
Properties. N\ 5 false Value: -
Goneral || Tags || Veesions || AuditTrail, false - Array
Name: CustomSOAP 3 ik >
Current Yersion: 1

3. CAProcess Automation

) e ® %
Operators(240)
X o
<
Favorites -
& stop Failurs
Dataset

Scan_File_Contents_2 M
FileModule_ScanfileContents
S All Operators
Write_to_File_1
Scan_File_Contents_1
Scan_File_Contents_3
Scan_Fils_Contents_2

Scan File Contents 4

Java Object X
Page2 ”
[Java Object]

Designer
® ¥
- Dataset
A B save (@) Add variable X Delete variable (¥) Add Page
?¢ Run_Script_1 v X General
Name value
~ Type:
a 4 o) Parameters
Page:
X Value 1
¥ value 2 escription:
H Yalue 3
4 Pagel
var 1 Value:
4 [page2 Array
frimakind (7 v ,
——ule_skai vi [Java Object]
v

,‘; S ! v2 ancel

Item: Description:

Browser. Open a dataset to edit it.

Datasets in the Library Browser: Create, edit, and manage your own dataset objects in the Library

in the Library Browser. Open a custom operator to edit its dataset.

Custom Operator Datasets: Create, edit, and manage your own datasets for custom operator objects

and each operator. You can also refer to your own datasets in code. Click the

for editing the selected process or operator dataset.

Datasets in the Process Designer: The Dataset palette displays the datasets available for the process

& icon to open a dialog

190 Content Designer Guide

Datasets

Item: Description:

@ Pages, Variables, Data Types, and Values: Define the pages and variables for the dataset in the left
half of the dialog. Define the data types and enter a description in the right half. Define values on
either side. Right-click the variable name for an array to add or delete an indexed value.

Create a Named Dataset Object

You create and manage named dataset objects with your other automation objects in
the Library Browser.

Follow these steps:

1.

N

Dataset Types

Click the Library tab.

In the Library Browser folders pane, select a folder.

In the toolbar, click New and select Dataset.

A new dataset object appears and is checked out to you.
Enter a name for the new dataset.

Double-click the dataset to define its pages and fields.

The Dataset dialog opens.

Dataset variables (also called fields) can contain literal values that you explicitly define in
the dataset object. You can also assign values to variables (fields) at runtime using
expressions. Refer to dataset objects and their variables by name using JavaScript
expressions in calculated parameters.

You can create and configure dataset variables for all types of datasets, except the
system dataset. Refer to system dataset variables directly. You can refer to process and
operator datasets through parent process or operator objects. The following table
describes the dataset types.

Dataset Description and Scope: To Reference in an
Type: Expression:
Named Dataset objects store the definition for a named See Specify Named
Dataset dataset in the Library Browser. Named dataset Dataset Variables

variables are accessible by any operator, process, (see page 241).
or schedule in the same library. You can edit the

current version of a named dataset by expanding

the library folder and double-clicking the dataset

object.

Chapter 6: Datasets and Parameters 191

Datasets

Dataset
Type:

Description and Scope:

To Reference in an
Expression:

Process
Dataset

Process datasets contain variables that you or
another designer defines. CA Process Automation
can also define process variables automatically
when a process instance starts. Process datasets
appear in the Dataset palette of the Process
Designer.

See Specify Process
Dataset Variables

(see page 242).

Operator
Dataset

An operator dataset is included in every instance
of an operator added to a process or schedule
object. The operator dataset can contain
operator-parameters, user-defined variables, and
program-defined variables. An operator dataset is
primarily accessible to the immediate operator
and secondarily to other operators in a process.
Operator datasets appear below process datasets
in the Dataset palette of the Process Designer.

See Specify Operator
Dataset Variables

(see page 244).

System
Dataset

Contains predefined variables that are available in
the context of the entire CA Process Automation
domain. These variables access system parameters
and are made available by the System keyword.

See Specify System.
Dataset Variables

(see page 245).

192 Content Designer Guide

Datasets

Define Dataset Pages and Variables

Define the pages, variables, and values in a dataset. When you run a process, operators
can reference the values in datasets.

New named datasets and process datasets include a default root page called
Parameters. The pages and variables for operator datasets vary by operator. You can
create new variables (fields) or you can edit existing variables. You can also add pages to
group variables in logical ways. To edit an existing variable or its value, click the variable
or its value, and then make your changes. You can also change values in dataset
variables (fields) programmatically.

Follow these steps:

1.
2.
3.

Click the Library tab.

Select a folder and locate a dataset. Use the optional search features if necessary.
Double-click the dataset.

The Dataset tab of the Dataset dialog appears.

Click Check Out.

To create a page, click Add Page.

To create a variable:

a. Select a page.

b. Click Add Variable.

To rename a page or variable, double-click it. Names must start with a letter and
must have a maximum length of 32 characters.

For variables, select the data type and page, enter an initial value, and provide an
optional description.

Page

Defines the page that contains the variable. To move the variable to a different
page, select that page. For custom operators, the page that is specified here
corresponds to an expandable properties group on the Properties palette.

Description

(Optional) Provides helpful information about the variable when it appears
later in a dataset. If provided, a tool tip displays the text that you enter here
when you move the mouse pointer over the field name or value.

Value

Specifies the default value if the field is blank (cleared). For fields of the
integer, long, and double type, the default value is 0. For fields of the integer,
double, long, or string type, you can specify your own default value here. To
view the Value field contents in a separate window, right-click in the Value field
and choose Expand.

Chapter 6: Datasets and Parameters 193

Datasets

Note: The Expand option is available for only the string data type.
You can also enter constraints for a field of these types:
m For fields of the Boolean type, you can select True or False.

m For fields of the Object Reference type, click the browse button (...) to
select a dataset object.

m For fields of the Date type, click the browse button (...) to select a date.
m Java Object fields are read-only.
Note: The ValueMap field type cannot be assigned a default value.

9. Todefine arrays:

a. Onthe General tab, select the Array check box and select Single or Double in
the Array Dimension field.

b. Right-click the variable and select Add Indexed Value.

c. Click the Value field to enter a value.

Note: To edit the dataset for a custom operator, open it, check it out, and click the

&

Dataset tab. You can also edit process and operator datasets by clicking in the title

bar of the Dataset palette in the Process Designer.

Variable Data Types
Dataset variable data types map to JavaScript value types.
The different data types for variables are as follows:
Boolean
Stores and returns True or False.
In expressions, this type maps to the JavaScript Boolean data type.
Object Reference

References any type of object available in CA Process Automation, including objects
available in an automation library, touchpoint, and touchpoint groups.

Date
Stores and returns a date in a date format specified in the parameter properties.

In expressions, this type maps to the JavaScript date object.

194 Content Designer Guide

Datasets

Double

Stores and returns a decimal value. Double values are entered in the following
format:

[digits][.digits][(E|e)[(+]-)]digits]

In expressions, this type maps to JavaScript floating-point literal type. The literal has
a minimum value of -1.7976931348623157E308 and a maximum value of
1.7976931348623157E308.

Integer

Stores and returns a 16-bit integer value. An integer field can return a single integer
or an indexed list of integers. The integer allows you to represent all integers to ten
digits from -2,147,483,648 to +2,147,483,647.

In expressions, this value type maps to the JavaScript integer type.
Java Object

Stores a Java object.
Long

Stores and returns a 32-bit integer. The long data type allows you to represent all
integers to 19 digits from -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807.

In expressions, this value type maps to the JavaScript integer type.
Password

Returns a password in encrypted format. Password-field values can only be
assigned to other password fields. Unauthorized users are prevented from viewing
passwords in an unencrypted format.

Note: CA Process Automation protects passwords from any modification.
Operations such as concatenation and string manipulation on the passwords results
in a null value.

String

Returns a string of characters. A string field can return a single string or an indexed
list of strings.

In expressions, this value type maps to the JavaScript string type.

Chapter 6: Datasets and Parameters 195

Datasets

ValueMap

Defines a dataset structure that is stored within another dataset. You can add pages
and variables to a ValueMap field. ValueMap variables and pages can be nested one
inside of another.

In calculated fields, ValueMap type fields are addressed hierarchically within a
dataset path. The following example addresses the parameter param1 in ValueMap
field VMap2, which is in turn nested in ValueMap field VMap1, which in turniis a
member of the dataset MyDataset.

Process.MyDataset.VMapl.VMap2.paraml

Important! Changing the data type or changing the Array check box option eliminates
any existing data in the field. Edit the dataset only if it is acceptable to discard any
current values in the field.

Validation Settings for Dataset Variables

When you select the variable type, you can specify exactly what type of data a user can
enter. The constraints that you can apply to a value depend on the selected data type.
The following table lists the potential constraints for the different data types in an
operator dataset.

Data Type Validations

Boolean None

Date None

Double Specifies minimum and maximum values for a

Double type variable between minus
1.7976931348623157E308 and positive
1.7976931348623157E308.

Minimum value is the minimum allowed value for
double values.

Maximum value is the maximum allowed value for
double values.

Integer Specifies minimum and maximum values for an
Integer type variable between minus 2147483648
and positive 2147483647.

Minimum value is the minimum allowed value for
integer values.
Maximum value is the maximum allowed value for
integer values.

JavaObject None

196 Content Designer Guide

Datasets

Data Type Validations

Long Specifies minimum and maximum values for a Long
type variable between minus 9223372036854775808
and positive 9223372036854775807.
Minimum value is the minimum allowed value for
long values.
Maximum value is the maximum allowed value for
long values.

Object None

Password None

String None

ValueMap None

Arrays with Indexed Values

You can define a dataset variable to store a single value or an array of indexed values.
You can access each value in an indexed array. You can define the indexed fields in a

single or double dimension array.

Each dimension in an array begins with indexed value [0] and continues in sequence
with [1], [2], then [3], and can continue with any number of additional values. In
expressions, represent a dimension, or level, of an array with bracket notation. Each
level of an array supports JavaScript array properties and methods.

The default type of field is to store a single value. To specify that a field store an indexed
list of values, select the Array check box and configure the indexed values.

Chapter 6: Datasets and Parameters 197

Datasets

Define a ValueMap as an Array

You can create a ValueMap, define its variables, and can include arrays in the ValueMap.
You can even decide to define a ValueMap as an array. Each variable of the ValueMap
represents a structure that you define in the dataset under Element Type.

1. Click the Library tab.

2. Select a folder and locate a dataset. Use the optional search features or create a
dataset if necessary.

3. Double-click the dataset.

The Dataset tab of the Dataset dialog appears.

Click Check Out.

Select a page. The default page is named Parameters.

In the toolbar, click Add Variable.

N o v &

On the General tab:
a. Setthe Type to ValueMap.
b. Do not click the Array check box.

8. Expand the new ValueMap variable and select a page. The default page is named
Parameters.

9. Inthe toolbar, click Add Variable.
10. On the General tab:

a. Set the Type.

b. Enter an initial value.

c. Check the Array check box.

11. Repeat the last three steps. Select a page, click Add Variable, and define the
variable as an Array.

12. Expand the ValueMap variable and page. Right-click the first variable and choose
Add Indexed Value.

13. Repeat the last step.
14. Right-click the second variable and choose Add Indexed Value.
15. Repeat the last step.
You have defined a ValueMap made up of two arrays.
16. Click the original ValueMap variable.
17. On the General tab, check the Array check box.
The Element Type folder appears under the ValueMap variable.

18. Expand Element Type completely to view its pages, variables, and indexed values.

198 Content Designer Guide

Datasets

Modify a Dataset

19. Right-click the original ValueMap variable and choose Add Index Value.
Array index [0] appears.

20. Expand array index [0]. The pages, variables, and indexed values are copied from
the Element Type structure.

When you add a variable to a page under Element Type, all existing valuemap array
index entries immediately include the new variable under the corresponding page.

When you delete a variable from a page under Element Type, all existing valuemap
array index entries no longer include the deleted variable under the corresponding

page.

When you specify values for the variables under Element Type, the values become the
default values for any new indexed entries of the ValueMap array. The new Element
Type values are not propagated to existing index entries of the ValueMap array.

You can modify a dataset by adding indexed values or modifying variable data. This
procedure provides fewer capabilities than the more robust dataset tasks of defining
pages and variables.

Follow these steps:

1. Click the Library tab.

2. Right-click a dataset and choose Modify Dataset.

3. Inthe Modify Dataset window:

a. Right-click an array variable and choose Add Indexed Value to add an entry to
the array.

b. Click a value to directly add or change it.

Chapter 6: Datasets and Parameters 199

Datasets

View or Copy a Dataset Expression

Use this procedure to view or copy the full reference to a dataset array or a specific
value.

Follow these steps:

1.
2.

Click the Library tab.

In the Library, do one of the following actions:

m Double-click a dataset.

m Right-click a dataset and click Edit.

m Right-click a dataset and click Modify Dataset.

In the resulting window, click an array or a specific variable to view it.
Right-click the array or variable and click View Expression.

The Dataset Expression window opens.

View or copy the expression. You can also drag the expression to a destination field
that accepts expressions and supports drag-and-drop.

Read Operating System Values into Dataset Variables

CA Process Automation can read values that a shell process generates into dataset
variables. Before a UNIX Script or Windows Script operator runs its associated script, it
creates a folder to accept values that the script generates. The C20SVD environment
variable specifies the full path to the folder (for example, C:\TMP_VS_559) that is
created for the script operator. A script can then copy data to text files in the folder to
pass the data back to CA Process Automation. Data that is passed back to CA Process
Automation using the C20SVD directory populates variables in the script operator
dataset.

200 Content Designer Guide

Datasets

A script must save data to text files in the C20SVD directory. After a script operator
completes its script (but before it performs the post-execution actions), it determines
whether the location to which C20SVD points contains files. CA Process Automation
then creates operator dataset variables according to the following rules:

m The operator saves the contents of a file from the C20SVD location to a string
variable in the operator dataset. The string variable has the same name as the file.

m Afolder in the C20SVD location generates an indexed variable in the operator
dataset with the same name as the folder. The operator saves the contents of text
files named in a numbered sequence located in the folder to corresponding
elements in the indexed variable. The elements are numbered from 0 to as many
elements as the highest numbered file in the folder. Missing files in the number
sequence generate null elements in the indexed variable.

m CA Process Automation requires a script to create files in the C20SVD location with
the same names as the variables you want to appear in the operator dataset. If the
script creates text files with file extensions (such as .txt), CA Process Automation
includes the extension in the variable name.

The following illustration shows the file-to-variable conversion when the working
directory is set to C:\TMP. The operator appends _VS_599 to the working directory
path to create the C20SVD value C:\TMP_VS_599. The folder name (in this case
_VS_599) is unique for every instance of any operator.

The illustration also shows two folders %C20SVD%/HostList and %C20SVD%\OSList that
contain five files named 0, 1, 2, 3, and 4. The script writes a computer name to each
numbered file in the HostList folder. The script writes an operating system name to each
numbered file in the OSList folder. CA Process Automation creates two zero-based
indexed variables after running the script, HostList and OSList. The application assigns
the contents of the numbered files in the HostList and OSList folders to the
corresponding elements of the indexed variables.

Chapter 6: Datasets and Parameters 201

Datasets

In the example, the Windows script uses the C20SVD variable to create the file
%C20SVD%\NumRowsRead. CA Process Automation creates a corresponding variable
(NumFilesRead) in the script operator dataset after it runs the script. The product then
assigns the contents of the NumFilesRead file to the variable.

WORKING DIRECTORY = "C:\TMP"

C20SVD = CATMP. WS 559 Operation
C205VD Files Dataset VVariables
=l e Local Disk (i
= 5 e
= [_¥s_s59
NumRowsRead |—i MumRovwsRead String
= | HostList]
Eo
¢ (28] Hostlist Inclexed String
2 B JAMES
i INDUS
m
_— HILE
=I 5 CList g AMAZON
Eo EVOLEA
=
[k (28] OSList Indexed String
3 u| windows
=4 o Linus
B Windoves
u| LIMIE
| GCOSS

When a script operator finishes, it deletes the C20SVD folder and its contents. The
script operator post-execution code can access the operator dataset variables. The code
typically copies the operator dataset variable values to local variables in the process
dataset or to operator dataset variables in subsequent process operators. The three
example scripts in this chapter show how the example illustrated in this section is
implemented using UNIX script, VBScript, or PerlScript.

Sample Scripts for Reading Operating System Values into Dataset Variables

A process can use UNIX script, VBScript, or PerlScript to read operating system variables
into operator dataset variables. Each script reads lines from a text file that specifies a
host name, a single space, and the operating system running on the host. For example:

JAMES Windows

INDUS Linux

NILE Windows

AMAZON UNIX

YANGTZE Solaris

GILA UNIX

The three scripts save the host names to an indexed field named HostList and the
operating system names to an indexed field named OSList.

202 Content Designer Guide

Datasets

UNIX Script Example:

Script (UNIX)

The process incorporates the following steps:

1. The UNIX or Windows module passes a text file name. The module gets the file
name from a parameter on the appropriate Process tab of the script operator
properties.

2. The UNIX or Windows module creates and initializes the C20SVD environment
variable with a path to a unique folder.

One instance of a script operator uses the folder that the C20SVD environment
variable specifies. The instance is not repeated or overwritten by any subsequent
instance of that or any other script operator.

3. The UNIX or Windows module creates the folder that the C20SVD environment
variable references.

4. The script creates folders named HostList and OSList in the folder that the C20SVD
environment variable references.

5. The script reads each line of the text file and takes the following actions:

m The script writes the host names to sequentially numbered files in the
%C20SVD%\HostList folder.

m The script writes the operating system names to sequentially numbered files in
the %C20SVD%\OSList folder.

These files generate two indexed operator dataset variables HostList and OSList.

6. The script writes the number of lines it read to the files to a file named
%C20SVD%/NumRowsRead.

This file generates an operator dataset variable named NumRowsRead.

UNIXGetlInfo Script Operator

The UNIXGetInfo operator runs UNIX script on a UNIX touchpoint.

The UNIX script example creates two indexed fields, HostList and OSList in the
UnixGetlInfo operator dataset. It reads the source file line-by-line and assigns host
names (Shost) to indexed values in sequential HostList fields and operating systems
(Sopsys) to indexed values in sequentially numbered OSList fields, starting with 0, and
finishing at one less than the number of rows read from the source file.

The UNIX Shell script parameter variables $1, $2, etc. are set by the first, second, etc.,
entries of the Parameters input area of the calling Run Script operator. In this case, only
one parameter is being passed, which is used to set SourceFile. The number of rows
read are assigned to the operator dataset variable named NumRowsRead. The sleep 30
line has no purpose other than to pause the operator and give the user 30 seconds to
examine the folders and files created in the C20SVD location. This line would not be
included in a production script.

Chapter 6: Datasets and Parameters 203

Datasets

#!/bin/ksh

SourceFile=$1

#known to be reading 2 variables, host and operating system

mkdir $C20SVD/HostList

mkdir $C20SVD/0SList

integer counter=0

while read host opsys; do
echo -n $host > $C20SVD/HostList/${counter}
echo -n $opsys > $C20SVD/0SList/${counter}
counter=$counter+1l

done < $SourceFile

echo -n $counter > $C20SVD/NumRowsRead

sleep 30

exit 0

VBScript Example: WinGetInfo Script Information

The WinGetlInfo script operator runs VBScript on a Windows touchpoint.

Script (VBScript)

The script creates two indexed fields, HostList and OSList in the WinGetInfo operator
dataset. The script:

m Reads the source file line-by-line.

m Assigns host names (strHost) to indexed values in sequential HostList fields. The
numbering starts with 0 and finishes at one less than the number of rows that are
read from the source file.

m Assigns operating systems (strOS) to indexed values in sequentially numbered
OSList fields. The numbering starts with 0 and finishes at one less than the number
of rows that are read from the source file.

The script populates the oArgs.ltem variable with the Parameters input area entries of
the calling Run Script operator. The first entry populates oArgs.ltem(0). The script
assigns the number of rows it reads to the NumRowsRead operator dataset variable.
The Wscript.sleep 30000 line pauses the operator for 30 seconds so the user can
examine the folders and files created in the C20SVD location. You would not include the
Wscript.sleep 30000 line in a production script.

204 Content Designer Guide

Datasets

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

0Args
oShell
colProcessEnv
objFSO
objDir
objFileln
objFileOut
intCounter
intExitCode
strLine
intSpacePos
strHost
stroS

on error resume next

set
set
Set

if oArgs.Count = 1 then

0Args = WScript.Arguments
oShell = WScript.CreateObject("WScript.Shell")
colProcessEnv = oShell.Environment("Process")

strSourceFile = oArgs.Item(0)

Set objFSO = CreateObject("Scripting.FileSystemObject")

'must have the required argument
to proceed normally,
fails if more arguments are present

Set objDir = objFS0.CreateFolder(colProcessEnv("C20SVD"))
Set objDir = objFS0.CreateFolder(colProcessEnv("C20SVD") & "\HostList")
Set objDir = objFS0.CreateFolder(colProcessEnv("C20SVD") & "\OSList")

intCounter = 0

Set objFileIn = objFS0.0OpenTextFile(strSourceFile, 1)

Do Until objFileIn.AtEndOfStream
strLine = objFileIn.ReadLine
intSpacePos = InStr(strLine, " ")
strHost = Left(strLine, intSpacePos - 1)

str0S = Right(strLine, Len(strLine) - intSpacePos)
Set objFileOut = objFSO.CreateTextFile(colProcessEnv("C20SVD") &

"\HostList\" & intCounter)
objFileQut.Write strHost
objFileOut.Close

Set objFileOut = objFS0O.CreateTextFile(colProcessEnv("C20SVD") & "\OSList\"

& intCounter)
objFileQut.Write str0S
objFileOut.Close
intCounter = intCounter + 1
Loop
objFilelIn.close

Set objFileOut = objFSO.CreateTextFile(colProcessEnv("C20SVD") &

"\NumRowsRead")
objFileQut.Write intCounter
objFileOut.Close
intExitCode = 0

else

Chapter 6: Datasets and Parameters 205

Datasets

'"Wscript.echo "bad argument or required argument NOT present"
intExitCode = 5

end if

Wscript.sleep 30000

on error goto 0

Wscript.Quit intExitCode

PerlScript Example: WinGetinfoPerl Script Operator

The WinGetInfoPerl operator runs PerlScript on a Windows touchpoint. In the example
process, PerlScript runs on a Windows touchpoint, although it could also be run on a
UNIX touchpoint.

Script (PerlScript)

The script creates two indexed fields, HostList and OSList in the WinGetInfoPerl operator
dataset. The script:

m Reads the source file line-by-line.

m Assigns host names (Shost) to indexed values in sequential HostList fields. The
numbering starts with 0 and finishes at one less than the number of rows that are
read from the source file.

m Assigns operating systems (Sopsys) to indexed values in sequentially numbered
OSList fields. The numbering starts with 0 and finishes at one less than the number
of rows that are read from the source file.

The script populates the ARGV variable with the Parameters input area entries of the
calling Run Script operator. The script assigns the number of rows it reads to the
NumRowsRead operator dataset variable. The sleep 30 line pauses the operator for 30
seconds so the user can examine the folders and files created in the C20SVD location.
You would not include the sleep 30 line in a production script.

206 Content Designer Guide

Datasets

use strict;
my $filename =

print " sample script to retrieve 0S level data into variables within C20\n\n";

my $numargs = @ARGV;
if ($numargs == 1) {
$filename = shift @ARGV;
} else {
print "enter path and filename to process:\n";
chomp($filename = <STDIN>);
}
my $c2osvd = $ENV{'C20SVD'};
mkdir $c2osvd;
mkdir $c2osvd . "/HostList";
mkdir $c2osvd . "/0SList";
open HANDLE, $filename or die "ERROR: unable to open $filename: $!\n";
my $counter = 0;
while (<HANDLE>) {
my @fields = split;
my $host = $fields[0];
my $opsys = $fields[1];
my $filenamel = $c2osvd . "/HostList/" . $counter;

open HH, "> $filenamel" or die "ERROR: unable to open $filenamel: $!\n";

print HH $host;
close HH;
my $filename2 = $c2osvd . "/0SList/" . $counter;

open HH, "> $filename2" or die "ERROR: unable to open $filename2: $!\n";

print HH $opsys;
close HH;
$counter++;
}
my $filename3 = $c2osvd . "/NumRowsRead";
open HH, "> $filename3" or die "ERROR: unable to open $filename3: $!\n";
print HH $counter;
close HH;
close HANDLE;
sleep 30;

Chapter 6: Datasets and Parameters 207

Process Parameters

Process Parameters

You can define parameters for process operators. The parameters can accept either
literal strings or expressions. You can enter a value as a string without delimiting it in
any way. Calculated parameters accept values as JavaScript expressions. Use single or
double quotation marks to delimit literal strings in JavaScript.

Note: To help you identify CA Process Automation fields that do not accept expressions,
their labels appear in italics.

Calculated parameters allow the following:
m Manipulation of module invocation results and other variables.
m Parameterization of operators.

m Definition of wait conditions based on Boolean expressions (preconditions and wait
conditions). Wait conditions can be used to delay processing and synchronize the
use of resources by different sequences of operators running simultaneously.

You can define parameters using dataset variables. Dataset variables are available to
processes in the following contexts:

m |n the CA Process Automation orchestrator context, datasets are referred to as
named datasets. Named datasets define variables that are accessible to any process
on the same orchestrator. A named dataset is accessed by specifying its full path
name in an expression. To view or edit a named dataset, you double-click the
dataset object in the Library Browser to open the object in the Dataset Designer.

m |nthe process context, there is the process dataset. The process dataset is available
to any operator in a process. The process dataset is accessed by specifying the
keyword process in an expression. You can edit variables in a process dataset in the
Dataset palette in the Process Designer.

m For each operator in a process, there is an operator dataset. Variables in an
operator dataset are available to the operator and to other operators in the same
process. An operator dataset is accessed by specifying the operator name in an
expression. You can edit variables in an operator dataset in the Dataset palette in
the Process Designer.

More information:

Datasets (see page 189)
Calculated Parameters (see page 222)

Operator Properties

This section provides information about types of operator properties.

208 Content Designer Guide

Process Parameters

Literal Strings

To use a literal string value in a field that accepts an expression (its label is not in italics),
enclose the string between delimiters. Use either single or double quotation marks. For
example, you could type a literal string that specifies the path to a program to start a
UNIX process as follows:

"/usr/smart/program"

The Escape Character in Literal Strings

You can use the escape character (\) in literal strings. Instead of being parsed by the CA
Process Automation language interpreter, the character you enter after the escape
character is interpreted literally. If a semantic action is attached to an escape character,
the interpreter converts the action to its character equivalent rather than performing
the semantic action.

For example, say that you want to include a double quotation mark character within a

string delimited by double quotation marks. Precede your quotation character with the
escape character, so that the parser does not interpret it as the string delimiter:

\"

To include the backslash character in a string, precede it with the escape character:
\\

More information:

String Data Type (see page 227)

Specify Paths in Literal Strings

When you use Microsoft Windows file nomenclature in a literal string to specify a path
in an expression, backslashes must be escaped, as follows:
"C:\\IT PAM\\import\\script_oral.bat"

In most cases, use normalized file names, with slash marks (/), even when specifying a
path on a Microsoft Windows computer. For example:
"C:/IT PAM/import/script oral.bat"

When you specify a path to a folder or object in a library, the root folder is represented
by an initial slash mark, followed by the slash delimited folder hierarchy. For example:
"/Production/Processes/failover process"

Chapter 6: Datasets and Parameters 209

Process Parameters

Dataset Variables in Parameters

In addition to literal strings, you can use dataset variables in a calculated expression.

Variables in an expression are not enclosed between quotations marks. The name of the

program in the following calculated expression includes variables and literal text:
"/usr/bin" + Datasets["/Applicationl/Settings"].ProgramName

Designer Configuration
BB X ©0@4§ B G QA FHEHH EQ
B passingOut.,. *
Operators(240) = [\
X re
=~
4 3 Favorites -
L:, Check Calendar
&2, Start Seript = Invoke_SOAP_Method_1 Properties
Standard WSDL explorer -
CA Automated Run Book
LN SOAP Call Data
Catalyst -
Y
Q4 = Pre-execution Code
] Command Execution { Dynamic Par = 4
var a=Datasets["/PAM_Results”] FiletransferModule length;
Databases \ Call Results var varl = newValueMap();
baetins. PR EEISEEER e e \ Datasets["/PAM_Results") FiletransferModule[a]=varl;
ate-Time MIME Attachi Datasets["/PAM_Results") FiletransferModule[a] Operator="InvalidRemotefile";
] Directory Services
WS Security
Execution Se
Dataset
o - Target -
Invoke_SOAP_Method_1 v % ! Target
Name Value J :
D oyns > L Targe:
sof 2 @ ’ ' Matchir
PR S D (0] i Bre-e>
sEvtractToDataSot false
|| Select this check box to save
5 the body of the response to a Dataset
*| variable.
¢
Loop
o Repeat Cot Cancel oK
« w ’ 1

Item: Description:

@ Dataset Variables and Values: Hover over a dataset variable value to view a
tooltip description for the variable if one is available.

@ Reference Variables from Datasets in Pre-Execution Code: Manually key in
expressions that reference dataset variables.

When you want to use the output of one operator as the input for another operator,
use the same variable reference by name. All input parameters are automatically
converted to output dataset variables after the process finishes.

210 Content Designer Guide

Process Parameters

Relative Paths for Datasets

CA Process Automation can use either absolute or relative paths when accessing named
datasets. Absolute paths are also known as full or fixed paths.

Example 1

Folder1 is under the root folder in the library. Folderl contains two objects: Process1
and Dataset1. You open Process1, double-click the Start Process operator, and locate
the Process Name field in the Properties palette.

Rather than enter a value, you want to use or reference the value in a field that is called
ProcessName in Dataset1. For the absolute path, you would specify:

Datasets["/Folderl/Datasetl"].ProcessName

You can also specify the path of Dataset1 relative to Process1. The same expression
using a relative path is:

Datasets["Datasetl"].ProcessName

While CA Process Automation evaluates the relative path expression, it looks for
Datasetl in the same folder as Process1.

If you move Datasetl, the absolute path is no longer valid. To correct this situation, you
would have to update it. However, as long as they are in the same folder, you can move
Datasetl and Process1 anywhere and the relative path is still valid.

Example 2
Similar to Example 1, you want to use a field in a dataset. This time, you want to use

Dataset2, at the root level of the library. For the absolute path, you would specify:

Datasets["/Dataset2"].ProcessName.

The same expression using a relative path is:

Datasets["../Dataset2"].ProcessName.
This path expression tells the application to look in the folder which is the parent for
Folder1 (the folder containing the process). Folder1 is the starting point. The code,
"../Dataset2," literally says to go up one level in the folder hierarchy and look for

Dataset2. In this case, the parent folder of Folderl is the root folder and the application
looks for Dataset2 there.

These concepts, summarized in the following two points, also apply to Linux/UNIX,
Windows, and any environment that supports uniform naming conventions.
m Aparent folder "/" exists.

m All other folders are children of the parent folder.

Chapter 6: Datasets and Parameters 211

Process Parameters

When these conditions exist, you can simplify complex expressions using relative paths.
For example:

AL

Note: Relative or absolute paths can be used as expressions in any object.

212 Content Designer Guide

Process Parameters

Dataset Variable Name Assistance

CA Process Automation datasets define and store groups of variables shared across
process instances. CA Process Automation allows you to use the variables as input
parameters in the execution of process instances.

After creating dataset variables for processes and operators, you might not remember
variable names. Variables that are part of an operator and not something that you have
defined are easy to forget. To assist you in referencing these process and operator
dataset variables without going back and forth between operators, the application
provides an in-context editing assistant. Known as Dataset Variable Name Assistance
and invoked by pressing Ctrl+Space, this feature helps you:

Reduce your process development time

Reduce errors in scope or syntax.

Identify dataset variables and apply them to any field that accepts expressions.

Most of the text fields that accept expressions as input support Dataset Variable Name
Assistance. Refer to the following graphic for examples.

Run_Program_1 Properties
(7]
| Process
= Program name:
Run_Program_1 Properties
J Process.Write_File_1]
e Run_Program_1 Properties Profile: fileContentsMode -
Program name: Process filaContents
| Program name: Working directory: filoContontsasarray
Q¢ P Datasets™*) Process] filaName
Process Profile: IRun_Program_1 ‘ User 1D: isFileAppend
3) Writo_Fie_1
{ WP I5Y — —— work
0ca{Ophiems)] Working directory: . ngor
Root Password: useriD
E User 10: E User 10: password
a < ¢ Parameters: StartDate
Password: — Password: "5 (271 @ || dSterTime ~1
3 User_Interaction_1 | 3 I I User_Interaction_1.Var_1+| et —
Datasets{™] % Datasets(™) [patasets(=)
lorocess rofile [User_Interaction_1.va | brocess Start_Process_1
l Start_1 L~ Start_1 Process
User_lnteraction_1 g crectory o] [——— User_Interaction_1 Put_File_1
[|&bnormal_Stop_1 ———— % Abnormal_Stop_1 [— | [User_interaction_1
Start_Process_1 ¥arking directory Start_Process_1 [| [Form
dNormal_Stop_1 liser D INormal_Stop_1 Run_Process_in_detached_mode_1
[Start_Process_2 — [T |tart_Process_2 || | [Processvsdvsd
Item: Description:

®

Suggested Values for Run Program Operator: In this example, the user has pressed Ctrl+Space to
pop-up Dataset Variable Name Assistance. A list of values at the global and root levels appears.

Chapter 6: Datasets and Parameters 213

Process Parameters

Item:

Description:

Suggested Operators: After entering
Process.
a list of operators appears at the process level.

Suggested Variables: After specifying the process scope and operator, a list of variables appears at the
operator level.

Suggestions Based on Scope: When you first enter the field, the suggestions are appropriate at that
level or scope. After specifying the process parameter, the scope of suggestions is reduced to
appropriate variables at the process level.

Updates Based on User Input: As you enter text, the application dynamically updates suggestions. In
this example, typing

Va
reduces the possible choices to only the matching entries that begin with Va.

Multiple Datasets: The application dynamically updates the scope of the suggestions when you specify
expressions that span more than one dataset.

Smart Suggestions: When appropriate, the application will include additional parameters based on
scope and context. For example, a form operator may include the Form parameter and a Start Process
operator may include the reserved word Caller. The application also automatically supports value map
and array variables.

Use Dataset Variable Name Assistance

Use the Dataset Variable Name Assistance feature in various supported contexts
throughout the application.
Follow these steps:

1. Open and check out the automation object to edit. For example, a process, form, or
dataset.

2. Press Tab or click in a text field that accepts expressions.
3. Press Ctrl + Space.
A list of suggested values appears.

4. Select the value to use. To select process or operator dataset variables, enter the
following string value in the text field:

Process.
5. Enter an operator name for operator-specific variable name assistance.
6. To filter data based on text input, begin typing or entering characters.
The list of suggestions dynamically updates as you enter text.

7. Select the values to use.

214 Content Designer Guide

Process Parameters

Password Parameters

Execution Settings

Target Settings

Characters entered in the password field show as asterisks (*). Passwords saved to a
password type dataset field are encrypted. An expression in a calculated parameter can
only assign the value of a password field to another password field.

Execution Settings specify how and where to execute an operator. The Target and
Timeout settings are available for operators in both processes and schedules. The
Processing and Loop groups are only available for operators in processes.

The Target field in the Execution Settings section of the Properties palette specifies
where the operator runs. Use the following guidelines when you specify a target in the
Target field:

If the target is an Orchestrator, enter its touchpoint. You can leave the Target field
blank to target the Orchestrator that is running the process.

Note: Do not specify the IP address of a computer hosting a clustered orchestrator.

If the target is an agent, enter its touchpoint. If the touchpoint is mapped to
multiple agents with the same priority, the exact execution target is selected for
load balancing.

If the target is a specific agent and the touchpoint is mapped to multiple agents,
enter its agent ID.

If the target has no agent but the target has a proxy touchpoint, enter its proxy
touchpoint.

If the target is a remote host that a host group references:
- Select the Match target in Host Groups only (Enabled) drop-down menu option.

- Select the Lookup DNS when matching target in Host Groups (Enabled) to
identify the DNS if you are matching the target in the host group.

- Select Target is a calculated expression. Create a dataset that references an IP
address or FQDN of a host that meets the pattern criteria of a host group.

- Enter the dataset reference to the IP address or FQDN in the Target field.

Important! Use a dataset for the IP address or FQDN if the process with this
operator is destined to be imported as a content package. Only a dataset can be
modified in this scenario. That is, the Target field entry cannot be modified after
import.

Chapter 6: Datasets and Parameters 215

Process Parameters

Operator Dataset Variables

The operator dataset contains variables that are associated with an operator. You can
view, create, edit, or delete variables and their associated values at design time. The
variables are available to the operator with which they are associated or any other
operator in your process as soon as the process starts. After the operator runs, it
automatically creates other variables in the operator dataset. Some variables are
standard and define information such as the start time, stop time, and result. Other
variables are information specific to each operator.

You can use the dot notation or the bracket notation with expressions to access an
operator dataset variable from any operator in a process:

Process name.Operator name.field name

Process name[OpName expression].field name

Process name[OpName expression][field name expression]

Note: You can also use IconName in place of OpName.
The expressions return the name of the operator or variable, as indicated. The following
syntax returns an element in an indexed field, where n is the element number:

field name[n]
The pre-execution and post-execution code for an operator can use the OpName
keyword to access the name of the current operator. To specify an operator dataset

variable in the pre-execution or post-execution code of that same operator, use the
following syntax:

Process[OpName] . field name

For example, use the following post-execution code statements:

m Assign the operator name and the value of the associated Result variable to the
process dataset variables iName and iResult

m Create an operator dataset variable named World:

Process.iName = OpName
Process.iResult = Process[OpName].Result
Process[OpName] .World = "Hello world!";

If you know the operator name at design time, you can use the literal operator name to
reference the dataset variables in an expression.

216 Content Designer Guide

Process Parameters

Occasionally, however, you do not know the operator name at design time. For
example:

m When you are editing pre-execution or post-execution actions for a custom
operator object.

m When you must access the operator dataset variables in one of several operators,
but you do not know which operator ran until run time.

You can use pre-execution or post-execution code in each operator to save its name to a
variable, as with the iName variable in the previous example. The variable could be a
process dataset variable or it could be an operator dataset variable that belongs to the
operator that requires the name. For example, in the following illustration, the process
runs either OperatorA or OperatorB before it reaches OperatorC. OperatorC can then
use the operation name that OperatorA or OperatorB saved to a process variable to
access dataset variables.

Using variables instead of fixed names makes code modular and interchangeable among
operators in a process.

More information:

Create a Named Dataset Object (see page 191)
Calculated Parameters (see page 222)

Processing Properties Settings

Processing Properties define the pre-execution code and post-execution code.

Chapter 6: Datasets and Parameters 217

Process Parameters

Pre-Execution Code and Post-Execution Code

Set Operator Status

Pre-execution and post-execution JavaScript code is processed before and after an
operator runs. Pre-execution code is typically used to set up loop variables or other
variables that can be used as part of the operator. Post-execution code is typically used
to process the results of an operator or to increase loops indexes.

The OpName keyword can be used to access the operator dataset. For example, the
following statement inserts the operator name into a message and assigns the string to
a new operator dataset variable named operatorMsg:
Process[OpName] .operatorMsg = “Recovery Operator” + OpName + “restructuring main
server at “+System[“Date”]+ “:” + System[“Time”];

Typically, you must include code that is closely associated with processing of your
specific operator.

For unrelated code, a best practice is to add a separate Calculation operator to the
process.

More information:

Specify Operator Dataset Variables (see page 244)

During the processing of pre- and post-execution code you have the option of specifying
a value for setOperatorStatus. You can force the operator to either fail or pass.

To specify the success of the operator:

setOperatorStatus ("Success",Operation Result,"reason")

To specify the failure of the operator:

setOperatorStatus ("Failure",Operation Result, "reason")

218 Content Designer Guide

Process Parameters

Loop Settings

The Loop property specifies the number of times that an operator is repeated. When an
operator is run in a loop, the exit conditions and the connecting links from the operator
are evaluated only when the loop is terminated.

Loop settings have the following properties:
Repeat count

Specifies the number of times that an operator should be repeated. This value can
be specified with an integer or a CA Process Automation expression that returns an
integer at run time. The default value of 1 executes a loop on an operator a single
time in a workflow. To execute an infinite loop, click the Infinite loop check box.

A Boolean expression can also be used. The expression is evaluated after the
operator has executed. As long as the expression evaluates to true, an operator in a
workflow executes a continual loop. If the expression is false, the operator exits.

Infinite Loop

Creates an infinite loop. The operator or process keeps repeating until either the
process is interrupted or the loop is stopped from a different branch using a stop
loop command link to the Loop operator.

Delay between iterations

CA Process Automation supports an inherent delay option for every operator that
has a loop option. The Delay between iterations text field takes an expression. The
expression is evaluated into an integer and the value is taken as delay in seconds.
Before the next iteration is run, there is a delay as specified by the user after an
iteration in the loop.

The minimum value for delay is zero. The default delay is zero seconds. CA Process
Automation takes delay as zero seconds for all invalid inputs.

Chapter 6: Datasets and Parameters 219

Process Parameters

Timeout Settings

Timeout settings give the users ability to set a timeout as part of every operator. If the
operator has not finished by the specified time defined in the Timeout settings, the
execution takes a timeout exit port. Users still retain the choice to end the execution of
the operator and take the timeout path or let the operator continue with the execution.
Timeout settings have the following properties:
No Timeout
Specifies that there is no timeout set for the operator (enabled by default).
To specify a timeout value, clear the No Timeout check-box.
Type
Specifies the type of timeout. Select one of the following timeout types.
Duration
Specifies the timeout duration in seconds.
Target Date
Specifies the timeout date (MM/DD/YYYY) and time (24 hours).
Duration/Target Date-Time

Defines the timeout duration or the target date for the operator.

220 Content Designer Guide

Process Parameters

Action
You can select a timeout action from the following:
Abandon

Specifies the flow is abandoned after the timeout of the operator. The
following actions are performed:

m The operation executes in detached mode.
m Operator will timeout.
m Post-execution code is executed.
m Process flow is through the timeout branch.
m The delay operator is executed.

Abort

Specifies the flow is aborted after the timeout of the operator. The following
actions are performed:

m The operator is aborted.
m Post-execution code is executed.
m Process flow is through the timeout branch.
m The delay operator is executed.
Continue

Specifies the flow continues after the timeout of the operator. The following
actions are performed:

m The operator and the operation are in running state.

m Process flow is through the timeout branch.

m The delay operator is executed.

m Post-execution code is executed after the operator is executed.
Reset

Specifies the flow is reset after the timeout of the operator. The following
actions are performed:

m The operator and the operation are in running state and are reset.
m Post-execution code is executed.
m Process flow is through the timeout branch.

m The delay operator is executed.

Chapter 6: Datasets and Parameters 221

Process Parameters

Calculated Parameters

Expressions

Parameters in dialogs and properties pages that accept expressions are called calculated
parameters. Values for calculated parameters must be entered as JavaScript
expressions. You can use JavaScript expressions to set dataset values, perform
calculations in the Interpreter Service Operators, as part of pre- and post-execution
code, and to specify parameters wherever an expression is allowed. Most fields accept
calculated parameters. Fields that do not accept expressions as input have italicized
labels.

An expression is any logical statement the application can evaluate to return a value. It
can include any combination of the following types of data:

m integers (including long, double, and so forth)
® strings

m functions

m variables

m references to other operators

® JavaScript

m dates and times

® valuemaps

m |iteral values

m calculated values

m |ogical And, Or, and Not keywords or symbols (&&, | |, !)
®m comparison operators (==, I=, <, >, <=, >=, <>)
m enclosing parentheses

Expressions are valid input for all fields, including JavaScript operators, functions,
custom exit ports, and operator property fields, except for fields labeled in italics.

Reserved Words in Expressions

A number of words are reserved in CA Process Automation expressions. These include
CA Process Automation reserved words, system functions, and JavaScript keywords. Do
not use these words as identifiers (such as for variable or other object names) in
expressions.

222 Content Designer Guide

Process Parameters

CA Process Automation Reserved Words
m Caller
m DateAdjust
® Process

m Currentindex

m FreeRes
m Size

m Datasets
m OpName
m System

CA Process Automation System Functions

See the Content Designer Reference for detailed information about each of the CA
Process Automation system functions.

Chapter 6: Datasets and Parameters 223

Process Parameters

Reserved JavaScript keywords

m break
m do

m

®m switch
= var

®m case
B else

® in

m this

= void
m catch
m false

®m instanceof
m throw
m while

® continue

m finally
E new

m true

m with

m default
m for

= null

m try

m delete

m function
® return

m typeof

Data Types

CA Process Automation expressions support JavaScript data types. Variables or
constants represent data.

224 Content Designer Guide

Process Parameters

Boolean Data Type

Date Data Type

Double Data Type

Boolean values have two possible values: true and false. JavaScript converts the true
and false literals to 1 and O when necessary.

Boolean values are usually the result of comparison made in your JavaScript
expressions. Boolean values are typically used in control structures. For example, the
JavaScript if-then statement performs one action if it is true and a different action if it is
false.

The following examples are all valid Boolean expressions:

Process.A ==

I (Process.A == 1)

(Process.A = 1)

(Process.A = 1) & (Process.B > 0)

The date type stores and returns dates from Dataset variables. The format of Date type
can be specified as part of the data type. For example, you can specify that it represents
a date as month then day or day then month.

The double numeric data type can have a decimal point. The traditional syntax is used
for real numbers. A real value is represented as the part of the number, followed by a
decimal point and the fractional part of the number. This type can store real numbers
from -1.7976931348623157E308 to 1.7976931348623157E308.

Floating-point literals can be represented using exponential notation—a real number
followed by the letter e (or E), followed by an optional plus (+) or minus (-) sign,

followed by an integral exponent, in the following format:

[digits][.digits][{E | e}[{+|-}]digits]

Examples
2.718
2345.789

7.748E-5

Chapter 6: Datasets and Parameters 225

Process Parameters

Integer Data Type

JavaObject Data Type

Long Data Type

Password Data Type

The 16-bit integer data type can be typed as literal values in an expression. You can
exactly represent all integers from -2,147,483,647 to +2,147,483,647.

This data type lets you store Java objects in CA Process Automation.

All JavaObject variables are read-only. Their CurrentValue and Read-Only fields are
disabled. You can only edit the following fields:

m Type

m Page

m Description

® Array

A JavaObject that is not empty shows its class type in the associated CurrentValue field.
The CurrentValue field for an empty JavaObject is set to [JavaObject].

The actual JavaObject variable value is the serialized string version of the Java object,
but CA Process Automation does not show this serialized string. Instead, it shows the
Java class type of the object.

A manually created JavaObiject is always empty because you cannot enter its value
directly in CA Process Automation. JavaObject variables are typically saved into a
dataset after a Run Java Code operator finishes running.

The Long Data type is a 32-bit field that can be typed as literal values in an expression.
You can exactly represent all integers from -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,808.

The Password data type stores passwords in an encrypted format in Dataset variables.
The value stored in a password type variable is not viewed by users.

Object Reference Data Type

The Object Reference data type stores the complete or reference path to an object in a
Library. You can use it anywhere that an expression requires the path to an object. The
Object Reference Filter on the object reference type constrains it to referencing one or
more specified object types.

226 Content Designer Guide

Process Parameters

String Data Type

You can type strings as literal values in an expression. Functions and JavaScript
operators in an expression also return strings. To distinguish between identifiers (such
as variable names) and literal strings, enclose the literal strings in string delimiters. You
can use either single quotation marks or double quotation marks as string delimiters.
For example, to use a literal string for the name of a program to start a UNIX process,
type it as follows:

"/usr/smart/program"

In text boxes marked with an asterisk (*), enter either an expression or a literal string
between quotation marks. The asterisk indicates that CA Process Automation evaluates
the contents of the text box as an expression. Do not use quotation marks to delimit
expressions.

Text boxes that expect literal values are not labeled with an asterisk (*). In such cases,
do not delimit strings with quotation marks.

JavaScript uses the backslash character (\) to escape literal strings. If a semantic action is
attached to an escaped character, the character is converted to its character equivalent
instead of performing the semantic action. For example, 'C:\\pam' is converted to
'C:\pam'.

CA Process Automation interprets any character that follows the escape character
literally instead of parsing it through the language interpreter. For example, to include a
double quotation mark in a string, precede it with the escape character, \”. In this case,
the parser does not interpret the double quotation mark as the string delimiter. To
include the backslash in a string, precede it with the escape character, \\.

To include the same character that you use as your delimiter in your string, escape the
character when do not use it as a delimiter. For example, the following string is
delimited with single quotation marks. The string includes single quotation marks as
escaped characters and double quotation marks as literal characters:

'Database engine can\’'t find database \'CHECKERS\' on server "GAMES"'

The same string, delimited with double quotation marks, includes the single quotation
marks as literal characters and the double quotation marks as escaped characters:

"Database engine can't find database 'CHECKERS' on server \"GAMES\""

The following table shows JavaScript escape sequences:

Sequence Character Represented
\0 The NUL character (\u0000)
\b Backspace (\u0008)

Chapter 6: Datasets and Parameters 227

Process Parameters

ValueMap Data Type

JavaScript Operators

Sequence Character Represented

\t Horizontal tab (\u0009)

\n Newline (\uOOOA)

\v Vertical tab (\uOOOB)

\f Form feed (\u000C)

\r Carriage return (\u000D)

\" Double quotation mark (\0022)

\' Apostrophe or single quotation mark
(\0u0027)

\\ The Latin-1 character specified by two

hexadecimal digits NN

The ValueMap data type contains a collection of variables of various data types. You can
use it to create a group of variables within a dataset. This type is also known as a record
or a structure.

You can use JavaScript operators to build string, integer, Boolean, and logical
expressions from a combination of entities (integers, strings, functions, and datasets).
The number of operands that they expect characterizes JavaScript operators. Most
JavaScript operators are binary operators that combine two expressions into one more
complex expression.

JavaScript also supports several unary operators that convert a single expression into
one more complex expression. This section discusses the JavaScript operators that are
most commonly used in CA Process Automation expressions.

228 Content Designer Guide

Process Parameters

Array and Object Access Operators

JavaScript uses dot (.) notation for arrays and object access. You can access elements of
an array using square bracket notation ([]) and elements of an object using dot (.)
notation. JavaScript treats dot and square bracket notation as operators.

Dot notation uses the following format:

object.identifier

The identifier operand can be the literal name of the property, method, or variable
name (in a dataset), without single or double quotation marks. The operand cannot
be a string or variable that contains a string.

Square bracket notation uses the following formats:

arrayl[expression] //
The array operand refers to an array, and the [expression] operand evaluates to an
integer value for an array index.

object[expression] //

The object operand refers to an object, and the [expression] operand evaluates to a
string that names a property of the object.

Note: Unlike dot notation, where the second operand is an identifier, the

[expression] operand is a string.

Square bracket notation allows access to array elements and object properties. Square
bracket notation also allows access to object properties without restricting the identifier
operand as dot notation does.

Assignment Operators

JavaScript provides the normal assignment operator and arithmetic assighment
operators that provide shortcuts for common arithmetic operators.

Operator Example Equivalent
= a=b

+= a+=b a=a+b
= a-= a=a-b
= a=b a=a*b
/= a/=b a=a/b
%= a%=b a=a%b

Chapter 6: Datasets and Parameters 229

Process Parameters

Arithmetic Operators

JavaScript uses the following operators to combine integer values:

Operator Description

* Multiplication

/ Division

+ Addition or unary plus

- Subtraction or unary minus
% Modulo

++ Increment

-- Decrement

Arithmetic calculations in an expression follow algebraic rules:

m When an expression contains multiple arithmetic operators, multiplication and
division are calculated first, then subtraction and addition.

m When operators are of the same order, they are calculated from left to right.

®m You can use parentheses to change the precedence. Calculations inside parentheses
are evaluated first. If parentheses are nested, the most deeply nested calculation
has precedence.

String Concatenation Operator

The interpreted language has the following operator for combining string values.

Operator

Description

+ (strings)

String concatenation

Use the string operator to combine, or concatenate, two or more character strings into
a single character string. For example, the expression "ABCD" + "123" returns the
concatenated string “ABCD123".

230 Content Designer Guide

Process Parameters

Logical Operators

The interpreted language uses the following logical (or Boolean) operators to combine
the outcomes of Boolean functions or operators.

Operator Description
&& Logical AND
[Logical OR

! Logical NOT

Logical operators return True or False. They recognize null, 0, "", or undefined as False
and any other non-zero operand as True.

Equality and Comparison Operators

Comparison operators are used with strings and numeric data. Comparison operators
evaluate to a Boolean value. They return True or False based on the outcome of the
tested condition.

Operator Description

== Equal to

=== Identity

1= Not equal to

l== Non-identity

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

?: Tertiary conditional operator

The expression
x1?x2:x3

returns x2 when x1 is True or x3 when x1 is False.

Chapter 6: Datasets and Parameters 231

Process Parameters

Operator Precedence

The CA Process Automation interpreted language operators follow standard
computational precedence rules, as shown in the following table. Operators at the same
level of precedence are executed from left to right.

Precedence Operator

1 -0 1]

2 ++ -- - (unary) + (unary) !
3 */ %

4 + (addition) - (subtraction) + (string concatenation)
5 < <= >>=

6 == |= === |==

7 &&

8 I

9 ?:

10 = *= [= %= += -=

Keywords for Accessing Datasets

The following table describes the keywords that reference datasets in various contexts:

Dataset Dataset Context

Description

Datasets Named Dataset

Uses the following format to access a named dataset in a
CA Process Automation Library:

Datasets[dataset path].field
_name

dataset_path

A CA Process Automation expression that evaluates to
the full path for a named dataset in the current Library.

For example, the following path references a dataset
named CxLinuxDev located in the Data subfolder of the
Demo folder in the Library:

Datasets["/Demo/Data/]

232 Content Designer Guide

Process Parameters

Dataset

Dataset Context

Description

Process

Dataset of a Process

Accesses a process dataset in the following format:
Process.field_name

or

Process[expression]

Process.field_name

or

Process[expression]

field_name

The dataset variable.

expression

A variable or other expression that returns the name of a
field. For example:

Process.x = 5;

Process.fn = "x";
Process.y = Process[Process.fn];

A process dataset is defined in a process. Each time a
process starts, it creates a copy of itself (called an
instance of the process), including its process dataset.
The original process object determines the initial values
for the dataset. Changes to a dataset in a process
instance do not affect the original.

Chapter 6: Datasets and Parameters 233

Process Parameters

Dataset Dataset Context

Description

Caller Process Dataset for a parent
process when it is starting a
child process

Passes values between processes in a call hierarchy when
one process uses the Start Process operator (in attached,
detached, or inline mode). The process dataset
initialization code option of the Start Process operator
specifies these assignments.

For example, when ProcessA calling ProcessB needs to
initialize fields in the ProcessB dataset, ProcessA specifies
ProcessB in the process dataset initialization code. In this
context, Caller refers to the dataset of the parent
(ProcessA), and Process refers to the dataset of the child
(ProcessB).

In the context of the process dataset initiation code, the
Process keyword is always required to reference a
variable in the child process dataset.

If you omit both the Process and Caller keywords on a
variable name in the process dataset initiation script, CA
Process Automation only looks for a calculation-scope
variable. The product does not check for a
similarly-named variable in either the parent or child
dataset. For example, the following code fails if no
calculation-scope X was previously created in the
calculation context:

Process.X = Caller.X;
Process.Y = X + 100;

234 Content Designer Guide

Process Parameters

Dataset Dataset Context Description

none The current calculation and, in If you omit the Process keyword on the left side of an
some cases, the process assignment statement, CA Process Automation always
dataset creates or assigns a value in the scope of the current

calculation (a calculation variable). A calculation variable
exists as long as CA Process Automation is processing a
calculation field. For example, the following code creates
a calculation variable equal to the value 5:

a=5

If you omit the Process keyword in other contexts (such
as on the right side of an assignment statement), CA
Process Automation looks first for a calculation scope
variable or a Process variable with the same name.

For example:

Process.a=1

Process.b =2

a=5
X=a
y=b

CA Process Automation creates two variables in the
process dataset (a=1 and b=2), and two calculation
variables (x=5, y=2).

Process.operator_na Operator dataset in a process Enables access to an operator dataset, where

me operator_name is a string that specifies the name of an
or operator in a process. For example:
Process[expression] Process.y = Process.emailOp.subject

Expression returns the name of an operator in a process,
for example:

Process.opName = “emailOp”
Process.y = Process[Process.opName].subject
Notes:

- For information about specifying operator dataset fields
and for a list of system generated fields in operator
datasets, see Specify Operator Dataset Variables (see
page 244).

- For more information about specifying operator
variables in operator properties settings, see Dataset
Variables in Parameters (see page 210).

Chapter 6: Datasets and Parameters 235

Process Parameters

Dataset Dataset Context

Description

System System Dataset

Enables access to the system dataset.

Fields in the system dataset represent CA Process
Automation system information, such as the host name,
date, and time. The system dataset is read-only.

Note: For more information about fields in the system
dataset, specifying system variables, and a list of system
variables, see Specify System Dataset Variables (see
page 245).

Root Parent Dataset

Enables an inline child process to access the process
dataset of a parent instance.

You can use the keyword Root to access the Process
dataset of the root instance.

Examples:

- ProcessA starts an inline process ProcessB. ProcessB
starts another inline process ProcessC. ProcessC uses the
keyword Root to access the dataset of ProcessA.

- ProcessA starts ProcessB in non-inline mode and
ProcessB starts ProcessC in inline mode. ProcessC only
has access to the dataset of ProcessB (and not ProcessA)
using the keyword Root.

Access Dataset Fields in Expressions

Dataset field values in an expression use either (or both) bracket ([expression]) or dot
(.field) notation to specify a dataset or a field in a dataset.

236 Content Designer Guide

Process Parameters

Syntax for Specifying the Value of a Field

A value in a single unindexed field is accessed in an expression using dot notation:
dataset reference.field name

The dataset_reference parameter corresponds to one of the keywords previously
described. The field_name parameter corresponds to a field name in the dataset. The
following example returns the value of field Y in a process dataset:

Process.Y

Alternatively, a value can be accessed using bracket notation:
dataset reference[field name _expression]

The field_name_expression parameter is an expression that returns the name of a field
in the referenced dataset. The following example returns the value of field Y in a process
dataset:

Process["Y"]

The best practice is typically to use the bracket notation for an expression to specify a
dataset or field name in a dataset.

Specify the Value of an Element in an Indexed Field

To access a value in an indexed field (array), use the following syntax:

dataset reference.indexed field name[index]

The indexed_field_name parameter defines the field name in the dataset. Index is an
integer that addresses an indexed element in the array.

To specify the indexed_field_name string with the bracket notation, use the following
syntax. In the example, indexed_field_name_expression is a CA Process Automation
expression that returns the indexed_field_name string.

dataset reference[indexed field name expression][index]

Like JavaScript arrays, CA Process Automation indexed fields are arrays of arrays instead
of true arrays. To access an element in an array of arrays, use the [] operator twice. For
example, for the two-dimensional indexed integer-field named integers, every list
element integers|[x] is itself an indexed list of integers. To access a specific integer in the
indexed field, you would write the expression integers[x][y]. In general, for any indexed
field of n-dimensions, you use the following syntax to access any data element:

dataset reference.indexed field name[indexl][index2] ... [indexn]

Chapter 6: Datasets and Parameters 237

Process Parameters

The index parameter is an integer or an expression that returns an integer. The
parameter has a value from 0 (for the first value in an indexed list) to the length of the
list minus 1. Evaluation of the index is circular, so when the index value exceeds the
length of an indexed list, the following formula determines its value:

Actual-index = index % length-of-the-list;

In other words, for n elements in an indexed field, you get the following results:
m Anindex of n returns element 0

m Anindex of n+1 returns element 1

®m Anindex of n-1 returns the last element

The following table illustrates the results of accessing elements of an indexed field in a
process dataset:

Expression Description

value = Process.X[2] Refers to the third element of an indexed field X of
the process dataset.

value = Process.X[18] For an indexed field X with a size of 19, this
expression refers to element 19 of X, the same as
Process.X[18].

value = Process.X[Process.Y + 2] An expression calculates the index.

value = Process.A[5][2] Returns the value in a two-dimensional array. The
third element in the sixth indexed list that the array
defines addresses the array.

238 Content Designer Guide

Process Parameters

Access the Length of an Indexed Field

CA Process Automation supports the JavaScript length property for arrays and its own
size property for accessing the length of an indexed field. The length property is
read-only; the size property lets you change the number of elements in an indexed field.
The length property uses either dot or bracket notation to return the number of
elements in an indexed field:

dataset reference.indexed field name.length

dataset referencel[indexed field name expression].length

The size property works the same way, using either dot or bracket notation:
dataset reference.indexed field name.size

dataset referencel[indexed field name expression].size

Because an indexed field is a zero-based array, the length and size properties always
return one more than the index for the last element in a field. Therefore, when length
or size returns n, a field contains 0, 1, ..., n-1 indexed elements, and the index for the
last element in the array is n-1.

Assigning a new value to the size property extends or truncates the number of elements
in an indexed field. Decreasing the value for the size property removes elements from
the upper end of an indexed field and deletes values stored in the deleted elements.
The following code uses the size property to increase the length of an array X by one
element, then assigns 25 to the new element:

Process.X.size = Process.X.size + 1;
Process.X[Process.X.size - 1] = 25;

For a multidimensional array, the size or length property returns the number of
elements in an array address to which it is appended.

For example, for a two-dimensional array named matrix[a][b], the following syntax
returns the size of the first dimension of matrix, with the containing elements
0...sizel-1:

sizel = matrix.length

The following syntax returns the size of the second dimension of matrix, given first
dimension element 2, with b containing elements 0...size2-1 when a = 2.containing
elements 0...sizel-1:

size2 = matrix[2].length

Chapter 6: Datasets and Parameters 239

Process Parameters

The following example addresses elements of a multidimensional indexed field by
looping through all elements in a two-dimensional indexed field (an array of arrays) in
the process dataset variable named matrix. The code assigns the value for each element
to a one-dimensional indexed field in the process dataset variable named values:

var i; j; k=0;
for (i=0; i < Process.matrix.length; i++)

{
for (j=0; j < Process.matrix[i].length; j++)
{
Process.values[k] = Process.matrix[i][j]
k++
}
}

Access Methods on an Indexed Field

Indexed fields support the following JavaScript array methods:
concat()

Concatenates elements to an array.
join()

Converts all array elements to strings and concatenates them.
pop()

Removes an item from the end of an array.

Note: If the array belongs to the operator dataset of another operator, do not use
the pop method for JavaScript arrays to evaluate operator parameters.

push()

Pushes an item to the end of an array.
reverse()

Reverses the order of elements in an array.
shift()

Shifts an element from the beginning of an array.
slice()

Returns a subarray slice of an array.
sort()

Sorts elements of an array.
splice()

Inserts, deletes, or replaces array elements.

240 Content Designer Guide

Process Parameters

toLocaleString()

Converts an array to a localized string.
toString()

Converts an array to a string.
unshift()

Inserts elements at the beginning of an array.

For information about using these methods, see a JavaScript reference guide.

Specify Named Dataset Variables

Fields in dataset objects (named datasets) are identified in expressions using either dot
(.string) or bracket ([expression]) notation:

Datasets[path _expression][variable name expression]
Datasets([path expression].variable name

path_expression

Represents any JavaScript expression that evaluates to a path descriptor for a
dataset object in the current CA Process Automation Library. A path to any object in
the Library starts with a forward slash (/) for the root element, followed by the
slash-delimited folder hierarchy, and ends with the object name.

variable_name_expression
Represents an expression that returns the name of a field in the dataset object.
variable_name

Represents the actual name of a field in the dataset object.

Either of the following syntaxes is valid for referencing field Y in the named dataset
Coordinates located in the /MathValues folder:

Datasets["/MathValues/Coordinates"].Y
Datasets["/MathValues/Coordinates"]["Y"]
More information:

Relative Paths for Datasets (see page 211)

Chapter 6: Datasets and Parameters 241

Process Parameters

Specify Process Dataset Variables

The process dataset contains variables that the developer defines or that CA Process
Automation defines automatically when a process instance starts. The Process keyword
is used to access variables in the process dataset. You can use either dot notation or
bracket notation to specify a process variable in an expression:

Process.variable name
Process[expression]

The expression can specify the variable name as a literal string in the format:

Process["variable name"]

For example:
Process[“StartDate”]
Process.StartDate
CA Process Automation defines the following process system variables automatically
when it runs a process:
CallerUser

The user ID that started the process instance. When a parent process uses a Start
Process operator to start a child process, the parent process passes the CallerUser
value forward. When a Start Process operator in a scheduled task starts another
process, CallerUser is blank.

DisplayName
The name of the process object as seen in the library.
effectiveUser
The current owner of the process object.
EndDate
The date when this process instance ended, in the format:
MM/DD/YYYY
EndTime
The time when this process instance ended, in the format:
HH:MM:SS
InstanceName

The name of the original process object ending in a unique run-time object
identifier that identifies each instance of a process. For example, 372 is appended
to process_1, resulting in an InstanceName of process_1_372.

242 Content Designer Guide

Process Parameters

InstanceUUID

For internal use only.
ObjectID

Object identifier for internal use only.
ParentProcessROID

The unique run-time object identifier for the parent process that started the child
process.

rootUUID
For internal use only.
RuntimeROID

A unique object identifier that the application appends to the process DisplayName
to identify each process instance. For example, RuntimeROID 372 is appended to
process_1, resulting in an InstanceName of process_1_372.

ScheduledStartTime
The date and time when the process was scheduled to start.
ServerName
The name of the server that is associated with the touchpoint.
ServerlD
For internal use only.
StartDate
The date when this instance of the process was created, in the format:
MM/DD/YYYY
StartTime
The time when this instance of the process was created, in the format:
HH:MM:SS
TouchpointName

The name of the Orchestrator managing the running process.

Chapter 6: Datasets and Parameters 243

Process Parameters

Specify Operator Dataset Variables

Operator datasets contain variables that the developer defines at design time or that CA
Process Automation defines at run time for a specific operator. Design-time variables
are available immediately after process starts. Run-time variables are added when an
operator runs.

The operator name in the local dataset at run time labels the operator datasets, so you
can use dot (.) or bracket ([expression]) notation to specify an operator variable in an
expression:

Operator.field name
Process["Operator name"].field name

Process["Operator name"]["field name"]

The pre-execution and post-execution code for an operator can use the OpName
keyword to access the name of the current operator. You can use this keyword to access
or create an operator dataset. To specify an operator dataset variable in the
pre-execution or post-execution code, use the following syntax:

Process[OpName] . field name

The following table lists common operator dataset system variables that CA Process
Automation defines automatically. Additional variables can be defined for specific

operators.
Operator Dataset Runtime Scope Description
Variable
AgentName during, after Name of the machine associated with
the touchpoint that runs the operator.
AgentID during, after For internal use only.
EndDate after The date when the operator finished
running, in the format:
MM/DD/YYYY
EndTime after The time when the operator stopped
running, in the format:
HH:MM: SS
Reason after A string that describes the result.
ResponseCode after A string that describes the result.

244 Content Designer Guide

Process Parameters

Operator Dataset Runtime Scope Description
Variable
StartDate during, after The date when the operator started

running, in the format:

MM/DD/YYYY
StartTime during, after The time when the operator started
running, in the format:
HH:MM: SS
ServiceType during, after The CA Process Automation module
that ran the operator.
TargetName during, after The name of the target (for example,
Orchestrator).
TouchpointName during, after The name of the touchpoint that runs

the operator.

uuiD during, after For internal use only.

Specify System Dataset Variables

The system dataset for a process contains variables that return system information. The
System keyword is used to access the system dataset. You can use either dot (.) or
bracket ([expression]) notation to specify a system variable in an expression:

System.variable name

System[expression]

The following syntax uses bracket notation to specify a system variable name with a
literal string:

System["variable_name"]

Chapter 6: Datasets and Parameters 245

Process Parameters

The system dataset contains the following variables:
DATE

The current date, in the format MM/DD/YY.
DAY

The day of the month.
FIRSTDAYMONTH

The date of the first day of the current month in the format MM/DD/YY.
FIRSTDAYNEXTMONTH

The date of the first day of the next month, in the format MM/DD/YY.
FIRSTDAYPREVMONTH

The date of the first day of the previous month, in the format MM/DD/YY.
HOST

The name of the current host.
LASTDAYMONTH

The date of the last day of the current month, in the format MM/DD/YY.
LASTDAYNEXTMONTH

The date of the last day of the next month, in the format MM/DD/YY.
LASTDAYPREVMONTH

The date of the last day of the previous month, in the format MM/DD/YY.
MONTH

The current month, represented as a zero-based number (for example, this variable
returns O for January).

TIME

The current time of day, in minutes (for example, this variable returns 600 for
10AM).

TIMES
The current time of day, in the format HHMM.
TOMORROW
The date of the day that follows the current date, in the format MM/DD/YY.
WEEK
The week of the month.
YEAR

The current year.

246 Content Designer Guide

Process Parameters

YESTERDAY
The date of the day that precedes the current day, in the format MM/DD/YY.

Statements

Expressions are JavaScript phrases that are evaluated to yield a value. JavaScript
statements execute commands or combine one or more expressions to do things or
yield values. A JavaScript program is a collection of statements.

This section briefly describes variable declaration and variable assignment, iterations,
and loops that are commonly used in CA Process Automation calculations. The following
table lists JavaScript statements, some of which are not documented in this section.

JavaScript Statements

Statement Syntax Description

break break; break label_name: Exit from a switch or iterative
statement; or exit from the
statement named by a label
statement.

case case expression: Labels a statement within a
switch statement.

continue continue; continue Restart the loop, or the loop
label_name: named by a label statement.
default default; Label the default statement

within a switch statement.

do/while do statement while Perform expressions in a
(expression) while statement until an
expression evaluates False.

empty ; Do nothing.

for for (initialize ; test ; Loop while a test is True.
increment) statement

for/in for (variable_in_object) See “The for/in Loop
statement Loop Statement."
through properties of an
object.

Chapter 6: Datasets and Parameters 247

Process Parameters

Statement Syntax Description
function function Declares a function. See
function_name(al,a2,...an) “Include Common Resources
{statements} in CA Process Automation
Scripts” .
if/else if (expression) statementl Execute conditionally. See
else statement2 “The if Statement.”
label identifier: statement Assign an identifier to a
statement.
return return[expression]; Return from a function or
return a value from a
function.
switch switch (expression) { Multiway conditional branch
statements } to case or default
statements. See “The switch
Statement.”
throw throw expression; Throw an exception.
try try { statements } Catch an exception.
var var name_1[=valuel]], ..., Declare and optionally
name_n [=value_n]]; initialize variables. See
“Variable Declaration.”
while while (expression) statement Perform expressions in a

while statement while an
expression evaluates True.
See “The while Loop
Statement.”

More information:

Variable Declaration (see page 249)

The if Statement (see page 250)
The switch Statement (see page 252)

The while loop Statement (see page 253)

The for/in Loop Statement (see page 254)

Include Common Resources in CA Process Automation Scripts (see page 256)

248 Content Designer Guide

Process Parameters

Variable Declaration

Variable Assignment

Reuse Variables

The JavaScript var statement declares a JavaScript variable. Optionally, you can use the
= assignment operator to initialize a variable at the same time that you create it. The
JavaScript variable definition uses the following syntax:

var variable name [= initial value];

The following lines create variables but leave the initial values undefined until
subsequent code assigns values to them:

var X
var s

You can initialize a variable as either an integer or a string. In the following example, x is
initialized as an integer and s is initialized as an empty string.

0

var X
var s =

You can create multiple variables in a single statement:

var i=0, j=0, k=0

To assign values to dataset variables, use the = assignment operator. The variable
assignment uses the following syntax:

[dataset reference.]variable name = expression;

The expression consists of any combination of functions, variables, values, and
operators that returns a string or integer value. For example:

Process.S = "ABCDEF" + ' ' + "123"
Datasets[“ThisDataset”].x = 18 * I
x =18 * I

If you omit the dataset reference, JavaScript references the process dataset by default.
If the variable does not exist in the process dataset, JavaScript creates a temporary
variable. To create a process dataset variable, use the Process reference.

Parent—Child Process Variable Selection: Ability for a child process to query the variables
initialized by the parent process

Chapter 6: Datasets and Parameters 249

Process Parameters

Conditional Statements

The CA Process Automation expressions recognize the JavaScript conditional
statements. The if conditional selection evaluates a single Boolean condition while the
else if conditional evaluates a series of Boolean conditions. CA Process Automation
conditional statements expecting a Boolean value recognize 0 as False and any non-zero
integer as True. CA Process Automation expressions also support the switch statement,
which allows for multiple outcomes when evaluating a single variable.

The if Statement
The if conditional selection statement uses the following syntax:
if (Boolean_expression)
statement

The Boolean_expression is any combination of functions, variables, values, and
operators that returns a single True or False value. For example:
if (i <= 18) {

y=18 *1I

z=y * 56

The second form of the if conditional selection statement allows for two outcomes of
the Boolean expression. It uses the following syntax:
if (Boolean expression)
statementl
else
statement2
For example:
if (i <= 18)
Process.Date = System.Date
else

Process.Date = "2006/01/23"

250 Content Designer Guide

Process Parameters

The else if Statement

For multiple outcomes, you can nest if/else statements. However, the logic can become
cumbersome to follow with too many nestings. You can therefore use the following
construction for a series of if/else statements:
if (Boolean_expression 1)

statement_1
else if (Boolean expression 2)

statement 2
else if (Boolean expression_3)

statement 3

else if (Boolean expression n)
statement_n

else
statement else

The final else statement is optional. It merely specifies code to be executed if none of
the Boolean expressions is True.

Chapter 6: Datasets and Parameters 251

Process Parameters

The switch Statement

Iterative Statements

The switch statement performs a multiway branch, useful when all branches of a
conditional statement depend on the same variable. In this case, it is cumbersome to
check the value of the same variable repeatedly using multiple if statements. The switch
statement uses the following syntax to do the same thing more efficiently:

switch(variable)
{
case value 1:
statements
break;
case value 2:
statements
break

case value n:

statements
break
default:

statements
break

The switch statement executes the code within the case statement that matches the
current value of variable. If there is no match, the switch statement executes the default
code or skips to the next statement if there is no default code. The break statements
optionally delimit one case block of code from the next case. In the absence of a break
statement, execution falls from one case to the next. This is a legal action, so be careful
not to omit a break statement unless you actually intend for execution to fall through to
the next case statement.

JavaScript has several iterative loop statements, a continue statement, and a break
statement. The while and do-while loops perform one or more statements as long as
some condition is True. The for and for loops perform one or more statements a
specified number of times. The break statement exits an iterative statement. The
continue statement restarts a loop in a new iteration.

252 Content Designer Guide

Process Parameters

The while loop Statement

The while loop has the following syntax:
while (Boolean expression)
statement

The while loop performs a sequence of statements as long as the Boolean expression
tested at the start of the loop returns a True value. For example:
var n =0
while (n < 10)
{
Process.square[n] = n * n
n++

}
The do/while Loop Statement

The do-while loop has the following syntax:
do

statement
while (Boolean expression);

The do-while loop is similar to the while loop except that it tests at the bottom of the
loop rather than at the start of the loop. The while loop performs a sequence of
statements as long as the Boolean expression returns a True value. For example:
var n =0
do {

Process.square[n] = n * n
} while (n++ < 10)

The for Loop Statement

The for loop performs a sequence of statements for a specified number of times. The for
loop has the following syntax:
for (initialize ; test ; increment)

statement

The for loop is similar to the while loop except that an initialization and increment is
included in the loop syntax. Each iteration of the for loop increases the increment,
performs the test, and performs the statement.

For example, given an indexed variable Process.square containing 35 values, you could
use the following lines of code to set every value to the square of its index:
for (var 1 = 0; i < 34; i++)

Process.square[i] = 1 * i

Chapter 6: Datasets and Parameters 253

Process Parameters

The for/in Loop Statement

The for/in loop performs a sequence of statements for all values of a specified variable
in a specified object. The for/in loop has the following syntax:

for (variable in object)
statement

The variable value is one of the following items:

m The name of a variable

m Avarstatement that declares a variable

®m Anarray element

m An object property.

In other words, the variable value is equivalent to the left side of an assighment

expression. The object value is the name of an object or an expression that evaluates to
an object.

For example, to loop through elements of an indexed field in a dataset, define an index
variable and specify the indexed field as the object.

for (var i in Process.square)
Process.square[i] = 1 * i

The break Statement

The break statement can be used to exit out of a loop, as illustrated in the following
lines of code.
var L = 0;
while (1 < 10) {
n = n++;
if (n > 102)
break;

254 Content Designer Guide

Process Parameters

The continue Statement
The continue statement can be used to skip to the next iteration of a loop. The following
(rather trivial) example illustrates the use of the continue statement to assign even
numbers to an indexed local (Process) variable.
vari=0,j=0
for (j=0; j < 102; j++)
{
if (j%2) continue
// following statement executed only for even values of j
Process.evens[i] =
i++
// following stops the loop when all elements of array are completed

if (i >= Process.evens.Size) break

Specify System Paths in CA Process Automation Expressions

Calculations generally accept either UNIX or Microsoft Windows paths. The UNIX path
works for locations on both UNIX and Microsoft Windows host systems. For example:
Process.Path = "/tmp/files/myfile"

The preceding example specifies the location on the current drive for a Microsoft
Windows host or the Root for a UNIX host. Specify a network path as follows:
Process.NetPath = “//myhost/tmp/files/myfile.txt”

Include the drive specification in a path for a Microsoft Windows system as follows:
Process.Path = "C:/tmp/files/myfile.txt"

If a working directory (such as C:\tmp) is specified for a Microsoft Windows process,
specify a path within the working directory without any leading slash character, as
follows:

Process.Subdir = "files/myfile.txt"

If you use a Microsoft Windows path in a calculation, verify that you escape the
backslash character so that the interpreter correctly evaluates it as a literal character, as
follows:

Process.Path = "C:\\tmp\\files\\myfile.fm"

Chapter 6: Datasets and Parameters 255

Process Parameters

Include Common Resources in CA Process Automation Scripts

You can include previously defined scripts in a CA Process Automation script. This allows
a script to read in and access saved functions at runtime. Use the include statement on
any line of a script dialog to add a previously saved script to the file. The include
statement uses the following syntax:

include(expression)

The expression argument can be any path that references an appropriate resource.
Recognized paths include:

m A relative path, such as include(“Scripts/functions.js"), specifies a common user
resource (c2ouserresources) in the CA Process Automation Repository.

Note: For more information on adding or managing resources in the CA Process
Automation Repository see “Manage Common Resources” in the Administration
Guide.

m Adirectory path, such as include(“/scripts/functions.js"), specifies a script on the
current drive for a Microsoft Windows host or the Root for a UNIX host.

®m Including the drive letter in an explicit path, such as
include(“D:\\scripts\\functions.js"), specifies a script on a specified drive.

m A network path, such as include("//share/scripts/function.js"), specifies a script on a
shared network resource.

m A URL, such as include(“http://james:8080/itpam/scripts/functions.js"), specifies a
path to a web resource.

Lines in an included script are added to a script as if they were typed in place of the
include statement. Note that it is a best practice to include only necessary functions or
other code instead of lengthy function libraries in an included script. Included scripts are
compiled at runtime, so many unused lines of code unnecessarily increases the time
required to run a script.

Comments in CA Process Automation Calculations

JavaScript comments are delimited in lines by the character pair //. The start of a
comment always signifies the end of a logical line. A comment starts at the end of the
logical line and terminates at the end of the physical line. Comments are ignored by the
JavaScript language interpreter.

256 Content Designer Guide

Chapter 7: Forms

CA Process Automation supports two main types of interactive form objects:
m Start Request Forms
® Interaction Request Forms

Design these forms at strategic points in your process to allow users to provide input
and control the process.

Custom operators also include forms with pages and data fields that appear in the
Properties palette of the Process Designer.

This section contains the following topics:

Start Request Forms (see page 257)
Interaction Request Forms (see page 259)
The Form Designer (see page 260)
Initialize Form Variables (see page 342)

Start Request Forms

The Start Request Form object enables you to create an interface that allows other
users to launch a process and to provide input at startup in a structured manner. You
design and maintain the layout and behavior of the form. Users fill out the form when
prompted. For example, you can give someone at a Help Desk or in Human Resources
the ability to provide information that influences how a related process starts.

You can group a series of related form elements on a specific page or in a specific
section of the page. You can add any number of pages. You can use functions and events
to get or set other field values. Design the form to gather all the information that is
required from the user to start the process.

Chapter 7: Forms 257

Start Request Forms

Monitor Start Request Form Instances and Process Instances

After you create and design a Start Request Form, it must start as part of another
process, or you can manually start it. When a form starts, it results in a new form
instance with a unique name consisting of the form name plus the form's runtime object
ID. When a process starts, it results in a new process instance with a unique name
consisting of the process name plus the process runtime object ID. Examples follow:

MyStartRequestForm 239
MyProcess 241

Follow these steps:
1. Click the Operations tab.

2. Inthe Operations pane, navigate to any of the following locations to view form and
process instances:

a. Expand Start Requests, expand folders, and click a Start Request Form.

b. Expand Process Watch, expand folders, expand a Process Watch object, and
click on an optional Start Request Form that you previously added to the
object.

c. Expand Links and click Start Requests.

3. Inthe Operations pane, navigate to one of the following locations to start a form
and its associated process:

a. Expand Start Requests, expand folders, and click a Start Request Form.
Right-click the form and choose Start.

b. Expand Process Watch, expand folders, expand a Process Watch object, and
click on an optional Start Request Form that you previously added to the
object. Right-click the form and choose Start.

4. Repeat step 2 to view both the form instance and the process instance.

5. To monitor the actual process instance, click a row and then click Open Process
Instance in the toolbar.

Home Library Designer Operations Configuration Reports

" Open Process Instance [§% Proparties | 5 Abort & Refrash Orchestrator ¥ (%) Help
Links < . -
Start Request Form @ Current () Archived
Process Watch -
5
Start Requests ;A
Filter & .
a5)An 1 o~
2
[T sed
N g 1
) ALamAaDE o
ah1a Queued Running Completed Failed
i Test
Instance Process Instance Scheduled Time State StartTime E
5 start Request Form ¥ Start Request Form_471 Processo_1_472 May 14, 2012 5:26:25 AM Runnin g May 14, 2013 9:26:35 AM
chALamaoz [Start Request Form_459 Processo_1_460 May 14, 2012 8:51:47 AM Running May 14, 2012 8:51:47 AM
oS
[T start Request Form
A ALAMANS.. Bulk..0

258 Content Designer Guide

Interaction Request Forms

Notes:

m The Process Instance column shows no data for any forms in the Queued state.
Queued forms do not instantiate a process instance until the form starts Running.

®m You can change the process instance name while the process is running by using
Process.UserinstName. Click Refresh to view the new Process Instance name.

m The Process Instance column does not include any forms that were already running
before an upgrade to the current version of CA Process Automation.

Interaction Request Forms

The Interaction Request Form enables you to create an interface that can be used
during the execution of a process to interact with a user in a structured manner. The
form is accessed in a web browser by a user who either administers processes within CA
Process Automation or performs some other business objective.

Typical use cases for Interaction Request Forms include:

m Getting approval before you continue with a process or a path within a process.
m Letting a user select a course of action.

m Retrieving information that is only available from a person at runtime.

m Requesting manual actions (for example, physically connecting a server to a switch)
to be performed and marked as completed before proceeding with a process.

The Interaction Request Form object defines the pages, parameters, and other
characteristics of the form. Parameters can be configured to display edit boxes,
drop-down lists, list boxes, and check box lists on form pages. You can have multiple
pages in the form, letting you group related parameters on separate pages. Users click
the Next and Back buttons to step through the pages in an Interaction Request Form.
You can add any number of pages to an Interaction Request Form to gather all the
information required during the execution of a process that uses the form.

Interaction Request Forms are saved as separate objects in the automation library. After
creating and checking in an Interaction Request Form, it can then be added to any
process using the Assign User Task operator.

When a process executes the Assign User Task operator, the Interaction Request Form is
listed as a pending user prompt in CA Process Automation. The User Interaction
operator does not complete until an authorized user responds to the prompt by filling in
and submitting the Interaction Request Form, or the timeout specified in the Assign
User Task operator is reached.

Chapter 7: Forms 259

The Form Designer

The Form Designer

When you open a form from the Library Browser, the Form Designer opens. The Form
Designer features a standard toolbar and series of tabs. Use the Form tab to design a
form and use the Preview tab to review its appearance.

(&) Start Request Form (Version 1)

4 [check List
Check List Item
T8 Spinner Field
4 (5 Page Layout
[T Page
4 [Start Request Form 12
4 5 Page Layout
4 [T Form Page 1
[7] Check Box
ElDate
4 [Form Page 2
4 F] Check List
[#] Option 1
Option 2
[+ Option 3

|} s seecea)
)

B save G check out By cory B rocte 4 +) x 5 :
Form Preview Properties Warsionz Relazse Audit Trail
4 [Form Elements Name =
[#] Check Box Name
EBoate Page CSS Class
(I Field Set .
[] Allow Users to Change Settings b el
[1mage o
g Audit Date: F
BeLabel I I ﬂl Disabled
B8 Lookup Field
Elradio & = Audit Summary: Hidden
“ o
(-f T Hide Label
%) Radi
e Hide Time
+ Elselect —
abel
{8 option :
. Maximum Value
i Text Field
: _ Minimurn Value
Ed Text ares = (@11 tem(s) selected demirad
[Mubiline Text b
[Table — Style
& Simple Array Tab Index
= Object Reference Text Direction
Time Format

Time Increment
_id

anBlur
onClick
onFocus
anKeyDown
onKeyPress
onKeylp
anMouseDown
anMouseMove
onMousedut
anMousedver
anMousellp

onvalidate

[E=8 EEN ==

(@) Help

ca_pam_set TextFieldyal s)]
ca_pam_get TextFeldvaue_d)
ca_pam_selectCheckBox(_id sSelect)
ca_pam_isSelectedCheckBox(_id)
'ca_pam_selectOption(_id, name, vaue kSelect)
ca_pam_selectOptionBylndex(_id, index, sSelect) | =
ca_pamn_getSelectedOptionialses _id)
ca_pam_getSelectedOntions(_id)
ca_pam_fetchSelectData_id)
ca_pam_setDateFieldvale(_id, val)
ca_pam_getDateFmsidvaiue(_id)
ca_pam_getDateFisidv duelriilis(_id)
ca_pam_getDatefisldMinyalued_id)
ca_pam_satDateFisidMnvalue(_id, va)
'ca_pam_getDateFildMinyaluelniilis(_id)

pam_setTextFieldValue{Form.Var 3 SO0)F

Cancel

Item: Description:

@ Form Elements: The top of this pane displays all the available types of

controls.

@ Form Structure: The bottom of this pane shows the structure of your form.
Drag and drop form elements to the pages of your form from here.

260 Content Desig

ner Guide

The Form Designer

Form Elements

Item:

Description:

@ Form Pages: The layout for the pages of your form appears here. Click a
control to edit its properties. For forms with multiple pages, click Back and
Next to view other pages. Users can also click Next and Back to view the form
pages.

Drag and drop form elements to the page to design the forms.

Note: The area that is available to drop a page onto another page is very
small. We recommend dragging the page element to the bordering area in
between the form elements and the form itself:

4 (5 Page Layout
Page

F b‘ Interaction Request Form_1

iS5/ Page Layout

\ @1 itern(s) selected

() Property Pane: Use this pane to view or edit the variables in the form
elements. For example, set the Required property to true, change the Label
that identifies a field, or specify a function for an event.

The illustration shows the following arguments used in the onFocus event to
set the value of a text field named Form.Var_3 to 500:

ca_pam_setTextFieldValue(Form.Var 3,

500)

This topic presents basic examples of each form element type.

4[5 Form
4 5| Page Layout @
PEER
Check Box
Check Box
4 Check List
Check List Item
Check List [tem
Check List [tem
4 Radio Group
@A
(O]
@c
g Label
[Image

fahe HTML

Object Reference

4 Page

[[] 2014

[¥] z015
A
Fe

@

FA @B FC

Label Text: Minhas Tarefas:

S
B Descrigﬁol W u
HTML

1, 2,3, 4,5, 6, ... 1. 2. 3. le/b>, 5. <idLefis. ®

CA Process Automation <H2>CA Process Automation</HZ»

a

CA Support Offerings

®

®

)

-

Object Reference
/BR412-DATA-FOLDER-20111214/calendar_C55-01

Chapter 7: Forms 261

The Form Designer

Item:

Description:

Form Structure: While you design the form, the bottom of the Form tab
displays the arrangement of pages and form elements.

Page Layout: You can set the layout to display pages as cards or tabs. Cards
appear in sequence when the user clicks Back or Next. Tabs let the user select
any tab to view the associated page.

Check Boxes and Radio Buttons: Use a group of check boxes (check list items)
when a user can select multiple related items. Use a group of radio buttons
(option buttons) when a user can select only one related item. Use individual
check boxes to control settings for unrelated items.

Orientation: You can set check list and radio group orientation to vertical or
horizontal.

Labels: Use labels to identify specific fields or regions in the form.

@ ®

Images: Use an image element to include a graphic. An image can display a
logo, icon, status indicator, or button that users can click. When the form
cannot locate an image, the product displays a broken link icon.

HTML: Use the HTML element to specify HTML code to render for the user.

®

Object Reference: Use an object reference to give users an easy way to select
another object in the library browser. An object reference stores the path to
an object in a library. For example, a user can specify a touchpoint on an
Orchestrator and then run a process on the selected touchpoint. As the
designer of the form, you can limit the available types of objects that an object
reference allows.

- ~ Field Set

@

Text Field
Aa Bb Cc...
Text Area

1.0 Aa

1.1 Bb

1.2 Cc
2.0 Dd
Multiline Text

| »

Multiline Text
1
2
3

Cancel | OK

@ Simple Array
Date Field X T wirss = |[=
NS SR 2
02/20/2016 =
Spinner Field -
e N EEEEE ala
EROR: w
2|c
Lookup Field .0
° 1-30f3
@ Value 1
Value 2 Table
Select e
Option B - ---- Date Select
Option A 0 Tue Apr 06 00:00:00 GMT-400 2010 01
Option B 1 [#] Thu Sep 20 00:00:00 GMT-400 2018 =
2
Option C 3 Waed Apr 11 00:00:00 GMT-400 2012 02

03
Page 1 of 1 Dispraynny = 4 of 4

262 Content Designer Guide

The Form Designer

Item:

Description:

Field Set: Use field sets to group related form elements. Users can expand and
collapse field sets to focus on specific parts of a form, thereby avoiding clutter.

Text Field and Text Area: Use text fields to let users enter basic data such as
names, addresses, email accounts, telephone numbers, and other details. Use
text areas to let users enter multiple lines of text. Users can view the amount
of text that you set in the height property on the form and scroll the
remainder of the field.

Multiline Text: Use multiline text to display large amounts of text in a separate
resizeable scrolling window. This element occupies a single line on the form.
The form displays the element as a button with ellipsis (...) to indicate that the
user can click to browse the full window.

Date Field: Use a date field to store a date. Users can enter a date or select a
date from the integrated calendar control.

©)

Spinner: Use a spinner to let the user adjust a value up or down in predefined
increments.

Lookup: Use a lookup element to display a one-column table of valuesin a
popup window. You can use a dataset or external data source to provide the
values. A user can click a value and then click OK to both populate the lookup
field and store the value.

Select: Use a select element to display a drop-down list of options.

®

Simple Array and Table: Use a simple array to store a single type of data in a
table. Use a table to store multiple columns of data. These form elements
include options for adding, deleting, and moving rows.

Chapter 7: Forms 263

The Form Designer

You can insert the following elements in a table:
m Check box

m Date

m Field set

® |mage

= Label

m Lookup field

m Radio button (option button)
m Select field

m Text field

m Textarea

m Multiline text

m Table

m Simple array

m Object reference

m Checklist
m Spinner
= HTML

® Page

Form Element Properties
Note: Point to a form element attribute to view the element tool-tip description for
assistance in completing the form.
Allow Adding of Rows

A Boolean (true or false) value for tables and simple arrays. When true, a button
lets form users create rows in the table. When false, users cannot add rows to the
table.

Allow Decimals

A Boolean (true or false) value for spinner fields. When true, users can enter
numbers with decimals (such as 12.25 or 0.003). When false, users cannot enter
decimal numbers in the field; only whole numbers.

264 Content Designer Guide

The Form Designer

Allow Deletion of Rows

A Boolean (true or false) value for tables and simple arrays. When true, a button
lets form users remove rows from the table. When false, users cannot remove rows
from the table.

Allow Negative Numbers

A Boolean (true or false) value for spinner fields. When true, users can enter
numbers less than zero (such as -10). When false, users cannot enter negative
numbers; only O or positive numbers.

Allow Reordering of Rows

A Boolean (true or false) value for tables and simple arrays. When true, two buttons
let form users move entries up and down in the table. When false, users cannot
move rows up or down in the table.

Calendar

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of the Calendar type. When
false or empty, the Calendar type of automation object does not appear. The object
properties of object reference fields filter specific types of automation objects when
the user views the available options.

CheckBox Label

The text string or name that is applied to a single check box or a check box item in a
group.

Created By

The name of the user or user account who created the form.
Created On

The date and time when the form was created.
Custom Icon

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of the Custom Icon type. When
false or empty, the Custom Icon type of automation object does not appear. The
object properties of object reference fields filter specific types of automation
objects when the user views the available options.

Custom Operator

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of the custom operator type.
When false or empty, the custom operator type of automation object does not
appear. The object properties of object reference fields filter specific types of
automation objects when the user views the available options.

Chapter 7: Forms 265

The Form Designer

Dataset

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of the Dataset type. When false
or empty, the Dataset type of automation object does not appear. The object
properties of object reference fields filter specific types of automation objects when
the user views the available options.

Dataset Expression

A reference to a specific array variable in a dataset object in the library as in the
following example:

Datasets["/MyFolder/MyForm/MyDatasetObject"].MyArray
Date Format

The preferred format for dates. For example, enter the value MMM dd, yyyy to
format the date 05/01/2014 as May 01, 2014. Enter yyyyMMdd to display the same
date as 20140501. The default date format is MM/dd/yyyy.

You can also store time in a Date field. For example, you can set the Date Format

property to dd/MM/yyyy hh:mm:ss to display the date and time value 05/01/2014
10:17:43 AM.

Description
Information about the form element in addition to its name or short label.
Disabled

An optional setting that you can apply to a form element. The following behaviors
characterize elements with the Disabled property set:

m The form element cannot receive focus.
m The form element appears dimmed.

m You cannot change the value of a disabled form element; however, you can
copy the value to reuse it.

Disable a form element to apply business logic and prevent invalid data.

Editable

A Boolean (true or false) value for a field. When true, users can edit the field. When
false, the data is read-only.

Height

The amount of vertical space the form element occupies. Specify a value (in pixels)
for this property from the top to the bottom of the form element.

Hidden

A Boolean (true or false) value for a field.

True

Makes the field invisible when the form is rendered.

266 Content Designer Guide

The Form Designer

Hide Label

A Boolean (true or false) value for a field or table with a label. When true, the label
is hidden. When false or empty, the label is visible.

_id
A unique read-only identifier for a specific instance of a form element. The _id
appends the following items to the name of the form with a period (.) separator:
m The name of any parent object such as a table

m The name of the form element

For example, Form1 has two option button groups with the following _id
properties:

Forml. rgNamel
Forml. rgName2

A specific option button could have the following _id:
Forml.rgName2.RadioOptionA

A form element in a table named Table_2 could have the following _id:
Form 1.Table 2.Var 3

The _id for a form is the same as its Name property value.

Note: The _id is used in JavaScript functions. When you rename or move an
element, be aware that you are also changing its _id.

Increment

For spinner fields, the value of an incremental adjustment, up or down. For
example, if the field displays 6.55 and the increment is .02, one click up results in
6.57 and one click down results in 6.53.

Interaction Request Form

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of the Interaction Request Form
type. When false or empty, automation objects of the Interaction Request Form
type do not appear. The object properties of object reference fields filter specific
types of automation objects when the user views the available options.

Chapter 7: Forms 267

The Form Designer

Invisible

Makes a field visible or invisible but read-only within the custom operator forms
only.

True
Makes the field invisible within custom operators only.

Note: This attribute is valid only in custom operators. The Hidden attribute only
hides a field, where as the Invisible attribute hides the field and also sets the
field to read-only.

Within custom operators, the Invisible attribute created in CA Process
Automation Release 3.x and the Hidden attribute created in CA Process
Automation Release 4.1 is mapped to this attribute in CA Process Automation
Release 4.2.

Label
The short descriptive name that is displayed to the user for a form element.
Label Align

A read-only property that indicates how field labels appear relative to the form
elements that they describe. In the Form Designer, you can click toolbar buttons to
align labels to the left, right, or the above elements of the selected form.

Label Width

The size (in pixels) of a line of label text. The long labels wrap to the next line.

Layout

A design-only property that determines how multiple pages on a form appear on
the Form and Preview tabs.

Card

View one page at a time with Back and Next buttons to navigate pagesin a
sequence. This setting is how the pages of every form appear to form users.
Card is the default Layout setting.

Tab

View the names of available pages in their own tabs. For convenience,
designers can click a tab to navigate to the associated page in any order.

Maximum Length

The highest number of characters a user can enter in the field. For example, to
require an 8-digit number in a specific field, set the Maximum Length and Minimum
Length properties for the field to 8.

268 Content Designer Guide

The Form Designer

Maximum Rows
The highest number of entries that are allowed in a table.
Minimum Length

The lowest number of characters a user can enter in the field. For example, to
require an 8-digit number in a specific field, set the Maximum Length and Minimum
Length properties for the field to 8.

Minimum Rows

The lowest number of entries that are allowed in a table.
Modified By

The name of the user or user account who modified the form.
Modified On

The date on which the form object was last changed.
Name

A unique string that identifies a form element. The system assigns an initial name
(such as Var_3) that you can modify value. Changing the name value also changes
the _id value.

Form elements can have two separate names: A Name property and an internal
name that identifies the form element in the Form Designer.

m Change the Name value to set the value of the _id variable that identifies the
form element.

m Click Rename to change the internal name of an element that appears in the
hierarchical form structure layout at design time. This internal name is the
default value that is given to the Label of a form element. This label does
appear to form users at run time.

Chapter 7: Forms 269

The Form Designer

Number Format

A string that defines the format for numeric input in the field. For example, enter
S#.## to display $3.14.

Orientation

Specifies whether to arrange option groups and check boxes horizontally or
vertically on the form. The default is vertical orientation.

Page Size
The number of rows to display on each page of a table or simple array.
Password

A Boolean (true or false) value for a text field, often used with Password fields.
When true, user input is displayed as bullet characters to hide input from other
users. When false or empty, user input is displayed exactly as typed.

Pattern

An input constraint or validation requirement for the values a user enters in a text
field or text area. For example, set Pattern to [a-z] to require only lowercase
alphabetic characters in the associated field.

Pattern Message

The on-screen alert or hint to display when a user entry does not match the pattern
that is defined in the Pattern property.

Process

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of the Process type. When false
or empty, automation objects of the Process type do not appear. The object
properties of object reference fields filter specific types of automation objects when
the user views the available options.

Process Watch

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of the Process Watch type.
When false or empty, automation objects of the Process Watch type do not appear.
The object properties of object reference fields filter specific types of automation
objects when the user views the available options.

Render as HTML

A Boolean (true or false) value for multiline text fields. When true, the form
interprets the content of the field as HTML code and the product displays the field
much as a web browser would. For example, text that you tag with <H2> displays as
a second-level heading and text that you tag with displays as bold text.

270 Content Designer Guide

The Form Designer

Required

A Boolean (true or false) value that indicates whether the form element must
contain a value or can remain empty.

Resource

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of the Resource type. When
false or empty, automation objects of the Resource type do not appear. The object
properties of object reference fields filter specific types of automation objects when
the user views the available options.

Schedule

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of the Schedule type. When
false or empty, automation objects of the Schedule type do not appear. The object
properties of object reference fields filter specific types of automation objects when
the user views the available options.

Start Request Form

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation objects of the Start Request Form type.
When false or empty, automation objects of the Start Request Form type do not
appear. The object properties of object reference fields filter specific types of
automation objects when the user views the available options.

Style

One or more statements (as in the following examples) that determine how text
attributes in a field display to users. Format style attribute assignments in mixed
case.

color:blue;
textAlign:center;
textDecoration:underline;
textTransform:uppercase
textIndent:30px;
fontStyle:italic;
fontFamily: "Courier";
fontSize:14px;

Tab Index

A number that controls the tab order of the form at design time and run time. The
application does not enforce uniqueness. For example, you can use multiples of 5 or
10 as you set the tab order. Therefore, if you insert a new field in the layout
between field 20 and field 25, you can assign its tab index to 22.

You can also leave the Tab Index value empty and click Move Up or Move Down in
the toolbar to adjust the tab order. By default, the form tab order follows the layout
from top to bottom.

Chapter 7: Forms 271

The Form Designer

Text Align

Specifies how an image file appears in the portion of the form layout that it
occupies. Images can be aligned left or right, centered, or justified.

Text Direction

Specifies how characters appear in a field relative to the left and right borders of
the field. Select Itr or leave the property empty to display text from left to right. Itr
is the default value and the default text direction for ISO-8859 Latin | codesets.
Select rtl to display text from right to left.

Touchpoint

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation object types that are set to true. The
user can browse touchpoints by domain, environment, and Orchestrator. When
false or empty, only objects from the default touchpoint appear and the user
cannot select another touchpoint.

Touchpoint Group

A Boolean (true or false) value for object reference fields. When true, the Object
Browser lookup dialog includes automation object types that are set to true. The
user can browse touchpoint groups by domain, environment, and Orchestrator.
When false or empty, only objects from the default touchpoint group appear and
the user cannot select another touchpoint group.

URL

For Image form elements, the URL path to an image file as in the following
examples:

https://www.<company name>.com/images/logol.png
or
http://my.intranet.site/Corporate%s20Images/Big2.jpg

Use images to display data, to indicate status, or to provide buttons that users can
click.

272 Content Designer Guide

The Form Designer

Value

The stored data for a form element. All elements on a form store their values
directly in their visual borders temporarily before committing to the database.
Value appears as a property for two specific form elements:

Width

Each option for a Select field has its own value property. Use the property to
store a string or number for each option. For example, although the user sees
the Easy, Moderate, and Difficult options, the Value properties for these
options could be 0.8, 1.0, and 1.2. These values could be used in additional
calculations.

An HTML form element displays a value property. Use the property to specify
the actual text and code to store in the field. For example, enter the following
data in the Value property for an HTML form element:

1, 2, 3, 4, 5, <i>6</i>, ... <H2>CA Process
Automation</H2>

The form user sees the following rendered data in the same field:
1,2,3,4,5,6, ...

CA Process Automation

The amount of horizontal space (in pixels) for the form element to occupy. Specify a
value for this property from the left edge of the form element.

Chapter 7: Forms 273

The Form Designer

View Form Property Values in a Separate Window

When form properties values are not fully visible in the pane displaying the Name and

Value settings, you can view them in a separate window.

Follow these steps:

1. Click the Library tab.

2. Openaform.

3. Inthe Form Designer:

a.

b.

Drag a field to a page in the layout.

Click the field listed in the form structure.

Identify a property or event that can store multiple lines of text, such as Style

or onMouseOver.

Right-click the property or event value, then click Expand.

The expanded property value appears in a separate window.

B Check In
Farm

ESi Form Elements
(=3 hidefield
4 5 Page Layout
a E Page
[Field:
Hide Field
[#] Show Field

Preview

Page

Field:

4 MoveUp § Move Down 4 Rename

Properties

Versions
Name -
Password

Pattern

Pattern M

@ remove

Audit Trail

TEST

Required

7] hide

IT] show

Style

Tab Index
Text Direction
_id

onBlur
onChange
onClick
onMouselp

onValidate

Value

texthlign:cantar-tasvtNarnrationunde

Expand E

Form.Var_0

4] | textAlign:center;
textDecoration:underline;
textTransform:uppercase;
textIndent:20px;
fontStyle:italic;
fontFamily:"Courier”;

fontSize: 16px;
color:blue;

Cancel oK

Note: When you expand an event, you can press Ctrl+Space to view code completion

assistance suggestions. Press Ctrl+Alt to view a list of the functions.

274 Content Designer Guide

The Form Designer

Form Element Events
onBlur

Occurs when a form element loses focus. For example, a form contains a User
Name field. A user establishes focus in the field by tabbing to it or clicking it. The
onBlur event occurs when the user takes either of the following actions:

m The user clicks another object or clicks another window.

m The user presses the Tab key to navigate to the next field (for example, the
Password field).

onChange

Occurs when a form element loses focus and the new value of a form element is
different from its old value. For example, a form contains a field named Quantity
with a value of 10. After the user changes the value to 15, the user does not move
focus to another field. The onChange event occurs only after the user takes either
of the following actions:

m The user clicks another object or clicks another window.
m The user presses the Tab key to navigate to the next field.
onClick

Occurs when a user clicks a form element. A valid click includes both the
onMouseDown and onMouseUp events on the same object. This requirement helps
prevent calling functions or other code accidentally because the mouse must
remain on the clickable object.

onFocus

Occurs when a form element receives focus. To establish focus, a user tabs to or
clicks a form element. You can also write scripts or code to establish focus in a form
element.

onKeyDown

Occurs when a user first presses a key down (for example, when a user tabs to or
clicks a Name field). A script that is associated with the onKeyDown event for the
Name field alerts users when they attempt to type number keys.

onKeyPress

Occurs after a user presses a key down and continues to hold the key down. For
example, the onKeyPress event occurs after a user tabs to or clicks a Select field
called Name and presses some key representing an alphabet. A script that is
associated with the onKeyPress event for the Name field cycles through names that
match the pressed alphabetic key.

onKeyUp

Occurs when a user releases a key after pressing it down. For example, the
onKeyUp event occurs when a user tabs to or clicks a Spinner field named
Temperature. A script that is associated with the event increases or decreases the
field value each time the user presses and releases a specific key.

Chapter 7: Forms 275

The Form Designer

onLoad
Occurs when the form first opens for the user to complete.
onLookup

Occurs when a user clicks Browse in a Lookup field to view values that are
calculated (or "looked up" as directed by the script) based on other field values.

onMouseDown
Occurs when a user presses the left mouse button down on a form element.
onMouseMove

Occurs when a user moves the mouse pointer inside the boundary of a form
element.

onMouseOut

Occurs when a user moves the mouse pointer outside the boundary of a form
element.

onMouseOver

Occurs when a user moves the mouse pointer over a form element and the user
stops moving the mouse.

onMouseUp

Occurs when a user releases the left mouse button after pressing the mouse button
down on a form element.

onMouseWheel

Occurs when a user with a wheel-equipped mouse rolls the wheel forward or
backwards to scroll a form element.

onSubmit

Occurs when the user submits the form. Any of the following actions can submit the
form:

m The user clicks a Submit button.

m The user presses a specific key or combination of keys.

m The value of a field changes.

m The user reaches the end of the form in the tab order.
onValidate

Occurs when the associated code verifies a field value against business rules before
one of the following actions occurs:

m The field value is stored in the data buffer.

m The field value is written to the database.

276 Content Designer Guide

The Form Designer

For example, the user tabs to or clicks a Serial Number field that must start with the
letters SN and contain 10 numeric digits. Before the user can tab to the next field or
click away from the field, the onValidate event and its associated code verify the
data. You can alert the user if the serial number does not meet validation rules so
they can adjust their entry.

You can use onValidate for custom validation of the field input. For example, to
ensure that a field input is at least three characters in length, you can write a
custom function in the Script dialog:

validateValue: function(val) {
if(_val.length < 3) {
return "Please enter more than 3 characters for this field";
} else {
return null;

}

In the Form Designer, include the onValidate attribute value for the text field on
which to run the validation. For example:

ca_fd.js.validateValue(val)

The custom function replaces the required parameter _val with the correct field
value when the script runs.

If the validation script returns a null value, the field input passes validation.
Otherwise, the field input fails validation and the script returns an error (for
example, "Enter more than 3 characters for this field").

Form Element Functions

Many user interface events occur when a user interacts with a form. Events such as
changing a field value (onChange) or positioning the mouse pointer over a table
(onMouseOver) can initiate JavaScript functions. As a designer of a form, you can use
form element functions to achieve the following and other goals:

Dynamically control form elements based on events.
Get data from a field or table.
Set the data in a field or table.

Use logic to assist users with navigating potentially complex options. For example,
you can use functions to update a list of cities according to the Country a user
selects.

Assist users with minimizing data-entry errors.

This section lists predefined JavaScript functions that you can use in fields on start
request and interaction request forms.

Chapter 7: Forms 277

The Form Designer

Form Elements

Form elements specify the information on a form that is to be submitted to a web site
or service. An element can be of type text field, check box, password, radio button,
submit button, and so on.

The following form elements are available in the Forms Designer.

General Functions for All Form Elements

These functions apply to all element types.

ca_pam_disableField(_id, isDisable)

Enables or disables a specified field. When a field is enabled, users can provide input or
edit the values. Disabled fields are still visible but do not accept user input.

Input Parameters
_id (string)

Specifies the unique identifier of the field to enable or disable. You can find this
under the element properties. See Form Element Properties (see page 264) for
more information.

isDisable (boolean)
Specifies whether the field is to be disabled (true) or enabled (false).
Return Value
None.
Example
This example disables the specified checklist field, including all checklist items in it.

ca_pam_disableField('Form.ckListField27', true)

278 Content Designer Guide

The Form Designer

ca_pam_hideField(_id, isHide)

Shows or hides a specified field. Hidden fields are not visible to the user. The tab order
of the form skips hidden fields. Although the hidden field can still hold a value, it is
effectively removed from the form.

Input Parameters
_id (string)
Specifies the unique identifier of the field to display or hide.
hide (boolean)
Specifies whether the field is hidden (true) or displayed (false).
Return Value
None.
Example

Consider that a user fills an online application form with birth place details. If the
cities listed under 'Birth City' field are only capital cities, then the user can select
"Other City". Upon clicking "Other City", the Hidden attribute is set to false and a
text field is visible. The user can now enter the city name.

This example hides the specified field.
ca_pam_hideField('Form.Var 0', true)

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, 02 Show and Hide Form
Element: Show and Hide Form Element.

Chapter 7: Forms 279

The Form Designer

XML Parsing
ca_pam_showDatalnTable(result, _id, tableHeader)

Displays data rows that result from a Lookup field function as a single-column table that
has the specified header or title.

This function only displays the "result" passed to it. The result here represents an array
of rows. The result can be either stored in a variable and passed to this function, or
directly replaced with the function call that returns the result.

Input Parameters
result (object)
Specifies a function call that results in the values displaying in a table.
_id (string)

Specifies the unique identifier of the Lookup Field table in which to show the
result set.

tableHeader (string)

Specifies a text string to display at the top of the Lookup Field table on the
form.

Return Value
No value is returned; this function only displays the table with the values included
in it.

Example
ca_pam_showDataInTable(result, 'Form.office', '0Office"');

This example shows a table named Office that lists the results of a separate query
to get office names. In the separate query, the user Region selection determines
the offices to display.

The onLookup event for a Lookup Field named Office calls this function.

280 Content Designer Guide

The Form Designer

ca_pam_convertToSimpleArray (objectArray, fieldName)

Creates a simple array of strings from any of more complex JavaScript array of objects.
Input Parameters
objectArray (object)

Specifies a reference to an array of JavaScript objects containing multiple
properties.

fieldName (string)

Defines the name of the property in objectArray from which to create the
simple array.

Return Value
The array that the method creates is returned.
Example

var locationl = new Object();
locationl.buildingCode = 10;
locationl.floorCode = 20;
var location2 = new Object();
location2.buildingCode = 100;
location2.floorCode = 200;
var LocationArray = {locationl,location2};

var floorCodeArray = ca_pam_convertToSimpleArray (LocationArray,
‘floorCode’);

The output of floorCodeArray {20,200}.

Chapter 7: Forms 281

The Form Designer

ca_pam_convertToJavaScriptObject(valueObject)

Converts a process automation data type to a standard JavaScript object according to
the input data type. If you provide a string as an input value, the method returns a string
value.

Input Parameters
valueObject

Specifies the process automation data types. For example, Boolean, Date, and
ValueMap.

Return Value

Returns a JavaScript Object based on the value of valueObject. If ValueMap is the
input value, it returns a JavaScript object like a map. If Value array is the input
parameter, the method returns a Javascript array.

Note: For the Date data type, the long value is returned, which is the canonical
representation of the date. To convert it into a date object, use the following
syntax:

new Date (ca pam convertToJavaScriptObject(valueObject))
Example

This example declares a variable (array) and sets it to the converted JavaScript
object.

var array = ca_pam_convertToJavaScriptObject(valueObject);

282 Content Designer Guide

The Form Designer

Check Box
ca_pam_isSelectedCheckBox(_id)

Determines whether a check box is selected (true) or a check box is cleared (false).
Input Parameters
_id (string)
Specifies the unique identifier of the Check Box field to evaluate.
Return Value
Value (boolean)
True if the check box is selected, false otherwise.
Example
ca_pam_isSelectedCheckBox('Form.ckbxInsBuy")

The ckbxInsBuy check box label is Purchase Insurance. This example code returns
"true" when the Purchase Insurance check box is selected. The code returns "false"
when the check box is cleared.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, 02 Show and Hide Form
Element: Show and Hide Form Element.

Chapter 7: Forms 283

The Form Designer

ca_pam_selectCheckBox(_id, isSelect)

Selects or clears a specified check box.
Input Parameters
_id (string)
Specifies the unique identifier of the Check Box field to select or clear.
isSelect (boolean)
Specifies whether a field is selected (true) or a field is cleared (false).
Return Value
None.
Example
ca_pam_selectCheckBox('Form.ckbxInsBuy', true)
This example marks the ckbxinsBuy check box on the form.
m The ckbxInsBuy check box label is Purchase Insurance.

m The ca_pam_selectCheckBox function is useful if the user selects other options
on the form that require the purchase of insurance.

Date

Except as noted in this section, all date functions return the date as a string in the
format that you specify in the Date Format property.

ca_pam_getDateFieldMaxValue(_id)

Returns the value of the Date field Maximum Value property as a string.
Input Parameters
_id (string)
The unique identifier of a Date field.
Return Value
The maximum value for a Date field as a string.
Example

This example returns the maximum value that is allowed for the DateDeparture
field as a date string (for example, 05/20/2025).

ca_pam_getDateFieldMaxValue('Form.DateDeparture')

284 Content Designer Guide

The Form Designer

ca_pam_getDateFieldMaxValueInMillis(_id)

Returns the value of the Date field Maximum Value property, expressed as a long
integer. This integer represents the number of milliseconds before or after January 1,
1970 00:00:00 UTC (known as the UNIX Epoch). You can pass the value in this field, as
mentioned in the ca_pam_getDateFieldMaxValue(_id) (see page 284) method.

Input Parameters
_id (string)
Defines the unique identifier of a Date field.
Return Value
The maximum value for a Date field, expressed as a long integer.

Example
ca_pam_getDateFieldMaxValueInMillis('Form.DateDeparture')

This example returns the maximum value that is allowed for the DateDeparture
field as a numeric string measured in milliseconds. For a Date field with a maximum
value of 05/25/2025, this function would return 1748188800000 (that is,
1,748,188,800,000 or 1.7 trillion milliseconds).

The ca_pam_getDateFieldMaxValuelnMillis function returns a negative result for
dates before 1970.

ca_pam_getDateFieldMinValue(_id)

Returns the value of the Date field Minimum Value property as a string. You can pass
the value in this field, as mentioned in the ca_pam getDateFieldMaxValue(_id) (see
page 284) method.

Input Parameters
_id (string)
Specifies the unique identifier of a Date field.
Return Value
The minimum value for a Date field as a string.
Example

This example returns the minimum value that is allowed for the DateDeparture field
as a date string (for example, 05/05/2025).

ca_pam _getDateFieldMinValue('Form.DateDeparture')

Chapter 7: Forms 285

The Form Designer

ca_pam_getDateFieldMinValuelnMillis(_id)

Returns the value of the Date field Minimum Value property, expressed as a long
integer. This integer represents the number of milliseconds before or after January 1,
1970 00:00:00 UTC (known as the UNIX Epoch). You can pass the value in this field, as
mentioned in the ca_pam_getDateFieldMaxValue(_id) (see page 284) method.

Input Parameters
_id (string)
Specifies the unique identifier of a Date field.
Return Value
The minimum value for a Date field, expressed as a long integer.
Example
ca_pam_getDateFieldMinValueInMillis('Form.DateofBirth')

This example returns the minimum value that is allowed for the DateofBirth field as

a numeric string measured in milliseconds. For a Date field with a minimum value of
01/01/1974, this function would return 126291600000 (that is, 126,291,600,000 or

126 billion milliseconds).

This function returns a negative result for dates before 1970.

ca_pam_getDateFieldValue(_id)

Returns the value of a Date field as a date string (for example, 05/05/2025).
Input Parameters
_id (string)
Specifies the unique identifier of a Date field.
Return Value
Date value as a string.
Example

var LastDay =ca_pam_getDateFieldValue('Form.TripEndDate');
ca_pam_setDateFieldMaxValue('Form.DateDeparture',LastDay);

The first line of this example gets the TripEndDate (for example, 05/15/2014) and
stores it in the LastDay variable.

The second line of this example sets the Maximum Value of the DateDeparture field
to the value of the LastDay variable.

286 Content Designer Guide

The Form Designer

ca_pam_getDateFieldValuelnMillis(_id)

Returns the value of a Date field as a long integer (for example, 61238000). This integer
represents the number of milliseconds before or after January 1, 1970 00:00:00 UTC
(known as the UNIX Epoch).

Input Parameters
_id (string)
Defines the unique identifier of a Date field.
Return Value
Date value for a Date field that is expressed as a long integer.
Example
ca_pam_getDateFieldValueInMillis('Form.DateofBirth')

This example returns the value for the DateofBirth field as a numeric string
measured in milliseconds. For a Date field with a value of 08/22/1965, this function
would return -132307200000 (that is, -132,307,200,000 or -132 billion
milliseconds).

The ca_pam_getDateFieldValuelnMillis function returns a positive result for dates
on or after January 1, 1970.

ca_pam_setDateFieldMaxValue(_id, val)
Sets the value of the Date field Maximum Value property. Form users cannot enter a
date in the Date field that is later than the Maximum Value.
Input Parameters
_id (string)
Specifies the unique identifier of a Date field.
val

Specifies the value to use as a maximum, expressed as a date string (for
example, 05/20/2014).

Return Value
None.
Example

This example sets the Maximum Value property of the DateDeparture field to the
date stored in the LastDay variable.

ca_pam_setDateFieldMaxValue('Form.DateDeparture',LastDay);

Chapter 7: Forms 287

The Form Designer

ca_pam_setDateFieldMinValue(_id, val)
Sets the value of the Date field Minimum Value property. Form users cannot enter a
date in the Date field that is earlier than the Minimum Value.
Input Parameters
_id (string)
Specifies the unique identifier of a Date field.
val

Specifies the value to use as a minimum, expressed as a date string (for
example, 05/05/2012).

Return Value
None.
Example
ca_pam_setDateFieldMinValue('Form.DateArrival', today);

This example sets the Minimum Value property of the DateArrival field to the date
stored in the today variable.

m The product alerts form users if they enter a date earlier than the minimum
value.

Page

Verify Arrival Date
Arrival Date:

[05/02/2012 |

7| Verify Depart] @ The date in this field must be after
fy P [05/05/2012

Departure Date:
[=)

m Pop-up calendars on the form display invalid dates in gray and do not let users
click invalid dates.

288 Content Designer Guide

The Form Designer

ca_pam_setDateFieldValue(_id, val)

Sets the value of a Date field to a date string (for example, 05/15/2014). The value is set
only if it is specified in the correct format (that is, in the format specified in the Date
Format property of the Date field). If the value of this property is blank, then the value is
set in the Date Format specified in the User settings.
Note: Pass the date in the correct format; otherwise it is not set.
Input Parameters
_id
Defines the unique identifier of a Date field.
val
Defines a date value that you specify (for example, 05/05/2014).
Return Value
None.
Example
ca_pam_setDateFieldValue('Form.DateArrival', '05/05/2014"');
This example sets the DateArrival field to 05/05/2014.

Chapter 7: Forms 289

The Form Designer

Lookup Field
ca_pam_getTextFieldvalue(_id)

Returns a value from a Text field.
Input Parameters
_id (string)
Specifies the unique identifier of a Text field.
Return Value
Value from the Text field (string).
Example
This example returns the value of the top_vendors Text field.
ca_pam_getTextFieldValue('Form.top vendors')

This example returns the value of the top_vendors Text field and sets the
dynamic_field Text field to the returned value.

ca_pam_setTextFieldValue('Form.dynamic field',
ca_pam_getTextFieldValue('Form.top vendors'))

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folders, then:
m 07 Populate Table RESTful WS: Populate Table RESTful WS.
m 08 Populate Table SOAP WS: Populate Table SOAP WS.

290 Content Designer Guide

The Form Designer

ca_pam_setTextFieldvalue(_id, val)

Sets the value of a Text field.
Input Parameters
_id (string)
Specifies the unique identifier of the field for which to set a specific value.
val (string)
Defines the new value for the Text field.
Return Value
None.
Example
This example sets the top_vendors Text field to "l vote for vendor 3 because:"

ca_pam_setTextFieldValue('Form.top vendors', 'I vote for vendor 3
because: ')

To continue this example, use ca_pam_getTextFieldValue('Form.top_vendors') after
users enter their reasons to submit their full statements.

ca_pam_setTextFieldValue('Form.dynamic field',
ca_pam_getTextFieldValue('Form.top vendors'))

This example returns the value of the top_vendors field and sets the dynamic_field
to that value.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 08 Populate Table SOAP
WS: Populate Table SOAP WS.

Chapter 7: Forms 291

The Form Designer

Radio Group
ca_pam_isSelectRadio (_id, radio_id)

Determines whether a specific radio option is selected.
Input Parameters
_id (string)
Specifies the unique identifier of a Radio Group field.
radio_id (string)
Specifies the unique identifier of a specific radio option button in a group.
Return Value
Value (boolean)
True if the check button is selected, false otherwise.
Example

ca_pam_isSelectRadio('Form.Transportation',
"Form.Transportation.Option 01 Air')

Transportation is a group with two option buttons with the following IDs:
m Option_01_Air
m Option_02_Rail

This example returns "true" if the Air option button in the Transportation group is
selected or "false" if any other option is selected.

292 Content Designer Guide

The Form Designer

ca_pam_selectRadio(_id, radio_id)

Selects a specific radio option button in a Radio Group field.
Input Parameters
_id (string)
Specifies the unique identifier of a Radio Group field.
radio_id (string)
Specifies the unique identifier of a radio option button in a Radio Group.
Return Value
None.
Example

ca_pam_selectRadio('Form.Transportation',
"Form.Transportation.Option 01 Air')

This example selects the Air option button in the Transportation radio group.
Transportation is a radio group with two option buttons with the following IDs:
m Option_01_Air

m Option_02_Rail

Chapter 7: Forms 293

The Form Designer

Select
ca_pam_getSelectedOptions(_id)

Returns the index value of the currently selected option in a Select field.
Input Parameters
_id (string)

Specifies the unique identifier of the Select field for which to retrieve the
option value.

Return Value
This function returns an array of selected options index.

In the case of a single Select drop-down list, the selected option index can be
retrieved by accessing the first element of the array.

Example
ca_pam_getSelectedOptions('Form.VarFillerType')
This example retrieves the index value of the Filler Type that the user chose.
m Filler Type is a Select field with options for Rocks [0], Sand [1], and Water [2].

m The ca_pam_getSelectedOptions function returns the index value 1 when the
user selects Sand from the Filler Type drop-down list.

294 Content Designer Guide

The Form Designer

ca_pam_getSelectedOptionValues(_id)

Returns the value of the currently selected option in a Select field.
Input Parameters
_id (string)

Specifies the unique identifier of the field for which to retrieve the option
value.

Return Value
This function returns an array of selected option value.

In the case of a single Select drop-down list, the selected option value can be
retrieved by accessing the first element of the array.

Example
alert(ca_pam getSelectedOptionValues('Form.VarFillerType')[0])

This example returns the option value number or text string for the Filler Type that
the user chose.

m The alert command displays the option value result to the user in a pop-up
dialog or message.

m Filler Type is a Select field with the following options, index values shown in
brackets, and values:

Rocks [0], $50
Sand [1], $100
Water [2], Call for details.

m The ca_pam_getSelectedOptionValues function returns the value of the option
that is selected from the Filler Type drop-down list when the user clicks Update
Order Form.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, 06 Populate Dropdown DB:
Populate Dropdown from DB.

Chapter 7: Forms 295

The Form Designer

ca_pam_selectOption(_id, name, value, isSelect)

Selects or clears an option in a Select field based on the option name and value. You can
also use this function to prevent selection of a specific option.

This function can both select and unselect an option. If an option is not selected and you
want to select the option programmatically, then isSelect is true. If an option is already
selected and you want to unselect the option, then use isSelect is false.

Input Parameters
_id (string)
Specifies the unique identifier of the Select field to set.
name (string)
Specifies the name of the specific Select field option.
value (string)

Defines the value of the specific Select field option. This value is the existing
value of the option.

isSelect (boolean)
Specifies whether the field is selected (true) or cleared (false).
Return Value
None.

Example
ca_pam_selectOption('Form.City', 'Regional Hub', 'Sydney', true);

This example sets the City field to the option named Regional Hub.

If multiple options are named Regional Hub, then this function applies the option
with the specified value. This distinction is important. You can use
ca_pam_getSelectedOptionValues(_id) to identify the specific value for a field
option, even when multiple options have the same name. For example, users can
continue to use a set of standard forms to direct business to the Regional Hub even
if value changes.

296 Content Designer Guide

The Form Designer

ca_pam_selectOptionByIndex(_id, index, isSelect)

Selects or clears an option in a Select field based on the index.
Input Parameters
_id (string)
Specifies the unique identifier of the select field to select or clear.
index (integer)
Specifies the fixed identifier for an option in the field.
isSelect (boolean)

Specifies whether the Select field option is selected (true) or the option is
cleared (false).

Return Value
None.

Examples
ca_pam_selectOptionByIndex('Form.VarFillerType', 2, true)
This example sets the current choice of Filler Type to the value at index position 2.
m Filler Type is a Select field with options for Rocks [0], Sand [1], and Water [2].
m Economy Option is a check box with this function in its onClick event.

m When the user selects the Economy Option check box, the
ca_pam_selectOptionBylndex function sets the Filler Type field to the option at
index position 2, Water.

Another example:
ca_pam_selectOptionByIndex('Form.VarFillerType', 2, false)
When Filler Type is already set to Water, this function clears the Filler Type field.

Chapter 7: Forms 297

The Form Designer

ca_pam_addValuesinSelectStore(_id, values)

Adds new options to the Select field with a simple set of values that you define in code.
Input Parameters
_id (string)
Specifies the unique identifier of a Select field.
values (Javascript object)

Specifies an array of objects where each object has two properties ("name" and
"value") that are necessary to represent the Select field options. The "name"
property for each object is represented as the key for the option added and
"value" property would be the value. If you have an array of names and values,
then you could also use the ca_pam_createSelectStore function to create the
"values" object (as shown in the example).

Return Value
None.
Example

This example uses the user selection of West or North in a separate Region field to
update icons available in the City field dynamically.

if('West'==regionChoice)
var cityOptionNames =["New York","Rio De Janeiro", "Mexico City"]
var cityOptionValues =["West 01", "West 02","West 03"];
if('North'==regionChoice)
var cityOptionNames =["Madrid", "Moscow", "Copenhagen"]
var cityOptionValues =["North 04", "North 05","North 06"];
ca_pam_addValuesInSelectStore('Forml.City"',
ca_pam_createSelectStore(cityOptionNames ,cityOptionValues))

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder. The function can be found in the
following forms:

m 04 Populate Dropdown Dataset: Populate Dropdown Dataset.

m 06 Populate Dropdown DB: Populate Dropdown from DB.

298 Content Designer Guide

The Form Designer

ca_pam_clearSelectStore(_id)

Clears all options from the Select field.
Input Parameters
_id (string)
Specifies the unique identifier of the Select field to clear.
Return Value
None.
Example

This example clears all of the existing options in the City field on Form1. This can be
used to reinitialize the select field and populate fresh options using the
ca_pam_addValuesInSelectStore().

ca_pam_clearSelectStore(Forml.City)

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 06 Populate Dropdown DB:
Populate Dropdown from DB.

Chapter 7: Forms 299

The Form Designer

ca_pam_createSelectStore(nameArray, valueArray)

Used to create a set of options for a Select field.

Input Parameters

nameArray (array)

Defines an array of options names that are displayed to the user.

valueArray (array)

Optionally defines an array of option values which corresponds to each item in
the nameArray. If omitted, nameArray is used to define both names and values.

Return Value

JavaScript object that represents store options and their values.

Example

This example sets the available options for the City field to the specified names and
associated values.

var cityOptionNames = ["Los Angeles", "New York", "New Carolina"];
var cityOptionValues = ["LA","NY","NC"];

var newStore = ca pam createSelectStore(cityOptionNames
,cityOptionValues)

Now the newStore variable can be passed to a Select Form element using the
following method:

ca_pam_addValuesInSelectStore(‘Form.City’,newStore);

300 Content Designer Guide

The Form Designer

ca_pam_createSelectStoreFromSQLResult(resultFromSQLQuery, nameColumniD,
valueColumnlID)
Creates a set of options for a Select field directly from the result of an SQL query.
Input Parameters
resultFromSQLQuery (object)
Defines the data retrieved by a SQL statement.
nameColumnliD (array)

Defines the name of the column in the SQL result that is used as names in the
Select field.

valueColumniD (array)

Optionally defines the name of the column in the SQL result that is used as
values in the Select field. If omitted, the column that is defined by
nameColumnlD is used for both names and values.

Return Value
The array that the function builds is returned.
Example

This example uses the result of a query of an external data source to set the options
for the City field. The query runs when the user selects an option from the Region
field.

ca_pam_addValuesInSelectStore('Forml.City',ca pam_createSelectS
toreFromSQLResult(result, 'txtRegion'));

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 06 Populate Dropdown DB:
Populate Dropdown from DB.

Chapter 7: Forms 301

The Form Designer

Text Field
ca_pam_getTextFieldvalue(_id)

Returns a value from a Text field.
Input Parameters
_id (string)
Specifies the unique identifier of a Text field.
Return Value
Value from the Text field (string).
Example
This example returns the value of the top_vendors Text field.
ca_pam_getTextFieldValue('Form.top vendors')

This example returns the value of the top_vendors Text field and sets the
dynamic_field Text field to the returned value.

ca_pam_setTextFieldValue('Form.dynamic field',
ca_pam_getTextFieldValue('Form.top vendors'))

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folders, then:
m 07 Populate Table RESTful WS: Populate Table RESTful WS.
m 08 Populate Table SOAP WS: Populate Table SOAP WS.

302 Content Designer Guide

The Form Designer

ca_pam_setTextFieldvalue(_id, val)

Sets the value of a Text field.
Input Parameters
_id (string)
Specifies the unique identifier of the field for which to set a specific value.
val (string)
Defines the new value for the Text field.
Return Value
None.
Example
This example sets the top_vendors Text field to "l vote for vendor 3 because:"

ca_pam_setTextFieldValue('Form.top vendors', 'I vote for vendor 3
because: ')

To continue this example, use ca_pam_getTextFieldValue('Form.top_vendors') after
users enter their reasons to submit their full statements.

ca_pam_setTextFieldValue('Form.dynamic field',
ca_pam_getTextFieldValue('Form.top vendors'))

This example returns the value of the top_vendors field and sets the dynamic_field
to that value.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 08 Populate Table SOAP
WS: Populate Table SOAP WS.

Chapter 7: Forms 303

The Form Designer

Text Area
ca_pam_getTextFieldvalue(_id)

Returns a value from a Text field.
Input Parameters
_id (string)
Specifies the unique identifier of a Text field.
Return Value
Value from the Text field (string).
Example
This example returns the value of the top_vendors Text field.
ca_pam_getTextFieldValue('Form.top vendors')

This example returns the value of the top_vendors Text field and sets the
dynamic_field Text field to the returned value.

ca_pam_setTextFieldValue('Form.dynamic field',
ca_pam_getTextFieldValue('Form.top vendors'))

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folders, then:
m 07 Populate Table RESTful WS: Populate Table RESTful WS.
m 08 Populate Table SOAP WS: Populate Table SOAP WS.

304 Content Designer Guide

The Form Designer

ca_pam_setTextFieldvalue(_id, val)

Sets the value of a Text field.
Input Parameters
_id (string)
Specifies the unique identifier of the field for which to set a specific value.
val (string)
Defines the new value for the Text field.
Return Value
None.
Example
This example sets the top_vendors Text field to "l vote for vendor 3 because:"

ca_pam_setTextFieldValue('Form.top vendors', 'I vote for vendor 3
because: ')

To continue this example, use ca_pam_getTextFieldValue('Form.top_vendors') after
users enter their reasons to submit their full statements.

ca_pam_setTextFieldValue('Form.dynamic field',
ca_pam_getTextFieldValue('Form.top vendors'))

This example returns the value of the top_vendors field and sets the dynamic_field
to that value.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 08 Populate Table SOAP
WS: Populate Table SOAP WS.

Chapter 7: Forms 305

The Form Designer

Multi-Line Text
ca_pam_getTextFieldvalue(_id)

Returns a value from a Text field.
Input Parameters
_id (string)
Specifies the unique identifier of a Text field.
Return Value
Value from the Text field (string).
Example
This example returns the value of the top_vendors Text field.
ca_pam_getTextFieldValue('Form.top vendors')

This example returns the value of the top_vendors Text field and sets the
dynamic_field Text field to the returned value.

ca_pam_setTextFieldValue('Form.dynamic field',
ca_pam_getTextFieldValue('Form.top vendors'))

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folders, then:
m 07 Populate Table RESTful WS: Populate Table RESTful WS.
m 08 Populate Table SOAP WS: Populate Table SOAP WS.

306 Content Designer Guide

The Form Designer

ca_pam_setTextFieldvalue(_id, val)

Sets the value of a Text field.
Input Parameters
_id (string)
Specifies the unique identifier of the field for which to set a specific value.
val (string)
Defines the new value for the Text field.
Return Value
None.
Example
This example sets the top_vendors Text field to "l vote for vendor 3 because:"

ca_pam_setTextFieldValue('Form.top vendors', 'I vote for vendor 3
because: ')

To continue this example, use ca_pam_getTextFieldValue('Form.top_vendors') after
users enter their reasons to submit their full statements.

ca_pam_setTextFieldValue('Form.dynamic field',
ca_pam_getTextFieldValue('Form.top vendors'))

This example returns the value of the top_vendors field and sets the dynamic_field
to that value.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 08 Populate Table SOAP
WS: Populate Table SOAP WS.

Chapter 7: Forms 307

The Form Designer

Table
ca_pam_clearTableData(_id, startindex, endIndex)

Deletes one or more rows of data from a table.
Input Parameters
_id (string)
Specifies the unique identifier of a Table form element.
startindex (integer)
Specifies the numeric index of the first row of table data to delete.
endIndex (integer)
Specifies the numeric index of the last row of table data to delete.
Return Value
None.
Example

ca_pam_clearTableData('Form.employeelList',0,ca pam_getTableRowC
ount('Form.employeelList')-1);

This example deletes all rows in the employeelist table.
m The range to delete begins with row 0 and ends with the last row.

m To calculate the last row, the ca_pam_clearTableData function gets the current
row count for the table from the ca_pam_getTableRowCount function and
subtracts 1.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then:
- 07 Populate Table RESTful WS: Populate Table RESTful WS.
— 08 Populate Table SOAP WS: Populate Table SOAP WS.

308 Content Designer Guide

The Form Designer

ca_pam_getTableData(_id, startindex, endIndex)

Returns the data of the table from the start index to the end index as provided in the
method name. This function returns an array of JavaScript objects where each element
in the array represents one row in the table. To retrieve the value for a particular
column, you can access the value using column Name property from the JavaScript
Object corresponding to the row.

Input Parameters
_id (string)
Specifies the unique identifier of a Table form element.
startindex (integer)

Specifies the numeric index of the first row of the table from which to return
data.

endindex (integer)

Specifies the numeric index of the last row of the table from which to return
data. If you specify an index greater than the last available row, the function
fails.

Return Value
Returns an array that is represented as a JavaScript object.

Important! After the method returns the table data, the variable names used to
access the columns must be in lowercase, regardless of how you define the Name
property for each column field in the Forms Designer.

Example

ca_fd.js.PassData(ca pam getTableData('Form.tableRaceResults',0
4))

This example uses the following form script to pass the top five finishing times in a
race from a Table form element to a custom database. The Record Race Times
check box onClick event initiates function calls to get the table data, pass the data,
and record the results.

{
PassData : function(result) {
for(i=0;i<result.length;i++)
{
var firstRow = result[il];
alert(firstRow.var 0);
}
}
}

Chapter 7: Forms 309

The Form Designer

The following illustration shows the form as it appears at design time.

i check In 3 4 MoveUp ¥ Move Down & Rename [Remove »
Form Preview Properties Versions Audit Trail
3 Form Elements Name - Value
4 5 Interaction Request Form Name var_0
= Page
4 [Page Layout CSS Class
4 [[] Page CheckBox Label
[+] Record Race Times I | Record Race Times Description
4 J Race Results: Race Results: Dizabled
[J Race Times: 5_.9 [Hidden
Style
Race Times: Tab Index
0 14:56 =
_id Form.Var_0
1 15:37
onBlur
2 15:39 i
3|15:52 onClick ca_fd.js.PassData(ca_pam_getTableData('Form.tableRaceRes
Fi
4 16:12 onrocus
onMouseDown
Page 1 of1 <
onMouseMove

P L

0
o
o

ca_pam_getTableRowCount(_id)

Returns the total number of rows of data from a table.
Input Parameters
_id (string)
Specifies the unique identifier of a Table Form element.
Return Value
Returns a number of rows as an integer.
Example
ca_pam_getTableRowCount('Form.employeelist")
This example returns the row count of the employee list Table Form element.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folders, then:
m 07 Populate Table RESTful WS: Populate Table RESTful WS.
m 08 Populate Table SOAP WS: Populate Table SOAP WS.

310 Content Designer Guide

The Form Designer

ca_pam_setTableData(_id, values)

Sets the data in a table.
Input Parameters
_id (string)
Specifies the unique identifier of a Table Form element.
values (object)

Specifies the data to display in the rows and columns of the table. This
parameter only accepts the result of the SQL query.

Return Value
None.
Example
ca_pam_setTableData('Form.employeelList', result);

This example sets the employeelist table to the values that the result variable
returns.

Chapter 7: Forms 311

The Form Designer

ca_pam_setTableDataFromJSObject(_id, values)

Populates a table with the JavaScript object array.
Input Parameters
_id (string)
Specifies the table ID.
values (object)

Specifies the JavaScript array containing a list of objects. The objects properties
must be same as the column name to populate the data.

Return Value
None.
Example

This example shows how to populate a table from a JavaScript object array. The
table ID is Form.name and has two columns as firstName and lastName.

var tableData = new Array();
var datal = new Object();
datal.firstName = "firstNamel";
datal.lastName = "lastNamel";
tableData[0] = datal;

var data2 = new Object();

data2.firstName = "firstName2";

data2.lastName = "lastName2";

tableData[l] = data2;
ca_pam_setTableDataFromJSObject('Form.names', tableData);

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folders, then:
m 07 Populate Table RESTful WS: Populate Table RESTful WS.
m 08 Populate Table SOAP WS: Populate Table SOAP WS.

312 Content Designer Guide

The Form Designer

Simple Array
ca_pam_clearTableData(_id, startindex, endIndex)

Deletes one or more rows of data from a table.
Input Parameters
_id (string)
Specifies the unique identifier of a Table form element.
startindex (integer)
Specifies the numeric index of the first row of table data to delete.
endIndex (integer)
Specifies the numeric index of the last row of table data to delete.
Return Value
None.
Example

ca_pam_clearTableData('Form.employeelList',0,ca pam_getTableRowC
ount('Form.employeelList')-1);

This example deletes all rows in the employeelist table.
m The range to delete begins with row 0 and ends with the last row.

m To calculate the last row, the ca_pam_clearTableData function gets the current
row count for the table from the ca_pam_getTableRowCount function and
subtracts 1.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then:
- 07 Populate Table RESTful WS: Populate Table RESTful WS.
— 08 Populate Table SOAP WS: Populate Table SOAP WS.

Chapter 7: Forms 313

The Form Designer

ca_pam_getTableData(_id, startindex, endIndex)

Returns the data of the table from the start index to the end index as provided in the
method name. This function returns an array of JavaScript objects where each element
in the array represents one row in the table. To retrieve the value for a particular
column, you can access the value using column Name property from the JavaScript
Object corresponding to the row.

Input Parameters
_id (string)
Specifies the unique identifier of a Table form element.
startindex (integer)

Specifies the numeric index of the first row of the table from which to return
data.

endindex (integer)

Specifies the numeric index of the last row of the table from which to return
data. If you specify an index greater than the last available row, the function
fails.

Return Value
Returns an array that is represented as a JavaScript object.

Important! After the method returns the table data, the variable names used to
access the columns must be in lowercase, regardless of how you define the Name
property for each column field in the Forms Designer.

Example

ca_fd.js.PassData(ca pam getTableData('Form.tableRaceResults',0
4))

This example uses the following form script to pass the top five finishing times in a
race from a Table form element to a custom database. The Record Race Times
check box onClick event initiates function calls to get the table data, pass the data,
and record the results.

{
PassData : function(result) {
for(i=0;i<result.length;i++)
{
var firstRow = result[il];
alert(firstRow.var 0);
}
}
}

314 Content Designer Guide

The Form Designer

The following illustration shows the form as it appears at design time.

i check In 3 4 MoveUp ¥ Move Down & Rename [Remove »
Form Preview Properties Versions Audit Trail
3 Form Elements Name - Value
4 5 Interaction Request Form Name var_0
= Page
4 [Page Layout CSS Class
4 [[] Page CheckBox Label
[+] Record Race Times I | Record Race Times Description
4 J Race Results: Race Results: Dizabled
[J Race Times: 5_.9 [Hidden
Style
Race Times: Tab Index
0 14:56 =
_id Form.Var_0
1 15:37
onBlur
2 15:39 i
3|15:52 onClick ca_fd.js.PassData(ca_pam_getTableData('Form.tableRaceRes
Fi
4 16:12 onrocus
onMouseDown
Page 1 of1 <
onMouseMove

P L

0
o
o

ca_pam_getTableRowCount(_id)

Returns the total number of rows of data from a table.
Input Parameters
_id (string)
Specifies the unique identifier of a Table Form element.
Return Value
Returns a number of rows as an integer.
Example
ca_pam_getTableRowCount('Form.employeelist")
This example returns the row count of the employee list Table Form element.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folders, then:
m 07 Populate Table RESTful WS: Populate Table RESTful WS.
m 08 Populate Table SOAP WS: Populate Table SOAP WS.

Chapter 7: Forms 315

The Form Designer

ca_pam_setTableData(_id, values)

Sets the data in a table.
Input Parameters
_id (string)
Specifies the unique identifier of a Table Form element.
values (object)

Specifies the data to display in the rows and columns of the table. This
parameter only accepts the result of the SQL query.

Return Value
None.
Example
ca_pam_setTableData('Form.employeelList', result);

This example sets the employeelist table to the values that the result variable
returns.

316 Content Designer Guide

The Form Designer

ca_pam_setTableDataFromJSObject(_id, values)

Populates a table with the JavaScript object array.

Input Pa

rameters

_id (string)

Specifies the table ID.

values (object)

Specifies the JavaScript array containing a list of objects. The objects properties
must be same as the column name to populate the data.

Return Value

Non
Example

This

e.

example shows how to populate a table from a JavaScript object array. The

table ID is Form.name and has two columns as firstName and lastName.

var
var

tableData = new Array();
datal = new Object();

datal.firstName = "firstNamel";
datal.lastName = "lastNamel";
tableData[0] = datal;

var

data2 = new Object();

data2.firstName = "firstName2";

data2.lastName = "lastName2";

tableData[l] = data2;
ca_pam_setTableDataFromJSObject('Form.names', tableData);

You can also find this function in the out-of-the-box content in CA Process
Automation.

1.
2.

On the Home page, click Browse Out-of-the-Box Content.
Navigate to the User Interaction Forms folders, then:

m 07 Populate Table RESTful WS: Populate Table RESTful WS.
m 08 Populate Table SOAP WS: Populate Table SOAP WS.

Chapter 7: Forms 317

The Form Designer

Object Reference
ca_pam_getTextFieldvalue(_id)

Returns a value from a Text field.
Input Parameters
_id (string)
Specifies the unique identifier of a Text field.
Return Value
Value from the Text field (string).
Example
This example returns the value of the top_vendors Text field.
ca_pam_getTextFieldValue('Form.top vendors')

This example returns the value of the top_vendors Text field and sets the
dynamic_field Text field to the returned value.

ca_pam_setTextFieldValue('Form.dynamic field',
ca_pam_getTextFieldValue('Form.top vendors'))

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folders, then:
m 07 Populate Table RESTful WS: Populate Table RESTful WS.
m 08 Populate Table SOAP WS: Populate Table SOAP WS.

318 Content Designer Guide

The Form Designer

ca_pam_setTextFieldvalue(_id, val)

Sets the value of a Text field.
Input Parameters
_id (string)
Specifies the unique identifier of the field for which to set a specific value.
val (string)
Defines the new value for the Text field.
Return Value
None.
Example
This example sets the top_vendors Text field to "l vote for vendor 3 because:"

ca_pam_setTextFieldValue('Form.top vendors', 'I vote for vendor 3
because: ')

To continue this example, use ca_pam_getTextFieldValue('Form.top_vendors') after
users enter their reasons to submit their full statements.

ca_pam_setTextFieldValue('Form.dynamic field',
ca_pam_getTextFieldValue('Form.top vendors'))

This example returns the value of the top_vendors field and sets the dynamic_field
to that value.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 08 Populate Table SOAP
WS: Populate Table SOAP WS.

Data Sources
ca_pam_getDatasetData(dataSetExpression,callBack)

Retrieves the value of a variable from a CA Process Automation dataset.

Note: In CA Process Automation releases before 04.1.00, this method was named
ca_pam_getDataFromDatasetQuery.

Chapter 7: Forms 319

The Form Designer

Input Parameters

datasetExpression (string)

Defines a string, expression, or function call that results in an absolute path to a
dataset. This parameter includes the Datasets keyword, the library path to a
dataset object, and the ValueMap array variable name.

Datasets["/BR412-DATA-FOLDER-20111214/Folder FORMS 20120328
/dataset forms_demo/My Dataset55"].MyVal

callBack (object)

Defines a reference to the function object to call after retrieving the data,
including its onSuccess and onFailure methods.

Return Value

Example

When the function retrieves the data, either the onSuccess(result) or
onFailure(caught) callBack function runs. The function itself does not return any
value.

ca_pam_getDatasetData(ca pam getTextFieldValue('Form.TxtFieldWi
thDatasetPath'),callBack)

The example code contains the following information:

The TxtFieldWithDatasetPath Text field stores the dataset expression.
The getTextFieldValue function gets the value of the dataset expression.

The getDataUsingDatasetExpression function gets the dataset values and calls
the callBack function to determine what happens next.

To continue with this example, you can use the following functions in the
callBack.onSuccess declaration to apply the data to a table or Lookup field,
respectively:

ca_pam_setTableData('Form.employeelList', result);
ca_pam_showDataInTable(result, 'Form.Results', 'Dataset
results');

ca_pam_getSQLData(driverName,connectionURL,userName,password,query,callBack)

Directs SQL to retrieve data from an external data source and store that data in a
variable (named callBack) that you define.

Note: In CA Process Automation releases before 04.1.00, this method was named
ca_pam_getDataFromSQLQuery.

320 Content Designer Guide

The Form Designer

Input Parameters
driverName (string)

Defines the class name for the installed SQL driver that you are using (for
example, com.mysql.jdbc.driver).

connectionURL (string)

Defines the URL of the database application to query as in the following
example:

jdbc:mysql://myPC-xp.myCompany.com:CA Portal/<path> or
https://<server>:CA Portal/

userName (string)

Defines a user name or login credentials for a predefined user account with
sufficient permissions to run the query.

password (string)
Defines the password that is associated with the specified user name.
query (string)

Defines a specific SQL query statement or a reference to an SQL query
statement. The following code represents a sample SQL query:

"select * from employeedatatable where empName like
'%"+ca_pam_getTextFieldValue('Form.empName')+"%'";

callBack (object)

Defines a reference to the function object to call after retrieving the data,
including its onSuccess and onFailure methods.

Return Value

When the function retrieves the data, either the onSuccess(result) or
onFailure(caught) callBack function runs. The function itself does not return any
value.

Example

ca_pam_getSQLData(ca fd.js.driverName
(),ca fd.js.connectionURL(),ca fd.js.userName(),ca fd.js.passwo
rd(),ca fd.js.queryEmployeeName(),callBack);

This example queries an external data source and stores the resulting data in the
callBack variable.

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 06 Populate Dropdown DB:
Populate Dropdown from DB.

Chapter 7: Forms 321

The Form Designer

JSON Parsing

ca_pam_convertJSONToJSObject(jsonString)

Use this method to create a JavaScript object from a JSON string. The
ca_pam_convert]SONToJSObject method supports quotation marks notation. Quotation
marks notation is an alternate way to access any property from a JavaScript object when
the property name is not a valid JavaScript identifier. For example, to access the id
property from the book object, quotation marks notation syntax is book[“id”].

Input Parameters
jsonString (string)
Defines the JSON string to convert to a JavaScript object.
Return Value
Returns the JavaScript object.
Example

The example shows a JSON string:

{"menu": {
"id": "file",
"value": "File",
"popup”: {
"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}
1
}
1}

The following sample script accesses the id field value:

var parsedJSON = ca_pam_convertJSONToJSObject(jsonString);
var menuObj = parsedJSON.menu.;
var idValue = menuObj.id.;

The following sample script accesses the onclick element in the second element of
the menuitem array:

var parsedJSON = ca pam_convertJSONToJSObject(jsonString);
var menuObj = parsed]SON.menu;

var popUpObj = menuObj .popup;

var menultemArray = popUpObj .menuitem.;

var secondElementOfMenultemArray = menultemArray[1l];

var onclickElement = secondElementOfMenultemArray.onclick;

322 Content Designer Guide

The Form Designer

You can also find this function in the out-of-the-box content in CA Process
Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.
2. Navigate to the User Interaction Forms folder, then 07 Populate Table RESTful
WS: Populate Table RESTful WS.
REST Methods
ca_pam_getRESTData(url, doNotValidateCert, headers, callBack)

Uses the HTTP get method to start the REST service. You can use this method with the
following signatures:

ca_pam_getRESTData(url, callBack);

ca_pam_getRESTData(url, doNotValidateCert, callBack);
Input Parameters
url (string)
Defines the URL of the HTTP request. The URL starts with http:// or https://.
doNotValidateCert (boolean)

Specifies whether a valid SSL certificate is found. This field is relevant when
querying an HTTPS URL.

m false - Validates the SSL certificate and fails the operation if the certificate
is invalid.

m true - Accepts the SSL certificate even if it is invalid and continues to make
the HTTP call.

headers (object)
Defines a list of key/value pairs that sets headers in the request.
callBack (object)

Defines a reference to the function object to call after retrieving the data,
including its onSuccess and onFailure methods.

Return Value

When the function retrieves the data, either the onSuccess(result) or
onFailure(caught) callBack function runs. The function itself does not return any
value.

Example
You can find this function in the out-of-the-box content in CA Process Automation.
1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 07 Populate Table RESTful
WS: Populate Table RESTful WS.

Chapter 7: Forms 323

The Form Designer

ca_pam_getRESTDataAuth(url, userName, password, doNotValidateCert, headers, callBack)

Starts the REST service at a specified URL that requires authentication. This method
supports only Basic HTTP authentication. You can use this method with the following
signatures:

ca_pam_getRESTDataAuth (url, userName, password, callBack)

ca_pam_getRESTDataAuth (url, userName, password, doNotValidateCert,
callBack)

Input Parameters

url (string)

Defines the URL of the HTTP request. The URL starts with http:// or https://.
username (string)

Defines the user name for which to authenticate the specified URL.
password (string)

Defines the password associated with the specified user name.
doNotValidateCert (boolean)

Specifies whether a valid SSL certificate is found. This field is relevant when
querying an HTTPS URL.

m false - Validates the SSL certificate and fails the operation if the certificate
is invalid.

m true - Accepts the SSL certificate even if it is invalid and continues to make
the HTTP call.

headers (object)
Defines a list of key/value pairs that sets headers in the request.
callBack (object)

Defines a reference to the function object to call after retrieving the data,
including its onSuccess and onFailure methods.

Return Value

When the function retrieves the data, either the onSuccess(result) or
onFailure(caught) callBack function runs. The function itself does not return any
value.

324 Content Designer Guide

The Form Designer

ca_pam_postRESTData(url, body, contentType, doNotValidateCert, headers, callBack)

Uses the HTTP post method to start the REST service. You can use this method with the
following signatures:

ca_pam_postRESTData (url, callBack)

ca_pam_postRESTData (url, body, callBack)

ca_pam_postRESTData (url, body, contentType, callBack)

ca_pam _postRESTData (url, body, contentType, doNotValidateCert,
callBack)

Input Parameters
url (string)
Defines the URL of the HTTP request. The URL starts with http:// or https://.
body (string)
Defines the data to send in the HTTP request.
contentType (string)

Defines the type of content that comprises the HTTP request body. This value is
sent as a header (content-type) in the HTTP request.

doNotValidateCert (boolean)

Specifies whether a valid SSL certificate is found. This field is relevant when
querying an HTTPS URL.

m false - Validates the SSL certificate and fails the operation if the certificate
is invalid.

m true - Accepts the SSL certificate even if it is invalid and continues to make
the HTTP call.

headers (object)
Defines a list of key/value pairs that sets headers in the request.
callBack (object)

Defines a reference to the function object to call after retrieving the data,
including its onSuccess and onFailure methods.

Return Value

When the function retrieves the data, either the onSuccess(result) or
onFailure(caught) callBack function runs. The function itself does not return any
value.

Chapter 7: Forms 325

The Form Designer

ca_pam_postRESTDataAuth(url, userName, password, body, contentType, doNotValidateCert,
headers, callBack)

Starts the REST service at a specified URL that requires authentication. The server calls
the REST Methods asynchronously.

The onSuccess(result) or the onFailure(caught) function of the callback object runs as
appropriate after the data is retrieved from the server. The result can be any data
format that the REST service returns. The method supports only Basic HTTP
authentication. You can use this method with the following signatures:
ca_pam_postRESTDataAuth(url, userName, password, callBack)
ca_pam_postRESTDataAuth(url, userName, password, body, callBack)
ca_pam_postRESTDataAuth(url, userName, password, body, contentType,
callBack)

ca_pam_postRESTDataAuth(url, userName, password, body, contentType,
doNotValidateCert, callBack)

Input Parameters
url (string)
Defines the URL of the HTTP request. The URL starts with http:// or https://.
username (string)
Defines the user name for which to authenticate the specified URL.
password (string)
Defines the password that is associated with the specified user name.
body (string)
Defines the data to send in the HTTP request.
contentType (string)

Defines the type of content that comprises the HTTP request body. This value is
sent as a header (content-type) in the HTTP request.

doNotValidateCert (boolean)

Specifies whether a valid SSL certificate is found. This field is relevant when
querying an HTTPS URL.

m false - Validates the SSL certificate and fails the operation if the certificate
is invalid.

m true - Accepts the SSL certificate even if it is invalid and continues to make
the HTTP call.

headers (object)
Defines a list of key/value pairs that sets headers in the request.

callBack (object)

326 Content Designer Guide

The Form Designer

Defines a reference to the function object to call after retrieving the data,
including its onSuccess and onFailure methods.

Return Value

When the function retrieves the data, either the onSuccess(result) or
onFailure(caught) callBack function runs. The function itself does not return any
value.

Example
You can find this function in the out-of-the-box content in CA Process Automation.
1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 07 Populate Table RESTful
WS: Populate Table RESTful WS.

Example: REST POST Method

To retrieve all the start request forms in the CA Process Automation library, call the
PAM REST API contained in the CA Catalyst Container.

1. Create an interaction request form and design it as the following illustration shows:

E?] Check In Check Dut E‘Tg Copy paste 4 Move Up Move Ciown Rename M Delete
Farm Preview Froperties Versions Release Audit Trail
* B3 Form Elements Name « Yalue
4 (5 IRF_RestPOST Name War_1
Page -
4 (5| Page Layout Description
4 [Page Text Area Disabled
Text & < i xmlns: xsi="http:/Awww w3 .org o
[Text Area /2001/%MLSchema-instance” Hidden
] Text Field xsittype="pl:QueryStartRequestFormsRequsst’ o Hide Label
xmlns:pl="http://ns.ca.comy/2011/09/pam-ops" = [y
il |
Label

Text Field
|| Maxirnum Length

Minirnum Length

Password

Pattern

Pattern Message

Required

Style

Tab Index

Text Direction

_id Farm.War_1

onBlur ca_fd.js.populateDatalnTablel

Chapter 7: Forms 327

The Form Designer

2.
3.

Add the Keyword field to the interaction request form.

Add the following text in the Script section of the interaction request form:

{
sample : function()
{
var callBack = new Object();
callBack.onSuccess = function(result)

{
alert(result);
}
callBack.onFailure = function(caught)
{
alert(caught);
}

var headers = new Object();
var contentType="application/xml";
ca_pam_getDataFromRESTPostHTTPAuthentication('https://<hostName>:<PortNumber>
/node/rest/CA:00074:01/ ops/QueryStartRequests',useName
password,<requestBody>, contentType, true, headers, callBack) ;

}

}
The Request body is as follows:

<QueryStartRequestFormsRequest
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="pl:QueryStartRequestFormsRequest"
xmlns:pl="http://ns.ca.com/2011/09/pam-ops" >
<Filter>
<LookUpPath>/</LookUpPath>
<IsRecursive>true</IsRecursive>
</Filter>
</QueryStartRequestFormsRequest>

Provide the ca_fd.js.sample() value in the Keyword field onBlur event.
Click Save.

The script runs according to the Keyword field onBlur event. The start request form
is retrieved according to the specified query body and the REST request made.

328 Content Designer Guide

The Form Designer

SOAP Methods

ca_pam_getSOAPData(serviceURL, methodName, inlineText, soapVersion,
stripXMLNamespacesFromResponse, callBack)

Makes a Web service call and converts the resulting XML into a JavaScript object.

This method is an overloaded method. ca_pam_getSOAPData can be invoked without
providing the SOAP version and/or stripXMLNamespacesFromResponse parameter. If
you do not provide these parameters, then the SOAP version is considered SOAP_1 1,
and stripXMLNamespacesFromResponse is considered true.

The following are the overloaded method signatures:

m ca_pam_getSOAPData (serviceURL,methodName, inlineText,callBack)

m ca_pam_getSOAPData (serviceURL,methodName, inlineText,soapVersion, callBack)
Input Parameters

serviceURL (string)

Specifies the URL for the SOAP service. The URL is typically accessed over HTTP
or HTTPS. The URL is an entry point for one or more methods.

methodName (string)

Specifies the method or function to run. The function passes the method to the
SOAP service as a MIME SOAPAction header.

inlineText (string)

Specifies the source for the SOAP service input request. This parameter
includes an XML message, which can include a SOAP envelope.

soapVersion (string)

Specifies the version of the SOAP server on which the call is made. Possible
values include SOAP_1_1 or SOAP_1_2. The default is SOAP _1 1.

stripXMLNamespacesFromResponse (boolean)

Specifies whether the response Name Spaces are removed from the XML
response (true). The default is true.

callBack (object)

Defines a reference to the function object to call after retrieving the data,
including its onSuccess and onFailure methods.

The ca_pam_getSOAPData function calls the callBack method asynchronously
on the server. When the function retrieves the data, either the
onSuccess(result) or onFailure(caught) callBack function runs. If the function
returns a SOAP fault, it calls the onFault(faultString) method and the result is an
XML string.

Chapter 7: Forms 329

The Form Designer

If you do not provide the SOAP version and
stripXMLNameSpacesFromResponse parameters, their default values are
substituted and the response is returned to the callBack object in the
onSuccess(result).

Return Value

When the function retrieves the data, either the onSuccess(result) or
onFailure(caught) callBack function runs. If the function returns a SOAP fault, it calls
the onFault(faultString) method and the result is an XML string. The function itself
does not return any value.

Note: You can find this function in the out-of-the-box content in CA Process
Automation.
1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 08 Populate Table SOAP WS:
Populate Table SOAP WS.
Example: SOAP Method

330 Content Designer Guide

The Form Designer

I Save@ Check In Checl

“orm Preview

ES Form Elements
5 SoapMethod_1
4 (5 Page Layout
4 E Page
[Soap Service
[Soap Action
4 =] soap version
% Soap 1.1
@ Soap 1.2
[l soap Data
[#] Check Box
[|:| Start Request Forms

This example uses the CA Process Automation getStartRequestForms web service
method to populate a table with all Start Request Forms in the Library . The
getStartRequestForms web service method returns all the start request forms to a

specified folder.

Note: This method uses the ca_pam_convertXMLToJSObject(xmlString,
elementTagName) method (described later in this section) to create a JavaScript object

from XML.

1. Create an interaction request form and design it as the following illustration shows:

Dt Q@ Copy Paste 4 Move Up g Mave Down Renarme X Delete =

Froperties Wersions Audit Trail

Page
Soap Service

https:/fkomsa03-i40135: 5644 3/itpam/soap
Soap Action

getStartRequestForms
Soap ¥Yersion

Soap 1.1 o]

Soap Data

<tns:getStartRequestForms xmlns:tns="http:fwww.ca.com/itpam” > |}

<ins:iauth>

< l--xsd: Choice Type--=
<tns:token=token_ </tnsitoken=
T e i

!:‘ Check Box
Start Request Forms
Name Reference Path
Page 1 of 1 & Mo data to display

Name « ¥Yalue
Name Var_0
CheckBox Label Check Box
Description

Disabled

Hidden

Style

Tab Index

_id Farm.\War_0O
onBlur

onilick ca_fd.js.populateDatalnTable)
onFocus

onMouseDown

onMouseMove

onMouseCut

onMouselver

onMaousellp

Chapter 7: Forms 331

The Form Designer

2. Add the following fields to the interaction request form:

soapService

Set this field to the following URL:

http://hostname: portNumber/itpam/soap
soapAction

Set this field to getStartRequestForms.
soapData

Populate this text area with the following code:

<tns:getStartRequestForms xmlns:tns="http://www.ca.com/itpam">
<tns:auth>
<!--xsd:Choice Type-->
<tns:token>token </tns:token>
<tns:user>pamadmin</tns:user>
<tns:password>pamadmin</tns:password>
</tns:auth>
<tns:filter>
<tns:lookUpPath isRecursive="true">/</tns:lookUpPath>
</tns:filter>
</tns:getStartRequestForms>

retrieveSRF

Set the onClick attribute of this check box to the
ca_fd.js.retreiveSRFAndPopulateTable() value.

3. Create a table named srfs.
4. Add name and refPath text fields as columns to the srfs table.

5. Add the following text in the Script section of the form:

{
retreiveSRFAndPopulateTable: function()
{
var callBack = new Object();
callBack.onSuccess = function(result)
{
var srfResult = ca pam convertXMLToJSObject
(result, 'startRequest');
var tableArray = new Array();
for(i=0;i<srfResult .length;i++)
{
var object = new Object();
object.name = srfResult [i]["name"];
object.refPath = srfResult [i]["refPath"];
tableArray[i] = object ;

332 Content Designer Guide

The Form Designer

ca_pam clearTableData('Form.srfs',0,ca pam getTableRowCount('Form.srfs')-1);
ca pam_setTableDataFromJSObject('Form.srfs',tableArray);
}
callBack.onFailure = function(caught)

{
alert(caught);

ca_pam_getSOAPData(ca pam getTextFieldValue('Form.soapService'),ca pam getTex
tFieldValue('Form.soapAction'),ca pam getTextFieldValue('Form.soapData'), 'SOA
P 1 1',true,callBack);

}
}

6. Click Save.

7. To have CA Process Automation verify that the srfs table is populated dynamically
with data, select the Check Box.

The script runs when the checkbox value is changed. The script populates the srfs table
dynamically with the start request forms returned by the SOAP call. The getSOAPData
method is used to make a SOAP query to retrieve the data and the
convertXMLTolJSObject is used to convert the response XML into a JavaScript object. The
JavaScript object can then be used to populate the table dynamically by using the
ca_pam_setTableDataFromJSObject method.

Chapter 7: Forms 333

The Form Designer

XML Parsing
ca_pam_convertXMLToJSObject(xmlIString, elementTagName)
Creates a JavaScript object from XML.
Note: If the XML element is namespace aware and has a namespace prefix, use quotes
notation to access it.
Input Parameters
xmlString (string)

Defines the XML string to convert to a JavaScript object.

elementTagName (string)

(Optional) Returns the element that has the specified tag name. If you do not
provide the elementTagName, the method returns the root element.

Return Value
Returns a value of Object type.

Example

Consider the following XML to convert it to a JavaScript object:

<?xml version="1.0"7>
<catalog>
<book id="bk1l01l">
<author>Gambardella, Matthew</author>
<title>XML Developer”s Guide</title>
<genre>Computer</genre>
<price>44.95</price>
<publish date>2000-10-01</publish date>
<description>An in-depth look at creating applications
with XML.</description>
</book>
</catalog>

This example converts the preceding XML data to a JavaScript object.

m The following syntax converts the XML document to a JavaScript object:
var parsedXML = ca_pam_convertXMLToJSObject(xmlString);

m You can use either of the following lines to access the book element:

var bookObj
var bookObj

parsedXML . book[0];
parsedXML [“book”]1[0];

m You can use either of the following lines to retrieve the id attribute value of the
book element:

var idVal = bookObj.id;
var idvVal = bookObj[“id"];

334 Content Designer Guide

The Form Designer

m You can use either of the following lines to access the description value of the
book element:

var bookDesription = bookObj. description[0]. text;
var bookDesription = bookObj[“description”][0][“ text”];

Note: If an element has an attribute and an element with the same name, access
them as an array. In the array, the first member (index 0) is always the attribute and
the elements follow.

Example

Consider the following XML to convert it to a JavaScript object:

<?xml version="1.0"?7>
<categories>
<category name="Weather">
<name part="1">Sunny</name>
<name part="2">Rainy</name>
</category>
<category name="Climate">
<name part="1">Wet</name>
<name part="2">Dry</name>
</category>
</categories>

This example converts the preceding XML data to a JavaScript object.

m Use the following syntax to retrieve the first category object from categories
XML represented as the xmlString:

var parsedXML= ca_pam_convertXMLToJSObject (xmlString);
var firstCatagory= parsedXML.category[0];

m Use the following syntax to access the name attribute:
var bookName = firstCatagory.name[0Q];
m Use the following syntax to access the value of first name element:

var firstBookName = firstCatagory.name[l]. text;

Chapter 7: Forms 335

The Form Designer

Example

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<Header/>
<Body>
<getStartRequestFormsResponse
xmlns="http://www.ca.com/itpam">
<startRequests>
<startRequest name="RahulSrf"
refPath="/Folder/">
<description/>
</startRequest>
<startRequest name="Start Request Form"
refPath="/RestSupport/">

<description/>
</startRequest>
</startRequests>
</getStartRequestFormsResponse>
</Body>
</Envelope>

This example shows the usage of the ca_pam_convertXMLToJSObject(xmlString,
elementTagName) method with the elementTagName parameter.

The following script retrieves all the <startRequest> elements from XML:

var srfResult =
ca_pam_convertXMLToJavaScriptObject(xmlString, 'startRequest');

srfResult is an array of all the startRequest elements.

336 Content Designer Guide

The Form Designer

Example

<?xml version="1.0"7>
<note text="abc">

< text>Tove</ text>
</note>

This example shows a scenario in which the XML has _text as an element or
attribute. In this case, the method creates an array with the name "_text".

m The first element of the array returns the text node in the element.

m The second element of the array returns the attribute node (with the name
" text") of the element.

m Other elements of the array return the child element nodes (with the name
" text") of the element.

The following script accesses the values:

var parsedXML= ca pam_convertXMLToJavaScriptObject(xmlString);
var textNode= parsedXML[" text"][0];

var attributeValue= parsedXML[" text"][1];

var childTextNodeValue= parsedXML[" text"][2][" text"];

The script has the following result:
textNode="";
(...as there is no scalar value with the node.)
attributeValue="abc";
childTextNodeValue="Tove"
You can also find this function in the out-of-the-box content in CA Process Automation.

1. Onthe Home page, click Browse Out-of-the-Box Content.

2. Navigate to the User Interaction Forms folder, then 08 Populate Table SOAP WS:
Populate Table SOAP WS.

Chapter 7: Forms 337

The Form Designer

Create a Simple Form with Basic Functions

In this example, you are developing a form for a company that operates in three primary
regions (California, Pennsylvania, and North Carolina). In each state, the company has a
primary and secondary office location that the name of the city identifies. The
stakeholders responsible for implementing company policy want the form to meet the
following business requirements:

m All business that originates in California must be routed by default to the Anaheim
office.

m All business that originates in Pennsylvania must be routed by default to the
Philadelphia office.

m All business that originates in North Carolina must be routed by default to the
Raleigh office.

m All business that originates in any other state must be routed by default to the
Pittsburgh office.

m The user has the option of specifying another state or city.

Example: A Basic Form

Follow these steps:
1. Click the Library tab.

2. Create an Interaction Request Form object or locate an existing one to use for this
sample procedure.

3. Double-click the form object.

The Interaction Request Form dialog, or Forms Designer, appears.
4. If the form object is not already checked out, click Check Out.
5. Inthe Form Elements pane, expand the following entries:

a. Form Elements

b. Your form (for example, Interaction_Request_Form_4)

o

Page Layout
d. Page

338 Content Designer Guide

The Form Designer

w ® N o

11.

12.

Click Page.
Click Rename in the toolbar
Enter the name Location: and click OK.

Drag a Select field from the Form pane to the Location page.

. Repeat Step 9.

Two Select fields appear under your Location page layout.
Complete the following actions in the Form pane:

a. Drag three Select Options to the first Select field.

b. Drag six Select Options to the second Select field.

Click each of the following form elements and then click Rename to rename each
object as indicated:

a. Rename the first Select field to State.
m Rename the first option to CA.
m Rename the second option to PA.
m Rename the third option to NC.
b. Rename the second Select field to City.
m Rename the first option to Anaheim.
m Rename the second option to Los Angeles.
m Rename the third option to Pittsburgh.
m Rename the fourth option to Philadelphia.
m Rename the fifth option to Charlotte.

m Rename the sixth option to Raleigh.

Chapter 7: Forms 339

The Form Designer

13. Click each of the following form elements and make the following property settings
in the Properties (Name and Value) pane.

a. For State:
m Set Name to State.
m Set the onChange event value to ca_fd.js.selectRegion().
m Set the value of the CA option to California.
m Set the value of the PA option to Pennsylvania.
m Set the value of the NC option to North Carolina.
b. For City:
m Set Name to City.

m Set the value property for each city option to the city name. For example,
set Anaheim to Anaheim, Los Angeles to Los Angeles, and so on.

14. In the Form Elements pane, click the name of your form and then click Script in the
toolbar.

The Script dialog opens.

15. Copy and paste the following code in the Script editor (see page 134):

{
selectRegion: function()
{
var selectedState = ca pam getSelectedOptionValues('Form.State')[0];
if(selectedState == 'North Carolina')
{
ca _pam_selectOption('Form.City', 'Raleigh', 'Raleigh', true);
}
else if(selectedState == 'California')
{
ca _pam_selectOption('Form.City', 'Anaheim', 'Anaheim', true);
}
else if(selectedState == 'Pennsylvania')
{
ca _pam selectOption('Form.City', 'Philadelphia‘', 'Philadelphia‘', true);
}
else
{
ca _pam_selectOption('Form.City', 'Pittsburgh', 'Pittsburgh', true);
}
}
}

16. Click Save. The Script dialog closes.

17. Click Save in the Forms Designer.

340 Content Designer Guide

The Form Designer

18. Click the Preview tab.

19. Confirm that your results are similar to the sample results and values in the
following illustration and table:

43 Check In 4 MoveUp 4 Move Down ¢# Rename [Remove »
Form Preview Properties Versions Audit Trail
ES Form Elements Name « Value
4 [Interaction_Request_Form_3 Hide Label -
Location:
4 5 Page Layout Label
4 [Location: State: Required
4 ﬁ State: CA - Style
® ca City: Tab Index
@ Pa Anaheim o Text Direction
@ ne _id Form.State
+ S city: onBlur
@ Anaheim Location: onChange ca_fd.js.celectRegion()
[Los Angeles cte: onClick |
[Pittsburgh . 1
- . Ny = onFocus
@ Philadelphia
City: onkKeyDown
[Charlotte
B Pittsburgh b onkeyPress
[, Raleigh
onKeylUp
onValidate -

State: Default City:
CA Anaheim

PA Philadelphia
NC Raleigh

Any other state. For example, NY. Pittsburgh

Chapter 7: Forms 341

Initialize Form Variables

Initialize Form Variables

After designing an interaction request form, you can set it to a specific Assign User Task
operator in a process. You can also add code to initialize form fields at runtime.

Follow these steps:

1.
2.

Click the Designer tab.
In the Process Designer, open a process or create one.

In the Operators palette Process Control group, drag an Assign User Task operator
to your process.

Double-click the Assign User Task operator to open its Properties palette.
In the Properties palette:
a. Expand User Task.

b. Inthe Interaction Request Form field, click the lookup button to browse for a
form. Click OK.

c. Click the Form Data Initialization Code field to expand it.

In the Form Data Initialization Code window, initialize any form variables. For the
following examples, myTextField is the _id of the form element that you want to
initialize.
m For simple data types, enter:

Form.myTextField="'welcome'.

m If the simple field is inside a ValueMap or field set, enter:

Form.value map= newValueMap();
Form.valuemap.myTextField="welcome";

m [f the simple field is inside a complex value map in a valueMap, enter:

Form.value map.value map nested= newValueMap();
Form.value map.value map nested.text field nested="test";

In the Form Data Initialization Code window, click OK.

342 Content Designer Guide

Chapter 8: Resources

A Resource object is a model that represents elements of your system architecture. Use
them to synchronize independent processes that rely on common infrastructure
elements and to quantify and control access to the specific IT entities. Include multiple
resources that represent related entities in a single Resource object.

Use Resource objects to:
m Balance the processing load across all processes running on a touchpoint.
m Synchronize the execution of processes that cannot execute in parallel.

® |Implement environment level locks that simultaneously enable or disable multiple
resources.

m Strategically manage processes and systems with common security rights.

You group resources because they are related to each other in some way. Examples
include shared databases, transmission links, simultaneous access to a limited number
of software licenses, concurrent processes on a touchpoint, numeric quotas, and other
resources. After measuring performance, you can allocate system resources to
processes required by mission critical tasks. You can limit the number of simultaneous
FTP connections used by CA Process Automation. You can use resources to start a
successor process only after an antecedent process has released a resource. Resources
can also be used to represent and control access to a particular IT environment entity
such as a log file that receives updates from multiple processes.

This section contains the following topics:

How Resources Work (see page 343)

Create a Resource Object (see page 345)

Edit a Resource Object (see page 346)

Monitor and Edit Resources (see page 348)

Add a Manage Resources Operator to a Process (see page 349)
Define Resource Actions (see page 350)

Check for and Respond to Unavailable Resources (see page 351)

How Resources Work

The Manage Resources operator is in the Process Control operator group. A process can
use the Manage Resources operator to take available units from a specified resource. If
all units of the specified resource are taken (in the same or different processes), the
Manage Resources operator delays processing along that branch until the resource has
free units.

Chapter 8: Resources 343

How Resources Work

The following design shows a process taking one unit from the process quota resource
before running an application. If there are available units in the process quota resource,
processing continues to Run Application 1. If there are no available resource units,
processing does not start until either units become available or the operator times out.
After the Run Application 1 operator ends, the resource unit is freed back to the process
quota resource, and processing continues with subsequent operators in the process.

Take 1 resource

4. [from process quota.

]

B lRun Application 1.
<

Free 1 resource
4 from process quota.

Resources let you define the number of units available and how many units are
consumed. A resource consists of a maximum number of units, the current value of
available units, and a flag indicating whether the resource is locked.

You can take the following actions with resources:

m Take a specified quantity of units of an available resource. Enter a higher value in
the Used field.

m Free a specified quantity of units of an available resource. Enter a lower value in the
Used field.

m Lock aresource

m Unlock a resource

A Manage Resources operator can consume or free any specified number of resources.
As a developer or administrator, you can use Manage Resources operators to tune the

load balancing on a particular touchpoint. You can also lock a resource to prevent
consumption of resource units by any other process.

344 Content Designer Guide

Create a Resource Object

The following constraints apply to resources:

The maximum number of units of any resource is an arbitrary value that you can
calibrate and fine-tune for your system requirements. The number of resources that
a process uses is also arbitrary. The maximum limit is 9,999; however, let
performance and architecture be your guide. Allocate resource units to processes
to best suit your implementation requirements.

The currently used value of resource units is always less than or equal to the
maximum value of the resource.

A resource-dependent process must wait until its specified number of units is
available.

Operators cannot consume units from a locked resource.

Operators cannot lock a resource that another process has locked.

Create a Resource Object

Create and define as many Resource objects as required in each orchestrator. The
Resource operator performs resource operations in a process. The Resource operator
uses the current versions of specified Resource objects. Any modifications made to the
Resource object in its current state are immediately available to the Resource operator
upon check-in.

Follow these steps:

1.
2.

Click the Library tab.

In the left pane, click a folder, and select New and then Resources.
A new resource appears.

Click the resource name and rename it to a more meaningful name.

Edit the Resource object.

Note: You can also create Resource objects dynamically using code.

Chapter 8: Resources 345

Edit a Resource Object

Edit a Resource Object

Edit a Resource object to manage individual resources within it. You can also manage
versions, view properties, and examine the object's history.

Add individual resource entries for applications, connections, or other instances you
want to control. This enables you to:

Set a maximum number of instances that can be run at any moment.
Track the number of instances or units running concurrently.

Track the number of available instances or free units that can be started at any
time.

Follow these steps:

1.
2.

Click the Library tab.

Double-click a Resource object.

The Resources dialog appears. The Resources tab opens by default.
Click Add to add an individual resource.

Review any of the values in the columns of the Resources tab. Click in the editable
cells to enter new values.

Name
Lists the names of individual resources in a Resource object.
Amount

Lists the total number of units assigned to a resource. A unit is an arbitrary
number that serves as a quota in a process.

Used
Indicates the number of assigned units.
Free

Indicates the number of unassigned units. Defined by the formula:
Free = Amount - Used

State

Specifies whether a resource is locked or unlocked. Click the lock icon in this
column to toggle the locked or unlocked state for a resource. You can also use
a Resource operator to lock a resource programmatically in a schedule or
process. Other Manage Resource operators cannot lock, unlock, take, or return
resource units for a locked resource until the lock is released. A lock allows a
process or schedule to monopolize a resource while it processes operators.

% Usage

346 Content Designer Guide

Edit a Resource Object

5.

Position your mouse over this visual indicator to view the numeric percentage
of the resource currently being utilized. Any remaining portion is free.

Description

Provides a description of the resource. The Description column allows you to
enter text that describes a resource.

Click Check In or Save and Close.

Notes:

In the Amount field, specify the quantity for the resource. Quotas for operators in
processes are drawn from this number. The quantity is an arbitrary value that is not
by itself related to units of any actual computer or system resource (such as CPU,
memory, or bandwidth). You can use it to apportion a resource to processes in
whatever manner that you require. There are no rules about the quantity of a
resource. You might specify an amount of 1, so only one instance of a CPU-intensive
operator can be run by any process at any given time.

Dataset variables can be used to set resource use, so usage can be fine-tuned on a
touchpoint without opening and configuring processes that consume a resource.
For example, if you set the amount to 100, you could change a usage variable from
10, to 20, to 50, or even to 100 to accommodate demands on a touchpoint.

The Used and Free columns show how many units of a resource are currently
consumed and available. You can enter a value in the Used field between 0 and the
total number of units shown in the Amount field. More commonly, a Resource
operator changes these settings programmatically in a process or schedule.

Chapter 8: Resources 347

Monitor and Edit Resources

Monitor and Edit Resources

You can monitor and edit the resources in a Resource object on the Operations page.
The Operations page allows you to modify the current version of a Resource object.
Your changes are automatically applied to any Manage Resource operators using the
Resource object.

Follow these steps:

1.
2.

Click the Operations tab.

In the Links pane:

a.

b.

Expand Process Watch or Resources.

Expand the list of folders or search for a specific process watch or resource
object.

Select a resource object.

The current version of the Resource object appears.

Select a resource and then make any of the following changes.

a.

In the toolbar, click Lock to lock the resource. Click Unlock to unlock a resource.
You can also click the lock icon in the State column to toggle this setting.

Click Clear to release any used resources and reset free resources to the
maximum amount available.

Click the Amount, Used, and Description fields to edit their values.
Click Refresh to view the latest system data.

Your changes are available to Manage Resource operators.

To add or edit resources in a Manage Resource operator in a Schedule:

Expand Links and click Active or Global Schedules.

In the list of schedules, double-click a schedule.

In a Manage Resources item of the schedule, click Properties.
Click the Specific tab.

Click Check Out.

Click Add, Edit, or Delete to configure the resources.

Click Check In or click Save and Close.

348 Content Designer Guide

Add a Manage Resources Operator to a Process

Add a Manage Resources Operator to a Process

After creating a resource object with one or more resources within it, add a Resource
operator to a process. For example, place one Resource operator before and another
one after other operators to balance load. The first Resource operator uses or takes
resources and the second operator frees or gives back units, making them available to
other waiting processes.

Follow these steps:

1. Open a process in the Process Designer.

2. Open the Process Control operator palette for your resource.

3. Dragand drop the Manage Resources operator to a location in the process.

4. Define the entry and exit links. The Manage Resources operator has four possible
exit links:

m Completed is processed when the operator succeeds. The Result variable is set
to 1 and the Reason variable is set to COMPLETED.

m Failed is processed when the Interpreter module is unable to complete the
operator successfully. The Result variable is set to -1 and the Reason variable is
set to FAILED.

m Timeout is processed if the resource operator is not completed within an
optional specified time-out interval. The Result variable is set to 1 and the
Reason variable is set to TIMEOUT.

m Custom Result is processed when execution settings determine the result. The
Result variable is set to 0 and the Reason variable is set to CUSTOM.

5. Double-click the Resource operator to configure options.

The Dataset and Resource Properties palettes appear.

Chapter 8: Resources 349

Define Resource Actions

Define Resource Actions

You can set the action you want each Manage Resources operator to take. Possible
actions include taking and freeing units or locking and unlocking resources.

Follow these steps:

1.
2.

In the Process Designer, double-click a Manage Resources operator.

In the Properties palette, click the Add button. You can create multiple actions for
multiple resources within one resource operator.

The Action Properties dialog appears.

In the Resources object field, specify the resource object that you want to use. You
can either enter the full path to the object in the automation library or click the
browse button to locate the object.

(Optional) Click Open to view or edit the resources in the object.
In the Resource name field, enter the name of the resource or an expression.

Note: Both the Resource Path and Resource Name fields accept expressions.
Enclose any literal strings between double quotation marks.

In the Action field, select the action that you want the resource to perform from the
drop-down list:

Take Units

Takes the number of resource units specified in the Amount field.
Free Units

Makes the number of resources specified in the Amount field available.
Lock Resource

Locks the resource so other resource operators cannot take resource units or
lock the resource. Actions can still free resource units that were taken before a
resource was locked, but the freed units will not be available until after the
resource is unlocked.

Unlock Resource
Unlocks a locked resource.
When taking or freeing resource units, specify a quantity in the Amount field.
Click Save and Close.
The new action is added to the Action list.

Notes: To remove an action from the Action list, click the action, and then click the
Delete button. To edit an existing action, click the action and then click the Edit
button. To view a selected action in a process that is not checked out, click the View
button.

350 Content Designer Guide

Check for and Respond to Unavailable Resources

The following graphic shows two examples.

iTake 1 resource
from process quot:

FEER

—

Run Applicat
o

B Free 1
B from pi
06

Manage_Resources_1 Properties

Resources

Action

Free 10 of "/BR412-DATA-FOLDER-20111214/20120313-RES
Lock "/BR412-DATA-FOLDER-20111214/20120228_FOLDER_

All resources must be available

Execute actions

Execution Settings
Simulation

Information

=4 % ¥

Add

Delete

Edit

Check for and Respond to Unavailable Resources

The following properties determine what resources are executed by the operator and
how it responds when resources are unavailable:

m Time-out field

m All resources must be available check box

m Execute actions check box

Specify a Time-Out Interval

Sometimes an action attempts to take more units of a resource than are available or
tries to lock an already locked resource. In these situations, set the Time-out interval to
determine how long the operator waits for resources to become available. After the
time-out interval expires, the operator checks one final time if the resource is available
before it times out. After a Resources operator times out, the process module processes
the time-out exit link on the operator.

Follow these steps:

1. Open aprocess.

2. Draga Manage Resources operator into the process.

3. Double-click the Manage Resources operator to view its properties.

Chapter 8: Resources 351

Check for and Respond to Unavailable Resources

In the Execution Settings palette, configure the options available in the Timeout
group.

No Timeout

When checked, the operator waits indefinitely until all resources including all
the actions listed under Actions can be executed and are available.

When clear, a Duration or Target Date timeout setting is applied.
Type

Select Duration or Target Date. The operator waits before timing out. For
example, to specify a time-out interval, select Duration and enter the number
of seconds. When you specify a time-out duration of 0 seconds, the operator
does not wait. If resources are unavailable, it immediately times out. The
operator succeeds only if resources are immediately available.

Duration/Target Date and Time

Specify the numeric quantity of seconds or a fixed date and time to serve as the
timeout period.

Action

Select Continue, Reset, Abort, or Abandon. If you choose Abort, the operator
processes the Failed exit link.

Save the process.

Specify Resource Availability and Action Settings

The following properties determine which resources the operator runs. They also
determine how the operator responds when resources are unavailable. Set the All
resources must be available check box to determine how CA Process Automation
handles resource availability. Set the Execute Actions option to determine how CA
Process Automation behaves with respect to resource availability and predefined
actions.

Follow these steps:

1.
2.

3.

Open a process.
Drag a Manage Resources operator into the process.

Double-click the Manage Resources operator to view its properties.

352 Content Designer Guide

Check for and Respond to Unavailable Resources

4. Setthe All resources must be available check box:
Checked

Specifies that all resources that the actions listed in the Action field require
must be available before any action is applied. The operator succeeds only if all
the resources become available within the Timeout setting constraints.

Clear

Allows the operator to complete only those actions for which resources are
available. The operator then succeeds if one or more of the listed actions is
successfully executed within the Timeout setting constraints.

5. Set the Execute Actions check box:
Checked
The operator runs all the actions, if it can.
Clear

The operator does not run any actions. If resources are available within the
Timeout constraints, the operator runs the Successful exit link without
performing any actions.

6. Save the process.

Note: These settings can be used with a resource that is set to enable or disable a whole
set of processes. Before they start their tasks, those processes check that there is no
lock on the resource by attempting to take a single resource unit from the resource.

Depending on the outcome of the test, some other mechanism can lock or unlock the
resource, such as:

m Schedule tasks (where enabling or disabling of the processes is based on time
constraints)

m Manually started tasks (using a Start Request Form)
m A process that an external monitoring application starts

m A process that monitors some internal or external condition in a loop

Check for Resource Availability without Executing Actions

Set the Execute Actions option to determine how CA Process Automation behaves with
respect to resource availability and predefined actions.

Chapter 8: Resources 353

Chapter 9: Calendars, Schedules, Tasks, and

Triggers

Calendars

In general, any process can be scheduled by a Run Process task in a Schedule object
according to valid dates defined in a Calendar object. A task in a schedule specifies a
selected operator to run on a specified touchpoint. Triggers allow external applications
to start a process.

This section describes calendars, schedules, tasks, and triggers.

This section contains the following topics:

Calendars (see page 355)
Schedules (see page 370)

Task Management (see page 378)
Administer Triggers (see page 381)

Calendars define rules for dates that are applied to tasks so that they run or do not run
when you expect. For example, you can create a Calendar object named
LastOpenDayofMonth and use it to schedule complete backups and monthly reports on
the last available day of each month.

After defining Calendar objects, use them in Schedule objects to determine when tasks
run. The scheduling of tasks or processes on certain days requires a Schedule object.
Schedules coordinate times for tasks or processes with the valid dates defined by a
calendar.

You can create multiple calendars and associate any single calendar with any number of
scheduled tasks. The separation of calendars from schedules allows you to define
common rules for dates that can be reused in many scheduling contexts. To change the
rules (for example, those representing closed days) for all the tasks that use (include or
exclude) a calendar, edit the calendar describing those dates. Schedules automatically
apply any changes you make to a calendar.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 355

Calendars

Create a Calendar Object

You can create a Calendar object in any folder in the Library Browser.

Follow these steps:

1.
2.
3.

Click the Library tab.

Click a folder.

In the toolbar, click New, select Object, and then choose Calendar.
A new Calendar object appears.

Click the Calendar name to rename it.

Double-click the calendar to edit it.

The Calendar Designer opens.

Define calendar rules that the application uses to build a calendar of included and
excluded dates. Choose one of the following:

m Click the Basic tab to define basic rules.

m Click the Advanced tab to define advanced rules.

356 Content Designer Guide

Calendars

The Basic Calendar Designer

The Calendar Designer opens when you edit a Calendar object. Use the Basic tab to
define rules that generate included dates. You can then exclude certain dates. Another
approach is to create a calendar specifically for excluded dates that you want to apply

and manage separately.

©)

@

L
@

B save @ checkin

Basic Advanced

Calendar Rule

Calendar rules to select repeating
dates or specic dates or manual
selection for the specified date range.

Repeat Daily

@ Help
Preview Properties
Repeat Weekly

9 Repeatevery 1
Week(s) of the month:

week(s)

First Second
© Repeat Weekly Third Fourth
Repeat Monthly Last
Repeat Annuall:
S L Days of the week
Manual selection | Sunday
Calendar Date Range V) Monday
V! Tuesday
Start Date: 3y, 03 2012 B | @ wednesday
End Date: pec, 31 2015 g | ¥ Thursday
V| Friday
- [¥] saturday
[7] Repeat Forever
B ssve @ checkn @ Help
Basic Advanced Preview Properties
Calendar Rule Repeat Monthly

Calendar rules to select repeating dates
or specific dates or manual selection for
the specfied date range.

Repeat Daily

Repeat Weekly
© Repeat Monthly

Repeat Annually

Manual selection
Calendar Date Range

Start Date:), 03 2012 e

End Date: pec, 31 2015 [

Repeat every month(s)
Day(s) of the Month

Every Day
@ Onthe Second ¥ Tuesday

Selected day(s) of the month

v

-

(3)

Versions Audit Trail

Summary

Repeat every 1 weeks on selected days
of the week.

Included Dates

To exclude 3 date from this rule,remove
the check from the box next to it.

v
) 3ul, 03 -
7} Jul, 04 —
3, 05
V) ul, 06
V! ul, 07
Jul, 09
1, 10
¥ 3, 11
] ul, 12

& 2012

jersions Audit Tradl

Summary

Repeat every 1 months on selected day.

Included Dates
To exclude a date from this rule,remove
the check from the box next to it.
8 2014 vie3
(%) san, 14 A
V] Feb, 11
[¥] Mar, 11
v| Apr, 08
[V May, 13 ‘

1

\JZNI, 08

{71 Jun, 10
_mm/

Item: Description:

®

Calendar Rule Recurrence: Select an option representing the recurrence

pattern for the calendar dates that you want to define. Options include Daily,
Weekly, Monthly, Annually, or your own manually selected dates. You can also
define a date range or set the rule to repeat indefinitely.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 357

Calendars

Item: Description:

@ Detailed Settings: This portion of the Basic tab bases its appearance on your
Calendar Rule selection. For example, a weekly recurrence results in detailed
settings for the days of the week and weeks of the month. As another example,
a monthly recurrence shows settings for specific days of the month.

@ Summary of Included and Excluded Dates: This area lists all the days in your
calendar rule. Clear the check box from a date to exclude it from the calendar.

The Advanced Calendar Designer

Advanced calendar rules are hierarchical tree structures. The Advanced tab for a
Calendar object always shows three sets of calendar rules:

® Manually Included Dates
® Manually Excluded Dates

m Calendar Rule

These three root elements for a calendar rule are fixed. These three sets cannot be
deleted. Define rules by building date conditions in the root elements. A calendar rule
combines date operators (such as day of the month, month of the year, or week of the
year) with logical operators (Intersection, Union, Exclusion, and Like). The Calendar Rule
is actually the root Union operator for all Calendar rules.

Start building a calendar rule by dragging a rule arranged by icon under All Rules to the
Calendar Rule set. You can also manually include or exclude dates.

After you place a rule under Calendar Rules, you configure its properties.

Properties for a date condition object in a calendar rule also have properties that you
can expand to configure the date condition, such as the Month Interval properties.

For example, if the Month Interval properties sets Step to “3”, it specifies that every
third month in a year is valid. Because the interval starts in January and ends in
December, this three-month interval repeats throughout the year. This rule defines a
condition for performing tasks each trimester.

The following task example shows this condition in a rule and adds a condition that
specifies the fifth day of every month. The Intersection operator behaves as a logical
And to combine these two conditions in a single rule that specifies the fifth day of every
trimester.

Example: Create a rule specifying the fifth day of every trimester

1. Drag Intersection operator to Calendar Rule.

358 Content Designer Guide

Calendars

Drag Month Interval under Intersection.

Click the Month Interval operator. Define a Month Interval from January to
December with the Step set to 3.

Drag a Day Interval operator under Intersection and specify an interval from 5 to 5
with the Step set to 1.

To save your changes to the working version of the Calendar object, click Save and
Close.

To test the Calendar click the Preview tab.

You can continue to add additional operators and conditions to define a rule further.
The logical hierarchy defines the order in which conditions are applied.

In terms of a Boolean equation, you can picture a Calendar object as enclosing
parentheses around and applying Boolean constraints to subordinate operators and
conditions.

The Union operator applies a Boolean OR to subordinate operators and conditions.

The Intersection operator applies a Boolean AND to subordinate operators and
conditions.

The Exclusion operator applies a Boolean NOT to an excluded condition.

The Like operator inserts another calendar rule into an equation, so you can think
of it as inserting a user-created Boolean function. A Calendar rule or combination of
Calendar rules can handle virtually any scheduling problem.

Note that depending on the needs of a particular scheduling problem, there are multiple
ways to build calendar rules. You can also define a set of dates in a separate calendar.
You can use a Like operator to specify the calendar object, and add it directly under the
Calendar Rule. You can also use a Union, Intersection, or Exclusion operator to include a
Like operator in a calendar rule.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 359

Calendars

Calendar Rule Logical Operators

Use the four logical set operators to include and exclude dates in calendar rules. The
Union, Intersection, and Exclusion operators provide a way to include and exclude dates
represented by basic date conditions or by branching combinations of conditions and
operators. The following list describes each logical operator:

Union

Indicates that one or more of the linked conditions must be satisfied for the
combined condition to be satisfied.

Place one or more branches or basic conditions under this icon.

[=]
Intersection

Indicates that the linked conditions must all be satisfied for the combined condition
to be satisfied.

Place one or more branches or basic conditions under this icon.

@
Exclusion

Indicates a basic condition or a branch to be excluded from a rule.

All dates are excluded that are not otherwise selected. It is therefore only useful to
exclude days when they are selected by another part of the rule. For example, no
purpose is served by excluding Tuesdays unless they are defined as valid days by
other conditions and operators in a rule. So if a condition specifies the work week
(Monday through Friday) as valid days, you could use the Exclusion operator to
exclude Tuesdays from this set.

Expand the Exclusion operator to show the Included and Excluded branches.

Click a branch and then add a condition or operator to define included or excluded
dates.This operator has two sets of branched arguments:

Included: One or more basic conditions or branches that represent dates to be
included in the rule.

Excluded: One or more basic conditions or branches representing dates to be
excluded from the dates defined by the Included set.

**1Like
Use the Like operator to use an existing set of dates defined by another calendar
object in your rule. This operator has the following parameters:
Calendar Name: The name of the referenced calendar.

Delta: Shifts the valid dates defined by the referenced Calendar by the specified
number of days. Enter a negative number to move the dates earlier, or a positive
number to move the dates later.

Open Days: When checked, indicates that the delta or shift only applies to open
days.

360 Content Designer Guide

Calendars

For example, a new calendar rule could reference another calendar specifying
backup days with a delta of 1. The resulting condition in the new calendar rule
specifies the day immediately following backup days.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 361

Calendars

Calendar Rule Date Operators

This section describes the elementary conditions on dates and their parameters. The
conditions can be placed in the rule pane of the Calendar Designer. To select a date in
any operator's properties, click the calendar icon to open the calendar viewer and select
a date.

Dates List
Specifies individual dates. For example:
m March 1, 2014
m July 15,2014
m September 23, 2015
Parameters
m Alist of dates with years.
m To add a date, click the Add Date button.

m To delete a date in the list, select the date and then click the Delete Date
button.

m Click the Move Up and Move Down buttons to reorder dates in the list.

@ Date Interval

Specifies a regular daily, weekly, or monthly interval in a range of dates from
beginning to end.

For example, every week from March 1, 2015 to July 1, 2016.
Parameters

m Beginning: The starting date for the range.

m End: The ending date for the range.

m Repeat Forever: Check this box to ignore the End date and extend the interval
indefinitely.

m Step: Indicates the quantity of units (days, weeks, or months) in each interval.
For example, an interval with a unit of week and default Step of 1 occurs once
in week 1, again in week 2, and a third time in week 3. When Step is set to 3,
the interval occurs once in weeks 1 to 3, again in weeks 4 to 6, and a third time
in weeks 7 to 9.

m Unit: Specifies the recurrence frequency or interval. Select Day, Week, or
Month.

Date Without Year List

Specifies a list of explicit anniversary dates.

This condition is commonly used to specify holidays that fall on the same day every
year. Examples include January 1st and December 25th.

362 Content Designer Guide

Calendars

Parameters
m Alist of dates without years.

m To add a date, click the Add Parameter (+) button. Click the browse (...) button
on the new parameter to add open the Select Date calendar control and select
a date.

m To delete a datein the list, select the date and then click the Delete Parameter
(x) button. You can click the Move Up and Move Down buttons to reorder
dates in the list.

Date Without Year Interval
Specifies an anniversary interval of dates without a year.
For example, from March 21st to June 20th (for Spring).
Parameters
m Beginning: The starting date without a year for the interval.

m End: The ending date without a year for the interval.

Year Interval
Specifies an interval of years.

You can specify leap years by starting an interval on a leap year and specifying a
step of 4 (such as 2000 to 2024 with a step of 4).

Parameters
m Beginning: The starting year for the interval.
m End: The ending year for the interval.

m Step: The number of years from one valid year to the next valid year.

Month Interval
Specifies one or more months in the year.

The first semester is specified with a range from 1 to 6 with a step of 1. The second
semester is specified with a range from 7 to 12 with a step of 1.

Parameters
m Beginning: The starting month for the interval.
m End: The ending month for the interval.

m Step: The number of months from one valid month to the next valid month.

Week of the Month Interval

Specifies one or more weeks in the month.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 363

Calendars

CA Process Automation implements ISO standards for partial weeks. A week which
intersects with a given month is considered to be part of the month if the Thursday
of that week falls in the month.

For example, if June 1st is a Friday, the First week of the month starts on June 4th. If
June 1st is a Wednesday, the first week of the month starts on May 30th.

It is possible to have the “first Monday of the month” not be “Monday of the first
week of the month.” To define the former, it is simpler to combine “Day of the
month” and “Day of the Week” conditions.

Parameters
Beginning: The starting week for the interval.
End: The ending week for the interval.
Step: The number of weeks from one valid week to the next valid week.

Reverse: Counting starts with the last week of the month and goes backwards.

Week of the Year Interval

n

Specifies one or more weeks in the year.

CA Process Automation implement ISO standards for partial weeks. A week which
intersects with a given year is considered to be part of the year if the Thursday of
that week falls in the year.

For example, if January 1st is a Friday, the First week of the year starts on January
4th. If January 1st is a Wednesday, the first week of the year starts on December
30th of the previous year.

It is therefore possible to have the “first Monday of the year” not be “Monday of
the first week of the year.” To define the former, it is simpler to combine “Day of
the year” and “Day of the Week” conditions.

Parameters
Beginning: The starting week for the interval.
End: The ending week for the interval.
Step: The number of weeks from one valid week to the next valid week.

Reverse: Counting starts with the last week of the year and goes backwards.

s=5| Day Interval

Specifies an interval of valid days (between 1 to 31) in a month with a starting day,
an ending day, and a step.

You can also specify that the iteration start from the end of the month or that only
open days are counted in each step. Open days are those days not specified by a
condition or rule that closes or excludes dates.

364 Content Designer Guide

Calendars

For example, the last day of the month is specified by the interval beginning and
ending with 1 with Reverse selected. The last weekday of the month would be
specified when the Open check box is also selected and a Weekday Interval
specifying Monday through Friday is added with an And operator.

Parameters

Beginning: The starting day for the interval.

End: The ending day for the interval.

Step: The number of days from one valid day to the next valid day.

Reverse: Counting in steps starts with the last day of the month and goes
backwards.

Open Days: Counting in steps includes only open days when days are closed by a
condition or rule.

Day of the Year Interval

&l

Specifies an interval of valid days (between 1 and 366) in a year with a starting day,
an ending day, and a step. The day 366 is valid on leap years.

You can also specify that the iteration start from the end of the year or that only
open days are counted in each step. Open days are those days not specified by a
condition or rule that closes or excludes dates.

For example, you can specify winter as the interval from December 21st to March
20th.

Or for a slightly more complicated example, to specify every 10th day throughout
the entire year, you could use a range from 1 to 365 (or 366 for a leap) with a step
of 1. You could specify the last ten open days of the year with a starting day of 1, an
ending day of 10, with Reverse and Open selected.

Parameters

Beginning: The starting day for the interval.

End: The ending day for the interval.

Step: The number of days from one valid day to the next valid day.

Reverse: Counting in steps starts with the last day of the year and goes backwards.

Open: Counting in steps includes only open days.

=+=| Day of the Week Interval

Specifies one or more days of the week (from Monday through Sunday) as an
interval with a starting day, an ending day, and a step.

For example, weekends are specified by the interval beginning on Saturday and
ending on Sunday with a step of 1.

Parameters

Beginning: The starting day for the interval

Chapter 9: Calendars, Schedules, Tasks, and Triggers 365

Calendars

End: The ending day for the interval.

Step: The number of days from one valid day to the next valid day.

Weekday of the Month

Specifies a weekday in an indexed week of a particular month. The week is indexed
from either the beginning or the end of the month.

Parameters
Weekday: Specifies the day of the week.
Month: Specifies the month for which the week day is applicable.

Week Index: Specifies the index of the week for which the week day would be
applicable. (Value can be 1 to 5 because in any month there cannot be more than 5
weeks)

Reverse: If you select this check box, the counting for the week index starts from
the last week.

For example, if you select Monday as a weekday, September as a month, and 3 as a
Week Index: in September, the third Monday is included in the calendar. If you
selected the reverse check box, in September, the third Monday from the last is
included in the calendar.

& Weekday of the Year

Specifies a weekday in an indexed week of the year. The week is indexed from
either the beginning or the end of the year.

Parameters
Weekday: Specifies the day of the week.

Week Index: Specifies the index of the week for which the week day is applicable.
(Value can be 1 to 53 because in a year there cannot be more than 53 weeks)

Reverse: If you select this check box, the week index counting starts from the last
week.

For example, if you select Monday as a weekday, 43 as the Week Index, the forty
third Monday of the year is included in the calendar. If you selected the reverse
check box then the forty third Monday from the last week is included in the
calendar.

Add and Remove Calendar Dates Manually

You may sometimes require dates in a Calendar object that are not easily specified by a
calendar rule. Similarly, a rule can include dates that for some reason you do not want in
a calendar. You can use the Manually Included Dates and Manually Excluded Dates in
the Selected Calendar Rules pane to add or remove selected dates manually.

366 Content Designer Guide

Calendars

To add or remove dates
Open a calendar.
Click the Advanced tab.

Expand Manually Included Dates or Manually Excluded Dates.

Ll

In the month viewer in the Properties pane, right-click a selected date and click one
of the include or exclude date commands on the shortcut menu.

m Toinclude specific dates for a particular year, click the Include Full Date
Command.

m Toinclude anniversary dates for all years, click the Include Anniversary Date
Command.

m To exclude specific dates for a particular year, click the Exclude Full Date
Command.

m To exclude anniversary dates for all years, click the Exclude Anniversary Date
Command.

The Include Full Date command is only available when excluded dates are selected
in the pane. The Exclude Full Date command is only available when included dates
are selected in the pane.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 367

Calendars

The Calendar Designer: Preview Tab

Use the Preview tab to inspect the dates to include and exclude in a calendar.

You can also compare the dates in one calendar with dates in a second calendar. For
example, define a standard work calendar that omits the holidays or vacation days
defined in another exclusion calendar. You can preview how the exclusion calendar
would affect the standard work calendar as you edit it.

#) check 1n

Basic Advanced

2

Included Dates
14 Nov, 2014
15 Nov, 2014
17 Now, 2014

19 Now, 201
21 Nov, 20
22 Nov, 20

24 Nov, 2014
25 Mov, 2014
26 Nov, 2014
27 Nov, 2014
28 Nov, 2014
29 Nov, 2014
1 Dec, 2014

2 Dec, 2014

3 Dec, 2014

4 Dec, 2014

5 Dec, 2014

6 Dec, 2014

8 Dec, 2014

9 Dec, 2014

10 Dec, 2014
11 Dec, 2014
12 Dec, 2014
13 Dec, 2014
15 Dec, 2014
17 Dec, 2014
19 Dec, 2014
20 Dec, 2014
22 Dec, 2014
23 Dec, 2014
24 Dec, 2014
25 Dec, 2014
26 Dec, 2014
27 Dec, 2014
29 Dec, 2014
30 Dec, 2014
21 Dec, 2014 -

»

m

Preview Exclusion Calendar

Help

Previgw Properties Varsons Release Audit Trail

@.’.‘J 2014 ll =

M T W T F s 5 L] T W T F 5 s M T W T F s 5
1 2 3 4 5 1 2 1 2
6 7 8 9 10 11 :=2 3 4 5 6 7 8 9 2 4 5 6 7 8 9
13 14 15 16 17 18 19 10 11 12 13 14 15 6 10 11 12 13 14 15 16
20 21 22 23 24 25 == 17 18 19 20 21 22 =23 17 18 19 20 21 22 =23
27 28 29 30 31 24 25 26 27 28 24 25 26 27 28 29 20
31
M T W T F s k- M T w T F 5 s 5
1 2 3 4 5 =& 1 2 3 4 8
8 9 10 11 12 2 = 6 7 8 9 10 u 9 10 11 12 12 14 13
14 15 16 17 18 19 =20 12 12 14 15 16 17 18 16 17 18 19 20 21 =22
21 22 23 234 25 26 27 19 20 21 22 23 24 25 23 24 25 26 27 28 9
28 29 30 26 27 28 29 30 31 30

M T W T F s 8 M T W T F S8 s

1 2 3 4 5 = 1 2 =

7 8 9 10 11 12 :: 4 5 6 7 8 9 w0

14 15 16 17 18 19 =20 11 12 13 14 15 16 17

21 22 23 24 25 26 7 18 19 20 21 22 23 24
28 39 30 31 25 26 27 28 29 30 2

M T W T F =] 5 L] T W T F 5 5 L] T W T F 5 5

1 2 3 a4 3 1 2 1 2 3 4 5 6 7

6 7 8 9 10 11 ::2 3 4 5 6 7 8] 8 9 10 11 12 13 4

13 14 15 16 17 18 9 10 11 12 13 14 15 6 15 16 17 18 19 20 =z

20 21 22 23 24 25 2% 17 18 19 20 21 22 23 22 23 24 25 26 27 28
27 28 29 30 31 24 25 26 27 28 29 30 29 30 31

Delta Max Shift
JFOLDER-20111214/Region 3 Days OFf @ e 0 + [Open Days ® 1 = Update

368 Content Designer Guide

Calendars

Item: Description:

® Preview Tab and Year: After defining a calendar on the Basic or Advanced tab,
click the Preview tab to view the dates. Click Previous Year, Next Year, or select
ayear.

Included Dates: This pane displays all the dates included in your calendar rule
settings.

Preview Exclusion Calendar: (Optional) Select a separate calendar to display
conflicts in bold red in the calendar preview.

with bold dark blue numbers.

Excluded Dates: The calendar preview displays dates that are manually or
automatically omitted from the calendar rules with light blue numbers.

@ Included Dates: The calendar preview displays dates included in your calendar

Conflicting Dates: The calendar preview displays dates that overlap or conflict
with the dates defined by an optional exclusion calendar with bold red
numbers.

@ Conflict Resolution Fields: Use the Delta field to specify the number of days an
eligible date is shifted when it falls on an omitted or excluded date. A negative
Delta value shifts forward (earlier), and a positive value shifts backward (later).
When this value is zero (the default), the eligible date, normally included in the
calendar rule, is marked in bold red and omitted.

Select the Open Days check box to count only included days when shifting the
schedule to avoid an excluded or omitted date. Open days are days that are not
specified by a condition or rule that omits or excludes dates. If you clear the
Open Days check box, a shifted date potentially can fall on another excluded or
omitted day.

Use the Max Shift field to define the maximum number of shifts or adjustments
to allow if repeated shifts fall on closed days.

Exclude Calendars

Closed days are those days on which a group of scheduled tasks cannot be performed.
Closed days can be specified in a calendar (for example, weekends are implicitly closed
when a rule specifies weekdays) or in a separate vacation calendar. A vacation calendar
is created with rules specifying valid dates, like any other calendar. Specifying a calendar
as a vacation or exclude calendar closes out dates that would otherwise be defined as
valid dates for performing tasks.

For example, certain tasks cannot be performed on company holidays. In this event, you
create a calendar that specifies all company holidays. Then, for each task in a schedule
you want to skip on company holidays, specify the company holiday calendar as the
Exclude Calendar. The company holidays are then closed days for those tasks.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 369

Schedules

Schedules

Schedule objects configure when process or operator tasks run. Specify valid days in the
schedule or by reference to previously defined Calendar objects. Schedule objects let
you group, coordinate, and schedule when tasks run relative to organizational or
architectural elements of an enterprise. For example:

m Applications
m Ownership
® Monitoring
® Maintenance

m Functional processes

Schedule objects specify:

m The tasks (processes and operators) to run

m The time of day when each task starts

m The repeat interval for multiple occurrences of a task

m The days when tasks start (using a calendar, by specifying explicit days, or a
combination of both)

m The days when tasks are not permitted to start (using vacation calendars and by
specifying excluded days)

m The time of day when each task ends

370 Content Designer Guide

Schedules

You can create a schedule with or without specifying a calendar. Processes and other
tasks that run every day or on specified days do not require a calendar object. To
schedule dates using calendar rules:

1. Create calendar objects.

2. Specify the calendars in schedule objects.

Calendars define rules that specify valid dates for performing tasks and closed days on
which the tasks cannot run. Schedule objects associate operationally-related tasks with

a calendar and specify the times when the tasks run on the valid days the calendar rules
define.

Equation 2: This graphic highlights the functions of the Schedules page.

1@ schedule_1 (Version 1)-Schedule Editor - Moills Firefox

) check In

Schedule Editor Previcw

Processes

x|

5 LDARAD
o
) Process_Module —

£ start system process_

& sta m_process
Fos winser
£ start m process |

£ Process_module_Cust

£ start_seriot
2§ interpreter_Moduls
B Filerodule
§ Mail Module
B UCF-UsH-Module

Operators

]
5]

A Autornated Run Boak
Catalyst
[Cammand Exscution
[Databases
[) Directory Services
4 [Ernail
{ Create Folder
© Delets Email

& Delets Folder

o ot Cantent
B co? velope
Get Email List
<4 Mave Email
3 Purge Folder
41 Rename Folder
% Send Email
(3 File Managerment
1 File Transfer
[3IDBC_Custom_Operators
] Java Management
] MyNewGroup

4 [Network Utilities

Test
HiTest — ‘h racess: Testlocalnade
£, Glabal Process @ StartTime

&l start seript process wi

=S 5
ES} validey Deactivate () Heolp
Properties D

Schedule Ttems

Audit Tra

Process: Process_Schedule®localnade

Start Time End Time

- m
5 | PH1L:30 = @ =

amiz:on |* (¥ Repeat Interval {minutes) 30

End Time .
aM3:30 - Repeat Interval (minutes) 0 s |amizeo |* -
e @ @
Start Process
Pracess name:
[Peocess_Module/Tast B/ open
Process Dataser Il ation Code:
Made:
Attached f=
hange Handler fram pare
Execution Settings
Write File: ®localnade
Start Time End Time —
AM12i00 |¥ Repeat Tnterval {minutes} o - ®
send Email: ®localnode
start Time

End Time

@ Amzw T Repeat Interval {minutes) o

General Specific

®Y

F20111222_Folder_by_Damon/Calendar_o1 - gar:n‘fjgf"t;.ie.lf.nltr:g:;{":f;: the
day

Calendar Settings

Include Colendar: {mportant Note:
Exclude Calendar:

fFoldes/Calendar -
Days per shift:

2

7 Mo axchuded days
Mawimum Shifts:

Item: Description:

@ Schedule Editor: When you open a schedule from the Library Browser, the
Schedule dialog appears. Use the toolbar to activate, set validity, check in, or
save the schedule. Click any of the tabs.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 371

Schedules

Item: Description:

@

Processes Pane: Select the processes to include and drag them to the Schedule
Items list.

Scheduled Process: Set the duration and frequency for running the process in a
single day from 12:00 a.m. to 11:45 p.m.

Process Properties: Click Properties to view process properties on the General
and Specific tabs.

Operators Pane: Select the operators to include and drag them to the Schedule
Items list.

@ @ ® ©

Operator Properties: Click Properties to view operator properties on the
General and Specific tabs.

Create a Schedule Object

To create any automation object in CA Process Automation refer to Create an Object
(see page 61).

372 Content Designer Guide

Schedules

Schedule Process and Operator Tasks

You can configure a process or operator to run as a single task or a series of tasks in a
schedule. The difference between specifying an operator as a task in a schedule and
specifying an operator in a process is that the scheduled operator starts at a scheduled
time rather than as a step in a process. You can also schedule any process to start by
using a Start Process operator in a schedule.

Follow these steps:

1.
2.
3.

In the Library, double-click a Schedule object.
In the Schedule Editor, identify the processes and operators you want to schedule.

Expand the Processes or Operators pane and drag any available process or operator
to the Schedule Items list. You can also right-click a process or operator and choose
Add.

For each item, complete the following fields:
Start Time

The starting time for a task to begin running on scheduled days.
Repeat Interval (minutes)

Indicates whether a task runs repeatedly between the start and end times, and
if so, how frequently. For example, every 2 minutes, or every 120 minutes (2
hours). Each time the task is repeated, a new instance of the task is created.
Specify the number of minutes from one start to the next in the adjacent
(minutes) field. For example, the value 120 in the minutes box repeats a task
every two hours.

Make sure that the End Time is later than the last time that you want the task
to repeat. For example, you configure a task as follows:

m Start Time is 00:00

m Repeat Interval check box is selected

m The (minutes) field is set to 120 minutes
m End Timeis 16:00

These settings schedule the process or operator to start for the first time at
12:00 a.m., repeat every two hours, and run for the last time before 4:00 p.m.

End Time

For a repeating task, the time that the task stops repeating on any scheduled
day.

At this point, you have scheduled a task to repeat at the specified interval every day
from the specified start time to the specified end time. Continue with the remaining
steps only if you need to make detailed changes to schedule dates or properties.

Expand an item group or click Properties.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 373

Schedules

7.

10.
11.
12.

The General and Specific tabs appear.

On the General tab:

a.

d.

Expand Calendar Settings and select from the following fields:

Only Manually Selected: Only consider manually scheduled dates. When
no Calendar is specified in a scheduled item, the item is considered to be
scheduled every day, except when this option is selected. When this option
is selected, run dates need to be explicitly scheduled under Manually
Included or Manually Excluded or both.

Include Calendar: A Calendar object that schedules dates to run the task.

Exclude Calendar: A vacation Calendar object that specifies closed days on
which tasks are not run. The full path of the Calendar used to specify
closed days (those on which a task may not be scheduled). There are no
closed days when no vacation Calendar is specified here.

Days per shift: Activates rules that shift the dates that tasks are run when
a date specified by the Calendar object falls on a closed date. The number
of days to shift a scheduled date when the scheduled date falls on a closed
date. The shift can be negative or zero. When this value is negative the
date shifts forward. When this value is zero, closed dates are simply
skipped without rescheduling the task.

No excluded days: Select this check box to only count open days when
shifting the a scheduled date to avoid a closed date.

Maximum Shifts: When a task is rescheduled because the original
scheduled date falls on a closed day, it is possible that the new date also
falls on a closed date. This parameter defines the maximum number of
shifts that are allowed.This situation does not occur when the No Excluded
Days check box is selected.

Expand Manually Included Dates to list individual dates for inclusion in the
schedule.

Expand Manually Excluded Dates to list individual dates to exclude, even to
exclude dates from previously specified include calendars.

Expand Task Name to enter a more meaningful name for the task.

Click the Specific tab and expand the groups of fields that vary by operator or
process. For a process, the Start Process and Execution Settings groups appear. For
an operator, Execution Settings and other parameters appear. Configure the fields.

To set the valid date range for the entire schedule, click Validity. Specify a date far
in the future such as 12/31/2050 to continue evaluating dates indefinitely or until
the schedule is manually deactivated.

To delete a task, click X along the right edge.

Click Activate to initiate your scheduled items.

Click Check In and then close the Schedule dialog.

374 Content Designer Guide

Schedules

13. Monitor scheduled items on the Operations tab.

Preview All Occurrences of a Scheduled Task

You can preview the scheduled task occurrences for a specific day. When you configure
a task to repeat on a specific day, the application tracks each occurrence of the task. For
example, if a task repeats every 10 minutes for half an hour, the preview shows three
occurrences. Use this procedure to plan for a future date or to view the results of tasks
that were scheduled on a specific past date.

Follow these steps:

1. Onthe Schedule dialog, click the Schedule Editor tab to configure the list of
scheduled items for the entire period of validity.

2. Click the Preview tab. If your task repeats, multiple occurrences on the same day
appear on the Preview tab.

3. Onthe Preview tab:

a.

b.

C.

d.

In the Preview Date field, select a date in the valid range for the schedule.

From the All Nodes drop-down list, select All Nodes or a specific Orchestrator
touchpoint.

Select the Current or Archived options.

Click Refresh.

The application evaluates calendar rules and the validity period that is associated
with tasks before it lists the appropriate occurrences.

When you select a past date, the Preview tab includes tasks that were started,
their state, their start time, and their end time.

When you select the current date, the Preview tab indicates whether
occurrences have started and their start time, state, and end time.

When you select a future date, the Preview tab includes all occurrences for the
selected date if the schedule is active on the selected touchpoint.

4. Double-click an occurrence to view a read-only Properties pane that shows the task
configuration settings.

5. Click the Schedule Editor tab to make changes to the schedule.

6. Click Validity to set the valid date range for the entire schedule.

7. Click Activate to initiate your scheduled items.

8. Click Check In and then close the Schedule dialog.

9. Monitor scheduled items on the Operations tab.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 375

Schedules

Using Schedules

You must activate and check in a schedule to use it. You can activate a schedule on the
particular orchestrator touchpoint on which it resides. When a schedule is active on
multiple touchpoints, it behaves as a separate instance on each touchpoint. This allows
you to schedule the same tasks on multiple computers simultaneously. Examples of
these types of tasks include log tidying, software installations, updates, and file backups.

Note: When you run a schedule, the schedule and any operators in the schedule use
only the checked-in copies of objects they reference.

Monitor Active Schedules

After you activate a schedule, you can monitor it using the Active Schedules link on the
Operations page.

Follow these steps:

1.

2
3
4,
5

Click the Operations tab.

On the Operations page, expand the Links pane.

Click Active Schedules.

In the toolbar, select an orchestrator and environment and then click Refresh.
In the Active Schedules table, double-click a schedule.

The Schedule dialog opens.

On the Schedule dialog:

a. Edit the scheduled items. See Schedule Process and Operator Tasks (see
page 373).

b. Inthe toolbar, click Activate to enable the schedule.

c. Inthe toolbar, click Deactivate to disable the schedule. You can also deactivate
a schedule on the Operations page.

Note: Your assigned permissions determine whether you can list, open, or edit a
specific schedule object. A content administrator or automation object owner can
change permissions on an automation object.

Click Check In or Save and Close.

376 Content Designer Guide

Schedules

Monitor All Occurrences of All Scheduled Tasks

You can monitor the scheduled occurrences of all tasks for a specific day. When you
configure a task to repeat multiple times daily for multiple days, CA Process Automation
tracks each occurrence of the task. For example, if a task repeats every 10 minutes for
half an hour (3 occurrences) every day for 1 year, CA Process Automation tracks 1,095
occurrences. Use this procedure to plan for a future date or to view the results of all
tasks that were scheduled for a specific past date.

Follow these steps:

1.
2.

Click the Operations tab.

Expand the Links pane on the Operations page.

Click Global Schedules.

From the toolbar, select an Orchestrator and environment, then click Refresh.
In the Global Schedules table:

a. Inthe Preview Date field, select a date in the valid range for the schedule.

b. From the Nodes drop-down list, select All Nodes or a specific Orchestrator
touchpoint.

c. Select the Current or Archived option.

d. Click Refresh.

CA Process Automation evaluates calendar rules and the validity period that is
associated with tasks before displaying the appropriate occurrences in the list. If
your task repeats, multiple occurrences on the same day are displayed.

m When you select a past date, the list includes tasks that were started, their
state, their start time, and their end time.

m When you select the current date, the list indicates whether occurrences have
started and their start time, state, and end time.

m When you select a future date, the list includes all occurrences for the selected
date if the schedule is active on the selected touchpoint.

To view a read-only Properties window that shows the configuration settings for
the scheduled task, double-click the appropriate occurrence.

In the toolbar:
m Click Dataset to view the process or operator dataset.
m Click On Hold or Release Hold to hold or release the occurrence.

m Click Reset to restart an occurrence.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 377

Task Management

Task Management

You can manage CA Process Automation tasks by designing user interaction forms to
enable users to control tasks or provide custom input. On the Operations page Task List
or the Home page My Tasks list, right-click a task to:

Reply

Modify the process in some way using a form in the Reply dialog. For example, you
can change field parameters or values before clicking Finish to complete the task.

Take

Temporarily assign yourself complete ownership and responsibility for the pending
task.

Return

For tasks with a status of Taken only, releases your exclusive ownership of the task.
The task is returned to its designated assignee or delegate users or groups.

Delegate

Assign the task to a secondary user or group, known as a delegate.
Transfer

Assign the task to a different assignee.
Open Process Instance

View the task in the context of the parent process instance and review the process
design.

Refresh
Update the task list with the latest changes from all users and system activity.
Properties

View more information about the task including its description, due date, status,
and its assignees and delegates.

Assign a Task to a User
To create a task, create a process using the Assign User Task operator, then start it.

You can specify the following attributes when creating a task:
1. Opena process in the Process Designer.

2. Inthe Operators palette, expand Process Control or search for the Assign User Task
operator.

3. Drag the Assign User Task operator to your process.

378 Content Designer Guide

Task Management

4.
5.

6.

Double-click the Assign User Task operator.

In the Properties palette:

a.

b.

Expand Assignees, and enter the users and groups to assign to this task.

Expand Transfer/Delegate Filters to permit delegation of the task, which is
restricted to the specified users or groups.

Expand User Task and complete the following fields:
Title

The title of the task.
Description

A description for the task.
Interaction Request Form

The library path to the interaction request form.
Form Data Initialization Code

You can write JavaScript to populate this field.
Show approval page

A check box that specifies if an approval screen must be displayed at the
end of the interaction request form. The user working on the task can
approve or reject the task using the approval page.

Expand the following common operator property groups to specify any
designer information about the Assign User Task operator:

m Execution Settings
m Simulation

m Information

In the Designer toolbar, click Save.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 379

Task Management

The Task List

You can work with tasks on either the Home page or the Operations page. The Home
page displays only the Status, Title, Description, and Due Date fields in the convenient
My Tasks table. Use the Task List on the Operations page to view the most detailed
information about tasks.

Tasks originate from processes that include an Assign User Task operator and an
Interaction Request Form. You can sort the Task List in ascending/descending order by
clicking the column headers. Use the Status column to determine if a task is pending,
completed, approved, rejected, or taken.

On the Operations page, you can filter the task list to show the following:

m Only your tasks (My Tasks, the tasks that are assigned to the current user)

m Only the tasks assigned to any groups that you belong to
m Al tasks

The Task List on the Operations page displays the following field columns for each task:
m TaskID

m Title

m Description

m StartTime

® Due Date

m Completion Date

m Status

® Assignees

m Delegates

380 Content Designer Guide

Administer Triggers

Administer Triggers

You can control processes with external applications using any of the following
methods:

m Triggers
m Web services (SOAP)
m Command line utility

m Scripts

SOAP calls are recommended over triggers because Web services are more robust.
Applications that cannot make SOAP calls can use triggers as an alternative.

Triggers allow external applications to start a process in CA Process Automation. A
trigger invokes the CA Process Automation process that is defined in XML content or in
an SNMP trap. The XML content can be delivered to the configured file location or to
the configured email address. SNMP trap content can be sent in an OID matching a
configured regular expression. CA Process Automation listens for incoming SNMP traps
on the configured SNMP trap port, 162 by default.

Whenever you start a process, begin an operation such as run the Start Process
operator, or use a trigger or SOAP call, you are acting on behalf of some user or owner.
For triggers or SOAP calls, information about the content owner is in the payload or
messages. This information determines the versions of automation objects that are run:

m [f you check out a process and then run, call, or trigger it (you are both the content
owner and initiator), CA Process Automation uses your private checked-out version.

m Otherwise, CA Process Automation uses the current versions of the automation
objects. This includes processes that are not checked out or checked out by another
user.

You can run and verify your own checked-out version before checking the objects back
in or making them current.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 381

Administer Triggers

Controlling Processes from an External Application with SOAP Calls

The CA Process Automation Orchestrator exposes Web services that allow external
applications to start and control processes in a library. SOAP calls require valid XML. The
Web services methods and parameters exposed are described in the WSDL. For details,
retrieve the WSDL from the appropriate domain URL, depending on whether CA Process
Automation supports secure communication and is clustered. In the following examples,
load_balancer_hostname is the host name or IP address for the Apache load balancer.

m Secure and unclustered:
https://<DomainOrchestrator hostname>:8443/itpam/soap?wsdl

m Unsecure and unclustered:
http://<DomainOrchestrator hostname>:8080/1itpam/soap?wsdl

m Secure and clustered:
https://<load balancer hostname>:<Apache secure port>/itpam/soap?wsdl

Note: The secure port of Apache is typically 443.

m Unsecure and clustered:
http://<load balancer hostname>:<Apache unsecure port>/itpam/soap?wsdl

Note: The unsecure port of Apache is typically 80.

For sample scripts that use SOAP calls to the CA Process Automation Orchestrator to
start processes, navigate to the following folder:
<install dir>/server/c2o/.c2orepository/public/scripts/trigger

Note: The <install_dir> path is typically C:\Program Files\CA\PAM.
The Java subfolder contains a Java-based tool and all the resources the tool requires to
start CA Process Automation processes remotely using SOAP. The path to the Java

subfolder follows:
<install dir>/server/c2o/.c2orepository/public/scripts/trigger/java

How File and Mail Triggers Work

This topic provides a description of the processing sequence for triggers. It uses file and
mail triggers as examples.

382 Content Designer Guide

Administer Triggers

File and Mail Trigger Example:

1.

At the configured frequency, CA Process Automation searches for new content in
the configured folder and the configured email account.

If a new file object or mail object is found, CA Process Automation attempts to run
the process, based on the XML content.

An illustration of valid XML content for the file trigger follows:

|<¢:Z oflow version="1.0Q">

<flow name="/Test/Runfotepad® action=*start®> < Full path of the process —-»
<auth>
<userritpamadmin</ussr> tl= TTPAM Lizername >
<password=itpamdemo</password> - ITPAM Password --»
</auth>
<optiona>

b= Opticnal parareters for delayed e=ecution
cetart Datex/start Dater
extart Times atart Time

</ options>
<params>
el Process initialization parameters, if reeded --»
<param name="ParamOne” >Using file trigger</param>
“pafam name="Paranlwo” >*Second parameter from file trigger</param>
</parama>
</ £l ows
< fcZoflows

When the trigger executes the process specified in the trigger instance, the process
dataset is populated with the values contained in the XML. The following example
demonstrates how the values in the XML content are used to populate the file
trigger process dataset.

[Confiquration Browser | B ootout Process wtch | =
[Ey Runring

l

i

B2 Dataset

FieName: Irigger_1 bigger
rProcess Dalaset

Precesshiame Mestfunbiolepsd

Process Dalasst -

- ProcessAction | stert

B System L

'#1 FieTrigger Userhlame: bmudnh

ParamTwo Sacond parameter from 1B rigger

Parsemone [Lisng fhe trigger

Chapter 9: Calendars, Schedules, Tasks, and Triggers 383

Administer Triggers

4. Theresults are posted to the processed folder in the configured path.

Address Iui'l C\Program Files\CATPAM, R30MSSOLDomaintservert o204 iggeroutput

Falders ¥ | Mame =~

5. Emails received at the configured email account are processed in much the same
way as XML content received in files. In addition confirmation emails are sent,
where the content states whether the XML content was found in the body of the

email or in an attachment. The following example shows both messages:

Fei 77152000 537 P
TTRAM Liser

Trigger in mall body 1s successfully gueued; Process ROID - 45
Trigger in attachment file trigger.txt is successfully gqueued

Monitor the FileTrigger Dataset of a Process Started by a File Trigger

When valid XML content in a file triggers a process instance, you can monitor the file
trigger process dataset in the Process Watch. Use the following field descriptions to
interpret the displayed values.

FileName
The name of the file with the content that triggered the process.
<additional_parameters>

Additional parameters that are passed under the <params> tag in the triggering
XML content of the file.

Monitor the SMTP Dataset of a Process Started by a Mail Trigger

When valid XML content in email triggers a process instance, you can monitor the SMTP
process dataset with Process Watch. Use the following field descriptions to interpret the
displayed values.

SenderAddress
The email address of the account from which the triggering email is sent.
SentDate
The date and time when the email was sent.
ReceivedDate
The date and time when the server received the email.
MailSubject

Subject of the triggering mail.

384 Content Designer Guide

Administer Triggers

MessageNumber

Message number of the triggering mail at the time when the process was triggered.

Note: This number can change for the same mail, if messages are deleted or moved
from the Inbox.

MessagelD

Unique ID of the mail in the server.

MailBody

The body of the email message in these cases:

When valid XML content in an attachment triggers the process.

When the default trigger process is started, that is, when no valid XML content
is found in either the email body or attachment.

Note: This string value is truncated to the first 64k characters in the mail body.

MailAttachments

A ValueMap array type variable which holds ValueMaps with the following
information about the attachments:

a.

b.

contentType: Attachment content type.

contentID: Attachment contentID if present.

fileURL: URL from which attachment can be viewed or downloaded.
name: Name of the attachment.

attachmentID: Unique ID for this attachment. This ID can be passed to
JavaScript system functions.

Note: See the Content Designer Reference for details about the JavaScript
system functions.

<additional parameters>

These parameters, passed under the <params> tag in the triggering XML content,
exist only when valid XML content in the mail body or attachment starts the CA
Process Automation process.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 385

Administer Triggers

XML Content Format for File and Mail Triggers

External applications that use file or mail triggers to start CA Process Automation
processes must create input in a valid XML format. XML content can be written to the
body of an email or sent as an attachment. If the XML is copied to the email body, it can
contain no more than what is required to trigger a process. For file triggers, the
triggering file must include the entire content.

An example of valid XML format follows:

<c2oflow version="1.0">

<flow name="/Test/RunNotepad" action="start"> <!-- Full path of the process -->

CA AuthMinder
<user>pamadmin</user> <l-- CA Process Automation Username -->
<password>pamadmin</password> <!-- CA Process Automation Password -->

</auth>

<options> <l-- Optional parameters for delayed execution -->
<startDate></startDate> <!-Start Date in [MM/dd/yyyy]l format -->
<startTime></startTime> <!-- Start Time in [HH:mm] format; HH in 24 hrs -->

</options>

<params> <!-- Process initialization parameters, if needed -->

<param name="ParamOne">Using file trigger</param>
<param name="ParamTwo">Second parameter from file trigger</param>
</params>
</flow>
</c2oflow>

SNMP Trap Input Considerations

CA Process Automation supports SNMPv1 and SNMPv2 traps; however, it does not
process SNMPv3 traps. When a network device or an enterprise application sends an
SNMPv1 or SNMPvV2 trap that CA Process Automation detects on the configured port,
CA Process Automation processes the content.

386 Content Designer Guide

Administer Triggers

Change the SNMP Traps Listener Port

By default, CA Process Automation listens on port 162 for SNMP traps designed to start
CA Process Automation processes. If you have closed port 162 at your site and
configured an alternative port, change the CA Process Automation configuration for this
port in the OasisConfig.properties file. Then restart the Orchestrator service.

You can change the port on which CA Process Automation listens for SNMP traps.

Follow these steps:

1.
2.

Log on to the server on which the Domain Orchestrator is configured.
Navigate to the following folder or directory:

install dir/server/c2o/.config/

Open the OasisConfig.properties file.

Change the value in the following line from 162 to the port number you are using
for SNMP traps.

oasis.snmptrigger.service.port=162
Save the file.

Restart the Orchestrator service.

a. Stop the Orchestrator.

b. Start the Orchestrator.

As soon as the service restarts, CA Process Automation begins listening on the port
you configured. CA Process Automation listens for new SNMP traps that meet the
criteria configured in the SNMP trigger.

Chapter 9: Calendars, Schedules, Tasks, and Triggers 387

Administer Triggers

Monitor the SNMP Dataset of a Process Started by an SNMP Trap Trigger

When an SNMP trap triggers a process instance, you can monitor the SNMP process
dataset with Process Watch. Use the following field descriptions to interpret the
displayed values.

SenderAddress
IP address of the source.
AgentIPAddress
IP address of the SNMP agent, if available in the trap.
SNMPVersion
Version of the SNMP trap.
Errorindex
Error Index of the trap.
AgentUptime
Uptime of the agent sending the trap.
EnterpriseOID
Object identifier (OID) of the managed object that generated the SNMP trap.
PayloadOIDs

Object IDs present in the payload of the trap. The payload object IDs represent a CA
Process Automation string array variable.

PayloadValues

Values in the payload that correspond to the values in PayloadOIDs. This data is also
a CA Process Automation string array variable.

Note: If there are several filters, the first match is processed.

388 Content Designer Guide

Chapter 10: Running, Testing, and
Debugging Processes

This chapter describes how to run, test, and debug processes interactively during
development. The same methods can be used to run processes in a production
environment.

When you want to run a process, you can initiate it using any of the following methods:
m Manual process initiation

m Start Request Form

m Call from other processes

m Trigger using external applications, FTP, SOAP calls, SNMP traps, or SMTP (email)
messages

The Workflow module on an orchestrator runs processes. When you start a process on
an orchestrator, the Workflow module creates and runs a copy of the process object in
the orchestrator automation library. This running copy is an instance of the process. The
Workflow module creates a separate instance of a process each time you start a process
(or another process or application starts a process).

You can open, view, and work with an instance of a process while it is running or after it
finishes. Changes made to an instance of a process affect only that instance and do not
affect the original process object stored in an automation library.

When a process starts, it connects to the correct agent or orchestrator modules on
managed network computers. A process performs its designated operator functionality,
tests conditions, and exercises dependencies. When error conditions arise, a process
performs corrective actions and notifies operators and administrators when necessary.
An administrator can use the Application Monitor to monitor running processes and to
perform corrective actions.

This section contains the following topics:

The Operations Page (see page 390)

Execution Rules (see page 396)

Runtime Security (see page 397)

Exception Handling (see page 399)

Run Processes Interactively (see page 404)
Process States (see page 408)

Debug a Process (see page 408)

Control a Process Branch (see page 412)
Simulate Processing of Operators (see page 415)

Chapter 10: Running, Testing, and Debugging Processes 389

The Operations Page

The Operations Page

The Operations page has the following functions:
m Monitors selected tasks and system elements that CA Process Automation manages

m Displays the properties of imported content packages under the Content Packages
palette

m Displays all process activities for a selected automation library, including:
- Process instances
- Schedules
- Module invocations
— Datasets

- User prompts

- Resources

= CA Process Automation

Operations

@

quratio

-

P Resume G ostaset & Refresh

S abort (& Export BB Archive
Process Instances

3 open

Links

% Suspend

Orchestrator © (3) pelp

@ Current Archived

Process Instances

50
Operators
Task List
Active Schedules o
Global Schedule
Start Requests %o
Content Packages
Process Watch 2
®
+ S mai modute -
« B processwatch Al 10 Click to add to filter

2 Dataset 1

A Mail ModuleGlobatProcess . 9

£ MailModulelntegatedflow Queued Running Suspended Waiting Blocked Completed Falled Abo:

Instance ~ o state L Start Time L &nd Time 2 User Touchpoint Content Package Name Content Package Release Version
start_system_process_1261 Completed 2012/01/19 11:10:59 AM 2012/01/19 11:12:0 2
— Start_script_1255 Completed 2012/01/19 11:10:S9 AM 2012/01/19 11:11:%
7l o+ Oriver_338 Rureing 2012/01/19 10:52:100 AM

Bssagelist

K Mokl cite A UCT_Test CRUD_791 Completed I012/00/19 10/%4:08 AN o
« - ' wIP_Leh Taies J012001/19 31121198 AN W0 13208 -
Start Request SNPTrazs_TrapTypes 1234 @ Comoleted 2012/01/19 1110934 AN 2032/00119 11:120:2
Dataset SN Trazs_PariesdTypes 1208 Complated 2012119 1110016 AN 2032/0119 13:9%:3
Resources SNPPR_1247 Comgleted 012/0019 1113034 AN 2012/01219 13:10:4
Schedules - PGt Systeminformason_ 1193 Cormpleted 2012/0119 11:00:31 AN 3012/0119 12:09:1
7 o Select Expresson 1204 Comgleted 0120119 11A1MAN 2030119 1312
Planificacién Select_Inkne_Negative 3303 Cormgleted 20120119 110LSS AN 20120119 131122
[schedule_1 Select_Lxpeession_Negative_339) Comgleted 0120119 110121 AN 20320319 13:31S
Scheduls_Agends_22 renymatolter 359 Comglated 12/00/19 13 2012701119 13:00:2
S Process_Sumtanen_103 Blocked 20120119 10
Planificacién 3
R Prec JOBC_UM_View 1395 Comoleted 20120139 311420 AN 2002/00/19 1313413
- [Proc_Cust_View_Tobles 1477 Complated 20120119 116 AN 201200119 13:16:4
it Proc_Cuit_Ust_View_1471 Complated 20130119 13365 AN 2032/00/19 13:36:3
« @ gudprtn Proc_Cust_Ust_UsedSpece_t4%4 Comgleted 012019 11AT:0AM 2032001911102
2 UCF-USM-Module Process_276 Blocked 2012/01/19 09:51:00 AM
+ S policies Process_272 Blocked 2012/01/19 09:50:00 AM
[schedule Process_27_55 Completed 2012/01/19 09:08:06 AN 2012/01/19 09:08:05 -
4 3 archival >

Page 1 of2 » ¥ S0

¥ Rows On Each Page

Displaying 1 - 50 of 70

Item:

Description:

390 Content Designer Guide

The Operations Page

Item: Description:

® Operations Tab: Click this tab to navigate to the Operations page, a high-level
automation dashboard. From the toolbar, you can select an Orchestrator,
open a process instance, and control the process instance.

@ Links Pane: Select a link to view the associated items. For example, click
Process Instances to view all processes by state. Expand a group to browse
folders and select an instance. Some objects include a shortcut menu of
commands that you can right-click to access. For example, the illustration
shows that the user right-clicked a Process Watch object subprocess and
clicked Start Process in the shortcut menu.

@ Chart Area: Point to a bar in the chart area to display the number of items that
match the associated state. Click a bar to display only items that match the
associated state.

@ Operations Table or List: Depending on your selection from the Links pane,
this area displays the resulting data in a table or list.

Filters for Process Instances
You can apply the following filters to a Touchpoint Manager shortcut in a process watch
object to define the objects that the shortcut displays:
All Instances

Displays all the process instances in the current Orchestrator. All instances display
only if all filters are cleared or all filters are selected.

Queued
Displays all instances that are in a queued state and waiting to run.
Running

Displays running process instances on the touchpoint. This filter does not list
Waiting, Suspended, or Breakpoint suspended instances.

Suspended

Displays process instances that a user or the application on the touchpoint currently
have suspended.

Waiting

Displays process instances that have an inactive run state, such as processes where
all active operators are waiting for an external asynchronous event. The event could
be a user interaction, target date and time, or other long-running operation.

Chapter 10: Running, Testing, and Debugging Processes 391

The Operations Page

Blocked

Displays process instances that are blocked because there is no available path. A
blocked process instance can complete after a user suspends the process and
provides a valid path. The blocked state reflects the following situations:

m The process instance requires user intervention.

m A process instance cannot proceed because of an unexpected condition.
Completed

Displays all process instances on the touchpoint that completed without issues.
Failed

Displays all process instances on the touchpoint that ended without completing.
Aborted

Displays all process instances on the touchpoint that ended abnormally. To identify
processes that have issues quickly, examine this folder. To troubleshoot the
process, open the instance that failed.

Filter Objects Displayed by a Shortcut

The Process Watch includes a shortcut for each of the filters. You can use the following
procedure to add filters to the Process Watch.
Follow these steps:

1. Open the Process Watch object: select a Library folder and double-click the Process
Watch object.

2. Onthe Process Watch tab, select a process from a Library folder in the left pane,
then click Add New in the toolbar.

The selected object is added as a shortcut in the Process Watch.
3. Expand the process object shortcut and select the filters.
4. Save the changes.
To view the object instance for the selected filters, click the Operations tab and expand
the Process Watch palette. You can select the new shortcut from the location you

created the shortcut in. Corresponding instances are displayed for the process object,
depending on the filters that you specified.

392 Content Designer Guide

The Operations Page

Process Watch Objects

A Process Watch object provides an easy way to monitor the status of other automation
objects. You create Process Watch objects in the Library Browser. You can add objects
(technically pointers to objects) from multiple domains, touchpoints, orchestrators, and
other libraries. When you view the Process Watch object on the Operations page, it
displays the current state of the monitored objects.

Create a New Process Watch Object

Define a new Process Watch object in the Library Browser and monitor the status of
each object that it includes on the Operations page.

Note: To set rights and perform other object tasks, the best practice is to organize the
objects in folders. Do not create objects at the root level because you cannot manage
such objects as a group.
Follow these steps:
1. Click the Library tab.
2. Inthe Library folders pane
a. Select an orchestrator in the design or production environment.
b. Select a folder.
3. Inthe toolbar, click New and select Process Watch.
A new process watch object appears in the selected folder.
4. Inthe Name field, enter a name for the process watch.
5. Double-click the new process watch.
The Process Watch opens in a browser window.
6. Inthe left pane

a. Select the domain, environment, orchestrator, touchpoint, host group, and
folder for the object you want to add to the process watch.

b. Select the object that you want to include in the process watch.
7. Inthe toolbar, click Add New.

The selected object is added to the process watch. The name, object type,
reference path, mode, and description of the selected object appears.

8. If you added a process, select one or more States that you want to display in
process watch, for example, queued, suspended, and blocked.

9. Click Save.

Chapter 10: Running, Testing, and Debugging Processes 393

The Operations Page

Monitor Objects from within a Process Watch

You can open an instance of a process shown in the Process Watch window Details
pane. Opening a process instance lets you closely monitor or edit the execution of the
object instance. Your changes to an object instance affect only the execution of that
instance; they do not change the object definition in the Library.

Note: A CA Process Automation user must have sufficient permissions to view or edit an
object in the Process Watch window.

To save changes to an object instance, right-click the process instance in Process Watch,
and click Export.

Note: For more information about working with process instances in Process Watch, see
the Content Administrator Guide.

Extended Relative Path Support

An automation solution developed in CA Process Automation consists of various
automation object types that can include processes, datasets, start request forms, and
interaction request forms.

CA Process Automation lets the users move an automation solution from any level
throughout the library hierarchy. For example, users can move objects from one folder
to another folder or they can move the automation objects to a different Domain
library. When you move the automation solutions through a library, the root path of the
objects changes. To move an automation solution without breaking or changing the
relationship between the objects despite the root folder change, use the Extended
relative path option.

Note: CA Process Automation provides Relative and Absolute options in the drop-down
list of the MODE column for the object shortcut added in Process Watch and Package.

Content Package Objects

The content package automation object bundles the CA Process Automation objects
that the content designer exported into a different environment. The content designer
adds the automation objects in a folder and exports the folder as a content package.
When you view the content package object on the Operations page, it displays the
current state of the imported objects.

More Information

Content Package Objects (see page 432)

394 Content Designer Guide

The Operations Page

Monitor Objects from within a Process Watch

You can open an instance of an object from the Content Packages window Details pane.
Opening an object lets you closely monitor the object instance while the instance runs.
Your changes to an object instance affect only how that instance runs; the changes do
not modify the object definition in the Library.

Note: A CA Process Automation user must have sufficient permissions to view or edit an
object in the Content Package window.

You can perform the following actions to an object in a content package:

m Start or suspend a process

m Start a start request form

m Make a custom operator available or unavailable

m Activate or deactivate a schedule

Chapter 10: Running, Testing, and Debugging Processes 395

Execution Rules

Execution Rules

Operators in a process can have multiple entry and exit links. An entry link serves as an
execution order and invokes the operator. Each exit link corresponds to a particular
outcome of the operator. Operators have predefined exit links (such as Aborted,
Completed, Failed, or Successful). Some operators also allow you to use a Boolean
expression to define a custom exit link based on the results and the value of variables
accessible to operators in a process.

The execution rules of a process are as follows:

Start operators in the main flow can have an entry link. If it has an entry link, it
cannot have an exit link and act as a Reset operator (for example, used to reset a
complete process).

Stop operators have no exit and complete the execution of a process.

All exit links with Boolean conditions evaluated as True are enabled and lead to
activation of subsequent exit operators. Default exit links are mutually exclusive
with one another. All custom links for which the Boolean expression evaluates to
true are enabled and lead to subsequent exit operators.

Operators (other than recapitalized operators in a looped branch of a process) are
processed only once during execution of a branch of a process. When a link from a
completed operator leads to an operator that has already been activated, then the
activated operator is not processed a second time. After activation, the processed

link is unavailable to subsequent processing of a process.

Some operators support looped processing, in which the Workflow module
executes the operator either a specified number of times or indefinitely. The exit
conditions and the connecting links from the operator are evaluated only when the
loop is terminated. The Loop operator further allows you to apply looped
processing and its exit conditions to an embedded sequence of operators.

Break links interrupt execution of a loop in operators that support the use of looped
processing.

396 Content Designer Guide

Runtime Security

Runtime Security

The optional Runtime Security feature, when enabled, helps verify the identity of the
user who is running the secure process or schedule. The user for any process is either
the owner or the one calling the process. The user for any schedule is always the owner.
The caller user identity is the user identity that starts a process, schedule, or operator.

Runtime security enforcement is used when a process starts, regardless of how the
process is invoked. For example, runtime security enforcement applies to child

processes started by parent processes.

See Specify Runtime Security Properties (see page 68).

You can also configure an operator in a process to run in the context of the user who
called it by checking the Run as Caller User check box listed under Execution Settings.
Marking this option indicates that you want the operator to run as if the user who
started the process was in control. Operator settings override process property settings,
if different.

Properties Affecting Security of Running Processes

Only the process owner or environment content administrators can set Runtime
Security. Two process properties impact runtime security for instances of this process:

® Runtime Security

® Runas Owner

Chapter 10: Running, Testing, and Debugging Processes 397

Runtime Security

Runtime Security

Specifies whether to enforce runtime security for this process. Runtime security can
be enabled or disabled either explicitly or through inheritance. When set explicitly,
changes to inherited settings have no impact.

Inherit from Orchestrator

Applies the same setting that is currently configured on the orchestrator.
Enable Runtime Security can be selected or cleared on the Policies tab of the
parent orchestrator.

Enable

Indicates you want to enable Runtime Security. When a user attempts to start
an instance of this process, CA Process Automation examines the setting for
Run As Owner for the user.

Disable

If Run As Owner is selected, CA Process Automation determines the user
currently set as owner and starts the process under the identity of the
owner. If this process calls another process, that process runs under the
identity of the owner of the parent process.

Note: This setting can be overridden at the operator level if Run as caller
user is selected.

If Run As Owner is cleared, CA Process Automation examines permissions
for the user that is attempting to start an instance of the process. If that
user has start rights, CA Process Automation allows the process instance to
start under the caller user identity. If this process invokes another process
set as caller user, CA Process Automation checks start rights for the child
process.

Indicates you want to disable Runtime Security. The Run As Owner check box is
disabled.

Run As Owner

This check box is enabled only if Runtime Security is enabled either explicitly or
through inheritance.

Selected

Specifies that all instances of the current process can run under the identity of
the owner (run as owner). When an authorized user starts the process, the
owner gains access to child processes and other objects. Access by the owner
can include objects that the caller user, who launched the instance, is not
permitted to access. Only the process owner or environment content
administrator can set this property.

Cleared

Specifies that start permission is verified at runtime for the caller user that
attempts to start the process instance .

398 Content Designer Guide

Exception Handling

Guidelines for Setting Runtime Security for a Process

At startup, a process instance can assume one of the following identities:
m The caller user, that is, the user who started the process instance.

m The process owner.

When configuring runtime security at the process level, consider the following

guidelines.

Your Objective: Required Configuration:

Run the process as the caller user. m Select Enable in the Runtime Security
Enforce runtime security rights with the field.

identity of the user who starts the process

. Y P Clear Run as Owner.

instance.

Run the process as owner. m Select Enable in the Runtime Security

Enforce runtime security by running field.
process instances under the identity of the

. Select Run as Owner.
owner, regardless of who starts it.

Disable validating and enforcing process Select Disable in the Runtime Security
ownership at runtime. field. This option helps ensure backward
compatibility for existing processes.

More information:

Determine When to Select Run as Owner (see page 67)

Exception Handling

Exception handling allows you to define sequences of operators for predefined
exceptions on operators in a process, such as Failure, Abort, or Unexpected outcome.
You can also create a default sequence of operators to perform for any exceptions
lacking an explicit sequence. While the Workflow module processes an exception, it
pauses execution of any other operators in the process.

Exception handling uses priorities when evaluating exit conditions on an operator. The
following table lists the exception types:

Priority Exception Type Occurs When

1 System Exception There is an incorrect touchpoint name, an
unreachable agent, or any type of
communications failure.

Chapter 10: Running, Testing, and Debugging Processes 399

Exception Handling

Priority Exception Type Occurs When

2 Unidentified Response There is no exit link for a particular exit
condition.

3 Aborted An operator aborts or a user aborts an
operator.

4 Timeout An operation times out and there is no path
defined from the timeout port to the main
flow.

When a process operator experiences an exception, the Workflow module takes the
following actions:

m Suspends processing of the process after executing the current operators.

m Tries to match and run an exception in the following order:

Priority Matches Action

1 Exception handler Runs the exception handler defined in the
defined in the process process object.
object.

2 Exception handler Runs the exception handler defined in the
defined on the default default process object for the orchestrator.

process object for the
orchestrator running the
Workflow module.

3 None Ignores the exception.

The Workflow module continues processing
the process.

400 Content Designer Guide

Exception Handling

Create Exception Handlers
Exception handlers let you create sequences of operators for the following predefined
exceptions in a process:
Aborted
Occurs on a user-specified or operator abort.
System Error

Occurs with any type of communication failure. For example, when the process
contains an incorrect touchpoint name or it refers to an agent that is not running.

Timeout
Occurs when both of the following circumstances are true:
m The operator times out before it finishes.

m The operator is configured to take the timeout path and end or continue with a
result. The exception handler defines the timeout path.

Unidentified Response

Occurs when no output connector corresponds to the response.

Follow these steps:
1. Click the Designer tab.

2. Click Open, navigate to the folder with the process to open, select the process, and
click Open.

3. Select the Exception Handler tab.

4. Expand the Standard folder in the Operators palette and drag the Exception
operator to the process.

5. Expand the Exception operator properties dialog.
6. Expand Information and type a name in the Name field.

Note: The best practice is to name operators in a default exception handler with a
prefix so they do not match operator names in the process that loads the default
exception handler.

7. Expand Exception Occurred.
8. Select an exception type from the drop-down list.

9. From the palette, drag more operators to the process that completes the rule for
the exception. Link the operators in the execution sequence.

Note: If you finish the sequence without adding any Stop operators, the main
process resumes. Optionally, you can stop the process for one or more paths in the
Exception Handler.

10. In the toolbar, click Save.

Chapter 10: Running, Testing, and Debugging Processes 401

Exception Handling

The new exception rule is added.

402 Content Designer Guide

Exception Handling

As part of exception handling, you can reset the operator and then continue the
process. You can also select to ignore an exception and continue with the process. To
ignore an exception, set the operator in simulate mode and continue with the process.
The Reset operator resides on the Common palette. You can use the Reset operator in
the process pane, exception handler, and lane change handler.

Follow these steps:

1. Right-click Add, Reset to add a Reset operator.

The text box displays an entry with a drop-down list from which to select one of the
operators in the current process. You can add multiple operator names.

2. To manipulate an operator name, click Delete, Move Up, and Move Down as
appropriate.

3. Enter an expression that resolves to a string (for example, operator name) or a list
of values (for example, operator names) at run time. Take this action instead of
selecting an operator name from the drop-down list.

4. Select or clear Continue with Result.
Selected:

Makes the EndCondition option available to select either Successful or
Unsuccessful.

Successful:

If an error condition is met at run time, CA Process Automation assumes
that the selected operators are successful. It continues with the rest of the
process flow.

Unsuccessful:

If an error condition is met at run time, CA Process Automation assumes
that the selected operators failed. It continues with the rest of the process
flow.

Cleared:

If an error condition is met at run time, CA Process Automation resets the
selected operators, then continues with the process flow.

5. (Optional) To ignore an exception and continue the process, add a Reset operator in
the exception handler mode to ignore the exception:

exceptionStart-<operator-name>.Source

Note: When you add a field to the Reset operator Operators List, the process Loop
operator names appear in the drop-down list of the new field. The Reset operator resets
all operators in the Loop operator and resets the Loop operator to the first iteration.
After the reset, the Loop operator restarts from the first iteration. Because the Loop
operator does not support simulation, the Reset operator always resets a Loop
operator. The Loop operator resets and the following field values are ignored:

m Continue with Result

Chapter 10: Running, Testing, and Debugging Processes 403

Run Processes Interactively

m End condition
m Pre-execution code

m Post-execution code

Run Processes Interactively

You can start an instance of a process immediately or in suspended mode.

When a process starts immediately, an instance of the process is created, loaded it to
memory, and immediately starts processing operators. If a process is started in
suspended mode, the instance of the process is loaded into memory, but it does not
start processing.

You can put a shortcut to a process in a Process Watch object. If you are an authorized
user, you can start and monitor the process from within the Process Watch object. In
the Operations tab's Process Watch palette, right-click the process and click Start.

You can start the current version of a process by accessing the process object in the
Library Browser. You can also start a process while you are editing it in the Process
Designer. While you are editing a process, you can check in changes and can start the
current version of the process without leaving the Process Designer.

When a process starts, CA Process Automation creates a copy or instance of it in the
automation library. Changes to an instance do not affect the base definition of the
process. You can access the base definition through the Library Browser. Process
instances are monitored through a Process Watch. To monitor a process instance, you
can open the Process Watch in the Operations tab's Process Watch palette. You can
open the actual Process Watch automation object through the Library Browser.

More information:

The Operations Page (see page 390)

404 Content Designer Guide

Run Processes Interactively

Start a Process from the Library

You can start a process from the Library tab. Starting a process immediately lets you
perform a task in a production environment.

Follow these steps:

1.
2.

Click the Library tab.

Click Orchestrator and select the appropriate Orchestrator:environment
combination.

Navigate to the folder that contains the process to start.
Take one of the following actions:
m Right-click the process and select Start Process.

m Select the process and select Start Process from the More Actions drop-down
list on the toolbar.

The Monitor Process Instance prompt opens.
Take one of the following actions:

m Click Yes to open a new window to monitor the running instance of the
process.

m Click No to run an instance of the process. The process is not displayed.

The process starts immediately.

Chapter 10: Running, Testing, and Debugging Processes 405

Run Processes Interactively

Start a Process as Suspended from the Library

You can start an instance of a process in a suspended state to achieve any of the
following objectives:

Insert breakpoints.

Set parameters.

Make other changes before the process runs.
Monitor or control the execution of a process.

Debug the sequence of steps in the process.

Follow these steps:

1.

2
3.
4

Click the Library tab.

Click Orchestrator and select the appropriate Orchestrator:environment.
Navigate to the folder that contains the process to start in suspended state.
Take one of the following actions:

m Right-click the process and select Start Suspended.

m Select the process and select Start Suspended from the More Actions
drop-down list on the toolbar.

The Monitor Process Instance prompt opens.
Take one of the following actions:

m Click Yes to open the Designer tab with the debug toolbar. You can begin
working with the suspended instance immediately.

m Click No to load the process into the Operations tab. The Designer tab does not
open. You can later navigate to the instance in the Process Watch palette in the
Operations tab. To continue, right-click that instance and select Start
Suspended.

More information:

Debug a Process (see page 408)

406 Content Designer Guide

Run Processes Interactively

Start a Process While Editing

While you are editing a process object, you can start the current version without leaving
the Process Designer. The Start and Start Suspended commands are available on the File
menu. Start and Start Suspended buttons are also available on the Process Designer
toolbar.

» @,
StartJ L Start Suspended

The Process Designer Start and Start Suspended commands create an instance of the
current process in memory, like starting a process in the Library Browser. If you click
Start, the instance of the corresponding process is created and starts executing the
process immediately. If you click Start Suspended, the instance of the corresponding
process is created but does not start execution of the process.

Both the Start and Start Suspended commands prompt for the touchpoint on which to
run the process, then prompt whether you want to monitor execution of the process. If
you monitor execution of the process, CA Process Automation opens a separate Process
Designer window to work with the new instance in debug mode.

Open an Instance of a Process
The Process Watch object and Operations page let you view instances of processes on
an orchestrator. You can:
m Recover and restart the processes that are suspended after an incident.
m Assess the values of dataset variables and the status of operators in running,

suspended, or ended processes.

You can create Process Watch objects or use the Operations page to monitor and edit
instances of processes. Click the Operations tab to monitor all instances of processes on
an orchestrator. You can also set filters to monitor only selected objects.

More information:

The Operations Page (see page 390)

Chapter 10: Running, Testing, and Debugging Processes 407

Process States

Process States

The Process Designer periodically updates the current state of the process. Color-coded
icons are used to indicate the state of every operator. You can edit the process while it
is running or suspended. After a process has completed or aborted you can no longer
change the instance.

Debug a Process

When you open an instance of a process, the Process Designer helps you monitor the
status and debug a process. Debug buttons are available on the Process Designer
toolbar. When processing is suspended, you can edit the process and change parameter
values in operators.

A process can be suspended in several ways:

m When an instance is started in a suspended state.

m When you click the Suspend Process button.

m When a process ends and you click the Switch Process Status on Completion button
on the Process Designer toolbar. The process is suspended but the status appears
as Blocked.

m When there are no valid operators left on any branch of a running process. The
process is suspended but the status appears as Blocked.

Suspend a Process

When a process is in the suspended state, you can do any of the following:

m Change whether a process is unloaded after completion

m Reset the process

m Reset operators in a process

m Add or remove breakpoints

m Modify the process

m Click the Resume Process button to continue processing

m Abort the process

Modifying a process in a suspended state lets you work on an unanticipated issue, and
then resume automated execution while still tracking any changes that you have made.

Switch to a Process Watch to export a modified instance of a process and permanently
save any changes made at runtime.

408 Content Designer Guide

Debug a Process

To suspend execution of an instance of a process while working in debug mode, click the
Suspend Process button on the toolbar of the Process Designer.

The execution of the process instance stops. No further dependencies are examined
until you resume execution of the process. You can edit a process in a suspended state.
Any modifications to operator parameters or other elements of the process affect only
that instance of the process.

To restart execution in a suspended instance of a process, click the Resume Process
button. The Resume Process button restarts a suspended process from where it
stopped executing unless it is reset. If an instance of a suspended process is reset,
execution restarts from the beginning of the process.

Change whether Processes are Unloaded on Completion

When running a process in debug mode, the Workflow module typically does not unload
the process instance when it reaches a Stop operator. This allows you to modify and
restart the process.

To force the Workflow module to unload a process when it reaches a Stop operator,
click Keep State on the Control menu to clear the check mark next to the command. You
can also use the Switch Process Status on Completion button on the toolbar to switch
this command on or off. The toolbar button remains inactive while the command is
toggled on.

Set and Remove Breakpoints in a Process

You can use breakpoints to identify errors. Breakpoints help you check variable values
and operator parameters. Set a breakpoint on an operator to interrupt a process
immediately before the operator starts. You can then set parameter values and examine
processing of an operator as it occurs.

When a breakpoint is set, the entire process is suspended when it reaches the operator
with the breakpoint. An exclamation point (!) symbol appears near the operator that has
suspended the process.

Chapter 10: Running, Testing, and Debugging Processes 409

Debug a Process

You can set and remove breakpoints in a process object or in a suspended process
instance. Breakpoints you set in the original process object definition automatically
appear in any instances of that process.
Follow these steps:
1. Open a process in the Process Designer.
2. Select one or more operators in the process.
3. Onthe toolbar, click Set Breakpoints.
The breakpoint symbol appears next to the selected operator.

4. To remove existing breakpoints, select one or more operators, and click the
Remove Breakpoints button on the Debug toolbar.

410 Content Designer Guide

Debug a Process

Debug a Java Process

The Java connector uses Apache Log4j to capture the connector’s log messages. When
troubleshooting an issue with a Java process, debug it by enabling and then reviewing
the log files. The log messages captured at the DEBUG level are very detailed and should
help system engineers define the root cause of an issue.

Note: The paths to the log4j.xml and c2o.log files change when running the Java module
on a CA Process Automation agent.

Follow these steps:

1.

Locate the log4j.xml file at the following path:
CA Process Automation Installation path\Domain\server\c2o\conf\log4j.xml

Set the Java module’s logdj threshold level to DEBUG.

An example showing the specific section and line (shown in bold) of the log4j.xml
file follows:
<!-- A size based file rolling appender for C20 and JXTA Logs-->
<appender name="C20FILE"
class="org.jboss.logging.appender.RollingFileAppender">
<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
<param name="File" value="${jboss.server.home.dir}/log/c20.log"/>
<param name="Threshold" value="DEBUG"/>
<param name="Append" value="true"/>
<param name="MaxFileSize" value="50000KB"/>
<param name="MaxBackupIndex" value="3"/>
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%d %-5p [%C] [%15.15t] Sm%n"/>
</layout>
</appender>

Insert the following section in the log4j.xml file:

<category name="com.optinuity.c2o.servicegroup.javaobject">
<priority value="DEBUG" />

</category>

Open the Java connector’s messages captured in the c2o.log file located at the
following path:
CA Process Automation Installation path\Domain\server\c2o\log\c2o.log

Chapter 10: Running, Testing, and Debugging Processes 411

Control a Process Branch

Reset a Process

You can reset a suspended instance of a process to restart execution. All variables,
parameters, and operators in a suspended instance of a process are reset to their initial
states, with one exception. The application does not reset user-defined parameters.

If you resume execution of a process after resetting it, processing restarts at the Start
operator. You can reset a process during testing or debugging to rerun chains of
operators. In production, you can reset a process following an incident. You can modify
a reset process before restarting it to avoid redoing some tasks or to perform some
additional tasks. For example, you can:

m Set or remove breakpoints
m Use a different process

m Set operator parameter settings

Abort a Process

To stop an instance of a process, click the Abort Process button on the toolbar of the
Process Designer.

Note: You cannot modify a process instance after executing the abort command.

Control a Process Branch

The following commands allow you to control individual branches of a process without
affecting the entire process.

m enable and disable operators
m abort execution of operators
m reset individual operators and resume execution of operators in a process.

These commands appear in the Process Designer toolbar for both process designs and
instances.

412 Content Designer Guide

Control a Process Branch

Disable Operators or Deactivate Branches

You can use the Disable Operators command to disable an operator and temporarily
disable part of a process without otherwise modifying the process. Disabling an
operator stops execution of the operator and all subsequent operators in a branch of a
process. An operator is inaccessible to a process when every path to it from any Start
operator passes through a deactivated operator. The Disable Operators command is
available when editing either the definition object for a process or an instance of a
process.

To disable an operator in a process

1. Open either a process object or an instance of a process.

Note: For a running instance of a process, suspend execution before proceeding to
the next step of the procedure.

2. Select one or more operators that you want to disable.
3. Click Disable Operators on the Process Designer toolbar to disable an operator.

The disabled symbol appears next to the operator.

Note: To enable disabled operators, select one or more disabled operators, and click
Enable Operators on the toolbar.

You can also deactivate an entire branch by right-clicking a link and selecting Disable
Link from the menu.

More information:

Simulate Processing of Operators (see page 415)

Abort an Operator

The Abort Operators command aborts processing of one or more selected operators
that are in a Running state. An aborted operator enters a Failed state. Processing does
not continue on an aborted branch of a process, but you can still continue on other
branches. If you defined an exception handler, it is executed to handle an abort
exception.

Follow these steps:

1. Open arunning instance of a process.

2. Select the running operator that you want to abort.

3. Click the Abort Operators button on the Process Designer toolbar:

Processing for the operator is aborted.

Chapter 10: Running, Testing, and Debugging Processes 413

Control a Process Branch

Reset Operators in a Process

The Reset Operators command resets selected operators in a suspended process to
their initial states as if they had not been executed. This command is typically used to
allow operators in an instance of a process to run again without resetting the entire
process. You can modify the operators with different parameter settings, or modify the
process in other ways.
Follow these steps:
1. Open asuspended instance of a process.

If necessary, suspend execution of a running instance.
2. Select one or more operators that you want to reset.
3. Click the Reset Operators button on the Process Designer toolbar.

The operators are reset.

Any Loop operators are reset as follows:

m Resets all operators inside the Loop operator.

m Resets the Loop operator to its first iteration.

After the reset, the Loop operator will restart from the first iteration.

Resume Execution of a Suspended Process

The Resume Process command resumes processing of operators you have reset in a
suspended instance of a process.

To resume execution of a suspended process

1. Open asuspended instance of a process.

2. Click the Resume Process button on the Process Designer toolbar.

The process is resumed.

414 Content Designer Guide

Simulate Processing of Operators

Simulate Processing of Operators

To bypass an operator while executing subsequent operators in a process, you can
simulate execution of the operator, rather than disable it. You can simulate processing
of selected operators or an entire process. You can use the process simulation
properties for every operator in a process. You can also override the process settings for
individual process operators.

Simulation mode is often used during development to verify the flow within a process or
to verify the synchronization of interdependent processes. In the production
environment, the local mode is often used to skip individual tasks to accommodate
transient conditions in the system, such as an unavailable agent, orchestrator, or a
suspended application. The distant simulation mode is used mostly in the development
phase to verify the configuration and parameters of operators in a process. The distant
simulation mode can also be used to run simulated tasks in production periodically, for
the sole purpose of verifying dataset field values.

Simulation mode controls the results and duration of an operator in a process. You can
use it during development to avoid executing an operator while testing operators in
subsequent branches of a process. Simulation is useful in a production environment
when an operator should not run. The operators do not run when the processes or
resources are unavailable. In either case, simulation of an operator lets you run a
process without changing entry or exit links on the operator. In other words, you are
able to avoid running the operator temporarily while preserving the structure and
dependencies in your process.

Chapter 10: Running, Testing, and Debugging Processes 415

Simulate Processing of Operators

Simulate Processing of a Selected Operator

You can simulate the processing of a selected operator.

Follow these steps:

Ll

Open process in the Process Designer.

Open the operator properties.

Configure the Simulation properties for any operator.

To activate simulation, specify either a Local or Distant simulation type.

— Local: The operator is not processed. CA Process Automation does not call the
associated module or verify the module parameters. The simulated operator
returns the result and processes the link specified by the End condition option.

— Distant: The Workflow module calls the associated module. The module verifies
parameters before returning the result but does not actually run the operator.
If the parameters are incorrect, the simulated operator fails regardless of the
specified outcome. If the parameters are correct, the simulated operator
returns the result and processes the link specified by the End condition option.

The simulation symbol appears next to an operator when either the local or distant
simulation is activated:

(Optional) Select the Evaluate Pre-Execution and post-Execution Code check box to
prevent side effects generated by ignoring preconditions or post-execution code.
Select this option to evaluate the operator’s preconditions and execute its
post-execution code.

Set the End condition parameter. It specifies the simulated outcome of an operator.
The End condition determines which exit link is processed after the simulated
processing of the operator. Setting this parameter determines subsequent
processing of dependent branches in the process. This setting determines the value
returned by the Result variable of an operator. The Successful or Completed setting
returns a positive value, which activates a Successful exit link on an operator. The
Failed setting returns zero or a negative value, which activates a Failure or Abort
exit link. The Custom Result setting allows you to return an arbitrary value, typically
used to test a custom exit link on an operator.

(Optional) Specify a delay in seconds to simulate the duration of the task. Change
the Delay field from the default value of zero if the time typically required to
execute an operator could affect the behavior or outcome of other operators in the
process.

416 Content Designer Guide

Simulate Processing of Operators

More information:

Pre-Execution Code and Post-Execution Code (see page 218)

Simulate Processing of an Entire Process

You can simulate processing for all steps of a process. The process simulation settings
apply to all operators in the process that are not configured to override the simulation
settings for the process.

Follow these steps:
1. Open the process and view its properties.

2. On the Properties pane Simulation tab, configure the default simulation settings for
all operators in the process:

= Mode

m Delay

m End Condition

m Evaluate Pre-execution and Post-execution Code

Except for the option to override the process settings, these settings are the same as
described for configuring an operator.

Chapter 10: Running, Testing, and Debugging Processes 417

Chapter 11: Generating and Using Process
Documentation

You can generate documentation of your automated processes. Others can print the
process documentation that you generate.
This section contains the following topics:

About Process Documentation (see page 419)
Generate Process Documentation (see page 420)

About Process Documentation

You can generate process definition details and graphics with annotations. The output
format is PDF.

Process documentation includes details at the following levels:

m Process-level details

m Operator-level details for each operator used in the process flow

The following list summarizes the details that are generated at each level:
Process-level details

Process documentation generates the following details for a selected process:

m Process image

m Process name

m User-created parameters in the process dataset

m Library path

m Owner

m Process version

m Release

m Checked out by

m Creation date

m Last modified date

m Orchestrator where the process resides

m Process tags

Chapter 11: Generating and Using Process Documentation 419

Generate Process Documentation

Operator-level details

Process documentation generates the following details for each operator that a
selected process uses:

m Bitmap of the icon that represents the operator
m User-created parameters in the operator dataset
m Operator name
m Operator description
m Operator type (that is, the operator category)
m Operator parameters
m Exit ports
m Execution Settings
- Pre-execution code
- Post-execution code
- Loop
- Timeout

- Target

Generate Process Documentation

You can generate process documentation at any time. For example, use this feature to
record the status of a process before you transition it to production.

Follow these steps:

1.
2.

Open the process from the Library tab.
In the Designer tab, click Process Documentation toolbar button.

The Process Documentation Options dialog opens.

420 Content Designer Guide

Generate Process Documentation

(Optional) Select options to include in the documentation.

m Process Dataset

m Operator Information

m Pre-/Post-Execution Code

m Operator Properties

m Operator Dataset

m Exception Handler (if selected, CA Process Automation generates
documentation and an image file for any operators in the Exception Handler)

m Lane Change Handler (if selected, CA Process Automation generates
documentation and an image file for any operators in the Lane Change
Handler)

Click OK.

A dialog prompts you whether to open or save the file.

Click open to view the contents of the Zip file, or click Save to save the Zip file to a
location of your choice.

The Zip file contains:

A PDF file that contains the process documentation.

The full-size images contained in the process documentation. The PDF contains
scaled images, so they may not be legible if the process is very large.

An XML file that contains the raw data used to generate the documentation in
XML format. This file lets you transform the XML into other formats.

Chapter 11: Generating and Using Process Documentation 421

Chapter 12: Release Objects to Another
Environment

After you design and test a new process, you can release the process with the objects it
uses. Typically, you release a new process from a design environment Orchestrator
library to a production environment Orchestrator library. You can export objects
themselves, in a folder, in a package, or in a content package (see page 429). However,
to export related objects in a single container and attach a release version to it, you
must export those objects as a content package.

If you used packages in CA Process Automation 04.1.00, migrate those objects to a new
content package.

The design environment and the production environment are in the same Domain. If the
functionality is designed on one location to deploy in a different location, you can
implement the product in two separate Domains. You can import the XML file for an
object, folder, package, or content package to an Orchestrator in another environment
in a different Domain.

Note: When you export objects to import to an Orchestrator in the same environment,
you can omit baselining objects and setting release versions.

An administrator or content designer can perform this process. Typically, an
administrator exports a folder as a content package from the default environment and
then imports it to a production environment. The following illustration describes the
process:

Release Objects to Another Environment

Set the release Baseline the Add objects to a
version of the » version of the - folder
Content Designers objects to export objects to export (if applicable})
|
Y
Perform an _| Perform an
Administrators export - import

Chapter 12: Release Objects to Another Environment 423

Release Versions

Follow these steps:

Set the release version of objects to export. (see page 425)

Baseline the version of objects to export (if applicable) (see page 426).

Add objects to a folder (if applicable) (see page 434).

Perform an export (see page 430).

o N e

Perform an import (see page 444).

Release Versions

A release occurs when you deploy a process and its components from a design
environment to a production environment. When you select components to package for
export, you select one version of each component. You can enter a release-specific
value in the Release Version field of the version of each folder and object you plan to
package for export. This practice is required when you export objects in a folder as a
content package.

After you set a release version for each object, you can add a corresponding version to
the folder to export as a content package.

Content packages begin as folders in the initial CA Process Automation environment.
When you export a folder as a content package and you import it to a new environment,
the product baselines the imported object versions in the content package. Users
cannot modify the Release Version data of imported objects.

View Release Version Information

The Versions tab displays information about the release versions that are set for the
selected object.

Follow these steps:

1. Click the Library tab.

2. Select an object in the main window and click Properties.

3. The Properties pane appears in the bottom portion of the window.

4. Click the Version tab.

5. View the displayed data under Release Version.

The Release Version identifies the specific version of an object that was imported,
or that you want to export, then import, to a production environment. You can set
this identifier on any individual object.

424 Content Designer Guide

Release Versions

The product locks this field in the following circumstances:
m The object was imported as part of a content package.
m The object was imported from a package (in release 4.1.00) with its release

version in nonmodifiable mode.

Note: See the User Interface Reference for detailed information about the Versions tab.

Set the Release Version of Objects to Export

The Versions tab displays information about the release version(s) that are set for the
selected object. You can set the release version when you are ready to deploy an object
to a production environment. An object's release version typically identifies its specific
version for deployment. Through the Release Version field, for example, you can set the
release version attribute for a process and each associated object.

When you are ready to deploy an object to a production environment:
®m You can export a single object.

®m You can export all of the objects in a selected folder, including its subfolders.

®m You can export the objects as a content package. In this case, release versions are
required on every folder that you export as a content package, and all of the objects
included in the folder. Once the content package is imported, the release version
cannot be modified in the new environment unless a copy of the object is made.

Note: See What is the Difference Between Exporting an Object, a Folder, a Content
Package, and a Package (see page 429) for more information.

In each case, the exported file contains the value of the release version attribute of each
object being exported.

Chapter 12: Release Objects to Another Environment 425

Release Versions

You can set the release version in the following ways:
From the Library

Follow these steps:

1. Click the Library tab.

2. Select a folder from the left pane and then a single object from the list in the
right pane.

3. Right-click the object and then select Properties.
4. From the Properties pane, click the Versions tab.

Note: See the tooltips or the User Interface Reference for field descriptions and
examples.

5. Right-click the applicable version and then select Set Release Version.
6. Enter an appropriate value in the Release Version field.
From the Versions Tab in the Object Editor
Follow these steps:
1. Click the Library tab.
2. Double-click an object.
The current version of the object opens in the object editor.
3. Click the Versions tab.
Note: The process editor does not contain a Versions tab.
4. Right-click the version of the object to deploy and select Set Release Version.
The Release Version field opens.
5. Enter a release version for the object, and then press Enter.
While Checking in an Object

See Check In an Object. (see page 79)

Baseline the Release Version of the Objects

A content designer baselines an object to create a snapshot version of it in the design
environment. Users cannot change the baseline version of an object but can use it as
the basis for a new version. A content designer can baseline objects at any time, but
typically baseline the version of the object that is targeted for export. To prepare for
export, content designers can both baseline and set the release version on the export
version in the same session.

Note: The version of an object that you baseline for exporting in a folder as a content
package can be the current version or another version. Typically, it is the current version
that is checked it.

426 Content Designer Guide

Release Versions

Follow these steps:

1.
2.

Click the Library tab.
Click Orchestrator and select the appropriate Orchestrator:environment.

Navigate to the folder with a target object and verify that the State field for the
object indicates Checked In. (If it does not, check in the object before continuing.)

Select the target object and click Properties.
Click the Versions tab.
If the Baseline button is enabled on the version to release, click Baseline.

In the following example, the Baseline button for Rv2.0 is enabled.

Equation 3: The Properties of all objects has a Versions tab. Here you can, optionally, set
a release version, set one version as current, and baseline one or more listed versions.

7.

Properties
General Tags Versions Audit Trail
Version Release Version ™ Current Baseline
= 1 Rvz.0 Current Baseline
H 0 RvL.D Current Baseline

Close the Properties pane.

Set the Release Version of Content Package as Current

The Versions tab displays information about the release versions that are available for a
content package. The release version typically identifies a specific package version to
deploy in a production environment.

After you import the content package to the new environment, you can use the
Versions tab to set the content package release version attribute.

Follow these steps:

1.
2.

Click the Library tab.
Right-click a content package, and then select Properties.
On the Properties pane, click the Versions tab.

To set the content package as the current release version, select it and click
Current.

Click Yes on the warning message.

The Library browser shows the current version of the content package.

Chapter 12: Release Objects to Another Environment 427

Exporting and Importing

Exporting and Importing

To move the following items from the Library on one Orchestrator to the Library on
another Orchestrator, use the export and import processes:

Objects
Folders
Packages

Content packages

For example, you can copy from a development environment to a production
environment or copy from one Orchestrator to another Orchestrator in the same
environment. The export process creates an XML file that the import process uses. After
you export objects, you import them on the destination Orchestrator.

Consider the following points before you export and import:

Exporting

The export file preserves complete information, including hierarchies and paths, for
each exported object. During export, you can either save the full absolute folder
hierarchy from the root folder, or only the relative paths starting in the selected
folder.

When you import an xml file that was exported as Absolute or Relative paths to an
automation library, CA Process Automation reconstructs the path information
(absolute or relative) in the file from the exported folder structure.

When you export the root folder, the product exports the entire automation library.
Be aware of size constraints before you export the root folder.

You can open an export file in any XML text editor.

You cannot modify the release version of an exported content package. The export
process encrypts the XML export file to prevent modifications.

When you export a folder or object outside of a content package, the object itself
determines the state of the imported object. For example, if you export a
nonmodifiable process outside of a content package, then the process remains
nonmodifiable after import.

The following topics explain the export process.

428 Content Designer Guide

Exporting and Importing

What is the Difference Between Exporting an Object, a Folder, a Content Package, or a
Package?

CA Process Automation lets you export objects and folders in various ways. Every export
option creates an XML file that you can import to a different environment.

You can export the following items:

An object by itself

You can only export an object in a modifiable mode. You can add a release version
to the object, but it is not required. After you import an object to a new
environment, you can modify the object directly.

A folder and all of the subfolders and objects in it

Exporting a folder exports the folder and its contents, including any subfolders. The
contents can include any object available in the CA Process Automation Library.

You can export a folder in a modifiable mode so that you can modify the folder and
its contents directly in a new environment. The product does not require objects
that you export through a folder to have a release version.

The product preserves the path to the folder and the hierarchical structure of
objects and subordinate folders in the export file.

Chapter 12: Release Objects to Another Environment 429

Exporting and Importing

A folder as a content package

A folder becomes a content package upon export and you cannot modify it in the
new environment. The product preserves the path to the folder and the hierarchical
structure of objects and subordinate folders in the export file.

You can add release information to a folder to export as a content package. The
release version attribute is required for all folders, but you can add other relevant
information about the folder or the objects in it.

It is good practice to export a folder as a content package when you are
transitioning a new process with its components from the design environment to
the production environment. The recipients in the production environment cannot
modify the contents of the content package.

Important! If you do not set the release version of the content package or the child
objects in the folder, the product aborts the export task.

A package

The package object is only supported for backward compatibility in CA Process
Automation 04.2.00. You cannot reference packages in interaction request forms,
start request forms, custom operators, process watches, or datasets. You can still
export a 04.1.00 package, but you cannot modify the package after you import it to
a new environment. You can, however, modify the package objects.

To bundle similar objects and export them to a new environment, use a content
package instead.

Packages that you migrate from release 04.1.00 to release 04.2.00 export the same
way as an object.

Note: You cannot export multiple folders or automation objects simultaneously.
Instead, create a folder and then assemble all the objects to export as a single content
package. You cannot export a folder that already contains a content package as a
content package.

Perform an Export

To move objects, folders, packages, and content packages from the Library on one
Orchestrator to the Library on another Orchestrator, use the export process. The
Orchestrator can be on the same environment or a different environment.

Export an Object

Note: Packages that you migrate from release 04.1.00 to release 04.2.00 export in the
same way as an object.

Follow these steps:

1.
2.

Click the Library tab.

Click Orchestrator, then select the appropriate Orchestrator:environment.

430 Content Designer Guide

Exporting and Importing

Export a Folder

Navigate to the object to export, right-click the object, and then select Export.

To specify the paths, select one of the following options:
Export, Absolute Paths
Includes the full path for the selected object.
Export, Relative Paths
Includes the path relative to the folder that contains the selected object.
To save the XML file, click Save on the File Download dialog.
The default file name is object-name.xml.
Navigate to the location on your local drive at which to save the XML file.
Define the name with which to save the file.

For example, append _RP to the file name to denote a relative path or _AP to
denote an absolute path.

object-name RP.xml
object-name AP.xml
Click Save.

The product exports the object.

Follow these steps:

1.
2.
3.

Click the Library tab.
Click Orchestrator, then select the appropriate Orchestrator:environment.

Navigate to the object or folder to export, right-click the folder, and then select one
of the following options:

Export
Exports a folder or package in a modifiable mode.
Export As Content Package (folders only)

Exports a folder as a content package in a nonmodifiable mode.

Chapter 12: Release Objects to Another Environment 431

Exporting and Importing

To specify the export paths, select one of the following options:
Export, Absolute Paths
Includes the full path for the selected folder.
Export, Relative Paths
Includes the path relative to the folder that contains the selected folder.

Important! If the release version of the content package or its child objects is not
set in the folder, the product aborts the export task.

To save the XML file, click Save on the File Download dialog.
The default file name is folder-name.xml.
Navigate to the location on your local drive at which to save the XML file.

Define the name with which to save the file. For example, append _RP to the file
name to denote a relative path or _AP to denote an absolute path.

folder-name RP.xml
folder-name AP.xml
Click Save.

CA Process Automation exports the folder and its contents.

More Information

Export Relative Paths or Export Absolute Paths (see page 436)

Content Package Objects

Complex processes can use various objects including operators, icons, resources,
datasets, and other processes. They can be distributed among multiple folders with
unrelated objects in an automation library. This complexity presents the following
potential issues:

A user can have difficulty working with only the objects that are required for a
deployment or subsequent update.

A developer working with different objects in different folders can have difficulty
tracking or finding specific objects.

An administrator exporting updated objects for deployment to a production
environment can forget a required object.

432 Content Designer Guide

Exporting and Importing

Create a Content Package

To export all of the related automation objects, you can assemble them in a folder and
export that folder as a content package to another CA Process Automation
environment. Content packages are useful because they let you bundle related objects
in a single container and then assign a release version to them. Then when the objects
are imported into a new production environment, they cannot be modified unless the
imported objects are copied. You cannot edit or delete any of the objects in the content
package. This safeguards those objects from being altered in a potentially harmful way.
In other words, you can always roll back to the original content package if you want to
reverse any unwanted changes that are made to the objects. Since the release versions
for the objects are nonmodifiable, content designers in the source design environment
can identify the exported and imported object versions if there is a need to
troubleshoot.

In comparison, if you export objects by themselves or through a folder, they are
modifiable in a new environment. Any objects that are imported through by themselves
or through a folder (instead of a content package) are not required to have a release
version. These objects can be modified directly. It is good practice to export a folder as a
content package when you are transitioning a new process with its components from
the design environment to the production environment.

Note: You cannot export multiple folders or automation objects at a time. Create a
folder and then assemble all the objects to be exported as a single content package. You
cannot export a folder as a content package that already contains a content package or
a package.

You can view imported content packages in the Library.

m When you expand a content package in the right-hand pane, its child objects (that
are part of the current release) display underneath the content package.

®m You can view the latest release information for a folder or content package in their
properties. Right-click the object, select Properties, then click the Versions tab. The
Audit Trail tab records any changes made to the folder or content package.

You can also view all the imported content packages in the Content Packages palette of
the Operations tab.

m [f you click the content package in the left-hand pane, its properties display in the
right-hand pane.

m If you click the individual objects it contains in the left-hand pane, the object
properties display in the right-hand pane.

m [f the content package contains a process, the right-hand side displays a graphical
view of the instances.

More Information

Release Versions (see page 424)

Chapter 12: Release Objects to Another Environment 433

Exporting and Importing

Add Objects to a Folder
Before you export a folder as a content package, populate the folder with objects.

A CA Process Automation release 04.02.00 content package requires all of the objects to
export to be in a single folder. In release 04.1.00, you could add objects as shortcuts
from different folders to a package for export.

After you add an object, you can use either the Version or the Release Version
parameter to set the object version. If you customized the Release Version parameter,
set the object version in the Release Version column.

You can set the release version attribute before you add a selected version of each
object to a folder. After you add objects to the folder, set the content package release
version.
Follow these steps:
1. Create afolder.
2. To open the folder, double-click it in the Library Browser folder pane.
3. Inthe toolbar, click New, and then select an object type.
CA Process Automation creates an object.
4. Provide a unique name for the object.
Note: You can also cut and paste an object from another folder to your new content

package folder.
Add Release Information for a Folder

Adding release information to a folder is a useful way to provide relevant information
about the folder and any of the objects it contains.

You can define the folder release in the Release tab under the folder properties. The
ReleaseVersion attribute value that you define for a folder in the Release tab lets you
manage the version of a folder, which is especially useful if you want to export that
folder as a content package. ReleaseVersion is the one required attribute about the
folder. You cannot delete or edit the ReleaseVersion attribute but you can insert the
appropriate release version in the Value column.

Note: You can view the latest release information for a folder in the folder properties.
Right-click the folder, select Properties, then click the Release tab. The Audit Trail tab
records any changes made to the folder.

Follow these steps:

1. Click the Library tab.

2. Right-click the folder in the right pane, and select Properties.

434 Content Designer Guide

Exporting and Importing

3. From the Properties pane, click the Release tab to view the folder properties.
4. Click the Value field.

The Value box displays.
5. Enter a value for the ReleaseVersion attribute and then click OK.

6. Click the Add Property link to define an additional folder property, and click Delete
Property to remove a user-defined folder property.

Once the release version has been assigned, you can export the folder as a content
package.

More Information

Export a Folder (see page 431)
Call Content Package Objects

When any object calls another object in CA Process Automation, the product retrieves
the referenced object from the database unless the object is deleted. For example, one
process can call another process, or a process can refer to a specific dataset. If the
referenced object has been deleted, the product displays an error. Otherwise, the
product returns the object.

However, calling an object that is in a content package has another restriction. If any
object references another object in a content package, the product verifies that it
resides in the current release version of the content package. If the object is not in the
current release version of the content package (or has been deleted) the product
returns an error.

The product requires the most current version of an object in a content package in the
following instances:

®m You search for a custom operator from the Operator Browser.

m One calendar calls another calendar as a preview exclusion calendar (under the
Preview Exclusion Calendar field, located on the Preview tab of the calendar
designer). If the selected calendar is not part of the current release version of the
content package, its dates are not excluded when that calendar is applied with the
Preview Exclusion Calendar field.

m A custom operator calls another object through an object reference that is not part
of the current release version of the content package.

m A dataset that the Start Process operator uses calls another object through an
object reference. The object reference is not in the current release version of the
content package.

m A process uses the Check Calendar operator to call a calender that is not part of the
current release version of the content package.

Chapter 12: Release Objects to Another Environment 435

Exporting and Importing

m A process watch calls another object that is not part of the current release version
of the content package. In this instance, the Process Watch palette does not display
that process watch.

m A process calls an interaction request form that is not in the current release version
of the content package. In this instance, that process fails.

m A process calls another process that is not in the current release version of the
content package. In this instance, that process fails.

m Aschedule calls another process that is not in the current release version of the
content package. In this instance, that process does not run.

m Astart request form calls another object through an object reference that is not in
the current release version of the content package.

®m Aninteraction request form (used in the Assign User Task operator and called in a
Start Process operator) calls another object through an object reference that is not
a part of the current release version of the content package.

Export Relative Paths or Export Absolute Paths
When you initiate an export, you can select either Export Absolute Paths or Export
Relative Paths. The option that you select affects the folder structure in which the
selected object appears in the destination Orchestrator library.

Example: Content Package Export

Consider the following example. Under the root folder, the source Orchestrator library is
Folder_a contains Folder_b, which contains Process 1 and Start Request Form 1.

Orchestrator % 4 Contents of “fFolder_afFolder_b"
Filter *
“ D / |:| Name

4 [] Folder_a

[5 Process 1

D E'f_‘,. Start Fequest Form 1

[T Folder_b

436 Content Designer Guide

Exporting and Importing

Case 1:
Assume the following criteria:

m You export Folder_b (including Process 1 and Start Request Form 1) as a
content package with an absolute path.

m The importing user selects the /test folder as the destination in the new
environment.

After the import, the content package appears in the following folder structure:

/test/Folder a/Folder b

Orchestrator # 4 Contents of " ftestfFolder_a"
Filter *
“ Df |:| Name
4[] test -
+ [Folder_a e Folder_b
[Folder_b

In the hierarchy, test and Folder_a are folders, but Folder_b is now a content
package.

Case 2:
Assume the following criteria:
m You export Folder_b with a relative path.
m The importing user selects the /test folder as the destination.

After the import, Content Pack appears in the following folder structure:

/test/Folder b

Orchestrator # 4 Contents of ' ftest"
Filter =
F
Py [l Name
P D test
e Folder_b O b Folder_b

Chapter 12: Release Objects to Another Environment 437

Exporting and Importing

Example: Folder Export

Assume the following criteria:
m The source folder structure is root, Folder_a, Folder_b.

m The object Process resides in Folder_b.

/Folder a/Folder b/Process

Orchestrator # 4 Contents of "' /Folder_a/Folder_b™
Filter b
a7/
v M
4 [Folder_a ame
[] Folder_b &b FEEEE
Case 1:

Export Folder_b with absolute paths. Import the exported content to the /test
folder. After the import, the structure in the destination is:

/test/Folder a/Folder b/Process

Orchestrator % 4 Contents of " /test/Folder_a/Folder_b"
Filter x
“ D" |:| Name
F] I:Itest |:|
+ [Folder_a oy Process
[Folder_b
Case 2:

Export Folder_b with relative paths. Import the exported content to the /test
folder. After the import, the structure in the destination is:

/test/Folder b/Process

Orchestrator % 4 Contents of " /test/Folder_b""
Filter X
a7/
P Dtest D Name
[Folder b O & Process

438 Content Designer Guide

Exporting and Importing

Example: Object Export

Case 1:

Export the object Process with absolute paths. Import the exported content to the
/test folder. After the import, the structure in the destination is:

/test/Folder _a/Folder _b/Process

Orchestrator #¥ 4 Contents of " /test/Folder_a/Folder_b"
Filter X
<0/ 7] Name
F r_—ltest
4 [Folder_a O é& Frocess
[Folder_b

Case 2:

Export the object Process with relative paths. Import the exported content to the
/test folder. After the import, the structure in the destination is:

/test/Process
Orchestrator # 4 Contents of "' /test”
Filter b
‘ Df |:| Name
[test
D rﬂj Frocess

Chapter 12: Release Objects to Another Environment 439

Exporting and Importing

How to Migrate Objects From a Package to a New Folder to Prepare for Export

The content package is an object that is introduced in CA Process Automation 04.2.00.
In CA Process Automation 04.1.00, objects were contained in a package for exporting
from one environment into a different environment. The package object is only
supported for backward compatibility in 04.2.00. You cannot reference packages in
interaction request forms, start request forms, custom operators, process watches, or
datasets. You can still export a 04.1.00 package, but you cannot modify the package
once it is imported into a new environment. You can, however, modify its objects.

If you want to bundle similar objects together and export them as one non-modifiable
release into a new environment, you must use the content package. CA Process
Automation creates the content package once a folder is exported (as a content
package) from one environment and imported into another environment. Once
imported, the content package is then viewable in the Library Browser and the
Operations tab in the Content Packages palette, as indicated by the content package
icon k4.

This scenario describes the required steps to migrate content from a package object into
a new folder, if you want to continue to move content as one non-modifiable release
between environments.

The following diagram depicts the tasks that content designers perform when migrating
objects from a package to a new folder to prepare for export:

Open the release

R

Content Designers

Follow these steps:

04.1.00 package
object and note all
of the objects that

the package
contains.

Locate and copy
those package
objects in the
Library.

Y

Creale a folder to
paste package
objects into.

1. Open the release 04.1.00 package object and note all of the objects that the

package contains (see page 441).

2. Locate and copy those package objects in the Library (see page 441).

3. Create a folder to paste package objects into (see page 442).

440 Content Designer Guide

Exporting and Importing

Open the 04.1.00 Package Object and Note All of the Objects that the Package Contains

The package object that you created in release 04.1.00 is indicated by a blue package
icon:

Follow these steps:

1. Open the Library Browser.

2. Locate and open the package object from release 04.1.00.

3. Make a note of all of the objects that are contained within the package.

Locate Those Package Objects in the Library

Once you identify the objects within the package, locate them within the Library, copy
them, and paste them into a new folder.

You can open and scroll through known folders in the Library folders or search for
folders by name for those objects that the package contains. Additionally, you can
search for objects with Basic Search using a single criterion or an Advanced Search using
multiple criteria. The Search then finds objects meeting your search criteria within the
folder structure you specify.

Follow these steps:

1. Click the Library tab.

2. Navigate the folder tree to the folder containing the object. As necessary, you can
query for folders by name from the search field atop the Orchestrator pane.

3. (Optional) Perform a search for the object. From the selected folder, perform one
of the following search types:

m Use a Basic search if querying with a single search criterion, such as object type
or owner.

m Use an Advanced search if querying with multiple criteria, such as object state
or modification date.

4. Right-click each object that the search returns and select Copy.

Chapter 12: Release Objects to Another Environment 441

Exporting and Importing

Create a Folder to Paste Package Objects Into

Once you locate an object in the Library that the release 04.1.00 package contains,
paste them into a new folder to export them into a new environment.

All of the objects you want to export must be located under one folder. In release
04.1.00, you could add objects as shortcuts from different folders into a package for
export. This behavior is not possible with a content package. All of the objects must be
housed under one folder only for export.

Follow these steps:

1. Inthe Library Browser folder pane, select the folder where you want to create a
folder.

2. Inthe toolbar click New, and then click Folder.
The new folder appears.
3. Rename the folder.
4. Right-click the folder, and then select Paste.
Repeat the process for each object that the package contains until the new folder

contains all of the release 04.1.00 content. You can edit the objects once they are
pasted in the new folder.

You content migration is now complete and you can export the folder into a new
environment.

Importing

The topics in this section explain the import process.

442 Content Designer Guide

Exporting and Importing

How to Set Import Options
CA Process Automation provides you with some flexibility in how to import objects.

If an imported object has the same name as an existing object:

Irmport .

Do not impoart
Irnport and replace

[T =et Imported Wersion as Current
[T Make Imported Custorn Operators Available

[T Publish Custorn Operator Group Configuration

If your import includes custom operator, select Make Imported Custom Operators
Available.

If the custom operators are new and they belong to a new custom group, take the
action appropriate to your environment.

m Do not select Publish Custom Operator Group Configuration if the import
environment is in the same Domain as the export environment. In this case, the
custom operator group configuration is already published.

m Select Publish Custom Operator Group Configuration if the import environment is in
a different Domain than the export environment

Consider the import content when you configure Set Imported Version as Current and

select how to handle duplicate names.

m To activate the imported objects, with the ability to revert to a previous version of
an imported object, if needed:

- Select: Import
— Select: Set Imported Version as Current

Note: These options are best when you are importing an upgrade release version
and all operator targets are set to hosts in the import environment. You can expect
to be notified of duplicate names because objects of the last release are located in
the destination folder.

Chapter 12: Release Objects to Another Environment 443

Exporting and Importing

Perform an Import

To import without activating the upgraded objects, where the previous version
retains its current version status:

- Select: Import
— Clear: Set Imported Version as Current

Note: These options are best when the import includes operators that target hosts
that are not yet defined with their touchpoint name in the import environment.
With this setting, you can make objects current after ensuring that the process
targets are available in the import environment.

To defer the import of any object with a duplicate name and to opt for making the
objects current manually:

- Select: Do not import
— Clear: Set Imported Version as Current

- Note: These options are best when you are importing new objects into a
populated folder. These options avoid making an import object a new version
of an object with the same name but a different function. These options also
let you make the objects current after you test and verify their use in the new
environment.

If you receive alerts, consider these actions:

m Record the duplicate names in the alert message and inform an
administrator in the source environment. Perhaps those objects can be
renamed and exported again.

m Import again, but import to an empty folder.

To activate the imported objects without the ability to revert the action for objects
with duplicate names:

- Select: Import and replace
- Select: Set Imported Version as Current

- Note: These options are best when you are reimporting fixes to objects in the
destination folder. In this case, you would never need to revert to the replaced
version.

You can import an object, a folder, a package, or a content package that was exported.
The export process creates the XML file that the import process uses.

Note: If you exported a folder as a content package, the product imports the exported
folder as a nonmodifiable content package in the import folder. You cannot cut and
delete from a content package. You can copy the automation objects from a content
package and paste them to another folder to modify them. You can view all the
imported content packages in the Operations tab Content Packages palette.

444 Content Designer Guide

Exporting and Importing

Follow these steps:

1.
2.

Click the Library tab.

Click Orchestrator, then select the appropriate Orchestrator:environment.
Navigate to the destination folder.

Right-click the destination folder, and then select Import.

On the Import dialog, browse to the XML file you exported and then click Open.
Note: Ensure that the XML file you want to import is no larger than 250 MB.

Specify how to import an object that has the same name as an existing object in the
same path.

Note: If you import to an empty folder, there can be no conflicts with existing
names.

Import

Processes the imported object as a new version of the existing object. Select
this option if the purpose of the import is an upgrade and you want to keep the
history of previous versions. If the imported object has the same release
version, the product overwrites the existing release version with the release
version of the imported object.

Do Not Import

Stops the object import and keeps the existing object. The import process lists
the objects that have conflicting names. If there are conflicts, import to an
empty folder. Alternatively, you can rename the object in the source
environment and then repeat the export and import. This option is a good
choice when the objects you are importing are new objects instead of new
versions of existing objects.

Import and Replace

Delete the existing object and import the new version of the object as version
0.

Chapter 12: Release Objects to Another Environment 445

Exporting and Importing

7.

8.
9.

Complete your import specifications according to the following guidelines:
Set Imported Version as Current

Specifies whether to set the imported version as Current. This option applies if
you selected Import and Replace in Step 6.

m Selected: Sets the imported version as the current version.

m Cleared: Leaves as current the existing version that is marked as Current.
Clear this option if the previous version of this object is active.

Note: If you search in a folder hierarchy with a content package, the
product returns only objects in the current release version of the content
package. The product also returns objects that reside in the folder
hierarchy but are not in the content package.

Make Imported Custom Operators Available

Specifies whether to set the imported custom operators to Available. You
cannot use custom operators until they are made available.

m Selected: Sets imported custom operators as available. Select this option
so users do not have to make imported custom operators available
individually.

m Cleared: Import custom operators without changing their availability.
Publish Custom Operator Group Configuration

Specifies whether to publish the custom operator groups. Publish when
importing the object, folder, or package into a different Domain than the one
from which the file was exported. Publication publishes the custom operator
groups to the Domain-level Modules tab, where every environment also
contains the groups that inherit from the Domain.

m Selected: Publishes the custom operator groups. This setting applies when
you import custom operator groups to a different Domain than the
Domain in which the custom operator groups were designed.

m Cleared: Does not publish the custom operator groups. This setting applies
when imported custom operator group configurations were published to
the current Domain and environments when the you defined the custom
operator group.

Note: If you do not have Group_Config_Admin rights, this option is disabled.
Click Submit.

Click OK on the successful import confirmation message.

446 Content Designer Guide

Exporting and Importing

Release Version and Baseline Status of Imported Objects

The state of the Release Version attribute (modifiable or nonmodifiable) and the
Baseline status of each imported object depend on the following conditions:

Whether the import environment already contains existing versions of the objects
being imported.

If the objects exist, whether objects are imported with the option to import as a
new version and keep the existing object versions.

The following import options are available for handling existing objects for which the
import is a new version:

Delete the existing object and treat the imported object version as version 0.

If an imported object has the same name as an existing object:

Import and replace il

[¥ SetImported Version as Current

Keep the existing object and treat the imported object version as a new version.

If an imported object has the same name as an existing object:

Import i

Chapter 12: Release Objects to Another Environment 447

Exporting and Importing

Case 1: The imported versions are the only versions of the objects in the import
environment.

The imported version is the only version of the object in the following situations:

m The object did not exist in the import environment before import.

m The object existed, but the imported object replaced the existing object with the

Ssame name.

Consider the properties of an object that you create. Version 0 of the object is marked
as current, is not baselined, and has a modifiable Release Version attribute.

Properties
General Tags Versions Audit Trail
Version Release Version Current Baseline
o o n ~prent | Baseline |

E'I-'EI Set Release Version

m When the XML file release version is nonmodifiable, the imported object Release
Version attribute state is nonmodifiable and the new version is baselined.

m When the XML file release version is modifiable, the imported object Release
Version attribute state is modifiable and the new version is not baselined.

The following illustration summarizes the cases:

State of Object Release Versions After Import
New--Mo Existing Versions

Release Release
. . MNew
Versions Versions Version
In XML File After Import
Nonmodifiable Nonmaodifiable | Baselined
, , Mot
Modifiable Modifiable i
Baselined

448 Content Designer Guide

Exporting and Importing

Case 2: The imported versions are the new versions of existing objects in the import
environment.

Consider the case where you import a new version of an existing object, where the
Release Version attribute of the existing object is nonmodifiable.

m When the XML file release version is nonmodifiable, the imported object Release
Version attribute state is nonmodifiable and the new version is baselined.

m When the XML file release version is modifiable, the imported object Release

Version attribute state is nonmodifiable and the new version is not baselined.
Consider the case where you import a new version of an existing object, where the
Release Version attribute of the existing object is modifiable.

m When the XML file release version is nonmodifiable, the imported object Release
Version attribute state is nonmodifiable and the new version is baselined.

m When the XML file release version is modifiable, the imported object Release
Version attribute state is modifiable and the new version is not baselined.

The following illustration summarizes these cases:

State of Object Release Versions Before and After Import
Import as New Version and Keep Existing Versions

Release Release Release
. . . MNew
Versions Versions Versions Version
Before Import In XML File After Import
Monmaodifiable | |Nonmodifiable Nonmaodifiable | Baselined
- , - Mot
Monmaodifiable Madifiable Nonmaodifiable)
Baselined
Modifiable Monmaodifiable Nonmaodifiable | Baselined
, , . Mot
Modifiable Madifiable Modifiable)
Baselined

Values Maintained in the Initial Version of a Copied Object

The current version of an object is the subject of a copy and paste action. That is, the
new copy has one version, the current version of the original object. The Release
Version value and whether it is modifiable are maintained in the initial version of the
object copy. If at import the current version of the original object was baselined, the
object copy is also baselined.

Chapter 12: Release Objects to Another Environment 449

Appendix A: Format Specifiers for Dates

CA Process Automation uses standard Java date and time format pattern strings. Within
date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are
interpreted as pattern letters representing the components of a date or time string. Text

can be quoted using single quotes (') or double quotes (") to avoid interpretation.

represents a single quote. All other characters are not interpreted; they are copied into
the output string during formatting or matched against the input string during parsing.

Letter Date or Time Component Presentation Examples

G Era designator Text AD

y Year Year 2009; 09

M Month in year Month July; 07

w Week in year Number 27

w Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day of week Text Tuesday; Tue

a AM/PM marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in AM/PM (0-11) Number 0

h Hour in AM/PM (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time zone Pacific Standard Time; PST;
GMT-08:00

z Time zone RFC 822 time zone -0800

Appendix A: Format Specifiers for Dates 451

Exporting and Importing

Patterns are usually repeated; their number determines the exact presentation as
shown in the following table:

Presentation

Formatting

Text

If the number of pattern letters is 4 or more, the full form is used;
otherwise a short or abbreviated form is accepted, independent of
the number of pattern letters.

Number

The number of pattern letters is the minimum number of digits, and
shorter numbers are zero-padded to this amount. During parsing
the number of pattern letters is ignored unless it is needed to
separate two adjacent fields.

Year

If the number of pattern letters is 2, the year is truncated to 2
digits; otherwise it is interpreted as a number.

During parsing, if the number of pattern letters is more than 2, the
year is interpreted literally, regardless of the number of digits. So
using the pattern "MM/dd/yyyy", "01/11/12" parses to Jan 11, 12
A.D.

Month

If the number of pattern letters is 3 or more, the month is
interpreted as text; otherwise, it is interpreted as a number.

General Time
Zone

Time zones are interpreted as text if they have names. For time
zones representing a GMT offset value, the following syntax is used:

m GMTOffsetTimeZone:
m GMT Sign Hours : Minutes
m Signis either + or -
m Hours must be between 0 and 23, and one of the following
formats:
Digit
Digit Digit
m Minutes must be between 00 and 59 and in the following
format:
Digit Digit
m Digit is one of the following:
0123456789

The format is locale independent and must be taken from the Basic
Latin block of the Unicode standard.

452 Content Designer Guide

Exporting and Importing

Presentation Formatting
RFC 822 time A four digit time zone format is used:
zone

m RFC822TimeZone:
Sing TwoDigitHours Minutes

m TwoDigitHours must be between 00 and 23. Other definitions
are as for general time zones.

SimpleDateFormat also supports localized date and time pattern strings. In these
strings, the pattern letters described above may be replaced with other, locale
dependent, and pattern letters. SimpleDateFormat does not deal with the localization of
text other than the pattern letters; that is up to the client of the class.

The following examples show how date and time patterns are interpreted in the US
English locale. The given date and time are 2009-07-04 12:08:56 in the US Pacific time
zone.

Date and Time Pattern Result

"yyyy.MM.dd G 'at' HH:mm:ss z" 2009.07.04 AD at 12:08:56 PDT
"EEE, MMM d, "yy" Wed, Jul 4, '09

"h:mm a" 12:08 PM

"hh 'o"clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time
"K:mm a, 2" 0:08 PM, PDT

"yyyyy.MMMMM.dd GGG hh:mm aaa" 02009.July.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss 2" Wed, 4 Jul 2009 12:08:56 -0700
"yyMMddHHmMmssZ" 010704120856-0700
"yyyy-MM-dd'T'HH:mm:ss.SSSZ" 2009-07-04T12:08:56.235-0700

Appendix A: Format Specifiers for Dates 453

Appendix B: Using Masks to Specify
Patterns in Strings

Masks are used for operator parameters that monitor messages and monitor file
contents. The masks that CA Process Automation uses are JavaScript regular expressions
that describe sets of strings without actually listing their contents.

You can use masks to determine whether a specific pattern is matched and to extract
parts of the matched string. CA Process Automation puts extracted substrings in

variables that you can use to specify parameter values for other operators. Operators
that use masks include the Directory Entries operator and extraction macros. You can
also use masks to specify permissible strings such as date formats for text input fields.

This section contains the following topics:

Mask Syntax (see page 455)
Sample Mask (see page 458)

Mask Syntax

A regular expression consists of a sequence of characters that must correspond to ones
that appear in matched strings. Characters shown in the following table serve as regular
expression operators

Regular Expression Description Example
Operator

The dot operator represents any The expression a.b matches any string of
character except an end of line character. three characters starting with “a” and
ending with “b”.

Appendix B: Using Masks to Specify Patterns in Strings 455

Mask Syntax

Regular Expression
Operator

Description

Example

\ The escape enables the use of the The escaped character \\ matches the
operator as literal characters instead of backslash character \.
being recognized as operators. The escaped operator \| matches the
If a mask is specified as a literal string in a vertical bar.
CA Process Automation expression, the For a literal string in a CA Process
escape operator must itself be escaped to pytomation expression, "\\?" matches the
avoid having the escape character question mark.
stripped by the CA Process Automation
expression interpreter before the mask is
passed to the regular expression parser.

\n End of line escape character sequence. The expression

If a mask is specified as a literal string in a
CA Process Automation expression, the
end of line escape character sequence
must itself be escaped to avoid having
the escape character stripped off by the
CA Process Automation expression
interpreter before the mask is passed to
the regular expression parser.

first line\nsecond line

matches strings where “first line” appears
at the end of a line and “second line”
appears at the start of the next line.

If the same expression is specified by a
literal string in a CA Process Automation
expression, the operator is escaped as
follows:

"first line\\nsecond line"

Alternative. This operator creates an
alternative between characters or
groups. It applies to the character or
groups immediately adjacent to it on its
left or right.

(a]b) matches the character “a” or the
character “b”.

(abcd)| (efgh) matches the string “abcd” or
the string “efgh”.

(ab|Bc) matches the string “abc” or the
string “aBc”.

Group. This operator groups characters in
a sub-expression that applies to
alternative and repetition operators.

(abcd)| (efgh) matches the string “abcd” or
the string “efgh”.

(abcde)* matches zero, one or several
successive occurrences of the string
“abcde”, whereas abcde* matches strings
starting with “abcd” followed by an zero or
more “e” characters.

456 Content Designer Guide

Mask Syntax

Regular Expression
Operator

Description

Example

[]

Used to define a class of characters by
inclusion. It is composed of a list of
individual characters and intervals
(ranges).

This construct matches a single character.
[0-9] matches one digit.

[aeiou] matches one vowel.

[a-cx-z9] matches a letter among the first
three and the last three characters of the
alphabet or the digit 9.

[0-9]+ matches an integer.

[*] Used to define a class of characters by
exclusion.

This construct matches a single character.
[*0-9] matches any character except a digit.

[*aeiou] matches any character except a
vowel.

Repetition. Defines zero or more
occurrences of the character or group
that appears next to the operator. The
series can be empty. a* matches zero or
more “a” characters.

(123)* matches zero or more repetitions of
the string “123”.

123* matches the digits 12 followed by zero
or more “3” characters.

+ Repetition. Defines one or more a+ matches one or more “a” characters.
occurrences of the character or group (ab)+ matches a series one or more
that appears next to the operator. The repetitions of the string “ab”.
series cannot be empty. . .

Pty [a-z, |.] matches a series of words in small
letters, separated by blanks, commas, or
periods.

? Used to indicate that the character or a(X|Y)?b matches strings “ab”, “aXb”, and
group preceding the operator is optional. “aYb”.
ab?c matches the strings “abc” and “ac”.

{n} Used to define a precise number of [0-9]{,2} matches a number made of exactly
repetitions of the character or group two digits.
preceding the operator. (ab){2} matches the string “abab”.

abc{2} matches the string “abcc”.
(a{2})* matches the strings made of an even
number of “a” characters.

{n,m} Used to specify that the number of [0-91{2,3} matches a number made of two

occurrences of the character or group
preceding the operator is between n and
m.

or three digits.
(ab){1,2} matches the string “ab” or “abab”.

Appendix B: Using Masks to Specify Patterns in Strings 457

Sample Mask

Regular Expression Description Example

Operator

{n,} Used to specify that the number of 0-9]{2,} matches a number made of at least
occurrences of the character or group two digits.
preceding the operator is n or more.

{,n} Used to specify that the number of [0-9]{,2} matches numbers equal to or less
occurrences of the character or group than 99, including the empty string.

preceding the operator is n or fewer.

Sample Mask

The following pattern allows precise filtering of the output of the DIR command in the
Windows command shell:

([0-9]{2}/){2}[0-91{2} *[0-9]{2}:[0-9){2}a|p) *[0-9,]+ [_~0-9a-zA-Z |*(\.[_0-9a-ZA-Z |¥)?

The following lines match this pattern:

10/26/05 07:03p 134,217,723 pagefile.sys

10/26/05 07:03p 1,024 testfile

The preceding lines are made up of the following elements:

([0-9]{2}/) represents character strings composed of two digits and a slash mark (/),
asin “10/”.

([0-91{2}/){2}[0-9]{2} builds on the previous element and specifies that the two-digit
sequence can be repeated 3 times, each sequence being separated from the next
by a slash mark, as in “10/26/05".

*[0-9]{2}:[0-9]{2}(a| p) matches any number of spaces followed by the time in the
format hh:mm followed by “a” for AM or “p” for PM.

*[0-9,]+ matches any number of spaces followed by any number of digits and
commas for the file size.

[_~0-9a-zA-Z]*(\.[_~0-9a-zA-Z]*)? represents a sequence of alphanumerical
characters, underscores (_) and tildes (~), optionally followed by a period and
another sequence. Because the period (.) is the dot operator, it is necessary to
escape it using the escape character (\) when we intend to match it as a character.

The pattern in a mask may differ depending on the exact characters to be matched. For
example, [\._~0-9a-zA-Z]* instead of [_~0-9a-zA-Z]*(\.[_~0-9a-zA-Z]*)? could also match
the file names in our example outputs, but without imposing any restraints on the
number of periods (.) in the file name.

458 Content Designer Guide

Appendix C: How Targets of an Operator are
Processed

This appendix describes how CA Process Automation processes operator targets.

This section contains the following topics:

How Targets for an Operator Can Be Specified (see page 459)

Processing a Target Specified as an IP Address or FQDN (see page 460)

Processing a Target Specified as the ID of an Agent or Orchestrator (see page 463)
Use Case: Track Recovered Processes through Logs (see page 465)

Operators Auto Recovery Example (see page 465)

How Targets for an Operator Can Be Specified

The target of an operator is the host on which the operator runs. A host that can be the
target of an operator must be configured with a touchpoint, a proxy touchpoint, or a
host group. When determining the run settings for an operator, content designers
typically base target host selection on how that target is configured.

Specify the target as indicated in the following list when the appropriate conditions are
met:

Touchpoint

The target host has an Orchestrator or agent installed. When you specify a
touchpoint as the target for an operator, and that touchpoint is enabled and
associated with an active orchestrator or agent, CA Process Automation executes
the operator on the specified touchpoint. If a targeted touchpoint is associated with
only one agent or with an orchestrator, each execution targets the same host. If a
targeted touchpoint is associated with multiple agents with the same priority, each
execution could target a different agent on a different host.

Touchpoint Group

The operator is to run on all of the hosts that are associated with touchpoints in the
specified touchpoint group.

<AgentID>

Exception to touchpoint: Specify the same AgentID for consecutive operators when
the process requires the operator to run on the same host as the previous operator.
Specify a specific AgentID when the process requires the operator to run on the
same host each time it is run. A test run of the operator displays the AgentID string
in the system dataset. You copy the AgentID string from the dataset into the Target
field.

Appendix C: How Targets of an Operator are Processed 459

Processing a Target Specified as an IP Address or FQDN

Proxy Touchpoint

The target host is specified as the remote host in a proxy touchpoint configuration.
Typically, this host does not have an installed agent or an Orchestrator.

IP address or FQDN

The target host has an IP address or FQDN that can be matched to a patternin a
configured host group. Typically, this host does not have an installed agent or an
Orchestrator.

Note: The host name can be used, but FQDN is preferred.

Important! Unexpected results can occur if you specify the target with a touchpoint that
is named the same as a host in the environment. Unexpected results also occur if the
agent associated with that touchpoint is inactive when you run the operator. In this
case, CA Process Automation does not run the operator on the touchpoint. Instead, CA
Process Automation tries to resolve the target (intended to be the touchpoint) to the
name of a host in the environment. If it finds such a host name, CA Process Automation
searches for another touchpoint, Orchestrator, proxy touchpoint, or host group that
runs its operators on this host. CA Process Automation runs the operator on the first
occurrence it finds.

Processing a Target Specified as an IP Address or FQDN

When you use an IP address or FQDN to specify the target host of an operator, CA
Process Automation repeatedly queries the Domain Name Server (DNS). If you specify
an FQDN as the target, the first search returns the IP addresses defined on the host with
that FQDN. If you specify an IP address, the first search returns the host FQDN and IP
addresses associated with that FQDN. Each subsequent search tests against all of the
host specifiers that are retrieved in the initial search.

CA Process Automation looks for all of the ways that the target host is configured in the
current CA Process Automation environment. A host group defines remote hosts with
subnet and host name patterns. Therefore, a host group can include hosts with
Orchestrators or agents that are mapped to touchpoints. A host group can also include
individual hosts that are mapped to a proxy touchpoint. A host that is identified with an
IP address or FQDN could be processed with a touchpoint name or proxy touchpoint
name.

460 Content Designer Guide

Processing a Target Specified as an IP Address or FQDN

Some searches find any active Orchestrators or agents that are defined on the host that
have enabled touchpoints. Another search finds any enabled proxy touchpoint on an
active agent that is mapped to the host. A search finds enabled host groups on an active
agent with host name patterns or IP address subnets that match the FQDN or IP
address. When search criteria are met, these queries delay the start of the operator run.
CA Process Automation runs the operator on the first found enabled touchpoint, proxy
touchpoint, or host group that is running on an active Orchestrator or agent. The
touchpoint, proxy touchpoint, or host group must belong to the current environment.
When none of the search criteria are met, the operator fails and an error message is
generated.

The Target area of the Execution Settings tab for operators contains a "Match target in
Host Groups only" check box. Select this check box in the following cases:

m When specifying an IP address within a subnet that is specified in a host group.
m When specifying a host name that matches a pattern that is specified in a host

group.

When you select the Look Up DNS Check box, CA Process Automation resolves the
target name by doing a lookup in DNS. The lookup is for a record that matches a
reference by a host group.

Consider the case where you clear this check box but the target IP address or FQDN
exists. The following processing determines the host on which to run the operator:

1. The application searches the DNS for all of the identifiers for the specified target. If
the target is specified as an FQDN, CA Process Automation searches for all the IP
addresses for that FQDN. If the target is an IP address, CA Process Automation
searches for the FQDN and for other IP addresses for that FQDN.

m [f the connection to the DNS fails, the application writes an error to the log file
and exits.

m If the query returns the FQDN and other IP addresses, the application uses the
specified IP address and this result set for all subsequent searches.

m If the query returns one or more IP addresses, the application uses the
specified FQDN and the IP addresses in all subsequent searches.

2. The application searches for an active Orchestrator with an enabled touchpoint
(current environment) that is installed on a host in the Step 1 search results.

m If found, the application runs the operator on that Orchestrator touchpoint.
m If not found, the application continues processing.

Note: The application does not detect clustered Orchestrators. Hosts with
clustered Orchestrators do not appear in the domain configuration.

Appendix C: How Targets of an Operator are Processed 461

Processing a Target Specified as an IP Address or FQDN

The application searches for an active agent with an enabled touchpoint (current
environment) that is installed on a host in the Step 1 search results.

If the host has an active agent with one enabled touchpoint, CA Process
Automation uses that touchpoint to run the operator.

If the host has an active agent with multiple enabled touchpoints, CA Process
Automation uses one of the enabled touchpoints to run the operator.

If not found, the application continues processing.

The application searches for an active agent that is connected to the remote target
host. This agent must have an enabled proxy touchpoint or host group in the
current environment. For host groups, the queries use pattern matching. The host
group queries find whether the referenced subnet or host name pattern includes a
host identifier in the Step 1 result set. For proxy touchpoints, the application
searches for an exact match to any of the host identifiers that are retrieved in Step

1.

If the only match is a remote host referenced by a proxy touchpoint, the
application runs the operator on that remote host.

If the only match is a remote host referenced by a host group, the application
runs the operator on that remote host.

If the application finds multiple matches, it runs the operator on the first
remote host found that is referenced by either a proxy touchpoint or a host

group.

If there are no matches to the search criteria, the application continues
processing.

462 Content Designer Guide

Processing a Target Specified as the ID of an Agent or Orchestrator

5. The application determines why the operator did not run. Then, the application fails
the operator with a failure message.

m Condition: None of the identifiers that are retrieved in Step 1 belongs to any
host in the current environment.

Results: The application fails the operator with the following message:
Message could not be posted to the node.

m Condition: One or more identifiers that are retrieved in Step 1 belong to a host
where all Orchestrators and agents are inactive.

Results: The operator fails with the following message:
Message could not be posted to the node.

m Condition: One or more Step 1 identifiers belong to a host with all disabled
touchpoints or is referenced with only disabled proxy touchpoints or host
groups.

Results: The application returns a disabled touchpoint or host group in the
TouchpointName field of the operator dataset system output variables. The
application fails the operator with the following error message:

Node is disabled.
Note: Consider the exception where the user specifies a host name or IP address in the
Target field of an Invoke Java operator. CA Process Automation looks first for a matching
agent host. If successful, the Invoke Java operator runs on the agent host. If the search

fails, the application looks for a matching Orchestrator host. If found, it attempts to run
but the Invoke Java operator fails because it cannot run on an Orchestrator.

More information:

Target Settings (see page 215)

Processing a Target Specified as the ID of an Agent or

Orchestrator

Suppose you want an operator to target the same host every time it runs. In such a case,
you can specify the AgentID data as a target. Unique AgentID data is set during the
installation of each orchestrator and each agent. At runtime, CA Process Automation
retrieves the ID for the orchestrator or agent and saves it to the AgentID field in the
system dataset.

After a test execution of an operator, you can copy the AgentID string that is displayed
in the system dataset into the Target field.

Appendix C: How Targets of an Operator are Processed 463

Processing a Target Specified as the ID of an Agent or Orchestrator

When you need two consecutive operators to run on the same agent host, specify the
same AgentlD as the target for both operators. You can use AgentID as an alternative
target for any given touchpoint.

Important! Use of AgentID refers to the local host where the agent or orchestrator is
installed. When you specify AgentID, CA Process Automation does not use any proxy
touchpoint or host group running on the agent to run on remote hosts. Consider the
case where Operator_1 executes on a proxy touchpoint that is configured on an agent
with a specified AgentID. Do not use this AgentID as the target for Operator_2. If the
AgentID is specified, CA Process Automation does not execute on that proxy touchpoint
for Operator_2.

CA Process Automation fails the operator when encountering any of the following
conditions:

m The target agent or orchestrator is inactive. CA Process Automation posts the
following message:

Message could not be posted to the node.

m All touchpoints that are mapped to the target are disabled. CA Process Automation
posts the following message with one of the disabled touchpoints:

Node is disabled.
Note: The Invoke Java operator can target only agents. The Invoke Java operator cannot

run on an Orchestrator. An ID in the Target field of the Invoke Java operator must
resolve to an agent (not an Orchestrator), or the operator fails.

464 Content Designer Guide

Use Case: Track Recovered Processes through Logs

Use Case: Track Recovered Processes through Logs

The following scenario is an alternative to opening many processes to identify the ones
that were automatically recovered. In this scenario, you examine the log files.

Assumptions:

®m Anagentis mapped to two touchpoints.

m Over 1000 processes are running concurrently.

m Operators Auto Recovery is configured for the touchpoints.
Scenario:

1. The agent suddenly becomes inactive.

2. While the agent is inactive, 300 of the 1000 processes try to run operators on the
touchpoints.

The 300 processes go into BLOCKED state.
The agent becomes active.

Operators recovery, which is initiated automatically, recovers the 300 processes.

A

Later you notice that 1000 processes finished running. You open one of them to
examine its logs and learn that it was automatically recovered.

7. Complete one of the following actions to find out which of the 1000 processes that
finished running finished after being recovered:

- Open each of the 1000 processes to determine which were automatically
recovered.

- Examine the log file.

Note: The next topic describes the preferred alternative, examining the log file.

Operators Auto Recovery Example

If Operators Auto Recovery is selected (the default), you do not have to initiate the
recovery. Each Orchestrator in the environment detects that the agent or Orchestrator
is active and runs the recovery. Each Orchestrator runs recovery on any enabled
touchpoint, host group, or Orchestrator that is mapped to the agent or Orchestrator in
the environment.

When an agent is mapped to many touchpoints, the Orchestrators run the recovery on
all enabled touchpoints that are mapped to the agent. When an agent or Orchestrator
becomes active, the Domain Orchestrator broadcasts the changes to the other
Orchestrators. In a clustered setup, only the master node runs the recovery.

Appendix C: How Targets of an Operator are Processed 465

Operators Auto Recovery Example

Example: Automatic Recovery

Consider the following scenario, in which an agent is mapped to the following
touchpoints and host groups in an environment:

® TP_user01-w500,

® TP_user01-w500_2
® TP_user01-w500_3
® TP_manyAgents

® HG_user01-w500

Assume that all touchpoints and host groups are enabled and that only the following
touchpoints and host groups are set to Operators Auto Recovery:

® TP_user01-w500
® TP_user01-w500_3
® HG_user01-w500

When the agent becomes active, each Orchestrator in the environment tries to run the
automatic recovery on the three touchpoints.

Assume there are two Orchestrators in the environment:
Orchestratorl log file contains:
m Message to signal the agent that became active again:

2010-06-28 19:22:59,984 DEBUG

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Checking whether
to initiate Touchpoint/Orchestrator Recovery of 'System Error' operators in
'Waiting' or 'Running' or 'Blocked' Processes (with auto recovery flag set), that
ran against Agent/Server ID: f3492322-5517-4a21-8a19-92838ccb3f65

m Orchestrator mapped the agent to HG_user01-w500:

2011-03-28 19:22:59,984 INFO

[com.optinuity.c2o0.c2o0server.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: HG user0l-w500 Recovery... Recovering 'System Error'
Operators that ran against: HG user01-w500 and belong to 'Waiting' or 'Running’
or 'Blocked' Processes (with auto recovery flag set).

2011-03-28 19:22:59,984 DEBUG
[com.optinuity.c20.workflowengine.C2oWorkFlowEngine] [alListenerThread]
recoverSystemErrorProcesses: Retrieve the processes (with enabled auto recovery
flag) that are in 'Waiting' or ‘Running’ or 'Blocked' states and contain operators
in 'System Error' when ran against: HG user01-w500

466 Content Designer Guide

Operators Auto Recovery Example

Orchestrator signals 0 processes to be recovered for HG_user01-w500:

2011-03-28 19:23:00,000 WARN
[com.optinuity.c2o0.workflowengine.C2oWorkFlowEngine] [alListenerThread]
recoverSystemErrorProcesses: Retrieved - 0 processes to recover for

HG user01-w500 recovery.

2011-03-28 19:23:00,000 INFO

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Found no
Processes to recover for Touchpoint/Orchestrator: HG user@l-w500 Recovery.

Orchestrator mapped the agent to TP_user01-w500:

2011-03-28 19:23:00,000 INFO

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: TP user01-w500 Recovery... Recovering 'System Error'
Operators that ran against: TP _user01-w500 and belong to 'Waiting' or 'Running'’
or 'Blocked' Processes (with auto recovery flag set).

2011-03-28 19:23:00,000 DEBUG
[com.optinuity.c2o0.workflowengine.C2oWorkFlowEngine] [alListenerThread]
recoverSystemErrorProcesses: Retrieve the processes (with enabled auto recovery
flag) that are in 'Waiting' or ‘Running’ or 'Blocked' states and contain operators
in 'System Error' when ran against: TP user0l-w500.

Orchestrator signals 1 process to be recovered for TP_user01-w500:

2011-03-28 19:23:00,015 WARN
[com.optinuity.c20.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 1 processes to recover for
TP_user01-w500 recovery.

Orchestrator queues recovery request for the 1 process (ROID: 2889) to be
recovered for TP_user01-w500:

2011-03-28 19:23:00,015 WARN
[com.optinuity.c2o0.workflowengine.C2oWorkFlowEngine] [alListenerThread]
recoverSystemErrorProcesses: Queueing recovery of process with ROID - 2889 for
TP_userQ1-w500 recovery.

2011-03-28 19:23:00,015 DEBUG
[com.optinuity.c20.workflowengine.C2oWorkFlowEngine] [alListenerThread]
recoverSystemErrorProcesses: Special Response for process recovery. ROID is 2889
UUID is 3fe95f08-a347-4d6d-aba3-b3639836e130

2011-03-28 19:23:00,015 DEBUG
[com.optinuity.c2o0.workflowengine.C2oWorkFlowEngine] [alListenerThread]
recoverSystemErrorProcesses: Special Response for process recovery was posted.
ROID is 2889 UUID is 3fe95f08-a347-4d6d-aba3-b3639836e130

2011-03-28 19:23:00,015 INFO

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Queued requests
for Touchpoint: TP user0l-w500 Recovery... Recovering Processes with the
following ROIDs: 2889

Appendix C: How Targets of an Operator are Processed 467

Operators Auto Recovery Example

Orchestrator signals that Touchpoint TP_user01-w500_2 is mapped to the agent
but it is not set to automatic recovery:

2011-03-28 19:23:00,015 DEBUG

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Touchpoint:

TP _user01-w500 2 mapped to Agent: f3492322-5517-4a21-8al19-92838ccb3f65 is not
set to Automatic Recovery of 'System Error' operators in 'Waiting' or ‘Running’
or 'Blocked' Processes.

Orchestrator mapped the agent to TP_user01-w500_3:

2011-03-28 19:23:00,015 INFO

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: TP user01-w500 3 Recovery. Recovering 'System Error'
Operators that ran against: TP_user01-w500 3 and belong to 'Waiting' or 'Running'
or 'Blocked' Processes (with auto recovery flag set).

2011-03-28 19:23:00,015 DEBUG
[com.optinuity.c20.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieve the processes (with enabled auto recovery
flag) that are in 'Waiting' or ‘Running’ or 'Blocked' states and contain operators
in 'System Error' when ran against:: TP user0l-w500 3

Orchestrator signals 0 processes to be recovered for TP_user01-w500_3:

2011-03-28 19:23:00,015 WARN
[com.optinuity.c20.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 0 processes to recover for

TP _user01-w500 3 recovery.

2011-03-28 19:23:00,031 INFO

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Found no
Processes to recover for Touchpoint/Orchestrator: TP user01-w500 3 Recovery.

Orchestrator signals that Touchpoint TP_manyAgents is mapped to the agent but it
is not set to automatic recovery:

2011-03-28 19:23:00,031 DEBUG

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Touchpoint:
TP_manyAgents mapped to Agent: f3492322-5517-4a21-8a19-92838ccb3f65 is not set
to Automatic Recovery of 'System Error' operators in 'Waiting' or ‘Running’ or
'‘Blocked' Processes

Orchestrator picks up the recovery request from the queue for process 2889:

2011-03-28 19:23:30,015 INFO
[com.optinuity.c2o0.workflowengine.FlowManagerCache] [onPool Worker-3]
Registering flow manager: 2889

2011-03-28 19:23:30,015 INFO
[com.optinuity.c2o0.workflowengine.WorkflowManager] [onPool Worker-3] Handling
Response: [$$TouchpointRecovery&&]. flow id is 2889

2011-03-28 19:23:30,171 INFO
[com.optinuity.c2o0.workflowengine.WorkflowManager] [onPool Worker-3] Start
Recovery of Process with ROID:2889, for TP _userQl-w500 Recovery.

468 Content Designer Guide

Operators Auto Recovery Example

Orchestrator resets the operator(s) with System_Error when ran against
TP_user01-w500 within the process 2889:

2011-03-28 19:23:30,171 INFO
[com.optinuity.c20.workflowengine.WorkflowManager] [onPool Worker-3] Resetting
System Error Operators in Process with ROID: 2889 for TP user0l-w500 Recovery.
2011-03-28 19:23:30,203 INFO
[com.optinuity.c20.workflowengine.WorkflowManager] [onPool Worker-3] Resetting
Operator with ROID: 2912 in Process with ROID: 2889 for TP_user01-w500 Recovery.

Orchestrator resumes the entire process 2889 after resetting the appropriate
operators:

2011-03-28 19:23:30,343 INFO
[com.optinuity.c2o0.workflowengine.WorkflowManager] [onPool Worker-3] Resuming
Process with ROID: 2889 for TP_user0l-w500 Recovery.

2011-03-28 19:23:30,343 INFO
[com.optinuity.c2o0.workflowengine.WorkflowManager] [onPool Worker-3] Resuming
WorkFlow - ROID is 2889

2011-03-28 19:23:30,703 INFO
[com.optinuity.c20.workflowengine.WorkflowManager] [onPool Worker-3] Done
resuming Process with ROID: 2889 for TP user01-w500 Recovery.

Process 2889 completes successfully. Because the recovery process started
automatically, the process logs indicate that the engine initiated the recovery. For
manual recovery, logs include the name of the user who started the recovery.

Appendix C: How Targets of an Operator are Processed 469

Operators Auto Recovery Example

Orchestrator2 (OrchestratorD610b) log file contains:

The following for OrchestratorD610b is similar to Orchestrator:

2011-03-28 19:23:41,444 INFO

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: HG user01-w500 Recovery. Recovering 'System Error
Operators that ran against: HG user01-w500 and belong to 'Waiting' or 'Running'
or 'Blocked' Processes (with auto recovery flag set).

2011-03-28 19:23:41,444 WARN
[com.optinuity.c2o0.workflowengine.C2oWorkFlowEngine] [alListenerThread]
recoverSystemErrorProcesses: Retrieved - 0 processes to recover for

HG user01-w500 recovery.

2011-03-28 19:23:41,444 INFO

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Found no
Processes to recover for Touchpoint/Orchestrator: HG user@l-w500 Recovery...
2011-03-28 19:23:41,444 INFO

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: TP user01-w500 Recovery... Recovering 'System Error
Operators that ran against: TP _user01-w500 and belong to 'Waiting' or 'Running'
or 'Blocked' Processes (with auto recovery flag set).

2011-03-28 19:23:41,444 WARN
[com.optinuity.c20.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 0 processes to recover for
TP_userQ1-w500 recovery.

2011-03-28 19:23:41,444 INFO

[com.optinuity.c20.c2oserver.ServerManager] [aListenerThread] Found no
Processes to recover for Touchpoint/Orchestrator: TP user0l-w500 Recovery...
2011-03-28 19:23:41,444 INFO

[com.optinuity.c2o0.c2o0server.ServerManager] [aListenerThread] Initiating
Touchpoint/Orchestrator: TP _user01-w500 3 Recovery... Recovering 'System Error'
Operators that ran against: TP_user01-w500 3 and belong to 'Waiting' or 'Running’
or 'Blocked' Processes (with auto recovery flag set).

470 Content Designer Guide

Operators Auto Recovery Example

OrchestratorD610b finds 1 process to recover for TP_user01-W500_3 (process
ROID: 541) and queues its recovery request:

2011-03-28 19:23:41,444 WARN
[com.optinuity.c2o0.workflowengine.C2oWorkFlowEngine] [alListenerThread]
recoverSystemErrorProcesses: Retrieved - 1 processes to recover for
TP_user01-w500 3 recovery.

2011-03-28 19:23:41,444 WARN
[com.optinuity.c2o0.workflowengine.C2oWorkFlowEngine] [alListenerThread]
recoverSystemErrorProcesses: Queueing recovery of process with ROID - 541 for
TP _user01-w500 3 recovery.

2011-03-28 19:23:41,444 INFO

[com.optinuity.c20.c2oserver.ServerManager] [alListenerThread] Queued requests
for Touchpoint: TP user01-w500 3 Recovery... Recovering Processes with the
following ROIDs: 541

2011-03-28 19:23:41,444 WARN
[com.optinuity.c20.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Retrieved - 1 processes to recover for

TP _user01-w500 3 recovery.

2011-03-28 19:23:41,444 WARN
[com.optinuity.c20.workflowengine.C2oWorkFlowEngine] [aListenerThread]
recoverSystemErrorProcesses: Queueing recovery of process with ROID - 541 for
TP _user01-w500 3 recovery.

2011-03-28 19:23:41,444 INFO

[com.optinuity.c20.c2oserver.ServerManager] [alListenerThread] Queued requests
for Touchpoint: TP user01-w500 3 Recovery... Recovering Processes with the
following ROIDs: 541

Appendix C: How Targets of an Operator are Processed 471

Operators Auto Recovery Example

OrchestratorD610b picks up the recovery request, resets the Operators with
System_Error, which ran against TP_user01-w500_3, in the process and resumes
the process:

2011-03-28 19:24:11,461 INFO
[com.optinuity.c2o0.workflowengine.WorkflowManager] [nPool Worker-63] Handling
Response: [$$TouchpointRecovery&&]. flow id is 541

2011-03-28 19:24:11,804 INFO
[com.optinuity.c2o0.workflowengine.WorkflowManager] [nPool Worker-63] Start
Recovery of Process with ROID:541, for TP user0l-w500 3 Recovery.

2011-03-28 19:24:11,820 INFO
[com.optinuity.c2o0.workflowengine.WorkflowManager] [nPool Worker-63] Resetting
System Error Operators in Process with ROID: 541 for TP user01l-w500 3 Recovery.
2011-03-28 19:24:11,883 INFO
[com.optinuity.c20.workflowengine.WorkflowManager] [nPool Worker-63] Resetting
Operator with ROID: 564 in Process with ROID: 541 for TP user0l-w500 3 Recovery.
2011-03-28 19:24:12,039 INFO
[com.optinuity.c2o0.workflowengine.C20SvcIconInstanceRefObject] [nPool
Worker-63] Inside Update ConnectorTraversed, Current/destination is

Start System Process 1 Source is Start 1

2011-03-28 19:24:12,117 INFO
[com.optinuity.c2o0.workflowengine.WorkflowManager] [nPool Worker-63] Resuming
Process with ROID: 541 for TP user01-w500 3 Recovery.

2011-03-28 19:24:12,117 INFO
[com.optinuity.c2o0.workflowengine.WorkflowManager] [nPool Worker-63] Resuming
WorkFlow - ROID is 541

2011-03-28 19:24:12,133 INFO
[com.optinuity.c20.workflowengine.C20SvcIconInstanceRefObject] [nPool
Worker-63] Inside Update ConnectorTraversed, Current/destination is

Start System Process 1 Source is Start 1

2011-03-28 19:24:12,648 INFO
[com.optinuity.c20.workflowengine.WorkflowManager] [nPool Worker-63] Done
resuming Process with ROID: 541 for TP user0l-w500 3 Recovery.

472 Content Designer Guide

Index

A

agenda

Operator supportin, ® 372
see schedules ¢ 370

AgentID

how processed ¢ 463
when to use ¢ 459

archival policy

archival policy, defining manually * 64

attached mode

calling Processes recursively in, ® 120

automation object

C

baselining for export ¢ 426
checkingin ¢ 79

checking out » 78

copying ¢ 83

moving ¢ 394

opening e 77

ownership 64

packaging e 432

relative path support ¢ 394
versioning ¢ 71

calendar

building, rule « 358
creating, object ¢ 356

content package

use in testing and deployment e 27

custom icon

implementing for a custom operator ¢ 185
implementing for an operator in a process ® 184

custom operator

invisible parameter ¢ 158
pre and post execution code ¢ 165
protected ¢ 175

custom operator group

D

assign to custom operator ¢ 167
define ¢ 167

dataset

accessing by keywords ¢ 232
creating » 191

reading operating system value into, ® 200
returning variables to parent Process ¢ 120
types ¢ 191
using, in expressions ® 236
variable name assistance ¢ 213
date and time format
specifying » 451
Default Process Watch
starting e 407
detached mode
starting Process instance in, ® 120
documentation
auto generating © 420
roles in generating ¢ 29

E

exception handling
adding rule » 401
types and priorities ¢ 399
expressions
data types 224
expressions, using Datasets in, ¢ 21
in JavaScript statements ¢ 247
masks ¢ 455
reserved words ¢ 222
system pathsin, ® 255

F

File trigger
example ¢ 382
monitoring dataset for e 384
XML content for, 386

icon

creating ® 178
indexed field

creating e 197
interaction request forms

defined ¢ 259

J

Javascript
arithmetic operators ¢ 230

Index 473

operators e 228

L

Library Browser
customize view e 53
search ¢ 53
user interface ¢ 37
link
breaking ¢ 105
logging on
<Global>in CA EEM ¢ 51

after browsing to CA Process Automation ¢ 32

M

Mail trigger
example ¢ 382
monitoring dataset for ¢ 384
XML content for 386
masks
example ¢ 458
syntax e 455
multi-tenancy
creating policy for, ® 133

0

OasisConfig properties
oasis.snmptrigger.service.port ¢ 387
Operator recovery
automated example ¢ 465
operators
adding to a Process ® 96
assigning values to, ® 208
configuring » 144
controlling execution e 412
defining parameters for, * 202
JavaScript ¢ 228
linking » 100
logical and derivation ¢ 97
looping ¢ 105
simulating processing ¢ 415
using in Agendas ¢ 372
using in Calendars ¢ 360
Out-of-the-Box Content
browse ¢ 50

P

package ¢ 432
adding objects to » 434

password
changing in CA EEM e 51
process
aborting * 412
adding comments ¢ 127
breakpoints ¢ 409
debugging ¢ 408
deployment o 27
execution rules ¢ 396
generating documentation about, ¢ 420
generating documentation for, ¢ 420
icons representing states ¢ 408
initializing » 134
inline » 120
Process, defining run duration for 69
resetting ¢ 412
starting a child » 117
starting directly ¢ 405
starting while editing 407
suspending ¢ 408
terminating ¢ 99
Process Control module
Process version run by ¢ 126

Q

quotation marks pair
as Operator parameter notation ¢ 209

R

regular expressions
masks e 455
strings in Dataset ® 196
Release Versions
setting ¢ 425
requirements
analyzing 14
resources
checking for availability e 353
creating * 345
using quotas ® 343
Return on Investment (ROI)
Return on Investment (ROI), Specifying
Properties ¢ 66
Runtime Security
defined ¢ 397
Runtime Security, setting properties ¢ 68
setting process properties ¢ 399

474 Content Designer Guide

S

scripts
comments ® 256
including common resources in ® 256
security, application
setting for Automation Objects » 64
setting as Current or ¢ 76
SNMP trigger
changing the listening port 387
input ¢ 386
monitoring Dataset for » 388
SOAP
use in starting Processes from external
applications 382
statements, JavaScript
conditional e 250
iterative ¢ 252
types ¢ 247
swim lanes
adding 125
processing e 123

T

tags
tags, assign to objects ¢ 63
target of Operator
critieria for selecting ¢ 459
how Agent ID or Operator ID is processed ® 463
how FQDN is processed ® 460
how IP address is processed ¢ 460
settings ¢ 215
timeout
setting for a Resource Operator ¢ 351
trigger
alternative ¢ 382

v

variable
assignment e 249
declaration ¢ 249
view or change for an Object » 63

Index 475

	CA Process Automation Content Designer Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction to Process Automation
	Process Development Phases
	Phase I: Requirements Analysis
	Identify Processes to Automate
	Identify Where Processes Run
	Identify Steps in Processes
	Identify Interdependencies
	Identify External Dependencies
	Identify Runtime Constraints

	Phase II: Design and Implementation
	Identify Process Objects and Operators
	Configure Operators and Steps
	Named Datasets
	Resources
	Assign Exit Conditions to Outcomes

	Optimize for Modularity and Component Reuse
	Custom Operators

	Define Process Initiation and Monitoring
	Process Initiation
	Process Control
	Schedule Processes
	On Demand Processes
	Triggered Processes

	Monitor Processes
	Define Permissions

	Define Alerts

	Phase III: Testing and Deployment
	Test the Process with Related Objects
	Generate the Process Documentation
	Set the Release Version of the Process and Related Objects
	Assemble the Process with Related Objects
	Deploy a Release Version of the Process with Related Objects
	Specify Import Instructions

	2: Getting Started
	Browse to CA Process Automation and Log In
	Configure User Settings
	The CA Process Automation User Interface
	Main Application Pages
	Home
	Library Browser
	Designer
	Operations
	Configuration
	Reports

	Common User Interface Controls

	Browse Out-of-the-Box Content
	Use CA EEM to Change Your CA Process Automation Password
	Web Browsers

	3: Library Browser
	Customize the Library Browser
	Search the Library Browser
	Search for Release Version Information
	Search for Version Information
	Search for Audit Trail Information

	Working with Objects and Folders
	Automation Object Types
	Create a Folder
	Create an Object
	Edit an Object
	View or Change General Properties of an Object
	Specify Tags or Keywords for Objects
	Change Ownership for Automation Objects
	Specify an Archival Policy
	Specify the Folder Release
	Specify ROI Properties
	Determine When to Select Run as Owner
	Specify Run-Time Security Properties
	Define the Run Duration for a Process

	Versions
	Understanding Versions
	Set the Object Version as Current or as a Baseline
	Set the Current Version of an Object
	Open the Current or Working Version of an Object
	Open a Selected Version of an Object
	Check Out an Object
	Save Changes to a Checked-Out Object
	Discard Changes to a Checked-Out Object
	Check In an Object
	Understanding Baselines
	Create a Baseline Version of an Object

	Delete or Restore an Object or Folder
	Copy and Paste an Object or a Folder
	Cut and Paste an Object or a Folder
	How to Work with Nonmodifiable Content

	4: Designing Processes
	The Process Designer
	Operators and Links: The Building Blocks
	Create a Process Object
	Design a Process
	Process Operators
	The Start Operator
	Add Operators to a Process
	Logical Operators
	The And Operator
	The Or Operator

	The Stop Operator: Success or Failure

	Process Operator Ports and Links
	Add Operator Ports and Links
	Custom Exit Ports and Expressions
	Break a Link for Readability

	Process Loops and Iterations
	System Variables for Looping
	Loop an Operator in a Process
	Interrupt a Looping Operation
	Loop Through Indexed Elements of a Dataset Field
	Index the Loop Count for Other Purposes
	Loop Errors and Exceptions

	Loop a Series of Operators
	While and Do While Loops
	The Logical Sequence of a Loop Operator

	Loop a Process
	Daemons and Other Looping Processes

	Process Control
	Child Processes
	Configure a Child Process
	Initialize Child Process Variables with the Caller and Process Keywords
	Return Dataset Variables to the Parent Process
	Start Processes Recursively

	Inline Process
	Configure an Inline Process
	View an Inline Child Process

	Process Lanes
	Create Horizontal or Vertical Lanes
	Manage Swim Lanes
	Lane Handling Rules

	Process Versions
	Document a Process
	Add Comments to a Process
	Set the Name for an Operator in a Process
	Change and Display Operator Information in a Process

	Self-Contained Content
	Self-Contained Content Links

	Navigate to a Specific Part of a Process
	Multi-Tenancy and CA Process Automation
	Make a Process Aware of Multiple Tenants
	Inherit Security in Subprocesses
	Add Variables at Time of Initialization
	Multi-Tenant Processes Using Process Watch

	The CA Process Automation Code Editor
	Color Coding
	Shortcuts

	5: Operators and Icons
	Operators
	Configure Operator Properties
	Auto Recovery
	Java and External JARs
	Configure the Java Module
	Configure the Run Java Code Operator
	Using a JavaObject

	Custom Operators
	Create a Custom Operator Object
	Custom Operator Properties
	Custom Operator: Form Tab
	Add Property Pages
	Add Custom Parameters
	Invisible Parameter Option
	Expand Macro in the Value Property
	Test the Custom Operator Interface
	Example: Retrieve Valuemap Array Values with an Operator System Function

	Custom Operator: Preview Tab
	Custom Operator: Settings Tab
	Create a Custom Operator Group
	Assign the Group to Other Custom Operators
	Custom Operator-Specific Pre-execution and Post-execution Code
	Define Custom Operator-specific Pre and Post Execution Code
	Run Order for Custom Operator-specific Pre-Execution Code

	Custom Operator: Dataset Tab
	Custom Operator: Group Configuration Tab
	Configure and Publish a Custom Operator Group
	Edit a Custom Operator Group Configuration

	Custom Operator: Custom Panels Tab
	Macro Expansion Syntax

	Custom Operator: Properties Tab
	Custom Operator: Versions Tab
	Custom Operator: Audit Trail Tab

	Set Custom Operator Availability to All Users
	Publish a Custom Operator Group Configuration to Another Domain
	Using Custom Operators
	Edit Custom Operator Values
	How to Work with Protected Custom Operators

	Your Favorite Operators
	Add or Remove Your Favorite Operators

	Connectors

	Operator Icons
	Operator Status Icons
	Creating, Editing, and Applying Custom Icons
	Create a Custom Icon
	Edit a Custom Icon
	Apply a Custom Icon to Any Operator in a Process
	Apply a Custom Icon to a Custom Operator
	Custom Icon Examples

	6: Datasets and Parameters
	Datasets
	Create a Named Dataset Object
	Dataset Types

	Define Dataset Pages and Variables
	Variable Data Types
	Validation Settings for Dataset Variables
	Arrays with Indexed Values
	Define a ValueMap as an Array

	Modify a Dataset
	View or Copy a Dataset Expression
	Read Operating System Values into Dataset Variables
	Sample Scripts for Reading Operating System Values into Dataset Variables
	UNIX Script Example: UNIXGetInfo Script Operator
	Script (UNIX)

	VBScript Example: WinGetInfo Script Information
	Script (VBScript)

	PerlScript Example: WinGetInfoPerl Script Operator
	Script (PerlScript)

	Process Parameters
	Operator Properties
	Literal Strings
	The Escape Character in Literal Strings
	Specify Paths in Literal Strings

	Dataset Variables in Parameters
	Relative Paths for Datasets
	Dataset Variable Name Assistance
	Use Dataset Variable Name Assistance

	Password Parameters
	Execution Settings
	Target Settings
	Operator Dataset Variables

	Processing Properties Settings
	Pre-Execution Code and Post-Execution Code
	Set Operator Status

	Loop Settings
	Timeout Settings

	Calculated Parameters
	Expressions
	Reserved Words in Expressions

	CA Process Automation Reserved Words
	CA Process Automation System Functions
	Reserved JavaScript keywords
	Data Types
	Boolean Data Type
	Date Data Type
	Double Data Type
	Integer Data Type
	JavaObject Data Type
	Long Data Type
	Password Data Type
	Object Reference Data Type
	String Data Type
	ValueMap Data Type

	JavaScript Operators
	Array and Object Access Operators
	Assignment Operators
	Arithmetic Operators
	String Concatenation Operator
	Logical Operators
	Equality and Comparison Operators
	Operator Precedence

	Keywords for Accessing Datasets
	Access Dataset Fields in Expressions
	Syntax for Specifying the Value of a Field
	Specify the Value of an Element in an Indexed Field
	Access the Length of an Indexed Field
	Access Methods on an Indexed Field
	Specify Named Dataset Variables
	Specify Process Dataset Variables
	Specify Operator Dataset Variables
	Specify System Dataset Variables

	Statements
	Variable Declaration
	Variable Assignment
	Reuse Variables
	Conditional Statements
	The if Statement
	The else if Statement
	The switch Statement

	Iterative Statements
	The while loop Statement
	The do/while Loop Statement
	The for Loop Statement
	The for/in Loop Statement
	The break Statement
	The continue Statement

	Specify System Paths in CA Process Automation Expressions
	Include Common Resources in CA Process Automation Scripts
	Comments in CA Process Automation Calculations

	7: Forms
	Start Request Forms
	Monitor Start Request Form Instances and Process Instances

	Interaction Request Forms
	The Form Designer
	Form Elements
	Form Element Properties
	View Form Property Values in a Separate Window

	Form Element Events
	Form Element Functions
	Form Elements
	General Functions for All Form Elements
	ca_pam_disableField(_id, isDisable)
	ca_pam_hideField(_id, isHide)
	XML Parsing
	ca_pam_showDataInTable(result, _id, tableHeader)
	ca_pam_convertToSimpleArray (objectArray, fieldName)
	ca_pam_convertToJavaScriptObject(valueObject)

	Check Box
	ca_pam_isSelectedCheckBox(_id)
	ca_pam_selectCheckBox(_id, isSelect)

	Date
	ca_pam_getDateFieldMaxValue(_id)
	ca_pam_getDateFieldMaxValueInMillis(_id)
	ca_pam_getDateFieldMinValue(_id)
	ca_pam_getDateFieldMinValueInMillis(_id)
	ca_pam_getDateFieldValue(_id)
	ca_pam_getDateFieldValueInMillis(_id)
	ca_pam_setDateFieldMaxValue(_id, val)
	ca_pam_setDateFieldMinValue(_id, val)
	ca_pam_setDateFieldValue(_id, val)

	Lookup Field
	ca_pam_getTextFieldValue(_id)
	ca_pam_setTextFieldValue(_id, val)

	Radio Group
	ca_pam_isSelectRadio (_id, radio_id)
	ca_pam_selectRadio(_id, radio_id)

	Select
	ca_pam_getSelectedOptions(_id)
	ca_pam_getSelectedOptionValues(_id)
	ca_pam_selectOption(_id, name, value, isSelect)
	ca_pam_selectOptionByIndex(_id, index, isSelect)
	ca_pam_addValuesInSelectStore(_id, values)
	ca_pam_clearSelectStore(_id)
	ca_pam_createSelectStore(nameArray, valueArray)
	ca_pam_createSelectStoreFromSQLResult(resultFromSQLQuery, nameColumnID, valueColumnID)

	Text Field
	ca_pam_getTextFieldValue(_id)
	ca_pam_setTextFieldValue(_id, val)

	Text Area
	ca_pam_getTextFieldValue(_id)
	ca_pam_setTextFieldValue(_id, val)

	Multi-Line Text
	ca_pam_getTextFieldValue(_id)
	ca_pam_setTextFieldValue(_id, val)

	Table
	ca_pam_clearTableData(_id, startIndex, endIndex)
	ca_pam_getTableData(_id, startIndex, endIndex)
	ca_pam_getTableRowCount(_id)
	ca_pam_setTableData(_id, values)
	ca_pam_setTableDataFromJSObject(_id, values)

	Simple Array
	ca_pam_clearTableData(_id, startIndex, endIndex)
	ca_pam_getTableData(_id, startIndex, endIndex)
	ca_pam_getTableRowCount(_id)
	ca_pam_setTableData(_id, values)
	ca_pam_setTableDataFromJSObject(_id, values)

	Object Reference
	ca_pam_getTextFieldValue(_id)
	ca_pam_setTextFieldValue(_id, val)

	Data Sources
	ca_pam_getDatasetData(dataSetExpression,callBack)
	ca_pam_getSQLData(driverName,connectionURL,userName,password,query,callBack)

	JSON Parsing
	ca_pam_convertJSONToJSObject(jsonString)

	REST Methods
	ca_pam_getRESTData(url, doNotValidateCert, headers, callBack)
	ca_pam_getRESTDataAuth(url, userName, password, doNotValidateCert, headers, callBack)
	ca_pam_postRESTData(url, body, contentType, doNotValidateCert, headers, callBack)
	ca_pam_postRESTDataAuth(url, userName, password, body, contentType, doNotValidateCert, headers, callBack)
	Example: REST POST Method

	SOAP Methods
	ca_pam_getSOAPData(serviceURL, methodName, inlineText, soapVersion, stripXMLNamespacesFromResponse, callBack)
	Example: SOAP Method

	XML Parsing
	ca_pam_convertXMLToJSObject(xmlString, elementTagName)

	Create a Simple Form with Basic Functions

	Initialize Form Variables

	8: Resources
	How Resources Work
	Create a Resource Object
	Edit a Resource Object
	Monitor and Edit Resources
	Add a Manage Resources Operator to a Process
	Define Resource Actions
	Check for and Respond to Unavailable Resources
	Specify a Time-Out Interval
	Specify Resource Availability and Action Settings
	Check for Resource Availability without Executing Actions

	9: Calendars, Schedules, Tasks, and Triggers
	Calendars
	Create a Calendar Object
	The Basic Calendar Designer
	The Advanced Calendar Designer
	Calendar Rule Logical Operators
	Calendar Rule Date Operators
	Add and Remove Calendar Dates Manually

	The Calendar Designer: Preview Tab
	Exclude Calendars

	Schedules
	Create a Schedule Object
	Schedule Process and Operator Tasks
	Preview All Occurrences of a Scheduled Task
	Using Schedules
	Monitor Active Schedules
	Monitor All Occurrences of All Scheduled Tasks

	Task Management
	Assign a Task to a User
	The Task List

	Administer Triggers
	Controlling Processes from an External Application with SOAP Calls
	How File and Mail Triggers Work
	Monitor the FileTrigger Dataset of a Process Started by a File Trigger
	Monitor the SMTP Dataset of a Process Started by a Mail Trigger
	XML Content Format for File and Mail Triggers

	SNMP Trap Input Considerations
	Change the SNMP Traps Listener Port
	Monitor the SNMP Dataset of a Process Started by an SNMP Trap Trigger

	10: Running, Testing, and Debugging Processes
	The Operations Page
	Filters for Process Instances
	Filter Objects Displayed by a Shortcut
	Process Watch Objects
	Create a New Process Watch Object
	Monitor Objects from within a Process Watch
	Extended Relative Path Support

	Content Package Objects
	Monitor Objects from within a Process Watch

	Execution Rules
	Runtime Security
	Properties Affecting Security of Running Processes
	Guidelines for Setting Runtime Security for a Process

	Exception Handling
	Create Exception Handlers

	Run Processes Interactively
	Start a Process from the Library
	Start a Process as Suspended from the Library
	Start a Process While Editing
	Open an Instance of a Process

	Process States
	Debug a Process
	Suspend a Process
	Change whether Processes are Unloaded on Completion
	Set and Remove Breakpoints in a Process
	Debug a Java Process
	Reset a Process
	Abort a Process

	Control a Process Branch
	Disable Operators or Deactivate Branches
	Abort an Operator
	Reset Operators in a Process
	Resume Execution of a Suspended Process

	Simulate Processing of Operators
	Simulate Processing of a Selected Operator
	Simulate Processing of an Entire Process

	11: Generating and Using Process Documentation
	About Process Documentation
	Generate Process Documentation

	12: Release Objects to Another Environment
	Release Versions
	View Release Version Information
	Set the Release Version of Objects to Export
	Baseline the Release Version of the Objects
	Set the Release Version of Content Package as Current

	Exporting and Importing
	Exporting
	What is the Difference Between Exporting an Object, a Folder, a Content Package, or a Package?
	Perform an Export
	Export an Object
	Export a Folder
	Content Package Objects
	Create a Content Package
	Add Objects to a Folder
	Add Release Information for a Folder

	Call Content Package Objects

	Export Relative Paths or Export Absolute Paths
	How to Migrate Objects From a Package to a New Folder to Prepare for Export
	Open the 04.1.00 Package Object and Note All of the Objects that the Package Contains
	Locate Those Package Objects in the Library
	Create a Folder to Paste Package Objects Into

	Importing
	How to Set Import Options
	Perform an Import
	Release Version and Baseline Status of Imported Objects

	Values Maintained in the Initial Version of a Copied Object

	A: Format Specifiers for Dates
	B: Using Masks to Specify Patterns in Strings
	Mask Syntax
	Sample Mask

	C: How Targets of an Operator are Processed
	How Targets for an Operator Can Be Specified
	Processing a Target Specified as an IP Address or FQDN
	Processing a Target Specified as the ID of an Agent or Orchestrator
	Use Case: Track Recovered Processes through Logs
	Operators Auto Recovery Example

	Index

