

Programming Guide
Release 12.51

CA Embedded Entitlements
Manager

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA Embedded Entitlements Manager (CA EEM)

■ CA Directory

■ CA SiteMinder®

■ CA Integrated Threat Management

Documentation Changes

The following documentation updates have been made since the last release of this
documentation:

■ Using Custom Key Length Certificates for SSL Communication in CA EEM SDK (see
page 163)—Added to describe how to use custom key length certificates for the SSL
communication.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 11

Who Should Read This Guide ... 11

Architecture ... 12

SDK Contents ... 13

Client Applications .. 14

Policy Server .. 14

Chapter 2: Installing the CA EEM SDK 15

Operating System Requirements ... 15

System Requirements .. 15

Windows ... 15

UNIX and Linux .. 16

Install on Windows ... 16

Install SDK.. 16

Start SDK ... 17

Remove SDK .. 17

Install on UNIX .. 17

Install SDK.. 17

Remove SDK .. 18

Chapter 3: Configuring CA EEM SDK 19

CA EEM SDK Initialization ... 19

About the eiam.config File .. 19

Enable iTechnology SDK Logging ... 28

Before You Configure CA EEM Java SDK in FIPS-only Mode.. 28

Configure CA EEM C++ SDK in FIPS-only Mode ... 29

Configure CA EEM C# SDK in FIPS-only Mode ... 30

Set SafeContext Information ... 30

Initialize CA EEM Java SDK .. 31

Initialize CA EEM C++ SDK ... 32

Initialize CA EEM C# SDK ... 33

Package CA EEM Java SDK with Your Applications ... 33

Required Files .. 34

Package CA EEM C++ SDK with Your Applications .. 35

Required Files .. 35

Package CA EEM C# SDK with Your Applications.. 36

6 Programming Guide

Required Files .. 36

Chapter 4: Sample WorkFlow 37

Overview .. 37

Defining Identity and Access Requirements... 38

Designing Safe Objects to Implement .. 39

Defining the Application Instance ... 41

Defining Calendars .. 46

Defining Policies .. 50

Designing the User Interface .. 53

How to Design User Interface ... 53

Migrating .. 53

Identity .. 54

Modifying StoredObjects ... 55

Folders and Paths .. 56

Search Size .. 57

Chapter 5: Application Instances 59

Overview .. 59

How to Register an Application .. 59

Attach to Backend Server ... 60

Create an Application Instance .. 62

Define User Attributes ... 63

Define Resource Classes ... 64

Register Application ... 65

Modify an Application Instance .. 66

Unregister an Application Instance ... 67

Create a SafeContext using SafeContextFactory .. 67

Chapter 6: Users 69

Overview .. 69

Create Global Users .. 70

Create Application-Specific Users .. 71

Associate Global User with Application-Specific Details ... 72

Modify Membership ... 73

Search Users Using Attributes .. 74

Retrieve a Global User .. 75

Retrieve an Application-Specific User .. 76

Delete a User .. 77

Contents 7

Chapter 7: Groups 79

Overview .. 79

Create Global User Groups ... 80

Create Application-Specific User Groups ... 81

Search Groups Using Attributes ... 82

Retrieve a Global User Group ... 83

Retrieve a User Group .. 83

Delete a Group ... 84

Chapter 8: Access Management 85

Policies ... 85

Overview ... 85

Types of Policies .. 86

Types of Authorization Checks .. 88

Create, Modify, and Verify Policies ... 88

Filters .. 93

Overview ... 93

Build Filters to Use in Searches ... 94

Build Filters to Use in Policies ... 99

Structure of a Filter ... 102

Authorization.. 106

SDK Cache ... 106

Session .. 107

Chapter 9: Authentication 109

NTLM Authentication ... 109

Prerequisites for Configuring NTLM Authentication ... 109

HTTP Filter Without JAAS .. 110

Certificate Authentication .. 113

Issue Certificate .. 115

Issue Certificate for a Session... 116

Issue Certificate For Users .. 117

Chapter 10: Certificate Validation 119

Validate a Certificate ... 119

Chapter 11: Policy Evaluation 121

Overview .. 121

How Policies Are Evaluated .. 122

8 Programming Guide

Gathering Identity Attributes ... 123

Assembling Environment Information .. 123

Policy Matching .. 124

Evaluating Matching Algorithm ... 124

How the Best Match Algorithm is Evaluated .. 125

Best Match Handling for Regular Expression Policies ... 126

Policy Filter Evaluation .. 127

Delegated Authority Evaluation .. 128

How Obligations Are Calculated.. 130

Chapter 12: Exception Handling 131

Overview .. 131

Safe Exception .. 132

Safe Authorization Exception ... 134

Safe BackendServer Exception ... 134

Safe Password Exception .. 134

Chapter 13: Identity Management 135

Administration Methods .. 135

Administering Global Users, Groups, and Folders .. 136

Identity Self Administration .. 136

Configure Externally Generated Certificates .. 137

Dynamic user groups .. 138

Chapter 14: Event Management 139

Event Policies ... 139

How Event Policies are Evaluated ... 139

Controlling Event Delivery... 140

Default Event Policy .. 141

Event Data Model ... 142

Administrative Events ... 143

Runtime Events ... 144

Coalesced Events ... 146

Route Events .. 147

Chapter 15: CA EEM SDK Logging 149

About the Logger Configuration Files ... 149

Appender .. 150

Appender in eiam.log4net.config .. 152

Contents 9

Logger .. 154

Root Logger ... 155

Configure the Logger Files ... 155

Example of a eiam.log4cxx.config File .. 156

Example of a eiam.log4net.config File .. 158

Example of a eiam.lo4j.config File ... 160

Chapter 16: Using Custom Key Length Certificates for SSL Communication
in CA EEM SDK 163

Communicate Over SSL between CA EEM SDK and CA EEM Server .. 163

Generate the Certificate ... 163

Update the eiam.config File .. 164

Restart the Application ... 165

Authenticate the Application against CA EEM Server .. 165

Regenerate the Application Certificates ... 165

Appendix A: Safex Command Line Reference 167

Exit Codes ... 168

Appendix B: Example Safex XML Scripts 171

Register .. 171

Unregister ... 173

Export ... 174

Export Multiple... 174

CreatedExportMultiple ... 175

Export Global Settings .. 176

Global Settings ... 176

Translations .. 177

Global User ... 178

User .. 179

UserGroups .. 179

GlobalUserGroup .. 179

Policy .. 180

Calendar ... 181

Extended User Attributes ... 182

Sample Application... 183

10 Programming Guide

Appendix C: Reference Matrix 195

Index 203

Chapter 1: Introduction 11

Chapter 1: Introduction

CA Embedded Entitlements Manager (CA EEM) allows applications to:

■ Securely manage users

■ Share common access policy management

■ Authenticate and authorize from a data source

It provides a common web interface for policy definition, user management, and means
to audit user's activities.

CA EEM allows several applications to share a single source to authenticate users and
manage their access rights.

Who Should Read This Guide

This guide is intended for system programmers, administrators, and integrators who are
responsible for defining, monitoring, and managing CA EEM users and tasks. It describes
how to integrate CA EEM with your application.

This guide assumes you have already installed the CA EEM and are familiar with the
UNIX or Windows operating environment in which the tasks are performed. This guide
also assumes you have knowledge on any of the following programming languages:

■ C#

■ C++

■ Java

Architecture

12 Programming Guide

Architecture

The following illustration depicts the relationship between CA EEM Server, applications,
shared server, and database:

More Information:

Client Applications (see page 14)
Policy Server (see page 14)

Architecture

Chapter 1: Introduction 13

SDK Contents

The CA EEM SDK provides means to authenticate external user sources, develop access
policies, and deliver security events. It provides a command line interface that
application administrators can use for silent administration.

The SDK APIs let you manage application instances, resource classes, access policies,
calendars, folders, and sessions. The APIs are in C, C#, C++, and Java languages.

The CA EEM SDK provides the following:

Content Default Install Path

Sample application 'RBC_Hospital' C:\Program Files\CA\Embedded Entitlements
Manager SDK\elsewhere\safex

Safetool source

■ C#

■ C++

■ Java

C:\Program Files\CA\Embedded Entitlements
Manager SDK\safetool

Documentation

The SDK documentation is installed with the CA EEM SDK. The CA EEM SDK
documentation is at: <install_path>\CA\Embedded Entitlements Manager SDK\Doc.

Default: C:\Program Files\CA\Embedded Entitlements Manager SDK\Doc

It provides the following:

■ Java reference

■ C# reference

■ C/C++ reference

Note: For information about installing CA EEM SDK, see the Implementation Guide.

Architecture

14 Programming Guide

Client Applications

A business application that uses the CA EEM SDK is a client. When an application
requires users to authenticate themselves, evaluate business policies, or to log a
significant event, the application invokes one of the CA EEM SDK methods.

When an application instance is created with the CA EEM policy server, all application
policies, calendars, and session-specific user groups are sent from the server, and are
cached in the client for use during policy evaluation. The cache updates itself frequently.

More Information

SDK Cache (see page 106)

Policy Server

The CA EEM Policy Server is shared by all the applications and is used to:

■ Authenticate users

■ Deliver audit events to audit collection tools

■ Store application-specific information

■ Set application-level user attributes

■ Configure external user store

■ Set calendars

Chapter 2: Installing the CA EEM SDK 15

Chapter 2: Installing the CA EEM SDK

This section contains the following topics:

Operating System Requirements (see page 15)
System Requirements (see page 15)
Install on Windows (see page 16)
Install on UNIX (see page 17)

Operating System Requirements

To learn about the operating system requirements for the CA EEM SDK, see the CA
Embedded Entitlements Manager Compatibility Matrix on the Support site:
http://ca.com/support.

System Requirements

The following section describes the CA EEM SDK system requirements.

Windows

The recommended system requirements are as follows:

■ An Intel Pentium processor

■ 4GB RAM

■ 10 GB of hard disk free space

■ At least 300 MB disk space is required under the temporary directory %temp%
(C:\Documents and Settings\Administrator\Local Settings\Temp\) where the CA
EEM installation files are extracted during the installation

■ Windows Installer v3 or later

■ Winsock-compatible TCP/IP installed and configured

Windows administrator access to the system

■ Internet Browser to run the Web components (Microsoft Internet Explorer 7.0 or
higher, or Mozilla Firefox 3.0 or higher).

http://www.ca.com/support
http://www.ca.com/support

Install on Windows

16 Programming Guide

UNIX and Linux

The recommended system requirements are as follows:

■ 4GB RAM

■ 10 GB of hard disk free space

■ 500 MB disk space is required under the temporary directory (/tmp) where the CA
EEM installation files are extracted during the installation.

■ A Web browser to run the web components (Firefox 3.0 or higher).

Install on Windows

Install the CA EEM SDK by using one of the following methods:

Interactive installation

Lets you install with user interaction.

Silent installation

Lets you install without any user interaction.

Before installing, gather the required information for the preferred installation
parameters.

Install SDK

The CA EEM SDK installation wizard guides you through the installation process.

To install the CA EEM SDK

1. Log in to the computer as a user with administrator privileges.

2. Open the Windows Explorer and double-click the install package EEMSDK_<version
number>_win32.exe on the target computer.

The installation wizard opens.

3. Follow the instructions on the installation wizard to complete the installation.

CA EEM SDK is installed.

Note: An environmental variable %EIAM_SDK% is created during the installation to
point to the installation path. Use this variable in the explorer path to open the
installation folder.

Install on UNIX

Chapter 2: Installing the CA EEM SDK 17

Start SDK

To start CA EEM SDK click Start, All Programs, CA, Embedded Entitlements Manager SDK.

The CA EEM SDK documentation window appears.

Remove SDK

You can uninstall the CA EEM SDK using the Add or Remove Programs of the Control
Panel.

Install on UNIX

You can install CA EEM server by performing the following procedure. Before installing,
gather the required information for the preferred installation parameters.

Install SDK

CA EEM SDK for Linux and UNIX uses a self-extracting shell script that guides you
through the installation process. During the installation process, the script displays the
license information and prompts for the installation parameters. After the installation
parameters are entered, the installation begins.

To install CA EEM SDK for Linux and UNIX

1. Run the installation script EEMSDK_<version number>_<operating system>.sh on
the target computer.

Example:

sh EEMSDK_12.0.0.5_sunos.sh

The file is decompressed and installation begins.

2. Enter Y to accept the Terms and Conditions of the license agreement (or N to
decline and abort the installation).

3. Enter the installation path for the CA EEM SDK (or accept the default).

4. Select install product.

CA EEM SDK is installed on your computer.

Note: An environmental variable $EIAM_SDK is created during the installation to
point to the installation path. Use this variable in the explorer path to open the
installation folder.

Install on UNIX

18 Programming Guide

Remove SDK

You can remove CA EEM SDK from Linux and UNIX operating systems.

To remove CA EEM SDK

1. Log on to the console and navigate to the EiamSDK\Uninstall location.

2. Run eiamuninstall.

3. Follow the instructions on the wizard.

The CA EEM SDK is uninstalled.

Chapter 3: Configuring CA EEM SDK 19

Chapter 3: Configuring CA EEM SDK

This section contains the following topics:

CA EEM SDK Initialization (see page 19)
Package CA EEM Java SDK with Your Applications (see page 33)
Package CA EEM C++ SDK with Your Applications (see page 35)
Package CA EEM C# SDK with Your Applications (see page 36)

CA EEM SDK Initialization

The following topics explain how to initialize CA EEM SDK. The eiam.config file controls
the CA EEM SDK configuration.

About the eiam.config File

Use the eiam.config file to control CA EEM SDK configuration data such as:

■ Cyclic buffer

■ Logger configuration file

■ SAF folder for storing audit files

■ FIPS compatible mode

■ SafeContext-related information

The eiam.config file consists of the following configurable parameters:

CyclicBuffer size

Specifies the number of log messages contained in a cyclic buffer. The cyclic buffer
stores the specified number of latest log messages in the memory. As the buffer
reaches the specified size, a new log message replaces the oldest log message in the
buffer. If the application crashes, you can recover the latest log messages from the
core.

Default: 500

Minimum: 0

Maximum: 1000

Note: This parameter is valid only for the CA EEM C++ SDK.

CA EEM SDK Initialization

20 Programming Guide

enable

Specifies if the cyclic buffer is enabled. If enabled is set to false, the cyclic
buffer is disabled. So, you need not specify values of the parameters
CyclicBuffer size, dump, and file.

Value: [true|false]

Default: true

Important! Cyclic buffer is enabled by default. If you enable the cyclic buffer,
performance of CA EEM is affected.

dump

Specifies if the contents of cyclic buffer are written to a file if the eiam.config
file is modified or updated.

Value: [true|false]

Default: false

file

Specifies filename of the dump file. If dump is set to false, the log messages are
not written to a dump file. The file extension of file is .log.

LoggerConfiguration file

Specifies absolute path of the logger configuration files for CA EEM Java, C# SDK,
and C++ SDKs. The CA EEM logging information is stored in the logger configuration
files. eiam.log4cxx.config, eiam.log4net.config, and eiam.log4j.config are the logger
configuration files for CA EEM C++ SDK, CA EEM C# SDK, and CA EEM Java SDK.

audit

SAF folder where audit files are stored for processing.

Note: For more information about SAF Directory, see the Reliable Event Delivery
section in the Programming Guide.

Network sockettimeout

Specifies the socket timeout in milliseconds.

Default: 120000 (120 seconds)

Note: This parameter is valid only for the CA EEM C++ SDK and CA EEM Java SDK.

CA EEM SDK Initialization

Chapter 3: Configuring CA EEM SDK 21

<SDK type ="C#">

Specifies the FIPS mode settings for C# SDK.

FIPSMode

Specifies the FIPS mode for CA EEM SDK. For FIPS-only mode, set the value to
On.

Value: [Off|On]

Default: Off

digestAlgorithm

Specifies the cryptographic algorithm used to sign server requests. In FIPS
mode, CA EEM C# SDK uses SHA1 as the digest algorithm by default. If FIPS
mode is disabled, CA EEM C# SDK uses MD5 as the digest algorithm. MD5 is not
supported in FIPS-only mode.

Value: [MD5|SHA1]

Default: MD5 for non-FIPS mode.

Note: In FIPS-only mode, CA EEM C# SDK supports only SHA1 as the digest
algorithm.

<SDK type ="Java">

Specifies the FIPS mode settings for Java SDK.

FIPSMode

Specifies the FIPS mode for CA EEM SDK. For FIPS-only mode, set the value to
On.

Value: [Off|On]

Default: Off

JCEProvider

Specify the Java Cryptography Extension (JCE) provider to use in the FIPS-only
mode.

digestAlgorithm

Specifies the cryptographic algorithm used to sign server requests. For CA EEM
SDK enabled in FIPS-only mode, use SHA1 as the digestAlgorithm. FIPS does not
support MD5. If FIPS-only mode is disabled, the server requests are signed
using MD5.

Value: MD5/SHA1/SHA256/SHA384/SHA512

Default: SHA1 for FIPS-only mode and MD5 for non-FIPs mode.

CA EEM SDK Initialization

22 Programming Guide

logLevel

Specifies the log level.

Value: [Error|Warning|Trace|Nolevel]

logToFile

Specifies if the log messages must be stored in a file.

Value: [True|False]

Default: False

logFile

Specifies the absolute path to the log file. This parameter is valid only if
logToFile is set to True.

maxLogSize

Specifies the maximum size of the log file in MB.

CA EEM SDK Initialization

Chapter 3: Configuring CA EEM SDK 23

<SDK type ="C++">

Specifies the FIPS mode settings for C++ SDK.

FIPSMode

Specifies the FIPS mode for CA EEM SDK. For FIPS-only mode, set the value to
On.

Value: [Off|On]

Default: Off

etpkiCryptoLib

Specifies the installation path for the etpki libraries.

secureProtocol

Specifies the protocol that the CA EEM SDK uses to communicate with CA EEM
Server.

Default: SSLV23

Values: SSLV23 / SSLV3 / TLSV1

Note: FIPS-only communication mode supports only TLSV1. Communication
fails if you use SSLV2 or SSLV3 when FIPS mode is set to True.

digestAlgorithm

Specifies the cryptographic algorithm used to sign server requests. For CA EEM
SDK enabled in FIPS mode, use SHA1 as the digestAlgorithm. FIPS does not
support MD5. If FIPS mode is disabled, the server requests are signed using
MD5.

Value: MD5/SHA1/SHA256/SHA384/SHA512

Default: MD5 for non-FIPS and SHA1 for FIPS-only mode. If the tag is empty, CA
EEM uses the default values.

CA EEM SDK Initialization

24 Programming Guide

logLevel

Specifies the log level.

Value: [Error|Warning|Trace|Nolevel]

logToFile

Specifies if the log messages must stored in a file.

Value: [True|False]

Default: False

logFile

Specifies the absolute path to the log file. This parameter is valid only if
logToFile is set to True.

maxLogSize

Specifies the maximum size of the log file in MB.

CA EEM SDK Initialization

Chapter 3: Configuring CA EEM SDK 25

<SafeContext>

Specifies the information required to generate a SafeContext using the
SafeContextFactory method.

Note: You can include more than one SafeContext tag in the eiam.config file.
However, the refid must be unique for each SafeContext tag.

refid

Specifies the reference ID for a SafeContext tag. This ID must be unique. The
SafeContextFactory uses the reference ID to pick the information required to
generate a SafeContext.

Backend

Specifies the hostname of the CA EEM Server.

Application

Specifies the name of the application instance for which the SafeContext is
generated. If the application name is not specified, SafeContextFactory attaches to
the global application.

Locale

Specifies the locale.

Authentication Type

Specifies the authentication that the SafeContextFactory uses to attach to an
application. The following are the supported authentication types:

■ password-based authentication; use the UserAuth tags for this authentication

■ PEM certificates; use the <Certificate type="pem"> for this authentication

■ P12 certificates; use the <Certificate type="p12"> for this authentication

■ PKCS#11 certificates; use the <Certificate type="p11"> for this authentication

Note: Use only one authentication type with a SafeContext tag.

UserAuth

Specify password-based authentication method.

Username

Specifies the username of the administrator needed to attach to an application
instance or global instance.

Password

Specifies the munged password needed to authenticate the administrator.

PEM certificates

Specifies the details required for a PEM certificate-based authentication.

CertURI

CA EEM SDK Initialization

26 Programming Guide

Specifies the path including the certificate filename.

KeyURI

Specifies the path including the key file.

KeyPW

Specifies the munged password required to read the certificate file. This tag is
valid only for the CA EEM C++ SDK. In FIPS-only mode, this tag must be blank.

PKCS#11 certificates

Specifies the details required for a P11 certificate-based authentication.

Provider

Specifies the path to the encryption libraries.

Userpin

Specifies the userpin to use with the PKCS#11 device.

ID

Specifies the ID of the PKCS#11 certificate.

P12 certificates

Specifies the details required for a P12 certificate-based authentication.

CertURI

Specifies the path including the P12 certificate filename.

KeyPW

Specifies the munged password to read or write to the certificate file.

CA EEM SDK Initialization

Chapter 3: Configuring CA EEM SDK 27

Example of a eiam.config File for Java Application

The following is an example of the eiam.config file:

<EiamConfiguration>

 <!-- Absolute file path for logger configuration, For Java use:-

file="eiam.log4j.config" -->

 <LoggerConfiguration file="eiam.log4j.config"/>

 <!-- Absolute folder path for SAF folder where audit files will be stored for

processing-->

 <Saf directory="audit"/>

 <!-- Socket timeout in milli seconds. Default value is 2 mins -->

 <Network sockettimeout="120000"/>

<SDK type="Java">

 <iTechSDK>

 <FIPSMode>true</FIPSMode>

 <JCEProvider>JsafeJCE</JCEProvider>

 <Security>

 <digestAlgorithm>SHA1</digestAlgorithm>

 </Security>

 <Debug>

 <logLevel>trace</logLevel>

 </Debug>

 </iTechSDK>

 </SDK>

<!-- configuration to create SafeContext instance from SafeContextFactory -->

<SafeContext refid="RBC_Hospital" version="1.0">

 <!-- EEM server hostname -->

 <Backend>eiamServer</Backend>

 <!-- application instance to attach to (leave empty for global) -->

 <Application>RBC_Hospital</Application>

 <!-- locale -->

 <!-- java:format language-country-variant -->

 <Locale>en-us<\Locale>

 <!-- possible values for type are certificate/password/native -->

 <Authentication type="">

 <!-- input for certificate based authentication (PEM) keyPW is valid only for

C++

 <Certificate type="pem">

 <CertURI>appcert.cer</CertURI>

 <KeyURI>appcert.key</KeyURI>

 <KeyPW></KeyPW/>

 </Certificate>

 </Authentication>

</SafeContext>

</EiamConfiguration>

CA EEM SDK Initialization

28 Programming Guide

Enable iTechnology SDK Logging

You can enable iTechnology SDK logging only for the CA EEM C++ SDK and the CA EEM
Java SDK. For CA EEM C# SDK, use the logger configuration file.

To enable iTechnology SDK logging, open the eiam.config file and edit the following tags:

■ logLevel

■ logToFile

■ logFile

■ maxLogSize

For CA EEM Java SDK, edit the previously mentioned tags in the <SDK type ="Java">
section. For CA EEM C++ SDK, edit the tags mentioned in the <SDK type ="C++"> section.

More information:

About the eiam.config File (see page 19)

Before You Configure CA EEM Java SDK in FIPS-only Mode

To configure CA EEM Java SDK in FIPS-only mode, do the following tasks:

1. Configure JRE to use third-party Java Cryptography Extension (JCE) libraries.

2. Add the Crypto-J libraries as a JCE provider in the Java.security file.

Note: For more information about how to configure JRE with JCE, see the respective
JCE documentation.

3. Enable FIPS-only mode in the eiam.config file.

CA EEM SDK Initialization

Chapter 3: Configuring CA EEM SDK 29

Configure CA EEM Java SDK in FIPS-only Mode

When you configure CA EEM SDK in FIPS-only mode, CA EEM uses FIPS 140-2 compliant
cryptographic libraries to encrypt and decrypt sensitive data.

To configure CA EEM Java SDK in FIPS-only mode

1. Open eiam.config file and edit the following tags <SDK type="Java"> section:

■ FIPSMode

■ JCEProvider

■ digestAlgorithm

2. Save and close the eiam.config file.

3. Restart your application.

CA EEM Java SDK is configured in FIPS-only mode.

More information:

About the eiam.config File (see page 19)

Configure CA EEM C++ SDK in FIPS-only Mode

When you configure CA EEM SDK in FIPS-only mode, CA EEM uses FIPS 140-2 compliant
cryptographic libraries to encrypt and decrypt sensitive data.

To configure CA EEM C++ SDK in FIPS-only mode

1. Open eiam.config file and edit the following tags in the <SDK type="C++"> section.

■ FIPSMode

■ etpkiCryptoLib

■ secureProtocol

■ digestAlgorithm

2. Save and close the eiam.config file.

3. Restart your application.

CA EEM C++ SDK is configured in FIPS-only mode.

More information:

About the eiam.config File (see page 19)

CA EEM SDK Initialization

30 Programming Guide

Configure CA EEM C# SDK in FIPS-only Mode

When you configure the CA EEM C# SDK in FIPS-only mode, CA EEM uses only FIPS 140-2
compliant cryptographic libraries to encrypt and decrypt sensitive data.

Note: CA EEM C# SDK does not support P11 certificates.

To configure CA EEM C# SDK in FIPS-only mode

1. Open eiam.config file and edit the following tags in the <SDK type="C#"> section:

■ FIPSMode

■ digestAlgorithm

2. Save and close the eiam.config file.

3. Restart your application.

CA EEM C# SDK is configured in FIPS-only mode.

More information:

About the eiam.config File (see page 19)

Set SafeContext Information

The <SafeContext> tag in the eiam.config file contains information required to generate
a SafeContext using the SafeContextFactory class. Each SafeContext tag in the
eiam.config file is identified using a unique refID tag. To generate a SafeContext, you
must pass this refID to the SafeContextFactory. Following are the benefits of specifying
the SafeContext-related information in the eiam.config file:

To set SafeContext-related information:

1. Open eiam.config file and edit the <SafeContext> section to set the following tags:

■ refID

■ Backend

■ Application

■ Locale

■ Authentication Type

2. Save and close the eiam.config file.

CA EEM SDK Initialization

Chapter 3: Configuring CA EEM SDK 31

Initialize CA EEM Java SDK

Configure CA EEM SDK using the SafeConfigurator class.

Note: You must configure eiam.config before you configure CA EEM SDK. If you do not
configure the eiam.config file, the CA EEM SDK is initialized with the following default
configuration:

■ non-FIPS mode

■ Logging is set to error and only console logging is enabled

■ SAF location is disabled

To initialize CA EEM SDK, perform the following process:

1. Include the following API in your code to initialize CA EEM SDK during application
startup:

SafeConfigurator.getInstance().init(filename);

Where

filename

Specifies the absolute path of the eiam.config file that you have defined for
your application.

Note: All the CA EEM SDK operations after this line are logged based on tracing
levels of logging in the logger configuration.

2. Include the following API in your code during shutdown of your application:

m_config.term();

Note: For more information about the SafeConfigurator class, see the Programming
Guide.

CA EEM SDK Initialization

32 Programming Guide

Initialize CA EEM C++ SDK

Configure CA EEM SDK using the Safe::Configurator class.

Note: Configure the eiam.config before you configure CA EEM SDK. If you do not
configure the eiam.config file, the CA EEM SDK is initialized with the following default
configuration:

■ non-FIPS mode

■ Logging is set to error and only console logging is enabled

■ SAF location is disabled

■ CyclicBuffer is set to True

To initialize CA EEM SDK, perform the following process:

1. Include the following API in your code to initialize CA EEM SDK during application
startup:

Safe::Configurator::getInstance()->init(filename);

Where

filename

Specifies the absolute path of the eiam.config file that you have defined for
your application.

Note: If you do not mention the filename, CA EEM SDK is initialized with the default
values.

2. Include the following API in your code during shutdown of your application:

Safe::Configurator::getInstance()->term();

Note: For more information about the SafeConfigurator class, see the Programming
Guide.

Important! If there are any invalid attributes in the eiam.config file, the CA EEM SDK
aborts.

Package CA EEM Java SDK with Your Applications

Chapter 3: Configuring CA EEM SDK 33

Initialize CA EEM C# SDK

Configure CA EEM SDK using the SafeConfigurator class. To configure CA EEM SDK,
perform the following process:

Note: Configure the eiam.config file before you configure CA EEM SDK. If you do not
configure the eiam.config file, the CA EEM SDK is initialized with the following default
configuration:

■ non-FIPS mode

■ Logging is set to error and only console logging is enabled

■ SAF location is disabled

To initialize CA EEM SDK, perform the following process:

1. Include the following API in your code to initialize CA EEM SDK during application
startup:

SafeConfigurator.getInstance().Init(filename);

Where

filename

Specifies the absolute path of the eiam.config file that you have defined for
your application.

Note: If you do not mention the filename, CA EEM SDK is initialized with the default
values.

2. Include the following API in your code during shutdown of your application:

SafeConfigurator.getInstance().term();

Note: For more information about the SafeConfigurator class, see the Programming
Guide.

More information:

About the eiam.config File (see page 19)
About the Logger Configuration Files (see page 149)

Package CA EEM Java SDK with Your Applications

Package CA EEM Java SDK with Your Applications

34 Programming Guide

To package CA EEM Java SDK, do the following:

1. Update the ClassPath with references to the required jar files from the following
location:

Windows: %EIAM_SDK%\jars

UNIX and Linux: $EIAM_SDK/jars

2. Update your installer to package and deploy the required jar files and configuration
files.

Note: For more information about the required jars and configuration files, see the
Required Files topic.

Required Files

Package the following files in your application:

■ safe.jar

■ xml-apis.jar

■ commons-codec-1.3.jar

■ commons-logging-1.1.1.jar

■ commons-logging-api-1.1.1.jar

■ httpclient-4.0.jar

■ httpcore-4.0.1.jar

■ not-yet-commons-ssl-0.3.10.jar

■ xercesImpl-2.9.1.jar

■ xml-apis-2.9.1.jar

Package the following configuration files:

■ eiam.config

■ eiam.log4j.config

Package CA EEM C++ SDK with Your Applications

Chapter 3: Configuring CA EEM SDK 35

Package CA EEM C++ SDK with Your Applications

To package CA EEM C++ SDK, do the following:

1. Update your build script to search a directory for include files and lib path from the
makeflags.mk file in the CA EEM SDK folder.

2. Update your installer to package and deploy the required dlls, include files, and
configuration files.

Note: For more information about the required dlls and configuration files, see the
Required Files topic.

3. Include the CAPKI installer set up with your installer. Install the CAPKI installer with
your product on the target system. The CAPKI installer is in following location:

■ Windows:%EIAM_SDK%\capki

■ UNIX and Linux: $EIAM_SDK/CAPKI

Note: If you run Safex on a computer that is different from the computer where the
CA EEM Server is installed, install CAPKI with Safex.

Required Files

Package the following dlls in your application:

Windows

Visual Studio 2010

■ 32-bit—$EIAM_SDK\sdk\cpp\lib\

UNIX platforms

■ $EIAM_SDK/sdk/cpp/lib/

Package the following configuration files:

■ eiam.config

■ eiam.log4cxx.config

Include the following header files in your code when compiling your application:

Windows

%EIAM_SDK%\sdk\cpp\include

UNIX platforms

$EIAM_SDK/sdk/cpp/include

Package CA EEM C# SDK with Your Applications

36 Programming Guide

Package CA EEM C# SDK with Your Applications

To package CA EEM C# SDK, do the following:

1. Add the dlls from the following folder as referenced assemblies when building your
application:

%EIAM_SDK%\sdk\cshar\lib\

2. Update your installer to package and deploy the referenced dlls, the eiam.config
file, and the eiam.log4net.config file.

Note: For more information about the reference dlls and configuration files, see the
Required Files topic.

Required Files

Package and deploy the following referenced dlls in your application:

■ log4net.dll

■ SafeCS.dll

Package and deploy the following configuration files:

■ eiam.config

■ eiam.log4net.config

Chapter 4: Sample WorkFlow 37

Chapter 4: Sample WorkFlow

This section contains the following topics:

Overview (see page 37)
Defining Identity and Access Requirements (see page 38)
Designing Safe Objects to Implement (see page 39)
Designing the User Interface (see page 53)
Migrating (see page 53)
Modifying StoredObjects (see page 55)

Overview

To explain the workflow, a sample hospital management software package is created.

To create the software package, enable, and embed the application in CA EEM, you
must define the following objects:

1. Identity and access requirements

2. Safe objects to implement

3. User interfaces

4. Migrate existing application data

More Information

Defining Identity and Access Requirements (see page 38)
Designing Safe Objects to Implement (see page 39)
Designing the User Interface (see page 53)
Migrating (see page 53)

Defining Identity and Access Requirements

38 Programming Guide

Defining Identity and Access Requirements

To specify the application's identity and access requirements you must define the
business policies for your application.

The following are the sample business policies for the hospital management software:

■ Business policies for medical records

– Medical records can be read/written by a patient's doctor

– Any doctor or nurse in the patient's ward can read a patient's medical record

– The chief doctor and nurse can read any patient's medical records

■ Business policies for patients

– Patients can only be admitted to the ER, and only by ER staff or the patient's
doctor

– A patient's doctor can discharge the patient, and prescribe them medicine

– The Chief doctor and nurse can transfer patients between wards

– Any doctor in patient's ward can discharge and prescribe medication to a
patient

– Any doctor or nurse can locate any patient

– Receptionists can locate patients during visiting hours

■ Business policies for wards

– Maintenance and security can enter any ward

– Any employee can enter their assigned ward

– The chief doctor and nurse can enter all wards except the office

■ Business policies for billing records

– Office employees can read/write billing data

– The chief doctor and nurse can read billing data

Designing Safe Objects to Implement

Chapter 4: Sample WorkFlow 39

Designing Safe Objects to Implement

After the business policies are defined, you must identify and define the various Safe
Objects. The objects to define include:

ResourceClasses

The resource names to use, actions and 'named attributes' that are used in policy
evaluation.

User Attributes

The application-specific user attributes that is used in policy evaluation.

Calendars

To limit when policies are effective.

Policies

Rules attached to the users that define their access.

The following table provides the resource classes names, actions/attributes identified
based on the business policies:

Resource Class
Name

Business Policies Safe Information

medicalrecords ■ read/write by patient's doctor

■ read by any doctor/nurse assigned
to the patient's ward

■ read by Chiefs

ResourceClassName: medicalrecord
ResourceName: patientid
Actions: read, write
Named Attributes: patient's ward, patient's
doctor
User Attributes: staff's ward
User Groups: Chiefs, Doctors, Nurses

Designing Safe Objects to Implement

40 Programming Guide

Resource Class
Name

Business Policies Safe Information

p
a
t
i
e
n
t
s

■ admit to ER by any staff assigned to
ER, or the patient's doctor

■ discharge/prescribe by patient's
doctor, or any doctor assigned to
patient's ward

■ discharge/transfer by global
usergroup Chiefs

■ locate by Doctors and Nurses

■ locate by JobTitle Receptionist,
during visiting hours

ResourceClassName: patient
ResourceName: patientid
Actions: admit, discharge, prescribe, transfer,
locate
Named Attributes: patient's ward, patient's
doctor
User Attributes: staff's ward, staff JobTitle
User Groups: Chiefs, Doctors, Nurses
Calendar: visitinghours

wards ■ entry by Maintenance and Security

■ entry by anybody to their assigned
wards

■ entry by Chiefs to everywhere
except the office

ResourceClassName: ward
ResourceName: wardname
Actions: enter
User Attributes: staff's ward
User Groups: Chiefs, Maintenance, Security

billingdata ■ read/write by Office users

■ read by Chiefs

ResourceClassName: billingdata
ResourceName: patientid
Actions: read, write
User Groups: Chiefs, Office

More Information

Defining Calendars (see page 46)
Defining Policies (see page 50)
Defining the Application Instance (see page 41)

Designing Safe Objects to Implement

Chapter 4: Sample WorkFlow 41

Defining the Application Instance

After defining the SafeObjects, you can build your ApplicationInstance object with the
resource classes and user attributes.

Example code to register an application using Safex script

<Safex>

 <Attach/>

 <Register>

 <ApplicationInstance name="HospitalMgmt" label="elsewhere">

 <Brand>ABC</Brand>

 <MajorVersion>1</MajorVersion>

 <MinorVersion>0</MinorVersion>

 <Description>Demo App</Description>

 <UserAttribute>text:ward</UserAttribute>

 <ResourceClass>

 <Name>medicalrecord</Name>

 <Action>read</Action>

 <Action>write</Action>

 <NamedAttr>doctor</NamedAttr>

 <NamedAttr>ward</NamedAttr>

 </ResourceClass>

 <ResourceClass>

 <Name>patient</Name>

 <Action>admit</Action>

 <Action>discharge</Action>

 <Action>prescribe</Action>

 <Action>transfer</Action>

 <Action>locate</Action>

 <NamedAttr>ward</NamedAttr>

 <NamedAttr>doctor</NamedAttr>

 </ResourceClass>

 <ResourceClass>

 <Name>ward</Name>

 <Action>enter</Action>

 </ResourceClass>

 <ResourceClass>

 <Name>billingdata</Name>

 <Action>read</Action>

 <Action>write</Action>

 </ResourceClass>

 </ApplicationInstance>

 </Register>

</Safex>

Designing Safe Objects to Implement

42 Programming Guide

Example code to register an application using C#

// new application instance

SafeApplicationInstance ai = null;

ai = new SafeApplicationInstance();

ai.Context = sc;

ai.Label = "elsewhere";

ai.ApplicationName = "HospitalMgmt";

ai.MajorVersion = "1";

ai.MinorVersion = "0";

ai.Brand = "ABC";

ai.Description = "Demo App";

// user attribute "ward"

ai.addUserAttribute("text:ward");

// resourceclass medicalrecord

SafeResourceClass rc_medicalrecord = new SafeResourceClass();

rc_medicalrecord.Name = "medicalrecord";

rc_medicalrecord.addAction("read");

rc_medicalrecord.addAction("write");

rc_medicalrecord.addNamedAttr("doctor");

rc_medicalrecord.addNamedAttr("ward");

ai.addResourceClass(rc_medicalrecord);

// resourceclass patient

SafeResourceClass rc_patient = new SafeResourceClass();

rc_patient.Name = "patient";

rc_patient.addAction("admit");

rc_patient.addAction("discharge");

rc_patient.addAction("prescribe");

rc_patient.addAction("transfer");

rc_patient.addAction("locate");

rc_patient.addNamedAttr("doctor");

rc_patient.addNamedAttr("ward");

ai.addResourceClass(rc_patient);

// resourceclass ward

SafeResourceClass rc_ward = new SafeResourceClass();

rc_ward.Name = "ward";

rc_ward.addAction("enter");

ai.addResourceClass(rc_ward);

// resourceclass billingdata

SafeResourceClass rc_billingdata = new SafeResourceClass();

rc_billingdata.Name = "billingdata";

rc_billingdata.addAction("read");

rc_billingdata.addAction("write");

ai.addResourceClass(rc_billingdata);

Designing Safe Objects to Implement

Chapter 4: Sample WorkFlow 43

// register product instance

try

{

 sc.registerApplicationInstance(ai, "mycert.p12", "certpass")

}

catch(SafeException e)

{

 // handle error

}

Example code to register an application using Java

// new application instance

SafeApplicationInstance ai = null;

ai = new SafeApplicationInstance();

ai.setContext(sc);

ai.setLabel("elsewhere");

ai.setApplicationName("HospitalMgmt");

ai.setMajorVersion("1");

ai.setMinorVersion("0");

ai.setBrand("ABC");

ai.setDescription("Demo App");

// user attribute "ward"

ai.addUserAttribute("text:ward");

// resourceclass medicalrecord

SafeResourceClass rc_medicalrecord = new SafeResourceClass();

rc_medicalrecord.setName("medicalrecord");

rc_medicalrecord.addAction("read");

rc_medicalrecord.addAction("write");

rc_medicalrecord.addNamedAttr("doctor");

rc_medicalrecord.addNamedAttr("ward");

ai.addResourceClass(rc_medicalrecord);

// resourceclass patient

SafeResourceClass rc_patient = new SafeResourceClass();

rc_patient.setName("patient");

rc_patient.addAction("admit");

rc_patient.addAction("discharge");

rc_patient.addAction("prescribe");

rc_patient.addAction("transfer");

rc_patient.addAction("locate");

rc_patient.addNamedAttr("doctor");

rc_patient.addNamedAttr("ward");

ai.addResourceClass(rc_patient);

// resourceclass ward

SafeResourceClass rc_ward = new SafeResourceClass();

rc_ward.setName("ward");

Designing Safe Objects to Implement

44 Programming Guide

rc_ward.addAction("enter");

ai.addResourceClass(rc_ward);

// resourceclass billingdata

SafeResourceClass rc_billingdata = new SafeResourceClass();

rc_billingdata.setName("billingdata");

rc_billingdata.addAction("read");

rc_billingdata.addAction("write");

ai.addResourceClass(rc_billingdata);

// register product instance

try

{

 sc.registerApplicationInstance(ai, "mycert.p12", "certpass")

}

catch(SafeException e)

{

 // handle error

}

Example code to register an application using C++

// new application instance

Safe::ApplicationInstance ai;

ai.setContext(sc);

ai.setLabel("elsewhere");

ai.setApplicationName("HospitalMgmt");

ai.setMajorVersion("1");

ai.setMinorVersion("0");

ai.setBrand("ABC");

ai.setDescription("Demo App");

// user attribute "ward"

ai.addUserAttribute("text:ward");

// resourceclass medicalrecord

Safe::ResourceClass *rc_medicalrecord = new Safe::ResourceClass;

rc_medicalrecord->setName("medicalrecord");

rc_medicalrecord->addAction("read");

rc_medicalrecord->addAction("write");

rc_medicalrecord->addNamedAttr("doctor");

rc_medicalrecord->addNamedAttr("ward");

ai.addResourceClass(rc_medicalrecord);

// resourceclass patient

Safe::ResourceClass *rc_patient = new Safe::ResourceClass;

rc_patient->setName("patient");

rc_patient->addAction("admit");

rc_patient->addAction("discharge");

rc_patient->addAction("prescribe");

Designing Safe Objects to Implement

Chapter 4: Sample WorkFlow 45

rc_patient->addAction("transfer");

rc_patient->addAction("locate");

rc_patient->addNamedAttr("doctor");

rc_patient->addNamedAttr("ward");

ai.addResourceClass(rc_patient);

// resourceclass ward

Safe::ResourceClass *rc_ward = new Safe::ResourceClass;

rc_ward->setName("ward");

rc_ward->addAction("enter");

ai.addResourceClass(rc_ward);

// resourceclass billingdata

Safe::ResourceClass *rc_billingdata = new Safe::ResourceClass;

rc_billingdata->setName("billingdata");

rc_billingdata->addAction("read");

rc_billingdata->addAction("write");

ai.addResourceClass(rc_billingdata);

// register product instance

if(!sc.registerApplicationInstance(ai, "mycert.p12", "certpass", ee))

{

 // handle error

}

else

{

 // successful registration

}

Designing Safe Objects to Implement

46 Programming Guide

Defining Calendars

You can use calendars to control access to a resource for a selected period. You can
create a calendar with label 'visiting hours' and limit the Receptionist's right to locate
patients by implementing policies.

Example code to create a calendar using Safex script

<Safex>

 <Attach label="elsewhere"/>

 <Add>

 <Calendar folder="/" name="visitinghours">

 <Description>Visiting hours calendar: 10am to noon; 8pm to

9pm</Description>

 <TimeBlock name="morning" type="include" starttime="600" duration="120"

recurringtimeinterval="0" weekdaymask="ALL" monthdaymask="ALL" monthmask="ALL"/>

 <TimeBlock name="evening" type="include" starttime="1200" duration="60"

recurringtimeinterval="0" weekdaymask="ALL" monthdaymask="ALL" monthmask="ALL"/>

 </Calendar>

 </Add>

</Safex>

Example code to create a calendar using C#

// new calendar

SafeCalendar cal = new SafeCalendar();

cal.Context = sc;

cal.Path = "/visitinghours";

cal.Description = "Visiting hours calendar: 10am to noon; 8pm to 9pm";

// Timeblocks

SafeTimeBlock mornings = new SafeTimeBlock();

mornings.Name = "morning";

mornings.StartTime = 10*60;

mornings.Duration = 2*60;

mornings.setMask(SafeEnum.WeekDay.WD_ALL, SafeEnum.MonthDay.MD_ALL,

SafeEnum.Month.M_ALL);

cal.addIncludeTimeBlock(mornings);

SafeTimeBlock evenings = new SafeTimeBlock();

evenings.Name = "evening";

evenings.StartTime = 20*60;

evenings.Duration = 1*60;

evenings.setMask(SafeEnum.WeekDay.WD_ALL, SafeEnum.MonthDay.MD_ALL,

SafeEnum.Month.M_ALL);

cal.addIncludeTimeBlock(evenings);

// insert calendar

try

{

cal.soInsert()

}

Catch (SafeException e)

Designing Safe Objects to Implement

Chapter 4: Sample WorkFlow 47

{

//handle error

}

Designing Safe Objects to Implement

48 Programming Guide

Example code to create a calendar using Java

// new calendar

SafeCalendar cal = new SafeCalendar();

cal.setContext(sc);

cal.setPath("/visitinghours");

cal.setDescription("Visiting hours calendar: 10am to noon; 8pm to 9pm");

// Timeblocks

SafeTimeBlock mornings = new SafeTimeBlock();

mornings.setName("morning");

mornings.setStartTime(10*60);

mornings.setDuration(2*60);

mornings.setMask(SafeEnum.WeekDay.WD_ALL, SafeEnum.MonthDay.MD_ALL,

SafeEnum.Month.M_ALL);

cal.addIncludeTimeBlock(mornings);

SafeTimeBlock evenings = new SafeTimeBlock();

evenings.setName("evening");

evenings.setStartTime(20*60);

evenings.setDuration(1*60);

evenings.setMask(SafeEnum.WeekDay.WD_ALL, SafeEnum.MonthDay.MD_ALL,

SafeEnum.Month.M_ALL);

cal.addIncludeTimeBlock(evenings);

// insert calendar

try

{

cal.soInsert()

}

Catch (SafeException e)

{

//handle error

}

Example code to create a calendar using C++

// new calendar

Safe::Calendar cal;

cal.setContext(sc);

cal.setPath("/visitinghours");

cal.setDescription("Visiting hours calendar: 10am to noon; 8pm to 9pm");

// Timeblocks

Safe::TimeBlock *mornings = new Safe::TimeBlock;

mornings->setName("morning");

mornings->setStartTime(10*60);

mornings->setDuration(2*60);

mornings->setMask(Safe::WD_ALL, Safe::MD_ALL, Safe::M_ALL);

cal.addIncludeTimeBlock(mornings);

Safe::TimeBlock *evenings = new Safe::TimeBlock;

evenings->setName("evening");

evenings->setStartTime(20*60);

evenings->setDuration(1*60);

Designing Safe Objects to Implement

Chapter 4: Sample WorkFlow 49

evenings->setMask(Safe::WD_ALL, Safe::MD_ALL, Safe::M_ALL);

cal.addIncludeTimeBlock(evenings);

// insert calendar

if(!cal.soInsert())

{

 // handle error

}

else

{

 // successful insert

}

Designing Safe Objects to Implement

50 Programming Guide

Defining Policies

The policies implement the business rules. The following are the policies implementing
the 'patient' resource class.

Example code to create policy using Safex Script

<Safex>

 <Attach label="elsewhere"/>

 <Add>

 <Policy folder="/" name="patient er admission">

 <Description>patient can be admitted to the ER by any staff assigned to ER,

or the patient's doctor</Description>

 <Action>admit</Action>

 <Identity>ug:Doctors</Identity>

 <Identity>ug:Nurses</Identity>

 <ResourceClassName>patient</ResourceClassName>

 <Filter logic="AND" lparens="0" col="name:ward" optype="STRING"

oper="EQUAL" val="val:ER" rparens="0"/>

 <Filter logic="AND" lparens="1" col="name:ward" optype="STRING"

oper="EQUAL" val="u:ward" rparens="0"/>

 <Filter logic="OR" lparens="1" col="name:doctor" optype="STRING"

oper="EQUAL" val="gu:UserName" rparens="1"/>

 <Filter logic="AND" lparens="0" col="ug:Name" optype="STRING" oper="EQUAL"

val="val:Doctors" rparens="2"/>

 </Policy>

 <Policy folder="/" name="patient discharge-prescribe">

 <Description>patient can be discharged/prescribed by patient's doctor, or any

doctor assigned to patient's ward</Description>

 <Action>discharge</Action>

 <Action>prescribe</Action>

 <Identity>ug:Doctors</Identity>

 <ResourceClassName>patient</ResourceClassName>

 <Filter logic="AND" lparens="0" col="name:ward" optype="STRING"

oper="EQUAL" val="u:ward" rparens="0"/>

 <Filter logic="OR" lparens="0" col="name:doctor" optype="STRING"

oper="EQUAL" val="gu:UserName" rparens="0"/>

 </Policy>

 <Policy folder="/" name="patient discharge-transfer">

 <Description>patient can be discharged/transferred by Chiefs</Description>

 <Action>discharge</Action>

 <Action>transfer</Action>

 <Identity>gug:Chiefs</Identity>

 <ResourceClassName>patient</ResourceClassName>

 </Policy>

 <Policy folder="/" name="patient locate doctor-nurse">

 <Description>patient can be located by any doctor or nurse</Description>

 <Action>locate</Action>

 <Identity>ug:Doctors</Identity>

Designing Safe Objects to Implement

Chapter 4: Sample WorkFlow 51

 <Identity>ug:Nurses</Identity>

 <ResourceClassName>patient</ResourceClassName>

 </Policy>

 <Policy folder="/" name="patient locate receptionist">

 <Description>patient can be located by any Staff receptionist during visiting

hours</Description>

 <Action>locate</Action>

 <ResourceClassName>patient</ResourceClassName>

 <Calendar>visitinghours</Calendar>

 <Identity>ug:Staff</Identity>

 <Filter logic="AND" lparens="0" col="gu:JobTitle" optype="STRING"

oper="EQUAL" val="val:Receptionist" rparens="0"/>

 </Policy>

 </Add>

</Safex>

Example code to create policy using C#

// new policy

SafePolicy pol = new SafePolicy();

pol.Context = sc;

pol.Path = "/patient er admission";

pol.Description = "patient can be admitted to the ER by any staff assigned to ER, or

the patient's doctor";

pol.ResourceClassName = "patient";

pol.addIdentity("ug:Doctors");

pol.addIdentity("ug:Nurses");

pol.addAction("admit");

pol.addFilter(new SafeFilter(SafeEnum.Logic.AND, 0, "name:ward",

 SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "val:ER", 0);

pol.addFilter(new SafeFilter(SafeEnum.Logic.SAFE_LOGIC_AND, 1, "name:ward",

 SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "u:ward", 0);

pol.addFilter(new SafeFilter(SafeEnum.Logic.OR, 1, "name:doctor",

 SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "gu:UserName", 1);

pol.addFilter(new SafeFilter(SafeEnum.Logic.AND, 0, "ug:Name",

 Safe.Enum.OpType.STRING, Safe.Enum.Oper.EQUAL, "val:Doctors", 2);

// insert policy

try

{

pol.soInsert()

}

Catch (SafeException e)

{

//handle error

}

Designing Safe Objects to Implement

52 Programming Guide

Example code to create policy using Java

// new policy

SafePolicy pol = new SafePolicy();

pol.setContext(sc);

pol.setPath("/patient er admission");

pol.setDescription("patient can be admitted to the ER by any staff assigned to ER,

or the patient's doctor");

pol.setResourceClassName("patient");

pol.addIdentity("ug:Doctors");

pol.addIdentity("ug:Nurses");

pol.addAction("admit");

pol.addFilter(new SafeFilter(SafeEnum.Logic.AND, 0, "name:ward",

 SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "val:ER", 0);

pol.addFilter(new SafeFilter(SafeEnum.Logic.SAFE_LOGIC_AND, 1, "name:ward",

 SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "u:ward", 0);

pol.addFilter(new SafeFilter(SafeEnum.Logic.OR, 1, "name:doctor",

 SafeEnum.OpType.STRING, SafeEnum.Oper.EQUAL, "gu:UserName", 1);

pol.addFilter(new SafeFilter(SafeEnum.Logic.AND, 0, "ug:Name",

 Safe.Enum.OpType.STRING, Safe.Enum.Oper.EQUAL, "val:Doctors", 2);

// insert policy

try

{

pol.soInsert()

}

Catch (SafeException e)

{

//handle error

}

Example code to create policy using C++

// new policy

Safe::Policy pol;

pol.setContext(sc);

pol.setPath("/patient er admission");

pol.setDescription("patient can be admitted to the ER by any staff assigned to ER,

or the patient's doctor");

pol.setResourceClassName("patient");

pol.addIdentity("ug:Doctors");

pol.addIdentity("ug:Nurses");

pol.addAction("admit");

pol.addFilter(new Safe::Filter(Safe::SAFE_LOGIC_AND, 0, "name:ward",

 Safe::SAFE_OPTYPE_STRING, Safe::SAFE_OPER_EQUAL, "val:ER", 0);

pol.addFilter(new Safe::Filter(Safe::SAFE_LOGIC_AND, 1, "name:ward",

 Safe::SAFE_OPTYPE_STRING, Safe::SAFE_OPER_EQUAL, "u:ward", 0);

pol.addFilter(new Safe::Filter(Safe::SAFE_LOGIC_OR, 1, "name:doctor",

 Safe::SAFE_OPTYPE_STRING, Safe::SAFE_OPER_EQUAL, "gu:UserName", 1);

pol.addFilter(new Safe::Filter(Safe::SAFE_LOGIC_AND, 0, "ug:Name",

 Safe::SAFE_OPTYPE_STRING, Safe::SAFE_OPER_EQUAL, "val:Doctors", 2);

Designing the User Interface

Chapter 4: Sample WorkFlow 53

// insert policy

if(!pol.soInsert())

{

 // handle error

}

else

{

 // successful insert

}

Designing the User Interface

After designing and building safe objects, you must integrate the applications user
interface with CA EEM web interface. The integration of the user interface avoids
applications to create individual screens to manage identities and access policies.

How to Design User Interface

To integrate the user interface, CA EEM supports launch in context from the web
application in the following process:

1. Log into the interface using the Safe::Context::authenticateWithPassword or
::authenticateWithCertificate. Application will track the session object associated
with the user.

2. Build a Safe LaunchRequest object with the requested page, object, action, return
page, and other attributes.

3. Application invokes the Safe::Context::generateURI method to export the user's
session and LaunchRequest and return artifacts to the session and request
'encoded' in URI string.

4. Application sends a redirect back to the user's browser, specifying the URI.

5. CA EEM Web user interface receives the request, obtains the session/request
artifacts, looks up the objects, and presents the appropriate page.

Upon exiting, CA EEM Web user interface redirects to the specified return page.

Migrating

You can migrate an application from using its product's internal identity and access
management to CA EEM. Migration of an application involves understanding and
converting the information based on the migrating application's data format and
storage methods to create XML files that can then be imported into CA EEM through the
Safex utility.

Migrating

54 Programming Guide

Identity

You can migrate application identities into CA EEM.

To migrate identities

1. Create an XML file that represents the applications global users.

2. Map data into the associated fields for each global user represented in the XML file.

Note: During migration, if the application prompts global users to be referenced
from an external directory (Microsoft Active Directory) you can move to step three.

3. Import this data into CA EEM using the XML file created, using the following
command:

safex -h hostname -u user -p pw -f globaluserimport.xml

Note: Do not attach CA EEM with an application instance.

4. Define the following parameters for the application:

■ Prompt user to provide a name of the application instance

Example: If the product is Harvest, the instance might be 'Harvest - Engineering
Dept'.

■ For each resource class determine the associated actions, and the attributes.

■ Determine the user attributes for the application. You can use this information
to create an XML file for registration.

■ Import information into CA EEM

Note: You must have global users (internally or externally) and your application
instance must be defined.

5. Determine the attributes stored in the application for each user (not the global user
mode). For each user stored in the application, you must format the XML file by
mapping the user data and formatting an AI extended attribute user load file.

6. If the application's internal identity management includes group management, you
must add a group membership to each of the users defined and define the AI user
group.

More Information

Access Management (see page 85)

Modifying StoredObjects

Chapter 4: Sample WorkFlow 55

Accessing

If the application includes an internal access control method and you want to
implement it using CA EEM, automation can be used to create an CA EEM
representation of the application's policies, depending on the complexity and structure
of your current ACLs or policies. Alternatively, you can also create the corresponding CA
EEM policies through the Web UI.

If the application uses calendars along with access policies, you may can automation for
converting them to CA EEM clendars.

Modifying StoredObjects

The StoredObject class provides the interface to the repository on the CA EEM backend
server. The following CA EEM objects are derived from the StoredObject class:

■ ApplicationInstance

■ GlobalUser

■ GlobalUserGroup

■ User

■ UserGroup

■ Policy

■ Calendar

■ AppObject

You can modify StoredObjects as follows, based on the environment:

Action C++ Java C# Safex

Set Context Safe::StoredObject::se
tContext

SafeStoredObject.set
Context

SafeStoredObject.Co
ntext

Set Name Safe::StoredObject::se
tPath("/folder/name")

SafeStoredObject.set
Path("/folder/name")

SafeStoredObject.Pat
h = "/folder/name"

<Object
name="name"
folder="/folder">

Modifying StoredObjects

56 Programming Guide

Action C++ Java C# Safex

Check Access Safe::StoredObject::ca
nIdentityRead

Safe::StoredObject::ca
nIdentityWrite

Safe::StoredObject::ca
nContextRead

Safe::StoredObject::ca
nContextWrite

SafeStoredObject.can
IdentityRead

SafeStoredObject.can
IdentityWrite

SafeStoredObject.can
ContextRead

SafeStoredObject.can
ContextWrite

SafeStoredObject.can
IdentityRead

SafeStoredObject.can
IdentityWrite

SafeStoredObject.can
ContextRead

SafeStoredObject.can
ContextWrite

Retrieve Safe::StoredObject::so
Retrieve

Safe::StoredObject::so
RetrieveByName

Safe::StoredObject::so
RetrieveByUserName

SafeStoredObject.soR
etrieve

SafeStoredObject.soR
etrieveByName

SafeStoredObject.soR
etrieveByUserName

SafeStoredObject.soR
etrieve

SafeStoredObject.soR
etrieveByName

SafeStoredObject.soR
etrieveByUserName

Insert Safe::StoredObject::so
Insert

SafeStoredObject.soI
nsert

SafeStoredObject.soI
nsert

<Add>

Modify Safe::StoredObject::so
Modify

SafeStoredObject.so
Modify

SafeStoredObject.so
Modify

<Modify>

Delete Safe::StoredObject::so
Remove

SafeStoredObject.soR
emove

SafeStoredObject.soR
emove

<Remove>

Folders and Paths

StoredObjects folder path must be named with a fully qualified path. The path is a
concatenation of the folder hierarchy (separated by '/'), and the object name. The paths
on objects are useful for sorting and organizing objects, and for setting access rights on
folders.

Example: Qualified path

A GlobalUser can have the path of "/North America/Users" and a name of "johndoe".

■ The fully qualified path (::getPath) is "/North America/Users/johndoe", and is
passed as "pozPath" in access checks.

■ The parent (::getParent) is "/North America/Users", and is passed as "pozFolder" in
access checks

■ The name (::getName) is "johndoe", and is passed as "cn" in access checks

You can split a fully qualified path into the parent and name by invoking
Safe::Util::splitPath method.

Modifying StoredObjects

Chapter 4: Sample WorkFlow 57

Search Size

CA EEM limits the number of objects returned in a search to 2000. You can adjust the
search size by invoking the Safe::Context::setMaxSearchSize method.

If the number of objects returned exceeds the maximum search size, CA EEM will do the
following:

Note: These actions are specific to C++ environment.

■ Return results upto the maximum size

■ Set the Safe::Error object error to EE_MAXSIZEEXCEEDED (retrieve with
::getErrorCode)

■ Set the Safe::Error object's search size to the actual size returned (retrieve with
::getSearchSize)

Chapter 5: Application Instances 59

Chapter 5: Application Instances

This section contains the following topics:

Overview (see page 59)
How to Register an Application (see page 59)
Attach to Backend Server (see page 60)
Create an Application Instance (see page 62)
Define User Attributes (see page 63)
Define Resource Classes (see page 64)
Register Application (see page 65)
Create a SafeContext using SafeContextFactory (see page 67)

Overview

CA EEM provides its services to the applications registered with it. When an application
registers with CA EEM, an application instance is created. This application instance
stores user details, access policies, calendars, and application-specific user groups and
folders.

How to Register an Application

To register an application with CA EEM, perform the following tasks:

1. Attach to the backend server

2. Create an application instance

3. Define user attributes

4. Define resource classes

5. (Optional) Define obligations

6. Register the application

Note: You need administrative privileges to register an application with CA EEM. The
Eiamadmin user has the administrative privileges.

Attach to Backend Server

60 Programming Guide

Attach to Backend Server

You must attach to the CA EEM Policy Server to get the application-specific policies and
resources to the client.

To attach an application to the backend server

1. Create a SafeContext using one of the following methods:

a. Use SafeContextFactory to create a SafeContext.

Note: For more information about using a SafeContextFactory, see the Create a
SafeContext using SafeContextFactory topic.

or

b. Instantiate a SafeContext class.

c. Set the backend server to the host where CA EEM Policy Server is running.

d. Call the authenticateWithpassword method to verify the authenticity of the
user.

The method returns an instance of SafeSession, which is used during policy
evaluation.

2. Attach to the global space using the session.

This session is valid for 24 hours, after which CA EEM refreshes the session
automatically.

Example: Attach to a backend server using SafeContextFactory

The following example creates a SafeContext by using the details specified in the
Example: SafeContext Tag section:

SafeConfigurator.getInstance().init(eiam.config);

//Passing the reference ID for the SafeContext tag specified in the eiam.config file.

The SafeContext tag with the specified reference ID contains information about the

backend server, application instance, locale, and user credentail details.

SafeContext safecontext = SafeContextFactory.getSafeContext("RBC_Hospital");

Attach to Backend Server

Chapter 5: Application Instances 61

Example: Attach to backend server

The following example attaches an application to the backend server generating a
session, and attaches to global space using the generated session:

//Instantiate a SafeContext Class.

SafeContext safecontext = new SafeContext();

//Set the backend to the host where Server is running.

safecontext.setBackend("<hostname>");

//Call the authenticateWithXXX to verify the authenticity.

SafeSession safesession = safecontext.authenticateWithPassword("username",

"password");

//Attach to global space using the session.

safecontext.attach(null,safesession);

Create an Application Instance

62 Programming Guide

Create an Application Instance

You must create an application instance to add application data. The application
instance is used to store application-specific user details, access policies, calendars, and
application-specific user groups and folders.

To create an application instance

1. Instantiate a SafeApplicationInstance class.

2. Assign a context to the application by calling the setContext method within the
SafeApplicationInstance class.

The SafeApplicationInstance (sai) object is created, when a login is authenticated.

3. (Optional) Add additional information about the application, such as, major version,
minor version, brand, application name, and description.

Example: Create an application instance

The following example creates an application instance:

//Instantiate a SafeApplicationInstance class.

SafeApplicationInstance sai = new SafeApplicationInstance();

//Assign a context to the application by calling the setContext method.

sai.setContext(safecontext);

//Add additional information about the application

//Set a label to the application.

sai.setLabel("xyzBank");

//Set a name for the application.

sai.setApplicationName("XYZ Bank Management");

//Set the major version.

sai.setMajorVersion("1");

//Set the minor version.

sai.setMinorVersion("0");

//Set the brand.

sai.setBrand("ABC");

//Set the description to the application.

sai.setDescription("For managing bank's resources/identities and define the access

policies");

Define User Attributes

Chapter 5: Application Instances 63

Define User Attributes

In CA EEM, every user of an application has application-specific attributes. You can
define the application-specific user attributes while creating an application and refer to
them in policies, or create application users by adding these attributes to a global user.

Note: You must attach to the backend server and create an application instance, before
defining the user attributes.

To define user attributes, add the attributes by calling the addUserAttribute method,
which has the following syntax:

addUserAttribute(attribute:field:value)

The addUserAttribute method supports the following types:

Text

Specifies a field that contains a text value.

Number

Specifies a field that contains a numeric value. You can use the following characters:
0-9, comma (,), or hyphen (-).

Password

Specifies a field that contains a masked value as you might see in a password field.
Use the type to mask the content of the field from a user.

Boolean

Specifies a check box for user to select.

Select

Specifies a drop-down list from which a user can choose a value.

Multi-valued

Specifies the field can have multiple values. When assigning user attributes, the
user is presented with multiple fields to enter values.

Example: Define user attributes

The following example defines the user attributes:

sai.addUserAttribute("text:memberID");

sai.addUserAttribute("select:member:customer");

sai.addUserAttribute("select:member:staff");

sai.addUserAttribute("mvtext:memberID");

Define Resource Classes

64 Programming Guide

Define Resource Classes

Resource classes are used in application instances to classify resources. You can identify
the resource classes in an application and define access policies to restrict the access.
Every resource class has a name, actions, and attributes associated.

Example: Consider a banking application in which you must restrict access to a resource
called Loanrecords. In this scenario, LoanRecords is the resource class name, actions will
be either read or write, and the resource class attributes will be amount, account ID,
owner name, and so on.

Note: You must attach to the backend server and create an application instance, before
adding the resource class.

To define resource classes

1. Identify all the resource classes in an application.

2. Add the resource classes to the safeApplicationInstance.

3. Protect the resources by defining access policies.

Example: Define resource class

The following example defines a LoanRecod resource class in a banking application.

//Instantiate a safe resource class object.

SafeResourceClass res = new SafeResourceClass();

//Set the name of resource class to loanrecord.

res.setName("loanrecord");

//Add an action 'read' to the resource class.

res.addAction("read");

//Add an action 'write' to the resource class.

res.addAction("write");

//Add a named attribute 'amount' to the resource class.

res.addNamedAttr("amount");

//Add a named attribute 'accountID' to the resource class.

res.addNamedAttr("accountID");

//Add a named attribute 'Ownername' to the resource class.

res.addNamedAttr("ownerName");

//Add the resource class to the safe application instance object.

sai.addResourceClass(res);

Register Application

Chapter 5: Application Instances 65

Register Application

You must register an application with CA EEM to use its services. When an application
registers with CA EEM, an application instance is created and a SafeCertificate (CA EEM
C++ SDK) or a SafeCertificateData (CA EEM C# and CA EEM Java SDKs) is issued for the
application instance.

Note: You must attach to the backend server and create an application instance, before
you register an application.

To register an application

1. Create a safeapplicationinstance object.

2. Assign a context to the application by calling the setContext method and set the
label, path, and name.

3. Add additional details like user attributes, resource classes, obligations, and
translations.

4. Call the registerApplicationInstance method.

Example: Register an application

The following example registers an application:

//Instantiate a SafeApplicationInstance class.

SafeApplicationInstance sai = new SafeApplicationInstance();

//Assign a context to the application by calling the setContext method.

sai.setContext(safecontext);

//Add additional information about the application.

//Set a label to the application.

sai.setLabel("xyzBank");

//Add additional details like user attributes, resource classes, obligations, and

translations.

//Set a name for the application.

sai.setApplicationName("XYZ Bank Management");

//Register the application

SafeCertificateData certdata = safecontext.registerApplicationInstance(sai);

Register Application

66 Programming Guide

Modify an Application Instance

You can modify an application instance that is registered with CA EEM.

The following is a sample procedure to modify a resource class by adding a new
attribute.

To modify an application instance

1. Attach to the application with administrative privileges.

2. Retrieve the application instance object.

3. Instantiate the safe resource class object.

4. Set the resource class name

5. Add a new attribute to the resource class.

6. Commit the changes by calling the soModify method.

The changes are applied to the application instance.

Example: Modify an application instance

The following example modifies a banking applications 'loan record' resource class by
adding 'OwnerName' attribute:

//Attach to XYZ Bank Application

safecontext.attach("xyzBank",ss);

//Get Application Instance.

SafeApplicationInstance sai = safecontext.getApplicationInstanceObject();

//Instantiate the safe resource class object.

SafeResourceClass res = new SafeResourceClass();

//Set the name of resource class to loanrecord.

res.setName("loan record");

//Add a named attribute 'OwnerName' to the resource class.

res.addNamedAttr("OwnerName");

//Add the resource class to the safe application instance object.

sai.addResourceClass(res);

//Commit the modifications.

sai.soModify();

Create a SafeContext using SafeContextFactory

Chapter 5: Application Instances 67

Unregister an Application Instance

You can unregister an application instance that is registered with CA EEM from the
global application space. Application instances must be unregistered before you
uninstall CA EEM.

To unregister an application instance

1. Instantiate a SafeContext Class.

2. Set the backend server to the host where CA EEM Policy Server is running.

3. Call the authenticateWithpassword method to verify the authenticity of the user.

4. Log into the <global> application space by calling the attach method.

5. Call the UnregisterApplicationInstance method.

Example: Unregister an application instance

The following example unregisters an application instance:

//Instantiate a SafeContext Class.

SafeContext safecontext = new SafeContext();

//Set the backend to the host where Server is running.

safecontext.setBackend("<hostname>");

//Call the authenticateWithpassword to verify the authenticity.

SafeSession safesession = safecontext.authenticateWithPassword("EiamAdmin",

"EiamAdminpassword");

//Attach to the global space.

safecontext.attach(null, session);

//Unregister the application instance.

safecontext.unregisterApplicationInstance("Application name");

Create a SafeContext using SafeContextFactory

Use the SafeContextFactory to create a SafeContext. The information required to
generate a SafeContext is set in the CA EEM SDK configuration file. Each SafeContext
instance in the eiam.config file is identified using a unique refID tag. To create a
SafeContext, you must pass this refID to the SafeContextFactory.

To create a SafeContext using SafeContextFactory

1. Set the SafeContext tag in the CA EEM SDK configuration file.

Note: For information about how to set the SafeContext tag and the eiam.config
file, see the Implementation Guide.

2. Pass the refID from the SafeContext tag to the SafeContextFactory.

Create a SafeContext using SafeContextFactory

68 Programming Guide

Example: SafeContext tag in the CA EEM configuration file.

<SafeContext refid="RBC_Hospital" version="1.0">

 <!-- EEM server hostname -->

 <Backend>eiamServer</Backend>

 <!-- application instance to attach to (leave empty for global) -->

 <Application>RBC_Hospital</Application>

 <!-- locale -->

 <!-- java:format language-country-variant -->

 <Locale>en-us<\Locale>

 <!-- possible values for type are certificate/password/native -->

 <Authentication type="">

 <!-- input for certificate based authentication (PEM) keyPW is valid only for

C++

 <Certificate type="pem">

 <CertURI>appcert.cer</CertURI>

 <KeyURI>appcert.key</KeyURI>

 <KeyPW></KeyPW/>

 </Certificate>

 </Authentication>

</SafeContext>

Example: Create a SafeContext using SafeContextFactory by passing the SafeContext
reference ID from the configuration file.

The following example creates a SafeContext by using the details specified in the
Example: SafeContext Tag section:

SafeConfigurator.getInstance().init(eiam.config);

//Passing the reference ID for the SafeContext tag specified in the eiam.config file.

The SafeContext tag with the specified reference ID contains information about the

backend server, application instance, locale, and user credentail details.

SafeContext safecontext = SafeContextFactory.getSafeContext("RBC_Hospital");

Chapter 6: Users 69

Chapter 6: Users

This section contains the following topics:

Overview (see page 69)
Create Global Users (see page 70)
Create Application-Specific Users (see page 71)
Search Users Using Attributes (see page 74)
Retrieve a Global User (see page 75)
Retrieve an Application-Specific User (see page 76)
Delete a User (see page 77)

Overview

CA EEM lets you authenticate and authorize users. It lets you create policies that control
the user access privileges to use applications. You can use CA EEM to support
application-specific authentication and authorization.

Users in CA EEM are classified as follows:

Global users

Global users are users that are available for sharing across all application instances
registered with CA EEM. Every user in CA EEM is a global user by default.

Application-specific users

Application users are specific to the application instance. The application-specific
users are not shared across other application instances. Application-specific user
attributes are defined when creating an application instance. You can add a global
user to an application-specific group. Every global user can have application-specific
user attributes.

Create Global Users

70 Programming Guide

Create Global Users

You can create global users that are available for all applications.

Note: You can create global users only if you store the global users and global groups in
the CA Management Database (CA-MDB). If you reference from an external user source
the global users are considered read-only.

To create global users

1. Create a SafeGloablUser object.

2. Set the context by calling the setContext method.

3. Set the path where you want to create the user.

If you want users to be created under a folder, and if the folders are already created
for users, you can call the setPath method to specify the folder name where the
user must be stored, for example, /foldername/username.

4. Set a unique username and add additional information about the user, such as,
FirstName, LastName, DisplayName, Password, Description, and JobTitle.

5. Call the soInsert method to add user to the database.

Example: Create global user

The following creates a global user:

//Create a SafeGlobalUser object.

SafeGlobalUser gu = new SafeGlobalUser();

//Set the context.

gu.setContext(safecontext);

//Set the path.

gu.setPath("/Asia/JohnDoe");

//Set the username.

gu.setUserName("JohnDoe");

//Add additional information.

gu.setFirstName("John");

gu.setLastName("Doe");

gu.setDisplayName("John Doe");

gu.setPassword("johndoe");

gu.setDescription("Application Administrator");

gu.setJobTitle("Captain");

//Call the soInsert method.

gu.soInsert();

Create Application-Specific Users

Chapter 6: Users 71

Create Application-Specific Users

You can create application-specific users for an application.

To create application-specific users

1. Instantiate a SafeUser object.

2. Set the context by calling the setContext method.

3. Attach to the application using the session.

4. Set the required application-specific attributes.

5. Set the path and define the user by calling the setpath method.

6. Call the soInsert method.

Example: Create application-specific user

The following example creates an application-specific user:

//Instantiate a SafeContext Class.

SafeContext obj = new SafeContext();

SafeSession session = safecontext.authenticateWithPassword("EiamAdmin", "password")

//Attach to the application using the session.

obj.attach("RBC_Hospital", session);

SafeUser obj2 = new SafeUser();

obj2.setContext(obj);

//Set the required application-specifc attributes.

obj2.insertXAttr("memberID","000369");

//Set path and define the user you want to create.

obj2.setPath("erdoctor");

//Insert the Application-specific User.

obj2.soInsert();

Create Application-Specific Users

72 Programming Guide

Associate Global User with Application-Specific Details

You can associate global user with application-specific details

Follow these steps:

1. Instantiate the SafeGlobalUser(user) class, which inherits from the
SafeStoredObject class.

2. Set the context by calling the setContext method.

3. Set the path and retrieve the user by calling the setpath and soretrive methods.

Note: The path set for the application path must be same as the global user path.

4. Associate application-specific information.

Example: Associate application details to a global user

The following example associates application details to a global user:

//Instantiate the SafeContext Class.

SafeGlobalUser obj = new SafeGlobalUser();

//Set the context.

obj.setContext(sc);

//Path should be same as global user.

obj.setpath("erdoctor");

obj.soRetrieve()

//Associate with a application-specific group name.

SafeUser u = new SafeUser();

u.setContext(sc);

//Path should be same as globaluser:UserName

u.setPath("erdoctor");

//Associate with application-specific group name.

u.addGroup("Staff");

u.soInsert();

obj.soModify();

Create Application-Specific Users

Chapter 6: Users 73

Modify Membership

You can modify the user group for a user.

Note: You must have write access for the User or the GlobalUser object that you want
to modify.

To modify user group

1. Instantiate the SafeContext Class.

2. Set the context.

3. Retrieve the user using the setpath and soretrive methods

4. Modify the user group by calling any of the methods:

addGroup

Adds a user to a particular user group.

delGroup

Removes a user from a particular user group.

getGroupQ

Displays the list of available groups.

clearGroupQ

Removes all the users from the associated group.

5. Call the soModify method to apply the changes.

Example: Modify membership

The following example modifies the user group by adding user to a 'Staff':

SafeUser u = new SafeUser();

u.setContext(sc);

//Path should be same as globaluser:UserName

u.setPath("JohnDoe");

//Add the user to a group

u.addGroup("Staff");

//Call the soModify method.

u.soModify();

Search Users Using Attributes

74 Programming Guide

Search Users Using Attributes

You can use filters to search users using attributes. To search for users using attributes,
prefix the attribute names with 'A:'.

Note: You must prefix the 'A:' for standard LDAP attributes. For custom attributes, you
can provide the attribute name without the prefix. For values to prefix before field type,
see Build Filters to Use in Policies (see page 99).

Example: Search for global users

The following example searches all global users whose Job Title attribute is set to
Captain:

List filterq = new ArrayList();

filterq.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "A:JobTitle",

SafeEnum.OpType.STRING,

 SafeEnum.Oper.EQUAL, "Captain", 0));

List globalUsers = safecontext.searchGlobalUsers(filterq);

Iterator itr = globalUsers.begin();

While(itr.hasNext()){

 SafeGloabalUser gu = (SafeGloablUser) itr.next();

 System.out.println(gu.getName());

}

A list of matching global user objects based on the attributes is returned as a list.

Example: Search for application-specific users

The following example searches all the application-specific users by whose age is greater
than 20:

List filterq = new ArrayList();

filterq.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "A:Age", SafeEnum.OpType.INT32,

 SafeEnum.Oper.GREATER "20", 0));

List globalUserGroups = safecontext.searchUsers(filterq);

Iterator itr = users.begin();

While(itr.hasNext()){

 SafeUser user = (SafeUser) itr.next();

 System.out.println(user.getName());

}

A list of matching application-specific user objects whose age is greater than 20 is
returned as a list.

Retrieve a Global User

Chapter 6: Users 75

Retrieve a Global User

You can retrieve a global user by the name.

To retrieve a global user

1. Instantiate a SafeContext Class.

2. Set the backend server to the host where CA EEM Policy Server is running.

3. Instantiate the SafeGlobalUser.

4. Set the context.

5. Call the soRetrieveByName method.

All the attributes of the user are populated with the data from server.

Note: You must use the soRetrieveByUserName method if the user's display name (cn)
is not same as the User ID.

Example: Retrieve a global user

The following example retrieves a global user:

SafeContext safecontext = new SafeContext();

Safecontext.attach("<hostname>");

SafeGlobalUser ug = new SafeGlobalUser();

gu.setContext(safecontext);

gu.soRetrieveByName("JohnDoe");

System.out.println("Global User: " + gug.getJobTitle());

Retrieve an Application-Specific User

76 Programming Guide

Retrieve an Application-Specific User

You can retrieve an application-specific user by name.

To retrieve an application-specific user

1. Instantiate a SafeContext Class.

2. Set the backend server to the host where CA EEM Policy Server is running.

3. Instantiate a SafeUser.

4. Set the context.

5. Call the soRetrieveByName method.

All the attributes of the user are populated with the data from server.

Example: Retrieve an application-specific user

The following example retrieves an application-specific user:

SafeContext safecontext = new SafeContext();

Safecontext.attach("<hostname>");

SafeUser u = new SafeUser();

u.setContext(safecontext);

u.soRetrieveByName("JohnDoe");

System.out.println("Application user: " + u.getGroupQ());

Delete a User

Chapter 6: Users 77

Delete a User

You can delete an existing user in CA EEM.

To delete any existing user, retrieve the user and call the soRemove method.

Example: Delete a global user

The following example deletes a global user:

SafeGlobalUser gu = new SafeGlobalUser();

gu.setContext(safecontext);

gu.soRetrieveByUserName("JohnDoe");

gu.soRemove();

Example: Delete an application-specific user

The following example deletes an application-specific user:

SafeUser u = new SafeUser();

u.setContext(safecontext);

u.soRetrieveByName("JohnDoe");

u.soRemove();

More Information:

Retrieve a Global User (see page 75)
Retrieve an Application-Specific User (see page 76)

Chapter 7: Groups 79

Chapter 7: Groups

This section contains the following topics:

Overview (see page 79)
Create Global User Groups (see page 80)
Create Application-Specific User Groups (see page 81)
Search Groups Using Attributes (see page 82)
Retrieve a Global User Group (see page 83)
Retrieve a User Group (see page 83)
Delete a Group (see page 84)

Overview

CA EEM supports global user groups and application-specific user groups. Global User
Groups are shared among all application instances. Application-specific groups are
accessible only by their owning application instance, created based on the requirements
of the application.

You can write access policies against attributes and group memberships of both global
and application groups.

Groups in CA EEM are classified as follows:

SafeGlobalUserGroup

GlobalUserGroup are groups that are available for sharing across all application
instances registered with CA EEM.

SafeUserGroup

UserGroups are specific to the application instance. The application-specific groups
are not shared across other application instances.

Create Global User Groups

80 Programming Guide

Create Global User Groups

Global User Groups are groups that are available for sharing across all application
instances registered with CA EEM.

Note: You can create GlobalUserGroup only in the CA Management Database (CA-MDB).

To create global user groups

1. Instantiate the SafeGlobalUserGroup(global user group) class, which inherits from
the SafeStoredObject class.

2. Set the context by calling the setContext method.

3. Specify the path name of the Global User Group by calling the setPath method.

The name is set as the name of the group.

Note: You can also provide description to the group by calling the setDescription
method.

4. Insert the safeglobalusergroup by calling the soInsert method.

Example: Create global user groups

The following example creates a global user group:

//Instantiate the SafeContext Class.

SafeContext safecontext = new SafeContext();

//Safecontext through which you are authenticated to the safebackend server.

SafeGlobalUserGroup gug = new SafeGlobalUserGroup();

//Set the context.

gug.setContext(safecontext);

//Set the path.

gug.setPath("Engineers");

//Provide the description.

gug.setDescription("This global user group is for users who are engineers by

profession");

//Insert the safeglobalusergroup.

gug.soInsert();

Create Application-Specific User Groups

Chapter 7: Groups 81

Create Application-Specific User Groups

Application-Specific User Groups are specific to the application instance. These groups
are not shared across other application instances.

Note: You can create application-specific user groups only in the CA Management
Database (CA-MDB).

To create application-specific user groups

1. Instantiate the SafeUserGroup(user group) that inherits the SafeStoredObject class.

2. Set the context by calling the setContext method.

3. Specify the path name of the User Group by calling the setPath method.

The name is set as the name of the user group.

Note: You can also provide description to the group by calling the setDescription
method.

4. Insert the application-specific SafeUserGroup by calling the soInsert method.

Example: Create application-specific user group

The following example creates an application-specific user group:

//Instantiate the SafeContext Class.

SafeContext safecontext = new SafeContext();

//Attach to global space using the session.

safecontext.attach(null,safesession);

//Safecontext through which you are authenticated to the safebackend server.

SafeUserGroup ug = new SafeUserGroup();

ug.setContext(safecontext);

//Set the path.

ug.setPath("Staff");

//Provide the description.

ug.setDescription("Staff");

// Insert the application-specific safeusergroup.

ug.soInsert();

More Information

Modify Membership (see page 73)

Search Groups Using Attributes

82 Programming Guide

Search Groups Using Attributes

You can use filters to search groups using attributes. To search for groups using
attributes, prefix the attribute names with 'A:'

Note: You must prefix the 'A:' for standard LDAP attributes. For custom attributes, you
can provide the attribute name without the prefix. For values to prefix before field type,
see Build Filters to Use in Policies (see page 99).

Example: Search for a global users

The following example searches for global users by description:

List filterq = new ArrayList();

filterq.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "A:Description",

SafeEnum.OpType.STRING,

 SafeEnum.Oper.LIKE, "*engineers*", 0));

List globalUserGroups = safecontext.searchGlobalUserGroups(filterq);

A list of all matching global users based on the attributes is returned as a list.

Example: Search for a application-specific user groups

The following example searches for all application-specific users groups by description:

List filterq = new ArrayList();

filterq.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "A:Description",

SafeEnum.OpType.STRING,

 SafeEnum.Oper.EQUAL, "*engineers*", 0));

List UserGroups = safecontext.searchUserGroups(filterq);

A list of all matching application-specific user groups based on the attributes is returned
as a list.

Retrieve a Global User Group

Chapter 7: Groups 83

Retrieve a Global User Group

You can retrieve a global user group with the name by calling the soRetrieveByName
method.

To retrieve a global user group

1. Instantiate the SafeGlobalUserGroup.

2. Set the context.

3. Call the soRetrieveByName method.

All the attributes of the global user groups are populated with the data from server.

Example: Retrieve a global user group

The following example retrieves a global user group:

SafeGlobalUserGroup gug = new SafeGlobalUserGroup();

gug.setContext(safecontext);

gug.soRetrieveByName("Engineers");

System.out.println("Description : " + gug.getDescription());

Retrieve a User Group

You can retrieve a application-specific user group with the name by calling the
soRetrieveByName method.

To retrieve a user group

1. Instantiate the SafeUserGroup.

2. Set the context.

3. Call the soRetrieveByName method.

All the attributes of the user group are populated with the data from server.

Example: Retrieve a user group

The following example retrieves a user group:

SafeUserGroup ug = new SafeUserGroup();

ug.setContext(safecontext);

ug.soRetrieveByName("Staff");

System.out.println("Group Membership : " + ug.getGroupQ());

Delete a Group

84 Programming Guide

Delete a Group

You must retrieve a group to delete any existing group and use the soRemove method.

Note: Before deleting a group, ensure it is not referenced by any user or group.

Example: Delete a global user group

The following example deletes a global user group:

SafeGlobalUserGroup gug = new SafeGlobalUserGroup();

gug.setContext(safecontext);

gug.soRetrieveByName("Engineers");

gug.soRemove();

Example: Delete a user group

The following example deletes a user group:

SafeUserGroup ug = new SafeUserGroup();

ug.setContext(safecontext);

ug.soRetrieveByName("Staff");

ug.soRemove();

More Information:

Retrieve a Global User Group (see page 83)
Retrieve a User Group (see page 83)

Chapter 8: Access Management 85

Chapter 8: Access Management

This section contains the following topics:

Policies (see page 85)
Filters (see page 93)
Authorization (see page 106)
SDK Cache (see page 106)

Policies

Overview

CA EEM access policies are rules associated with users to define access to a particular
resource of an application or a group. CA EEM determines whether policies apply to the
particular user by matching identities, resources, resource classes, and evaluating the
filters.

Access polices are divided into six parts:

Identities

Specifies the identities to which policy are applicable.

Calendar

Specifies a time for which the policies will be applicable.

Resources

Specifies the resources on which the policy will apply.

Actions

Specifies the type of access to resources (depends on kind of policy).

Filters

Specifies additional conditions for restricting the policy better.

ResourceClassName

Specifies the type of resource, which will come under a resource class.

More Information

How Policies Are Evaluated (see page 122)
Filters (see page 93)
Policy Evaluation (see page 121)

Policies

86 Programming Guide

Types of Policies

Policies are broadly divided into the following six categories based on resource class
names:

■ Access Policies

■ Delegation Policies

■ Dynamic User Group Policies

■ Obligation Policies

■ Event Policies

■ Scoping Policies

To classify a policy into any of these categories, you must mention the appropriate
resource class name by calling the setResourceClassName method of the SafePolicy
class.

The following table provides details on the actions that can be performed on a policy:

Type of Policy SafeResourceClass Actions Description

Access Policy User-defined safe resource
class

User-defined actions for
the resource class

Defines access rules for
application-specific
resources

Delegation Policy SafeDelegation inherit Allows users to delegate
their authority

Dynamic User Group
Policy

SafeDynamicUserGroup belong Defines application-specific
groups and their
memberships based on
rules

Event Policy SafeEvent submit, view Defines who can submit
and view events

Obligation Policy SafeObligation FulfillOnGrant,
FulfillOnDeny

Defines the obligation that
can be carried out

Scoping Policy SafeObject read, write Define who has access to
which objects

Policies

Chapter 8: Access Management 87

The following are the available resources for the SafeObject resource class:

■ ApplicationInstance

■ Calendar

■ Policy

■ User

■ UserGroup

■ GlobalUser

■ GlobalUserGroup

■ Folder

■ GlobalFolder

■ AppObject

■ iPoz

■ Notify

Policies

88 Programming Guide

Types of Authorization Checks

The following table provides a list of methods to perform authorization check against
user-defined policies:

Method Description

■ SafeContext.authorizeWithSession

■ SafeContext.authorizeWithIdentity

Performs authorization check against a single resource,
accepting a character string as the identity/session

■ SafeContext.authorizeWithSessionDebug

■ SafeContext.authorizeWithIdentityDebug

Performs debug authorization check against a single
resource, accepting a character string as the
identity/session

■ SafeContext.authorizeQWithSession

■ SafeContext.authorizeQWithIdentity

Performs authorization check against a list of resources,
using a valid SafeSession as the identity/session

■ SafeContext.processAuthorizationQ

■ SafeContext.processAuthorizationMatrix

Performs authorization checks for a queue of
authorization objects

Example: Perform an authorization check

The following example performs an authorization check to determine whether erdoctor
can admit John:

SafeContext sc;

sc.synchronize();

SafeAuthorizationResult sar = sc.authorizeWithIdentity("erdoctor", "admit",

"patient", "John", null, null);

System.out.println("Result :" + sar.getResult());

System.out.println("PolicyName: " + sar.getPolicyName());

The results are displayed for the permission check and return a value.

Create, Modify, and Verify Policies

You can create, modify, and verify policies. The following examples describe the process
for detail:

■ Anybody can admit John (see page 89)

■ Anybody can admit John or John* (see page 90)

■ Staff can admit anyone except Sam (see page 91)

■ Nobody can admit Sam (see page 92)

Policies

Chapter 8: Access Management 89

How You Create Anybody Can Admit John Policy

The following example describes the process for creating a policy 'AnyBody can admit
John'.

Note: To write this policy, you must instantiate a SafePolicy class and set its context.

The policy consists of the following parts:

■ Name of the policy: AnyBody can admit John

■ Identities: AnyBody (all identities)

Note: If you do not set any identity, the policy applies to all identities.

■ Calendar: Any time

Note: If you do not set a time, the policy applies to all times.

If you do not set any time, it is applicable at all times.

■ ResourceClassName: Patient (since the resource "john" is a "patient")

■ Resources: John

■ Action: Admit

■ Filters: No restrictions (No filters)

Example: Create a policy

The following example creates 'AnyBody Can Admit John' policy:

SafeContext sc = new SafeContext();

sc.setBackend("hostname");

SafeSession ss = sc.authenticateWithPassword("username","password");

sc.attach("elsewhere",ss); // you are attaching to elsewhere application

SafePolicy sp = new SafePolicy();

sp.setContext(sc);

sp.setPath("Anybody can admit john"); // name

sp.setResourceClassName("patient"); // resource class name

sp.addResource("John"); // resource

sp.addAction("admit"); // action

sp.soInsert();

The authorization check for the resource that starts with John will return 'true'.

More Information:

How You Create Anybody Can Admit John or John* Policy (see page 90)
Types of Authorization Checks (see page 88)

Policies

90 Programming Guide

How You Create Anybody Can Admit John or John* Policy

The following example describes the process for creating a policy 'Anybody can admit
John or John*'.

The policy consists of the following parts:

■ Name of the policy: AnyBody can admit John or John*

■ Identities: AnyBody (all identities)

Note: If you do not set any identity, the policy applies to all identities.

■ Calendar: Any time

Note: If you do not set a time, the policy applies to all times.

■ ResourceClassName: Patient (since the resource "john" is a "patient")

■ Resources: John, John*

■ Action: Admit

■ Filters: No restrictions (No Filters)

Example: Create this policy

The following example creates 'Anybody Can Admit John or John*' policy:

safeContext.sc

SafePolicy sp = new SafePolicy();

sp.setContext(sc);

sp.soRetrieveByName("AnyBody can admit John or John*");

sp.addResource("John*");

sp.soModify();

The authorization check for the resource 'Johnathan' or 'Johnxyz' or any resource that
starts with John will return 'true'.

Policies

Chapter 8: Access Management 91

How You Create Staff Can Admit Anyone Except Sam

The following example describes the process for creating a policy 'Staff can admit
anyone except Sam'.

The policy consists of the following parts:

■ Name of the policy: Staff can admit anyone except Sam

■ Identities: Staff Group

■ Calendar: Any time

Note: If you do not set a time, the policy applies to all times.

■ ResourceClassName: Patient

■ Resources: Not mentioned

Note: If you do not set any resource, the policy applies to all resources.

■ Action: Admit

■ Filters: "requested resource" should "not be equal" to "value Sam"

You will have to restrict the policy using filters. For more information about filters see,
Filters (see page 93).

Example: Create policy using filters

The following example creates 'Staff Can Admit Anyone Except Sam' policy:

SafePolicy sp = new SafePolicy();

sp.setContext(safecontext);

sp.setPath("Staff can admit anyone except Sam"); //name

sp.setResourceClassName("patient"); //resource class name

sp.addIndentity(ug:Staff);

sp.addAction("admit"); //action

SafeFilter safefilter0 = new SafeFilter(SafeEnum.Logic.NONE, 0, "req:resource",

SafeEnum.OpType.STRING,

 SafeEnum.Oper.NOTEQUAL, "val:Sam", 0));

sp.addFilter(safefilter0); //add the above built filter to safepolicy

sp.soInsert();

The results are displayed for the permission check and return a value.

Policies

92 Programming Guide

How You Create Nobody Can Admit Sam Policy

The following example describes the process to create a deny policy for 'Nobody can
admit Sam'.

Set the resources in the policy to explicitly deny and flag the 'setExplicitDeny' to 'true',
to create a deny policy.

Note: By default, CA EEM denies permission unless a granting access policy is written.

CA EEM authorization evaluation gives priority to deny policies. If an explicit deny policy
is set, CA EEM will deny the permission even if a granting policy is available. For more
information on Policy Evaluation, see Policy Evaluation (see page 121).

The policy consists of the following parts:

■ Name of the policy: Nobody can admit Sam

■ Identities: AnyBody (all identities)

Note: If you do not set any identity, the policy applies to all identities.

■ Calendar: Any time

Note: If you do not set a time, the policy applies to all times.

■ ResourceClassName: Patient

■ Resources: Sam

■ Action: Admit

■ Filters: None

■ Policy: Explicit Deny

Example: Create policy using explicit deny

The following example creates an explicit deny for Nobody Can Admit Sam Policy:

SafePolicy sp = new SafePolicy();

sp.setContext(safecontext);

sp.setExplicitDeny(true);

sp.setPath("Nobody can admit Sam"); //name

sp.setResourceClassName("patient"); //resource class name

sp.addResource("Sam");

sp.addAction("admit"); //action

sp.soInsert();

The results are displayed for the permission check and return a value.

Filters

Chapter 8: Access Management 93

Filters

Overview

Filters are attached to the policies to limit the scope of a policy. CA EEM uses filters
during the evaluation phase of the policy evaluation process.

Each filter consists of the following components:

■ The connector to the previous filter (logic)

■ The number of left parentheses before the expression

■ A sub-expression, consisting of a left hand side value, operator, and a right hand
side value

■ The number of right parentheses after the expression

Filters

94 Programming Guide

Build Filters to Use in Searches

You can use filters to manage searches. Filters are similar to the 'where' clause in the
databases when used in searches. You can define multiple filters by combining groups
using the AND and OR operators.

In the SafeContext class, you can use search methods to locate stored objects.

The following objects are stored objects:

■ Application Instances

■ Calendars

■ AppObjects

■ Policies

■ User Groups

■ Global User Groups

■ Global Users

■ Users

By default, all the objects inherit from the SafeStoredObject class.

When searching for stored objects, use 'cn' to refer the name of the object.

Example: Search Stored Objects

The following example searches for stored objects:

List filterq = new ArrayList();

filterq.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "cn", SafeEnum.OpType.STRING,

 SafeEnum.Oper.LIKE, "app*", 0));

// Build the filter and just call the appropriate search method.

List globalUserGroups = safecontext.searchApplicationInstances(filterq);

Note: During searches, in column field, you can prefix attributes names with 'A:' and
specify the value in value field.

Filters

Chapter 8: Access Management 95

Following are the available attributes for each one of the stored objects:

Stored Object Method to Invoke MappedAttributes

Application Instance searchApplicationInstances ■ string ApplicationName

■ string Label

■ string Brand

■ string MajorVersion

■ string MinorVersion

■ Date InstallDate

■ string InstallIdentity

■ string InstallHost

■ string InstallHostAddress

■ string InstallHostInfo

■ string History

■ string Translations

■ portableobject ResourceClass

■ string UserAttribute

■ string Description

■ int CacheUpdateTime

■ string ObligationName

App Object searchAppObjects

Calendars searchCalendars ■ Date EffectiveStart

■ Date EffectiveStop

■ portableobject IncludeTimeBlock

■ portableobject ExcludeTimeBlock

■ string Description

Global User Groups searchGlobalUserGroups ■ string GroupMembership

■ string Description

Filters

96 Programming Guide

Stored Object Method to Invoke MappedAttributes

Global Users searchGlobalUsers ■ string GroupMembership

■ boolean Suspended

■ string UserName

■ string PasswordDigest

■ string OldPasswordDigest

■ Date PasswordChangeDate

■ int IncorrectLoginCount

■ Date SuspendedDate

■ Date DisableDate

■ Date EnableDate

■ string Description

■ string Comments

■ string JobTitle

■ string MailStop

■ string FirstName

■ string MiddleName

■ string LastName

Filters

Chapter 8: Access Management 97

Stored Object Method to Invoke MappedAttributes

Global Users searchGlobalUsers ■ string Alias

■ string Department

■ string DisplayName

■ string HomePhoneNumber

■ string WorkPhoneNumber

■ string MobilePhoneNumber

■ string FaxPhoneNumber

■ string EmailAddress

■ string Address

■ string City

■ string State

■ string PostalCode

■ string Country

■ string Office

■ string Company

■ boolean ChangePasswordNextLogin

■ boolean PasswordTimeToWarn

■ Date PasswordExpireTime

■ boolean

■ OverridePasswordPolicy

Filters

98 Programming Guide

Stored Object Method to Invoke MappedAttributes

Policies searchPolicies ■ string Resource

■ string Action

■ string Identity

■ string Calendar

■ portableobject Filter

■ string ResourceClassName

■ string Description

■ int PolicyType

■ boolean Disabled

■ string Delegator

■ boolean PreDeployment

■ boolean ExplicitDeny

■ boolean RegexCompare

■ string Label

■ portableobject Obligation

User Groups searchUserGroups ■ string GroupMembership

■ string Description

Users searchUsers ■ string GroupMembership

■ boolean Suspended

Filters

Chapter 8: Access Management 99

Build Filters to Use in Policies

You can use filters in policies by specifying conditions and providing access policy. You
must prefix the specific row values with the column field, different stored objects use
with different values.

The following table displays the field name and the value that must be prefixed along
with the filters evaluated during policy are presented below:

Column Field Type Value to Prefix Filter Evaluation Attributes

GlobalUserGroup gug: gug:{name} evaluates
to the value(s) of the
SafeGlobalUserGroup
object attributes
matching {name}

■ string Name

■ string Parent

■ string Path

■ string[] GroupMembership

■ string Description

UserGroup ug: gu:{name} evaluates to
the value(s) of the
SafeGlobalUser object
attributes matching
{name}

■ string Name

■ string Parent

■ string Path

■ string[] GroupMembership

■ boolean Suspended

User u: u:{name} evaluates to
the value(s) of the
SafeUser object
attributes matching
{name}

■ string Name

■ string Parent

■ string Path

■ string[] GroupMembership

■ boolean Suspended

Named Attributes name: name:{name} evaluates
to the value(s) of the
named attributeq
(namedattrq)
(sessionattrq) matching
{name}

String value from namedattrq

Session ses: ses:{name} evaluates to
the value(s) of the
session's attributeq
(sessionattrq) matching
{name}

String value from sessionattrq

Filters

100 Programming Guide

Column Field Type Value to Prefix Filter Evaluation Attributes

Environment env: env:{name} evaluates
to the value(s) of the
environment attributeq
(envattrq) matching
{name}

String value from envattrq

Request req: req:{identity|action|re
source|when|delegato
r} evaluates to the
corresponding values
from the permission
check request

String data

Value val: val:{data} evaluates to
the single value of
{data}

String data

Dynamic User Group dug: dug:Name evaluates to
the name(s) of the
Dynamic UserGroups
the identity belongs to

String Name

Request time when: when:{offset} evaluates
to req:when offset by
the {offset} ({offset} is
specified in minutes).
Sets the offset in
minutes from the
current request time.
For example, "-360"
means 10 hours before
the current request,
and "60" means one
hour after the current
request.

String data

Custom variable var: var:{name} evaluates to
the value(s) of the
custom variableq
matching {name}

String data

Calculation calc: calc:{calculation}
evaluates to result of
the {calculation}

String data

Filters

Chapter 8: Access Management 101

Column Field Type Value to Prefix Filter Evaluation Attributes

Global user gu: gu:{name} evaluates to
the value(s) of the
SafeGlobalUser object
attributes matching
{name}

■ string Name

■ string Parent

■ string Path

■ string[] GroupMembership

■ boolean Suspended

■ string UserName

■ string PasswordDigest

■ string[] OldPasswordDigest

■ Date PasswordChangeDate

■ int IncorrectLoginCount

■ Date SuspendedDate

■ Date DisableDate

■ Date EnableDate

■ string Description

■ string[] Comments

■ string JobTitle

■ string MailStop

■ string FirstName

■ string MiddleName

■ string LastName

■ string Alias

■ string Department

■ string DisplayName

■ string HomePhoneNumber

■ string WorkPhoneNumber

■ string MobilePhoneNumber

■ string FaxPhoneNumber

■ string EmailAddress

■ string[] Address

Filters

102 Programming Guide

Column Field Type Value to Prefix Filter Evaluation Attributes

Global user gu: gu:{name} evaluates to
the value(s) of the
SafeGlobalUser object
attributes matching
{name}

■ string City

■ string State

■ string PostalCode

■ string Country

■ string Office

■ string Company

■ boolean ChangePasswordNextLogin

■ boolean PasswordTimeToWarn

■ Date PasswordExpireTime

■ boolean OverridePasswordPolicy

Structure of a Filter

The following table displays the SafeFilter constructor parameters and their description
in order:

Parameter Description Overview

logic Constant integer value from
SafeEnum.Logic

Represents the logic between each ordered filter.
The available SafeEnum.Logic values are AND, OR,
LAST, NONE.

lparens Number of left parenthesis Represents the logical grouping of filters. Works
together with right parenthesis.

col The column field Represents the left side value of the condition.

optype Constant integer value from
SafeEnum.OpType

Operator Type (OpType) is used to set the
operator's data type. This data type is used for
evaluation of filters.

oper Constant integer value from
SafeEnum.Operator

Operators (oper) are used to compare values.
Available operators are like, notlike, equal,
notequal, match, notmatch, withinset, notinset,
startswith, endswith, greater, greaterequal, less,
lessequal, and contains.

val The value field Represents the left side value of the condition.

rparens Number of right parenthesis Represents the count, number of closing braces to
end a group of conditions.

Filters

Chapter 8: Access Management 103

The following are the samples to create filters based on attributes:

■ How to Search on First Name (see page 103)

■ How to Search on First Name and Designation (see page 104)

■ How to Search on First Name, Designation, and Department (see page 105)

Note: For information on how to create Filters using CA EEM web interface, see Online
Help.

Example: How to Search on First Name

The following is an example to create a filter to search for condition where FirstName
equal to 'ABC'.

Example: Search for condition where FirstName equal to 'ABC'

The following example searches on a condition where FirstName is equal to 'ABC':

new SafeFilter(SafeEnum.Logic.NONE, 0, "A:FirstName", SafeEnum.OpType.STRING,

SafeEnum.Oper.EQUAL, "ABC", 0);

Filters

104 Programming Guide

Example: How to Search on First Name and Designation

The process to build a filter to search for users based on job title involves three steps:

■ Build a filter to search on first name field, see Search on First Name (see page 103)

■ Build a filter to search on designation field

■ Combine the filters using AND logic.

Example: Search on designation

The following example searches based on designation:

new SafeFilter(SafeEnum.Logic.NONE, 0, "A:JobTitle", SafeEnum.OpType.STRING,

SafeEnum.Oper.EQUAL, "Manager", 0);

Note: To combine two filters you can use the 'AND' logic instead of 'NONE' logic for the
designation filter.

Example: Combine filters and search for users based on first name and designation

The following example searches for users based on first name and designation:

List filterq = new ArrayList();

filterq.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "A:FirstName",

SafeEnum.OpType.STRING,

 SafeEnum.Oper.EQUAL, "ABC", 0));

filterq.add(new SafeFilter(SafeEnum.Logic.AND, 0, "A:JobTitle",

SafeEnum.OpType.STRING,

 SafeEnum.Oper.EQUAL, "Manager", 0));

List globalUsers = safecontext.searchGlobalUser(filterq);

A list of users with matching designation is displayed.

Filters

Chapter 8: Access Management 105

Example: How to Search on First Name, Designation, and Department

To search for users based on firstname, designation, and department involves three
steps:

■ Build a filter to search on first name field, see Search on First Name (see page 103).

■ Build a filter to search on designation field, see Search on First Name and
Designation (see page 104).

■ Build a filter to search on department field.

Example: Search for department

The following example searches for department:

new SafeFilter(SafeEnum.Logic.OR, 0, "A:Department", SafeEnum.OpType.STRING,

SafeEnum.Oper.EQUAL, "Finance", 1);

Note: Ensure the opening and closing braces in count are set properly.

Example: Search users based on first name, designation, and department

The following example searches for users based on first name, designation, and
department:

List filterq = new ArrayList();

filterq.add(new SafeFilter(SafeEnum.Logic.NONE, 0, "A:FirstName",

SafeEnum.OpType.STRING,

 SafeEnum.Oper.like, "Sam*", 0));

filterq.add(new SafeFilter(SafeEnum.Logic.AND, 0, "A:Designation",

SafeEnum.OpType.STRING,

 SafeEnum.Oper.EQUAL, "Manager", 0));

filterq.add(new SafeFilter(SafeEnum.Logic.AND,0, "A:Department",

SafeEnum.OpType.STRING,

 SafeEnum.Oper.EQUAL, "Finance", 0));

List globalUsers = safecontext.searchGlobalUser(filterq);

A list of users with matching designation and department are displayed.

Authorization

106 Programming Guide

Authorization

You can check access rights for user-defined policies by calling the following methods:

■ Safe::Context::authorizeWithSession

■ Safe::Context::authorizeWithIdentity

■ Safe::Context::authorizeWithSessionDebug

■ Safe::Context::authorizationWithIdentityDebug

■ Safe::Context::authorizeQWithSession

■ Safe::Context::authorizeQWithIdentity

■ Safe::Context::processAuthorizationQ

■ Safe::Context::processAuthorizationMatrix

Additionally, you can check access for CA EEM stored objects by calling the following
methods:

■ Safe::StoredObject::canContextRead

■ Safe::StoredObject::canContextWrite

■ Safe::StoredObject::canIdentityRead

■ Safe::StoredObject::canIdentityWrite

SDK Cache

CA EEM will cache all the policies, calendars, sessions, and user groups for every 30
seconds, by default. If you want to change the default cache update time, call the
setCacheUpdateTime method.

You can manually update the cache by calling the Safe::Context::synchronize method.

Note: The cache update does not include sessions by default. To set cache update to
perform a full synchronization, you must call the setCacheUpdateSessionsAtSync
method.

SDK Cache

Chapter 8: Access Management 107

Session

CA EEM associates every user with a safesession. It has two kinds of sessions:

Authenticated sessions

Session maintains the user details such as name and groups, along with the user
authentication information. You can generate authenticated sessions by calling any
of the following methods:

■ authenticateWithPassword

■ authenticateWithCertificate

■ authenticateWithArtifact

■ authenticateWithNative

■ authenticateWithDigest

■ authenticateWithCredentials

Note: Each authentication call returns a session object. You can use the session
object to determine the authenticated users.

Unauthenticated sessions

Sessions maintains only the user details such as name and groups information.
These sessions are used only during authorization checks. Unauthenticated sessions
are generated by calling any of the following methods:

■ authorizeWithIdentity

■ authorizeQWithIdentity

■ authorizeWithIdentityDebug

Note: The default size of unauthenticated session's cache is ten. You can modify the
default size by calling the setCacheUnauthenticatedQSize method.

Chapter 9: Authentication 109

Chapter 9: Authentication

This section contains the following topics:

NTLM Authentication (see page 109)
Certificate Authentication (see page 113)
Issue Certificate (see page 115)
Issue Certificate for a Session (see page 116)
Issue Certificate For Users (see page 117)
Certificate Validation (see page 119)

NTLM Authentication

CA EEM lets you authenticate users with their browser credentials. The NTLM
authentication implementation is provided for an HTTP filter without JAAS.

Prerequisites for Configuring NTLM Authentication

Do the following before you configure NTLM authentication:

■ Verify that the CA EEM Server is installed on a Windows Server and is connected to
an Active Directory.

■ Verify that the users launch the application from a Windows computer.

■ Verify that the CA EEM Server and the computer where the users are launching the
application are part of the same network domain. If the computers are part of
nested domains, ensure that the CA EEM Server and the computer where the
application is launched belong to domains that have a trust relation established.

■ Verify that the domain users are added to the User Groups on the computer where
the application is being launched.

NTLM Authentication

110 Programming Guide

HTTP Filter Without JAAS

Do the following procedure on the Web Server where you have deployed your
application.

To configure NTLM authentication for CA EEM-enabled application

1. Stop the Tomcat services.

2. Open the web.xml file from the folder where you have deployed your application.

3. Add an NTLM authentication filter as the first filter in the filters section.

<filter>

 <filter-name>NtlmAuthFilter</filter-name>

 <filter-class>com.ca.eiam.httpfilter.AuthenticationFilter</filter-class>

 <init-param>

 <param-name>eiamBackendHost</param-name>

 <param-value></param-value>

 </init-param>

 <init-param>

 <param-name>eiamApplication</param-name>

 <param-value>applicationname</param-value>

 </init-param>

 <init-param>

 <param-name>eiamCertFile</param-name>

 <param-value>abc.p12</param-value>

 </init-param>

 <init-param>

 <param-name>eiamMaskedPassword</param-name>

 <param-value>FR0KBAJEXl8=</param-value>

<init-param>

 <param-name>eiamForceNTLM</param-name>

 <param-value>true</param-value>

 </init-param>

 </init-param>

</filter>

4. Add the following lines to the filter mapping section of the web.xml file.

<filter-mapping>

<filter-name>NtlmAuthFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

Note: /* indicates that all the URLs are protected using the NTLM authentication
method.

5. Save and close the file.

6. Start the Tomcat services.

NTLM Authentication

Chapter 9: Authentication 111

Filter Description

The NTLM authentication filter has the following parameters:

Note: Each parameter is identified using the <init-param> tag. The parameter name and
value are identified by the <param-name> tag and the <param-value> tag respectively.

The following are the parameters names. Enter the values for each of these parameters
in the respective <param-value> tag.

eiamBackendHost

Specifies the host name of the CA EEM Server.

eiamApplication

Specifies the application instance name registered with the CA EEM Server.

eiamCertFile

Specifies the P12 certificate file needed to attach to the application instance or
global instance to generate a Safecontext object.

eiamUsername

Specifies the username of the administrator needed to attach to an application
instance or global instance.

Note: Based on your authentication method use either eiamCertFile or
eiamUsername in the filter.

eiamPassword

Specifies the clear text password needed to authenticate the administrator.

eiamMaskedPassword

Specifies the munged password to be used with the certificate file or the username.

eiamForceNTLM

Specifies that the NTLM authentication is forced even if the browser is configured
to use Kerberos authentication.

Value: [True|False]

Default: False

NTLM Authentication

112 Programming Guide

Example--NTLM Filter

The following is an example of an NTLM filter:

<filter>

<filter-name>NtlmAuthFilter</filter-name>

<filter-class>com.ca.eiam.httpfilter.AuthenticationFilter</filter-class>

<init-param>

<param-name>eiamBackendHost</param-name>

<param-value>Server1</param-value>

</init-param>

<init-param>

<param-name>eiamApplication</param-name>

<param-value>RBC_Hospital</param-value>

</init-param>

<init-param>

<param-name>eiamCertFile</param-name>

<param-value>C:\Program Files\sample.p12</param-value>

</init-param>

<init-param>

<param-name>eiamMaskedPassword</param-name>

<param-value>FR0KBAJEXl8=</param-value>

</init-param>

</filter>

Certificate Authentication

Chapter 9: Authentication 113

Certificate Authentication

CA EEM SDK supports the following authentication certificate types:

■ P12--Supported only in non-FIPS mode.

■ PEM--Supported by the CA EEM C++, CA EEM C#, and CA EEM Java SDKs.

■ PKCS#11--Supported only by the CA EEM C++ and CA EEM Java SDKs.

Use the following methods for certificate authentication:

■ authenticateWithCertificate

■ fastauthenticateWithCertificate

To use authenticateWithCertificate

1. Instantiate a SafeContext Class.

2. Set the backend server to the host where CA EEM Server is running.

3. Read the certificate using the SafeCertificateReader Class and return a
SafeCertificate.

4. Use the SafeCertificate with authenticateWithCertificate method to verify the
authenticity of the user and generate a SafeSession.

Example: Authenticate with P12 certificate

The following example attaches an application to the backend server and authenticates
using a certificate:

//Instantiate a SafeContext Class.

SafeContext safecontext = new SafeContext();

//Set the backend to the host where Server is running.

safecontext.setBackend("<hostname>");

SafeCertificateData certdata = SafeCertificateReader.readP12(certfile, password);

//authentication call

SafeSession safesession = safecontext.authenticateWithCertificate(certdata);

Certificate Authentication

114 Programming Guide

Example: Authenticate with PEM certificate

The following example attaches an application to the backend server and authenticates
using a certificate:

//Instantiate a SafeContext Class.

SafeContext safecontext = new SafeContext();

//Set the backend to the host where Server is running.

safecontext.setBackend("<hostname>");

SafeCertificateData certdata = SafeCertificateReader.readPEM(certfile,

privatekeyfile);

//authentication call

SafeSession safesession = safecontext.authenticateWithCertificate(certdata);

Example: Authenticate with PKCS#11 certificate

The following example attaches an application to the backend server and authenticates
using a certificate:

Note: The CA EEM C# SDK does not support PKCS#11 device.

//Instantiate a SafeContext Class.

SafeContext safecontext = new SafeContext();

//Set the backend to the host where Server is running.

safecontext.setBackend("<hostname>");

SafeCertificateData certdata = SafeCertificateReader.readP11(provider1, userpin,

id);

//authentication call

SafeSession safesession = safecontext.authenticateWithCertificate(certdata);

Issue Certificate

Chapter 9: Authentication 115

Issue Certificate

To issue certificates, you must be attached to an application instance.

1. Attach to a backend server.

2. Issue certificate using the issueCertificate method.

3. Write the SafeCertificate to a P12, PEM, or PKCS#11 file using the
SafeCertificateWriter method.

Example: Issue a certificate and store the certificate as a P12

The following example issues P12 certificates:

//Instantiate a SafeContext Class.

SafeContext safecontext = new SafeContext();

//Set the backend to the host where Server is running.

safecontext.setBackend("<hostname>");

//Call the authenticateWithXXX to verify the authenticity.

SafeSession safesession = safecontext.authenticateWithPassword("username",

"password");

//attach to the application instance

safecontext.attach(appname, safession)

//Issue certificate

SafeCertificateData certdata = safecontext.issueCertificate();

//Write SafeCertificateData to P12

SafeCertificateWriter.writeToP12(certData, "certfile.p12", Pwd);

//Write SafeCertificateData to PEM

SafeCertificateWriter.writeToPEM(certData, "certfile.cer", "keyfile.key");

//Write SafeCertificateData to PKCS#11

SafeCertificateWriter.writeToP11(certData, provider1, userpin, id);

Note: When you are using the writeToPEM method in CA EEM C++ SDK, you must also
pass a password as an argument. This password can be empty. In FIPS-only mode, the
password must be empty as FIPS does not support password encryption.

Using writeToPEM in CA EEM C++ SDK

Safe::CertificateWriter::writeToPEM(certData, "certfile.cer", "keyfile.key",

password);

Issue Certificate for a Session

116 Programming Guide

Issue Certificate for a Session

To issue certificates, you must be attached to an application instance.

1. Attach to a backend server.

2. Pass a session to the issueCertificateForSession method.

3. Write the SafeCertificate to a P12, PEM, or PKCS#11 file using the
SafeCertificateWriter method.

Example: Issue a certificate for a SafeSession

The following example generates a certificate for a SafeSession:

//Instantiate a SafeContext Class.

SafeContext safecontext = new SafeContext();

//Set the backend to the host where Server is running.

safecontext.setBackend("<hostname>");

//Call the authenticateWithXXX to verify the authenticity.

SafeSession safesession = safecontext.authenticateWithPassword("username",

"password");

//Issue Certificate for a session

SafeCertificateData CertData = issueCertificateForSession(safesession);

//Write SafeCertificateData to P12

SafeCertificateWriter.writeToP12(CertData, "certfile.p12", Pwd);

//Write SafeCertificateData to PEM

SafeCertificateWriter.writeToPEM(CertData, "certfile.cer", "keyfile.key");

//Write SafeCertificateData to PKCS#11

SafeCertificateWriter.writeToP11(CertData, provider1, userpin, id);

Issue Certificate For Users

Chapter 9: Authentication 117

Issue Certificate For Users

You can only issue certificates only for valid application-specific users.

1. Pass a SafeUser to the issueCertificateForUser method.

2. Write the SafeCertificate to a P12, PEM, or PKCS#11 file using the
SafeCertificateWriter method.

Example: Issue a certificate for a SafeUser

The following example generates a certificate for a SafeUser:

SafeContext safecontext = new SafeContext();

SafeSession session = safecontext.authenticateWithPassword("EiamAdmin", "password")

//Attach to the application using the session.

obj.attach("RBC_Hospital", session);

SafeUser user = new SafeUser();

user.setContext(safecontext);

User.soRetriveByUserName("erdoctor");

SafeCertificateData CertData = issueCertificateForUser(user);

//Write SafeCertificateData to P12

SafeCertificateWriter.writeToP12(certData, "certfile.p12", Pwd);

//Write SafeCertificateData to PEM

SafeCertificateWriter.writeToPEM(certData, "certfile.cer", "keyfile.key");

//Write SafeCertificateData to PKCS#11

SafeCertificateWriter.writeToP11(certData, provider1, userpin, id);

Chapter 10: Certificate Validation 119

Chapter 10: Certificate Validation

After you verify the public key and private key of a certificate in a SSL handshake, you
can use CA EEM to validate the revocation status of a certificate. CA EEM uses the
SafeContext.validateUserCertificate or SafeContext.fastValidateUserCertificate APIs to
validate a certificate. If the validation of a certificate is successful, CA EEM extracts the
username and initiates a safe session.

CA EEM supports the following revocation mechanisms:

■ Certificate Revocation List (CRL)

■ CRL Distribution Point (CRLDP)

■ Online Certificate Status Protocol (OCSP)

This section contains the following topics:

Validate a Certificate (see page 119)

Validate a Certificate

Follow these steps:

1. Configure CA EEM server for certificate validation. For information about
configuring certificate validation, see the Implementation Guide.

2. Assign permission to validate certificates.

3. Invoke the validateUserCertificate API.

Issue Certificate For Users

120 Programming Guide

Assign Permission to the CertificateValidation Resource

You must assign a user with the permission to validate certificates. You can update the
existing AdministerObjects policy or create a policy.

To assign permission to validate a certificate

1. Go to Scoping Policies, and click the AdministerObjects policy in the right pane.

2. Select CertificateValidation from Add resource list in the Access Policy Configuration
section.

3. Click the Add resource icon.

The CertificateValidation resource appears in the Resources field. The user is
assigned the permission to validate a certificate.

Note: If you can want to create a policy and assign the user with permission to validate a
certificate, create a policy and perform the steps 2–3.

How to Invoke the API

When you invoke the API, CA EEM performs the following steps:

1. CA EEM SDK calls the CA EEM server to validate user certificate.

2. CA EEM server verifies that the caller of the CA EEM SDK has the permission to
validate a certificate.

3. CA EEM server validates the certificate with selected revocation mechanism.

4. CA EEM server extracts user mapped attribute.

5. (Optional) If configured, CA EEM server uses the extracted subject to map the
certificate with a user from the configured external LDAP directory.

6. CA EEM returns a SafeSession.

Chapter 11: Policy Evaluation 121

Chapter 11: Policy Evaluation

This section contains the following topics:

Overview (see page 121)
How Policies Are Evaluated (see page 122)
Gathering Identity Attributes (see page 123)
Policy Matching (see page 124)

Overview

CA EEM performs policy evaluation by calling the Safe::Context::authorize method. This
method is invoked with the following parameters:

■ Identity to check

■ Resource class name

■ Resource name

■ Action requested

■ Queue of named attributes

How Policies Are Evaluated

122 Programming Guide

How Policies Are Evaluated

Policies are evaluated in the following process:

1. Check for explicit denies:

a. Match for explicit denies.

b. Evaluate matched policy filters.

c. In case of explicit deny, stop checking, and return a denied recommendation
specifying the policy.

2. Check for explicit grants:

a. Match for explicit grants policies.

b. Evaluate matched policy filters.

c. In case of explicit grants, stop checking, and return a granted recommendation
specifying the policy.

3. Check for delegated authority:

a. Match/evaluate the delegated authority. For each delegator, find a grant with
no explicit deny.

b. For each delegator, repeat step 1and search for explicit grants.

c. If a grant was returned by delegation, return a granted recommendation
specifying the policy and the delegator chain.

4. Calculate obligations for this access check:

a. Add the following attributes to the ones passed in the authorization call:

■ PolicyName, the name of the obligation policy that caused the response

■ DelegationChain, the name of the delegation chain returned

b. Match and evaluate each SafeObligation as follows:

■ ResourceClass set to SafeObligation.

■ Resource name set to {action} + "/" + {original resource class} + "/"
{original resource name}.

■ Action set to FulfillOnGrant (if the authorization results in a grant), or
FulfillOnDeny (if the authorization results in a deny).

Gathering Identity Attributes

Chapter 11: Policy Evaluation 123

c. Do the following for each matching or evaluating SafeObligation policy:

■ Append each obligation to the authorization results.

■ Calculate the values of the obligation attributes and append them to the
authorization results.

Note: Applications must handle the obligations returned from an authorization
check. The application should not grant or deny access until and unless the
obligations could be performed.

5. Return a denied recommendation, in case of no matches.

Note: All the policies are not evaluated for every request. Since CA EEM supports
explicit policies (explicit grant or explicit deny), policy evaluation is performed only at
the first instance.

Gathering Identity Attributes

Identity attributes are collected and stored in the identity's session as a local cache.
Identity attributes are used during evaluation.

Identity attributes are collected as a cache for the following actions:

■ Authentication (Safe::Context::authenticateXXX)

■ First invocation of Safe::Context::authorizeWithIdentity (an unauthenticated
session)

■ Attach application, all identity attributes contained in the cached sessions
rebuilt/re-synchronized

■ Detach application, all identity attributes contained in the cached sessions are
destroyed

Assembling Environment Information

Environment attributes are used during evaluation. Environment attributes can be
modified by invoking the following methods:

■ Safe::Context::insertEnvAttr

■ Safe::Context::removeEnvAttr

Policy Matching

124 Programming Guide

Policy Matching

Evaluating Matching Algorithm

CA EEM uses an algorithm to match policies against a request. A policy match can be
against an identity, groups, action, resourceclassname, resource, and time. A policy is
matched and returns a value 'true' only if all of the following conditions are satisfied:

■ Policy must not be disabled.

■ Policy must not be pre-deployed (If it is pre-deployed, one of the policy's labels
must match a label in Safe::Context::getPreDeploymentLabels).

■ Policy must match the resource name.

■ Policy must match the action or must contain no actions.

■ Policy must match the identity (user/group) or must contain no identities.

■ Policy must be within the calendar's scope or must contain no calendars.

■ Policy must match the resource ("like" expression) or must contain no resources.

Note: Matching does not check the policy's filters. Filters are matched during
evaluation.

Policy Matching

Chapter 11: Policy Evaluation 125

How the Best Match Algorithm is Evaluated

The best match algorithm is evaluated in the following process:

■ Determine the characters matched (total number of non-asterisk characters) in the
policy's resource name mask

■ Determine the number of asterisks in the policy's resource name mask

■ Policies with the matching characters and least asterisks are retained

■ Empty masks ("", "*", and "**") all evaluate to 0 matching characters, 0 asterisks

The following table displays how four policies with resource name masks of "PAY",
"PAY*", "*PAY", "*PAY*", "P*", and "*" match:

Resource Name Policies Matched Matching Characters Asterisks

PAY123 PAY* 3 1

PAY PAY 3 0

1PAY1 *PAY* 3 2

PAYPAY PAY*, *PAY 3 1

P1AY P* 1 0

QAY * 0 1

123PAY *PAY 3 1

Policy Matching

126 Programming Guide

Best Match Handling for Regular Expression Policies

Regular expression (Regex) policies are policies that are treated as regular expressions.
The regex policies have 'regexcompare' flag enabled.

The best match algorithm for regular expression policies are evaluated in the following
process:

■ Start with matching character count set to the length of the resource name mask,
and reset the asterisk count zero

■ If the last character of the resource name mask is '$', decrement matching
character count, else increment asterisk count

■ If the first character of the resource name mask is '^', decrement matching
character count, else increment asterisk count

■ For each ".*" found in the resource name mask, decrement matching character
count by two, and increment asterisk count

■ For each ".?" found in the resource name mask, decrement matching character
count by two, and increment asterisk count

■ For each ".+" found in the resource name mask, decrement matching character
count by two, and increment asterisk count

■ For each non-escaped backslash ('\'), decrement matching character count

The following table displays how regex policies with resource name masks of "PAY",
"PAY*", "*PAY", "*PAY*", "P*", and "*" match:

Resource Name Policies Matched Matching
characters

Asterisks

PAY123 ^PAY 3 1

PAY ^PAY$ 3 0

1PAY1 PAY 3 2

PAYPAY ^PAY, PAY$ 3 1

P1AY ^P 1 1

QAY .* 0 0

123PAY PAY$ 3 1

Policy Matching

Chapter 11: Policy Evaluation 127

Policy Filter Evaluation

CA EEM evaluates filters only if no 'empty filter' policies matched.

Policies are evaluated against the identity, session, environment, and named attributes.
Each filter in the policy is evaluated based on order/parentheses/logic as follows:

■ calculate list of "col" values

■ calculate list of "val" values

■ for each col/val pair, apply "oper" based on "optype"

Note: If any policies containing no filters match the authorization request, the
evaluation step is not invoked.

Calculating lists of values:

■ val:{data} evaluates to the single value of {data}

■ env:{name} evaluates to the value(s) of the environment attributeq (envattrq)
matching {name}

■ u:{name} evaluates to the value(s) of the Safe::User object attributes matching
{name}

■ gu:{name} evaluates to the value(s) of the Safe::GlobalUser object attributes
matching {name}

■ ug:{name} evaluates to the value(s) of the Safe::UserGroup object attributes
matching {name}

■ gug:{name} evaluates to the value(s) of the Safe::GlobalUserGroup object attributes
matching {name}

■ dug:Name evaluates to the name(s) of the Dynamic UserGroups the identity
belongs to

■ ses:{name} evaluates to the value(s) of the session's attributeq (sessionattrq)
matching {name}

■ name:{name} evaluates to the value(s) of the named attributeq (namedattrq)
(sessionattrq) matching {name}

■ req:{identity|action|resource|when|delegator} evaluates to the corresponding
values from the permission check request

■ when:{offset} evaluates to req:when offset by the {offset} ({offset} is specified in
minutes)

■ calc:{calculation} evaluates to result of the {calculation}

Policy Matching

128 Programming Guide

Delegated Authority Evaluation

CA EEM evaluates delegated authority if no grants are found during policy match,
evaluation, and if the request was not already for the SafeDelegation resource class
name.

CA EEM invokes Safe::Context::authorizeWithSession with the following attributes:

■ Session set to the request session

■ Resourceclassname set to SafeDelegation

■ Resource set to the original action + "/" + resourceclassname + "/" + original
resource

Example:

[read|write]/SafeObject/[Calendar|Policy|User|UserGroup|GlobalUser|GlobalUser

Group|ApplicationInstance|AppObject|iPoz]action/application-resource-class-na

me/resourcename

■ Action set to inherit

■ The original named attribute queue, with an additional named attribute added:
"DelegationLevel", set to the depth of the delegation (starting at 1)

If access is granted, the 'Delegator' identity of the policy is retrieved. If an authorization
request is not submitted against this identity (prevents infinite recursion), the original
authorization request is re-submitted using the new identity.

If the (possibly recursive) authorization request comes with a GRANT, then access to the
object will be allowed.

Policy Matching

Chapter 11: Policy Evaluation 129

How Delegated Policies Are Evaluated

CA EEM performs a policy evaluation using delegated authority on an identity's
authorization request for a specific resourceclass, action, and resource, in the following
process:

1. CA EEM evaluates permissions for the identity based on the specified resourceclass,
resource, and action.

2. If a grant is not found, CA EEM searches for a Delegated Authorization by issuing an
authorization request for the following:

■ identity "{original identity}"

■ resource class "SafeDelegation",

■ resource name "{original action}/{original resource class}/{original resource
name}"

■ action "inherit"

■ the original named attribute queue, with an additional named attribute:

– "DelegationLevel" set to the depth of the delegation level (starting at 1)

3. For each matching Delegated Authorization retrieved, CA EEM issues an
authorization request for:

■ identity "{Delegator}" (from the Delegated Authority Policy)

■ resource class "{original resource class}"

■ resource "{original resource}"

■ action "{original action}".

■ the original named attribute queue

4. If a grant is found, access is granted to the original identity.

Policy Matching

130 Programming Guide

How Obligations Are Calculated

After an authorization check is complete, CA EEM determines if any obligations must be
attached to the authorization result in the following process:

1. Add two named attributes to the ones passed in the authorization call:

a. PolicyName, set to the name of the policy that caused the response (may be
empty on a default deny)

b. DelegationChain, set to the delegation chain returned (may be empty)

2. For each SafeObligation policy, match and evaluate as follows:

a. ResourceClass set to SafeObligation

b. Resource name set to {action} + "/" + {original resource class} + "/" + {original
resource name}

c. Action set to "FulfillOnGrant" if the authorization check resulted in a Grant, or
"FulfillOnDeny" if the authorization check resulted in a Deny.

3. For each matching/evaluating SafeObligation Policy:

a. Append each attached obligation to the authorization results

b. Calculate the values of the obligation attributes, and append these to the
authorization results (if unable to calculate, attach an empty result attribute).

Chapter 12: Exception Handling 131

Chapter 12: Exception Handling

This section contains the following topics:

Overview (see page 131)
Safe Exception (see page 132)
Safe Authorization Exception (see page 134)
Safe BackendServer Exception (see page 134)
Safe Password Exception (see page 134)

Overview

Exceptions indicate unusual error conditions that occur during the execution of an
application. When you call an object method, and an 'exceptional' event occurs (such as
being unable to access a file or network resource), the method can stop execution, and
'throws' an exception. When exception is thrown, it passes an object (the exception),
back to the calling code. The code can then handle the event, and deal with the
condition.

CA EEM supports four types of exception handling:

■ Safe Exception

■ Safe Authorization Exception

■ Safe BackendServer Exception

■ Safe Password Exception

Safe Exception

132 Programming Guide

Safe Exception

The Safe Exception is the generic exception of CA EEM. Most of the exceptions thrown
are using the safe exception. Exceptions are thrown when you encounter issues while
performing the following tasks:

■ Insert an object

■ Retrieve an object

■ Modify an object

■ Delete an object

■ Authentications

■ Ping the backend server

■ Add or remove the folder or global folders

■ Synchronization

■ Change password and so on

The hierarchy of the safe exception classes in Java is as follows:

java.lang.Object

 +- java.lang.Throwable

 +- java.lang.Exception

 +- com.ca.eiam.SafeException

Methods such as getException and getExceptionString provide details on the kinds of
exceptions that are tagged in the Safe API layer. All these exceptions are available as
SafeEnum.Errorcode.

The following table displays all the possible Safe API exceptions with the safe
enumeration return values and their descriptions:

Return Value Description

int SUCCESS = 0; EE_SUCCESS Success

int EXCEPTION = 1; EE_EXCEPTION Exception

int NOCREDS = 2; EE_NOCREDS No Credentials

int NOBACKEND = 3; EE_NOEIAMNODES No SafeNodes Defined

int SPONSORERROR = 4; EE_SPONSORERROR iSponsor Error

int NOTATTACHED = 5; EE_NOTATTACHED Not Attached to
Repository

int NOTFOUND = 6; EE_NOTFOUND Object Not Found

Safe Exception

Chapter 12: Exception Handling 133

Return Value Description

int EXISTS = 7; EE_EXISTS Object Already Exists

int BADOBJECT = 8; EE_BADOBJECT Bad Object

int AUTHFAILED = 9; EE_AUTHFAILED Authentication Failed

int EIAMUNREACHABLE = 10; EE_EIAMUNREACHABLE Backend
Unreachable

int POZERROR = 11; EE_POZERROR Repository Error

int SESSIONEXPIRED = 12; EE_SESSIONEXPIRED Session Expired

int ALREADYATTACHED = 13; EE_ALREADYATTACHED Already Attached

int MAXSIZEEXCEEDED = 14; EE_MAXSIZEEXCEEDED Max Search Size
Exceeded

int CHANGEPASSWORD = 15; EE_CHANGEPASSWORD User needs
password changed

int TRYAGAIN = 16; EE_TRYAGAIN Try again

int MAINTENANCE = 17; EE_MAINTENANCE Backend down for
maintenance

int NOTALLOWED = 18; EE_NOTALLOWED Operation not allowed

int PW_TOOSHORT = 19; EE_PW_TOOSHORT Password too short

int PW_TOOLONG = 20; EE_PW_TOOLONG Password too long

int PW_BADMIX = 21; EE_PW_BADMIX Password doesn't
contain enough special characters

int PW_MATCHESID = 22; EE_PW_MATCHESID Password matches
account name

int PW_TOOSOON = 23; EE_PW_TOOSOON Password cannot be
changed yet

int PW_REUSED = 24; EE_PW_REUSED Password already used

int PW_USERLOCKED = 25; EE_PW_USERLOCKED Account locked

int PW_REPETITION = 26; EE_PW_REPETITION Password has too
many repeating chars

int PW_EXPIRED = 27; EE_PW_EXPIRED Password has expired

int REFERENCED = 28; EE_REFERENCED Object still referenced

int LAST = REFERENCED; To obtain the highest error code value

Safe Authorization Exception

134 Programming Guide

Safe Authorization Exception

The Safe Authorization Exception is inherited from the SafeException. Exceptions caused
during the authorization calls are thrown as SafeAuthorizationExceptions. These
exceptions occurs when you try to authorize against a null session or when an identity
passed for authorization is either null or empty.

The hierarchy of the safe authorization exception classes in Java is as follows:

java.lang.Object

 +- java.lang.Throwable

 +- java.lang.Exception

 +- com.ca.eiam.SafeException

 +- com.ca.eiam.SafeAuthorizationException

Safe BackendServer Exception

The Safe BackendServer Exception is inherited from the SafeException. This exception is
thrown when you try to make calls to CA EEM without setting the backend server.

The hierarchy of the safe backendserver exception classes in Java is as follows:

java.lang.Object

 +- java.lang.Throwable

 +- java.lang.Exception

 +- com.ca.eiam.SafeException

 +- com.ca.eiam.SafeBackendServerException

Safe Password Exception

The Safe Password exception is inherited from SafeException. You may receive this
exception during authentication calls, change password, change password for an
identity, and unlockUser method calls. You will receive the Safe Password exception
even when the user is locked, an incorrect password is provided, or if the password is
expired.

The hierarchy of the safe password exception classes in Java is as follows:

java.lang.Object

 +- java.lang.Throwable

 +- java.lang.Exception

 +- com.ca.eiam.SafeException

 +- com.ca.eiam.SafePasswordException

Chapter 13: Identity Management 135

Chapter 13: Identity Management

This section contains the following topics:

Administration Methods (see page 135)
Configure Externally Generated Certificates (see page 137)
Dynamic user groups (see page 138)

Administration Methods

CA EEM Server enables the following features when you configure CA EEM to store
global users and global groups in the CA Management Database (CA-MDB):

■ Administering Global Users, Groups, and Folders (see page 136)

■ Applying password policies

■ Identity self-administration (see page 136)

Administration Methods

136 Programming Guide

Administering Global Users, Groups, and Folders

Note: If CA EEM is configured to reference global users from an external directory, the
Global Users and Global User Groups are read-only. You cannot perform insert, modify,
or delete operations on the Global Users and Global User Groups when referenced from
an external directory.

CA EEM lets you assign user privileges to perform insert, modify, and delete actions on
global users, groups and folders. You can also perform the following actions on global
users:

Suspend

Specifies the user is suspended, and cannot login.

Reset Password

Prompts to reset the user's password.

Override Password Policies

Specifies whether to permit the user to have passwords that do not meet the
password policy.

Modify Global Group Membership

You can control the Global user group membership by using the GroupQ in the
Global User Object and Global User Group objects by calling the following methods:

■ getGroupQ

■ addGroup

■ delGroup

■ clearGroupQ

Note: If you want to modify Global User's group membership, you must have write
access to the Global User object and Global User Group.

Identity Self Administration

You can self-administer the accounts of global users stored in the CA-MDB and perform
the following tasks:

■ Reset EiamAdmin Password

■ Change passwords

■ Unlock accounts

For more information to Changing passwords and Unlocking accounts, see Online Help.

Configure Externally Generated Certificates

Chapter 13: Identity Management 137

Reset EiamAdmin Password

CA EEM lets you reset the password for EiamAdmin user, if the password is lost.

To reset EiamAdmin password

1. In the command prompt, goto the iTechnology folder and run the safex command.

safex.exe -munge <newpassword>

The password is displayed in encrypted format.

2. Stop the iGateway service.

./S99igateway stop

3. Open the iPoz.conf file and add the encrypted password that is generated in step 2
to the following tag:

<EiamAdminPassword><Newpassword></EiamAdminPassword>

Save the iPoz.conf file.

4. Start the iGateway service.

./S99igateway start

Use the new password to login as EiamAdmin user.

Configure Externally Generated Certificates

CA EEM lets you use an externally generated certificate for user authentication. To use
an externally generated certificate, you must configure iGateway to trust the root
certification authority.

To configure iGateway

1. Enter the URL http://<hostname>:5250/spin.

Where hostname is the name of the host where iGateway is installed.

2. Select iTech Administrator.

3. Log in as root or administrator by selecting Host or as eiamadmin by selecting
iAuthority.

4. Click the iAuthority tab, in the Add Trusted Root section, add the root certification
authority as trusted.

5. In the client application, call the AuthenticateWithCertificate method passing the
personal certificate (pkcs12) issued by the root certification authority and the
password of the certificate.

Dynamic user groups

138 Programming Guide

Dynamic user groups

You can use dynamic user groups to specify membership policies instead of explicitly
adding each user or group into a user group. Dynamic user groups are created using
dynamic user group policies. Dynamic user groups attributes include, name of the
dynamic user group (name of the resource in the policy) and filters.

Example: If you have a dynamic group with the country name as United States, adding a
new user with country name United States will automatically be included in the dynamic
user group and the group membership policies will be implied to the user.

Dynamic user groups are useful to an application in the following ways:

■ To use the same set of filters for several policies by separating them using the
dynamic user groups

■ To achieve application-specific user groups by writing dynamic user group policies
against global user attributes without creating a user object for an application

■ To increase the execution speed of authorizations, as dynamic user groups are
validated when the user session is built

Chapter 14: Event Management 139

Chapter 14: Event Management

This section contains the following topics:

Event Policies (see page 139)
Event Data Model (see page 142)
Route Events (see page 147)

Event Policies

CA EEM generates events based on the event policies defined in the application. Event
policies are used to determine which events are delivered, and which ones are
combined (coalesced) into summaries. By using event policies, you can configure the
events that must be reported in detail.

How Event Policies are Evaluated

CA EEM generates combined events for both administrative and runtime events. The
events generated by CA EEM are recognized by CA Audit and can be delivered to a
configured CA Audit system.

The event policies are evaluated as follows:

■ All events are coalesced and sent out based on the time set in
Safe::Context::setEventCoalesceTime.

■ By default, events are delivered to the backend server. This can be overridden by
setting a new event host in the Safe::Context::setEventHost

■ When a event is received, an access check is performed to determine if the event
must be sent in detail based on the following:

– ResourceClassName set to SafeEvent

– Action set to submit

– ResourceName set to {action} from the event

– Named attribute queue of the event details (Taxonomy, Identity, ResourceClass
(for admin) Resource, Error (for runtime))

If the access check is passed, a detailed event is sent.

Event Policies

140 Programming Guide

Controlling Event Delivery

CA EEM coalesces events by unique instances of the host, application instance, and
taxonomy (action + success/fail/deny) and forwards the events to the backend server.
You can configure the time of delivery for these events. The default value to generate
coalesces event is 300 seconds.

Note: Even if the event policies are set to 'not submit' a specified event, Coalesced
Events are still generated on a regular interval (defaults to 300 seconds).

The following parameters can be used to modify the default values of events:

Safe::Context::setEventCoalesceTime

Specifies the time span for delivering combined events.

Safe::Context::setEventDeliveryHost

Specifies the Audit host to send the events.

Safe::Context::setEventDrainTime

Specifies time to wait before thrashing the un-sent events.

Event Policies

Chapter 14: Event Management 141

Default Event Policy

When registering an Application Instance, a default event policy (named
DefaultEventPolicy) is created. The default policy sends detailed information on events
for the following actions:

■ unregisterApplicationInstance

■ issueCertificate

■ authenticateWithPassword

■ authenticateWithCertificate

■ authenticateWithArtifact

■ authenticateWithDigest

■ authenticateWithNative

■ authenticateWithCredentials

■ fastAuthenticateWithPassword

■ fastAuthenticateWithCertificate

■ fastAuthenticateWithArtifact

■ fastAuthenticateWithDigest

■ fastAuthenticateWithNative

■ refreshSession

■ changePassword

■ unlockUser

■ pozConfigure

■ soInsert

■ soRemove

■ soModify

More Information

Event Data Model (see page 142)

Event Data Model

142 Programming Guide

Event Data Model

You can view the following events that are cached by CA EEM for the attached
application instance:

■ Administrative Events

■ Runtime Events

■ Coalesced Events

Note: The events are displayed based on your rights view.

The following are the standard fields in Audit:

Taxonomy

IAM.eventname.{action}.[S|F].I {action}

Where eventname is based on the event model.

Src

Specifies the applicationinstance label from Safe::ApplicationInstace::getLabel
method.

Log

Specifies the log file name.

Example: EiamSdk

TimeZone

Specifies the local time offset from GMT.

Location

Specifies the fully qualified hostname (\domain for windows, host.domain.com for
*nix).

RecorderHost

Specifies the fully qualified hostname (\domain for windows, host.domain.com for
*nix).

Recorder

Specifies the "application name" from
Safe::ApplicationInstance::getApplcationName method.

Version

Specifies the version.

Example: 1.0

Event Data Model

Chapter 14: Event Management 143

Administrative Events

Administrative events occur when any SafeStoredObject or folder is inserted, removed,
or modified in the policy server store. Admin Events are generated through the
following administrative actions:

■ pozConfigure

■ soInsert (includes addFolder and addGlobalFolder)

■ soRemove (includes removeFolder and removeGlobalFolder)

■ soModify (includes emptyFolder and emptyGlobalFolder)

Each administrative action generates events along with a 'Tag' field. Each event
represents a collection of attributes that are updated, inserted, or removed.

Note: Administrative events use the standard audit fields with Taxonomy set to
IAM.Admin.{action}.S.I.

The following are the CA EEM specific fields for administrative events:

Identity

Specifies the identity of the user attached to the context.

Tag

Specifies a unique ID that anchors the group of events together.

Method

Specifies the action.

ResourceClass:

Specifies the resource class being acted upon. Such as, Folder, GlobalFolder, User,
GlobalUser, UserGroup, GlobalUserGroup, ApplicationInstance, Calendar, and
Policy.

Resource

Specifies the fully qualified name of the resource.

Attribute:

Specifies the name of the field being modified.

Event Data Model

144 Programming Guide

OldVal

Specifies the previous value of the attribute.

NewVal

Specifies the new value of the attribute.

Severity

Specifies severity information.

Status

Specifies the status.

Runtime Events

Runtime events are generated when CA EEM methods are invoked, such as
authentication and authorization calls. Runtime events are generated through the
following runtime actions:

■ registerApplicationInstance

■ unregisterApplicationInstance

■ issueCertificate

■ attach

■ detach

■ authenticateWith*

■ fastAuthenticateWith*

■ authorizeWithSession

■ refreshSession

■ removeSession

■ changePassword

■ changePasswordForIdentity

■ unlockUser

Notes:

■ Runtime events use the standard audit fields with Taxonomy set to
IAM.Runtime.{action}.[S|F].I {action}.

■ For every authorization call, an event will be generated that will log the named
attributes used by the authorization call.

Event Data Model

Chapter 14: Event Management 145

The following are the CA EEM specific fields for runtime events:

Identity

Specifies the identity of the user attached to the context.

Note: If you use authorizeWithSession, then it specifies the identity being checked.

Action

Specifies the action.

Resource

Specifies the resource being acted upon (identity, application instance, or resource).

For authorizeWithSession the resource is the action + '/' + ResourceClassName + '/'
+ Resource

Example: read/file//tmp/myfile.doc

Error

Specifies the error in numerics.

ErrorCode

Specifies the error code (nmemonic).

Severity

Specifies severity information.

Status

Specifies the status.

Event Data Model

146 Programming Guide

Coalesced Events

Coalesced Events are runtime and administrative events, coalesced into 'counts'. Each
unique instance of action and success/failure generates a bucket, into which the events
are coalesced. Coalesced Events are delivered on a configurable basis to the CA EEM
policy server.

Note: Coalesced events use the standard audit fields with Taxonomy set to
IAM.Coalesced.{action}.[S|F].I {action}.

The following are the CA EEM specific fields for coalesced events:

Method

Specifies the action.

StartTime

Specifies the time to start coalescing.

StopTime

Specifies the time to stop coalescing.

Count

Specifies the number of these events received/coalesced.

Severity

Specifies severity information.

Status

Specifies the status.

Route Events

Chapter 14: Event Management 147

Route Events

Events that are generated in CA EEM can be routed to another server through the
iGateway iControl configuration settings. You must perform the following steps in the
server from where you want the events to be routed.

Note: After you enable event routing, events will still be available on the CA EEM Server.

To route events from CA EEM

1. Stop the iGateway service:

Windows

net stop igateway

Linux and UNIX

$IGW_LOC/S99igateway stop

2. Go to the iTechnology installation folder.

Windows (Default)

\CA\SharedComponents\iTechnology

Linux and UNIX

 /opt/CA/SharedComponents/iTechnology

3. Edit the iControl.conf file and modify the RouteEvent and RouteEventHost tags.

Example:

<RouteEvent>false</RouteEvent>

Change to:

<RouteEvent>true</RouteEvent>

Example:

<RouteEventHost>localhost</RouteEventHost>

Change to:

<RouteEventHost><hostname></RouteEventHost>

4. Start the iGateway service:

Windows

net stop igateway

Linux and UNIX

$IGW_LOC/S99igateway stop

All the events that are generated after configuring will be routed to the specified
host.

Chapter 15: CA EEM SDK Logging 149

Chapter 15: CA EEM SDK Logging

The CA EEM SDK logging lets you do the following:

■ Application log levels can be changed at run time.

■ Configure logging information such as filename, file size, number of backup log files,
and so on.

The following files control the logging in the CA EEM SDK:

■ eiam.log4cxx.config and eiam.config files for CA EEM C++ SDK

■ eiam.log4net.config for CA EEM C# SDK

■ eiam.log4j.config and eiam.config files for CA EEM Java SDK

The samples of these logger configurations are shipped with the CA EEM SDK package
and are placed in Bin folder:

UNIX

$EIAM_SDK/bin

Windows

%EIAM_SDK%\bin

This section contains the following topics:

About the Logger Configuration Files (see page 149)

About the Logger Configuration Files

The logger configuration files, eiam.log4cxx.config, eiam.log4net.config, and
eiam.log4j.config, are used to configure CA EEM SDK logging. These files contain the
following major components:

■ Appenders

■ Loggers

■ Root Logger

These components contain configurable parameters that let you customize the logging
process based on your business requirements.

About the Logger Configuration Files

150 Programming Guide

Appender

An appender contains parameters that control the logging of each logger. By default,
the logger configuration files contains the following appenders:

SDK

Logs the SDK messages into a log file. Specifies the path including the file name of
the log file.

Default: eiam.cppsdk.log for C++ SDK, EIAM.C#SDK.log for C#, and eiam.javasdk.log
for Java SDK.

Note: If you are deploying your application under Tomcat server on Windows, verify
that you use forward slash '/' in the path instead of the backward slash '\'. If you
use backward slash, the log file is not created at the path you have specified;
instead, the log file is created in the Apache Tomcat folder.

Network

Logs the network call related messages into a log file.

Default:eiam.network.cpp.log for C++ SDK, EIAM.NETWORK.C#SDK.log for C# SDK,
and eiam.javasdk.log for Java SDK.

Performance

Logs the performance call related messages into a log file.

Default: eiam.performance.cpp.log for C++ SDK, EIAM.PERFORMANCE.C#SDK.log
for C# SDK, and eiam.performance.java.log

Console

Displays the log messages on the console.

SDK appender is enabled by default. To enable other appenders, remove the comment
strings (<!-- and -->) from their respective code.

An appender consists of the following configurable parameters:

file

Specifies the log filename of the appender.

append

Specifies if a set of log messages is appended to the log file. If the value is true, the
set of log message is appended to the last log message in the log file.

Note: This parameter is named appendToFile in the eiam.log4net.config file.

About the Logger Configuration Files

Chapter 15: CA EEM SDK Logging 151

BufferedIO

Specifies if the latest log message is buffered. If the value is true, latest few log
messages are kept in memory before writing to log file. This option minimizes IO
operation and is beneficial if the log level is higher.

Value: [true|false]

Default: false

Note: The default size of BufferedIO is 8 KB.

maxFileSize

Specifies the maximum size of the log file. If a log file exceeds the maximum size, a
new log file filename log.1 is created and the contents of log file are transferred to
log.1 file. The log file now contains latest log messages. If this file too exceeds the
maximum size, a new log file filename log.2 is created, the contents of log.1 are
transferred to log.2 file, and the contents of log file are transferred to log.1 file.

Default: 10 MB

Minimum: 10 KB

Maximum: 2 GB

Note: The minimum size of the maxFileSize must be greater than or equal to the
size of BufferedIO. This parameter is named maximumFileSize in the
eiam.log4net.config file.

maxBackupIndex

Specifies the maximum number of backup log files used for keeping old logs. If the
number of log files exceeds the maximum backup index value, the file with the
oldest log messages is deleted.

Default: 1

Minimum: 1

Maximum: 12

Note: This parameter is named maxSizeRollBackups in the eiam.log4net.config file.

rollingStyle

Specifies the criteria for creating log files. When this parameter is set to Size, if a log
file exceeds the maximumFileSize, a new log file is created and the contents of the
current log file are backed up.

Default: Size

ConversionPattern

Specifies the formatting of a log message. Configure the format modifiers and
conversion characters to define the conversion pattern.

Note: For more information about conversion patterns, refer the topic log4j in
www.apache.org.

About the Logger Configuration Files

152 Programming Guide

Example: SDK Appender

<appender name="SDK" class="org.apache.log4j.RollingFileAppender">

<!-- The active sdk log file -->

<param name="file" value="eiam.cppsdk.log" />

<param name="append" value="true" />

<param name="BufferedIO" value="false"/>

<param name="maxFileSize" value="10000KB" />

<param name="maxBackupIndex" value="1" />

<layout class="org.apache.log4j.PatternLayout">

<!-- The log message pattern -->

<param name="ConversionPattern" value="%5p %d{ISO8601} [%t] [%c] %m%n"/>

</layout>

</appender>

Appender in eiam.log4net.config

An appender contains parameters that control the logging of each logger. By default,
the logger configuration files contains the following appenders:

SDK

Logs the SDK messages into a log file. Specifies the path including the file name of
the log file.

Default: EIAM.C#SDK.log

Note: If you are deploying your application under Tomcat server on Windows,
ensure that you use forward slash '/' in the path instead of the backward slash '\'. If
you use backward slash, the log file is not created at the path you have specified;
instead, the log file is created in the Apache Tomcat folder.

Network

Logs the network call related messages into a log file.

Default:EIAM.NETWORK.C#SDK.log

Performance

Logs the performance call related messages into a log file.

Default: EIAM.PERFORMANCE.C#SDK.log

Console

Displays the log messages on the console.

SDK appender is enabled by default. To enable other appenders, remove the comment
strings (<!-- and -->) from their respective code.

About the Logger Configuration Files

Chapter 15: CA EEM SDK Logging 153

An appender consists of the following configurable parameters:

file

Specifies the log filename of the appender.

appendToFile

Specifies if a set of log messages is appended to the log file. If the value is true, the
set of log message is appended to the last log message in the log file.

maxSizeRollBackups

Specifies the maximum number of backup log files used for keeping old logs. If the
number of log files exceeds the maximum backup index value, the file with the
oldest log messages is deleted.

Default: 1

Minimum: 1

Maximum: 12

rollingStyle

Specifies the criteria for creating log files. When this parameter is set to Size, if a log
file exceeds the maximumFileSize, a new log file is created and the contents of the
current log file are backed up.

Default: Size

maximumFileSize

Specifies the maximum size of the log file. If a log file exceeds the maximum size, a
new log file filename log.1 is created and the contents of log file are transferred to
log.1 file. The log file now contains latest log messages. If this file too exceeds the
maximum size, a new log file filename log.2 is created, the contents of log.1 are
transferred to log.2 file, and the contents of log file are transferred to log.1 file.

Default: 10 MB

Minimum: 10 KB

Maximum: 2 GB

Note: The minimum size of the maxFileSize must be greater than or equal to the
size of rollingStyle.

ConversionPattern

Specifies the formatting of a log message. Configure the format modifiers and
conversion characters to define the conversion pattern.

Note: For more information about conversion patterns, refer the topic log4net in
www.apache.org.

About the Logger Configuration Files

154 Programming Guide

Logger

Loggers let you control the log messages for CA EEM SDK. To enable a logger, remove
the comment strings from their respective code.

A logger contains the following parameters:

logger name

Specifies the name of a logger.

additivity

Specifies if the log messages are duplicated in the SDK log file.

Value: [true|false]

Default: false

level value

Specifies log level of a logger.

Value: [Trace|Debug|Info|Warn|Error|Fatal|Off]

The following are the log levels, in the order of their precedence:

Note: Higher the log level, lesser is the performance of CA EEM.

Trace

Indicates low level debugging. It contains control flow and passes arguments.

Debug

Indicates messages used for problem diagnosis. It contains contextual
information.

Info

Indicates contextual information that traces execution at a coarse-grained level
in a production environment.

Warn

Indicates a potential problem in the system. For example, if the message
category corresponds to security, a warning message must display if a
dictionary attack is detected.

Error

Indicates a serious problem in the system. The problem is non-recoverable and
requires manual intervention.

Fatal

Indicates a very sever error that may lead the application to abort.

About the Logger Configuration Files

Chapter 15: CA EEM SDK Logging 155

Off

Indicates the absence of logging.

Note: The log level of the default SDK appender must be Error.

Example: Performance Logger

<logger name="Perform" additivity="false">

<level value="trace"/>

<appender-ref ref="Performance" />

</logger>

Root Logger

Root Logger controls the log level of all the appenders. However, if the log level of the
referenced appender in root logger is different from the log level specified in the parent
appender, the higher priority log level overrides the lower priority log level.

For example, if the log level of a the root logger is Error and the log level of the Network
appender is Trace, the log level Trace overrides Error and the system considers log
messages with log level Trace at the runtime.

Example: Root Logger

<root>

<priority value="error" />

<appender-ref ref="SDK" />

</root>

Configure the Logger Files

CA EEM lets you configure the log messages related to network, performance, console,
and SDK classes.

To configure logger files

1. Open the logger configuration file, eiam.log4cxx.config, eiam.log4net.config, or
eiam.log4j.config, in a text editor.

2. Enable loggers and appenders. Remove the comment strings from the logger and
appender code to enable loggers and appenders.

3. Update the appender parameters.

4. Save the logger configuration file.

About the Logger Configuration Files

156 Programming Guide

Example of a eiam.log4cxx.config File

The following is an example of the eiam.log4cxx.config file:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<!-- Note that this file is read by the sdk every 60 seconds -->

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<appender name="SDK" class="org.apache.log4j.RollingFileAppender">

<!-- The active sdk log file -->

<param name="file" value="eiam.cppsdk.log" />

<param name="append" value="true" />

<param name="BufferedIO" value="false"/>

<param name="maxFileSize" value="10000KB" />

<param name="maxBackupIndex" value="1" />

<layout class="org.apache.log4j.PatternLayout">

<!-- The log message pattern -->

<param name="ConversionPattern" value="%5p %d{ISO8601} [%t] [%c] %m%n"/>

</layout>

</appender>

<appender name="Network" class="org.apache.log4j.RollingFileAppender">

<!-- The file to log Network calls -->

<param name="file" value="eiam.network.cpp.log" />

<param name="append" value="true" />

<param name="BufferedIO" value="true"/>

<param name="maxFileSize" value="10000KB" />

<param name="maxBackupIndex" value="1" />

<layout class="org.apache.log4j.PatternLayout">

<!-- The log message pattern -->

<param name="ConversionPattern" value="%5p %d{ISO8601} [%t] [%c] %m%n"/>

</layout>

</appender>

<appender name="Performance" class="org.apache.log4j.RollingFileAppender">

<!-- The file to log Performance calls -->

<param name="file" value="eiam.performance.cpp.log" />

<param name="append" value="true" />

<param name="BufferedIO" value="true"/>

<param name="maxFileSize" value="10000KB" />

<param name="maxBackupIndex" value="1" />

<layout class="org.apache.log4j.PatternLayout">

<!-- The log message pattern -->

<param name="ConversionPattern" value="%5p %d{ISO8601} [%t] [%c] %m%n"/>

</layout>

</appender>

<appender name="Console" class="org.apache.log4j.ConsoleAppender">

<!-- Logs to Console -->

<layout class="org.apache.log4j.PatternLayout">

About the Logger Configuration Files

Chapter 15: CA EEM SDK Logging 157

<!-- The log message pattern -->

<param name="ConversionPattern" value="%5p %d{ISO8601} [%t] [%c] %m%n"/>

</layout>

</appender>

<!-- Remove comment to enable Performance Logging -->

<!--

<logger name="Perform" additivity="false">

<level value="trace"/>

<appender-ref ref="Performance" />

</logger>

-->

<!-- Remove comment to enable Network Logging -->

<!--

<logger name="Network" additivity="false">

<level value="trace"/>

<appender-ref ref="Network" />

</logger>

-->

<root>

<priority value="error" />

<appender-ref ref="SDK" />

<!-- <appender-ref ref="Console" /> -->

</root>

</log4j:configuration>

About the Logger Configuration Files

158 Programming Guide

Example of a eiam.log4net.config File

The following is an example of a eiam.log4net.config file:

<?xml version="1.0" encoding="utf-8" ?>

<log4net>

 <appender name="SDK" type="log4net.Appender.RollingFileAppender">

 <file value="EIAM.C#SDK.log" />

 <appendToFile value="true" />

 <maxSizeRollBackups value="1" />

 <maximumFileSize value="10000KB" />

 <rollingStyle value="Size" />

 <layout type="log4net.Layout.PatternLayout">

 <conversionPattern value="%date [%thread] %-5level %logger

- %message%newline" />

 </layout>

 </appender>

 <appender name="Network" type="log4net.Appender.RollingFileAppender">

 <file value="EIAM.NETWORK.C#SDK.log" />

 <appendToFile value="true" />

 <maxSizeRollBackups value="1" />

 <maximumFileSize value="10000KB" />

 <rollingStyle value="Size" />

 <layout type="log4net.Layout.PatternLayout">

 <conversionPattern value="%date [%thread] %-5level %logger

- %message%newline" />

 </layout>

 </appender>

 <appender name="Performance" type="log4net.Appender.RollingFileAppender">

 <file value="EIAM.PERFORMANCE.C#SDK.log" />

 <appendToFile value="true" />

 <maxSizeRollBackups value="1" />

 <maximumFileSize value="10000KB" />

 <rollingStyle value="Size" />

 <layout type="log4net.Layout.PatternLayout">

 <conversionPattern value="%date [%thread] %-5level %logger

- %message%newline" />

 </layout>

 </appender>

 <appender name="ConsoleAppender" type="log4net.Appender.ConsoleAppender">

 <layout type="log4net.Layout.PatternLayout">

 <conversionPattern value="%date [%thread] %-5level %logger

- %message%newline" />

 </layout>

 </appender>

About the Logger Configuration Files

Chapter 15: CA EEM SDK Logging 159

 <!-- Uncomment to enable Performance Logging -->

 <!--

 <logger name="Perform" additivity="false">

 <level value="ERROR"/>

 <appender-ref ref="Performance" />

 </logger>-->

 <!-- Uncomment to enable Network Logging -->

 <!--<logger name="Network" additivity="false">

 <level value="ERROR"/>

 <appender-ref ref="Network" />

 </logger>-->

 <root>

 <level value="ERROR" />

 <appender-ref ref="SDK" />

 <!-- <appender-ref ref="ConsoleAppender" /> -->

 </root>

</log4net>

About the Logger Configuration Files

160 Programming Guide

Example of a eiam.lo4j.config File

The following is an example of the eiam.log4cxx.config file:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<!-- Note that this file is read by the sdk every 60 seconds -->

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <appender name="SDK" class="com.ca.eiam.log4j.RollingFileAppender">

 <!-- The active sdk log file -->

 <param name="file" value="eiam.javasdk.log" />

 <param name="append" value="true" />

 <param name="BufferedIO" value="false"/>

 <param name="maxFileSize" value="10000KB" />

 <param name="maxBackupIndex" value="1" />

 <layout class="com.ca.eiam.log4j.PatternLayout">

 <!-- The log message pattern -->

 <param name="ConversionPattern" value="%5p %d{ISO8601}

[%t] [%c] %m%n"/>

 </layout>

 </appender>

 <appender name="Network" class="com.ca.eiam.log4j.RollingFileAppender">

 <!-- The file to log Network calls -->

 <param name="file" value="eiam.network.java.log" />

 <param name="append" value="true" />

 <param name="BufferedIO" value="false"/>

 <param name="maxFileSize" value="10000KB" />

 <param name="maxBackupIndex" value="1" />

 <layout class="com.ca.eiam.log4j.PatternLayout">

 <!-- The log message pattern -->

 <param name="ConversionPattern" value="%5p %d{ISO8601}

[%t] [%c] %m%n"/>

 </layout>

 </appender>

 <appender name="Performance"

class="com.ca.eiam.log4j.RollingFileAppender">

 <!-- The file to log Performance calls -->

 <param name="file" value="eiam.performance.java.log" />

 <param name="append" value="true" />

 <param name="BufferedIO" value="false"/>

 <param name="maxFileSize" value="10000KB" />

 <param name="maxBackupIndex" value="1" />

 <layout class="com.ca.eiam.log4j.PatternLayout">

 <!-- The log message pattern -->

About the Logger Configuration Files

Chapter 15: CA EEM SDK Logging 161

 <param name="ConversionPattern" value="%5p %d{ISO8601}

[%t] [%c] %m%n"/>

 </layout>

 </appender>

 <appender name="Console" class="com.ca.eiam.log4j.ConsoleAppender">

 <!-- Logs to Console -->

 <layout class="com.ca.eiam.log4j.PatternLayout">

 <!-- The log message pattern -->

 <param name="ConversionPattern" value="%5p %d{ISO8601}

[%t] [%c] %m%n"/>

 </layout>

 </appender>

 <!-- Uncomment to enable Performance Logging -->

 <!--

 <logger name="Perform" additivity="false">

 <level value="trace"/>

 <appender-ref ref="Performance" />

 </logger>

 -->

 <!-- Uncomment to enable Network Logging -->

 <!--

 <logger name="Network" additivity="false">

 <level value="trace"/>

 <appender-ref ref="Network" />

 </logger>

 -->

 <root>

 <priority value="error" />

 <appender-ref ref="SDK" />

 <!-- <appender-ref ref="Console" /> -->

 </root>

</log4j:configuration>

Chapter 16: Using Custom Key Length Certificates for SSL Communication in CA EEM SDK 163

Chapter 16: Using Custom Key Length
Certificates for SSL Communication in CA
EEM SDK

You can use the custom key length certificates for the following two purposes:

■ Communicate over SSL between CA EEM SDK and CA EEM Server.

■ Authenticate the application against the CA EEM Server.

This section contains the following topics:

Communicate Over SSL between CA EEM SDK and CA EEM Server (see page 163)
Authenticate the Application against CA EEM Server (see page 165)

Communicate Over SSL between CA EEM SDK and CA EEM
Server

For the SSL communication between CA EEM SDK and CA EEM Server using custom key
length certificates, do the following steps:

1. Generate the certificate.

2. Update the eiam.config file.

3. Restart the application.

Generate the Certificate

You can generate a certificate using the OpenSSL utility or can obtain the certificate
from a Certificate Authority (CA).

You need the certificate file name and key file name to update the configuration file of
CA EEM SDK.

Note: For information about the steps to generate a certificate, see the OpenSSL
documentation.

CA EEM supports both PEM and P12 certificates for the SSL communication in CA EEM
SDK.

Communicate Over SSL between CA EEM SDK and CA EEM Server

164 Programming Guide

Update the eiam.config File

To use certificates for the SSL communication, update the eiam.config file of CA EEM
SDK with the details of the certificate that you want to use.

Follow these steps:

1. Navigate to the following CA EEM SDK installation folder.

In Windows, the default installation path is as follows:

C:\Program Files\CA\Embedded Entitlements Manager SDK\bin

In UNIX, the default installation path is as follows:

/opt/CA/SharedComponents/EmbeddedEntitlementManagerSDK/bin

2. Open the eiam.config file.

3. In the SDK type section, navigate to the corresponding SDK that the application uses
and update the Security tag with the following code:

■ For a PEM certificate, update the following code:

<SslCertificate>

 <certType>pem</certType>

 <certURI/>

 <keyURI/>

</SslCertificate>

Update certURI tag with the certificate name as follows:

<certURI>certificate file name</certURI>

Update keyURI tag with the certificate name as follows:

<keyURI>key file name</keyURI>

■ For a P12 certificate, update the following code:

<SslCertificate>

 <certType>p12</certType>

 <certURI/>

 <certPW/>

</SslCertificate>

Update certURI tag with the certificate name as follows:

<certURI>certificate file name</certURI>

Update certPW tag with the certificate name as follows:

<certPW>munged format of the certificate password</certPW>

4. Copy the certificates to a location of your choice.

5. Update the certURI and keyURI tags with the absolute location of the certificates
including the file name.

Authenticate the Application against CA EEM Server

Chapter 16: Using Custom Key Length Certificates for SSL Communication in CA EEM SDK 165

Restart the Application

To apply the changes, restart the application.

Authenticate the Application against CA EEM Server

You can use CA EEM generated application certificates to authenticate and attach an
application against the CA EEM Server.

Regenerate the Application Certificates

If you modify the CA EEM Server certificates, regenerate the application certificates.

Follow these steps:

1. On the CA EEM Server, navigate to the following location:

EIAM_HOME/bin

2. Create an XML file with the following content:

<Safex>

<Attach label="application for which the certificate has to be issued"/>

<IssueCertificate certtype="pem" certfile="<cert file name>.cer"

keyfile="<key file name>.key" />

<Detach/>

</Safex>

Example:

To issue an application certificate for the RBC_Hospital application, the XML file is
as follows:

<Safex>

<Attach label="RBC_Hospital"/>

<IssueCertificate certtype="pem" certfile="safex.cer" keyfile="safex.key"

/>

<Detach/>

</Safex>

3. Execute the following command:

safex –h <CA EEM Server computer name> -u EiamAdmin –p <EiamAdmin password> -f

<XML file name>

The certificate file and key file are created in the current directory.

Authenticate the Application against CA EEM Server

166 Programming Guide

4. Copy the certificate file and key file to the location where the original application
certificates existed.

5. Restart the application.

The application uses the regenerated certificates.

Appendix A: Safex Command Line Reference 167

Appendix A: Safex Command Line Reference

Safex is a Command Line Interface (CLI) provided by CA EEM. Safex lets you generate
XML files to perform product registration, include objects such as policies, users, and
calendars. It can also be used to export the data from CA EEM to an XML file.

The safex syntax has the following format:

{path} safex [-h backend] [-l locale] [-u user -p password] [-c cert -p password] [-n]

[-v verbose level (0-4)] [-s simulate] [-pause] [-b bulk insert] [-f xml_file] [-munge

password] [-sdkconfig configfile] [-sha1encodeddigest password]

Example: C:\Program Files\CA\Embedded Entitlements Manager SDK\bin\>safex -h
localhost -u eiamAdmin -p eiam -f abc.xml

Where:

- h backend

Specifies the hostname of the CA EEM backend server to communicate.

Note: You can set localhost as your backend server.

- l locale (Optional)

Specifies the locale.

Default: us-en

- u user

Specifies the username to attach.

- c certificate

Specifies the certificate filename.

- p password

Specifies the password of the user or password used to encrypt the certificate
passed with the -c option.

- n (Optional)

Specifies CA EEM to use existing the native authentication.

Note: This parameter is valid only on Windows.

- v verbose (Optional)

Specifies the level of feedback provided by the utility. Higher levels are useful for
support personnel.

Limits: 0 - 4

Exit Codes

168 Programming Guide

- b bulk (Optional)

Processes large number of objects.

- pause (Optional)

Specifies safex to pause before processing the data.

- f XML file

Specifies the XML file to process.

- munge (Optional)

Converts plaintext password to encrypted versions and displays.

Example: [-munge password1 (password2 …)]

- -sha1encodeddigest (Optional)

Converts plaintext password to SHA1 encoded digest. Encode your password using
this option, and specify the encoded password in the XML file using the
DirectoryPasswordDigest tag. The DirectoryPasswordDigest tag is used when
creating global users.

-sdkconfig

Specifies the absolute path to the eiam.config.

Exit Codes

Exit codes are generated when an application encounters an error. The following are the
exit codes that are generated by CA EEM and their descriptions:

Exit Code Description

0 Indicates CA EEM successfully processed the XML input.

1 Indicates usage error.

Example: An invalid or incorrect number of parameters entered.

2 Indicates the XML file is not found or an error occurred reading or
writing a file.

3 Indicates an error in authentication.

Example: Invalid user, certificate, or password.

4 Indicates XML parsing error. XML file line and column number is
listed.

Example: Tags not matching.

5 Indicates an internal logic error.

Exit Codes

Appendix A: Safex Command Line Reference 169

Exit Code Description

6 Indicates no XML data is available to process,

Example: Empty file

7 Indicates memory allocation failed.

8 Indicates backend server hostname is invalid or backend server is
inactive

Appendix B: Example Safex XML Scripts 171

Appendix B: Example Safex XML Scripts

Register

Example: Register application and store certificates in P12 format

<Safex>

<Attach/>

<Register certfile="appcertfile.p12" password="123">

<ApplicationInstance name="product name" label="application instance label">

<Brand>brand_name</Brand>

<MajorVersion>12</MajorVersion>

<MinorVersion>0</MinorVersion>

<Translations>product_trans_file</Translations>

<Description>description of the product</Description>

<ResourceClass>

<Name>file</Name>

<Action>read</Action>

<Action>write</Action>

<Action>delete</Action>

<NamedAttr>Size</NamedAttr>

<NamedAttr>Count</NamedAttr>

</ResourceClass>

<ResourceClass>

<Name>menu</Name>

<Action>open</Action>

<Action>update</Action>

<NamedAttr>Name</NamedAttr>

</ResourceClass>

<UserAttribute>text:location</UserAttribute>

<UserAttribute>password:extrapassword</UserAttribute>

<UserAttribute>number:pagesize</UserAttribute>

<UserAttribute>text:menu_preference</UserAttribute>

<UserAttribute>number:writefilecount</UserAttribute>

</ApplicationInstance>

</Register>

</Safex>

Register

172 Programming Guide

Example: Register application and store certificates in PKCS#11 device

<Safex>

<Attach/>

<Register certtype="p11" pkcs11lib="pkcs11lib " token="lodocs" userpin="userpin"

id="id" sensitive="false">

<ApplicationInstance name="product name" label="application instance label">

<Brand>brand_name</Brand>

<MajorVersion>12</MajorVersion>

<MinorVersion>0</MinorVersion>

<Translations>product_trans_file</Translations>

<Description>description of the product</Description>

<ResourceClass>

<Name>file</Name>

<Action>read</Action>

<Action>write</Action>

<Action>delete</Action>

<NamedAttr>Size</NamedAttr>

<NamedAttr>Count</NamedAttr>

</ResourceClass>

<ResourceClass>

<Name>menu</Name>

<Action>open</Action>

<Action>update</Action>

<NamedAttr>Name</NamedAttr>

</ResourceClass>

<UserAttribute>text:location</UserAttribute>

<UserAttribute>password:extrapassword</UserAttribute>

<UserAttribute>number:pagesize</UserAttribute>

<UserAttribute>text:menu_preference</UserAttribute>

<UserAttribute>number:writefilecount</UserAttribute>

</ApplicationInstance>

</Register>

</Safex>

Example: Register application and store certificates in PEM format

<Safex>

<Attach/>

<Register certtype="pem" certfile="sample.pem" keyfile="sample.key"

password="sample">

<ApplicationInstance name="product name" label="application instance label">

<Brand>brand_name</Brand>

<MajorVersion>12</MajorVersion>

Unregister

Appendix B: Example Safex XML Scripts 173

<MinorVersion>0</MinorVersion>

<Translations>product_trans_file</Translations>

<Description>description of the product</Description>

<ResourceClass>

<Name>file</Name>

<Action>read</Action>

<Action>write</Action>

<Action>delete</Action>

<NamedAttr>Size</NamedAttr>

<NamedAttr>Count</NamedAttr>

</ResourceClass>

<ResourceClass>

<Name>menu</Name>

<Action>open</Action>

<Action>update</Action>

<NamedAttr>Name</NamedAttr>

</ResourceClass>

<UserAttribute>text:location</UserAttribute>

<UserAttribute>password:extrapassword</UserAttribute>

<UserAttribute>number:pagesize</UserAttribute>

<UserAttribute>text:menu_preference</UserAttribute>

<UserAttribute>number:writefilecount</UserAttribute>

</ApplicationInstance>

</Register>

</Safex>

Unregister

<Safex>

<Attach/>

<UnRegister>

<ApplicationInstance name="product name" label="application instance label" />

</UnRegister>

</Safex>

Export

174 Programming Guide

Export
<Safex>

<Attach label="application name registered with CA EEM"/>

<!-- You can control the data to be exported by specifing the Yes(Y) or No(N). If you

store the global users and global groups in CA's Management Database (CA-MDB) all the

objects are exported.

You can override the maximum number of items that are returned by the backend server.

The default is 2000. To change the maximum number of items to return, include the

maxsearchsize="Value" -->

<Export file="path of XML file to be exported " globalfolders="y" globalusergroups="y"

globalusers="y" globalsettings="y" folders="y" usergroups="y" users="y"

calendars="y" policies="y" appobjects="y"/>

<Detach/>

</Safex>

Export Multiple

<Safex>

<Attach/>

<!-- ExportMultiple creates an Export XML file for all of the application instances

which match "labelmask".

The mask can contain a leading and/or trailing asterisk to match a subset of the

registered application instances. A mask of "*" or omitting label will create an Export

file for all application instances. In addition to file= and label=, all of the "y/n"

object attribute switches that can be passed to Export can also be specifed on the

ExportMultiple line. These switches are then passed on to the created Export lines.

These include:

globalsettings="y/n"

globalfolders="y/n"

globalusergroups="y/n"

globalusers="y/n"

folders="y/n"

usergroups="y/n"

users="y/n"

calendars="y/n"

policies="y/n" -->

<ExportMultiple file="filename" label="labelmask*" />

</Safex>

CreatedExportMultiple

Appendix B: Example Safex XML Scripts 175

CreatedExportMultiple

<Safex>

<!-- This file was created using the ExportMultiple action and a label of "jjd*". All

global objects are processed in the first Export pass (note global Attach). This can

further controled with the ExportMultiple acion by specifying the overriding the

associated global switches. By default, all global objects will be exported unless

an external directory is being used in which case on the globalsettings will be

exported. To support exporting multiple application instance data to a single file,

two additional attributes were introduced:

Truncate="y/n" - this sets the file pointer to the begining of the file but

 leaves it open for subsequent Export actions. This is used by the initial

Export action which handles global objects in order to reset the file while leaving

it open.

Append="y/n" - positions the file pointer at the end of the file for the subsequent

Export actions. -->

<Attach />

<Export file="_expmulti.xml" truncate="y" globalfolders="n" globalusergroups="n"

globalusers="n" globalsettings="y" />

<Detach />

<Attach label="jjd test app" />

<Export file="_expmulti.xml" append="y" globalfolders="n" globalusergroups="n"

globalusers="n" globalsettings="n" folders="y" usergroups="y" users="y"

calendars="y" policies="y" />

<Detach />

<Attach label="jjd2 test app" />

<Export file="_expmulti.xml" append="y" globalfolders="n" globalusergroups="n"

globalusers="n" globalsettings="n" folders="y" usergroups="y" users="y"

calendars="y" policies="y" />

<Detach />

<Attach label="jjd3 test app" />

<Export file="_expmulti.xml" append="y" globalfolders="n" globalusergroups="n"

globalusers="n" globalsettings="n" folders="y" usergroups="y" users="y"

calendars="y" policies="y" />

<Detach />

<Attach label="jjd4 test app" />

<Export file="_expmulti.xml" append="y" globalfolders="n" globalusergroups="n"

globalusers="n" globalsettings="n" folders="y" usergroups="y" users="y"

calendars="y" policies="y" />

<Detach />

<Attach label="jjd elsewhere" />

Export Global Settings

176 Programming Guide

<Export file="_expmulti.xml" append="y" globalfolders="n" globalusergroups="n"

globalusers="n" globalsettings="n" folders="y" usergroups="y" users="y"

calendars="y" policies="y" />

<Detach />

</Safex>

Export Global Settings

<Safex>

<Attach />

<!-- Export only GlobalSettings to the GlobalSettings.xml file -->

<Export file="GlobalSettings.xml" globalsettings="y" globalfolders="n"

globalusergroups="n" globalusers="n" folders="n" usergroups="n" users="n"

calendars="n" policies="n" />

</Safex>

Global Settings

<Safex>

<Attach />

<Add>

<GlobalSettings>

<UseExternalDirectory>true</UseExternalDirectory>

<ExternalDirType>ADS</ExternalDirType>

<ExternalDirHost>usildc04</ExternalDirHost>

<ExternalDirPort>389</ExternalDirPort>

<ExternalDirExchangeGroups>true</ExternalDirExchangeGroups>

<PwUnlockAllowed>true</PwUnlockAllowed>

<PwMinLength>0</PwMinLength>

<PwMaxLength>0</PwMaxLength>

<PwMinNumeric>0</PwMinNumeric>

<PwAllowId>true</PwAllowId>

<PwMinAge>0</PwMinAge>

<PwMaxAge>0</PwMaxAge>

<PwReuseCount>0</PwReuseCount>

<PwFailureCount>0</PwFailureCount>

<PwWarningAge>0</PwWarningAge>

<PwMaxRepeatChar>0</PwMaxRepeatChar>

</GlobalSettings>

</Add>

</Safex>

Translations

Appendix B: Example Safex XML Scripts 177

Translations

<Safex>

<Attach label="application specific label" />

<!-- Create a file containing all the target strings for translation for a given

application -->

<GenerateTranslations file="translations.xml" />

</Safex>

Global User

178 Programming Guide

Global User

<Safex>

<Attach>

<Add>

<GlobalUser folder="/GlobalUsers" name="doejo33">

<UserName>doejo33</UserName>

<GroupMembership>Administrators</GroupMembership>

<FirstName>john</FirstName>

<MiddleName>dennis</MiddleName>

<LastName>doe</LastName>

<EmailAddress>jdoe@acme.com</EmailAddress>

<Alias>jdoe</Alias>

<Department>accounting</Department>

<DisplayName>John D Doe</DisplayName>

<HomePhoneNumber>718-264-8966</HomePhoneNumber>

<WorkPhoneNumber>508-628-7076</WorkPhoneNumber>

<MobilePhoneNumber>508-593-0963</MobilePhoneNumber>

<FaxPhoneNumber>508-628-2319</FaxPhoneNumber>

<Address>331 Main St</Address>

<Address>Jones Building</Address>

<Address>Suite 3200</Address>

<Address>Acme Corp.</Address>

<City>Smallville</City>

<State>Quebec</State>

<PostalCode>H4M2X4</PostalCode>

<Country>Canada</Country>

<Office>C-42</Office>

<Company>Acme</Company>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<IncorrectLoginCount>0</IncorrectLoginCount>

<SuspendDate>0</SuspendDate>

<DisableDate>0</DisableDate>

<EnableDate>0</EnableDate>

<Description>Working in Finance</Description>

<Comments>12 month temp</Comments>

<JobTitle>Billing Manaeger</JobTitle>

<MailStop>C-42-2-12</MailStop>

</GlobalUser>

</Add>

</Safex>

User

Appendix B: Example Safex XML Scripts 179

User

<Safex>

<Add>

<User folder="/Users" name="doejo33">

<!-- UserAttribues follow (see the Register file)-->

<location>Cube 333</location>

<menu_preference>Accounts Receivable</menu_preference>

</User>

</Add>

</Safex>

UserGroups

<Safex>

<Attach label="application instance label" />

<Add>

<UserGroup folder="/" name="salesman">

<Description>Sales team</Description>

</UserGroup>

<UserGroup folder="/" name="marketing">

<Description>Marketing team</Description>

</UserGroup>

<UserGroup folder="/" name="engineering">

<Description>Engineering team</Description>

</UserGroup>

</Add>

</Safex>

GlobalUserGroup

<Safex>

<Attach />

<Add>

<GlobalUserGroup folder="/" name="Staff">

<Description>Staff group description</Description>

</GlobalUserGroup>

<GlobalUserGroup folder="/" name="Administrators">

<GroupMembership>Staff</GroupMembership>

<Description>Administrator group description</Description>

</GlobalUserGroup>

</Add>

</Safex>

Policy

180 Programming Guide

Policy

<Safex>

<Attach label="application instance label" />

<Add>

<Policy folder="/Policies" name="policyname">

<Description>policy description</Description>

<Calendar>workday</Calendar>

<Identity>u:name</Identity>

<Identity>ug:ProductAdministrators</Identity>

<Identity>gug:Administrators</Identity>

<Action>read</Action>

<Action>write</Action>

<ResourceClassName>file</ResourceClassName>

<Resource>*.doc</Resource>

<Resource>*.txt</Resource>

<!-- You can set filters for further enhancement of policy -->

<Filter logic="OR" lparens="1" col="size" optype="INT32" oper="GREATER" val="10240"

rparens="1" />

<Filter logic="AND" lparens="1" col="count" optype="INT32" oper="EQUAL" val="1"

rparens="1" />

</Policy>

</Add>

</Safex>

Calendar

Appendix B: Example Safex XML Scripts 181

Calendar

<Safex>

<Attach label="application specific label" localtimeoffset="0" />

<Add>

<Calendar folder="/Calendars" name="workday">

<!-- EffectiveStart and EffectiveStop:

You can specify date and time when the calendar must effective by specifying an integer

value.

NOTE: If you want to set as be permanently effective, specify as zero or remove the

tags

-->

<EffectiveStart>nnnnnnn</EffectiveStart>

<EffectiveStop>nnnnnnn</EffectiveStop>

<Description>workdays except xmas</Description>

<!-- Timeblock values:

Name : Provide a descriptive name

Type : Include or Exclude

Starttime : Minutes from midnight

Duration : Specify the duration

Recurringtimeinterval : Repeat interval.

weekdaymask : 0...7|ALL (1=Sunday, 7=Saturday)

monthdaymask : 0...31|LAST|ALL (LAST is the last day of the month

Example: monthdaymask="15 LAST"

monthmask : 0...12|ALL (1=January, 12=December)

-->

<TimeBlock type="include" name="weekdays" starttime="480" duration="600"

recurringtimeinterval="0" weekdaymask="2 3 4 5 6" monthdaymask="ALL"

 monthmask="ALL" />

<TimeBlock type="exclude" name="xmas" starttime="0" duration="1440"

recurringtimeinterval="0" weekdaymask="ALL" monthdaymask="25" monthmask="12" />

</Calendar>

</Add>

</Safex>

Extended User Attributes

182 Programming Guide

Extended User Attributes

<Safex>

<Attach label="application instance label"/>

<Add>

<User folder="users" name="Doe">

<Attribute name="favorite color">Red</Attribute>

<Attribute name="make of car">PSK</Attribute>

</User>

<User folder="users" name="John">

<Attribute name="favorite color">Blue</Attribute>

<Attribute name="make of car">MWR</Attribute>

</User>

<User folder="users" name="Jane">

<Attribute name="favorite color">Green</Attribute>

<Attribute name="make of car">ABC</Attribute>

</User>

</Add>

</Safex>

Sample Application

Appendix B: Example Safex XML Scripts 183

Sample Application
<Safex>

<Attach />

<Register>

<ApplicationInstance name="HospitalMgmt" label="elsewhere">

<Brand>eTrust</Brand>

<MajorVersion>1</MajorVersion>

<MinorVersion>0</MinorVersion>

<Description>Demo App</Description>

<UserAttribute>text:ward</UserAttribute>

<ResourceClass>

<Name>medicalrecord</Name>

<EventOnAllow>false</EventOnAllow>

<EventOnDeny>true</EventOnDeny>

<Action>read</Action>

<Action>write</Action>

<NamedAttr>doctor</NamedAttr>

<NamedAttr>ward</NamedAttr>

</ResourceClass>

<ResourceClass>

<Name>patient</Name>

<EventOnAllow>false</EventOnAllow>

<EventOnDeny>true</EventOnDeny>

<Action>admit</Action>

<Action>discharge</Action>

<Action>prescribe</Action>

<Action>transfer</Action>

<Action>locate</Action>

<NamedAttr>ward</NamedAttr>

<NamedAttr>doctor</NamedAttr>

<NamedAttr>severity</NamedAttr>

</ResourceClass>

<ResourceClass>

<Name>ward</Name>

<EventOnAllow>false</EventOnAllow>

<EventOnDeny>true</EventOnDeny>

<Action>enter</Action>

</ResourceClass>

<ResourceClass>

<Name>billingdata</Name>

<EventOnAllow>false</EventOnAllow>

<EventOnDeny>true</EventOnDeny>

<Action>read</Action>

<Action>write</Action>

Sample Application

184 Programming Guide

</ResourceClass>

</ApplicationInstance>

</Register>

<Attach label="elsewhere" />

<Add>

<GlobalFolder name="/Medical" />

<GlobalFolder name="/Support" />

<GlobalUserGroup>

<Name>Chiefs</Name>

<Description>Chiefs</Description>

</GlobalUserGroup>

<GlobalUser>

<UserName>itworker</UserName>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>Application Administrator</Description>

<JobTitle>Programmer</JobTitle>

<FirstName>I</FirstName>

<MiddleName>T</MiddleName>

<LastName>Worker</LastName>

<DisplayName>I T Worder</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>securityguard</UserName>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>Security Guard</Description>

<JobTitle>Lieutenant</JobTitle>

<FirstName>Security</FirstName>

<LastName>Guard</LastName>

<DisplayName>Security Guard</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>icudoctor</UserName>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>Doctor in the ICU ward</Description>

<JobTitle>Doctor</JobTitle>

<FirstName>ICU</FirstName>

<LastName>Doctor</LastName>

<DisplayName>ICU Doctor</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>headnurse</UserName>

Sample Application

Appendix B: Example Safex XML Scripts 185

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>Head Nurse</Description>

<JobTitle>Nurse</JobTitle>

<FirstName>Head</FirstName>

<LastName>Nurse</LastName>

<DisplayName>Head Nurse</DisplayName>

<GroupMembership>Chiefs</GroupMembership>

</GlobalUser>

<GlobalUser>

<UserName>ernurse</UserName>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>Nurse in the ER ward</Description>

<JobTitle>Nurse</JobTitle>

<FirstName>E</FirstName>

<MiddleName>R</MiddleName>

<LastName>Nurse</LastName>

<DisplayName>E R Nurse</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>erdoctor</UserName>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>Doctor in the ER ward</Description>

<JobTitle>Doctor</JobTitle>

<FirstName>E</FirstName>

<MiddleName>R</MiddleName>

<LastName>Doctor</LastName>

<DisplayName>E R Doctor</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>janitor</UserName>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>maintenance employee</Description>

<JobTitle>Sanitary Engineer</JobTitle>

<FirstName>Jan</FirstName>

<LastName>itor</LastName>

<DisplayName>Jan Itor</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>receptionist</UserName>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>Receptionist</Description>

<JobTitle>Receptionist</JobTitle>

Sample Application

186 Programming Guide

<FirstName>Re</FirstName>

<LastName>Ceptionist</LastName>

<DisplayName>Re Ceptionist</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>officeworker</UserName>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>Office Worker for billing</Description>

<JobTitle>Accountant</JobTitle>

<FirstName>Office</FirstName>

<LastName>Worker</LastName>

<DisplayName>Office Worker</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>icunurse</UserName>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>Nurse in the ICU ward</Description>

<JobTitle>Nurse</JobTitle>

<FirstName>ICU</FirstName>

<LastName>Nurse</LastName>

<DisplayName>ICU Nurse</DisplayName>

</GlobalUser>

<GlobalUser>

<UserName>headdoctor</UserName>

<DirectoryPasswordDigest>{SHA}AYqS+j5LAwtQqbaMy8EfnJjXrqk=</DirectoryPasswordDige

st>

<Description>Head Doctor</Description>

<JobTitle>Doctor</JobTitle>

<FirstName>Head</FirstName>

<LastName>Doctor</LastName>

<DisplayName>Head Doctor</DisplayName>

<GroupMembership>Chiefs</GroupMembership>

</GlobalUser>

<Folder name="/Support" />

<Folder name="/System" />

<Folder name="/Medical" />

<UserGroup>

<Name>Office</Name>

<Description>Office Workers</Description>

</UserGroup>

<UserGroup>

<Name>Nurses</Name>

Sample Application

Appendix B: Example Safex XML Scripts 187

<Description>Nurses</Description>

</UserGroup>

<UserGroup>

<Name>Maintenance</Name>

<Description>Maintenance</Description>

</UserGroup>

<UserGroup>

<Name>Security</Name>

<Description>Security Personnel</Description>

</UserGroup>

<UserGroup>

<Name>Staff</Name>

<Description>All Staff</Description>

</UserGroup>

<UserGroup>

<Name>Doctors</Name>

<Description>Doctors</Description>

</UserGroup>

<User>

<Name>itworker</Name>

<GroupMembership>Staff</GroupMembership>

<ward>Office</ward>

</User>

<User>

<Name>icudoctor</Name>

<GroupMembership>Doctors</GroupMembership>

<ward>ICU</ward>

</User>

<User>

<Name>headdoctor</Name>

<GroupMembership>Doctors</GroupMembership>

</User>

<User>

<Name>officeworker</Name>

<GroupMembership>Office</GroupMembership>

<ward>Office</ward>

</User>

<User>

<Name>janitor</Name>

<GroupMembership>Maintenance</GroupMembership>

</User>

Sample Application

188 Programming Guide

<User>

<Name>erdoctor</Name>

<GroupMembership>Doctors</GroupMembership>

<ward>ER</ward>

</User>

<User>

<Name>icunurse</Name>

<GroupMembership>Nurses</GroupMembership>

<ward>ICU</ward>

</User>

<User>

<Name>ernurse</Name>

<GroupMembership>Nurses</GroupMembership>

<GroupMembership>Staff</GroupMembership>

<ward>ER</ward>

</User>

<User>

<Name>headnurse</Name>

<GroupMembership>Nurses</GroupMembership>

</User>

<User>

<Name>securityguard</Name>

<GroupMembership>Security</GroupMembership>

</User>

<User>

<Name>receptionist</Name>

<GroupMembership>Staff</GroupMembership>

</User>

<Calendar>

<Description>Visiting hours calendar: 10am to noon; 8pm to 9pm</Description>

<EffectiveStart>0</EffectiveStart>

<EffectiveStop>0</EffectiveStop>

<TimeBlock type="include" name="morning" starttime="600" duration="120"

recurringtimeinterval="0" weekdaymask="ALL" monthdaymask="ALL" monthmask="ALL" />

<TimeBlock type="include" name="evening" starttime="1200" duration="60"

recurringtimeinterval="0" weekdaymask="ALL" monthdaymask="ALL" monthmask="ALL" />

</Calendar>

<Policy>

<Description>patient's doctor has read/write access to medical record</Description>

<ResourceClassName>medicalrecord</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

Sample Application

Appendix B: Example Safex XML Scripts 189

<Action>read</Action>

<Action>write</Action>

<Identity>ug:Doctors</Identity>

<Filter logic="AND" lparens="0" col="name:doctor" optype="STRING" oper="EQUAL"

val="gu:UserName" rparens="0" />

</Policy>

<Policy>

<Description>office workers can read/write any safeobject except

policies</Description>

<ResourceClassName>SafeObject</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>read</Action>

<Action>write</Action>

<Identity>ug:Office</Identity>

<Filter logic="AND" lparens="0" col="req:resource" optype="STRING" oper="NEQ"

val="val:Policy" rparens="0" />

</Policy>

<Policy>

<Description>patient can be admitted to the ER by any staff assigned to ER, or the

patient's doctor</Description>

<ResourceClassName>patient</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>admit</Action>

<Identity>ug:Doctors</Identity>

<Identity>ug:Nurses</Identity>

<Filter logic="AND" lparens="0" col="name:ward" optype="STRING" oper="EQUAL"

val="val:ER" rparens="0" />

<Filter logic="AND" lparens="1" col="name:ward" optype="STRING" oper="EQUAL"

val="u:ward" rparens="0" />

<Filter logic="OR" lparens="1" col="name:doctor" optype="STRING" oper="EQUAL"

val="gu:UserName" rparens="1" />

<Filter logic="AND" lparens="0" col="ug:Name" optype="STRING" oper="EQUAL"

val="val:Doctors" rparens="2" />

</Policy>

<Policy>

<Description>maintenace and security can enter any ward</Description>

<ResourceClassName>ward</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>enter</Action>

<Identity>ug:Maintenance</Identity>

<Identity>ug:Security</Identity>

</Policy>

Sample Application

190 Programming Guide

<Policy>

<Description>Chiefs can enter any ward except the office</Description>

<ResourceClassName>ward</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>enter</Action>

<Identity>gug:Chiefs</Identity>

<Filter logic="AND" lparens="0" col="req:resource" optype="STRING" oper="NEQ"

val="val:OFFICE" rparens="0" />

</Policy>

<Policy>

<Description>anybody can enter their assigned ward</Description>

<ResourceClassName>ward</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>enter</Action>

<Identity>ug:Staff</Identity>

<Filter logic="AND" lparens="0" col="req:resource" optype="STRING" oper="EQUAL"

val="u:ward" rparens="0" />

</Policy>

<Policy>

<Description>it worker who manages the elsewhere application</Description>

<ResourceClassName>SafeObject</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>read</Action>

<Action>write</Action>

<Identity>itworker</Identity>

</Policy>

<Policy>

<Description>System Default: everybody gets access to their own delegated

policies</Description>

<ResourceClassName>SafeObject</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Resource>*</Resource>

<Resource>Policy</Resource>

<Action>read</Action>

<Action>write</Action>

<Filter logic="AND" lparens="1" col="name:ResourceClassName" optype="STRING"

oper="EQUAL" val="val:SafeDelegation" rparens="0" />

<Filter logic="AND" lparens="0" col="gu:UserName" optype="STRING" oper="EQUAL"

val="name:Delegator" rparens="1" />

</Policy>

<Policy>

Sample Application

Appendix B: Example Safex XML Scripts 191

<Description>Chiefs can read any billing data</Description>

<ResourceClassName>billingdata</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>read</Action>

<Identity>gug:Chiefs</Identity>

</Policy>

<Policy>

<Description>Global usergroup Chiefs have read access to all medical

records</Description>

<ResourceClassName>medicalrecord</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>read</Action>

<Identity>gug:Chiefs</Identity>

</Policy>

<Policy>

<Description>patient can be discharged/prescribed by patient's doctor, or any doctor

assigned to patient's ward</Description>

<ResourceClassName>patient</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>discharge</Action>

<Action>prescribe</Action>

<Identity>ug:Doctors</Identity>

<Filter logic="AND" lparens="0" col="name:ward" optype="STRING" oper="EQUAL"

val="u:ward" rparens="0" />

<Filter logic="OR" lparens="0" col="name:doctor" optype="STRING" oper="EQUAL"

val="gu:UserName" rparens="0" />

</Policy>

<Policy>

<Description>patient's ward staff has read access to medical record</Description>

<ResourceClassName>medicalrecord</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>read</Action>

<Identity>ug:Doctors</Identity>

<Identity>ug:Nurses</Identity>

<Filter logic="AND" lparens="0" col="name:ward" optype="STRING" oper="EQUAL"

val="u:ward" rparens="0" />

</Policy>

<Policy>

<Description>System Default: administrative access for the installer and the

application instance certificate</Description>

<ResourceClassName>SafeObject</ResourceClassName>

Sample Application

192 Programming Guide

<PolicyType>acl</PolicyType>

<Disabled>False</Disabled>

<Resource>ApplicationInstance</Resource>

<Resource>Calendar</Resource>

<Resource>Policy</Resource>

<Resource>User</Resource>

<Resource>UserGroup</Resource>

<Resource>GlobalUser</Resource>

<Resource>GlobalUserGroup</Resource>

<Resource>Folder</Resource>

<Resource>GlobalFolder</Resource>

<Resource>iPoz</Resource>

<Action>read</Action>

<Action>write</Action>

<Identity>EiamAdmin</Identity>

<Identity>CERT-elsewhere</Identity>

</Policy>

<Policy>

<Description>office workers can read/write any billing data</Description>

<ResourceClassName>billingdata</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>read</Action>

<Action>write</Action>

<Identity>ug:Office</Identity>

</Policy>

<Policy>

<Description>Any staff member can attach to elsewhere</Description>

<ResourceClassName>SafeObject</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Resource>ApplicationInstance</Resource>

<Action>read</Action>

<Identity>ug:Staff</Identity>

</Policy>

<Policy>

<Description>patient can be located by any doctor or nurse</Description>

<ResourceClassName>patient</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>locate</Action>

<Identity>ug:Doctors</Identity>

<Identity>ug:Nurses</Identity>

</Policy>

<Policy>

Sample Application

Appendix B: Example Safex XML Scripts 193

<Description>patient can be discharged/transferred by Chiefs</Description>

<ResourceClassName>patient</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>discharge</Action>

<Action>transfer</Action>

<Identity>gug:Chiefs</Identity>

</Policy>

<Policy>

<Description>it worker delgates his rights to the head doctor for global users and

users in the Medical subfolder</Description>

<ResourceClassName>SafeDelegation</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Delegator>itworker</Delegator>

<Resource>SafeObject/GlobalUser</Resource>

<Resource>SafeObject/User</Resource>

<Action>inherit</Action>

<Identity>headdoctor</Identity>

<Filter logic="AND" lparens="1" col="req:resource" optype="STRING" oper="EQUAL"

val="val:SafeObject/GlobalUser" rparens="0" />

<Filter logic="AND" lparens="0" col="name:pozPath" optype="STRING" oper="LIKE"

val="val:/Medical/*" rparens="1" />

<Filter logic="OR" lparens="1" col="req:resource" optype="STRING" oper="EQUAL"

val="val:SafeObject/User" rparens="0" />

<Filter logic="AND" lparens="0" col="name:pozPath" optype="STRING" oper="LIKE"

val="val:/Medical/*" rparens="1" />

</Policy>

<Policy>

<Description>patient can be located by any Staff receptionist during visiting

hours</Description>

<ResourceClassName>patient</ResourceClassName>

<PolicyType>policy</PolicyType>

<Disabled>False</Disabled>

<Action>locate</Action>

<Identity>ug:Staff</Identity>

<Calendar>visitinghours</Calendar>

<Filter logic="AND" lparens="0" col="gu:JobTitle" optype="STRING" oper="EQUAL"

val="val:Receptionist" rparens="0" />

</Policy>

</Add>

</Safex>

Appendix C: Reference Matrix 195

Appendix C: Reference Matrix

The reference matrix lists the actions and the method that must used to perform the
action.

Action Safex Java C# C++

Attach to an
Application
Instance

<Attach/> SafeContext.attach SafeContext.attach Safe::Context::attach

Login <Authenti
cate/>

SafeContext.authenticate
WithPassword

SafeContext.authenticate
WithCertificate

SafeContext.authenticate
WithArtifact

SafeContext.authenticate
WithNative

SafeContext.authenticate
WithDigest

SafeContext.authenticate
WithCredentials

SafeContext.fastAuthentica
teWithPassword

SafeContext.fastAuthentica
teWithCertificate

SafeContext.fastAuthentica
teWithArtifact

SafeContext.fastAuthentica
teWithNative

SafeContext.fastAuthentica
teWithDigest

SafeContext.authenticateW
ithPassword

SafeContext.authenticateW
ithCertificate

SafeContext.authenticateW
ithArtifact

SafeContext.authenticateW
ithNative

SafeContext.authenticateW
ithDigest

SafeContext.authenticateW
ithCredentials

SafeContext.fastAuthentica
teWithPassword

SafeContext.fastAuthentica
teWithCertificate

SafeContext.fastAuthentica
teWithArtifact

SafeContext.fastAuthentica
teWithNative

SafeContext.fastAuthentica
teWithDigest

Safe::Context::authenticate
WithPassword

Safe::Context::authenticate
WithCertificate

Safe::Context::authenticate
WithArtifact

Safe::Context::authenticate
WithNative

Safe::Context::authenticate
WithDigest

Safe::Context::authenticate
WithCredentials

Safe::Context::fastAuthentic
ateWithPassword

Safe::Context::fastAuthentic
ateWithCertificate

Safe::Context::fastAuthentic
ateWithArtifact

Safe::Context::fastAuthentic
ateWithNative

Safe::Context::fastAuthentic
ateWithDigest

Logout SafeContext.removeSessio
n

SafeContext.removeSession Safe::Context::removeSessio
n

Sample Application

196 Programming Guide

Action Safex Java C# C++

Permission
Check

<Perm/> SafeContext.authorizeWith
Identity

SafeContext.authorizeWIth
Session

SafeContext.authorizeQWit
hIdentity

SafeContext.authorizeQWit
hSession

SafeContext.processAuthor
izationQ

SafeContext.processAuthor
izationMatrix

SafeContext.authorizeWith
SessionDebug

SafeContext.authorizeWith
IdentityDebug

SafeContext.authorizeWithI
dentity

SafeContext.authorizeWIth
Session

SafeContext.authorizeQWit
hIdentity

SafeContext.authorizeQWit
hSession

SafeContext.processAuthori
zationQ

SafeContext.processAuthori
zationMatrix

SafeContext.authorizeWith
SessionDebug

SafeContext.authorizeWithI
dentityDebug

Safe::Context::authorizeWit
hIdentity

Safe::Context::authorizeWit
hSession

Safe::Context::authorizeQW
ithIdentity

Safe::Context::authorizeQW
ithSession

Safe::Context::processAutho
rizationQ

Safe::Context::processAutho
rizationMatrix

Safe::Context::authorizeWit
hSessionDebug

Safe::Context::authorizeWit
hIdentityDebug

Register
Application
Instance

<Register
/>

SafeContext.registerApplic
ationInstance

SafeContext.registerApplica
tionInstance

Safe::Context::registerApplic
ationInstance

Unregister
Application
Instance

<UnRegist
er/>

SafeContext.unregisterApp
licationInstance

SafeContext.unregisterAppl
icationInstance

Safe::Context::unregisterAp
plicationInstance

Define User
Attributes

<Register
/>

SafeApplicationInstance.so
Modify

SafeApplicationInstance.so
Modify

Safe::ApplicationInstance.so
Modify

Define
Resource
Classes

<Register
/>

SafeResourceClass

SafeApplicationInstace.add
ResourceClass

SafeApplicationInstance.so
Modify

SafeResourceClass

SafeApplicationInstace.add
ResourceClass

SafeApplicationInstance.so
Modify

Safe::ResourceClass

Safe::ApplicationInstance.ad
dResourceClass

Safe::ApplicationInstance.so
Modify

Sample Application

Appendix C: Reference Matrix 197

Action Safex Java C# C++

Change
Password

 SafeContext.changePasswo
rd

SafeContext.changePasswo
rd

Safe::Context::changePassw
ord

Unlock User
Account

 SafeContext.unlockUser SafeContext.unlockUser Safe::Context::unlockUser

Insert a
Global User

<Add>

<GlobalUs
er/>

</Add>

SafeGlobalUser.soInsert SafeGlobalUser.soInsert Safe::GlobalUser::soInsert

Search
Global User

 SafeContext.searchGlobalU
sers

SafeContext.searchGlobalU
sers

Safe::Context::searchGlobal
Users

Retrieve
Global User

 SafeGlobalUser.soRetrieve
ByName

SafeGlobalUser.soRetrieve
ByUserName

SafeGlobalUser.soRetrieve

SafeContext.searchGlobalU
sers

SafeGlobalUser.soRetrieveB
yName

SafeGlobalUser.soRetrieveB
yUserName

SafeGlobalUser.soRetrieve

SafeContext.searchGlobalU
sers

Safe::GlobalUser::soRetriev
eByName

Safe::GlobalUser::soRetriev
eByUserName

Safe::GlobalUser::soRetriev
e

Safe::Context::searchGlobal
Users

Modify
Global User

<Modify>

<GlobalUs
er/>

</Modify
>

SafeGlobalUser.soModify SafeGlobalUser.soModify Safe::GlobalUser::soModify

Sample Application

198 Programming Guide

Action Safex Java C# C++

Remove
Global User

<Remove
>

<GlobalUs
er/>

</Remov
e>

SafeGlobalUser.soRemove

SafeGlobalUser.soRemove

Safe::GlobalUser::soRemove

Insert User
Details

<Add>

<User/>

</Add>

SafeUser.soInsert SafeUser.soInsert Safe::User::soInsert

Search User
Details

 SafeContext.searchUsers SafeContext.searchUsers Safe::Context::searchUsers

Retrieve
User Details

 SafeUser.soRetrieveByNam
e

SafeUser.soRetrieve

SafeContext.searchUsers

SafeUser.soRetrieveByNam
e

SafeUser.soRetrieve

SafeContext.searchUsers

Safe::User::soRetrieveByNa
me

Safe::User::soRetrieve

Safe::Context::searchUsers

Modify User
Details

<Modify>

<User/>

</Modify
>

SafeUser.soModify SafeUser.soModify Safe::User::soModify

Remove
User Details

<Remove
>

<User/>

</Remov
e>

SafeUser.soRemove SafeUser.soRemove Safe::User::soRemove

Add Global
User

<Add>

<GlobalFo
lder/>

</Add>

SafeContext.addGlobalFold
er

SafeContext.addGlobalFold
er

Safe::Context::addGlobalFol
der

List Global
Folders

 SafeContext.getGlobalFold
ers

SafeContext.GlobalFolders Safe::Context::getGlobalFol
ders

Sample Application

Appendix C: Reference Matrix 199

Action Safex Java C# C++

Remove a
Global
Folder

<Remove
>

<GlobalFo
lder/>

</Remov
e>

SafeContext.removeGlobal
Folder

SafeContext.removeGlobalF
older

Safe::Context::removeGloba
lFolder

Empty a
Global
Folder

 SafeContext.emptyGlobalF
older

SafeContext.emptyGlobalFo
lder

Safe::Context::emptyGlobal
Folder

Add a Folder <Add>

<Folder/>

</Add>

SafeContext.addFolder SafeContext.addFolder Safe::Context::addFolder

List Folders SafeContext.getFolders SafeContext.Folders Safe::Context::getFolders

Remove a
Folder

<Remove
>

<Folder/>

</Remov
e>

SafeContext.removeFolder SafeContext.removeFolder Safe::Context::removeFolde
r

Empty a
Folder

 SafeContext.emptyFolder SafeContext.emptyFolder Safe::Context::emptyFolder

Insert an
Access Policy

<Add>

<Policy/>

</Add>

SafePolicy.soInsert SafePolicy.soInsert Safe::Policy::soInsert

Search
Access
Policies

 SafeContext.searchPolicies SafeContext.searchPolicies Safe::Context::searchPolicie
s

Retrieve an
Access Policy

 SafePolicy.soRetrieveByNa
me

SafePolicy.soRetrieve

SafeContext.searchPolicies

SafePolicy.soRetrieveByNa
me

SafePolicy.soRetrieve

SafeContext.searchPolicies

Safe::Policy::soRetrieveByN
ame

Safe::Policy::soRetrieve

Safe::Context::searchPolicie
s

Modify an
Access Policy

<Modify>

<Policy/>

</Modify
>

SafePolicy.soModify SafePolicy.soModify Safe::Policy::soModify

Sample Application

200 Programming Guide

Action Safex Java C# C++

Remove an
Access Policy

<Remove
>

<Policy/>

</Remov
e>

SafePolicy.soRemove SafePolicy.soRemove Safe::Policy::soRemove

Search for
Access
Policies

 SafeContext.searchMatchi
ngPoliciesBySession

SafeContext.searchMatchi
ngPoliciesByIdentity

SafeContext.searchMatchi
ngPoliciesByResource

SafeContext.searchMatchin
gPoliciesBySession

SafeContext.searchMatchin
gPoliciesByIdentity

SafeContext.searchMatchin
gPoliciesByResource

Safe::Context::searchMatchi
ngPoliciesBySession

Safe::Context::searchMatchi
ngPoliciesByIdentity

Safe::Context::searchMatchi
ngPoliciesByResource

Insert a
Calendar

<Add>

<Calendar
/>

</Add>

SafeCalendar.soInsert SafeCalendar.soInsert Safe::Calendar::soInsert

Search
Access
Policies

 SafeContext.searchCalenda
rs

SafeContext.searchCalenda
rs

Safe::Context::searchCalend
ars

Retrieve a
Calendar

 SafeCalendar.soRetrieveBy
Name

SafeCalendar.soRetrieve

SafeContext.searchCalenda
rs

SafeCalendar.soRetrieveBy
Name

SafeCalendar.soRetrieve

SafeContext.searchCalenda
rs

Safe::Calendar::soRetrieveB
yName

Safe::Calendar::soRetrieve

Safe::Context::searchCalend
ars

Modify a
Calendar

<Modify>

<Calendar
/>

</Modify
>

SafeCalendar.soModify SafeCalendar.soModify Safe::Calendar::soModify

Remove a
Calendar

<Remove
>

<Calendar
/>

</Remov
e>

SafeCalendar.soRemove SafeCalendar.soRemove Safe::Calendar::soRemove

Launch In
Context

 SafeLaunchRequest

SafeContext.generateURI

SafeLaunchRequest

SafeContext.generateURI

Safe::LaunchRequest

Safe::Context::generateURI

Export a
Session

 SafeSession.exportSession SafeSession.exportSession Safe::Session::exportSesssio
n

Sample Application

Appendix C: Reference Matrix 201

Action Safex Java C# C++

Import a
Session

 SafeContext.authenticate
WithArtifact

SafeContext.authenticateW
ithArtifact

Safe::Context::authenticate
WithArtifact

Index 203

Index

A

application instance
attach back end server • 60
create an instance • 62
creating • 60
definition • 59
register application • 65
resource class • 64
user attributes • 63

C

cache • 106

E

exceptions
safe authorization exception • 134
safe backendserver exception • 134
safe exception • 132
safe password exception • 134

F

Filters
policies • 99
searches • 94
structure • 102

G

groups
application specfic groups • 81
delete • 84
global user groups • 80
retrieve • 83

H

how policies are evaluated • 122

P

Policies
types of policies • 86

policy evaluation
best matching algorithm • 125
best matching for regex policies • 126
calculating obligations • 130

delegated authority evaluation • 128
matching algorithm evaluation • 124
policy filter evaluation • 127

U

users
application specific • 71
delete • 77
global users • 70
retrieve • 75

	CA Embedded Entitlements Manager Programming Guide
	CA Technologies Product References
	Documentation Changes
	Contact CA Technologies
	Contents
	1: Introduction
	Who Should Read This Guide
	Architecture
	SDK Contents
	Documentation

	Client Applications
	Policy Server

	2: Installing the CA EEM SDK
	Operating System Requirements
	System Requirements
	Windows
	UNIX and Linux

	Install on Windows
	Install SDK
	Start SDK
	Remove SDK

	Install on UNIX
	Install SDK
	Remove SDK

	3: Configuring CA EEM SDK
	CA EEM SDK Initialization
	About the eiam.config File
	Example of a eiam.config File for Java Application

	Enable iTechnology SDK Logging
	Before You Configure CA EEM Java SDK in FIPS-only Mode
	Configure CA EEM Java SDK in FIPS-only Mode

	Configure CA EEM C++ SDK in FIPS-only Mode
	Configure CA EEM C#SDK in FIPS-only Mode
	Set SafeContext Information
	Initialize CA EEM Java SDK
	Initialize CA EEM C++ SDK
	Initialize CA EEM C#SDK

	Package CA EEM Java SDK with Your Applications
	Required Files

	Package CA EEM C++ SDK with Your Applications
	Required Files

	Package CA EEM C#SDK with Your Applications
	Required Files

	4: Sample WorkFlow
	Overview
	Defining Identity and Access Requirements
	Designing Safe Objects to Implement
	Defining the Application Instance
	Defining Calendars
	Defining Policies

	Designing the User Interface
	How to Design User Interface

	Migrating
	Identity
	Accessing

	Modifying StoredObjects
	Folders and Paths
	Search Size

	5: Application Instances
	Overview
	How to Register an Application
	Attach to Backend Server
	Create an Application Instance
	Define User Attributes
	Define Resource Classes
	Register Application
	Modify an Application Instance
	Unregister an Application Instance

	Create a SafeContext using SafeContextFactory

	6: Users
	Overview
	Create Global Users
	Create Application-Specific Users
	Associate Global User with Application-Specific Details
	Modify Membership

	Search Users Using Attributes
	Retrieve a Global User
	Retrieve an Application-Specific User
	Delete a User

	7: Groups
	Overview
	Create Global User Groups
	Create Application-Specific User Groups
	Search Groups Using Attributes
	Retrieve a Global User Group
	Retrieve a User Group
	Delete a Group

	8: Access Management
	Policies
	Overview
	Types of Policies
	Types of Authorization Checks
	Create, Modify, and Verify Policies
	How You Create Anybody Can Admit John Policy
	How You Create Anybody Can Admit John or John* Policy
	How You Create Staff Can Admit Anyone Except Sam
	How You Create Nobody Can Admit Sam Policy

	Filters
	Overview
	Build Filters to Use in Searches
	Build Filters to Use in Policies
	Structure of a Filter
	Example: How to Search on First Name
	Example: How to Search on First Name and Designation
	Example: How to Search on First Name, Designation, and Department

	Authorization
	SDK Cache
	Session

	9: Authentication
	NTLM Authentication
	Prerequisites for Configuring NTLM Authentication
	HTTP Filter Without JAAS
	Filter Description
	Example--NTLM Filter

	Certificate Authentication
	Issue Certificate
	Issue Certificate for a Session
	Issue Certificate For Users

	10: Certificate Validation
	Validate a Certificate
	Assign Permission to the CertificateValidation Resource
	How to Invoke the API

	11: Policy Evaluation
	Overview
	How Policies Are Evaluated
	Gathering Identity Attributes
	Assembling Environment Information

	Policy Matching
	Evaluating Matching Algorithm
	How the Best Match Algorithm is Evaluated
	Best Match Handling for Regular Expression Policies
	Policy Filter Evaluation
	Delegated Authority Evaluation
	How Delegated Policies Are Evaluated

	How Obligations Are Calculated

	12: Exception Handling
	Overview
	Safe Exception
	Safe Authorization Exception
	Safe BackendServer Exception
	Safe Password Exception

	13: Identity Management
	Administration Methods
	Administering Global Users, Groups, and Folders
	Identity Self Administration
	Reset EiamAdmin Password

	Configure Externally Generated Certificates
	Dynamic user groups

	14: Event Management
	Event Policies
	How Event Policies are Evaluated
	Controlling Event Delivery
	Default Event Policy

	Event Data Model
	Administrative Events
	Runtime Events
	Coalesced Events

	Route Events

	15: CA EEM SDK Logging
	About the Logger Configuration Files
	Appender
	Appender in eiam.log4net.config
	Logger
	Root Logger
	Configure the Logger Files
	Example of a eiam.log4cxx.config File
	Example of a eiam.log4net.config File
	Example of a eiam.lo4j.config File

	16: Using Custom Key Length Certificates for SSL Communication in CA EEM SDK
	Communicate Over SSL between CA EEM SDK and CA EEM Server
	Generate the Certificate
	Update the eiam.config File
	Restart the Application

	Authenticate the Application against CA EEM Server
	Regenerate the Application Certificates

	A: Safex Command Line Reference
	Exit Codes

	B: Example Safex XML Scripts
	Register
	Unregister
	Export
	Export Multiple
	CreatedExportMultiple
	Export Global Settings
	Global Settings
	Translations
	Global User
	User
	UserGroups
	GlobalUserGroup
	Policy
	Calendar
	Extended User Attributes
	Sample Application

	C: Reference Matrix
	Index

