

Web Services Developer's Guide
r3.1

CA RiskMinder™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Getting Started 9

Introduction to the RiskMinder Web Services ... 10

Risk Evaluation Web Service ... 10

Administration Web Service ... 11

Organization Management Web Service .. 11

User Management Web Service ... 12

Configuration Management Web Service ... 12

RiskMinder Web Services Features .. 13

Before You Begin .. 14

Using RiskMinder WSDL Files ... 15

Quick Summary .. 16

Chapter 2: Understanding RiskMinder Workflows 19

Enrollment Workflows ... 19

Explicit Enrollment .. 20

Implicit Enrollment .. 25

Risk Evaluation Workflows ... 27

Pre-Login Risk Evaluation Workflow ... 28

Post-Login Risk Evaluation Workflow .. 30

Workflow Summary ... 35

Chapter 3: Managing Web Services Security 37

Authentication Header Elements ... 37

Authorization Header Elements ... 38

SOAP Header Namespace .. 38

Chapter 4: Managing Organizations 41

Creating Organizations ... 42

Updating Organizations .. 47

Updating Organization Status .. 49

Refreshing the Organization Cache .. 51

Fetching Default Organization Details .. 53

Fetching Organization Details .. 56

Searching Organizations ... 58

Fetching RiskMinder Database Attributes.. 60

6 Web Services Developer's Guide

Fetching Directory Service Attributes .. 63

Deleting Organizations ... 67

Chapter 5: Managing Additional User Configurations 69

Managing Account Types ... 70

Creating Account Types .. 71

Updating Account Types ... 73

Fetching Account Types .. 75

Deleting Account Types ... 77

Fetching Email and Telephone Types ... 79

Fetching Email Types ... 79

Fetching Telephone Types .. 81

Fetching User Attributes Configured for Encryption .. 83

Chapter 6: Managing Users and Accounts 87

Before You Proceed .. 87

User States .. 88

Supported User State Transitions ... 88

User Operations and States .. 89

User Account Operations and States .. 90

Performing User Operations .. 91

Creating Users ... 91

Updating Users .. 95

Updating User Status .. 99

Fetching User Details .. 101

Searching Users by Using Pagination .. 106

Searching All Users .. 109

Checking the User Status .. 113

Updating the User Status .. 115

Deleting Users ... 117

Performing User Account Operations .. 119

Adding User Accounts ... 120

Updating User Accounts .. 123

Fetching All Accounts of a User ... 125

Fetch User Account Details ... 127

Fetching User Details Using Accounts ... 130

Deleting User Accounts ... 134

Setting the Personal Assurance Message ... 136

Fetching the Personal Assurance Message .. 138

Setting Custom User Attributes ... 140

Authenticating LDAP Users .. 142

Contents 7

Using the LDAP Password ... 142

Using Directory Service Attributes .. 144

Chapter 7: Collecting Device ID and DeviceDNA 151

End-User Device Identification Basics .. 151

Device ID ... 152

Machine FingerPrint (MFP) ... 153

DeviceDNA .. 153

File that You Will Need ... 154

Configuring Device ID and DeviceDNA ... 154

Step 1: Include the Javascript File ... 155

Step 2: Initialize Device ID and DeviceDNA Collection .. 156

Step 3: Collect the Device ID and DeviceDNA ... 158

Step 4: Collect the IP Address ... 158

Sample Code Reference ... 159

Understanding the APIs for Retrieving DeviceDNA in the Sample Code... 160

Collecting the IP Address .. 163

Chapter 8: Performing Risk Evaluation and Managing Associations 165

Evaluating Risk.. 166

Performing Post Evaluation .. 172

Listing Associations .. 178

Deleting Associations ... 181

Chapter 9: Performing Selected Administration Tasks 185

Adding a User to Exception List .. 186

Deleting a User from Exception List ... 188

Fetching User Profile Information .. 190

Fetching Location and Connection Information ... 192

Appendix A: Additional Configurations 197

SSL Communication Between RiskMinder Components .. 197

Setting Up SSL Communication Between Risk Evaluation Web Service and RiskFort Server................................... 198

One-Way SSL ... 199

Two-Way SSL ... 200

Setting Up SSL Communication Between Administration Web Service and RiskFort Server 201

One-Way SSL ... 202

Two-Way SSL ... 203

8 Web Services Developer's Guide

Appendix B: Web Services Reference 205

Accessing the WSDL Documentation ... 205

Risk Evaluation Web Services ... 206

User Data Service (UDS) Web Services ... 207

Appendix C: Exceptions and Error Codes 209

User Data Service (UDS) Error Codes ... 209

RiskMinder Response Codes .. 229

Appendix D: Input Data Validations 261

User Data Service Validations .. 261

RiskMinder Validations .. 264

Appendix E: RiskMinder Logging 271

About the Log Files ... 272

Installation Log File ... 273

Startup Log Files .. 273

Transaction Log Files ... 276

Administration Console Log File .. 278

UDS Log File ... 279

Format of the RiskMinder Server and Case Management Server Log Files ... 280

Format of UDS and Administration Console Log Files .. 281

Supported Severity Levels .. 281

Server Log File Severity Levels .. 282

Administration Console and UDS Log File Severity Levels .. 282

Sample Entries for Each Log Level ... 284

Chapter 1: Getting Started 9

Chapter 1: Getting Started

This guide provides information about how to use CA RiskMinder (referred to as
RiskMinder later in the guide) Web services to enable your online application to
programmatically perform risk evaluation and related tasks. This document describes
the Web services implementation of RiskMinder.

RiskMinder is an adaptive authentication solution that evaluates each online transaction
in real time by examining a wide range of collected data against the configured rules. It
then assigns each transaction a risk score and advice. The higher the risk score, the
greater is the possibility of a fraud, the negative is the advice. Based on your business
policies, your application can then use this risk score and advice to approve or decline a
transaction, ask for additional authentication, or alert a customer service
representative.

RiskMinder offers you the flexibility to modify the configuration parameters of any of
the risk evaluation rules in keeping with your policies and risk-mitigation requirements.
It also gives you the flexibility to modify the default scoring configurations, scoring
priorities, and risk score for any rule and selectively enable or disable the execution of
one or more rules.

Besides pre-configured out-of-the-box rules, RiskMinder’s field-programmable custom
rules capability allows for industry-specific rules to be selectively deployed and
augmented based on your requirements.

Note: See "Understanding RiskMinder Basics" in the CA RiskMinder Installation and
Deployment Guide to understand the basic concepts of RiskMinder and its architecture.

This section discusses the Web services provided by RiskMinder, the checks that you
must perform before implementing the Web services, and steps to generate Java client
stubs. It covers the following topics:

■ Introduction to the RiskMinder Web Services (see page 10)

■ RiskMinder Web Services Features (see page 13)

■ Before You Begin (see page 14)

■ Using RiskMinder WSDL Files (see page 15)

■ Quick Summary (see page 16)

Note: CA RiskMinder still contains the terms Arcot and RiskFort in some of its code
objects and other artifacts. Therefore, you will find occurrences of Arcot and RiskFort in
all CA RiskMinder documentation. In addition, some of the topics in this guide do not
follow the standard formatting guidelines. These inconsistencies will be fixed in a future
release.

Introduction to the RiskMinder Web Services

10 Web Services Developer's Guide

Introduction to the RiskMinder Web Services

RiskMinder provides a programmatic interface that you can use to integrate your
application with RiskMinder. The RiskMinder Web services are broadly classified, as
follows:

■ Risk Evaluation Web Service (see page 10)

■ Administration Web Service (see page 11)

■ Organization Management Web Service (see page 11)

■ User Management Web Service (see page 12)

■ Configuration Management Web Service (see page 12)

Risk Evaluation Web Service

The Risk Evaluation Web service (evaluateRisk in ArcotRiskFortEvaluateRiskService.wsdl)
is the interface to RiskMinder Server. This Web service provides the logic for evaluating
the risk associated with a transaction and returning an appropriate advice. Based on
various factors collected from the user’s system and the result of configured rules that
are triggered, this Web service returns a score and a corresponding advice, in addition
to other related details.

If RiskMinder recommends additional authentication (which must be performed by your
application), the Post Evaluation Web service (postEvaluate in
ArcotRiskFortEvaluateRiskService.wsdl) returns a final advice based on the feedback of
this secondary authentication received from your application.

During risk evaluation, a Device ID is passed to the Web service, which is then used by
RiskMinder Server to form a user-device association in the database. The Device ID is
stored on the end user's device.

This association (or device binding) helps identify the risk for transactions originating
from the user’s system for a transaction. Users who are not bound are more likely to be
challenged before they are authenticated. You can list and delete these associations by
using the listAssociations and deleteAssociation Web services (in
ArcotRiskFortEvaluateRiskService.wsdl), respectively.

Note: Users can be bound to more than one device (for example, someone using a work
and home computer) and a single device can be bound to more than one user (for
example, a family sharing a computer).

Refer to "Performing Risk Evaluation and Managing Associations" (see page 165) for
more information on how to use the Risk Evaluation Web service.

Introduction to the RiskMinder Web Services

Chapter 1: Getting Started 11

Administration Web Service

The RiskMinder Administration Web service (ArcotRiskFortAdminWebService in
ArcotRiskFortAdminWebService.wsdl) provides a limited number of administrative
operations that you can perform either by using Administration Console or by using this
Web service. The operations that you can perform using this Web service are:

■ Add a user to Exception User List (addUserToExceptionList)

■ Remove a user from Exception User List (deleteUserFromExceptionList)

■ Fetch user profile information (getUserProfile)

■ Fetch location and connection information for an IP address
(getLocationAndConnectionInfo)

Refer to "Performing Selected Administration Tasks" (see page 185) for more
information on how to use the Administration Web service.

Organization Management Web Service

Organization is a RiskMinder unit that can either map to a complete enterprise (or a
company) or a specific division, department, or other entities within the enterprise. The
Organization Management Web service enables you to programmatically create and
manage these organizations. You can perform the following operations by using this
Web service:

■ Create organizations

■ Fetch organization information

■ Fetch default organization

■ Update organization information

■ Update organization status

■ Refresh organization cache

■ Fetch user attributes that RiskMinder supports

■ Fetch user attributes that the directory service supports

Refer to "Managing Organizations" (see page 41) for more information on how to use
the Organization Management Web service.

Introduction to the RiskMinder Web Services

12 Web Services Developer's Guide

User Management Web Service

The User Management Web service enables you to manage users, user accounts,
Personal Assurance Message (PAM), and authentication operations for LDAP users. You
can perform the following operations by using this Web service:

■ Create users and user accounts

■ Search users

■ Fetch users and user accounts

■ Update user information

■ Update user account information

■ Fetch and update user status

■ Authenticate administrators (username-password and QnA authentication
mechanisms only)

■ Set and fetch PAM

Refer to "Managing Users and Accounts" (see page 87) for more information on how to
use the User Management Web service.

Configuration Management Web Service

The Configuration Management Web service can be used to perform the following
operations:

■ Create account types

■ Update account types

■ Fetch account types

■ Fetch email ID and telephone number types configured at the global level

■ Fetch the user attributes that are configured to be stored in the encrypted format

Refer to "Managing Additional User Configurations" (see page 69) for more information
on how to use the Configuration Management Web service.

RiskMinder Web Services Features

Chapter 1: Getting Started 13

RiskMinder Web Services Features

 This section discusses the salient features of RiskMinder Web services:

■ Web Services Authentication and Authorization

RiskMinder Web services are protected from rogue requests through
authentication and authorization of all Web service requests. Authentication
ensures that the incoming request to the Web service has valid credentials to
access the Web service, while authorization ensures that the authenticated request
has appropriate privileges to access the Web service.

See "Managing Web Services Security" (see page 37) for more information.

Book: A Master Administrator (MA) can also enable Web services authentication
and authorization by using the Authentication and Authorization page in
Administration Console.

See "Getting Started" in CA RiskMinder Administration Guide for more information
on how to do this.

■ Support for Additional Parameters

In addition to the mandatory inputs, Web services accept additional input that can
be passed as a name-value pair. This input can include information, such as locale,
calling application details, or profile.

Before You Begin

14 Web Services Developer's Guide

Before You Begin

Before you integrate your application with RiskMinder, you must install and configure
RiskMinder, ensuring that:

■ The systems on which you plan to install RiskMinder meet the system
requirements.

Book: Refer to "System Requirements" in the CA RiskMinder Installation and
Deployment Guide for a complete list of installation prerequisites.

■ You have completed the configuration and planning-related information:

■ You have installed and configured the required number of RiskMinder database
instances.

Book: See "Configuring Database Server" and "Database-Related
Post-Installation Tasks" in the CA RiskMinder Installation and Deployment
Guide for detailed instructions.

■ You have installed the applicable version of JDK on the system where you plan
to install RiskMinder components that use JDK.

■ You have also installed the required application server.

Book: See "Requirements for Java-Dependent Components" in the CA
RiskMinder Installation and Deployment Guide.

In the case of single-system deployment of RiskMinder, ensure that all the components
are up and running.

Book: See "Deploying RiskMinder on a Single System" in the CA RiskMinder Installation
and Deployment Guide for more information.

In the case of distributed-system deployment of RiskMinder, ensure that the
connection is established between all the components and that they successfully
communicate with each other.

Book: See "Deploying RiskMinder on a Distributed System" in the CA RiskMinder
Installation and Deployment Guide for more information

Using RiskMinder WSDL Files

Chapter 1: Getting Started 15

Using RiskMinder WSDL Files

To generate client applications, you must use the WSDL documents that are shipped
with RiskMinder. These documents define the request and response messages that are
exchanged between your application and RiskMinder Server to perform an operation.

The following table lists the WSDL documents that RiskMinder provides. These WSDLs
are available at the following location:

■ On Microsoft Windows: install_location\Arcot Systems\wsdls\

■ On UNIX-Based platforms: install_location/arcot/wsdls/

You can use any tool of your choice, such as Apache Axis or .NET SOAP Framework, to
generate client stub classes by using the WSDL files listed in the following table. You can
then use the generated stub classes to build your application and access the required
Web services.

WSDL File Description

riskfort/ArcotRiskFortEvaluate
RiskService.wsdl

Used to perform risk evaluation and post
evaluation.

riskfort/ArcotRiskFortAdminWeb
Service.wsdl

Used to manage a few administrative
operations.

uds/ArcotOrganizationManagementSv
c.wsdl

Used to create and manage organizations in
your setup.

uds/ArcotConfigManagementSvc.wsdl Used to create and manage user account
types.

uds/ArcotUserManagementSvc.wsdl Used to create and manage users and user
accounts.

Important! If you are using .NET SOAP Framework to generate the client stubs, then you
must include the following line in your code before you invoke the RiskMinder
operations (ArcotRiskFortAdminSvc and RiskFortEvaluateRiskSvc):

ServicePointManager.Expect100Continue = false; // which is available in System.Net;

If you do not include this line, you might see errors.

Quick Summary

16 Web Services Developer's Guide

Quick Summary

The following steps provide a quick recap of the steps that you must perform to set up
your environment to use RiskMinder Web service:

1. Access the WSDL by navigating to the following location:

On Microsoft Windows: install_location\Arcot Systems\wsdls\

On UNIX-Based platforms: install_location/arcot/wsdls/

2. Generate the client stub classes by using the WSDL files.

You can use a SOAP Framework, such as Apache Axis or Microsoft.NET, to generate
client stub classes from a WSDL file.

3. Create the client application by using the stub classes generated in Step 2.

Depending on the software that you choose, refer to the respective vendor
documentation for more information on writing the client and the files required for
the client to connect to the RiskMinder Web service.

4. Connect the client to the RiskMinder Web service end point by using the default
URLs listed in the following table.

Note: The following table lists the default URLs on which the Web services listen for
client requests. If you change the service end point URL, then ensure that you
connect your client to the new location that you have configured.

Web Service URL

Organization Management
Web Service

http://Apphost:Port/arcotuds/services/Arcot
UserRegistryMgmtSvc

■ Apphost: Host name or the IP address of the
system where User Data Service (UDS) is
deployed.

■ Port: The port number at which the
application server (on which UDS is deployed)
is listening.

User Management Web
Service

http://Apphost:Port/arcotuds/services/Arcot
UserRegistrySvc

■ Apphost: Host name or the IP address of the
system where UDS is deployed.

■ Port: The port number at which the
application server (on which UDS is deployed)
is listening.

Quick Summary

Chapter 1: Getting Started 17

Web Service URL

Configuration Management
Web Service

http://Apphost:Port/arcotuds/services/Arcot
ConfigRegistrySvc

■ Apphost: Host name or the IP address of the
system where User Data Service (UDS) is
deployed.

■ Port: The port number at which the
application server (on which UDS is deployed)
is listening.

Risk Evaluation Web Service http://Apphost:Port/services/RiskFortEvaluateRis
kSvc

■ Apphost: Host name or the IP address of the
system where RiskMinder Server is installed.

■ Port: The port number at which the
Transaction Web Services protocol is
listening. By default, this is 7778.

Administration Web Service http://Apphost:Port/services/ArcotRiskFort
AdminSvc

■ Apphost: Host name or the IP address of the
system where RiskMinder Server is installed.

■ Port: The port number at which the
Administration Web Services protocol is
listening. By default, this is 7777.

Note: To secure the connection using SSL, enable the Web Services protocols for
SSL connection. See appendix, "Additional Configurations" (see page 197) for
detailed instructions.

1. Send the requests to the RiskMinder Web service through the client.

The RiskMinder Web service processes the request and returns the message,
response code, reason code, and transaction ID in the response.

Chapter 2: Understanding RiskMinder Workflows 19

Chapter 2: Understanding RiskMinder
Workflows

RiskMinder provides many workflows that can be integrated and used by your online
application. Based on your organizational requirements, you can integrate these
workflows, without changing the existing online experience for your users in most cases,
except when RiskMinder generates the INCREASEAUTH advice.

This section describes the RiskMinder workflows and provides an overview of each
workflow so that you can understand the different processes involved. This section
covers the following topics:

■ Enrollment Workflows (see page 19)

■ Risk Evaluation Workflows (see page 27)

■ Workflow Summary (see page 35)

Enrollment Workflows

Every time your application forwards a request for risk analysis, RiskMinder uses the
Unknown User Check rule to determine if the user details exist in the RiskMinder
database. If this information is not found, then RiskMinder treats the incoming request
as a first-time (or unknown) user request and recommends the ALERT advice. In such
cases, you must enroll the user so that they do not see the same advice the next time
they undergo risk evaluation.

Enrollment is the process of creating a new user in the RiskMinder database. As
discussed in the following subsections, you can enroll the user explicitly by calling the
createUserRequest message in the ArcotUserRegistrySvc Web service from your
application. After user enrollment, you must perform risk evaluation (as discussed in
"Risk Evaluation Workflows" (see page 27)).

You can also implicitly create the user by setting the User Enrollment Mode as Implicit
in the Miscellaneous Configurations page of Administration Console. If you enable this
option, then every time you perform risk evaluation for an unknown user, the user is
automatically created in the system.

However, if the user is not registered with your application (in other words, the user is
unknown to your application), then you must take action according to your
organizational policies.

Enrollment Workflows

20 Web Services Developer's Guide

Explicit Enrollment

In the case of explicit enrollment, you must explicitly call RiskMinder’s
createUserRequest message in the ArcotUserRegistrySvc Web service from your
application to create a user in the RiskMinder database. You can call this operation
either before (Scenario 1 (see page 21)) or after (Scenario 2 (see page 23)) you perform
risk evaluation (by using the evaluateRisk call.)

Enrollment Workflows

Chapter 2: Understanding RiskMinder Workflows 21

Scenario 1

If you call the createUserRequest message in the ArcotUserRegistrySvc Web service
before the evaluateRisk operation, then the steps for the explicit enrollment workflow
are:

1. User logs in to your online application.

Your system validates if the user exists in the system. If the user name is not valid,
then your application must take appropriate action.

2. Your application calls RiskMinder’s createUserRequest message.

Your application must make an explicit call to the createUserRequest message in
the ArcotUserRegistrySvc Web service. In this call, you must pass all relevant user
details, such as the user’s first name, last name, organization, email, and their
personal assurance message (PAM) to RiskMinder.

Book: See "Managing Users and Accounts" in the CA RiskMinder Web Services
Developer’s Guide for detailed information about the createUserRequest message.

3. RiskMinder creates the user in the database.

If the createUserRequest call was successful, then RiskMinder creates the user
record in the RiskMinder database. With this, user is enrolled with RiskMinder.

4. Your application collects information required by RiskMinder.

Your application collects the following information from the user’s system that will
be used by RiskMinder for analyzing the risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored on the end user's
device.

■ Transaction information that includes the name of the channel being used by
the user, a numeric identifier for the transaction, and some other information
about the transaction.

■ Location information that includes the IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

5. You application calls RiskMinder’s evaluateRisk for risk analysis.

In this case, because you enrolled the user before performing risk analysis, the
RiskMinder system "knows" the user and does not generate the ALERT advice. Refer
to "Risk Evaluation Workflows" (see page 27) for more information.

6. RiskMinder performs risk analysis.

RiskMinder generates a risk score and an advice.

Enrollment Workflows

22 Web Services Developer's Guide

7. Your application stores the Device ID on the end-user’s system.

Your application must store the Device ID returned by evaluateRisk as a cookie on
the device that the end user is using for the current transaction.

The following figure illustrates the explicit enrollment workflow when you call the
createUserRequest message before the evaluateRisk call.

Enrollment Workflows

Chapter 2: Understanding RiskMinder Workflows 23

Scenario 2

If you call the CreateUserRequest message after the evaluateRisk operation, the steps
for the explicit enrollment workflow are:

1. User logs in to your online application.

Your system validates if the user exists in the system. If the user name is not valid,
then your application must take appropriate action.

2. Your application collects information required by RiskMinder.

Your application collects the following information from the user’s system that will
be used by RiskMinder for analyzing the risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored on the end user's
device.

■ Transaction information that includes the name of the channel being used by
the user, a numeric identifier for the transaction, and some other information
about the transaction.

■ Location information that includes the IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

3. Your application calls RiskMinder’s evaluateRisk operation.

Your application must call the evaluateRisk operation in RiskFortEvaluateRiskSvc. In
this call, you must pass all the user and device information that you collected in
Step 2 to RiskMinder.

4. You application calls RiskMinder’s evaluateRisk for risk analysis.

RiskMinder performs risk analysis for the user and generates an advice. In this case,
because the user is not yet "known" to the RiskMinder system, the ALERT advice is
generated.

5. Your application calls RiskMinder’s createUserRequest message.

Your application must make an explicit call to the createUserRequest message in
the ArcotUserRegistrySvc Web service. In this call, you must pass all relevant user
details, such as the user’s first name, last name, organization, email, and their
personal assurance message (PAM) to RiskMinder.

Book: See "Managing Users and Accounts" in the CA RiskMinder Web Services
Developer’s Guide for detailed information about the createUserRequest message.

6. RiskMinder creates the user in the database.

Enrollment Workflows

24 Web Services Developer's Guide

If the createUserRequest call was successful, then RiskMinder creates the user
record in the RiskMinder database. With this, the user is enrolled with RiskMinder.

7. Your application calls RiskMinder’s evaluateRisk operation again.

Your application must call the evaluateRisk operation in RiskFortEvaluateRiskSvc. In
this call, you must ensure that you pass all the user and device information that you
collected in Step 2 to RiskMinder.

8. RiskMinder performs risk analysis for the user.

In this case, RiskMinder executes the rules and generates the risk score and the
advice.

9. Your application stores the Device ID on the end-user’s system.

Your application must store the Device ID returned by evaluateRisk as a cookie on
the device that the end user is using for the current transaction.

The following figure illustrates the explicit enrollment workflow when you call the
createUserRequest message before the evaluateRisk call.

Enrollment Workflows

Chapter 2: Understanding RiskMinder Workflows 25

Implicit Enrollment

In the case of implicit enrollment, you do not need to call RiskMinder’s
createUserRequest message explicitly from your application’s code to create a user in
the RiskMinder database. Instead, when RiskMinder generates the ALERT advice for an
"unknown user", it automatically calls the operation to enroll the user.

For this enrollment to work, it is important that you first set the value of User
Enrollment Mode field in the Miscellaneous Configurations page of Administration
Console to Implicit.

The steps for the implicit enrollment workflow are:

1. User logs in to your online application.

Your system validates if the user exists in the system. If the user name is not valid,
then your application must take appropriate action.

2. Your application collects information required by RiskMinder.

Your application collects the following information from the user’s system that will
be used by RiskMinder for analyzing the risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored on the end user's
device.

■ Location information that includes the IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

3. Your application calls RiskMinder’s evaluateRisk operation.

Your application must call the evaluateRisk operation in RiskFortEvaluateRiskSvc. In
this call, you must pass all the user and device information that you collected in
Step 2 to RiskMinder.

4. RiskMinder performs risk analysis for the user.

In this case, because the user is not yet "known" to the RiskMinder system, the
default ALERT advice is generated.

5. RiskMinder creates the user in the database.

For every ALERT advice that is generated, RiskMinder automatically uses the
createUserRequest message in the ArcotUserRegistrySvc Web service to create the
user record in the RiskMinder database. With this, the user is enrolled with
RiskMinder.

Enrollment Workflows

26 Web Services Developer's Guide

Book: See "Managing Users and Accounts" in the CA RiskMinder Web Services
Developer’s Guide for detailed information about the createUserRequest message.

6. Your application calls RiskMinder’s evaluateRisk operation again.

Your application must call the evaluateRisk operation in RiskFortEvaluateRiskSvc. In
this call, you must ensure that you pass all the user and device information that you
collected in Step 2 to RiskMinder.

7. RiskMinder performs risk analysis for the user.

In this case, RiskMinder executes the rules and generates the risk score and the
advice.

8. Your application stores the Device ID on the end-user’s system.

After the user has been created, your application must store the Device ID returned
by evaluateRisk as a cookie on the device that the end user is using for the current
transaction.

The following figure illustrates the implicit enrollment workflow when RiskMinder
automatically creates the user.

Implicit Enrollment Workflow

Risk Evaluation Workflows

Chapter 2: Understanding RiskMinder Workflows 27

Risk Evaluation Workflows

The risk evaluation workflows enable your online application to determine if the
incoming user request is potentially risky or not:

■ If the risk is low, the user is allowed to access your online application.

■ If the risk is high, the user is denied access to your online application.

■ If the transaction is tagged as suspicious, this workflow also prompts your
application to challenge users for additional authentication to prove their identity.

If the user fails this additional authentication, then it is strongly recommended that
you do not allow the user to access the protected resource(s).

You can implement RiskMinder’s risk analysis capability either before the user logs in to
your online application or after they have successfully logged in and are performing a
transaction. Depending on when you call RiskMinder’s evaluateRisk operation, the
following workflows are possible:

■ Pre-Login Risk Evaluation Workflow (see page 28)

■ Post-Login Risk Evaluation Workflow (see page 30)

Risk Evaluation Workflows

28 Web Services Developer's Guide

Pre-Login Risk Evaluation Workflow

When a user accesses your online application, you can assess them for potential risk
even before they log in, by implementing this workflow. This workflow only uses inputs
related to device identification and location information (such as IP address, Device ID,
and DeviceDNA) and rules that do not require user-specific information as the criterion
for risk evaluation.

If you call RiskMinder’s risk analysis capability even before a user logs in to your online
application, then the risk evaluation workflow is as follows:

1. User accesses your online application.

When a user accesses your online application, you can assess them for potential risk
even before they log in.

2. Your application collects information required by RiskMinder.

Your application collects the following information from the user’s system that will
be used by RiskMinder for analyzing the risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which can be stored on the end
user's device.

■ Location information that includes the IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

3. Your application calls RiskMinder’s evaluateRisk operation.

Your application must call the evaluateRisk operation in RiskFortEvaluateRiskSvc. In
this call, you must pass the information that you collected in Step 2 to RiskMinder.

4. RiskMinder performs risk analysis for the user.

RiskMinder generates the appropriate risk score and advice based on the user
inputs and configured rules.

5. Your application validates the user.

Based on risk advice generated by RiskMinder, your application can allow the user
to proceed with the login process or can deny access to your system.

The following figure illustrates the pre-login risk evaluation workflow.

Pre-Login Risk Evaluation Workflow

Risk Evaluation Workflows

Chapter 2: Understanding RiskMinder Workflows 29

Risk Evaluation Workflows

30 Web Services Developer's Guide

Post-Login Risk Evaluation Workflow

When a user accesses your online application, you can first log them in and then
comprehensively assess them for potential risks by implementing this workflow. This
workflow uses device identification information and other factors, such as network
information, user information, and (if implemented) transaction information to evaluate
users.

Based on the result of the evaluateRisk operation, RiskMinder determines whether to
create an association and update the attributes during the postEvaluate operation:

■ In the case of ALLOW, the user-device association information is updated.

■ In the case of ALERT and DENY, the user-device association information is not
updated at all.

■ In the case of INCREASEAUTH, the user-device association information is updated,
but the user association information is created only if the result of the additional
authentication ("Secondary Authentication Workflow" (see page 33)) was
successful.

If you call RiskMinder’s risk analysis capability after you authenticate a user in to your
online application, then the risk evaluation workflow is as follows:

1. User logs in to your online application.

Your system validates if the user exists in the system. If the user is not valid, then
your application must take appropriate action.

2. Your application collects information required by RiskMinder.

Your application collects the following information from the user’s system that will
be used by RiskMinder for analyzing the risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored on the end user's
device.

■ Location information that includes the IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

3. Your application calls RiskMinder’s evaluateRisk operation.

Your application must call the evaluateRisk operation in RiskFortEvaluateRiskSvc. In
this call, you must pass all the user and device information that you collected in
Step 2 to RiskMinder.

4. RiskMinder performs risk analysis for the user.

Risk Evaluation Workflows

Chapter 2: Understanding RiskMinder Workflows 31

RiskMinder evaluates the risk using the incoming inputs and the configured rules.
Based on the result of rules that were executed and whether the information
matched, RiskMinder generates:

■ ALERT, if the information for the user does not exist in the RiskMinder
database.

■ ALLOW, if the risk score is low.

■ DENY, if the risk score is high.

■ INCREASEAUTH, if the incoming information is suspicious.

If the advice is INCREASEAUTH, then refer to "Secondary Authentication Workflow"
(see page 33) for more information on how to proceed.

5. Your application takes the appropriate action by using RiskMinder’s
recommendation.

Based on the result of the evaluateRisk call, your application either allows the user
to continue with the transaction, denies them access to the protected resource, or
performs secondary authentication.

See "Secondary Authentication Workflow" (see page 33) for more information.

6. Your application calls RiskMinder’s postEvaluate operation.

At this stage, your application must call the postEvaluate operation in
RiskFortEvaluateRiskSvc. Based on the output generated by the evaluateRisk call,
this call helps RiskMinder generate the final advice and update the device and
association information.

In this call, you must pass the risk score and advice from the evaluateRisk call, the
result of secondary authentication (if the advice in the previous step was
INCREASEAUTH), and any association name, if the user specified one.

7. RiskMinder updates the device and association information.

If any change is detected in the incoming data, RiskMinder updates the data and
association information in the RiskMinder database.

The following figure illustrates the post-login risk evaluation workflow.

Risk Evaluation Workflows

32 Web Services Developer's Guide

Post-Login Risk Evaluation Workflow

Risk Evaluation Workflows

Chapter 2: Understanding RiskMinder Workflows 33

Secondary Authentication Workflow

When RiskMinder generates the INCREASEAUTH advice, it transfers the control back to
your application temporarily for secondary authentication. In this case, your application
must implement some mechanism for performing additional authentication. For
example, your application can display industry-standard security (or challenge)
questions to the user (such as mother’s maiden name and date of birth) or make them
undergo out-of-band phone authentication.

After you determine whether the user authenticated successfully or not, you must
forward the result to RiskMinder, which uses this feedback to generate the final advice,
update device information, create association information, and store the feedback to
use for risk analysis of future transactions.

The risk evaluation workflow in the case of secondary authentication is as follows:

1. User logs in to your online application.

Your system validates if the user exists in the system. If the user is not valid, then
your application must take appropriate action.

2. Your application collects information required by RiskMinder.

Your application collects the following information from the user\xE2\x80\x99s
system that will be used by RiskMinder for analyzing the risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored on the end user's
device.

■ Location information that includes the IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

3. Your application calls RiskMinder’s evaluateRisk operation.

Your application must call the evaluateRisk operation in RiskFortEvaluateRiskSvc. In
this call, you must pass all the user and device information that you collected in
Step 2 to RiskMinder.

4. RiskMinder performs risk analysis for the user.

If RiskMinder flags the transaction as suspicious, it generates the INCREASEAUTH
advice. This implies that extra credentials are required to further authenticate the
user.

5. Your application performs secondary authentication.

Risk Evaluation Workflows

34 Web Services Developer's Guide

Based on the secondary authentication mechanism that you are using, your
application displays the appropriate pages to the user. For example, you can
prompt the user to:

■ Answer the security questions that they selected while enrolling with your
application.

■ Perform One-Time Password (OTP) authentication.

■ Perform out-of-band phone authentication.

After receiving the user input, your application determines the outcome of the
additional authentication.

6. Your application calls RiskMinder’s postEvaluate operation and forwards the
result of the secondary authentication to RiskMinder.

Irrespective of whether the user failed or cleared the secondary authentication,
your application must pass the result back to RiskMinder. This information helps
RiskMinder build an up-to-date and accurate user history.

To do so, your application must call the postEvaluate operation in
RiskFortEvaluateRiskSvc. In this call, you must pass the risk score and advice from
the evaluateRisk call, the result of secondary authentication, and any association
name, if the user specified one.

7. RiskMinder generates the final advice.

By using your application’s feedback regarding the secondary authentication,
RiskMinder generates the final advice.

8. RiskMinder updates the device information and creates the association
information.

Based on the result of the postEvaluate call, RiskMinder also updates the device
attributes and creates the association information in the RiskMinder database.

9. Your application takes the appropriate action.

Based on the result of the postEvaluate call, your application either allows the user
to continue with the transaction or denies them access to the protected resource.

The following figure illustrates the secondary authentication risk evaluation workflow.

Workflow Summary

Chapter 2: Understanding RiskMinder Workflows 35

Secondary Authentication Risk Evaluation Workflow

Workflow Summary

The following table provides a brief summary of the workflows provided by RiskMinder.

Note: All these workflows, except for the secondary authentication workflow, are
implemented "behind the scenes" and do not change the user experience.

Workflow
Sub-Type of
the Workflow

Description
Dependant
Workflows

Enrollment

Explicit

Scenario 1: Creates a user in the
RiskMinder database, when you
call the createUserRequest
message before evaluateRisk.

In this case, the end user never
gets an ALERT advice.

■ Post-Login
Risk
Evaluation

Workflow Summary

36 Web Services Developer's Guide

Workflow
Sub-Type of
the Workflow

Description
Dependant
Workflows

Scenario 2: Creates a user in the
RiskMinder database, when you
call the createUserRequest
message after evaluateRisk.

■ Post-Login
Risk
Evaluation

Implicit RiskMinder automatically
creates a user in the RiskMinder
database, without you having to
call the createUserRequest
message.

■ Post-Login
Risk
Evaluation

Risk Evaluation

Pre-Login Analyzes the risk of a
transaction before the user logs
in to your online application
system.

None

Post-Login Analyzes the risk of a
transaction after the user logs
in to your online application
system.

Also updates user information
and device association
information.

■ Enrollment

■ Secondary
Authenticatio
n

In case of
Secondary
Authentication

Provides the final advice if your
application performed
secondary authentication after
RiskMinder recommended
INCREASEAUTH.

Also updates user information
and device association
information.

■ Post-Login
Risk
Evaluation

Chapter 3: Managing Web Services Security 37

Chapter 3: Managing Web Services Security

RiskMinder Web services are protected from rogue requests through authentication and
authorization of all Web service requests. Authentication ensures that the incoming
request to the Web service has valid credentials to access the Web service, while
authorization ensures that the authenticated request has appropriate privileges to
access the Web service. To enable the authentication and authorization feature, you
must ensure that your calling application includes the required details in the incoming
call header.

The Web services authentication and authorization works as follows:

1. The calling application authenticates to the RiskMinder Web services by including
the required credentials in the call header.

2. The RiskMinder Web services authenticate these credentials and, if valid, provide
your calling application with an authentication token.

3. The calling application includes the authentication token and the authorization
elements in the header of the subsequent calls.

This section covers the following information:

■ Authentication Header Elements (see page 37)

■ Authorization Header Elements (see page 38)

■ SOAP Header Namespace (see page 38)

Authentication Header Elements

The following table lists the elements that have to be included in the call header for
authentication.

Element Mandatory Description

userID Yes The unique identifier of the user whose account has to
be authenticated.

orgName Yes The organization name to which the authenticating
user belongs.

credential Yes The credential of the user that is to be used for
authentication.

Authorization Header Elements

38 Web Services Developer's Guide

Authorization Header Elements

The following table lists the elements that you must pass in the call header for
authorization.

Element Mandatory Description

authToken Yes The authentication token that is returned after
successful user verification. This token indicates that
the user is already authenticated, and thereby
eliminates the need for user credentials for successive
authentication attempts.

By default, the authentication token is valid for one
day, after which you need to authenticate again.

Note: You can set any one of the following elements.

targetorg No The organization to which your calling application must
authorize before performing any operation.

Note: If you want to enable authorization for more
than one organization, then repeat this entry for every
organization.

targetAllOrgs No Indicates whether authorization is required before
operations on all organizations can be performed. Set
the value of this element to TRUE to enable
authorization for all organizations.

globalEntity No Indicates whether authorization is required for
performing global configurations. Set this value to
TRUE if you want to enable authorization for the global
configuration operations, such as fetching attributes
for users and fetching UDS attributes.

SOAP Header Namespace

The authentication and authorization header elements explained in the previous two
sections must use the namespace, as mentioned in the following table.

Web Service Namespace

User Data Service Web Services

■ User Management

■ User Registry Management

■ Configuration Registry

http://ws.arcot.com/UDSTransaction/1.0

RiskMinder Web Services

SOAP Header Namespace

Chapter 3: Managing Web Services Security 39

Web Service Namespace

Risk Evaluation http://ws.arcot.com/RiskFortEvaluateRiskAPI/2.0/ws
dl

Administration http://ws.arcot.com/ArcotRiskFortAdminSvc/1.0/ws
dl

Chapter 4: Managing Organizations 41

Chapter 4: Managing Organizations

Important! To use the Web service operations that are discussed in this section, you
must deploy the User Data Service (arcotuds.war) file.
See "Deploying User Data Service" in the CA RiskMinder Installation and Deployment
Guide for more information.

In RiskMinder, an organization can either map to a complete enterprise (or a company)
or a specific division, department, or other entities within the enterprise. The
organization structure provided by RiskMinder is flat. In other words, organizational
hierarchy (in the form of parent and child organizations) is not supported, and all
organizations are created at the same level as the Default Organization.

This section discusses the following Web service operations that RiskMinder provides to
create and manage organizations:

■ Creating Organizations (see page 42)

■ Updating Organizations (see page 47)

■ Updating Organization Status (see page 49)

■ Refreshing the Organization Cache (see page 51)

■ Fetching Default Organization Details (see page 53)

■ Fetching Organization Details (see page 56)

■ Searching Organizations (see page 58)

■ Fetching Directory Service Attributes (see page 63)

■ Fetching RiskMinder Database Attributes (see page 60)

■ Deleting Organizations (see page 67)

You must use the ArcotOrganizationManagementSvc.wsdl file to perform the operations
discussed in this section.

Creating Organizations

42 Web Services Developer's Guide

Creating Organizations

When you deploy Administration Console, an organization is created by default. This
out-of-the-box organization is referred to as Default Organization (DEFAULTORG). For a
single organization setup, instead of creating an organization you can rename this
default organization, change its configurations, and then continue to use it.

For a multi-organization setup, you must create additional organizations. You can do this
either by using Administration Console or by using Web services.

This section walks you through the following steps for creating organization:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you create an organization, you must refresh the system cache for the new
organization to take effect. See "Refreshing the Organization Cache" (see page 51) for
more information on how to refresh the cache.

Preparing the Request Message

The createOrgRequest message is used to create organizations in the RiskMinder
database. The following table lists the elements of this request message.

Element Mandatory Description

orgName Yes The unique name of the organization that you want to
create. This name will be used to log in to
Administration Console.

displayName Yes A descriptive name for the organization.

keyLabel No The label for the key used to encrypt the sensitive
organization data.

Setting the key label is a one-time operation. After you
set this value, you cannot modify it.

Note: If this value is not specified, then the Master Key
is used as the key label.

Creating Organizations

Chapter 4: Managing Organizations 43

Element Mandatory Description

repositoryType No The repository where the accounts of the users who
belong to the organization will reside. This repository
can be one of the following:

■ ARUSER:
Indicates that the user accounts will be created in
a Relational Database Management System
(RDBMS). RiskMinder supports MS SQL, MySQL,
and Oracle Database.

■ LDAP:
Indicates that the user accounts existing in your
directory service will be used.
Note: If you choose this option, then ensure that
you have successfully deployed User Data Service
(UDS) and configured it to connect to your
directory service.

ldapDetails No

Required
only if
repositoryTy
pe =LDAP

The details of the directory service where the user
information is available:

■ host
The host name of the system where your directory
service is available.

■ port
The port number at which the directory service is
listening.

■ schemaName
The LDAP schema used by the directory service.
This schema specifies the types of objects that a
directory service can contain, and specifies the
mandatory and optional attributes of each object
type.
Typically, the schema name for Active Directory is
user and for SunOne Directory, it is inetorgperson.

■ baseDN
The name-value key pairs of the base Distinguished
Name (DN) of the directory service. This value
indicates the starting node in the LDAP hierarchy
to search in the directory service.
For example, to search or retrieve a user with a DN
of cn=rob laurie, ou=sunnyvale, o=arcot, c=us, you
must specify the base DN as the following:
ou=sunnyvale, o=arcot, c=us
Typically, these values are case sensitive and
search all sub-nodes under the specified base DN.

Creating Organizations

44 Web Services Developer's Guide

Element Mandatory Description

connectionCre
dential

No

Required
only if
repositoryTy
pe =LDAP

The information required to connect to the directory
service:

■ ssl
The type of connection to be established with the
directory service:
– TCP: Indicates that the directory service will
listen to incoming requests over TCP.
– 1WAY: Indicates that the directory service will
listen to incoming requests over one-way SSL.
– 2WAY: Indicates that the directory service will
listen to incoming requests over two-way SSL.

■ loginName
The complete distinguished name of the LDAP
repository user who has the privilege to log in to
the repository sever and manage the base DN.
For example,
uid=gt,dc=arcot,dc=com

■ loginPassword
The password of the user provided in loginName.

■ (Optional) serverTrustCert
The base64-encoded trusted root certificate of the
server that issued the SSL certificate to the
directory service.
This parameter is required only if ssl is set to 1WAY
or 2WAY.

■ (Optional) clientKeyStore
The password for the client key store and the
base64-encoded root certificate of UDS.
This parameter is required only if ssl is set to
2WAY.

redirectSearch
Schema

No

Required
only if
repositoryTy
pe =LDAP

The schema to be used when searching for values
whose attributes are in a different node.

redirectSearch
Attribute

No

Required
only if
repositoryTy
pe =LDAP

The value of the attribute to be searched in
redirectSearchSchema.

Creating Organizations

Chapter 4: Managing Organizations 45

Element Mandatory Description

repositoryattri
bute

No

Required
only if
repositoryTy
pe =LDAP

The user attribute in the directory service that has to
be mapped to the RiskMinder attribute. Based on this
mapping, UDS searches for the user in the directory
service.

arcotattribute No

Required
only if
repositoryTy
pe =LDAP

The RiskMinder attribute to which the directory service
attribute must be mapped.

For example, you can map the UID attribute in the
directory service to the USERNAME RiskMinder
attribute.

status No The status of the organization in the database:

■ INITIAL
Indicates that the organization is not yet activated
and cannot be used for any operations.

■ ACTIVE
Indicates that the organization has been
successfully created and activated. You can
perform any supported operation on the
organization.

■ INACTIVE
Indicates that the organization has been
deactivated. To perform any further operation,
you must first activate the organization.

■ DELETED
Indicates that the organization has been deleted
and cannot be used anymore.

Note: If you do not set the status element for the
organization, then the organization is created with the
INITIAL state.

description No A description for the organization that helps the
administrators managing the organization to easily
identify the organization.

customAttribut
e

No Name-value pairs that you can use to set any additional
user or organization information.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
related transactions.

Creating Organizations

46 Web Services Developer's Guide

Invoking the Web Service

To create organizations:

1. (Optional) Include the authentication and authorization details in the header of the
createOrg operation.

See "Managing Web Services Security" (see page 37) for more information on the
header elements.

2. Use the createOrgRequest elements to set the organization information, as listed in
the table.

3. Use the createOrgRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the createOrg operation of the ArcorUserRegistryMgmtSvc service to create
the organization.

This operation returns the createOrgResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, createOrgResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table.

The SOAP body returns a success message if the operation was performed successfully.
If there are any errors, then the Fault response is returned. See appendix, "Exceptions
and Error Codes" (see page 209) for more information on the SOAP error messages

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Updating Organizations

Chapter 4: Managing Organizations 47

Updating Organizations

The updateOrg operation enables you to update the following organization information:

■ Display name

■ Description

■ Custom attributes

Note: In addition to the elements that are required to perform these tasks,
updateOrgRequest contains other elements for repository (directory service or
RiskMinder database) configuration and user attribute mapping. After you create an
organization, you cannot change the repository type and the related settings. Therefore,
these elements are not applicable when you update an organization. Even if you set
these elements, they will not be considered.

This section walks you through the following steps for updating organizations:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you update an organization, you must refresh the system cache for the
changes to take effect. See "Refreshing the Organization Cache" (see page 51) for more
information on how to refresh the system cache.

Preparing the Request Message

The updateOrgRequest message is used to update organizations in the RiskMinder
database. The following table lists the elements of this request message.

Note: The following table lists only the elements that you can use to update the
organization information. You can ignore other additional updateOrgRequest elements,
such as repository type (repositoryDetails) configuration, user attribute mapping
(mappingDetails) configuration, and status.

Element Mandatory Description

orgName Yes The name of the organization that has to be updated.

displayName No The descriptive name of the organization.

description No A description for the organization that will help the
administrators managing the organization.

customAttribut
e

No The name-value pairs that you can use to set any
additional user or organization information.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Updating Organizations

48 Web Services Developer's Guide

Invoking the Web Service

To update an organization:

1. (Optional) Include the authentication and authorization details in the header of the
updateOrg operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the upateOrgRequest elements to update the organization information, as
listed in the table.

3. Use the upateOrgRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the updateOrg operation of the ArcorUserRegistryMgmtSvc service to
update the organization.

This operation returns the updateOrgResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateOrgResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Exceptions and Error Codes" (see page 209) for more information on the
SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Updating Organization Status

Chapter 4: Managing Organizations 49

Updating Organization Status

The updateOrgStatus operation is used to update the status of the organization in the
RiskMinder database.

This section walks you through the following steps for updating the organization status:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you update the organization status, you must refresh the system cache for
the changes to take effect. See "Refreshing the Organization Cache" (see page 51) for
more information on how to refresh the system cache.

Preparing the Request Message

The updateOrgStatusRequest message is used to update the organization status. The
following table lists the elements of this request message.

Element Mandatory Description

status Yes The status of the organization in the database:

■ INITIAL
Indicates that the organization is not yet activated
and cannot be used for any operations.

■ ACTIVE
Indicates that the organization has been
successfully created and activated. You can
perform any operation on the organization.

■ INACTIVE
Indicates that the organization has been
deactivated. To perform any further operation,
you must first activate the organization.

■ DELETED
Indicates that the organization has been deleted
and cannot be used anymore.

OrgName Yes The unique name with which the organization is
identified.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Updating Organization Status

50 Web Services Developer's Guide

Invoking the Web Service

To update the organization status:

1. (Optional) Include the authentication and authorization details in the header of the
updateOrgStatus operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the upateOrgStatusRequest elements to update the organization status, as
listed in the table.

3. Use the upateOrgStatusRequest message and construct the input message by using
the details specified in the preceding step.

4. Invoke the updateOrgStatus operation of the ArcorUserRegistryMgmtSvc service to
update the organization status.

This operation returns the updateOrgStatusResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateOrgStatusResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Exceptions and Error Codes" (see page 209) for more
information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Refreshing the Organization Cache

Chapter 4: Managing Organizations 51

Refreshing the Organization Cache

The refreshCache operation is used to refresh the organization configurations that are
stored in the cache. This section walks you through the following steps for refreshing
the organization cache:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The refreshCacheRequest message is used to refresh the organization cache. The
following table lists the elements of this request message.

Element Mandatory Description

systemCache No Specifies whether you want to refresh the system
cache:

■ True: Indicates that the system cache will be
refreshed.

■ False: Indicates that the system cache will not be
refreshed.

Note: You can set any one of the following elements.

allOrganization
s

No Specifies whether the cache of all organizations has to
be refreshed. Set the value of this element to TRUE to
refresh the cache of all organizations.

OrgName Yes The unique name with which the organization is
identified.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Refreshing the Organization Cache

52 Web Services Developer's Guide

Invoking the Web Service

To refresh the organization cache:

1. (Optional) Include the authentication and authorization details in the header of the
refreshCache operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the refreshCacheRequest elements for updating the organization
configurations, as listed in the table.

3. Use the refreshCacheRequest message and construct the input message by using
the details specified in the preceding step.

4. Invoke the refreshCache operation of the ArcorUserRegistryMgmtSvc service to
refresh the organization cache.

This operation returns the refreshCacheResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, refreshCacheResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. These elements are explained in
the following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Exceptions and Error Codes" (see page 209) for more information on the
SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Fetching Default Organization Details

Chapter 4: Managing Organizations 53

Fetching Default Organization Details

The Master Administrator (MA) sets the default organization details in the system.
Typically, when you create administrators or enroll users without specifying their
organization, they are created in this default organization. The retrieveDefaultOrg
operation is used to fetch the details of the default organization.

This section walks you through the following steps for fetching the details of the default
organization:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The retrieveDefaultOrgRequest message is used to fetch the default organization
information. The following table lists the elements of this request message.

Element Mandatory Description

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Fetching Default Organization Details

54 Web Services Developer's Guide

Invoking the Web Service

To fetch the default organization information:

1. (Optional) Include the authentication and authorization details in the header of the
retrieveDefaultOrg operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the retrieveDefaultOrgRequest elements for fetching the default organization
information, as listed in the table.

3. Use the retrieveDefaultOrgRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the retrieveDefaultOrg operation of the ArcorUserRegistryMgmtSvc service
to fetch the default organization details.

This operation returns the retrieveDefaultOrgResponse message that includes the
transaction identifier, authentication token, and default organization details. See
the following section for more information on the response message.

Interpreting the Response Message

The response message, retrieveDefaultOrgResponse, returns the transaction identifier,
authentication token, and other details in the SOAP envelope header. The SOAP body
includes the default organization details for a successful transaction and the Fault
response for an error condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

orgName The unique name of the organization.

displayName The descriptive name of the organization.

Fetching Default Organization Details

Chapter 4: Managing Organizations 55

Element Description

repositoryDetails The repository where the accounts of the users who belong to
the organization reside:

■ ARUSER

■ LDAP

dateCreated The timestamp when the organization was created.

dateModified The timestamp when the organization configuration was last
modified.

description The description for the organization that helps the administrators
managing the organization.

status The status of the default organization in the database:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

preferredLocale The locale configured for the organization. If you do not specify
the locale, then the default locale is set to en-US.

customAttribute The name-value pairs of the custom attributes that have been set
for the organization.

Fetching Organization Details

56 Web Services Developer's Guide

Fetching Organization Details

The retrieveOrg operation is used to read the details of an organization.

Note: If you want to fetch details of multiple organizations at the same time, then use
the listOrgs operation. See "Searching Organizations" (see page 58) for more
information on how to use this.

This section walks you through the following steps for fetching the details of an
organization:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The retrieveOrgRequest is used to fetch the details of an organization. The following
table lists the elements of this request message.

Element Mandatory Description

orgName Yes The unique name with which the organization is
identified.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Fetching Organization Details

Chapter 4: Managing Organizations 57

Invoking the Web Service

To fetch the organization details:

1. (Optional) Include the authentication and authorization details in the header of the
retrieveOrg operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the retrieveOrgRequest elements for fetching the organization details, as listed
in the table.

3. Use the retrieveOrgRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the retrieveOrg operation of the ArcorUserRegistryMgmtSvc service to fetch
the organization details.

This operation returns the retrieveOrgResponse message that includes the
transaction identifier, authentication token, and organization details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, retrieveOrgResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the
organization details for a successful transaction and the Fault response for an error
condition.

See the second table in Fetching Default Organization Details (see page 53) for more
information on the elements returned for a successful transaction. Refer to appendix,
"Exceptions and Error Codes" (see page 209) if there are any errors.

Searching Organizations

58 Web Services Developer's Guide

Searching Organizations

The listOrgs operation is used to simultaneously read the details of multiple
organizations. You can search organizations by their organization name, status, and
partial or complete display name.

This section walks you through the following steps for searching organizations:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listOrgsRequest operation is used to fetch the details of multiple organizations. The
following table lists the elements of this request message.

Element Mandatory Description

namePattern No The search pattern that you want to use to search
organizations. You can enter the partial or complete
display name of an organization. If you enter the partial
name, then all organizations with the display name
matching the search pattern will be fetched.

orgName No The unique name with which the organization is
identified.

Note: If you want to search for more than one
organization, then repeat this element for different
organizations.

OrgStatus

No The status of the organization in the database:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Searching Organizations

Chapter 4: Managing Organizations 59

Invoking the Web Service

To search multiple organizations:

1. (Optional) Include the authentication and authorization details in the header of the
listOrgs operation. See "Managing Web Services Security" (see page 37) for more
information on the header elements.

2. Use the listOrgsRequest elements for fetching the organization details, as listed in
the table.

3. Use the listOrgsRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the listOrgs operation of the ArcorUserRegistryMgmtSvc service to fetch the
organization details.

This operation returns the listOrgsResponse message that includes the transaction
identifier, authentication token, and organization details. See the following section
for more information on the response message.

Interpreting the Response Message

The response message, listOrgsResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the
organization details for a successful transaction and the Fault response for an error
condition.

See the second table in Fetching Default Organization Details (see page 53) for more
information on the elements returned for a successful transaction. Refer to appendix,
"Exceptions and Error Codes" (see page 209) if there are any errors.

Fetching RiskMinder Database Attributes

60 Web Services Developer's Guide

Fetching RiskMinder Database Attributes

The listArcotAttributes operation is used to fetch the user attributes that are used to
store the user information in the RiskMinder database.

This section walks you through the following steps for fetching the user attributes
supported by the RiskMinder database:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listArcotAttributesRequest message is used to fetch the user attributes. The
following table lists the elements of this request message.

Element Mandatory Description

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Fetching RiskMinder Database Attributes

Chapter 4: Managing Organizations 61

Invoking the Web Service

To fetch the RiskMinder database attributes:

1. (Optional) Include the authentication and authorization details in the header of the
listArcotAttributes operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the listArcotAttributesRequest elements to fetch the user attributes, as listed in
the table.

3. Use the listArcotAttributesRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the listArcotAttributes operation of the ArcorUserRegistryMgmtSvc service
to fetch the user attributes supported by the RiskMinder database.

This operation returns the listArcotAttributesResponse message that includes the
transaction identifier, authentication token, and user attributes. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, listArcotAttributesResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
user attributes for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

DATECREATED The timestamp when the user account was created.

DATEMODIFIED The timestamp when the user account was last modified.

EMAILADDR The email address of the user.

FNAME The first name of the user.

Fetching RiskMinder Database Attributes

62 Web Services Developer's Guide

Element Description

IMAGE The personal assurance image that the user selected.

LNAME The last name of the user.

MNAME The middle name of the user.

PAM The Personal Assurance Message (PAM) that is displayed when
the user tries to access any resource protected by RiskMinder.

PAM is the text string that serves as server verification to the
client and is set by the user during enrollment.

PAMURL The URL that lists the images, which can be used by the user to
select their personal assurance image.

STATUS The status of the user in the database:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

TELEPHONENUMB
ER

The telephone number of the user.

USERID The unique identifier for the user.

Fetching Directory Service Attributes

Chapter 4: Managing Organizations 63

Fetching Directory Service Attributes

The listRepositoryAttributes operation is used to fetch the directory service user
attributes that are mapped to RiskMinder-supported user attributes.

This section walks you through the following steps for fetching the user attributes that
the directory service supports:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listRepositoryAttributesRequest message is used to fetch directory service user
attributes that are mapped to RiskMinder-supported user attributes. The following table
lists the elements of this request message.

Element Mandatory Description

repositoryType Yes The directory service where the user information
resides:

■ ARUSER: For organizations that are created in the
RiskMinder database.

■ LDAP: For organizations that are mapped with
LDAP repository.

Fetching Directory Service Attributes

64 Web Services Developer's Guide

Element Mandatory Description

ldapDetails No The details of the directory service where the user
information is available:

■ host
The host name of the system where your directory
service is available.

■ port
The port number at which the directory service is
listening.

■ schemaName
The LDAP schema used by the directory service.
This schema specifies the types of objects that a
directory service can contain, and specifies the
mandatory and optional attributes of each object
type.
Typically, the schema name for Active Directory is
user and for SunOne Directory, it is inetorgperson.

■ baseDN
The name-value key pairs of the base
Distinguished Name (DN) of the directory service.
This value indicates the starting node in the LDAP
hierarchy to search in the directory service.
For example, to search or retrieve a user with a DN
of cn=rob laurie, ou=sunnyvale, o=arcot, c=us, you
must specify the base DN as the following:
ou=sunnyvale, o=arcot, c=us
Typically, these values are case sensitive and
search all sub-nodes under the specified base DN.

Fetching Directory Service Attributes

Chapter 4: Managing Organizations 65

Element Mandatory Description

connectionCre
dential

No The information required to connect to the directory
service:

■ ssl
The type of connection that has to be established
with the directory service:
– TCP: Indicates that the directory service will
listen to incoming requests on TCP.
\xE2\x80\x93 1WAY: Indicates that the directory
service will listen to incoming requests on one-way
SSL.
– 2WAY: Indicates that the directory service will
listen to incoming requests on two-way SSL.

■ loginName
The complete distinguished name of the LDAP
repository user who has the privilege to log in to
the repository sever and manage the base DN.
For example,
uid=gt,dc=arcot,dc=com

■ loginPassword
The password of the user provided in loginName.

■ (Optional) serverTrustCert
The base64-encoded trusted root certificate of the
server that issued the SSL certificate to the
directory service.
This parameter is required only if ssl is set to 1WAY
or 2WAY.

■ (Optional) clientKeyStore
The password for the client key store and the
base64-encoded root certificate of UDS.
This parameter required only if ssl is set to 2WAY.

redirectSearch
Schema

No

The schema to be used to search for the values whose
attributes are in a different node.

redirectSearch
Attribute

No The value of the attribute to be searched in the
redirectSearchSchema.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Fetching Directory Service Attributes

66 Web Services Developer's Guide

Invoking the Web Service

To fetch the user attributes:

1. (Optional) Include the authentication and authorization details in the header of the
listRepositoryAttributes operation. See "Managing Web Services Security" (see
page 37) for more information on the header elements.

2. Use the listRepositoryAttributesRequest elements to set the directory service
information, as listed in the table.

3. Use the listRepositoryAttributesRequest message and construct the input message
by using the details specified in the preceding step.

4. Invoke the listRepositoryAttributes operation of the ArcorUserRegistryMgmtSvc
service to fetch the user attributes.

This operation returns the listRepositoryAttributesResponse message that includes
the transaction identifier, authentication token, and user attributes. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, listRepositoryAttributesResponse, returns the transaction
identifier and the authentication token in the SOAP envelope header. The SOAP body
includes the user attributes for a successful transaction and the Fault response for an
error condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

The user attributes used to store user information.

Deleting Organizations

Chapter 4: Managing Organizations 67

Deleting Organizations

The deleteOrg operation is used to delete organizations. After you delete an
organization, the information related to that organization is still maintained in the
system. Therefore, you cannot create an organization with the same name as that of the
deleted organization.

This section walks you through the following steps for deleting organizations:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you delete an organization, you must refresh the system cache for the
changes to take effect. See "Refreshing the Organization Cache" (see page 51) for more
information on how to refresh the system cache.

Preparing the Request Message

The deleteOrgRequest message is used to delete organizations. The following table lists
the elements of this request message.

Element Mandatory Description

orgName Yes The unique name with which the organization is
identified.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Deleting Organizations

68 Web Services Developer's Guide

Invoking the Web Service

To delete organizations:

1. (Optional) Include the authentication and authorization details in the header of the
deleteOrg operation. See "Managing Web Services Security" (see page 37) for more
information on the header elements.

2. Use the deleteOrgRequest elements for fetching the organization details, as listed
in the table.

3. Use the deleteOrgRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the deleteOrg operation of the ArcorUserRegistryMgmtSvc service to delete
the organization.

This operation returns the deleteOrgResponse message that includes the
transaction identifier, authentication token, and organization details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, deleteOrgResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Exceptions and Error Codes" (see page 209) for more information on the
SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Chapter 5: Managing Additional User Configurations 69

Chapter 5: Managing Additional User
Configurations

Important! To use the Web service operations that are discussed in this section, you
must deploy the User Data Service (arcotuds.war) file.
See "Deploying User Data Service" in the CA RiskMinder Installation and Deployment
Guide for more information.

This section describes the operations that are used to manage account types, fetch the
email and telephone types configured for the users, and fetch the user attributes that
are configured for encryption. This section covers the following topics:

■ Managing Account Types (see page 70)

■ Fetching Email and Telephone Types (see page 79)

■ Fetching User Attributes Configured for Encryption (see page 83)

You must use the ArcotConfigManagementSvc.wsdl file to perform the operations
discussed in this section.

Managing Account Types

70 Web Services Developer's Guide

Managing Account Types

All RiskMinder users are identified in the system by a unique user name. RiskMinder
now supports the concept of an account or account ID, which is an alternate ID to
identify the user in addition to the user name. A user can have none or one or more
accounts or account IDs.

An account type is an attribute that qualifies the account ID and provides additional
context about the usage of the account ID. To assign multiple accounts to a user, you
must first create an account type, and then create an account for each account type.

For example, consider a financial institution that identifies the customers by their
unique customer identifier. If the customer enhances their portfolio with a fixed
deposit, then the financial institution can create an account type called FIXED_DEPOSIT
and create an account in this account type with the fixed deposit number, for example
000203876544.

Now the customer can log in either with their unique customer identifier or the account
type and account ID (FIXED_DEPOSIT and 000203876544) combination.

You can configure the account type to be available to specific organizations only or to all
organizations, including those that will be created in the future. At the organization
level, each organization can choose to support a set of account types.

This section covers the following operations related to account type:

■ Creating Account Types (see page 71)

■ Updating Account Types (see page 73)

■ Fetching Account Types (see page 75)

■ Deleting Account Types (see page 77)

Managing Account Types

Chapter 5: Managing Additional User Configurations 71

Creating Account Types

This section walks you through the steps for creating account types:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you create an account type, you must refresh the system cache for the new
account type to take effect. See "Refreshing the Organization Cache" (see page 51) for
more information on how to refresh the cache.

Preparing the Request Message

The createAccountTypeRequest message is used to create account types in the
RiskMinder database. The following table lists the elements of this request message.

Element Mandatory Description

accountType/n
ame

Yes The name of the account type that you want to create.

accountType/d
isplayName

Yes A descriptive name for the account type.

accountType/c
ustomAttribute

No Name-value pairs that you can use to specify additional
information related to account types.

targetAllOrgs No Indicates whether the account type should be assigned
to all organizations:

■ true: Account type is assigned to all organizations.

■ false: Account type is assigned only to the
organizations that are listed in the
ListOfOrganizations element.

Note: By default, the value of this element is set to
false.

ListofOrganizat
ions/Organizati
on/

orgName

No The name of the organization to which the account
type must be assigned.

ListofOrganizat
ions/Organizati
on/

customAttribut
e

No The custom attribute that you have set for the
organization to which you want to assign the account
type.

Managing Account Types

72 Web Services Developer's Guide

Element Mandatory Description

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To create account types:

1. (Optional) Include the authentication and authorization details in the header of the
createAccountType operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the createAccountTypeRequest elements to set the account information, as
listed in the table.

3. Use the createAccountTypeRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the createAccountType operation of the ArcotConfigRegistrySvc service to
create the account type.

This operation returns the createAccountTypeResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, createAccountTypeResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Exceptions and Error Codes" (see page 209) for more
information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Managing Account Types

Chapter 5: Managing Additional User Configurations 73

Updating Account Types

The updateAccountType operation is used to update the account type information and
the list of organizations to which the account type belongs.

This section walks you through the following steps for updating existing account types:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you update an account type, you must refresh the system cache for the new
account type to take effect. See "Refreshing the Organization Cache" (see page 51) for
more information on how to refresh the cache.

Preparing the Request Message

The updateAccountTypeRequest message is used to update account types in the
RiskMinder database. The following table lists the elements of this request message.

Element Mandatory Description

name Yes The name of the account type that you want to update.

displayName No The descriptive name of the account type.

customAttribut
e

No Name-value pairs that you can use to specify additional
user or organization information.

removeCustom
Attribute

No The name of the account type custom attribute that
you want to delete.

targetAllOrgs No Indicates whether the updated account type should be
assigned to all organizations:

■ true: Updated account type is assigned to all
organizations.

■ false: Updated account type is assigned only to the
organizations that are listed in the
ListOfOrganizations element.

Note: By default, the value of this element is set to
false.

ListofOrganizat
ions/orgName

No The name of the organization to which the account
type must be assigned.

ListofOrganizat
ions/customAtt
ribute

No The custom attribute that you have specified for the
organization.

Managing Account Types

74 Web Services Developer's Guide

Element Mandatory Description

RemoveOrgani
zations/orgNa
me

No The name of the organization that you want to
disassociate with the account type.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To update account types:

1. (Optional) Include the authentication and authorization details in the header of the
updateAccountType operation. See "Managing Web Services Security" (see
page 37) for more information on the header elements.

2. Use the updateAccountTypeRequest elements to set the account information, as
listed in the table.

3. Use the updateAccountTypeRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the updateAccountType operation of the ArcotConfigRegistrySvc service to
update the account type.

This operation returns the updateAccountTypeResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateAccountTypeResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Exceptions and Error Codes" (see page 209) for more
information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Managing Account Types

Chapter 5: Managing Additional User Configurations 75

Fetching Account Types

The listAccountTypes operation is used to fetch the account types that are associated
with an organization.

This section walks you through the following steps for fetching the account types:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listAccountTypeRequest message is used to fetch account types that are associated
with an organization. The following table lists the elements of this request message.

Element Mandatory Description

targetAllOrgs Yes Indicates whether to fetch the account types assigned
to all organizations:

■ true: Account types assigned to all organizations
are fetched.

■ false: Account types assigned to the organizations
that are listed in the orgName element are
fetched.

orgName No The name of the organization to which the account
types to be fetched belongs.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Managing Account Types

76 Web Services Developer's Guide

Invoking the Web Service

To list the account types of an organization:

1. (Optional) Include the authentication and authorization details in the header of the
listAccountTypes operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the listAccountTypeRequest elements to set the account information, as listed
in the table.

3. Use the listAccountTypeRequest message and construct the input message by using
the details specified in the preceding step.

4. Invoke the listAccountTypes operation of the ArcotConfigRegistrySvc service to
update the account type.

This operation returns the listAccountTypeResponse message that includes the
transaction identifier, authentication token, and the account types associated with
an organization. See the following section for more information on the response
message.

Interpreting the Response Message

The response message, listAccountTypeResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. The SOAP body includes the
account type details for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

AccountType/nam
e

The name of the account type.

AccountType/displ
ayName

The descriptive name of the account type.

Managing Account Types

Chapter 5: Managing Additional User Configurations 77

Element Description

AccountType/cust
omAttribute

Name-value pairs that are used to specify additional account type
information.

Deleting Account Types

The deleteAccountType operation is used to delete the account types that are
associated with an organization.

This section walks you through the following steps for deleting account types:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you delete an account type, you must refresh the system cache for the new
account type to take effect. See "Refreshing the Organization Cache" (see page 51) for
more information on how to refresh the cache.

Preparing the Request Message

The deleteAccountTypeRequest message is used to delete account types in the
RiskMinder database. The following table lists the elements of this request message.

Element Mandatory Description

accountType Yes The name of the account type that you want to delete.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Managing Account Types

78 Web Services Developer's Guide

Invoking the Web Service

To delete account types:

1. (Optional) Include the authentication and authorization details in the header of the
deleteAccountType operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the deleteAccountTypeRequest elements to get the account type that has to be
deleted, as listed in the table.

3. Use the deleteAccountTypeRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the deleteAccountType operation of the ArcotConfigRegistrySvc service to
delete the account type.

This operation returns the deleteAccountTypeResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, deleteAccountTypeResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Exceptions and Error Codes" (see page 209) for more
information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Fetching Email and Telephone Types

Chapter 5: Managing Additional User Configurations 79

Fetching Email and Telephone Types

RiskMinder enables you to specify multiple email addresses and telephone numbers
while creating users in an organization. Email and telephone types are used to define
multiple email addresses and telephone numbers. These types can be defined globally
or can be specific to an organization. If the email address or telephone number types
are mandatory for an organization, then you must provide these values while you create
users in that organization.

This section covers the following topics that discuss how to fetch the email and
telephone types that are configured for an organization:

■ Fetching Email Types (see page 79)

■ Fetching Telephone Types (see page 81)

Fetching Email Types

The listEmailTypes operation is used to fetch the email address types that are
configured for an organization.

This section walks you through the following steps for fetching the email address types
configured for an organization:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listEmailTypeRequest message is used to fetch email address types that are
configured for the organization. The following table lists the elements of this request
message.

Element Mandatory Description

orgName No The name of the organization for which the email
address types have to be fetched.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Fetching Email and Telephone Types

80 Web Services Developer's Guide

Invoking the Web Service

To fetch email address types:

1. (Optional) Include the authentication and authorization details in the header of the
listEmailTypes operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the listEmailTypeRequest elements to get the organization name, as listed in
the table.

3. Use the listEmailTypeRequest message and construct the input message by using
the details specified in the preceding step.

4. Invoke the listEmailTypes operation of the ArcotConfigRegistrySvc service to fetch
the email address types.

This operation returns the listEmailTypeResponse message that includes the
transaction identifier, authentication token, and email address types. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, listEmailTypeResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. The SOAP body includes the
email address types for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

isGlobal Specifies whether the email type is configured at the global level:

■ True: Indicates that the email type is configured at the global
level.

■ False: Indicates that the email type is configured at the
organization level.

Fetching Email and Telephone Types

Chapter 5: Managing Additional User Configurations 81

Element Description

emailType/name The name of the email address type.

emailType/display
Name

The display name of the email address type.

emailType/priority The priority of the email type if more than one email type has
been configured.

emailType/isMand
atory

Indicates whether the email type is mandatory.

Fetching Telephone Types

The listTelephoneTypes operation is used to fetch the telephone types that are
configured for an organization.

This section walks you through the following steps for fetching the telephone types
configured for an organization:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listTelephoneTypeRequest message is used to fetch the telephone types that are
configured for the organization. The following table lists the elements of this request
message.

Element Mandatory Description

orgName No The name of the organization for which the telephone
address types have to be fetched.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Fetching Email and Telephone Types

82 Web Services Developer's Guide

Invoking the Web Service

To fetch telephone types:

1. (Optional) Include the authentication and authorization details in the header of the
listTelephoneTypes operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the listTelephoneTypeRequest elements to get the organization name, as listed
in the table.

3. Use the listTelephoneTypeRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the listTelephoneTypes operation of the ArcotConfigRegistrySvc service to
fetch the telephone types.

This operation returns the listTelephoneTypeResponse message that includes the
transaction identifier, authentication token, and telephone types. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, listTelephoneTypeResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
telephone types for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

isGlobal Specifies whether the telephone type is configured at the global
level:

■ True: Indicates that the telephone type is configured at the
global level.

■ False: Indicates that the telephone type is configured at the
organization level.

Fetching User Attributes Configured for Encryption

Chapter 5: Managing Additional User Configurations 83

Element Description

TelephoneType/na
me

The name of the telephone type.

TelephoneType/di
splayName

The display name of the telephone type.

TelephoneType/pr
iority

The priority of the telephone type if more than one telephone
type has been configured.

TelephoneType/is
Mandatory

Indicates whether the telephone type is mandatory.

Fetching User Attributes Configured for Encryption

The administrators of an organization can choose to store the user attributes in an
encrypted format. To fetch such attributes that are configured to be stored in encrypted
format, you need to use the listConfiguredAttributesForEncryption operation.

This section walks you through the following steps for fetching the user attributes that
are configured for encryption:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listConfiguredAttributesForEncryptionRequest message is used to fetch the user
attributes that are configured for encryption. The following table lists the elements of
this request message.

Element Mandatory Description

orgName No The name of the organization for which the user
attributes have to be fetched.

clientTxId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Fetching User Attributes Configured for Encryption

84 Web Services Developer's Guide

Invoking the Web Service

To fetch user attributes configured for encryption:

1. (Optional) Include the authentication and authorization details in the header of the
listConfiguredAttributesForEncryption operation. See "Managing Web Services
Security" (see page 37) for more information on the header elements.

2. Use the listConfiguredAttributesForEncryptionRequest elements to get the
organization name, as listed in the table.

3. Use the listConfiguredAttributesForEncryptionRequest message and construct the
input message by using the details specified in the preceding step.

4. Invoke the listConfiguredAttributesForEncryption operation of the
ArcotConfigRegistrySvc service to fetch the user attributes.

This operation returns the listConfiguredAttributesForEncryptionResponse message
that includes the transaction identifier, authentication token, and user attributes.
See the following section for more information on the response message.

Interpreting the Response Message

The response message, listConfiguredAttributesForEncryptionResponse, returns the
transaction identifier and the authentication token in the SOAP envelope header. The
SOAP body includes the user attributes for a successful transaction and the Fault
response for an error condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

isGlobal Specifies whether the user attributes are configured for
encryption at the global level:

■ True: Indicates that the user attributes are configured for
encryption at the global level.

■ False: Indicates that the user attributes are configured for
encryption at the organization level.

Fetching User Attributes Configured for Encryption

Chapter 5: Managing Additional User Configurations 85

Element Description

attribute The name of the user attribute.

Chapter 6: Managing Users and Accounts 87

Chapter 6: Managing Users and Accounts

Important! To use the Web service operations that are discussed in this section, you
must deploy the User Data Service (arcotuds.war) file.
See "Deploying User Data Service" in the CA RiskMinder Installation and Deployment
Guide for more information.

For RiskMinder to authenticate users, users have to be created in the database, which is
a one-time process. The user can either be created in the RiskMinder database or
RiskMinder can be configured to connect to LDAP for user information.

This section discusses the Web service operations that are used to create and manage
users, create and manager user accounts, and authenticate LDAP users. This section
covers the following topics:

■ Before You Proceed (see page 87)

■ Performing User Operations (see page 91)

■ Performing User Account Operations (see page 119)

■ Setting the Personal Assurance Message (see page 136)

■ Fetching the Personal Assurance Message (see page 138)

■ Setting Custom User Attributes (see page 140)

■ Authenticating LDAP Users (see page 142)

You must use the ArcotUserManagementSvc.wsdl file to perform the operations
discussed in this section.

Before You Proceed

This section lists the supported user states, transitions supported between the user
states, and the user operations that are possible on a particular organization and user
status combination. Before you proceed with the user and user account operations that
are discussed in this section, read this section to understand whether the operation can
be performed based on the organization and user status.

The following topics are covered in this section:

■ User States (see page 88)

■ Supported User State Transitions (see page 88)

■ User Operations and States (see page 89)

■ User Account Operations and States (see page 90)

Before You Proceed

88 Web Services Developer's Guide

User States

RiskMinder supports the following states for users in the system:

■ INITIAL

Indicates that the user has been created in the system, but cannot perform any
operation. To create a user in this state, you need to specify the status in the
createUser operation.

■ ACTIVE

Indicates that the user can perform any operation in the system. This is the default
status of the user when you create a user in the system.

■ INACTIVE

Indicates that the user has been deactivated and cannot perform any operation.
You can deactivate a user permanently or for a specific period. You might need to
deactivate the user for a specified period in situations where an employee goes for
a long vacation and you want to disable their logins during this period to prevent
any unauthorized access.

To deactivate the user for a specific period, you must specify the startLockTime and
endLockTime elements. If you do not specify these values, then the user will be
permanently deactivated.

■ DELETED

Indicates that the user no longer exists in the system.

Supported User State Transitions

The following table lists the transitions possible between the supported user states.

Current State

 Change State to

INITIAL ACTIVE
INACTIVE
(Temporary)

INACTIVE
(Permanent)

DELETED

INITIAL Yes Yes No No Yes

ACTIVE No Yes Yes Yes Yes

INACTIVE No Yes Yes Yes Yes

DELETED No No No No Yes

Before You Proceed

Chapter 6: Managing Users and Accounts 89

User Operations and States

The following table lists the user operations and whether each operation is allowed on a
specific combination of the organization and user status.

User Operation Organization Status User Status Allowed

Create User INITIAL NA No

ACTIVE NA Yes

INACTIVE NA No

DELETED NA No

Update User INITIAL NA No

ACTIVE Any User State Yes

INACTIVE Any User State Yes

DELETED Any User State Yes

Update User Status INITIAL NA No

ACTIVE INITIAL

ACTIVE

INACTIVE

DELETED

Yes

INACTIVE INITIAL

ACTIVE

INACTIVE

DELETED

Yes

DELETED Any User State No

Delete User INITIAL NA No

ACTIVE INITIAL

ACTIVE

INACTIVE

Yes

INACTIVE INITIAL

ACTIVE

INACTIVE

Yes

DELETED Any User State No

Before You Proceed

90 Web Services Developer's Guide

User Account Operations and States

The following table lists the user account operations and whether each operation is
allowed on a specific combination of the organization and user status.

User Account
Operation

Organization Status User Status Allowed

Add User Account INITIAL NA No

ACTIVE/INACTIVE INITIAL Yes

ACTIVE Yes

INACTIVE Yes

DELETED No

DELETED Any User State No

Update User
Account

INITIAL NA No

ACTIVE/INACTIVE INITIAL Yes

ACTIVE Yes

INACTIVE Yes

DELETED No

DELETED Any User State No

Update User
Account

INITIAL NA No

ACTIVE/INACTIVE INITIAL Yes

ACTIVE Yes

INACTIVE Yes

DELETED No

DELETED Any User State No

Delete User Account INITIAL NA No

ACTIVE/INACTIVE INITIAL Yes

ACTIVE Yes

INACTIVE Yes

DELETED No

DELETED Any User State No

Performing User Operations

Chapter 6: Managing Users and Accounts 91

Performing User Operations

This section covers the following operations:

■ Creating Users (see page 91)

■ Updating Users (see page 95)

■ Updating User Status (see page 99)

■ Fetching User Details (see page 101)

■ Searching Users by Using Pagination (see page 106)

■ Searching All Users (see page 109)

■ Checking the User Status (see page 113)

■ Updating the User Status (see page 115)

■ Deleting Users (see page 117)

Creating Users

This section walks you through the following steps for creating users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The createUserRequest message is used to create users in the RiskMinder database. The
following table lists the elements of this request message.

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user must
belong.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userID/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The unique identifier assigned to the user when they
are created. This identifier is used as a reference to
track different operations performed by a user.

dateCreated No The timestamp when the user was created in the
system.

Note: Not applicable for the createUser operation.

Performing User Operations

92 Web Services Developer's Guide

Element Mandatory Description

dateModified No The timestamp when the user details were last
modified.

Note: Not applicable for the createUser operation.

emailId Yes The email ID of the user that has to be registered. The
default qualifier is EMAILID.

Note: You can repeat this entry if you want to
configure multiple email IDs for a user, and accordingly
use the qualifier based on the email types configured
using Administration Console.

telephoneNum
ber

Yes The telephone number of the user that has to be
registered. The default qualifier is TELEPHONE.

Note: You can repeat this entry if you want to
configure multiple telephone numbers for a user, and
accordingly use the qualifier based on the telephone
types configured using Administration Console.

firstName No The first name of the user.

middleName No The middle name of the user.

lastName No The last name of the user.

pam No The Personal Assurance Message (PAM) displayed to
the user, when they try to access a resource protected
by RiskMinder.

pamImageURL No The URL that contains the image displayed to the user,
when they try to access a resource protected by
RiskMinder.

image No The picture that the user wants to upload to identify
themselves.

status No The status of the user:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

Note: If you do not pass a value, then by default the
status is set as ACTIVE.

Performing User Operations

Chapter 6: Managing Users and Accounts 93

Element Mandatory Description

customAttribut
e

No The additional user information that you want to pass
as name-value pair.

■ name
Indicates the name of the attribute that you want
to create.

■ value
Indicates the corresponding value for the name.

startLockTime No The timestamp when the user has to be deactivated.

endLockTime No The timestamp when the deactivated user has to be
activated.

account/accou
ntType

Yes

Only if the
account
element is
defined.

The attribute that qualifies the account ID and provides
additional context about the usage of the account ID.

account/accou
ntID

No The alternate identifier used to identify the user in
addition to the user name. The account ID is also
known as account.

account/accou
ntStatus

No The status of the account:

■ 0-9: Indicates that the account is in the INITIAL
state.

■ 10-19: Indicates that the account is in the ACTIVE
state.

■ 20-29: Indicates that the account is in the
INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED
state.

■ >39: Indicates that the account status is
UNKNOWN.

account/accou
ntIDAttribute

No The alternate identifier used to identify the user in the
system.

Note: You cannot pass more than three account ID
attributes for a user.

account/dateC
reated

No The timestamp when the account ID was created.

Note: Not applicable for the createUser operation.

account/date
Modified

No The timestamp when the account ID was last modified.

Note: Not applicable for the createUser operation.

Performing User Operations

94 Web Services Developer's Guide

Element Mandatory Description

account/accou
ntCustomAttri
bute

No The additional account information that you want to
pass as a name-value pair.

■ attributeName
Indicates the name of the attribute that you want
to create.

■ attributeValue
Indicates the corresponding value for the name.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To create users in the RiskMinder database:

1. (Optional) Include the authentication and authorization details in the header of the
createUser operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the createUserRequest elements to provide the user information, as listed in
the table.

3. Use the createUserRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the createUser operation of the ArcorUserRegistrySvc service to create
users.

This operation returns the createUserResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, createUserResponse, returns the transaction identifier and
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Exceptions and Error Codes" (see page 209) for more information on the
SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

Performing User Operations

Chapter 6: Managing Users and Accounts 95

Element Description

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Updating Users

This section walks you through the following steps for updating the user information:

■ Preparing the Request Message

■ Interpreting the Response Message

■ Interpreting the Response Message

Preparing the Request Message

The updateUserRequest message is used to update the user information in the
RiskMinder database. The following table lists the elements of this request message.

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userID/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The identifier used as a reference to track different
operations performed by a user.

dateCreated No The timestamp when the user was created in the
system.

dateModified No The timestamp when the user details were last
modified.

emailId No The email ID of the user that has to be registered. The
default qualifier is EMAILID.

Note: You can repeat this entry if you want to
configure multiple email IDs for a user, and accordingly
use the qualifier based on the configured email types.

Performing User Operations

96 Web Services Developer's Guide

Element Mandatory Description

telephoneNum
ber

No The telephone number of the user that has to be
registered. The default qualifier is TELEPHONE.

Note: You can repeat this entry if you want to
configure multiple telephone numbers for a user, and
accordingly use the qualifier based on the configured
telephone types.

firstName No The first name of the user.

middleName No The middle name of the user.

lastName No The last name of the user.

pam No The Personal Assurance Message (PAM) displayed to
the user, when they try to access a resource protected
by RiskMinder.

pamImageURL No The URL that contains the image displayed to the user
when they try to access a resource protected by
RiskMinder.

image No The picture that the user wants to upload to identify
themselves.

status No The status of the user:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

customAttribut
e

No The additional user information that you want to pass
as a name-value pair.

■ name
Indicates the name of the attribute that you want
to create.

■ value
Indicates the corresponding value for the name.

startLockTime No The timestamp when the user has to be deactivated.

endLockTime No The timestamp when the deactivated user has to be
activated.

Performing User Operations

Chapter 6: Managing Users and Accounts 97

Element Mandatory Description

account/accou
ntType

Yes

Only if the
account
element is
defined.

The attribute that qualifies the account ID and provides
additional context about the usage of the account ID.

account/accou
ntID

No The alternate identifier used to identify the user in
addition to the user name. The account ID is also
known as account.

account/accou
ntStatus

No The status of the account:

■ 0-9: Indicates that the account is in the INITIAL
state.

■ 10-19: Indicates that the account is in the ACTIVE
state.

■ 20-29: Indicates that the account is in the
INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED
state.

■ >39: Indicates that the account status is
UNKNOWN.

account/accou
ntIDAttribute

No The alternate identifier used to identify the user in the
system.

Note: You cannot pass more than three account ID
attributes for a user.

account/dateC
reated

No The timestamp when the account ID was created.

Note: Not applicable for the createUser operation.

account/date
Modified

No The timestamp when the account ID was last modified.

Note: Not applicable for the createUser operation.

account/accou
ntCustomAttri
bute

No The additional account information that you want to
pass as name-value pair.

■ attributeName
Indicates the name of the attribute that you want
to create.

■ attributeValue
Indicates the corresponding value for the name.

Performing User Operations

98 Web Services Developer's Guide

Element Mandatory Description

updateUserFla
gs/updateImag
e

No The flag to indicate whether the user image can be
changed. Supported values are:

■ 0: Indicates that the image cannot be changed.

■ 1: Indicates that the image can be changed.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To update users in the RiskMinder database:

1. (Optional) Include the authentication and authorization details in the header of the
updateUser operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the updateUserRequest elements to update the user information, as listed in
the table.

3. Use the updateUserRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the updateUser operation of the ArcorUserRegistrySvc service to update the
user information.

This operation returns the updateUserResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateUserResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
"Exceptions and Error Codes" (see page 209) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Operations

Chapter 6: Managing Users and Accounts 99

Updating User Status

The updateUserStatus operation is used to change the status of the user. In a single call,
you can update the status of multiple users.

The status of a user can be any of the following:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

This section walks you through the following steps for changing the user status:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the updateUserStatusRequest message.

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userID/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRef
Id

No The identifier used as a reference to track different
operations performed by a user.

Note: If want to update the status of more than one user, then repeat the userID
element with the user details.

status Yes The status that you want to assign to the user:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

startLockTime No The timestamp when the user has to be deactivated.

endLockTime No The timestamp when the deactivated user has to be
activated.

Performing User Operations

100 Web Services Developer's Guide

Element Mandatory Description

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To update user status in the RiskMinder database:

1. (Optional) Include the authentication and authorization details in the header of the
updateUserStatus operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the updateUserStatusRequest elements to update the user status, as listed in
the table.

3. Use the updateUserStatusRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the updateUserStatus operation of the ArcorUserRegistrySvc service to
update the user status.

This operation returns the updateUserStatusResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateUserStatusResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Exceptions and Error Codes" (see page 209) for more
information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Operations

Chapter 6: Managing Users and Accounts 101

Fetching User Details

The retrieveUser operation is used to search the details of a particular user.

This section walks you through the following steps for reading the user details:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the retrieveUserRequest message.

Element Mandatory Description

userIdentifier Yes The unique identifier (user name) with which the user
is identified in the system.

orgName No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

accountType No The attribute that qualifies the account ID and provides
additional context about the usage of the account ID.

filter/includeI
mage

No The flag to indicate whether the user image has to be
retrieved or not. Supported values are:

■ 0: Indicates that the image must not be retrieved.

■ 1: Indicates that the image must be retrieved.

filter/includeAc
counts

No The flag to indicate whether the user accounts have to
be retrieved or not. Supported values are:

■ 0: Indicates that the user accounts must not be
retrieved.

■ 1: Indicates that the user accounts must be
retrieved.

Performing User Operations

102 Web Services Developer's Guide

Element Mandatory Description

filter/deepSear
ch

No The flag to indicate whether the user must be searched
based on more than one parameters. Supported values
are:

■ 0: Indicates that the users will be searched based
on their user names only.

■ 1: Indicates that the users will be searched using
the following details:
First search attribute: User name
Second search attribute: Account ID
Third search attribute: Account ID attribute

If the user details are not found using the first
search attribute, then the second attribute is used.
If both the first and second attributes fail to fetch
the user details, then the third attribute is used to
search the user details.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

Chapter 6: Managing Users and Accounts 103

Invoking the Web Service

To retrieve the details of a user:

1. (Optional) Include the authentication and authorization details in the header of the
retrieveUser operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the retrieveUserRequest elements to collect the user details, as listed in the
table.

3. Use the retrieveUserRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the retrieveUser operation of the ArcorUserRegistrySvc service to fetch the
user details.

This operation returns the retrieveUserResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, retrieveUserResponse returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the user
details for a successful transaction and the Fault response for an error condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

userId/orgName The name of the organization to which the user belongs.

userId/userName The unique identifier with which the user is identified in the
system.

userId/userRefId The identifier used as a reference to track different operations
performed by a user.

dateCreated The timestamp when the user was created in the system.

Performing User Operations

104 Web Services Developer's Guide

Element Description

dateModified The timestamp when the user details were last modified.

emailId The email ID of the user that has been registered. If multiple email
IDs are configured for the user, then all email IDs are fetched.

telephoneNumber The telephone number of the user that has been registered. If
multiple telephone numbers are configured for the user, then all
numbers are fetched.

firstName The first name of the user.

middleName The middle name of the user.

lastName The last name of the user.

pam The Personal Assurance Message (PAM) displayed to the user,
when they try to access a resource protected by RiskMinder.

pamImageURL The URL which contains the image displayed to the user, when
they try to access a resource protected by RiskMinder.

image The picture that the user wants to upload to identify themselves.

status The status of the user:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

Note: If you do not pass a value, then by default the status is set
as ACTIVE.

customAttribute The additional user information in name-value pairs.

■ name
Indicates the name of the attribute that you want to create.

■ value
Indicates the corresponding value for the name.

startLockTime The timestamp when the user has to be deactivated.

endLockTime The timestamp when the deactivated user has to be activated.

account/accountT
ype

The attribute that qualifies the account ID and provides additional
context about the usage of the account ID.

account/accountI
D

The alternate identifier used to identify the user in addition to the
user name. The account ID is also known as account.

Performing User Operations

Chapter 6: Managing Users and Accounts 105

Element Description

account/accountSt
atus

The status of the account:

■ 0-9: Indicates that the account is in the INITIAL state.

■ 10-19: Indicates that the account is in the ACTIVE state.

■ 20-29: Indicates that the account is in the INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED state.

■ >39: Indicates that the account status is UNKNOWN.

account/accountI
DAttribute

The alternate identifier used to identify the user in the system.

account/dateCreat
ed

The timestamp when the account ID was created.

account/dateModi
fied

The timestamp when the account ID was last modified.

account/accountC
ustomAttribute

The additional account information that you want to pass as a
name-value pair.

■ attributename
Indicates the name of the custom attribute.

■ attributevalue
Indicates the corresponding value for the name.

Performing User Operations

106 Web Services Developer's Guide

Searching Users by Using Pagination

When you search for users in the RiskMinder database or directory service, the
information is fetched and displayed in the alphabetical order of the user names. If you
have a large setup with many users, then you will have to navigate through the search
result to search for a particular user. To increase the search efficiency in such cases, you
can search the users by specifying the start and end index range.

Note: If you are searching for the users in the LDAP organization, then ensure that the
LDAP supports pagination search.

This section walks you through the following steps for searching the active users based
on the search index:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the listUsersRequest message.

Element Mandatory Description

orgName No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

startIndex Yes The index entry starting from which the user
information has to be fetched.

For example, if the complete search fetches 60 results
and if the startIndex is set to 45, then the user
information from search result entry 45 is returned.

endIndex Yes The index page where the user search must end.

For example, if the complete search fetches 60 results
and if the startIndex is set to 45 and endIndex is set to
55, then the user information from the search result
entry 45 to 55 is returned.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

Chapter 6: Managing Users and Accounts 107

Invoking the Web Service

To search for users based on pagination:

1. (Optional) Include the authentication and authorization details in the header of the
listUsers operation. See "Managing Web Services Security" (see page 37) for more
information on the header elements.

2. Use the listUsersRequest elements to collect the start and end index, as listed in the
table.

3. Use the listUsersRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the listUsers operation of the ArcorUserRegistrySvc service to fetch the user
details for the specified start and end index.

This operation returns the listUsersResponse message that includes the transaction
identifier, authentication token, and user details. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, listUsersResponse, returns the transaction identifier and
authentication token in the SOAP envelope header. The SOAP body includes the user
details and status for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

count The total number of users returned in the search result.

userId/orgName The name of the organization to which the user belongs.

userId/userName The unique identifier with which the user is identified in the
system.

Performing User Operations

108 Web Services Developer's Guide

Element Description

userId/userRefId The identifier used as a reference to track different operations
performed by a user.

dateCreated The timestamp when the user was created in the system.

dateModified The timestamp when the user details were last modified.

emailId The email ID of the user that has been registered. If multiple email
IDs are configured for the user, then all email IDs are fetched.

telephoneNumber The telephone number of the user that has been registered. If
multiple telephone numbers are configured for the user, then all
numbers are fetched.

firstName The first name of the user.

middleName The middle name of the user.

lastName The last name of the user.

pam The Personal Assurance Message (PAM) displayed to the user
when they try to access a resource protected by RiskMinder.

pamImageURL The URL which contains the image displayed to the user, when
they try to access a resource protected by RiskMinder.

image The picture that the user wants to upload to identify themselves.

status The status of the user:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

customAttribute The additional user information that you want to pass as a
name-value pair.

■ name
Indicates the name of the attribute that you want to create.

■ value
Indicates the corresponding value for the name.

startLockTime The timestamp when the user has to be deactivated.

endLockTime The timestamp when the deactivated user has to be activated.

Performing User Operations

Chapter 6: Managing Users and Accounts 109

Searching All Users

You must use the searchUsers operation to search for all users in the system.

This section walks you through the following steps for searching the users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the searchUsers message.

Element Mandatory Description

orgPattern No The pattern used to search the organizations.

orgName No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

searchExpressi
on

Yes The search expression to use to search for users.

count No If the search result exceeds this value, then only the
search results equal to this value are fetched.

filter/includeI
mage

No The flag to indicate whether the user image has to be
retrieved or not. Supported values are:

■ 0: Indicates that the image must not be retrieved.

■ 1: Indicates that the image must be retrieved.

filter/includeAc
counts

No The flag to indicate whether the user accounts have to
be retrieved or not. Supported values are:

■ 0: Indicates that the user accounts must not be
retrieved.

■ 1: Indicates that the user accounts must be
retrieved.

Performing User Operations

110 Web Services Developer's Guide

Element Mandatory Description

filter/deepSear
ch

No The flag to indicate whether the user must be searched
based on more than one parameter. Supported values
are:

■ 0: Indicates that the users will be searched based
on their user names only.

■ 1: Indicates that the users will be searched using
the following details:
First search attribute: User name
Second search attribute: Account ID
Third search attribute: Account ID attributes

If the user details are not found using the first
search attribute, then the second attribute is used.
If both the first and second attributes fail to fetch
the user details, then the third attribute is used to
search the user details.

status No The status of the user:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

Note: If you do not pass the value, then by default the
status is set as ACTIVE.

account/accou
ntType

Yes

Only if the
account
element is
defined.

The attribute that qualifies the account ID and provides
additional context about the usage of the account ID.

account/accou
ntID

No The alternate identifier used to identify the user in
addition to the user name. The account ID is also
known as account.

Performing User Operations

Chapter 6: Managing Users and Accounts 111

Element Mandatory Description

account/accou
ntStatus

No The status of the account:

■ 0-9: Indicates that the account is in the INITIAL
state.

■ 10-19: Indicates that the account is in the ACTIVE
state.

■ 20-29: Indicates that the account is in the
INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED
state.

■ >39: Indicates that the account status is
UNKNOWN.

account/accou
ntIDAttribute

No The alternate identifier used to identify the user in the
system.

Note: You cannot pass more than three account ID
attributes for a user.

account/dateC
reated

No The timestamp when the account ID was created.

account/date
Modified

No The timestamp when the account ID was last modified.

account/accou
ntCustomAttri
bute

No The additional account information that you want to
pass as a name-value pair.

■ attributeName
Indicates the name of the attribute that you want
to create.

■ attributeValue
Indicates the corresponding value for the name.

RepositoryUser
Attributes/attri
buteName

No The name of the user attribute used to store the user
information. For example, First Name or Email Address.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

112 Web Services Developer's Guide

Invoking the Web Service

To search users:

1. (Optional) Include the authentication and authorization details in the header of the
searchUsers operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the searchUsersRequest elements to collect the user information, as listed in
the table.

3. Use the searchUsersRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the searchUsers operation of the ArcorUserRegistrySvc service to fetch the
information of all users.

This operation returns the searchUsersResponse message that includes the
transaction identifier, authentication token, and user details. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, searchUsersResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the user
details and status for a successful transaction, and the Fault response for an error
condition.

The elements returned for searchUsersResponse are the same as those for
retrieveUserResponse. Refer to appendix, "Exceptions and Error Codes" (see page 209)
if there are any errors.

Performing User Operations

Chapter 6: Managing Users and Accounts 113

Checking the User Status

You must use the getUserStatus operation to know the current status of the user in the
database.

This section walks you through the following steps for checking the user status:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the getUserStatusRequest message.

Element Mandatory Description

userId/orgName No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userId/userNam
e

Yes The unique identifier with which the user is identified
in the system.

userId/userRefId No The identifier used as a reference to track different
operations performed by a user.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

114 Web Services Developer's Guide

Invoking the Web Service

To check the user status:

1. (Optional) Include the authentication and authorization details in the header of the
getUserStatus operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the getUserStatusRequest elements to collect the user details, as listed in the
table.

3. Use the getUserStatusRequest message and construct the input message by using
the details specified in the preceding step.

4. Invoke the getUserStatus operation of the ArcorUserRegistrySvc service to check
the user status.

This operation returns the getUserStatusResponse message that includes the
transaction identifier, authentication token, and user details and status. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, getUserstatusResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. The SOAP body includes the
user details and status for a successful transaction, and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

userId/orgName The name of the organization to which the user belongs.

userId/userName The unique identifier with which the user is identified in the
system.

Performing User Operations

Chapter 6: Managing Users and Accounts 115

Element Description

userId/userRefId The identifier used as a reference to track different operations
performed by a user.

status The status of the user:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

Updating the User Status

You must use the updateUserStatus operation to change the current status of the user
in the database.

This section walks you through the following steps for updating the user status:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the updateUserStatusRequest message.

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The identifier used as a reference to track different
operations performed by a user.

status Yes The status that you want to assign to the user:

■ INITIAL

■ ACTIVE

■ INACTIVE

Note: If the current status of the user is DELETED, then
you cannot update the status of that user.

Performing User Operations

116 Web Services Developer's Guide

Element Mandatory Description

startLockTime No The timestamp when the user has to be deactivated.

endLockTime No The timestamp when the deactivated user has to be
activated.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To update the user status:

1. (Optional) Include the authentication and authorization details in the header of the
updateUserStatus operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the updateUserStatusRequest elements to collect the user details, as listed in
the table.

3. Use the updateUserStatusRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the updateUserStatus operation of the ArcorUserRegistrySvc service to
check the user status.

This operation returns the updateUserStatusResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateUserStatusResponse returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Exceptions and Error Codes" (see page 209) for more
information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Operations

Chapter 6: Managing Users and Accounts 117

Deleting Users

This section walks you through the following steps for deleting users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The deleteUserRequest message is used to delete users in the RiskMinder database. The
following table lists the elements of this request message.

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userID/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The unique identifier assigned to the user when they
are created. This identifier is used as a reference to
track different operations performed by a user.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

118 Web Services Developer's Guide

Invoking the Web Service

To delete users in the RiskMinder database:

1. (Optional) Include the authentication and authorization details in the header of the
deleteUser operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the deleteUserRequest elements to provide the user information, as listed in
the table.

3. Use the deleteUserRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the deleteUser operation of the ArcorUserRegistrySvc service to delete
users.

This operation returns the deleteUserResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, deleteUserResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Exceptions and Error Codes" (see page 209) for more information on the
SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 119

Performing User Account Operations

In addition to the user name, which is the unique user identifier, users can be identified
by their accounts (also known as account ID). A user can have multiple accounts. To
define an account for the user, an account type has to be first configured for the
organization to which the user belongs.

An account type provides additional context about the usage of the account. An account
type can have only one account ID. If you want to assign multiple account IDs for a user,
then you need to first configure the account type for each account ID that you plan to
create for the user.

This section covers the following steps related to user account operations:

■ Adding User Accounts (see page 120)

■ Updating User Accounts (see page 123)

■ Fetching All Accounts of a User (see page 125)

■ Fetch User Account Details (see page 127)

■ Fetching User Details Using Accounts (see page 130)

■ Deleting User Accounts (see page 134)

Note: Accounts are dependent on user name and account type. Before adding user
accounts, you must ensure that the user has already been created in the system, as
discussed in "Performing User Operations" (see page 91), and that the account type has
been defined for the organization to which the user belongs, as discussed in "Managing
Additional User Configurations" (see page 69).

Performing User Account Operations

120 Web Services Developer's Guide

Adding User Accounts

You must use the addUserAccount operation to add accounts for users. This section
walks you through the following steps for adding user accounts.

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the addUserAccountRequest message.

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The identifier used as a reference to track different
operations performed by a user.

account/accou
ntType

Yes The attribute that qualifies the account ID and provides
additional context about the usage of the account ID.

account/accou
ntID

No The alternate identifier used to identify the user in
addition to the user name. The account ID is also
known as account.

account/accou
ntStatus

No The status of the account:

■ 0-9: Indicates that the account is in the INITIAL
state.

■ 10-19: Indicates that the account is in the ACTIVE
state.

■ 20-29: Indicates that the account is in the
INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED
state.

■ >39: Indicates that the account status is
UNKNOWN.

account/accou
ntIDAttribute

No The alternate identifier used to identify the user in the
system.

Note: You cannot pass more than three account ID
attributes for a user.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 121

Element Mandatory Description

account/dateC
reated

No The timestamp when the account ID was created.

account/date
Modified

No The timestamp when the account ID was last modified.

account/accou
ntCustomAttri
bute

No The additional account information that you want to
pass as a name-value pair.

■ attributeName
Indicates the name of the attribute that you want
to create.

■ attributeValue
Indicates the corresponding value for the name.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Account Operations

122 Web Services Developer's Guide

Invoking the Web Service

To add user accounts:

1. (Optional) Include the authentication and authorization details in the header of the
addUserAccount operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the addUserAccountRequest elements to collect the user details, as listed in
the following table.

3. Use the addUserAccountRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the addUserAccount operation of the ArcorUserRegistrySvc service to add
accounts for the user.

This operation returns the addUserAccountResponse message that includes the
transaction identifier, authentication token, and user account details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, addUserAccountResponse, returns the transaction identifier and
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Exceptions and Error Codes" (see page 209) for more information on the
SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 123

Updating User Accounts

You must use the updateUserAccount operation to update the existing accounts of
users. This section walks you through the steps for updating the user accounts.

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The updateUserAccountRequest message elements are the same as those for
addUserAccountRequest. See the first table in Adding User Accounts (see page 120) for
more information.

Invoking the Web Service

To update user accounts:

1. (Optional) Include the authentication and authorization details in the header of the
updateUserAccount operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the updateUserAccountRequest elements to collect the user account details, as
listed in Adding User Accounts (see page 120).

3. Use the updateUserAccountRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the updateUserAccount operation of the ArcorUserRegistrySvc service to
update accounts of the user.

This operation returns the updateUserAccountResponse message that includes the
transaction identifier, authentication token, and user account details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, updateUserAccountResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header, these elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Exceptions and Error Codes" (see page 209) for more
information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

Performing User Account Operations

124 Web Services Developer's Guide

Element Description

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 125

Fetching All Accounts of a User

To fetch the details of all accounts that are created for a user, you must use the
listUserAccounts operation. This section walks you through the following steps for
fetching the accounts of a user.

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: If you want to fetch details of a particular account, then use the
retrieveUserAccount operation. See "Fetch User Account Details" (see page 127) for
more information.

Preparing the Request Message

The listUserAccountRequest message elements are same as those for
addUserAccountRequest. See the first table in Adding User Accounts (see page 120) for
more information.

Invoking the Web Service

To fetch user accounts:

1. (Optional) Include the authentication and authorization details in the header of the
listUserAccounts operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the listUserAccountRequest elements to collect the user account details, as
listed in Adding User Accounts (see page 120).

3. Use the listUserAccountRequest message and construct the input message by using
the details specified in the preceding step.

4. Invoke the listUserAccounts operation of the ArcorUserRegistrySvc service to
update accounts of the user.

This operation returns the listUserAccountResponse message that includes the
transaction identifier, authentication token, and user account details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, listUserAccountResponse returns the transaction identifier and
authentication token in the SOAP envelope header. The SOAP body includes the user
account details for a successful transaction and the Fault response for an error
condition.

Performing User Account Operations

126 Web Services Developer's Guide

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

The authentication token by default is valid for one day, after
which you need to authenticate again.

Body Elements

account/accountT
ype

The attribute that qualifies the account ID and provides additional
context about the usage of the account ID.

account/accountI
D

The alternate identifier used to identify the user in addition to the
user name. The account ID is also known as account.

account/accountSt
atus

The status of the account:

■ 0-9: Indicates that the account is in the INITIAL state.

■ 10-19: Indicates that the account is in the ACTIVE state.

■ 20-29: Indicates that the account is in the INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED state.

■ >39: Indicates that the account status is UNKNOWN.

account/accountI
DAttribute

The alternate identifier used to identify the user in the system.

account/dateCreat
ed

The timestamp when the account ID was created.

account/dateModi
fied

The timestamp when the account ID was last modified.

account/accountC
ustomAttribute

The additional account information that you want to pass as a
name-value pair.

■ attributeName
Indicates the name of the attribute that you want to create.

■ attributeValue
Indicates the corresponding value for the name.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 127

Fetch User Account Details

You must use the retrieveUserAccount operation to fetch the details of a particular user
account.

This section walks you through the following steps to fetch the details of a single user
account:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the retrieveUserAccountRequest message.

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The identifier used as a reference to track different
operations performed by a user.

account/accou
ntType

Yes The attribute that qualifies the account ID and provides
additional context about the usage of the account ID.

account/accou
ntID

No The alternate identifier used to identify the user in
addition to the user name. The account ID is also
known as account.

account/accou
ntStatus

No The status of the account:

■ 0-9: Indicates that the account is in the INITIAL
state.

■ 10-19: Indicates that the account is in the ACTIVE
state.

■ 20-29: Indicates that the account is in the
INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED
state.

■ >39: Indicates that the account status is
UNKNOWN.

Performing User Account Operations

128 Web Services Developer's Guide

Element Mandatory Description

account/accou
ntIDAttribute

No The alternate identifier used to identify the user in the
system.

Note: You cannot pass more than three account ID
attributes for a user.

account/dateC
reated

No The timestamp when the account ID was created.

account/date
Modified

No The timestamp when the account ID was last modified.

account/accou
ntCustomAttri
bute

No The additional account information that you want to
pass as a name-value pair.

■ attributeName
Indicates the name of the attribute that you want
to create.

■ attributeValue
Indicates the corresponding value for the name.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 129

Invoking the Web Service

To fetch user account details:

1. (Optional) Include the authentication and authorization details in the header of the
retrieveUserAccount operation. See "Managing Web Services Security" (see
page 37) for more information on the header elements.

2. Use the retrieveUserAccountRequest elements to collect the user and account
details, as listed in the table.

3. Use the retrieveUserAccountRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the retrieveUserAccount operation of the ArcorUserRegistrySvc service to
fetch the user details based on the account information.

This operation returns the retrieveUserAccountResponse message that includes the
transaction identifier, authentication token, and user account details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, retrieveUserAccountResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
user account details for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

account/accountT
ype

The attribute that qualifies the account ID and provides additional
context about the usage of the account ID.

account/accountI
D

The alternate identifier used to identify the user in addition to the
user name. The account ID is also known as account.

Performing User Account Operations

130 Web Services Developer's Guide

Element Description

account/accountSt
atus

The status of the account:

■ 0-9: Indicates that the account is in the INITIAL state.

■ 10-19: Indicates that the account is in the ACTIVE state.

■ 20-29: Indicates that the account is in the INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED state.

■ >39: Indicates that the account status is UNKNOWN.

account/accountI
DAttribute

The alternate identifier used to identify the user in the system.

account/dateCreat
ed

The timestamp when the account ID was created.

account/dateModi
fied

The timestamp when the account ID was last modified.

account/accountC
ustomAttribute

The additional account information that you want to pass as a
name-value pair.

■ attributeName
Indicates the name of the attribute that you want to create.

■ attributeValue
Indicates the corresponding value for the name.

Fetching User Details Using Accounts

To fetch the user details using their account information, you must use the
listUsersForAccount operation. This section walks you through the following steps for
fetching the user information based on the user accounts:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the listUsersForAccountRequest message.

Element Mandatory Description

orgName No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 131

Element Mandatory Description

accountType No The attribute that qualifies the account ID and provides
additional context about the usage of the account ID.

Note: The accountID and accountIDAttribute elements are optional, but you must pass
at least one element.

accountID No The alternate identifier used to identify the user in
addition to the user name. The account ID is also
known as account.

accountIDAttri
bute

No The alternate identifier used to identify the user in the
system.

Note: You cannot pass more than three account ID
attributes for a user.

filter/includeI
mage

No The flag to indicate whether the user image has to be
retrieved or not. Supported values are:

■ 0: Indicates that the image must not be retrieved.

■ 1: Indicates that the image must be retrieved.

filter/includeAc
counts

No The flag to indicate whether the user accounts have to
be retrieved or not. Supported values are:

■ 0: Indicates that the user accounts must not be
retrieved.

■ 1: Indicates that the user accounts must be
retrieved.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Account Operations

132 Web Services Developer's Guide

Invoking the Web Service

To fetch the user details using their account information:

1. (Optional) Include the authentication and authorization details in the header of the
listUsersForAccount operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the listUsersForAccountRequest elements to collect the user account
information, as listed in the table.

3. Use the listUsersForAccountRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the listUsersForAccount operation of the ArcorUserRegistrySvc service to
fetch the user details based on the account information.

This operation returns the listUsersForAccountResponse message that includes the
transaction identifier, authentication token, and user details. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, listUsersForAccountResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
user details for a successful transaction and the Fault response for an error condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

userId/orgName The name of the organization to which the user belongs.

userId/userName The unique identifier with which the user is identified in the
system.

userId/userRefId The identifier used as a reference to track different operations
performed by a user.

dateCreated The timestamp when the user was created in the system.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 133

Element Description

dateModified The timestamp when the user details were last modified.

emailId The email ID of the user that has been registered. If multiple email
IDs are configured for the user, then all email IDs are fetched.

telephoneNumber The telephone number of the user that has been registered. If
multiple telephone numbers are configured for the user, then all
numbers are fetched.

firstName The first name of the user.

middleName The middle name of the user.

lastName The last name of the user.

pam The Personal Assurance Message (PAM) displayed to the user,
when they try to access a resource protected by RiskMinder.

pamImageURL The URL that contains the image displayed to the user when they
try to access a resource protected by RiskMinder.

image The picture that the user wants to upload to identify themselves.

status The status of the user:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

customAttribute The additional user information that you want to pass as a
name-value pair.

■ name
Indicates the name of the attribute that you want to create.

■ value
Indicates the corresponding value for the name.

startLockTime The timestamp when the user has to be deactivated.

endLockTime The timestamp when the deactivated user has to be activated.

account/accountT
ype

The attribute that qualifies the account ID and provides additional
context about the usage of the account ID.

account/accountI
D

The alternate identifier used to identify the user in addition to the
user name. The account ID is also known as account.

Performing User Account Operations

134 Web Services Developer's Guide

Element Description

account/accountSt
atus

The status of the account:

■ 0-9: Indicates that the account is in the INITIAL state.

■ 10-19: Indicates that the account is in the ACTIVE state.

■ 20-29: Indicates that the account is in the INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED state.

■ >39: Indicates that the account status is UNKNOWN.

account/accountI
DAttribute

The alternate identifier used to identify the user in the system.

account/dateCreat
ed

The timestamp when the account ID was created.

account/dateModi
fied

The timestamp when the account ID was last modified.

account/accountC
ustomAttribute

The additional account information that you want to pass as a
name-value pair.

■ attributeName
Indicates the name of the attribute that you want to create.

■ attributeValue
Indicates the corresponding value for the name.

Deleting User Accounts

You must use the deleteUserAccount operation to delete accounts for users. This
section walks you through the following steps for deleting user accounts:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the deleteUserAccountRequest message.

Element Mandatory Description

accountType Yes The attribute that qualifies the account ID and provides
additional context about the usage of the account ID.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 135

Invoking the Web Service

To delete user accounts:

1. (Optional) Include the authentication and authorization details in the header of the
deleteUserAccount operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the deleteUserAccountRequest elements to collect the user details, as listed in
the table.

3. Use the deleteUserAccountRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the deleteUserAccount operation of the ArcorUserRegistrySvc service to
delete accounts for the user.

This operation returns the deleteUserAccountResponse message that includes the
transaction identifier, authentication token, and user account details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, deleteUserAccountResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Exceptions and Error Codes" (see page 209) for more
information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Setting the Personal Assurance Message

136 Web Services Developer's Guide

Setting the Personal Assurance Message

The Personal Assurance Message (PAM) is a text string that is displayed to the user,
when they try to access a resource protected by RiskMinder. This string assures the user
that they are connected to the genuine network or resource.

To set the PAM for a user, you must use the setPAM operation. This section walks you
through the following steps for setting the PAM for the users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the setPAMRequest message.

Element Mandatory Description

UserId/orgName No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

UserId/userNam
e

Yes The unique identifier with which the user is identified
in the system.

UserId/userRefI
d

No The identifier used as a reference to track different
operations performed by a user.

PAM No The Personal Assurance Message (PAM) displayed to
the user, when they try to access a resource protected
by RiskMinder.

Note: If you do not pass the PAM element, then an
empty value is set as PAM.

pamImageURL No The URL that contains the image displayed to the user
when they try to access a resource protected by
RiskMinder.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Setting the Personal Assurance Message

Chapter 6: Managing Users and Accounts 137

Invoking the Web Service

To set the PAM for a user:

1. (Optional) Include the authentication and authorization details in the header of the
setPAM operation. See "Managing Web Services Security" (see page 37) for more
information on the header elements.

2. Use the setPAMRequest elements to collect the user information, as listed in the
table.

3. Use the setPAMRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the setPAM operation of the ArcorUserRegistrySvc service to set the PAM
for the user.

This operation returns the setPAMResponse message that includes the transaction
identifier and authentication token. See the following section for more information
on the response message.

Interpreting the Response Message

The response message, setPAMResponse returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Exceptions and Error Codes" (see page 209) for more information on the
SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Fetching the Personal Assurance Message

138 Web Services Developer's Guide

Fetching the Personal Assurance Message

To read the PAM that is set for a user, you must use the getPAM operation. This section
walks you through the following steps for fetching the PAM of the users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the getPAMRequest message.

Element Mandatory Description

UserId/orgNa
me

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

UserId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

UserId/userRef
Id

No The identifier used as a reference to track different
operations performed by a user.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Fetching the Personal Assurance Message

Chapter 6: Managing Users and Accounts 139

Invoking the Web Service

To fetch the PAM of a user:

1. (Optional) Include the authentication and authorization details in the header of the
getPAM operation. See"Managing Web Services Security" (see page 37) for more
information on the header elements.

2. Use the getPAMRequest elements to collect the user information, as listed in the
table.

3. Use the getPAMRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the getPAM operation of the ArcorUserRegistrySvc service to get the PAM
for the user.

This operation returns the getPAMResponse message that includes the transaction
identifier, authentication token, and PAM. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, getPAMResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the PAM
for a successful transaction and the Fault response for an error condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

UserId/orgName The name of the organization to which the user belongs.

UserId/userName The unique identifier with which the user is identified in the
system.

UserId/userRefId The identifier used as a reference to track different operations
performed by a user.

Setting Custom User Attributes

140 Web Services Developer's Guide

Element Description

PAM The Personal Assurance Message (PAM) displayed to the user,
when they try to access a resource protected by RiskMinder.

pamImageURL The URL that contains the image displayed to the user when they
try to access a resource protected by RiskMinder.

Setting Custom User Attributes

In addition to the standard user information that RiskMinder supports, you can set
additional user information by using custom attributes. You must pass the additional
information as name-value pairs.

To set the custom user attributes, you must use the setCustomAttributes operation. This
section walks you through the following steps for setting custom attributes:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the setCustomAttributesRequest message.

Element Mandatory Description

UserId/orgNa
me

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

UserId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

UserId/userRef
Id

No The identifier used as a reference to track different
operations performed by a user.

customAttribut
e

No The additional user information that you want to pass
as a name-value pair.

■ name
Indicates the name of the attribute that you want
to create.

■ value
Indicates the corresponding value for the name.

Setting Custom User Attributes

Chapter 6: Managing Users and Accounts 141

Element Mandatory Description

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To set additional information for a user:

1. (Optional) Include the authentication and authorization details in the header of the
setCustomAttributes operation. See "Managing Web Services Security" (see
page 37) for more information on the header elements.

2. Use the setCustomAttributesRequest elements to collect the user information, as
listed in the table.

3. Use the setCustomAttributesRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the setCustomAttributes operation of the ArcorUserRegistrySvc service to
set the user information.

This operation returns the setCustomAttributesResponse message that includes the
transaction identifier and authentication token. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, setCustomAttributesResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Exceptions and Error Codes" (see page 209) for more
information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Authenticating LDAP Users

142 Web Services Developer's Guide

Authenticating LDAP Users

This section discusses the operations used for authenticating users whose accounts are
present in the directory service. It covers the following topics:

■ Using the LDAP Password (see page 142)

■ Using Directory Service Attributes (see page 144)

Important! The operations discussed in this section are applicable only for organizations
with repository type as LDAP.

Using the LDAP Password

Administration Console uses the LDAP authentication mechanism to authenticate the
users whose accounts are available in the LDAP repository. In this case, users log in to
the Console by specifying their LDAP user name and password.

To use the LDAP authentication mechanism to authenticate users, you must use the
authenticateUser operation. This section walks you through the following steps for
authenticating users using the LDAP authentication mechanism:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the authenticateUserRequest message.

Element Mandatory Description

UserCredential
/userId/orgNa
me

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

UserCredential
/userId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

UserCredential
/userId/userRe
fId

No The identifier used as a reference to track different
operations performed by a user.

UserCredential
/userCredentia
l/type

Yes The credential that has to be used to authenticate the
user. You must set the type as password.

Authenticating LDAP Users

Chapter 6: Managing Users and Accounts 143

Element Mandatory Description

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To authenticate users using the LDAP authentication mechanism:

1. (Optional) Include the authentication and authorization details in the header of the
authenticateUser operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the authenticateUserRequest elements to collect the user and credential
information, as listed in the table.

3. Use the authenticateUserRequest message and construct the input message by
using the details specified in the preceding step.

4. Invoke the authenticateUser operation of the ArcorUserRegistrySvc service to set
the user information.

This operation returns the authenticateUserResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, authenticateUserResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
authentication status for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

Authenticating LDAP Users

144 Web Services Developer's Guide

Element Description

AuthResult/status The authentication status of the user in the LDAP. Possible values
are:

■ SUCCESS

■ FAILURE

Using Directory Service Attributes

This section discusses the following operations that are used to authenticate users using
their directory service attributes:

■ Fetching User Attributes (see page 144)

■ Fetching User Attribute Values (see page 146)

■ Verifying User Attributes (see page 148)

Fetching User Attributes

The attributes that are used to store the user information in the directory service can be
read using the getQnAAttributes operation. This section walks you through the following
steps related to this operation:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the QnAAttributesRequest message.

Element Mandatory Description

orgName Yes The name of the LDAP organization to which the user
attributes that you want to fetch belong.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Authenticating LDAP Users

Chapter 6: Managing Users and Accounts 145

Invoking the Web Service

To fetch the user attributes:

1. (Optional) Include the authentication and authorization details in the header of the
getQnAAttributes operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the getQnAAttributesRequest elements to collect the organization information,
as listed in the table.

3. Use the QnAAttributesRequest message and construct the input message by using
the details specified in the preceding step.

4. Invoke the getQnAAttributes operation of the ArcorUserRegistrySvc service to fetch
the user attributes of the LDAP organization.

This operation returns the QnAAttributesResponse message that includes the
transaction identifier, authentication token, and user attributes. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, QnAAttributesResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. The SOAP body includes the
user attributes for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token by default is valid for one
day, after which you need to authenticate again.

Body Elements

The user attributes configured in the LDAP.

Authenticating LDAP Users

146 Web Services Developer's Guide

Fetching User Attribute Values

The getQnAValues operation is used to read the values that are set for the user
attributes present in the directory service. You can fetch the values for one or more
attributes. This section walks you through the following steps related to this operation:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the QnAValuesRequest message.

Element Mandatory Description

username Yes The unique identity of the user whose attribute values
you want to fetch.

orgname Yes The name of the LDAP organization to which the user
attribute values that you want to fetch belong.

attributes/attri
bute

Yes The name of the attributes whose value you want to
fetch.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Authenticating LDAP Users

Chapter 6: Managing Users and Accounts 147

Invoking the Web Service

To fetch the values of user attributes:

1. (Optional) Include the authentication and authorization details in the header of the
getQnAValues operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the getQnAValuesRequest elements to collect the user, organization, and
attribute information, as listed in the table.

3. Use the QnAValuesRequest message and construct the input message by using the
details specified in the preceding step.

4. Invoke the getQnAValues operation of the ArcorUserRegistrySvc service to fetch the
values of the user attributes that are stored in directory service.

This operation returns the QnAValuesResponse message that includes the
transaction identifier, authentication token, and attribute values. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, QnAValuesResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the user
attribute values for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

The values for the user attributes that are configured in the directory service.

Authenticating LDAP Users

148 Web Services Developer's Guide

Verifying User Attributes

You can authenticate the users of an organization (mapped to LDAP repository) by using
their LDAP attributes. You must use the performQnAVerification operation to perform
this authentication. This section walks you through the following steps related to this
operation:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the QnAVerificationRequest message.

Element Mandatory Description

username Yes The unique identifier of the user whose attributes you
want to verify.

orgname Yes The name of the LDAP organization to which the user
belongs.

attributes/attri
bute

Yes The name (attrName) and value (attrValue) of the
attribute that has to be verified.

ignorecase Yes Specifies whether the case of the attribute values
passed in the input must match the case of the values
stored in the directory service:

■ 0: Indicates that the case must match.

■ 1: Indicates that the case of the input values will
be ignored.

clientTxId No The unique transaction identifier that your calling
application can include. This identifier helps in tracking
the related transactions.

Authenticating LDAP Users

Chapter 6: Managing Users and Accounts 149

Invoking the Web Service

To authenticate users with their LDAP attributes:

1. (Optional) Include the authentication and authorization details in the header of the
performQnAVerification operation. See "Managing Web Services Security" (see
page 37) for more information on the header elements.

2. Use the performQnAVerificationRequest elements to collect the user, organization,
and attribute information, as listed in the table.

3. Use the QnAVerificationRequest message and construct the input message by using
the details specified in the preceding step.

4. Invoke the performQnAVerification operation of the ArcorUserRegistrySvc service
to fetch the values of the user attributes that are stored in directory service.

This operation returns the QnAVerificationResponse message that includes the
transaction identifier, authentication token, and verification result. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, QnAAVerificationResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
verification result for each attribute and the Fault response for an error condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Exceptions and Error Codes" (see page 209) if there are
any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction performed by using UDS.

authToken The authentication token that is returned if the credential
verification to access the Web service was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web service.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

QnAResponseAttri
bute/name

The name of the attribute that was verified.

Authenticating LDAP Users

150 Web Services Developer's Guide

Element Description

QnAResponseAttri
bute/result

The result of the verification:

■ MATCHED

■ NOT_MATCHED

■ NOT_VERIFIED

■ NOT_FOUND

Chapter 7: Collecting Device ID and DeviceDNA 151

Chapter 7: Collecting Device ID and
DeviceDNA

Important! If you are an existing customer of RiskMinder and have integrated your
application with a previous release of RiskMinder, then it is strongly recommended that
you use the new APIs to leverage the full benefit of enhanced Device ID and DeviceDNA.
In addition, the older APIs will be deprecated soon.

RiskMinder uses user-device (desktop computers, laptops, and notebooks) information
as one of the parameters to determine the risk associated with a login attempt or a
transaction. As a result, the verification of the online identity of the end user is a
challenge. RiskMinder also uses Device ID and DeviceDNA technologies (in addition to
other inputs, as discussed in "Understanding RiskMinder Workflows" (see page 19)) for
this purpose. These technologies enable RiskMinder to build the user profile and to
transparently provide accurate results by using the hardware that users already possess,
without changing the end-user experience significantly.

This section provides detailed information on how to get and set Device ID and collect
the DeviceDNA data from the end user’s device and pass it to RiskMinder. It covers the
following topics:

■ End-User Device Identification Basics (see page 151)

■ File that You Will Need (see page 154)

■ Configuring Device ID and DeviceDNA (see page 154)

■ Sample Code Reference (see page 159)

■ Collecting the IP Address (see page 163)

End-User Device Identification Basics

This section introduces you to the techniques RiskMinder uses to gather the end-user
device identification information.

End-User Device Identification Basics

152 Web Services Developer's Guide

Device ID

The Device ID is a device identifier string that RiskMinder generates on the end user’s
device to identify and track the device that the end user uses for logging into your
online application and performing transactions. The Device ID information is in
encrypted format.

The following are the options for storing the Device ID on the end user's device. The
plugin store is the most persistent storage option.

■ Plugin store: The plugin store is a permanent store on the end user’s device. A
Device ID that is placed in the plugin store cannot be deleted by common end user
actions such as clearing browser cache and deleting browser cookies. The plugin
store is supported from CA RiskMinder Client release 2.1 onward.

■ Local storage provided in HTML5

■ UserData store: This store is available only in Microsoft Internet Explorer

■ Cookie store: Typically, on Microsoft Windows, the Device ID is stored in one of the
following folders:

■ Internet Explorer on Microsoft Windows 7 or 2008:

C:\Documents and Settings\user_profile\Application

Data\Microsoft\Windows\Cookies\

■ Internet Explorer on Microsoft Windows 2003 or XP:

C:\Documents and Settings\user_profile\Cookies\

■ Mozilla Firefox:

C:\Documents and Settings\user_profile\Application

Data\Mozilla\Firefox\Profiles\random_dirname\cookies.sqlite

■ Safari:

C:\Documents and Settings\user_name\Application Data\Apple

Computer\Safari\cookies.plist

Important! From CA RiskMinder Client version 2.0 onward, the Device ID is not stored as
a Flash cookie. If you have existing Flash cookies from an earlier release, then these
cookies are automatically migrated to one of the stores listed earlier in this section.

End-User Device Identification Basics

Chapter 7: Collecting Device ID and DeviceDNA 153

Machine FingerPrint (MFP)

 Machine FingerPrint (also referred to as Device fingerprinting or PC fingerprinting in
industry terms) represents the browser information and device identification attributes
(such as operating system, installed software applications, screen display settings,
multimedia components, and other attributes) that are gathered from the end user’s
system and are analyzed to generate a risk profile of a device in real time. Some of the
attributes that are collected from the end user’s device include:

■ Browser information (such as name, UserAgent, major version, minor version,
JavaScript version, HTTP headers)

■ Operating system name and version

■ Screen settings (such as height, width, color depth)

■ System information (such as time zone, language, system locale)

For every transaction performed by the end user, RiskMinder matches the
corresponding MFP stored in its database with the incoming information. If this match
percentage (%) is equal to or more than the value specified for the Device-MFP Match
rule in Administration Console, then it is considered "safe".

DeviceDNA

DeviceDNA is a device identification and analytics technique that uses both Machine
FingerPrint (MFP) (see page 153) and Device ID (see page 152) for more accurate
information analyses. For accuracy, more information is collected than in case of MFP.
For example:

■ Additional system information (such as platform, CPU, MEP, system fonts, camera,
and speaker information)

■ Additional browser information (such as vendor, VendorSubID, BuildID)

■ Additional screen settings (such as buffer depth, pixel depth, DeviceXDPI,
DeviceYDPI)

■ Plug-in information (such as QuickTime, Flash, Microsoft Windows Media Player,
ShockWave, Internet Explorer plug-ins)

■ Network information (such as connection type)

File that You Will Need

154 Web Services Developer's Guide

File that You Will Need

You will need the file listed in the following table, available when you install RiskMinder,
to collect the Device ID and DeviceDNA information from the end user’s device.

Location File Name Description

Microsoft Windows:
install_location\
RiskMinder Systems\sdk\
devicedna\

Solaris:
install_location/RiskMind
er/sdk/devicedna/

riskminder-client.js This file contains the functions to
gather the Device ID- and
DeviceDNA-related information from
the end user’s device and to
generate the single-encoded String
with all the DeviceDNA values.

Note: In the same location as riskminder-client.js, you will also see a file called
riskminder-client.swf. This latter file is internally used by riskminder-client.js. So, you will
not need to explicitly use this file.

However, riskminder-client.swf must always be present in the same location as
riskminder-client.js, when you include it.

Configuring Device ID and DeviceDNA

To implement the functionality of the DeviceDNA and Device ID collection, you must
implement corresponding code snippets into each page of your application that
contains an event that requires risk assessment. For example, for risk assessment of a
login event, your application must implement the required JavaScript files and code
snippets into the login page. Similarly for a pre-login event, the steps discussed in this
section must trigger when a user accesses the first page of your online application.

The steps to build the DeviceDNA and collect the Device ID from the end user’s device
are:

■ Step 1: Include the Javascript File (see page 155)

■ Step 2: Initialize Device ID and DeviceDNA Collection (see page 156)

■ Step 3: Collect the Device ID and DeviceDNA (see page 158)

■ Step 4: Collect the IP Address (see page 158)

You can implement these steps either in a single page of your online application, or
across multiple pages (depending on how many pages you show during the login
process) before you call the evaluateRisk method.

Configuring Device ID and DeviceDNA

Chapter 7: Collecting Device ID and DeviceDNA 155

Step 1: Include the Javascript File

You will need to modify the appropriate Web pages, such as the login or index page
(say, index.jsp or login.jsp) to enable them to gather MFP and DeviceDNA-related
information, and collect the Device ID (cookie) from the end user’s computer.

Note: See "Enrollment Workflows" (see page 19) for more information on when and
how RiskMinder sets the Device ID on the end user’s device.

To implement the script codes:

1. Copy the entire devicedna directory from the following location to the appropriate
Web application folder (say,
APP_SERVER_HOME/Your_Application_Home/devicedna/):

■ On Microsoft Windows

install_locatio>\Arcot Systems\sdk\

■ On UNIX-Based Platforms

install_location/Arcot Systems/sdk/

2. Include the riskminder-client.js file in the required application pages. We assume
that these files are located in a folder that is relative to the folder containing
index.jsp.

<script type="text/javascript"

src="devicedna/riskminder-client.js"></script>

Configuring Device ID and DeviceDNA

156 Web Services Developer's Guide

Step 2: Initialize Device ID and DeviceDNA Collection

Note: Refer to the code in the "Sample Code Reference" (see page 159) section to
understand this step better.

To implement the Device ID and DeviceDNA collection, include (declare) the following
parameters in your HTML code before processing anything related to DeviceDNA:

<html>

<script type="text/javascript" src="devicedna/riskminder-client.js"></script>

<script type="text/javascript">

var client;

window.onload = function()

{

 init();

}

function init(){

 client = new ca.rm.Client();

 var contextPath = "<%=request.getContextPath()%>";

 client.setProperty("baseurl", contextPath);

 client.loadFlash(readyCallback);

}

function readyCallback(flag)

{

 // set desired configurations...

 configureClient();

 client.processDNA();

}

function configureClient() {

 // set the desired name for the cookie

 client.setProperty("didname", "rmclient");

 // turn off flash

 client.setProperty("noFlash", true);

 /// configure MESC values

 client.setProperty("mescmaxIterations", 2);

Configuring Device ID and DeviceDNA

Chapter 7: Collecting Device ID and DeviceDNA 157

 client.setProperty("mesccalibrationduration", 150);

 client.setProperty("mescintervaldelay", 45);

 // etc...

 //Refer to the setProperty() API description in section, "Understanding the APIs

for Retrieving DeviceDNA in the Sample Code (see page 160)" for the complete list of

configuration parameters that you can use according to your requirements.

}

<body>

 //Your HTML code here

</body>

</html>

}

Note: Refer to the setProperty() API description in setProperty(key,val) (see page 161)
for the complete list of configuration parameters that you can use.

Sample Application Reference

You can also refer to index.jsp, which is a part of the RiskMinder Sample Application.
This file showcases the collection of DeviceDNA and other required information and sets
these parameters for the session. After you deploy the Sample Application, this file is
available at:

<RISKFORT_SAMPLEAPP_HOME>\index.jsp

For example, if you are using Apache Tomcat 5.5, then the location of index.jsp will be
<Tomcat_Home>\webapps\riskfort-3.1-sample-application\index.jsp.

Configuring Device ID and DeviceDNA

158 Web Services Developer's Guide

Step 3: Collect the Device ID and DeviceDNA

You must now ensure that you now get the Device ID along with the DeviceDNA, as
follows:

1. Ensure that on click of the Login (or Submit) button on the page, the following code
snippet is called:

<input type="button" value="Login"

onClick="collectSystemInfo();">

2. Ensure that you have defined the collectSystemInfo() function. For example, you
can use the following code snippet:

function collectSystemInfo()

{

 client.processDNA();

 var json = client.getDNA();

 var did = client.getDID();

 document.CollectMFPToEvaluate.DDNA = json;

 document.CollectMFPToEvaluate.DeviceID = did ;

 //post to server, both the DeviceDNA and Device ID values for risk eval

}

3. After you have collected the DeviceDNA and the Device ID, as required, you must
pass this collected information as input to evaluateRisk() method.

See "Performing Risk Evaluation and Managing Associations" (see page 165) for
more information.

Step 4: Collect the IP Address

RiskMinder does not provide any mechanism to collect the IP address of the end-user
device. As a result, you must implement your own logic to do so.

See "Collecting the IP Address" (see page 163) for recommendations.

Sample Code Reference

Chapter 7: Collecting Device ID and DeviceDNA 159

Sample Code Reference

The following sample code illustrates how to implement RiskMinder’s DeviceDNA and
Device ID collection mechanism. It showcases the collection logic in one file (say,
index.jsp). However, you can implement appropriate code snippets in different pages,
depending on the number of pages you show before you call the evaluateRisk() method.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<script type="text/javascript"

src="<%=request.getContextPath()%>/devicedna/riskminder-client.js"></script>

<script language="javascript">

var client;

 function init(){

try{

client = new ca.rm.Client();

var contextPath = "<%=request.getContextPath()%>";

client.setProperty("baseurl", contextPath);

client.loadFlash(readyCallback);

}catch(e){

alert(e.message);

}

}

 function collectingSystemInfo() {

try{

client.setProperty("externalip", "<%=request.getRemoteHost()%>");

computeDDNA();

}catch(e){

alert(e);

}

}

 function readyCallback(flag){

 configureClient();

 client.processDNA();

 }

 function configureClient(flag){

 //configure the client properties.

 client.setProperty("format", "json");

 client.setProperty("didname", "RISKFORT_COOKIE");

 }

Sample Code Reference

160 Web Services Developer's Guide

 function computeDDNA() {

client.processDNA();

var dna = client.getDNA();

var did = client.getDID();

//forward this info to appropriate servlet to perform risk eval

document.CollectMFPToEvaluate.IpAddress.value = '<%=request.getRemoteHost()%>';

document.CollectMFPToEvaluate.CallerID.value = "MyCallerID";

document.CollectMFPToEvaluate.DeviceID.value = did;

document.CollectMFPToEvaluate.MFP.value = dna;

document.CollectMFPToEvaluate.submit();

 }

 </script>

</head>

<body onload="init()">

<form name="CollectMFPToEvaluate" method="POST" action="ArRFMFPCollectionServlet">

<input type="hidden" name="MFP" value="">

<input type="hidden" name="IpAddress">

<input type="hidden" name="CallerID">

<input type="hidden" name="DeviceID">

<h1 align="center">Arcot RiskFort Sample Application</h1>

<input type="button" style="width: 150px" name="Login" value="Login"

onclick="collectingSystemInfo();"/>

</form>

</body>

</html>

Understanding the APIs for Retrieving DeviceDNA in the Sample Code

The RiskMinder Client runs on the client browser and collects the device signature and
Device ID. All the client-side controls for RiskMinder are provided in the RiskMinder
Client Javascript API. This API allows you to program the functionality of the client using
JavaScript.

This section describes the RiskMinder Client APIs that are used to retrieve the
DeviceDNA.

ca.rm.Client()

Main JavaScript class that exposes all the published APIs of the RiskMinder Client.

Sample Code Reference

Chapter 7: Collecting Device ID and DeviceDNA 161

getVersion()

Returns a String that specifies the version of the RiskMinder Client. The current
supported version is 2.1.

setProperty(key,val)

Specifies the configuration values for the RiskMinder Client. The following table
describes the properties that you can set for this method.

Property Key Description

baseurl The context path of the Web application that is using DeviceDNA.

This value must be set immediately after creating an instance of
ca.rm.Client JavaScript object.

No default value is supported.

didname The cookie or local storage item name. Device ID cookie is set by
using this name. The value should be a string.

flashdatastorenam
e

The name of the Flash local store where the Flash Device ID was
stored (in the previous releases).

flashPath Not being used currently. This property is reserved for future use.

format The format in which DeviceDNA results should be returned. The
value should be one of the following a strings:

■ HTML

■ JSON

jobs Not being used currently. This property is reserved for future use.

store The storage area for Device ID. The value should be one of the
following strings:

■ cookie

■ localstorage

■ plugin

■ default

externalIP The IP address of the system from which the page containing the
Client was served.

noFlash The indication whether the Flash movie bundled with the Client
should be used for gathering additional attributes for DeviceDNA.
The value should be boolean - true or false. By default, noFlash is
set to false, which implies that the Flash movie will be used.

Sample Code Reference

162 Web Services Developer's Guide

Property Key Description

MESC-Related Configurations

MESC stands for Machine Effective Speed Calculations. An attempt is made to
estimate processor speed by executing several runs of batched arithmetic operations.
In our case, it is integer addition for specified intervals of time.

mescmaxIteration
s

Specifies how many runs of the batched arithmetic operations
should be executed. Default value is 2.

mesccalibrationDu
ration

Specifies the duration for which each batch of arithmetic
operations should run. The value is specified in milliseconds. The
default value is 200ms.

mescintervalDelay Specifies the delay (in number of milliseconds) between
successive runs. The value is specified in milliseconds. The default
value is 50ms.

getProperty(key)

This API returns the currently defined value for the property represented by the key. Key
values are same as for setProperty(). See setProperty(key,val) (see page 161) for more
information.

loadFlash(callback)

This API loads the flash movie that is part of the RiskMinder Client and initializes it. The
Callback function should be a JavaScript function taking a boolean flag as parameter and
defined in the Web page that is calling this method.

At the end of initialization, the Callback function is invoked with parameter set to true, if
the Flash movie initialization was successful. Else, the Callback function is invoked with
parameter set to false.

processDNA()

This is the main API of the RiskMinder Client. It retrieves a number of system attributes
from the end-user system and from the software installed on this system. It then
computes the corresponding DeviceDNA using these values.

All the configuration settings are taken into consideration by the processDNA function
while computing the DeviceDNA.

Collecting the IP Address

Chapter 7: Collecting Device ID and DeviceDNA 163

getDNA()

This API returns a string that represents the end-user system’s DeviceDNA, as computed
by the RiskMinder Client. The DeviceDNA string can either be in the HTML format or
JSON format. This is controlled by the value that is specified for the format property.

getTimeTaken()

This API returns the time taken (in milliseconds) by the processDNA() call to compute
the end-user system’s DeviceDNA.

setDID(value)

This function stores the Device ID on the end user's device. The Device ID string must be
specified in the value parameter of the function.

getDID()

This function returns the Device ID that has been stored on the end user's device. This
function also migrates older Flash cookie with the same cookie name (if present) to one
of the supported stores.

deleteDID()

This function deletes the Device ID that has been set on the end user's device by the
RiskMinder Client.

Collecting the IP Address

The end user accessing your online application might be a home user or might be
accessing it from their corporate network. In case of latter category of users, chances
are that they might be "hidden" behind a proxy server. As a result, the way you will
collect the IP address of an end user who is accessing your online application from
behind a proxy will be different from the user who accesses it directly from home.

If the End User is Accessing Your Application Directly

If the end user is accessing your application directly, then you can use the
getRemoteAddr() method of the HttpServletRequest interface in your JSP. This method
returns a string that contains the IP address of the client that sent the request.

Chapter 8: Performing Risk Evaluation and Managing Associations 165

Chapter 8: Performing Risk Evaluation and
Managing Associations

When a user accesses your online application, the application forwards the request to
RiskMinder for risk analysis. RiskMinder evaluates the risk for all users, irrespective of
whether they are first-time users (and therefore not "known" to RiskMinder) or they are
already enrolled with the RiskMinder system.

The Risk Evaluation Web service enables you to send risk evaluation requests to
RiskMinder Server. This Web service creates a request message and sends it to
RiskMinder Server, receives the response back from the Server, and packages it as
return structures to be read by the client.

This section provides an overview of how to use the Risk Evaluation Web service to
perform risk evaluation, post-evaluation, and association management operations that
the Web service implements. It covers the following topics:

■ Evaluating Risk (see page 166)

■ Performing Post Evaluation (see page 172)

■ Listing Associations (see page 178)

■ Deleting Associations (see page 181)

To perform the operations discussed in this section, you must use the
ArcotRiskFortEvaluateRiskService.wsdl file. This service represents the client-side
interface to RiskMinder Server’s risk evaluation functionality and exposes the supported
operations for risk evaluation workflows.

Evaluating Risk

166 Web Services Developer's Guide

Evaluating Risk

To evaluate the risk associated with a transaction, you need to use the
RiskFortEvaluateRiskSvc service (available through
ArcotRiskFortEvaluateRiskService.wsdl.)

This section walks you through the following topics:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

You must use the evaluateRiskRequest message to evaluate the risk associated with a
transaction. The following table lists the elements of this request message.

Element Mandatory Description

callerId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
related transactions.

Device Context Elements

deviceContext No The end-user device details, as described by
aggregatorID, deviceIDs, deviceSignature, and
shortDeviceSignature.

deviceContext/
aggregatorID

No The unique ID of the third-party vendor who provides
account aggregation services by collating specified
information of users across multiple enterprises.

deviceContext/
deviceIDs

No Defined by the DeviceIDItem element, this element
describes the unique identifier information to identify
and track the device that the end user uses to log in to
your online application and perform transactions:

■ deviceIDType: The string that identifies the storage
type used to store the Device ID.

■ DeviceIDValue: The corresponding value for
deviceIDType.

Note: You can add more than one DeviceIDItem
element, with deviceIDType and DeviceIDValue pairs.

Evaluating Risk

Chapter 8: Performing Risk Evaluation and Managing Associations 167

Element Mandatory Description

deviceContext/
deviceSignatur
e

No The Machine FingerPrint (MFP) that RiskMinder’s MFP
Collector builds this on the client side. This signature
contains information related to the end-user’s device,
such as browser details, system details, plug-in details,
and screen width.

deviceContext/
shortDeviceSig
nature

No The short form of the deviceSignature.

Location Context Elements

locationContex
t

No The transaction location details, as described by
clientIPAddress, longitude, latitude, continent, country,
countryISO2, region, state, city, connectionType, and
lineSpeed.

locationContex
t/
clientIPAddress

No The Internet Protocol (IP) address of the end-user
system in the public address space.

locationContex
t/
longitude

No A floating point number, with positive numbers
representing East and negative numbers representing
West.

locationContex
t/
latitude

No A floating point number, with positive numbers
representing North and negative numbers representing
South.

locationContex
t/
continent

No The continent from where the transaction originated:

■ Africa

■ Antarctica

■ Asia

■ Australia

■ Europe

■ North America

■ Oceania (Melanesia, Micronesia, Polynesia)

■ South America

locationContex
t/
country

No The country from where the transaction originated.

locationContex
t/
countryISO2

No The two-letter country code (as defined in ISO 3166-1)
from where the transaction originated.

Evaluating Risk

168 Web Services Developer's Guide

Element Mandatory Description

locationContex
t/
region

No The district or territory from where the transaction
originated.

locationContex
t/
state

No The first-level administrative division within each
country (if one exists) from where the transaction
originated.

locationContex
t/
city

No The city from where the transaction originated.

locationContex
t/
connectionTyp
e

No The type of data connection between the end-user’s
device and their Internet Service Provider (ISP):

■ Satellite: High-speed broadband links between a
user and a geosynchronous satellite.

■ OCX: The OC-3 circuits and OC-48 circuits that are
used by large backbone carriers.

■ TX: Old links of type T-3 circuits and T-1 circuits.

■ Frame Relay: High-speed alternatives to TX.

■ Dialup: Modems that operate at 56kbps.

■ Cable: Cable modem broadband circuits, primarily
offered by cable TV companies.

■ DSL: Digital Subscriber Line broadband circuits that
include aDSL, iDSL, and sDSL.

■ ISDN: High-speed Integrated Services Digital
Network technology with specialized modems and
switches.

■ Fixed Wireless: Wireless connections where the
location of the receiver is fixed.

■ Mobile Wireless: Wireless connections where the
location of the receiver is mobile.

locationContex
t/
lineSpeed

No The speed of the user’s Internet connection. This is
based on connectionType.

User Context Elements

userContext No The user details, as described by orgName and
userName.

userContext/
orgName

No The name of the organization to which the end user
belongs.

Evaluating Risk

Chapter 8: Performing Risk Evaluation and Managing Associations 169

Element Mandatory Description

userContext/
userName

Yes The name of the user who performed the transaction.

Transaction Context Elements

transactionCon
text

No The transaction details, as described by action and
channel.

transactionCon
text/
action

No The type of transaction performed by the user, which
can be:

■ Login

■ Wire Transfer

■ Any other value that you specify through your
application

transactionCon
text/
channel

No The channel from which the transaction originated:

■ Web: Transactions initiated through a Web
browser. The originator may be a computer, smart
phone, tablet, or set-top box.

■ SMS: Transactions initiated through SMS
messaging.

■ App: Transactions initiated through smart phone,
tablet application, or set-top box embedded
applications.

■ 3DSecure: Online transactions initiated using
credit card or debit card.

■ ATM: Transactions initiated through an Automated
Teller Machine.

■ PoS: Transactions initiated at physical point of sale.

Administration Context Type Elements

adminContextT
ype

No The administrator details, as described by orgName,
adminName, and locale, who initiated the Web service
call.

adminContextT
ype/
orgName

No The name of the organization to which the
administrator who initiated the Web service call
belongs.

adminContextT
ype/
adminName

No The name of the administrator who initiated the Web
service call.

Evaluating Risk

170 Web Services Developer's Guide

Element Mandatory Description

adminContextT
ype/
locale

No The locale used by the administrator. The output
message will be converted to this locale.

Additional Input Elements

additionalInput No Enables you to set additional inputs if you want to
augment RiskMinder’s risk evaluation capability by
specifying additional information. In such cases, you
must set the extra information in name-value pairs.

■ name: The name with which you want to create
the key pair.

■ value: The corresponding value for name.

Note: You can add more than one of these elements.

Invoking the Web Service

To evaluate the risk associated with a transaction:

1. (Optional) Include the authentication and authorization details in the header of the
evaluateRisk operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the evaluateRiskRequest elements to set the required information, as listed in
the table.

3. Use the evaluateRiskRequest message and construct the input message by using
the details specified in preceding step.

4. Invoke the evaluateRisk operation of the RiskFortEvaluateRiskSvc service to perform
risk evaluation.

This operation returns the evaluateRiskResponse message that includes the risk
assessment elements and the success result. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, evaluateRiskResponse, returns the risk assessment elements
and the success result in the SOAP envelope header. These elements are explained in
the following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the riskfortFault response is
returned. See appendix, "Exceptions and Error Codes" (see page 209) for more
information on the SOAP error messages.

Element Description

Risk Assessment Elements

Evaluating Risk

Chapter 8: Performing Risk Evaluation and Managing Associations 171

Element Description

riskAssessment Contains the following details of the transaction:

■ advice
An action (ALERT, ALLOW, DENY, INCREASEAUTH) suggested
by the Risk Assessment module after evaluating the score of
the transaction.

■ outputDeviceID
The Device ID (cookie) information for the device.

■ score
The score generated based on device details, location details,
and user details.

■ matchedRuleMnemonic
The rules that matched and for which RiskMinder flagged the
transaction as risky.

■ ruleAnnotation
The result of execution of all rules (or the reason for score
and advice).

■ transactionID
The unique identifier of the transaction.

■ deviceContext
The gathered Machine FingerPrint (MFP) of the end-user’s
device.

■ locationContext
The gathered location details where the device was used to
perform the transaction.

■ userContext
The gathered details of the user who performed the
transaction.

RiskFort Success Elements

riskFortSuccess Contains the following information related to the result of the
operation:

■ successMessage
A string that defines the status of the operation.

■ transactionID
The unique transaction identifier.

Performing Post Evaluation

172 Web Services Developer's Guide

Performing Post Evaluation

The Post Evaluation operation accepts input from the Risk Evaluation operation and
updates the device signature and other information for the specified user, if it changed.
This operation also creates or updates user-device associations, if required.

To perform the subsequent post-evaluation after you have completed the risk
evaluation of a transaction, you must use the RiskFortEvaluateRiskSvc service (available
through ArcotRiskFortEvaluateRiskService.wsdl). This service represents the client-side
interface to RiskMinder Server’s post-evaluation functionality and exposes the
supported operations.

This section walks you through the following topics:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

You must use the postEvaluateRequest message to perform post-evaluation tasks. The
following table lists the elements of this request message.

Element Mandatory Description

callerId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
related transactions.

Risk Assessment Elements

advice Yes An action (ALERT, ALLOW, DENY, INCREASEAUTH)
obtained from the riskAssessment element of the
evaluateRiskResponse message.

outputDeviceI
D

Yes The Device ID (cookie) obtained from the
riskAssessment element of the evaluateRiskResponse
message.

score Yes The score obtained from the riskAssessment element
of the evaluateRiskResponse message.

matchedRuleM
nemonic

Yes Obtained from the riskAssessment element of the
evaluateRiskResponse message, the rules that matched
and for which RiskMinder flagged the transaction as
risky.

ruleAnnotation Yes The result of execution of all rules (or the reason for
score and advice), as obtained from the riskAssessment
element of the evaluateRiskResponse message.

Performing Post Evaluation

Chapter 8: Performing Risk Evaluation and Managing Associations 173

Element Mandatory Description

transactionID Yes Unique transaction identifier received from the
riskFortSuccess element of evaluateRiskResponse
message. Your application can include this identifier for
tracking purposes.

deviceContext No The MFP details of the end-user’s device obtained from
the riskAssessment element of the
evaluateRiskResponse message. This element is further
described by the following attributes:

■ aggregatorID
The unique ID of the third-party vendor who
provides account aggregation services by collating
specified information of users across multiple
enterprises.

■ deviceIDs
Defined by the DeviceIDItem element, this
element describes the unique identifier
information to identify and track the device that
the end user uses to log in to your online
application and perform transactions:
– deviceIDType: The string that identifies the
storage type that is used to store the Device ID.

 -- DeviceIDValue: The corresponding value for
deviceIDType.

Note: You can add more than one DeviceIDItem
element, with deviceIDType and DeviceIDValue pairs.

■ deviceSignature
The Machine FingerPrint (MFP) that RiskMinder’s
MFP Collector builds this on the client-side. This
signature contains information related to the
end-user’s device, such as browser details, system
details, plug-in details, and screen width.

■ shortDeviceSignature
The short form of the deviceSignature.

Performing Post Evaluation

174 Web Services Developer's Guide

Element Mandatory Description

locationContex
t

No The transaction location details, obtained from the
riskAssessment element of the evaluateRiskResponse
message. This element is further described by the
following attributes:

■ clientIPAddress
The Internet Protocol (IP) address of the end-user
system in the public address space. Not
mandatory.

■ longitude
A floating point number, with positive numbers
representing East and negative numbers
representing West. Not mandatory.

■ latitude
A floating point number, with positive numbers
representing North and negative numbers
representing South. Not mandatory.

■ continent
The continent from where the transaction
originated:
– Africa
– Antarctica
– Asia
– Australia
– Europe
– North America
– Oceania (Melanesia, Micronesia, Polynesia)
– South America

■ country
The country from where the transaction
originated. Not mandatory.

■ countryISO2
The two-letter country code (as defined in ISO
3166-1) from where the transaction originated.
Not mandatory.

■ region
The district or territory from where the transaction
originated. Not mandatory.

■ state
The first-level administrative division within each
country (if one exists) from where the transaction
originated. Not mandatory.

■ city
The city from where the transaction originated.
Not mandatory.

■ connectionType
The type of data connection between the
end-user’s device and their Internet Service
Provider (ISP):
– Satellite: High-speed broadband links between a
user and a geosynchronous satellite.
– OCX: The OC-3 circuits and OC-48 circuits that

Performing Post Evaluation

Chapter 8: Performing Risk Evaluation and Managing Associations 175

Element Mandatory Description

userContext Yes

(userName
is
mandatory)

The user details, obtained from the riskAssessment
element of the evaluateRiskResponse message. This
element is further described by the following
attributes:

■ orgName
The name of the organization to which the end
user belongs. This attribute is optional.

■ userName
The name of the user who performed the
transaction. This attribute is mandatory.

transactionCon
text

No The transaction details, obtained from the
riskAssessment element of the evaluateRiskResponse
message. This element is further described by the
following attributes:

■ action
The type of transaction performed by the user,
which can be:
– Login
– Wire Transfer
– Any other value that you specify through your
application

■ channel
The channel from which the transaction
originated:
– Web: Transactions initiated through a Web
browser. The originator may be a computer, smart
phone, tablet, or set-top box.
– SMS: Transactions initiated through SMS
messaging.
– App: Transactions initiated through smart phone,
tablet application, or set-top box embedded
applications.
– 3DSecure: Online transactions initiated using
credit card or debit card.
– ATM: Transactions initiated through an
Automated Teller Machine.
– PoS: Transactions initiated at physical point of
sale.

Performing Post Evaluation

176 Web Services Developer's Guide

Element Mandatory Description

additionalOutp
ut

No Enables you to set additional outputs that you got from
RiskMinder’s risk evaluation request. In such cases, you
need to set the extra information in name-value pairs.

■ name: The name with which you want to create
the key pair.

■ value: The corresponding value for name.

Note: You can add more than one of these elements.

Secondary Authentication Status Element

secondaryAuth
enti
cationStatus

Yes The result of the additional authentication that your
application might have performed based on the advice
obtained from the riskAssessment element of
evaluateRiskResponse:

■ 0: Indicates that your application denied the
transaction.

■ 1: Indicates that the transaction was allowed.

Association Element

associationNa
me

No The string identifier for the user-to-device association
in the system.

Administration Context Type Elements

adminContextT
ype

No The administrator details, as described by orgName,
adminName, and locale, who initiated the Web service
call.

adminContextT
ype/
orgName

No The name of the organization to which the
administrator who initiated the Web service call
belongs.

adminContextT
ype/
adminName

No The name of the administrator who initiated the Web
service call.

adminContextT
ype/
locale

No The locale used by the administrator.

Additional Input Elements

Performing Post Evaluation

Chapter 8: Performing Risk Evaluation and Managing Associations 177

Element Mandatory Description

additionalInput No Enables you to set additional inputs if you want to
augment RiskMinder’s post-evaluation capability by
specifying additional information. In such cases, you
need to set the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Invoking the Web Service

To perform post-evaluation tasks:

1. (Optional) Include the authentication and authorization details in the header of the
postEvaluate operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use postEvaluateRequest elements to set the required information, as listed in the
table.

3. Use the postEvaluateRequest message and construct the input message by using
the details specified in the preceding step.

4. Invoke the postEvaluate operation of the RiskFortEvaluateRiskSvc service for post
evaluation of a transaction.

This operation returns the postEvaluateResponse message that includes the final
risk advice, indicating whether the result was updated successfully, and the
transactionID. See the following section for more information on the response
message.

Interpreting the Response Message

The response message, postEvaluateResponse, returns the final risk advice, indicating
whether the result was updated successfully, and the transactionID in the SOAP
envelope header. These elements are explained in the following table. The SOAP body
returns a success message if the operation was performed successfully. If there are any
errors, then the riskfortFault response is returned. See appendix, "Exceptions and Error
Codes" (see page 209) for more information on the SOAP error messages.

Element Description

isAllowAdvised Contains the final risk advice, generated as a result of post
evaluation:

■ true: Indicates the final advice was ALLOW.

■ false: Indicates the final advice was DENY.

RiskFort Success Elements

Listing Associations

178 Web Services Developer's Guide

Element Description

riskFortSuccess Contains the string that indicates whether the information was
successfully updated in the database or not.

transactionID The unique transaction identifier.

Listing Associations

RiskMinder uniquely identifies a user as a valid user of your system by automatically
associating (or binding) a user to the device that they use to access your application.
This is referred to as an association (or device binding) in RiskMinder terminology. Users
who are not bound are more likely to be challenged in order to be authenticated.

RiskMinder also allows users to be bound to more than one device. For example, a user
can use a work computer and a home computer to access your application. Similarly,
you can bind a single device to more than one user. For example, members of a family
can use one computer to access your application.

Important! It is recommended that you discourage users from creating associations
with publicly shared devices, such as systems in an Internet cafe or kiosk.

This section walks you through the following tasks for listing stored user-device
associations for a specified user:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

You must use the listAssociationsRequest message to view all known associations for
the specified user. The following table lists the elements of this request message.

Element Mandatory Description

callerId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
related transactions.

User Context Elements

userContext No The user details, as described by orgName and
userName.

userContext/
orgName

No The name of the organization to which the end user
belongs.

Listing Associations

Chapter 8: Performing Risk Evaluation and Managing Associations 179

Element Mandatory Description

userContext/
userName

Yes The name of the user who performed the transaction.

Administration Context Type Elements

adminContextT
ype

No The administrator details, as described by orgName,
adminName, and locale, who initiated the Web service
call.

adminContextT
ype/
orgName

No The name of the organization to which the
administrator who initiated the Web service call
belongs.

adminContextT
ype/
adminName

No The name of the administrator who initiated the Web
service call.

adminContextT
ype/
locale

No The locale used by the administrator. The output
message is converted to this locale.

Additional Input Elements

additionalInput No Enables you to set additional inputs if you want to
augment RiskMinder’s risk evaluation capability by
specifying additional information. In such cases, you
need to set the extra information in name-value pairs.

■ name: The name with which you want to create
the key pair.

■ value: The corresponding value for name.

Note: You can add more than one of these elements.

Listing Associations

180 Web Services Developer's Guide

Invoking the Web Service

To list all the stored associations for a specified user:

1. (Optional) Include the authentication and authorization details in the header of the
listAssociations operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the listAssociationsRequest elements to set the required information, as listed
in the table.

3. Use the listAssociationsRequest message and construct the input message by using
the details specified in preceding step.

4. Invoke the listAssociations operation of the RiskFortEvaluateRiskSvc service to list
all associations for the given user.

This operation returns the listAssociationsResponse message that includes the
association details and the success result. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, listAssociationsResponse, returns the list and details of all
known associations for the specified user in the SOAP envelope header. These elements
are explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the riskfortFault
response is returned. See appendix, "Exceptions and Error Codes" (see page 209) for
more information on the SOAP error messages.

Element Description

Association Elements

associationName The name(s) of device association(s) found for the specified user.

creationDate The date and time when the association was created.

deviceID The corresponding Device ID(s) extracted from the Device ID store
on the end user's computer.

status The status of the association:

■ 1: Indicates that the association is valid and active.

■ 0: Indicates that the association is not valid any more and has
been deleted.

RiskFort Success Elements

successMessage Contains the string that indicates whether the operation was
successful or not.

transactionID The unique transaction identifier.

Deleting Associations

Chapter 8: Performing Risk Evaluation and Managing Associations 181

Deleting Associations

RiskMinder also enables you to delete user-device associations. However internally,
RiskMinder does not remove the association entry. It merely sets this value to 0 for the
given association.

This section walks you through the following tasks for deleting stored user-device
associations for a specified user:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

You must use the deleteAssociationRequest message to delete the specified
associations for a user. The following table lists the elements of this request message.

Element Mandatory Description

callerId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
related transactions.

User Context Elements

userContext No The user details, as described by orgName and
userName.

userContext/
orgName

No The name of the organization to which the end user
belongs.

userContext/
userName

Yes The name of the user who performed the transaction.

Association Element

associationNa
me

Yes The name of the association that you want to delete.

Administration Context Type Elements

adminContextT
ype

No The administrator details, as described by orgName,
adminName, and locale, who initiated the Web service
call.

adminContextT
ype/
orgName

No The name of the organization to which the
administrator who initiated the Web service call
belongs.

Deleting Associations

182 Web Services Developer's Guide

Element Mandatory Description

adminContextT
ype/
adminName

No The name of the administrator who initiated the Web
service call.

adminContextT
ype/
locale

No The locale used by the administrator. The output
message is converted to this locale.

Additional Input Elements

additionalInput No Enables you to set additional inputs if you want to
augment RiskMinder’s risk evaluation capability by
specifying additional information. In such cases, you
need to set the extra information in name-value pairs.

■ name: The name with which you want to create
the key pair.

■ value: The corresponding value for name.

Note: You can add more than one of these elements.

Deleting Associations

Chapter 8: Performing Risk Evaluation and Managing Associations 183

Invoking the Web Service

To delete the listed associations for a specified user:

1. (Optional) Include the authentication and authorization details in the header of the
deleteAssociation operation. See "Managing Web Services Security" (see page 37)
for more information on the header elements.

2. Use the deleteAssociationRequest elements to set the required information, as
listed in the table.

3. Use the deleteAssociationRequest message and construct the input message by
using the details specified in preceding step.

4. Invoke the deleteAssociation operation of the RiskFortEvaluateRiskSvc service to
delete an association.

This operation returns the deleteAssociationResponse message that includes the
details about deleted association(s) and the success result. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, deleteAssociationResponse, returns the list and details of all
deleted associations for the specified user in the SOAP envelope header. These
elements are explained in the following table. The SOAP body returns a success message
if the operation was performed successfully. If there are any errors, then the
riskfortFault response is returned. See appendix, "Exceptions and Error Codes" (see
page 209) for more information on the SOAP error messages.

Element Description

Association Elements

associationName The name of device association that was deleted for the specified
user.

creationDate The date and time when the association was created.

deviceID The corresponding Device ID(s) extracted from the Device ID store
on the end user's device.

status The status of the association:

■ 0: Indicates that the association is not valid any more and has
been deleted.

■ 1: Indicates that the association is valid and active.

RiskFort Success Elements

successMessage Contains the string that indicates whether the operation was
successful or not.

transactionID The unique identifier of the transaction.

Chapter 9: Performing Selected Administration Tasks 185

Chapter 9: Performing Selected
Administration Tasks

This section provides an overview of how to use the RiskMinder Administration Web
service to perform the following tasks:

■ Adding a User to Exception List (see page 186)

■ Deleting a User from Exception List (see page 188)

■ Fetching User Profile Information (see page 190)

■ Fetching Location and Connection Information (see page 192)

To perform the operations discussed in this section, you must use the
ArcotRiskFortAdminWebService.wsdl file. This service provides a limited client-side
interface to Administration Console functionality and exposes the supported operations
for risk evaluation workflows.

Adding a User to Exception List

186 Web Services Developer's Guide

Adding a User to Exception List

You might want to temporarily exclude a user in your organization from risk evaluation
during a specific time interval. For example, if a user travels to a country that is
configured as negative in RiskMinder, then for the specified interval while they are
there, RiskMinder’s advice will always be DENY. To prevent that, their status can be
changed to an exception user. In this case, if they perform a transaction during this
interval, despite their IP address being negative, RiskMinder will return a low risk score
and the advice will typically be ALLOW.

Book: You can also perform this operation by using the Case page in Administration
Console. See CA RiskMinder Administration Guide for detailed instructions to do so.

To add a user to Exception User List, you must use the ArcotRiskFortAdminSvc service
(available through ArcotRiskFortAdminWebService.wsdl) for:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

You must use the addUserToExceptionListRequest message to add a user to the
Exception User List. The following table lists the elements of this request message.

Element Mandatory Description

userName Yes The name of the user who you want to add to the
Exception User List.

groupName Yes The name of the organization to which the user
belongs.

startDate Yes The date (in yyyy-mm-dd format) and time from which
you want the user to be exempted from RiskMinder
risk evaluation.

For example: 2012-10-04+05:30

endDate Yes The date (in yyyy-mm-dd format) and time till which
you want the user to be exempted from RiskMinder
risk evaluation.

reason Yes The reason for which the user is being added to the
Exception User List.

callerId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
related transactions.

Adding a User to Exception List

Chapter 9: Performing Selected Administration Tasks 187

Invoking the Web Service

To add a user to the Exception User List:

1. (Optional) Include the authentication and authorization details in the header of the
addUserToExceptionList operation. See "Managing Web Services Security" (see
page 37) for more information on the header elements.

2. Use the addUserToExceptionListRequest elements to set the required information,
as listed in the table.

3. Use the addUserToExceptionListRequest message and construct the input message
by using the details specified in preceding step.

4. Invoke the addUserToExceptionList operation of the ArcotRiskFortAdminSvc service
to add the user to the list.

This operation returns the addUserToExceptionListResponse message that includes
the status of the operation and success result. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, addUserToExceptionListResponse, returns the status of the
operation and the success result in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the AdminFault
response is returned. See appendix, "Exceptions and Error Codes" (see page 209) for
more information on the SOAP error messages.

Element Description

code The status of the operation:

■ 0: Indicates that the user was successfully added to the
Exception User List.

■ 1: Indicates that the operation failed.

message Contains the string that indicates whether the information was
successfully updated in the database or not.

transactionID The unique transaction identifier.

Deleting a User from Exception List

188 Web Services Developer's Guide

Deleting a User from Exception List

To delete a user from the Exception User List, you must use the ArcotRiskFortAdminSvc
service (available through ArcotRiskFortAdminWebService.wsdl). This section walks you
through the following topics:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

You must use the deleteUserFromExceptionListRequest message to remove a user from
the Exception User List. The following table lists the elements of this request message.

Element Mandatory Description

userName Yes The name of the user who you want to delete from the
Exception User List.

groupName Yes The name of the organization to which the user
belongs.

moveReason Yes The reason for which the user is being deleted from the
Exception User List.

callerId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
related transactions.

Deleting a User from Exception List

Chapter 9: Performing Selected Administration Tasks 189

Invoking the Web Service

To delete a user from the Exception User List:

1. (Optional) Include the authentication and authorization details in the header of the
deleteUserFromExceptionList operation. See "Managing Web Services Security"
(see page 37) for more information on the header elements.

2. Use the deleteUserFromExceptionListRequest elements to set the required
information, as listed in the table.

3. Use the deleteUserFromExceptionListRequest message and construct the input
message by using the details specified in preceding step.

4. Invoke the deleteUserFromExceptionList operation of the ArcotRiskFortAdminSvc
service to add the user to the list.

This operation returns the deleteUserFromExceptionListResponse message that
includes the status of the operation and success result. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, deleteUserFromExceptionListResponse, returns the status of the
operation and the success result in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the AdminFault
response is returned. See appendix, "Exceptions and Error Codes" (see page 209) for
more information on the SOAP error messages.

Element Description

code The status of the operation:

■ 0: Indicates that the user was successfully removed from the
Exception User List.

■ 1: Indicates that the operation failed.

message Contains the string that indicates whether the information was
successfully updated in the database or not.

transactionID The unique transaction identifier.

Fetching User Profile Information

190 Web Services Developer's Guide

Fetching User Profile Information

To view the details of a specified user, you must use the ArcotRiskFortAdminSvc service
(available through ArcotRiskFortAdminWebService.wsdl). This section covers the
following topics:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

You must use the getUserProfileRequest message to view detailed information about
the specified user. The following table lists the elements of this request message.

Element Mandatory Description

userName Yes The name of the user whose details you want to see.

groupName Yes The name of the organization to which the user
belongs.

callerId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
related transactions.

Fetching User Profile Information

Chapter 9: Performing Selected Administration Tasks 191

Invoking the Web Service

To view a user’s information:

1. (Optional) Include the authentication and authorization details in the header of the
getUserProfile operation. See "Managing Web Services Security" (see page 37) for
more information on the header elements.

2. Use the getUserProfileRequest elements to set the required information, as listed in
the table.

3. Use the getUserProfileRequest message and construct the input message by using
the details specified in preceding step.

4. Invoke the getUserProfile operation of the ArcotRiskFortAdminSvc service to fetch
the user information.

This operation returns the getUserProfileResponse message that includes the status
of the operation, user details, and success result. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, getUserProfileResponse, returns the status of the operation,
user details, and the success result in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the AdminFault
response is returned. See appendix, "Exceptions and Error Codes" (see page 209) for
more information on the SOAP error messages.

Element Description

code The status of the operation:

■ 0: Indicates that the user details were successfully fetched
from the database.

■ 1: Indicates that the operation failed.

message Contains the string that indicates whether the information was
successfully retrieved from the database or not.

transactionID The unique transaction identifier.

userName The name of the specified user.

firstName The first name of the specified user.

lastName The last name of the specified user.

emailAddress The email ID of the specified user.

isExceptionUser Indicates whether the user is an exception user or not:

■ true: The user is an exception user.

■ false: The user is not an exception user.

Fetching Location and Connection Information

192 Web Services Developer's Guide

Fetching Location and Connection Information

To view the connection details by using the specified IP address, you must use the
ArcotRiskFortAdminSvc service (available through
ArcotRiskFortAdminWebService.wsdl). This section covers the following topics:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

You must use the getLocationAndConnectionInfoRequest message to view the detailed
connection information for the specified IP address. The following table lists the
elements of this request message.

Element Mandatory Description

ip Yes The IP address of the user whose details you want to
see.

callerId No Unique transaction identifier that your calling
application can include. This identifier helps in tracking
related transactions.

Fetching Location and Connection Information

Chapter 9: Performing Selected Administration Tasks 193

Invoking the Web Service

To view the connection information for the specified IP address:

1. (Optional) Include the authentication and authorization details in the header of the
getLocationAndConnectionInfo operation. See "Managing Web Services Security"
(see page 37) for more information on the header elements.

2. Use the getLocationAndConnectionInfoRequest elements to set the IP address
information, as listed in the table.

3. Use the getLocationAndConnectionInfoRequest message and construct the input
message by using the details specified in preceding step.

4. Invoke the getLocationAndConnectionInfo operation of the ArcotRiskFortAdminSvc
service to view the connection information.

This operation returns the getLocationAndConnectionInfoResponse message that
includes the status of the operation, connection details, and success result. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, getLocationAndConnectionInfoResponse, returns the status of
the operation, connection details, and success result in the SOAP envelope header.
These elements are explained in the following table. The SOAP body returns a success
message if the operation was performed successfully. If there are any errors, then the
AdminFault response is returned. See appendix, "Exceptions and Error Codes" (see
page 209) for more information on the SOAP error messages.

Element Description

code The status of the operation:

■ 0: Indicates that the connection details were successfully
fetched from the database.

■ 1: Indicates that the operation failed.

message Contains the string that indicates whether the information was
successfully retrieved from the database or not.

transactionID The unique transaction identifier.

locationContext The connection and location details, as described by city, cityCF,
state, stateCF, country, countryCF, countryISOCode, postalCode,
timeZone, longitude, latitude, aolFlag, connectionType,
routingType, and lineSpeed.

locationContext/
city

The city from where the IP address originated.

Fetching Location and Connection Information

194 Web Services Developer's Guide

Element Description

locationContext/
cityCF

The city code from where the IP address originated.

locationContext/
state

The first-level administrative division within each country (if one
exists) from where the IP address originated.

locationContext/
stateCF

The state code from where the IP address originated.

locationContext/
country

The country from where the IP address originated.

locationContext/
countryCF

The country code from where the IP address originated.

locationContext/
countryISOCode

The two-letter country code (as defined in ISO 3166-1) from
where the IP address originated.

locationContext/
postalCode

The postal (ZIP) code of the location from where the IP address
originated.

locationContext/
timeZone

The timezone of the location from where the IP address
originated.

locationContext/
longitude

A floating point number (with positive numbers representing East
and negative numbers representing West) from where the IP
address originated.

locationContext/
latitude

A floating point number (with positive numbers representing
North and negative numbers representing South) from where the
IP address originated.

locationContext/
aolFlag

The indication whether the specified IP is part of the AOL network:

■ Y: The user with the specified IP address is a member of the
AOL service.

■ N: The user with the specified IP address is not a member of
the AOL service.

Fetching Location and Connection Information

Chapter 9: Performing Selected Administration Tasks 195

Element Description

locationContext/
connectionType

The type of data connection between the end-user’s device and
their Internet Service Provider (ISP):

■ Satellite: High-speed broadband links between a user and a
geosynchronous satellite.

■ OCX: The OC-3 circuits, OC-48 circuits that are used by large
backbone carriers.

■ TX: Old links of type T-3 circuits and T-1 circuits.

■ Frame Relay: High-speed alternatives to TX.

■ Dialup: Modems that operate at 56kbps.

■ Cable: Cable modem broadband circuits, primarily offered by
cable TV companies.

■ DSL: Digital Subscriber Line broadband circuits that include
aDSL, iDSL, and sDSL.

■ ISDN: High-speed Integrated Services Digital Network
technology with specialized modems and switches.

■ Fixed Wireless: Wireless connections where the location of
the receiver is fixed.

■ Mobile Wireless: Wireless connections where the location of
the receiver is mobile.

locationContext/
routingType

The IP routing method used for the connection:

■ Fixed: Cable, DSL, OCX

■ AOL: AOL users

■ POP: Dial up to regional ISP

■ Super POP: Dial up to multi-state ISP

■ Cache Proxy: Accelerator proxy, content distribution service

■ Regional Proxy: Proxy for multiple states in a country

■ Anonymizer: Anonymizing proxy

■ Satellite: Consumer satellite or backbone satellite ISP

■ International Proxy: Proxy funneling international traffic

■ Mobile Gateway: Mobile device gateway to Internet

■ Unknown: Cannot currently be determined

locationContext/
lineSpeed

The speed of the user’s Internet connection. This is based on
connectionType.

Chapter 9: Performing Selected Administration Tasks 197

Appendix A: Additional Configurations

This appendix discusses the following miscellaneous topics:

■ SSL Communication Between RiskMinder Components (see page 197)

■ Setting Up SSL Communication Between Risk Evaluation Web Service and
RiskMinder Server (see page 198)

■ Setting Up SSL Communication Between Administration Web Service and
RiskMinder Server (see page 201)

SSL Communication Between RiskMinder Components

In addition to supporting TCP-based communication between RiskMinder Server and the
SDKs, RiskMinder supports Secure Socket Layer (SSL) for secure communication
between these components. RiskMinder can be configured for one-way Secure Socket
Layer (SSL) with server-side certificates or two-way SSL with server-side and client-side
certificates between the Server and SDKs, as shown in the following figure.

Communication Modes

Setting Up SSL Communication Between Risk Evaluation Web Service and RiskFort Server

198 Web Services Developer's Guide

Although the default mode of communication is TCP, RiskMinder Server supports SSL
communication (two-way as well as one-way) with the following components to ensure
integrity and confidentiality of the data being exchanged during a transaction:

■ Case Management Queuing Server

■ RiskMinder Database

■ User Data Service

■ RiskMinder Risk Evaluation SDK

■ Sample Application

■ Evaluation Callout

■ Scoring Callout

Note: RiskMinder enables you to write your own custom Evaluation rule, based on your
business requirements. This custom rule is called Evaluation Callout. Similarly,
RiskMinder also enables you to write your own custom Scoring logic called Scoring
Callout.

Refer to CA RiskMinder Administration Guide for more information on these Callouts.

Setting Up SSL Communication Between Risk Evaluation Web
Service and RiskFort Server

To enable RiskMinder Web services for SSL communication, you must first configure
your client that accesses the Web service for SSL communication, and then configure
the Transaction Web Service protocol by using Administration Console. This section
describes how to set up the following between the Risk Evaluation Web service and
RiskMinder Server:

■ One-Way SSL (see page 199)

■ Two-Way SSL (see page 200)

Setting Up SSL Communication Between Risk Evaluation Web Service and RiskFort Server

Chapter 9: Performing Selected Administration Tasks 199

One-Way SSL

To set up one-way SSL between the Risk Evaluation Web service and RiskMinder Server:

1. Ensure that you are logged in as the Master Administrator (MA).

2. Activate the Services and Server Configurations tab.

3. Ensure that the RiskFort tab in the submenu is active.

4. Under the Instance Configuration section, click the Protocol Configuration link to
display the Protocol Configuration page.

5. Select the Server Instance for which you want to configure the SSL communication.

6. In the List of Protocols section, click the Transaction Web Service link.

The page to configure the Transaction Web Service protocol appears.

7. Configure the following fields:

■ Ensure that the Protocol Status is Enabled.

If not, then select the Change Protocol Status option and select Enable from
the Action list.

■ Ensure that the Port is set to the correct SSL port value.

■ Select SSL from the Transport list.

■ If you want to store the SSL key on an HSM, then select the Key in HSM option.

■ Click the Browse button adjacent to the Server Certificate Chain field to select
the RiskMinder Server root certificate.

■ (Only if you did not select the Key in HSM option) Click the Browse button
adjacent to the Server Private Key field to select the RiskMinder Server private
key.

8. Click Save.

9. Restart RiskMinder Server:

■ On Microsoft Windows: Click the Start button, navigate to Settings, Control
Panel, Administrative Tools, and Services. Double-click Arcot RiskFort Service
from the listed services.

■ On UNIX-Based Platforms: Navigate to install_location/arcot/bin/ and specify
the ./riskfortserver start command in the console window.

Setting Up SSL Communication Between Risk Evaluation Web Service and RiskFort Server

200 Web Services Developer's Guide

Two-Way SSL

To enable two-way SSL communication between the Risk Evaluation Web service and
RiskMinder Server:

1. Log in to Administration Console as the MA.

2. Activate the Services and Server Configurations tab in the main menu.

3. Ensure that the RiskFort tab in the submenu is active.

4. Under System Configuration, click the Trusted Certificate Authorities link to display
the Riskfort Server Trusted Certificate Authorities page.

5. Set the following information on the page:

■ In the Name field, enter the name for the SSL truststore.

■ Click the Browse button adjacent to the first Root CAs field and navigate to and
select the root certificate of the application server where your Web services
client is deployed.

6. Click Save.

7. Under Instance Configuration, click the Protocol Configuration link to display the
Protocol Configuration page.

8. Select the Server Instance for which you want to configure the SSL communication.

9. In the List of Protocols section, click the Transaction Web Service link.

The page to configure the Transaction Web Service protocol appears.

10. Configure the following fields:

■ Ensure that the Protocol Status is Enabled.

If not, then select the Change Protocol Status option and select Enable from
the Action list.

■ Ensure that the Port is set to the correct SSL port value.

■ Select SSL from the Transport list.

■ If you want to store the SSL key on an HSM, then select the Key in HSM option.

■ Click the Browse button adjacent to the Server Certificate Chain field to select
the RiskMinder Server root certificate.

■ (Only if you did not select the Key in HSM option) Click the Browse button
adjacent to the Server Private Key field to select the RiskMinder Server private
key.

■ Select the Client Store that you created in Step 5.

11. Click Save.

12. Restart RiskMinder Server:

Setting Up SSL Communication Between Administration Web Service and RiskFort Server

Chapter 9: Performing Selected Administration Tasks 201

■ On Microsoft Windows: Click the Start button, navigate to Settings, Control
Panel, Administrative Tools, and Services. Double-click Arcot RiskFort Service
from the listed services.

■ On UNIX-Based Platforms: Navigate to install_location/arcot/bin/ and specify
the ./riskfortserver start command in the console window.

13. Verify that RiskMinder Server is enabled for SSL communication by performing the
following steps:

a. Open the arcotriskfortstartup.log file in a text editor.

b. Check for the following line:

Started listener for [RiskFort Trans WS] [7778] [SSL]

[transwsprotocol]

If you located this line, then two-way SSL was set up successfully.

c. Close the file.

Setting Up SSL Communication Between Administration Web
Service and RiskFort Server

To enable Administration Web service for SSL communication, you must first configure
your client that accesses the Web services for SSL communication, and then configure
the Administration Web service protocol by using Administration Console. This section
describes how to set up the following between the Administration Web service and
RiskMinder Server:

■ One-Way SS (see page 202)

■ Two-Way SSL (see page 203)

Setting Up SSL Communication Between Administration Web Service and RiskFort Server

202 Web Services Developer's Guide

One-Way SSL

To set up one-way SSL between the Administration Web service and RiskMinder Server:

1. Ensure that you are logged in as the MA.

2. Activate the Services and Server Configurations tab.

3. Ensure that the RiskFort tab in the submenu is active.

4. Under the Instance Configuration section, click the Protocol Configuration link to
display the Protocol Configuration page.

5. Select the Server Instance for which you want to configure the SSL communication.

6. In the List of Protocols section, click the Administration Web Service link.

The page to configure the Administration Web service protocol appears.

7. Configure the following fields:

■ Ensure that the Protocol Status is Enabled.

If not, then select the Change Protocol Status option and select Enable from
the Action list.

■ Ensure that the Port is set to the correct SSL port value.

■ Select SSL from the Transport list.

■ If you want to store the SSL key on an HSM, then select the Key in HSM option.

■ Click the Browse button adjacent to the Server Certificate Chain field to select
the RiskMinder Server root certificate.

■ (Only if you did not select the Key in HSM option) Click the Browse button
adjacent to the Server Private Key field to select the RiskMinder Server private
key.

8. Click Save.

9. Restart RiskMinder Server:

■ On Microsoft Windows: Click the Start button, navigate to Settings, Control
Panel, Administrative Tools, and Services. Double-click Arcot RiskFort Service
from the listed services.

■ On UNIX-Based Platforms: Navigate to install_location/arcot/bin/ and specify
the ./riskfortserver start command in the console window.

Setting Up SSL Communication Between Administration Web Service and RiskFort Server

Chapter 9: Performing Selected Administration Tasks 203

Two-Way SSL

To enable two-way SSL communication mode between the Administration Web service
and RiskMinder Server:

1. Log in to Administration Console as the MA.

2. Activate the Services and Server Configurations tab in the main menu.

3. Ensure that the RiskFort tab in the submenu is active.

4. Under System Configuration, click the Trusted Certificate Authorities link to display
the Riskfort Server Trusted Certificate Authorities page.

5. Set the following information on the page:

■ In the Name field, enter the name for the SSL truststore.

■ Click the Browse button adjacent to the first Root CAs field and navigate to and
select the root certificate of the application server where your Web services
client is deployed.

6. Click Save.

7. Under Instance Configuration, click the Protocol Configuration link to display the
Protocol Configuration page.

8. Select the Server Instance for which you want to configure the SSL communication.

9. In the List of Protocols section, click the Administration Web Service link.

The page to configure the Administration Web service protocol appears.

10. Configure the following fields:

■ Ensure that the Protocol Status is Enabled.

If not, then select the Change Protocol Status option and select Enable from
the Action list.

■ Ensure that the Port is set to the correct SSL port value.

■ Select SSL from the Transport list.

■ If you want to store the SSL key on an HSM, then select the Key in HSM option.

■ Click the Browse button adjacent to the Server Certificate Chain field to select
the RiskMinder Server root certificate.

■ (Only if you did not select the Key in HSM option) Click the Browse button
adjacent to the Server Private Key field to select the RiskMinder Server private
key.

■ Select the Client Store that you created in Step 5.

11. Click the Save button.

12. Restart RiskMinder Server:

Setting Up SSL Communication Between Administration Web Service and RiskFort Server

204 Web Services Developer's Guide

■ On Microsoft Windows: Click the Start button, navigate to Settings, Control
Panel, Administrative Tools, and Services. Double-click Arcot RiskFort Service
from the listed services.

■ On UNIX-Based Platforms: Navigate to install_location/arcot/bin/ and specify
the ./riskfortserver start command in the console window.

13. Verify that RiskMinder Server is enabled for SSL communication by performing the
following steps:

a. Open the arcotriskfortstartup.log file in a text editor.

b. Check for the following line:

Started listener for [RiskFort Admin WS] [7777] [SSL]

[aradminwsprotocol]

If you located this line, then two-way SSL was set up successfully.

c. Close the file.

Chapter 9: Performing Selected Administration Tasks 205

Appendix B: Web Services Reference

RiskMinder provides a set of Web services that your online application can use to
programmatically integrate with RiskMinder, irrespective of the coding technology you
use. RiskMinder consists of the following Web services components:

■ The Risk Evaluation Web services

■ The Administration Console Web services for Risk Evaluation

■ The UDS Web services

■ WSDLDoc information for the associated Web services

Accessing the WSDL Documentation

You can use the WSDLDoc information provided with the RiskMinder Web services
along with this guide and other Web services reference materials, to add RiskMinder
Risk Evaluation services to new or existing applications.

If you are updating an existing RiskMinder application, then you must consult the
Release Notes and WSDLDoc documentation for deprecated APIs before making any
changes.

You can access the latest WSDLDocs by installing RiskMinder and copying the WSDLDocs
from the docs directory. (You can then copy the WSDLDocs to another location on your
development system.) Alternatively, you can also access the WSDLDocs directly from
the Documentation directory in the RiskMinder installation package, without having to
install RiskMinder.

See the tables in the next two sections for the installation locations of the RiskMinder
and associated WSDLDocs.

Risk Evaluation Web Services

206 Web Services Developer's Guide

Risk Evaluation Web Services

The following table lists the files that are installed as a part of the Risk Evaluation Web
services component. The base location for these files is:

■ Microsoft Windows

install_location\Arcot Systems\

■ UNIX-Based Platforms

install_location/arcot/

Location File Name Description

docs\riskfort\

(Microsoft Windows)

docs/riskfort/

(UNIX Platforms)

Arcot-RiskFort-3.1-Admin
WebService-wsdl
docs.zip

or

Arcot-RiskFort-3.1-Admin
WebService-wsdl
docs.tar.gz

WSDL documentation for the
Administration Web service.

Arcot-RiskFort-3.1-risk-ev
aluation-wsdl
docs.zip

or

Arcot-RiskFort-3.1-risk-ev
aluation-wsdl
docs.tar.gz

WSDL documentation for the
Risk Evaluation Web service.

wsdls\admin\

(Microsoft Windows)

wsdls/admin/

(UNIX Platforms)

ArcotRiskFortAdminWeb
Service.wsdl

This WSDL describes the
Administration Web services
and how to access them.

User Data Service (UDS) Web Services

Chapter 9: Performing Selected Administration Tasks 207

Location File Name Description

wsdls\riskfort\

(Microsoft Windows)

wsdls/riskfort/

(UNIX Platforms)

ArcotRiskFortEvaluateRis
kService.wsdl

This WSDL describes the Risk
Evaluation Web services and
how to access them.

sdk\devicedna\

(Microsoft Windows)

sdk/devicedna/

(UNIX Platforms)

riskminder-client.js This file contains the functions
to gather the Device ID- and
DeviceDNA-related information
from the end user’s device and
to generate the single-encoded
String with all the DeviceDNA
values.

User Data Service (UDS) Web Services

The following table lists the files that are installed as a part of the UDS Web services
component. The base location for these files is:

■ Microsoft Windows

install_location\Arcot Systems\

■ UNIX-Based Platforms

install_location/arcot/

Location File Name Description

docs\uds\

(Microsoft Windows)

docs/uds/

(UNIX Platforms)

arcot-uds-2_0-wsdl-docs.
zip

or

arcot-uds-2_0-wsdl-docs.
tar.gz

WSDL documentation for the
User Data Service (UDS) Web
service.

This WSDL describes the UDS
Web services and how to access
them.

User Data Service (UDS) Web Services

208 Web Services Developer's Guide

Location File Name Description

wsdls\uds\

(Microsoft Windows)

wsdls/uds/

(UNIX Platforms)

ArcotConfigManagement
Svc.wsdl

This WSDL describes the UDS
Configuration management
Web services and how to access
them.

These Web services are used to
create and manage user
account types.

ArcotOrganizationManag
ementSvc.wsdl

This WSDL describes the UDS
Organization management Web
services and how to access
them.

These Web services are used to
create and manage
organizations in the system.

ArcotUserManagementS
vc.wsdl

This WSDL describes the UDS
User management Web services
and how to access them.

These Web services are used to
create and manage users in the
system.

ArcotUserSchema.xsd This is the XML Schema
Definition that serves as the
reference library that can be
uses by your code for working
with the preceding three UDS
Web services.

Chapter 9: Performing Selected Administration Tasks 209

Appendix C: Exceptions and Error Codes

This appendix lists the following error codes thrown by the RiskMinder Web services:

■ User Data Service (UDS) Error Codes (see page 209)

■ RiskMinder Response Codes (see page 229)

User Data Service (UDS) Error Codes

The following table lists the AdminFault error codes and messages that are returned by
the Web services used to manage organizations, users, and account types.

Error Code Error Message Possible Cause for Failure

31201 Unable to process the
database query, {0}.

Note: This is a critical
error.

Possible Causes:

■ Invalid input parameter was specified.

■ Error occurred during encryption.

■ Database is down.

Solution:

1. Verify that the database information in
arcotcommon.ini is correct.

2. See if there are any database-related errors
in arcotadmin.log and arcotuds.log and take
corrective action.

3. If the issue is not resolved, then you must
contact CA Support.

31002 UDS is not initialized.

Note: This is a critical
error, and is typically
seen when UDS or
Administration Console
are restarted.

Possible Causes:

■ ARCOT_HOME is not correctly set.

■ Database is down.

■ Hardware encryption initialization failed.

Solution:

1. Verify that the database information in
arcotcommon.ini is correct.

2. See if there are any database-related errors
in arcotadmin.log and arcotuds.log and take
corrective action.

3. If the issue is not resolved, then you must
contact CA Support.

User Data Service (UDS) Error Codes

210 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31003 Fatal error, restart UDS.

This error is expected
when the UDS
application has
encountered an
unexpected error.

Possible Causes:

■ UDS did not start up correctly.

■ Database is down.

■ Hardware encryption initialization failed.

Solution:

1. Verify that the database information in
arcotcommon.ini is correct.

2. See if there are any database-related errors
in arcotadmin.log and arcotuds.log and take
corrective action.

3. Restart UDS.

31006 Configuration parameter,
{0} not found.

This error occurs if the
specified UDS
configuration was not
found in the
ARUDSCONFIG table.

Possible Causes:

■ Database was manually updated.

■ Information in database tables was not
correctly populated.

Solution:

1. See if there are any database-related errors
in arcotadmin.log and arcotuds.log and take
corrective action.

2. If the issue is not resolved, then you must
contact CA Support.

31007 Invalid configuration
parameter value, {0} for
parameter name, {1}.

This error occurs if the
specified UDS
configuration contains
invalid value(s).

Possible Causes:

■ Database was manually updated.

■ Information in database tables was not
correctly populated.

Solution:

1. See if there are any database-related errors
in arcotadmin.log and arcotuds.log and take
corrective action.

2. If the issue is not resolved, then you must
contact CA Support.

31008 Unknown error.

This message appears if
an unexpected internal
error occurred.

Possible Cause:

Unexpected internal error.

Solution:

1. See the arcotadmin.log and arcotuds.log
files and take corrective action.

2. If the issue is not resolved, then you must
contact CA Support.

User Data Service (UDS) Error Codes

Chapter 9: Performing Selected Administration Tasks 211

Error Code Error Message Possible Cause for Failure

31009 General error: {0}.

This message appears if
an unexpected internal
error occurred.

Possible Cause:

Unexpected internal error.

Solution:

1. See the arcotadmin.log and arcotuds.log
files and take corrective action.

2. If the issue is not resolved, then you must
contact CA Support.

35100 Error communicating
with data store.

Note: This is a critical
error that occurs either
when the connectivity
with the database server
is lost or when
processing a database
query.

Possible Causes:

■ The database is down.

■ There was an error during encryption or
decryption of data.

Solution:

1. See the arcotadmin.log and arcotuds.log
files and take corrective action.

2. If the issue is not resolved, then you must
contact CA Support.

35101 Error while loading
configuration file, {0}.

Note: This is a critical
error and occurs while
reading configuration
files in the conf directory
of ARCOT_HOME.

Possible Cause:

The configuration files are corrupted.

Solution:

1. Ensure that the configuration files contain
the required details.

2. Retry reading from the files.

35102 Configuration file, {0} not
found.

Possible Causes:

1. ARCOT_HOME is not set.

2. The required configuration files are not
found in the conf directory of ARCOT_HOME.

Solution:

1. Verify if ARCOT_HOME points to the right
location.

2. Verify if the required configuration files
exist in the conf directory of ARCOT_HOME.

35103 ARCOT_HOME
environment variable is
not set.

Possible Cause:

ARCOT_HOME is not set.

Solution:

Set the ARCOT_HOME to point to your
installation directory.

User Data Service (UDS) Error Codes

212 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

35105 Invalid input parameter. Possible Cause:

The input value provided for the specified
parameter is not valid.

Solution:

Refer to the section, "User Data Service
Validations" (see page 261) in appendix for
valid input set.

35106 Missing input parameter,
{0}.

Possible Cause:

The specified input parameter is missing in
the API request.

Solution:

Provide the required parameter.

35107 Cannot update global
chosen encryption set,
because the organization
already contains users.

Possible Cause:

One or more organizations refer to the global
encryption set, but users have already been
created in these organizations.

Solution:

Global encryption set cannot be updated
when there are users in the referring
organizations.

35108 Error while audit logging. Possible Causes:

1. Connection to the database is lost.

2. Invalid input provided for the audit logs.

Solution:

See the arcotadmin.log and arcotuds.log files
and take corrective action.

35109 Field, {0} exceeded
maximum length, {1}.

Possible Cause:

The specified field exceeded the allowed
length.

Solution:

Provide a value within the expected range.
Refer to the section, "User Data Service
Validations" (see page 261) in appendix for
the allowed length of input fields.

User Data Service (UDS) Error Codes

Chapter 9: Performing Selected Administration Tasks 213

Error Code Error Message Possible Cause for Failure

35110 Field, {0} contains invalid
characters.

Possible Causes:

The value provided for the specified field
contains unsupported characters.

Solution:

Retry with valid inputs. Refer to the section,
"User Data Service Validations" (see
page 261) in appendix for the allowed
character set for different fields.

31125 User, {0} not found. Possible Causes:

1. The user identifier specified in the request
is not valid.

2. The user does not exist in the system.

3. The user has been deleted.

Solution:

1. Provide valid user details.

2. Search for deleted users to verify whether
the user has been deleted.

31126 User, {0} not unique.
More than one user
found.

Possible Cause:

The specified user is not unique in the
system. As a result, more than one user is
returned for the given UserID.

Solution:

1. Ensure that the UserID is unique.

2. Check whether the UserID mapping
attribute exists in the LDAP organization.

3. If the issue is not resolved, then you must
contact CA Support.

31118 Search field, {0} not
permitted.

Possible Cause:

User search is not permitted on the specified
field. For example, searching for an
unmapped LDAP attribute is not allowed.

Solution:

1. Search based on other fields.

2. Ensure that the required attributes are
correctly mapped.

User Data Service (UDS) Error Codes

214 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31127 Operation, {0} not
supported. Invalid
current state {1} of User,
{2}.

Possible Causes:

■ The current operation is not supported
for the given user status.

■ The status of the specified user is either
INITIAL or INACTIVE.
For example, authentication operations
are not supported for INACTIVE users.

Solution:

Update the user status to a valid status and
then perform the operation. Refer to the
section, "User Data Service Validations" (see
page 261) in appendix for valid user status for
operations.

31104 Operation, {0} not
supported for repository.

Possible Cause:

The current operation is not supported for
the repository. For example, Write operations
are not supported for LDAP repository.

Solution:

Unsupported operations must be
independently performed on the repository
and must not go through RiskMinder flows.

For example, users must be created in LDAP
through LDAP user interface or APIs.

31128 User, {0} already exists.

Note: The createUser API
throws this error.

Possible Cause:

The specified user already exists in the
system. You cannot create another user with
the same UserID.

Solution:

UserID must be unique in an organization.
Create an user with a different UserID.

31119 User identifier, {0} is
mandatory.

Possible Cause:

API was called without providing the user
identifier, which is mandatory for the given
API call.

Solution:

Provide a valid user identifier in the API
request.

User Data Service (UDS) Error Codes

Chapter 9: Performing Selected Administration Tasks 215

Error Code Error Message Possible Cause for Failure

31129 PAM is not set.

This is a C++ error code.

Possible Causes:

1. Specified user was not found.

2. Connection to the database is lost.

Solution:

1. See the arcotadmin.log and arcotuds.log
files and take corrective action.

2.If the issue is not resolved, then you must
contact CA Support.

31131 Invalid authentication
token.

Note: This error is
observed when the Web
service is enabled for
authentication and
authorization.

Possible Causes:

1. The authentication token is not provided in
the request.

2. The specified authentication token is not
valid or has been tampered with.

Solution:

Provide a valid authentication token, if the
API is enabled for authentication and
authorization.

31132 Invalid authentication
request.

Note: This error is
observed when the Web
service is enabled for
authentication and
authorization.

Possible Causes:

1. The authentication token provided in the
request has expired.

2. The SOAP request is invalid.

Solution:

1. Provide a valid authentication token in the
request.

2. Obtain a new authentication token, if
required.

User Data Service (UDS) Error Codes

216 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31135 Hashing of
authentication token
failed.

Note: This error is
observed when the Web
service is enabled for
authentication and
authorization.

Possible Causes:

1. The authentication token provided in the
request is invalid or has been tampered with.

2. The token could not be processed.

3. The securestore.enc file is not found in the
conf directory of ARCOT_HOME.

Solution:

1. Provide a valid authentication token.

2. Re-create securestore.enc.

Book: See CA RiskMinder Administration
Guide for more information on how to create
this file.

3. If the issue is not resolved, then you must
contact CA Support.

70611 Authentication failed. Possible Causes:

1. Incorrect username or password has been
specified in the request.

2. The administrator status is not valid.

3. The account is locked.

4. The account has expired.

Solution:

Retry with valid password or contact the
administrator to unlock or activate the
account.

70300 Administrator {0}
(organization: {1}) does
not have the privilege to
perform

administration
operations for
organization, {2}.

Note: This error is
observed when the Web
service is enabled for
authentication and
authorization.

Possible Cause:

The administrator performing the operation
has a limited scope, and does not have the
required permissions to perform the current
task.

Solution:

1. Contact an administrator at a higher level
for the required permissions.

User Data Service (UDS) Error Codes

Chapter 9: Performing Selected Administration Tasks 217

Error Code Error Message Possible Cause for Failure

31136 Delete operation for
product {0} failed.

Note: This error is seen
when the Cascade Delete
feature is enabled.

Possible Cause:

A database error occurred during a delete
operation.

Solution:

1. Retry the operation.

2.If the error persists, then you must contact
CA Support.

31137 Invalid search expression.

Note: This error is
thrown by the
searchUsers API.

Possible Cause:

The search expression that you provided is
not valid.

Solution:

Provide valid search expressions. Refer to the
WSDL documentation to know more about
valid search expressions.

31138 Invalid start ({0}) or end
({1}) index specified.

Note: This error is
thrown by the listUsers
API.

Possible Causes:

1. The start or end index that you provided is
not valid (probably a a negative integer).

2. End index is less than the start index.

Solution:

Provide valid positive integers for the start
and end indexes.

31139 Page size, {0} exceeded
the configured default
search count, {1}.

Note: This error is
thrown by the listUsers
API.

Possible Cause:

Number of users that you are trying to
retrieve exceeds the configured search count.

Solution:

Limit the number of users within the search
count. Or, increase the search count.

31151 Start lock time and End
lock time are not allowed
for ACTIVE user status.

Possible Cause:

You have provided Start lock time and End
lock time as inputs along with the user status,
ACTIVE.

Note: User status cannot be updated to
ACTIVE if Start lock time and End lock time
are also specified in the request.

Solution:

Do not provide Start lock and End lock dates
for ACTIVE user status. These inputs are valid
only if the user status is INACTIVE.

User Data Service (UDS) Error Codes

218 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31152 Invalid lock period. Start
lock time must be before
End lock time.

Possible Cause:

Start lock time is greater than the End lock
time.

Solution:

Ensure that the Start lock time is always less
than the End lock time.

31153 Invalid lock Period. Start
lock time cannot be
before current time.

Possible Cause:

Start lock time is less than the current time.

Solution:

Ensure that the Start lock time is always
greater than the current time.

36100 Invalid input parameter:
name, {0} value, {1}.

Possible Cause:

The input value provided for the given
parameter name is not valid. For example,
the specified email contains multi-byte
characters.

Solution:

Provide valid input values. Refer to the
section, "User Data Service Validations" (see
page 261)in appendix for the set of allowed
inputs for fields.

36101 Unsupported encoding
exception: {0}.

Possible Cause:

Error while encoding or decoding user or
organization custom attributes. Invalid
custom attributes.

Solution:

Retry with valid inputs.

36102 Parser exception: {0}. Possible Cause:

Error occurred while parsing user details from
datastore.

For example, the error occurred while
retrieving information from the LDAP Date
field.

Solution:

1. Retry the operation.

2.If the error persists, then you must contact
CA Support

User Data Service (UDS) Error Codes

Chapter 9: Performing Selected Administration Tasks 219

Error Code Error Message Possible Cause for Failure

36103 {0}.

Possible Causes:

Error occurred while encrypting or decrypting
user data, because:

■ HSM is not reachable

■ Invalid Key Label is provided in the input.

■ Server Cache has not been updated.

Solution:

1. Retry after refreshing the cache.

2. Verify if the specified Key Label exists in the
HSM.

3. Ensure that you can successfully connect to
the HSM.

36106 User {0} not updated. Possible Causes:

1. Specified user not found.

2. Connection to the database is lost.

Solution:

1. Retry the operation.

2. See if there are any database-related errors
in arcotadmin.log and arcotuds.log and take
corrective action.

3. If the issue is not resolved, then you must
contact CA Support.

36107 Provided image size, {0}
KB, exceeds the
maximum supported
size, {1} KB.

Possible Cause:

The user image has exceeded the supported
size.

Solution:

Ensure that the image size is within the
supported range. Refer to the section, "User
Data Service Validations" (see page 261) in
appendix for more information.

36108 Invalid image format, {0}.
Supported image formats
are JPEG, GIF, BMP, and
PNG only.

Possible Cause:

The format of the user image provided in the
request is not valid.

Solution:

Ensure that the image format you are using is
supported by UDS. Refer to the section, "User
Data Service Validations" (see page 261) in
appendix for the supported image formats.

User Data Service (UDS) Error Codes

220 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31134 Invalid input parameter.
{0} is not an enterprise
LDAP organization.

Possible Cause:

You passed non-LDAP organization details to
the LDAP-only API, such as
API=performQnaVerification.

Solution:

Ensure that you use the correct non-LDAP
APIs.

31108 Invalid input parameter:
name, {0} and value, {1}.

Possible Cause:

The value provided for the specified
parameter is not valid.

Solution:

Provide valid inputs. Refer to the section,
"User Data Service Validations" (see
page 261) in appendix for the supported input
set.

31109 Organization with name
{0} already exists.

Possible Cause:

Organization with the specified name already
exists. As a result, another organization with
the same name cannot be created.

Solution:

Provide a unique organization name.

31110 Organization with the
display name {0} already
exists.

Possible Cause:

Organization with the specified display name
already exists. As a result, another
organization with the same display name
cannot be created.

Solution:

Provide a unique display name for the
organization.

31114 Operation, {0} is not
supported for
organization {1} with
status {2}.

Possible Cause:

The specified operation is not supported for
the given status of an organization. For
example, setting an INACTIVE organization as
default is not allowed.

Solution:

Update the organization status and then
perform the operation.

User Data Service (UDS) Error Codes

Chapter 9: Performing Selected Administration Tasks 221

Error Code Error Message Possible Cause for Failure

31115 Organization, {0} with
status, {1} does not exist.

Possible Cause:

The specified organization with the given
status does not exist.

Solution:

Verify if the organization exists and check if
its status has changed.

31116 Organization {0} is
already deleted.

Possible Cause:

The organization that you are trying to delete
cannot be deleted, because it has already
been deleted.

Solution:

Ensure that you specify the correct
organization details.

31117 Unable to connect to the
repository, {0}.

Possible Causes:

■ Repository is down.

■ Specified repository connection details
are not correct.

Solution:

Check the repository connection details and
retry.

31121 Invalid organization
status, {0}.

Possible Cause:

The organization status is not valid for the
given operation. For example, the
organization cannot be created with status
INACTIVE.

Solution:

Update the organization status to a valid one.

31122 Operation, {0} not
supported for default
organization {1}.

Possible Cause:

The specified operation is not supported on
Default organization. For example, you
cannot delete the Default organization.

User Data Service (UDS) Error Codes

222 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31124 Organization, {0} does
not exist.

Possible Causes:

■ The organization name provided as input
is not valid.

■ The Server cache has not been updated.

■ The organization with the specified name
does not exist.

Solution:

Retry the operation after refreshing the
cache.

31140 Attribute encryption
failed.

Possible Causes:

■ The organization display name provided
as input is not valid.

■ The Server cache has not been updated.

■ The organization with the specified
display name does not exist.

Solution:

Retry the operation after refreshing the
cache.

31142 Invalid key label. No key
with alias, {0} exists.

Note: This error is
thrown if the system is
configured for hardware
encryption.

Possible Causes:

■ The Key Label specified in the operation
does not exist in the HSM.

■ The HSM connection failed.

Solution:

1. Check the HSM connectivity.

2. Verify if the Key Label is present in the
HSM.

31143 Organization {0} exist
with the same LDAP
configuration.

Note: The createOrg APIs
throw this error.

Possible Cause:

An LDAP organization with the same
configuration already exists.

Solution:

LDAP organizations must have unique
configurations. Update the existing
organization or create a new organization
with different details.

User Data Service (UDS) Error Codes

Chapter 9: Performing Selected Administration Tasks 223

Error Code Error Message Possible Cause for Failure

31146 Error saving custom
attributes for user {0}.

Note: This error is
thrown while updating
users’ custom attributes.

Possible Causes:

■ The specified user was not found.

■ The database connection failed.

Solution:

1. Retry the operation.

2. If the issue is not resolved, then you must
contact CA Support.

38100 Resource, {0} of type, {1}
does not exist.

Note: This error is
thrown when the
processing of an account
type fails.

Possible Causes:

■ The specified account type does not
exist.

■ The Server cache has not been updated.

Solution:

Refresh the cache and retry.

38101 Unknown or unexpected
error.

Possible Cause:

A critical internal error occurred.

Solution:

Contact CA Support.

39100 User account, {0} not
found for account type,
{1}.

Possible Causes:

The specified user account was not found for
the given account type, because:

■ The specified user does not have an
account.

■ The account has been deleted.

Solution:

Verify if the input account ID is valid.

39101 The custom attribute, {0}
is invalid for account
type, {1}.

Possible Cause:

■ The specified account custom attribute
does not exist for the account type.

■ The Server cache has not been refreshed.

Solution:

1. Ensure that you provide a valid input.

2. Refresh the cache and retry.

User Data Service (UDS) Error Codes

224 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

39102 User identifier, {0} not
found for organization,
{1}.

Possible Cause:

The user identifier was not found for the
organization during deep search. In other
words, the specified identifier did not match
any of the userid, accountid, and accountid
attributes.

Solution:

Provide a valid user identifier.

39103 Account(s) creation failed
for user identifier, {0}
belonging to the
organization, {1}.

Note: This is a C++ error
code.

Possible Causes:

■ The connection to the database failed.

■ An unexpected error occurred while
creating account(s).

Solution:

1. See if there are any related errors in
arcotadmin.log and arcotuds.log and take
corrective action.

2. Retry the operation.

39104 The specified user
account already exists for
user {0}.

Possible Cause:

The specified user account already exists.

Solution:

Ensure that you specify a unique account
name.

39105 Account types do not
exist for organization, {0}.

Possible Causes:

■ The specified account type is not
available for the organization.

■ The Server cache has not been refreshed.

Solution:

1. Ensure that you specify the correct account
type name.

2. Add the organization to the account type
scope.

3. Retry after refreshing the cache.

User Data Service (UDS) Error Codes

Chapter 9: Performing Selected Administration Tasks 225

Error Code Error Message Possible Cause for Failure

39106 Account type already
exists.

Note: The APIs for
creating and updating
account types throw this
error.

Possible Cause:

The specified account type exists in the
system. As a result, another account type
with the same name or display name cannot
be created.

Solution:

Create an account type with a unique name
or display name.

39107 Account ID, {0} already
created for the account
type, {1}.

Possible Cause:

The specified user account has already been
created for the given account type.

Solution:

The account ID must be unique for a given
account type for an organization. Provide a
different account ID and retry.

39201 SOAP action is null. Possible Cause:

The incoming SOAP request is not valid.

Solution:

1. Provide a valid SOAP request.

2. If problem persists, then contact CA
Support.

55000 Invalid input parameter,
{0}.

Possible Cause:

The input value provided for the given
parameter is not valid.

Solution:

Refer to the section, "User Data Service
Validations" (see page 261) in appendix for
valid input set.

55001 Missing input parameter,
{0}.

Possible Cause:

The required parameter is missing from the
API request.

Solution:

Provide the required parameter.

55002 Insufficient input
parameters.

Note: This is a C++ error
code.

Possible Cause:

The API inputs are incomplete.

Solution:

Provide all the required inputs.

User Data Service (UDS) Error Codes

226 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

55003 Resource bundles not
found.

Note: This is a C++ error
code.

Possible Causes:

■ ARCOT_HOME is not set.

■ The required properties files are missing
from the resourcebundles subdirectory in
the conf directory.

Solution:

Ensure that the ARCOT_HOME environment
variable is set correctly.

55004 Database error.

Note: This is a C++ error
code.

Possible Causes:

■ The connection to the database failed.

■ An unexpected error occurred while
writing to or reading from the database.

Solution:

1. Refer to arcotadmin.log and arcotuds.log
for more information.

2. Retry the connection.

55010 Error while encrypting
the data.

Note: This is a C++ error
code.

Possible Causes:

■ The connection to the HSM failed.

■ An unexpected error occurred.

■ The Server cache has not been refreshed.

Solution:

1. Refer to arcotadmin.log and arcotuds.log
for more information.

2. Check HSM connection details.

3. Refresh the Server cache.

55011 Error while decrypting
the data.

Note: This is a C++ error
code.

Possible Causes:

■ The connection to the HSM failed.

■ An unexpected error occurred.

■ The Server cache has not been refreshed.

Solution:

1. Refer to arcotadmin.log and arcotuds.log
for more information.

2. Check HSM connection details.

3. Refresh the Server cache.

User Data Service (UDS) Error Codes

Chapter 9: Performing Selected Administration Tasks 227

Error Code Error Message Possible Cause for Failure

55012 Internal error occurred.

Note: This is a C++ error
code.

Possible Cause:

An unexpected error occurred.

Solution:

Refer to arcotadmin.log and arcotuds.log for
more information.

55100 Error while retrieving
organization
configuration data.

Note: This is a C++ error
code.

Possible Causes:

■ The specified organization was not found
in the system.

■ The connection to the database failed.

■ The Server cache has not been refreshed.

Solution:

1. Refer to arcotadmin.log and arcotuds.log
for more information.

2. Check the database connection details.

3. Refresh the Server cache.

50030 Search size limit
exceeded the maximum
value.

Note: This is a C++ error
code.

Possible Cause:

Search returned more than the maximum
configured limit.

Solution:

Refine your search criteria.

50031 Search base node context
needs to be bound.

Possible Causes:

■ The connection to the LDAP organization
failed.

■ The specified LDAP connection details are
not valid.

Solution:

Ensure that the LDAP connection details are
correct and then retry.

User Data Service (UDS) Error Codes

228 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

50032 Search is not expected to
return more than set
limit values.

Note: This error is
thrown by the
retrieveUser API in
context of LDAP
organizations.

Possible Causes:

1. The user you specified is not unique in the
system (LDAP). As a result, more than one
user details were returned for the given
UserID.

2. The UserID attribute is not mapped to the
correct LDAP attribute.

Solution:

Ensure that the UserID is unique. Also, verify
the UserID attribute mappings.

50033 Search criteria is not
valid.

Note: This is a C++ error
code.

Possible Cause:

The search input that you provided is not
valid.

Solution:

Provide valid search inputs.

50034 Unable to get supporting
data access class.

Possible Cause:

■ The connection to the LDAP organization
failed.

■ The specified LDAP connection details are
not valid.

Solution:

Ensure that the LDAP connection details are
correct and then retry.

50035 LDAP node has to be
created before
referencing.

Possible Cause:

■ The connection to the LDAP organization
failed.

■ The specified LDAP connection details are
not valid.

Solution:

Ensure that the LDAP connection details are
correct and then retry.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 229

Error Code Error Message Possible Cause for Failure

50036 LDAP repository has to
be initialized.

Possible Cause:

■ The connection to the LDAP organization
failed.

■ The specified LDAP connection details are
not valid.

Solution:

Ensure that the LDAP connection details are
correct and then retry.

50037 Context is not bound or
cannot be created.

Possible Cause:

■ The connection to the LDAP organization
failed.

■ The specified LDAP connection details are
not valid.

Solution:

Ensure that the LDAP connection details are
correct and then retry.

RiskMinder Response Codes

The following table lists the riskfortFault response codes, reason codes, the possible
cause for the failure, and solution wherever applicable.

Response
Code

Reason
Code

Description Possible Cause for Failure

0 0 The operation was
successful.

NA.

1000 2002 There was an internal
error.

Possible Cause:
Unexpected internal error.

RiskMinder Response Codes

230 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

1050 0 Value of one of the
parameters used in the
operation is invalid.

Possible Cause:
The value of the parameter passed
to the API is invalid.

For example, the allowed values for
user status are 0 and 1. If you set
this value as 5, then you will get
this error.

Solution:
Provide a valid value for the
parameter.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

1050 2050 Value of one of the
parameters used in the
operation is empty.

Possible Cause:
The parameter passed to the API is
empty.

Solution:
Provide a non-empty value for the
parameter.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

1050 2051 The length of one of the
parameters used in the
operation has exceeded
the maximum allowed
value.

Note: Length here refers
to length of the
parameter, for example
password length.

Possible Cause:
The length of the parameter passed
to the API has exceeded the
maximum value.

Solution:
Provide the parameter such that its
length is less than or equal to the
maximum allowed value.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 231

Response
Code

Reason
Code

Description Possible Cause for Failure

2052 The length of one of the
parameters used in the
operation is less than
minimum allowed value.

Possible Cause:
The length of the parameter passed
to the API is less than the minimum
value.

Solution:
Provide the parameter such that
the length of the parameter is
greater than or equal to the
minimum allowed value. See
appendix, "Input Data Validations"
(see page 261) for the supported
parameter values.

2053 Value of one of the
parameters used in the
operation exceeded the
maximum allowed value.

Note: Value here refers
to the value of the
parameter.

Possible Cause:
The value of the parameter passed
to the API has exceeded the
maximum allowed value.

Solution:
Provide the parameter such that
the value of the parameter is less
than or equal to the maximum
allowed value.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

1050 2054 Value of one of the
parameters used in the
operation is less than the
minimum allowed value.

Possible Cause:
The value of the parameter passed
to the API is less than the minimum
allowed value.

Solution:
Provide the parameter such that
the value of the parameter is
greater than or equal to the
minimum allowed value.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

RiskMinder Response Codes

232 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

2055 Value of one of the
parameters used in the
operation is invalid.

Possible Cause:
The value of the parameter passed
to the API is invalid.

For example, the allowed values for
user status are 0 and 1. If you set
this value as 5, then you will get
this error.

Solution:
Provide valid value for the
parameter.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

2056 Value of one of the
parameters used in the
operation contains
invalid characters.

Possible Cause:
The parameter specified by
ParameterKey contains invalid
characters.

Solution:
Provide valid characters for the
parameter that is specified by
ParameterKey.

2057 One of the parameters
used in the operation
does not meet the
formatting requirements.

Possible Cause:
The parameter specified by
ParameterKey has an invalid
format.

Solution:
Provide a valid format for the
parameter that is specified by
ParameterKey.

1050 2061 Value of one of the
parameters used in the
operation is not allowed.

Possible Cause:
The parameter specified by
ParameterKey has an invalid
format.

Solution:
Provide a valid format for the
parameter that is specified by
ParameterKey.

8104 The specified Callout URL
is not valid.

Possible Cause:
The specified URL is incorrect.

Solution:
Provide the valid URL.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 233

Response
Code

Reason
Code

Description Possible Cause for Failure

8105 The specified duration is
not valid.

Possible Cause:
The Start Date is greater than the
End Date.

The specified value for Start Date
and/or the End Date is in the past.

Solution:
The Start Date must be greater
than the End Date and these should
be the current or future dates (as
this is the duration for the
exception user).

7000 0 The operation was
successful.

NA.

8000

7001 0 There was an internal
error.

Possible Cause:
Unexpected internal error.

8000 There was an internal
error.

Possible Cause:
Unexpected internal error.

8108 There was an internal
error.

Possible Cause:
Unexpected internal error.

8122 There was an internal
error.

Possible Cause:
Unexpected internal error.

7501 0 The current operation on
the database failed.

Possible Cause:
Database is not running.

Solution:
Start the database.

Possible Cause:
Connection between the Server
and database is not complete.

Solution:
Establish the connection between
the Server and database again.

Possible Cause:
The operation failed because of an
internal error.

Solution:
Check the database logs for details
and ensure appropriate action is
taken based on these logs.

RiskMinder Response Codes

234 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7502 An exception occurred
because of an
unexpected internal
error.

Possible Cause:
Internal error because of
unexpected Server behavior.

Solution:
Most likely cause might be Server
or database failure. Check the
Server transaction and database
logs for details and ensure
appropriate action is taken based
on the Server logs.

7503 The time could not be
successfully fetched.

Possible Cause:
The database settings are not set
correctly in arcotcommon.ini.

Solution:
Verify and correct the database-
related parameters in the file.

7511 8000 The received Device
Signature is not valid.

Possible Cause:
The Server cannot parse the Device
Signature. Either the packet was
corrupted or there was an issue
while building the signature.

Solution:
Ensure that the Device Signature is
correctly built.

7601 0 Value of one of the
parameters used in the
operation does not exist.

Possible Cause:
The value of the parameter passed
to the API does not exist.

Solution:
Provide a valid value for the
parameter.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 235

Response
Code

Reason
Code

Description Possible Cause for Failure

7602 The name specified for
the new ruleset already
exists.

Possible Cause:
The value of the parameter passed
to the API already exists.

Solution:
Provide a valid value for the
parameter.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

7603 No Active ruleset of the
specified name was
found.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

7604 No Proposed ruleset of
the specified name was
found.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

7605 0 The name specified for
the ruleset (Active or
Proposed) does not exist.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

RiskMinder Response Codes

236 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7606 8101 The data sharing type
refers to another ruleset.
Therefore, the addition
operation is not allowed.

Possible Cause:
The rule or the ruleset refers to
another ruleset. Therefore, the
data cannot be added to the other
ruleset.

7607 0 The data sharing type
refers to another ruleset.
Therefore, the operation
to set the value(s) is not
allowed.

Possible Cause:
The rule or the ruleset refers to
another ruleset. Therefore, the
data cannot be set to another
ruleset.

7608 The data sharing type
refers to another ruleset.
Therefore, the delete
operation is not allowed.

Possible Cause:
The rule or the ruleset refers to
another ruleset. Therefore, the
data cannot be deleted from the
other ruleset.

7609 The data sharing type
refers to another ruleset.
Therefore, the update
operation is not allowed.

Possible Cause:
The rule or the ruleset refers to
another ruleset. Therefore, the
data cannot be updated.

7610 The data sharing type
refers to another ruleset.
Therefore, the value
rotation is not allowed.

Possible Cause:
The rule or the ruleset refers to
another ruleset. Therefore, the
data values cannot be rotated.

7611 The parameter sharing
type refers to another
ruleset. Therefore, the
operation to set the
value(s) is not allowed.

Possible Cause:
The rule or the ruleset refers to
another ruleset. Therefore, the
data cannot be set to another
ruleset.

7612 0 No Active or Proposed
data was found for the
specified Negative
Country.

Possible Cause:
The value of the parameter passed
to the API was not found in the
ARRFNEGATIVECOUNTRYLIST table.

Solution:
Provide a valid value for the
parameter.

See appendix, "Input Data
Validations" (see page 261) for the
supported parameter values.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 237

Response
Code

Reason
Code

Description Possible Cause for Failure

7613 No Active or Proposed
data was found for the
specified Negative IP
address.

Possible Cause:
The value of the parameter passed
to the API was not found in the
ARRFUNTRUSTEDIPLIST table.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7614 No Active or Proposed
data was found for the
specified Trusted IP
address.

Possible Cause:
The value of the parameter passed
to the API was not found in the
ARRFTRUSTEDIPLIST table.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7615 0 No Active or Proposed
parameters were found
for the specified rule.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

Possible Cause:
The parameter specified by
ParameterKey contains invalid
characters.

Solution:
Provide a valid characters for the
parameter that is specified by
ParameterKey.

RiskMinder Response Codes

238 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7616 No Proposed data was
found for the specified
Trusted IP address.

Possible Cause:
The value of the parameter passed
to the API was not found in the
ARRFTRUSTEDIPLIST table.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7617 No Proposed data was
found for the specified
Negative IP address.

Possible Cause:
The value of the parameter passed
to the API was not found in the
ARRFUNTRUSTEDIPLIST table.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7618 No Active or Proposed
data was found for the
specified Scoring
configuration.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7619 0 No Active or Proposed
data was found for the
specified Execution
configuration.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 239

Response
Code

Reason
Code

Description Possible Cause for Failure

7620 The value of the
configuration state
parameter used in the
operation is invalid.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7621 The ruleset cannot be
created because the
specified parameters and
their values for the rule
do not match.

Possible Cause:
The parameters and their
corresponding values passed to the
API are invalid.

Solution:
Provide a valid value for the
parameter. See appendix,"Input
(see page 261)Data Validations"
(see page 261) for the supported
parameter values.

7622 No Active ruleset
parameters found for the
specified otherOrgName
and otherConfigName.

Possible Cause:
The value of the otherOrgName
and otherConfigName parameters
passed to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix,"Input
Data Validations" (see page 261)
for the supported parameter
values.

7623 No Active ruleset found
for the specified data for
otherOrgName and
otherConfigName
parameters.

Possible Cause:
The value of the otherOrgName
and otherConfigName parameters
passed to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

RiskMinder Response Codes

240 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7624 0 The update is not
allowed because it will
create a cyclic
dependency.

Possible Cause:
The rule or the ruleset refers to
another ruleset.

Solution:
Change the ruleset(s) that have not
yet been migrated, so that the
cyclic dependency is eliminated.

7625 No Active ruleset found
for the specified
otherOrgName and
otherConfigName
parameters. Therefore,
the update operation is
not allowed.

Possible Cause:
The value of the otherOrgName
and otherConfigName parameters
passed to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7626 No Active ruleset found
for the specified data for
otherOrgName and
otherConfigName
parameters. Therefore,
the update operation is
not allowed.

Possible Cause:
The value of the otherOrgName
and otherConfigName parameters
passed to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7627 8102 The specified country
cannot be deleted
because no
corresponding Proposed
data was found.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data (see page 261)Validations"
(see page 261) for the supported
parameter values.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 241

Response
Code

Reason
Code

Description Possible Cause for Failure

7628 The specified IP range
cannot be deleted
because no
corresponding Proposed
data was found.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7629 0 The specified IP range
cannot be deleted from
the Trusted Aggregator
list because no
corresponding Proposed
data was found.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7630 The specified IP or range
cannot be deleted for the
Trusted Aggregator
because no
corresponding Proposed
data was found.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7631 The specified IP range
does not exist in the
Negative IP Address list.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

RiskMinder Response Codes

242 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7632 No Active or Proposed
data for Trusted
Aggregator was found for
the specified Trusted IP
address.

Possible Cause:
The value of the parameter passed
to the API was not found in the
ARRFTRUSTEDIPLIST table.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7633 No Proposed data for the
specified Trusted
Aggregator was found.

Possible Cause:
The value of the parameter passed
to the API was not found in the
ARRFTRUSTEDIPLIST table.

Solution:
Provide a valid value for the
parameter. See appendix,"Input
Data Validations" (see page 261)
for the supported parameter
values.

7634 0 The specified Trusted
Aggregator does not exist
in the Trusted
Aggregators list.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7635 The specified Trusted
Aggregator cannot be
added, because it already
exists in the Trusted
Aggregators list.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 243

Response
Code

Reason
Code

Description Possible Cause for Failure

7636 The specified Aggregator
ID could not be
generated because of an
internal Server error.

Possible Cause:
Aggregator ID generation failed due
to an internal error in the Server.

Solution:
Most likely cause might be because
of database failure. Check the
Server transaction logs for details
and ensure appropriate action is
taken based on the Server logs.

7637 The specified encryption
key was not found in the
database.

Possible Cause:
The encryption key does not exist.

Solution:
Ensure that the key that you are
using is correct.

7638 0 The supported port types
could not be tokenized.

Possible Cause:
Server host, port, or both might not
be configured correctly.

Solution:
Provide the correct host and port
number.

Possible Cause:
Server might not be running.

Solution:
Start the Server.

Possible Cause:
If SSL is configured, then
certificates might not be configured
correctly.

Solution:
Configure the TLS certificates
correctly.

RiskMinder Response Codes

244 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7639 The specified SSL Trust
Store does not exist.

Possible Cause:
The value of the parameter passed
to the API was not found.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

Possible Cause:
The specified Trust Store name is
not valid.

Solution:
You must provide a valid Trust
Store name.

Possible Cause:
The specified organization name is
not valid.

Solution:
You must provide a valid
organization name.

7640 0 The specified score
ranges were not found.

Possible Cause:
No Score ranges or Advice were
found in the ARRFADVICECONFIG
and ARRFADVICECODE tables. The
RiskMinder database scripts were
not run properly.

Solution:
Contact CA Support to resolve this
issue.

7641 The Scoring Callout does
not have the highest
execution priority.

Possible Cause:
The priority set in the Web service
call is higher than the existing
highest execution priority in the
RiskMinder database.

Solution:
Set the priority in the Web service
call correctly.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 245

Response
Code

Reason
Code

Description Possible Cause for Failure

7642 The Score does not have
the highest execution
priority.

Possible Cause:
The priority set in the Web service
call is higher than the existing
highest execution priority in the
RiskMinder database.

Solution:
Set the priority in the Web service
call correctly.

7643 8103 The required custom rule
details were not
specified. Therefore, the
rule was not added.

Possible Cause:
The custom rule details were not
specified correctly in the Web
service call.

Solution:
Set the Web service call input
parameters correctly.

7644 0 The specified rule type
does not exist or is not
valid.

Possible Cause:
The specified rule type is either not
present in the
ARRFADDONRULETYPE table or is
an invalid rule type.

Solution:
You must provide a valid rule type.

7645 0 The custom rule was not
added because it will
create a cyclic
dependency of data.

Possible Cause:
The creation of the custom rule
referring to another rule creates a
cyclic dependency for the data that
you added. Therefore, this is not
allowed.

Solution:
Change the required rule such that
the cyclic dependency is
eliminated.

7646 The custom rule was not
added because it will
create a cyclic
dependency of
parameters.

Possible Cause:
The creation of the custom rule
referring to another rule creates a
cyclic dependency for the
parameters that you added.
Therefore, this is not allowed.

Solution:
Change the required rule such that
the cyclic dependency is
eliminated.

RiskMinder Response Codes

246 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7647 The rule that you
specified is not available
in the ruleset.

Possible Cause:
The value of the rule passed to the
API was not found in the specified
ruleset.

Solution:
Provide a valid rule for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7648 Error occurred while
fetching the parameters.

Possible Cause:
The parameter specified by
ParameterKey contains invalid
characters.

Solution:
Provide valid characters for the
parameter that is specified by
ParameterKey.

7649 Other rules are
dependant on this rule.
Therefore, this rule
cannot be deleted.

Possible Cause:
Rules in another ruleset are
currently referring to this rule.
Therefore, you cannot delete this
rule.

Solution:
If required, delete the depending
rulesets before you delete this rule.

7650 0 The TypeName input is
not specified in the call.

Possible Cause:
The TypeName has not been
specified in the Web service call.

Solution:
Specify the correct input value for
TypeName in the input.

7651 Specified TypeName
already exists.

Possible Cause:
The TypeName in the input is
already present in the system.

Solution:
Specify a different TypeName in the
input.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 247

Response
Code

Reason
Code

Description Possible Cause for Failure

7652 A cyclic redundancy is
created with this update.
Therefore, the update is
not allowed. Also,
because of this action
only some rulesets were
migrated.

Possible Cause:
A cyclic dependency will be created
after the migration of all the
required rulesets. As a result, only a
few rulesets have been migrated.

Solution:
Change the ruleset(s) that have not
yet been migrated, so that the
cyclic dependency is eliminated.

7653 A cyclic redundancy is
created with this update.
Hence this update is not
allowed. No rulesets
have been migrated.

Possible Cause:
A cyclic dependency will be created
after the migration of all the
required rulesets.

Solution:
Change the required ruleset(s) such
that the cyclic dependency is
eliminated.

7654 0 The database operation
failed while migrating to
production. Some
rulesets were migrated

Possible Cause:
A cyclic dependency was found
during migration of a ruleset.
Therefore, only a few rulesets have
been migrated. Some ruleset(s),
including the failed ruleset, have
not been migrated.

■ Solution:
Check the RiskMinder logs for
details and ensure that
appropriate action is taken
based on these logs.

■ Remove the cyclic dependency
of the failed ruleset and
migrate it.

■ Migrate the remaining rulesets
that were not migrated
because of the failed ruleset.

7655 The value could not be
converted to uppercase.

Possible Cause:
The input given cannot be
converted to uppercase.

Solution:
Check the input.

RiskMinder Response Codes

248 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7656 The User Profile
information could not be
retrieved.

Possible Cause:
UDS is not up and running.

Solution:
Check if UDS is deployed properly
and is up and running.

Book: See the CA RiskMinder
Installation and Deployment Guide
for more information to do so.

Possible Cause:
The user does not exist in the
RiskMinder system.

Solution:
Add the user to the RiskMinder
system.

7656 8116 The User Profile
information could not be
retrieved because the
user status is currently
disabled.

Possible Cause:
The user account is disabled.

Solution:
Activate the user.

7656 8117 The User Profile
information could not be
retrieved because the
user account has been
deleted.

Possible Cause:
The user does not exist in the
RiskMinder system.

Solution:
Add the user to the RiskMinder
system.

7656 8118 The User Profile
information could not be
retrieved because the
user does not exist.

Possible Cause:
The user does not exist in the
RiskMinder system.

Solution:
Add the user to the RiskMinder
system.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 249

Response
Code

Reason
Code

Description Possible Cause for Failure

7657 0 The Location and
Connection information
was not found in the
database.

Possible Cause:
The Quova data has not been
uploaded in the RiskMinder
database.

Solution:
Upload the Quova data into the
RiskMinder database by using the
arrfupload.exe tool.

Book: See the CA RiskMinder
Administration Guide for more
information on this.

7658 0 The Exception User does
not exist in the system.

Possible Cause:
The user does not exist in the
RiskMinder system.

Solution:
Add the user to the RiskMinder
system.

Possible Cause:
The specified user is not an
Exception User.

Solution:
Ensure that you have provided the
correct details for the user, or add
the user to the Exception User List
before proceeding.

7659 The custom rule will
create cyclic
dependency. Therefore,
the rule cannot be
added.

Possible Cause:
A cyclic dependency will be created
when you create the custom rule.

Solution:
Change the rule such that the cyclic
dependency is eliminated.

7660 Other rules have cyclic
dependency on the
custom rule. Therefore,
the rule cannot be
deleted.

Possible Cause:
Other rules have cyclic dependency
on the custom rule you are trying
to delete.

Solution:
Change the rule such that the cyclic
dependency is eliminated.

RiskMinder Response Codes

250 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7661 8000 The XML input is invalid. Possible Cause:
Value of one or more of the
parameters used in the operation is
invalid.

Solution:
Provide a valid input for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7662 0 The specified version of
the parameter used in
the operation is not
Active.

Possible Cause:
The version of the parameter
passed to the API was not found.

Solution:
Provide a valid input for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7663 The operation to refresh
the specified
configuration failed.

Possible Cause:
The specified configuration does
not exist.

Solution:
Ensure that the configuration exists
or that you have specified the
correct details.

7664 8000 There was an internal
error in the operation.

Possible Cause:
Unexpected internal error.

Solution:
Most likely cause might be Server
or database failure. Check the
Server transaction and database
logs for details and ensure that
appropriate action is taken based
on the Server logs.

7664 8122 The Device ID could not
be generated.

Possible Cause:
This could be because of a possible
internal error at the server end or
because of corrupted data.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 251

Response
Code

Reason
Code

Description Possible Cause for Failure

7664 8207 There was an internal
error because the Server
is shutting down.

Possible Cause:
The Server shutdown is in progress.

Solution:
Wait for sometime for the Server to
come up again and then try
performing the operation.

7666 8000 The length of one of the
parameters used in the
operation has exceeded
the maximum allowed
value.

Possible Cause:
The length of the specified
parameter has exceeded the
maximum value.

Solution:
Provide a valid input for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7666 8113 No Association Name
parameter was not found
in the request.

Possible Cause:
The Association Name parameter is
missing from the request.

Solution:
Ensure that the request contains a
valid Tag Name.

7666 8114 The value of one of the
parameters used in the
operation is not valid.

Possible Cause:
The parameter specified by
ParameterKey has an invalid value.

Solution:
Provide a valid format and value for
the parameter that is specified by
ParameterKey.

7666 8135 The Device ID used in the
operation is not valid.

Possible Cause:
The specified Device ID is not valid.

Solution:
Ensure that you provide a valid
value for the Device ID.

RiskMinder Response Codes

252 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7667 8000 The length of one of the
parameters used in the
operation has exceeded
the maximum allowed
value.

Possible Cause:
The length of the parameter passed
to the API has exceeded the
maximum value.

Solution:
Provide a valid value for the
parameter. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7667 8140 The length of the User
Name parameter has
exceeded the maximum
allowed value.

Possible Cause:
The length of the User Name
parameter has exceeded the
maximum value.

Solution:
Ensure that the parameter is of
valid length. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7667 8144 The length of the
Association Name
parameter has exceeded
the maximum allowed
value.

Possible Cause:
The length of the Association Name
parameter has exceeded the
maximum value.

Solution:
Ensure that the parameter is of
valid length. See appendix,"Input
Data Validations" (see page 261)
for the supported parameter
values.

7667 8146 The length of the
Transaction Type Name
parameter has exceeded
the maximum allowed
value.

Possible Cause:
The length of the Transaction Type
Name parameter has exceeded the
maximum value.

Solution:
Ensure that the parameter is of
valid length. See appendix,"Input
Data Validations" (see page 261)
for the supported parameter
values.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 253

Response
Code

Reason
Code

Description Possible Cause for Failure

7667 8148 The length of the First
Name parameter has
exceeded the maximum
allowed value.

Possible Cause:
The length of the First Name
parameter has exceeded the
maximum value.

Solution:
Ensure that the parameter is of
valid length. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7667 8150 The length of the Last
Name parameter has
exceeded the maximum
allowed value.

Possible Cause:
The length of the Last Name
parameter has exceeded the
maximum value.

Solution:
Ensure that the parameter is of
valid length. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7667 8152 The length of the PAM
parameter has exceeded
the maximum allowed
value.

Possible Cause:
The length of the PAM parameter
has exceeded the maximum value.

Solution:
Ensure that the parameter is of
valid length. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7667 8154 The length of the Email
ID parameter has
exceeded the maximum
allowed value.

Possible Cause:
The length of the Email ID
parameter has exceeded the
maximum value.

Solution:
Ensure that the parameter is of
valid length. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

RiskMinder Response Codes

254 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7667 8156 The length of the
Organization Name
parameter has exceeded
the maximum allowed
value.

Possible Cause:
The length of the Organization
Name parameter has exceeded the
maximum value.

Solution:
Ensure that the parameter is of
valid length. See appendix, "Input
Data Validations" (see page 261)
for the supported parameter
values.

7668 8000 One of the parameters
specified for the
operation contains
prohibited characters.

Possible Cause:
A specified parameter contains
prohibited characters.

Solution:
Provide a valid format and value for
the parameter that is specified. See
appendix,"Input Data Validations"
(see page 261) for the supported
parameter values.

7668 8141 The User Name
parameter contains
prohibited characters.

Possible Cause:
The User Name parameter has
prohibited characters.

Solution:
Provide a valid format and value for
the parameter. See appendix,
"Input Data Validations" (see
page 261) for the supported
parameter values.

7668 8145 The Association Name
parameter contains
prohibited characters.

Possible Cause:
The Association Name parameter
has prohibited characters.

Solution:
Provide a valid format and value for
the parameter. See appendix,
"Input Data Validations" (see
page 261) for the supported
parameter values.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 255

Response
Code

Reason
Code

Description Possible Cause for Failure

7668 8147 The Transaction Type
parameter contains
prohibited characters.

Possible Cause:
The Transaction Type parameter
has prohibited characters.

Solution:
Provide a valid format and value for
the parameter. See appendix,
"Input Data Validations" (see
page 261) for the supported
parameter values.

7668 8149 The First Name
parameter contains
prohibited characters.

Possible Cause:
The First Name parameter has
prohibited characters.

Solution:
Provide a valid format and value for
the parameter. See appendix,
"Input Data Validations" (see
page 261) for the supported
parameter values.

7668 8151 The Last Name
parameter contains
prohibited characters.

Possible Cause:
The Last Name parameter has
prohibited characters.

Solution:
Provide a valid format and value for
the parameter. See appendix,
"Input Data Validations" (see
page 261) for the supported
parameter values.

7668 8153 The PAM (Personal
Assurance Message)
parameter contains
prohibited characters.

Possible Cause:
The PAM parameter has prohibited
characters.

Solution:
Provide a valid format and value for
the parameter. See appendix,
"Input Data Validations" (see
page 261) for the supported
parameter values.

RiskMinder Response Codes

256 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7668 8155 The EMAIL ID parameter
contains prohibited
characters.

Possible Cause:
The EMAIL ID parameter has
prohibited characters.

Solution:
Provide a valid format and value for
the parameter. See appendix,
"Input Data Validations" (see
page 261) for the supported
parameter values.

7669 8158 The EMAIL ID parameter
used in the operation
does not meet the
formatting requirements.

Possible Cause:
The EMAIL ID parameter specified
by ParameterKey has invalid
format.

Solution:
Provide a valid format for the
parameter.

7670 8000 The value of one of the
configurations used in
the operation does not
exist.

Possible Cause:
The specified configuration for the
organization is not correct.

Solution:
Ensure that the specified
organization configuration is
correct.

Possible Cause:
There is no configured ruleset for
the specified transaction.

Solution:
Ensure that the specified ruleset
exists or that you specify the
correct ruleset information.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 257

Response
Code

Reason
Code

Description Possible Cause for Failure

7670 8120 The value of ruleset
configuration used in the
operation does not exist
for the specified Channel.

Possible Cause:
The specified configuration for the
organization and/or channel is not
correct.

Solution:
Ensure that the configuration
information that you specify is
correct.

Possible Cause:
There is no ruleset configured for
the specified channel of the
organization.

Solution:
Ensure that the specified ruleset
exists or that you specify correct
ruleset information.

7670 8121 The value of ruleset
configuration used in the
operation does not exist.

Possible Cause:
The specified configuration for the
organization is not correct.

Solution:
Ensure that the specified
organization configuration is
correct.

Possible Cause:
There is no configured ruleset for
the specified transaction.

Solution:
Ensure that the specified ruleset
exists or that you specify correct
ruleset information.

7671 8000 There was a failure in
creating the association.

Possible Cause:
The specified information is not
valid.

Solution:
Ensure that the inputs you specify
are correct.

7671 8109 There was a failure in
deleting the association.

Possible Cause:
The specified association does not
exist.

Solution:
Ensure that the specified
association exists.

RiskMinder Response Codes

258 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7672 8115 The details for the
Organization Name that
you specified for the
operation is not active.

Possible Cause:
The specified organization has been
deactivated.

Solution:
Ensure that the organization is valid
and active.

7672 8139 The details for the
Organization Name that
you specified for the
operation were not
found.

Possible Cause:
The specified organization is
unknown and was not found in the
system.

Solution:
Ensure that the organization is valid
and active.

7673 8000 The specified input is not
valid.

Possible Cause:
The specified input is not valid.

Solution:
You must provide a valid input in
the required format.

7673 8184 The specified input is not
valid.

Possible Cause:
The user information is not
provided.

Solution:
Ensure that you provide the
required information for a valid and
active user.

7678 8000 The Organization Name
that you specified for the
operation was not found.

Possible Cause:
The specified organization does not
exist.

Solution:
You must provide a valid
organization name.

7679 8000 The Organization Name
that you specified for the
operation is not valid.

Possible Cause:
The specified input is not valid.

Solution:
You must provide a valid input in
the required format.

RiskMinder Response Codes

Chapter 9: Performing Selected Administration Tasks 259

Response
Code

Reason
Code

Description Possible Cause for Failure

7681 8000 The User Name that you
specified for the
operation was not found.

Possible Cause:
The specified user does not exist.

Solution:
You must provide a valid user
name.

7683 8000 The User Name that you
specified for the
operation already exists.

Possible Cause:
The specified user already exists in
the system.

Solution:
You must provide a distinct user
name.

7684 8000 The user account for the
corresponding User
Name that you specified
for the operation has
been disabled.

Possible Cause:
The specified user account has
been deactivated.

Solution:
Ensure that the user is active.

7690 8000 The user account for the
User Name that you
specified for the
operation already exists.

Possible Cause:
The specified user account already
exists in the system.

Solution:
You must provide a distinct user
account name.

7691 8000 Web Service
authentication or
authorization failed.

Possible Cause:
Sent to the client if one of the
following Web Services is enabled
for Authentication and
Authorization (AnA), and the
supplied credential is not valid:

■ getUserProfile

■ addUserToExceptionList

■ deleteUserFromExceptionList

■ getLocationAndConnectionInfo

Solution:
Ensure that you send the correct
credential or authorization token
while making the Web Service call.

Chapter 9: Performing Selected Administration Tasks 261

Appendix D: Input Data Validations

To ensure that the system does not process invalid data, to enforce business rules, and
to ensure that user input is compatible with internal structures and schemas,
RiskMinder validates the data that it receives from the APIs.These validations can be
grouped as:

■ User Data Service Validations (see page 261)

■ RiskMinder Validations (see page 264)

User Data Service Validations

The following table explains the criteria that the User Data Service (UDS) uses to
validate the input data.

Attribute Attribute ID Validation Criteria

User Name UserName Is non-empty.

Length is between 1 and 256 characters.

Does not contain invalid characters (ASCII
0-31).

First Name FirstName Is non-empty.

Length is between 1 and 32 characters.

Does not contain invalid characters (ASCII
0-31).

Middle Name MiddleName Length is between 0 and 32 characters.

Does not contain invalid characters (ASCII
0-31).

Last Name LastName Is non-empty.

Length is between 1 and 32 characters.

Does not contain invalid characters (ASCII
0-31).

Email Email Is non-empty.

Length is between 1 and 128 characters.

Does not contain invalid characters. All
default regular expressions are allowed.

Telephone TelephoneNumber Is non-empty.

User Data Service Validations

262 Web Services Developer's Guide

Attribute Attribute ID Validation Criteria

Number Length is between 1 and 128 characters.

Does not contain invalid characters (ASCII
0-31).

Personal
Assurance
Message

PAM Length is between 0 and 128 characters.

Does not contain invalid characters (ASCII
0-31).

Personal
Assurance
Message URL

PAM URL Length is between 0 and 128 characters.

Does not contain invalid characters, although
alphabets, number, and + / \ \ # $ % & - _ : .
are allowed.

Image Image Size is between 0 and 1024 KB.

Is of one of the following formats:

■ JPEG

■ JPG

■ GIF

■ BMP

■ PNG

Account ID AccountID Length is between 0 and 256 characters.

Is non-empty if the AccountType attribute is
enabled.

Does not contain invalid characters (ASCII
0-31).

Account ID
Attribute1

AccountIDAttribut
e1

Length is between 0 and 256 characters.

Does not contain invalid characters (ASCII
0-31).

Account ID
Attribute2

AccountIDAttribut
e2

Length is between 0 and 256 characters.

Does not contain invalid characters (ASCII
0-31).

Account ID
Attribute3

AccountIDAttribut
e3

Length is between 0 and 256 characters.

Does not contain invalid characters (ASCII
0-31).

User Data Service Validations

Chapter 9: Performing Selected Administration Tasks 263

Attribute Attribute ID Validation Criteria

User Custom
Attributes

User Custom
Attributes--

Maximum supported database column size
for the field is 2000 KB. The maximum length
is dependent on number of custom
attributes, multi-byte character support, and
encryption.

Does not contain invalid characters (ASCII
0-31).

Organization
Name

OrgName Is non-empty.

Length is between 0 and 64 characters.

Does not contain invalid characters.

Note: All keyboard characters are supported.

Display Name DisplayName Is non-empty.

Length is between 0 and 128 characters.

Does not contain invalid characters (ASCII
0-31).

Description Description Length is between 1 and 128 characters.

Does not contain invalid characters (ASCII
0-31).

Account Type AccountType Length is between 0 and 64 characters.

Does not contain invalid characters.

Note: All keyboard characters are supported.

Account Type
Display
Name

AccountType-Displ
ayName

Is non-empty if the AccountType attribute is
enabled.

Length is between 0 and 128 characters.

Does not contain invalid characters (ASCII
0-31).

Organization
Custom Attributes

Org Custom
Attributes

Length is between 0 and (2000 -(2 * No of
custom attributes - 1)) characters.

Does not contain invalid characters (ASCII
0-31).

Account Type
Custom Attribute

Account Type
Custom Attribute

Length is between 0 and (2000 -(2 * No of
custom attributes - 1)) characters.

Does not contain invalid characters (ASCII
0-31).

User Account User Account Length is between 0 and 64 characters.

RiskMinder Validations

264 Web Services Developer's Guide

Attribute Attribute ID Validation Criteria

Custom Attributes
- Name

Custom Attributes
-Name

Does not contain invalid characters (ASCII
0-31).

User Account
Custom Attributes
- Value

User Account
Custom Attributes
- Value

Length is between 0 and 128 characters.

Does not contain invalid characters (ASCII
0-31).

Key Label Key Label Is non-empty.

Does not contain invalid characters.

Note: All keyboard characters are supported.

RiskMinder Validations

The following table explains the criteria that RiskMinder Server uses to validate this
input data.

Note: Attribute length mentioned in the following table corresponds to the character
length. Attribute ID is referred to as paramName in the Java APIs.

Attribute Attribute ID Validation Criteria

User Name

USER_NAME Is non-empty.

Length is between 1 and 256 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Organization Name

ORG_NAME Is non-empty.

Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Display
Organization Name

DISPLAY_ORG_NAME Is non-empty.

Length is between 1 and 1024
characters.

Machine
Fingerprint

DEVICESIGNATURE No validation, except that RiskMinder
Server must be able to parse it.

Action

ACTION Is non-empty.

Length is between 1 and 32 characters.

Does not contain whitespace characters.

RiskMinder Validations

Chapter 9: Performing Selected Administration Tasks 265

Attribute Attribute ID Validation Criteria

DeviceID
DEVICEIDVALUE Is generated by RiskMinder Server, so

that the Server is able to parse it.

Device Type
DEVICEIDTYPE Has one of the following values:

■ HTTP

Rule Annotation
RULEANNOTATION No validation, except that RiskMinder

Server must be able to parse it.

Start Time START_TIME Is non-empty.

End Time END_TIME Is non-empty.

Create Time
CREATE_TIME Is non-empty.

Is less than or equal to the current time.

Last Modified Time
LAST_MODIFIED_TIM
E

Is non-empty.

Is less than or equal to the current time.

Configuration
Name

CONFIG_NAME Configuration name is non-empty.

Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Channel Name

CHANNEL_NAME Channel name is non-empty.

Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Configuration State
CONFIG_STATE Is non-empty.

Length is between 0 and 2 characters.

Configuration State
for Administration
Web Service

CONFIG_STATE_WS Is non-empty.

Length is not more than 5 characters.

Country Name

COUNTRY_NAME Is non-empty.

Length is between 0 and 50 characters.

Does not contain invalid characters
(ASCII 0-31), although ASCII 32-127 are
allowed.

Country Code
COUNTRY_CODE Is non-empty.

Length is between 1 and 2 characters.

RiskMinder Validations

266 Web Services Developer's Guide

Attribute Attribute ID Validation Criteria

Can contain numbers, alphabets,
underscore, and dot.

Start IP

START_IP Is non-empty.

Length is between 0 and 4294967295
characters.

Follows the IP address format.

End IP END_IP Length is between 0 and 4294967295
characters.

Follows the IP address format.

Mask

MASK Length is between 0 and 4294967295
characters.

Follows the IP address format.

Start IP

START_IP_STR Is non-empty.

Length is between 7 and 15 characters.

Follows the IP address format.

End IP
END_IP_STR Length is between 7 and 15 characters.

Follows the IP address format.

Mask
MASK_STR Length is between 7 and 15 characters.

Follows the IP address format.

Type TYPE --

Start IP Filter

START_IP_FILTER Is non-empty.

Length is between 7 and 15 characters.

Follows the IP address format.

Source IP Filter

SOURCE_IP_FILTER Is non-empty.

Length is between 7 and 15 characters.

Follows the IP address format.

Rule Name

RULE_NAME Is non-empty.

Length is between 1 and 128 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Rule Mnemonic
RULE_MNEMONIC Is non-empty.

Length is between 1 and 25 characters.

RiskMinder Validations

Chapter 9: Performing Selected Administration Tasks 267

Attribute Attribute ID Validation Criteria

Does not contain invalid characters,
although numbers, alphabets,
underscore (_), and hyphen (-) are
allowed.

Rule Description
Name

RULE_DESCR_NAME Length is between 1 and 128 characters.

Rule Description
RULE_DESCRIPTION Length is between 1 and 1024

characters.

Rule Library Name RULE_LIB Is non-empty.

Parameter Name

RULE_PARAM_NAME Is non-empty.

Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Parameter Value
RULE_PARAM_VALUE
_STR

Is non-empty.

Length is between 1 and 512 characters.

Parameter Value
RULE_PARAM_VALUE
_BIN

Is non-empty.

Parameter Type
RULE_PARAM_TYPE Is non-empty.

Length is between 1 and 4 characters.

Aggregator Name

AGGREGATOR_NAME Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Aggregator ID
AGGREGATOR_ID Is non-empty.

Length is between 1 and 128 characters.

Combination Rule
Name1

COMBINATION_RULE
_
NAME1

Is non-empty.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Combination Rule
Name2

COMBINATION_RULE
_
NAME2

Is non-empty.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Combination Rule
Match1

COMBINATION_RULE
_
MATCH1

Is non-empty.

Length is between 0 and 1 characters.

Combination Rule COMBINATION_RULE Is non-empty.

RiskMinder Validations

268 Web Services Developer's Guide

Attribute Attribute ID Validation Criteria

Match2 _
MATCH2

Length is between 0 and 1 characters.

Advice ADVICE Length is between 1 and 64 characters.

Score SCORE Value is between 1 and 100.

Scoring Priority SCORING_PRIORITY Value is between 1 and 2147483647.

Execution Enabled EXECUTIONENABLED Value must either be 0 or 1.

Scoring Enabled SCORINGENABLED Value must either be 0 or 1.

Other Organization
Name

OTHERORGNAME Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Other
Configuration
Name

OTHERCONFIGNAME Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Sharing Type
SHARINGTYPE Is non-empty.

Value is between 1 and 3.

Callout Type CALLOUT_TYPE Value is between 0 and 2.

Callout URL

CALLOUT_URL Is non-empty.

Length is between 0 and 150 characters.

Does not contain invalid characters,
although alphabets, number, and + / \ \ #
$ % & - _ : . are allowed.

Callout Timeout CALLOUT_TIMEOUT Value is between 0 and 1000000.

Instance Name

INSTANCE_NAME Length is between 0 and 32 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Protocol Module
Name

PROTOCOL_MODULE
_NAME

Length is between 0 and 128 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Client SSL
TrustStore Name

CLIENT_SSL_TRUST_S
TORE_NAME

Length is between 0 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Connection
Timeout

CONNECTION_TIMEO
UT

Value is between 0 and 1000000.

RiskMinder Validations

Chapter 9: Performing Selected Administration Tasks 269

Attribute Attribute ID Validation Criteria

Client Certificate CLIENT_CERT --

Client Key CLIENT_KEY --

Server Root CA
Certificate

SERVER_ROOT_CA_C
ERT

--

Server Private Key
SERVER_PRIVATE_KE
Y

--

Read Timeout READ_TIMEOUT --

Minimum
Connections

MIN_CONNECTION --

Maximum
Connections

MAX_CONNECTION --

Full Distinguished
Name of the
Certificate

CERT_SUBJECT --

Issuer Name ISSUER_NAME --

Server SSL
Authentication

SERVER_AUTH_SSL --

Client SSL
Authentication

CLIENT_AUTH_SSL --

Action

TRANS_ACTION Is non-empty.

Length is between 1 and 32 characters.

Does not contain invalid characters
(ASCII 0-31).

Association Name

ASSOC_NAME Is non-empty.

Length is between 1 and 32 characters.

Does not contain invalid characters
(ASCII 0-31).

Chapter 9: Performing Selected Administration Tasks 271

Appendix E: RiskMinder Logging

To effectively manage the communication between RiskMinder Server and your
application, it is necessary to get information about the activity and performance of the
Server and other components, as well as any problems that might have occurred.

This appendix describes the various log files supported by RiskMinder, the severity
levels that you will see in these files, and the formats of these log files. It covers the
following topics:

■ About the Log Files (see page 272)

■ Format of the RiskMinder Server and Case Management Server Log Files (see
page 280)

■ Format of UDS and Administration Console Log Files (see page 281)

■ Supported Severity Levels (see page 281)

About the Log Files

272 Web Services Developer's Guide

About the Log Files

The RiskMinder log files can be categorized as:

■ Installation Log File (see page 273)

■ Startup Log Files (see page 273)

■ Transaction Log Files (see page 276)

■ Administration Console Log File (see page 278)

■ UDS Log File (see page 279)

The parameters that control logging in these files can be configured either by using the
relevant INI files (as is the case with UDS, Administration Console, and Server Startup log
files) or by using Administration Console itself (as is the case with the RiskMinder log
file.) The typical logging configuration options that you can change in these files include:

■ Specifying the log file name and path: RiskMinder enables you to specify the
directory for writing the log files and storing the backup log files.

■ Specifying the Log file size: You can specify the maximum number of bytes that the
log file can contain. When the log files reach this size, a new file with the specified
name is created and the old file is moved to the backup directory.

■ Using log file archiving: As RiskMinder components run and generate diagnostic
messages, the size of the log files increases. If you allow the log files to keep
increasing in size, then the administrator must monitor and clean up the log files
manually. RiskMinder enables you to specify configuration options that limit how
much log file data is collected and saved. RiskMinder allows you specify the
configuration option to control the size of diagnostic logging files. This helps you
determine a maximum size for the log files. When the maximum size is reached,
older log information is moved to the backup file before the newer log information
is saved.

■ Setting logging levels: RiskMinder also allows you to configure logging levels. By
configuring logging levels, the number of messages saved to diagnostic log files can
be reduced; or reversely, the number of messages can be increased to obtain
greater details. For example, you can set the logging level so that the system only
reports and saves critical messages. See "Supported Severity Levels" (see page 281)
for more information on the supported log levels.

■ Specifying time zone information: RiskMinder enables you to use either the local
time zone or GMT for time stamping the logged information.

About the Log Files

Chapter 9: Performing Selected Administration Tasks 273

Installation Log File

When you install RiskMinder, the installer records in the
Arcot_RiskFort_Install<timestamp>.log file all the information that you provide during
the installation and the actions (such as creating the Arcot directory structure and
making registry entries) that it performs. The information in this file is very useful in
identifying the source of the problems if the RiskMinder installation did not complete
successfully.

The default location of this file is at the same level as the install_location.

Startup Log Files

Because RiskMinder comprises two server modules, RiskMinder Server and Case
Management Queuing Server, you will see two startup log files:

■ RiskMinder Server Startup Log File (see page 273)

■ Case Management Queuing Server Startup Log File (see page 275)

The default location of these files is:

On Microsoft Windows:

install_location\Arcot Systems\logs\

On UNIX-Based Platforms:

install_location/arcot/logs/

RiskMinder Server Startup Log File

When you start RiskMinder Server, it records all startup (or boot) actions in the
arcotriskfortstartup.log file. The information in this file is useful in identifying the source
of problems if the RiskMinder service does not start up.

In this file, all logging-related parameters (specified under the [arcot/riskfort/logger]
section) are controlled by Administration Console. To configure these parameters, you
must use the instance-specific configuration page that you can access by clicking the
required instance in the Instance Management page.

About the Log Files

274 Web Services Developer's Guide

Changing RiskMinder Startup Logging Parameters

To change the logging parameters that you see when RiskMinder Server starts up:

1. Navigate to the conf directory in ARCOT_HOME.

2. Open arcotcommon.ini in a text editor of your choice.

3. Add the following section at the end of the file:

[arcot/riskfort/startup]

LogFile=

LogFileSize=10485760

BackupLogFileDir=

LogLevel=

LogTimeGMT=0

The following table explains these parameters.

Parameter Default Description

LogFile The file path to the default directory and the file
name of the log file.

Note: This path is relative to ARCOT_HOME,
install_location\Arcot Systems\ for Microsoft
Windows and install_location/arcot/ for UNIX-based
platforms.

LogFileSize 10485760 The maximum number of bytes the log file can
contain. When a log file reaches this size, a new file
is started and the old file is moved to the location
specified for BackupLogFileDir.

BackupLogFile
Dir

 The location of the directory where backup log files
are maintained, after the current file exceeds
LogFileSize bytes.

Note: This path is relative to ARCOT_HOME,
install_location\Arcot Systems\ for Microsoft
Windows and install_location/arcot/ for UNIX-based
platforms.

About the Log Files

Chapter 9: Performing Selected Administration Tasks 275

Parameter Default Description

LogLevel The default logging level for the server, unless an
override is specified.

The possible values are:

■ 0 FATAL

■ 1 WARNING

■ 2 INFO

■ 3 DETAIL

LogTimeGMT 0 The parameter that indicates the time zone of the
time stamp in the log files.

The possible values are:

■ 0 Local Time

■ 1 GMT

1. Set the required values for the parameters that you want to change.

2. Save and close the file.

3. Restart RiskMinder Server.

Case Management Queuing Server Startup Log File

When you start Case Management Queuing Server, it records all startup (or boot)
actions in the arcotriskfortcasemgmtstartup.log file. The information in this file is useful
in identifying the source of problems if the Case Management Queuing service does not
start up.

In this file, all logging-related parameters (specified under the
[arcot/riskfortcasemgmtserver/logger]section) are controlled by Administration
Console. To configure these parameters, you must use the instance-specific
configuration page that you can access by clicking the required instance in the Instance
Management page.

About the Log Files

276 Web Services Developer's Guide

Changing Case Management Queuing Server Startup Logging Parameters

To change the logging parameters that you see when Case Management Queuing Server
starts up:

1. Navigate to the conf directory in ARCOT_HOME.

2. Open arcotcommon.ini in a text editor of your choice.

3. Add the following section at the end of the file:

[arcot/riskfortcasemgmtserver/startup]

LogFile=

LogFileSize=10485760

BackupLogFileDir=

LogLevel=

LogTimeGMT=0

RiskMinder Server Startup Log File (see page 273) explains these parameters.

4. Set the required values for the parameters that you want to change.

5. Save and close the file.

6. Restart Case Management Queuing Server.

Transaction Log Files

The transaction logs consist of:

■ RiskMinder Server Log (see page 277)

■ Case Management Server Log File (see page 277)

About the Log Files

Chapter 9: Performing Selected Administration Tasks 277

RiskMinder Server Log

RiskMinder records all requests processed by the server and related actions in the
arcotriskfort.log file. The default location of this file is:

On Microsoft Windows:

install_location\Arcot Systems\logs\

On UNIX-Based Platforms:

install_location/arcot/logs/

Note: You cannot use the RiskMinder logger to configure your application’s logs. You
can access these logs by using the tool used by the third-party application server (such
as Apache Tomcat or IBM Websphere) that is hosting your application.

All logging-related parameters can be configured by using Administration Console. To do
so, you must use the instance-specific configuration page that you can access by clicking
the required instance in the Instance Management page.

In addition to the log file path, the maximum log file size (in bytes), backup directory,
logging level, and timestamp information, you can control whether you want to enable
trace logging. See "Format of the RiskMinder Server and Case Management Server Log
Files" (see page 280) for details of the default format used in the file.

Case Management Server Log File

When you deploy the Case Management Server module and subsequently start it, the
details of all its actions and processed requests are recorded in the
arcotriskfortcasemgmtserver.log file. The default location of this file is:

On Microsoft Windows:

install_location\Arcot Systems\logs\

On UNIX-Based Platforms:

install_location/arcot/logs/

All logging-related parameters (specified under the
[arcot/riskfortcasemgmtserver/logger] section) can be configured by using
Administration Console. To configure these parameters, you must use the
instance-specific configuration page that you can access by clicking the required
instance in the Instance Management page.

In addition to the log file path, the maximum log file size (in bytes), backup directory,
logging level, and timestamp information, you can control whether you want to enable
trace logging. See "Format of the RiskMinder Server and Case Management Server Log
Files" (see page 280) for the details of the default format used in the file.

About the Log Files

278 Web Services Developer's Guide

Administration Console Log File

When you deploy Administration Console and subsequently start it, the details of all its
actions and processed requests are recorded in the arcotadmin.log file. This information
includes:

■ Database connectivity information

■ Database configuration information

■ Instance information and the actions performed by this instance

■ UDS configuration information

■ Other Administration Console information specified by the Master Administrator,
such as cache refresh

The information in this file is useful in identifying the source of problems if
Administration Console does not start up. The default location of this file is:

On Microsoft Windows:

install_location\Arcot Systems\logs\

On UNIX-Based Platforms:

install_location/arcot/logs/

The parameters that control logging in these files can be configured by using the
adminserver.ini file, which is available in the conf folder in ARCOT_HOME.

In addition to the logging level, log file name and path, the maximum log file size (in
bytes), log file archiving information, you can control the layout of the logging pattern
for the Console by specifying the appropriate values for
log4j.appender.debuglog.layout.ConversionPattern.

See "Format of UDS and Administration Console Log Files" (see page 281) for details of
the default format used in the file.

About the Log Files

Chapter 9: Performing Selected Administration Tasks 279

UDS Log File

Important! This file is generated only if you deployed the arcotuds.war file to enable
LDAP connectivity.

All User Data Service (UDS) information and actions are recorded in the arcotuds.log file.
This information includes:

■ UDS database connectivity information

■ UDS database configuration information

■ UDS instance information and the actions performed by this instance

The information in this file is useful in identifying the source of problems if
Administration Console could not connect to the UDS instance. The default location of
this file is:

On Microsoft Windows:

install_location\Arcot Systems\logs\

On UNIX-Based Platforms:

install_location/arcot/logs/

The parameters that control logging in this files can be configured by using the
udsserver.ini file, which is available in the conf folder in ARCOT_HOME.

In addition to the logging level, log file name and path, the maximum file size (in bytes),
and archiving information, you can control the layout of the logging pattern for UDS by
specifying the appropriate values for
log4j.appender.debuglog.layout.ConversionPattern.

See "Format of UDS and Administration Console Log Files" (see page 281) for details of
the default format used in the file.

Format of the RiskMinder Server and Case Management Server Log Files

280 Web Services Developer's Guide

Format of the RiskMinder Server and Case Management Server
Log Files

The following table describes the format of the entries in the RiskMinder logger,
arcotriskfort.log and arcotriskfortcasemgmtserver.log, as discussed in the section,
"Transaction Log Files" (see page 276).

Column Description

Time Stamp The time the entry was logged, translated to the specified time
zone.

The format of logging this information is:

www mmm dd HH:MM:SS.mis yy z

In the preceding format:

■ www represents weekday.

■ mis represents milliseconds.

■ z represents the time zone you specified in the
arcotcommon.ini file.

Log Level

(or Severity)

The severity level of the logged entry.

See "Supported Severity Levels" (see page 281) for detailed
information.

Process ID (pid) The ID of the process that logged the entry.

Thread ID (tid) The ID of the thread that logged the entry.

Transaction ID The ID of the transaction that logged the entry.

Message The message logged by the Server in the free-flowing format.

Note: The granularity of this message depends on the Log Level
that you set in arcotcommon.ini.

Format of UDS and Administration Console Log Files

Chapter 9: Performing Selected Administration Tasks 281

Format of UDS and Administration Console Log Files

The following table describes the format of the entries in the following log files:

■ arcotuds.log (UDS Log File (see page 279))

■ arcotadmin.log (Administration Console Log File (see page 278))

Column
Associated Pattern

(In the Log File)
Description

Time Stamp %d{yyyy-MM-dd
hh:mm:ss,SSS z} :

The time when the entry was logged. This
entry uses the application server time
zone. The format of logging this
information is:

yyyy-MM-dd hh:mm:ss,mis z

Here:

■ mis represents milliseconds.

■ z represents the time zone.

Thread ID [%t] : The ID of the thread that logged the entry.

Log Level (or
Severity)

%-5p : The severity level of the logged entry.

See "Supported Severity Levels" (see
page 281) for more information.

Logger Class %-5c{3}(%L) : The name of the logger that made the log
request.

Message %m%n : The message logged by the Server in the
log file in the free-flowing format.

Note: The granularity of the message
depends on the Log Level that you set in
the log file.

Refer to the following URL for customizing the PatternLayout parameter in the UDS and
Administration Console log files:

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Supported Severity Levels

A log level (or severity level) enables you to specify the level of detail of the information
stored in the RiskMinder logs. This also enables you to control the rate at which the log
file will grow.

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/patternlayout.html/n
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/patternlayout.html/n

Supported Severity Levels

282 Web Services Developer's Guide

Server Log File Severity Levels

The following table describes the log levels that you see in server log files, in the
decreasing order of severity.

 Log Level Description

0 FATAL Use this log level for serious, non-recoverable errors that can
cause the abrupt termination of the RiskMinder service.

At the FATAL level, only situations which indicate a fatal
problem will be logged.

1 WARNING Use this log level for undesirable run-time exceptions,
potentially harmful situations, and recoverable problems that
are not yet FATAL.

2 INFO Use this log level for capturing information on run-time events.

In other words, this information highlights the progress of the
application, which might include changes in:

■ Server state, such as start, stop, and restart.

■ Server properties.

■ State of services.

■ State of processes on the Server.

For example, there are some logs that will always be printed to
indicate that requests are being received and that they are
being processed. These logs appear at the INFO level.

3 LOW

DETAIL

Use this log level for logging detailed information for
debugging purposes. This might include process tracing and
changes in Server states.

Note: When you specify a log level, messages from all other levels of higher significance
are reported as well. For example if the LogLevel is specified as 3, then messages with
log levels of FATAL, WARNING, and INFO level are also captured.

Administration Console and UDS Log File Severity Levels

The following table describes the log levels that you see in the Administration Console
and UDS log files, in the decreasing order of severity.

 Log Level Description

0 OFF Use this log level to disable all logging.

1 FATAL Use this log level for serious, non-recoverable errors that can
cause the abrupt termination of the RiskMinder service.

Supported Severity Levels

Chapter 9: Performing Selected Administration Tasks 283

 Log Level Description

2 WARNING Use this log level for undesirable run-time exceptions,
potentially harmful situations, and recoverable problems that
are not yet FATAL.

3 ERROR Use this log level for recording error events that might still
allow the application to continue running.

4 INFO Use this log level for capturing information on run-time events.
In other words, this information highlights the progress of the
application, which might include changes in:

■ Server state, such as start, stop, and restart.

■ Server properties.

■ State of services.

■ State of a processes on the Server.

5 TRACE Use this log level for capturing finer-grained informational
events than DEBUG.

6 DEBUG Use this log level for logging detailed information for
debugging purposes. This might include process tracing and
changes in Server states.

7 ALL Use this log level to enable all logging.

Note: When you specify a log level, messages from all other levels of higher significance
are reported as well. For example if the LogLevel is specified as 4, then messages with
log levels of FATAL, WARNING, ERROR, and INFO level are also captured.

Supported Severity Levels

284 Web Services Developer's Guide

Sample Entries for Each Log Level

The following subsections show a few sample entries (based on the Log Level) in the
RiskMinder log files.

FATAL
May 27 18:31:01.585 2010 GMT FATAL: pid 4756 tid 5152: 0: 0: Cannot continue due to

ARRF_LIB_init failure, SHUTTING DOWN

WARNING
May 24 14:47:39.756 2010 GMT WARNING: pid 5232 tid 5576: 0: 110000: EVALHTTPCALLOUT

: Transport Exception : create: No Transports Available

INFO
May 24 14:41:43.758 2010 GMT INFO: pid 3492 tid 4904: 0: 109002: Error in

ArPFExtRuleSetEval::evaluate Could not get user context (two parallel requests)

Supported Severity Levels

Chapter 9: Performing Selected Administration Tasks 285

May 25 10:01:28.131 2010 GMT WARNING: pid 1048 tid 3104: 8: 0: Error in

ArRFCaseStatus::startInit: No data found

DETAIL
May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Entering USERRISKEVALVELOCITY Rule Evaluation function

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE: VELOCITY_DURATION=[60],

VELOCITY_DURATION_UNIT=[MINUTES], VELOCITY_TRANSACTION_COUNT=[5]

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Entering UserRiskEvalVelocityRule

durationToTimeConvertor

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Exiting UserRiskEvalVelocityRule durationToTimeConvertor

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Entering UserRiskEvalVelocityRule

callUserEvalVelocityRule

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Entering

ArUserRiskEvalVelocityDBO::decisionLogicForUserVelocity

May 24 14:52:01.219 2010 GMT INFO: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Entering decisionLogicForUserVelocity

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Exiting

ArUserRiskEvalVelocityDBO::decisionLogicForUserVelocity

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Exiting UserRiskEvalVelocityRule

callUserEvalVelocityRule

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : USERRISKEVALVELOCITY.RESULT=[0]

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : USERRISKEVALVELOCITY.DETAIL=[RESULT=0;TCOUNT=2;

ACT=mection]

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Exiting USERRISKEVALVELOCITY Rule Evaluation function

	CA RiskMinder Web Services Developer's Guide
	Contact CA Technologies
	Contents
	1: Getting Started
	Introduction to the RiskMinder Web Services
	Risk Evaluation Web Service
	Administration Web Service
	Organization Management Web Service
	User Management Web Service
	Configuration Management Web Service

	RiskMinder Web Services Features
	Before You Begin
	Using RiskMinder WSDL Files
	Quick Summary

	2: Understanding RiskMinder Workflows
	Enrollment Workflows
	Explicit Enrollment
	Scenario 1
	Scenario 2

	Implicit Enrollment

	Risk Evaluation Workflows
	Pre-Login Risk Evaluation Workflow
	Post-Login Risk Evaluation Workflow
	Secondary Authentication Workflow

	Workflow Summary

	3: Managing Web Services Security
	Authentication Header Elements
	Authorization Header Elements
	SOAP Header Namespace

	4: Managing Organizations
	Creating Organizations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating Organizations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating Organization Status
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Refreshing the Organization Cache
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Default Organization Details
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Organization Details
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Searching Organizations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching RiskMinder Database Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Directory Service Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting Organizations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	5: Managing Additional User Configurations
	Managing Account Types
	Creating Account Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating Account Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Account Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting Account Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Email and Telephone Types
	Fetching Email Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Telephone Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching User Attributes Configured for Encryption
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	6: Managing Users and Accounts
	Before You Proceed
	User States
	Supported User State Transitions
	User Operations and States
	User Account Operations and States

	Performing User Operations
	Creating Users
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating Users
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating User Status
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching User Details
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Searching Users by Using Pagination
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Searching All Users
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Checking the User Status
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating the User Status
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting Users
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Performing User Account Operations
	Adding User Accounts
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating User Accounts
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching All Accounts of a User
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetch User Account Details
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching User Details Using Accounts
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting User Accounts
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Setting the Personal Assurance Message
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching the Personal Assurance Message
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Setting Custom User Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Authenticating LDAP Users
	Using the LDAP Password
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Using Directory Service Attributes
	Fetching User Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message
	Fetching User Attribute Values
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message
	Verifying User Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	7: Collecting Device ID and DeviceDNA
	End-User Device Identification Basics
	Device ID
	Machine FingerPrint (MFP)
	DeviceDNA

	File that You Will Need
	Configuring Device ID and DeviceDNA
	Step 1: Include the Javascript File
	Step 2: Initialize Device ID and DeviceDNA Collection
	Sample Application Reference

	Step 3: Collect the Device ID and DeviceDNA
	Step 4: Collect the IP Address

	Sample Code Reference
	Understanding the APIs for Retrieving DeviceDNA in the Sample Code
	ca.rm.Client()
	getVersion()
	setProperty(key,val)
	getProperty(key)
	loadFlash(callback)
	processDNA()
	getDNA()
	getTimeTaken()
	setDID(value)
	getDID()
	deleteDID()

	Collecting the IP Address
	If the End User is Accessing Your Application Directly

	8: Performing Risk Evaluation and Managing Associations
	Evaluating Risk
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Performing Post Evaluation
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Listing Associations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting Associations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	9: Performing Selected Administration Tasks
	Adding a User to Exception List
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting a User from Exception List
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching User Profile Information
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Location and Connection Information
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	A: Additional Configurations
	SSL Communication Between RiskMinder Components
	Setting Up SSL Communication Between Risk Evaluation Web Service and RiskFort Server
	One-Way SSL
	Two-Way SSL

	Setting Up SSL Communication Between Administration Web Service and RiskFort Server
	One-Way SSL
	Two-Way SSL

	B: Web Services Reference
	Accessing the WSDL Documentation
	Risk Evaluation Web Services
	User Data Service (UDS) Web Services

	C: Exceptions and Error Codes
	User Data Service (UDS) Error Codes
	RiskMinder Response Codes

	D: Input Data Validations
	User Data Service Validations
	RiskMinder Validations

	E: RiskMinder Logging
	About the Log Files
	Installation Log File
	Startup Log Files
	RiskMinder Server Startup Log File
	Changing RiskMinder Startup Logging Parameters
	Case Management Queuing Server Startup Log File
	Changing Case Management Queuing Server Startup Logging Parameters

	Transaction Log Files
	RiskMinder Server Log
	Case Management Server Log File

	Administration Console Log File
	UDS Log File

	Format of the RiskMinder Server and Case Management Server Log Files
	Format of UDS and Administration Console Log Files
	Supported Severity Levels
	Server Log File Severity Levels
	Administration Console and UDS Log File Severity Levels
	Sample Entries for Each Log Level
	FATAL
	WARNING
	INFO
	DETAIL

