

Command and Keyword Reference Guide
Release 11.4

CA Automation Point

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2012 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Documentation Changes

The following documentation updates have been made since the last release of this
documentation:

Note: In PDF format, page references identify the first page of the topic in which a
change was made. The actual change may appear on a later page.

■ Added the Web Service API (see page 385) chapter.

■ Updated the NMIANSWER Command (see page 202) section.

■ Added the NMILISTANSWERS Command (see page 205) section.

■ Added the NMILISTCALLERS Command (see page 206) section.

■ Added the NMILISTITEMS Command (see page 205) section.

Contents 5

Contents

Chapter 1: Introduction 15

Notation Conventions ... 16

Chapter 2: CA Automation Point Parameters 17

Keyboard Parameter Summary .. 17

Keyboard Parameter Syntax .. 17

KEY Parameter ... 18

SCAN Parameter ... 18

MAP Parameter .. 20

Scan Code Parameters .. 21

3270_KEY Parameter .. 21

3270_SCAN Parameter ... 22

Chapter 3: CA Automation Point Keywords 23

Rules Keyword Summary ... 23

Keywords for Defining Automation Criteria... 23

Keywords for Responding to System Events .. 24

Keywords for Controlling the Display .. 25

Keywords for Logging Messages ... 26

Keyword for Controlling Commands ... 26

Keywords for Notification ... 26

Keywords for CA NSM Event Traffic Controller .. 26

Keyword for Interfacing with Third-party Applications .. 27

Rules Keyword Syntax ... 27

Keywords for Defining Automation Criteria ... 27

EVERY Keyword .. 28

LIMIT Keyword ... 29

MATCHLIM Keyword .. 30

MSGID Keyword ... 30

TIME Keyword .. 32

WHEN Keyword .. 33

Keywords for Responding to System Events ... 34

DOSCMD Keyword.. 34

OSCMD Keyword .. 35

PPQWRITE Keyword ... 36

REPLY Keyword .. 37

6 Command and Keyword Reference Guide

REXX Keyword .. 37

SCRIPT Keyword ... 38

SESSCMD Keyword ... 39

SESSION Keyword ... 40

SET Keyword .. 41

XCCMD Keyword .. 42

Keywords for Controlling the Display ... 42

COLOR Keyword ... 43

DISPLAY Keyword ... 44

DOM Keyword .. 44

HILIGHT Keyword ... 45

LOWLIGHT Keyword ... 46

PREFIX Keyword ... 46

REWORD Keyword.. 48

SUPPRESS Keyword .. 49

WTO Keyword .. 50

WTXC Keyword... 51

Keywords for Logging Messages .. 51

LOG Keyword ... 51

NOLOG Keyword .. 52

NOPRINT Keyword.. 52

PRINT Keyword .. 52

Keywords for Notification .. 53

ALARM Keyword .. 53

ALARMSAY Keyword ... 54

NOALARM Keyword.. 55

Keyword for Controlling Commands .. 55

CMDIN Keyword ... 55

Keywords for CA NSM Event Traffic Controller ... 56

NOUNIFWD Keyword.. 56

SNMPTRAP Keyword .. 57

UNICMD Keyword .. 58

UNIFWD Keyword .. 59

UNIWTO Keyword .. 59

Keyword for Interfacing with Third-Party Applications ... 60

EXPORTMSG Keyword .. 60

Script Keywords Summary ... 62

Script Keyword Syntax ... 62

Script Keyword Descriptions .. 63

ENDSEARCH Keyword ... 63

ERROR Keyword ... 64

KEY Keyword .. 64

Contents 7

SEARCH Keyword.. 65

WAIT Keyword ... 65

XKEY Keyword .. 66

Chapter 4: ADDRESS AXC Commands 67

ADDRESS AXC Command Summary.. 67

Commands for Automation Processing Data ... 67

Commands for Automation Tasks ... 67

Commands for REXX-related Operations ... 68

Commands for Utilities ... 69

ADDRESS AXC Command Syntax .. 70

Return Codes from Command Processors .. 71

Commands for Automation Processing Data .. 73

CLOSEBUF Command.. 74

GETSCRN Command ... 75

OPENBUF Command .. 79

READBUF Command ... 80

Commands for Automation Tasks .. 81

DELVAR Command ... 81

GETMSGI Command ... 82

GETREXXL Command .. 83

GETVAR Command ... 84

GETVARL Command ... 85

LOADRULES Command ... 87

MSG Command .. 88

SESSCNTL Command... 90

SETVAR Command .. 94

STOPREXX Command.. 95

WAIT Command ... 96

Commands for REXX-related Operations ... 96

REXX Command .. 97

SCRIPT Command ... 97

SESSCMD Command ... 98

Commands for Utilities .. 101

DOM Command ... 102

PLOT Command.. 103

SESSCONFIG Command .. 104

SESSLIST Command .. 107

WTO Command .. 110

WTOH Command ... 111

WTXC Command .. 111

8 Command and Keyword Reference Guide

Chapter 5: ADDRESS PPQ Commands 113

ADDRESS PPQ Command Summary ... 113

PPQ Setup Command ... 113

PPQ Operations Commands.. 113

PPQ Dismantling Commands .. 114

Special PPQ Commands .. 114

ADDRESS PPQ Command Syntax .. 115

ADDRESS PPQ Return Information ... 115

The RC Variable .. 115

The PPQ.ERROR Variable .. 116

Additional Return Information .. 116

Change the Default Variable with PREFIX .. 117

Change the Default Return Destination with CMDRESP ... 117

PPQ Setup Command .. 117

CREATE Command .. 118

PPQ Operations Commands .. 119

LOCK Command ... 120

READ Command ... 121

UNLOCK Command... 125

WRITE Command ... 125

PPQ Dismantling Commands ... 128

DELETE Command .. 129

DISCONNECT Command ... 130

Special PPQ Commands ... 130

COUNT Command .. 131

DEBUG Command .. 132

LIST Command ... 133

TRANSTATUS Command ... 137

VER Command ... 138

Chapter 6: ADDRESS GLV Commands 139

ADDRESS GLV Command Summary.. 139

ADDRESS GLV Command Syntax .. 140

Return Codes for GLV Commands .. 140

ADDRESS GLV Command Descriptions ... 141

GET Command ... 141

GRPLIST Command ... 142

GRPLISTV Command ... 142

LIST Command ... 143

LISTV Command ... 144

PURGE Command ... 145

Contents 9

PUT Command ... 146

PUTP Command ... 147

SELECT Command... 148

SET Command .. 149

SETL Command .. 150

SETLP Command .. 151

SETP Command .. 152

VER Command ... 153

VERV Command ... 154

Chapter 7: ADDRESS VOX Commands 155

ADDRESS VOX Command Summary ... 155

Notification Manager Database Maintenance Commands ... 155

Notification Commands .. 157

Voice Processing Commands .. 158

Utility Commands ... 160

ADDRESS VOX Command Syntax.. 160

ADDRESS VOX Return Information ... 161

The RC Variable .. 161

The VOX.ERROR Variable .. 161

The VOX.voxcommand Variable .. 162

Change the Default Variable with PREFIX .. 163

Change the Default Return Destination with CMDRESP ... 164

Notification Manager Database Maintenance Commands.. 164

ALTERENTITY Command ... 165

ALTERMETHOD Command .. 166

ALTERPARM Command .. 168

ALTERTIME Command .. 169

CREATEENTITY Command ... 172

CREATELOGIN Command .. 174

CREATEMETHOD Command.. 175

CREATEPARM Command .. 176

CREATETIME Command .. 178

DESTROYENTITY Command... 180

DESTROYLOGIN Command ... 182

DESTROYMETHOD Command ... 182

DESTROYPARM Command .. 184

DESTROYTIME Command ... 185

EPWCHECK Command .. 186

LISTENTITY Command... 187

LISTFIND Command .. 188

10 Command and Keyword Reference Guide

LISTFORTO Command ... 190

LISTLOGIN Command ... 192

LISTMETHOD Command ... 193

LISTPARM Command .. 194

LISTPERGRPS Command ... 196

LISTTIME Command ... 197

NMDBMERGE Command .. 199

NMEXPORT Command .. 200

NMIADDCALLER Command ... 201

NMIANSWER Command ... 202

NMICHECKCALLER Command ... 203

NMIGETITEM Command ... 204

NMILISTANSWERS Command ... 205

NMILISTCALLERS Command .. 206

NMILISTITEMS Command ... 207

NMIMPORT Command ... 209

Notification Commands ... 210

PAGE Command ... 211

PAGE2WAY Command .. 217

SENDMAIL Command ... 222

Voice Commands .. 225

Valid Dialing Characters .. 226

ANSWER Command .. 227

ANSWERPLAY Command .. 231

CALL Command .. 235

CALLPLAY Command .. 239

CLEAR Command .. 244

GETCHANNEL Command .. 246

GETCHANNELNUM Command .. 249

GETDIGITS Command ... 252

GETGROUP Command .. 255

GETSTATUS Command .. 257

GETSYSNAMES Command ... 259

LOAD Command ... 262

PLAY Command .. 263

PLAYGETDIGITS Command.. 268

RECORDFILE Command... 273

RELEASECHANNEL Command ... 276

SENDTONES Command ... 278

SETGROUP Command ... 281

SETHOOK Command ... 284

SETVOLUME Command .. 287

Contents 11

STOP Command ... 289

VERIFYUSER Command ... 291

WINK Command ... 293

Utility Commands.. 294

GETTAPIDEVICELIST Command ... 295

SETENGINE Command .. 297

SETMSGSTREAM Command .. 298

SETTRACE Command .. 299

SLEEP Command .. 300

STARTREXX Command .. 302

VER Command ... 304

Chapter 8: ADDRESS TNG Commands 307

ADDRESS TNG Command Summary ... 307

ADDRESS TNG Environment Commands ... 307

ADDRESS TNG Event Management Commands ... 307

ADDRESS TNG Utility Command.. 308

ADDRESS TNG Command Syntax ... 308

Command Requirements When Using the WorldView Component .. 309

Required Properties ... 309

Dot Notation for Objects .. 309

ADDRESS TNG Return Information ... 309

The RC Variable .. 310

The TNG.ERROR Variable .. 310

Additional Return Information .. 310

Change the Default Variable with PREFIX .. 311

ADDRESS TNG Environment Commands .. 311

CREATE Command .. 312

DELETE Command .. 313

GET Command ... 314

LIST Command ... 315

SET Command .. 316

ADDRESS TNG Event Management Commands .. 317

SNMPTRAP Command .. 317

UNICMD Command .. 318

UNIWTO Command .. 319

UNIWTOR Command .. 320

ADDRESS TNG Utility Command .. 321

VER Command ... 321

12 Command and Keyword Reference Guide

Chapter 9: ADDRESS OPS Commands 323

ADDRESS OPS Command Summary.. 323

ADDRESS OPS Command Syntax .. 324

ADDRESS OPS Return Information ... 324

The RC Variable .. 325

The OPS.ERROR Variable .. 325

Additional Return Information .. 325

Change the Default Variable With PREFIX ... 326

Change the Default Return Destination with CMDRESP ... 326

ADDRESS OPS Command Descriptions ... 327

ACTIVATE Command .. 327

DEACTIVATE Command .. 328

LIST Command ... 329

OPER Command ... 331

OSFTSO Command ... 336

VER Command ... 337

WTO Command .. 338

Chapter 10: Notification Manager Commands 339

Notification Manager Command Descriptions ... 339

NMANSWER Command .. 339

NMFIND Command .. 340

Methods Called by NMFIND ... 350

NMMAIL Method ... 351

NMMAILPG Method ... 354

NMNETSND Method ... 357

NMPAGE Method ... 360

NMPAGE2WAY Method.. 367

NMSPEAK Method.. 373

NMTAP Method ... 375

NMVOICE Method .. 380

Chapter 11: Web Service API 385

Fundamental Considerations ... 386

Security Considerations ... 387

Error Replies ... 388

URIs, HTTP Methods, and XML Documents .. 389

Query String in URIs .. 391

Internal Sessions ... 392

URI https://localhost:8443/apwebsvc/intsessions .. 392

Contents 13

URI https://localhost:8443/apwebsvc/intsessions/<intsessName>.. 394

URI https://localhost:8443/apwebsvc/intsessions/<intsessName>/messages ... 395

URI https://localhost:8443/apwebsvc/intsessions/<intsessName>/messages/ <messageId> 399

Notification URIs ... 401

URI https://localhost:8443/apwebsvc/notifications .. 401

URI https://localhost:8443/apwebsvc/notifications/<notificationId> .. 406

URI https://localhost:8443/apwebsvc/notifications/<notificationId>/answer.. 407

Customer Defined Sessions ... 409

URI https://localhost:8443/apwebsvc/sessions ... 409

URI https://localhost:8443/apwebsvc/sessions/<sessionName> ... 413

URI https://localhost:8443/apwebsvc/sessions/<sessionName>/Asynchronous .. 417

URI https://localhost:8443/apwebsvc/sessions/<sessionName>/messages ... 418

URI https://localhost:8443/apwebsvc/sessions/<sessionName>/messages/ <messageId> 422

URI https://localhost:8443/apwebsvc/sessions/<sessionName>/TN3270.. 425

URI https://localhost:8443/apwebsvc/sessions/<sessionName>/TN5250.. 426

Index 429

Chapter 1: Introduction 15

Chapter 1: Introduction

This guide describes the syntax for the various CA Automation Point keywords,
parameters, and command processors. The following topics are covered:

■ Keyboard parameters

■ Scan code parameters

■ Rules keywords

■ Script keywords

■ Miscellaneous keywords

■ AXC command processors

■ PPQ command processors

■ GLV command processors

■ VOX command processors

■ TNG command processors

■ OPS command processors

■ Notification Manager command processors

Notation Conventions

16 Command and Keyword Reference Guide

Notation Conventions

 The following legend helps you read the syntax diagrams provided for each statement
and command:

MIXed Case

Identifies abbreviations. The uppercase letters are the minimum abbreviation;
lowercase letters are optional.

lowercase italics

Identifies a value that you must supply.

[] Brackets

Identifies optional operands.

{ } Braces

Indicate a list of mutually exclusive (meaning you must specify only one) constants
separated by a vertical bar or bars {|}.

Underlined Text

Indicates the default value.

Note: Positional parameters, keywords, and operands are indicated by indented text in
the syntax diagrams.

Chapter 2: CA Automation Point Parameters 17

Chapter 2: CA Automation Point
Parameters

This section contains the following topics:

Keyboard Parameter Summary (see page 17)
Keyboard Parameter Syntax (see page 17)
Scan Code Parameters (see page 21)

Keyboard Parameter Summary

Keyboard parameters define keystrokes in the keyboard parameter file. The following
table lists the CA Automation Point parameters you need to define when specifying your
keyboard parameter file.

KEY

Identifies the name of the operation.

SCAN

Indicates the electronic location of the key.

MAP

Specifies the type of window on which this operation applies.

Keyboard Parameter Syntax

 You can enter keyboard parameters in any case.

■ Start each key definition in column 1.

■ Separate the parameters by placing a comma between them.

■ Begin a comment line with an asterisk (*).

■ When specifying a comment on the same line as a statement, leave two or more
blanks between the last parameter and the start of the comment.

■ Operands shown in brackets ([]) are optional.

Keyboard Parameter Syntax

18 Command and Keyword Reference Guide

KEY Parameter

The KEY parameter identifies the name of the operation.

This parameter has the following format:

KEY=operation

operation

Specifies the operation or key label.

Examples:

KEY=PF9

KEY=3270_1

KEY=A

KEY=a

SCAN Parameter

The SCAN parameter indicates the electronic location of the key.

This parameter has the following format:

SCAN=number [(shifts)]

number

Specifies the sequence number associated with a given key. This number changes
depending on the physical layout of the keyboard (for example, 83-key keyboard,
101-key keyboard). If you do not use the utility program, look up this location in the
reference manual for your keyboard.

shifts

(Optional) Indicates any shift states that must also be true for this operation.
Possible shifts values are as follows:

RIGHT_SHIFT

Press the Shift key located on the right-hand side of the keyboard.

LEFT_SHIFT

Press the Shift key located on the left-hand side of the keyboard.

SHIFT

Press either the left or right Shift key.

Keyboard Parameter Syntax

Chapter 2: CA Automation Point Parameters 19

LOWER

Indicates a lowercase letter (a through z).

CAPS_LOCK

Press the Caps Lock key. You must press the Caps Lock key twice-once for the
operation and once to unlock the CAPS LOCK.

UPPER

Press the right Shift key, the left Shift key, or the Caps Lock key. You must press
the Caps Lock key twice-once for the operation and once to unlock the CAPS
LOCK.

SCROLL_LOCK

Press the Scroll Lock key. You must press the Scroll Lock key twice-once for the
operation and once to unlock the SCROLL LOCK.

NUM_LOCK

Press the Num Lock key. You must press the Num Lock key twice-once for the
operation and once to unlock the NUM LOCK.

CTRL

Press the control (Ctrl) key.

ALT

Press the alternate (Alt) key.

ANY

Indicates that whatever shift state is true, the operation is always mapped to
the indicated key.

Examples:

SCAN=30(LOWER)

SCAN=30(UPPER)

Keyboard Parameter Syntax

20 Command and Keyword Reference Guide

MAP Parameter

The MAP parameter specifies the type of window on which this operation applies.

This parameter has the following format:

MAP=sessiontype

sessiontype

Valid values are:

AUTOMATE

Specifies that the key applies only in asynchronous session windows, CA
Automation Point function windows, and CA Automation Point menus and
dialogs.

TERMINAL

Specifies that the key applies only in CA Automation Point 3270 or 5250
terminal emulator session windows.

(AUTOMATE, TERMINAL)

Specifies that the key applies in both types of session windows.

Default: (AUTOMATE,TERMINAL)

Scan Code Parameters

Chapter 2: CA Automation Point Parameters 21

Scan Code Parameters

Scan code parameters define operations in scan code files. For details about customizing
these types of files, see the appendix on customizing special CA Automation Point files
in the Administrator Guide.

The following are the CA Automation Point parameters you need to define when
specifying your scan code parameter file.

3270_KEY

Specifies the operation that is being defined (for example, A, PF1, and so on).

3270_SCAN

Specifies the terminal-specific scan code for the operation.

When defining operations in a scan code file, follow these rules:

■ You can enter scan code parameters in uppercase or lowercase.

■ Start each definition in column 1.

■ Separate the parameters by placing a comma between them.

■ Begin a comment line with an asterisk character (*).

■ Leave two or more blanks between the last parameter and the start of the
comment when specifying a comment on the same line as a statement.

3270_KEY Parameter

The 3270_KEY parameter specifies the operation that is being defined (for example, A,
PF1, and so on).

This parameter has the following format:

3270_KEY=operation

operation

Specifies the name of the operation (similar to a command name).

Examples:

3270_KEY=PF9

3270_KEY=A

3270_KEY=a

Scan Code Parameters

22 Command and Keyword Reference Guide

3270_SCAN Parameter

The 3270_SCAN parameter specifies the terminal-specific scan code for the operation.

This parameter has the following format:

3270_SCAN=scancode

scancode

Specifies the terminal-specific scan code of the operation.

Examples:

3270_SCAN=(4d,12,cd)

3270_SCAN=4b

Chapter 3: CA Automation Point Keywords 23

Chapter 3: CA Automation Point Keywords

This chapter describes the keywords that you use to create rules and for use in scripts.
For details about the CA Automation Point rules language, see “Writing Rules” in the
Administrator Guide.

This section contains the following topics:

Rules Keyword Summary (see page 23)
Rules Keyword Syntax (see page 27)
Keywords for Defining Automation Criteria (see page 27)
Keywords for Responding to System Events (see page 34)
Keywords for Controlling the Display (see page 42)
Keywords for Logging Messages (see page 51)
Keywords for Notification (see page 53)
Keyword for Controlling Commands (see page 55)
Keywords for CA NSM Event Traffic Controller (see page 56)
Keyword for Interfacing with Third-Party Applications (see page 60)
Script Keywords Summary (see page 62)
Script Keyword Syntax (see page 62)
Script Keyword Descriptions (see page 63)

Rules Keyword Summary

Rules keywords are used in writing CA Automation Point rules. The following sections
summarize the rules keywords.

Keywords for Defining Automation Criteria

Use the following keywords to define automation criteria.

CMDIN

Defines the beginning of a command rule (which activates when the specified
command is issued).

EVERY

Specifies how often you want an action to be taken.

LIMIT

Specifies how many times a CA Automation Point rule can execute in a given
minute.

MATCHLIM

Limits the number of times that an action specified by a rule takes effect.

Rules Keyword Summary

24 Command and Keyword Reference Guide

MSGID

Defines the beginning of a message rule (which activates when a message having
the specified ID appears).

TIME

Defines the start of a time rule (which activates at a certain time or after a specified
time period has passed).

WHEN

Defines additional conditions that must be true for a rule to activate.

Keywords for Responding to System Events

Use the following keywords to respond to system events.

DOSCMD

Issues an operating system command or executes a command file.

OSCMD

Issues an operating system command to a console.

PPQWRITE

Writes an item to a PPQ.

REPLY

Specifies the reply to a WTOR message.

REXX

Invokes a REXX program.

SCRIPT

Starts a CA Automation Point script.

SESSCMD

Sends a keystroke string to a session.

SESSION

Restricts the processing of MSGID rules to a given session.

SET

Creates, deletes, modifies, or assigns a value to a status variable.

XCCMD

Invokes a CA Automation Point command processor from a rule.

Rules Keyword Summary

Chapter 3: CA Automation Point Keywords 25

Keywords for Controlling the Display

Use the following keywords to control the display.

COLOR

Specifies the color in which you want a message to appear.

DISPLAY

Displays a previously suppressed message in the Normal, Action, or Merged Msg
window.

DOM

Deletes an action message from the Action Message Recall window and from the
action message area of the Merged Msg window.

HILIGHT

Displays a message in the Action Message Recall window and in the action message
area of the Merged Msg window.

LOWLIGHT

Displays a message in the Normal Message Recall window and in the main
messages area of the Merged Msg window.

PREFIX

Specifies the prefix of the messages that appear on Automation Point Message
Recall and Merged Msg windows.

REWORD

Alters the text of a message.

SUPPRESS

Prevents a message from being displayed in Automation Point Message Recall and
Merged Msg windows.

WTO

Issues a message to the Merged Msg window and either the Action Message Recall
window or the Normal Message Recall window.

WTXC

Issues a write-to-operator message and sends it to the CA Automation Point Msg
window.

Rules Keyword Summary

26 Command and Keyword Reference Guide

Keywords for Logging Messages

Use the following keywords to log messages.

LOG

Sends a message to the host message log file or the CA Automation Point message
log file.

NOLOG

Prevents a message from being sent to the host message log file.

NOPRINT

Prevents a message from being printed on the hardcopy log.

PRINT

Prints a message on the hardcopy log.

Keyword for Controlling Commands

Use the following keyword to control commands:

CMDIN

Defines the start of a command rule.

Keywords for Notification

Use the following keywords for notification tasks.

ALARM

Sounds an alarm when a specified message occurs.

NOALARM

Specifies that no alarm be sounded when a message appears.

Keywords for CA NSM Event Traffic Controller

Use the following keywords for CA NSM Event Traffic Controller.

NOUNIFWD

Tells CA Automation Point not to forward a message that is processed by rules to CA
NSM.

SNMPTRAP

Sends an SNMP trap to the specified host.

Rules Keyword Syntax

Chapter 3: CA Automation Point Keywords 27

UNICMD

Tells CA NSM Event Manager, which resides on the specified host, to execute the
supplied command.

UNIFWD

Tells CA Automation Point to forward a message that is processed by rules to all
recorded CA NSM hosts.

UNIWTO

Sends the supplied message to CA NSM Event Manager on the specified host.

Keyword for Interfacing with Third-party Applications

Use the following keyword for Third-party Applications.

EXPORTMSG

Tells CA Automation Point to send the message to an ApExportMsg function created
by the user, which then forwards messages to a third-party software application.

Rules Keyword Syntax

When writing CA Automation Point rules, follow these guidelines:

■ Begin each rule with the MSGID keyword or the TIME keyword; follow it with other
appropriate keywords.

■ Use positions 1 through 255 of each line.

■ Do not split a keyword phrase across lines.

■ Separate rules keywords within a line by using a comma, one or more blanks, or
both.

■ Write a comment line by placing an asterisk (*) in column 1.

■ Operands shown in brackets ([]) are optional.

Keywords for Defining Automation Criteria

The following sections describe the CA Automation Point keywords used to define
automation criteria.

Keywords for Defining Automation Criteria

28 Command and Keyword Reference Guide

EVERY Keyword

The EVERY keyword controls how often a rule executes again after it has executed the
first time.

This keyword has the following format:

EVERY(n interval)

n

Indicates how often or at what time interval you want the action to be taken. You
can specify any positive integer, but the value you specify cannot be a status
variable.

interval

Specifies the unit of time for the interval. This value can be any of the following:

SECOND(S)

Tells CA Automation Point to take the action every n seconds.

MINUTE(S)

Tells CA Automation Point to take the action every n minutes.

HOUR(S)

Tells CA Automation Point to take the action every n hours. In this case, the n
value can be any number from 0 through 23.

Example:

Suppose that the following message, which shows the current spool usage, appears
more frequently than necessary:

$HASP093 xx% SPOOL UTILIZATION

The following rules cause this message to appear at intervals at least ten minutes apart:

MSGID($HASP093), SUPPRESS

MSGID($HASP093), EVERY(10 MINUTES), DISPLAY

Keywords for Defining Automation Criteria

Chapter 3: CA Automation Point Keywords 29

LIMIT Keyword

The LIMIT keyword specifies the number of times a rule can execute within a given
minute. If one of your rules contains an error causing CA Automation Point to get caught
in an endless loop, the limit prevents CA Automation Point from executing the same rule
repeatedly.

This keyword has the following format:

LIMIT(integer)

integer

Specifies the number of times a rule is to execute in a given minute. You can specify
any value between 1 and 32767. You cannot specify a status variable as the
operand.

Usage Notes:

■ If you do not specify the LIMIT keyword, CA Automation Point uses a default limit of
25 for rules that contain any of the following keywords:

DOSCMD

Issues an operating system command or executes a command file.

OSCMD

Issues native operating system commands to a session. Operating system
commands include z/OS, JES3, VSE, z/VM, and i5/OS (iSeries).

REPLY

Replies to a WTOR message.

REXX

Invokes a REXX procedure.

SCRIPT

Invokes CA Automation Point script files.

SESSCMD

Sends a keystroke string to a session.

WTXC

Issues write-to-operator messages to the AP Messages window.

XCCMD

Invokes CA Automation Point command processors.

Keywords for Defining Automation Criteria

30 Command and Keyword Reference Guide

Example:

Suppose that you want a script called LOGONRCS to execute no more than twice within
one minute when the IEF244I message is issued. You could write a rule like this one:

MSGID(IEF244I), SCRIPT(LOGONRCS.SCR), LIMIT(2)

MATCHLIM Keyword

The MATCHLIM keyword specifies the maximum number of times a message can be
seen by rules. After CA Automation Point receives the MATCHLIM number of messages
matching the MSGID criteria for this rule, CA Automation Point no longer executes this
rule.

This keyword has the following format:

MATCHLIM(integer)

integer

Specifies the maximum number of times a message can be seen by rules. This can
be any value from 1 to 32767. However, you cannot specify a status variable as the
value for the MATCHLIM keyword.

Example:

Suppose that when you first start CA Automation Point you want to set a status variable
(called &START_TIMESTAMP) that contains the startup date and time. The following rule
executes once when CA Automation Point processes its first message:

MSGID(*), MATCHLIM(1), SET(&START_TIMESTAMP=&DATE:&TIME)

MSGID Keyword

The MSGID keyword defines the start of a message rule.

This keyword has the following format:

MSGID(characters)

characters

Identifies a message that you want CA Automation Point to process. You can specify
multiple messages by specifying the portion of the message ID that indicates a
specific group of messages.

Keywords for Defining Automation Criteria

Chapter 3: CA Automation Point Keywords 31

Usage Note:

CA Automation Point processes MSGID rule clauses in the following order:

MSGID(), MSGID(string), MSGID(*)

Examples:

■ In the following example, z/OS issues message IRA201I when there is a critical
shortage of auxiliary storage. The following rule highlights message IRA201I:

MSGID(IRA201I), HILIGHT

■ In the following example, CA Automation Point issues the following message when
it cannot send keystrokes to a given session because of a workstation problem or
host failure:

AXC0901E Continued sendkey failures to session S008

The following rule dispatches a REXX procedure called CHKSESS to determine
whether a workstation problem or a host problem generated message AXC0901E:

MSGID(AXC901E), EVERY(5 MINUTES),

 REXX(CHKSESS SESSION(&WORD7))

■ In this example, OpenVMS issues this message when a VAX printer goes offline:

%%%%%%%%%% OPCOM 8-APR-1994 06:10:19.32 %%%%%%%%%%

DEVICE 1LPA0: (VAXD) IS OFFLINE

The following rule sounds an audible alarm when this message contains the text LP
and OFFLINE:

MSGID(DEVICE),

 WHEN(&WORD2(4:5) EQ 'LP' AND &WORD5 EQ OFFLINE),

 ALARM(3)

Note: The rule shows DEVICE as the MSGID. When you write messages for
OpenVMS sessions, the MSGID begins after the OPCOM header.

In this example, MSGID rule clauses are case-sensitive. For the message Please
mount tape 1233, use the following:

MSGID(Please)

For the message PLEASE MOUNT TAPE 1233, use the following:

MSGID(PLEASE)

Keywords for Defining Automation Criteria

32 Command and Keyword Reference Guide

TIME Keyword

The TIME keyword specifies the time when a rule can execute. The time you specify
cannot be a status variable value.

This keyword has the following format:

TIME(hh:mm)

hh:mm

Specifies the time when a rule is to execute in hours (hh) and minutes (mm) on a
24-hour clock.

Example:

If your site routinely IPLs the mainframe at 7:00 p.m., write the following time rule to
notify TSO users ten minutes before the IPL occurs:

TIME(18:50),

OSCMD(('SEND “WARNING; IPL IN 10 MINUTES” '),SESSION(SYS_A))

Keywords for Defining Automation Criteria

Chapter 3: CA Automation Point Keywords 33

WHEN Keyword

The WHEN keyword specifies additional conditions that must be true in order for a rule
to take effect.

This keyword has the following format:

WHEN(expression)

expression

This option has the following format:

[operand relational_operator operand] [Boolean_operator operand

relational_operator operand]

operand

Can be a character string, an environmental variable, or both.

relational_operator

Can be any of the following character strings:

EQ--Equal

NE--Not equal

GT--Greater than

GE--Greater than or equal

LT--Less than

LE--Less than or equal

IN--Contains a character string

NOTIN--Does not contain a character string

Boolean_operator

Can be one of the following:

■ AND

■ OR

You can join logical expressions together using the Boolean operators (AND and OR)
and nested parentheses. Unquoted blanks that immediately precede or follow
operators are not considered text.

Usage Notes:

■ CA Automation Point converts all strings without quotation marks in a WHEN clause
to uppercase. Case is preserved for all strings with quotation marks. There is no
difference between the following two examples:

WHEN(&WORD3 EQ hello)

WHEN(&WORD3 EQ HELLO)

Keywords for Responding to System Events

34 Command and Keyword Reference Guide

■ To match lowercase or mixed case strings, use strings with quotation marks.

The following example only matches the lowercase word:

WHEN(&WORD3 EQ 'hello')

Example:

The following message indicates that OS39OSTC has terminated abnormally:

IEF4501I OS39OSTC--ABEND=S0C4 U0000 REASON=00000000

The following rule checks the second word and the last two characters of the fifth word
in the message before alerting the operator:

MSGID(IEF4501I)

 WHEN(&WORD2 EQ OS39OSTC AND &WORD5(9:10) NE 22),

 COLOR(BRIGHT RED), ALARM(19)

The rule determines whether OS39OSTC has terminated if the second word (&WORD2)
of the message is OS39OSTC and the last two digits of the fifth word (&WORD5) are not
22. When these conditions exist, the rule alerts the operator to the problem.

Keywords for Responding to System Events

The following sections describe the CA Automation Point keywords used to respond to
system events.

DOSCMD Keyword

The DOSCMD keyword allows you to issue a workstation operating system command or
to execute a command file.

This keyword has the following format:

DOSCMD(cmdtext)

cmdtext

Specifies the text of the operating system command or the name of the command
file.

Keywords for Responding to System Events

Chapter 3: CA Automation Point Keywords 35

Usage Notes:

■ When issuing a command with the DOSCMD keyword, make sure that the
command is valid for the operating system targeted to receive it. The DOSCMD
keyword passes the command to the current operating system without checking to
see if the command works in that environment.

■ Make sure that the command or command file can execute completely without
input, keystrokes, or other help from an operator.

■ CA Automation Point does not directly capture output from the DOSCMD keyword.
If you use DOSCMD to issue operating system commands and want to view the
output of those commands, redirect the output to disk files.

Example:

Suppose that CA OPS/MVS sends the following message to request CA Automation Point
to check the local area network (LAN) for activity:

AXC000I CHECK LAN, PLEASE

The following rule invokes a batch file that checks the LAN and sends the result back to
CA OPS/MVS:

MSGID(AXC000I CHECK LAN), DOSCMD(CHECKLAN)

OSCMD Keyword

The OSCMD keyword tells CA Automation Point to issue an operating system command
to the session that sent the current message. For example, you could use the OSCMD
keyword to invoke a CA OPS/MVS REXX program.

This keyword has the following format:

OSCMD(commandtext)

or

OSCMD((commandtext) SESSION(sessid))

commandtext

Specifies the text of the command. If you specify the SESSION operand, the OSCMD
keyword directs the operating system command to the indicated session (specified
by sessid), rather than to the session that generated the message.

SESSION

Specifies the session to which the OSCMD command is to be directed. This operand
cannot be used to specify the name of an internal session (AXC, VOX, or OPS).

Keywords for Responding to System Events

36 Command and Keyword Reference Guide

Usage Note:

If you use the OSCMD keyword in a time rule, the SESSION operand is required because
time events are not associated with specific sessions.

Example:

The following message indicates that CA OPS/MVS is active:

OPS0123O AOF INITIALIZATION COMPLETE

The following rule issues a command to CA OPS/MVS indicating that CA Automation
Point is active and ready for CA OPS/MVS to use it:

MSGID(OPS0123O), OSCMD(AXC HERE)

PPQWRITE Keyword

The PPQWRITE keyword writes an item to a PPQ.

This keyword has the following format:

PPQWRITE(ITEM(item) QUEUE(queuename))

ITEM

Specifies the item to write to the queue. The value of item can be either a literal
string (such as “this is an item”) or a simple variable name (not enclosed in
quotation marks so that REXX can evaluate it).

QUEUE

Specifies the name of the queue. This value must be in uppercase.

Example:

The following sends information to a queue named MESSAGE:

PPQWRITE((HELLO THERE) QUEUE(MESSAGE))

Keywords for Responding to System Events

Chapter 3: CA Automation Point Keywords 37

REPLY Keyword

The REPLY keyword specifies the reply for a write-to-operator-with-reply (WTOR)
message.

This keyword has the following format:

REPLY(string)

string

Specifies the text of the reply for a WTOR message.

Example:

z/OS issues the following two messages when JES2 cannot start because of an
incorrectly defined exit routine:

$HASP857 EXIT013 NOT DEFINED WITHIN CURRENTLY LOADED JES2 MODULES

*00 $HASP441 REPLY 'Y' TO CONTINUE OR 'N' TO TERMINATE

The following two rules automate the reply to message $HASP441, letting other
messages fall through to the operator:

MSGID($HASP857),

 SET(&HASP441_REPLY = Y)

MSGID(IEA120A),

 WHEN(&HASP441_REPLY NE ''),

 REPLY(&HASP441_REPLY)

 SET(&HASP441_REPLY = '')

REXX Keyword

The REXX keyword invokes the REXX procedure specified by filename.

This keyword has the following format:

REXX(filename arguments)

filename

Specifies the name of the file containing the REXX procedure.

arguments

Specifies any additional arguments needed when you invoke the procedure.

Keywords for Responding to System Events

38 Command and Keyword Reference Guide

Example:

Suppose that CA Automation Point receives the following message from CA OPS/MVS on
the host:

OPS000I REXX IPL9672

The following sample rule invokes a REXX procedure called APCMOS, initiating the IPL of
a 9672 processor:

MSGID(OPS000I REXX IPL9672),

 REXX(APCMOS ACTION(PSWRESTART) CPC(&CPC) LPAR(&LPAR))

SCRIPT Keyword

The SCRIPT keyword specifies a CA Automation Point script to be invoked in the session
that issued the current message.

This keyword has the following format:

SCRIPT(filename)

or

SCRIPT((filename) SESSION(sessid))

filename

Specifies the name of the CA Automation Point script to be invoked.

SESSION

Specifies the session in which the script is to be invoked. If your SCRIPT value
contains the SESSION operand, CA Automation Point directs the script to the
indicated session instead. Use the session ID value to identify the session that
should invoke the script. This operand cannot be used to specify the name of an
internal session (AXC, VOX, or OPS).

Usage Note:

If you use the SCRIPT keyword in a time rule, the SESSION operand is required because
time events are not associated with particular sessions.

Example:

The following example starts the MYSCRIPT script when message $HASP308 is issued:

MSGID ($HASP308), SCRIPT(MYSCRIPT.SCR)

Keywords for Responding to System Events

Chapter 3: CA Automation Point Keywords 39

SESSCMD Keyword

The SESSCMD keyword specifies a keystroke string that can contain text or keystrokes to
be sent to the session that issued the current message.

This keyword has the following format:

SESSCMD(keystrokes)

or

SESSCMD((keystrokes) SESSION(sessid))

keystrokes

Specifies the keystrokes to be sent to the specified session. This value can be any
character string with a maximum length of 488 characters (after expanding all
variables). The command line of the receiving session must be long enough to
accept all of the characters in the string.

SESSION

Specifies the session to which to send the command. If you specify the SESSION
operand, the SESSCMD keyword directs the string to the indicated session (sessid),
rather than to the session that issued the message. This operand cannot be used to
specify the name of an internal session (AXC, VOX, or OPS).

Usage Note:

Use the SESSCMD keyword instead of the OSCMD keyword to send PF keys and other
special keystrokes such as MODE SELECT.

Example:

The following message appears on a mainframe processor console during IPL and
indicates that z/OS is waiting for the operator to press the TOD enable switch:

IEA889A DEPRESS TOD CLOCK SECURITY SWITCH

Once the TOD clock is active, z/OS sets the mainframe clock.

The following rule sets the mainframe clock by sending an S1 command (the TOD enable
switch) to the console on session MACH1_PCON:

MSGID(IEA889A), SESSCMD((S1) SESSION(MACH1_PCON))

Keywords for Responding to System Events

40 Command and Keyword Reference Guide

SESSION Keyword

The SESSION keyword restricts rules processing by session name, by a set of session
names, or by session type. Using the SESSION keyword instead of complex WHEN clause
improves overall message processing throughput. Multiple SESSION statements for the
same MSGID rule are cumulative.

This keyword has the following format:

SESSION(name|$type)

name

Specifies the name of an enabled session defined to the active session definition
set. Specifying SESSION(name) causes CA Automation Point to evaluate the
message rule only if the message originated from the specified session. Specifying
SESSION(*) causes CA Automation Point to evaluate the message rule for messages
originating from all sessions.

To restrict the rule to only those messages issued by CA Automation Point itself, use
the ”AXC” session name. To restrict the rule to messages generated by the
Notification Server, use the “VOX” session name. To restrict the rule to messages
received by the CA OPS/MVS Interface, use the “OPS” session name.

$type

Specifies the type of session. Valid values are:

ASYNCH DTX JES3

JESMCS MCS RCS

SYSPLEX TANDEM TANDEMALL

VAX VAXALL VM

VSE

Specifying SESSION($type) causes CA Automation Point to evaluate the message
rule only if the message originated from an enabled session of the specified type.

Note: The TPFASYNCH session type is included with other sessions of type ASYNCH.
For TPF3270 sessions, you must use the session name to identify the session.

Examples:

■ The following rule alerts the operator when the specified message is received for
the session named MACH1_PCON:

MSGID(IEF4501I)

 SESSION(MACH1_PCON)

 ALARM(19)

Keywords for Responding to System Events

Chapter 3: CA Automation Point Keywords 41

■ The following rule alerts the operator when the specified message is received by
sessions with names of MACH1_PCONA, MACH1_PCONB, and MACH1_PCONC.
Messages from sessions not specified in the rule skip the rule.

MSGID(IEF4501I)

 SESSION(MACH1_PCONA)

 SESSION(MACH1_PCONB)

 SESSION(MACH1_PCONC)

 ALARM(19)

■ The following rule alerts the operator when the specified message is received by
sessions of type MCS. Messages from sessions that are of type ASYNCH skip the
rule.

MSGID(IEF4501I)

 SESSION($MCS)

 WHEN(&WORD2 EQ OS390STC AND &WORD5(9:10) NE 22),

 COLOR(BRIGHT RED),

 ALARM(19)

SET Keyword

The SET keyword creates and assigns a value to a status variable. You can also use the
SET keyword to delete a status variable or update its value. You can use the SET
keyword more than once in a rule.

This keyword has the following format:

SET(&varname=text)

&varname

Specifies the name of the status variable, which can contain up to 32 characters. An
ampersand (&) must always precede the variable name.

text

Specifies the text string you want to assign to the status variable. A text string can
contain characters, environmental variables, or other status variables. If the value
of text is null, CA Automation Point deletes the status variable that you are trying to
set. The maximum length of text is 256 characters (after expanding all variables).

Usage Note:

Storing values in status variables uses up memory. Therefore, if a rule references a
variable only once or a few times and never uses that variable again, set the variable to
null after the rule using it executes. Leave only frequently-used variables in memory.

Keywords for Controlling the Display

42 Command and Keyword Reference Guide

Example:

The following rule creates a status variable called &JOB_START_TIME with the same
value as the &HOSTTIME environmental variable:

MSGID(IEF490I), SET(&JOB_START_TIME=&HOSTTIME)

XCCMD Keyword

The XCCMD keyword causes a rule to invoke a CA Automation Point command
processor specified by cmdtext. For descriptions of CA Automation Point command
processors and their operands, see ADDRESS AXC Commands (see page 67).

This keyword has the following format:

XCCMD(cmdtext)

cmdtext

Specifies the text of any CA Automation Point command processor, its operands,
and the operands' values.

Usage Notes:

■ The XCCMD rules keyword does not invoke REXX and WTOH CA Automation Point
command processors. Issue the REXX command processor from a rule with the
REXX rules keyword. Issue the WTOH command processor from a rule with the WTO
and HILIGHT rules keywords.

■ When the command processor specified with the XCCMD keyword executes, it does
not return information to the CA Automation Point rules processor because rules
cannot process the information.

Example:

The following rule clause names the window that displays the MsgPre graph:

XCCMD('PLOT MsgPre DEFINE GRAPH WINDOW(My_Plot_Window)')

Keywords for Controlling the Display

The following sections describe the CA Automation Point keywords used to control the
CA Automation Point display.

Keywords for Controlling the Display

Chapter 3: CA Automation Point Keywords 43

COLOR Keyword

The COLOR keyword sets the color in which CA Automation Point displays a message in
the Merged Messages, Action Message Recall, and Normal Messages Recall windows.

This keyword has the following format:

COLOR(colorname)

colorname

Specifies the color of message text. The colorname value can be any of the
following:

BLUE YELLOW TURQUOISE

BRIGHT BLUE GREEN BRIGHT TURQUOISE

RED BRIGHT GREEN PURPLE

BRIGHT RED BROWN BRIGHT PURPLE

WHITE BRIGHT WHITE GRAY

BLACK

Default: WHITE

Usage Note:

If the message was issued by the Notification Server, the color change appears in the
function window with the default name of AP Notification Messages (VOXMSG window
type). If the message was received by the CA OPS/MVS Interface, the color change
appears in the function window with the default name of CA-OPS/MVS Messages
(OPSMSG window type).

If the color black is selected for a message that is to be displayed in a window with a
black background, the color of the message changes to white.

Example:

The following message indicates that the WTO buffer is full:

IEA404A SEVERE WTO BUFFER SHORTAGE--100% FULL

The following rule alerts the operator to the buffer shortage problem by displaying
message IEA404A in bright red text:

MSGID(IEA404A), COLOR(BRIGHT RED)

Keywords for Controlling the Display

44 Command and Keyword Reference Guide

DISPLAY Keyword

The DISPLAY keyword causes CA Automation Point message recall windows to display a
message that may have been previously suppressed with the SUPPRESS keyword.

This keyword has the following format:

DISPLAY

Usage Note:

The default color of the displayed message is white, but you can specify a different color
with the COLOR keyword.

Example:

The following message shows the current spool usage and appears more frequently
than necessary:

$HASP093 xx% SPOOL UTILIZATION

The following rules limit the number of times the operator sees this message by forcing
the message to display at intervals at least ten minutes apart:

MSGID($HASP093), SUPPRESS

MSGID($HASP093), EVERY(10 MINUTES), DISPLAY

DOM Keyword

The DOM keyword deletes an action message from the action message area of the
Merged Messages window and from the Action Message Recall window.

This keyword has the following format:

DOM(DOMID(domid))

DOMID

Specifies the internal pointer to an action message, which must already be stored in
a status variable.

Keywords for Controlling the Display

Chapter 3: CA Automation Point Keywords 45

Examples:

■ Suppose that you want rules to delete an action message whenever CA Automation
Point receives a terminating message. Assuming that message 111ABC is the
starting message and message 999XYZ is the terminating message, these sample
rules statements show how to delete the starting message:

MSGID(111ABC), HILIGHT, SET(&SAVE111ABC=&DOMID)

MSGID(999XYZ), DOM(DOMID(&SAVE111ABC)), SET(&SAVE111ABC='')

CA Automation Point deletes message 111ABC after receiving message 999XYZ and
resets the &SAVE111ABC status variable to null.

■ Suppose that you have a large number of tape mount messages and you want to
ensure that all CA Automation Point processed tape mount messages are removed
from the CA Automation Point Action Message window, even if the original tape
mount message has scrolled off the screen. The following rules delete the
messages:

*** Handle tape mount messages

* IEF233a m 455,812887,,RPNLCOPY,STEP1 and

* IEF234e k 455,812887,,PVT,PROPDEPT,STEP03

* See the mount request and set drive_var to domid *

MSGID(IEF233A), SET(&(DRIVE_&WORD3)=&DOMID)

* See that message is satisfied and delete value *

* of &(DRIVE_&WORD3) *

MSGID(IEF234E) DOM(DOMID(&(DRIVE_&WORD3))) SET(&(DRIVE_&WORD3)='')

HILIGHT Keyword

The HILIGHT keyword promotes a captured message to action message status. If the
message is to be displayed in the Merged Messages window, it will be shown in both the
Action Message Area of this window and the Action Message Recall window.

This keyword has the following format:

HILIGHT

Usage Note:

Use this keyword only if the message is not already an action message.

Example:

MSGID($HASP13I), HILIGHT

Keywords for Controlling the Display

46 Command and Keyword Reference Guide

LOWLIGHT Keyword

The LOWLIGHT keyword demotes a captured message to normal message status. If the
message is to be displayed in the Merged Messages window, it will be shown in both the
Normal Message Area of this window and the Normal Message Recall window.

This keyword has the following format:

LOWLIGHT

Example:

MSGID($HASP093), LOWLIGHT

PREFIX Keyword

The PREFIX keyword specifies the prefix of messages appearing in certain CA
Automation Point windows or files.

This keyword has the following format:

PREFIX(string)

string

Specifies the prefix of the messages appearing in the following CA Automation Point
windows or files:

■ Merged Message window

■ Normal Messages window

■ Action Messages window

■ Host messages log file

■ Print log file

■ CA Automation Point notification messages

■ CA OPS/MVS messages

Specify this prefix information in a series of character strings separated by blank
spaces. You form these character strings from a set of twelve alphanumeric
characters, each representing a character from a different type of information. For
example, the letter T represents a character from the message time stamp, and the
letter J represents a character from a job name.

Keywords for Controlling the Display

Chapter 3: CA Automation Point Keywords 47

For example, if your message string contains TTTTTT, all six characters of the time
stamp appear in the message text:

122433 IEC501A M 480, MIM,BLP, 1600 BPI, MIM02, CLONETAP

The order and punctuation of the character strings determine the order and
punctuation of the actual pieces of information they represent. For example, the
following character strings display both the time and the job name, in that order.

TT:TT:TT JJJJJ

12:24:33 MIM10 IEC501A M 480, MIM,BLP, 1600 BPI, MIM02, CLONETAP

Character Meaning

3 Represents &JES3name for SYSPLEX or JES3MCS consoles, or system
name for other sessions.

A Represents the action indicator. If the message is issued as an action
message, this indicator has a non-blank value, usually the asterisk (*) or
the at-sign (@).

C Represents a character of the &MONTYPE access variable. Use
uppercase C only; stands for category.

E Represents a character of the &MONPRTY access variable. Use
uppercase E only; stands for error.

H Represents a character of the &MONNAME access variable. Use
uppercase H only; stands for host.

J Represents a character of the job name or identifier from the message.
Use uppercase J only.

L Represents the string specified in the session definition as a window
title. Use uppercase L only.

N Represents a character of the &MONNUM access variable. Use
uppercase N only; stands for number.

P Represents a character of the default system name that is displayed
with messages received from a session. Use uppercase P only. (You set
a default system when you define your session.) Some processors need
this character to route the information properly.

R Represents a character of the reply ID for a write-to-operator with
reply (WTOR) message. Use uppercase R only.

S Represents a character of the session name for the session receiving
the message. Use uppercase S only. This name is the ID that you assign
to a session when you define the session.

T Represents a character of the timestamp from the message. Use
uppercase T only.

Keywords for Controlling the Display

48 Command and Keyword Reference Guide

Global Default: SSSSSSSS TTTTTT JJJJJJJJ RRA.

To provide no prefix, specify two single quotes ('') in the edit box. This setting
overrides the default.

Default: The value the Local Session Prefix in the session definition

Usage Note:

CA Automation Point formats multi-line messages so that each line uses all 80 columns
of the display area. If these messages included prefixes, CA Automation Point splits the
messages onto two lines.

Example:

The following message is the first line of a multi-line message issued in response to a
DISPLAY CONSOLES command:

IEE249I 13.30.23 CONSOLE DISPLAY 741

The following rule prevents the CA Automation Point prefix from appearing at the
beginning of the message, and prevents CA Automation Point from splitting the
message:

MSGID(IEE249I), PREFIX()

REWORD Keyword

The REWORD keyword rewords the text of a message before it is displayed in the
Merged Messages window, the Action Message Recall window, or the Normal Message
Recall window; or rewords the text of a command before CA Automation Point sends it
to the console.

This keyword has the following format:

REWORD(text)

text

Specifies the words of the message or command in the order in which you want
them sent.

Usage Notes:

■ If the message was issued by the Notification Server, the rewording of this message
will be displayed in the function window with a default name of AP Notification
Messages (window type of VOXMSG).

■ If the message was received by the CA OPS/MVS Interface, the rewording of this
message will be displayed in the function window with a default name of
CA-OPS/MVS Messages (window type of OPSMSG).

Keywords for Controlling the Display

Chapter 3: CA Automation Point Keywords 49

Examples:

■ The following is the JES2 $HASP373 message:

$HASP373 TESTJOB STARTED - INIT 1 - CLASS C - SYS SYSA

To remove the last three words from the message and make it fit on one line, write
the following rule:

MSGID($HASP373), WHEN (&JOBID(1:3) EQ JOB),
REWORD(&WORD1 &WORD2 &WORD3 &WORD4 &WORD5 &WORD6 &WORD7
&WORD8 &WORD9)

After the rule executes the message, the message appears like this:

$HASP373 TESTJOB STARTED - INIT 1 - CLASS C

■ A user enters the following command in the Command Window from the CA
Automation Point Desktop:

SLIP0C1

The following rule rewords this pseudo command, and issues the complex z/OS
command to the console instead:

CMDIN(SLIP0C1), REWORD(SLIP SET, ID=P0C1, COMP=0C1, A=SVCD, MATCHLIM=1,

JOBNAME=TESTPGR, END)

SUPPRESS Keyword

Specify the SUPPRESS keyword to prevent CA Automation Point from displaying a
message in the Merged Messages window, and in the Action or Normal Message Recall
windows; or to instruct CA Automation Point to prevent a command from being sent to
the console.

This keyword has the following format:

SUPPRESS

Usage Notes:

■ If the message was issued by the Notification Server, this message will not appear in
the function window with the default name of AP Notification Messages (window
type of VOXMSG).

■ If the message was received by the CA OPS/MVS Interface, this message will not
appear in the function window with the default name of CA-OPS/MVS Messages
(window type of OPSMSG).

Keywords for Controlling the Display

50 Command and Keyword Reference Guide

Examples:

■ RACF issues the following messages to indicate when a user last logged on with a
user ID:

ICH70001I userid LAST ACCESS AT date

The following rule suppresses message ICH70001I:

MSGID(ICH70001I), SUPPRESS

■ A user enters the following command, trying to stop CA OPS/MVS, in the Command
dialog from the Remote Viewer:

STOP OPSS

The following rule prevents this z/OS STOP command from being sent to the
console, and issues a write-to-operator message to the CA Automation Point
message console.

CMDIN(STOP), WHEN(&WORD2 EQ 'OPSS'), SUPPRESS, WTXC (Nobody is authorized to stop

CA OPS/MVS)

WTO Keyword

The WTO keyword issues a write-to-operator message.

This keyword has the following format:

WTO(text)

text

Specifies the text of the WTO message.

Usage Note:

If an active message caused the WTO message to be issued, the WTO message appears
in the Action Message Recall window and in the action message area of the Merged
Messages window. Otherwise, the WTO message appears in the Normal Message Recall
window and the main message area of the Merged Messages window.

Example:

The following message indicates that an improper device was entered in response to a
device allocation recovery request:

IEF490I JOB1--INVALID REPLY

The following rule clarifies this message by issuing an additional message:

MSGID(IEF490I),

 WTO(ENTER a DEVICE FROM ORIGINAL DEVICE LIST)

Keywords for Logging Messages

Chapter 3: CA Automation Point Keywords 51

WTXC Keyword

The WTXC keyword issues a write-to-operator message to the CA Automation Point
message console. Rules process all messages issued by the WTXC keyword. WTXC
messages issued from rules are not processed through rules. (WTXC messages issued
from REXX programs are processed through rules.)

This keyword has the following format:

WTXC(msgtext)

msgtext

Specifies the value of msgtext. Can be any valid text string.
.

Example:

The following message notifies the operator that CA Automation Point has successfully
initialized the SYSA processor. CA Automation Point does not process the message
through rules.

MSGID(IPLSYSA)

 WTXC(IPL of SYSA processor is complete.)

Keywords for Logging Messages

The following sections describe the CA Automation Point keywords used to log
messages.

LOG Keyword

The LOG keyword tells CA Automation Point to write a message to the host message log
file.

This keyword has the following format:

LOG

Example:

The following message indicates the expiration date for the SMR product:

SMR9920 WARNING--SMR EXPIRES date

The following rule sends message SMR9920 to the host message log file:

MSGID(SMR9920), LOG

Keywords for Logging Messages

52 Command and Keyword Reference Guide

NOLOG Keyword

Specify the NOLOG keyword to tell CA Automation Point not to place a message in the
host message log file. NOLOG is the default.

This keyword has the following format:

NOLOG

Example:

The following rules send all CICS messages (except messages that begin with CICS99) to
the host message log file:

MSGID(CICS), LOG

MSGID(CICS99), NOLOG

NOPRINT Keyword

Specify the NOPRINT keyword to tell CA Automation Point not to print a message to the
hardcopy log.

This keyword has the following format:

NOPRINT

Example:

The following rules send all CICS messages (except messages that begin with CICS99) to
the hardcopy log:

MSGID(CICS), PRINT

MSGID(CICS99), NOPRINT

PRINT Keyword

Specify the PRINT keyword to tell CA Automation Point to print a message to the
hardcopy log.

This keyword has the following format:

PRINT

Usage Notes:

■ To activate the hardcopy log, open the Message Logging Settings window in the
Configuration Manager and enable the Print a Hardcopy Log of Console Messages
option.

Keywords for Notification

Chapter 3: CA Automation Point Keywords 53

■ If your workstation cannot communicate with the printer because the printer is not
online, the workstation issues a message informing you of the problem. Paper jams
and running out of paper are two common reasons that printers go offline. Do not
specify the PRINT keyword unless an operator is nearby to oversee the printer.

Example:

The following message indicates that all SYS1.DUMP data sets are full:

IEA994E ALL SYS1.DUMP DATA SETS ARE FULL

The following rule writes message IEA994E to the hardcopy log:

MSGID(IEA994E), PRINT

Keywords for Notification

The following sections describe the CA Automation Point keywords used for notification.

ALARM Keyword

The ALARM keyword tells CA Automation Point to sound an audible alarm (a rising or
rising-and-descending tone). By default, CA Automation Point sounds an alarm for all
highlighted messages.

This keyword has the following format:

ALARM(alarmnumber)

alarmnumber

Specifies alternate alarms. This value is a number from 1 to 20. If the number is 10
or less, the alarm consists of the specified number of rising tones. If the number is
between 11 and 20, the alarm consists of a rising tone followed by a descending
tone, repeated one to ten times depending on the number specified. For example,
ALARM(20) sounds an alarm tone that rises and descends ten times.

You can use some of the alternate alarms for more serious problems so that they
stand out. However, try not to use more than five different alarms because the
differences between too many alarms are difficult to distinguish.

When you specify no alarmnumber value, you get a single beep, which is the
standard alarm.

Keywords for Notification

54 Command and Keyword Reference Guide

Usage Notes:

■ To activate the ALARM facility, do the following:

1. From the Configuration Manager, choose Expert Interface, Automation,
Automation Point Desktop Settings.

2. Select LOCAL Only from the Sound Audible Alarms pull-down list.

The ALARM facility is activated.

■ You cannot use a status variable as the alarmnumber operand.

Example:

This message indicates that the WTO buffer is 80 percent full:

IEA405E WTO BUFFER SHORTAGE--80% FULL

The following rule alerts the operator to this problem using a tone that rises and
descends five times:

MSGID(IEA405E), ALARM(15)

ALARMSAY Keyword

The ALARMSAY keyword tells CA Automation Point to issue a text-to-speech alarm.

This keyword has the following format:

ALARMSAY(alarmtext)

alarmtext

Specifies the content of the text-to-speech alarm.

Usage Note:

Use the CA Automation Point desktop setting, Sound Audible Alarm, to activate the
ALARMSAY facility.

Examples:

■ The following message indicates that the WTO buffer is 80 percent full:

IEA405E WTO BUFFER SHORTAGE 80% FULL

The following rule alerts the operator to this problem:

MSGID(IEA405E), ALARMSAY(WTO Buffer shortage 80% full)

■ The following rule enables a Speak pseudo-command to be issued from CA
Automation Point:

CMDIN(Speak), SUPPRESS, ALARMSAY(&CMD(6:255)), WTXC(&CMD)

Keyword for Controlling Commands

Chapter 3: CA Automation Point Keywords 55

NOALARM Keyword

Specify the NOALARM keyword to prevent CA Automation Point from sounding an
audible alarm when a message is displayed. This keyword overrides the default, which is
to sound an alarm for any highlighted messages. It also silences the alarm for a message
for which you specified the ALARM keyword.

This keyword has the following format:

NOALARM

Example:

The following message indicates the expiration date for CA JMR:

JMR9920 WARNING--JMR EXPIRES date

The following rule suppresses any alarms associated with this message:

MSGID(JMR9920), NOALARM

Keyword for Controlling Commands

The CMDIN keyword defines the start of a command rule.

CMDIN Keyword

Specify the CMDIN keyword to define the start of a command rule.

This keyword has the following format:

CMDIN(characters)

characters

Specifies the name of a command that you want CA Automation Point to process.

Usage Notes:

■ CA Automation Point processes CMDIN rule clauses in this order: CMDIN(),
CMDIN(string), CMDIN(*). CMDIN() is best used to set global defaults, and
CMDIN(*) is best for global override.

■ You can specify multiple commands by specifying the portion of the command that
indicates a specific group of commands. For example, specifying CMDIN(STOP) tells
CA Automation Point to process all commands with identifiers beginning with STOP.
Specifying CMDIN() or CMDIN(*) causes CA Automation Point to process all
messages.

Keywords for CA NSM Event Traffic Controller

56 Command and Keyword Reference Guide

Examples:

■ The following rule prevents any remote user, other than user SYSADMIN, from
using an z/OS STOP command to stop CA OPS/MVS, and issues a write-to-operator
message to the CA Automation Point message console.

CMDIN(STOP),

 WHEN(&WORD2 EQ 'OPSS' AND &USER NE '' AND &USER(1:9) NE 'SYSADMIN@'),

 SUPPRESS, WTXC (&USER is not authorized to stop CA OPS/MVS)

■ The following rule enables an operator to get a complete list of the outstanding
replies using the DRL pseudo-command, which is converted to the D R, L, CN=(ALL)
command.

CMDIN(DRL), REWORD(D R, L, CN=(ALL))

■ The following rule rewords a complex z/OS command so that the operator can issue
the pseudo command SLIP0C1 instead of the complete z/OS command.

CMDIN(SLIP0C1), REWORD(SLIP SET, ID=P0C1, COMP=0C1, A=SVCD, MATCHLIM=1,

JOBNAME=TESTPGR, END)

Keywords for CA NSM Event Traffic Controller

The following sections describe the CA Automation Point keywords used to work with
CA NSM.

NOUNIFWD Keyword

Specify the NOUNIFWD keyword to prevent CA Automation Point from forwarding a
message that is processed by rules to CA NSM.

This keyword has the following format:

NOUNIFWD

Example:

The following rule prevents CA Automation Point from forwarding a message beginning
with IEA405E to CA NSM:

MSGID(IEA405E), NOUNIFWD

Keywords for CA NSM Event Traffic Controller

Chapter 3: CA Automation Point Keywords 57

SNMPTRAP Keyword

SNMPTRAP keyword sends an SNMP trap to the specified host.

This keyword has the following format:

SNMPTRAP(HOST(HostName|*) [COMMUNITY(CommunityName)]

 GTRAP (GenericTrapNum) STRAP (SpecificTrapNum)

 DATA(OID, type, value)[DATA(OID, type, value)]...)

HOST

Specifies the name of the host to which to send the trap.

Note: Specifying an asterisk (*) sends an SNMP trap to all host names designated
for message forwarding in the Configuration Manager.

COMMUNITY

Specifies the SNMP community to which to send the trap. This option may be used
to override the default of PUBLIC.

GTRAP

Defines the class of generic trap being sent. This value is a single digit, in the range
of 0 to 6. Under most circumstances, use code 6 to indicate that a system-specific
SNMP trap code is being used.

The following codes numeric codes have specific industry standard meanings as
predefined by the Internet Activities Board (IAB):

0

Indicates a coldstart.

1

Indicates a warmstart.

2

Indicates a link down.

3

Indicates a link up.

4

Indicates an authentification failure.

5

Indicates EGP neighbor loss.

STRAP

Specifies a system-specific trap number up to a 32-bit integer.

Keywords for CA NSM Event Traffic Controller

58 Command and Keyword Reference Guide

DATA

Specifies the type and value of the data:

type

Specifies the type of the trap

value

Specifies the value of the data

You can repeat this operand up to 20 occurrences.

Example:

The following example sends the enterprise-specific trap number 1 to the host named
UNIHOSTA. The trap information is related to an SNMP MIB (management information
base) object whose OID (object identifier) is 999.2.1.3. The integer data value being
reported for the OID is 777.

SNMPTRAP(HOST(UNIHOSTA) GTRAP(6) STRAP(1) DATA(999.2.1.3,INTEGER,777))

UNICMD Keyword

The UNICMD keyword tells the CA NSM Event Manager, which resides on the specified
host, to execute the supplied command.

This keyword has the following format:

UNICMD(HOST(HostName) COMMAND(CommandString))

HOST

Specifies the name of the host on which the CA NSM Event Manager resides.

COMMAND

Specifies the command to be executed by the CA NSM Event Manager.

Example:

The following example copies a file from the temporary directory to an application
directory on the remote Windows host named UNIHOSTA:

UNICMD(HOST(UNIHOSTA) COMMAND(COPY C:\TEMP\YOURDATA.DAT

 C:\YOURAPP\YOURDATA.DAT))

Keywords for CA NSM Event Traffic Controller

Chapter 3: CA Automation Point Keywords 59

UNIFWD Keyword

The UNIFWD keyword tells CA Automation Point to forward a message that is processed
by rules to all recorded CA NSM hosts.

This keyword has the following format:

UNIFWD

Example:

The following rule tells CA Automation Point to forward a message beginning with
IEA405E to CA NSM:

MSGID(IEA405E), UNIFWD

UNIWTO Keyword

The UNIWTO keyword sends the supplied message to the CA NSM Event Manager on
the specified host.

This keyword has the following format:

UNIWTO (HOST(HostName|*)

 MESSAGE(MessageString)[ORIGHOST(OrigHostName)]

 [SEVERITY(I|W|E|S|F)])

HOST

Specifies the name of the host on which the receiving CA NSM Event Manager
resides.

Specifying an asterisk (*) sends the supplied message to all host names designated
for message forwarding in Configuration Manager.

MESSAGE

Specifies the text string of the message being sent to the CA NSM Event Manager.

ORIGHOST

Specifies the name of the host on which the message originates.

Default: The name of the current session.

Keyword for Interfacing with Third-Party Applications

60 Command and Keyword Reference Guide

SEVERITY

Specifies the severity of the message.

I=Informational

W=Warning

E=Error

S=Success

F=Failure

Default: E, if the message is an action message, otherwise I.

Example:

The following example sends a message to the CA NSM Event Manager residing on the
host named UNIHOSTA:

UNIWTO(HOST(UNIHOSTA) MESSAGE(HELLO EVENT MANAGER))

Keyword for Interfacing with Third-Party Applications

This section describes the keyword that allows interaction with third-party software.

EXPORTMSG Keyword

The EXPORTMSG keyword tells CA Automation Point to send the message to an
ApExportMsg function created by the user, which then forwards messages to a
third-party software application.

This keyword has the following format:

EXPORTMSG (MESSAGE(MessageText) [SOURCE(SourceOfMsg)] [SEVERITY(OneCharSevCode)]

 [APPTEXT(ApplicationText)])

MESSAGE

Specifies the text of the message to be sent to the ApExportMsg function. For
example, the CA Automation Point variable &MSG could be supplied as this
parameter.

SOURCE

Specifies the name of the source of the message. If the SOURCE parameter is not
supplied when the EXPORTMSG command is issued from CA Automation Point
rules, the name of the session from which the message came is used as a default.

Keyword for Interfacing with Third-Party Applications

Chapter 3: CA Automation Point Keywords 61

SEVERITY

Specifies a one-character severity code whose use is defined by each site. The
implementation of ApExportMsg can treat severity in any fashion appropriate for
the site. If the SEVERITY parameter is not supplied when the EXPORTMSG command
is issued from CA Automation Point rules, a default value of E is used if the exported
message is an action message; otherwise the default value is I. The default value is
always I when the EXPORTMSG command is issued from a REXX program.

APPTEXT

Specifies the application text specific to your implementation of ApExportMsg. It
enables you to pass application-specific text from CA Automation Point rules into
ApExportMsg. For example, you may have implemented ApExportMsg to send
messages to any one of several third-party applications. The contents of the
APPTEXT parameter could be used to indicator to which of these third-party
applications the message is to be sent.

Usage Note:

To use this command, an APOPTIONS.DLL must be created containing a function named
ApExportMsg. See the EXPORTMSG.TXT file in the CA Automation Point
SAMPLE\EXPORTMSG directory for details on this functionality.

Example:

Suppose that CA Automation Point receives the following message from CA OPS/MVS on
the host:

OPS000I REXX IPL9672

The following sample rule invokes EXPORTMSG, which passes the message to
ApExportMsg (), which provides interaction with third-party software:

MSGID (OPS000I REXX IPL9672)

 EXPORTMSG (MESSAGE(&MSG) SEVERITY(E) SOURCE(AP3672) APPTEXT(IPL STATE))

The ApExportMsg function would take this information and make a call to the
third-party software. The third-party software would evaluate the call and return a
value to ApExportMsg. The ApExportMsg function would then either return a zero to CA
Automation Point with no message or return a non-zero return code and an error
message that would be recorded in the ASOTRACE.LOG.

Script Keywords Summary

62 Command and Keyword Reference Guide

Script Keywords Summary

This section describes the keywords that you need to define when setting up script files.
For details about setting up these kinds of files, see "Customizing Special CA Automation
Point Files" in the Administrator Guide.

Use the following keywords to set up script files:

ENDSEARCH

Terminates the preceding SEARCH.

ERROR

Specifies what happens if a search fails.

KEY

Sends a keystroke string to the target session.

SEARCH

Searches the entire screen for a string of data.

WAIT

Causes the script to wait for the preceding keystroke string to be accepted by the
system.

XKEY

Sends a single CA Automation Point operation instruction to a host session,
regardless of whether the keyboard is locked.

Script Keyword Syntax

Follow these rules when writing statements in a script file:

■ Begin statements in any column.

■ Do not continue statements onto the next line. The maximum line length is 256
characters.

■ Use only one script keyword per line.

■ Begin comment lines with an asterisk (*).

CA Automation Point executes script statements line by line. Each time a script
executes, CA Automation Point evaluates all SEARCH statements in the order that they
occur in the script.

Script Keyword Descriptions

Chapter 3: CA Automation Point Keywords 63

Script Keyword Descriptions

The following sections describe the CA Automation Point script keywords.

ENDSEARCH Keyword

The ENDSEARCH keyword terminates a search initiated by a SEARCH keyword.

This keyword has the following format:

ENDSEARCH

Example:

When an MCS console is active and operating correctly, it displays a message similar to
one of these:

IEE152 ENTER CANCEL D C,K

IEE612I CN=05 DEVNUM=B4C SYS=S028 CMDSYS=S028

Suppose that your script contains these statements:

ERROR=IGNORE

*

SEARCH=(IEE152I)

 KEY=(K S,DEL=N,SEG=20,MFORM=(T,J)@E)

ENDSEARCH

*

SEARCH=(IEE612I)

 KEY=(K S,DEL=N,SEG=20,MFORM=(T,J)@E)

ENDSEARCH

The statements take the following actions:

1. The first SEARCH statement tells CA Automation Point to search for the IEE152I
message.

2. If the first SEARCH statement finds message IEE152I, the KEY statement executes,
putting the console in nondelete mode, setting the segment length to 20 lines, and
so on; if the SEARCH operation does not locate the IEE152I string, the ERROR
statement tells CA Automation Point to continue processing.

3. The ENDSEARCH statement terminates the first search operation.

4. CA Automation Point executes the second SEARCH operation (for the IEE612I
message) in the same way.

Script Keyword Descriptions

64 Command and Keyword Reference Guide

ERROR Keyword

The ERROR keyword lets you determine what happens if the following search fails to
find the data. The ERROR keyword applies to all subsequent SEARCH statements until
another ERROR statement replaces it.

This keyword has the following format:

ERROR=action

action

Valid values for action are:

ENDSCRIPT

If the search fails, this value tells CA Automation Point to stop processing the
script. Use this value when you want the script to search the screen for error
indicators. If none are found, the script is complete and can be terminated.

ENDSESSION

If a search fails, this value tells CA Automation Point to stop processing the
script, stop controlling the session, stop monitoring messages, and begin action
to clear a console error. Consequently, session automation is suspended for a
period specified by the Post-Error Restart Automation setting for the session.
After the wait period, CA Automation Point automatically restarts the session
to restore session automation. You can use this value in console initialization
scripts before searching for a text string that must be present to initialize the
session.

IGNORE

If the search fails, this value tells CA Automation Point to ignore all subsequent
statements in the current search until it finds the matching ENDSEARCH
statement, and then to continue executing the remainder of the script.

Default: ENDSCRIPT

KEY Keyword

The KEY statement lets you send a keystroke string to the target session. To send normal
text characters, it is not necessary to use special abbreviations; however, you must type
the characters in the same case that you want CA Automation Point to send them.

This keyword has the following format:

KEY=(keystrokes)

keystrokes

Specifies the keystroke string to be sent to the target session. This value ends with
@E (the ENTER operation), unless you are sending a PF or PA key.

Script Keyword Descriptions

Chapter 3: CA Automation Point Keywords 65

Note: For a list of valid keyboard operations, see the Administrator Guide.

Example:

The following KEY statement sends a keystroke string to the session that deletes the
display area on an MCS console:

KEY=(K A,NONE@E)

SEARCH Keyword

The SEARCH statement lets you search the entire screen for a specific string of data. Any
statements that follow, up to the corresponding ENDSEARCH, execute only if the search
is successful. You can nest SEARCH statements.

This keyword has the following format:

SEARCH=(text)

text

Specifies the string of data that CA Automation Point looks for on the screen

Example:

The following SEARCH statement tells CA Automation Point to search for message
IEE152I:

SEARCH=(IEE152I)

WAIT Keyword

The WAIT keyword specifies the time, in seconds, to wait after processing a preceding
statement.

This keyword has the following format:

WAIT=(time)

time

Specifies the number of seconds to wait. Specify 0 through 32767

Example:

The following is an example sets a wait time of 5 seconds.

WAIT=5

Script Keyword Descriptions

66 Command and Keyword Reference Guide

XKEY Keyword

The XKEY keyword lets you send a CA Automation Point operation instruction to a host
session while that session is in X state (that is, unable to accept instructions entered
from the keyboard).

This keyword has the following format:

XKEY=(instruction)

instruction

Specifies the name of the keyboard operation (for example, POWER_RESET) that
you want the session to receive.

Notes:

■ The @ character must always precede the keyboard operation name, and the
name must be enclosed in quotation marks (@"key_opt"). The entire operation
instruction, including the @ character, must be enclosed in parentheses.

■ For a list of valid keyboard operations, see the Administrator Guide.

Example:

The following XKEY statement sends a RESET keystroke to a session that is currently in
X-state.

XKEY=(@"RESET")

Chapter 4: ADDRESS AXC Commands 67

Chapter 4: ADDRESS AXC Commands

CA Automation Point has its own built-in command processors that you can issue to
perform specific tasks, such as issuing z/OS commands to an automated session or
sending messages from non-automated sessions through CA Automation Point rules.

ADDRESS AXC Command Summary

The following sections summarize CA Automation Point ADDRESS AXC commands.

Commands for Automation Processing Data

Use the following commands to get data for automation processing.

CLOSEBUF

Closes the internal host message stream buffer (created by a previously issued
OPENBUF command) for a specified asynchronous session

GETSCRN

Captures screen images from a session and stores information about that session in
variables

OPENBUF

Opens an internal host message stream buffer for a specified asynchronous session

READBUF

Reads a host message from the internal buffer of a specified asynchronous session

Commands for Automation Tasks

Use the following commands to perform automation tasks.

DELVAR

Deletes a variable from the CA Automation Point variable table.

GETMSGI

Fetches the number of messages in the CA Automation Point action message recall
list, the internal pointer to each action message in the list, and the text of each
action message.

GETREXXL

Returns a list of active and queued REXX programs.

ADDRESS AXC Command Summary

68 Command and Keyword Reference Guide

GETVAR

Copies the value of a CA Automation Point status variable into a local REXX variable.

GETVARL

Returns the names of all CA Automation Point status variables that match a
specified name mask.

LOADRULES

Enables a new CA Automation Point rules file dynamically. The dynamically enabled
rules file replaces the current rules file.

MSG

Allows you to indirectly process messages through rules, even in sessions that you
cannot normally automate with rules. The messages appear to come from a session
that you specify.

SESSCNTL

Establishes or closes connections, pauses or restarts automation for a single
specified session. This command can also control the frequency of background
window updates and change the host to which an automated Telnet session is
connected.

SETVAR

Sets the contents of a CA Automation Point status variable to a given value, changes
the value of a variable, or creates a new variable

STOPREXX

Stops an executing REXX program or cancels execution of a queued REXX program.

WAIT

Causes a REXX program to wait for a specified number of seconds before processing
the next REXX statement.

Commands for REXX-related Operations

Use the following commands for REXX-related operations.

REXX

Queues a REXX program for processing by CA Automation Point

SCRIPT

Invokes a script from a REXX program

SESSCMD

Sends a text string (such as a command) to a specified session and retrieves a
screen image from that session after it has processed the text string

ADDRESS AXC Command Summary

Chapter 4: ADDRESS AXC Commands 69

Commands for Utilities

Use the following commands to perform the corresponding utility tasks.

DOM

Deletes an action message from the action message area of the Merged Messages
window and from the Action Message Recall window (by deleting it from the CA
Automation Point action message recall list).

PLOT

Draws a line or bar graph of system resources.

SESSCONFIG

Populates a REXX stem variable with information about sessions configured in a
particular session definition set.

SESSLIST

Populates a REXX stem variable with information about the current state of sessions
running on the AP Desktop.

WTO

Displays a text string in the normal message area of the Merged Messages window
and in the Normal Message Recall window.

WTOH

Displays a text string in the action message area of the Merged Messages window
and in the Action Message Recall window.

WTXC

Displays a text string in the AP Messages window and in the AP Message Recall
window. (CA Automation Point rules can process messages issued with this
command.)

ADDRESS AXC Command Syntax

70 Command and Keyword Reference Guide

ADDRESS AXC Command Syntax

Follow these rules when invoking ADDRESS AXC commands:

■ Use double ampersands (&&) when you include an ampersand in the text to be
sent. To send the text ABC&D, issue the SESSCMD command processor as follows:

"SESSCMD 'ABC&&D'"

■ Use a single ampersand (&) before the name of a variable in your REXX program to
instruct CA Automation Point to evaluate the variable. For example:

myvar = "This is a test msg."

"WTOH '&myvar'"

displays the following message in the Action Message area:

This is a test msg.

■ The usual delimiter for the positional operands in the MSG, REXX, SESSCMD, WTO,
WTOH, and WTXC command processors is the single quote ('). If the value that you
are specifying contains single quotes, you can use any of the following delimiter
characters:

~ ! @ # $ % ^ * _ - + = " < > , . /] \

The following command sends a message containing an embedded single quote:

"WTXC #Time's up!# "

■ Do not exceed the 256-character maximum line length when invoking a command
processor. Be especially careful if you are using many variables or variables that
have very long values.

■ Operands shown in brackets ([]) are optional.

Return Codes from Command Processors

Chapter 4: ADDRESS AXC Commands 71

Return Codes from Command Processors

Some CA Automation Point command processors generate a return code when you
issue them:

■ A command processor executed from REXX assigns the return code value to the
REXX variable RC.

■ A command processor invoked from a rule places the return code value in the CA
Automation Point variable AXCRESULT.

■ If the return code is a negative number (such as -2), REXX traces the line in the REXX
program that triggered the return code.

RC Meaning

30 You have tried to address an invalid or inactive command environment
(using an ADDRESS statement in your REXX program).

-8 There was not enough memory to process the command.

-7 The statement invoking the command processor contained an invalid
session name or type, or the session does not support the requested
operation.

-6 The statement invoking the command processor was missing a required
argument.

-5 The statement invoking the command processor contained an invalid
argument.

-4 The statement invoking the command processor contained too many
arguments or mutually exclusive arguments.

Return Codes from Command Processors

72 Command and Keyword Reference Guide

RC Meaning

-2 CA Automation Point encountered an invalid delimiter while parsing the
command.

The problem occurs when CA Automation Point expects to see a certain
character as a delimiter and finds another character instead. For example,
using this statement in a REXX program produces a return code of -2
because CA Automation Point expects parentheses (not single quotes) to
enclose the text string.

"SETVAR REXX_MESSAGE 'THIS IS A REXX MESSAGE'"

 CA Automation Point recognizes the following delimiters if you issue its
commands from REXX programs:

■ Single quotation marks

■ Parentheses

■ Spaces not contained in quotation marks or parentheses

■ The end of the line

This return code could also indicate that you have exceeded the maximum
length of a variable name in a command processor statement.

-1 CA Automation Point does not recognize an operand in the command
processor, probably because its name is misspelled. CA Automation Point
also returns this code if you issue operating system commands without
specifying CMD as the target environment.

If you issue a command through a CA Automation Point REXX program, you
must use the REXX ADDRESS command to target commands to other REXX
environments because CA Automation Point becomes the default
environment to REXX. For example, to use the operating system to copy a
file, issue a command that looks like this:

ADDRESS CMD COPY filename1 filename2

0 The command processor executed without errors.

3 An error occurred when processing the command:

■ The LOADRULES command generates a return code of 3 if the rule file
cannot be opened.

■ READBUF, CLOSEBUF, and OPENBUF commands generate a return
code of 3 if a buffer does not exist for the session that you specify, or
if another REXX program currently owns the specified session's buffer.

■ The SESSCNTL command generates a return code of 3 if you attempt
to restart automation in a session while global automation pause is in
effect.

■ The SESSCONFIG command generates a return code of 3 if you specify
an invalid session definition set name or the associated file cannot be
opened.

Commands for Automation Processing Data

Chapter 4: ADDRESS AXC Commands 73

RC Meaning

9 The LOADRULES command processor did not enable the rules file that you
specified because one or more rules in the file contained syntax errors.

32 The SESSCMD command processor timed out because the keyboard in the
specified session was locked (in an X state) and did not clear soon enough.

36 A SESSCMD command locked the host keyboard and the keyboard did not
clear soon enough; the host could not respond before SESSCMD timed out.

150 The PLOT command referenced an undefined graph. Be sure that you have
specified the correct plot and that you have spelled it correctly.

151 The PLOT command attempted to define a line or bar that already exists.

152 The PLOT command attempted to delete a line or bar that does not exist.

153 You specified an invalid range in a PLOT command statement. For example,
you may have specified a minimum value that exceeded a maximum value.

154 You tried to define more than eight lines in a PLOT command statement.

155 You tried to define more than one bar in a PLOT command statement.

156 The PLOT command referenced an invalid or undefined TICK value.

157 You defined an illegal tick mark.

158 You specified an invalid scale in a PLOT command statement. For example,
you may have specified a start value that exceeded a stop value, or you
may have tried to apply a TIME scale to an axis defined as NUMERIC.

159 The PLOT command exceeded the maximum number of label lines for an
axis or title label.

303 An incorrect key operation was specified.

Commands for Automation Processing Data

The following sections describe the ADDRESS AXC commands used for automation data
processing.

Commands for Automation Processing Data

74 Command and Keyword Reference Guide

CLOSEBUF Command

The CLOSEBUF command closes an automated asynchronous session's host message
stream buffer. (The OPENBUF command opens a buffer for an asynchronous session.)

This command has the following format:

"CLOSEBUF SESSION(sessname)"

SESSION

Specifies the name of a session (sessname) that has a message stream buffer that
you want to terminate. The session must be an automated asynchronous session.

Usage Notes:

■ Always issue a CLOSEBUF command to explicitly close a buffer that you opened with
a previously issued OPENBUF command.

■ If the specified session is automated-that is, if you chose to automate the session
when you defined the session- any unread host messages in the buffer are lost
when you issue the CLOSEBUF command.

■ Only the REXX program that opened the buffer for the specified asynchronous
session can close that session's buffer. If another REXX program tries to close the
buffer, the CLOSEBUF command generates a return code of 3.

■ If your REXX program issues a CALL statement to call another REXX program, the
called program can close the buffer.

Commands for Automation Processing Data

Chapter 4: ADDRESS AXC Commands 75

GETSCRN Command

The GETSCRN command captures the screen image associated with a session and places
information about that session in variables.

This command has the following format:

"GETSCRN SESSION(sessname) [SCREEN(YES|NO)] [PREFIX(prefix|LINE|NO)]"

SESSION

Specifies the name of the session (sessname) from which you want to capture the
screen image.

SCREEN

(Optional) Specifies whether to create the REXX variable SCREEN to store the
character portion of the screen image. This operand has two options:

YES

Creates the SCREEN variable.

NO

Does not create the SCREEN variable. Specifying SCREEN(NO) saves memory if
you do not intend to use the SCREEN variable.

Default: YES

PREFIX

(Optional) Creates a stem variable to store the lines of a screen image returned to
CA Automation Point. CA Automation Point stores each line of the screen in a
separate variable and numbers the variables consecutively (for example, LINE.1,
LINE.2, and so on).

Note: The variable numbered 0 (for example, LINE.0) always contains the total
number of elements in the stem variable.

Valid PREFIX values are:

prefix

The name that you want to assign to the variables set by the PREFIX operand.
For example, specifying PREFIX(ROW) causes CA Automation Point to create
stem variables named ROW.0, ROW.1, ROW.2, and so on through ROW.n.

LINE

Tells CA Automation Point to create REXX variables named LINE1 through LINEn
to store lines of a screen image.

NO

Does not create the screen variable. Specifying PREFIX(NO) saves memory if
you do not intend to use the variables.

Default: LINE

Commands for Automation Processing Data

76 Command and Keyword Reference Guide

Usage Notes:

■ Some asynchronous console sessions have a scrolling display and sometimes
generate multiple screens of output. For these sessions, it is better to open an
internal message stream buffer and redirect the incoming messages to the buffer;
your REXX program can then read the messages in the buffer and act upon each
one as necessary. For more information about message stream buffering, see the
description of the OPENBUF command (see page 79).

■ For compatibility with earlier versions of CA Automation Point, the GETSCRN
command also creates the old-style, non-stem variables. For example, suppose that
the PREFIX variable is LINE. In addition to the stem variables described above,
GETSCRN also creates the non-stem variables LINE1, LINE2, and so on through
LINEn. In this case, the variable LINE (equivalent to the stem variable LINE.0)
contains the total number of elements in the variable.

■ When you issue the GETSCRN command from a REXX program, CA Automation
Point captures the screen image and places information about the screen into the
following REXX variables:

CSRCOL

Specifies the column in which the cursor is positioned.

CSRPOS

Specifies the number of positions the cursor is away from the upper-left corner
of the screen.

CSRROW

Specifies the row containing the cursor.

OIA

Specifies the operator information area (OIA) (also called the status line).

SCREEN

Creates a copy of the text of the screen image, with each row laid end to end.
This copy does not include attributes such as colors or field positions.

SCRLEN.

Specifies the number of lines on the screen.

Commands for Automation Processing Data

Chapter 4: ADDRESS AXC Commands 77

SCRSIZE

Specifies the number of characters the screen can contain.

SCRSTAT

Specifies the status of the screen:

LOCKED-The terminal emulator for the session is currently in an X-state and will
not accept any input from the keyboard.

UNLOCKED-The terminal emulator for the session is not currently in an X-state.

SCRWIDTH

Specifies the number of columns on the screen.

■ Each time you issue the GETSCRN command, CA Automation Point creates SCREEN
and LINE.n variables automatically unless you specify otherwise.

Examples--capture screen image:

■ Suppose that you want to use a REXX program to capture a screen image from an
MCS console session and place information about that screen in REXX variables. You
can place a statement like the following in the REXX program:

"GETSCRN SESSION(S008)"

In the sample statement, S008 is the name of an MCS console session. Because this
statement does not specify the PREFIX operand, CA Automation Point automatically
stores lines of the returned screen image in REXX variables named LINE1 through
LINEn.

The sample REXX program described next uses the CA Automation Point GETSCRN
and WTO commands to capture the contents of a screen and place them in a file
called SCREEN.cap. To invoke the REXX program, issue the command shown below
either manually or using a CA Automation Point rule:

SC sessname filename [DEBUG]

The command has these components:

– SC specifies the name (SC.cmd) of the REXX program.

– The sessname value is the name of the session supplying the screen to be
captured.

– The filename specifies the file name to hold the captured screen image. (The
default file name is SCREEN.cap.)

– DEBUG is an optional operand that activates the REXX trace facility for
debugging purposes.

Commands for Automation Processing Data

78 Command and Keyword Reference Guide

■ CA Automation Point provides a sample REXX program, SC.cmd, for capturing a
screen image. The following example shows the text of the SC.cmd program.
Besides the GETSCRN command, the program also uses the SESSCMD and WTO
commands.

/* This REXX program captures a screen image. */

PARSE UPPER ARG . "'" TEXT "'" . /* Get the message text. */

IF DEBUG \= '' THEN TRACE R /* Activate REXX trace. */

PARSE UPPER ARG P1 P2 . /* Parse off positional arguments */

IF P1="" | P1='DEBUG' /* If first arg not there, */

THEN SESSNAME ='SESSION' /* Then set default session name */

ELSE SESSNAME = P1 /* Else, use 1st argument */

IF P2="" | P2="DEBUG" /* If second argument not there */

THEN FILENAME = 'SCREEN.CAP' /* Then set default filename */

ELSE FILENAME = P2 /* Else, use 2nd arg as filename */

1 "WTO 'SC.CMD active, session= &SESSNAME filename= &FILENAME'"

"GETSCRN SESSION(&SESSNAME) PREFIX(LINE) SCREEN(NO)"

IF RC \= 0

THEN SAY 'GETSCRN FAILED, RC='RC

ELSE DO

 TITLE = "SCREEN FROM SESSION " SESSNAME

 CALL LINEOUT FILENAME, TITLE

 DO I = 1 TO SCRLEN /* Loop through each row */

 CALL LINEOUT FILENAME, LINE.I /* Write line to disk */

 END

 CALL LINEOUT FILENAME /* Close the file */

 END

2 "WTO 'SC.CMD COMPLETE' "

EXIT

The WTO commands in SC.CMD issue write-to-operator messages as the GETSCRN
command captures the screen image. The WTO command statement indicated by 1
in the example above alerts the operator when screen processing begins, and the
statement indicated by 2 notifies the operator when SC.CMD finishes executing.

Commands for Automation Processing Data

Chapter 4: ADDRESS AXC Commands 79

OPENBUF Command

The OPENBUF command opens an internal host message stream buffer for a specified
automated asynchronous session and redirects the session's incoming messages to the
buffer. The REXX program that opened the buffer can then read the messages from the
buffer and act upon each message.

Note: Message stream buffering is useful for interpreting command responses from the
asynchronous host console, especially those generating multiple screens of output.

This command has the following format:

"OPENBUF SESSION(sessname) [WAIT(waittime)]"

SESSION

Specifies the session (sessname) for which you want to create the message stream
buffer. It must be an automated asynchronous session.

WAIT

(Optional) Specifies the number of seconds (waittime) -from 0 to 100000-that the
OPENBUF command waits if another REXX program currently owns the buffer for
the specified session.

If the waittime value expires before the OPENBUF command executes, it generates
a return code of 3.

Default: 0

Usage Notes:

Keep the following items in mind when using the OPENBUF command:

■ The REXX program issuing the OPENBUF command owns the specified session's
buffer.

■ Only the REXX program that opens the buffer can read or close the buffer. The
READBUF command reads messages from the buffer and the CLOSEBUF command
closes the buffer.

■ If your REXX program issues a CALL statement to call another REXX program, the
called program can read or close the buffer.

■ If the session is automated-if you chose to automate the session when you defined
the session-incoming host messages are no longer processed by CA Automation
Point rules and do not appear in CA Automation Point function windows until your
REXX program closes the buffer.

■ Always issue a CLOSEBUF command to explicitly close a buffer that you opened with
a previously issued OPENBUF command.

Commands for Automation Processing Data

80 Command and Keyword Reference Guide

READBUF Command

The READBUF command reads the next message from an automated asynchronous
session's internal message stream buffer (if one exists). Upon completion, the message
is removed from the buffer. When the READBUF command returns a message with no
lines, the buffer is either empty or the message has not yet arrived.

This command reads one message at a time from the session buffer. If a message exists
in the session buffer when this command is issued, that message is placed into the
Line.1 stem variable when using the default prefix of LINE.

This command has the following format:

"READBUF SESSION(sessname) [PREFIX(prefix|LINE|NO)] [WAIT(waittime)]"

SESSION

Specifies the session (sessname) that has a message buffer from which you want to
read the host messages. The session must be an automated asynchronous session.

PREFIX

(Optional) Creates a stem variable to store the message read from the buffer. CA
Automation Point stores each line of the message in a separate stem variable and
numbers the variables consecutively (for example, LINE.1, LINE.2, and so on).

Note: The stem variable numbered 0 (for example, LINE.0) always contains the total
number of message lines stored in the variable. (So if LINE.0=0, then the buffer was
empty when your REXX program issued the READBUF command.)

Valid PREFIX values are:

prefix

Specifies the name that you want to assign to the stem variable. For example,
specifying PREFIX(ROW) causes CA Automation Point to create a set of
variables named ROW.0, ROW.1, ROW.2, and so on through ROW.n.

LINE

Tells CA Automation Point to create stem variables named LINE1 through LINEn
to store lines of the buffer.

NO

Discards the message.

Default: LINE

Commands for Automation Tasks

Chapter 4: ADDRESS AXC Commands 81

WAIT

(Optional) Specifies the number of seconds (waittime)-from 0 to 100000-that the
READBUF command waits if the buffer is empty.

If the waittime value expires before a message arrives in the buffer, the READBUF
command generates a return code of 3.

Default: 0

Usage Notes:

Keep the following points in mind when using the READBUF command:

■ Only the REXX program that opened the buffer can read from the buffer. (The
OPENBUF command opens a buffer for an asynchronous session.)

■ If your REXX program issues a CALL statement to call another REXX program, the
called program can read from the buffer.

■ If a buffer does not exist for the session that you specify, or if another REXX
program currently owns the specified session's buffer, the READBUF command
generates a return code of 3.

■ You can direct messages that the REXX program reads from the buffer to CA
Automation Point rules by issuing the MSG command.

Commands for Automation Tasks

The following sections describe the ADDRESS AXC commands used for automation tasks.

DELVAR Command

The DELVAR command deletes a status variable from the CA Automation Point variable
group.

This command has the following format:

"DELVAR varname"

varname

Specifies the name of the CA Automation Point variable to be deleted.

Usage Notes:

■ DELVAR status variable names are case-sensitive in CA Automation Point. Use
uppercase variable names consistently.

■ Deleting a non-existent variable (a variable that has not been previously set) is
always considered successful with RC=0.

Commands for Automation Tasks

82 Command and Keyword Reference Guide

Example:

To delete the status variable MSG_STATUS from the variable table, issue this command:

"DELVAR MSG_STATUS"

GETMSGI Command

The GETMSGI command fetches the internal pointer to an action message and the
actual message text.

This command has the following format:

"GETMSGI"

Usage Notes:

When you invoke the GETMSGI command, it populates the following REXX variables as
shown:

REXX Variable Contents After Invoking GETMSGI

DOMID.0 The number of messages in the CA Automation Point action
message recall list. This variable contains a value from 0
through 100.

DOMID.n The internal pointer to message number n in the action
message recall list.

DOMID_MSG.n The text for action message number n in the action message
recall list.

After invoking the GETMSGI command, you can use the DOM command to delete
specific action messages from the CA Automation Point action message recall list.

Example:

Suppose that you want to delete all of the action messages in the CA Automation Point
action message recall list every night at midnight. You could set up a time rule to invoke
a REXX program like the following one:

"GETMSGI"

DO CNT=1 TO DOMID.0 BY 1

 INTERPRET 'CUR_DOMID=DOMID.'CNT

 "DOM DOMID(&CUR_DOMID)"

END

Commands for Automation Tasks

Chapter 4: ADDRESS AXC Commands 83

GETREXXL Command

The GETREXXL command returns a list of active and queued REXX programs invoked
from within CA Automation Point. (The GETREXXL command cannot detect REXX
programs invoked outside CA Automation Point.)

This command has the following format:

"GETREXXL"

Usage Notes:

■ Use the GETREXXL command with the STOPREXX command to stop active REXX
programs or to prevent queued REXX programs from executing.

■ The GETREXXL command stores the information it returns in the following REXX
stem variables:

REXX Stem Variable Contents After Invoking GETREXXL

GETREXXL.0 The number of active and queued REXX programs
invoked from within CA Automation Point (in the
default AXC environment).

GETREXXL.n An internal pointer to REXX program number n,
indicating the order in which the program was
invoked in relation to the others.

GETREXXL_NAME.n The name of REXX program n and its command line
arguments.

Example:

Suppose that you want to stop all instances of a particular program. Your REXX code
could look like this:

"GETREXXL"

/* GETREXXL populates GETREXXL.0 with the number */

/* of active and queued REXX programs, the */

/* GETREXXL_NAME.i variables with the name and */

/* arguments of a program, and GETREXXL.i with the */

/* number used by STOPREXX to terminate the program*/

DO I = 1 TO GETREXXL.0

 parse upper value GETREXXL_NAME.i with rxname.

 IF rxname = token THEN

 "STOPREXX "GETREXXL.I

END

Commands for Automation Tasks

84 Command and Keyword Reference Guide

GETVAR Command

The GETVAR command copies the value of a CA Automation Point status variable into a
local REXX variable.

This command has the following format:

"GETVAR varname [rexxvar]"

varname

Specifies the name of the CA Automation Point variable to be copied.

rexxvar

(Optional) The name of the local REXX variable into which the CA Automation Point
variable is copied. If you do not specify a REXX variable name, the value of the first
CA Automation Point variable is copied into the REXX variable AXCRESULT.

Usage Note:

GETVAR status variable names are case-sensitive in CA Automation Point. Use
uppercase variable names consistently.

Example:

To give the variable SCREEN_STATUS the same value as the status variable SCRSTAT,
issue this command:

"GETVAR SCRSTAT SCREEN_STATUS"

Note: If you issue this command when the SCRSTAT status variable has the value
LOCKED, the REXX variable SCREEN_STATUS is also set to LOCKED.

Commands for Automation Tasks

Chapter 4: ADDRESS AXC Commands 85

GETVARL Command

The GETVARL command returns the names and values of all CA Automation Point status
variables in the variable pool matching a specified name mask. A REXX stem variable
with a special prefix (GETVL.n) stores the returned status variable names.

This command has the following format:

"GETVARL varnamemask

 [PREFIX(GETVL|prefix]

 [MAX(99|nnn)]

 [SORT(ASCEND|DESCEND)]

 [TOKEN(0|&GETVLTK)]"

varnamemask

Specifies the variable name mask for the status variable name search. Follow these
name mask guidelines:

■ Name masks can contain up to 32 characters.

■ The following wild card characters are valid:

– ? or + replaces individual characters.

– * replaces any number of trailing characters when placed as the last
character in the name mask.

PREFIX

(Optional) Specifies the prefix of the REXX stem variable containing the status
variable names that the GETVARL command returns.

For example, assume that the stem name is the default GETVL. Following standard
stem-variable convention, the GETVL.0 variable contains the number of status
variables returned. The variables GETVL.1 through GETVL.n each contain the name
of a status variable.

Default: GETVL

MAX

(Optional) Specifies the maximum number of variables names to return. The
maximum valid nnn value is 500.

Default: 99

SORT

(Optional) Sorts the returned status variable names alphabetically in ascending
(ASCEND) or descending (DESCEND) order.

Default: ASCEND

Commands for Automation Tasks

86 Command and Keyword Reference Guide

TOKEN

(Optional) A marker that the GETVARL command uses when it cannot retrieve all of
the status variables requested in a single operation (because the number of variable
names specified by varnamemask exceeds the current MAX value).

If your GETVARL request cannot return all of the status variable names specified by
varnamemask in a single operation, it sets the TOKEN variable &GETVLTK to mark
the variable where the search should resume for the next GETVARL operation.

When you issue the GETVARL command for the first time, omit the TOKEN operand
or set it to 0 (zero).

If a subsequent GETVARL operation is necessary, specify TOKEN(&GETVLTK) to
retrieve the remaining status variable names.

Example:

The following REXX statements list every existing variable:

GETVLTK=0

DO FOREVER

 "GETVARL * PREFIX(GETVL) SORT(ASCEND) MAX(500) TOKEN(&GETVLTK)"

 IF GETVL.0=0 THEN LEAVE /* No more variables */

 DO I = 1 TO GETVL.0

 SAY GETVL.I /* Display variable names */

 END

END

Note: The DO FOREVER loop is needed to list more than 500 variables. Without it, this
code only lists the first 500 variables because of the MAX(500) entry.

Commands for Automation Tasks

Chapter 4: ADDRESS AXC Commands 87

LOADRULES Command

The LOADRULES command enables a new CA Automation Point rules file dynamically
(while CA Automation Point is running). A dynamically enabled rules file always replaces
the current rules file.

This command has the following format:

"LOADRULES FILE(rulesfilename) [REPLACE({YES|NO|CLEAN})]"

FILE

Specifies the name of the CA Automation Point rules file (rulesfilename) that you
want to enable.

REPLACE

(Optional) Specifies the condition under which you want CA Automation Point to
enable the new rules file. Valid REPLACE values are:

YES

Loads, compiles, and enables the new rules file even if one or more rules in the
new rules file contain syntax errors.

NO

Loads and compiles the new rules file, but does not enable the file. Specify NO
to check for syntax errors in a new rules file.

CLEAN

Loads, compiles, and enables the new rules file only if all rules in the file are
free of syntax errors.

Default: YES

Example:

Suppose that you want to enable a new rules file after 8:00 p.m. (when the second shift
starts at your data center). Your REXX program may contain statements like these:

IF ((TIME('H')>15) & (2ND_RULES_LOADED=FALSE)) THEN

 DO

 "LOADRULES FILE(2NDSHIFT.RUL)"

 2ND_RULES_LOADED=TRUE

 1ST_RULES_LOADED=FALSE

 END

Commands for Automation Tasks

88 Command and Keyword Reference Guide

MSG Command

The MSG command allows you to indirectly process host messages through CA
Automation Point rules, even in sessions where you cannot normally use rules (such as
processor console or any sessions running full-screen applications). The MSG command
creates a message block out of the passed text that, to CA Automation Point rules,
appears to come from the session you specify.

This command has the following format:

"MSG 'message' SESSION(sessname)

 [ACTION(YES|NO]

 [JOBID(jobid)]

 [JOBNAME(jobname)]

 [MONNAME(sysname1)]

 [MONNUM(sysnum)]

 [MONPRTY(prioritylevel)]

 [MONTYPE(alerttype)]

 [PREFIX(prefix)]

 [REPLYID(replynum)]

 [SYSNAME(sysname2)]

 [TIME(time)]"

message

Specifies the text of the message that you want to send.

SESSION

Specifies the name of the session from which the message appears to originate. The
session must be defined in the session definition set; you cannot use a dummy
name.

Note: For CA Automation Point internal sessions, use the name that corresponds to
appropriate CA Automation Point window:

 AP Window Internal Session Name

AP Message Recall AXC

CA-OPS/MVS Messages OPS

AP Notification Messages VOX

ACTION

(Optional) Specifies whether the message sent is an action message.

Default: NO

JOBID

(Optional) Specifies the current JES job ID associated with the message. This
operand is valid for session types ECS, MCS, RCS, and VM.

Commands for Automation Tasks

Chapter 4: ADDRESS AXC Commands 89

JOBNAME

(Optional) Specifies the job name of the address space that issued the message.

MONNAME

(Optional) Specifies the source system name for a DataFrame message.

MONNUM

(Optional) Specifies the source system number for a DataFrame message.

MONPRTY

(Optional) Specifies the priority level of the alert message by the DataFrame
system.

MONTYPE

(Optional) Specifies the type of the alert message issued by the DataFrame system.

PREFIX

(Optional) Specifies a character string that controls the formatting of messages that
appear in CA Automation Point function windows displaying message activity.

For more information, see the description of the Global Session Prefix field in the
help for the Configuration Manager, Expert Interface, Automation, Session
Definition Sets dialog.

REPLYID

(Optional) Specifies the reply number for the message (if the message to be sent is
a WTOR message).

SYSNAME

(Optional) Specifies the source system name for a message.

TIME

(Optional) Specifies the current time for the workstation in the form hhmmss.

Usage Note:

The MSG command can send a message up to 494 characters long. A string longer than
494 characters causes a negative return code.

Commands for Automation Tasks

90 Command and Keyword Reference Guide

Examples:

■ To send a test message that appears (to CA Automation Point rules) to come from
session S028, issue the following command:

"MSG 'AXC0001 THIS IS A TEST MESSAGE FROM S028' SESSION(SO28)"

■ Suppose that you have defined a non-automated session named HP_01 and are
controlling the session with REXX programs. Use the MSG command to send
messages (appearing to originate from session HP_01) that CA Automation Point
rules can process, as shown in these REXX program statements:

"GETSCRN SESSION(HP_01)"

"MSG '&LINE1' SESSION(HP_01) JOBNAME(SCREEN_4)"

The example REXX fragment sends the first line of Session HP_01's current screen
through rules for processing. The optional JOBNAME operand assigns a job name
that your rules can use to further identify the message. For example, the following
CA Automation Point rule recognizes the message with the SCREEN_4 job name and
colors the message bright red in the Merged Messages window:

MSGID(ALERT 10) WHEN(&JOBNAME EQ SCREEN_4) COLOR(BRIGHT RED)

SESSCNTL Command

The SESSCNTL command establishes or closes a connection, or pauses or restarts
automation for a single specified session. This command can also control the frequency
of background window updates and change the host to which an automated Telnet
session is connected. This command cannot be used to control the Windows command
prompt (VIO) or Event Traffic Controller (ETC) sessions.

This command has the following format:

"SESSCNTL {AUTOMATE(PAUSE|RESTART|STATUS) SESSION(sessname) |

 CONNECTION (OPEN|CLOSE|STATUS) SESSION(sessname) |

 BWUPDATE(numsecs) |

 TELNETHOST(hostname) SESSION(sessname) }"

Commands for Automation Tasks

Chapter 4: ADDRESS AXC Commands 91

AUTOMATE

Specifies an automation pause or restart for the specified session. This operand has
the following options:

PAUSE

Resumes automation for the specified session. This option has no effect if
automation is already paused.

RESTART

Causes automation of the specified session. This option has no effect if:

■ CA Automation Point is already automating the session

■ CA Automation Point is globally paused

■ CA Automation Point does not automate the session directly (that is, the
session is non-automated because the session was not defined as
automated in the session definition set)

STATUS

Returns the specified session's automation state. (The returned value is stored
in the AXCRESULT variable.)

■ YES: indicates that automation is active

■ NO: indicates that automation is paused

■ PAUSED: indicates that the session is automated and that automation is
currently paused

Commands for Automation Tasks

92 Command and Keyword Reference Guide

CONNECTION

Issues a connect or disconnect for the specified session or query current connection
status. This operation has the following options:

OPEN

Attempts to establish the connection to host for the specified session. Initiation
of the connection is indicated by message AXC0556I. Connection behavior is
dependent on the session type. Results of the connection for TN3270 or
TN5250 sessions are reported by message AXC1800I. For other session types,
you can query the status immediately by issuing SESSCNTL
CONNECTION(STATUS).

CLOSE

Closes connection to the host for the specified session. Initiation of the
disconnection is indicated by message AXC0557I. Disconnection behavior is
dependent on the session type. Results of the disconnection for TN3270 or
TN5250 sessions iare reported by message AXC1804W. For other session types,
you can query the status immediately by issuing SESSCNTL
CONNECTION(STATUS).

STATUS

Returns the specified session's connection state. (The returned value is stored
in the AXCRESULT variable.)

YES: Indicates that session is connected

NO: Indicates that session is not connected

Default: There is no default.

BWUPDATE

Specifies the window update frequency of background windows. The value
(numsecs), which is an integer between 1 and 9, specifies the number of seconds
between background window updates.

A lower value increases the apparent speed of the background windows and uses
more machine cycles.

For unattended workstations, set BWUPDATE to 9 for greater throughput.

For an operator workstation, you may want to add menu items to allow the
operator to easily control the BWUPDATE file. The DEBUG.mnu file contains sample
statements to add these items to the Cmdarea menu.

Default: 5

Commands for Automation Tasks

Chapter 4: ADDRESS AXC Commands 93

TELNETHOST

Specifies the name of the host for the Telnet connection in the specified session.
For example:

ADDRESS AXC "SESSCNTL TELNETHOST(mf.ca.com) SESSION(TELNETA)"

SESSION

Used with the AUTOMATE operand, defines a session for which you want to pause
or restart automation. Used with the TELNETHOST operand, defines a session that is
to monitor the Telnet connection. This operand is not valid with the BWUPDATE
operand.

Usage Notes:

■ The operands AUTOMATE, CONNECTION, BWUPDATE, and TELNETHOST are
mutually exclusive.

■ We strongly recommend that you pause automated sessions prior to closing a
connection. We also recommend that you logout from all server-side applications.

Establishing session connection does not restart automation automatically, you
have to use separate SESSCNTL AUTOMATE(RESTART) command. It is
recommended to let the session settle after each connect or disconnect operation,
before you issue new SESSCNTL CONNECTION command for that particular session.

■ DHD (Defer Host Disconnect) technology on the host can also affect the behavior of
sessions that are reconnected shortly after disconnect.

Example:

The following REXX statements determine the current automation state of session
ASYNCH_1 and pause automation for that session if it is active:

'SESSCNTL AUTOMATE(STATUS) SESSION(ASYNCH_1)'

IF AXCRESULT = "YES" THEN

 'SESSCNTL AUTOMATE(PAUSE) SESSION(ASYNCH_1)'

Commands for Automation Tasks

94 Command and Keyword Reference Guide

SETVAR Command

The SETVAR command sets the contents of a CA Automation Point status variable to a
given value, changes the value of a variable, or creates a new variable.

This command has the following format:

"SETVAR varname (value)"

varname

Specifies the name of the CA Automation Point variable to set.

value

Specifies the value to be assigned to the variable.

Usage Notes:

■ SETVAR status variable names are case-sensitive in CA Automation Point. Use
uppercase variable names consistently.

■ When designing REXX programs that use the SETVAR command, split long data lines
for storage in multiple status variables. The maximum length of a SETVAR command
is 241 characters, after substituting values for & variables. If you exceed the
241-character limit, CA Automation Point truncates the extra characters and
reports a return code.

Example:

Suppose that REXX is operating without errors and you want to create a CA Automation
Point variable called REXX_STATUS with a value indicating the status of REXX processing.
To do so, write this statement in your REXX program:

"SETVAR REXX_STATUS (NO ERRORS)"

When the SETVAR command executes, the value of the REXX_STATUS variable is set to
NO ERRORS.

Commands for Automation Tasks

Chapter 4: ADDRESS AXC Commands 95

STOPREXX Command

The STOPREXX command stops an executing REXX program or cancels execution of a
queued REXX program. The STOPREXX command can stop a REXX program only if the
program is running within CA Automation Point.

Note: You must issue the GETREXXL command before issuing the STOPREXX command.

This command has the following format:

"STOPREXX rexxprognum"

rexxprognum

Specifies the internal REXX pointer for a specific REXX program (acquired by a
previously issued GETREXXL command).

Usage Note:

It is possible for the STOPREXX command to stop the issuing REXX program, meaning
that your REXX program could terminate itself. Be sure that your REXX code allows for
such a scenario when checking the GETREXXL_NAME.n variables generated by the
GETREXXL command.

Example:

Suppose that you want to stop all instances of a particular program. Your REXX
statements could look like these:

"GETREXXL"

/* GETREXXL populates GETREXXL.0 with the number */

/* of active and queued REXX programs, the */

/* GETREXXL_NAME.i variables with the name and */

/* arguments of a program, and GETREXXL.i with the */

/* number used by STOPREXX to terminate the program*/

DO I = 1 TO GETREXXL.0

 parse upper value GETREXXL_NAME.i with rxname.

 IF rxname = token THEN

 "STOPREXX "GETREXXL.I

END

Commands for REXX-related Operations

96 Command and Keyword Reference Guide

WAIT Command

The WAIT command causes the program to wait for a specified number of seconds (you
can specify any decimal value from 0.01 to 600) before executing the next REXX
statement. It works only from within a REXX program.

This command has the following format:

"WAIT seconds"

seconds

Specifies the number of seconds that an executing REXX program pauses before
executing the next REXX statement. Specify any integer value from 1 to 600.

Example:

Use the WAIT command to give a mainframe session time to react to a SESSCMD
command before checking the screen for a result. For example, suppose that:

■ Your REXX program includes a SESSCMD statement that sends the text string @C to
a session to clear the screen.

■ You want the REXX program to stop executing for five seconds to give the SESSCMD
command time to clear the session screen.

To cause the REXX program to wait for the SESSCMD command to execute, include this
statement in the program:

"WAIT 5"

When the statement executes, the REXX program pauses for five seconds before
executing the next instruction in the program.

Commands for REXX-related Operations

The following sections describe the ADDRESS AXC commands used for REXX-related
operations.

Commands for REXX-related Operations

Chapter 4: ADDRESS AXC Commands 97

REXX Command

The REXX command queues a REXX program for processing by CA Automation Point. You
can also use the REXX command within a REXX program to start another, independent
REXX program.

This command has the following format:

"REXX 'execname args'"

execname

Specifies the name of the REXX program for CA Automation Point to execute.

args

Specifies the calling arguments for the specified REXX program.

Note: The length of the argument list (REXX program name and its arguments) is limited
to 505 characters. An incoming argument list longer than 505 characters is truncated.

Example:

The following command invokes a REXX program called XCDEMO with the argument
GETMSG:

"REXX 'XCDEMO GETMSG'"

SCRIPT Command

The SCRIPT command invokes a CA Automation Point script from a REXX program. The
script executes immediately.

This command has the following format:

"SCRIPT scriptname SESSION(sessname)"

scriptname

Specifies the file name of the script to execute.

SESSION

Specifies the name (sessname) of the target session in which CA Automation Point
should activate the script.

Example:

The SCRIPT command shown below invokes a script called PAUSE.SCR, which restores
the MCS console for session S028 for manual use:

"SCRIPT PAUSE.SCR SESSION(S028)"

Commands for REXX-related Operations

98 Command and Keyword Reference Guide

SESSCMD Command

The SESSCMD command sends a text string (such as a command) to a specified session,
and then retrieves a screen image from that session after the text string has been
processed. (To fetch the screen image, an executing SESSCMD command invokes the
GETSCRN command automatically.)

This command has the following format:

"SESSCMD 'keystring' SESSION(sessname)

 [CMDWAIT(nn)]

 [PREFIX(prefix|LINE|NO)]

 [SCREEN(YES|NO)]"

keystring

Specifies the text of the command to be issued to the session. The string can
contain up to 234 characters. If you execute the SESSCMD command from within a
REXX program and the keystring contains quotation marks, specify the command by
using different delimiter characters of your choice to enclose the text.

As part of the command text, you can include one of the following:

– A key abbreviation

– An operation instruction

Besides text, the string can also contain key abbreviations and keyboard operation
instructions. A key abbreviation consists of the @ character followed by a letter
(uppercase or lowercase), a digit, or the @ character itself. When specifying a key
abbreviation, enter it exactly as shown in the key abbreviation table found in the
appendix on customizing special CA Automation Point files in the Administrator
Guide.

Note: The SESSCMD command automatically appends an ENTER keystroke (@E) to
your keystring value.

SESSION

Specifies the name of the target session (sessname) to receive the command text.

CMDWAIT

(Optional) Specifies the number of seconds (up to 60) that CA Automation Point
waits for the keyboard to unlock after the SESSCMD executes. After the specified
waiting period, CA Automation Point then captures the current screen image of the
current session.

If the time period you specified with the CMDWAIT operand expires before CA
Automation Point issues the command, the SESSCMD command produces a return
code of 32, meaning that the keyboard is locked. If CA Automation Point issues the
command but the session does not respond to that command, the SESSCMD
command generates a return code of 36.

Default: 15

Commands for REXX-related Operations

Chapter 4: ADDRESS AXC Commands 99

PREFIX

(Optional) Creates a stem variable to store the lines of a screen image returned to
CA Automation Point. CA Automation Point stores each line of the screen in a
separate variable and numbers the variables consecutively (for example, LINE.1,
LINE.2, and so on).

Note: The variable numbered 0-for example, LINE.0-always contains the total
number of elements in the stem variable.

Valid PREFIX values are:

prefix

Specifies he name that you want to assign to the line variables. For example,
specifying PREFIX(ROW) causes CA Automation Point to create a set of
variables named ROW.0, ROW.1, ROW.2, and so on through ROW.n.

LINE

Tells CA Automation Point to create stem variables named LINE1 through LINEn
to store lines of a screen image.

NO

Creates no variables. Specifying PREFIX(NO) saves memory if you do not intend
to use the variables.

Default: LINE

Note: For compatibility with earlier versions of CA Automation Point, the SESSCMD
command also creates the old-style, non-stem variables. For example, suppose that
the PREFIX variable is LINE. In addition to the stem variables described above,
SESSCMD also creates the nonstem variables LINE1, LINE2, and so on through
LINEn. In this case, the variable LINE (equivalent to the stem variable LINE.0)
contains the total number of elements in the variable.

Each time you issue the SESSCMD command, CA Automation Point creates SCREEN
and LINE.n variables automatically unless you specify otherwise.

SCREEN

(Optional) Specifies whether CA Automation Point creates the variable SCREEN to
store the character portion of the screen image. Valid SCREEN values are:

YES

Creates the SCREEN variable and other variables. For more information on
those other variables, see the description of the GETSCRN command (see
page 75).

NO

Creates no variables. This option saves memory if you do not intend to use the
variables.

Default: YES

Commands for REXX-related Operations

100 Command and Keyword Reference Guide

Usage Notes:

A keyboard operation instruction consists of the @ character followed by a keyboard
operation name enclosed in quotation marks. For example, the instruction for the
MODE SELECT key is @"MODE_SEL". The Administrator Guide lists valid operation
names

■ CA Automation Point appends an ENTER keystroke (@E) before it sends the string.

■ You can use key abbreviations and operations only where appropriate. For example,
you cannot send the abbreviation for the PA1 key (@x) to a VT100 session because
PA1 operates only in 3270 sessions.

■ When you want to send a text string to a session without appending an ENTER
keystroke to it (such as sending strings to 3270 sessions that contain 3270 AID keys:
Enter, Clear, PA1 through PA3, PF1 through PF24), you can invoke the CA
Automation Point @"SEND" operation from the same SESSCMD command.

■ When the text string contains single or double quotes, use a different delimiter
(such as /) to delimit the text string. For a complete description of alternate
delimiters, see the section ADDRESS AXC Command Syntax (see page 70).

■ The SESSCMD and GETSCRN commands allow CA Automation Point to interact with
3270, 5250, and asynchronous consoles and screens generated by applications. CA
Automation Point rules can also control some of those screens.

■ For master console sessions, do not issue instructions that either change the state
of the console or clear messages from the screen while automation is active.

■ If you want to invoke the SESSCMD command from within a REXX program, use the
following methods to prevent the SESSCMD command from interfering with
message processing by rules:

– Use a rule to capture the response of a SESSCMD command.

When you issue a host command to an automated console session using the
SESSCMD command in a REXX program, use CA Automation Point rules to
capture data from the z/OS command response. In such a scenario, the rule
stores the captured data in status variables; the REXX program retrieves the
values from the status variables using the GETVAR command.

Note: Rules process only the first line of a multi-line command response. To
retrieve data from a multi-line response, invoke a REXX program or CLIST on
the host to issue the host command, capture the command response data, and
return the data to CA Automation Point as a set of single-line messages.

– Use REXX programs instead of rules to control the console.

TSO sessions are good candidates for REXX programs to control because you
can use those sessions to communicate with your mainframe automation
product.

Note: If you use REXX programs to control a console, do not automate the
session when you define it in the session definition set.

Commands for Utilities

Chapter 4: ADDRESS AXC Commands 101

■ If you issue an instruction to a session in one of the following ways, CA Automation
Point sends the instruction as one complete unit:

– Using a SESSCMD command

– Using the KEY keyword for scripts

– From the command line of the Command window, the Merged Messages
window, or the AP Messages window

– From rules clauses containing any of these keywords: OSCMD, REPLY, or
SESSCMD

However, a series of commands from any of those sources executes uninterrupted
only if no other CA Automation Point facilities are using the session.

■ Special considerations for VT52, VT100 and VT320 sessions: The CTRL+H key maps
to an operation named DEL (represented by the ASCII character (ý) which has a
decimal value of 127), a nondestructive backspace. The syntax for sending the
nondestructive backspace from a REXX program is @"ý". (In most text editors, you
can obtain the (ý) character by typing ALT+127. Press and hold the ALT key, type
127 on the numeric keypad, then release the ALT key.)

The BACKSPACE key maps to the BACK_SPACE operation, a destructive backspace.
When specifying a destructive backspace from a REXX program, you need to
suppress the ENTER key. The syntax is:

'SESSCMD /@"BACK_SPACE"@"SEND"/ SESSION(sessname)'

Examples:

■ Suppose that you want a REXX program to issue the ISPF command =X (to take a
TSO session out of ISPF) to a TSO session named S028. Insert the following
statement into your REXX program:

"SESSCMD /=X/ SESSION(S028)"

■ Suppose that you want to send a NEWLINE keystroke to a non-automated,
full-screen session named SESS_A, and you do not want the SESSCMD command to
automatically append an ENTER keystroke. Insert the following statement into your
REXX program:

'SESSCMD /@N@"SEND"/ SESSION(SESS_A)'

■ Suppose that you want to send a "power on reset" command to an asynchronous
session called ASYNCH. Insert the following statement into your REXX program:

'SESSCMD /@"POWER_RESET"/ SESSION(ASYNCH)'

Commands for Utilities

The following sections describe CA Automation Point utility commands.

Commands for Utilities

102 Command and Keyword Reference Guide

DOM Command

The DOM command deletes an action message from the action message area of the
Merged Messages window and from the Action Message Recall window (by deleting it
from the CA Automation Point action message recall list).

Note: Invoke the DOM command only after you have invoked the GETMSGI command
or the GETVAR command. The GETMSGI command returns the domid value. The
GETVAR command retrieves a previously saved DOMID value.

This command has the following format:

"DOM DOMID(domid)"

DOMID

Specifies the internal pointer to a specific action message in the action message
recall list.

Usage Note:

When you invoke the GETMSGI command, it stores the internal pointer value to an
action message in the DOMID.n REXX variable. Before invoking the DOM command,
assign the DOMID.n value to another variable name-a name that does not contain a
period-and use the new variable name for domid.

Commands for Utilities

Chapter 4: ADDRESS AXC Commands 103

Examples:

■ Suppose that you want to delete all of the action messages containing the word
completed. You could write a REXX program containing statements like the
following:

"GETMSGI"

DO CNT=1 TO DOMID.0 BY 1

 INTERPRET 'CUR_ACTION_MSG=DOMID_MSG.'CNT

 IF POS('completed',CUR_ACTION_MSG) > 0 THEN DO

 INTERPRET 'CUR_DOMID=DOMID.'CNT

 "DOM DOMID(&CUR_DOMID)"

 END

END

■ Suppose that you want to delete a specific action message. The first step is to save
the internal pointer (stored in the &DOMID environmental variable) to a working
variable. Assume that this rule exists in your rules file:

MSGID(SAVEDOM), HILIGHT, SET(&SAVE_ID=&DOMID)

Your REXX program could contain these statements:

"GETVAR SAVE_ID CUR_DOMID"

"DOM DOMID(&CUR_DOMID)"

"SETVAR SAVE_ID (0)"

The first statement invokes the GETVAR command, which fetches the internal
pointer to the action message produced by the rule and stores it in the CUR_DOMID
variable. The second statement invokes the DOM command, which deletes the
action message that the CUR_DOMID value points to in The CA Automation Point
action message recall list. The last statement invokes the SETVAR command, which
resets the SAVE_ID working variable used by the rule to 0.

PLOT Command

The PLOT command displays a window containing system information shown as a graph.
For a detailed description of the PLOT command, see the Administrator Guide.

Commands for Utilities

104 Command and Keyword Reference Guide

SESSCONFIG Command

The SESSCONFIG command populates a REXX stem variable with configured session
attributes for sessions selected according to specified criteria from a given session
definition set. This command has the following format:

"SESSCONFIG [SESSTYPE({sesstype|ENABLED|DISABLED|ALL})]

[DEFSET(sessiondefinitionset|STARTED|SAVED)] [PREFIX(sessconfig)]"

SESSTYPE

(Optional) Specifies the type of session to be listed. This operand can have one of
the following arguments:

sesstype

Lists attributes of all sessions in the selected session definition set with the
console type of sesstype. Possible sesstype names are:

■ ASYNCH

■ DTX

■ ISERIES

■ JES3

■ JES3MCS

■ MCS

■ RCS

■ SYSPLEX

■ TANDEM

■ TANDEMALL

■ VAX

■ VAXALL

■ VM

■ VSE

■ Default

ENABLED

Lists attributes of all sessions configured as enabled.

DISABLED

Lists attributes of all sessions configured as disabled.

ALL

Lists attributes of all sessions in the selected session definition set.

Default: ALL

Commands for Utilities

Chapter 4: ADDRESS AXC Commands 105

DEFSET

(Optional) Specifies the which definition set from which to get information

sessiondefinitionset

Specifies the name of the session definition set from which to get information

STARTED

Uses the session definition set that is currently loaded in AP Desktop, which is
unaffected by any configuration or runtime changes made after AP Desktop
starts

SAVED

Uses the session definition set that is currently selected as active in
Configuration Manager

Default: STARTED

PREFIX

(Optional) Specifies the REXX stem variable that stores the session attributes. This
value can be a maximum of 15 charaters.

Default: SESSCONFIG

Output of the command follows:

prefix.DEFINITION_SET

Contains the session definition set name

prefix.0

Contains the total number of returned sessions

prefix.i

Contains session name, where i is 1 to prefix.0

prefix.i.attribute

Reports following attributes for each session, where i is 1 to prefix.0 and attribute is
one of the following keywords:

AUTOMATED

Indicates the automation status:

■ YES: Session is configured as automated.

■ NO: Session is configured as non-automated.

CONNECTED

Indicates the connection status:

■ YES: Session is configured to connect on startup.

■ NO: Session is configured not to connect on startup.

Commands for Utilities

106 Command and Keyword Reference Guide

CONSOLE_TYPE

Indicates the console type (Default, ASYNCH, MCS, TANDEMALL, DTX, RCS, VAX,
JES3, SYSPLEX, VAXALL, JES3MCS, TANDEM, VM, VSE, ISERIES)

DEVICE_NAME

Indicates the LU name or Device name (applicable only for TN3270, TN5250)

DEVICE_TYPE

Indicates the communication device or protocol used to connect the session

■ COMn: Serial communication port n (COM1, COM2, ...)

■ MEMORY: Session that uses memory as communication device

■ ETC: Session is controlled by the Event Traffic Controller

■ VIO: Windows command prompt session

■ TELNET, SSH, TN3270, TN5250 : Session is connected to a remote host
using this protocol

ENABLED

Indicates if a session is to be loaded:

■ YES: Session will be loaded on CA Automation Point startup

■ NO: Session will not be loaded

HOST_NAME

Indicates the host name (applicable only for TELNET, SSH, TN3270, or TN5250)

HOST_PORT

Indicates the port (applicable only for TELNET, SSH, TN3270, or TN5250)

MENU

Indicates the custom menu name or Default

SESSION_NAME

Indicates the name of the session

SYSTEM_NAME

Indicates the system name

TERMINAL

Indicates the terminal type (3278, 3278_2, 3278_3, 3278_4, 3278_5, 3279,
3279_2, 3279_3, 3279_4, 3279_5, 3477, 5292, 6530, ASYNCH, AXC, VIO, VIO43,
VIO50, VT52, VT100, VT320, VT420)

TITLE

Indicates the title

Commands for Utilities

Chapter 4: ADDRESS AXC Commands 107

If an attribute is not applicable for particular session, the attribute value contains the
string "N/A".

SESSLIST Command

The SESSLIST command populates a REXX stem variable with current session attributes
for currently loaded sessions selected according to specified criteria. Disabled sessions
as specified in the active session definition set are not returned. This command has the
following format:

"SESSLIST [SESSTYPE({sesstype|AUTOMATED|PAUSED|CONNECTED|DISCONNECTED|ALL})]

[PREFIX(sessname)]"

SESSTYPE

(Optional) Specifies the type of session to be listed. This operand can have one of
the following arguments:

sesstype

 Lists attributes of sessions in the active session definition set with the console
type of sesstype. Possible sesstype names are:

■ ASYNCH

■ DTX

■ ISERIES

■ JES3

■ JES3MCS

■ MCS

■ RCS

■ SYSPLEX

■ TANDEM

■ TANDEMALL

■ VAX

■ VAXALL

■ VM

■ VSE

■ Default

Commands for Utilities

108 Command and Keyword Reference Guide

AUTOMATED

Lists attributes of all sessions currently being automated.

PAUSED

Lists attributes of all sessions for which automation is paused.

CONNECTED

Lists attributes of all sessions currently connected to a host.

DISCONNECTED

Lists attributes of all sessions currently not connected to a host.

ALL

Lists attributes of all enabled sessions in the active session definition set.

Default: CONNECTED

PREFIX

(Optional) Specifies the REXX stem variable in which to store the session
attributes.This value can be a maximum of 15 characters.

Default: SESSNAME

Output of the command follows:

prefix.DEFINITION_SET

Contains the session definition set name which is currently active in AP desktop

prefix.GLOBAL_PAUSE

Indicates whether global automation pause is currently in effect

prefix.0

Contains the total number of returned sessions

prefix.i

Contains session names (where i is 1 to prefix.0).

prefix.i.attribute

Reports following attributes for each session, where i is 1 to prefix.0 and attribute is
one of the following keywords:

AUTOMATED

Indicates the automation status:

■ YES: session is currently being automated

■ PAUSED: automation is temporarily paused

■ NO: session is non-automated

Commands for Utilities

Chapter 4: ADDRESS AXC Commands 109

CONNECTED

Indicates the connection status:

■ YES: session is currently connected

■ NO: session is currently not connected

CONSOLE_TYPE

Indicates the console type (Default, ASYNCH, MCS, TANDEMALL, DTX, RCS, VAX,
JES3, SYSPLEX, VAXALL, JES3MCS, TANDEM, VM, VSE, ISERIES)

DEVICE_NAME

Indicates the LU name or Device name (applicable only for TN3270, TN5250)

DEVICE_TYPE

Indicates the communication device or protocol used to connect the session

■ COMn: Serial communication port n (COM1, COM2, ...)

■ MEMORY: Session that uses memory as communication device

■ ETC: Session is controlled by the Event Traffic Controller

■ VIO: Windows command prompt session

■ TELNET, SSH, TN3270, TN5250: Session is connected to a remote host using
this protocol

HOST_NAME

Indicates the host name (applicable only for TELNET, SSH, TN3270, or TN5250)

HOST_PORT

Indicates the port (applicable only for TELNET, SSH, TN3270, or TN5250)

MENU

Indicates a custom menu name or Default

SESSION_NAME

Indicates the name of the session

SYSTEM_NAME

Indicates the system name

TERMINAL

Indicates the terminal type (3278, 3278_2, 3278_3, 3278_4, 3278_5, 3279,
3279_2, 3279_3, 3279_4, 3279_5, 3477, 5292, 6530, ASYNCH, AXC, VIO, VIO43,
VIO50, VT52, VT100, VT320, VT420)

Commands for Utilities

110 Command and Keyword Reference Guide

TITLE

Indicates the title

If an attribute is not applicable for particular session, the attribute value contains the
string "N/A".

WTO Command

The WTO command displays a text string in the normal message area of the AP Merged
Messages window and in the Normal Message Recall window.

This command has the following format:

"WTO 'text'"

text

Specifies the text (up to 251 characters) to be displayed. The text must be enclosed
in single quotation marks ('); if the text contains embedded single quotes, use one
of the alternate delimiters described in ADDRESS AXC Command Syntax in this
chapter.

Example:

By using the WTO command to send messages to the Normal Message Recall window or
the Merged Messages window, you can notify operators of important events as they
occur. For example, you may include this statement in a REXX program:

"WTO 'REXX finished processing'"

When the statement executes, this message appears in the normal (non-highlighted)
message area of the Merged Messages window:

REXX finished processing

Commands for Utilities

Chapter 4: ADDRESS AXC Commands 111

WTOH Command

The WTOH command displays a text string in the action message area of the Merged
Messages window and in the Action Message Recall window.

By using the WTOH command to send messages to the Action Message Recall window
or the Merged Messages window, you can alert operators to problems with REXX
processing.

This command has the following format:

"WTOH 'text'"

text

Specifies the text (up to 128 characters) to be displayed. The text must be enclosed
in single quotation marks ('); if the text contains embedded single quotes, use one
of the alternate delimiters described in the section ADDRESS AXC Command Syntax
in this chapter.

Example:

Suppose that the session name VM10 identifies a VM session on your system and you
want to notify the operator when a severe error occurs in that session. To do so, place
this statement in a REXX program:

"WTOH 'REXX detects severe error in session VM10'"

WTXC Command

The WTXC command displays a specified text string in the AP Messages window and the
AP Message Recall window.

Note: CA Automation Point rules can process messages that the WTXC command issues
from within a REXX program.

This command has the following format:

"WTXC 'text'"

text

Specifies the text (up to 128 characters) to be displayed. The text must be enclosed
in single quotation marks ('); if the text contains embedded single quotes, use one
of the alternate delimiters described in the section ADDRESS AXC Command Syntax
in this chapter.

Commands for Utilities

112 Command and Keyword Reference Guide

Usage Note:

By using the WTXC command to send messages to the AP Message Recall window and
the AP Messages window, you can keep track of how CA Automation Point interacts
with REXX.

Example:

Suppose that you want the AP Messages Window to alert the operator when REXX takes
some action (such as notifying a system programmer) when an error occurs. To do so,
include this statement in a REXX program:

"WTXC 'REXX has notified system programmer of errors'"

Chapter 5: ADDRESS PPQ Commands 113

Chapter 5: ADDRESS PPQ Commands

Program-to-program (PPQ) commands are commands that you can issue through the
ADDRESS PPQ statement in a REXX program. For details about the CA Automation Point
PPQ environment, see the chapter on using program-to-program queues in the
Administrator Guide.

ADDRESS PPQ Command Summary

The following sections summarize CA Automation Point ADDRESS PPQ commands.

PPQ Setup Command

Use the following command for PPQ setup.

CREATE

Creates a new queue

PPQ Operations Commands

Use the following commands for PPQ operations.

LOCK

Prevents access to a queue by REXX programs other than the current one.

READ

Reads (accesses) one or more items from a specified queue.

UNLOCK

Restores access to a queue locked by a previously issued LOCK command.

WRITE

Writes (inserts) one or more items to a specified queue.

ADDRESS PPQ Command Summary

114 Command and Keyword Reference Guide

PPQ Dismantling Commands

Use the following commands to get data for dismantling PPQs.

DELETE

Deletes all elements in a specified queue and releases the memory allocated for the
queue.

DISCONNECT

Breaks the connection with a specified remote queue and closes all sessions with
the remote queue.

Special PPQ Commands

The following commands are used for special purposes.

COUNT

Counts the number of items in a specified queue.

DEBUG

A diagnostic tool that controls debugging trace output. This command is useful for
providing diagnostic information to Technical Support.

LIST

Lists information about one or more queues residing on the local or remote
machine, or both.

TRANSTATUS

A diagnostic tool that returns a table of transport-specific information. This
command is useful for providing diagnostic information to Technical Support.

VER

Provides the version number and configuration of CA Automation Point PPQs.

ADDRESS PPQ Command Syntax

Chapter 5: ADDRESS PPQ Commands 115

ADDRESS PPQ Command Syntax

Issue a PPQ command from within a REXX program by specifying an ADDRESS PPQ
statement, as shown:

ADDRESS PPQ 'ppqcommand operand(s)'

Follow these guidelines when issuing a PPQ command:

■ When specifying a required or optional operand with a PPQ command, use
parentheses to pass values. For example:

COUNT(numitems)

■ Uppercase or lowercase characters are valid. For example:

QUEUE(QUE_1)

queue(que_1)

■ Leading and trailing blanks are ignored. For example:

ITEM(item)

ITEM (item)

■ Single and double quotes are supported. For example:

CMDRESP(destination)

CMDRESP('destination')

CMDRESP("destination")

■ When creating REXX programs that issue PPQ commands, do not name your
variables with names reserved for PPQ commands. Also, do not include the
following characters: () ' " < > |, as they are interpreted by the REXX interpreter as
REXX delimiters.

■ Operands shown in brackets ([]) are optional.

ADDRESS PPQ Return Information

This section discusses the data returned by PPQ commands.

The RC Variable

RC is the REXX variable that contains the return codes from the ADDRESS PPQ
environment. RC is set by every command and should be programmatically checked for
acceptable results (usually a zero value) after each command executes.

ADDRESS PPQ Return Information

116 Command and Keyword Reference Guide

The PPQ.ERROR Variable

If a PPQ command does not execute successfully-returning a non-zero RC value-it
generates an error message and stores the message in the special REXX variable called
PPQ.ERROR.

The PPQ error message ID begins with the prefix “PPQ” followed by a four-digit number
(corresponding to the RC return code value) and a letter indicating the message type.
See the Message Reference Guide for a more detailed description of the error message.

For example, if RC=4005, then the error message contained in the PPQ.ERROR variable
is:

PPQ4005E Insufficient memory.

Additional Return Information

The following PPQ commands, if executed successfully, return additional information
beyond a return code (RC) value:

■ COUNT

■ LIST

■ READ

■ TRANSTATUS

■ VER

Return information is stored in the special variable PPQ.ppqcommand. (The
ppqcommand portion of the stem variable represents the name of the PPQ command.)

The PPQ.ppqcommand.0 variable contains the number of lines of information returned
(that is, the number of elements in the PPQ.ppqcommand variable). The variables
PPQ.ppqcommand.1 through PPQ.ppqcommand.n each contain a line of information.
(The n value represents the last line of return information.)

Note: The PPQ.ppqcommand variable contains the same value stored in the
PPQ.ppqcommand.1 variable (that is, the first, and sometimes only, return information
line).

PPQ Setup Command

Chapter 5: ADDRESS PPQ Commands 117

Change the Default Variable with PREFIX

You can direct return information to a variable other than the default PPQ.ppqcommand
by specifying the PREFIX operand as follows:

PREFIX(newvarname)

newvarname

Specifies the name of the variable to replace the default.

Note: The PREFIX operand is valid only if the destination of the return information is
REXX. For information about specifying other destinations, see the following section.

Change the Default Return Destination with CMDRESP

The CMDRESP operand shown directs the return information from a PPQ command to a
specific destination:

CMDRESP(destination)

The following are valid values for destination:

REXX

Directs return information to a REXX variable. For more information, see the
chapter "Using Program-to-Program Queues" in the Administrator Guide.

Note: The optional PREFIX operand is valid only if the destination of the return
information is REXX.

XDQ

Directs return information to the external data queue.

TERMINAL

Directs return information to the terminal. This form uses the same output
mechanism used by the REXX SAY command.

NOWHERE

Directs return information to the “bit bucket.” This value discards the return
information.

Default: REXX

PPQ Setup Command

The following section describes the ADDRESS PPQ command used for setup.

PPQ Setup Command

118 Command and Keyword Reference Guide

CREATE Command

The create command creates a new queue.

This command has the following format:

ADDRESS PPQ 'CREATE QUEUE(qname) [DROP(NO|YES)]

 [SHARE(NO|YES)]

 [MAXITEMS(maxitems)]

 [PERSISTENCE(PERMANENT|TEMPORARY)]

 [TRANSPORT(network-transport-name)]'

QUEUE

Specifies the 1- to 16-character name of the queue (qname). The queue name can
contain alphanumeric characters and any of these special characters: ! @ # $ _

The queue name cannot contain blanks.

Note: The qname cannot take the value of the computer name of any of the
systems in your PPQ network.

DROP

(Optional) Causes the first (oldest) item in the queue to be dropped from the queue
when an attempt is made to write to a full queue.

Default: NO

SHARE

(Optional) Specifies whether the queue is network-shared on the allowed transport.

For more information about network-shared versus local queues, see the chapter
on using program-to-program queues in the Administrator Guide

Default: NO

MAXITEMS

(Optional) Specifies the maximum number of items (1 to 10,000) the queue can
contain.

Default: 100

PPQ Operations Commands

Chapter 5: ADDRESS PPQ Commands 119

PERSISTENCE

(Optional) Specifies whether a queue should be deleted by the REXX program that
created it when that program terminates. Valid PERSISTENCE values are:

PERMANENT

The queue remains (persists), even if the creating REXX program terminates
(unless the PPQs services terminate or you restart your workstation).

TEMPORARY

Specifies that the queue is to be deleted when the creating REXX program
terminates.

Default: PERMANENT

TRANSPORT

(Optional) Specifies the transport a queue is to be created on. This operand is valid
only when SHARE(YES) is specified; it is otherwise ignored.

Specifies the network-transport-name is the network transport specified on the
TRANSPORT() startup initialization parameter.

Valid network-transport-name is:

PPQTCP

Specifies the network transport is TCP/IP.

Note: This keyword will be removed in a future release.

Usage Note:

You should not create multiple queues with the same name in different transports
within one PPQs network. (A transport is the mechanism that moves data from one
location to another, such as shared memory on your workstation or TCP/IP.

Example:

'CREATE QUEUE(PROD1) SHARE(YES)'

PPQ Operations Commands

The following sections describe the ADDRESS PPQ commands used for PPQ operations.

PPQ Operations Commands

120 Command and Keyword Reference Guide

LOCK Command

The LOCK command prevents access to a queue by REXX programs other than the
current one. It provides a means for handling problems that can arise from the multiple
access situations created by the multitasking environment. Using LOCK is necessary only
when you are writing multiple items that must be sequential in the queue.

This command has the following format:

ADDRESS PPQ 'LOCK QUEUE(qname) [WAIT(NO|YES|waittime)]'

QUEUE

Specifies the 1- to 16-character name of the queue (qname). The queue name can
contain alphanumeric characters and any of these special characters: ! @ # $ _

The queue name cannot contain blanks.

WAIT

(Optional) Specifies what the command does if it cannot execute immediately. For
example, the queue may be in use or locked by another REXX program. Valid WAIT
values are:

NO

Returns a nonzero return code (RC) value immediately. For information about
what happens when a command does not execute successfully, see the chapter
on using program-to-program queues in the Administrator Guide.

YES

Waits indefinitely while blocking the current REXX program until the queue
becomes available.

waittime

Specifies the number of seconds to wait (up to 100000) while blocking the
current REXX program. Fractional values (such as 1.5) are valid.

Default: NO

Usage Notes:

■ Unlock a queue with the UNLOCK command as soon as possible after you lock it to
prevent unnecessary delays in other REXX programs.

■ Locks are nested. For every LOCK command issued for a queue, an equal number of
UNLOCK commands are required to completely remove the lock. Be sure that each
LOCK command in your REXX program has a corresponding UNLOCK command.

Note: You can retrieve the lock nesting count using the LIST command.

■ When a queue is in use by another REXX program, the LOCK command does not
take effect until the current operation has completed. If the delay is prolonged or if
the queue is locked by another REXX program, the LOCK command waits for the
amount of time specified by the optional WAIT operand.

PPQ Operations Commands

Chapter 5: ADDRESS PPQ Commands 121

■ You can lock a remote queue.

■ It is good programming practice for user-written programs to eventually unlock
every queue that they have locked.

READ Command

The READ command reads one or more items from a specified queue.

This command has the following format:

ADDRESS PPQ 'READ QUEUE(qname) [COUNT(numitems)]

 [CMDRESP(destination)]

 [ITEMNUM(FIRST|LAST|itemnum)]

 [PREFIX(newvarname)]

 [REMOVE(YES|NO)]

 [WAIT(NO|YES|waittime)]'

QUEUE

Specifies the 1- to 16-character name of the queue (qname). The queue name can
contain alphanumeric characters and any of these special characters: ! @ # $ _

The queue name cannot contain blanks.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section Change the Default Return Destination with
CMDRESP (see page 117).

Default: REXX

COUNT

(Optional) Specifies the number of items (numitems) to read from the queue.

Default: 1

PPQ Operations Commands

122 Command and Keyword Reference Guide

ITEMNUM

(Optional) Specifies the starting item to read from the queue. The starting item that
you specify must exist; the READ command cannot wait for an item that does not
yet exist. Valid ITEMNUM values are:

FIRST

Starts the read operation from the first item in the queue.

LAST

Starts the read operation from the last item in the queue.

itemnum

Starts the read operation from an item number that you specify. (A value of 1 is
the same as a value of FIRST.)

Default: FIRST

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS PPQ Return Information (see
page 115).

Note: The PREFIX operand is only valid if REXX is the destination of the return
information.

Default: PPQ.READ

REMOVE

(Optional) Specifies whether the read operation is destructive or nondestructive
(that is, whether the READ command removes an item from the queue after it has
read the item). Valid values are:

YES

Removes the item from the queue after reading it.

NO

Does not remove the item from the queue after reading it.

Default: YES

PPQ Operations Commands

Chapter 5: ADDRESS PPQ Commands 123

WAIT

(Optional) Specifies what the command does if it cannot execute immediately. For
example, the queue may be in use or locked by another REXX program. Valid WAIT
values are:

NO

Returns a nonzero return code (RC) value immediately. For information about
what happens when a command does not execute successfully, see the chapter
on using program-to-program queues in the Administrator Guide.

YES

Waits indefinitely while blocking the current REXX program until the queue
becomes available and is not empty.

waittime

Specifies the number of seconds to wait (up to 100000) for the queue to
become available while blocking the current REXX program. Fractional values
(such as 1.5) are valid.

Default: NO

PPQ Operations Commands

124 Command and Keyword Reference Guide

Usage Notes:

■ The ITEMNUM operand and the WAIT operand are mutually exclusive.

■ When reading from a remote queue, especially using the TCP/IP transport, it is
possible to receive return code 4520 (queue not found) indicating errors when the
queue exists on the remote machine. These errors can occur if remote host
network response times are slow or inconsistent. To alleviate this condition, use the
following sample to code a function around the read request to detect the problem
and recover from it:

READRMTPPQ:

/*

**

* THIS FUNCTION WILL READ A PPQ REMOTE QUEUE WITH TIMEOUT. *

**

* EXAMPLE CALL: RC = READPPQ('RMTQ', 4*60, 'REMOVE(NO) COUNT(2)') *

* RETURNS: RC FROM PPQREAD *

* NOTES: FOR LOCAL QUEUE, USE PPQREAD WAIT() PARAMETER IN PLACE OF *

* THIS ROUTINE. *

**

**

*/

QUEUE = ARG(1) /* QUEUE NAME */

TIMEOUT = ARG(2) /* TIME OUT IN SECONDS */

READ_PARMS = ARG(3) /* OTHER PPQREAD PARMS */

/* DEFAULT 3 MINUTE TIME OUT */

IF TIMEOUT = '' THEN TIMEOUT = 3*60

/* ENSURE WAIT PARM */

IF POS('WAIT(',READ_PARMS) = 0

 THEN READ_PARMS = 'WAIT(1)' READ_PARMS

/* START TIMER */

X = TIME('R')

/* LOOP UNTIL QUEUE FOUND, TIME OUT, OR ERROR */

DO UNTIL TIME('E') > TIMEOUT

 ADDRESS 'PPQ' 'READ QUEUE('QUEUE')' READ_PARMS

 IF RC <> 4520 THEN LEAVE

END

RETURN RC

PPQ Operations Commands

Chapter 5: ADDRESS PPQ Commands 125

UNLOCK Command

The UNLOCK command restores access to a queue locked by a previously issued LOCK
command.

This command has the following format:

ADDRESS PPQ 'UNLOCK QUEUE(qname)'

QUEUE

Specifies the 1- to 16-character name of the queue (qname). The queue name can
contain alphanumeric characters and any of these special characters: ! @ # $ _

The queue name cannot contain blanks.

Usage Notes:

■ Unlock a queue as soon as possible after you lock it to prevent unnecessary delays
in other REXX programs.

■ Locks are nested. For every LOCK command issued for a queue, an equal number of
UNLOCK commands is required to completely remove the lock.

You can retrieve the lock nesting count using the LIST command.

■ It is good programming practice for user-written programs to eventually unlock
every queue that they have locked.

WRITE Command

The WRITE command writes one or more items to a specified queue.

This command has the following format:

ADDRESS PPQ 'WRITE QUEUE(qname) ITEM(item)|VAR(varname)

 [DATATYPE(BINARY|TEXT)]

 [ITEMNUM(LAST|FIRST|itemnum)]

 [WAIT(NO|YES|waittime)]'

QUEUE

Specifies the 1- to 16-character name of the queue (qname). The queue name can
contain alphanumeric characters and any of these special characters: ! @ # $ _

The queue name cannot contain blanks.

ITEM

Specifies the item to write to the queue. The item value can be either a literal string
(such as "this is an item") or a simple variable name (not enclosed in quotation
marks so that REXX can evaluate it).

Note: You cannot specify the ITEM operand if you specify the VAR operand.

PPQ Operations Commands

126 Command and Keyword Reference Guide

VAR

Specifies the name of a simple or compound variable (varname) containing an item
or items to write to the queue.

A trailing dot after the varname value (as in varname.) specifies a compound
variable, where varname.0 contains the number of items to write, and varname.1,
varname.2, and so on, each contain an item to write. If you specify a compound
variable containing more than one item, the WRITE command locks the specified
queue temporarily, writes all items to the queue contiguously, and then unlocks the
queue.

Note: You cannot specify the VAR operand if you specify the ITEM operand.

DATATYPE

(Optional) Specifies which type of data translation should be used. Valid DATATYPE
values are:

TEXT

Automatically translates the data between EBCDIC and ASCII to match the
requirements of the receiving system. This value is most useful when you want
to send text strings between z/OS and Windows.

BINARY

Specifies that no data translation should occur.

Note: The BINARY format is faster and should be used for all data, including
text, if all systems that communicate through PPQs use the same character set.

 Default: BINARY

ITEMNUM

(Optional) Specifies the starting item to write to the queue.

Assume that the specified queue contains count number of items and that you want
to write n items to the queue. Valid ITEMNUM values are:

LAST

Starts the write operation from the end of the queue. The first item written to
the queue is item number count+1 and succeeding items are numbered
count+2, count+3, and so on through count+n. This is the default method for
writing to the queue.

FIRST

Starts the write operation from the beginning of the queue. The current item
number 1 in the queue becomes item number 1+n after n items are written.

PPQ Operations Commands

Chapter 5: ADDRESS PPQ Commands 127

itemnum

Starts the write operation from somewhere in the middle of the queue. The
WRITE command writes n items ahead of an item (specified by itemnum) that
already exists in the queue (so that the current itemnum becomes itemnum+n
after n items are written).

Note: The starting item that you specify must exist or must be the count+1 item in
the queue; specifying an itemnum value beyond the end of the queue generates an
error.

Default: LAST

WAIT

(Optional) Specifies what the command does if it cannot execute immediately. For
example, the queue may be in use or locked by another REXX program. Valid WAIT
values are:

NO

Returns a nonzero return code (RC) value immediately. For information about
what happens when a command does not execute successfully, see the chapter
on using program-to-program queues in the Administrator Guide.

YES

Waits indefinitely while blocking the current REXX program until the queue
becomes available.

waittime

Specifies the number of seconds to wait (up to 100000) while blocking the
current REXX program. Fractional values (such as 1.5) are valid.

Default: NO

PPQ Dismantling Commands

128 Command and Keyword Reference Guide

Usage Note:

When writing to a remote queue, especially using the TCP/IP transport, it is possible to
receive return code 4520 (queue not found), indicating errors when the queue exists on
the remote machine. These errors can occur if remote host network response times are
slow or inconsistent. To alleviate this condition, use the following sample to code a
function around the read request to detect the problem and recover from it:

WRITERMTPPQ:

/*

**

* THIS FUNCTION WILL WRITE A PPQ REMOTE QUEUE WITH TIMEOUT. *

**

* EXAMPLE CALL: RC = WRITEPPQ('RMTQ', 4*60, 'DATATYPE(BINARY)') *

* RETURNS: RC FROM PPQWRITE *

* NOTES: FOR LOCAL QUEUE, USE PPQWRITE WAIT() PARAMETER IN PLACE OF*

* THIS ROUTINE. *

*/

QUEUE = ARG(1) /* QUEUE NAME */

TIMEOUT = ARG(2) /* TIME OUT IN SECONDS */

WRITE_PARMS = ARG(3) /* OTHER PPQWRITE PARMS */

/* DEFAULT 3 MINUTE TIME OUT */

IF TIMEOUT = '' THEN TIMEOUT = 3*60

/* ENSURE WAIT PARM */

IF POS('WAIT(',WRITE_PARMS) = 0

 THEN WRITE_PARMS = 'WAIT(1)' WRITE_PARMS

/* ENSURE DATATYPE PARM */

IF POS('DATATYPE(',WRITE_PARMS) = 0

 THEN WRITE_PARMS = 'DATATYPE(TEXT)' WRITE_PARMS

 /* START TIMER */

X = TIME('R')

/* LOOP UNTIL QUEUE FOUND, TIME OUT, OR ERROR */

DO UNTIL TIME('E') > TIMEOUT

 ADDRESS 'PPQ' 'WRITE QUEUE('QUEUE')' WRITE_PARMS

 IF RC <> 4520 THEN LEAVE

END

RETURN RC

PPQ Dismantling Commands

The following sections describe the ADDRESS PPQ commands used for dismantling
queues.

PPQ Dismantling Commands

Chapter 5: ADDRESS PPQ Commands 129

DELETE Command

The DELETE command deletes all elements in the specified queue and releases the
memory allocated for the queue.

This command has the following format:

ADDRESS PPQ 'DELETE QUEUE(qname) [WAIT({NO|YES|waittime})]'

QUEUE

Specifies the 1- to 16-character name of the queue (qname). The queue name can
contain alphanumeric characters and any of these special characters: ! @ # $ _

The queue name cannot contain blanks.

WAIT

(Optional) Specifies what the command does if it cannot execute immediately. For
example, the queue may be in use or locked by another REXX program. Valid WAIT
values are:

NO

Returns a nonzero return code (RC) value immediately. (For information about
what happens when a command does not execute successfully, see the chapter
on using program-to-program queues in the Administrator Guide.

YES

Waits indefinitely while blocking the current REXX program until the queue
becomes available.

waittime

Specifies the number of seconds to wait (up to 100000) while blocking the
current REXX program. Fractional values (such as 1.5) are valid.

Default: NO

Usage Notes:

The following restrictions apply to the DELETE command:

■ If the queue you want to delete is a network-shared queue--that is, if it was created
with the CREATE command's SHARE(YES) option--the DELETE command first makes
the queue local (unshared) so that it can delete the queue.

■ You can delete only local queues. The only way to delete a remote queue is through
a REXX program on the machine where the queue resides.

■ You cannot delete a locked queue unless the calling REXX program is also the lock
holder.

■ A temporary queue--created with the CREATE command
PERSISTENCE(TEMPORARY) option--can be deleted only by the REXX program that
created it.

Special PPQ Commands

130 Command and Keyword Reference Guide

DISCONNECT Command

The DISCONNECT command breaks the connection with the specified remote queue.
(This command is nondestructive; it does not delete the remote queue.)

When the local workstation has no more use for a remote queue, issue the DISCONNECT
command to free transport resources. (A transport is the mechanism that moves data
from one location to another, such as shared memory on your workstation or TCP/IP.)

If a REXX program disconnects from a remote queue that other REXX programs on the
same workstation are still using, an automatic reconnection occurs transparently. An
error occurs if the queue is currently locked by a program other than the calling
program.

This command has the following format:

ADDRESS PPQ 'DISCONNECT QUEUE(qname)'

QUEUE

Specifies the 1- to 16-character name of the queue (qname). The queue name can
contain alphanumeric characters and any of these special characters: ! @ # $ _

The queue name cannot contain blanks.

Special PPQ Commands

The following sections describe the ADDRESS PPQ commands used for special purposes.

Special PPQ Commands

Chapter 5: ADDRESS PPQ Commands 131

COUNT Command

The COUNT command counts the number of items in a specified queue. The return
information is a positive integer.

This command has the following format:

ADDRESS PPQ 'COUNT QUEUE(qname) [CMDRESP(destination)]

 [PREFIX(newvarname)]'

QUEUE

Specifies the 1- to 16-character name of the queue (qname). The queue name can
contain alphanumeric characters and any of these special characters: ! @ # $ _

The queue name cannot contain blanks.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section Change the Default Return Destination with
CMDRESP (see page 117).

Default: REXX

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS PPQ Return Information (see
page 115).

Note: The PREFIX operand is only valid if REXX is the destination of the return
information.

Note: The PREFIX operand is only valid if REXX is the destination of the return
information.

Default: PPQ.COUNT

Special PPQ Commands

132 Command and Keyword Reference Guide

DEBUG Command

The DEBUG command controls debugging trace output. You can prevent messages
below a specified severity level from being traced, and you can specify what types of
messages that you want to trace. Like the TRANSTATUS command, the DEBUG
command is a diagnostic tool.

This command has the following format:

ADDRESS PPQ 'DEBUG [CATEGORY(hexbitfield)]

 [CMDRESP (destination)]

 [SEVERITY(severitylevel)] '

CATEGORY

(Optional) Specifies a mask for the category of message to be traced. Specify the
hexbitfield value as a 32-bit hexadecimal string. Each bit position containing a 1
allows the trace utility (ASOTRACE.exe) to trace the corresponding message
category.

Default: FFFFFFFF

This parameter specifies the bit assignments are as follows:

General Hex Code Trace Type

FFFFFFFF All

00000001 Startup

00000002 Initialization and termination

00000004 Manager thread

00000008 API entry point

00000010 Status

Hex Code Trace Type

00000020 Control block

00000040 Packet

00000080 Memory allocation

00000100 High volume routine

Application Hex Code Trace Type

00100000 Utility routine

00200000 PPQ

00800000 VOX

Special PPQ Commands

Chapter 5: ADDRESS PPQ Commands 133

01000000 OCF

00200000 GLV

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section Change the Default Return Destination with
CMDRESP (see page 117).

Default: REXX

SEVERITY

(Optional) Prevents tracing of messages with severity levels below the level
specified for severitylevel. Valid severity levels are:

1

Error

2

Warning

3

Informational

4-8

Debug levels

Note: CA Technical Support specifies the appropriate debug trace level when
necessary.

Default: 1

LIST Command

The LIST command lists information about one or more queues residing on the local or
remote workstation, or both. The optional QUEUE and SCOPE operands allow you to
specify search criteria to target specific queues. This command is useful for
troubleshooting TCP/IP problems.

Each line of information that the LIST command returns represents one queue. Each
field in a line contains a specific type of information about the queue, as follows:

Field Description

1 The name of the queue

2 The number of items in the queue

3 The maximum number of items allowed in the queue

Special PPQ Commands

134 Command and Keyword Reference Guide

Field Description

4 The maximum allowed length of each item

5 The lock nesting counter

6 The name of the transport where the queue was found

7 The scope of the queue (local, remote, or shared)

8 The name of the transport the queue uses

9 The system name of the creator of the queue

This command has the following format:

ADDRESS PPQ 'LIST [CMDRESP(destination)]

 [PREFIX(newvarname)]

 [QUEUE(qname)]

 [SCOPE(ALL|LOCAL|REMOTE)]

 [TRANSPORT(network-transport-name)]'

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section Change the Default Return Destination with
CMDRESP (see page 117).

Default: REXX

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS PPQ Return Information (see
page 115).

Note: The PREFIX operand is only valid if REXX is the destination of the return
information.

Default: PPQ.LIST

QUEUE

(Optional) Specifies the 1- to 16-character name of the queue (qname). The queue
name can contain alphanumeric characters and any of these special characters: ! @
$ _

The queue name cannot contain blanks.

Note: Wildcard characters are not valid in this case.

Special PPQ Commands

Chapter 5: ADDRESS PPQ Commands 135

SCOPE

(Optional) Specifies queues on the local or remote workstation, as follows:

ALL

Lists queues residing on the local workstation and queues on remote
workstations that REXX programs on the local workstation have accessed.

LOCAL

Lists only those queues residing on the local workstation.

REMOTE

Lists only those queues residing on remote workstations that REXX programs
on the local workstation have accessed.

Default: ALL

Special PPQ Commands

136 Command and Keyword Reference Guide

TRANSPORT

(Optional) Specifies a valid transport.

The network-transport-name is the network transport specified on the
TRANSPORT() startup initialization parameter.

Valid network transport names are:

PPQTCP

The network transport is TCP/IP.

When TRANSPORT(PPQTCP) is specified, the LIST command displays the current
state of each TCP/IP connection to the remote hosts listed under TCP/IP Host
Names in the Configuration Manager Program-to-Program Queues dialog.

'LIST TRANSPORT(PPQTCP)' displays one of the following forms of output:

If the local machine is configured only with IPv4 under TCP/IP:

Session nnnnnnn: IP: iphost1 State: host1state Host 'host1'

Session nnnnnnn: IP: iphost2 State: host2state Host 'host2'

If the local machine is configured to support both IPv4 and IPv6 under TCP/IP:

Session nnnnnnn: State: host1state

 IP: iphost1

 Host 'host1'

Session nnnnnnn: State: host2state

 IP: iphost2

 Host 'host2'

nnnnnnn -- Specifies the internal session identifier

iphostn- -- Specifies the IPv4 or IPv6 address for the host named hostn; an IPv6
address will be enclosed in square brackets

hostnstate -- Specifies the state of the session that is connected to the host
named hostn. Values are UP, DOWN, STARTING, LISTEN, BROKEN, and
UNKNOWN.

Notes:

■ The old IPv4 format is deprecated; it may be removed in a future release in
favor of the new IPv4/IPv6 format.

■ PPQTCP is the only valid value for TRANSPORT.

Special PPQ Commands

Chapter 5: ADDRESS PPQ Commands 137

TRANSTATUS Command

The TRANSTATUS command returns a table of transport-specific information. (A
transport is the mechanism that moves data from one location to another, such as
shared memory on your workstation or TCP/IP.) Like the DEBUG command, the
TRANSTATUS command is a diagnostic tool. This command is useful for providing
diagnostic information to Technical Support.

Each line of information that the TRANSTATUS command returns represents one
transport. Each field in a line contains a specific type of information about the transport,
as follows:

Field Description

1 The name of the transport (such as SharedMemory or TCP/IP)

2 The version number (for example, 11.3.0.0 Rev=99999)

3 The state of the transport (such as UNKNOWN, INITIALIZATION,
OPERATIONAL, or TERMINATION)

The following is an example of return information lines:

SHAREDMEMORY 11.3.0.0 Rev=99999 OPERATIONAL

TCP/IP 11.3.0.0 Rev=99999 OPERATIONAL

This command has the following format:

ADDRESS PPQ 'TRANSTATUS [CMDRESP(destination)]

 [PREFIX(newvarname)]'

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section Change the Default Return Destination with
CMDRESP (see page 117).

Default: REXX

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS PPQ Return Information (see
page 115).

Note: The PREFIX operand is only valid if REXX is the destination of the return
information.

Default: PPQ.TRANSTATUS

Special PPQ Commands

138 Command and Keyword Reference Guide

VER Command

The VER command provides the version number and configuration of the CA
Automation Point PPQs on your workstation.

The VER command returns one line of information containing four fields. The fields
contain the following information:

Field Description

1 The PPQ service name (for example, PPQ)

2 The version number (for example, 11.3.0.0 Rev=99999)

3 The Build date of the current PPQ service in mmm dd yyyy format (for
example, Jul 5 2010)

4 The system name for the PPQ service on this workstation as defined
during configuration (for example, PPQSYS)

The following is an example of return information line:

PPQ 11.3.0.0 Rev=99999 Jul 5 2010 PPQSYSTEM

This command has the following format:

ADDRESS PPQ 'VER [CMDRESP(destination)] [PREFIX(newvarname)]'

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section Change the Default Return Destination with
CMDRESP (see page 117).

Default: REXX

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS PPQ Return Information (see
page 115).

Note: The PREFIX operand is only valid if REXX is the destination of the return
information.

Default: PPQ.VER

Chapter 6: ADDRESS GLV Commands 139

Chapter 6: ADDRESS GLV Commands

You issue GLV commands through the ADDRESS GLV statement in a REXX program. For
details about The CA Automation Point global variable environment, see the chapter on
configuring and writing REXX in the Administrator Guide.

ADDRESS GLV Command Summary

The following list summarizes CA Automation Point ADDRESS GLV commands.

GET

Retrieves the current value of a status or GLV variable and assigns that value to a
local REXX variable of the same name.

GRPLIST

Places a list of all variable groups into the external data queue.

GRPLISTV

Places a list of all variable groups directly into a REXX variable.

LIST

Places the name and value of a variable into the external data queue.

LISTV

Places the name and value of a variable directly into the REXX variable.

PURGE

Deletes all volatile variables in a specified variable group.

PUT

Assigns the value of a local REXX variable to a volatile status or GLV variable of the
same name.

PUTP

Assigns the value of a local REXX variable to a nonvolatile status or GLV variable of
the same name. (This command creates or updates a .GLV file.)

SELECT

Selects a particular variable group for succeeding GLV commands to act upon. This
command is valid globally as a stand-alone command or locally as an operand in
most other GLV commands.

ADDRESS GLV Command Syntax

140 Command and Keyword Reference Guide

SET

Assigns values to one or more volatile variables.

SETL

Assigns a literal value, which can contain blanks, to a single volatile variable.

SETLP

Assigns a literal value, which can contain blanks, to a single nonvolatile variable.
(This command creates or updates a .GLV file.)

SETP

Assigns values to one or more nonvolatile variables. (This command creates or
updates a .GLV file.)

VER

Provides the version number and maintenance level of GLV services on your
workstation to the external data queue.

VERV

Provides the version number and maintenance level of GLV services on your
workstation into a REXX variable.

ADDRESS GLV Command Syntax

Issue a GLV command from within a REXX program by specifying an ADDRESS GLV
statement, as shown:

ADDRESS GLV 'glvcommand operand(s)'

Operands shown in brackets ([]) are optional.

Return Codes for GLV Commands

After a GLV command executes, it sets the special REXX return code variable RC. The RC
variable contains a value of 0 (zero) if the command executed successfully; otherwise,
the RC variable contains one of these values:

RC Description

-86 Unrecognized command name

-84 Unrecognized command operand

-82 Command operand is missing

ADDRESS GLV Command Descriptions

Chapter 6: ADDRESS GLV Commands 141

If the RC variable contains any other value, contact CA Technical Support at
http://ca.com/support.

ADDRESS GLV Command Descriptions

The following sections describe the ADDRESS GLV commands.

GET Command

The GET command retrieves the value of any variable (that is, any status or GLV variable
whether volatile or nonvolatile) and assigns that value to a local REXX variable of the
same name.

This command has the following format:

ADDRESS GLV '[SELECT vargroup] GET varname . . . '

SELECT

(Optional) Specifies the name of a variable group (vargroup) to which the specified
variable (varname) belongs.

For more information, see the description of the SELECT (see page 148) command.

GET

Specifies the name of the variable whose value you want to retrieve. (CA
Automation Point places the contents of the specified variable into a local REXX
variable of the same name.)

You can specify one or more varname variable names.

Examples:

■ The following REXX statement assigns the values of two nonvolatile status variables
(AXCDISK_DVOL and AXCDISK_ERRORS) from the variable group AXC to local REXX
variables of the same names:

ADDRESS GLV 'SELECT AXC GET AXCDISK_DVOL AXCDISK_ERRORS'

■ The following REXX statement assigns the value of VOXCALLS (a GLV variable that
could be volatile or nonvolatile in this example) to a local REXX variable of the same
name. (Notice that the VOXCALLS variable is a member of the VOXGROUP variable
group.)

ADDRESS GLV 'SELECT VOXGROUP GET VOXCALLS'

ADDRESS GLV Command Descriptions

142 Command and Keyword Reference Guide

GRPLIST Command

The GRPLIST command places a list of all variable group names into the external data
queue, making that information available to any REXX program.

This command has the following format:

ADDRESS GLV 'GRPLIST'

Example:

The following REXX statements list the variable groups in use:

SAY 'These are the variable groups currently in use:'

ADDRESS GLV 'GRPLIST'

do while queued() > 0

 parse pull line

 say line

end

GRPLISTV Command

The GRPLISTV command places a list of all variable group names directly into a REXX
variable.

This command has the following format:

ADDRESS GLV 'GRPLISTV rexxstem'

GRPLISTV

Specifies the name of the REXX stem variable (rexxstem) that will contain the
return information for the command.

Example:

The following example lists the variable groups in use:

ADDRESS GLV 'GRPLISTV rexxstem'

say 'These are the variable groups currently in use:'

do i=1 to rexxstem.0

 say rexxstem.i

end

ADDRESS GLV Command Descriptions

Chapter 6: ADDRESS GLV Commands 143

LIST Command

The LIST command places the name and value of any variable (that is, any status or GLV
variable whether volatile or nonvolatile) into the external data queue, making that value
available to any REXX program.

This command has the following format:

ADDRESS GLV '[SELECT vargroup] LIST [varname . . .] '

SELECT

(Optional) Specifies the name of a variable group (vargroup) to which the specified
variable (varname) belongs.

For more information, see the description of the SELECT (see page 148) command.

varname

(Optional) Specifies the name of the variable whose name and value you want to
place into the external data queue. You can specify one or more varname variable
names.

The following wildcard characters are valid for variable name masking:

? or +

Replaces individual characters.

*

Replaces any number of trailing characters when placed as the last character in
the name mask.

If you do not specify a varname value, the LIST command writes all variables (in the
selected or default variable group) to the external data queue.

Example:

The following REXX statement places the name and value of the variable LASTUSER into
the external data queue:

ADDRESS GLV 'SELECT USER_GRP LIST LASTUSER'

ADDRESS GLV Command Descriptions

144 Command and Keyword Reference Guide

LISTV Command

The LISTV command places the name and value of any variable, that is, any status or
GLV variable whether volatile or nonvolatile, into a REXX variable.

This command has the following format:

ADDRESS GLV '[SELECT vargroup] LISTV rexxstem [varname . . .] '

SELECT

(Optional) Specifies the name of a variable group (vargroup) to which the specified
variable (varname) belongs.

For more information, see the description of the SELECT (see page 148) command.

rexxstem

Specifies the name of the REXX stem variable that will contain the return
information for the command.

varname

(Optional) Specifies the name of the variable whose name and value you want to
place into the selected stem variable. You can specify one or more varname
variable names.

The following wildcard characters are valid for variable name masking:

? or +

Replaces individual characters.

*

Replaces any number of trailing characters when placed as the last character in
the name mask.

If you do not specify a varname value, the LIST command writes all variables (in the
selected or default variable group) to the selected stem variable.

Example:

The following REXX example places the name and value of the variable(s) starting with D
into the REXX variable:

ADDRESS GLV 'SELECT UNNAMED LISTV REXXSTEM D*'

say 'These are all the variables in the UNNAMED group that start with "D":'

do i=1 to rexxstem.0

 say rexxstem.i

end

ADDRESS GLV Command Descriptions

Chapter 6: ADDRESS GLV Commands 145

PURGE Command

The PURGE command deletes all volatile variables within a specified variable group.
(The PURGE command has no effect on nonvolatile variables.)

This command has the following format:

ADDRESS GLV '[SELECT vargroup] PURGE'

SELECT

(Optional) Specifies the name of a variable group (vargroup) to which the specified
variable (varname) belongs.

For more information, see the description of the SELECT (see page 148) command.

If you do not select a variable group, the PURGE command erases all volatile
variables in the group selected by the previously issued SELECT command. If you
have not yet selected a group, the PURGE command erases all volatile variables in
the UNNAMED group.

Examples:

■ The following REXX statement erases the volatile variables in the variable group
RELAYGRP:

ADDRESS GLV 'SELECT RELAYGRP PURGE'

■ The following REXX statement erases all volatile variables in the default variable
group (either UNNAMED or another group specified by the previously issued SELECT
command):

ADDRESS GLV 'PURGE'

ADDRESS GLV Command Descriptions

146 Command and Keyword Reference Guide

PUT Command

The PUT command assigns the value of a local REXX variable to a volatile status or GLV
variable of the same name.

This command has the following format:

ADDRESS GLV '[SELECT vargroup] PUT varname . . .'

SELECT

(Optional) Specifies the name of a variable group (vargroup) to which the specified
variable (varname) belongs.

For more information, see the description of the SELECT (see page 148) command.

varname

Specifies the name of a volatile status or GLV variable. You can specify one or more
varname variable names.

Note: If you assign a value to a volatile variable, and a nonvolatile variable of the
same name already exists, the nonvolatile variable will be erased.

Example:

Assume that the following PUT statement follows a REXX program that has just finished
processing, and that the program has assigned values to the local SUBTOTAL and TOTAL
variables. The statement shown below assigns those values to volatile variables of the
same name in the variable group STATS_GROUP:

ADDRESS GLV 'SELECT STATS_GROUP PUT SUBTOTAL TOTAL'

ADDRESS GLV Command Descriptions

Chapter 6: ADDRESS GLV Commands 147

PUTP Command

The PUTP command assigns the value of a local REXX variable to a nonvolatile status or
GLV variable of the same name. This command updates or creates a .glv file. (A .glv file
contains nonvolatile variables.)

This command has the following format:

ADDRESS GLV '[SELECT vargroup] PUTP varname . . .'

SELECT

(Optional) Specifies the name of a variable group (vargroup) to which the specified
variable (varname) belongs.

For more information, see the description of the SELECT (see page 148) command.

varname

Specifies the name of a nonvolatile status or GLV variable. You can specify one or
more varname variable names.

Note: If you assign a value to a nonvolatile variable, and a volatile variable of the
same name already exists, the volatile variable will be erased.

Example:

Assume that the following PUTP statement follows a REXX program that has just
finished processing, and that the program has assigned values to the local SUBTOTAL
and TOTAL variables. The statement shown below assigns those values to nonvolatile
variables of the same name in the variable group STATS_GROUP:

ADDRESS GLV 'SELECT STATS_GROUP PUTP SUBTOTAL TOTAL'

ADDRESS GLV Command Descriptions

148 Command and Keyword Reference Guide

SELECT Command

The SELECT command selects a default variable group for subsequent GLV commands to
act upon.

This command has the following format:

ADDRESS GLV 'SELECT vargroup [glvcommand]'

vargroup

Specifies the name of a variable group that you want to select as the default group
for subsequent GLV commands.

Default: UNNAMED

glvcommand

(Optional) One of the following GLV commands:

GET PUTP SETL

LIST PURGE SETLP

PUT SET SETP

Note: If you specify SELECT as an operand in one of the GLV commands listed here,
the selected variable group applies to that command only and does not change the
default variable group.

Usage Notes:

■ The selected variable group becomes the default group for subsequent GLV
commands until you select another variable group.

■ If the variable group that you select does not exist, the SELECT command creates it.

■ If you do not issue the SELECT command to select a default variable group, GLV
commands assume the default group is UNNAMED.

Example:

In the following REXX code, assume that the default variable group is UNNAMED
because you have not issued a SELECT command to select another default variable
group.

The first LIST command requests the value of the variable LAST_USER (set by either CA
Automation Point or another REXX program). The second LIST command (specifying
SELECT locally as an operand) selects the variable group TESTER as the group to which
the variable named NEW_USER belongs.

ADDRESS GLV 'LIST LAST_USER'

PULL LAST_USER.UNNAMED

ADDRESS GLV 'SELECT TESTER LIST NEW_USER'

PULL NEW_USER.TESTER

ADDRESS GLV Command Descriptions

Chapter 6: ADDRESS GLV Commands 149

SET Command

The SET command assigns values to one or more volatile status or GLV variables.

This command has the following format:

ADDRESS GLV '[SELECT vargroup] SET varname value [varname value . . .]'

SELECT

(Optional) Specifies the name of a variable group (vargroup) to which the specified
variable (varname) belongs.

For more information, see the description of the SELECT (see page 148) command.

varname

Specifies the name of a volatile status or GLV variable.

Note: If you assign a value to a volatile variable, and a nonvolatile variable of the
same name already exists, the nonvolatile variable will be erased.

You can specify one or more varname variable names, but each varname that you
specify must have a matching value.

value

Specifies the value to assign to the variable specified by varname. The valid value is
any character string that does not contain blanks.

Example:

The following REXX statement assigns the literal value SYS1_IPL to the EVENT variable
and the literal value DATE_AND_TIME to the EVENT_TIME variable:

ADDRESS GLV 'SET EVENT SYS1_IPL EVENT_TIME DATE_AND_TIME'

ADDRESS GLV Command Descriptions

150 Command and Keyword Reference Guide

SETL Command

The SETL command assigns a literal value, which can contain blanks, to a single volatile
status or GLV variable.

This command has the following format:

ADDRESS GLV '[SELECT vargroup] SETL varname value'

SELECT

(Optional) Specifies the name of a variable group (vargroup) to which the specified
variable (varname) belongs.

For more information, see the description of the SELECT (see page 148) command.

varname

Specifies the name of a volatile status or GLV variable.

Note: If you assign a value to a volatile variable, and a nonvolatile variable of the
same name already exists, the nonvolatile variable will be erased.

value

Specifies the value to assign to the variable specified by varname. Valid values are
literal strings. The value can contain blanks.

Example:

The following REXX statement assigns a literal value to the volatile variable MESSAGE:

ADDRESS GLV 'SETL MESSAGE This is a sentence in one variable'

ADDRESS GLV Command Descriptions

Chapter 6: ADDRESS GLV Commands 151

SETLP Command

The SETLP command assigns a literal value, which can contain blanks, to a single
nonvolatile status or GLV variable. This command updates or creates a .glv file. (A .glv
file contains nonvolatile variables.)

This command has the following format:

ADDRESS GLV '[SELECT vargroup] SETLP varname value'

SELECT

(Optional) Specifies the name of a variable group (vargroup) to which the specified
variable (varname) belongs.

For more information, see the description of the SELECT (see page 148) command.

varname

Specifies the name of a nonvolatile status or GLV variable.

Note: If you assign a value to a nonvolatile variable, and a volatile variable of the
same name already exists, the volatile variable will be erased.

value

Specifies the value to assign to the variable specified by varname. Valid values are
literal strings. The value can contain blanks.

Example:

The following REXX statement assigns a literal value to the nonvolatile status variable
AXCDISK_MESSAGE:

ADDRESS GLV 'SETLP AXCDISK_MESSAGE This is a sentence in one variable'

ADDRESS GLV Command Descriptions

152 Command and Keyword Reference Guide

SETP Command

The SETP command assigns values to one or more nonvolatile status or GLV variables.
This command updates or creates a .GLV file. (A .GLV file contains nonvolatile variables.)

This command has the following format:

ADDRESS GLV '[SELECT vargroup] SETP varname value [varname value . . .]'

SELECT

(Optional) Specifies the name of a variable group (vargroup) to which the specified
variable (varname) belongs.

For more information, see the description of the SELECT (see page 148) command.

varname

Specifies the name of a nonvolatile status or GLV variable.

Note: If you assign a value to a nonvolatile variable, and a volatile variable of the
same name already exists, the volatile variable will be erased.

You can specify one or more varname variable names, but each varname that you
specify must have a matching value.

value

Specifies the value to assign to the variable specified by varname. The valid value is
any character string that does not contain blanks.

Example:

The following REXX statement assigns the literal value SYS1_IPL to the EVENT variable,
and the literal value DATE_AND_TIME to the EVENT_TIME variable:

ADDRESS GLV 'SETP EVENT SYS1_IPL EVENT_TIME DATE_AND_TIME'

ADDRESS GLV Command Descriptions

Chapter 6: ADDRESS GLV Commands 153

VER Command

The VER command provides the version number, maintenance level, and build date of
GLV services on your workstation.

This command has the following format:

ADDRESS GLV 'VER'

The VER command returns one line of information containing three fields to the
external data queue. The fields contain the following information:

1

Contains the GLV service name (for example, GLV)

2

Contains the version number with service pack and patch (for example, 11.3.0.0
Rev=99999)

3

Contains the build date of the current GLV service in mmm dd yyyy format (for
example, Jan 25 2010).

The following is an example of a return information line:

GLV 11.3.0.0 Rev=99999 Jan 25 2010

ADDRESS GLV Command Descriptions

154 Command and Keyword Reference Guide

VERV Command

The VERV command provides the version number, maintenance level, and build date of
GLV services on your workstation.

The VERV command returns one line of information containing three fields to a REXX
variable.

This command has the following format:

ADDRESS GLV 'VERV rexxstem'

rexxstem

Specifies the name of the REXX stem variable that will contain the return
information for the command.

Example:

The following is an example of the VERV command:

ADDRESS GLV "VERV LINE"

say 'The current GLV Manager version is: 'line.1'

Chapter 7: ADDRESS VOX Commands 155

Chapter 7: ADDRESS VOX Commands

 CA Automation Point VOX commands are issued through the ADDRESS VOX statement
in a REXX program. For details about the CA Automation Point VOX command
environment, see the chapter on using notification services in the Administrator Guide.

ADDRESS VOX Command Summary

The following sections summarize CA Automation Point ADDRESS VOX commands.

Notification Manager Database Maintenance Commands

Use the following commands to manage the Notification Manager database.

ALTERENTITY

Alters the characteristics of an entity.

ALTERMETHOD

Alters the characteristics of a method.

ALTERPARM

Alters the characteristics of a parameter.

ALTERTIME

Alters the characteristics of a time block.

CREATEENTITY

Creates a new entity.

CREATELOGIN

Creates a new login.

CREATEMETHOD

Creates a new method.

CREATEPARM

Creates a new parameter.

ADDRESS VOX Command Summary

156 Command and Keyword Reference Guide

CREATETIME

Creates a new time block.

DESTROYENTITY

Destroys an existing entity.

DESTROYLOGIN

Destroys an existing login.

DESTROYMETHOD

Destroys an existing method.

DESTROYPARM

Destroys an existing parameter.

DESTROYTIME

Destroys an existing time block.

EPWCHECK

Checks the password for an entity.

LISTENTITY

Lists all the data for one or more entities (except the password).

LISTFIND

Lists the time blocks that are active for one or more entities at a given date and
time. The list is a tree that can contain any level of nesting.

LISTFORTO

Lists all the time blocks that forward to a given entity (no matter what the time and
date). The list is a tree that can contain any level of nesting.

LISTLOGIN

Lists all the data for one or more logins.

LISTMETHOD

Lists all the data for one or more methods.

LISTPARM

Lists all of the data for one or more parameters.

LISTPERGRPS

Lists all personal groups for a specified contact.

ADDRESS VOX Command Summary

Chapter 7: ADDRESS VOX Commands 157

LISTTIME

Lists all the data for one or more time blocks.

NMDBMERGE

Merges a previously exported copy of a database into the current Notification
Manager database.

NMEXPORT

Creates a copy of the current Notification Manager database in a format that can be
easily moved to another system.

NMIADDCALLER

Adds an entity to the list of entities that are allowed to call in on an item.

NMIANSWER

Sets or retrieves the answer for an item in the Notification Manager database.

NMICHECKCALLER

Checks to see whether an entity has been permitted to listen to/answer this item
(by a call to NMIADDCALLER).

NMIGETITEM

Retrieves the ask text and tell text for an item from the Notification Manager
database.

NMIMPORT

Imports a copy of a Notification Manager database.

Notification Commands

Use the following commands for notification tasks.

PAGE

Issues an alphanumeric page to designated personnel using a modem-based
alphanumeric paging service.

PAGE2WAY

Issues an alphanumeric page to designated personnel using an Internet-based
alphanumeric paging service.

SENDMAIL

Generates an e-mail message to designated personnel.

ADDRESS VOX Command Summary

158 Command and Keyword Reference Guide

Voice Processing Commands

Use the following commands for voice processing tasks.

ANSWER

Waits for an incoming telephone call on any available voice channel, any voice
channel within a group, or a specific voice channel only.

ANSWERPLAY

Waits for an incoming telephone call (in the same way as the ANSWER command)
and plays one or more prerecorded voice messages after answering.

CALL

Initiates a telephone call using an open, available voice channel.

CALLPLAY

Initiates a telephone call on an available voice channel and plays one or more
prerecorded voice messages.

CLEAR

Clears the digit buffer of a voice channel or its call progress analysis (CPA)
parameters.

GETCHANNEL

Serializes I/O activity on a voice channel by marking an available channel as in-use.
The calling REXX program then has exclusive access to the channel.

GETCHANNELNUM

Identifies the physical voice channel number associated with a channel handle.

GETDIGITS

Retrieves tone digits-such as menu selections or access codes that a remote party
enters from a telephone keypad in response to a voice prompt-from the digit buffer
of a voice channel.

GETGROUP

Returns a text string containing a group name and a list of all physical voice channel
numbers associated with the group.

GETSTATUS

Returns the current status of a voice channel.

GETSYSNAMES

Retrieves the system names of all connected notification servers in a distributed
environment.

ADDRESS VOX Command Summary

Chapter 7: ADDRESS VOX Commands 159

LOAD

Loads a voice file or voice word library index file into main memory for faster
access.

PLAY

Plays a prerecorded voice message through a specified voice channel.

PLAYGETDIGITS

Plays a prerecorded voice message through a specified voice channel, and then
retrieves tone digits that the remote party enters from the telephone keypad.

RECORDFILE

Records a voice message from the remote party and stores it in a disk file.

RELEASECHANNEL

Resets a voice channel marked as in-use by the GETCHANNEL command, making the
channel available to other REXX programs issuing a GETCHANNEL command. Used
with the GETCHANNEL command to serialize I/O activity on a channel.

SENDTONES

Sends tone digits through an already-open voice channel, useful for sending
additional tones after CA Automation Point has successfully called and connected to
the remote party.

SETGROUP

Associates a group name with one or more voice channels.

SETHOOK

Sets the hook state of a voice channel to on-hook or off-hook, useful in special
circumstances such as multiple CALL operations within a single REXX program.

SETVOLUME

Adjusts the volume for current and subsequent PLAY operations on a specified
voice channel.

STOP

Terminates an active I/O operation on a voice channel.

VERIFYUSER

Checks the validity of the user ID and password combination of the remote party.

WINK

Sends a brief "handshaking" protocol signal through a voice channel.

ADDRESS VOX Command Syntax

160 Command and Keyword Reference Guide

Utility Commands

The following commands are ADDRESS VOX utility commands.

GETTAPIDEVICELIST

Lists all the TAPI devices that are installed under Windows.

SETENGINE

Allows you to modify notification server settings.

SETMSGSTREAM

Duplicates the message stream from CA Automation Point to another queue that is
accessible through PPQs, local or remote.

SETTRACE

Start and stop trace logging.

SLEEP

Causes the issuing REXX EXEC to enter a system sleep state.

STARTREXX

Starts another REXX program.

VER

Provides the version number and configuration information of the CA Automation
Point notification services at your site

ADDRESS VOX Command Syntax

To issue a VOX command, use an ADDRESS statement in your REXX program to access
the CA Automation Point VOX command environment, as shown:

ADDRESS VOX "voxcommand [operands...]"

Follow these guidelines when issuing a VOX command:

■ Use parentheses to pass required or optional operand values. For example:

TIMEOUT(100)

■ Uppercase or lowercase values are valid. For example:

COUNT(5) or count(5)

ADDRESS VOX Return Information

Chapter 7: ADDRESS VOX Commands 161

■ A VOX command ignores leading and trailing blanks. For example:

LINE(15)

■ A VOX command supports single and double quotes. For example:

SYSTEM('VOX1') or SYSTEM("VOX1")

■ Operands shown in brackets ([]) are optional.

ADDRESS VOX Return Information

This section discusses ADDRESS VOX Return variables.

The RC Variable

RC is the REXX variable that contains the return codes from the ADDRESS VOX
environment. RC is set by every command and should be programmatically checked for
acceptable results (usually a zero value) after each command executes.

The VOX.ERROR Variable

If a VOX command does not execute successfully (returning a nonzero RC value) it
generates an error message and stores the message in the special REXX variable called
VOX.ERROR.

A VOX error message ID begins with the prefix VOX followed by a four-digit number
(corresponding to the RC return code value), and a letter indicating the message
severity. See the Message Reference Guide for a more detailed description of the error
message.

For example, if RC=5204, then the error message ID and message text contained in the
VOX.ERROR variable is:

VOX5204E Invalid channel handle.

ADDRESS VOX Return Information

162 Command and Keyword Reference Guide

The VOX.voxcommand Variable

For the following commands, return information is stored in the special variable
VOX.voxcommand:

■ ANSWER

■ CALL

■ CALLPLAY

■ GETCHANNEL

■ GETCHANNELNUM

■ GETDIGITS

■ GETGROUP

■ GETSTATUS

■ GETSYSNAMES

■ GETTAPIDEVICELIST

■ LISTFIND

■ LISTFORTO

■ LISTLOGIN

■ LISTMETHOD

■ LISTPARM

■ LISTTIME

■ NMIGETITEM

■ NMILISTANSWERS

■ NMILISTCALLERS

■ NMILISTITEMS

■ PAGE2WAY

■ PLAYGETDIGITS

■ VER

(The voxcommand portion of the stem variable represents the name of the VOX
command.)

ADDRESS VOX Return Information

Chapter 7: ADDRESS VOX Commands 163

The VOX.voxcommand.0 variable contains the number of lines of information returned
(that is, the number of elements in the VOX.voxcommand variable). The variables
VOX.voxcommand.1 through VOX.voxcommand.n each contain a line of information.
(The n value represents the last line of return information.)

Note: The VOX.voxcommand variable contains the same value stored in the
VOX.voxcommand.1 variable (that is, the first-and sometimes only-return information
line).

Change the Default Variable with PREFIX

You can direct return information to a variable other than the default VOX.voxcommand
by specifying the PREFIX operand.

To direct return information to another variable, enter the following command:

PREFIX(newvarname)

newvarname

Specifies the name of the variable to replace the default.

Note: The PREFIX operand is valid only if the destination of the return information is
REXX. For information about specifying other destinations, see the following section.

Notification Manager Database Maintenance Commands

164 Command and Keyword Reference Guide

Change the Default Return Destination with CMDRESP

To direct the return information from a VOX command to a specific destination, use the
CMDRESP operand :

CMDRESP(destination)

The following are valid values for destination:

REXX

Directs return information to a REXX variable. For more information, see the
preceding section.

Note: The optional PREFIX operand is valid only if the destination of the return
information is REXX.

XDQ

Directs return information to the external data queue.

TERMINAL

Directs return information to the terminal. This form uses the same output
mechanism used by the REXX command SAY.

NOWHERE

Directs return information to the “bit bucket.” This value discards the return
information.

Default: REXX

Notification Manager Database Maintenance Commands

The following sections describe the CA Automation Point commands for managing the
Notification Manager database.

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 165

ALTERENTITY Command

The ALTERENTITY command changes the characteristics of an entity.

This command has the following format:

ADDRESS VOX "ALTERENTITY KEY(key)

 [AVAIL(YES|NO)]

 [BROADCAST(YES|NO)]

 [ESCTO(key|name|0)]

 [NAME(name)]

 [PASSWORD(password)]

 [UNAVAILDESC(desc)]"

KEY

Specifies the key of the entity whose characteristics are to be altered.

AVAIL

(Optional) Specifies if the entity is available to be contacted. If the value is set to
NO, no attempt will be made to contact this entity. Until the AVAIL is set to YES,
Notification Manager will not attempt to contact this entity.

Note: This is not a valid operand for Groups.

Default: YES

BROADCAST

(Optional) Values are:

YES

Perform all times and methods that are active at the current time.

NO

Terminate processing for this entity as soon as one time or method succeeds.

ESCTO

(Optional) If this entity cannot be found, escalates to the entity whose key or name
is specified. If 0 is specified, escalation does not take place.

NAME

(Optional) Specifies the new name to be assigned to this entity. Names can only
contain uppercase and lowercase letters, numbers, blanks, and the following special
characters: - _ @ # . $ % / ; : \

Notification Manager Database Maintenance Commands

166 Command and Keyword Reference Guide

PASSWORD

(Optional) Changes the password for this entity to password. Passwords are
between four and eight numeric digits.

UNAVAILDESC

(Optional) Defines the description of why an entity is unavailable.

Note: This operand is not valid for Groups.

Return Information:

After ALTERENTITY executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Example:

The following example changes the escalation entity for the entity with key 100001009
to Mary Jones:

ADDRESS VOX "AlterEntity KEY(100001009) ESCTO(Mary Jones)"

ALTERMETHOD Command

The ALTERMETHOD command changes the characteristics of a method.

This command has the following format:

ADDRESS VOX "ALTERMETHOD KEY(key)

 [INVOKE(invocation string)]

 [NAME(name)]

 [TYP(B|C|D|...|W)]"

KEY

Specifies the key of the method whose characteristics are to be altered.

INVOKE

(Optional) Specifies the string that is used to invoke this method.

The invocation string must begin with the name of the command or REXX script to
be invoked. Parameters that never change can follow. (Parameters can also be
added to the invocation by using the PARAMETERS feature of this database.)

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 167

NAME

(Optional) Specifies the new name to be assigned to the method. Names can only
contain uppercase and lowercase letters, numbers, blanks, and the following special
characters: - _ @ # . $ % / ; : \

TYP

(Optional) Specifies that the method type code for the method. This value is a
one-letter designation. When NMFIND is invoked with the MTUP parameter and a
TYP character is a member of the MTUP list, then the method is attempted.

Return Information:

After ALTERMETHOD executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Example:

The following example changes the invocation string for the method with key
200003001 to PAGE2:

ADDRESS VOX "AlterMethod KEY(200003001) INVOKE(PAGE2)"

Notification Manager Database Maintenance Commands

168 Command and Keyword Reference Guide

ALTERPARM Command

The ALTERPARM command changes the characteristics of a parameter.

This command has the following format:

ADDRESS VOX "ALTERPARM KEY(parm key)

 [DESC(desc)]

 [VALUE(value)]"

KEY

Specifies the key of the parameter whose characteristics are to be altered.

DESC

(Optional) Describes the usage and meaning of this parameter. This data is not
passed to the methods. This keyword may only be specified when the parameter is
a method level parameter. The maximum length of this operand is 1000 characters.

VALUE

(Optional) Specifies the actual value of this parameter for the specified method and
item. This data is passed to the methods. The maximum length of this operand is
240 characters.

Return Information:

After ALTERPARM executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Example:

The following example changes the value for parameter 300001039 to 68:

ADDRESS VOX "AlterParm KEY(300001039) VALUE(68)"

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 169

ALTERTIME Command

The ALTERTIME command changes the characteristics of a time block.

This command has the following format:

ADDRESS VOX "ALTERTIME KEY(parm key)

 [ASK(method key|name)]

 [BGNDATE(mm/dd)]

 [BGNTIME(hh:mm)]

 [DOW(SUN|MON|...|SAT)]

 [ENDDATE(mm/dd)]

 [ENDTIME(hh:mm)]

 [FORTO(entity name|key)]

 [NAME(name)]

 [PRIORITY(n)]

 [TELL(method key|name)]"

KEY

Specifies the key of the time block whose characteristics are to be altered.

ASK

(Optional) Specifies the name of the ask method to use during this time block.

If you specify the FORTO operand, you must specify a value of ForwardTo for this
operand. If you specify a value other than ForwardTo, you cannot specify the
FORTO operand.

BGNDATE

(Optional) Specifies the first date (no year is specified) on which this time block will
be active. The period is active starting on this date every year. If you specify this
operand, you can specify the ENDDATE operand, but not the DOW operand.

BGNTIME

(Optional) Specifies the time, in military time format (00:00 to 23:59), at which this
time block becomes active on the specified dates or days of the week.

If you specify this operand, you must specify the ENDTIME operand.

DOW

(Optional) Specifies the days of the week on which this time block is active.

Days are specified as the first three characters of their English names. You can
specify any number of days in any order. If you specify this operand, you cannot
specify the BGNDATE and ENDDATE operands.

Separate the days of the week with spaces.

Notification Manager Database Maintenance Commands

170 Command and Keyword Reference Guide

ENDDATE

(Optional) Specifies the last date (no year is specified) on which this time block
becomes active. The period becomes inactive after this date every year. If you
specify this operand, you can specify the BGNDATE operand, but not the DOW
operand.

ENDTIME

(Optional) Specifies the time, in military time format (00:00 to 23:59), at which this
time block becomes inactive on the specified dates or days of the week.

If you specify this operand, you must specify the BGNTIME operand.

Note: To make a time block active from 10:00 a.m. to 1:00 p.m., you must specify
the ENDTIME as 13:00. If you specify BGNTIME(10:00) ENDTIME(12:59), the minute
from 12:59 to 13:00 is not covered by the time block.

FORTO

(Optional) Specifies the name or key of the entity to forward to during this time
block.

If you specify this operand, you cannot specify a value of ForwardTo for both the
TELL and ASK operands.

NAME

(Optional) Change the name of this time block to name. Names can only contain
uppercase and lowercase letters, numbers, blanks, and the following special
characters: - _ @ # . $ % / ; : \

PRIORITY

(Optional) If multiple time blocks apply to a particular time of day, a certain
algorithm is used to determine the order in which they will be attempted. This
operand controls rule two of that ordering. The default ordering algorithm is as
follows:

1. Time blocks with a BGNDATE and ENDDATE are performed before time blocks
with a DOW.

2. Time periods with a higher priority are performed sooner.

3. If two time blocks with a BGNDATE and ENDDATE apply, the one whose
BGNDATE is closest to the current date is performed first.

4. If two time blocks with a DOW apply, the one whose first active day of the
week is closest to the current day of the week is performed first.

5. If there is still a tie, the time block whose start time is closest to the current
time is performed first.

6. If there is still a tie, the time block whose end time is closest to the current time
is performed first.

7. If there is still a tie, the order is random/undefined.

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 171

TELL

(Optional) Specifies the name of the tell method to use during this time block.

If you specify the FORTO operand, you must specify a value of ForwardTo for this
operand. If you specify a value other than ForwardTo, you cannot specify the
FORTO operand.

Return Information:

After ALTERTIME executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Example:

The following example changes the beginning date of time block 400001034 to 07/20:

ADDRESS VOX "AlterTime KEY(400001034) BGNDATE(07/20)"

Notification Manager Database Maintenance Commands

172 Command and Keyword Reference Guide

CREATEENTITY Command

The CREATEENTITY command creates a new entity.

This command has the following format:

ADDRESS VOX "CREATEENTITY NAME(name)

 [AVAIL(YES|NO)]

 [BROADCAST(YES|NO)]

 [ESCTO(key|name)]

 [KEY(key)]

 [NMGROUP(YES|NO)]

 [PASSWORD(password)]

 [UNAVAILDESC(desc)]"

NAME

The name of the entity to be created. Names can only contain uppercase and
lowercase letters, numbers, blanks, and the following special characters: - _ @ # . $
% / : ; \

AVAIL

 (Optional) This operand defines if the entity is available to be contacted. Values
are:

YES

Notification Manager will attempt to contact this entity

NO

No attempt will be made to contact this entity.

Until the AVAIL is set to YES, Notification Manager will not attempt to contact this
entity

Note: This is not a valid operand for Groups.

Default: YES

BROADCAST

(Optional) Values are:

YES

Perform all methods that are active at the current time

NO

Terminate processing for this entity as soon as one method succeeds.

Default: NO

ESCTO

(Optional) If this entity cannot be found, escalates to the entity whose key or name
is specified. If 0 is specified, escalation does not take place.

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 173

KEY

(Optional) Specifies the numeric ID to be associated with this entity. The ID must be
between 100001001 and 199999999.

NMGROUP

(Optional) This operand determines whether the entity being created will be
designated as an individual or a group. If this is set to YES, the entity created will be
a group.

Default: NO

PASSWORD

(Optional) Specifies the password for this entity. Passwords are between four and
eight numeric digits.

UNAVAILDESC

(Optional) This operand is used to define the description of why an entity is
unavailable.

 Note: This is not a valid operand for Groups.

Return Information:

After the CREATEENTITY command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, The RC variable contains a value of zero. The
REXX variable vox.CreateEntity.NewKey contains the key of the newly created
entity.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable also contains the complete VOX error message,
which includes the four digit return code and error message text.

Example:

The following example creates an entry in the database for Joe:

ADDRESS VOX "CreateEntity NAME(Joe) BROADCAST(no) PASSWORD(1111) ESCTO(Frank)"

Notification Manager Database Maintenance Commands

174 Command and Keyword Reference Guide

CREATELOGIN Command

The CREATELOGIN command creates a new login.

This command has the following format:

ADDRESS VOX "CREATELOGIN USERNAME(name)

 [ENTITY(key|name)]"

USERNAME

Specifies the name of the login to be created. Usernames can contain uppercase
and lowercase letters, numbers, blanks, periods, and the following special
characters: - _ @ # $ % \ . :

ENTITY

 (Optional) Specifies the entity to which the login is to be associated. If no value is
given, the login is created without an associated entity. This can either be a key or a
name. Each entity is only allowed one login.

Note: The key or name given cannot be a Notification group.

Default: 0

Return Information:

After the CREATELOGIN command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
REXX variable vox.CreateLogin.NewKey contains the key of the newly created login.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable also contains the complete VOX error message,
which includes the four digit return code and error message text.

Usage Notes:

Privileges for a login cannot be set from the REXX interface. Each login created from
REXX is assigned the same privileges as the Guest login account.

Example:

The following example creates an entry in the database for login SMIJO21:

ADDRESS VOX "CreateLogin USERNAME(SMIJ021) ENTITY(John Smith) "

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 175

CREATEMETHOD Command

The CREATEMETHOD command creates a new method.

This command has the following format:

ADDRESS VOX "CREATEMETHOD "NAME(name)

 INVOKE(invocation string)

 USE(TELL|ASK|BOTH)

 [TYP(B|C|D|...|W)]"

NAME

Specifies the name of the entity to be created.

Note: Names can only contain uppercase and lowercase letters, numbers, blanks,
and the following special characters: - _ @ # . $ % / ; : \

INVOKE

Specifies the string that is used to invoke this method.

The invocation string must begin with the name of the command or REXX script to
be invoked. Parameters that never change can follow. (Parameters can also be
added to the invocation by using the PARMS features of this database.)

USE

Specifies what this method is used for. Values are:

TELL

The method may only be used to pass data to the entity.

ASK

The method may only be used to receive data from the entity.

Note: The ASK value on the USE operand is not applicable if you are using the
CA Automation Point DBMS.

BOTH

The method may be used to ask, tell, or both.

TYP

(Optional) A one-letter designation that specifies the method type code for the
method. When NMFIND is invoked with the MTUP parameter and if the TYP
character is a member of the MTUP list, then the method is attempted.

Notification Manager Database Maintenance Commands

176 Command and Keyword Reference Guide

Return Information:

After CREATEMETHOD executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
REXX variable vox.CreateMethod.NewKey contains the key of the newly created
method.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Example:

The following example creates an entry in the database for method MyMethod:

ADDRESS VOX "CreateMethod NAME(MyMethod) INVOKE(XREXX1) USE(both)"

CREATEPARM Command

The CREATEPARM command creates a new parameter.

This command has the following format:

ADDRESS VOX "CREATEPARM NAME(parm name) METHOD(method name or key)

 ITEM(time key|entity name or key) VALUE(value) [DESC(desc)]"

NAME

Specifies the name of the parameter to be created.

Names can only contain uppercase and lowercase letters, numbers, and the
following special characters: - _ @ # . $ % / ; : \

METHOD

Specifies the name or key of the method that owns this parameter.

ITEM

Specifies the name or key of the entity that owns this parameter or the key of the
time block that owns it.

You specify this parameter when you want to create a parameter at the entity or
time block level. Do not specify this parameter if you want to create a parameter at
the method level.

Note: To create a parameter at the entity or time-block level, you must first create
a parameter with the same name at the method level.

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 177

VALUE

Specifies the actual value of this parameter for the specified method and item. This
data is passed to the methods. The maximum length of this operand is 240
characters.

DESC

(Optional) Describes the use and meaning of this parameter.

When you create a parameter at the method level, you must specify a description
of the parameter. When you create a parameter at the entity or time block level,
you cannot specify a description of the parameter. This data is not passed to the
methods. The maximum length of this operand is 1000 characters.

Usage Notes:

Parameter entries are divided into three increasingly specific classes:

■ The method class - Those entries that apply any time the method is used.

■ The entity class - Those entries that apply any time a method is used for a particular
entity.

■ The time class - Those entries that apply only for a particular time block, which
implies a specific entity and method.

You cannot create (specify) a parameter value at the entity or time block level unless
you first create a parameter with the same name at the method level. For instance, if
the REXX program that performs the MyPage method has a PagerID parameter and you
want to specify the pager ID for Chris, you must issue the following commands:

CreateParm Name(PagerID) Method(MyPage) Value() Desc(Pager ID)

CreateParm Name(PagerID) Method(MyPage) Item(Chris) Value(123)

Return Information:

After CREATEPARM executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
REXX variable vox.CreateParm.NewKey contains the key of the newly created
parameter.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Example:

The following example creates an entry in the database that defines 131 as the value for
the parameter WAIT whenever the MyMethod method is used to tell Joe something:

ADDRESS VOX "CreateParm Method(MyMethod) ITEM(Joe) NAME(WAIT) VALUE(131)"

Notification Manager Database Maintenance Commands

178 Command and Keyword Reference Guide

CREATETIME Command

The CREATETIME command creates a new time block.

This command has the following format:

ADDRESS VOX "CREATETIME ENTITY(key or name)

 DOW(SUN|MON|...|SAT|)|BGNDATE(mm/dd)[ENDDATE(mm/dd)]

 BGNTIME(hh:mm)

 ENDTIME(hh:mm)

 {TELL(method key or name) ASK(method key or name)|FORTO(entity name or key)}

 [NAME(name)]

 [PRIORITY(n)]"

ENTITY

Specifies the key or name of the entity for this time block.

DOW

Specifies the days of the week on which this time block is active.

Days are specified as the first three characters of their English names. You can
specify any number of days in any order. If you specify this operand, you cannot
specify the BGNDATE and ENDDATE operands.

Separate the days of the week with spaces.

BGNDATE

Specifies the first date (no year is specified) on which this time block is active. The
period is active starting on this date every year. If you specify this operand, you can
specify the ENDDATE operand, but not the DOW operand.

ENDDATE

(Optional) Specifies the last date (no year is specified) on which this time block
becomes active. The period becomes inactive after this date every year. If you
specify this operand, you must specify the BGNDATE operand, but not the DOW
operand. If not specified, the default value for ENDDATE will be the same value that
is specified for BGNDATE.

BGNTIME

Specifies the time, in military time format (00:00 to 23:59), at which this time block
becomes active on the specified dates or days of the week.

ENDTIME

Specifies the time, in military time format (00:00 to 23:59), at which this time block
becomes inactive on the specified dates or days of the week.

Note: To have a time block active from 10:00 a.m. to 1:00 p.m., you must specify
the ENDTIME as 13:00. If you specify BGNTIME(10:00) ENDTIME(12:59), the minute
from 12:59 to 13:00 is not covered by the time block.

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 179

TELL

Specifies the name of the tell method to use during this time block.

If you specify this operand, you cannot specify the FORTO operand.

ASK

Specifies the name of the ask method to use during this time block. If you specify
this operand, you cannot specify the FORTO operand.

FORTO

Specifies the name or key of the entity to forward to during this time block.

If you specify this operand, you cannot specify the TELL or ASK operand.

NAME

(Optional) Specifies the name to assign to this time block. Names can only contain
uppercase and lowercase letters, numbers, blanks, and the following special
characters: - _ @ # . $ % / ; : \

PRIORITY

(Optional) If multiple time blocks apply to a particular time of day, an algorithm is
used to determine the order in which they are attempted.

This operand controls rule two of that ordering. The default ordering algorithm is as
follows:

1. Time blocks with a BGNDATE and ENDDATE are always performed before time
blocks with a DOW.

2. Time blocks with a higher priority are performed sooner.

3. If two time blocks with a BGNDATE and ENDDATE apply, then the one whose
BGNDATE is closest to the current date is performed first.

4. If two time blocks with a DOW apply, the one whose first active day of the
week is closest to the current day of the week is performed first.

5. If there is still a tie, the time block whose start time is closest to the current
time is performed first.

6. If there is still a tie, the time block whose end time is closest to the current time
is performed first.

7. If there is still a tie, the order is random/undefined.

Note: The priority operand overrides all of these rules except the first.

Notification Manager Database Maintenance Commands

180 Command and Keyword Reference Guide

Return Information:

After CREATETIME executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
REXX variable vox.CreateTime.NewKey contains the key of the newly created time
block.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Example:

The following example creates an entry in the database indicating that from 8:00 a.m. to
9:00 a.m. between the dates of 07/20 and 07/24 each year, the MyMethod method can
be used to tell Joe.

ADDRESS VOX "CreateTime ENTITY(Joe) BGNDATE(07/20) ENDDATE(07/24) BGNTIME(08:00)

ENDTIME(09:00) TELL(MyMethod)"

DESTROYENTITY Command

The DESTROYENTITY command destroys an existing entity. However, you cannot destroy
an entity if it contains associated data or if other entities forward or escalate to this
entity.

Associated data includes method level parameters, parameter overrides at the entity
level or time block level, and the time blocks themselves. Delete associated data in this
order:

■ All parameter overrides

■ Method level parameters

■ All time blocks

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 181

You can change the destination of or delete those entities that forward or escalate to
this entity. For more information, see the descriptions of the DESTROYPARM (see
page 184) and DESTROYTIME (see page 185) commands.

This command has the following format:

ADDRESS VOX "DESTROYENTITY KEY(key)

[CASCADE(YES|NO)]"

KEY

Specifies the key of the entity to be deleted.

CASCADE

(Optional) Values are:

YES

Destroy all other items in the database that refer to this item.

NO

Do not destroy any other items in the database that refer to this item.

Default: NO

For example, if you specify CASCADE(YES) when deleting an entity, all of the data
associated with the entity (time blocks, methods, personal and time block-specific
parameter overrides) are deleted. If you specify CASCADE(NO) for an entity that has
associated data, the command fails.

Return Information:

After DESTROYENTITY executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Usage Notes:

For additional information about obtaining associated data and entities that forward
and escalate to this entity, see the following REXX programs that are located in the CA
Automation Point installation directory \sample\nm:

■ listent.rex

■ listparm.rex

■ lstforto.rex

■ listtime.rex

Notification Manager Database Maintenance Commands

182 Command and Keyword Reference Guide

Example:

Assume that Joe's entity key is 100001111. The following example removes the entry for
entity Joe from the database:

ADDRESS VOX "DestroyEntity KEY(100001111)"

DESTROYLOGIN Command

The DESTROYLOGIN command destroys an existing login.

This command has the following format:

ADDRESS VOX "DESTROYLOGIN KEY(key)"

KEY

Specifies the key of the login to be deleted.

Return Information:

After DESTROYLOGIN executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Example:

The following example removes the login JSMITH from the database:

ADDRESS VOX "DESTROYLOGIN KEY(800001006)"

DESTROYMETHOD Command

The DESTROYMETHOD command destroys an existing method. However, you cannot
destroy a method if it has associated data, such as time blocks, method level
parameters, or parameter overrides, at either the entity level or the time block level.
Delete the associated data in this order:

1. All parameter overrides

2. Method level parameters

3. All time blocks

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 183

Note: For more information, see the descriptions of the DESTROYPARM (see page 184)
and DESTROYTIME (see page 185) commands.

This command has the following format:

ADDRESS VOX "DESTROYMETHOD KEY(key)

[CASCADE(YES|NO)]"

KEY

Specifies the key of the method to be deleted.

CASCADE

(Optional) Values are:

YES

Destroy all other items in the database that refer to this item.

NO

Do not destroy any other items in the database that refer to this item.

Default: NO

For example, if you specify CASCADE(YES) when deleting a method, all associated
parameters and time blocks are deleted. If you specify CASCADE(NO) for a method
that has associated parameters and time blocks, the command fails.

Return Information:

After DESTROYMETHOD executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Usage Notes:

For more information about obtaining associated data, see the following REXX programs
located in the CA Automation Point installation directory \sample\nm:

■ listparm.rex

■ listtime.rex

Example:

The following example removes the entry method with key 200002222 from the
database:

ADDRESS VOX "DestroyMethod KEY(200002222)"

Notification Manager Database Maintenance Commands

184 Command and Keyword Reference Guide

DESTROYPARM Command

The DESTROYPARM command destroys an existing parameter. However, you cannot
destroy a method parameter if it has overrides at either the entity level or the time
block level. You must first delete all parameter overrides.

This command has the following format:

ADDRESS VOX "DESTROYPARM KEY(key)

[CASCADE(YES|NO)]"

KEY

Specifies the key of the parameter to be deleted.

CASCADE

(Optional) Valid values are:

YES

Destroy all other items in the database that refer to this item.

NO

Do not destroy any other items in the database that refer to this item.

Default: NO

For example, if you specify CASCADE(YES) when deleting a parameter, all of the
personal and time block-specific parameter overrides are deleted. If you specify
CASCADE(NO) for a parameter that has personal and time block-specific parameter
overrides, the command fails.

Return Information:

After DESTROYPARM executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Usage Notes:

For more information about obtaining associated data, see the listparm.rex REXX
program.

Example:

The following example removes the entry for the parameter with key 300001030 from
the database:

ADDRESS VOX "DestroyParm KEY(300001030)"

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 185

DESTROYTIME Command

The DESTROYTIME command destroys an existing time block. However, you cannot
destroy a time block if it has a parameter override. First you must delete the parameter
override at the time block level.

This command has the following format:

ADDRESS VOX "DESTROYTIME KEY(key) [CASCADE(YES|NO)]"

KEY

Specifies the key of the time entry to be removed.

CASCADE

(Optional) Values are:

YES

Destroy all other items in the database that refer to this item.

NO

Do not destroy any other items in the database that refer to this item.

Default: NO

For example, if you specify CASCADE(YES) when deleting a time block, all of the
time block-specific parameter overrides are deleted. If you specify CASCADE(NO)
for a time block that has time block- specific parameter overrides, the command
fails.

Return Information:

After DESTROYTIME executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Usage Notes:

For more information on obtaining associated data, see the listtime.rex REXX program.

Example:

The following example removes the entry for the time with key 400002267 from the
database:

ADDRESS VOX "DestroyTime KEY(400002267)"

Notification Manager Database Maintenance Commands

186 Command and Keyword Reference Guide

EPWCHECK Command

The EPWCHECK command checks the password for an entity.

This command has the following format:

ADDRESS VOX "EPWCHECK NAME(name)|KEY(key) EPW(current password for entity)"

NAME

Specifies the name of the entity to be checked.

KEY

Specifies the key of the entity to be checked.

EPW

Specifies the password to validate.

Return Information:

After EPWCHECK executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four digit return code and error message text.

Example:

The following example checks to see whether 1034 is the password for Fred:

ADDRESS VOX "EPWCheck NAME(Fred) EPW(1034)"

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 187

LISTENTITY Command

The LISTENTITY command lists all the data for one or more entities (except the
password).

This command has the following format:

ADDRESS VOX "LISTENTITY NAME(name)|KEY(key)

 [CMDRESP(destination)]

 [PREFIX(varname)]"

NAME

Specifies the name of the entity to be listed. * indicates that you want data for all
entities to be listed.

KEY

Specifies the key of the entity to be listed.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section ADDRESS VOX Return Information (see
page 161).

Default: REXX

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see the section ADDRESS
VOX Return Information (see page 161).

Default: VOX.LISTENTITY

Return Information:

After LISTENTITY executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.listentity.0 variable contains the number of lines of information returned. Each
variable from VOX.listentity.1 to VOX.listentity.n contains a line of information. n
represents the last line of return information.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Usage Note:

For more information, see the sample REXX program listent.rex located in the CA
Automation Point installation directory \sample\nm.

Notification Manager Database Maintenance Commands

188 Command and Keyword Reference Guide

LISTFIND Command

The LISTFIND command lists the time blocks that are active for one or more entities at a
given date and time. The list is actually a tree and can contain any level of nesting.

This command has the following format:

ADDRESS VOX "LISTFIND NAME(name)|KEY(key) DOW(dow)|DATE(mm/dd) TIME(hh:mm)

 [CMDRESP(destination)]

 [MTUP (A|profile)]

 [PREFIX(varname)]"

NAME

Specifies the name of the entity for which a find tree is to be created.

KEY

Specifies the key of the entity for which a find tree is to be created.

DOW

Specifies the day for which you want to search.

Days are specified as the first three characters of their English names. You can
specify only one day. If you specify this operand, you cannot specify the DATE
operand.

DATE

Specifies the date (no year is specified) for which you want to search.

If you specify this operand, you cannot specify the DOW operand.

TIME

Specifies, in military time format (00:00 to 23:59), the time for which you want to
search.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section ADDRESS VOX Return Information (see
page 161).

Default: REXX

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 189

MTUP

 (Optional) Use the Methods to Use Profile (MTUP) operand to specify which
methods are attempted for a particular instance of an NMFIND notification request.
The method type code for each method is defined in the Notification Manager
database under the TYP parameter for the method. Before attempting to notify a
contact using a scheduled method, Notification Manager compares the value its
method type code with the profile specified on the MTUP operand. If the method
type code is not part of the MTUP profile, notification is not attempted, and the
next scheduled method is compared against the MTUP profile. If the method type
code is part of the MTUP profile, then the notification is attempted using that
method.

The values for this operand are:

profile

Any combination of method type codes B through W.

A

All method types specified for all active schedules. No comparisons are made,
and all methods are attempted.

Default: A

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see the section ADDRESS
VOX Return Information (see page 161).

Default: VOX.LISTFIND

Notification Manager Database Maintenance Commands

190 Command and Keyword Reference Guide

Return Information:

After LISTFIND executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.listfind.0 variable contains the number of lines of information returned. Each
variable from VOX.listfind.1 to VOX.listfind.n contains a line of information. n
represents the last line of return information. Consider the following REXX
variables:

VOX.ListFind.BgnTime

The latest start time of any time block in the call tree

VOX.ListFind.EndTime

The earliest end time of any time block in the call tree. This allows the caller to
see the range of time when this tree is valid.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Usage Note:

For further details, refer to the sample REXX programs listfind.rex and listmtup.rex
located in the CA Automation Point installation directory \sample\nm.

Example:

The following example checks the tree for Fran Smith at 10:00 a.m. on October 11:

ADDRESS VOX "LISTFIND NAME(Fran Smith) TIME(10:00) DATE(10/11)"

LISTFORTO Command

The LISTFORTO command lists all the time blocks that forward to a given entity
(regardless of the time and date). The list is actually a tree and can contain any level of
nesting.

This command has the following format:

ADDRESS VOX "LISTFORTO NAME(name)|KEY(key)

 [CMDRESP(destination)]

 [PREFIX(varname)]"

NAME

Specifies the name of the entity for which the tree is to be created.

KEY

Specifies the key of the entity for which a tree is to be created.

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 191

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section ADDRESS VOX Return Information (see
page 161).

Default: REXX

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see the section ADDRESS
VOX Return Information (see page 161).

Default: VOX.LISTFORTO

Return Information:

After LISTFORTO executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.listforto.0 variable contains the number of lines of information returned. Each
variable from VOX.listforto.1 to VOX.listforto.n contains a line of information. n
represents the last line of return information.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Usage Note:

For further details, see the sample REXX program lstforto.rex, located in the CA
Automation Point installation directory \sample\nm.

Example:

The following example checks the tree for Fran Smith at 10:00 a.m. on October 11:

ADDRESS VOX "LISTFORTO NAME(Fran Smith)"

Notification Manager Database Maintenance Commands

192 Command and Keyword Reference Guide

LISTLOGIN Command

The LISTLOGIN command lists all the data for one or more logins.

This command has the following format:

ADDRESS VOX "LISTLOGIN USERNAME(name)|KEY(key)

 [CMDRESP(destination)]

 [PREFIX(varname)]"

USERNAME

Specifies the name of the login to be listed. * indicates that you want data for all
logins to be listed.

KEY

Specifies the key of the login to be listed.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section ADDRESS VOX Return Information (see
page 161).

Default: REXX

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see the section ADDRESS
VOX Return Information (see page 161).

Default: VOX.LISTLOGIN

Return Information:

After LISTLOGIN executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.listlogin.0 variable contains the number of lines of information returned. Each
variable from VOX.listlogin.1 to VOX.listlogin.n contains a line of information. n
represents the last line of return information.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Usage Notes:

For further details, refer to the sample REXX program listlogin.rex located in the CA
Automation Point installation directory \sample\nm.

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 193

LISTMETHOD Command

The LISTMETHOD command lists all the data for one or more methods.

This command has the following format:

ADDRESS VOX "LISTMETHOD NAME(name)|KEY(key) [CMDRESP(destination)]

 [PREFIX(varname)]"

NAME

Specifies the name of the method to be listed. An asterisk (*) indicates that you
want data for all methods to be listed.

KEY

Specifies the key of the method to be listed.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section ADDRESS VOX Return Information (see
page 161).

Default: REXX

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see the section ADDRESS
VOX Return Information (see page 161).

Default: VOX.LISTMETHOD

Return Information:

After the LISTMETHOD command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.listmethod.0 variable contains the number of lines of information returned.
Each variable from VOX.listmethod.1 to VOX.listmethod.n contains a line of
information. n represents the last line of return information.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Usage Note:

For further details, refer to the sample REXX program listmeth.rex located in the CA
Automation Point installation directory \sample\nm.

Notification Manager Database Maintenance Commands

194 Command and Keyword Reference Guide

LISTPARM Command

The LISTPARM command lists all the data for one or more parameters. Specify at least
one of the NAME, KEY, METHOD, and ITEM operands. If you specify more than one
operand, the search becomes more restrictive.

This command has the following format:

ADDRESS VOX "LISTPARM NAME(parm name)|KEY(parm key) METHOD(method name or key)

 ITEM(entity name or entity key) [CMDRESP(destination)] [PREFIX(varname)]"

NAME

Specifies the name of the parameter to be listed. An asterisk (*) indicates that you
want data for all parameters to be listed.

KEY

Specifies the key of the parameter to be listed.

METHOD

Specifies the name or the key of the method to which the parameters are to
belong.

ITEM

Specifies the key or name of the entity to which the parameters are to belong.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section ADDRESS VOX Return Information (see
page 161).

Default: REXX

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see the section ADDRESS
VOX Return Information (see page 161).

Default: VOX.LISTPARM

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 195

Usage Notes:

Parameter entries are divided into three increasingly specific classes:

■ The method class-Those entries that apply any time the method is used.

■ The entity class-Those entries that apply any time a method is used for a particular
entity.

■ The time class-Those entries that apply only for a particular time block, which
implies a specific entity and method.

Here are some procedures for retrieving data from LISTPARM:

■ If you specify a method and nothing else, you will receive all entries in all three
classes for that method.

■ If you want just the entries in the method class for the method, specify ITEM(-1).

■ If you specify a method and an entity, you receive all entries in the entity and time
classes.

■ If you want just the entries in the entity class, specify the negation of the key of the
entity in the ITEM() operand.

■ If the method key is negative, the item key is for a time block, and the parameter
name is *, the output will be the format that NMFIND needs (all time block-level
entries, then all the entity-level entries for the entity that owns the time block, then
all the method-level entries for the method).

Return Information:

After the LISTPARM command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.listparm.0 variable contains the number of lines of information returned. Each
variable from VOX.listparm.1 to VOX.listparm.n contains a line of information. n
represents the last line of return information.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Example:

The following example lists the data for PAGERID for VOICE1 for Fran Smith:

ADDRESS VOX "LISTPARM NAME(PAGERID) METHOD(VOICE1) ITEM(FRAN SMITH)"

For further details, refer to the sample REXX program listparm.rex, located in the CA
Automation Point installation directory \sample\nm.

Notification Manager Database Maintenance Commands

196 Command and Keyword Reference Guide

LISTPERGRPS Command

The LISTPERGRPS command lists the personal groups for a contact. A personal group is
defined as a group of which the contact is a member. This command can also be used to
list all the members of a specific group.

This command has the following format:

ADDRESS VOX "LISTPERGRPS NAME{({name|*}) | KEY(key)}

 [GRP(*|name|key)]

 [PREFIX(varname)]"

NAME

Specifies the name of the entity whose personal groups are to be listed.

An asterisk (*) returns a list of contacts that are members of the specified group.

Note: An asterisk (*) is valid only when the GRP operand is defined and the GRP
operand is not defined as the wildcard character.

KEY

Specifies the key of the entity whose groups are to be listed.

GRP

(Optional) Specifies the group name or key to check for the membership of
contacts.

An asterisk (*) returns a list of all groups of which the contact specified by NAME is
a member.

Note: An asterisk (*) is valid only when the NAME operand is not defined as the
wildcard character.

Default: *

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section ADDRESS VOX Return Information (see
page 161).

Default: REXX

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see the section ADDRESS
VOX Return Information (see page 161).

Default: VOX.LISTPERGRPS

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 197

Usage Note:

For more information on this command, see the sample REXX program listpergrps.rex in
the CA Automation Point installation folder \sample\nm.

Return Information:

After the LISTPERGRPS command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.listpergrps.0 variable contains the number of lines of information returned.
Each variable from VOX.listpergrps.1 to VOX.listpergrps.n contains a line of
information. n represents the last line of return information.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Examples:

■ The following command lists any group of which Chris Smith is a member:

ADDRESS VOX "LISTPERGRPS NAME(Chris Smith)"

■ The following command lists all the members of the Weekend Group:

ADDRESS VOX "LISTPERGRPS NAME(*) GRP(Weekend Group)"

LISTTIME Command

The LISTTIME command lists all of the data for one or more time blocks. Specify one of
the NAME or KEY operands. If the entity key or name is provided, all entries for the
entity are listed. If the times table key is provided, just that entry is listed.

This command has the following format:

ADDRESS VOX "LISTTIME NAME(entity name)|KEY(entity|time key)

 [CMDRESP(destination)]

 [PREFIX(varname)]"

NAME

Specifies the name of the entity whose time entries are to be listed. An asterisk (*)
indicates that you want all times for all entities to be listed.

KEY

Specifies the key of the entity for whom all times are to be listed or the key of the
time that is to be listed.

Notification Manager Database Maintenance Commands

198 Command and Keyword Reference Guide

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the section ADDRESS VOX Return Information (see
page 161).

Default: REXX

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see the section ADDRESS
VOX Return Information (see page 161).

Default: VOX.LISTTIME

Return Information:

After the LISTTIME command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.listtime.0 variable contains the number of lines of information returned. Each
variable from VOX.listtime.1 to VOX.listtime.n contains a line of information. n
represents the last line of return information.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Usage Note:

For further details, refer to the sample REXX program listtime.rex, located in the CA
Automation Point installation directory \sample\nm.

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 199

NMDBMERGE Command

The NMDBMERGE command merges a previously exported copy of a database into the
current Notification Manager database. Names (entity name, method name, time block
name, and so on) are used to check for duplicate data. If a duplicate is found, the
original data is replaced with the imported data. Otherwise, a new entry is created in
the database. The NMDBMERGE command merges existing data with imported data.

This command has the following format:

ADDRESS VOX "NMDBMERGE PATH(path)"

PATH

Specifies the name of the path from which the exported database is retrieved.

Return Information:

After the NMDBMERGE command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a non-zero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four-digit return code and complete error message
text.

Usage Notes:

■ Do not use the database when issuing the NMDBMERGE command. To guarantee
that the database is not being used, shut down the CA-AP NM Gateway Server
service before running the NMDBMERGE command.

■ CA does not support importing a Notification Manager database that has been
exported from a newer release of CA Automation Point into an older release of CA
Automation Point.

Example:

The following example imports a copy of an exported database that resides in the
G:\TEMP_EXP directory:

ADDRESS VOX "NMDBMERGE PATH(G:\TEMP_EXP)"

Notification Manager Database Maintenance Commands

200 Command and Keyword Reference Guide

NMEXPORT Command

The NMEXPORT command creates a backup copy of a Notification Manager database in
a format that you can easily move or copy to another system.

This command has the following format:

ADDRESS VOX "NMEXPORT PATH(path) [CREATE(YES|NO)]"

PATH

Specifies the name of the path on which the exported database is stored.

CREATE

(Optional) Values are:

YES

Create the specified directory if it does not exist.

NO

Do not create the specified directory if it does not exist.

Default: NO

Return Information:

After the NMEXPORT command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a non-zero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four-digit return code and complete error message
text.

Usage Note:

It is important that the database is not being used when issuing the NMEXPORT
command. To guarantee this, shut down the CA Automation Point NM Gateway Server
service before running the NMEXPORT command.

Example:

The following example exports a copy of the current database into the G:\TEMP_EXP
directory:

ADDRESS VOX "NMEXPORT PATH(G:\TEMP_EXP)"

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 201

NMIADDCALLER Command

This command adds an entity to the list of entities that are allowed to call in on an item.

This command has the following format:

ADDRESS VOX "NMIADDCALLER ENTITY(key) ITEM(item)"

ENTITY

Specifies the key of the entity.

ITEM

Specifies the item number.

Return Information:

After the NMIADDCALLER command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Example:

The following example tells the entity with key 100001000 to call in on item 1234:

ADDRESS VOX "NmiAddCaller ENTITY(100001000) ITEM(1234)"

Notification Manager Database Maintenance Commands

202 Command and Keyword Reference Guide

NMIANSWER Command

This command sets or retrieves the answer for an item in the Notification Manager
database.

This command has the following format:

ADDRESS VOX "NMIANSWER ITEM(item) ANSWER(ansnum) [ANSENTITY(key)]"

ITEM

Specifies the item number.

ANSWER

Specifies a number that is the answer to the item, from 0 to 9. To set the answer for
the item, specify a value from 1 to 9. To retrieve the answer for the item, specify
the value 0. The answer for the problem is returned in the return code. If the
problem has not been answered, the answer is 0. If the problem has already been
answered, the new answer is rejected and the value of the existing answer is
returned.

ANSENTITY

(Optional) Specifies the key of the answering entity. This key is used to record the
entity that provided the answer to the notification request.

Return Information:

After the NMIANSWER command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains the answer to the
specified item (a numeric digit from 1 to 9). If RC=0, the specified item has not been
answered.

■ If the command does not execute successfully, the VOX.ERROR variable contains
the complete VOX error message. This message includes the four-digit return code
and error message text

Example:

The following example answers item 1234, and then checks to see whether it receives
the same answer on its second call. (If the SAY statement runs, there is a problem).

ADDRESS VOX "NMIANSWER ITEM(1234) ANSWER(5) ANSENTITY(100001001)"

answer = rc

ADDRESS VOX "NMIANSWER ITEM(1234) ANSWER(0)"

IF answer<>rc THEN SAY "Expected" answer "received" rc

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 203

NMICHECKCALLER Command

This command checks to see whether an entity has been permitted to listen to or
answer this item by a call to NMIADDCALLER. This sets the return code to 0 if the entity
is authorized.

This command has the following format:

ADDRESS VOX "NMICHECKCALLER ENTITY(key) ITEM(item)"

ENTITY

Specifies the key of the entity.

ITEM

Specifies the item number.

Return Information:

After the NMICHECKCALLER command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
entity is permitted to answer this item.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Example:

The following example tests whether the entity with key 100001000 is permitted to call
in on item 1234:

ADDRESS VOX "NMICHECKCALLER ENTITY(100001000) ITEM(1234)"

IF rc=0 THEN SAY "Congratulations, you are authorized."

Notification Manager Database Maintenance Commands

204 Command and Keyword Reference Guide

NMIGETITEM Command

This command retrieves the ask text and tell text for an item from the Notification
Manager database.

This command has the following format:

ADDRESS VOX "NMIGETITEM ITEM(item) [CMDRESP(destination)] [PREFIX(varname)]"

ITEM

Specifies the item number.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.NMIGETITEM

Return Information:

After the NMIGETITEM command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.NMIGETITEM variable contains the tell and ask information for the specified
item.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and error message text.

Example:

The following example retrieves the values of the TELL and ASK parameters for item
1234:

ADDRESS VOX "NMIGETITEM ITEM(1234)"

PARSE VAR vox.nmigetitem y 2 tellmsg (y) askmsgs (y).

Say "The TELL text for this item is" tellmsg

Say "The ASK text for this item is" askmsgs

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 205

NMILISTANSWERS Command

This command lists the answers that are specified using the NMFIND ASK parameter (if
any) for the specified notification request.

This command has the following format:

ADDRESS VOX "NMILISTANSWERS ITEM(item) [CMDRESP(destination)] [PREFIX(varname)]"

ITEM

Specifies the item number.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see ADDRESS VOX Return Information (see page 161).

Default: REXX

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information (see page 161).

Default: VOX.NMILISTANSWERS

Usage Note:

For more information on this command, see the sample REXX program
listanswers.rex in the CA Automation Point installation folder \sample\nm.

Return Information:

After the NMILISTANSWERS command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.nmilistanswers.0 variable contains the number of lines of information
returned. Each variable from VOX.nmilistanswers.1 to VOX.nmilistanswers.n
contains a line of information. n represents the last line of return information.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four-digit return code and error message text.

Example:

The following example retrieves the list of all answers that are specified for notification
request item number 1234:

ADDRESS VOX “NMILISTANSWERS ITEM(1234)”

Notification Manager Database Maintenance Commands

206 Command and Keyword Reference Guide

NMILISTCALLERS Command

This command lists status information about every notification attempt that is made
during the processing of the specified notification request.

This command has the following format:

ADDRESS VOX "NMILISTCALLERS ITEM(item) [CMDRESP(destination)] [PREFIX(varname)]"

ITEM

Specifies the item number.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see ADDRESS VOX Return Information (see page 161).

Default: REXX

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information (see page 161).

Default: VOX.NMILISTCALLERS

Usage Note:

For more information on this command, see the sample REXX program
listcallers.rex in the CA Automation Point installation folder \sample\nm.

Return Information:

After the NMILISTCALLERS command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.nmilistcallers.0 variable contains the number of lines of information returned.
Each variable from VOX. nmilistcallers.1 to VOX. nmilistcallers.n contains a line of
information. n represents the last line of return information.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four-digit return code and error message text.

Example:

The following example retrieves the list of all notification attempts made for notification
request item number 1234:

ADDRESS VOX “NMILISTCALLERS ITEM(1234)”

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 207

NMILISTITEMS Command

This command lists detailed status information about previously issued notification
requests. Each command operand is optional, and the combination of operands is used
to define and restrict the items the query returns.

This command has the following format:

ADDRESS VOX "NMILISTITEMS

 [ITEM(item)]

 [ITEMSTATUS(status)]

 [NOTIFIER(name)]

 [RECENTITY(name)]

 [ANSENTITY(name)]

 [BGNTST(timestamp)]

 [ENDTST(timestamp)]

 [MAXITEMS(number)]

 [CMDRESP(destination)]

 [PREFIX(varname)]"

ITEM

(Optional) Specifies the item number.

ITEMSTATUS

(Optional) This operand is used to specify the notification request status that is
used to restrict the query results. By specifying an item status, only those
notification requests that are currently in the specified status are returned by this
query. This operand accepts the following status values:

0

Initializing status

1

Sending status

2

Sent status

3

Awaiting Response status

4

Responded status

5

Late Response status

6

No Response status

Notification Manager Database Maintenance Commands

208 Command and Keyword Reference Guide

7

Failed status

NOTIFIER

(Optional) This operand is used to specify the name of the login that is used to
initiate the notification request. By specifying a value for this operand, the query is
restricted to show only those notification requests initiated by the specified login.
You can specify one or more wildcard characters to match more than one login
name.

RECENTITY

(Optional) This operand is used to specify the name of the contact that is used as
the target for the notification request. By specifying a value for this operand, the
query is restricted to show only those notification requests for which the specified
contact was the initial recipient. You can specify one or more wildcard characters to
match more than one contact name.

ANSENTITY

(Optional) This operand is used to specify the exact name of the contact that has
permission to provide an answer to a notification request. By specifying a value for
this operand, the query is restricted to show only those notification requests that
the specified contact has permission to answer.

BGNTST

(Optional) This operand is used to specify the beginning timestamp for retrieving
notification requests. By specifying a value for this operand, the query is restricted
to show only those notification requests initiated after the date and time reflected
by the specified timestamp. The timestamp value reflects the number of seconds
elapsed since midnight, January 1, 1970.

ENDTST

(Optional) This operand is used to specify the ending timestamp for retrieving
notification requests. By specifying a value for this operand, the query is restricted
to show only those notification requests initiated before the date and time
reflected by the specified timestamp. The timestamp value reflects the number of
seconds elapsed since midnight, January 1, 1970.

MAXITEMS

(Optional) This operand is used to specify the maximum number of notification
requests to retrieve from the database. By specifying a value for this operand, the
query is restricted to show no more than the number of items that are reflected by
the value of this operand.

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

Notification Manager Database Maintenance Commands

Chapter 7: ADDRESS VOX Commands 209

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information (see page 161).

Default: VOX.NMILISTITEMS

Usage Note:

For more information on this command, see the sample REXX program listitems.rex
in the CA Automation Point installation folder \sample\nm.

Return Information:

After the NMILISTITEMS command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.nmilistitems.0 variable contains the number of lines of information returned.
Each variable from VOX. nmilistitems.1 to VOX. nmilistitems.n contains a line of
information. n represents the last line of return information.

■ If the command does not execute successfully, the RC variable contains a nonzero
value. The VOX.ERROR variable contains the complete VOX error message, which
includes the four-digit return code and error message text.

Example:

This example shows all notification requests currently in the Awaiting Response state
that were sent to the contact “Joe”:

ADDRESS VOX “NMILISTITEMS ITEMSTATUS(3) RECENTITY(Joe)"

NMIMPORT Command

The NMIMPORT command imports an exported copy of a Notification Manager
database.

Important: This command destroys all existing data in the database before importing
new data.

This command has the following format:

ADDRESS VOX "NMIMPORT PATH(path)"

PATH

Specifies the name of the path from which the exported database is retrieved.

Notification Commands

210 Command and Keyword Reference Guide

Return Information:

After the NMIMPORT command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains a non-zero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four-digit return code and complete error message
text.

Usage Notes:

■ It is important that the database is not being used when issuing the NMIMPORT
command. To guarantee this, shut down the CA-AP NM Gateway Server service
before running the NMIMPORT command.

■ CA does not support importing a Notification Manager database that has been
exported from a newer release of CA Automation Point into an older release of CA
Automation Point.

Example:

The following example imports a copy of an exported database that resides in the
G:\TEMP_EXP directory:

ADDRESS VOX "NMIMPORT PATH(G:\TEMP_EXP)"

Notification Commands

The following sections describe the CA Automation Point commands for use with
notification tasks.

Notification Commands

Chapter 7: ADDRESS VOX Commands 211

PAGE Command

The PAGE command is a notification command that issues an alphanumeric page to
designated personnel using a dial-up modem connection to an alphanumeric paging
service, according to TAP protocol.

This command has the following format:

ADDRESS VOX "PAGE PAGERID(number) TONESTRING(phonenumber) MESSAGE(message)

 [BATCH(YES|NO)]

 [BAUDRATE(baudrate)]

 [COMPORT(portnumber)|TAPIDEVICEID(numeric tapi deviceid)]

 [DATABITS(databits)]

 [INITSTRING(modeminitstring)]

 [PAGERPW(password)]

 [PARITY(NONE|EVEN|ODD|MARK|SPACE)]

 [STOPBITS(stopbits)]

 [SYSTEM(sysname)]"

 PAGERID

Specifies the pager ID number of the remote party. This number must contain
between four and ten tone digits. Valid characters are: 0 1 2 3 4 5 6 7 8 9 -

Default: There is no default.

TONESTRING

Specifies the telephone number or other special digits (tonestring) to dial. Valid
characters are: 0 1 2 3 4 5 6 7 8 9 * # a b c d & - , T P M I X

Default: There is no default.

Notification Commands

212 Command and Keyword Reference Guide

MESSAGE

Specifies the alphanumeric message to display on the beeper of the recipient. The
maximum length of the pager ID plus the message must be less than 240
characters.

Default: There is no default.

COMPORT

(Optional) Specifies the serial communications port to use, regardless of an existing
connection on another device.

Normally, if there is already an established connection to the specified pager
service, notification server issues a new page over the existing connection to
enhance performance. Specifying the COMPORT parameter overrides existing port
connections.

Use any valid communications port name (COM1, COM2, COM3, and so on).
COMPORT and TAPIDEVICEID are mutually exclusive.

Default: Selects the first available communications port enabled for use by the
notification server.

Note: To view the list of available communications ports, see the Alphanumeric
Paging Options dialog in Configuration Manager.

BATCH

(Optional) Valid values are:

YES

Executes the command by writing the command to an internal notification
server input queue where it is processed in batch mode.

NO

Specifies that the issuing process is to wait for the return code and responses
before returning to the issuer.

Note: If issued with BATCH(YES), the return code you receive indicates only whether
the command was properly queued for batch mode execution-it is not the
completion code for the command.

Default: NO

BAUDRATE

(Optional) Specifies the baud rate that your modem uses to connect to your paging
service. Valid values are: 300, 1200, 2400, 4800, and 9600.

Default: 9600

Notification Commands

Chapter 7: ADDRESS VOX Commands 213

DATABITS

(Optional) Specifies the number of data bits per character used by the modem. The
TAP protocol specifies that this must be set to 7. Valid values are: 4, 5, 6, 7, and 8.

Default: 7

INITSTRING

(Optional) This modem initialization command string should include the default
modem initialization strings and any additional modem commands.

Default: ATZ; AT&C1&D2; ATV1Q0X4; ATS0=0S2=128S7=55

PAGERPW

(Optional) Specifies the alphanumeric character password of the remote party. This
six-character password is an access code for the pager service.

PARITY

(Optional) A method used by the modem for error checking. The TAP protocol
specifies that this must be set to E. Valid values are: N (None), E (Even), O (Odd), M
(Mark), S (Space)

Default: E

STOPBITS

(Optional) A number that represents the time between transmitted characters used
by the modem. The TAP protocol specifies that this must be set to 1. Valid values
are: 0 (for 1.5), 1, and 2.

Default: 1

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command. The sysname value can contain up to
eight alphanumeric characters.

Default: The local system name

Notification Commands

214 Command and Keyword Reference Guide

TAPIDEVICEID

(Optional) Specifies the numeric ID of the Telephony Application Programming
Interface (TAPI) device or modem, (installed on the notification server) you want to
use. This parameter overrides existing connections on another device.

Normally, if there is already an established connection to the specified pager
service, notification server issues a new page over the existing connection to
enhance performance.

Note: To view all of the Telephony Application Programming Interface (TAPI)
devices that are installed under Windows on the Notification Server, issue the
GETTAPIDEVICELIST command.

TAPIDEVICEID and COMPORT are mutually exclusive.

Default: The first available TAPI device

Notification Commands

Chapter 7: ADDRESS VOX Commands 215

Notes:

■ The modem must be properly installed within Windows. See the Administrator
Guide for details.

■ When you specify TAPIDEVICEID, the PAGE command overrides default settings
configured in the Alphanumeric Paging Options dialog. It then initiates the page
using the specified TAPI device ID, and uses TAPI to initialize the modem.

■ When neither COMPORT nor TAPIDEVICEID is specified, the next available
communications port is used to initiate a page, according to settings in the
Alphanumeric Paging Options dialog.

Return Information:

After the PAGE command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command executes successfully but the RC variable contains a non-zero
value of either 5331 or 5332, the paging service final confirmation sequence did
not conform to TAP protocol.

Note: If the page completes successfully for a given paging service, these non-zero
return codes can be disregarded.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5309, 5310, 5311, 5312, 5313, 5314, 5315, 5316, 5317, 5318,
5319, 5320, 5321, 5322, 5323, 5324, 5325, 5326, 5327, 5331, 5332. (See the
Message Reference Guide for further information.) Additionally, VOX.ERROR
variable contains the complete VOX error message, which includes the four-digit
return code and complete error message text.

Usage Note:

You can send pages to numeric pagers with the PAGE command if your paging service
provider supplies a telephone number to support a TAP protocol dial-up.

Examples:

■ The following code demonstrates how to repeatedly call a pager service as long as
the reason that the PAGE request failed is either no answer from the pager service
or a BUSY signal:

Notification Commands

216 Command and Keyword Reference Guide

 DO FOREVER

 ADDRESS VOX "PAGE baudrate(1200) comport(com2) pagerid(123-4567)"||,

 "tonestring(9-999-9999) message(Please call 555-1212)"

 IF rc=5322 |, /* BUSY signal */

 rc=5323 /* NO ANSWER */

 THEN ITERATE

 ELSE LEAVE

END

IF rc=0 THEN SAY "Page got through."

ELSE SAY "Page failed with rc="rc "message="vox.error

■ The following example demonstrates how you can find the first available TAPI
device from the TAPI device list and send a page using its device ID.

/* Find first available tapi device from list and send page using

 its deviceID */

 address VOX "GETTAPIDEVICELIST"

 if rc = 0 then

 if datatype(VOX.GETTAPIDEVICELIST.0) = "NUM" then

 do

 do i = 1 to VOX.GETTAPIDEVICELIST.0

 parse var VOX.GETTAPIDEVICELIST.i deviceid":"modemdescription

 if datatype(deviceid) = "NUM" then

 do

 say "Sending page using modem:"modemdescription

 /* Send a TAPI page with a specific deviceID */

 address VOX "PAGE MESSAGE(SAMPLE)" ,

 "PAGERID(111111) TONESTRING(5550987)" ,

 "TAPIDEVICEID("deviceid")"

 if rc <> 0 then say vox.error

 return

 end

 end

 end

 say "No TAPI devices available to send PAGE"

 exit

Notification Commands

Chapter 7: ADDRESS VOX Commands 217

PAGE2WAY Command

The PAGE2WAY command is a notification command that issues an alphanumeric page
to a designated page device using the Internet to relay these requests to the
appropriate paging service. To receive page requests using this command, the paging
service must support either the SNPP (Simple Network Paging Protocol) or WCTP
(Wireless Communication Transfer Protocol) protocols.

This command has the following format:

ADDRESS VOX "PAGE2WAY

 PAGERID(number)

 PROVIDER(paging service name)

 {MESSAGE(message) | STATUS(message ID) | EXPIRE(message ID)}

 [PAGERPW(password)]

 [MCRESPONSE(rsp1;rsp2;rsp3 ...)]

 [WAITSTATUS(QUEUED | DELIVERED | READ | REPLIED)]

 [WAIT(statuswait)]

 [SYSTEM(sysname)]

 [PREFIX(varname)]

 [CMDRESP(destination)]"

PAGERID

Specifies the pager ID number (up to 15 digits).

PROVIDER

Specifies the user-defined name of the paging service (up to 256 characters). Paging
service names are defined using the 2-Way Paging Setup dialog (located inside
Configuration Manager) that will associate the paging service name with the
required parameters used to connect to the paging service gateway system.

MESSAGE

Specifies the text message to be displayed on the 2-way pager device. Although this
message can be up to 500 characters long, the message is still subject to message
length limitations imposed by the pager service. Contact your pager service
provider for details.

The MESSAGE, STATUS, and EXPIRE keywords are mutually exclusive.

Notification Commands

218 Command and Keyword Reference Guide

STATUS

A text message ID assigned by the paging service (up to 128 characters). This
message ID is returned with the initial MESSAGE request in the VOX.PAGE2WAY
variable (by default) and is used to query the paging service for the status of a
previously issued page request. The results of this STATUS request will also be
placed in the VOX.PAGE2WAY variable (by default) and will be one of the following
four values: QUEUED, DELIVERED, READ, or REPLIED <Full Text Response>. The <Full
Text Response> section of the REPLIED value will be the text of the response sent
from the 2-way device that corresponds to the page request. The MESSAGE,
STATUS, and EXPIRE keywords are mutually exclusive.

Note: The list of supported status indicators may vary by pager service provider.
Contact your pager service provider for details.

EXPIRE

A text message ID assigned by the paging service (up to 128 characters). This
message ID is returned with the initial MESSAGE request in the VOX.PAGE2WAY
variable (by default) and is used to remove the associated page item from the page
item list maintained by the Notification Server. The Notification Server will
periodically query the defined paging services for status updates to the previously
issued page requests contained within the page item list. If no further status
updates are required for a specific 2-way page request, you may use this keyword
to manually remove (or expire) the associated page item. If this keyword is not
used, the page item will remain active until either the reply to the page request has
been returned in response to a STATUS request or the age of the page item exceeds
the expire time. The MESSAGE, STATUS, and EXPIRE keywords are mutually
exclusive.

PAGERPW

(Optional) Specifies the alphanumeric access code provided by the paging service, if
required (up to 15 characters). Contact your paging service provider for details.

This operand is valid only in combination with the MESSAGE operand.

MCRESPONSE

(Optional) An optional list of alphanumeric multiple-choice responses (MCR) that, if
specified, will be sent to the 2-way device in addition to the message text. The
recipient can then choose one of these pre-programmed responses when sending a
reply back to the paging service. The responses specified using this operand must
be separated using a semicolon (";"), and the total length of the value of this
operand must not exceed 512 characters (including separation characters). This
operand is valid only in combination with the MESSAGE operand. It is at the
discretion of the paging service to determine how many MCR responses are
allowed, if the paging service supports this functionality.

Notification Commands

Chapter 7: ADDRESS VOX Commands 219

WAITSTATUS

(Optional) Specifies the status text used to determine when the associated STATUS
request should return with a page status value. This operand can be used to delay
execution of your REXX program until either the status of the specified page request
matches the status text specified for this operand, or the wait interval specified in
the WAIT operand expires. This operand is only valid in combination with the
STATUS operand.

Note: The list of supported status indicators may vary by pager service provider.
Contact your pager service provider for details.

WAIT

(Optional) Specifies the amount of time to wait, in 1/10-second intervals, for the
status of the specified page request to match the status specified by the
WAITSTATUS operand. This operand is only valid in combination with both the
WAITSTATUS operand and the STATUS operand.

Default: WAIT(6000) (Ten minutes)

SYSTEM

(Optional) Specifies the alphanumeric name of the system that is running the
Notification Server to which you want to direct the command (up to 8 characters).

Default: The local system name.

PREFIX

(Optional) Specifies the name of a REXX stem variable (other than the default name)
that contains the return information for the command.

Default: VOX.PAGE2WAY

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

Notification Commands

220 Command and Keyword Reference Guide

Return Information:

After the PAGE2WAY command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully:

– The RC variable contains a value of zero.

– If the MESSAGE operand was used, the VOX.PAGE2WAY variable contains the
message ID assigned by the paging service for the submitted page request. This
message ID can be used later to query for status updates using the STATUS
operand. If the STATUS operand was used, the VOX.PAGE2WAY variable will
contain the current status of the page request (QUEUED, DELIVERED, READ,
REPLIED <full text response>). If the EXPIRE operand was used, the
VOX.PAGE2WAY variable will contain the previous status of the page request
(QUEUED, DELIVERED, READ, REPLIED <full text response>).

■ If the command did not execute successfully:

– The RC variable contains one of the following values: 4150, 5104, 5126, 5127,
5220, 5222, 5223, 5224, 5225, 5226, 5227, 5228, 5229, 5230, 5231, 5232, 5233,
5234, and 5237. (See the CA Automation Point Message Reference Guide for
more information.)

– The VOX.ERROR variable contains the complete VOX error message, which
includes the four digit return code and complete error message text.

– The VOX.PAGE2WAY variable contains the last return code received from the
paging service during the page submit attempt. This value may be useful in
troubleshooting the cause of the failed page request. If the paging service is
defined to use the SNPP communications protocol, see RFC1861 for a
description of all possible return codes. If the provider is defined to use the
WCTP protocol, point your Web browser to http://www.wctp.org/ and
download the WCTP Specification v1.1 to view all the possible WCTP return
codes.

Usage Notes:

The CA Automation Point server machine must have the ability to access the Internet in
order to submit 2-way page requests to the configured paging service providers.

Notification Commands

Chapter 7: ADDRESS VOX Commands 221

Examples:

■ The following code demonstrates how to initiate a 2-way page request. In case of
an error, this example also reports both the VOX error code and the last return
code reported by the paging service.

ADDRESS VOX "PAGE2WAY PAGERID(5551212) PROVIDER(ABC Wireless) "||

 "MESSAGE('Hello from ABC Wireless ') "||

 "MCRESPONSE('Hello;Goodbye')"

IF rc = 0 THEN msgid = VOX.PAGE2WAY

ELSE

DO

 SAY "Page failed. VOX RC = "||rc||", Provider RC = "||VOX.PAGE2WAY||"."

 SAY "Error Msg = "||VOX.ERROR

END

■ The following example demonstrates how to query the paging service for status
updates. In this case, the REXX program will wait until the paging service reports
that the page request has been delivered to the specified device (or 5 minutes,
whichever occurs first).

ADDRESS VOX "PAGE2WAY PAGERID(5551212) PROVIDER(ABC Wireless) "||

 "MESSAGE('JES is down on SYS4')"

IF rc = 0 THEN

DO

 msgid = VOX.PAGE2WAY

 ADDRESS VOX "PAGE2WAY PAGERID(5551212) PROVIDER(ABC Wireless) "||

 "STATUS("||msgid||") WAITSTATUS(DELIVERED)

WAIT(3000)"

 IF rc = 0 THEN

 SAY "The current status of message "||msgid||" is: "||VOX.PAGE2WAY

 ELSE

 SAY "Unable to query for page status updates. RC = "||rc||"."

END

ELSE SAY "Unable to submit page request. RC = "||rc||"."

Notification Commands

222 Command and Keyword Reference Guide

SENDMAIL Command

The SENDMAIL command is a notification command that generates an e-mail message
to designated personnel.

This command has the following format:

ADDRESS VOX "SENDMAIL TO(recipientlist) {MESSAGE(text)|VAR(rexxvariable)}

 [SUBJECT(text)]

 [SYSTEM(sysname)]

 [CC(recipientlist)]

 [BATCH(YES|NO)]

 [MAILID(text)]

 [ATTACHMENT(filename)]"

TO

Specifies the primary recipients of the mail message.

A recipient list is a list of one or more mail recipient names. The recipient names are
text strings that the notification server attempts to resolve into e-mail addresses. If
more than one name is listed, the names must be separated by a semicolon (;).

MESSAGE

Specifies the text (or body) of the mail message. The maximum length allowed is
240 characters. MESSAGE and VAR are mutually exclusive.

Line control characters can be inserted into the text for customized message
viewing.

VAR

An optional method to specify the text (or body) of the mail message. The
rexxvariable specified can be either a REXX variable or a stem variable. The REXX
variable referenced by this VAR parameter can hold a maximum of 30,000
characters. Text from stem variables is concatenated (with one intervening blank)
to form the mail text. MESSAGE and VAR are mutually exclusive. BATCH(YES) and
VAR are mutually exclusive.

Line control characters can be inserted into the text assigned to the specified REXX
variable for customized message viewing.

Notification Commands

Chapter 7: ADDRESS VOX Commands 223

SUBJECT

(Optional) Subject of the mail message. The maximum length is 240 characters.

Default: There is no default.

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

CC

(Optional) List of recipient names to receive a copy of the mail message.

If more than one name is listed, the names must be separated by a semicolon (;).

BATCH

(Optional) Valid values are:

YES

Executes the command by writing the command to an internal notification
server input queue where it will be processed in batch mode.

NO

Specifies that the issuing process waits for the return code and responses
before returning to the issuer.

Notes:

■ If issued with BATCH(YES), the return code you receive indicates only whether
the command was properly queued for batch mode execution-it is not the
completion code for the command.

■ BATCH(YES) and VAR are mutually exclusive.

Default: NO

MAILID

(Optional) User-supplied text to identify or track the mail message. This text is
included in the last line of the identification section (generated by CA Automation
Point) that is appended to the mail body. The maximum length is 40 characters.

Note: To use the MAILID option, you must enable Append Identification section to
mail body on the Configure Mail dialog.

Default: There is no default.

Notification Commands

224 Command and Keyword Reference Guide

ATTACHMENT

(Optional) User-supplied file which is to be attached to the mail message. The file
name specified must be fully qualified and accessible from the Notification Server
which is issuing the SENDMAIL command. Only one file can be specified per mail
request. The maximum length of the file name including path is 512 characters.

Default: There is no default.

Return Information:

After the SENDMAIL command executes, it sets the special REXX return code variable
RC.

■ If a command executes successfully, the RC variable contains a value of zero.

■ If a command does not execute successfully, the RC variable contains one of the
following values: 5341, 5344, 5346, 5347, 5348. (See the Message Reference Guide
for more information.) Additionally, the VOX.ERROR variable contains the complete
VOX error message, which includes the four-digit return code and complete error
message text.

Usage Note:

The SENDMAIL command displays the 5345I and 5349W messages in the window with
the default name of AP Notification Messages.

Examples:

■ The following example illustrates how to use the SENDMAIL command:

msgvar = "This email is to inform you that z/OS system Y has been IPLed"

file="C:\TEMP\YourData.dat"

 address VOX SENDMAIL TO(John Smith) CC(Jane Jones) SUBJECT(Notification from AP)

VAR(msgvar) ATTACHMENT(path)

Voice Commands

Chapter 7: ADDRESS VOX Commands 225

■ The following example illustrates how to programmatically add line control
characters to customize message viewing:

/* This is a sample program to take a screen */

/* dump from session SYSA and send an email to */

/* support mailbox with the screen output. */

/* NOTE: This message must be viewed by the */

/* recipient using a fixed pitch font. */

session_name= 'SYSA'

recipientlist='support'

ADDRESS AXC "GETSCRN SESSION("session_name") SCREEN(YES) PREFIX(LINE)"

IF rc <> 0 THEN DO

 SAY 'GETSCRN failed with rc=' rc

 EXIT

 END

/* Add a line feed character (hex 0a) at the end of each line on the screen dump

*/

/* Prefix each line with a tab character (hex 09) */

line_feed= '0a'x

tab= '09'x

DO i=1 to line.0

line.i=tab||line.i||line_feed

end

ADDRESS VOX "SENDMAIL TO("recipientlist") VAR(line.) SUBJECT(Screen dump from

Session "session_name")"

IF RC <> 0 THEN SAY 'SENDMAIL with screen dump failed with rc=' rc

Voice Commands

The following sections describe CA Automation Point ADDRESS VOX voice commands.

Voice Commands

226 Command and Keyword Reference Guide

Valid Dialing Characters

The following ADDRESS VOX commands dial or send telephone keypad digits entered
from your workstation's keyboard that you specify in the command statement.

■ CALL

■ CALLPLAY

■ PLAYGETDIGITS

■ SENDTONES

The following table lists the valid DTMF characters and their special functions (if any):

DTMF Character Special Function (If applicable)

“0” through “9” ---

“*” ---

“#” ---

“a” ---

“b” ---

“c” ---

“d” ---

“-” Ignored by command

“,” Pause

“&” Flash

“T” DTMF mode

“P” Pulse mode

“M” MF mode

“L” Wait for local dial tone

“I” Wait for international dial tone

“X” Wait for a special (or “extra”) dial tone

Voice Commands

Chapter 7: ADDRESS VOX Commands 227

ANSWER Command

The ANSWER command waits for a period specified by the TIMEOUT parameter for an
incoming telephone call on any one of a designated set of voice channels available at
the time the command was invoked. The ANSWER command will not wait for incoming
calls on voice channels that are marked as in-use at the time the command is invoked.

Furthermore, when the ANSWER command is invoked with the GROUP operand, any
one channel satisfies the command and returns control to the caller with the handle to
the answered channel. This answered channel must be released when you are done
with the call (see the description of the RELEASECHANNEL command). This channel
cannot reenter the set of channels on which any outstanding ANSWER command is
waiting.

The ANSWER command can answer a call on:

■ Any available voice channel

■ Any available voice channel within a specified channel group

■ A single, specific voice channel

When answering an incoming call, the ANSWER command:

■ Sets the hook state of the receiving voice channel to off-hook

■ Resets the play volume

■ Clears the following channel attributes:

– The digit buffer

– The call progress analysis (CPA) parameters

– The history of loop drop, silence-on, and silence-off events

This command has the following format:

ADDRESS VOX "ANSWER {CHANNEL(channelhandle)|GROUP(groupname|ALL)}

 [SYSTEM(sysname)]

 [ANSRING(ringnumber)]

 [TIMEOUT(waittime|0|-1)]

 [HOOKSTATE(hookstate)]

 [PREFIX(varname)]

 [CMDRESP(destination)]"

Voice Commands

228 Command and Keyword Reference Guide

CHANNEL

Specifies the channel handle (channelhandle)-identifies a physical channel-that the
GETCHANNEL command returns.

GROUP

A group name defining a group of specific, physical channel numbers that the
ANSWER command monitors for an incoming call. (For more information about
assigning channels to a group, see the description of the SETGROUP command.)

ALL enables the ANSWER command to monitor all groups (and, therefore, all
channels) for a call.

SYSTEM

(Optional) Specifies the name of the system running the notification server to which
you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

ANSRING

(Optional) Specifies the ring number on which to answer an incoming call.

Default: 1

TIMEOUT

(Optional) Specifies the maximum amount of time to wait for rings (in 1/10-second
units). Or, you can specify 0 (zero) to return immediately if no ring exists or -1 to
wait indefinitely.

Default: -1

HOOKSTATE

(Optional) Specifies the desired hook state after CA Automation Point detects a
ring. Valid values are OFFHOOK and ONHOOK.

Default: OFFHOOK

PREFIX

(Optional) Specifies the name of a REXX stem variable (other than the default name)
that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.ANSWER

CMDRESP

(Optional) Directs return information to a specific destination (destination). For a
list of valid destination values, see ADDRESS VOX Return Information in this
chapter.

Voice Commands

Chapter 7: ADDRESS VOX Commands 229

Return Information:

After the ANSWER command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. If
the GROUP operand was specified, the REXX variable VOX.ANSWER contains the
returned channel handle.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5105, 5112, 5117, 5155, 5199, 5203, 5204, 5206. (See the
Message Reference Guide for further information.) Additionally, the VOX.ERROR
variable contains the complete VOX error message, which includes the four-digit
return code and complete error message text.

Examples:

■ The following REXX code illustrates how to use the ANSWER command in a program
that pages a user, and then answers when the user calls the CA Automation Point
system in response to the page:

numpagerservice = '9,555-1900'

numtocall = '9,555-1234'

/* Acquire exclusive access to a voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

/* Dial the digital pager service and leave number to call. */

address vox 'call channel('handle') tonestring('numpagerservice')'

address vox 'sendtones tonestring('numtocall')'

/* Wait up to 10 minutes for an incoming call. */

address vox 'answer channel('handle') timeout(6000)'

/* Get the callers User Identification number. */

address vox 'playgetdigits channel('handle') file(entruid.vox) count(8)

singlestring(yes) prefix(userid)'

/* Get the caller's Personal Identification Number (PIN). */

address vox 'playgetdigits channel('handle') file(entrpin.vox) count(8)

singlestring(yes) prefix(pin)'

...

Voice Commands

230 Command and Keyword Reference Guide

/* Verify the remote user has entered a valid user-ID/pin combination.*/

address vox 'verifyuser userid('userid') pin('pin')'

if RC == 0 then do

 /* Explain the problem and list the options */

 /* available for resolving the problem. */

 address vox 'playgetdigits channel('handle') file(problem.vox options.vox)

prefix(response)'

 ...

end

/* Release the voice channel. */

address vox 'releasechannelchannel('handle')'

■ The following REXX code illustrates how you can use the ANSWER command in a
program that processes incoming calls destined for a help desk. When CA
Automation Point receives a call, the HDCTRL.CMD program starts a program
named HELPDESK.CMD to service the call automatically.

/* HDCTRL.CMD */

signal on halt Name DoExit

do forever

 /* Wait forever for an incoming call and */

 /* any channel within the HELPDESK group.*/

address vox 'answer group(helpdesk) hookstate(onhook) prefix(handle)

timeout(600)'

 if RC == 0 then

 do

 /* Call answered. Start the HELPDESK.CMD */

 /* program to service the call. */

 address vox 'startrexx program(helpdesk.cmd 'handle')'

 end

end

DoExit:

/* Exit from the command shell so that CA Automation Point can "clean up." */

'@exit'

Voice Commands

Chapter 7: ADDRESS VOX Commands 231

ANSWERPLAY Command

The ANSWERPLAY command waits for an incoming telephone call on a single channel
and plays one or more prerecorded voice messages after answering the call. When
answering an incoming call, the ANSWERPLAY command:

■ Sets the hook state of the receiving voice channel to off-hook

■ Resets the play volume

■ Clears the following channel attributes:

– The digit buffer

– The call progress analysis (CPA) parameters

– The history of loop drop, silence-on, and silence-off events

This command has the following formats:

Use the following syntax to answer a call and play a message from a non-indexed voice
file:

ADDRESS VOX "ANSWERPLAY CHANNEL(channelhandle)

 FILE(filename_1[...filename_n])

 FILETYPE(NONINDEX)

 [SYSTEM(sysname)]

 [INTERRUPT(YES|NO)]

 [ANSRING(ringnumber)]

 [TIMEOUT(waittime|0|-1)]

 [HOOKSTATE(hookstate)]"

Use the following syntax to answer a call and play a message from a voice word library
file:

ADDRESS VOX "ANSWERPLAY CHANNEL(channelhandle)

 FILE(filename)

 FILETYPE(WORDLIB)

 VAR(varname)

 [SYSTEM(sysname)]

 [INTERRUPT(YES|NO)]

 [ANSRING(ringnumber)]

 [TIMEOUT(waittime|0|-1)]

 [HOOKSTATE(hookstate)]"

Voice Commands

232 Command and Keyword Reference Guide

CHANNEL

Identifies the physical channel (channelhandle) that the GETCHANNEL command
returns.

Default: There is no default.

FILE

Specifies the name of a voice file or voice word library.

FILETYPE

Specifies the type of voice file to play. Valid values are:

■ NONINDEX - A nonindexed voice file

■ INDEX - An indexed voice file

■ WORDLIB - A voice word library

Note: When specifying FILETYPE (WORDLIB), do not include a file extension on the
FILE operand.

Default: NONINDEX

VAR

This operand is required only when specifying a voice word library on the FILETYPE
operand.

For a voice word library, this specifies either a REXX regular variable or stem
variable. When coding regular variables with the var keyword, only that variable is
searched. With a stem variable, all numeric indexes for the stem are searched.

When coding a stem variable, varname should follow this format:

varname.0

The number of words in your message.

varname.1 through varname.n

Each variable contains one word from the voice word library.

SYSTEM

(Optional) Specifies the name of the system running the notification server to which
you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

Voice Commands

Chapter 7: ADDRESS VOX Commands 233

INTERRUPT

(Optional) Specifies whether CA Automation Point interrupts the currently playing
voice message if it receives a tone digit (that is, if the remote party presses a key on
the telephone keypad). Valid values are:

YES

Allows the interruption.

NO

Prevents the interruption.

Default: YES

ANSRING

(Optional) Specifies the ring number on which to answer an incoming call.

Default: 1

TIMEOUT

(Optional) Specifies the maximum amount of time to wait for rings (in 1/10-second
units). Or, you can specify 0 (zero) to return immediately if no ring exists or -1 to
wait indefinitely.

Default: -1

HOOKSTATE

(Optional) Specifies the desired hook state after CA Automation Point plays a voice
message. Valid values are OFFHOOK and ONHOOK.

Default: OFFHOOK

Return Information:

After the ANSWERPLAY command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5105, 5106, 5107, 5109, 5112, 5116, 5117, 5155, 5199, 5204,
5252, 5300. (See the Message Reference Guide for further information.)
Additionally, the VOX.ERROR variable contains the complete VOX error message,
which includes the four-digit return code and complete error message text.

Usage Notes:

Rather than issuing the ANSWER command followed by a PLAY command, CA
recommends issuing the single ANSWERPLAY command whenever possible to improve
performance.

Voice Commands

234 Command and Keyword Reference Guide

Example:

The following REXX code illustrates how to use the ANSWERPLAY command to answer a
call and offer the caller four menu options:

GREETING=1

...

MAINMNU_OPT1=5

MAINMNU_OPT2=6

MAINMNU_OPT3=7

...

/* Acquire exclusive access to a voice channel.*/

address vox 'getchannel channelnum(1)'

/* Wait forever for an incoming call and play */

/* greeting message followed by the main menu */

/* comprised of four separate voice messages */

/* from within an indexed voice file. */

msg.0=4

msg.1=1

msg.2=5

msg.3=6

msg.4=7

address vox 'answerplay channel('handle') file(helpdesk.vap) filetype(index)

var(msg.)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

Voice Commands

Chapter 7: ADDRESS VOX Commands 235

CALL Command

The CALL command initiates a telephone call by placing the voice channel in an off-hook
state and dialing the tone string (telephone number).

This command has the following format:

ADDRESS VOX "CALL CHANNEL(channelhandle) TONESTRING(tonestring)

 [SYSTEM(sysname)]

 [NAME(CPAparameterset)]

 [RINGS(maxrings)]

 [RETRY(numretries)]

 [WAIT(secs)]

 [PREFIX(varname)]

 [CMDRESP(destination)]"

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

Default: There is no default.

TONESTRING

Specifies the telephone number or other special digits to dial.

Valid characters are: 0 1 2 3 4 5 6 7 8 9 * # a b c d & - , T P M L I X

SYSTEM

(Optional) Specifies the name of the system running the notification server to which
you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

NAME

(Optional) Specifies the name of the call progress analysis (CPA) parameter set to
use for dialing.

CPA set names can be created and configured using the Configuration Manager.

Default: EngineDefault

RINGS

(Optional) Specifies the approximate number of rings to allow before timing out the
request and returning a “noanswer” call completion state. The number of rings
specified is not an exact count of the actual rings on the telephone, but an
estimation of how long the call should wait to get the given rings count.

Default: 4

Voice Commands

236 Command and Keyword Reference Guide

RETRY

(Optional) Specifies the maximum number of call retries (after the initial call
attempt) to establish a connection.

Default: 0

WAIT

(Optional) Specifies the amount of time to wait, in 1/10-second units, before
redialing if you specify the RETRY operand.

Default: 600 (One minute)

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.CALL

CMDRESP

(Optional) Directs return information to a specific destination (destination). For a
list of valid destination values, see ADDRESS VOX Return Information in this
chapter.

Default: REXX

Return Information:

After the CALL command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero. The
VOX.CALL variable contains the following:

– CADNCBRK-Connection due to cadence break.

– LCDDROP-Connection due to loop current.

– PVD-Connection due to Positive Voice Detection.

– PAMD-Connection due to Positive Answerplay Machine Detection.

For more details about specific return information, see the ATDX_CONNTYPE()
function definition in the Intel Dialogic documentation.

The connection reason is useful when you need to adjust the call progress analysis
(CPA) parameters of your voice card using the Configuration Manager to fine-tune
your voice application. The Dialogic voice software determines the connection
reason, but the algorithm is not always correct.

Voice Commands

Chapter 7: ADDRESS VOX Commands 237

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5112, 5117, 5155, 5199, 5204, 5301, 5302, 5303, 5304, 5305,
5306. (See the Message Reference Guide for further information.) Additionally, the
VOX.ERROR variable contains the complete VOX error message, which includes the
four-digit return code and complete error message text.

Usage Notes:

■ The return information that the CALL command provides (see PREFIX) contains the
reason that the command was able to establish a connection.

■ See Valid Dialing Characters for information on valid DTMF dialing characters.

Example:

Suppose that you have written a REXX program to call a remote party and play a voice
message. If the reason that the CALL command establishes a connection is Positive
Voice Detection, a person probably answered the telephone. If the reason for the
connection is Positive Answering Machine Detection, an answering machine or
voice-mail system probably answered the call. In both cases, the default values for the
CPA parameters are acceptable; your REXX code can simply provide for playing the
prerecorded voice message at the appropriate time.

On the other hand, suppose that the office of the remote party is equipped with a PBX
system and that the connection reason is Loop Drop. The voice message might already
be in progress by the time the remote party hears it. In such a scenario, the PBX has sent
a loop-drop signal before the remote party answered the call, causing the CALL
command to complete and the subsequent lines in your REXX code to execute. To fix the
problem, you may need to adjust some CPA parameters.

The following REXX code illustrates how to use the CALL command to call a remote party
and report a problem:

phonenumber = '2000'

/* A T-1 trunk has dropped. */

/* Notify the telcom group immediately using the */

/* notification server located in the Los Angeles office. */

/* Acquire exclusive access to a voice channel. */

address vox 'getchannel channelnum(1) prefix(handle) system(laengine)'

Voice Commands

238 Command and Keyword Reference Guide

/* Call the main number of the telcom group */

/* to make sure that we did not get their */

/* voice mail. */

address vox 'call channel('handle') tonestring('phonenumber') system(laengine)'

if vox.call != PAMD then

do

 /* Because some answering machines are so clear*/

 /* that they cannot be detected easily, */

 /* make sure that we are connected to a person */

 /* by asking them to press 1. */

 address vox 'playgetdigits channel('handle') file(greeting.vox press1.vox)

prefix(response) system(laengine)'

 if response == 1 then

 do

 /* Inform the remote party of */

 /* the problem and offer options */

 /* for responding to the problem. */

 address vox 'play channel('handle') file(t1down.vox options.vox)

prefix(response) system(laengine)'

 ...

 /* Correcting problem according to */

 /* remote party's response */

 ...

 end

end

/* Release the voice channel */

address vox 'releasechannel channel('handle')'

Voice Commands

Chapter 7: ADDRESS VOX Commands 239

CALLPLAY Command

The CALLPLAY command initiates a telephone call and plays one or more prerecorded
voice messages. It sets the hook state to off-hook, dials the tone string (following a
successful connection), plays the voice message(s), and resets the hook state to
on-hook.

This command has one of the following formats:

Use the following format to play a message from a non-indexed voice file:

ADDRESS VOX "CALLPLAY CHANNEL(channelhandle)

 TONESTRING(tonestring)

 FILE(filename_1[...filename_n])

 FILETYPE(NONINDEX)

 [SYSTEM(sysname)]

 [NAME(CPAparameterset)]

 [RINGS(maxrings)]

 [RETRY(numretries)]

 [WAIT(redialwait)]

 [INTERRUPT(YES|NO)]

 [HOOKSTATE(ONHOOK|OFFHOOK)]

 [PREFIX(varname)]

 [CMDRESP(destination)]"

Use the following format to play a message from a voice word library file:

ADDRESS VOX "CALLPLAY CHANNEL(channelhandle)

 TONESTRING(tonestring)

 FILE(filename)

 FILETYPE(WORDLIB)

 VAR(varname)

 [SYSTEM(sysname)]

 [RINGS(maxrings)]

 [RETRY(numretries)]

 [WAIT(redialwait)]

 [INTERRUPT(YES|NO)]

 [HOOKSTATE(ONHOOK|OFFHOOK)]

 [PREFIX(varname)]

 [CMDRESP(destination)]"

Voice Commands

240 Command and Keyword Reference Guide

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

Default: There is no default.

TONESTRING

Specifies the telephone number or other special digits (tonestring) to dial.

Valid characters are: 0 1 2 3 4 5 6 7 8 9 * # a b c d & - , T P M L I X

FILE

Specifies the name of a voice file or voice word library.

Default: There is no default.

FILETYPE

Specifies the type of voice file to play. Valid values are:

NONINDEX

Specifies a non-indexed voice file.

WORDLIB

Specifies a voice word library.

Note: When specifying FILETYPE (WORDLIB), do not include a file extension on the
FILE operand.

Default: NONINDEX

VAR

This operand is required only when specifying a voice word library on the FILETYPE
operand.

For a voice word library, code either a REXX regular variable or stem variable. When
coding regular variables with the var keyword, only that variable is searched.

With a stem variable, all numeric indexes for this stem will be searched. When
coding a stem variable, varname. should follow this format:

varname.0

The number of words in your message.

varname.1 through varname.n

Each variable contains one word from the voice word library.

Voice Commands

Chapter 7: ADDRESS VOX Commands 241

SYSTEM

(Optional) Specifies the name of the system running the notification server to which
you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

NAME

(Optional) Specifies the name of the call progress analysis (CPA) parameter set to
use for dialing. CPA set names can be created and configured using the
Configuration Manager.

Default: EngineDefault

RINGS

(Optional) Specifies the approximate number of rings to allow before timing out the
request and returning a “noanswer” call completion state. The number of rings
specified is not an exact count of the actual rings on the telephone, but an
estimation of how long the call should wait to get the given rings count.

Default: 4

RETRY

(Optional) Specifies the maximum number of call retries (after the initial call
attempt) to establish a connection.

Default: 0

WAIT

(Optional) Specifies the amount of time to wait (in 1/10-second units) before
redialing (if you specify the RETRY operand).

Default: 600 (One minute)

INTERRUPT

(Optional) Specifies whether CA Automation Point interrupts a currently playing
voice message if it receives a tone digit (that is, if the remote party presses a key on
the telephone keypad). Valid values are:

YES

Allows the interruption.

NO

Prevents the interruption.

Default: YES

Voice Commands

242 Command and Keyword Reference Guide

HOOKSTATE

(Optional) Specifies whether CA Automation Point resets the hook state of the
channel to on-hook after playing the voice message. Valid values are:

ONHOOK

Reset the channel to the on-hook state

OFFHOOK

Allow the channel to remain in the off-hook state

Default: OFFHOOK

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.CALLPLAY

CMDRESP

(Optional) Directs return information to a specific destination (destination). For a
list of valid destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

Return Information:

After the CALLPLAY command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.
Additionally, the VOX.CALLPLAY variable contains the following:

– CAD-Connection due to cadence break.

– LPC-Connection due to loop current.

– PVD-Connection due to Positive Voice Detection.

– PAMD-Connection due to Positive Answerplay Machine Detection.

For more details about specific return information, refer to the ATDX_CONNTYPE()
function definition in the Dialogic manuals.

The connection reason is useful when you need to adjust the call progress analysis
(CPA) parameters of your voice card using the Configuration Manager to fine-tune
your voice application.

The Dialogic voice software determines the connection reason, but the algorithm is
not always perfect.

Voice Commands

Chapter 7: ADDRESS VOX Commands 243

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5107, 5109, 5112, 5116, 5117, 5155, 5199, 5204, 5252, 5301,
5302, 5303, 5304, 5305, 5306. (See the Message Reference Guide for further
information.) Additionally, the VOX.ERROR variable contains the complete VOX
error message, which includes the four-digit return code and complete error
message text.

Usage Notes:

Keep the following information in mind when using the CALLPLAY command:

■ Instead of issuing the CALL command followed by a PLAY command, we
recommend issuing the single CALLPLAY command whenever possible to improve
performance.

■ You can use the CALLPLAY command to play voice messages over a voice channel
connected to an amplified speaker. The TONESTRING operand must contain the
access code (tone-digit string) necessary to activate the speaker feature of the
system.

■ The return information that the CALLPLAY command provides (see PREFIX) indicates
why the command was able to establish a connection.

■ See Valid Dialing Characters for information on valid DTMF dialing characters.

Example:

The following REXX code illustrates how to use the CALLPLAY command to call a remote
party and play one or more voice messages after making contact:

phonenumber = '412-555-2000'

/* Get exclusive access to a voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

/* Attempt to reach the "on-call" operator at most three times,*/

/* waiting one minute between each attempt. */

address vox 'callplay channel('handle') tonestring('phonenumber') retry(3) wait(600)

file('greeting.vox entruid.vox')'

Voice Commands

244 Command and Keyword Reference Guide

/* Make sure that we are connected to the right person by */

/* verifying the operator's User-ID/PIN combination. */

address vox 'getdigits channel('handle') count(8) singlestring(yes) prefix(userid)'

address vox 'playgetdigits channel('handle') file(entrpin.vox) singlestring(yes)

prefix(pin)'

address vox 'verifyuser userid('userid') pin('pin')'

/* Deliver the message. */

address vox 'play channel('handle') file(message.vox)'

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

CLEAR Command

The CLEAR command clears the digit buffer of a voice channel or its call analysis
parameters.

This command has the following format:

ADDRESS VOX "CLEAR CHANNEL(channelhandle)

 CLEARTYPE(cleartype)

 [SYSTEM(sysname)]"

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

CLEARTYPE

Specifies the type of CLEAR operation to perform. Valid values are:

DIGBUF

Clears the digit buffer (containing digits entered from the remote party's
telephone keypad)

ANALYSIS

Clears the call progress analysis (CPA) parameters and resets them to the voice
card manufacturer's defaults

ALL

Clears all of the above

Voice Commands

Chapter 7: ADDRESS VOX Commands 245

SYSTEM

(Optional) Specifies the name of the system running the notification server to which
you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

Return Information:

After the CLEAR command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5117, 5155, 5199, 5204. (See the Message Reference Guide for
further information.) Additionally, the VOX.ERROR variable contains the complete
VOX error message, which includes the four-digit return code and complete error
message text.

Usage Note:

Determining when to clear a voice channel's digit buffer is application-specific. For
example, an application that supports type-ahead dialing clears the digit buffer only on
each call's call startup or termination. Generally, it is appropriate to clear the digit buffer
immediately before initiating an I/O operation.

Example:

The following REXX code illustrates the CLEAR command. The program segment forces
the remote party to listen to an entire voice message before allowing the remote party
to enter a PIN number.

/* Get exclusive access to a voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

...

/* Play a voice message, ensuring that the remote party listens */

/* to it in its entirety. */

address vox 'play channel('handle') file(message.vox) interrupt(no)'

Voice Commands

246 Command and Keyword Reference Guide

/* Clear the voice channel's digit buffer in case the remote */

/* party entered digits (pressed keys on the telephone keypad) */

/* while the message was playing. */

address vox 'clear channel('handle') cleartype(digbuf)'

/* Get the remote party's PIN. */

address vox 'playgetdigits channel('handle') file(entrpin.vox) count(8)

singlestring(yes) prefix(response)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

GETCHANNEL Command

The GETCHANNEL command retrieves an available voice channel and marks it as in-use
and performs these additional channel management tasks:

■ Prepares the channel for subsequent I/O operations by resetting the channel's call
progress analysis (CPA) parameters

■ Clears the channel's digit buffer

■ Clears the channel's loop-drop, silence-on, and silence-off history

■ Resets the channel's volume level (the level at which CA Automation Point plays
voice files)

■ Sets the channel's hook state to on-hook

Use the GETCHANNEL command with the RELEASECHANNEL command to serialize a
voice channel's I/O activity.

This command has the following format:

ADDRESS VOX "GETCHANNEL {GROUP(groupname|ALL)|CHANNELNUM(channelnum)}

 [SYSTEM(sysname)]

 [TIMEOUT(waittime|0|-1)]

 [PREFIX(varname)]

 [CMDRESP(destination)]"

Voice Commands

Chapter 7: ADDRESS VOX Commands 247

GROUP

Specifies the name of the group from which to retrieve an available voice channel
and assign a channel handle. (This is the most common method for retrieving a
channel.)

Specifying ALL enables the GETCHANNEL command to search all groups for an
available channel.

CHANNELNUM

Specifies the number of a specific, physical channel number to use.

Valid values range from 1 through the number of lines installed.

SYSTEM

(Optional) Specifies the name of the system running the notification server to which
you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

TIMEOUT

(Optional) Specifies the maximum amount of time to wait for a channel to become
available (in 1/10-second units). Or, you can specify 0 (zero) to return immediately
if a channel is not available or -1 to wait indefinitely.

If you specify a TIMEOUT value, CA Automation Point queues and services requests
for an unavailable channel in the order you requested.

Default: 0

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.GETCHANNEL

CMDRESP

(Optional) Directs return information to a specific destination. For a list of valid
destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

Voice Commands

248 Command and Keyword Reference Guide

Return Information:

After the GETCHANNEL command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.
Additionally, the VOX.GETCHANNEL variable contains the returned channel handle.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5105, 5117, 5135, 5155, 5201, 5202, 5206. (See the Message
Reference Guide for further information.) Additionally, the VOX.ERROR variable
contains the complete VOX error message, which includes the four-digit return
code and complete error message text.

Usage Notes:

■ You do not need to issue the GETCHANNEL command before issuing the ANSWER or
ANSWERPLAY commands (if GROUP is specified).

■ The calling REXX program has exclusive access to the channel. Exclusive access
remains in effect until one of the following occurs:

– The RELEASECHANNEL command executes.

– You reset the channel through the Configuration Manager.

– You close or exit from the command shell that executed the REXX program.

Examples:

■ The following REXX code illustrates how to use the GETCHANNEL command to
access a specific voice channel:

/* Get exclusive access a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

...

/* Perform voice processing using the voice channel. */

...

/* Release the voice channel when processing is completed. */

address vox 'releasechannel channel('handle')'

Voice Commands

Chapter 7: ADDRESS VOX Commands 249

■ The following REXX code illustrates how to use the GETCHANNEL command to
access the first available voice channel:

/* Get exclusive access to the first available voice channel. */

address vox 'getchannel group(all) prefix(handle)'

...

/* Perform voice processing using the voice channel. */

...

/* Release the voice channel when processing is completed. */

address vox 'releasechannel channel('handle')'

GETCHANNELNUM Command

The GETCHANNELNUM command identifies the physical voice channel number
associated with the specified channel handle.

This command has the following format:

ADDRESS VOX "GETCHANNELNUM CHANNEL(channelhandle)

 [SYSTEM(sysname)]

 [PREFIX(varname)]

 [CMDRESP(destination)]"

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

SYSTEM

(Optional) Specifies the name of the system to which you want to direct the
command.

The sysname value can contain up to eight alphanumeric characters.

Note: A system is a workstation on which a notification server resides. If CA
Automation Point is running within a distributed system, (that is, if all CA
Automation Point components are not running on a single workstation), you must
specify the SYSTEM operand.

Default: The local system name.

Voice Commands

250 Command and Keyword Reference Guide

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.GETCHANNELNUM

CMDRESP

(Optional) Directs return information to a specific destination. For a list of valid
destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

Usage Note:

Typically, you do not need to issue the GETCHANNELNUM command except in the
following situations:

■ When you need to reset it

■ When you have posted a callback number

■ When you need to get a particular channel

Return Information:

After the GETCHANNELNUM command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.
Additionally, the VOX.GETCHANNELNUM variable contains the returned channel
handle.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5117, 5155, 5199, 5204. (See the Message Reference Guide for
further information.) Additionally, the VOX.ERROR variable contains the complete
VOX error message, which includes the four-digit return code and complete error
message text.

Voice Commands

Chapter 7: ADDRESS VOX Commands 251

Example:

The following REXX code illustrates how to use the GETCHANNELNUM command to
determine the physical line number associated with the current channel handle, and
then use that information in a REXX program:

/* Get exclusive access to the first available voice channel. */

address vox 'getchannel group(all) prefix(handle)'

/* Get the physical line number associated */

/* with the channel handle. */

address vox 'getchannelnum channel('handle') prefix(channelnum)'

/* Get the telephone number of the line connected to the channel.*/

select

 when channelnum == 1 then phonenum='555-1000'

 when channelnum == 2 then phonenum='555-1001'

 when channelnum == 3 then phonenum='555-1002'

 when channelnum == 4 then phonenum='555-1003'

end

/* Page the "on-call" operator */

address vox 'call channel('handle') tonestring('pagernum')'

/* Indicate the telephone number that the operator should call */

address vox 'sendtones channel('handle') tonestring('phonenum')'

/* Wait up to 5 minutes for the operator to call back. */

address vox 'answerplay channel('handle') file(problem.vox options.vox)

timeout(3000)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')

Voice Commands

252 Command and Keyword Reference Guide

GETDIGITS Command

The GETDIGITS command retrieves tone digits from a voice channel's digit buffer. The
digits can represent one of the following data types:

■ A menu selection or access code, such as a personal identification number (PIN),
that a remote party enters from the telephone keypad in response to a voice
prompt.

■ ANI (caller identification) digits that the telephone company sends in response to a
WINK command.

This command has the following format:

ADDRESS VOX “GETDIGITS CHANNEL(channelhandle)

 [SYSTEM(sysname)]

 [COUNT(numtones)]

 [IDDELAY(maxdelay)]

 [TERMKEY(keytone)]

 [PREFIX(varname)]

 [CMDRESP(destination)]

 [SINGLESTRING(YES|NO)]”

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

SYSTEM

(Optional) Specifies the name of the system running the notification server to which
you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

COUNT

(Optional) Specifies the maximum number of tones to retrieve. Valid values are 0
(zero) through 31.

Note: If you specify COUNT(0), the GETDIGITS command returns only the number of
digits in the digit buffer (but no digits).

Default: 1

IDDELAY

(Optional) Specifies the maximum time delay allowed between each digit's retrieval
(in 1/10-second units).

Default: 30

Voice Commands

Chapter 7: ADDRESS VOX Commands 253

TERMKEY

(Optional) A termination tone digit that the remote party enters on the telephone
keypad.

If CA Automation Point detects a tone that you specify, it terminates the GETDIGITS
operation. You can specify one or more termination tones.

Valid values are: 0 1 2 3 4 5 6 7 8 9 * # a b c d

Notes:

■ The pound key (#) is a common tone-string terminator.

■ A special keypad is necessary to send a, b, c, or d from a phone.

Default: The pound key (#)

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.GETDIGITS

CMDRESP

(Optional) Directs return information to a specific destination. For a list of valid
destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

SINGLESTRING

(Optional) Specifies whether the GETDIGITS command's return string appears as a
single string of digits in one variable (rather than as individual digits in separate
variables).

Default: SINGLESTRING(YES)

Return Information:

After the GETDIGITS command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.
Additionally, if you accept the default SINGLESTRING(YES) operand, the entire string
of tone digits appears in the VOX.GETDIGITS (or VOX.GETDIGITS.1) variable.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5106, 5107, 5112, 5117, 5155, 5199, 5204, 5300. (See the
Message Reference Guide for further information.) Additionally, the VOX.ERROR
variable contains the complete VOX error message, which includes the four-digit
return code and complete error message text.

Voice Commands

254 Command and Keyword Reference Guide

If you specify the optional SINGLESTRING(NO) operand, the GETDIGITS command
returns this information in each of the VOX.GETDIGITS variables (VOX.GETDIGITS.1
through VOX.GETDIGITS.n):

Field Description of Returned Information

1 A single digit entered by the remote party or sent by the telephone
company.

2 The tone type of the digit that was retrieved:

■ DTMF-Dual Tone Multi-Frequency

■ AP-Audio Pulse

■ LP-Loop Pulse

MF-Multi-Frequency

The value stored in the VOX.GETDIGITS.0 variable represents the number of tone digits
that were retrieved.

Example:

The following REXX code illustrates how to use the GETDIGITS command to collect a
remote user's personal identification number (PIN) entered from the telephone keypad:

/* Get exclusive access to a specific voice channel. */

/* If the channel is in use, wait up to two minutes */

/* for it to become available. */

address vox 'getchannel channelnum(1) timeout(1200) prefix(handle)'

...

/* Prompt the remote party to enter a PIN. */

address vox 'play channel('handle') file(entrpin.vox)'

/* Collect the PIN digits entered. */

address vox 'getdigits channel('handle') count(8) singlestring(yes)

prefix(response)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')

Voice Commands

Chapter 7: ADDRESS VOX Commands 255

GETGROUP Command

The GETGROUP command returns the group name that you specify and a list of all
physical voice channel numbers associated with the group. The return information also
indicates whether the channels in the specified group can be interrupted by other REXX
programs.

This command has the following format:

ADDRESS VOX "GETGROUP

 [GROUP(groupname)]

 [SYSTEM(sysname)]

 [PREFIX(varname)]

 [CMDRESP(destination)]"

The GETGROUP command requires no operands.

Specifying the GETGROUP command with no operands returns information about the
ALL group only. To see all defined groups, use GETGROUP GROUP(*).

GROUP

(Optional) Specifies the name of the group from which to retrieve a list of all
associated voice channels.

Default: ALL

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.GETGROUP

CMDRESP

(Optional) Directs return information to a specific destination (destination). For a
list of valid destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

Voice Commands

256 Command and Keyword Reference Guide

Return Information:

After the GETGROUP command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.
Additionally, the VOX.GETGROUP variable contains the returned channel listing.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5117, 5155, 5199, 5203. (See the Message Reference Guide for
further information.) Additionally, the VOX.ERROR variable contains the complete
VOX error message, which includes the four-digit return code and complete error
message text.

The GETGROUP command returns this information in each of the VOX.GETGROUP
variables (VOX.GETGROUP.1 through VOX.GETGROUP.n):

Field Description of Returned Information

1 The group name.

2 Whether the channels in the group are interruptible by other REXX
programs (YES or NO) .

3 The number of channels associated with the group.

4 The number of the first channel in the group.

5 The number of the second channel in the group.

n The number of the nth channel in the group.

The value stored in the VOX.GETGROUP.0 variable represents the number of groups
about which the GETGROUP command returned information.

Voice Commands

Chapter 7: ADDRESS VOX Commands 257

Example:

The following REXX code illustrates how to use the GETGROUP command to retrieve the
information for the group ALL, and then use that information to create a new channel
group:

/* Get a list of the local notification server's available channels. */

address vox 'getgroup group(all)'

if RC == 0 then

do

 parse var vox.getgroup.1 name interrupt numchannels channelsingroup

 /* Define the new group to contain all available channels. */

 newgroup.0 = 1

 newgroup.1 = "NEWGROUP" || " " || interrupt || " " || "set " || numchannels || "

" || channelsingroup

 /* Create the new group on the local notification server workstation.*/

 address vox 'setgroup var(newgroup.)'

 ...

end

GETSTATUS Command

The GETSTATUS command returns the current status of a voice channel.

This command has the following format:

ADDRESS VOX "GETSTATUS CHANNELNUM(channelnum)

 [SYSTEM(sysname)]

 [PREFIX(varname)]

 [CMDRESP(destination)]"

CHANNELNUM

A specific, physical channel number. Valid values range from 1 through the number
of lines installed.

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

Voice Commands

258 Command and Keyword Reference Guide

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.GETSTATUS

CMDRESP

(Optional) Directs return information to a specific destination (destination). For a
list of valid destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

Return Information:

After the GETSTATUS command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.
Additionally, The GETSTATUS command returns one of the following status
information values in the VOX.GETSTATUS variable:

Channel Status Meaning

BUSY Busy

DIAL Dialing a telephone number

GETDIG Getting digits from the voice channel's digit buffer

IDLE Idle (no I/O activity on the channel)

NOTINUSE Channel not in use

PLAY Playing a voice message

RECD Recording a voice message

HOOK Setting the hook state to either on-hook or off-hook

STOPD The current operation is stopped, but the channel is
not idle

WTEVT Waiting for a specified event to occur

WTRNG Waiting for rings

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5155, 5199, 5201. (See the Message Reference Guide for further
information.) Additionally, the VOX.ERROR variable contains the complete VOX
error message, which includes the four-digit return code, and complete error
message text.

Voice Commands

Chapter 7: ADDRESS VOX Commands 259

Example:

The following REXX code illustrates how to use the GETSTATUS command to determine
the number of channels that are currently in use on a notification server:

/* Get a list of the local notification server's available channels. */

address vox 'getgroup group(all)'

parse var vox.getgroup.1 name interrupt numchannels

channelsingroup

channelsinuse = 0

/* Check every channel to determine in-use status of each. */

do i = 1 to numchannels

/* Get the next channel number in the group */

parse var channelsingroup channelnumber channelsingroup

/* Check channel. */

address vox 'getstatus channelnum('channelnumber') prefix(status)'

/* Maintain a count of the number of in-use channels. */

if status <> "NOTINUSE" then channelsinuse = channelsinuse + 1

end

GETSYSNAMES Command

The GETSYSNAMES command retrieves the system name of the local workstation and
the system names of all connected notification server workstations, if any.

This command has the following format:

ADDRESS VOX "GETSYSNAMES [PREFIX(varname)]

 [CMDRESP(destination)]"

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.GETSYSNAMES

Voice Commands

260 Command and Keyword Reference Guide

CMDRESP

(Optional) Directs return information to a specific destination (destination). For a
list of valid destination values, see ADDRESS VOX Return Information in this
chapter.

Default: REXX

Return Information:

After the GETSYSNAMES command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.
Additionally, the GETSYSNAMES command returns this information in each of the
VOX.GETSYSNAMES variables (VOX.GETSYSNAMES.1 through
VOX.GETSYSNAMES.n):

Field Description of Returned Information

1 System name

2 System type, either local (LOCAL) or connected (CONNECTED)

3 Whether the engine is active (YES or NO)

The value stored in the VOX.GETSYSNAMES.0 variable represents the total number
of system names retrieved.

■ If the command does not execute successfully, the RC variable contains the
following value: 5117. (See the Message Reference Guide for further information.)
Additionally, the VOX.ERROR variable contains the complete VOX error message,
which includes the four-digit return code and complete error message text.

Voice Commands

Chapter 7: ADDRESS VOX Commands 261

Example:

The following REXX code illustrates how to use the GETSYSNAMES command to retrieve
the system names of all connected notification servers, and then use that information to
determine whether each notification server is running and whether the connection to
each notification server is active:

/* Get the system names of all connected notification servers. */

address vox 'getsysnames prefix(engines)'

/* Verify that the connected notification server is running and */

/* that the connection to it is still active. */

/* If you are running the client only, this will fail. */

/* Adjust the REXX accordingly. */

do i = 1 to vox.getsysnames.0

 /* Issue a VOX command to the connected notification server */

 address vox 'getgroup system('engines.i')'

 /* Display the result. */

 select

 when RC == 0 then say 'Communication with notification server:

' engines.i 'verified.'

 ...

 end

end

Voice Commands

262 Command and Keyword Reference Guide

LOAD Command

The LOAD command loads a voice file or voice word library index file into your
workstation's memory, allowing faster access to your voice data.

This command has the following format:

ADDRESS VOX "LOAD FILE(filename)

 [FILETYPE(NONINDEX|filetype)]

 [SYSTEM(sysname)]"

FILE

Specifies the name (filename) of a voice file or voice word library.

FILETYPE

(Optional) Specifies the type of voice file to load. Valid values are:

NONINDEX

A nonindexed voice file

WORDLIB

A voice word library's index file. Specifying WORDLIB does not load the voice
word library's digitized speech data into memory.

Note: When specifying FILETYPE (WORDLIB), do not include a file extension on the
FILE operand.

Default: NONINDEX

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

Return Information:

After the LOAD command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5108, 5109, 5117, 5155, 5180, 5199, 5252. (See the Message
Reference Guide for further information.) Additionally, the VOX.ERROR variable
contains the complete VOX error message, which includes the four-digit return
code and complete error message text.

Voice Commands

Chapter 7: ADDRESS VOX Commands 263

Usage Note:

 CA Automation Point loads the voice word library's index file into memory the first time
your voice application requires its use. For more information, see the descriptions of the
ANSWERPLAY, CALLPLAY, and PLAYGETDIGITS commands.

Example:

The following REXX code illustrates how to use the LOAD command to load an indexed
voice file into memory, allowing for faster access within your voice application:

/* Load all prompts in the indexed voice file (for use by */

/* the problem-escalation application). */

address vox 'load file(probesc) filetype(wordlib)'

/* Get exclusive access to the first available voice channel. */

address vox 'getchannel group(all) prefix(handle)'

... body of the problem-escalation application code

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

PLAY Command

The PLAY command plays voice data (prerecorded speech) through a specified voice
channel. The voice data can exist in one of these formats:

■ A nonindexed file-To play a nonindexed voice file, specify the file on the FILE
operand. If you specify multiple file names, CA Automation Point plays each file in
the order listed with no pauses or clicks inserted between the files.

■ A voice word library-To play words from a voice word library, specify the name of
the library on the FILE operand and the text of the word to play in a REXX variable
(or REXX stem variables), and then code the REXX variable's name on the VAR
operand.

Voice Commands

264 Command and Keyword Reference Guide

This command has the following formats:

Use the following format to play a message from a nonindexed voice file:

ADDRESS VOX "PLAY CHANNEL(channelhandle)

 FILE(filename_1 [...filename_n])

 FILETYPE(NONINDEX)

 [SYSTEM(sysname)]

 [INTERRUPT(YES|NO)]"

Use the following format to play a message from a voice word library file:

ADDRESS VOX "PLAY CHANNEL(channelhandle)

 FILE(filename)

 FILETYPE(WORDLIB)

 VAR(varname)

 [SYSTEM(sysname)]

 [INTERRUPT(YES|NO)]"

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

FILE

Specifies the name of a voice file or voice word library.

FILETYPE

Specifies the type of voice file to play. Valid values are:

■ NONINDEX - A nonindexed voice file

■ WORDLIB - A voice word library

Note: When specifying FILETYPE(WORDLIB), do not include a file extension on the
FILE operand.

Default: NONINDEX

VAR

This operand is required only when specifying a voice word library on the FILETYPE
operand.

For a voice word library, code either a REXX regular variable or stem variable. When
coding regular variables with the VAR keyword, only that variable is searched.

With a stem variable, all numeric indexes for this stem will be searched. When
coding a stem variable, "varname." should follow this format:

■ varname.0-The number of words in your message.

■ varname.1 through varname.n-Each variable contains one word from the voice
word library.

Voice Commands

Chapter 7: ADDRESS VOX Commands 265

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command. The sysname value can contain up to
eight alphanumeric characters.

Default: The local system name

INTERRUPT

(Optional) Specifies whether CA Automation Point interrupts a currently playing
voice message if it receives a tone digit (that is, if the remote party presses a key on
the telephone keypad). Valid values are:

YES

Allows the interruption.

NO

 Prevents the interruption.

Default: YES

Return Information:

After the PLAY command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5106, 5109, 5112, 5116, 5117, 5155, 5199, 5204, 5252, 5300. (For
more information, see the Message Reference Guide.) Additionally, the VOX.ERROR
variable contains the complete VOX error message, which includes the four-digit
return code and complete error message text.

Usage Notes:

You can use the PLAY command to play voice messages through a voice channel
connected to an amplified speaker attached directly to the voice card's analog
expansion bus (with pins GND and AUD1-AUD4).

Voice Commands

266 Command and Keyword Reference Guide

Examples:

■ The following REXX code illustrates how to use the PLAY command to play three
individual voice messages. Each message is stored in a nonindexed (flat) voice file.

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

...

/* Play messages from nonindexed voice files. */

address vox 'play channel('handle') file(greeting.vox mainmnu1.vox

mainmnu2.vox)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

Voice Commands

Chapter 7: ADDRESS VOX Commands 267

■ The following REXX code illustrates how to use the PLAY command to play voice
messages stored in an indexed voice file:

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

...

/* Play messages from an indexed file. */

greeting = 1

mainmenu1 = 2

mainmenu2 = 2

...

messages.0 = 3

messages.1 = greeting

messages.2 = mainmenu1

messages.2 = mainmenu2

address vox 'play channel('handle') file(helpdesk.vap) filetype(index)

var(messages.)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

■ The following REXX code illustrates how to use the PLAY command to play voice
messages using the voice word library:

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle) '

...

/*Play messages via the VOX Word Library. */

messages.0 = 4

messages.1 = "System"

messages.2 = "IMS"

messages.3 = "Is"

messages.4 = "Down"

address vox 'play channel('handle') file(voxm_a) filetype(wordlib)

var(messages.)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

Voice Commands

268 Command and Keyword Reference Guide

PLAYGETDIGITS Command

The PLAYGETDIGITS command performs the following operations:

■ Plays voice data (prerecorded speech) through a specified voice channel. The voice
data can exist in one of these formats:

– A nonindexed file

To play nonindexed files, specify the file on the FILE operand. If you specify
multiple file names, CA Automation Point plays each file in the order listed. CA
Automation Point does not insert pauses between multiple files.

– A voice word library

To play words from a voice word library, specify the name of the library on the
FILE operand and the text of the word to play on the VAR operand.

■ Retrieves tone digits from a voice channel's digit buffer. The digits can be menu
selections or access codes that the remote party enters from the telephone keypad
in response to a prompt from the voice file.

Voice Commands

Chapter 7: ADDRESS VOX Commands 269

This command has the following format:

Use the following format to play a message from a non-indexed voice file:

ADDRESS VOX "PLAYGETDIGITS CHANNEL(channelhandle)

 FILE(filename_1 [...filename_n])

 FILETYPE(NONINDEX)

 [SYSTEM(sysname)]

 [INTERRUPT(YES|NO)]

 [COUNT(numtones)]

 [IDDELAY(maxdelay)]

 [TERMKEY(keytone)]

 [PREFIX(varname)]

 [CMDRESP(destination)]

 [SINGLESTRING(YES|NO)"

Use the following format to play a message from a voice word library file:

ADDRESS VOX "PLAYGETDIGITS CHANNEL(channelhandle)

 STRING(tonestring)

 FILE(filename)

 FILETYPE(WORDLIB)

 VAR(varname)

 [SYSTEM(sysname)]

 [INTERRUPT(YES|NO)]

 [COUNT(numtones)]

 [IDDELAY(maxdelay)]

 [TERMKEY(keytone)]

 [PREFIX(varname)]

 [CMDRESP(destination)]

 [SINGLESTRING(YES|NO)"

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

FILE

Specifies the name of a voice file or voice word library.

FILETYPE

Specifies the type of voice file to play. Valid values are:

NONINDEX - A nonindexed voice file

WORDLIB - A voice word library

Note: When specifying FILETYPE (WORDLIB), do not include a file extension on the
FILE operand.

Default: NONINDEX

Voice Commands

270 Command and Keyword Reference Guide

VAR

This operand is required only when specifying a voice word library on the FILETYPE
operand.

For a voice word library, code either a REXX regular variable or stem variable. When
coding regular variables with the VAR keyword, only that variable is searched.

With a stem variable, all numeric indexes for this stem will be searched. When
coding a stem variable, varname. should follow this format:

varname.0

Specifies the number of words in your message.

varname.1 through varname.n

Each variable contains one word from the voice word library.

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command. The sysname value can contain up to
eight alphanumeric characters.

Default: The local system name

INTERRUPT

(Optional) Specifies whether CA Automation Point interrupts a currently playing
voice message if it receives a tone digit (that is, if the remote party presses a key on
the telephone keypad). Valid values are:

YES

Allows the interruption

NO

Prevents the interruption

Default: YES

COUNT

(Optional) Specifies the maximum number of tones to retrieve.

Default: 1

IDDELAY

(Optional) Specifies the maximum time delay allowed between each digit's retrieval
(in 1/10-second units).

Default: 30

Voice Commands

Chapter 7: ADDRESS VOX Commands 271

TERMKEY

(Optional) A termination tone digit that the remote party enters on the telephone
keypad.

If CA Automation Point detects a tone that you specify, it terminates the
PLAYGETDIGITS operation. You can specify one or more termination tones.

Valid values are: 0 1 2 3 4 5 6 7 8 9 * # a b c d

Note: The pound key (#) is a common tone-string terminator.

Default: #

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the returned digit string.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.PLAYGETDIGITS

CMDRESP

(Optional) Directs return information to a specific destination. For a list of valid
destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

SINGLESTRING

(Optional) Specifies whether the PLAYGETDIGITS command's return string appears
as a single string of digits in one variable (rather than as individual digits in separate
variables).

Default: YES

Return Information:

After the PLAYGETDIGITS command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.
Additionally, if you accept the default SINGLESTRING(YES) operand, the entire string
of tone digits appears in the VOX.PLAYGETDIGITS (or VOX.PLAYGETDIGITS.1)
variable.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5106, 5107, 5109, 5112, 5116, 5117, 5155, 5199, 5204, 5300. (For
more information, see the Message Reference Guide.) Additionally, the VOX.ERROR
variable contains the complete VOX error message, which includes the four-digit
return code and complete error message text.

Voice Commands

272 Command and Keyword Reference Guide

If you specify the optional SINGLESTRING(NO) operand, the PLAYGETDIGITS command
returns this information in each of the VOX.PLAYGETDIGITS variables
(VOX.PLAYGETDIGITS.1 through VOX.PLAYGETDIGITS.n):

Field Description of Returned Information

1 A single digit entered by the remote party or sent by the telephone
company.

2 The tone type of the digit that was retrieved:

■ DTMF-Dual Tone Multi-Frequency

■ AP-Audio Pulse

■ LP-Loop Pulse

■ MF-Multi-Frequency

The value stored in the VOX.PLAYGETDIGITS.0 variable represents the
number of tone digits that were retrieved.

Example:

The following REXX code illustrates how to use the PLAYGETDIGITS command to play a
voice message from a nonindexed (flat) voice file, and then collect the tone digits that
the remote party enters from the telephone keypad in response:

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

...

/* Play the Reset menu message and give the user five seconds */

/* to respond. */

address vox 'playgetdigits channel('handle') file(resetmnu.vox) iddelay(5)

prefix(response)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

Voice Commands

Chapter 7: ADDRESS VOX Commands 273

RECORDFILE Command

The RECORDFILE command allows a remote party to record a message. CA Automation
Point stores the voice data (digitized speech) in a non-indexed disk file. A two-second
audible tone precedes recording, alerting the remote party that the recording operation
is active.

Recording terminates when one of the following events occurs:

■ CA Automation Point receives a tone digit (that is, the remote user presses a key on
the telephone keypad)

■ The maximum period of silence has elapsed (specified on the SILENCE operand)

■ The maximum recording time has expired (specified on the RECORD operand)

This command has the following format:

ADDRESS VOX "RECORDFILE CHANNEL(channelhandle)

 FILE(filename)

 [SYSTEM(sysname)]

 [RECORDTIME(maxrectime)]

 [SILENCE(maxsilence)]

 [OVERWRITE(YES|NO)]

 [INTERRUPT(YES|NO)]"

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

FILE

Specifies the name of the nonindexed voice file in which to store your recorded
voice data.

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

RECORDTIME

(Optional) Specifies the maximum recording time allowed (in 1/10-second units).

Default: RECORDTIME(6000) (five minutes)

Voice Commands

274 Command and Keyword Reference Guide

SILENCE

(Optional) Specifies the maximum amount of time to allow for silence during the
recording operation (in 1/10-second units). The recording operation terminates
when the maxsilence time expires.

Default: 50 (five seconds)

OVERWRITE

(Optional) Specifies whether a new recorded file (specified on the FILE operand)
overwrites a file of the same name, if one exists.

Default: YES

INTERRUPT

(Optional) Specifies whether CA Automation Point interrupts (terminates) the
recording operation if it receives a tone digit (that is, if the remote party presses a
key on the telephone keypad). Valid values are:

YES

Allows the interruption

NO

Prevents the interruption

Default: YES

Return Information:

After the RECORDFILE command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5103, 5106, 5112, 5113, 5117, 5155, 5199, 5204, 5300. (See the
Message Reference Guide for further information.) Additionally, the VOX.ERROR
variable contains the complete VOX error message ID, which includes the four-digit
return code and complete error message text.

Usage Notes:

We recommend that you do not use the RECORDFILE command to record voice data for
your applications. Doing so causes the following problems, which are common in an
analog environment:

■ Unwanted leading and trailing silence (usually three to five seconds)

■ Background noise (hissing), pops, and cracks

■ A leading click at the beginning of the recorded message

Instead, use a voice-editor application to record your voice data.

Voice Commands

Chapter 7: ADDRESS VOX Commands 275

Example:

The following REXX code illustrates how to use the RECORDFILE command to record a
caller's message. The example code then delivers the recorded message to another
party.

DELIVER_MESSAGE = 1

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

...

/* Determine whether the caller wants to deliver a message. */

address vox 'playgetdigits channel('handle') file(leavemsg.vox) prefix(selection)'

if selection == DELIVER_MESSAGE then

do

 /* Record the message to deliver. */

address vox 'recordfile channel('handle') file(message.vox)'

 /* Get the four-digit extension of the party to whom the */

 /* caller wants to deliver the message. */

 address vox 'playgetdigits channel('handle') file(leavemsg.vox) count(4)

singlestring(yes) prefix(extension)'

 /* Put the caller on hold and deliver the message. */

 address vox 'sendtones channel('handle') tonestring(&)'

 /* Get exclusive access to another specific voice channel. */

 address vox 'getchannel channelnum(2) prefix(handle2)'

 /* Call the specified extension and play the message. */

 address vox 'callplay tonestring('extension') channel('handle2')

file(message.vox) prefix(result)'

 /* Release the second voice channel. */

 address vox 'releasechannel channel('handle')'

Voice Commands

276 Command and Keyword Reference Guide

 /* Take the caller off hold. Let the caller know */

 /* whether the message was delivered. */

 address vox 'sendtones channel('handle') tonestring(&)'

 if result == 0 then message = 'MESSAGE DELIVERED'

 else message = 'UNABLE TO DELIVER MESSAGE'

 address vox 'play tonestring('extension') channel('handle2') file(voxm_a)

filetype(wordlib) var(message.)'

...

end

/* Release the voice channel. */

address vox 'releasechannel channel('handle')

RELEASECHANNEL Command

The RELEASECHANNEL command releases the voice channel identified by the specified
channel handle, changing the channel's status from in-use to available and setting the
channel's hook-state to on-hook. Use the RELEASECHANNEL command with the
GETCHANNEL command to serialize a channel's I/O activity.

This command has the following format:

ADDRESS VOX "RELEASECHANNEL CHANNEL(channelhandle)

 [SYSTEM(sysname)]"

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

SYSTEM

(Optional) Specifies the name of the system to which you want to direct the
command.

The sysname value can contain up to eight alphanumeric characters.

Note: A system is a workstation on which a notification server resides. If CA
Automation Point is running within a distributed system-that is, if all CA Automation
Point components are not running on a single workstation-you must specify the
SYSTEM operand.

Voice Commands

Chapter 7: ADDRESS VOX Commands 277

Return Information:

After the RELEASECHANNEL command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5117, 5155, 5199, 5204. (See the Message Reference Guide for
further information.) Additionally, the VOX.ERROR variable contains the complete
VOX error message, which includes the four-digit return code and complete error
message text.

Example:

The following REXX code illustrates how to use the RELEASECHANNEL command to
release ownership of a previously acquired voice channel, freeing it for use by other
REXX programs:

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

or

/* Get exclusive access to the first available channel in the */

/* OUTBOUND channel group. */

address vox 'getchannel group(outbound) prefix(handle)'

or

/* Get exclusive access to the first available channel in the */

/* INBOUND channel group. */

address vox 'answer group(inbound) prefix(handle)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')

Voice Commands

278 Command and Keyword Reference Guide

SENDTONES Command

The SENDTONES command sends additional tones (telephone keypad digits) to an
off-hook voice channel after a successful call connection.

This command has the following format:

ADDRESS VOX "SENDTONES CHANNEL(channelhandle) TONESTRING(tonestring)

 [ANALYSIS(YES|NO)]

 [SYSTEM(sysname)]

 [NAME(CPAparameterset)]"

For information on valid DTMF dialing characters, see the section Valid Dialing
Characters (see page 226).

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

TONESTRING

Specifies the numbers or other special digits (tonestring) to dial. Valid characters
are: 0 1 2 3 4 5 6 7 8 9 * # a b c d & - , T P M L I X

ANALYSIS

(Optional) Activates call progress analysis for the voice channel.

If you experience a problem when sending a tone string, this option can help you to
determine the reason. For example, a loop-drop condition (disconnection) may
simply be a one-time occurrence; however, if CA Automation Point reports that it
has detected a FAX tone, it is likely that your REXX program has connected with the
wrong telephone extension.

Valid values are:

YES

Activates call progress analysis when sending tones (this is necessary for a
supervised call-transfer operation).

NO

Does not activate call progress analysis when sending tones (this is necessary
for a blind call-transfer operation).

Default: NO, unless the NAME operand is specified, in which case ANALYSIS(YES) is
used.

Voice Commands

Chapter 7: ADDRESS VOX Commands 279

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name.

NAME

(Optional) Specifies the name of the call progress analysis (CPA) parameter set to
use for dialing. CPA set names can be created and configured using the
Configuration Manager.

When NAME is specified, the ANALYSIS operand uses the value YES.

Default: EngineDefault

Return Information:

After the SENDTONES command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5102, 5112, 5117, 5155, 5199, 5204, 5300, 5301, 5302, 5303,
5304, 5305, 5306. (See the Message Reference Guide for further information.)
Additionally, the VOX.ERROR variable contains the complete VOX error message,
which includes the four-digit return code and complete error message text.

Usage Note:

Unlike the CALL command, the SENDTONES command does not set a voice channel's
hook state.

Voice Commands

280 Command and Keyword Reference Guide

Example:

The following REXX code illustrates how to use the SENDTONES command to send the
tone digits of a telephone extension to which you want to transfer:

mainnumber = '9,555-4000'

extension = '1492'

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle) system(laengine)'

/* Call your company's main telephone number. */

address vox 'call channel('handle') tonestring('mainnumber') system(laengine)'

/* Have the automated attendant transfer */

/* you to the desired extension. */

address vox 'sendtones channel('handle') tonestring('extension') analysis(yes)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

exit

Voice Commands

Chapter 7: ADDRESS VOX Commands 281

SETGROUP Command

The SETGROUP command associates a group name with one or more voice channels,
enabling you to control the available channels more easily. The number of channels that
you can associate with a single group is limited only by the number of lines that are
installed at your site.

This command has the following format:

ADDRESS VOX "SETGROUP VAR(varname) [SYSTEM(sysname)]"

VAR

A stem variable name that you assign that contains the group definition
information.

Specifies the related variables contain the following information:

varname.0

The number of groups to define.

varname.1

Formatted information for the first group name that you are defining. Each
field contains specific information about the first group.

varname.2

Formatted information for the second group name that you are defining, if
applicable. Each field contains specific information about the second group.

varname.n

Formatted information for the nth group name that you are defining, if
applicable. Each field contains specific information about the nth group.

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name.

Voice Commands

282 Command and Keyword Reference Guide

Information Required to Define a Channel Group

The stem variable varname that you specify on the VAR operand contains your group
definition information.

The value in the varname.0 variable contains the number of groups that you want to
define. Variables varname.1 through varname.n each contain a line of formatted
information necessary to define one channel group.

The line of information containing a group definition is divided into several fields, as
shown:

Field Description

1 The group name (of up to eight characters) that you want to assign.

 Note: The group name ALL is a reserved name that includes all channels on
a given notification server. You cannot change this name.

2 If the ANSWER command is waiting for incoming calls on the group, the
value in this field specifies whether another REXX program can interrupt the
ANSWER operation and retrieve one of the group's channels. Valid values
are:

■ YES--Releases a channel in the group if another REXX program requests
it.

Note: When the other REXX program releases the channel, CA
Automation Point adds the channel back into the group automatically.

■ NO--Does not release a channel in the group if another REXX program
requests it.

3 The type of SETGROUP operation that you want to perform. Valid values
are:

■ ADD - Adds the following channels to the specified group.

■ SET - Creates the specified group to contain only the following
channels.

■ REMOVE - Removes the following channels from the specified group.

■ PURGE - Purges (deletes) the specified group and its associated
channels.

4 The number of channels that you want this group to contain. Valid values
range from 1 through the number of lines installed.

5 The first physical voice channel number to associate with the group.

6 The second physical voice channel number to associate with the group.

Voice Commands

Chapter 7: ADDRESS VOX Commands 283

Field Description

n The nth physical voice channel number to associate with the group
(specified in field 4).

Return Information:

After the SETGROUP command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5108, 5110, 5114, 5117, 5155, 5199, 5203, 5206. (See the
Message Reference Guide for further information.) Additionally, the VOX.ERROR
variable contains the complete VOX error message, which includes the four-digit
return code and complete error message text.

Example:

Suppose that you want to define one new channel group-for use by your technical
support department-with these characteristics:

■ The group name is SUPPORT.

■ An ANSWER operation on the group is not interruptible by other REXX programs.

■ The group contains four channels.

■ Channels 03, 04, 05, and 06 are available at your site.

Assume that you have specified the variable MYVARGRP to contain the group definition
information. The variable MYVARGRP.0 contains a value of 1 and the group definition in
variable MYVARGRP.1 looks like this:

SUPPORT NO ADD 4 03 04 05 06

Voice Commands

284 Command and Keyword Reference Guide

The following REXX code illustrates how to use the SETGROUP command to create a
new channel group:

/* Get a list of the available voice channels */

/* on the New York office's notification server. */

address vox 'getgroup group(all) system(nyengine)'

if RC == 0 then

do

 parse var vox.getgroup.1 name interrupt numchannels channelsingroup

 /* Define a new channel group to contain */

 /* all available channels. */

 newgroup.0 = 1

 newgroup.1 = "NEWGROUP" || " " || interrupt || " " || "set " || numchannels || "

" || channelsingroup

 /* Create the new group on the New York office's notification server.*/

 address vox 'setgroup var(newgroup.) system(nyengine)'

 ...

end

SETHOOK Command

The SETHOOK command explicitly sets a voice channel's hook switch state to either
on-hook or off-hook.

In most cases, you need to issue the SETHOOK command only when your REXX program
contains code for collecting ANI digits. The telephone company's switching office sends
ANI digits between the ring signals of an incoming call, requiring the ANSWER (or
ANSWERPLAY) command to keep the line in an on-hook state. After the ANI digits have
been collected, the SETHOOK command sets the line to an off-hook state so that CA
Automation Point can answer the call.

This command has the following format:

ADDRESS VOX "SETHOOK CHANNEL(channelhandle)

 HOOKSTATE(ONHOOK|OFFHOOK)

 [SYSTEM(sysname)]"

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

Voice Commands

Chapter 7: ADDRESS VOX Commands 285

HOOKSTATE

Specifies the hook state that you want to set. Valid values are:

ONHOOK

Analogous to hanging up (replacing a telephone handset to end a call).

OFFHOOK

Analogous to picking up a telephone handset to place a call.

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name.

Return Information:

After the SETHOOK command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5112, 5117, 5155, 5199, 5204. (See the Message Reference Guide
for further information.) Additionally, the VOX.ERROR variable contains the
complete VOX error message, which includes the four-digit return code and
complete error message text.

Voice Commands

286 Command and Keyword Reference Guide

Example:

The following REXX code illustrates the SETHOOK command. The code segment collects
ANI digits (which must occur while the line is still in an on-hook state), and then answers
the call and plays a greeting.

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

/* Wait for an incoming call. Leave the line in an on-hook */

/* state so that we can collect ANI digits. */

address vox 'answer channel('handle') hookstate(onhook)'

/* Send a wink signal to central office (CO) switch. */

address vox 'wink channel('handle')'

/* Collect the ANI (or "caller ID") digits. */

address vox 'getdigits channel('handle') count(7) singlestring(yes)

prefix(phonenum)'

...

/* Answer the incoming call by finally taking the line off-hook. */

address vox 'sethook channel('handle') hookstate(offhook)'

...

/* Play the system greeting message. */

address vox 'play channel('handle') file(greeting.vox)'

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

Voice Commands

Chapter 7: ADDRESS VOX Commands 287

SETVOLUME Command

The SETVOLUME command adjusts a voice channel's volume level for all subsequent
voice message plays (until you change or cancel the volume setting).

This command has the following format:

ADDRESS VOX "SETVOLUME CHANNEL(channelhandle) VOLUME(volumelevel)

 [SYSTEM(sysname)]"

CHANNEL

Specifies the specific, physical channel on which to adjust the volume. Valid values
range from 1 through the number of lines installed.

VOLUME

Specifies the degree of volume adjustment (in decibels) between (-10) and (+10) at
which CA Automation Point plays the voice file on the specified channel.

(The SETVOLUME command does not modify the voice file in any way.)

Specifies the volume adjustment values are absolute, not relative. Specifying
VOLUME(0) resets the volume to the default level.

Default: 0

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name.

Return Information:

After the SETVOLUME command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5102, 5104, 5155, 5199, 5201. (See the Message Reference Guide
for further information.) Additionally, the VOX.ERROR variable contains the
complete VOX error message ID, which includes the four-digit return code and
complete error message text.

Voice Commands

288 Command and Keyword Reference Guide

Example:

The following REXX code illustrates how to use the SETVOLUME command to set a voice
channel so that it plays voice messages at a higher volume level than the one at which it
was recorded. After the specified voice messages play, the SETVOLUME command
executes again to reset the voice channel.

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

...

/* Set the volume adjustment on the associated channel so that */

/* voice files play 10 dB louder than they were recorded. */

address vox 'setvolume channel('handle') volume(10)'

/* Play messages from nonindexed voice files. */

address vox 'play channel('handle') file(atten.vox warning.vox)'

...

/* Reset the volume adjustment on the associated channel so that */

/* voice files play at the volume at which they were recorded. */

address vox 'setvolume channel('handle') volume(0)'

...

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

Voice Commands

Chapter 7: ADDRESS VOX Commands 289

STOP Command

The STOP command terminates a currently active I/O operation on a voice channel.

This command has the following format:

ADDRESS VOX "STOP CHANNELNUM(channelnumber)

 [SYSTEM(sysname)]"

CHANNELNUM

Specifies the channel number (channelnumber)-identifying some physical
channel-that the GETCHANNELNUM command returns.

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command. The sysname value can contain up to
eight alphanumeric characters.

Default: The local system name.

Return Information:

After the STOP command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5117, 5199, 5201. (See the Message Reference Guide for more
information.) Additionally the VOX.ERROR variable contains the complete VOX error
message, which includes the four-digit return code and complete error message
text.

Voice Commands

290 Command and Keyword Reference Guide

Example:

The following REXX code illustrates how to use the STOP command to stop activity on all
voice channels waiting for an incoming call:

signal on halt Shutdown

...

Shutdown:

/* Get a list of the local notification server's available channels. */

address vox 'getgroup group(all)'

parse var vox.getgroup.1 name interrupt numchannels channelsingroup

/* Check each channel to determine in-use status. */

do i = 1 to numchannels

 /* Get the next channel number in the group. */

 parse var channelsingroup channelnumber channelsingroup

 /* Determine the channel's in-use status. */

 address vox 'getstatus channelnum('channelnumber') prefix(status)'

 /* Stop all channels that are waiting for an incoming call. */

 if status <> "WTRNG" then

 do

 address vox 'stop channelnum('channelnumber')'

 ...

 end

Voice Commands

Chapter 7: ADDRESS VOX Commands 291

VERIFYUSER Command

The VERIFYUSER command verifies that the remote party's user ID and password are
valid.

This command has the following format:

ADDRESS VOX "VERIFYUSER USERID(userid) PIN(pin) [SYSTEM(sysname)]"

USERID

Specifies the remote party's user identification number. The userid value must
contain between four and eight tone digits (valid values are 0000 through
99999999). Valid characters are: 0 1 2 3 4 5 6 7 8 9

PIN

Specifies the remote party's personal identification number (pin) password. The pin
value must contain between four and eight tone digits (valid values are 0000
through 99999999). Valid characters are: 0 1 2 3 4 5 6 7 8 9

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

Return Information:

After the VERIFYUSER command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5111, 5117, 5155, 5199. (See the Message Reference Guide for
further information.) Additionally, the VOX.ERROR variable contains the complete
VOX error message, which includes the four-digit return code and complete error
message text.

Note: When assigning user IDs and PINs, we recommend that you choose tone digits
that spell a name or meaningful code on the telephone keypad. For example, if a user ID
is SAMJONES, the remote party with that user ID would enter these corresponding tone
digits: 72656637. It is usually much easier for a remote user to remember a mnemonic
string (such as a name) than it is to remember an arbitrary string of numeric digits.

Voice Commands

292 Command and Keyword Reference Guide

Example:

The following REXX code illustrates how to use the VERIFYUSER command to verify a
caller's user ID and PIN:

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

/* Get the caller's user ID. */

address vox 'playgetdigits channel('handle') file(entruid.vox) count(8)

singlestring(yes) prefix(userid)'

/* Get the caller's personal identification number (PIN). */

address vox 'playgetdigits channel('handle') file(entrpin.vox) count(8)

singlestring(yes) prefix(pin)'

...

/* Verify that the remote user has entered a */

/* valid user-id/pin combination. */

address vox 'verifyuser userid('userid') pin('pin')'

if RC == 0 then

do

 /* Processing for valid remote user. */

 ...

end

/* Release the voice channel. */

address vox 'releasechannel('handle')'

Voice Commands

Chapter 7: ADDRESS VOX Commands 293

WINK Command

The WINK command sends a brief handshaking protocol signal through a voice channel.

A common use of the WINK command is to signal your telephone company's switching
office to activate its Automatic Number Identification (ANI) service (if your telephone
company offers the service in your area and you subscribe to it). The switching office
returns the telephone number of the calling party; your REXX program can then collect
the digits by issuing the GETDIGITS command.

This command has the following format:

ADDRESS VOX "WINK CHANNEL(channelhandle) [SYSTEM(sysname)]"

CHANNEL

Specifies the channel handle (channelhandle)-identifying some physical
channel-that the GETCHANNEL command returns.

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

Return Information:

After the WINK command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5112, 5117, 5155, 5199, 5204. (See the Message Reference Guide
for further information.) Additionally, the VOX.ERROR variable contains the
complete VOX error message, which includes the four-digit return code and
complete error message text.

Usage Note:

The switching office usually sends ANI digits between the first and second rings of an
incoming call. The protocol required to obtain the ANI digits may vary from that
described, depending on your local telephone company's requirements.

Utility Commands

294 Command and Keyword Reference Guide

Example:

The following REXX code illustrates how to use the WINK command to send a wink
signal to the CO switch:

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

...

/* Send a wink signal to the central office (CO) switch. */

address vox 'wink channel('handle')'

...

/* Release the voice channel. */

address vox 'releasechannel('handle')'

Utility Commands

The following sections describe CA Automation Point utility commands used with
Notification Manager.

Utility Commands

Chapter 7: ADDRESS VOX Commands 295

GETTAPIDEVICELIST Command

The GETTAPIDEVICELIST command lists all the Telephony Application Programming
Interface (TAPI) devices that are installed under Windows on the Notification Server.

This command has the following format:

ADDRESS VOX "GETTAPIDEVICELIST

 [PREFIX(varname)]

 [CMDRESP(destination)]

 [SYSTEM(sysname)]"

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.GETTAPIDEVICELIST

CMDRESP

(Optional) Directs return information, if any, to a specific destination. For a list of
valid destination values, see the ANSWER command.

Default: REXX

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name.

Return Information:

After the GETTAPIDEVICELIST command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.
Additionally, information is returned to variables VOX.GETTAPIDEVICELIST.0,
VOX.GETTAPIDEVICELIST.1, and so on.

The information returned contains the device ID (in numeric form) and the modem
description installed on that device ID. Each line of information is in the format
n:desc where n is the device ID and desc is the modem description. The value stored
in the VOX.GETTAPIDEVICELIST.0 variable represents the total number of TAPI
devices.

Utility Commands

296 Command and Keyword Reference Guide

■ If the command does not execute successfully, the RC variable contains a non-zero
value. Additionally, the VOX.ERROR variable contains the complete VOX error
message, which includes the four-digit return code and complete error message
text.

For example:

0:U.S. Robotics 56K FAX EXT

1:Motorola V.3225

Note: You can write a REXX program to retrieve and parse this returned
information. For coding techniques on how to do this, see the sample REXX
program fragment under the PAGE command description.

The numeric value returned in the VOX.GETTAPIDEVICELIST.0 variable represents
the number of lines of data retrieved. Each line of information is in the format
described above, and one line is returned per modem installed on the notification
server workstation.

Example:

The following example returns all the devices in a stem variable and issues a SAY
statement:

/* Display available TAPI device on AP Notification server using GETTAPIDEVICELIST

*/

address VOX "GETTAPIDEVICELIST"

if rc = 0 then

do

 if datatype (VOX.GETTAPIDEVICELIST.0) = "NUM" then

 do

 do i = 1 to VOX.GETTAPIDEVICELIST.0

 say VOX.GETTAPIDEVICELIST.i

 end

 end

end

else

do

 say vox.error

end

return

Utility Commands

Chapter 7: ADDRESS VOX Commands 297

SETENGINE Command

The SETENGINE command allows you to modify various settings that are directly
associated with the notification server.

This command has the following format:

ADDRESS VOX "SETENGINE ENGINESETTING(AUTORESET) VAR(var.) [SYSTEM(sysname)]"

ENGINESETTING

Specifies the ENGINESETTING operand enables you to change the default autoreset
period to a setting other than five minutes.

VAR

A stem variable name (var.) that you assign containing the autoreset value. The
specified stem variable must contain the following information:

varname.0

Must be 1

varname.1

The value you wish to set for the ENGINESETTING value

SYSTEM

(Optional) Specifies the name of the system to which you want to direct the
command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

Return Information:

After the SETENGINE command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5117, 5155, 5199. (See the Message Reference Guide for further
information.) Additionally, the VOX.ERROR variable contains the complete VOX
error message, which includes the four-digit return code and complete error
message text.

Utility Commands

298 Command and Keyword Reference Guide

Example:

The following REXX code illustrates how to use the SETENGINE command to set the
autoreset to three minutes:

 value.0 = 1

 value.1 = 3 /* value of 3 minutes for auto-reset */

 address VOX "SETENGINE ENGINESETTING(AUTORESET) VAR(VALUE.)"

SETMSGSTREAM Command

The SETMSGSTREAM command serves as a connection between the notification server
and the rest of CA Automation Point. The SETMSGSTREAM command duplicates the
message stream from the notification server to a queue that is accessible using PPQs,
local or remote. This queue can then be read and will act like a source of messages to
the other CA Automation Point tools.

This command has the following format:

ADDRESS VOX "SETMSGSTREAM QUEUE(AP_SERVER)

 [SEVERITY(ERROR|WARNING|INFORMATIONAL)]"

QUEUE

Specifies the name of the queue you want to use to communicate with another
application.

SEVERITY

(Optional) This operand allows you to analyze the errors in the notification server
and determine the severity of each error. Values are:

ERROR

Duplicates only error messages

WARNING

Duplicates warning and error messages

INFORMATIONAL

Duplicates all messages

Default: INFORMATIONAL

Utility Commands

Chapter 7: ADDRESS VOX Commands 299

Return Information:

After the SETMSGSTREAM command executes, it sets the special REXX return code
variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5102, 5117, 5155, 5199, 5201. (See the Message Reference Guide
for further information.) Additionally, the VOX.ERROR variable contains the
complete VOX error message, which includes the four-digit return code and
complete error message text.

SETTRACE Command

The SETTRACE command starts and stops trace logging. The logged trace information is
useful for debugging your REXX programs or to help Technical Support solve your
problem.

You can start or stop trace logging for an individual voice channel. Logged messages
include:

■ The CA Automation Point own error, warning, and informational system messages

■ Trace-specific messages

Logged trace messages appear in the ASOTRACE.LOG file.

This command has the following format:

ADDRESS VOX "SETTRACE CHANNELNUM(channelnum) [STATE(ON|OFF)] [SYSTEM(sysname)]"

CHANNELNUM

A specific, physical channel number on which to perform problem tracing. Valid
values range from 1 through the number of lines installed.

You can specify the CHANNELNUM operand only once in a single SETTRACE
command statement. If you want to set problem tracing for more than one channel,
issue the SETTRACE command for each channel that you want to trace.

STATE

(Optional) Activates (ON) or deactivates (OFF) trace logging.

SYSTEM

(Optional) Specifies the name of the system that is running the notification server
to which you want to direct the command.

The sysname value can contain up to eight alphanumeric characters.

Default: The local system name

Utility Commands

300 Command and Keyword Reference Guide

Return Information:

After the SETTRACE command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5102, 5117, 5155, 5199, 5201. (See the Message Reference Guide
for further information.) Additionally, the VOX.ERROR variable contains the
complete VOX error message, which includes the four-digit return code and
complete error message text.

Example:

The following REXX code illustrates how to use the SETTRACE command to activate trace
logging on a specified voice channel:

/* Get exclusive access to a specific voice channel. */

address vox 'getchannel channelnum(1) prefix(handle)'

/* Activate tracing for on the channel. */

address vox 'settrace channelnum(1) state(on)'

...Code containing VOX commands to trace on the specified channel

/* Deactivate tracing for the specific channel. */

address vox 'settrace channelnum(1) state(off)'

/* Release the voice channel. */

address vox 'releasechannel channel('handle')'

SLEEP Command

The SLEEP command causes the issuing REXX EXEC to enter a system sleep state for the
given amount of time.

This command has the following format:

ADDRESS VOX "SLEEP SECONDS(seconds) MILLISECONDS(milliseconds)"

SECONDS

Specifies the number of seconds to sleep.

MILLISECONDS

Specifies the number of milliseconds to sleep.

Utility Commands

Chapter 7: ADDRESS VOX Commands 301

Return Information:

After the SLEEP command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5117, 5155, 5199. (See the Message Reference Guide for further
information.) Additionally, the VOX.ERROR variable contains the complete VOX
error message, which includes the four-digit return code and complete error
message text.

Example:

The following example of the SLEEP command gets a channel, calls a number, and-when
the connection is made-sleeps for two seconds:

address vox 'getchannel channelnum(1) prefix(handle)'

address vox 'call channel ('handle')tonestring('phonenumber')'

if vox.call.1 = 'PAMD' then do

/* Because some automated attendants have a long salutation */

/* wait for 2 seconds before sending any tones. */

address vox 'sleep seconds(2)'

/* Have the automated attendant transfer */

/* your call to the desired extension. */

address vox 'sendtones channel('handle') tonestring('extension')'

end

...

address vox 'releasechannel channel('handle')'

Utility Commands

302 Command and Keyword Reference Guide

STARTREXX Command

The STARTREXX command executes another REXX program.

Note: You can also use this command to start any executable program on a local
system.

This command has the following format:

ADDRESS VOX "STARTREXX PROGRAM(progname[arguments])"

PROGRAM

Specifies the name of the REXX program that you want to execute and the
arguments to pass to the program, if any.

Return Information:

After the STARTREXX command executes, it sets the special REXX return code variable
RC.

■ If the command executes successfully, the RC variable contains a value of zero.

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5117, 5307. (See the Message GuideMessage Reference
Guideinformation.) Additionally, the VOX.ERROR variable contains the complete
VOX error message, which includes the four-digit return code and complete error
message text.

Utility Commands

Chapter 7: ADDRESS VOX Commands 303

Example:

The following REXX code illustrates how to use the STARTREXX command in a program
that processes incoming calls destined for the help desk. When CA Automation Point
receives a call, the HDCTRL.CMD program starts a program named HELPDESK.cmd to
service the call automatically.

/* HDCTRL.CMD */

signal on halt Name DoExit

do forever

 /* Wait forever for an incoming call and any channel within */

 /* the HELPDESK group. */

address vox answer group(helpdesk) hookstate(onhook) prefix(handle)'

if RC == 0 then

 do

 /* Call answered. Start the HELPDESK.CMD */

 /* program to service the call. */

 address vox 'startrexx program(helpdesk.cmd 'handle')'

 end

end

DoExit:

/*Exit from the command shell so that CA Automation Point can "cleanup."*/

'@exit'

end

Utility Commands

304 Command and Keyword Reference Guide

VER Command

The VER command returns the version number and configuration information of the
local VOX command environment.

This command has the following format:

ADDRESS VOX "VER [CMDRESP(destination)] [PREFIX(varname)]"

PREFIX

(Optional) Specifies the name of the REXX stem variable (other than the default
name) that contains the return information for the command.

For information about changing the default variable name, see ADDRESS VOX
Return Information in this chapter.

Default: VOX.VER

CMDRESP

(Optional) Directs return information to a specific destination (destination). For a
list of valid destination values, see ADDRESS VOX Return Information in this chapter.

Default: REXX

Return Information:

After the VER command executes, it sets the special REXX return code variable RC.

■ If the command executes successfully, the RC variable contains a value of zero.
Additionally, the VOX.VER variable contains the return information for the
command.

■ If the command does not execute successfully, the RC variable contains the
following value: 5117. Additionally, the VOX.ERROR variable contains the complete
VOX error message, which includes the four-digit return code and complete error
message text.

The VER command returns this information in the VOX.VER variable:

Field Description of Returned Information

1 The product name (for example, CA Automation Point)

2 The version number (for example, 11.3.0.0 Rev=99999)

3 The build date of the current notification service in mmm dd yyyy format (for
example, Jul 5 2010)

4 The system name for the notification service as defined during configuration
(for example, PVINFORM)

Utility Commands

Chapter 7: ADDRESS VOX Commands 305

The following is an example of a return information line:

 CA Automation Point 11.3.0.0 Rev=99999 Jul 5 2010 APSVR01

Chapter 8: ADDRESS TNG Commands 307

Chapter 8: ADDRESS TNG Commands

This section describes the commands that you can issue through the CA Automation
Point ADDRESS TNG environment. For details about this environment, see the chapter
on interacting with external event systems in the Administrator Guide.

ADDRESS TNG Command Summary

The following sections list the CA Automation Point ADDRESS TNG commands by
category.

ADDRESS TNG Environment Commands

Use the following commands for accessing the CA NSM Common Object Repository.

CREATE

Creates a new object.

DELETE

Deletes a specified object.

GET

Reads one or more PROPERTY/VALUE pairs from a specified object.

LIST

Lists all objects from a specified class.

SET

Writes one or more PROPERTY/VALUE pairs or the contents of a stem variable
construct to a specified object.

ADDRESS TNG Event Management Commands

Use the following commands for CA NSM Event Management.

SNMPTRAP

Sends an SNMP trap to the specified host.

UNICMD

Tells the CA NSM Event Manager component, which resides on the specified host,
to execute the supplied command.

ADDRESS TNG Command Syntax

308 Command and Keyword Reference Guide

UNIWTO

Sends the supplied message to the CA NSM Event Manager component on the
specified host.

UNIWTOR

Sends the supplied message to the CA NSM Event Manager component on the
specified host and receives a reply.

ADDRESS TNG Utility Command

The following is the utility command for the ADDRESS TNG environment.

VER

Returns information about the version of the ADDRESS TNG environment that is
running.

ADDRESS TNG Command Syntax

Issue a command from within a REXX program by specifying an ADDRESS TNG
statement, as shown:

ADDRESS TNG 'tngcommand operand(s)'

Follow these guidelines when issuing a command:

■ When specifying a required or optional operand with a command, use parentheses
to pass values. For example:

PROPERTY(propertyname)

■ Do not name your variables with names reserved for ADDRESS TNG commands
when creating REXX programs that issue TNG commands.

■ Do not include the following characters when creating REXX programs that issue
TNG commands,: ()'"<>|. REXX interprets them as REXX delimiters.

■ Uppercase or lowercase characters are valid. For example, the following are both
valid:

HOST(hostname) and HOST(HOSTNAME)

■ Leading and trailing blanks are ignored. For example, the following are both valid:

HOST(hostname) and HOST (hostname)

■ Single and double quotes are valid. For example, the following are all valid:

COMMAND(commandstring) and COMMAND('commandstring') and

COMMAND("commandstring")

■ Operands shown in brackets ([]) are optional.

Command Requirements When Using the WorldView Component

Chapter 8: ADDRESS TNG Commands 309

Command Requirements When Using the WorldView
Component

The following requirements apply when issuing commands to access the WorldView
component.

Required Properties

When creating objects, you must specify all required fields in either the
PROPERTY/VALUE parameter pair or in the stem variable passed through the VAR
parameter. The list of required fields for a given object type can be found by using the
CA NSM Class Browser to display the definition of the class of object you are trying to
create.

The only exceptions to the requirement to specify required fields concern the UUID and
LABEL fields found on all object classes. The ADDRESS TNG environment automatically
obtains a UUID for you as part of the object created. If you do not specify a value for the
LABEL property, the ADDRESS TNG environment uses the same value as the object
NAME.

Dot Notation for Objects

WorldView commands require the OBJECT parameter. The argument to the OBJECT
parameter consists of the following two parts:

■ The name of the class to which the target object belongs

■ The name of the object

These two parts must be separated by a period.

ADDRESS TNG Return Information

This section discusses the data returned by ADDRESS TNG commands.

ADDRESS TNG Return Information

310 Command and Keyword Reference Guide

The RC Variable

RC is the REXX variable that contains the return codes from the ADDRESS TNG
environment. RC is set by every command and should be programmatically checked for
acceptable results (usually a zero value) after each command executes.

■ If the command executes successfully, the RC variable contains a value of 0 (zero).

■ If the command does not execute successfully, the RC variable contains one of the
following values: 5905, 5908, 5910, 5913, 5920, 5925, 5929, 5930, 5931, 5932,
5935, 5940, 5943, 5961, 5962, 5965, 5966, 5980, 5981, 5982, 5983, 5984, 5985,
5986, 5987, 5988, 5989, 5990, 5991, 5992, 5993, 5994, 5999. (See the Message
Reference Guide for further information.)

The TNG.ERROR Variable

If an ADDRESS TNG command does not execute successfully (that is, if it returns a
non-zero RC value), it generates an error message and stores the message in the special
REXX variable called TNG.ERROR. The error message ID begins with the prefix TNG,
followed by a four-digit number corresponding to the RC return code value, and a letter
indicating the message type. See the Message Reference Guide for a more detailed
description of the error message.

For example, if RC=5928, then the error message contained in the TNG.ERROR variable
is

TNG05928E Repository login failed

Additional Return Information

The following ADDRESS TNG commands, if executed successfully, return additional
information beyond an RC value:

■ LIST

■ GET

■ UNIWTOR

■ VER

Return information is stored in the TNG.tngcommand variable. (The tngcommand
portion of the stem variable represents the name of any of the ADDRESS TNG
commands above.)

ADDRESS TNG Environment Commands

Chapter 8: ADDRESS TNG Commands 311

The TNG.tngcommand.0 variable contains the number of lines of information returned
(that is, the number of elements in the TNG.tngcommand variable). The variables
TNG.tngcommand.1 through TNG.tngcommand.n (where n is the value of
TNG.tngcommand.0) each contain a line of information.

Note: The TNG.tngcommand variable contains the same value stored in the
TNG.tngcommand.1 variable. It is the first line of return information.

Change the Default Variable with PREFIX

You can direct return information to a variable other than the default TNG.tngcommand
by specifying the PREFIX operand as follows:

PREFIX(newvarname)

newvarname

Specifies the name of the variable to replace the default.

ADDRESS TNG Environment Commands

The following sections describe the ADDRESS TNG commands used for managing the CA
NSM environment.

ADDRESS TNG Environment Commands

312 Command and Keyword Reference Guide

CREATE Command

The CREATE command creates a new object.

This command has the following format:

ADDRESS TNG 'CREATE OBJECT(class.object) PROPERTY(propertyname)

 VALUE(propertyvalue)|VAR(varlist.)'

OBJECT

WorldView commands require the OBJECT parameter. The argument to the OBJECT
parameter consists of the following two parts:

class

The 1- to 31- character name of the CA NSM class to which the created object
belongs.

object

The 1- to 31-character name of the object. The object name can contain
alphanumeric characters and any of these special characters: ! @ # $ _

Periods (.) should not be used in object names.

After you create a new object, you also usually create an Inclusion object to include
your new object under another object on the WorldView 2D map. The OBJECT
parameter that you specify for a new inclusion object is

Inclusion. <Class of the child object> . <name of the child object>

To specify the UUIDs for the new object and its parent object as attributes to the
new inclusion object, use the VAR parameter .

PROPERTY

Specifies the name of an object property as listed in the CA NSM class browser.

VALUE

Specifies the value of an object property as listed in the CA NSM class browser. The
ADDRESS TNG environment automatically performs the conversion from the REXX
variable format to the internal format of CA NSM.

ADDRESS TNG Environment Commands

Chapter 8: ADDRESS TNG Commands 313

VAR

Specifies the name of a REXX stem variable (varlist) that contains PROPERTY/VALUE
pairs of data. For example, if the command contains the following:

... VAR(pairlist.)

The ADDRESS TNG environment examines the value of the variable pairlist.0 to
determine the number of entries to process. Each of the variables pairlist.1 to
pairlist.n (where n is the value of pairlist.0) should contain a quoted string
consisting of a property followed by at least one blank space followed by the value
to be set for the property. For example:

pairlist.1 = "name FRED"

pairlist.2 = "label South Dakota"

DELETE Command

The DELETE command deletes the specified object.

This command has the following format:

ADDRESS TNG 'DELETE OBJECT(class.object) [VAR(varlist.)]'

OBJECT

WorldView commands require the OBJECT parameter. The argument to the OBJECT
parameter consists of the following two parts:

class

The 1- to 31- character name of the CA NSM class to which the created object
belongs.

object

The 1- to 31-character name of the object. The object name can contain
alphanumeric characters and any of these special characters: ! @ # $ _

Periods (.) should not be used in object names.

After you delete a new object, you also usually create an Inclusion object to include
your new object under another object on the WorldView 2D map. The OBJECT
parameter that you specify for a new inclusion object is

Inclusion. <Class of the child object> . <name of the child object>

Because an pbject may be included under multiple parents, you also typically use
the VAR parameter to specify the UUIDs for the child object and its parent object as
attributes of the inclusion object to be deleted.

ADDRESS TNG Environment Commands

314 Command and Keyword Reference Guide

VAR

(Optional) Specifies the name of a REXX stem variable (varlist) that contains
PROPERTY/VALUE pairs of data to limit the matching objects. For example, suppose
the command contains the following:

... VAR(pairlist.)

The ADDRESS TNG environment examines the value of the variable pairlist.0 to
determine the number of entries to process. Each of the variables pairlist.1 to
pairlist.value of pairlist.0 should contain a quoted string consisting of a property
followed by at least one blank space followed by the value to be set for the
property. For example:

pairlist.1 = "name FRED"

 pairlist.2 = "label South Dakota"

GET Command

The GET command reads one or more PROPERTY names from a specified object. The
PROPERTY parameter retrieves the value of the requested property. The VAR parameter
retrieves the value of the properties contained in the stem variable passed as the
argument to the VAR parameter.

This command has the following format:

ADDRESS TNG 'GET OBJECT(class.object) PROPERTY(propertyname)|VAR(varlist)

 [PREFIX(newvarname)]'

OBJECT

WorldView commands require the OBJECT parameter. The argument to the OBJECT
parameter consists of the following two parts:

class

The 1- to 31- character name of the CA NSM class to which the created object
belongs.

object

The 1- to 31-character name of the object. The object name can contain
alphanumeric characters and any of these special characters: ! @ # $ _

Periods (.) should not be used in object names.

PROPERTY

Specifies the name of an object property (propertyname) as listed in the CA NSM
class browser.

ADDRESS TNG Environment Commands

Chapter 8: ADDRESS TNG Commands 315

VAR

Specifies the name of a REXX stem variable (varlist) that contains the PROPERTY
names of an object. For example, suppose the command contains the following:

... VAR(propname.)

The ADDRESS TNG environment will examine the value of the variable propname.0
to determine the number of entries to process. Each of the variables propname.1 to
propname.n, where n is the value of propname.0, should contain a quoted string
consisting of a property name. For example:

propname.1 = "name"

propname.2 = "label"

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS TNG Return Information in
this chapter.

Note: The PREFIX operand is only valid if REXX is the destination of the return
information.

Default: TNG.GET

LIST Command

The LIST command reads one or more objects from a specified class. Using the LIST
command with only a class in the OBJECT argument returns a list of all objects in the
class in stem variable form. The returned data includes the name and UUID properties
for each object found. These take the form TNG.LIST.x = "uuid name" or prefix.x = "uuid
name".

This command has the following format:

ADDRESS TNG 'LIST OBJECT(classname.) [PREFIX(newvarname)]'

OBJECT

WorldView commands require the OBJECT parameter. The argument to the OBJECT
parameter for the LIST command is the one- to 31- character name of the CA NSM
class (a period after the class name is required).

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS TNG Return Information in
this chapter.

Note: The PREFIX operand is only valid if REXX is the destination of the return
information.

Default: TNG.LIST

ADDRESS TNG Environment Commands

316 Command and Keyword Reference Guide

SET Command

The SET command writes one or more PROPERTY/VALUE pairs or the contents of a stem
variable construct to a specified object.

This command has the following format:

ADDRESS TNG 'SET OBJECT(class.object)

 PROPERTY(propertyname)

 VALUE(propertyvalue)|VAR(varlist.)'

OBJECT

WorldView commands require the OBJECT parameter. The argument to the OBJECT
parameter consists of the following two parts:

class

Specifies the 1- to 31- character name of the CA NSM class to which the created
object belongs.

object

Specifies the 1- to 31-character name of the object. The object name can
contain alphanumeric characters and any of these special characters: ! @ # $ _

Periods (.) should not be used in object names.

PROPERTY

Specifies the name of an object property (propertyname) as listed in the CA NSM
class browser.

VALUE

Specifies the value of an object property (propertyvalue) as listed in the CA NSM
class browser. The ADDRESS TNG environment automatically performs the
conversion from REXX variable form to the internal format of CA NSM.

VAR

Specifies the name of a REXX stem variable (varlist) that contains PROPERTY/VALUE
pairs of data. For example, if the command contains the following:

... VAR(pairlist.)

The ADDRESS TNG environment examines the value of the variable pairlist.0 to
determine the number of entries to process. Each of the variables pairlist.1 to
pairlist.n (where n is the value of pairlist.0) should contain a quoted string
consisting of a property followed by at least one blank space followed by the value
to be set for the property, for example:

pairlist.1 = "name FRED"

pairlist.2 = "label South Dakota"

ADDRESS TNG Event Management Commands

Chapter 8: ADDRESS TNG Commands 317

ADDRESS TNG Event Management Commands

The following sections describe the ADDRESS TNG commands used for CA NSM event
management.

SNMPTRAP Command

The SNMPTRAP command sends an SNMP trap to the specified host.

This command has the following format:

ADDRESS TNG "SNMPTRAP HOST({HostName|*}) [COMMUNITY(CommunityName)]

 GTRAP(GenericTrapNum)

 STRAP(SpecificTrapNum)

 DATA(RexxVar)"

HOST

Specifies the TCP/IP host name (HostName) to which the event is to be sent or * for
all host names specified for message forwarding in the Configuration Manager GUI.

COMMUNITY

(Optional) Specifies the community name (CommunityName) under which the trap
is to be issued.

Default: public

GTRAP

Specifies the SNMP generic trap type (GenericTrapNum), which can be a value of 0
through 6.

STRAP

Specifies the specific trap number (SpecificTrapNum) to be used when the
enterprise-specific GenericTrapNum has a value of 6.

ADDRESS TNG Event Management Commands

318 Command and Keyword Reference Guide

DATA

Specifies the data content of the SNMP trap, which is stored in a REXX variable
(RexxVar). The REXX variable must contain the following:

rexxvar.0 = The total number of values supplied (this number must always be a

multiple of 3; six are shown below)

rexxvar.1 = OID 1

rexxvar.2 = type 1

rexxvar.3 = value 1

rexxvar.4 = OID 2

rexxvar.5 = type 2

rexxvar.6 = value 2

OID

Specifies he SNMP object identifier for the trap.

type

Specifies the data type of the value that follows. type can be one of the
following:

counter null opaque

gauge objectidentifier opaqueascii

integer octetstring timeticks

ipaddress octetstringascii

value

Specifies the value to be sent by the trap.

UNICMD Command

The UNICMD command tells the CA NSM Event Manager component, which resides on
the specified host, to execute the supplied command.

This command has the following format:

ADDRESS TNG "UNICMD HOST(HostName) COMMAND(CommandString)"

HOST

Specifies the TCP/IP host name (HostName) to which the event is to be sent

COMMAND

Specifies the command (CommandString) to be executed by CA NSM

ADDRESS TNG Event Management Commands

Chapter 8: ADDRESS TNG Commands 319

UNIWTO Command

The UNIWTO command sends the supplied message to the CA NSM Event Manager
component on the specified host.

This command has the following format:

ADDRESS TNG "UNIWTO HOST(HostName|*) MESSAGE(MessageString)

 [ORIGHOST(OriginatingHostName)]

 [SEVERITY(E|F|I||S|W)]"

HOST

Specifies the TCP/IP host name (HostName) to which the event is to be sent or * for
all host names specified for message forwarding in the Configuration Manager GUI.

MESSAGE

Specifies the message (MessageString) to be sent to CA NSM.

ORIGHOST

(Optional) Specifies the name of the host (OriginatingHostName) on which the
event originated.

Default: The host name of the CA Automation Point machine.

SEVERITY

(Optional) Specifies the CA NSM severity value. Values are:

E - Error

F - Fatal

I - Information

S - Success

W - Warning

Default: I

ADDRESS TNG Event Management Commands

320 Command and Keyword Reference Guide

UNIWTOR Command

The UNIWTOR command sends the supplied message to the CA NSM Event Manager
component on the specified host and receives a reply.

If the RC for the command is 0, the variable TNG.UNIWTOR.1 contains the reply. In
addition, the variable TNG.UNIWTOR is set to the same value as TNG.UNIWTOR.1.

This command has the following format:

ADDRESS TNG "UNIWTOR HOST(HostName) MESSAGE(MessageString)

 [ORIGHOST(OriginatingHostName)]

 [PREFIX (newvarname)

 [SEVERITY(E|F|I||S|W)]"

HOST

Specifies the TCP/IP host name (Hostname) to which the event is to be sent.

MESSAGE

Specifies the message (MessageString) to be sent to CA NSM.

ORIGHOST

(Optional) Specifies the name of the host (OriginatingHostName) on which the
event originated.

Default: The host name of the CA Automation Point machine.

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS TNG Return Information in
this chapter.

Note: The PREFIX operand is only valid if REXX is the destination of the return
information.

Default: TNG.VER

SEVERITY

(Optional) Specifies the CA NSM severity value. Values are:

E - Error

F - Fatal

I - Information

S - Success

W - Warning

Default: I

ADDRESS TNG Utility Command

Chapter 8: ADDRESS TNG Commands 321

ADDRESS TNG Utility Command

The following section describes the ADDRESS TNG utility command.

VER Command

The VER command provides the version number of the ADDRESS TNG environment on
your workstation.

The VER command returns one line of information containing three fields. The fields
contain the following information:

Field Description

1 The name of the API (for example, CA NSM REXX API)

2 The version number (for example, 11.3.0.0 Rev=99999)

3 The build date of the current ADDRESS TNG environment in mmm dd yyyy
format (for example, Jul 5 2010)

The following is an example of a return information line:

CA NSM Rexx API 11.3.0.0 Rev=99999 Jul 5 2010

This command has the following format:

ADDRESS TNG "VER [PREFIX (newvarname)]"

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS TNG Return Information in
this chapter.

Note: The PREFIX operand is only valid if REXX is the destination of the return
information.

Default: TNG.VER

Chapter 9: ADDRESS OPS Commands 323

Chapter 9: ADDRESS OPS Commands

This section describes the commands that you can issue through the CA Automation
Point ADDRESS OPS environment. For details about this environment, see the
Administrator Guide. For more information on OPS commands, see the CA OPS/MVS
Command and Function Reference.

ADDRESS OPS Command Summary

The following list summarizes CA Automation Point ADDRESS OPS commands.

ACTIVATE

Sends a request to the CA Automation Point interface to request activation of the
CCI connection to the MSF node specified on the SYSTEM keyword.

DEACTIVATE

Sends a request to the CA Automation Point interface to request deactivation of the
CCI connection to the MSF node specified on the SYSTEM keyword.

LIST

Returns a list of MSF nodes that are currently configured on the issuing CA
Automation Point workstation.

OPER

Sends a z/OS system command execution request to the CA OPS/MVS host.

OSFTSO

Sends a TSO command execution request to the CA OPS/MVS Operator Server
Facility (OSF) TSO component.

VER

Returns information about the version of the ADDRESS OPS command environment
that is running.

WTO

Sends a message to the CA OPS/MVS Multi-System Facility (MSF) component.

ADDRESS OPS Command Syntax

324 Command and Keyword Reference Guide

ADDRESS OPS Command Syntax

Issue an OPS command from within a REXX program by specifying an ADDRESS OPS
statement, as shown:

ADDRESS OPS "opscommand operands(s)"

Operands shown in brackets ([]) are optional.

Follow these guidelines when issuing an OPS command:

■ Use parentheses to pass values when specifying a required or optional operand
with an OPS command. For example:

SYSTEM(MSF system name)

■ Do not name your variables with names reserved for OPS commands when creating
REXX programs that issue OPS commands.

■ Uppercase or lowercase characters are valid. For example, the following are both
valid:

TEXT(text) and TEXT(TEXT)

■ Leading and trailing blanks are ignored. For example, the following are both valid:

TEXT(text) and TEXT (text)

■ Single and double quotes are valid. For example, the following are all valid:

COMMAND(commandstring) and COMMAND('commandstring') and

COMMAND("commandstring")

■ Use two adjacent double quotes ("") to indicate a literal double quote. Use two
adjacent single quotes ('') to indicate a literal single quote.

■ The usual delimiter for the COMMAND operand in the OSFTSO and OPER command
processors is the single quote ('). If the command string you are specifying contains
single quotes, use a double quote (") as the operand delimiter, change the REXX
delimiter from a double quote (") to a single quote ('), and use two adjacent single
quotes ('') to indicate a literal single quote in the text of the command string.

For example,

ADDRESS OPS 'OSFTSO SYSTEM(OPS123) COMMAND("SEND ''djones has been notified''

USER(jsmith)")'

ADDRESS OPS Return Information

This section discusses the data returned by ADDRESS OPS commands.

ADDRESS OPS Return Information

Chapter 9: ADDRESS OPS Commands 325

The RC Variable

RC is the REXX variable that contains the return codes from the ADDRESS OPS
environment. RC is set by every command and should be programmatically checked for
acceptable results (usually a zero value) after each command executes.

The OPS.ERROR Variable

If an OPS command does not execute successfully (if it returns a non-zero RC value), it
generates an error message and stores the message in the special REXX variable called
OPS.ERROR. The OPS.ERROR message ID consists of the prefix AXC, followed by a
four-digit number (corresponding to the RC return code value), and a letter indicating
the message type. See the Message Reference Guide for a more detailed description of
the error message.

For example, if RC=1122, then the error message contained in the OPS.ERROR variable
is:

AXC1122E OPS interface; no response

Additional Return Information

If executed successfully, the following OPS commands return additional information
beyond an RC value:

■ LIST

■ OPER

■ VER

Return information is stored in the special variable OPS.opscommand. (The
opscommand portion of the stem variable represents the name of the OPS command.)

The OPS.opscommand.0 variable contains the number of lines of information returned
(that is, the number of elements in the OPS.opscommand variable). The variables
OPS.opscommand.1 through OPS.opscommand.n each contain a line of information. The
n value represents the last line of return information.

Note: The OPS.opscommand variable contains the same value stored in the
OPS.opscommand.1 variable. It is the first line of return information.

ADDRESS OPS Return Information

326 Command and Keyword Reference Guide

Change the Default Variable With PREFIX

You can direct return information to a variable other than the default OPS.opscommand
by specifying the PREFIX operand as follows:

PREFIX(newvarname)

where newvarname is the name of the variable to replace the default.

Note: The PREFIX operand is valid only if the destination of the return information is
REXX.

Example:

The following statement returns the status of the CA OPS/MVS system with an MSF ID
of OPS44T, and directs the information to a variable called CURSTATUS:

ADDRESS OPS "LIST CMDRESP(REXX) PREFIX(CURSTATUS) SYSTEM(ALL)"

Change the Default Return Destination with CMDRESP

The CMDRESP operand shown directs the return information from an OPS command to
a specific destination:

CMDRESP(destination)

The following are valid values for destination:

REXX

Directs return information to a REXX variable. For more information, see the
following section.

Note: The optional PREFIX operand is valid only if the destination of the return
information is REXX.

XDQ

Directs return information to the external data queue.

TERMINAL

Directs return information to the terminal. This form uses the same output
mechanism used by the REXX SAY command.

NOWHERE

Directs return information to the “bit bucket.” This value discards the return
information.

Default: REXX

ADDRESS OPS Command Descriptions

Chapter 9: ADDRESS OPS Commands 327

ADDRESS OPS Command Descriptions

The following sections describe the ADDRESS OPS commands.

ACTIVATE Command

The ACTIVATE command sends a request to the CA Automation Point interface to
request activation of the CCI connection to the MSF node specified on the SYSTEM
keyword.

This command has the following format:

ADDRESS OPS "ACTIVATE SYSTEM(MSF system name)"

SYSTEM

Specifies the CA OPS/MVS node name that is defined in the Selected MSF nodes
section of the CA OPS/MVS Event Traffic Configuration dialog. This name
corresponds to the name used by the CA OPS/MVS Multi-System Facility (MSF) to
identify itself to CAICCI. You can specify only one CA OPS/MVS system per ACTIVATE
command.

Usage Notes:

This command is asynchronous in nature. It does not wait for the request to be carried
out by the underlying logic of the CA OPS/MVS interface. Thus, a return code (rc) of 0
means only that the command syntax was correct; it does not imply that activation of
the specified MSF host was successful. Therefore, this command should only be used for
interactive troubleshooting and not be relied upon in automation. Issue an ADDRESS
OPS LIST command to display the status of the CCI connection and thereby determine
whether the command was successful.

Example:

This example command attempts to activate remote host OPS01P:

address OPS "ACTIVATE SYSTEM(OPS01P)"

ADDRESS OPS Command Descriptions

328 Command and Keyword Reference Guide

DEACTIVATE Command

The DEACTIVATE command sends a request to the CA Automation Point interface to
request deactivation of the CCI connection to the MSF node specified on the SYSTEM
keyword.

This command has the following format:

ADDRESS OPS "DEACTIVATE SYSTEM(MSF system name)"

SYSTEM

Specifies the CA OPS/MVS node name that is defined in the Selected MSF nodes
section of the CA OPS/MVS Event Traffic Configuration dialog. This name
corresponds to the name used by the CA OPS/MVS Multi-System Facility (MSF) to
identify itself to CAICCI. You can specify only one CA OPS/MVS system per
DEACTIVATE command.

Usage Note:

This command is asynchronous in nature. It does not wait for the request to be carried
out by the underlying logic of the CA OPS/MVS interface. Thus, a return code (rc) of 0
means only that the command syntax was correct; it does not imply that deactivation of
the specified MSF host was successful. Therefore, this command should only be used for
interactive troubleshooting and not be relied upon in automation. Issue an ADDRESS
OPS LIST command to display the status of the CCI connection and thereby determine
whether the command was successful.

Example:

This example command attempts to deactivate remote host OPS01P:

address OPS "DEACTIVATE SYSTEM(OPS01P)"

ADDRESS OPS Command Descriptions

Chapter 9: ADDRESS OPS Commands 329

LIST Command

The LIST command returns a list of nodes that are currently configured on the issuing CA
Automation Point workstation.

Note: This command should be used for diagnostic purposes only.

This command has the following format:

ADDRESS OPS "LIST [CMDRESP(destination)] [PREFIX(newvarname)]

 [SYSTEM(MSF system name|ALL)]"

CMDRESP

(Optional) Directs return information to a specific destination (destination). For a
description of valid destination values, see ADDRESS OPS Return Information in this
chapter.

Default: REXX

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS OPS Return Information in
this chapter.

Note: The PREFIX operand is valid only if the destination of the return information is
REXX.

Default: OPS.LIST

SYSTEM

(Optional) Specifies the CA OPS/MVS node name that is defined in the Selected MSF
nodes section of the CA-OPS/MVS Event Traffic Configuration dialog. This name
corresponds to the name used by the CA OPS/MVS Multi-System Facility (MSF) to
identify itself to CAICCI. You can specify only one CA OPS/MVS system per LIST
command.

Note: If this operand is specified, it acts as a filter and returns data only for the
specific CA OPS/MVS host.

Default: ALL

ADDRESS OPS Command Descriptions

330 Command and Keyword Reference Guide

Return Information:

The LIST command returns a line of information for each MSF system specified by the
SYSTEM operand. Each line contains three fields of information, as described in the
following table.

Field Description

1 Specifies the name of the remote CA OPS/MVS node name that is defined by
the MSF facility.

2 Specifies the status of the CA Automation Point to CA OPS/MVS connection.

■ INACTIVE- CA Automation Point is not connected to this CA OPS/MVS
node.

■ ACTIVE- CA Automation Point is successfully connected to this CA
OPS/MVS node.

■ FAILED- CA Automation Point failed to make a successful connection to
this CA OPS/MVS node. Check the ASOTRACE log for more information
about the CAICCI connection errors.

Note: If you specify a specific host on the SYSTEM operand, only a single line
of output is generated for that host.

3 Specifies the ENF/CCI system name used by CAICCI to identify the z/OS host.

For more information, see the section ADDRESS OPS Return Information (see page 324).

ADDRESS OPS Command Descriptions

Chapter 9: ADDRESS OPS Commands 331

OPER Command

The OPER command sends a z/OS system command execution request to the CA
OPS/MVS host. This command enables you to execute authorized z/OS system
commands on the remote CA OPS/MVS system and receive the responses. For more
information, see the CA OPS/MVS for z/OS Command and Function Reference.

This command has the following format:

ADDRESS OPS "OPER SYSTEM|SYSID(MSF system name) COMMAND('command text')

 [BMPCMDOUT(OPSLOG|WTO|NONE)]

 [CAPTURE(msgtext list)]

 [CMDECHO(YES|NO)]

 [CMDLOG(YES|NO)]

 [CMDRESP(destination)]

 [CMDWAIT(seconds)]

 [CONNAME|NAME]

 [CONTYPE(ANY|EXTCONS|MIGCONS|SSCONS)]

 [IMSID(imsid)]

 [IMSREPLY]

 [INTERVAL(centiseconds)]

 [LOG(YES|NO|OFF)]

 [MAXCMDOUT(number)]

 [MFORM(J|M)]

 [NAME|CONNAME(consolename)]

 [OUTPUT|NOOUTPUT]

 [PREFIX(newvarname)]

 [STOPEND(YES|NO)]

 [STOPMSG(msgtextlist)]

 [STOPRESP(msgtextlist)]

 [SYSWAIT(seconds)]

 [WAIT(seconds)]"

SYSTEM|SYSID

Sends the command to the specified OPS system by name as it is defined to the
Multi-System Facility (MSF) on a CA OPS/MVS host. You can only specify one CA
OPS/MVS system per OPER command.

Note: SYSID and SYSTEM are mutually exclusive synonyms that can be used
interchangeably; however, you can only specify one on a single OPER command.

COMMAND

Specifies the z/OS command that is to be executed on a CA OPS/MVS OSF TSO
server on the designated MSF system. The command can be any valid z/OS
command. The command text can be up to 126 bytes long.

If the command contains keywords, you may need to enclose the COMMAND
argument in quotation marks (see the example).

ADDRESS OPS Command Descriptions

332 Command and Keyword Reference Guide

BMPCMDOUT

(Optional) Controls the echoing of the current IMS command output.

CAPTURE

(Optional) Specifies one to ten message text segments that can be trapped as
responses.

CMDECHO

(Optional) Captures or omits the command echo.

Default: YES

CMDLOG

(Optional) Specifies whether or not to log echo line to SYSLOG.

Default: YES

CMDRESP

(Optional) Directs return information to a specific destination (destination). For a
description of valid destination values, see ADDRESS OPS Return Information in this
chapter.

Default: REXX

CMDWAIT

(Optional) Conditionally waits up to n seconds for all responses on the CA OPS/MVS
system where this command runs. The default for CMDWAIT is specified on the
Advanced Settings dialog under CA OPS/MVS Interface in Configuration Manager.
The initial value in the dialog for CMDWAIT (when the product is installed) is 10
seconds. For more information, see Waittime Before Timeout in this chapter.

CONNAME|NAME

(Optional) Specifies console name to use.

Note: CONNAME and NAME are mutually exclusive synonyms that can be used
interchangeably; however, you can only specify one on a single OPER command.

CONTYPE

(Optional) Type of console to use on z/OS. Valid values are: ANY, EXTCONS,
MIGCONS or SSCONS.

Note: The CONTYPE keyword is mutually exclusive with the CONNAME|NAME
keyword.

IMSID

(Optional) Specifies the IMS ID to send the command to.

IMSREPLY

(Optional) Causes the current IMS command to be issued using the IMS WTOR
instead of the BMP.

ADDRESS OPS Command Descriptions

Chapter 9: ADDRESS OPS Commands 333

INTERVAL

(Optional) Amount of time CA OPS/MVS waits to see if a further response is
forthcoming. Once two output lines have been received, CA OPS/MVS concludes
that the response is complete if this interval expires.

LOG

(Optional) Specifies whether or not to log responses to SYSLOG.

Note: Specifying LOG(OFF) is the same as specifying LOG(NO) or CMDLOG(NO).

Default: YES

MAXCMDOUT

(Optional) Maximum of n command response lines. The default for MAXCMDOUT is
2000; however, you can change the defaults for all OPER commands by specifying a
new default on the Advanced Settings dialog under CA OPS/MVS Interface in
Configuration Manager.

MFORM(J|M)

(Optional) Specifies format for response output. For more information, see
OPSCMD Command Processor in the CA OPS/MVS for z/OS Command and Function
Reference.

NOOUTPUT

(Optional) No response lines will be returned.

Note: NOOUTPUT and OUTPUT are mutually exclusive.

OUTPUT

(Optional) Specifies that response lines will be returned. (This is the default.)

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see ADDRESS OPS Return Information in
this chapter.

Note: The PREFIX operand is only valid if the destination of the return information is
REXX.

Default: OPS.OPER

ADDRESS OPS Command Descriptions

334 Command and Keyword Reference Guide

STOPEND

(Optional) Determines whether the end line of a multiline WTO message stops CA
OPS/MVS from collecting further responses.

Default: YES

STOPMSG

(Optional) Lists one to ten message text segments that terminate the collection of
command response lines. When CA OPS/MVS detects any of these text segments, it
stops collecting responses. You do not have to direct the message segment(s) that
you specify to the console receiving the command response.

STOPRESP

(Optional) Lists one to ten message text segments that terminate the collection of
command response lines. The message segments that you specify must be directed
to the console receiving the command response.

SYSWAIT

(Optional) CA Automation Point adds n seconds to its overall wait time to account
for network delay times incurred communicating with the target CA OPS/MVS host.
The default for SYSWAIT is specified on the Advanced Settings dialog under CA
OPS/MVS Interface in Configuration Manager. The initial value in the dialog for
SYSWAIT (when the product is installed) is 20 seconds. For more information, see
the section Waittime Before Timeout (see page 334).

WAIT

(Optional) Unconditionally waits up to n seconds for all responses on the targeted
CA OPS/MVS system. For more information, see the section Waittime Before
Timeout (see page 334).

Waittime Before Timeout

To determine the total length of time CA Automation Point waits before timing out, the
following algorithms are used:

■ If WAIT is specified-The values of WAIT and SYSWAIT are added together for the
total wait time.

■ If CMDWAIT is specified-The values of CMDWAIT and SYSWAIT are added together
for the total wait time.

■ If neither WAIT nor CMDWAIT is specified-The default values for CMDWAIT and
SYSWAIT are added together for the total wait time.

Note: The SYSWAIT default is initially set to 20 seconds through a Configuration
Manager option. This is a longer amount of time than the corresponding default value
on CA OPS/MVS systems because the CA Automation Point OPER command needs to
wait longer than, or at least as long as, it waits on the CA OPS/MVS system; otherwise,
you will not receive all the responses from CA OPS/MVS.

ADDRESS OPS Command Descriptions

Chapter 9: ADDRESS OPS Commands 335

REXX Variables Set at Termination

At the termination of an OPS OPER command the following REXX variables will be set:

OPS.OPER.RETCODE

The return code from the z/OS command executed (or attempted). If the command
could not be executed, this return code indicates the specific error.

OPS.OPER.TIMEOUT

If CMDWAIT plus SYSWAIT or WAIT plus SYSWAIT were exceeded, the value is set to
YES; Otherwise, the value is set to NO.

OPS.OPER.MAXCMDOUT

If MAXCMDOUT number of lines was exceeded, the value is set to YES; otherwise,
the value is set to NO.

Note: If the responses all come back before the specified timeout period and below the
number specified by MAXCMDOUT, the OPS.OPER.TIMEOUT and
OPS.OPER.MAXCMDOUT variables are set to NO.

Return Information:

The OPER command returns each line of output returned by the Z/OS command
specified by COMMAND. For more information, see ADDRESS OPS Return Information in
this chapter.

For a list of all possible return codes that CA Automation Point returns to REXX callers of
address OPS OPER in the REXX variable OPS.OPER.RETCODE, see Return Codes From
OPSCMD in the CA OPS/MVS for z/OS Command and Function Reference.

Example:

This sample REXX fragment uses OPER to issue the z/OS command D T and display the
responses. The D T command is directed to the CA OPS/MVS system with an MSF ID of
OPS123:

ADDRESS OPS "OPER COMMAND ('D T') SYSTEM(OPS123)"

If rc<> 0 then do

 say "OPS OPER failed; rc=" rc

 return

 end

 do i = 1 to ops.oper.0

 say ops.oper.i

 end

 say "OPS return code=" ops.oper.retcode

Note: In the example above, ops.oper.0 contains the number of lines of response.

ADDRESS OPS Command Descriptions

336 Command and Keyword Reference Guide

OSFTSO Command

The OSFTSO command sends a TSO command execution request to the CA OPS/MVS
Operator Server Facility (OSF) TSO component. This command enables you to run any
TSO command processor, OPS/REXX program, or TSO/E REXX program under the OSF on
the remote CA OPS/MVS system.

This command has the following format:

ADDRESS OPS "OSFTSO SYSTEM(MSF system name) COMMAND('command text')"

SYSTEM

Specifies the system name as it is defined to the Multi-System Facility (MSF) on a CA
OPS/MVS host. You can only specify one CA OPS/MVS system per OSFTSO
command.

COMMAND

Specifies the TSO command that is to be executed on a CA OPS/MVS OSF TSO server
on the designated MSF system. Though the command text can be up to 32,000
bytes in length, it is still subject to length limitations imposed by CA OPS/MVS.

Usage Note:

OPS/REXX programs are specified by indicating the name of the OPS/REXX command
processor (OI, OX, OPSIMEX, or OPSEXEC) followed by the REXX program arguments.
(See the CA OPS/MVS documentation for details.) If the command contains keywords,
you may need to enclose the COMMAND argument in quotes (see the example).

Examples:

■ The following statement executes the OPS/REXX program named REXXPGM2, on
the CA OPS/MVS system with an MSF ID of OPS123, with an argument of TEST
DATA, and a workspace size of 2,000,000 bytes, using the OI command processor:

ADDRESS OPS "OSFTSO COMMAND ('OI PROGRAM(REXXPGM2) ARG(TEST DATA) WS(2000000)')

SYSTEM(OPS123)"

■ The following statement executes the OPS/REXX program named REXXPGM3, on
the CA OPS/MVS system with an MSF ID of OPS123, using the OX command
processor:

ADDRESS OPS "OSFTSO COMMAND ('OX PROGRAM("'"DSN.NOTIN.SYSEXEC(REXXPGM3)"'")')

SYSTEM(OPS123)"

ADDRESS OPS Command Descriptions

Chapter 9: ADDRESS OPS Commands 337

VER Command

The VER command provides the version number of the CA Automation Point interface to
CA OPS/MVS on your workstation.

This command has the following format:

ADDRESS OPS 'VER [CMDRESP(destination)] [PREFIX(newvarname)]'

CMDRESP

(Optional) Directs return information to a specific destination. For a description of
valid destination values, see ADDRESS OPS Return Information in this chapter.

Default: REXX

PREFIX

(Optional) Directs return information to a stem variable name (newvarname) other
than the default. For more information, see the section ADDRESS OPS Return
Information.

Note: The PREFIX operand is valid only if the destination of the return information is
REXX.

Default: OPS.VER

Return Information:

The VER command returns one line of information containing four fields. The fields
contain the following information:

Field Description

1 The name of the API (for example, OPS Rexx C API)

2 The version number (for example, 11.3.0.0 Rev=99999)

3 The Build date of the current CA OPS/MVS service in mmm dd yyyy format
(for example, Jul 05 2010)

The following is an example of a return information line:

OPS Rexx C API 11.3.0.0 Rev=99999 Jul 05 2010

For more information, see ADDRESS OPS Return Information in this chapter.

ADDRESS OPS Command Descriptions

338 Command and Keyword Reference Guide

WTO Command

The WTO command sends a message to the CA OPS/MVS Multi-System Facility (MSF)
component. The message ID and message text are logged to the OPSLOG on the target
CA OPS/MVS system. The first word of the message text is used as the message ID. If
this word is greater than ten characters, the default message ID AXC1134I will prefix the
message text.

This command has the following format:

ADDRESS OPS "WTO SYSTEM(MSF system name)[TEXT(text)|TEXTVAR(rexx variable)]"

SYSTEM

Specifies the remote CA OPS/MVS system to which the WTO message text is to be
sent. You can only specify one CA OPS/MVS system per WTO command.

TEXT

Specifies the text of the message, up to 125 bytes.

TEXT and TEXTVAR are mutually exclusive.

TEXTVAR

Specifies the text of the REXX variable, up to 125 bytes.

TEXTVAR and TEXT are mutually exclusive.

Example:

This statement sends a WTO (write-to-operator message) to the CA OPS/MVS system
with an MSF ID of OPS123:

ADDRESS OPS "WTO TEXT('AXC1134I TEST MESSAGE FROM AP') SYSTEM(OPS123)"

Chapter 10: Notification Manager Commands 339

Chapter 10: Notification Manager
Commands

This section describes the commands that you can issue through the CA Automation
Point Notification Manager. For details about this component, see the chapter on using
Notification Manager in the Administrator Guide.

Notification Manager Command Descriptions

The following sections describe how to use the CA Automation Point Notification
Manager commands.

NMANSWER Command

The NMANSWER script is the REXX program that handles the Notification Manager
call-in interface. Usually, you should not invoke it unless instructed to do so by Technical
Support. The notification server automatically starts NMANSWER when it starts.

This command has the following format:

NMANSWER [DEBUG(YES|NO)] SYSTEM(sysname) [MINIMIZE(MIN|'')]

DEBUG

(Optional) Indicates whether debug mode should be turned on.

Default: NO

SYSTEM

Specifies the name of the system (sysname) running the notification server to which
you want to direct the command. The sysname value can contain up to eight
alphanumeric characters.

Notification Manager Command Descriptions

340 Command and Keyword Reference Guide

MINIMIZE

(Optional) When a copy of NMANSWER is started, a command prompt window is
opened. Valid values are:

MIN

The window opens minimized

(blank)

The window opens to the default command prompt window size for the
operating system.

Default: blank

NMFIND Command

The NMFIND program is the external interface for invoking Notification Manager to
contact people. You tell it:

■ Who to contact

■ The amount of time to wait between attempts to contact someone

■ What to tell the person

■ What, if anything, to ask the person

■ What action to take when the person answers your question

Optionally, you can tell Notification Manager to use a date or time that is different from
the current one when searching the database to determine which methods to use when
contacting the specified persons.

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 341

This command has the following format:

NMFIND {GROUP(group)|KEY(key)|NAME(name)|PERSON(person)} TELL(tell-text)

 [ASK(question

 [,answer1[::action1]

 [,answer2[::action2]

 [,...answer9[::action9]]]])]

 [ACKNOWLEDGE(AP|UNI|APUNI[=host],string)]

 [ACKNOWLEDGEAP(string)]

 [ACKNOWLEDGEOPS(host,string)]

 [ATTACHMENT(filename)]

 [DATE(date)]

 [DEBUG(YES|NO)]

 [ESCALATIONWAIT(esc-wait-time)]

 [EMERGENCYINTVL(e-interval)]

 [EMERGENCYWAIT(e-wait-time)]

 [FAILUREREXX(failure-action)]

 [MTUP (A|profile)]

 [TIME(time)]

 [USERPARMS(parameter1(value1)[parameter2(value2)]]

GROUP

Specifies the name of the group to contact.

KEY

Specifies the key (numeric ID) of the group or person to contact.

The key is shown on the GUI and is returned by the LISTENTITY VOX command.

NAME

Specifies the name of the group or person to contact.

PERSON

Specifies the name of the person to contact.

TELL

Specifies the string or voice file that you want to tell the contacted persons.

ASK

(Optional) Specifies the question and answer1, answer2, and so on arguments can
each be either a string or a voice file.

The question is played to the person contacted first, and it is followed by each of
the answer strings (there may be up to nine). The question cannot be omitted.
NMFIND prefixes the words "Push 'n' for" to each answer. If you do not specify any
answer strings, answer1 defaults to TRUE and answer2 defaults to FALSE.

Notification Manager Command Descriptions

342 Command and Keyword Reference Guide

The action1, action2, and so on arguments are optional. If they are supplied, each
one is the name of the REXX program to be run if the associated answer is selected.
These REXX program names must contain the associated file extension (.REX or
.CMD). The full path to these REXX files may be omitted if the REXX program resides
in either the Distrib directory or the Site\MyFiles\REXX directory.

Each REXX action program must set a return code on exit. The return code value can
be either 0 or any number greater than 9.

ACKNOWLEDGE

(Optional) If specified, this parameter forces an acknowledgement message to be
written to the CA NSM Event Console (UNI) or the CA Automation Point Message
window (AP), or both (APUNI). If a host name is appended to this first parameter
value by an equal sign (=), this CA NSM host receives the acknowledgement string.
Otherwise, all CA NSM hosts configured by the Event Traffic Controller receive a
copy of this acknowledgement message.

Note: The host value is only valid if the UNI or APUNI destination is specified. If an
additional string is passed in through this parameter (string), this string is added to
the acknowledgment text.

ACKNOWLEDGEAP

(Optional) If specified, this operand causes an acknowledge message to be written
to the AP MSG window. This operand is the same as ACKNOWLEDGE(AP,string).

ACKNOWLEDGEOPS

(Optional) If specified, this operand causes an acknowledge message to be written
to the CA-OPS/MVS host. For the acknowledgement message to be sent, the
specified host must be currently configured and active.

ATTACHMENT

(Optional) Specifies the user-supplied file that is to be attached to any notifications
made using a method defined to send mail using the SENDMAIL command. The file
must be accessible from the Notification Server that is issuing the SENDMAIL
command. Only one file can be specified per NMFIND request. The maximum length
of the filename (including path) is 512 characters.

Note: To use the ATTACHMENT option, you must configure the Notification Server
to use SMTP for mail requests.

DATE

(Optional) Specifies the date, in the form mm/dd (no year), you want to use when
determining how to get in touch with the specified person or group.

Default: The current date

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 343

DEBUG

(Optional) Determines whether debugging messages are to be generated. Values
are:

YES

Generate debugging messages.

NO

Do not generate debugging messages.

Default: NO

EMERGENCYINTVL

(Optional) If you specify this operand, NMFIND works in emergency mode,
submitting all actions to the operating system to be run asynchronously (as
separate processes) from NMFIND. This allows you to have NMFIND attempt to
contact several people simultaneously about the problem for which it was invoked.
The number you specify is the number of seconds NMFIND should wait in between
submitting actions.

Note: Use this operand sparingly because running NMFIND in emergency mode
consumes a large amount of operating system resources. Use this operand only
when you have a situation that requires the quickest response possible. For details,
see the section Special Notes About Emergency Mode Processing in this chapter.

If you do not specify this operand, Notification Manager waits for each action (for
example, voice notification) to succeed or fail before attempting the next action.
(The actions are performed synchronously.)

EMERGENCYWAIT

(Optional) Specifies the number of hours to wait for an answer before executing the
FAILUREREXX program.

Note: This operand is valid only when NMFIND is in emergency mode (see the
description of the EMERGENCYINTVL operand).

Default: 1000 hours

Notification Manager Command Descriptions

344 Command and Keyword Reference Guide

ESCALATIONWAIT

(Optional) Tells NMFIND to wait until all notification methods at given level are
exhausted before starting notification escalation. This operand specifies the
number of seconds (esc-wait-time) that NMFIND is to wait before proceeding with
an escalation. This allows you to give contacts additional time to respond. If there is
a response during the wait period, the notification is considered successful and
escalation will not take place.

Notes:

■ This operand is valid only when the ASK operand is specified.

■ In emergency mode, the ESCALATIONWAIT parameter has no effect. For more
information, see the description of the EMERGENCYINTVL parameter.

FAILUREREXX

(Optional) Specifies the name of the REXX program to run when every action in the
call tree fails or when the value specified for the EMERGENCYWAIT operand
expires.

Note: The name of the REXX program passed in this parameter must include the file
extension, if present.

MTUP

 (Optional) Use the Methods to Use Profile (MTUP) operand to specify which
methods are attempted for a particular instance of an NMFIND notification request.
The method type code for each method is defined in the Notification Manager
database under the TYP parameter for the method. Before attempting to notify a
contact using a scheduled method, Notification Manager compares the value its
method type code with the profile specified on the MTUP operand. If the method
type code is not part of the MTUP profile, notification is not attempted, and the
next scheduled method is compared against the MTUP profile. If the method type
code is part of the MTUP profile, then the notification is attempted using that
method.

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 345

The values for this operand are:

profile

Any combination of method type codes B through W.

A

All method types specified for all active schedules. No comparisons are made,
and all methods are attempted.

Default: A

Consider the following scenario. Employee Terry Jones is entered into the
Notification Manager database, and has two 24 x 7 time blocks defined. One time
block uses EMail 1 as a method and the other uses Numeric Pager 1. An NMFIND
without MTUP specified is issued for Terry Jones. The value of MTUP defaults to A,
and no comparisons are made. By default, both the EMail 1 and Numeric Pager 1
methods are attempted. However, since certain messages are of lesser importance
than others, the EMail 1 method notification alone may sometimes suffice. The TYP
parameter of the EMail 1 method is E; and TYP parameter of the Numeric Pager 1
method is P. An NMFIND for Terry Jones can be issued with MTUP set to E. The
EMail 1 method will be attempted (E is part of E), and Numeric Pager 1 method will
not (P is not part of E). These results will occur conversely if you set MTUP to P.

MTUP can contain multiple letters. For example, in the scenario above, MTUP could
be set to EP, allowing both methods to be attempted (E is part of EP, P is part of
EP). Setting MTUP to EP in this case is the same as using the default setting.

Consider the next scenario. Another time block is added for Terry Jones. This time
block is set to use Voice 1 method, and its TYP parameter has the value of V. If a call
to Terry desires to use EMail 1 and Numeric Pager 1 methods, but not the Voice 1
method, MTUP could be set to EP to make this occur (E is part of EP, P is part of EP,
V is not part of EP.).

To preview which methods will be attempted when MTUP is specified for a
particular NMFIND request without issuing a notification, run the Notification
Manager utility program, listMTUP.rex. You can find this utility in the subdirectory
SAMPLE\NM in your CA Automation Point installation directory.

TIME

(Optional) Specifies the time you want to use when determining how to get in touch
with the specified person or group. The format is military time format (00:00 to
23:59).

Default: The current time

Notification Manager Command Descriptions

346 Command and Keyword Reference Guide

USERPARMS

(Optional) Specifies a list of method parameters whose associated values override
any like-named parameters during the execution of NMFIND.REX. For example,
assume this operand is defined as follows:

USERPARMS(SubjectText(UAP notification using NM))

The USERPARMS-defined value override the parameter SubjectText for any method
using that parameter.

Examples:

Suppose you determined that when a particular JES is having difficulties you need to
notify the lead JES systems programmer, Jim Smith. The CA Automation Point rule that
trapped the error message from JES contains this clause:

REXX(NMFIND PERSON(JIM SMITH) TELL('JES is down'))

Notification Manager uses its database technology (based on a relational database) to
determine the communications method it should use to contact Jim Smith, based on the
time and day. Notification Manager proceeds to contact Jim Smith and relay the
message according to the following:

■ If the contact method was the CA Automation Point voice technology, Jim receives
a phone call at the phone number pointed to by his notification schedule.

■ If the contact method was the numeric pager, Notification Manager pages Jim with
the numeric message consisting of the phone number that he needs to call and an
ID number that authorizes him to receive the voice message.

■ If the contact method was the alphanumeric pager, the message appears on Jim's
pager with a phone number and ID that he can use to obtain any information that
was not sent using his pager. (For instance, the message to be sent may be longer
than the length supported by his paging service.)

Extending the previous example, suppose you have written a REXX program that obtains
control whenever JES is down and you have determined that you do not know how to
handle the situation. Thus, you want to allow Jim to specify what should be done about
JES being down. You can code a call to Notification Manager within your REXX program
as follows:

CALL NMFIND.REX "PERSON(JIM SMITH) TELL('JES is down')",

 "ASK('What should I do', 'WARM START', 'COLD START')"

Your program receives a return code of 1 from NMFIND if Jim wants it to warm start JES
(because WARM START is the first answer) and a return code of 2 if Jim wants it to cold
start JES (because COLD START is the second answer).

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 347

Alternately, you may want to code REXX programs that handle various situations, and
then code your automation so that Notification Manager invokes those programs based
on the response it received from the person it calls. For example, you could code the
following invocation of Notification Manager in your automation:

REXX(NMFIND PERSON(JIM SMITH) TELL('JES IS DOWN')

 ASK('What should I do',

 'WARM START'::JESSTART.REX WARM,

 'COLD START'::JESSTART.REX COLD,

 'IPL THE SYSTEM'::IPLSYS.REX)

Note: The example shown above is split across lines for presentation on the page.
However, when you enter this code, it must be on a single line.

If Jim asks for a warm start, Notification Manager runs the JESSTART REXX program with
a parameter of WARM. If Jim asks for a cold start, Notification Manager runs the
JESSTART REXX program with a parameter of COLD. If Jim asks for a system IPL,
Notification Manager runs the IPLSYS REXX program.

Notification Manager also supports group definition and notification. For example, if
you define a group called CICS_SYS_PROGS, you could replace the PERSON(JIM SMITH)
in the previous examples with GROUP(CICS_SYS_PROGS). Instead of attempting to
contact just Jim Smith, Notification Manager systematically attempts to contact each
member of the CICS_SYS_PROGS group until someone is successfully contacted. If you
want, you can also tell Notification Manager to notify all members of the group by
defining the group as a broadcast group.

Length of Message Sent

The length of the message that is being sent is limited according to where you issue the
NMFIND.REX. The TELL operand holds the message to be sent.

Messages can be sent in three ways:

■ From Rules

■ From the command line

■ From another REXX program

Sending Messages from Rules

You can issue an NMFIND.REX from Rules using the REXX keyword. The length of the call
is limited by the 512-character rule limitation. The template to issue NMFIND.REX from
rules is MSGID() REXX(NMFIND.REX NAME() TELL ()), which is 38 characters long. This
means the value defined for the TELL operand can be at most 474 characters. The TELL
string maximum is reduced by the lengths of the values specified for MSGID and NAME.
In addition, the length of any optional NMFIND operands (for example, ASK or
FAILUREREXX) that are specified, as well as the lengths of their values, further reduce
the maximum length of the TELL operand.

Notification Manager Command Descriptions

348 Command and Keyword Reference Guide

Sending Messages from the Command Line

You can issue an NMFIND from a command line. The length of the NMFIND call is limited
to 2048 characters. This is a limitation imposed by the operating system. The template
for launching an NMFIND.REX is ASOREXX NMFIND NAME() TELL(). The maximum length
of the TELL operand is reduced the same way as described in the section above for
Rules.

Sending Messages from Another REXX Program

Larger messages can be sent if the NMFIND is launched from within another REXX
program. These NMFIND calls can have a length of up to 30K characters. To send such
messages from within CA Automation Point, write the message to a data store that is
accessible to the REXX environment. Next, launch a REXX program from Rules. This
program should access the stored data, create the NMFIND call, and launch
NMFIND.REX.

The basic template to issue NMFIND from another REXX program is CALL NMFIND.REX
NAME() TELL(). The maximum length of the TELL operand is reduced the same way as
described in Rules above with the specification of additional operands.

Note: The length of the message actually sent by a specific Notification Manager
method is limited by the value specified for the MaxMsgLen parameter for the method.
The MaxMsgLen parameter is set based on the limitations of the medium that is used to
send the notification. This means an NMFIND with a message of 30K can be run, but
contacts set up to receive pages will only receive the length of the message defined by
the MaxMsgLen parameter. For paging methods, the setting has traditionally been 240
characters.

Special Notes About Emergency Mode Processing

NMFIND provides you, the user of the NMFIND script, with emergency mode processing
for a simple reason. As the coder of NMFIND in your automation, you have no control
over the methods that are used to contact the person you need to reach, and many
methods can take a long time to complete.

For instance, the LongVoice method, which invokes NMVOICE and tells it to try to call
the person 20 times at intervals of five minutes and let the phone ring 10 times on each
try, can take over 100 minutes to complete before returning control to NMFIND. Thus,
even if there were other methods to be tried after the LongVoice method, they are not
attempted for over 100 minutes. This is unacceptable when you need a response in a
short amount of time.

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 349

Emergency mode processing circumvents this problem by providing you with a way to
specify the amount of time each method can hold up the process of getting notification
to someone who can handle the problem for which you invoked NMFIND. Emergency
mode processing (using the EMERGENCYWAIT and FAILUREREXX operands) also gives
you a way to specify the maximum amount of time you want to wait before attempting
some other means (besides NMFIND) of obtaining a solution to a problem.

When you specify EMERGENCYINTVL(n), NMFIND always starts new actions
approximately n seconds apart. Even if all prior actions complete so that none are
running, NMFIND waits for the time interval to expire before starting a new action.
NMFIND starts actions asynchronously on Windows by issuing the START command.
Thus, each action runs as a separate process, using far more system resources than
running all the actions synchronously inside a single process. Therefore, use this feature
sparingly.

Before starting a new action, NMFIND checks all prior actions to see whether the
request has been satisfied. If the entity had the perform all active methods flag set to
OFF, the success of a single action satisfies the request. If the entity had the perform all
active methods flag set to ON, all the actions that belong to the entity have to succeed
before the request is satisfied. Once the request is satisfied, NMFIND does not submit
any new actions.

Because NMFIND submits new actions without regard to the completion of prior
actions, NMFIND can end up with several actions running simultaneously. Therefore, the
NMFIND normal behavior of quitting after the first successful action completes is
somewhat modified. After an action completes successfully, new actions are not
submitted, but actions that are already running are allowed to complete normally.

If NMFIND is only telling asynchronously (no ASK operand was specified), the first time
NMFIND succeeds in telling the message, it considers the NMFIND request to be
complete. Once NMFIND considers the request complete, it stops starting new actions,
but actions that it has already started continue to run and may eventually succeed in
telling the message to the person that they were supposed to contact. Thus, more than
one person can receive the message. (In the synchronous case, only one person receives
the message.)

If you are asking a question asynchronously, the first answer received from someone is
considered to be the answer to the question (even if that person was not the first
person that NMFIND attempted to contact). Once the question is answered, NMFIND
does not start any new actions, but permits existing actions to continue to run. If
another action subsequently succeeds in reaching someone, then that person hears the
TELL message, the ASK question and answers, and the answer that was chosen, but
NMFIND does not allow the person to answer the question.

Notification Manager Command Descriptions

350 Command and Keyword Reference Guide

Methods Called by NMFIND

The following are Notification Manager methods that are called by NMFIND.

NMMAIL

Provides a means for NMFIND to contact a person or group using the local e-mail
system.

NMMAILPG

Provides a front-end to the NMMAIL program. NMFIND uses this command to
contact a person or group by initiating an alphanumeric page through the e-mail
system.

NMNETSND

Provides a means for NMFIND to contact people through the local area network
(LAN) by issuing a NET SEND command.

NMPAGE

Provides a means for NMFIND to contact someone through a TAP alphanumeric or
numeric pager.

NMPAGE2WAY

Provides a means for NMFIND to contact someone through a 2-way messaging
device.

NMSPEAK

The NMSPEAK program is used by NMFIND to contact a person or group through
speech using the TCP/IP network.

NMTAP

Provides a means for NMFIND to contact someone through a TAP alphanumeric or
numeric pager. It differs from NMPAGE in that the REXX code talks directly to the
modem instead of using the ADDRESS VOX PAGE command to perform the page.

NMTAP supports the batching of pages (that is, sending multiple pages to a paging
service with a single phone call). NMTAP is designed so that you can easily modify it
to support a different protocol than TAP. For more information, see the NMTAP.TXT
file in the Distrib directory.

NMVOICE

Provides a means for NMFIND to contact someone through a voice card and,
optionally, ask them to make a selection from a set of options.

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 351

NMMAIL Method

The NMMAIL program is used by NMFIND to contact a person or group using the local
e-mail system.

Specify the following items when defining a method that uses NMMAIL:

■ The invocation string is NMMAIL

■ NMMAIL supports only the TELL parameter of NMFIND. For this reason, you must
choose to make any method that invokes this program support only the TELL
parameter.

The following is a list of method parameters that are to be stored in the Notification
Manager database for each NMMAIL method definition:

Parameter Required

AnswerWait No

CCList No

Debug No

MailRetry No

MailWait No

MaxListLen No

MaxMsgLen No

MaxSigLen No

MaxSubjLen No

NMfindWait No

SignatureText No

SubjectText No

System No

TellExact No

ToList Yes

Notification Manager Command Descriptions

352 Command and Keyword Reference Guide

NMMAIL Parameter Descriptions

AnswerWait

Specifies the number of seconds that the e-mail request is to delay the processing
of subsequent actions in the call tree.

Default: 60

CCList

Specifies the e-mail recipient names that are to receive a carbon copy of this e-mail.

Default: There is no default.

Debug

Determines whether Notification Manager is to generate debugging messages at
the command prompt or the AXCREXX window and in the ASOTRACE log.

Default: NO

MailRetry

Specifies the number of times the e-mail request is to be retried if it does not go
through.

Default: 4

MailWait

Specifies the number of seconds that Notification Manager is to wait before trying
to send an e-mail request again.

Default: 60

MaxListLen

Specifies the maximum length of an e-mail recipient list (either the TO or CC list),
including the separators.

Default: 1000

MaxMsgLen

Specifies the maximum length of a message that the e-mail system supports.

Default: 30000

MaxSigLen

Specifies the maximum length of a Signature text string (Mail ID).

 Default: 40

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 353

MaxSubjLen

Specifies the maximum length of a Subject text string.

Default: 240

NMFindWait

Specifies the number of seconds that Notification Manager allows the person who
received the e-mail to call-in and handle the item before the FAILURE command is
executed.

Database Default: 300

Internal Default: 900

SignatureText

Specifies the optional user-defined text that identifies or tracks the e-mail message.

Default: Notification Manager Automated Response

SubjectText

Specifies the Subject line of the generated e-mail message. The Notification
Manager adds a prefix of "NM: " to the generated e-mail subject line and an
additional prefix of "Callback Item XXXX", if the ASK operand is specified.

Internal Default: Notification Manager TELL setting

System

Specifies the name of the system that is to handle all notification server requests.

Internal Default: The local system name

TellExact

Determines whether the TELL text from the NMFIND command is to be written to
the e-mail verbatim. Values are:

YES

The TELL text is written to the e-mail verbatim.

NO

Allows Notification Manager to add a call-in number and item number to the
TELL text.

Default: There is no default.

ToList

Specifies the e-mail recipient names that are to receive this message. If more than
one name is specified, these names must be separated by a semicolon (;).

Default: There is no default.

Notification Manager Command Descriptions

354 Command and Keyword Reference Guide

NMMAILPG Method

The NMMAILPG program provides a front-end to the NMMAIL program. NMFIND uses
NMMAILPG to contact a person or group by initiating an alphanumeric page using the
e-mail system.

Specify the following items when defining a method that uses NMMAILPG:

■ The invocation string is NMMAILPG

■ NMMAILPG supports only the TELL parameter of NMFIND. For this reason, you must
choose to make any method that invokes this program support only the TELL
parameter.

The following is a list of method parameters that are to be stored in the Notification
Manager database for each NMMAILPG method definition:

Parameter Required

AnswerWait No

CCList No

Debug No

MailRetry No

MailWait No

MaxListLen No

MaxMsgLen No

MaxSigLen No

MaxSubjLen No

NMfindWait No

Numeric No

PagerPW No

Phone Yes

PhoneNumLength Yes

PIN Yes

SignatureText No

SubjectText No

System No

TellExact No

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 355

Parameter Required

ToList Yes

ToListFormula Yes

NMMAILPG Parameter Descriptions

AnswerWait

Specifies the number of seconds that the e-mail request is to delay the processing
of subsequent actions in the call tree.

Default: 60

CCList

Specifies the e-mail recipient names that are to receive a carbon copy of this e-mail.

Debug

Determines whether Notification Manager is to generate debugging messages at
the command prompt or the AXCREXX window and in the ASOTRACE log.

Default: NO

MailRetry

Specifies the number of times the e-mail request is to be retried if it does not go
through.

Default: 4

MailWait

Specifies the number of seconds that Notification Manager is to wait before trying
to send an e-mail request again.

Default: 60

MaxListLen

Specifies the maximum length of an e-mail recipient list (either the TO or CC list),
including the separators.

Default: 1000

MaxMsgLen

Specifies the maximum length of a message that the e-mail system supports.

Default: 30000

MaxSigLen

Specifies the maximum length of a Signature text string (Mail ID).

 Default: 40

Notification Manager Command Descriptions

356 Command and Keyword Reference Guide

MaxSubjLen

Specifies the maximum length of a Subject text string.

Default: 240

NMFindWait

Specifies the number of seconds that Notification Manager allows the person who
received the e-mail to call in and handle the item before it executes the FAILURE
command.

Database Default: 300

Internal Default: 900

Numeric

Determines whether the pager to be contacted is numeric (YES) or not (NO).

Default: NO

PagerPW

Specifies the password for the pager service. Specify the password only if required
by the paging service.

Default: No password

Phone

Specifies the phone number that is to issue a page to the pager. Everything except
the numeric digits are omitted from this phone number.

Note: Some pager companies require the phone number to be in a special format
(for example, not entering an area code or dialing 1 before an 800 number).

PhoneNumLength

Specifies the number of numeric digits that a properly specified phone number
should have.

Notification Manager uses this parameter to generate warning messages during
execution. If you do not want to see warning messages or if the number of digits
that the pager service requires is variable, specify 0 for this parameter.

PIN

Specifies the PIN of the pager.

SignatureText

Specifies the optional user-defined text that identifies or tracks the e-mail message.

Default: Notification Manager Automated Response

SubjectText

Specifies the Subject line of the generated e-mail message.

Internal Default: Notification Manager item number xxxx

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 357

System

Specifies the name of the system that is to handle all notification server requests.

Internal Default: The local system name

TellExact

Determines whether the TELL text from the NMFIND command is to be written to
the e-mail verbatim. Values are:

YES

The TELL text is written to the e-mail verbatim.

NO

Allows Notification Manager to add a call-in number and item number to the
TELL text.

ToList

Specifies the e-mail recipient names that are to receive this message. If more than
one name is specified, these names must be separated by a semicolon (;).

ToListFormula

Specifies the formula, or set of rules, the pager service is to follow to combine the
Phone, PagerPW, and PIN parameters, generating an e-mail ID.

You can specify any valid REXX expression in this parameter. To use a parameter
value in the expression, specify the name of the parameter, not its value. Use an
exclamation point (!) for the pipe symbol (|), and use a single quote (') for any
quotes.

For example, if the Skytel service required you to take the PIN and then add the
string "@skytel.com", the formula would be:

 PIN!!'@skytel.com'

NMNETSND Method

The NMNETSND program provides a means for NMFIND to contact people via the local
area network (LAN) by issuing a NET SEND command. A message is sent to a specified
computer name or a domain.

Specify the following items when defining a method that uses NMNETSND:

■ The invocation string is NMNETSND.

■ NMNETSND supports only the TELL parameter of NMFIND. For this reason, you
must choose to make any method that invokes this program support only the TELL
parameter.

Notification Manager Command Descriptions

358 Command and Keyword Reference Guide

Define the following parameters for any method that uses NMNETSND as its invocation
string. If a parameter is marked as required, you must define it as a parameter for the
method. If a parameter is not required, you do not need to define it in the database. If
you do not define the parameter, the default value is used whenever the method is
invoked.

Note: If you do not define the parameter at the method level, you cannot set a value for
a parameter at the entity or time-block level (that is, override the default value).

Parameter Required

AllUsers No

Answerwait No

Debug No

Domain No

Greeting No

MaxMsgLen No

Name Yes

NMFindWait No

Retry No

RetryWait No

TellExact No

NMNETSND Parameter Descriptions

AllUsers

Set to YES to send the message to all Windows users connected to the Windows
server. For a NET SEND to work, you must either set AllUsers to YES, specify a value
for Domain, or specify a value for Name.

Default: NO

Answerwait

Specifies how many seconds the NET SEND request should hold up processing of
subsequent actions in the call tree. Set this number to a high value if it is more
important to get an answer from the particular person being notified than it is to
get a quick answer.

Default: 60

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 359

Debug

Determines whether Notification Manager is to generate debugging messages at
the command prompt or the AXCREXX window and in the ASOTRACE log.

Default: NO

Domain

Specifies to whom the message should be sent (Windows user name, Windows
computer name, or Windows messaging name). For a NET SEND to work, you must
either set AllUsers to YES, specify a value for Domain, or specify a value for Name.

Greeting

Specifies the string that Notification Manager will place before the TELL message in
the Messenger dialog box

MaxMsgLen

Specifies the maximum message length the NET SEND command supports

Default: 128

Name

Specifies to whom the message should be sent (user name, computer name, or
message name). For a NET SEND to work, you must either set AllUsers to YES,
specify a value for Domain, or specify a value for Name.

NMFindWait

Forces NMFIND to guarantee the person that was contacted at least has a certain
amount of addition time to call-in. The value is in seconds.

You should set this value higher it is difficult for the person contacted to reach a
phone. The actual effect of this parameter is to cause the NMFIND to postpone
running the FailureRexx (if necessary) in order to guarantee that the person paged
has adequate time to reach a phone

Default: 300

Retry

Specifies the number of times the NET SEND is retired when it does not succeed.
The total number of send attempts will be 1 more than the Retry value.

Default: 4

RetryWait

Specifies the number of seconds to wait before each time the NET SEND is retried.

Default: 60

Notification Manager Command Descriptions

360 Command and Keyword Reference Guide

TellExact

Determines whether Notification Manager sets the TELL message with a call-in
number and item number. Values are:

YES

Issue the message without the call-in number and item number added.

NO

Issue the message with the call-in number and item number.

Default: NO

NMPAGE Method

The NMPAGE program provides a means for NMFIND to contact someone with a TAP
alphanumeric or numeric pager. NMPAGE only communicates with TAP alphanumeric
pager services. Therefore, you can only use NMPAGE to page a numeric pager if that
pager is reachable with an alphanumeric pager service. You cannot call NMPAGE
directly; rather, you must install it as the invocation string for a method in your
Notification Manager database and use NMFIND to invoke it.

Specify the following items when defining a method that uses NMPAGE:

■ The invocation string is NMPAGE.

■ NMPAGE supports only the TELL parameter of NMFIND. For this reason, you must
choose to make any method that invokes this program support only the TELL
parameter.

As mentioned previously, NMPAGE supports the TELL parameter of NMFIND, but it does
not support the ASK parameter of NMFIND (it can be used only as a TELL method). The
text sent to a numeric pager is simply the phone number on which to call in and the
item number. The text sent to an alphanumeric pager is the phone number on which to
call in, the item number, and some or all the text of the TELL message.

Define the following parameters for any method that uses NMPAGE as its invocation
string. If a parameter is marked as “required,” you must define it as a parameter for the
method. If a parameter is not required, you do not need to define it in the database. If
you do not define the parameter, the default value is to be used whenever the method
is invoked. Remember, you cannot set a value for a parameter at the entity or
time-block level (that is, override the default value) if you do not define the parameter
at the method level.

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 361

The following table lists the method parameters that are stored in the Notification
Manager database for each NMPAGE method definition:

Parameter Required

AnswerWait No

BaudRate No

Comport No

DataBits No

Debug No

FinalConfirm No

Greeting No

MaxMsgLen No

ModemInitString No

NMfindWait No

Numeric No

PageRetry No

PagerID Yes

PagerPW No

PageWait No

Parity No

Phone Yes

RetryRCList No

StopBits No

System No

TapiDeviceID No

TellExact No

Notification Manager Command Descriptions

362 Command and Keyword Reference Guide

NMPAGE Parameter Descriptions

AnswerWait

Specifies the number of seconds that NMPAGE should wait for an answer (through
a call-in) before allowing NMFIND to try the next method of contacting someone.

Setting this parameter to a higher value allows the person who was paged more
time to handle the problem before Notification Manager attempts to contact
someone else. Therefore, you should set the value high when it is important for a
particular person to answer the problem. Setting the value lower means that you
are more likely to get a quick response to a problem.

Default: 300

BaudRate

Specifies the baud rate at which to set the modem. Valid values are 300, 1200,
2400, 4800, and 9600.

Default: 9600

Comport

Specifies the communications port to use when dialing the pager service.

Default: Selects the first available communications port enabled for use by
notification services.

DataBits

Specifies the number of databits per character used by the modem. The TAP
protocol requires this value to be set to 7. Valid values are 4, 5, 6, 7, and 8.

Default: 7

Debug

Determines whether Notification Manager is to generate debugging messages at
the command prompt or the AXCREXX window and in the ASOTRACE log. Possible
values are YES and NO.

Default: NO

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 363

FinalConfirm

Some pager services do not strictly conform to TAP protocol for final confirmation
during the disconnection sequence. Use the FinalConfirm parameter to specify an
acceptable compliance to the TAP disconnection sequence. Values are:

COMPLETE

The disconnection sequence must fully comply with the TAP protocol.

PARTIAL

A partially TAP-compliant disconnection sequence is acceptable.

NONE

A TAP-compliant disconnection sequence is not required.

Default: COMPLETE

Greeting

Specifies the message to present at the top of the pager's display (before the TELL
and ASK messages are presented). The argument can be either a string or voice file.
If the argument is a voice file, the name of the voice file must not contain any
blanks and the last four characters must be .VOX.

Default: NM CALLING - CALL nnn-nnnn ABOUT ITEM nnnn

MaxMsgLen

Specifies the maximum length of the message to be sent to the pager.

Default: 100 for an alphanumeric pager (Numeric=NO), and 20 for a numeric pager
(Numeric=YES)

ModemInitString

Specifies the string to pass to the modem to initialize it before it makes the call.

The semicolons in the string are used to delimit the separate strings that are passed
to the modem (with a one second wait between each string).

Default: ATZ;AT&C1&D2;ATV1Q0X4;ATS0=0S2=128S7=55

NMfindWait

Note: Make sure that you are familiar with the AnswerWait parameter before
reading this description. The AnswerWait parameter controls the number of
seconds that Notification Manager waits for a paged person to answer the page,
before it attempts to contact anyone else. Once the wait time has expired,
Notification Manager attempts to contact other people.

The NMfindWait parameter forces NMFIND to guarantee that the person who was
paged has at least a certain additional amount of time to call-in to answer the page.
The value is in seconds.

Notification Manager Command Descriptions

364 Command and Keyword Reference Guide

You should set this value higher if it is difficult for the person paged to reach a
phone and lower if it is easy. The actual effect of this parameter is to cause NMFIND
to postpone running the FailureRexx command (if necessary) in order to guarantee
that the person paged has adequate time to reach a phone and answer the page
through a call-in.

Default: 900

Numeric

Specifies whether the pager is numeric or alphanumeric. Valid values are:

YES

The page device is a numeric pager.

Numeric page devices are limited to messages that contain numbers 0-9,
hyphens, parentheses, and commas.

When the call-in feature is not enabled, the numeric TELL message and the
notification item number are sent to the page device. If the TELL message
includes invalid numeric characters, NMPAGE filters them out and substitutes
them with a hyphen to indicate that a string of non-numeric characters was
included in the message, but could not be displayed from the numeric page
device. For example, if the message for item 1234 was “Workstation 7 recycled
at 12 noon,” the message sent to the pager would be “7-12 1234.” If no valid
numeric characters exist in the TELL message, only the item number is sent to
the pager. For example, if the message for item 1235 was “Workstation
number seven recycled at noon,” the message sent to the pager would be
“1235.”

When the call-in feature is enabled, the numeric message sent to the page
device includes the call-in phone number and the notification item number.
The page recipient must use the call-in feature to retrieve the actual TELL
message.

Note: Set TellExact to YES to send TELL-only valid numeric messages to the
numeric page device without the item number.

When Numeric is set to YES, the TELL message is not prefixed with a greeting.

NO

The page device is an alphanumeric pager

Default: NO

PageRetry

If a page request fails, PageRetry specifies the number of times a page is retried,
provided the page fails with a return code specified by the RetryRCList parameter.
The total number of attempts to resubmit a page will be one more than the value of
PageRetry.

Default: 3

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 365

PagerID

Specifies the pager ID that NMPAGE is to tell the pager service needs to be paged.

PagerPW

Specifies the password for the pager service.

PageWait

Specifies the number of seconds to wait between retries of the page.

Default: 60

Parity

Specifies the method used by the modem for error checking. The TAP protocol
requires this value to be set to E. Valid values are: N (None), E (Even), O (Odd), M
(Mark), S (Space).

Default: E

Phone

Specifies the phone number of the pager service.

RetryRCList

Specifies the list of return codes used by NMPAGE to determine if retries will be
attempted. If the return code is on the list, NMPAGE will retry the number times
defined by PageRetry. If the return code is not in this list, NMPAGE will not
reattempt it. The list of return codes must be separated by commas for this
parameter to work properly.

StopBits

Specifies the time between transmitted characters used by the modem,
represented by a number. The TAP protocol requires this value to be set to 1. Valid
values are: 0, 1, and 2.

Default: 1

System

Specifies the name of the system that is running the notification server you want to
perform the call. The sysname value can contain up to eight alphanumeric
characters.

Default: The local system name

Notification Manager Command Descriptions

366 Command and Keyword Reference Guide

TapiDeviceID

(Optional) Specifies the numeric ID of the Telephony Application Programming
Interface (TAPI) device or modem, (installed on the notification server) you want to
use.

To enhance performance, if there is already an established connection to the
specified pager service, notification server overrides the TAPIDEVICEID setting and
issues the page over the existing connection.

Note: To view all of the Telephony Application Programming Interface (TAPI)
devices that are installed under Windows on the Notification Server, issue the
GETTAPIDEVICELIST command.

Default: Selects the first available TAPI device

Notes:

■ The modem must be properly installed within Windows. See the Administrator
Guide for details.

■ The TAPIDEVICEID and COMPORT operands are mutually exclusive.

■ When you specify TAPIDEVICEID, the PAGE command overrides default settings
configured in the Alphanumeric Paging Options dialog. It then initiates the page
using the specified TAPI device ID, and uses TAPI to initialize the modem.

■ When neither COMPORT nor TAPIDEVICEID is specified, the next available
communications port is used to initiate a page, according to settings in the
Alphanumeric Paging Options dialog.

TellExact

Determines whether Notification Manager sets the TELL message with a call-in
number and item number. Values are:

YES

Issue the page message without the call-in number and item number added.

NO

Issue the page message with a call-in number and item number.

Default: NO

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 367

NMPAGE2WAY Method

The NMPAGE2WAY program provides a means for NMFIND to contact someone with a
2-way messaging device. NMPAGE2WAY only communicates with paging services that
support either the SNPP protocol (Simple Network Paging Protocol) or the WCTP
protocol (Wireless Communication Transfer Protocol). You cannot call NMPAGE2WAY
directly; rather, you must install it as the invocation string for a method in your
Notification Manager database and use NMFIND to invoke it.

Specify the following items when defining a method that uses NMPAGE2WAY:

■ The invocation string is NMPAGE2WAY.

■ NMPAGE2WAY supports both the TELL and the ASK parameters of NMFIND, as long
as the same method is used to process both of these parameters for the current
invocation of NMFIND. This means that you can make a method that uses this
program support TELL or BOTH (Tell and Ask), but it cannot be used to support ASK
parameters of a different type of method.

When you specify the ASK parameter, the contacted person can respond to the ASK
message by either replying to the page request directly from the 2-way messaging
device or using the call-in feature of Notification Manager.

The text message that is sent to a numeric pager is simply the telephone line on which
to call-in and the item number. The text message sent to an alphanumeric pager is the
item number, the telephone line on which to call-in (optional), some or all of the text
contained in the TELL message, the question contained in the ASK parameter (if
specified), and the list of answers contained in the ASK parameter (if specified).

In addition to sending numeric or alphanumeric messages to the 2-way messaging
device, NMPAGE2WAY also provides confirmation of message delivery by allowing
Notification Manager to wait until a specified message delivery status has been reached.
This message delivery status is defined using the CompleteStatus method parameter,
which is discussed in the method parameter list that follows.

Define the following parameters for any method that uses NMPAGE2WAY as its
invocation string. If a parameter is marked as “required”, you must define it as a
parameter for the method. If a parameter is not required, you do not need to define it
in the database. If you do not define the parameter, the default value will be used
whenever the method is invoked.

Note: You cannot set a value for a parameter at the entity or time-block level (that is,
override the default value) if you do not define the parameter at the method level.

Notification Manager Command Descriptions

368 Command and Keyword Reference Guide

The following table lists the method parameters that are stored in the Notification
Manager database for each NMPAGE2WAY method definition:

Parameter Required

AnswerWait No

CompleteStatus No

Debug No

Greeting No

MaxMsgLen No

NMFindWait No

Numeric No

PagerID Yes

PagerPW No

Provider Yes

ReplyPrefix No

SendAck No

System No

TellExact No

UseMCR No

NMPAGE2WAY Parameter Descriptions

AnswerWait

Specifies the number of seconds that NMPAGE2WAY should wait for a reply (either
through a reply to the page request or through a call-in) before allowing NMFIND to
try the next method of contacting someone. Once this time interval elapses, the
page recipient must place a call to NMANSWER to resolve the issue (no further page
replies will be accepted).

Default: 300

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 369

CompleteStatus

Specifies the 2-way page status value that NMPAGE2WAY will use to determine
both when the notification attempt has completed and whether the notification
was successful. NMPAGE2WAY waits for the page request to reach the status
specified by this parameter before either processing ASK parameters or returning
control to NMFIND. If the time interval specified by the AnswerWait parameter
elapses before the page request reaches the required status, an error is returned to
NMFIND and processing continues. The possible values for this parameter are:

QUEUED

The page request was successfully submitted to the pager service

DELIVERED

The page request was sent to the pager and a positive receipt
acknowledgement was received from the pager by the pager service

READ

The pager acknowledged receipt of the page request and the page request was
viewed by the recipient

REPLIED

The page recipient received the page request and sent a reply to this page
request back to the pager service

Note: The list of supported status indicators may vary by pager service provider.
Contact your pager service provider for details.

Default: QUEUED

Debug

Determines whether Notification Manager is to generate debugging messages at
the command prompt or the AXCREXX window and in the ASOTRACE log.

Default: NO

Greeting

Specifies the message to present at the top of the pager's display (before the TELL
and ASK messages are presented).

Default: NM Calling

Notification Manager Command Descriptions

370 Command and Keyword Reference Guide

MaxMsgLen

Specifies the maximum length of the message to be sent to the pager. If the
message is longer than the maximum length allowed, it is truncated (but the page is
still sent). If the message is truncated and the call-in feature (NMANSWER) is
configured, the message will be prefixed with call-in information so that the full
message may be accessed using the call-in feature.

Note: Although the first MaxMsgLen number characters of a message are sent to
the pager service, the message is still subject to message length limitations imposed
by the pager service. Contact your pager service provider for message length
limitation and message handling when the length limitation is exceeded.

Default: 500

NMFindWait

This parameter forces NMFIND to guarantee that the person who was paged has at
least a certain additional amount of time (in seconds) after the method completes
to call-in to answer the page.

Default: 300

Numeric

Specifies whether the page device is numeric or alphanumeric.

Numeric page devices are limited to messages that contain numbers 0-9, hyphens
'-', parentheses '()', and commas ','.

Valid values for this parameter are:

YES

The page device is a numeric pager.

Note: When Numeric=YES, set TellExact=YES to send a valid numeric TELL
message to the numeric page device.

Set TellExact=NO to send a numeric message containing a call-in phone number
and the notification item number. The receipt of the page will have to use the
call-in feature to retrieve the actual TELL message.

Note: When Numeric=YES, the TELL message is not prefixed with a Greeting.

 NO

The page device is an alphanumeric pager.

Default: NO

PagerID

Specifies the pager ID of the page device that NMPAGE2WAY requests the pager
service to page.

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 371

PagerPW

Specifies the password associated with the specified pager ID that NMPAGE2WAY
uses to issue the page request. The use of pager passwords varies by pager service
provider. Contact you pager service provider for details.

Default: No password

Provider

Specifies the name of the pager service that is to receive the page request (as
defined in the 2-Way Paging Setup dialog).

ReplyPrefix

When a reply to a page request is sent from the 2-way messaging device, the device
or the paging service itself may add additional information to the beginning of the
reply (contact your paging provider for details). If this additional information is
consistent for each page reply, the NMPAGE2WAY method can filter out this
additional information before comparing the reply to the list of specified ASK
parameters. In addition to the prefix added by the pager service, the Notification
Server adds the additional prefix REPLIED to all page replies received. Since the
word REPLIED always appears at the beginning of the page reply, this parameter
must start with the word REPLIED, followed by any constant prefix added by the
pager service.

All messages received by Notification Server from a 2-way messaging device follow
this format:

REPLIED prefixed_text page_reply_message

REPLIED

The REPLIED keyword, which is added by the Notification Server, is always the
first word of the reply message.

prefixed_text

A prefix text containing additional information may or may not be
automatically added by the pager service or the page device. Contact your
pager service provider for details.

page_reply_message

The reply message sent by the page recipient.

To filter out the beginning text of a reply message so that Notification Manager
can identify the reply to the page, set ReplyPrefix to 'REPLIED prefixed_text'

Default: REPLIED

Notification Manager Command Descriptions

372 Command and Keyword Reference Guide

SendAck

Determines whether positive acknowledgement messages are sent to the page
recipient during processing of the notification attempt. The possible values for this
parameter are:

YES

Acknowledgement messages are sent to the page recipient during processing
of the notification attempt.

NO

No additional messages are sent to inform the page recipient of events
concerning the current notification attempt.

Default: NO

System

Specifies the name of the system that is running the Notification Server to which
NMPAGE2WAY requests associated with the method is to be sent.

Default: The name of the Notification Server specified in the Notification Startup
Options dialog.

TellExact

Determines whether Notification Manager prefixes the TELL message with a call-in
number and an item number. The possible values are:

YES

 Issue the page message without the header text, call-in number, and item
number added.

NO

Issue the page message with a message header text, call-in number, and an
item number.

Default: NO

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 373

UseMCR

Determines whether the NMPAGE2WAY method uses the MCR (Multiple Choice
Response) capability of the 2-way paging device to send the specified ASK
parameters to the page recipient. If the specified pager or pager service does not
support MCR messages (sometimes called “programmed replies”), set this
parameter to NO. The possible values for this parameter are:

YES

The ASK parameters are sent to the pager using the MCR capability of the
underlying 2-way paging protocols.

NO

The ASK parameters are appended to the existing TELL message.

Note: Support for MCR messages vary by paging service provider. Contact your
paging service provider for details

Default: NO

NMSPEAK Method

The NMSPEAK program is used by NMFIND to contact a person or group through speech
using the TCP/IP network. For this method to work, the speech client must be installed
on the computer of the person or group.

Specify the following items when defining a method that uses NMSPEAK:

■ The invocation string is NMSPEAK

■ NMSPEAK supports only the TELL parameter of NMFIND. For this reason, you must
choose to make any method that invokes this program support only the TELL
parameter.

The following is a list of method parameters that are to be stored in the Notification
Manager database for each NMSPEAK method definition:

Parameter Required

AnswerWait No

Debug No

Greeting No

MaxMsgLength No

Name Yes

NMFindWait No

Retry No

Notification Manager Command Descriptions

374 Command and Keyword Reference Guide

Parameter Required

RetryWait No

TellExact No

NMSPEAK Parameter Descriptions

AnswerWait

 Specifies the number of seconds that the speech notification request is to delay the
processing of subsequent actions in the call tree.

Default: 60

Debug

Determines whether Notification Manager is to generate debugging messages at
the command prompt or the AXCREXX window and in the ASOTRACE log.

Default: NO

Greetings

Specifies the string that Notification Manager places before the TELL message.

MaxMsgLen

 Specifies the maximum length of a message that the speech notification system
supports. We recommend that you not increase this limit over the default.

Default: 256

Name

Specifies the name of the computer to which to send the message. The computer
must have TCP/IP connectivity with the computer where the message is sent from.
If the name contains blank characters, enclose it in quotation marks {` `}.

Default: The local host

NMFindWait

Notification Manager guarantees that the target person has at least this many
seconds to call-in and handle the item before the FailureCommand is executed. Set
this parameter to a high value if it is more important to get an answer than to
resolve the item quickly.

Default: 300

Retry

Specifies how many times to retry the method action when it does not go through.
The total number of send attempts will be 1 more than the Retry value.

Default: 4

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 375

RetryWait

Specifies how many seconds to wait before each time the method action is retried.

Default: 60

TellExact

TellExact{YES} causes the TELL text from the NMFIND command to be sent `as-is`.
TellExact{NO} allows Notification Manager to add a call-in number and an item
number to your TELL text. If you attempt an illegal operation, NM can force this to
NO.

Default: NO

NMTAP Method

The NMTAP program provides a means for NMFIND to contact someone with a TAP
alphanumeric or numeric pager. It differs from NMPAGE in that the REXX code talks
directly to the modem instead of using the ADDRESS VOX PAGE command to perform
the page. NMTAP supports the batching of pages (that is, sending multiple pages to a
paging service with a single phone call). NMTAP is designed so you can easily modify it
to support a different protocol than TAP. For more information, see the nmtap.txt file in
the Distrib directory.

NMTAP only communicates with TAP alphanumeric pager services. Therefore, you can
only use NMTAP to page a numeric pager if that pager is reachable with an
alphanumeric pager service. You cannot call NMTAP directly; rather, you must install it
as the invocation string for a method in your Notification Manager database and use
NMFIND to invoke it.

Specify the following items when defining a method that uses NMTAP:

■ The invocation string is NMTAP.

■ NMTAP supports only the TELL parameter of NMFIND. For this reason, you must
choose to make any method that invokes this program support only the TELL
parameter.

As mentioned previously, NMTAP supports the TELL parameter of NMFIND, but it does
not support the ASK parameter of NMFIND (it can be used only as a TELL method). The
text sent to a numeric pager is the line on which to call in and the item number. The text
sent to an alphanumeric pager is the line on which to call in, the item number, and some
or all the text of the TELL message.

Notification Manager Command Descriptions

376 Command and Keyword Reference Guide

Define the following parameters below for any method that uses NMTAP as its
invocation string. If a parameter is marked as required, you must define it as a
parameter for the method. If a parameter is not required, you do not need to define it
in the database. If you do not define the parameter, the default value is used whenever
the method is invoked. Remember, you cannot set a value for a parameter at the entity
or time-block level (that is, override the default value) if you do not define the
parameter at the method level.

The following is a list of method parameters that are to be stored in the Notification
Manager database for each NMTAP method definition:

Parameter Required

AnswerWait No

BatchPage No

BatchWait No

BaudRate No

Comport No

DataBits No

Debug No

Greeting No

MaxMsgLen No

ModeCmd No

ModemInitString No

ModeString No

NMfindWait No

Numeric No

PageRetry No

PagerID Yes

PagerPW No

PageWait No

Parity No

Phone Yes

StopBits No

TellExact No

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 377

NMTAP Parameter Descriptions

AnswerWait

Specifies the number of seconds that NMPTAP should wait for an answer (using a
call-in) before allowing NMFIND to try the next method of contacting someone.

Setting this parameter to a higher value allows the person who was paged more
time to handle the problem before Notification Manager attempts to contact
someone else. Therefore, you should set the value high when it is important for a
particular person to answer the problem. Setting a lower value means that you are
more likely to get a quick response to a problem.

Default: 300

BatchPage

Determines whether the page should be batched (that is, sent on the same phone
call to the paging service) with any other pages that are currently being sent to the
same paging service. Values are:

YES

 Allow the page to be batched

NO

Do not allow the page to be batched

Default: NO

BatchWait

Specifies the number of seconds that batch processing should hold on to the paging
service while waiting for another page to come in for that service. For most
instances, this value should not be greater than 30 seconds.

Note: This parameter is valid only when BatchPage(YES) is specified.

Default: 30

BaudRate

Specifies the baud rate at which to set the modem. Valid values are: 300, 1200,
2400, 4800, and 9600.

Default: 9600

Comport

Specifies the communications port to use when dialing the pager service.

Default: Selects the first available communications port.

DataBits

Specifies the data bits to which to set the modem. The TAP protocol requires this
value to be set to 7. Valid values are: 4, 5, 6, 7, and 8.

Default: 7

Notification Manager Command Descriptions

378 Command and Keyword Reference Guide

Debug

Determines whether Notification Manager is to generate debugging messages at
the command prompt or the AXCREXX window and in the ASOTRACE log. Possible
values are YES and NO.

Default: NO

Greeting

Specifies the message to present at the top of the pagers display (before the TELL
and ASK messages are presented). The argument can be either a string or voice file.
If the argument is a voice file, the name of the voice file must not contain any
blanks and the last four characters must be .VOX.

Default: NM CALLING - CALL nnn-nnnn ABOUT ITEM nnnn

MaxMsgLen

Specifies the maximum length of the message to be sent to the pager.

If the message is longer than the maximum length allowed, it is truncated (but the
page is still sent). If the message is truncated and the call-in feature (NMANSWER)
is configured, the message will be prefixed with call-in information so that the full
message may be accessed using the call-in feature.

Default: 100 for an alphanumeric pager, Numeric=NO, and 20 for a numeric pager,
Numeric=YES.

ModeCmd

Specifies the name of the mode command that should be used to set the mode for
the serial COM port.

You should specify this parameter if you are using specialized piece of hardware
that requires a proprietary MODE command.

Default: MODE

ModemInitString

Specifies the string to pass to the modem to initialize it before it makes the call.

The semicolons in the string are used to delimit the separate strings that will be
passed to the modem (with a one second wait between each string).

Default: ATZ;AT&C1&D2;ATV1Q0X4;ATS0=0S2=128S7=55

ModeString

The default processing of the ModeCmd parameter generates a string that uses the
syntax of the Windows MODE command. If you are using a proprietary MODE
command that has a different syntax, you should specify the entire MODE
command, including the command name at the front.

Note: If this parameter is specified, the ModeCmd parameter is ignored.

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 379

NMfindWait

Note: Make sure that you understand the AnswerWait parameter (described
previously) before reading this description. The AnswerWait parameter controls the
number of seconds that Notification Manager waits for a paged person to answer
the page before it attempts to contact anyone else. Once the wait time has expired,
Notification Manager attempts to contact other people.

The NMfindWait parameter forces NMFIND to guarantee that the person who was
paged has at least a certain additional amount of time to call-in to answer the page.
The value is in seconds.

You should set this value higher if it is difficult for the person paged to reach a
phone and lower if it is easy. The actual effect of this parameter is to cause NMFIND
to postpone running the FailureRexx command (if necessary) to guarantee that the
person paged has adequate time to reach a phone and answer the page using a
call-in.

Default: 900

Numeric

Specifies whether the pager is numeric or alphanumeric. Numeric pages are limited
to messages containing the numbers 0 through 9, hyphens, parentheses, and
commas.

Valid values are:

YES

The page device is a numeric pager.

NO

The page device is an alphanumeric pager

Note: When Numeric is set to YES, set TellExact to YES to send a valid numeric
message to the numeric page device. Set TellExact to NO to send a numeric
message containing a call-in phone number and notification item number. The
receipt of the page must use the call-in feature to retrieve the actual TELL message.

When Numeric is set to YES, the TELL message is not prefixed with a greeting.

Default: NO

PageRetry

If a page request fails, PageRetry specifies the number of times a page is retried,
provided the page fails with a return code specified by the RetryRCList parameter.
The total number of attempts to resubmit a page will be one more than the value of
PageRetry.

Default: 3

PagerID

Specifies the pager ID of the paging device that NMTAP requests the pager service
to page.

Notification Manager Command Descriptions

380 Command and Keyword Reference Guide

PagerPW

(Optional) Specifies the password required by the paging service. (Most paging
services do not require a password.)

PageWait

Specifies the number of seconds to wait between retries of the page.

Default: 60

Parity

Specifies the method used by the modem for error checking. The TAP protocol
requires this value to be set to E. Valid values are: N (None), E (Even), O (Odd), M
(Mark), S (Space).

Default: E

Phone

Specifies the phone number of the pager service.

StopBits

Specifies the time between transmitted characters used by the modem. The TAP
protocol requires this value to be set to 1. Valid values are: 0 , 1, and 2.

Default: 1

TellExact

Determines whether the TELL text from the NMFIND command is to be written
verbatim. Values are:

YES

The TELL text is written verbatim

NO

Additional information is added to the TELL text

Default: NO

NMVOICE Method

NMVOICE provides a means for NMFIND to contact someone using a voice card and,
optionally, ask them to make a selection from a set of options. You cannot call NMVOICE
directly; rather, you must install it as the invocation string for a method in your
Notification Manager database and use NMFIND to invoke it.

Note: NMVOICE also allows the person it contacts to record a message that is heard by
all the people that NMFIND subsequently calls. To invoke this feature, the person
contacted must press the 0 key and follow the prompts.

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 381

Specify the following items when defining a method that uses NMVOICE:

■ The invocation string is drive:\path\NMVOICE

■ NMVOICE supports both the TELL and ASK parameters of NMFIND. You can make a
method that uses this program support TELL, ASK, or BOTH.

When you specify the ASK parameter, the contacted person can respond to the ASK
message by pressing the appropriate key on the touch-tone keypad. The person can
press 0 to choose from the following options: replay the message, hang up, or record a
message for forwarding according to Notification Manager policy.

NMVOICE Method Parameters

Define the following parameters for any method you create that invokes NMVOICE. If a
parameter is marked as required, you must define it as a parameter for the method. If a
parameter is not required, you do not need to define it in the database. If you do not
define the parameter, the default value is to be used whenever the method is invoked.

Note: You cannot set a value for a parameter at the entity or time-block level (that is,
override the default value) if you do not define the parameter at the method level.

Parameter Required

CallRetry No

CallRings No

CallWait No

ChannelWait No

Debug No

Greeting No

LeaveMessage No

PassOnItemNumber No

Phone Yes

System No

UsePIN No

Wordlib No

Notification Manager Command Descriptions

382 Command and Keyword Reference Guide

NMVOICE Parameter Descriptions

CallRetry

Specifies the number of times to retry to call a particular individual. The total
number of send attempts will be one more than the CallRetry value.

Default: 4

CallRings

Specifies the number of times to let the phone ring on each call attempt.

Default: 8

CallWait

Specifies the number of seconds to wait between attempts to call a particular
individual.

Default: 30

ChannelWait

Specifies the number of seconds to wait for a voice channel when attempting to call
a particular individual.

Default: 60

Debug

Determines whether Notification Manager is to generate debugging messages at
the command prompt or the AXCREXX window and in the ASOTRACE log. Possible
values are YES and NO.

Default: NO

Greeting

Specifies the message to play when the phone is initially answered (before the TELL
and ASK messages are played). The argument can be either a string or voice file. If
the argument is a voice file, the name of the voice file must not contain any blanks
and the last four characters must be .VOX.

Default: Notification Manager is calling about item number nnnn

LeaveMessage

Specifies if Notification Manager is to attempt to leave messages on answering
machines. Valid values are:

YES

Notification Manager attempts to leave a message on an answering machine as
many times as possible in the allotted 90 seconds.

NO

Notification Manager attempts to leave a message only once.

Default: YES

Notification Manager Command Descriptions

Chapter 10: Notification Manager Commands 383

PassOnItemNumber

Specifies whether Notification Manager is to include the item number as part of the
notification message. Valid values are:

YES

Include the item number as part of the message.

NO

Exclude the item number being played as part of the message.

For notification requests that have both TELL and ASK defined, or notification
requests that reach an answering machine, the value of PassOnItemNumber is
overridden and set to YES.

Default: NO

Phone

Specifies the phone number to call.

Note: This parameter must be specified at the method level. Simply specify a
dummy phone number (for example, 555-1212) as the value at this level.

System

Specifies the name of the system that is running the notification server you want to
perform the call. The sysname value can contain up to eight alphanumeric
characters.

Default: The local system name

UsePIN

Specifies whether Notification Manager should restrict playing the notification
message to just the intended contact. Valid values are:

YES

Play a message only after the user has entered a valid entity ID and password.

NO

Play a message without prompting the user to enter their entityID and
password.

For notification requests with both the TELL and ASK parameters defined, the
UsePIN value is always overridden and set to YES to insure system security,
because ASK requires the user to take some type of action.

Default: YES

Notification Manager Command Descriptions

384 Command and Keyword Reference Guide

Wordlib

Specifies the Word Library to use when playing words from your TELL and ASK
strings.

Default: VOXM_A

Chapter 11: Web Service API 385

Chapter 11: Web Service API

This section describes the operations that you can perform through the CA Automation
Point web service application programming interface. For an introduction to the
capabilities of the web service API, see the section on “How You Interface with
Third-party Software Applications” in the CA Automation Point Product Guide.

This section contains the following topics:

Fundamental Considerations (see page 386)
Security Considerations (see page 387)
Error Replies (see page 388)
URIs, HTTP Methods, and XML Documents (see page 389)
Query String in URIs (see page 391)
Internal Sessions (see page 392)
Notification URIs (see page 401)
Customer Defined Sessions (see page 409)

Fundamental Considerations

386 Command and Keyword Reference Guide

Fundamental Considerations

The AP web service API utilizes a REST (Representational State Transfer) architecture.
This means that your client programs perform various operations by issuing the HTTP
methods named GET, PUT, POST, and OPTIONS against a well-defined hierarchy of URIs
(Universal Resource Identifiers) that represent CA Automation Point objects. These URIs
are like the URIs that you type into your browser (similar to http://www.ca.com). AP
web service URIs are specific to a given CA Automation Point server. These URIs are
accessible only to that portion of your corporate network that can access your CA
Automation Point server.

We have defined a set of URIs that represent meaningful CA Automation Point objects
which you can manipulate. CA has also defined which HTTP methods can be issued
against a given URI, and what operation each method actually performs against the
related object.

The RESTful HTTP operations include an attached XML payload containing parameters
that are associated with the desired operation. Similarly, the replies that you receive
and your error results are delivered in XML documents. The XML reply document can be
parsed to process detailed results from your request. Different XML documents apply to
each specific HTTP method, issued against a specific CA Automation Point URI.

These concepts must be understood, to use the web service API effectively.

■ Which URI represents the CA Automation Point object of interest to you?

■ What operation does a given HTTP method perform?

■ What XML document must you supply with your request?

■ What XML document is received as a reply?

The remainder of this chapter is dedicated to answering exactly those questions.

Security Considerations

Chapter 11: Web Service API 387

Security Considerations

Delivering functionality through web services provides great flexibility to request an
action from any computer in your corporate network. This functionality also presents a
serious security concern. We require every request to contain a user ID and password.
This requirement ensures that CA Automation Point only performs an action for an
authorized program. For more information on specifying user ID requirements, see the
documentation for each API request.

The user ID must be a valid user account for the type of action being requested. These
user IDs are defined in CA Automation Point Remote Manager or defined as a login in
Notification Manager. The context in which a user ID is confirmed is called an
authentication realm. The HTTP standards do not require that an authentication realm
be supplied by a client program when calling a web service. However, the client-side API
presented by some programming languages require the caller to supply the
authentication realm. One example is the Library for WWW in Perl – LWP. For all
operations against notification objects the authentication realm is named
NotificationManager. For all operations against sessions and messages, the
authentication realm is named RemoteManager.

A user ID and password are included in each request. Therefore, use TLS (Transport
Layer Security, also known as SSL – Secure Sockets Layer) when running the web
services in a production environment. This procedure ensures that the user ID and
password are not accessible to an attacking program. Since you are communicating
through HTTP, this means that you must use the HTTPS network scheme to secure your
communications. For guidance on how to establish a TLS environment for CA
Automation Point web services, see the web services section in the CA Automation Point
Administrator Guide.

Error Replies

388 Command and Keyword Reference Guide

Error Replies

Typically each web service request has a separate XML reply document to reflect the
unique response for that particular operation. However, when an error occurs, the same
XML error document is returned for every web service request.

The HTTP Status code is a standard numeric indicator of the result of an HTTP method.

The status code is always available in an HTTP header of the reply to any request. The
client application can check the HTTP Status code to determine the success or failure of
the operation. When the request is successful, the applicable reply document is
returned. When the request fails, an error document is returned.

The CA Automation Point web services follow the standard definitions for HTTP success
and error codes. For information on special error code interpretation applicable to a
given web service request, see the documentation for each API request.

If the HTTP status indicates a Method Not Allowed (405) error, the document that is
returned by the CA Automation Point web service request is an XML document named
AllowedMethods. That XML document is defined by the AllowedMethods.xsd schema.

If the HTTP status indicates an error other than Method Not Allowed, the document
returned by the CA Automation Point web service request is an XML document named
WSResult. That XML document is defined by the WSResult.xsd schema. The WSResult
document contains detailed error codes and descriptive text about the cause of the
error.

An exception to this behavior is the HTTP HEAD method. The HTTP specification states
that the HEAD method only returns HTTP headers and must not return a body. Thus,
HEAD will not return a WSResult document after an error. Use the HTTP status value in
the header to detect an error. A HEAD operation can be issued against any CA
Automation Point URI that accepts a GET operation. Because it returns no body, HEAD
has limited value and thus is not documented in this guide. One possible use of HEAD
would be to implement a heartbeat check of an CA Automation Point server. A
heartbeat check only requires an indication of success or failure.

URIs, HTTP Methods, and XML Documents

Chapter 11: Web Service API 389

URIs, HTTP Methods, and XML Documents

A URI represents a CA Automation Point resource upon which operations are
performed. The meaning of an HTTP method is determined by the specified URI. The API
documentation is organized alphabetically by each resource URI and HTTP method.
These methods accomplish each CA Automation Point operation, and identify the XML
documents that are required or delivered by that operation.

These methods are documented in:

■ Notification (see page 401)

■ Internal Sessions (see page 392)

■ Customer Defined Sessions (see page 409)

The base name of a URI targeted to a CA Automation Point web service running under
Tomcat on the local machine using TLS would be:

https://localhost:8443/apwebsvc

This example base name is used for all URIs listed in the upcoming sections. In practice,
a specific host name is used by a client application running on another computer.
Further, a site can choose to configure Tomcat to use a non-default port number.
Finally, during initial testing, a site may choose to avoid TLS for simplicity. That site
would then use the http scheme and the non-TLS default Tomcat port of 8080. Utilize
your site-specific values for any URI in upcoming examples. The remainder of the URI
reflects the CA Automation Point resource of interest.

When issuing a web service request from the command line using the CA
RequestService client application, be aware of special characters that your operating
system recognizes. These special characters are likely introduced when specifying a
query, which is expressed as part of the URI. When the URI contains such special
characters, enclose this URI in double quotes. The command interpreter for your
operating system does not interpret special characters when enclosed in double quotes.
For example, when requesting a list of all sessions that are automated, you issue a GET
request with a query:

https://localhost:8443/apwebsvc/sessions?Automated=yes

On a Windows operating system, the equals sign is interpreted by the Windows
Command Interpreter. The syntax is not interpreted as a single URI parameter, and the
command fails. To prevent Windows from misinterpreting this parameter, enclose the
parameter in double quotes:

“https://localhost:8443/apwebsvc/sessions?Automated=yes”

As each XML document is identified in one of the described methods, the XML schema
that defines that document is specified. The XML schemas for all CA Automation Point
web service XML documents are contained in:

URIs, HTTP Methods, and XML Documents

390 Command and Keyword Reference Guide

%ap_home%\distrib\websvc*.xsd

Documentation for all AP web service XML schemas is contained in:

%ap_home%\Doc\help\websvc\xmlSchemas*.html

In XML documents, CA Automation Point web services utilize namespaces to avoid
naming conflicts. Set the CA Automation Point web service namespace as the default
namespace in an attribute of the root element. Setting this attribute allows all CA
Automation Point elements not to require qualifiers in this document. Each CA
Automation Point XML document is validated against the XML schema, which defines
that document. Specify the name of the schema as an attribute in the root element.

Example General Format:

<?xml version="1.0" encoding="utf-8"?>

<YourXMLDocumentRootElement

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ca.com/distauto/ap/websvc/msgData

XmlSchemaName.xsd"

xmlns="http://www.ca.com/distauto/ap/websvc/msgData">

<ContentOfYourXMLDocument>

</YourXMLDocumentRootElement>

Note: Only the XML schema name (bolded) changes from one document to another.

Example Specific Case:

This example sends a simple notification.

<?xml version="1.0" encoding="utf-8"?>

<NotificationRequest

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ca.com/distauto/ap/websvc/msgData

NotificationRequest.xsd"

xmlns="http://www.ca.com/distauto/ap/websvc/msgData">

<Name>PersonThatYouWantToNotifiy</Name>

<Tell>Hi. This is a notification test.</Tell>

</NotificationRequest>

Query String in URIs

Chapter 11: Web Service API 391

Query String in URIs

URI can contain a query string. RFC 3986 titled “Uniform Resource Identifier (URI):
Generic Syntax” describes a query string as follows:

"The query component contains non-hierarchical data that, along with data in the
path component (Section 3.3), serves to identify a resource within the scope of the
URI's scheme and naming authority (if any). The query component is indicated by
the first question mark ("?") character and terminated by a number sign ("#")
character or by the end of the URI … query components are often used to carry
identifying information in the form of "key=value" pairs."

The CA Automation Point URIs for which our web services accept a query string are
documented in this chapter. CA follows the guidance of RFC 3986. You can often apply
multiple query options when specifying a URI that accepts a query string. When
specifying multiple query options, you separate each option from the previous option
with an ampersand (&) character. This format is shown in the following example:

URI-path?option1=value1&option2=value2

When an unknown query option is specified, the operation returns an HTTP status error
of 400 (Bad Request) and the operation returns a WSResult document. If an otherwise
valid query option is specified, which is not applicable due to a conflict with another
query option, the non-applicable option is ignored and the operation is processed.
These conflicts are documented in this chapter.

Within some query strings, a pattern-matching expression can be used as the value of a
query option. The pattern-matching expression format that CA Automation Point
recognizes is:

Character Meaning

. Matches any one character

* Matches any zero or more characters

The ‘\’ character serves as an escape character. The following escape sequences are
recognized:

Character sequence Meaning

\. Matches the ‘.’ character.

* Matches the ‘*’ character.

\\ Matches the ‘\’ character.

Any other escape sequence is treated as an error. For example, the string “AX\C” is an
invalid pattern.

Internal Sessions

392 Command and Keyword Reference Guide

Internal Sessions

These URIs and operations relate to AP internal sessions, which are not defined by
customers. These sessions are automatically created by CA Automation Point to surface
important messages regarding the operation of the product.

URI https://localhost:8443/apwebsvc/intsessions

This URI represents the set of AP internal sessions.

GET intsessions

Get a list of defined AP internal sessions.

Query Options

The following HTTP query strings can be added to the URI to control the volume of
returned URIs. Most query options represent properties of the object that are
returned in the reply document. To see the definitions of those properties, you can
read the schema documentation for the reply document.

SessionName=

The internal session name. A pattern-matching expression can be used to
match session names.

Count=

Maximum number of items the request returns. The highest value that can be
set for this option is 100000. If this option is not specified a default value of
10000 is used.

FromCount=

The numeric count within your selected query from which sessions are
included in your reply. The first position is numbered 1. Each successive
position is incremented by one. The FromCount option can be used to retrieve
a few sessions at a time, repeatedly.

Example:

This example shows retrieving sessions in groups of 10, using a sequence.

get .../intsessions?Count=10

get .../intsessions?Count=10&FromCount=11

get .../intsessions?Count=10&FromCount=21

and so on.

Request Document

None

Internal Sessions

Chapter 11: Web Service API 393

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the internal sessions to be returned. Any internal session that the user does not
have at least VIEW privilege, is not returned in the list.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

InternalSessionList in schema InternalSessionList.xsd

The reply contains a list of internal session names for defined/enabled internal
sessions. This reply includes the URIs used to access their details, for example:

https://localhost:8443/apwebsvc/intsessions/AXC,

https://localhost:8443/apwebsvc/intsessions/VOX,

and so on.

OPTIONS intsessions

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID can be any valid user account on the AP server that is the target of this
HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD.

Internal Sessions

394 Command and Keyword Reference Guide

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

URI https://localhost:8443/apwebsvc/intsessions/<intsessName>

This URI represents the specific AP internal session that is identified by its name.

GET intsessions/<intsessName>

Get the properties of a specific internal session.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the internal session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

InternalSession in schema InternalSession.xsd

The reply returns the properties of the specified internal session.

Internal Sessions

Chapter 11: Web Service API 395

OPTIONS intsessions/<intsessName>

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the internal session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD.

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

URI https://localhost:8443/apwebsvc/intsessions/<intsessName>/messages

This URI represents the messages from this AP internal session that are processed by
the AP rules engine.

GET intsessions/<intsessName>/messages

Get a list of current messages processed by CA Automation Point. Message IDs are
returned in order from the oldest message to the latest message, unless the request is
altered by one or more query options.

Query Options

These HTTP query strings can be added to the URI to control the volume of
returned URIs. Most query options represent properties of the object that are
returned in the reply document. To see the definitions of those properties, you can
read the schema documentation for the reply document.

Internal Sessions

396 Command and Keyword Reference Guide

Text=

The text of the message. A pattern-matching expression can be used to match
message texts.

JobId=

Job ID associated with a message. A pattern-matching expression can be used
to match Job ID.

AppName=

The application name that is associated with a message. A pattern-matching
expression can be used to match application names.

Hostname=

The name of the host where the message originated from. A pattern-matching
expression can be used to match host names.

Category=

The category that is associated with a message. A pattern-matching expression
can be used to match categories.

Severity=

The severity that is associated with a message. A pattern-matching expression
can be used to match severities.

ActionMessage=

Specifies whether normal or action messages are retrieved. Value is yes or no.

FromProcessTime=

A timestamp specifying the time in seconds elapsed since midnight
Coordinated Universal Time (UTC), January 1, 1970. Only messages that are
processed by CA Automation Point at the specified time or later are returned.
An error occurs when specifying a value that is larger than the value of the
ToProcessTime query option, when the ToProcess Time option is specified.

ToProcessTime=

A timestamp specifying the time in seconds elapsed since midnight
Coordinated Universal Time (UTC), January 1, 1970. Only messages that are
processed by CA Automation Point at the specified time or sooner are
returned. An error occurs when specifying a value that is smaller than the value
of the FromProcessTime query option, when the FromProcessTime is specified..

Internal Sessions

Chapter 11: Web Service API 397

AfterId=

Specifies a message ID after which you want to retrieve messages. Only
messages that occurred after AfterId are returned. The last message ID
returned in a previous GET request can be used as the AfterId in your next GET
request.

If the special value 0 is specified for AfterId, the GET method returns the last
(most recent) message ID. Since only one message ID can be returned in this
case, a Count option specified in the same request is ignored. Similarly a
FromCount option specified in the same request is also ignored. When using a
non-zero value for AfterId, both Count and FromCount are applied to the
request.

AfterId can specify a message ID from a different session than the session
which you attempt to query. Thus, you could retrieve messages that arrive in
one session after a message which arrived in another session.

Count=

Maximum number of message IDs to be returned in this request. The highest
value that can be set for this option is 100000. When this option is not
specified, a default value of 10000 is used. When fewer messages than Count
are available, the count value returned in the reply document specifies the
actual number of message IDs returned.

FromCount=

The numeric count within your selected query from which sessions are
included in your reply. The first position is numbered 1. Each successive
position is incremented by one. The FromCount option can be used to retrieve
a few sessions at a time, repeatedly.

Example:

This example shows retrieving messages in groups of 10, using a sequence.

 get .../messages?Count=10

 get .../messages?Count=10&FromCount=11

 get .../messages?Count=10&FromCount=21

 and so on.

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the internal session that is the target of this HTTP method.

Internal Sessions

398 Command and Keyword Reference Guide

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

MessageList in schema MessageList.xsd

The reply contains a list of identifiers for existing messages. This reply includes the
URIs used to access those messages, for example.

https://localhost:8443/apwebsvc/intsessions/<intsessName>/

messages/messageId1,

https://localhost:8443/apwebsvc/intsessions/<intsessName>/

messages/messageId2,

and so on.

OPTIONS intsessions/<intsessName>/messages

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the internal session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD, and POST
when the user has the FULL privilege on the internal session that is the target
of this HTTP method.

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

Internal Sessions

Chapter 11: Web Service API 399

POST intsessions/<intsessName>/messages

Submit a message into the AP rules engine treating the message as if it came from the
associated AP internal session.

Query Options

None

Request Document

Message in schema Message.xsd

The request contains properties of the message. For example, message text,
application name, host name, category, severity, and so on. The ProcessTime
property is automatically populated by CA Automation Point and can be omitted in
the request document.

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer FULL privilege on
the internal session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 201 = Created

Location

Contains the URI to the newly created message.

Successful Reply Document

MessageReply in schema Message.xsd

The reply contains the URI which identifies the created message. That URI is
also returned in the HTTP Location header.

URI https://localhost:8443/apwebsvc/intsessions/<intsessName>/messages/
<messageId>

This URI represents a specific message that is identified by the message ID.

GET intsessions/<intsessName>/messages/<messageID>

Get the properties of a specific message.

Query Options

None

Internal Sessions

400 Command and Keyword Reference Guide

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the internal session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

Message in schema Message.xsd

The reply contains the properties of the specified message.

OPTIONS intsessions/<intsessName>/messages/<messageID>

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password, in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the internal session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD and PUT
when the user has the FULL privilege on the internal session that is the target
of this HTTP method.

Notification URIs

Chapter 11: Web Service API 401

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

PUT intsessions/<intsessName>/messages/<messageID>

Change properties of a specific message

Query Options

None

Request Document

Message in schema Message.xsd

Currently the PUT method only allows changing the ActionMessage element value
from yes to no, which removes the message from the AP action message window.
Any other changes that are contained in the input document are ignored.

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer FULL privilege on
the internal session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

None

Notification URIs

These URIs and operations relate to notifications that are processed by the CA
Automation Point Notification Manager.

URI https://localhost:8443/apwebsvc/notifications

This URI represents the notifications that are being (or have been) processed by
Notification Manager.

Notification URIs

402 Command and Keyword Reference Guide

GET notifications

Get a list of AP notifications. Notification IDs are returned in order from the oldest
notification to the latest notification, unless the request is altered by one or more query
options.

Query Options

These HTTP query strings can be added to the URI to control the volume and order
of returned URIs. Most query options represent properties of the object that are
returned in the reply document. To see the definitions of those properties, you can
read the schema documentation for the reply document.

AnswerableBy=

An NM Contact name that is allowed to answer the notification.

IssuedBy=

Name of the NM login that issued the notification.

Status=

Can specify one of these statuses for notification: Initializing, Sending, Sent,
AwaitingResponse, NoResponse, Responded, LateResponse, or Failed.

FromTime=

A timestamp specifying the time in seconds elapsed since midnight
Coordinated Universal Time (UTC), January 1, 1970. Only notifications that
occurred at the specified time or later are returned. An error occurs when
specifying a value that is larger than the value of the ToTime query option,
when FromTime and ToTime are specified.

ToTime=

A timestamp specifying the time in seconds elapsed since midnight
Coordinated Universal Time (UTC), January 1, 1970. Only notifications that
occurred at the specified time or sooner are returned. An error occurs when
specifying a value that is smaller than the value of the FromTime query option,
when FromTime and ToTime are specified.

AfterId=

Specifies a notification ID after which you want to retrieve notifications. Only
notifications that occurred after AfterId are returned. The last notification ID
returned in a previous GET request can be used as the AfterId in your next GET
request.

If the special value 0 is specified for AfterId, the GET method returns the last
(most recent) notification ID. Since only one notification ID can be returned in
this case, a Count option specified in the same request is ignored.

Notification URIs

Chapter 11: Web Service API 403

 Count=

Maximum number of notification IDs to be returned in this request. The
highest value that can be set for this option is 100000. When this option is not
specified, a default value of 10000 is used. When fewer notifications than
Count are available, the Count value returned in the reply document specifies
the actual number of notifications returned.

Example1:

This pseudo code continuously retrieves notifications that arrive after your first GET
operation. This code also limits the number of notifications that are retrieved to 10
at a time.

LastIdOfOurPreviousGet = 0

while (YouWantToContinue)

{

 GET .../notifications?AfterId=LastIdOfOurPreviousGet&Count=10

 If (our reply contains notification IDs)

 {

 Do something with the retrieved notification IDs

 LastIdOfOurPreviousGet = last ID from our reply

 }

 Sleep a little while

}

Example2:

This pseudo code gets all notifications that occurred starting at 9:00 AM this
morning and stop when the last notification is reached.

GET .../notifications?FromTime=TimeFor9:00AMToday&Count=10

While (the number retrieved > 0)

{

 Do something with the retrieved notification IDs

 LastIdOfOurPreviousGet = last ID from our reply

 If (number retrieved < 10)

 break

 GET .../notifications?AfterId=LastIdOfOurPreviousGet&Count=10

}

Notification URIs

404 Command and Keyword Reference Guide

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be an NM Login.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

NotificationList in schema NotificationList.xsd

The reply contains a list of identifiers for existing notification requests. This reply
includes the URIs used to access those notifications, for example:

http://localhost:8080/apwebsvc/notifications/notificationId1,

http://localhost:8080/apwebsvc/notifications/notificationId2,

and so on.

When the user has the View All Notifications privilege, the list contains every
notification. Otherwise the user retrieves only those notifications for which the user
was directly involved with the notification. Specifically, the user sent the
notification, the user was the intended recipient, or the user was notified during the
escalation process.

OPTIONS notifications

OPTIONS notifications

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format.
The user ID must be an NM Login.

Notification URIs

Chapter 11: Web Service API 405

HTTP Response Headers

Status

Successful result = 200 = Ok

Allow

List of allowed methods. Contains OPTIONS, GET, HEAD, and POST when
the user has the Notify All Contacts privilege.

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

POST notifications

Send a notification.

Query Options

None

Request Document

NotificationRequest in schema NotificationRequest.xsd

The request contains characteristics of the notification, such as who is notified and
what is NM to tell that person.

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be an NM Login with the Notify All contacts privilege on the AP
server that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 202 = Accepted

Location

Contains the URI to the newly created notification.

Successful Reply Document

NotificationRequestReply in schema NotificationRequest.xsd

The reply contains the URI which identifies the created notification. That URI is also
returned in the HTTP Location header.

Notification URIs

406 Command and Keyword Reference Guide

URI https://localhost:8443/apwebsvc/notifications/<notificationId>

This URI represents a specific notification that is identified by its ID number.

GET notifications/<notificationId>

Get the properties of a specific notification.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be an NM Login.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

Notification in schema Notification.xsd

The reply contains properties of the notification, such as Tell text,
IntendedRecipient, SenderLogin, and Status.

OPTIONS notifications/<notificationId>

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be an NM Login.

Notification URIs

Chapter 11: Web Service API 407

HTTP Response Headers

Status

Successful result = 200 = Ok

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD.

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

URI https://localhost:8443/apwebsvc/notifications/<notificationId>/answer

This URI represents the answer for the notification that is identified by its ID number.

When the notification did not ask a question, the associated answer URI does not exist.

GET notifications/<notificationId>/answer

Get the properties of the answer to a notification.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be an NM Login. The user also must have the Answer All
Notifications privilege or an associated contact for that user must have been
notified as part of the notification.

HTTP Response Headers

Status

Successful result = 200 = Ok

A result of 404 (Not Found) is returned when the associated notification did not
ask a question and thus cannot have an answer.

Notification URIs

408 Command and Keyword Reference Guide

Successful Reply Document

NotificationAnswer in schema NotificationAnswer.xsd

The reply contains the numeric choice that was made to answer the notification.
The valid numeric answers range from 1 to 9. When the notification has not yet
been answered, the numeric answer 0 is returned. The AnswerText associated with
the numeric choice is also returned.

OPTIONS notifications/<notificationId>/answer

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be an NM Login. The user also must have either the Answer All
Notifications privilege or an associated contact for that user must have been
notified as part of the notification.

HTTP Response Headers

Status

Successful result = 200 = Ok

A result of 404 (Not Found) is returned when the associated notification did not
ask a question and thus cannot have an answer.

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD, and PUT
when the user is authorized to answer the notification and it was not answered
yet.

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

PUT notifications/<notificationId>/answer

Answers a specific notification.

Query Options

None

Customer Defined Sessions

Chapter 11: Web Service API 409

Request Document

NotificationAnswer in schema NotificationAnswer.xsd

The document contains the numeric choice that identifies the answer for the
specified notification in the AnswerNumber attribute. The allowed values range
from 1 to 9. The value of the Answer element is ignored and can be empty.

HTTP Request Headers

Authorization

Supply a user ID and password, in the HTTP Basic Authentication format. The
user ID must be an NM Login. The user also must have either the Answer All
Notifications privilege or an associated contact for that user must have been
notified as part of the notification.

HTTP Response Headers

Status

Successful result = 200 = Ok

A result of 404 (Not Found) is returned when the associated notification did not
ask a question and thus cannot have an answer.

A result of 405 (Method Not Allowed) is returned when someone else already
answered the notification.

A result of 409 (Conflict) is returned when someone else answered the
notification during the processing of this PUT request.

Allow

When a PUT is performed on a notification and the notification has already
been answered, a 405 error is returned. This header contains OPTIONS, GET,
HEAD.

Successful Reply Document

None

Customer Defined Sessions

These URIs and operations relate to AP sessions that are defined by customers and
typically monitor a remote host.

URI https://localhost:8443/apwebsvc/sessions

This URI represents the set of AP sessions that are defined to monitor hosts.

Customer Defined Sessions

410 Command and Keyword Reference Guide

GET sessions

Get a list of defined AP session names.

Query Options

These HTTP query strings can be added to the URI to control the volume of
returned URIs. Most query options represent properties of the object that are
returned in the reply document. To see the definitions of those properties, you can
read the schema documentation for the reply document.

SessionName=

The AP session name. A pattern-matching expression can be used to match
session names.

SystemName=

The AP system name field. A pattern-matching expression can be used to
match system names.

ConsoleType=

The type of console that is used by the session. The valid values are:

Valid Values

ASYNCH SYSPLEX

Default TANDEM

DTX TANDEMALL

INIT TPF3270

iSeries TPFASYNCH

JES3 VAX

JES3MCS VAXALL

MCS VM

RCS VSE

Terminal=

The terminal used by the session. The valid values are:

Valid Values

3278 3279_3 AXC

3278_2 3279_4 VIO

3278_3 3279_5 VT52

Customer Defined Sessions

Chapter 11: Web Service API 411

Valid Values

3278_4 3477 VT100

3278_5 5292 VT320

3279 6530 VT420

3279_2 ASYNCH

Automated=

Indicates the automation status. Valid values are:

yes

The session is currently being automated.

paused

Automation on the session has been explicitly paused.

no

The session is not automated by configuration and cannot be dynamically
automated.

Connected=

Indicates the state of the connection to the monitored host. Valid values are:
yes and no.

Count=

Maximum number of session IDs to be returned in this request. The highest
value that can be set for this option is 100000. If this option is not specified a
default value of 10000 is used.

FromCount=

The numeric count within your selected query from which sessions are
included in your reply. The first position is numbered 1. Each successive
position is incremented by one. The FromCount option can be used to retrieve
a few sessions at a time, repeatedly.

Example:

This example shows retrieving sessions in groups of 10, using a sequence.

 get .../sessions?Count=10

 get .../sessions?Count=10&FromCount=11

 get .../sessions?Count=10&FromCount=21

 and so on.

Request Document

None

Customer Defined Sessions

412 Command and Keyword Reference Guide

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the sessions to be returned. Any session for which the user does not have at
least VIEW privilege, is not returned in the list.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

SessionList in schema SessionList.xsd

This reply contains a list of customer-assigned session names for existing sessions.
This reply includes the URIs used to access those sessions, for example:

https://localhost:8443/apwebsvc/sessions/sessionName1,

https://localhost:8443/apwebsvc/sessions/sessionName2, and so on.

OPTIONS sessions

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID can be any valid user account on the AP server that is the target of this
HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD.

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

Customer Defined Sessions

Chapter 11: Web Service API 413

URI https://localhost:8443/apwebsvc/sessions/<sessionName>

This URI represents the specific AP session that is identified by session name.

GET sessions/<sessionName>

Get the properties of a specific session.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

Session in schema Session.xsd

The reply returns the properties of the specified session, for example,
SessionName, ConsoleType, and Automated.

A DeviceDetails property contains a URI to another resource. This resource contains
details that are specific to the type of device that is used to make the connection to
the monitored host. The URI points to an additional subnode of the AP URI
hierarchy underneath the current sessionName node. The new subnode has one of
the following three values:

…/apwebsvc/sessions/<sessionName>/TN3270

…/apwebsvc/sessions/<sessionName>/TN5250

…/apwebsvc/sessions/<sessionName>/Asynchronous

A Type attribute supplies information about the type of connection. A GET
operation against such a subnode URI returns different properties which are
characteristic of the type of connection. Details about the properties of each of
these URIs are described later in this document.

Customer Defined Sessions

414 Command and Keyword Reference Guide

OPTIONS sessions/<sessionName>

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD. It also
contains PUT and POST when the user has the FULL privilege on the session
that is the target of this HTTP method.

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This replay contains the same methods as listed in the HTTP Allow header.

POST sessions/<sessionName>

Execute a command in a specific session.

This operation is only valid for sessions that are connected to live, interactive sessions.
When this command is issued into an artificial AP session, for example, Event Traffic
Control sessions, there is no meaning. A POST to such a session returns the HTTP status
405 (Method not allowed).

Query Options

None

Customer Defined Sessions

Chapter 11: Web Service API 415

Request Document

SessionCommand in schema SessionCommand.xsd

The request contains the command that is run in the session that is the target of
this HTTP method. The command text can contain the set of AP @ key
abbreviations. For more information, see the key abbreviation table in the appendix
on customizing special CA Automation Point files in the CA Automation Point
Administrator Guide. No ‘@E’ key is required at the end of the command.

By default, the command is synchronous. This means that the API waits until any
X-state on a session is cleared and the command has been transmitted to the
monitored host.

Within the Command document, optionally the command can be processed
asynchronously.

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer FULL privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result for a synchronous command = 200 = Ok

The success of a synchronous command means that the command was
transmitted to the monitored host.

Success for an asynchronous command = 202 = Accepted.

The success of an asynchronous command means that the command was
accepted by the AP server for later transmission to the monitored host.

Successful Reply Document

None

A command is simply executed. CA Automation Point cannot access any properties
of a command after it has been executed.

Customer Defined Sessions

416 Command and Keyword Reference Guide

PUT sessions/<sessionName>

Change the properties of a specific session.

Query Options

These HTTP query strings can be added to the URI to control the order in which the
desired changes are made.

Order=

The property names Automated and Connected are listed in the order in which
their values will be changed. The property names are separated by commas.
Both property names must be specified, or the PUT method returns an error.
When an Order option is not specified, the order the properties are changed
follows this specified query string:

PUT …/<sessionName>?Order=Automated,Connected

Request Document

Session in schema Session.xsd

The request contains the requested state for this specified session. Currently only
the Connected and Automated session properties can be modified. Any other
differences between the current state and the data in the request document are
ignored. When the current Automated state is no then it cannot be changed
because the session is not configured to be automated. In addition, the Automated
state cannot be changed from yes or paused to no.

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer FULL privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

A successful status is only returned when all changes are successful. Otherwise,
an error is returned and error details are provided in a WSResult document. A
subsequent GET operation can also be performed on the session to identify
properties that were not changed to the desired values.

Successful Reply Document

None

Customer Defined Sessions

Chapter 11: Web Service API 417

URI https://localhost:8443/apwebsvc/sessions/<sessionName>/Asynchronous

This URI represents the asynchronous communication properties of the specified
session.

Do not construct this URI in an application. Only use this URI to retrieve the value of the
DeviceDetails property that is returned by the GET method on a:

…/apwebsvc/sessions/<sessionName> URI

Only one of the following URI subnodes are valid for any given session.

../<sessionName>/Asynchronous,

../<sessionName>/TN3270, or

../<sessionName>/TN5250

GET sessions/<sessionName>/Asynchronous

Get the asynchronous properties of the named session.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

SessionAsynchronous in schema SessionAsynchronous.xsd

The reply contains properties such as Hostname, Port, and CommunicationDevice
which identifies a COM port, telnet protocol, SSH protocol, or in-memory AP
session.

Customer Defined Sessions

418 Command and Keyword Reference Guide

OPTIONS sessions/<sessionName>/Asynchronous

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

A result of 404 (Not Found) is returned when the associated session is not an
asynchronous session.

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD.

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

URI https://localhost:8443/apwebsvc/sessions/<sessionName>/messages

This URI represents the messages from this AP session that are processed by the AP
rules engine.

GET sessions/<sessionName>/messages

Get a list of current messages processed by CA Automation Point. Message IDs are
returned in order from the oldest message to the latest message, unless the request is
altered by one or more query options.

Query Options

These HTTP query strings can be added to the URI to control the volume of
returned URIs. Most query options represent properties of the object that are
returned in the reply document. To see the definitions of those properties, you can
read the schema documentation for the reply document.

Customer Defined Sessions

Chapter 11: Web Service API 419

Text=

The text of the message. A pattern-matching expression can be used to match
message texts.

JobId=

Job ID associated with a message. A pattern-matching expression can be used
to match Job ID.

AppName=

The application name that is associated with a message. A pattern-matching
expression can be used to match application names.

Hostname=

The name of the host where the message originated from. A pattern-matching
expression can be used to match host names.

Category=

The category that is associated with a message. A pattern-matching expression
can be used to match categories.

Severity=

The severity that is associated with a message. A pattern-matching expression
can be used to match severities.

ActionMessage=

Specifies whether normal or action messages are retrieved.Value is yes or no.

FromProcessTime=

A timestamp specifying the time in seconds elapsed since midnight
Coordinated Universal Time (UTC), January 1, 1970. Only messages processed
by Automation Point at the specified time or later are returned.An error occurs
when specifying a value that is larger than the value of the ToProcessTime
query option, when FromProcessTime and ToProcessTime are specified.

ToProcessTime=

A timestamp specifying the time in seconds elapsed since midnight
Coordinated Universal Time (UTC), January 1, 1970. Only messages processed
by Automation Point at the specified time or sooner are returned. An error
occurs when specifying a value that is smaller than the value of the
FromProcessTime query option, when FromProcessTime and ToProcessTime
are specified.

Customer Defined Sessions

420 Command and Keyword Reference Guide

AfterId=

Specifies a message ID after which you want to retrieve messages. Only
messages that occurred after AfterId are returned. The last message ID
returned in a previous GET request can be used as the AfterId in your next GET
request.

When the special value 0 is specified for AfterId, the GET method returns the
last (most recent) message ID. Since only one message ID can be returned in
this case, a Count option specified in the same request is ignored. Similarly a
FromCount option specified in the same request is also ignored. When using a
non-zero value for AfterId, both Count and FromCount are applied to the
request.

AfterId can specify a message ID from a different session than the session
which you attempt to query. Thus, you could retrieve messages that arrive in
one session after a message which arrived in another session.

Count=

Maximum number of message IDs to be returned in this request. The highest
value that can be set for this option is 100000. If this option is not specified a
default value of 10000 is used. When fewer messages than Count are available,
the count value returned in the reply document specifies the actual number of
message IDs returned.

FromCount=

The numeric count within your selected query from which sessions are
included in your reply. The first position is numbered 1. Each successive
position is incremented by one. The FromCount option can be used to retrieve
a few sessions at a time, repeatedly.

Example:

This example retrieves messages in groups of 10, using a sequence.

get .../messages?Count=10

get .../messages?Count=10&FromCount=11

get .../messages?Count=10&FromCount=21

and so on.

Request Document

None

Customer Defined Sessions

Chapter 11: Web Service API 421

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

MessageList in schema MessageList.xsd

The reply contains a list of identifiers for existing messages. This reply includes the
URIs used to access those messages, for example:

https://localhost:8443/apwebsvc/sessions/<sessionName>/

messages/messageId1,

https://localhost:8443/apwebsvc/sessions/<sessionName>/

messages/messageId2,

and so on.

OPTIONS sessions/<sessionName>/messages

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD, and POST
when the user has the FULL privilege on the session that is the target of this
HTTP method.

Customer Defined Sessions

422 Command and Keyword Reference Guide

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

POST sessions/<sessionName>/messages

Submit a message into the AP rules engine treating the message as if it came from the
associated AP session.

Query Options

None

Request Document

Message in schema Message.xsd

The request contains properties of the message, for example, message text,
application name, host name, category, and severity. The ProcessTime property is
automatically populated by CA Automation Point and can be omitted in the request
document.

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer FULL privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 201 = Created

Location

Contains the URI to the newly created message

Successful Reply Document

MessageReply in schema Message.xsd

The reply contains the URI which identifies the created message. That URI is also
returned in the HTTP Location header.

URI https://localhost:8443/apwebsvc/sessions/<sessionName>/messages/
<messageId>

This URI represents a specific message that is identified by the message ID.

Customer Defined Sessions

Chapter 11: Web Service API 423

GET sessions/<sessionName>/messages/<messageID>

Get the properties of a specific message.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

Message in schema Message.xsd

The reply contains the properties of the specified message.

OPTIONS sessions/<sessionName>/messages/<messageID>

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password, in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Customer Defined Sessions

424 Command and Keyword Reference Guide

Allow

List of allowed methods. This header contains OPTIONS, GET, HEAD, and PUT
when the user has the FULL privilege on the session that is the target of this
HTTP method.

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

PUT sessions/<sessionName>/messages/<messageID>

Change properties of a specific message

Query Options

None

Request Document

Message in schema Message.xsd

Currently the PUT method only allows changing the ActionMessage element value
from yes to no, which removes the message from the AP action message window.
Any other changes that are contained in the input document are ignored.

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The user ID
must be a user account with the AP Remote Viewer FULL privilege on the session
that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

None

Customer Defined Sessions

Chapter 11: Web Service API 425

URI https://localhost:8443/apwebsvc/sessions/<sessionName>/TN3270

This URI represents the 3270 communication properties of the specified session.

Do not construct this URI in an application. Only use this URI to retrieve the value of the
DeviceDetails property that is returned by the GET method on a:

…/apwebsvc/sessions/<sessionName> URI

Only one of the following URI subnodes

../<sessionName>/Asynchronous,

../<sessionName>/TN3270, or

../<sessionName>/TN5250

are valided for any given session.

GET sessions/<sessionName>/TN3270

Get the 3270 properties of the named session.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

SessionTN3270 in schema SessionTN3270.xsd

The reply contains properties such as Hostname, Port, and DeviceName.

OPTIONS sessions/<sessionName>/TN3270

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Customer Defined Sessions

426 Command and Keyword Reference Guide

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

A result of 404 (Not Found) is returned when the associated session is not a
3270 session.

Allow

List of allowed methods. This header contains OPTIONS, HEAD, GET.

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

URI https://localhost:8443/apwebsvc/sessions/<sessionName>/TN5250

This URI represents the 5250 communication properties of the specified session.

Do not construct this URI in an application. Only use this URI to retrieve the value of the
DeviceDetails property that is returned by the GET method on a:

 …/apwebsvc/sessions/<sessionName> URI

Only one of the following URI subnodes

../<sessionName>/Asynchronous,

../<sessionName>/TN3270, or

../<sessionName>/TN5250

are valided for any given session.

GET sessions/<sessionName>/TN5250

Get the 5250 properties of the named session.

Query Options

None

Customer Defined Sessions

Chapter 11: Web Service API 427

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

Successful Reply Document

SessionTN5250 in schema SessionTN5250.xsd

The reply contains properties such as Hostname, Port, and DeviceName.

OPTIONS sessions/<sessionName>/TN5250

Obtains a list of HTTP methods that can be issued against this URI.

Query Options

None

Request Document

None

HTTP Request Headers

Authorization

Supply a user ID and password in the HTTP Basic Authentication format. The
user ID must be a user account with the AP Remote Viewer VIEW privilege on
the session that is the target of this HTTP method.

HTTP Response Headers

Status

Successful result = 200 = Ok

A result of 404 (Not Found) is returned when the associated session is not a
5250 session.

Allow

List of allowed methods. This header contains OPTIONS, HEAD, GET.

Customer Defined Sessions

428 Command and Keyword Reference Guide

Successful Reply Document

AllowedMethods in schema AllowedMethods.xsd

This reply contains the same methods as listed in the HTTP Allow header.

Index 429

Index

3

3270_KEY parameter • 21
3270_SCAN parameter • 22

A

ACTIVATE, ADDRESS OPS command • 327
ADDRESS AXC

command summary • 67
syntax guidelines • 70

ADDRESS AXC commands
CLOSEBUF • 74
DELVAR • 81
GETREXXL • 83
GETSCRN • 75
GETVARL • 85
LOADRULES • 87
MSG • 88
OPENBUF • 79
PLOT • 103
READBUF • 80
return information • 71
REXX • 97
SCRIPT • 97
SESSCMD • 98
SESSCONFIG • 107
SESSLIST • 107
SETVAR • 94
STOPREXX • 95
syntax guidelines • 70
utility commands • 69, 101
WAIT • 96
WTO • 110
WTOH • 111
WTXC • 111

ADDRESS GLV commands
command summary • 139
GET • 141
GRPLIST • 142
GRPLISTV • 142
LIST • 143
LISTV • 144
PURGE • 145
PUT • 146
PUTP • 147

SELECT • 148
SET • 149
SETL • 150
SETLP • 151
SETP • 152
VER • 153
VERV • 154

ADDRESS OPS commands
ACTIVATE • 327
DEACTIVATE • 328
LIST • 329
OPER • 331
OSFTSO • 336
return information • 324
syntax • 324
VER • 337
WTO • 338

ADDRESS PPQ commands
command summary • 113
COUNT • 131
CREATE • 118
DEBUG • 132
DISCONNECT • 130
dismantling commands • 114, 128
LIST • 133
LOCK • 120
READ • 121
return information • 115
syntax guidelines • 115
TRANSTATUS • 137
UNLOCK • 125
VER • 138
WRITE • 125

ADDRESS TNG commands
command summary • 307
CREATE • 312
DELETE • 313
GET • 314
LIST • 315
return information • 309
SET • 316
SNMPTRAP • 317
sytax • 308
UNICMD • 318
UNIWTO • 319

430 Command and Keyword Reference Guide

UNIWTOR • 320
VER • 321

ADDRESS VOX commands
ALTERENTITY • 165
ALTERMETHOD • 166
ALTERPARM • 168
ALTERTIME • 169
ANSWER • 227
ANSWERPLAY • 231
CALL • 235
CALLPLAY • 239
CLEAR • 244
command summary • 155
CREATEENTITY • 172
CREATEMETHOD • 175
CREATEPARM • 176
CREATETIME • 178
DESTROYENTITY • 180
DESTROYLOGIN • 182
DESTROYMETHOD • 182
DESTROYPARM • 184
DESTROYTIME • 185
EPWCHECK • 186
GETCHANNEL • 246
GETCHANNELNUM • 249
GETDIGITS • 252
GETGROUP • 255
GETMSGI • 82
GETSTATUS • 257
GETSYSNAMES • 259
GETTAPIDEVICELIST • 295
LISTENTITY • 187
LISTFIND • 188
LISTFORTO • 190
LISTLOGIN • 192
LISTMETHOD • 193
LISTPARM • 194
LISTPERGRPS • 196
LISTTIME • 197
LOAD • 262
NMEXPORT • 200
NMIADDCALLER • 201
NMIANSWER • 202
NMICHECKCALLER • 203
NMIGETITEM • 204
NMIMPORT • 209
PAGE • 211
PAGE2WAY • 217
PLAY • 263

PLAYGETDIGITS • 268
RECORDFILE • 273
RELEASECHANNEL • 276
SENDMAIL • 222
SENDTONES • 278
SETENGINE • 297
SETGROUP • 281
SETHOOK • 284
SETMSGSTREAM • 298
SETTRACE • 299
SETVOLUME • 287
SLEEP • 300
STARTREXX • 302
STOP • 289
syntax guidelines • 160
VER • 304
VERIFYUSER • 291
WINK • 293

ALARM rules keyword • 53
ALARMSAY rules keyword • 54
ALTERENTITY, ADDRESS VOX command • 165
ALTERMETHOD, ADDRESS VOX command • 166
ALTERPARM, ADDRESS VOX command • 168
ALTERTIME, ADDRESS VOX command • 169
amplified speaker support • 239, 263
ANI digits, collecting • 252, 293
answer an incoming call • 227, 231
ANSWER, ADDRESS VOX command • 227
ANSWERPLAY, ADDRESS VOX command • 231
asynchronous sessions • 79

C

CA NSM event management commands • 307, 317
CALL, ADDRESS VOX command • 235
caller ID digits, collecting • 252, 293
CALLPLAY, ADDRESS VOX command • 239
channel group

creating • 255, 281
identifying associated channel numbers • 255

channel handling • 249
CLEAR, ADDRESS VOX command • 244
CLOSEBUF, ADDRESS AXC command • 74
CMDIN, rules keyword • 55
COLOR, rules keyword • 43
command syntax

ADDRESS GLV • 140
ADDRESS OPS • 324
ADDRESS PPQ • 115

Index 431

ADDRESS TNG • 308
ADDRESS VOX • 160
syntax guidelines • 70

COUNT, ADDRESS PPQ command • 131
CREATE, ADDRESS PPQ command • 118
CREATE, ADDRESS TNG command • 312
CREATEENTITY, ADDRESS VOX command • 172
CREATEMETHOD, ADDRESS VOX command • 175
CREATEPARM, ADDRESS VOX command • 176
CREATETIME, ADDRESS VOX command • 178

D

DEACTIVATE, ADDRESS OPS command • 328
DEBUG, ADDRESS PPQ command • 132
debugging REXX • 299
defining automation criteria, rules keyword for • 27
DELETE, ADDRESS TNG command • 313
DELVAR, ADDRESS AXC command • 81
DESTROYENTITY, ADDRESS VOX command • 180
DESTROYLOGIN, ADDRESS VOX command • 182
DESTROYMETHOD, ADDRESS VOX command • 182
DESTROYPARM, ADDRESS VOX command • 184
DESTROYTIME, ADDRESS VOX command • 185
dialing characters, valid • 226
digit buffer, clearing • 244
DISCONNECT, ADDRESS PPQ command • 130
DISPLAY rules keyword • 44
display, controlling

COLOR keyword • 43
DISPLAY keyword • 44
DOM keyword • 44
keywords for • 42

DOM rules keyword • 44
DOM, ADDRESS AXC command • 102
DOSCMD rules keyword • 34

E

ENDSEARCH, script keyword • 63
EPWCHECK, ADDRESS VOX command • 186
ERROR, script keyword • 64
EVERY, rules keyword • 28
EXPORTMSG • 60
EXPORTMSG, third-party interface keyword • 60

G

GET, ADDRESS GLV command • 141
GET, ADDRESS TNG command • 314
GETCHANNEL, ADDRESS VOX command • 246

GETCHANNELNUM, ADDRESS VOX command • 249
GETDIGITS, ADDRESS VOX command • 252
GETGROUP, ADDRESS VOX command • 255
GETMSGI, ADDRESS AXC command • 82
GETREXXL, ADDRESS AXC command • 83
GETSCRN, ADDRESS AXC command • 75
GETSTATUS, ADDRESS VOX command • 257
GETSYSNAMES, ADDRESS VOX command • 259
GETTAPIDEVICELIST, ADDRESS VOX command • 295
GETVAR, ADDRESS AXC command • 84
GETVARL, ADDRESS AXC command • 85
GRPLIST, ADDRESS GLV command • 142
GRPLISTV, ADDRESS GLV command • 142

H

HILIGHT, rules keyword • 45
hook state, setting • 284

I

incoming call, answering • 227, 231
initiate an outgoing call • 235, 239

K

keyboard parameters
KEY • 18
MAP • 20
SCAN • 18
understanding syntax of • 17

keypad digits
accepting from a remote party • 252
sending • 278

L

length of message sent limitations • 347
LIMIT, rules keyword • 29
LIST, ADDRESS GLV command • 143
LIST, ADDRESS OPS command • 329
LIST, ADDRESS PPQ command • 133
LIST, ADDRESS TNG command • 315
LISTENTITY, ADDRESS VOX command • 187
LISTFIND, ADDRESS VOX command • 188
LISTFORTO, ADDRESS VOX command • 190
LISTLOGIN, ADDRESS VOX command • 192
LISTMETHOD, ADDRESS VOX command • 193
LISTPARM, ADDRESS VOX command • 194
LISTPERGRPS, ADDRESS VOX command • 196
LISTTIME, ADDRESS VOX command • 197
LISTV, ADDRESS GLV command • 144

432 Command and Keyword Reference Guide

LOAD, ADDRESS VOX command • 262
LOADRULES, ADDRESS AXC command • 87
LOCK, ADDRESS PPQ command • 120
LOG, rules keyword • 51
LOWLIGHT, rules keyword • 46

M

MAP parameter • 20
MATCHLIM, rules keyword • 30
message stream buffering • 74, 79, 80
MSG, ADDRESS AXC command • 88
MSGID, rules keyword • 30

N

NMANSWER, Notification Manager command • 339
NMDBMERGE, ADDRESS VOX command • 199
NMEXPORT, ADDRESS VOX command • 200
NMFIND methods

NMFIND, Notification Manager command • 340
NMMAIL • 351
NMNETSND • 357
NMPAGE • 360
NMPAGE2WAY • 367
NMSPEAK • 373
NMTAP • 375
summary • 381

NMIADDCALLER, ADDRESS VOX command • 201
NMIANSWER, ADDRESS VOX command • 202
NMICHECKCALLER, ADDRESS VOX command • 203
NMIGETITEM, ADDRESS VOX command • 204
NMIMPORT, ADDRESS VOX command • 209
NMMAIL method • 351, 380

summary • 351
NMNETSND method

summary • 357
NMPAGE method • 360

summary • 360
NMPAGE2WAY method • 367

summary • 367
NMSPEAK method • 373

summary • 373
NMTAP method • 375

summary • 375
NOLOG, rules keyword • 52
NOPRINT, rules keyword • 52
Notification

ALARM rules keyword • 53
ALARMSAY rules keyword • 54

NOALARM rules keyword • 55
Notification Manager commands

NMANSWER • 339
NMFIND • 340

NOUNIFWD rules keyword • 56

O

OPENBUF, ADDRESS AXC command • 79
OPER, ADDRESS OPS command • 331
OPS.ERROR variable • 325
OSCMD, rules keyword • 35
OSFTSO, ADDRESS OPS command • 336
outgoing calls, initiating • 235, 239

P

PAGE, ADDRESS VOX command • 211
PAGE2WAY, ADDRESS VOX command • 217
parameters

3270_KEY • 21
3270_SCAN • 22
NMMAIL method • 351
NMNETSND method • 357
NMPAGE method • 360
NMPAGE2WAY method • 367
NMSPEAK method • 373
NMTAP method • 375
NMVOICE method • 381

parsing automation in a session • 98
password, verifying • 291
PLAY, ADDRESS VOX command • 263
PLAYGETDIGITS, ADDRESS VOX command • 268
PLOT, ADDRESS AXC command • 103
PPQ.ERROR variable • 116
PPQWRITE, rules keyword • 36
PREFIX, rules keyword • 46
PRINT, rules keyword • 52
problems, tracing • 299
protocol signaling • 293
PURGE, ADDRESS GLV command • 145
PUT, ADDRESS GLV command • 146
PUTP, ADDRESS GLV command • 147

R

RC variable
ADDRESS OPS commands and • 325
ADDRESS PPQ commands and • 115
ADDRESS TNG commands and • 310
ADDRESS VOX commands and • 161

Index 433

return information
ADDRESS AXC command • 71
ADDRESS OPS command • 324
ADDRESS TNG command • 309
ADDRESS VOX command • 161
from command processors • 71

REWORD, rules keyword • 48
REXX, ADDRESS AXC command • 97
REXX, rules keyword • 37
rules keywords

ALARM • 53
ALARMSAY • 54
CMDIN • 55
COLOR • 43
DISPLAY • 44
DOM • 44
DOSCMD • 34
EVERY • 28
for CA NSM Event Traffic Controller • 56
HILIGHT • 45
LIMIT • 29
LOG • 51
LOWLIGHT • 46
MATCHLIM • 30
MSGID • 30
NOALARM • 55
NOLOG • 52
NOPRINT • 52
NOUNIFWD • 56
OSCMD • 35
overview of • 23
PPQWRITE • 36
PREFIX • 46
PRINT • 52
REPLY • 37
REWORD • 48
REXX • 37
SCRIPT • 38
SESSION • 40
SET • 41
SNMPTRAP • 57
summary • 23
SUPPRESS • 49
TIME • 30
UNIFWD • 59
UNIWTO • 59
WHEN • 33
WTXC • 51
XCCMD • 42

S

scan code parameters • 21
3270_KEY • 21
3270_SCAN • 22

SCAN parameter • 18
script keywords

ENDSEARCH • 63
ERROR • 64
SEARCH • 65
WAIT • 65
XKEY • 66

SCRIPT, ADDRESS AXC command • 97
SCRIPT, rules keyword • 38
SEARCH, script keyword • 65
security, verifying user ID and password • 291
SELECT, ADDRESS GLV command • 148
SENDMAIL, ADDRESS VOX command • 222
SENDTONES, ADDRESS VOX command • 278
SESSCMD, ADDRESS AXC command • 98
SESSCMD, rules keyword • 39
SESSCNTL, ADDRESS AXC command • 90
SESSCONFIG, ADDRESS AXC command • 104
SESSION, rules keyword • 40
SESSLIST, ADDRESS AXC command • 107
SET, ADDRESS GLV command • 149
SET, ADDRESS TNG command • 316
SET, rules keyword • 41
SETENGINE, ADDRESS VOX command • 297
SETGROUP, ADDRESS VOX command • 281
SETHOOK, ADDRESS VOX command • 284
SETL, ADDRESS GLV command • 150
SETLP, ADDRESS GLV command • 151
SETMSGSTREAM, ADDRESS VOX command • 298
SETP, ADDRESS GLV command • 152
SETTRACE, ADDRESS VOX command • 299
SETVAR, ADDRESS AXC command • 94
SETVOLUME, ADDRESS VOX command • 287
SLEEP, ADDRESS VOX command • 300
SNMPTRAP rules keyword • 57
SNMPTRAP, ADDRESS TNG command • 317
speaker support • 239, 263
STARTREXX, ADDRESS VOX command • 302
status variables

copying to REXX variable • 84
retrieving list of • 85
setting • 94

STOP, ADDRESS VOX command • 289
STOPREXX, ADDRESS AXC command • 95

434 Command and Keyword Reference Guide

SUPPRESS, rules keyword • 49
symbols, interpreting • 16
system event response, keywords for • 34

T

TIME, rules keyword • 30
TNG.ERROR variable • 310
tone digits, accepting • 252, 278
tracing problems • 299
TRANSTATUS, ADDRESS PPQ command • 137

U

underlined text • 16
UNICMD, ADDRESS TNG command • 318
UNIFWD rules keyword • 59
UNIWTO rules keyword • 59
UNIWTO, ADDRESS TNG command • 319
UNIWTOR, ADDRESS TNG command • 320
UNLOCK, ADDRESS PPQ command • 125
user ID, verifying • 291

V

valid dialing characters • 226
VER, ADDRESS GLV command • 153
VER, ADDRESS OPS command • 337
VER, ADDRESS PPQ command • 138
VER, ADDRESS TNG command • 321
VER, ADDRESS VOX command • 304
VERIFYUSER, ADDRESS VOX command • 291
version information for voice services • 304
VERV, ADDRESS GLV command • 154
voice channel, retrieving • 246
VOX.ERROR variable • 161
VOX.voxcommand variable • 162

W

WAIT, ADDRESS AXC command • 96
WAIT, script keyword • 65
WHEN, rules keyword • 33
WINK, ADDRESS VOX command • 293
WRITE, ADDRESS PPQ command • 125
WTO, ADDRESS AXC command • 110
WTO, ADDRESS OPS command • 338
WTO, rules keyword • 50
WTOH, ADDRESS AXC command • 111
WTXC, ADDRESS AXC command • 111
WTXC, rules keyword • 51

X

XCCMD, rules keyword • 42
XKEY, script keyword • 66

	CA Automation Point Command and Keyword Reference Guide
	Contents
	1: Introduction
	Notation Conventions

	2: CA Automation Point Parameters
	Keyboard Parameter Summary
	Keyboard Parameter Syntax
	KEY Parameter
	SCAN Parameter
	MAP Parameter

	Scan Code Parameters
	3270_KEY Parameter
	3270_SCAN Parameter

	3: CA Automation Point Keywords
	Rules Keyword Summary
	Keywords for Defining Automation Criteria
	Keywords for Responding to System Events
	Keywords for Controlling the Display
	Keywords for Logging Messages
	Keyword for Controlling Commands
	Keywords for Notification
	Keywords for CA NSM Event Traffic Controller
	Keyword for Interfacing with Third-party Applications

	Rules Keyword Syntax
	Keywords for Defining Automation Criteria
	EVERY Keyword
	LIMIT Keyword
	MATCHLIM Keyword
	MSGID Keyword
	TIME Keyword
	WHEN Keyword

	Keywords for Responding to System Events
	DOSCMD Keyword
	OSCMD Keyword
	PPQWRITE Keyword
	REPLY Keyword
	REXX Keyword
	SCRIPT Keyword
	SESSCMD Keyword
	SESSION Keyword
	SET Keyword
	XCCMD Keyword

	Keywords for Controlling the Display
	COLOR Keyword
	DISPLAY Keyword
	DOM Keyword
	HILIGHT Keyword
	LOWLIGHT Keyword
	PREFIX Keyword
	REWORD Keyword
	SUPPRESS Keyword
	WTO Keyword
	WTXC Keyword

	Keywords for Logging Messages
	LOG Keyword
	NOLOG Keyword
	NOPRINT Keyword
	PRINT Keyword

	Keywords for Notification
	ALARM Keyword
	ALARMSAY Keyword
	NOALARM Keyword

	Keyword for Controlling Commands
	CMDIN Keyword

	Keywords for CA NSM Event Traffic Controller
	NOUNIFWD Keyword
	SNMPTRAP Keyword
	UNICMD Keyword
	UNIFWD Keyword
	UNIWTO Keyword

	Keyword for Interfacing with Third-Party Applications
	EXPORTMSG Keyword

	Script Keywords Summary
	Script Keyword Syntax
	Script Keyword Descriptions
	ENDSEARCH Keyword
	ERROR Keyword
	KEY Keyword
	SEARCH Keyword
	WAIT Keyword
	XKEY Keyword

	4: ADDRESS AXC Commands
	ADDRESS AXC Command Summary
	Commands for Automation Processing Data
	Commands for Automation Tasks
	Commands for REXX-related Operations
	Commands for Utilities

	ADDRESS AXC Command Syntax
	Return Codes from Command Processors
	Commands for Automation Processing Data
	CLOSEBUF Command
	GETSCRN Command
	OPENBUF Command
	READBUF Command

	Commands for Automation Tasks
	DELVAR Command
	GETMSGI Command
	GETREXXL Command
	GETVAR Command
	GETVARL Command
	LOADRULES Command
	MSG Command
	SESSCNTL Command
	SETVAR Command
	STOPREXX Command
	WAIT Command

	Commands for REXX-related Operations
	REXX Command
	SCRIPT Command
	SESSCMD Command

	Commands for Utilities
	DOM Command
	PLOT Command
	SESSCONFIG Command
	SESSLIST Command
	WTO Command
	WTOH Command
	WTXC Command

	5: ADDRESS PPQ Commands
	ADDRESS PPQ Command Summary
	PPQ Setup Command
	PPQ Operations Commands
	PPQ Dismantling Commands
	Special PPQ Commands

	ADDRESS PPQ Command Syntax
	ADDRESS PPQ Return Information
	The RC Variable
	The PPQ.ERROR Variable
	Additional Return Information
	Change the Default Variable with PREFIX
	Change the Default Return Destination with CMDRESP

	PPQ Setup Command
	CREATE Command

	PPQ Operations Commands
	LOCK Command
	READ Command
	UNLOCK Command
	WRITE Command

	PPQ Dismantling Commands
	DELETE Command
	DISCONNECT Command

	Special PPQ Commands
	COUNT Command
	DEBUG Command
	LIST Command
	TRANSTATUS Command
	VER Command

	6: ADDRESS GLV Commands
	ADDRESS GLV Command Summary
	ADDRESS GLV Command Syntax
	Return Codes for GLV Commands
	ADDRESS GLV Command Descriptions
	GET Command
	GRPLIST Command
	GRPLISTV Command
	LIST Command
	LISTV Command
	PURGE Command
	PUT Command
	PUTP Command
	SELECT Command
	SET Command
	SETL Command
	SETLP Command
	SETP Command
	VER Command
	VERV Command

	7: ADDRESS VOX Commands
	ADDRESS VOX Command Summary
	Notification Manager Database Maintenance Commands
	Notification Commands
	Voice Processing Commands
	Utility Commands

	ADDRESS VOX Command Syntax
	ADDRESS VOX Return Information
	The RC Variable
	The VOX.ERROR Variable
	The VOX.voxcommand Variable
	Change the Default Variable with PREFIX
	Change the Default Return Destination with CMDRESP

	Notification Manager Database Maintenance Commands
	ALTERENTITY Command
	ALTERMETHOD Command
	ALTERPARM Command
	ALTERTIME Command
	CREATEENTITY Command
	CREATELOGIN Command
	CREATEMETHOD Command
	CREATEPARM Command
	CREATETIME Command
	DESTROYENTITY Command
	DESTROYLOGIN Command
	DESTROYMETHOD Command
	DESTROYPARM Command
	DESTROYTIME Command
	EPWCHECK Command
	LISTENTITY Command
	LISTFIND Command
	LISTFORTO Command
	LISTLOGIN Command
	LISTMETHOD Command
	LISTPARM Command
	LISTPERGRPS Command
	LISTTIME Command
	NMDBMERGE Command
	NMEXPORT Command
	NMIADDCALLER Command
	NMIANSWER Command
	NMICHECKCALLER Command
	NMIGETITEM Command
	NMILISTANSWERS Command
	NMILISTCALLERS Command
	NMILISTITEMS Command
	NMIMPORT Command

	Notification Commands
	PAGE Command
	PAGE2WAY Command
	SENDMAIL Command

	Voice Commands
	Valid Dialing Characters
	ANSWER Command
	ANSWERPLAY Command
	CALL Command
	CALLPLAY Command
	CLEAR Command
	GETCHANNEL Command
	GETCHANNELNUM Command
	GETDIGITS Command
	GETGROUP Command
	GETSTATUS Command
	GETSYSNAMES Command
	LOAD Command
	PLAY Command
	PLAYGETDIGITS Command
	RECORDFILE Command
	RELEASECHANNEL Command
	SENDTONES Command
	SETGROUP Command
	Information Required to Define a Channel Group

	SETHOOK Command
	SETVOLUME Command
	STOP Command
	VERIFYUSER Command
	WINK Command

	Utility Commands
	GETTAPIDEVICELIST Command
	SETENGINE Command
	SETMSGSTREAM Command
	SETTRACE Command
	SLEEP Command
	STARTREXX Command
	VER Command

	8: ADDRESS TNG Commands
	ADDRESS TNG Command Summary
	ADDRESS TNG Environment Commands
	ADDRESS TNG Event Management Commands
	ADDRESS TNG Utility Command

	ADDRESS TNG Command Syntax
	Command Requirements When Using the WorldView Component
	Required Properties
	Dot Notation for Objects

	ADDRESS TNG Return Information
	The RC Variable
	The TNG.ERROR Variable
	Additional Return Information
	Change the Default Variable with PREFIX

	ADDRESS TNG Environment Commands
	CREATE Command
	DELETE Command
	GET Command
	LIST Command
	SET Command

	ADDRESS TNG Event Management Commands
	SNMPTRAP Command
	UNICMD Command
	UNIWTO Command
	UNIWTOR Command

	ADDRESS TNG Utility Command
	VER Command

	9: ADDRESS OPS Commands
	ADDRESS OPS Command Summary
	ADDRESS OPS Command Syntax
	ADDRESS OPS Return Information
	The RC Variable
	The OPS.ERROR Variable
	Additional Return Information
	Change the Default Variable With PREFIX
	Change the Default Return Destination with CMDRESP

	ADDRESS OPS Command Descriptions
	ACTIVATE Command
	DEACTIVATE Command
	LIST Command
	OPER Command
	Waittime Before Timeout
	REXX Variables Set at Termination

	OSFTSO Command
	VER Command
	WTO Command

	10: Notification Manager Commands
	Notification Manager Command Descriptions
	NMANSWER Command
	NMFIND Command
	Length of Message Sent
	Special Notes About Emergency Mode Processing

	Methods Called by NMFIND
	NMMAIL Method
	NMMAIL Parameter Descriptions

	NMMAILPG Method
	NMMAILPG Parameter Descriptions

	NMNETSND Method
	NMNETSND Parameter Descriptions

	NMPAGE Method
	NMPAGE Parameter Descriptions

	NMPAGE2WAY Method
	NMPAGE2WAY Parameter Descriptions

	NMSPEAK Method
	NMSPEAK Parameter Descriptions

	NMTAP Method
	NMTAP Parameter Descriptions

	NMVOICE Method
	NMVOICE Method Parameters
	NMVOICE Parameter Descriptions

	11: Web Service API
	Fundamental Considerations
	Security Considerations
	Error Replies
	URIs, HTTP Methods, and XML Documents
	Query String in URIs
	Internal Sessions
	URI https://localhost:8443/apwebsvc/intsessions
	GET intsessions
	OPTIONS intsessions

	URI https://localhost:8443/apwebsvc/intsessions/<intsessName>
	GET intsessions/<intsessName>
	OPTIONS intsessions/<intsessName>

	URI https://localhost:8443/apwebsvc/intsessions/<intsessName>/messages
	GET intsessions/<intsessName>/messages
	OPTIONS intsessions/<intsessName>/messages
	POST intsessions/<intsessName>/messages

	URI https://localhost:8443/apwebsvc/intsessions/<intsessName>/messages/<messageId>
	GET intsessions/<intsessName>/messages/<messageID>
	OPTIONS intsessions/<intsessName>/messages/<messageID>
	PUT intsessions/<intsessName>/messages/<messageID>

	Notification URIs
	URI https://localhost:8443/apwebsvc/notifications
	GET notifications
	OPTIONS notifications
	POST notifications

	URI https://localhost:8443/apwebsvc/notifications/<notificationId>
	GET notifications/<notificationId>
	OPTIONS notifications/<notificationId>

	URI https://localhost:8443/apwebsvc/notifications/<notificationId>/answer
	GET notifications/<notificationId>/answer
	OPTIONS notifications/<notificationId>/answer
	PUT notifications/<notificationId>/answer

	Customer Defined Sessions
	URI https://localhost:8443/apwebsvc/sessions
	GET sessions
	OPTIONS sessions

	URI https://localhost:8443/apwebsvc/sessions/<sessionName>
	GET sessions/<sessionName>
	OPTIONS sessions/<sessionName>
	POST sessions/<sessionName>
	PUT sessions/<sessionName>

	URI https://localhost:8443/apwebsvc/sessions/<sessionName>/Asynchronous
	GET sessions/<sessionName>/Asynchronous
	OPTIONS sessions/<sessionName>/Asynchronous

	URI https://localhost:8443/apwebsvc/sessions/<sessionName>/messages
	GET sessions/<sessionName>/messages
	OPTIONS sessions/<sessionName>/messages
	POST sessions/<sessionName>/messages

	URI https://localhost:8443/apwebsvc/sessions/<sessionName>/messages/<messageId>
	GET sessions/<sessionName>/messages/<messageID>
	OPTIONS sessions/<sessionName>/messages/<messageID>
	PUT sessions/<sessionName>/messages/<messageID>

	URI https://localhost:8443/apwebsvc/sessions/<sessionName>/TN3270
	GET sessions/<sessionName>/TN3270
	OPTIONS sessions/<sessionName>/TN3270

	URI https://localhost:8443/apwebsvc/sessions/<sessionName>/TN5250
	GET sessions/<sessionName>/TN5250
	OPTIONS sessions/<sessionName>/TN5250

	Index

