

Web Services Developer's Guide
r7.1

CA AuthMinder™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Getting Started 11

Introduction to the AuthMinder Web Services .. 12

AuthMinder Web Services Features... 15

Before You Begin .. 16

Develop Client Applications Using AuthMinder WSDL Files... 16

Quick Summary .. 18

Chapter 2: Understanding AuthMinder WorkFlows 21

Enrollment Workflows ... 21

Enrolling New Users .. 22

Migrating Existing Users .. 23

ArcotID PKI Authentication Workflow .. 28

ArcotID PKI Roaming Download Workflow .. 30

Forgot Your Password Workflow ... 32

Workflow Summary ... 33

Chapter 3: Managing Web Services Security 35

Authentication Header Elements ... 35

Authorization Header Elements ... 36

SOAP Header Namespace .. 36

Chapter 4: Managing Organizations 39

Creating Organizations ... 40

Updating Organizations .. 46

Updating Organization Status .. 48

Refreshing the Organization Cache .. 50

Fetching Default Organization Details .. 52

Fetching Organization Details .. 55

Searching Organizations ... 57

Fetching AuthMinder Database Attributes .. 59

Fetching Directory Service Attributes .. 62

Deleting Organizations ... 64

Chapter 5: Configuration Management Web Service 67

Managing Account Types ... 68

6 Web Services Developer's Guide

Creating Account Types .. 69

Updating Account Types ... 71

Fetching Account Types .. 73

Deleting Account Types ... 75

Fetching Email and Telephone Types ... 77

Fetching Email Types ... 77

Fetching Telephone Types .. 79

Fetching User Attributes Configured for Encryption .. 81

Chapter 6: Managing Users and Accounts 85

Before You Proceed .. 85

User States .. 86

Supported User State Transitions ... 86

User Operations and States .. 87

User Account Operations and States .. 88

Performing User Operations .. 89

Creating Users ... 89

Updating Users .. 94

Updating User Status .. 98

Fetching User Details .. 100

Searching Users by Using Pagination .. 105

Searching All Users .. 108

Fetching User Status ... 112

Updating User Status .. 114

Deleting Users ... 116

Performing User Account Operations .. 118

Adding User Accounts ... 119

Updating User Accounts .. 122

Fetching All Accounts of a User ... 124

Fetch a User Account Details .. 126

Fetching User Details Using Accounts ... 129

Deleting User Accounts ... 133

Setting the Personal Assurance Message ... 135

Fetching the Personal Assurance Message .. 137

Setting Custom User Attributes ... 139

Authenticating LDAP Users .. 141

Using the LDAP Password ... 141

Using Directory Service Attributes .. 143

Chapter 7: Managing AuthMinder Configurations 151

Creating Configurations ... 152

Contents 7

Preparing the Request Message ... 152

Invoking the Web Service .. 181

Interpreting the Response Message ... 182

Updating Configurations .. 183

Fetching Configurations ... 184

Assigning Default Configurations ... 187

Fetching Server Events ... 191

Checking Key Availability in HSM ... 193

Deleting Configurations .. 195

Chapter 8: Performing Credential Operations 199

Before You Proceed .. 201

Checking the User Status .. 201

Credential States and Supported Transitions ... 202

Credential Operations and States ... 204

Creating Credentials ... 206

Common Input Elements .. 206

ArcotID PKI Input Elements ... 209

One-Time Password (OTP) Input Elements ... 210

OATH OTP Input Elements .. 210

ArcotID OTP Input Elements ... 210

EMV OTP Input Elements .. 211

Questions and Answers (QnA) Input Elements ... 211

Password Input Elements .. 212

Disabling Credentials .. 215

Enabling Credentials ... 217

Resetting Credentials ... 219

Fetching Credential Details .. 221

Reissuing Credentials ... 223

Resetting Credential Validity .. 225

Resetting Custom Attributes .. 227

Fetching QnA Configuration ... 228

Setting Unsigned Attributes ... 231

Deleting Unsigned Attributes ... 234

Adding Elements to ArcotID PKI Key Bag ... 236

Fetching ArcotID PKI Key Bag Elements ... 239

Deleting ArcotID PKI Key Bag Elements.. 242

Downloading Credentials ... 245

Deleting Credentials ... 247

8 Web Services Developer's Guide

Chapter 9: Integrating ArcotID PKI Client with Your Application 249

ArcotID PKI Client Overview ... 249

Flash Client .. 249

Signed Java Applet .. 250

Copying ArcotID PKI Client Files ... 250

For Flash Client .. 250

For Java Signed Applet .. 251

ArcotID PKI Client APIs ... 251

Downloading ArcotID PKI .. 252

Signing the Challenge .. 252

Chapter 10: Authenticating Users 253

ArcotID PKI Authentication .. 254

Step 1: ArcotID PKI Download ... 254

Step 2: ArcotID PKI Authentication ... 258

Questions and Answers Authentication ... 264

Password Authentication ... 269

Complete Password Authentication ... 269

Partial Password Authentication ... 272

One-Time Password Authentication .. 277

OATH One-Time Password Authentication .. 280

OATH One-Time Password Synchronization .. 283

ArcotID OTP (ArcotID OTP-OATH) Authentication ... 286

ArcotID OTP (ArcotID OTP-OATH) Synchronization.. 289

EMV OTP (ArcotID OTP-EMV) Authentication .. 292

EMV OTP (ArcotID OTP-EMV) Synchronization .. 295

Verifying Password Type Credentials ... 298

Verifying the Authentication Tokens.. 301

Fetching the PAM ... 304

Chapter 11: Performing Bulk Operations 305

Assigning Credentials to Users ... 306

Uploading OATH Tokens... 307

Fetching OATH Tokens ... 311

Appendix A: Input Data Validations 315

AuthMinder Validation Checks... 315

User Attributes Validation Checks .. 331

Contents 9

Appendix B: AuthMinder Logging 335

About the Log Files ... 336

Installation Log File ... 337

AuthMinder Server Startup Log File .. 337

AuthMinder Server Log File... 338

UDS Log File ... 339

Administration Console Log File .. 340

Format of the AuthMinder Log Files .. 341

Format of UDS and Administration Console Log Files .. 342

Supported Severity Levels .. 343

Server Log File Security Levels .. 343

Administration Console and UDS Log File Severity Levels .. 344

Sample Entries for Each Log Level ... 345

Appendix C: Enabling SSL for Web Services 347

Setting up SSL ... 347

One-Way SSL ... 349

Two-Way SSL ... 350

Appendix D: Error Codes 353

User Data Service Error Codes ... 353

AuthMinder Server Codes .. 373

Chapter 1: Getting Started 11

Chapter 1: Getting Started

This chapter briefly discusses the Web services provided by CA AuthMinder (later
referred to as AuthMinder), and the checks that you must perform before using the
Web services. It covers the following topics:

■ Introduction to the AuthMinder Web Services (see page 12)

■ AuthMinder Web Services Features (see page 15)

■ Before You Begin (see page 16)

■ Develop Client Applications Using AuthMinder WSDL Files (see page 16)

■ Quick Summary (see page 18)

This guide provides information on how to develop Web applications that use the strong
and versatile modes of authentication provided by CA AuthMinder. This guide discusses
Java classes and methods that you can use to programmatically integrate with
AuthMinder SDK.

Introduction to the AuthMinder Web Services

12 Web Services Developer's Guide

Introduction to the AuthMinder Web Services

The AuthMinder Web services provides a programmatic interface that you can use to
integrate your application with AuthMinder. The AuthMinder Web services are broadly
classified, as follows:

■ Organization Management Web Service

■ Configuration Management Web Service

■ User Management Web Service

■ Administration Web Service

■ Issuance Web Service

■ Authentication Web Service

■ Bulk Upload Web Service

Organization Management Web Service

Organization is an AuthMinder unit that can either map to a complete enterprise (or a
company) or a specific division, department, or other entities within the enterprise. The
organization management Web service is used to create and manage these
organizations. You can perform the following operations by using the organization
management Web service:

■ Create organizations

■ Fetch organization information

■ Fetch default organization

An organization that is created by default when you install AuthMinder. If you have
set any other organization as the default, then that organization is used.

■ Update organization information

■ Update organization status

■ Refresh organization cache

■ Fetch user attributes that AuthMinder supports

■ Fetch user attributes that the directory service supports

See chapter, "Managing Organizations" (see page 39) for more information on how to
use the organization management Web services.

Configuration Management Web Service

The configuration management Web service is used to perform the following
operations:

■ Create account types

Introduction to the AuthMinder Web Services

Chapter 1: Getting Started 13

■ Update account types

■ Fetch account types

■ Fetch email ID and telephone number types configured at the global-level

■ Fetch the user attributes that are configured to be stored in the encrypted format

See chapter, "Configuration Management Web Service" (see page 67) for more
information on how to use the user management Web services.

User Management Web Service

The user management Web service is used to manage users, user accounts, user’s
Personal Assurance Message (PAM), and authentication operations for LDAP users. You
can perform the following operations by using the user management Web service:

■ Create users and user accounts

■ Search users

■ Fetch users and user accounts

■ Update user information

■ Update user account information

■ Fetch and update user status

■ Authenticate administrators (password and QnA authentication mechanisms only)

■ Set and fetch PAM

See chapter, "Managing Users and Accounts" (see page 85) for more information on
how to use the user management Web services.

Administration Web Service

The AuthMinder administration Web service is used to perform the following
administration operations:

■ Create credential profiles and policies

■ Update credential profiles and policies

■ Fetch credential profiles and policies

■ Delete credential profiles and policies

■ Assign default configurations

■ Set up RADIUS configurations

■ Set up other AuthMinder configurations such as, ASSP, RADIUS, and SAML

■ Credential type resolution

Introduction to the AuthMinder Web Services

14 Web Services Developer's Guide

■ Key management

See chapter, "Managing AuthMinder Configurations" (see page 151) for more
information on how to use the administration Web services.

Issuance Web Service

The AuthMinder Issuance Web service (also known as Credential Management Web
service) interacts with AuthMinder Server to create, fetch, enable, and disable
credentials. You can perform the following operations by using the Issuance Web
service:

■ Create credentials for the users.

■ Perform credential lifecycle management operations such as, enable, disable, reset
credential, reset credential validity, and delete.

See chapter, "Performing Credential Operations" (see page 199) for more information
on how to use the Issuance Web services.

Authentication Web Service

The AuthMinder authentication Web service can be used to authenticate users using the
out-of-the-box credentials supported by AuthMinder, and also the custom credentials
that your system supports.

See chapter, "Authenticating Users" (see page 253) for more information on how to use
the authentication Web service.

Bulk Upload Web Service

The AuthMinder Bulk Upload Web service can be used to assign credentials to users,
assign and fetch OATH tokens in bulk.

See chapter, "Performing Bulk Operations" (see page 305) for more information on how
to use the bulk upload Web service.

AuthMinder Web Services Features

Chapter 1: Getting Started 15

AuthMinder Web Services Features

This section discusses the salient features of AuthMinder Web services.

■ Web Services Authentication and Authorization

AuthMinder Web services are protected from rogue requests by enabling
authentication and authorization for all incoming requests. As a result, all requests
to AuthMinder Web services are authenticated for valid credentials. After
successful authentication, all requests are then validated for appropriate privileges
to access the Web services. See chapter, "Managing Web Services Security" (see
page 35) for more information.

This feature is enabled using the Enable Authentication and Authorization For Web
Services page of Administration Console. See chapter, "Getting Started" in CA
AuthMinder Administration Guide for more information.

■ Handling Multiple Operations Using Single Function

You can perform credential lifecycle operations on different credentials
simultaneously. For example, you can create ArcotID PKI, Question and Answer, and
One-Time Password credentials simultaneously using a single CreateCredential
operation.

■ Support for Additional Parameters

In addition to the mandatory inputs, the Web services also accept additional input
that can be passed as a name-value pair. This input can include information such as
locale, calling application details, or profile.

Before You Begin

16 Web Services Developer's Guide

Before You Begin

Before you integrate your application with AuthMinder, you must ensure that:

■ The systems on which you plan to install AuthMinder meet the system
requirements.

Book: Refer to the section, "System Requirements" in the CA AuthMinder
Installation and Deployment Guide for more information.

■ You have completed the configuration and planning-related information:

■ You have installed and configured the required number of AuthMinder
database instances.

Book: See sections, "Configuring Database Server" and "Database-Related
Post-Installation Tasks" in the CA AuthMinder Installation and Deployment Guide for
detailed instructions.

■ You have installed the required application server.

Book: See the section, "Requirements for Java-Dependent Components" in the CA
AuthMinder Installation and Deployment Guide for more information.

■ You install AuthMinder and ensure that the components are up and running.

Book: See chapter, "Deploying AuthMinder on a Single System" for single-system
deployment and chapter, "Deploying AuthMinder on a Distributed System" for
distributed-system deployment in the CA AuthMinder Installation and Deployment
Guide.

Develop Client Applications Using AuthMinder WSDL Files

To generate client applications, you need to use the WSDL documents that are shipped
with AuthMinder. These documents define the request and response messages that are
exchanged between your application and AuthMinder Server to perform an operation.

The following table lists the WSDL documents that AuthMinder provides. These WSDLs
are available at the following location:

On Windows: <install_location>\Arcot Systems\wsdls\

On Unix-based platforms: <install_location>/arcot/wsdls/

WSDL File Description

uds/ArcotOrganizationManagem
entSvc.wsdl

Used to create and manage organizations in your
setup.

uds/ArcotConfigManagementSv
c.wsdl

Used to create and manage user account types.

Develop Client Applications Using AuthMinder WSDL Files

Chapter 1: Getting Started 17

WSDL File Description

uds/ArcotUserManagementSvc.
wsdl

Used to create and manage users and user
accounts.

webfort/ArcotWebFortAdminSv
c.wsdl

Used to manage AuthMinder configurations.

webfort/ArcotWebFortIssuanceS
vc.wsdl

Used to manage credentials of the users.

webfort/ArcotWebFortAuthSvc.
wsdl

Used to authenticate users.

webfort/ArcotWebFortBulkOper
ationsSvc.wsdl

Used to perform bulk operations such as assigning
and fetching OATH tokens that are available to the
organizations.

Important! From this release, AuthMinder WSDLs support SOAP 1.2 binding only. If you
use SOAP 1.1 binding that was supported by the earlier versions, then you will see the
Invalid soap message or soap version mismatch error.

You can use any tool of your choice, such as Apache Axis or .NET SOAP framework to
generate client stub classes using the WSDL files listed in this table. You can then use
the generated stub classes to build your application and access Web services.

Note: If you are using .NET SOAP framework to generate the client stubs, then you must
include the following line in your code before you invoke the ArcotWebFortAdminSvc,
ArcotWebFortIssuanceSvc, ArcotWebFortAuthSvc, and ArcotWebFortBulkOperationsSvc
WebFort Web services.

ServicePointManager.Expect100Continue = false; // which is available in System.Net;

If you do not include this line, you might see errors.

Quick Summary

18 Web Services Developer's Guide

Quick Summary

The following steps provide the quick recap of the steps that you need to perform to set
up your environment to use AuthMinder Web service:

1. Access the WSDL by navigating to the following location:

On Windows: <install_location>\Arcot Systems\wsdls\

On Unix-based platforms: <install_location>/arcot/wsdls/

2. Generate the client stub classes by using the WSDL files.

You can use a SOAP framework, such as Apache Axis or Microsoft.NET, to generate
client stub classes from a WSDL file.

3. Create the client application using the stub classes generated in Step 2.

Depending on the software that you choose, refer to the respective vendor
documentation for more information on writing the client and the files required for
the client to connect to the AuthMinder Web service.

4. Connect the client to the AuthMinder Web service end point by using the default
URLs listed in the following table.

Note: This table lists the default URLs on which the Web services are available. If
you change the service end point URL, then ensure that you connect your client to
the new location that you have configured.

Web Service URL

Organization Management
Web Service

http://<Apphost>:CA
Portal/arcotuds/services/ArcotUserRegistryMgmt
Svc

■ Apphost: Host name or the IP address of the
system where User Data Service (UDS) is
deployed.

■ Port: The port number at which the
application server (on which UDS is deployed)
is listening to.

User Management Web
Service

http://<Apphost>:CA
Portal/arcotuds/services/ArcotUserRegistrySvc

■ Apphost: Host name or the IP address of the
system where UDS is deployed.

■ Port:The port number at which the
application server (on which UDS is deployed)
is listening to.

Quick Summary

Chapter 1: Getting Started 19

Web Service URL

Configuration Registry Web
Service

http://<Apphost>:CA
Portal/arcotuds/services/ArcotConfigRegistrySvc

■ Apphost: Host name or the IP address of the
system where User Data Service (UDS) is
deployed.

■ Port: The port number at which the
application server (on which UDS is deployed)
is listening to.

Administration Web Service http://<Apphost>:CA
Portal/ArcotWebFortAdminSvc

■ Apphost: Host name or the IP address of the
system where AuthMinder Server is installed.

■ Port: The port number at which the
Administration Web Services protocol is
listening to. By default, this port number is
9745.

Issuance Web Service http://<Apphost>:CA
Portal/ArcotWebFortIssuanceSvc

■ Apphost: Host name or the IP address of the
system where AuthMinder Server is installed.

■ Port: The port number at which the
Transaction Web Services protocol is listening
to. By default, this port number is 9744.

Authentication Web Service http://<Apphost>:CA
Portal/ArcotWebFortAuthSvc

■ Apphost: Host name or the IP address of the
system where AuthMinder Server is installed.

■ Port: The port number at which the
Transaction Web Services protocol is listening
to. By default, this port number is 9744.

Bulk Operation Web Service http://<Apphost>:CA
Portal/ArcotWebFortBulkOperationsSvc

■ Apphost: Host name or the IP address of the
system where AuthMinder Server is installed.

■ Port: The port number at which the bulk
operations Web Services protocol is listening.
By default, this port number is 9745.

Quick Summary

20 Web Services Developer's Guide

Note: To secure the connection using SSL, enable the Web Services protocols for
SSL connection. Refer to CA AuthMinder Administration Guide for more
information.

1. Send the requests to the AuthMinder Web services through the client.

The AuthMinder Web service processes the request and returns the message,
response code, reason code, and transaction ID in the response.

Chapter 2: Understanding AuthMinder WorkFlows 21

Chapter 2: Understanding AuthMinder
WorkFlows

AuthMinder enables you to design different workflows that can be built using the
Administration, Authentication, and Issuance Web services. Based on your
organization’s requirements, you can design these workflows without significantly
changing the existing online experience of your users in most cases.

Note: The tasks that are listed in this chapter can be customized in multiple ways. The
workflows depicted here are examples of the typical workflows. You need not follow the
exact steps for each procedure mentioned in this chapter.

This chapter describes the sample workflows and provides an overview of each:

■ Enrollment Workflows (see page 21)

■ ArcotID PKI Authentication Workflow (see page 28)

■ ArcotID PKI Roaming Download Workflow (see page 30)

■ Forgot Your Password Workflow (see page 32)

■ Workflow Summary (see page 33)

Enrollment Workflows

Enrollment is the process of creating a user and creating credentials for the user. The
user can reside either in the AuthMinder database or in an external directory service
such as Microsoft's Active Directory Service (ADS) or SunOne Directory Server. If
directory service is used, then user need not be created in AuthMinder, but their
attributes must be mapped to the AuthMinder database attributes.

Note: See CA AuthMinder Administration Guide for information on how to map the user
attributes from the external directory to the AuthMinder database entries.

Based on whether you are enrolling a new user or migrating existing users to
AuthMinder authentication, the enrollment workflow can include:

■ Enrolling New Users (see page 22)

■ Migrating Existing Users (see page 23)

Enrollment Workflows

22 Web Services Developer's Guide

Enrolling New Users

The user enrollment is performed by User Data Service (UDS) component of
AuthMinder. UDS is used to manage organizations and users in the system. UDS also
serves as an abstraction layer that provides AuthMinder seamless access to the
third-party data repositories deployed by your organization.

UDS is shipped as a library file and as a WAR file (arcotuds.war).

If you are using a relational database to store the user information, then AuthMinder
uses the library file to connect to the database for performing user operations.

If you are using an LDAP directory server and you want AuthMinder to seamlessly
access it, then you must deploy the arcotuds.war file in the application server where
your application integrated with AuthMinder is deployed. In this case, the attributes in
the LDAP must be mapped to the user attributes that CA supports. This mapping
information is stored in the relational database where the schema is seeded.

Book: Refer to CA AuthMinder Installation and Deployment Guide for more information
on deploying UDS file. Refer to CA AuthMinder Administration Guide for more
information on mapping user attributes.

The typical steps for enrolling a new user are:

1. User accesses the enrollment page of your application.

The user enters the information, such as user name, first name, last name, email
address, and contact information required to create the users.

Note: The username must be unique for an organization, which means two users in
the same organization cannot have same username.

2. Your application collects information entered by the user in the preceding step and
calls createUser operation in the ArcotUserRegistrySvc service.

At this stage, your application makes an explicit call to the createUser operation in
ArcotUserRegistrySvc service. In this call, you pass user details such as, user name,
last name, organization, PAM (Personal Assurance Message), email address, and
telephone number.

See "Creating Users" (see page 89) for more information on the operation used for
creating users.

3. User Data Service checks if the user exists.

UDS checks whether the user is present in the directory service (LDAP). If the user
exists, then it maps the LDAP attributes to AuthMinder database.

If the user does not exist in the AuthMinder database, then UDS creates the user
record in the database. With this, the user is enrolled with AuthMinder.

4. AuthMinder informs the calling application.

AuthMinder sends the status of the operation to your calling application.

Enrollment Workflows

Chapter 2: Understanding AuthMinder WorkFlows 23

The following figure illustrates the enrollment workflow when you call the createUser
operation:

Migrating Existing Users

AuthMinder enables you to easily migrate the users from your existing authentication
method to strong authentication methods supported by AuthMinder.

■ Migrating All Users (see page 24)

■ Migrating Selected Users (see page 26)

Enrollment Workflows

24 Web Services Developer's Guide

Migrating All Users

The typical steps to migrate all users are:

1. User logs in to your application.

The user logs in to your application by using your existing authentication method.

2. Your application collects the required information from the user to create the
credential.

Your application can display the appropriate pages to the user. For example, you
can prompt the user to set the password for ArcotID PKI or you can set the existing
password as the ArcotID PKI password, and collect questions and answers if
Question and Answer (QnA) is used for secondary authentication.

3. Your application invokes the CreateCredential operation of the
ArcotWebFortIssuanceSvc service.

This operation creates ArcotID PKI for the user.

See "Creating Credentials" (see page 206) for more information on the API used for
creating credentials for the users.

4. AuthMinder returns the result.

If the create operation was successful, then user’s ArcotID PKI is returned.

5. Your application downloads the ArcotID PKI on the user’s system.

If the create operation was successful, then the application downloads the ArcotID
PKI to the end-user’s system without any user interaction.

The following figure illustrates the workflow for migrating all users in the system:

Enrollment Workflows

Chapter 2: Understanding AuthMinder WorkFlows 25

Enrollment Workflows

26 Web Services Developer's Guide

Migrating Selected Users

The typical steps to migrate selected users are:

1. User logs in to your application.

The user logs in to your application by using your existing authentication method.

2. Application gets the user status.

Application retrieves user information and identifies whether the user account is
marked for migration.

3. Application redirects user.

Upon successful authentication, the user is redirected to migration page.

4. Your application collects the required information from user to create the
credential.

Your application can display the appropriate pages to the user. For example, you
can prompt the user to set the password for ArcotID PKI or you can set the existing
password as the ArcotID PKI password, and collect questions and answers if QnA is
used for secondary authentication.

5. Your application invokes the CreateCredential operation of the
ArcotWebFortIssuanceSvc service.

This operation creates ArcotID PKI for the user.

See "Creating Credentials" (see page 206) for more information on the API used for
creating credentials for the users.

6. WebFort returns the result.

If the create operation was successful, then user’s ArcotID PKI is returned.

7. Application downloads the ArcotID PKI on the user’s system.

If the create operation was successful, then the application downloads the ArcotID
PKI to the end-user’s system without any user interaction.

The following figure illustrates the workflow for migrating the selected users to ArcotID
PKI authentication:

Enrollment Workflows

Chapter 2: Understanding AuthMinder WorkFlows 27

ArcotID PKI Authentication Workflow

28 Web Services Developer's Guide

ArcotID PKI Authentication Workflow

During authentication, when a user specifies the credential in the authentication page,
the credential is first verified by AuthMinder Server, after which the user is
authenticated. The following workflow lists the steps for ArcotID PKI authentication:

Note: In case of other credentials, see chapter, "Authenticating Users" (see page 253)
for details of operations to invoke.

1. Application calls AuthMinder’s GetArcotIDChallenge operation of the
ArcotWebFortAuthSvc service.

Your application loads the ArcotID PKI Client and makes an explicit call to fetch the
challenge. See "ArcotID PKI Authentication" (see page 254) for more information on
the Web services details.

2. User provides the credentials.

User specifies the user name and ArcotID PKI password to log in.

3. Your application passes the user name and password to the ArcotID PKI Client.

The ArcotID PKI Client signs the challenge.

4. AuthMinder verifies the signed challenge.

Your application invokes the verifyArcotIDSignedChallenge operation of the
ArcotWebFortAuthSvc service to verify the challenge that is signed by using the
ArcotID PKI Client.

See "ArcotID PKI Authentication" (see page 254) for more information on the API
used for authenticating users with their ArcotID PKI credential.

5. AuthMinder authenticates the user.

If the verifyArcotIDSignedChallenge operation returns the successful response, then
the authentication token generated indicates that the user is authenticated
successfully.

See "Verifying the Authentication Tokens" (see page 301) for more information on
the different tokens supported by AuthMinder.

The following figure illustrates the workflow for ArcotID PKI authentication process:

ArcotID PKI Authentication Workflow

Chapter 2: Understanding AuthMinder WorkFlows 29

ArcotID PKI Roaming Download Workflow

30 Web Services Developer's Guide

ArcotID PKI Roaming Download Workflow

 To perform ArcotID PKI authentication, the ArcotID PKI of the user must be present on
the user’s system that is used by the authentication session. If the user is travelling or
does not have access to the system, where their ArcotID PKI is stored, then the user has
to download the ArcotID PKI from AuthMinder Server and then perform the
authentication.

The typical steps for roaming download of the ArcotID PKI are:

1. User logs in to your online application.

Your application authenticates the user.

2. User chooses to download the ArcotID PKI.

Your application displays the appropriate page to the user to download their
ArcotID PKI.

3. AuthMinder performs secondary authentication.

Based on the secondary authentication mechanism that you are using, your
application displays appropriate pages to the user. For example, your application
can prompt the user to:

■ Answer the security questions that they selected while enrolling with your
application.

■ Enter the OTP, which is sent to the user by email, SMS, or other customized
method.

4. Your application calls AuthMinder’s DownloadCredential operation of the
ArcotWebFortIssuanceSvc service.

If the secondary authentication was successful, only then your application should
call the DownloadCredential operation. This call downloads the corresponding
ArcotID PKI to the your application.

5. Download the ArcotID PKI to user’s system.

Invoke the ImportArcotID() client-side JavaScript API to download the ArcotID PKI to
the end-user’s system without any user interaction.

The following figure illustrates the workflow for roaming download of ArcotID PKI:

ArcotID PKI Roaming Download Workflow

Chapter 2: Understanding AuthMinder WorkFlows 31

Forgot Your Password Workflow

32 Web Services Developer's Guide

Forgot Your Password Workflow

If a user forgets their ArcotID PKI password, then Forgot Your Password (FYP) workflow
can be used to reset the password.

In this method, the user is prompted to answer the questions, which they had set during
enrollment or you can use any other customized method of your choice.

The typical steps for FYP workflow are:

1. User accesses your online application.

2. User provides the user name.

User specifies the user name to log in.

3. User clicks the FYP link.

Because the user does not remember their password, they click the FYP link.

4. AuthMinder performs secondary authentication.

Based on the secondary authentication mechanism that you are using, the
appropriate pages are displayed to the user. For example, the user can be
prompted to:

■ Answer the security questions that they selected while enrolling with your
application.

■ Enter the OTP, which is sent to them by email, SMS, or other customized
method.

5. Your application calls AuthMinder’s ResetCredential operation of the
ArcotWebFortIssuanceSvc service.

If the secondary authentication was successful, then your application must invoke
the ResetCredential operation. Your application prompts the user for new password
and pass this as input for ResetCredential operation.

See "Resetting Credentials" (see page 219) for more information on the Web
services used to reset the credential.

The following figure illustrates the Forgot Your Password workflow:

Workflow Summary

Chapter 2: Understanding AuthMinder WorkFlows 33

Workflow Summary

The following table provides a brief summary of the workflows that can be implemented
by using the AuthMinder Web services:

Workflow Description
Dependant
Workflows

Enrollment Creates a new user in the AuthMinder
database, when you call CreateUser
operation.

None

Creating the
Credentials

Create the credentials for the user. ■ Enrollment

Workflow Summary

34 Web Services Developer's Guide

Workflow Description
Dependant
Workflows

Authentication Authenticates the user by using the
credentials provided by the user.

■ Enrollment

■ Creating the
Credentials

ArcotID PKI
Download

Downloads the ArcotID PKI of the user to
the system.

■ Enrollment

■ Creating the
Credentials

■ Secondary
authentication

Migration Migrates the user to ArcotID PKI
authentication.

None

FYP Resets the password. ■ Enrollment

■ Creating the
Credentials

Chapter 3: Managing Web Services Security 35

Chapter 3: Managing Web Services Security

To restrict the rogue requests to Web services, you can prompt the incoming requests
for authentication. To enable this feature, you need to ensure that the calling
application includes the user credentials in the incoming call header.

The Web services authentication and authorization works as follows:

1. The calling application authenticates to the AuthMinder Web services by including
the required credentials in the call header.

2. The Web service authenticates these credentials and, if valid, provides the calling
application with an authentication token.

3. The calling application includes the authentication token and the authorization
elements in the header of the subsequent calls.

This chapter covers the following information:

■ Authentication Header Elements (see page 35)

■ Authorization Header Elements (see page 36)

■ SOAP Header Namespace (see page 36)

Authentication Header Elements

The following table lists the elements that have to be included in the call header for
authentication.

Note: For configuration management, credential management, user authentication, and
bulk operations Web services that are discussed in chapter, "Managing AuthMinder
Configurations" (see page 151), chapter, "Performing Credential Operations" (see
page 199), chapter, "Authenticating Users" (see page 253), and chapter, "Performing
Bulk Operations" (see page 305) you can either pass the authentication details in the call
header or as an additional input in the call body.

Element Mandatory Description

userID Yes The unique identifier of the user whose account has to
be authenticated.

orgName Yes The organization name to which the authenticating
user belongs.

credential Yes The credential of the user that is to be used for
authentication.

Authorization Header Elements

36 Web Services Developer's Guide

Authorization Header Elements

The following table lists the elements that you need to pass in the call header for
authorization:

Element Mandatory Description

authToken Yes The authentication token that is returned after
successful user verification. This token indicates that
the user is already authenticated, and therefore
eliminates the need for user credentials for successive
authentication attempts.

By default, the authentication token is valid for one
day, after which you need to authenticate again.

Note: You can set any one of the following elements.

targetorg No Specifies the organization for which the calling
application must authorize before performing any
operation.

Note: If you want to enable authorization for more
than one organization, then accordingly repeat this
entry for every organization.

targetAllOrgs No Specifies whether authorization is required to perform
operations on all organizations. Set the value of this
element to TRUE to enable authorization for all
organizations.

globalEntity No Specifies whether authorization is required to perform
global configurations. Set this value to TRUE if you
want to enable authorization for the global
configuration operations such as, fetching AuthMinder
attributes for users and fetching UDS attributes.

SOAP Header Namespace

The authentication and authorization header elements must have the namespace, as
mentioned in the following table:

Web Service Namespace

User Data Service Web Services

■ User Management

■ User Registry Management

■ Configuration Registry

http://ws.arcot.com/UDSTransaction/1.0

AuthMinder Web Services

SOAP Header Namespace

Chapter 3: Managing Web Services Security 37

Web Service Namespace

Credential Issuance http://ws.arcot.com/WebFortIssuanceAPI/7.0/msgs

User Authentication http://ws.arcot.com/WebFortAuthAPI/7.0/msgs

Administration http://ws.arcot.com/ArcotWebFortAdminSvc/1.0/m
sgs

Bulk Upload http://ws.arcot.com/WebFortBulkOperationsAPI/7.0
/msgs

Chapter 4: Managing Organizations 39

Chapter 4: Managing Organizations

Important! To use the Web service operations that are discussed in this chapter, you
must deploy the User Data Service (arcotuds.war) file.
See section, "Deploying User Data Service" section in the CA AuthMinder Installation
and Deployment Guide for more information.

In AuthMinder, an organization can either map to a complete enterprise (or a company)
or a specific division, department, or other entities within the enterprise. The
organization structure provided by AuthMinder is flat. In other words, organizational
hierarchy (in the form of parent and child organizations) is not supported, and all
organizations are created at the same level as the Default Organization.

This chapter discusses the Web service operations that AuthMinder provides to create
and manage organizations. It covers the following topics:

■ Creating Organizations (see page 40)

■ Updating Organizations (see page 46)

■ Updating Organization Status (see page 48)

■ Refreshing the Organization Cache (see page 50)

■ Fetching Default Organization Details (see page 52)

■ Fetching Organization Details (see page 55)

■ Searching Organizations (see page 57)

■ Fetching AuthMinder Database Attributes (see page 59)

■ Fetching Directory Service Attributes (see page 62)

■ Deleting Organizations (see page 64)

You must use the ArcotOrganizationManagementSvc.wsdl file to perform the operations
discussed in this chapter.

Creating Organizations

40 Web Services Developer's Guide

Creating Organizations

When you deploy Administration Console, an organization is created by default. This
out-of-the-box organization is referred to as Default Organization (DEFAULTORG). For a
single organization setup, instead of creating an organization you can rename the
default organization, change its configurations, and then continue to use the default
organization.

For a multi-organization setup, you need to create additional organizations. You can do
this either by using Administration Console or by using Web services.

This section walks you through the following topics for creating organization:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you create an organization, you must refresh the system cache for the new
organization to take effect. See "Refreshing the Organization Cache" (see page 50) for
more information on how to refresh the cache.

Preparing the Request Message

The createOrgRequest message is used to create organizations in the AuthMinder
database. The following table lists the elements of this request message:

Element Mandatory Description

orgName Yes The unique name of the organization that you want to
create. This name is used to log in to Administration
Console.

displayName Yes A descriptive name for the organization.

keyLabel No The label for the key that is used to encrypt the
sensitive user and organization data.

Setting the key label is a one-time operation. After you
set this value, you cannot modify it.

Note: If this value is not specified, then the Master Key
is used as the key label.

Creating Organizations

Chapter 4: Managing Organizations 41

Element Mandatory Description

repositoryType No The repository where the accounts of the users
belonging to the organization must reside. The
repository can be one of the following:

■ ARUSER:
Indicates that the user accounts will be created in
a Relational Database Management System
(RDBMS). AuthMinder supports MS SQL, Oracle,
IBM DB2, and MySQL.

■ LDAP:
Indicates that the user accounts existing in your
directory service will be used.

Note: If you choose this
option, then ensure that you
have deployed User Data
Service (UDS) successfully.

Creating Organizations

42 Web Services Developer's Guide

Element Mandatory Description

ldapDetails No

Required
only if
repositoryTy
pe =LDAP

The details of the directory service where the user
information is available:

■ host
The host name of the system where the your
directory service is available.

■ port
The port number at which the directory service is
listening.

■ schemaName
The LDAP schema used by the directory service.
This schema specifies the types of objects that a
directory service can contain, and specifies the
mandatory and optional attributes of each object
type.
Typically, the schema name for Active Directory is
user and for SunOne Directory, it is inetOrgPerson.

■ baseDN/dnEntry
The name-value key pairs of the base
Distinguished Name (DN) of the directory service.
This value indicates the starting node in the LDAP
hierarchy to search in the directory service.
For example, to search or retrieve a user with a
DN of cn=rob laurie, ou=sunnyvale, o=arcot, c=us,
you must specify the base DN as the following:
ou=sunnyvale, o=arcot, c=us
Typically, these values are case sensitive and
searches all subnodes under the specified base
DN.

Creating Organizations

Chapter 4: Managing Organizations 43

Element Mandatory Description

connectionCre
dential

No

Required
only if
repositoryTy
pe =LDAP

The information required to connect to the directory
service:

■ ssl
The type of connection that has to be established
with the directory service. Possible values are:
TCP:Indicates that the directory service will listen
to incoming requests on TCP.
1WAY: Indicates that the directory service will
listen to incoming requests on one-way SSL.
2WAY: Indiactes that the directory service will
listen to incoming requests on two-way SSL.

■ loginName
The complete distinguished name of the LDAP
repository user who has the privilege to log into
repository sever and manage the base DN.
For example,
uid=gt,dc=arcot,dc=com

■ loginPassword
The password of the user provided in loginName.

■ (Optional) serverTrustCert
The based64-encoded trusted root certificate of
the server that issued the SSL certificate to the
directory service.
This parameter is required only if ssl is set to
1WAY or 2WAY.

■ (Optional) clientKeyStore
The password for the client key store and the
base64-encoded root certificate of UDS.
This parameter is required only if ssl is set to
2WAY.

redirectSearch
Schema

No

Required
only if
repositoryTy
pe =LDAP

The schema to be used when searching for values
whose attributes are in a different node.

redirectSearch
Attribute

No

Required
only if
repositoryTy
pe =LDAP

The value of the attribute to be searched in
redirectSearchSchema.

Creating Organizations

44 Web Services Developer's Guide

Element Mandatory Description

repositoryattri
bute

No

Required
only if
repositoryTy
pe =LDAP

The user attribute in the directory service that has to
be mapped to the AuthMinder attribute. Based on this
mapping, UDS searches for the user in the directory
service.

arcotattribute No

Required
only if
repositoryTy
pe =LDAP

The AuthMinder attribute to which the directory
service attribute must be mapped.

For example, you can map the UID attribute in the
directory service to the USERNAME attribute.

status No The status of the organization in the database.
Following are the supported values:

■ INITIAL
Indicates that the organization is not yet activated
and cannot be used for any operations.

■ ACTIVE
Indicates that the organization has been
successfully created and activated. You can
perform any supported operation on the
organization.

■ INACTIVE
Indicates that the organization has been
deactivated. To perform any further operation,
you must first activate the organization.

■ DELETED
Indicates that the organization has been deleted
and cannot be used anymore.

Note: If the organization status element is not set,
then the organization is created with the INITIAL state.

description No A description for the organization that will help the
administrators managing the organization to easily
identify the organization.

customAttribut
e

No Name-value pairs that you can use to set any
additional user or organization information.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Creating Organizations

Chapter 4: Managing Organizations 45

Invoking the Web Service

To create organizations:

1. (Optional) Include the authentication and authorization details in the header of the
createOrg operation.

See chapter, "Managing Web Services Security" (see page 35) for more information
on the header elements.

2. Use the createOrgRequest elements to set the organization information.

3. Use the createOrgRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the createOrg operation of the ArcorUserRegistryMgmtSvc service to create
the organization.

This operation returns the createOrgResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, createOrgResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table.

The SOAP body returns a success message if the operation was performed successfully.
If there are any errors, then the Fault response is returned. See appendix, "Error Codes"
(see page 353) for more information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Updating Organizations

46 Web Services Developer's Guide

Updating Organizations

The updateOrg operation enables you to update the following organization information:

■ Display name

■ Description

■ Custom attributes

Note: In addition to the elements that are required to perform the tasks mentioned in
the preceding list, the updateOrgRequest contains other elements for repository
(directory service or AuthMinder database) configuration and user attribute mapping.
After you create an organization, you cannot change the repository type and the related
settings. Therefore, these elements are not applicable when you update an
organization. Even if you set these elements, they will not be considered.

This section walks you through the following topics for updating organizations:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you update an organization, you must refresh the system cache for the
changes to take effect. See "Refreshing the Organization Cache" (see page 50) for more
information on how to refresh the system cache.

Preparing the Request Message

The updateOrgRequest message is used to update organizations in the AuthMinder
database. The following table lists the elements of this request message.

Note: This table lists only the elements that you can use to update the organization
information. You can ignore other additional updateOrgRequest elements that are not
applicable, such as repository type (repositoryDetails) configuration, user attribute
mapping (mappingDetails) configuration, and status.

Element Mandatory Description

orgName Yes The name of the organization that has to be updated.

displayName No The descriptive name of the organization.

description No A description for the organization that will help the
administrators easily identify the organization.

customAttribut
e

No Name-value pairs that you can use to set any
additional user or organization information.

Updating Organizations

Chapter 4: Managing Organizations 47

Element Mandatory Description

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To update an organization:

1. (Optional) Include the authentication and authorization details in the header of the
updateOrg operation. See chapter, "Managing Web Services Security" (see page 35)
for more information on the header elements.

2. Use the upateOrgRequest elements to update the organization information.

3. Use the upateOrgRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the updateOrg operation of the ArcorUserRegistryMgmtSvc service to
update the organization.

This operation returns the updateOrgResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateOrgResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
"Error Codes" (see page 353) for more information on the SOAP error messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Updating Organization Status

48 Web Services Developer's Guide

Updating Organization Status

The updateOrgStatus operation is used to update the status of the organization in the
AuthMinder database.

This section walks you through the following topics for updating the organization status:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you update the organization status, you must refresh the system cache for
the changes to take effect. See "Refreshing the Organization Cache" (see page 50) for
more information on how to refresh the system cache.

Preparing the Request Message

The updateOrgStatusRequest message is used to update the organization status. The
following table lists the elements of this request message:

Element Mandatory Description

status Yes The status of the organization in the database.
Following are the supported values:

■ INITIAL
Indicates that the organization is not yet activated
and cannot be used for any operations.

■ ACTIVE
Indicates that organization has been successfully
created and activated. You can perform any
operation on the organization.

■ INACTIVE
Indicates that the organization has been
deactivated. To perform any further operation,
you need to first activate the organization.

■ DELETED
Indicates that the organization has been deleted
and cannot be used anymore.

OrgName Yes The unique name with which the organization is
identified.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Updating Organization Status

Chapter 4: Managing Organizations 49

Invoking the Web Service

To update the organization status:

1. (Optional) Include the authentication and authorization details in the header of the
updateOrgStatus operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the upateOrgStatusRequest elements to update the organization status.

3. Use upateOrgStatusRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the updateOrgStatus operation of the ArcorUserRegistryMgmtSvc service to
update the organization status.

This operation returns the updateOrgStatusResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateOrgStatusResponse returns the transaction identifier and
the authentication token in the SOAP envelope header. These elements are explained in
the following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Refreshing the Organization Cache

50 Web Services Developer's Guide

Refreshing the Organization Cache

The refreshCache operation is used to refresh the organization configurations that are
stored in the cache. This section walks you through the following topics for refreshing
the organization cache:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The refreshCacheRequest is used to refresh the organization cache. The following table
lists the elements of this request message:

Element Mandatory Description

systemCache No
Specify whether you want to
refresh all the cache of the
AuthMinder setup. Possible
values are:

■ True: Indicates that all the cache, which includes
all organizations and server cache.

■ False: If you select this option, then you can
refresh the organization cache, by selecting
allOrganization or OrgName.

Note: You can set any one of the following elements.

allOrganization
s

No Specifies whether the cache of all organizations has to
be refreshed. Set the value of this element to TRUE to
refresh the cache of all organizations.

OrgName Yes The unique name with which the organizations are
identified.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Refreshing the Organization Cache

Chapter 4: Managing Organizations 51

Invoking the Web Service

To refresh the organization cache:

1. (Optional) Include the authentication and authorization details in the header of the
refreshCache operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the refreshCacheRequest elements for updating the organization
configurations.

3. Use refreshCacheRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the refreshCache operation of the ArcorUserRegistryMgmtSvc service to
refresh the organization cache.

This operation returns the refreshCacheResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, refreshCacheResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. These elements are explained in
the following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication is valid for one day, after which you
need to authenticate again.

Fetching Default Organization Details

52 Web Services Developer's Guide

Fetching Default Organization Details

The Master Administrator (MA) sets the default organization in the system. Typically,
when you create administrators or enroll users without specifying their organization,
they are created in this default organization. The retrieveDefaultOrg operation is used
to fetch the details of the default organization.

This section walks you through the following topics for fetching the default organization
details:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The retrieveDefaultOrgRequest is used to fetch the default organization information.
The following table lists the elements of this request message:

Element Mandatory Description

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Fetching Default Organization Details

Chapter 4: Managing Organizations 53

Invoking the Web Service

To fetch the default organization information:

1. (Optional) Include the authentication and authorization details in the header of the
retrieveDefaultOrg operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the retrieveDefaultOrgRequest elements for fetching the default organization
information.

3. Use retrieveDefaultOrgRequest message and construct the input message by using
the details obtained in preceding step.

4. Invoke the retrieveDefaultOrg operation of the ArcorUserRegistryMgmtSvc service
to fetch the default organization details.

This operation returns the retrieveDefaultOrgResponse message that includes the
transaction identifier, authentication token, and default organization details. See
the following section for more information on the response message.

Interpreting the Response Message

The response message, retrieveDefaultOrgResponse, returns the transaction identifier
and authentication token in the SOAP envelope header. The SOAP body includes the
default organization details for a successful transaction and the Fault response for an
error condition.

The following table provides information about the elements returned for a successful
transaction. See appendix, "Error Codes" (see page 353) if there are any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

orgName The unique name of the organization.

displayName The descriptive name of the organization.

Fetching Default Organization Details

54 Web Services Developer's Guide

Element Description

repositoryDetails The repository where the accounts of the users belonging to the
organization resides. Following are the supported values:

■ ARUSER

■ LDAP

dateCreated The timestamp when the organization was created.

dateModified The timestamp when the organization was last modified.

description The description for the organization that will help the
administrators managing the organization.

status The status of the default organization in the database. Following
are the supported values:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

preferredLocale The locale that is configured for the organization. If you do not
specify the locale, then the default locale, en-US is set.

customAttribute The name-value pairs of the custom attributes that have been set
for the organization.

Fetching Organization Details

Chapter 4: Managing Organizations 55

Fetching Organization Details

The retrieveOrg operation is used to read the details of an organization.

Note: If you want to fetch details of multiple organizations at a time, then use the
listOrgs operation. See section, "Searching Organizations" (see page 57) for more
information on how to use this.

This section walks you through the following topics for fetching the details of an
organization:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The retrieveOrgRequest is used to fetch the details of an organization. The following
table lists the elements of this request message:

Element Mandatory Description

orgName Yes The unique name with which the organization is
identified.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Fetching Organization Details

56 Web Services Developer's Guide

Invoking the Web Service

To fetch the organization details:

1. (Optional) Include the authentication and authorization details in the header of the
retrieveOrg operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the retrieveOrgRequest elements for fetching the organization details.

3. Use retrieveOrgRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the retrieveOrg operation of the ArcorUserRegistryMgmtSvc service to fetch
the organization details.

This operation returns retrieveOrgResponse message that includes the transaction
identifier, authentication token, and organization details. See the following section
for more information on the response message.

Interpreting the Response Message

The response message, retrieveOrgResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the
organization details for a successful transaction and the fault response for an error
condition.

See the table containing information about the listEmailTypeResponse response
message for more information on the elements returned for a successful transaction.
See appendix, "Error Codes" (see page 353) if there are any errors.

Searching Organizations

Chapter 4: Managing Organizations 57

Searching Organizations

The listOrgs operation is used to read the details of multiple organizations. You can
search organizations by their organization name, status, and partial or complete display
name.

This section walks you through the following topics for searching organizations:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listOrgsRequest is used to fetch the details of multiple organizations. The following
table lists the elements of this request message:

Element Mandatory Description

namePattern No The search pattern that you want to use to search
organizations. You can enter the partial or complete
display name of an organization. If you enter the
partial name, then all organizations with the display
name matching the search pattern will be fetched.

orgName No The unique name with which the organization is
identified.

Note: If you want to search for more than one
organization, then repeat this element for different
organizations.

OrgStatus

No The status of the organization in the database.
Following are the supported values:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Searching Organizations

58 Web Services Developer's Guide

Invoking the Web Service

To search multiple organizations:

1. (Optional) Include the authentication and authorization details in the header of the
listOrgs operation. See chapter, "Managing Web Services Security" (see page 35) for
more information on the header elements.

2. Use the listOrgsRequest elements for fetching the organization details.

3. Use the listOrgsRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the listOrgs operation of the ArcorUserRegistryMgmtSvc service to fetch the
organization details.

This operation returns the listOrgsResponse message that includes the transaction
identifier, authentication token, and organization details. See the following section
for more information on the response message.

Interpreting the Response Message

The response message, listOrgsResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the
organization details for a successful transaction and the fault response for an error
condition.

See the table containing information about the listEmailTypeResponse response
message for more information on the elements returned for a successful transaction.
See appendix, "Error Codes" (see page 353) if there are any errors.

Fetching AuthMinder Database Attributes

Chapter 4: Managing Organizations 59

Fetching AuthMinder Database Attributes

The listArcotAttributes operation is used to fetch the user attributes that are used to
store the user information in the AuthMinder database.

This section walks you through the following topics for fetching user attributes
supported by AuthMinder database:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listArcotAttributesRequest message is used to fetch the user attributes. The
following table lists the elements of this request message:

Element Mandatory Description

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Fetching AuthMinder Database Attributes

60 Web Services Developer's Guide

Invoking the Web Service

To fetch the AuthMinder database attributes:

1. (Optional) Include the authentication and authorization details in the header of the
listArcotAttributes operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the listArcotAttributesRequest elements to fetch the user attributes.

3. Use listArcotAttributesRequest message and construct the input message by using
the details obtained in preceding step.

4. Invoke the listArcotAttributes operation of the ArcorUserRegistryMgmtSvc service
to fetch the user attributes supported by AuthMinder database.

This operation returns the listArcotAttributesResponse message that includes the
transaction identifier, authentication token, and user attributes. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, listArcotAttributesResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
AuthMinder attributes for a successful transaction and the fault response for an error
condition.

The following table provides more information about the elements returned for a
successful transaction. See appendix, "Error Codes" (see page 353) if there are any
errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

DATECREATED The timestamp when the user account was created.

DATEMODIFIED The timestamp when the user account was last modified.

EMAILADDR The email address of the user.

FNAME The first name of the user.

Fetching AuthMinder Database Attributes

Chapter 4: Managing Organizations 61

Element Description

IMAGE The personal assurance image that the user selected.

LNAME The last name of the user.

MNAME The middle name of the user.

PAM The Personal Assurance Message (PAM) that is displayed when
the user tries to access any AuthMinder-protected resource.

PAM is the text string that serves as server verification to the
client and is set by the user during enrollment.

PAMURL The URL that lists the images, which can be used by the user to
select their personal assurance image.

STATUS The status of the user in the database. Following are the
supported values:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

TELEPHONENUMB
ER

The telephone number of the user.

USERID The unique identifier for the user.

Fetching Directory Service Attributes

62 Web Services Developer's Guide

Fetching Directory Service Attributes

The listRepositoryAttributes operation is used to fetch the directory service user
attributes that are mapped to AuthMinder-supported user attributes.

This section walks you through the following topics for fetching the user attributes that
the directory service supports:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listRepositoryAttributesRequest message is used to fetch directory service user
attributes that are mapped to AuthMinder-supported user attributes. The following
table lists the elements of this request message:

Element Mandatory Description

repositoryType Yes The directory service where the user information
resides. Possible values are:

■ ARUSER: For organizations that are created in the
AuthMinder database.

■ LDAP: For organizations that are mapped with
LDAP repository.

ldapDetails No The details of the directory service where the user
information is available.

See "ldapDetails" in the table containing information
about the createOrgRequest message.

connectionCre
dential

No The information required to connect to the directory
service.

See "connectionCredential" in the table containing
information about the createOrgRequest message.

redirectSearch
Schema

No

The schema that has to be used to search for the
values whose attributes are in a different node.

redirectSearch
Attribute

No The value of the attribute that has to be searched in
the redirectSearchSchema.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Fetching Directory Service Attributes

Chapter 4: Managing Organizations 63

Invoking the Web Service

To fetch the user attributes:

1. (Optional) Include the authentication and authorization details in the header of the
listRepositoryAttributes operation. See chapter, "Managing Web Services Security"
(see page 35) for more information on the header elements.

2. Use the listRepositoryAttributesRequest elements to set the directory service
information.

3. Use listRepositoryAttributesRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the listRepositoryAttributes operation of the ArcorUserRegistryMgmtSvc
service to fetch the user attributes.

This operation returns the listRepositoryAttributesResponse message that includes
the transaction identifier, authentication token, and user attributes. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, listRepositoryAttributesResponse, returns the transaction
identifier and the authentication token in the SOAP envelope header. The SOAP body
includes the user attributes for a successful transaction, and the Fault response for an
error condition.

The following table provides more information about the elements returned for a
successful transaction. See to appendix, "Error Codes" (see page 353) if there are any
errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

The user attributes used to store user information.

Deleting Organizations

64 Web Services Developer's Guide

Deleting Organizations

The deleteOrg operation is used to delete organizations in AuthMinder. After you delete
an organization, the information related to that organization is still maintained in the
system. Therefore, you cannot create an organization with the same name as that the of
deleted organization.

This section walks you through the following topics for deleting organizations:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you delete an organization, you must refresh the system cache for the
changes to take effect. See "Refreshing the Organization Cache" (see page 50) for more
information on how to refresh the system cache.

Preparing the Request Message

The deleteOrgRequest message is used to delete organizations. The following table lists
the elements of this request message:

Element Mandatory Description

orgName Yes The unique name with which the organization is
identified.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Deleting Organizations

Chapter 4: Managing Organizations 65

Invoking the Web Service

To delete organizations:

1. (Optional) Include the authentication and authorization details in the header of the
deleteOrg operation. See chapter, "Managing Web Services Security" (see page 35)
for more information on the header elements.

2. Use the deleteOrgRequest elements for deleting the organization details.

3. Use deleteOrgRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the deleteOrg operation of the ArcorUserRegistryMgmtSvc service to delete
the organization.

This operation returns the deleteOrgResponse message that includes the
transaction identifier, authentication token, and organization details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, deleteOrgResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Chapter 5: Configuration Management Web Service 67

Chapter 5: Configuration Management Web
Service

Important! To use the Web service operations that are discussed in this chapter, you
must deploy the User Data Service (arcotuds.war) file.
See section, "Deploying User Data Service" in the CA AuthMinder Installation and
Deployment Guide.

This chapter describes the operations that are used to manage account types, fetch the
email and telephone types configured for the users, and fetch the user attributes that
are configured for encryption. This chapter covers the following topics:

■ Managing Account Types (see page 68)

■ Fetching Email and Telephone Types (see page 77)

■ Fetching User Attributes Configured for Encryption (see page 81)

You must use the ArcotConfigManagementSvc.wsdl file to perform the operations
discussed in this chapter.

Managing Account Types

68 Web Services Developer's Guide

Managing Account Types

All AuthMinder users are identified in the system by a unique user name. AuthMinder
now supports the concept of an account or account ID, which is an alternate ID to
identify the user in addition to the user name. A user can have none or one or more
accounts or account IDs.

An account type is an attribute that qualifies the account ID and provides additional
context about the usage of the account ID. To assign multiple accounts to a user, you
must first create an account type, and then create an account for each account type.

For example, consider a financial institution that identifies the customers by their
unique customer identifier. If the customer enhances their portfolio with a fixed
deposit, then the financial institution can create an account type called FIXED_DEPOSIT
and create an account in this account type with the fixed deposit number, for example
000203876544.

Now the customer can login either with their unique customer identifier or the account
type and account ID (FIXED_DEPOSIT and 000203876544) combination.

You can configure the account type to be available to specific organizations only or to all
organizations, including those that will be created in the future. At the organization
level, each organization can choose to support a set of account types.

This section covers the following operations related to account type:

■ Creating Account Types (see page 69)

■ Updating Account Types (see page 71)

■ Fetching Account Types (see page 73)

■ Deleting Account Types (see page 75)

Managing Account Types

Chapter 5: Configuration Management Web Service 69

Creating Account Types

This section walks you through the following topics for creating account types:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you create an account type, you must refresh the system cache for the new
account type to take effect. See "Refreshing the Organization Cache" (see page 50) for
more information on how to refresh the cache.

Preparing the Request Message

The createAccountTypeRequest message is used to create account types in the
AuthMinder database. The following table lists the elements of this request message:

Element Mandatory Description

accountType/n
ame

Yes The name of the account type that you want to create.

accountType/di
splayName

Yes A descriptive name for the account type.

accountType/c
ustomAttribute

No Name-value pairs that you can use to specify
additional information related to account types.

targetAllOrgs No Indicates whether the account type should be
assigned to all the organizations. Following are the
supported values:

■ true: Account type is assigned to all the
organizations.

■ false: Account type is assigned only to the
organizations that are listed in the
ListOfOrganizations element.

Note: By default, the value of this element is set to
false.

ListofOrganizati
ons/Organizati
on/

orgName

No The name of the organization to which the account
type must be assigned.

ListofOrganizati
ons/Organizati
on/

customAttribut
e

No The custom attribute that you have set for the
organization to which you want to assign the account
type.

Managing Account Types

70 Web Services Developer's Guide

Element Mandatory Description

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To create account types:

1. (Optional) Include the authentication and authorization details in the header of the
createAccountType operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the createAccountTypeRequest elements to set the account information.

3. Use createAccountTypeRequest message and construct the input message by using
the details obtained in preceding step.

4. Invoke the createAccountType operation of the ArcotConfigRegistrySvc service to
create the account type.

This operation returns the createAccountTypeResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, createAccountTypeResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Managing Account Types

Chapter 5: Configuration Management Web Service 71

Updating Account Types

The updateAccountType operation is used to update the account type information and
the list of organizations to which the account type belongs.

This section walks you through the following topics for updating existing account types:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you update an account type, you must refresh the system cache for the new
account type to take effect. See "Refreshing the Organization Cache" (see page 50) for
more information on how to refresh the cache.

Preparing the Request Message

The updateAccountTypeRequest message is used to update account types in the
AuthMinder database. The following table lists the elements of this request message:

Element Mandatory Description

name Yes The name of the account type that you want to
update.

displayName No The descriptive name of the account type.

customAttribut
e

No Name-value pairs that contain the user or organization
information that you want to update.

removeCustom
Attribute

No The name of the account type custom attribute that
you want to delete.

targetAllOrgs No Indicates whether the updated account type should be
assigned to all the organizations. Following are the
supported values:

■ true: Updated account type is assigned to all the
organizations.

■ false: Updated account type is assigned only to the
organizations that are listed in the
ListOfOrganizations element.

Note: By default, the value of this element is set to
false.

ListofOrganizati
ons/orgName

No The name of the organization to which the account
type must be assigned.

ListofOrganizati
ons/customAtt
ribute

No The custom attribute that you have specified for the
organization.

Managing Account Types

72 Web Services Developer's Guide

Element Mandatory Description

RemoveOrgani
zations/orgNa
me

No The name of the organization that you want to
disassociate with the account type.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To update account types:

1. (Optional) Include the authentication and authorization details in the header of the
updateAccountType operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the updateAccountTypeRequest elements to set the account information.

3. Use updateAccountTypeRequest message and construct the input message by using
the details obtained in preceding step.

4. Invoke the updateAccountType operation of the ArcotConfigRegistrySvc service to
update the account type.

This operation returns the updateAccountTypeResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateAccountTypeResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Managing Account Types

Chapter 5: Configuration Management Web Service 73

Fetching Account Types

The listAccountTypes operation is used to fetch the account types that are associated
with an organization.

This section walks you through the following topics for fetching the account types:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listAccountTypeRequest message is used to fetch account types that are associated
with an organization. The following table lists the elements of this request message:

Element Mandatory Description

targetAllOrgs Yes Indicates whether to fetch the account types assigned
to all the organizations. Following are the supported
values:

■ true: Account types assigned to all the
organizations are fetched.

■ false: Account types assigned to the organizations
that are listed in the orgName element are
fetched.

orgName No The name of the organization to which the account
types to be fetched belongs.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Managing Account Types

74 Web Services Developer's Guide

Invoking the Web Service

To list the account types of an organization:

1. (Optional) Include the authentication and authorization details in the header of the
listAccountTypes operation. See chapter , "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the listAccountTypeRequest elements to set the account information.

3. Use listAccountTypeRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the listAccountTypes operation of the ArcotConfigRegistrySvc service to list
the account types.

This operation returns the listAccountTypeResponse message that includes the
transaction identifier, authentication token, and the account types associated with
an organization. See the following section for more information on the response
message.

Interpreting the Response Message

The response message, listAccountTypeResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. The SOAP body includes the
account type details for a successful transaction, and the fault response for an error
condition.

The following table provides more information about the elements returned for a
successful transaction. See appendix "Error Codes" (see page 353) if there are any
errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

AccountType/nam
e

The name of the account type.

Managing Account Types

Chapter 5: Configuration Management Web Service 75

Element Description

AccountType/displ
ayName

The descriptive name of the account type.

AccountType/cust
omAttribute

Name-value pairs that are used to specify additional account type
information.

Deleting Account Types

The deleteAccountType operation is used to delete the account types that are
associated with an organization.

This section walks you through the following topics for deleting account types:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you delete an account type, you must refresh the system cache for the
deleted account type to take effect. See "Refreshing the Organization Cache" (see
page 50) for more information on how to refresh the cache.

Preparing the Request Message

The deleteAccountTypeRequest message is used to delete account types in the
AuthMinder database. The following table lists the elements of this request message:

Element Mandatory Description

accountType Yes The name of the account type that you want to delete.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Managing Account Types

76 Web Services Developer's Guide

Invoking the Web Service

To delete account types:

1. (Optional) Include the authentication and authorization details in the header of the
deleteAccountType operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the deleteAccountTypeRequest elements to get the account type that has to be
deleted.

3. Use the deleteAccountTypeRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the deleteAccountType operation of the ArcotConfigRegistrySvc service to
delete the account type.

This operation returns the deleteAccountTypeResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, deleteAccountTypeResponse, returns the transaction identifier
and authentication token in the SOAP envelope header. These elements are explained in
the following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Fetching Email and Telephone Types

Chapter 5: Configuration Management Web Service 77

Fetching Email and Telephone Types

AuthMinder enables you to specify multiple email addresses and telephone numbers
while creating users in an organization. Email and telephone types are used to define
multiple email addresses and telephone numbers. These types can be defined globally
or can be specific to an organization. If the email address or telephone number types
are mandatory for an organization, then you must provide these values while you create
users in that organization.

This section covers the following sections that discuss how to fetch the email and
telephone types that are configured for an organization:

■ Fetching Email Types (see page 77)

■ Fetching Telephone Types (see page 79)

Fetching Email Types

The listEmailTypes operation is used to fetch the email address types that are
configured for an organization.

This section walks you through the following topics for fetching the email address types
configured for an organization:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listEmailTypeRequest message is used to fetch email address types that are
configured for the organization. The following table lists the elements of this request
message:

Element Mandatory Description

orgName No The name of the organization for which the email
address types have to be fetched.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Fetching Email and Telephone Types

78 Web Services Developer's Guide

Invoking the Web Service

To fetch email address types:

1. (Optional) Include the authentication and authorization details in the header of the
listEmailTypes operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the listEmailTypeRequest elements to get the organization name.

3. Use the listEmailTypeRequest message and construct the input message by using
the details obtained in preceding step.

4. Invoke the listEmailTypes operation of the ArcotConfigRegistrySvc service to fetch
the email address types.

This operation returns the listEmailTypeResponse message that includes the
transaction identifier, authentication token, and email address types. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, listEmailTypeResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. The SOAP body includes the
email address types for a successful transaction and the Fault response for an error
condition.

The following table provides more information about the elements returned for a
successful transaction. See appendix, "Error Codes" (see page 353) if there are any
errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

isGlobal Specifies whether the email type is configured at the global level.
Possible values are:

■ True: Indicates that the email type is configured at the global
level.

■ False: Indicates that the email type is configured at the
organization level.

Fetching Email and Telephone Types

Chapter 5: Configuration Management Web Service 79

Element Description

emailType/name The name of the email address type.

emailType/display
Name

The display name of the email address type.

emailType/priority The priority of the email type if more than one email type has
been configured.

emailType/isMand
atory

Indicates whether the email type is mandatory.

Fetching Telephone Types

The listTelephoneTypes operation is used to fetch the telephone types that are
configured for an organization.

This section walks you through the following topics for fetching the telephone types
configured for an organization:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listTelephoneTypeRequest message is used to fetch the telephone types that are
configured for the organization. The following table lists the elements of this request
message:

Element Mandatory Description

orgName No The name of the organization for which the telephone
address types have to be fetched.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Fetching Email and Telephone Types

80 Web Services Developer's Guide

Invoking the Web Service

To fetch telephone types:

1. (Optional) Include the authentication and authorization details in the header of the
listTelephoneTypes operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the listTelephoneTypeRequest elements to get the organization name.

3. Use the listTelephoneTypeRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the listTelephoneTypes operation of the ArcotConfigRegistrySvc service to
fetch the telephone types.

This operation returns the listTelephoneTypeResponse message that includes the
transaction identifier, authentication token, and telephone types. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, listTelephoneTypeResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
telephone types for a successful transaction and the fault response for an error
condition.

The following table provides more information about the elements returned for a
successful transaction. See appendix, "Error Codes" (see page 353) if there are any
errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

isGlobal Specifies whether the telephone type is configured at the global
level. Possible values are:

■ True: Indicates that the telephone type is configured at the
global level.

■ False: Indicates that the telephone type is configured at the
organization level.

Fetching User Attributes Configured for Encryption

Chapter 5: Configuration Management Web Service 81

Element Description

TelephoneType/na
me

The name of the telephone type.

TelephoneType/di
splayName

The display name of the telephone type.

TelephoneType/pri
ority

The priority of the telephone type if more than one telephone
type has been configured.

TelephoneType/is
Mandatory

Indicates whether the telephone type is mandatory.

Fetching User Attributes Configured for Encryption

The administrators of an organization can choose to store the user attributes in an
encrypted format. To fetch such attributes that are configured to be stored in encrypted
format, you need to use the listConfiguredAttributesForEncryption operation.

This section walks you through the following topics for fetching the user attributes that
are configured for encryption:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The listConfiguredAttributesForEncryptionRequest message is used to fetch the user
attributes that are configured for encryption. The following table lists the elements of
this request message:

Element Mandatory Description

orgName No The name of the organization for which the user
attributes have to be fetched.

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Fetching User Attributes Configured for Encryption

82 Web Services Developer's Guide

Invoking the Web Service

To fetch user attributes configured for encryption:

1. (Optional) Include the authentication and authorization details in the header of the
listConfiguredAttributesForEncryption operation. See chapter, "Managing Web
Services Security" (see page 35) for more information on the header elements.

2. Use the listConfiguredAttributesForEncryptionRequest elements to get the
organization name.

3. Use the listConfiguredAttributesForEncryptionRequest message and construct the
input message by using the details obtained in preceding step.

4. Invoke the listConfiguredAttributesForEncryption operation of the
ArcotConfigRegistrySvc service to fetch the user attributes.

This operation returns the listConfiguredAttributesForEncryptionResponse message
that includes the transaction identifier, authentication token, and user attributes.
See the following section for more information on the response message.

Interpreting the Response Message

The response message, listConfiguredAttributesForEncryptionResponse, returns the
transaction identifier and authentication token in the SOAP envelope header. The SOAP
body includes the user attributes configured for encryption for a successful transaction
and the Fault response for an error condition.

The following table provides more information about the elements returned for a
successful transaction. See appendix, "Error Codes" (see page 353) if there are any
errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

Fetching User Attributes Configured for Encryption

Chapter 5: Configuration Management Web Service 83

Element Description

isGlobal Specifies whether the user attributes are configured for
encryption at the global level. Possible values are:

■ True: Indicates that the user attributes are configured for
encryption at the global level.

■ False: Indicates that the user attributes are configured for
encryption at the organization level.

attribute The name of the user attribute that is configured for encryption.

Chapter 6: Managing Users and Accounts 85

Chapter 6: Managing Users and Accounts

Important! To use the Web service operations that are discussed in this chapter, you
must deploy the User Data Service (arcotuds.war) file.
See section, "Deploying User Data Service" in the CA AuthMinder Installation and
Deployment Guide.

For AuthMinder to authenticate users, users have to be created in the database, which
is a one-time process. The user can either be created in the AuthMinder database or
AuthMinder organization can be configured to connect to LDAP for user information.

This chapter discusses the Web service operations that are used to create and manage
users, create and manager user accounts, and authenticate LDAP users. This chapter
covers the following topics:

■ Before You Proceed (see page 85)

■ Performing User Operations (see page 89)

■ Performing User Account Operations (see page 118)

■ Setting the Personal Assurance Message (see page 135)

■ Fetching the Personal Assurance Message (see page 137)

■ Setting Custom User Attributes (see page 139)

■ Authenticating LDAP Users (see page 141)

You must use the ArcotUserManagementSvc.wsdl file to perform the operations
discussed in this chapter.

Before You Proceed

This section lists the supported user states, transitions supported between the user
states, and the user operations that are possible on a particular organization and user
status combination. Before you proceed with the user and user account operations that
are discussed in this chapter, read this section to understand whether the operation can
be performed based on the organization and user status.

The following topics are covered in this section:

■ User States (see page 86)

■ Supported User State Transitions (see page 86)

■ User Operations and States (see page 87)

■ User Account Operations and States (see page 88)

Before You Proceed

86 Web Services Developer's Guide

User States

AuthMinder supports the following states for users in the system:

■ INITIAL

Indicates that the user has been created in the system, but cannot perform any
operation. To create a user in this state, you need to specify the status in the
createUser operation.

■ ACTIVE

Indicates that the user can perform any operation in the system. This is the default
status of the user when you create a user in the system.

■ INACTIVE

Indicates that the user has been deactivated and cannot perform any operation.
You can deactivate a user permanently or for a specific period. You might need to
deactivate the user for a specified period in situations where an employee goes for
a long vacation and you want to disable their logins during this period to prevent
any unauthorized access.

To deactivate the user for a specific period, you must specify the startLockTime and
endLockTime elements. If you do not specify these values, then the user will be
permanently deactivated.

■ DELETED

Indicates that the user no longer exists in the system.

Supported User State Transitions

The following table lists the transitions possible between the supported user states:

Current State

 Change State to

INITIAL ACTIVE
INACTIVE
(Temporary)

INACTIVE
(Permanent)

DELETED

INITIAL Yes Yes No No Yes

ACTIVE No Yes Yes Yes Yes

INACTIVE No Yes Yes Yes Yes

DELETED No No No No Yes

Before You Proceed

Chapter 6: Managing Users and Accounts 87

User Operations and States

 The following table lists the user operations and whether each operation is allowed on
a specific combination of the organization and user status:

User Operation Organization Status User Status Allowed

Create User INITIAL NA No

ACTIVE NA Yes

INACTIVE NA No

DELETED NA No

Update User INITIAL NA No

ACTIVE Any User State Yes

INACTIVE Any User State Yes

DELETED Any User State Yes

Update User Status INITIAL NA No

ACTIVE ACTIVE

INACTIVE

DELETED

Yes

INACTIVE ACTIVE

INACTIVE

DELETED

Yes

DELETED Any User State No

Delete User INITIAL NA No

ACTIVE INITIAL

ACTIVE

INACTIVE

Yes

INACTIVE INITIAL

ACTIVE

INACTIVE

Yes

DELETED Any User State No

Before You Proceed

88 Web Services Developer's Guide

User Account Operations and States

The following table lists the user account operations and whether each operation is
allowed on a specific combination of the organization and user status:

User Account
Operation

Organization Status User Status Allowed

Add User Account INITIAL NA No

ACTIVE/INACTIVE INITIAL Yes

ACTIVE Yes

INACTIVE Yes

DELETED No

DELETED Any User State No

Update User Account INITIAL NA No

ACTIVE/INACTIVE INITIAL Yes

ACTIVE Yes

INACTIVE Yes

DELETED No

DELETED Any User State No

Update User Account INITIAL NA No

ACTIVE/INACTIVE INITIAL Yes

ACTIVE Yes

INACTIVE Yes

DELETED No

DELETED Any User State No

Delete User Account INITIAL NA No

ACTIVE/INACTIVE INITIAL Yes

ACTIVE Yes

INACTIVE Yes

DELETED No

DELETED Any User State No

Performing User Operations

Chapter 6: Managing Users and Accounts 89

Performing User Operations

This section covers the following operations:

■ Creating Users (see page 89)

■ Updating Users (see page 94)

■ Updating User Status (see page 98)

■ Fetching User Details (see page 100)

■ Searching Users by Using Pagination (see page 105)

■ Searching All Users (see page 108)

■ Checking User Status (see page 112)

■ Updating User Status (see page 114)

■ Deleting Users (see page 116)

Creating Users

This section walks you through the following topics for creating the users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The createUserRequest message is used to create users in the AuthMinder database.
The following table lists the elements of this request message:

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user must
belong to.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userID/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The unique identifier that is assigned to the user when
they are created. This identifier is used as a reference
to track different operations performed by a user.

Performing User Operations

90 Web Services Developer's Guide

Element Mandatory Description

dateCreated No The timestamp when the user was created in the
system.

Note: Not applicable for the createUserRequest
operation.

dateModified No The timestamp when the user details were last
modified.

Note: Not applicable for the createUserRequest
operation.

emailId Yes The email ID of the user that has to be registered. The
default qualifier is EMAILID.

Note: You can repeat this entry if you want to
configure multiple email IDs for a user, and
accordingly use the qualifier based on the email types
configured using Administration Console. Refer to the
CA AuthMinder Administration Guide for more
information on configuring multiple email IDs.

telephoneNum
ber

Yes The telephone number of the user that has to be
registered. The default qualifier is TELEPHONE.

Note: You can repeat this entry if you want to
configure multiple telephone numbers for a user, and
accordingly use the qualifier based on the telephone
types configured using Administration Console. Refer
to the CA AuthMinder Administration Guide for more
information on configuring multiple telephone
numbers.

firstName No The first name of the user.

middleName No The middle name of the user.

lastName No The last name of the user.

pam No The Personal Assurance Message (PAM) that is
displayed to the user when they try to access a
resource protected by AuthMinder.

pamImageURL No The URL which contains the image that is displayed to
the user, when they try to access a resource protected
by AuthMinder.

image No The picture that the user wants to upload to identify
themselves.

status No The status of the user. To create the user, the status
must be ACTIVE.

Performing User Operations

Chapter 6: Managing Users and Accounts 91

Element Mandatory Description

customAttribut
e

No The additional user information that you want to pass
as a name-value pair.

■ name
Indicates the name of the attribute that you want
to create.

■ value
Indicates the corresponding value for the name.

startLockTime No The timestamp when the user has to be deactivated.

endLockTime No The timestamp when the deactivated user has to be
activated.

account/accou
ntType

Yes

Only if the
account
element is
defined.

The attribute that qualifies the account ID and
provides additional context about the usage of the
account ID.

account/accou
ntID

No The alternate identifier that is used to identify the user
in addition to the user name. The account ID is also
known as account.

account/accou
ntStatus

No The status of the account. Following are the supported
values:

■ 0-9: Indicates that the account is in the INITIAL
state.

■ 10-19: Indicates that the account is in the ACTIVE
state.

■ 20-29: Indicates that the account is in the
INACTIVE state.

■ 30-39: Indicates that the account is in the
DELETED state.

■ >39: Indicates that the account state is
UNKNOWN.

account/accou
ntIDAttribute

No The alternate identifier that is used to identify the user
in the system.

Note: You cannot pass more than three account ID
attributes for a user.

account/dateCr
eated

No The timestamp when the account ID was created.

Note: Not applicable for the createUserRequest
operation.

Performing User Operations

92 Web Services Developer's Guide

Element Mandatory Description

account/dateM
odified

No The timestamp when the account ID was last
modified.

Note: Not applicable for the createUserRequest
operation.

account/accou
ntCustomAttrib
ute

No The additional account information that you want to
pass as a name-value pair.

■ attributeName
Indicates the name of the attribute that you want
to create.

■ attributeValue
Indicates the corresponding value for the name.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

Chapter 6: Managing Users and Accounts 93

Invoking the Web Service

To create users in the AuthMinder database:

1. (Optional) Include the authentication and authorization details in the header of the
createUser operation. See chapter, "Managing Web Services Security" (see page 35)
for more information on the header elements.

2. Use the createUserRequest elements to provide the user information.

3. Use the createUserRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the createUser operation of the ArcotUserRegistrySvc service to create
users.

This operation returns the createUserResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, createUserResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Operations

94 Web Services Developer's Guide

Updating Users

This section walks you through the following topics for updating the user information:

■ Preparing the Request Message

■ Interpreting the Response Message

■ Interpreting the Response Message

Preparing the Request Message

The updateUserRequest message is used to update the user information in the
AuthMinder database. The following table lists the elements of this request message:

Element Mandatory Description

userId/orgName No The name of the organization to which the user
belongs to.

Note: If the organization name is not passed, then
the Default Organization is used for the operation.

userID/userName Yes The unique identifier with which the user is
identified in the system.

userId/userRefId No The identifier that is used as a reference to track
different operations performed by a user.

dateCreated No The timestamp when the user was created in the
system.

dateModified No The timestamp when the user details were last
modified.

emailId No The email ID of the user that has to be registered.
The default qualifier is EMAILID.

Note: You can repeat this entry if you want to
configure multiple email IDs for a user, and
accordingly use the qualifier based on the
configured email types.

telephoneNumber No The telephone number of the user that has to be
registered. The default qualifier is TELEPHONE.

Note: You can repeat this entry if you want to
configure multiple telephone numbers for a user,
and accordingly use the qualifier based on the
configured telephone types.

firstName No The first name of the user.

middleName No The middle name of the user.

lastName No The last name of the user.

Performing User Operations

Chapter 6: Managing Users and Accounts 95

Element Mandatory Description

pam No The Personal Assurance Message (PAM) is a text
string that is displayed to the user, when they try to
access the AuthMinder-protected resource.

pamImageURL No The URL which contains the image that is displayed
to the user when they try to access the
AuthMinder-protected resource.

image No The picture that the user wants to upload to
identify themselves.

status No The status of the user. Following are the supported
values:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

customAttribute No The additional user information that you want to
pass as a name-value pair.

■ name
Indicates the name of the attribute that you
want to create.

■ value
Indicates the corresponding value for the
name.

startLockTime No The timestamp when the user has to be
deactivated.

endLockTime No The timestamp when the deactivated user has to
be activated.

account/accountT
ype

Yes

Only if the
account
element is
defined.

The attribute that qualifies the account ID and
provides additional context about the usage of the
account ID.

account/accountI
D

No The alternate identifier that is used to identify the
user in addition to the user name. The account ID is
also known as account.

Performing User Operations

96 Web Services Developer's Guide

Element Mandatory Description

account/accountSt
atus

No The status of the account. Following are the
supported values:

■ 0-9: Indicates that the account is in the INITIAL
state.

■ 10-19: Indicates that the account is in the
ACTIVE state.

■ 20-29: Indicates that the account is in the
INACTIVE state.

■ 30-39: Indicates that the account is in the
DELETED state.

■ >39: Indicates that the account state is
UNKNOWN.

account/accountI
DAttribute

No The alternate identifier that is used to identify the
user in the system.

Note: You cannot pass more than three account ID
attributes for a user.

account/dateCreat
ed

No The timestamp when the account ID was created.

Note: Not applicable for the updateUser operation.

account/dateModi
fied

No The timestamp when the account ID was last
modified.

Note: Not applicable for the updateUser operation.

account/accountC
ustomAttribute

No The additional account information that you want
to pass as a name-value pair.

■ attributeName
Indicates the name of the attribute that you
want to create.

■ attributeValue
Indicates the corresponding value for the
name.

updateUserFlags/
updateImage

No The flag to indicate whether the user image can be
changed. Supported values are:

■ 0: Indicates that the image cannot be changed.

■ 1: Indicates that the image can be changed.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in
tracking the related transactions.

Performing User Operations

Chapter 6: Managing Users and Accounts 97

Invoking the Web Service

To update users in the AuthMinder database:

1. (Optional) Include the authentication and authorization details in the header of the
updateUser operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the updateUserRequest elements to update the user information.

3. Use the updateUserRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the updateUser operation of the ArcotUserRegistrySvc service to update
user information.

This operation returns the updateUserResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateUserResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Operations

98 Web Services Developer's Guide

Updating User Status

The updateUserStatus operation is used to change the status of the user. In a single call,
you can update the status of multiple users.

The status of a user can be any of the following:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

This section walks you through the following topics for changing the user status:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the updateUserStatusRequest message:

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs to.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userID/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The identifier that is used as a reference to track
different operations performed by a user.

Note: If want to update the status of more than one user, then repeat the userID
element with the user details.

status Yes The status that you want to assign to the user.
Following are the supported values:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

startLockTime No The timestamp when the user has to be deactivated.

Performing User Operations

Chapter 6: Managing Users and Accounts 99

Element Mandatory Description

endLockTime No The timestamp when the deactivated user has to be
activated.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To update user status in the AuthMinder database:

1. (Optional) Include the authentication and authorization details in the header of the
updateUserStatus operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the updateUserStatusRequest elements to update the user status.

3. Use the updateUserStatusRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the updateUserStatus operation of the ArcotUserRegistrySvc service to
update the user status.

This operation returns the updateUserStatusResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateUserStatusResponse returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Operations

100 Web Services Developer's Guide

Fetching User Details

The retrieveUser operation is used to search the details of a particular user.

This section walks you through the following topics for fetching the user details:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the retrieveUserRequest message:

Element Mandatory Description

userIdentifier Yes The unique identifier (user name) with which the user
is identified in the system.

orgName No The name of the organization to which the user
belongs to.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

accountType No The attribute that qualifies the account ID and
provides additional context about the usage of the
account ID.

filter/includeIm
age

No The flag to indicate whether the user image has to be
retrieved or not. Supported values are:

■ 0: Indicates that the image must not be retrieved.
This is the default value.

■ 1: Indicates that the image must be retrieved.

filter/includeAc
counts

No The flag to indicate whether the user accounts have to
be retrieved or not. Supported values are:

■ 0: Indicates that the user accounts must not be
retrieved. This is the default value.

■ 1: Indicates that the user accounts must be
retrieved.

Performing User Operations

Chapter 6: Managing Users and Accounts 101

Element Mandatory Description

filter/deepSear
ch

No The flag to indicate whether the user must be
searched based on more than one parameter.
Supported values are:

■ 0: Indicates that the users will be searched based
on their user names only.

■ 1: Indicates that the users will be searched using
the following details:
First search attribute: User name
Second search attribute: Account ID
Third search attribute: Account ID attribute

If the user details are not found using the first
search attribute, then the second attribute is
used. If both the first and second attributes fail to
fetch the user details, then the third attribute is
used to search the user details.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

102 Web Services Developer's Guide

Invoking the Web Service

To retrieve the details of a user:

1. (Optional) Include the authentication and authorization details in the header of the
retrieveUser operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the retrieveUserRequest elements to collect the user details.

3. Use the retrieveUserRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the retrieveUser operation of the ArcotUserRegistrySvc service to fetch the
user details.

This operation returns the retrieveUserResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, retrieveUserResponse, returns the transaction identifier and
authentication token in the SOAP envelope header. The SOAP body includes the user
details for a successful transaction and the Fault response for an error condition.

The following table provides more information on the elements returned for a
successful transaction. See appendix, "Error Codes" (see page 353) if there are any
errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

userId/orgName The name of the organization to which the user belongs to.

userId/userName The unique identifier with which the user is identified in the
system.

userId/userRefId The identifier that is used as a reference to track different
operations performed by a user.

dateCreated The timestamp when the user was created in the system.

Performing User Operations

Chapter 6: Managing Users and Accounts 103

Element Description

dateModified The timestamp when the user details were last modified.

emailId The email ID of the user that has been registered. If multiple
email IDs are configured for the user, then all email IDs are
fetched.

telephoneNumber The telephone number of the user that has been registered. If
multiple telephone numbers are configured for the user, then all
numbers are fetched.

firstName The first name of the user.

middleName The middle name of the user.

lastName The last name of the user.

pam The Personal Assurance Message (PAM) string is displayed to the
user, when they try to access a resource protected by
AuthMinder.

pamImageURL The URL which contains the image that is displayed to the user,
when they try to access the AuthMinder-protected resource.

image The picture that the user wants to upload to identify themselves.

status The status of the user. Following are the supported values:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

Note: If you do not pass the value, then by default the status is
set as ACTIVE.

customAttribute The additional user information in name-value pairs.

■ name
Indicates the name of the attribute that you want to create.

■ value
Indicates the corresponding value for the name.

startLockTime The timestamp when the user was deactivated.

endLockTime The timestamp when the deactivated user has to be activated.

account/accountTy
pe

The attribute that qualifies the account ID and provides
additional context about the usage of the account ID.

account/accountID The alternate identifier that is used to identify the user in
addition to the user name. The account ID is also known as
account.

Performing User Operations

104 Web Services Developer's Guide

Element Description

account/accountSt
atus

The status of the account. Following are the supported values:

■ 0-9: Indicates that the account is in the INITIAL state.

■ 10-19: Indicates that the account is in the ACTIVE state.

■ 20-29: Indicates that the account is in the INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED state.

■ >39: Indicates that the account state is UNKNOWN.

account/accountID
Attribute

The alternate identifier that is used to identify the user in the
system.

account/dateCreat
ed

The timestamp when the account ID was created.

account/dateModi
fied

The timestamp when the account ID was last modified.

account/accountC
ustomAttribute

The additional account information that you want to pass as a
name-value pair.

■ attributename
Indicates the name of the custom attribute.

■ attributevalue
Indicates the corresponding value for the name.

Performing User Operations

Chapter 6: Managing Users and Accounts 105

Searching Users by Using Pagination

When you search for users in the AuthMinder database or directory service, the
information is fetched and displayed in the alphabetical order of the user names. If you
have a large setup with many users, then to search for a user you will have to navigate
through the search result to search for a particular user. To increase the search
efficiency in such cases, you can search the users by specifying the start and end index.

Note: If you are searching for the users in the LDAP organization, then ensure that LDAP
supports pagination search.

This section walks you through the following topics for searching the active users based
on the search index:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the listUsersRequest message:

Element Mandatory Description

orgName No The name of the organization to which the user
belongs to.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

startIndex Yes The index entry starting from which the user
information has to be fetched.

For example, if the complete search fetches 60 results
and if the startIndex is set to 45, then the user
information from search result entry 45 is returned.

endIndex Yes The index page where the user search must end.

For example, if the complete search fetches 60 results
and if the startIndex is set to 45 and endIndex is set to
55, then the user information from the search result
entry 45 to 55 is returned.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

106 Web Services Developer's Guide

Invoking the Web Service

To search for users based on pagination:

1. (Optional) Include the authentication and authorization details in the header of the
listUsers operation. See chapter, "Managing Web Services Security" (see page 35)
for more information on the header elements.

2. Use the listUsersRequest elements to collect the start and end index.

3. Use the listUsersRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the listUsers operation of the ArcotUserRegistrySvc service to fetch the user
details for the specified start and end index.

This operation returns the listUsersResponse message that includes the transaction
identifier, authentication token, and user details. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, listUsersResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the user
details and status for a successful transaction and the Fault response for an error
condition.

The following table provides more information about the return elements for successful
transaction. See appendix, "Error Codes" (see page 353) if there are any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

count The total number of users returned in the search result.

userId/orgName The name of the organization to which the user belongs.

userId/userName The unique identifier with which the user is identified in the
system.

userId/userRefId The identifier that is used as a reference to track different
operations performed by a user.

Performing User Operations

Chapter 6: Managing Users and Accounts 107

Element Description

dateCreated The timestamp when the user was created in the system.

dateModified The timestamp when the user details were last modified.

emailId The email ID of the user that has been registered. If multiple
email IDs are configured for the user, then all the email IDs are
fetched.

telephoneNumber The telephone number of the user that has been registered. If
multiple telephone numbers are configured for the user, then all
the numbers are fetched.

firstName The first name of the user.

middleName The middle name of the user.

lastName The last name of the user.

pam The Personal Assurance Message (PAM) string displayed to the
user when they try to access a resource protected by
AuthMinder.

pamImageURL The URL, which contains the image that is displayed to the user,
when they try to access a resource protected by AuthMinder.

image The picture that the user wants to upload to identify themselves.

status The status of the user. Following are the supported values:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

customAttribute The additional user information that you want to pass as
name-value pair.

■ name
Indicates the name of the attribute that you want to create.

■ value
Indicates the corresponding value for the name.

startLockTime The timestamp when the user has to be deactivated.

endLockTime The timestamp when the deactivated user has to be activated.

Performing User Operations

108 Web Services Developer's Guide

Searching All Users

You must use the searchUsers operation to search for all the users in the system.

This section walks you through the following topics for searching the users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the searchUsers message:

Element Mandatory Description

orgPattern No The pattern that is used to search the organizations.
For example, *ac pattern will search for users in the
following organizations:

■ Acme

■ Acro

Note: If the organization pattern is not passed, then
the Default Organization is used for the operation.

orgName No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

searchExpressi
on

Yes The expression that is used to search for users. For
example, if you search for *m, then the following user
details will be fetched:

■ John Smith

■ Mathew

count No If the search result exceeds this value, then only the
search results equal to this value are fetched.

filter/includeIm
age

No The flag to indicate whether the user image has to be
retrieved or not. Supported values are:

■ 0: Indicates that the image must not be retrieved.

■ 1: Indicates that the image must be retrieved.

Performing User Operations

Chapter 6: Managing Users and Accounts 109

Element Mandatory Description

filter/includeAc
counts

No The flag to indicate whether the user accounts have to
be retrieved or not. Supported values are:

■ 0: Indicates that the user accounts must not be
retrieved.

■ 1: Indicates that the user accounts must be
retrieved.

filter/deepSear
ch

No The flag to indicate whether the user must be searched
based on more than one parameter. Supported values
are:

■ 0: Indicates that the users will be searched based
on their user names only.

■ 1: Indicates that the users will be searched using
the following details:
First search attribute: User name
Second search attribute: Account ID
Third search attribute: Account ID attributes

If the user details are not found using the first
search attribute, then the second attribute is used.
If both the first and second attributes fail to fetch
the user details, then the third attribute is used to
search the user details.

status No The status of the user. Following are the supported
values:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

Note: If you do not pass the value, then by default the
status is set as ACTIVE.

account/accou
ntType

Yes

Only if the
account
element is
defined.

The attribute that qualifies the account ID and
provides additional context about the usage of the
account ID.

account/accou
ntID

No The alternate identifier that is used to identify the user
in addition to the user name. The account ID is also
known as account.

Performing User Operations

110 Web Services Developer's Guide

Element Mandatory Description

account/accou
ntStatus

No The status of the account. Following are the supported
values:

■ 0-9: Indicates that the account is in the INITIAL
state.

■ 10-19: Indicates that the account is in the ACTIVE
state.

■ 20-29: Indicates that the account is in the
INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED
state.

■ >39: Indicates that the account state is
UNKNOWN.

account/accou
ntIDAttribute

No The alternate identifier that is used to identify the user
in the system.

Note: You cannot pass more than three account ID
attributes for a user.

account/dateCr
eated

No The timestamp when the account ID was created.

account/dateM
odified

No The timestamp when the account ID was last modified.

account/accou
ntCustomAttrib
ute

No The additional account information that you want to
pass as a name-value pair.

■ attributeName
Indicates the name of the attribute that you want
to create.

■ attributeValue
Indicates the corresponding value for the name.

RepositoryUser
Attributes/attri
buteName

No The name of the user attribute that is used to store the
user information. For example, First Name or Email
Address.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

Chapter 6: Managing Users and Accounts 111

Invoking the Web Service

To search for users:

1. (Optional) Include the authentication and authorization details in the header of the
searchUsers operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the searchUsersRequest elements to collect the user information.

3. Use the searchUsersRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the searchUsers operation of the ArcotUserRegistrySvc service to fetch the
information of all the users.

This operation returns the searchUsersResponse message that includes the
transaction identifier, authentication token, and user details. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, searchUsersResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the user
details and status for a successful transaction and the Fault response for an error
condition.

The return elements of searchUsersResponse are the same as those for
retrieveUserResponse. See the table containing information about the
retrieveUserResponse elements for more information on the user details that is
returned for a successful transaction. See appendix, "Error Codes" (see page 353) if
there are any errors.

Performing User Operations

112 Web Services Developer's Guide

Fetching User Status

You must use the getUserStatus operation to know the current status of the user in the
database.

This section walks you through the following topics for checking the user status:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the getUserStatusRequest message:

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs to.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The identifier that is used as a reference to track
different operations performed by a user.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

Chapter 6: Managing Users and Accounts 113

Invoking the Web Service

To check the user status:

1. (Optional) Include the authentication and authorization details in the header of the
getUserStatus operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the getUserStatusRequest elements to collect the user details.

3. Use the getUserStatusRequest message and construct the input message by using
the details obtained in preceding step.

4. Invoke the getUserStatus operation of the ArcotUserRegistrySvc service to check
the user status.

This operation returns the getUserStatusResponse message that includes the
transaction identifier, authentication token, and user details and status. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, getUserstatusResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. The SOAP body includes the
user details and status for a successful transaction and the Fault response for an error
condition.

The following table provides more information about the return elements for successful
transaction. See appendix, "Error Codes" (see page 353) if there are any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

userId/orgName The name of the organization to which the user belongs.

userId/userName The unique identifier with which the user is identified in the
system.

userId/userRefId The identifier that is used as a reference to track different
operations performed by a user.

Performing User Operations

114 Web Services Developer's Guide

Element Description

status The status of the user. Following are the supported values:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

Updating User Status

You must use the updateUserStatus operation to change the current status of the user
in the database.

This section walks you through the following topics for updating the user status:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the updateUserStatusRequest message:

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The identifier that is used as a reference to track
different operations performed by a user.

status Yes The status that you want to assign to the user.
Following are the supported values:

■ INITIAL

■ ACTIVE

■ INACTIVE

Note: If the current status of the user is DELETED, then
you cannot update the status of that user.

startLockTime No The timestamp when the user has to be deactivated.

Performing User Operations

Chapter 6: Managing Users and Accounts 115

Element Mandatory Description

endLockTime No The timestamp when the deactivated user has to be
activated.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To update the user status:

1. (Optional) Include the authentication and authorization details in the header of the
updateUserStatus operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the updateUserStatusRequest elements to collect the user details.

3. Use the updateUserStatusRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the updateUserStatus operation of the ArcotUserRegistrySvc service to
check the user status.

This operation returns the updateUserStatusResponse message that includes the
transaction identifier and the authentication token. See the following section for
more information on the response message.

Interpreting the Response Message

The response message, updateUserStatusResponse returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Operations

116 Web Services Developer's Guide

Deleting Users

This section walks you through the following topics for deleting users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The deleteUserRequest message is used to delete users in the AuthMinder database.
The following table lists the elements of this request message:

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userID/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The unique identifier that is assigned to the user when
they are created.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Operations

Chapter 6: Managing Users and Accounts 117

Invoking the Web Service

To delete users:

1. (Optional) Include the authentication and authorization details in the header of the
deleteUser operation. See chapter, "Managing Web Services Security" (see page 35)
for more information on the header elements.

2. Use the deleteUserRequest elements to provide the user information, as listed in
the table shown in the preceding section.

3. Use the deleteUserRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the deleteUser operation of the ArcotUserRegistrySvc service to delete
users.

This operation returns the deleteUserResponse message that includes the
transaction identifier and authentication token. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, deleteUserResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
chapter, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Account Operations

118 Web Services Developer's Guide

Performing User Account Operations

In addition to the user name, which is the unique user identifier, users can also be
identified by their accounts (also known as account ID). A user can have none or one or
multiple accounts. To define an account for the user, an account type has to be first
configured for the organization to which the user belongs.

An account type provides additional context about the usage of the account. An account
type can have only one account ID. If you want to assign multiple account IDs for a user,
then you need to first configure the account type for each account ID that you plan to
create for the user.

This section covers the following topics related to user account operations:

■ Adding User Accounts (see page 119)

■ Updating User Accounts (see page 122)

■ Fetching All Accounts of a User (see page 124)

■ Fetch a User Account Details (see page 126)

■ Fetching User Details Using Accounts (see page 129)

■ Deleting User Accounts (see page 133)

Note: Account are dependent on user name and account type. Before adding user
accounts, you must ensure that the user has already been created in the system, as
discussed in the "Performing User Operations" (see page 89) section, and that the
account type has been defined for the organization to which the user belongs to, as
discussed in chapter, "Configuration Management Web Service" (see page 67).

Performing User Account Operations

Chapter 6: Managing Users and Accounts 119

Adding User Accounts

You must use the addUserAccount operation to add accounts for the users. This section
walks you through the following topics for adding user accounts.

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the addUserAccountRequest message:

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The identifier that is used as a reference to track
different operations performed by a user.

account/accou
ntType

Yes The attribute that qualifies the account ID and
provides additional context about the usage of the
account ID.

account/accou
ntID

No The alternate identifier that is used to identify the user
in addition to the user name. The account ID is also
known as account.

account/accou
ntStatus

No The status of the account. Following are the supported
values:

■ 0-9: Indicates that the account is in the INITIAL
state.

■ 10-19: Indicates that the account is in the ACTIVE
state.

■ 20-29: Indicates that the account is in the
INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED
state.

■ >39: Indicates that the account state is
UNKNOWN.

Performing User Account Operations

120 Web Services Developer's Guide

Element Mandatory Description

account/accou
ntIDAttribute

No The alternate identifier that is used to identify the user
in the system.

Note: You cannot pass more than three account ID
attributes for a user.

account/dateCr
eated

No The timestamp when the account ID was created.

account/dateM
odified

No The timestamp when the account ID was last modified.

account/accou
ntCustomAttrib
ute

No The additional account information that you want to
pass as a name-value pair.

■ attributeName
Indicates the name of the attribute that you want
to create.

■ attributeValue
Indicates the corresponding value for the name.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 121

Invoking the Web Service

To add user accounts:

1. (Optional) Include the authentication and authorization details in the header of the
addUserAccount operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the addUserAccountRequest elements to collect the user details that are listed
in the preceding section.

3. Use the addUserAccountRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the addUserAccount operation of the ArcotUserRegistrySvc service to add
accounts for the user.

This operation returns the addUserAccountResponse message that includes the
transaction identifier, authentication token, and user account details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, addUserAccountResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. These elements are explained in
the following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Account Operations

122 Web Services Developer's Guide

Updating User Accounts

You must use the updateUserAccount operation to update the existing accounts of the
users. This section walks you through the following topics for updating the user
accounts.

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The updateUserAccountRequest message elements are same as those for
addUserAccountRequest (see page 119).

Invoking the Web Service

To update user accounts:

1. (Optional) Include the authentication and authorization details in the header of the
updateUserAccount operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the updateUserAccountRequest elements to collect the user account details, as
listed in Adding User Accounts (see page 119).

3. Use the updateUserAccountRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the updateUserAccount operation of the ArcotUserRegistrySvc service to
update accounts of the user.

This operation returns the updateUserAccountResponse message that includes the
transaction identifier, authentication token, and user account details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, updateUserAccountResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 123

Element Description

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Performing User Account Operations

124 Web Services Developer's Guide

Fetching All Accounts of a User

To fetch the details of all accounts that are created for a user, you must use the
listUserAccounts operation. This section walks you through the following topics for
fetching the details of the user accounts.

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: If you want to fetch details of a particular account, then use the
retrieveUserAccount operation. See "Fetch a User Account Details" (see page 126) for
more information.

Preparing the Request Message

The listUserAccountRequest message elements are same as those for
addUserAccountRequest. See Adding User Accounts (see page 119) for more
information.

Invoking the Web Service

To fetch user accounts:

1. (Optional) Include the authentication and authorization details in the header of the
listUserAccounts operation. See "Managing Web Services Security" (see page 35)
for more information on the header elements.

2. Use the listUserAccountRequest elements to collect the user account details, as
listed in Adding User Accounts (see page 119).

3. Use the listUserAccountRequest message and construct the input message by using
the details obtained in preceding step.

4. Invoke the listUserAccounts operation of the ArcotUserRegistrySvc service to fetch
the account details of the user.

This operation returns the listUserAccountResponse message that includes the
transaction identifier, authentication token, and user account details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, listUserAccountResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. The SOAP body includes the
user account details for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. See "Error Codes" (see page 353) if there are any errors.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 125

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

account/accountT
ype

The attribute that qualifies the account ID and provides additional
context about the usage of the account ID.

account/accountI
D

The alternate identifier that is used to identify the user in addition
to the user name. The account ID is also known as account.

account/accountSt
atus

The status of the account. Following are the supported values:

■ 0-9: Indicates that the account is in the INITIAL state.

■ 10-19: Indicates that the account is in the ACTIVE state.

■ 20-29: Indicates that the account is in the INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED state.

■ >39: Indicates that the account state is UNKNOWN.

account/accountI
DAttribute

The alternate identifier that is used to identify the user in the
system.

account/dateCreat
ed

The timestamp when the account ID was created.

account/dateModi
fied

The timestamp when the account ID was last modified.

account/accountC
ustomAttribute

The additional account information that you want to pass as a
name-value pair.

■ attributeName
Indicates the name of the attribute that you want to create.

■ attributeValue
Indicates the corresponding value for the name.

Performing User Account Operations

126 Web Services Developer's Guide

Fetch a User Account Details

You must use the retrieveUserAccount operation to fetch the details of a particular user
account.

This section walks you through the following topics to fetch a single account of a user:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the retrieveUserAccountRequest message:

Element Mandatory Description

userId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

userId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

userId/userRefI
d

No The identifier that is used as a reference to track
different operations performed by a user.

account/accou
ntType

Yes The attribute that qualifies the account ID and
provides additional context about the usage of the
account ID.

account/accou
ntID

No The alternate identifier that is used to identify the user
in addition to the user name. The account ID is also
known as account.

account/accou
ntStatus

No The status of the account. Following are the supported
values:

■ 0-9: Indicates that the account is in the INITIAL
state.

■ 10-19: Indicates that the account is in the ACTIVE
state.

■ 20-29: Indicates that the account is in the
INACTIVE state.

■ 30-39: Indicates that the account is in the
DELETED state.

■ >39: Indicates that the account state is
UNKNOWN.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 127

Element Mandatory Description

account/accou
ntIDAttribute

No The alternate identifier that is used to identify the user
in the system.

Note: You cannot pass more than three account ID
attributes for a user.

account/dateCr
eated

No The timestamp when the account ID was created.

account/dateM
odified

No The timestamp when the account ID was last
modified.

account/accou
ntCustomAttrib
ute

No The additional account information that you want to
pass as a name-value pair.

■ attributeName
Indicates the name of the attribute that you want
to create.

■ attributeValue
Indicates the corresponding value for the name.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Account Operations

128 Web Services Developer's Guide

Invoking the Web Service

To fetch the user account details:

1. (Optional) Include the authentication and authorization details in the header of the
retrieveUserAccount operation. See chapter, "Managing Web Services Security"
(see page 35) for more information on the header elements.

2. Use the retrieveUserAccountRequest elements to collect the user and account
details, as listed in the preceding table.

3. Use the retrieveUserAccountRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the retrieveUserAccount operation of the ArcotUserRegistrySvc service to
fetch the user details based on the account information.

This operation returns the retrieveUserAccountResponse message that includes the
transaction identifier, authentication token, and user account details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, retrieveUserAccountResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
user account details for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. See appendix, "Error Codes" (see page 353) if there are any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

account/accountTy
pe

The attribute that qualifies the account ID and provides additional
context about the usage of the account ID.

account/accountID The alternate identifier that is used to identify the user in
addition to the user name. The account ID is also known as
account.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 129

Element Description

account/accountSt
atus

The status of the account. Following are the supported values:

■ 0-9: Indicates that the account is in the INITIAL state.

■ 10-19: Indicates that the account is in the ACTIVE state.

■ 20-29: Indicates that the account is in the INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED state.

■ >39: Indicates that the account state is UNKNOWN.

account/accountID
Attribute

The alternate identifier that is used to identify the user in the
system.

account/dateCreat
ed

The timestamp when the account ID was created.

account/dateModi
fied

The timestamp when the account ID was last modified.

account/accountC
ustomAttribute

The additional account information that you want to pass as a
name-value pair.

■ attributeName
Indicates the name of the attribute that you want to create.

■ attributeValue
Indicates the corresponding value for the name.

Fetching User Details Using Accounts

To fetch the user details using their account information, you must use the
listUsersForAccount operation. This section walks you through the following topics for
fetching the user information based on the user accounts:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the listUsersForAccountRequest message:

Element Mandatory Description

orgName No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

Performing User Account Operations

130 Web Services Developer's Guide

Element Mandatory Description

accountType No The attribute that qualifies the account ID and
provides additional context about the usage of the
account ID.

Note: The accountID and accountIDAttribute elements are optional, but you must pass
at least one element.

accountID No The alternate identifier that is used to identify the user
in addition to the user name. The account ID is also
known as account.

accountIDAttrib
ute

No The alternate identifier that is used to identify the user
in the system.

Note: You cannot pass more than three account ID
attributes for a user.

filter/includeIm
age

No The flag to indicate whether the user image has to be
retrieved or not. Supported values are:

■ 0: Indicates that the image must not be retrieved.

■ 1: Indicates that the image must be retrieved.

filter/includeAc
counts

No The flag to indicate whether the user accounts have to
be retrieved or not. Supported values are:

■ 0: Indicates that the user accounts must not be
retrieved.

■ 1: Indicates that the user accounts must be
retrieved.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 131

Invoking the Web Service

To fetch the user details using their account information:

1. (Optional) Include the authentication and authorization details in the header of the
listUsersForAccount operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the listUsersForAccountRequest elements to collect the user account
information, as listed in the preceding table.

3. Use the listUsersForAccountRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the listUsersForAccount operation of the ArcotUserRegistrySvc service to
fetch the user details based on the account information.

This operation returns listUsersForAccountResponse message that includes the
transaction identifier, authentication token, and user details. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, listUsersForAccountResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
user details for a successful transaction and the fault response for an error condition.

See the following table for more information on the elements returned for a successful
transaction. See appendix, "Error Codes" (see page 353) if there are any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

userId/orgName The name of the organization to which the user belongs.

userId/userName The unique identifier with which the user is identified in the
system.

userId/userRefId The identifier that is used as a reference to track different
operations performed by a user.

dateCreated The timestamp when the user was created in the system.

Performing User Account Operations

132 Web Services Developer's Guide

Element Description

dateModified The timestamp when the user details were last modified.

emailId The email ID of the user that has been registered. If multiple email
IDs are configured for the user, then all the email IDs are fetched.

telephoneNumber The telephone number of the user that has been registered. If
multiple telephone numbers are configured for the user, then all
the numbers are fetched.

firstName The first name of the user.

middleName The middle name of the user.

lastName The last name of the user.

pam The Personal Assurance Message (PAM) string that is displayed to
the user when they try to access a resource protected by
AuthMinder.

pamImageURL The URL, which contains the image that is displayed to the user
when they try to access a resource protected by AuthMinder.

image The picture that the user wants to upload to identify themselves.

status The status of the user. Following are the supported values:

■ INITIAL

■ ACTIVE

■ INACTIVE

■ DELETED

customAttribute The additional user information that you want to pass as a
name-value pair.

■ name
Indicates the name of the attribute that you want to create.

■ value
Indicates the corresponding value for the name.

startLockTime The timestamp when the user has to be deactivated.

endLockTime The timestamp when the deactivated user has to be activated.

account/accountT
ype

The attribute that qualifies the account ID and provides additional
context about the usage of the account ID.

account/accountI
D

The alternate identifier that is used to identify the user in addition
to the user name. The account ID is also known as account.

Performing User Account Operations

Chapter 6: Managing Users and Accounts 133

Element Description

account/accountSt
atus

The status of the account. Following are the supported values:

■ 0-9: Indicates that the account is in the INITIAL state.

■ 10-19: Indicates that the account is in the ACTIVE state.

■ 20-29: Indicates that the account is in the INACTIVE state.

■ 30-39: Indicates that the account is in the DELETED state.

■ >39: Indicates that the account state is UNKNOWN.

account/accountI
DAttribute

The alternate identifier that is used to identify the user in the
system.

account/dateCreat
ed

The timestamp when the account ID was created.

account/dateModi
fied

The timestamp when the account ID was last modified.

account/accountC
ustomAttribute

The additional account information that you want to pass as a
name-value pair.

■ attributeName
Indicates the name of the attribute that you want to create.

■ attributeValue
Indicates the corresponding value for the name.

Deleting User Accounts

You must use the deleteUserAccount operation to delete accounts for the users. This
section walks you through the following topics for deleting user accounts:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the deleteUserAccountRequest message:

Element Mandatory Description

accountType Yes The attribute that qualifies the account ID and
provides additional context about the usage of the
account ID.

Performing User Account Operations

134 Web Services Developer's Guide

Element Mandatory Description

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To delete user accounts:

1. (Optional) Include the authentication and authorization details in the header of the
deleteUserAccount operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the deleteUserAccountRequest elements to collect the user details, as listed in
the preceding table.

3. Use the deleteUserAccountRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the deleteUserAccount operation of the ArcotUserRegistrySvc service to
delete accounts for the user.

This operation returns the deleteUserAccountResponse message that includes the
transaction identifier, authentication token, and user account details. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, deleteUserAccountResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. These elements are
explained in the following table. The SOAP body returns a success message if the
operation was performed successfully. If there are any errors, then the Fault response is
returned. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Setting the Personal Assurance Message

Chapter 6: Managing Users and Accounts 135

Setting the Personal Assurance Message

The Personal Assurance Message (PAM) is a text string that is displayed to the user,
when they try to access a resource protected by AuthMinder. This string assures the
user that they are connected to the genuine network or resource.

To set the PAM for a user, you must use the setPAM operation. This section walks you
through the following topics for setting the PAM for users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the setPAMRequest message:

Element Mandatory Description

UserId/orgName No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then
the Default Organization is used for the operation.

UserId/userName Yes The unique identifier with which the user is
identified in the system.

UserId/userRefId No The identifier that is used as a reference to track
different operations performed by a user.

PAM No The Personal Assurance Message (PAM) string
displayed to the user when they try to access a
resource protected by AuthMinder.

Note: If you do not pass the PAM element, then an
empty value will be set as PAM.

pamImageURL No The URL, which contains the image that is displayed
to the user when they try to access a resource
protected by AuthMinder.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in
tracking the related transactions.

Setting the Personal Assurance Message

136 Web Services Developer's Guide

Invoking the Web Service

To set the PAM for a user:

1. (Optional) Include the authentication and authorization details in the header of the
setPAM operation. See chapter, "Managing Web Services Security" (see page 35)
for more information on the header elements.

2. Use the setPAMRequest elements to collect the user information, as listed in the
preceding table.

3. Use the setPAMRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the setPAM operation of the ArcotUserRegistrySvc service to set the PAM
for the user.

This operation returns the setPAMResponse message that includes the transaction
identifier and authentication token. See the following section for more information
on the response message.

Interpreting the Response Message

The response message, setPAMResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. These elements are explained in the
following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Fetching the Personal Assurance Message

Chapter 6: Managing Users and Accounts 137

Fetching the Personal Assurance Message

To read the PAM that is set for a user, you must use the getPAM operation. This section
walks you through the following topics for fetching the PAM of the users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the getPAMRequest message:

Element Mandatory Description

UserId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

UserId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

UserId/userRefI
d

No The identifier that is used as a reference to track
different operations performed by a user.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Fetching the Personal Assurance Message

138 Web Services Developer's Guide

Invoking the Web Service

To fetch the PAM of a user:

1. (Optional) Include the authentication and authorization details in the header of the
getPAM operation. See chapter, "Managing Web Services Security" (see page 35)
for more information on the header elements.

2. Use the getPAMRequest elements to collect the user information, as listed in the
preceding table.

3. Use the getPAMRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the getPAM operation of the ArcotUserRegistrySvc service to get the PAM
for the user.

This operation returns the getPAMResponse message that includes the transaction
identifier, authentication token, and PAM. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, getPAMResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the PAM
for a successful transaction and the fault response for an error condition.

See the following table for more information on the elements returned for a successful
transaction. See appendix, "Error Codes" (see page 353) if there are any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

UserId/orgName The name of the organization to which the user belongs.

UserId/userName The unique identifier with which the user is identified in the
system.

UserId/userRefId The identifier that is used as a reference to track different
operations performed by a user.

Setting Custom User Attributes

Chapter 6: Managing Users and Accounts 139

Element Description

PAM The Personal Assurance Message (PAM) that is displayed to the
user when they try to access a resource protected by
AuthMinder.

pamImageURL The URL which contains the image that is displayed to the user
when they try to access a resource protected by AuthMinder.

Setting Custom User Attributes

In addition to the standard user information that AuthMinder supports, you can set
additional user information by using custom attributes. You must pass the additional
information as name-value pairs.

To set the custom user attributes, you must use the setCustomAttributes operation. This
section walks you through the following topics for setting custom attributes:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the setCustomAttributesRequest message:

Element Mandatory Description

UserId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

UserId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

UserId/userRefI
d

No The identifier that is used as a reference to track
different operations performed by a user.

customAttribut
e

No The additional user information that you want to pass
as a name-value pair.

■ name
Indicates the name of the attribute that you want
to create.

■ value
Indicates the corresponding value for the name.

Setting Custom User Attributes

140 Web Services Developer's Guide

Element Mandatory Description

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To set additional information for an user:

1. (Optional) Include the authentication and authorization details in the header of the
setCustomAttributes operation. See chapter, "Managing Web Services Security"
(see page 35) for more information on the header elements.

2. Use the setCustomAttributesRequest elements to collect the user information, as
listed in the preceding table.

3. Use the setCustomAttributesRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the setCustomAttributes operation of the ArcotUserRegistrySvc service to
set the user information.

This operation returns the setCustomAttributesResponse message that includes the
transaction identifier and authentication token. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, setCustomAttributesResponse, returns the transaction identifier
and authentication token in the SOAP envelope header. These elements are explained in
the following table. The SOAP body returns a success message if the operation was
performed successfully. If there are any errors, then the Fault response is returned. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Authenticating LDAP Users

Chapter 6: Managing Users and Accounts 141

Authenticating LDAP Users

This section discusses the operations used to authenticate users whose accounts are
present in the directory service. It covers the following topics:

■ Using the LDAP Password (see page 141)

■ Using Directory Service Attributes (see page 143)

Important! The operations discussed in this section are applicable only for organizations
with repository type as LDAP.

Using the LDAP Password

Administration Console supports LDAP authentication as one of authentication
mechanisms for users to log in to Administration Console. In this case, users log in to the
Console by specifying their LDAP user name and password.

To use the LDAP authentication mechanism to authenticate users, you must use the
authenticateUser operation. This section walks you through the following topics for
authenticating users using LDAP User Password authentication mechanism:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the authenticateUserRequest message:

Element Mandatory Description

UserCredential/
userId/orgNam
e

No The name of the organization to which the user
belongs.

Note: If the organization name is not passed, then the
Default Organization is used for the operation.

UserCredential/
userId/userNa
me

Yes The unique identifier with which the user is identified
in the system.

UserCredential/
userId/userRefI
d

No The identifier that is used as a reference to track
different operations performed by a user.

UserCredential/
userCredential/
type

Yes The credential that has to be used to authenticate the
user. You must set the type as password.

Authenticating LDAP Users

142 Web Services Developer's Guide

Element Mandatory Description

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Invoking the Web Service

To authenticate users using the LDAP authentication mechanism:

1. (Optional) Include the authentication and authorization details in the header of the
authenticateUser operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the authenticateUserRequest elements to collect the user and credential
information, as listed in the preceding table.

3. Use the authenticateUserRequest message and construct the input message by
using the details obtained in preceding step.

4. Invoke the authenticateUser operation of the ArcotUserRegistrySvc service to set
the user information.

This operation returns the authenticateUserResponse message that includes the
transaction identifier and authentication token. See the following section for more
information on the response message.

Interpreting the Response Message

The response message, authenticateUserResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
authentication status for a successful transaction, and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. Refer to appendix, "Error Codes" (see page 353) if there are any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

Authenticating LDAP Users

Chapter 6: Managing Users and Accounts 143

Element Description

AuthResult/status The authentication status of the user in the LDAP. Possible values
are:

■ SUCCESS

■ FAILURE

Using Directory Service Attributes

This section discusses the operations that are used to authenticate users using their
directory service attributes:

■ Fetching User Attributes (see page 143)

■ Fetching User Attribute Values (see page 145)

■ Verifying User Attributes (see page 147)

Fetching User Attributes

The attributes (with string or integer value) that are used to store the user information
in the directory service can be read using the getQnAAttributes operation. This section
walks you through the following topics related to this operation:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the QnAAttributesRequest message:

Element Mandatory Description

orgName Yes The name of the LDAP organization to which the user
attributes that you want to fetch belongs.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Authenticating LDAP Users

144 Web Services Developer's Guide

Invoking the Web Service

To fetch the user attributes:

1. (Optional) Include the authentication and authorization details in the header of the
getQnAAttributes operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the getQnAAttributesRequest elements to collect the organization information,
as listed in the preceding table.

3. Use the QnAAttributesRequest message and construct the input message by using
the details obtained in preceding step.

4. Invoke the getQnAAttributes operation of the ArcotUserRegistrySvc service to fetch
the user attributes of the LDAP organization.

This operation returns the QnAAttributesResponse message that includes the
transaction identifier, authentication token, and user attributes. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, QnAAttributesResponse, returns the transaction identifier and
the authentication token in the SOAP envelope header. The SOAP body includes the
user attributes for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. See appendix, "Error Codes" (see page 353) if there are any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

The user attributes configured in the LDAP.

Authenticating LDAP Users

Chapter 6: Managing Users and Accounts 145

Fetching User Attribute Values

The getQnAValues operation is used to read the values that are set for the user
attributes present in the directory service. You can fetch the values for one or more
attributes. This section walks you through the following topics related to this operation:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the QnAValuesRequest message:

Element Mandatory Description

username Yes The unique identity of the user whose attribute values
you want to fetch.

orgname Yes The name of the LDAP organization to which the user
attribute values that you want to fetch belongs.

attributes/attri
bute

Yes The name of the attributes whose value you want to
fetch.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Authenticating LDAP Users

146 Web Services Developer's Guide

Invoking the Web Service

To fetch the values of user attributes:

1. (Optional) Include the authentication and authorization details in the header of the
getQnAValues operation. See chapter, "Managing Web Services Security" (see
page 35) for more information on the header elements.

2. Use the getQnAValuesRequest elements to collect the user, organization, and
attribute information, as listed in the preceding table.

3. Use the QnAValuesRequest message and construct the input message by using the
details obtained in preceding step.

4. Invoke the getQnAValues operation of the ArcotUserRegistrySvc service to fetch the
values of the user attributes that are stored in directory service.

This operation returns the QnAValuesResponse message that includes the
transaction identifier, authentication token, and attribute values. See the following
section for more information on the response message.

Interpreting the Response Message

The response message, QnAValuesResponse, returns the transaction identifier and the
authentication token in the SOAP envelope header. The SOAP body includes the user
attribute values for a successful transaction and the Fault response for an error
condition.

See the following table for more information on the elements returned for a successful
transaction. See appendix, "Error Codes" (see page 353) if there are any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

The values for the user attributes that are configured in the directory service.

Authenticating LDAP Users

Chapter 6: Managing Users and Accounts 147

Verifying User Attributes

You can authenticate the users of an organization (mapped to LDAP repository) by using
their LDAP attributes. You must use the performQnAVerification operation to perform
this authentication. This section walks you through the following topics related to this
operation:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The following table lists the elements of the QnAVerificationRequest message:

Element Mandatory Description

username Yes The unique identifier of the user whose attributes you
want to verify.

orgname Yes The name of the LDAP organization to which the user
belongs to.

attributes/attri
bute

Yes The name (attrName) and value (attrValue) of the
attribute that has to be verified.

ignorecase Yes Specifies whether the case of the attribute values
passed in the input must match the case of the values
stored in the directory service. Possible values are:

■ 0: Indicates that the case must match.

■ 1: Indicates that the case of the input values will
be ignored.

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Authenticating LDAP Users

148 Web Services Developer's Guide

Invoking the Web Service

To authenticate users with their LDAP attributes:

1. (Optional) Include the authentication and authorization details in the header of the
performQnAVerification operation. See chapter, "Managing Web Services Security"
(see page 35) for more information on the header elements.

2. Use the performQnAVerificationRequest elements to collect the user, organization,
and attribute information, as listed in the preceding table.

3. Use the QnAVerificationRequest message and construct the input message by using
the details obtained in preceding step.

4. Invoke the performQnAVerification operation of the ArcotUserRegistrySvc service
to fetch the values of the user attributes that are stored in directory service.

This operation returns the QnAVerificationResponse message that includes the
transaction identifier, authentication token, and verification result. See the
following section for more information on the response message.

Interpreting the Response Message

The response message, QnAAVerificationResponse, returns the transaction identifier
and the authentication token in the SOAP envelope header. The SOAP body includes the
verification result for each attribute and the Fault response for an error condition.

See the following table for more information on the elements returned for a successful
transaction. See appendix, "Error Codes" (see page 353) if there are any errors.

Element Description

Header Elements

udsTransactionID The unique identifier of the transaction that is performed using
UDS.

authToken The authentication token that is returned if the credential
verification to access Web services was successful. This token
eliminates the need for you to present the authentication
credential for successive access to the Web services.

By default, the authentication token is valid for one day, after
which you need to authenticate again.

Body Elements

QnAResponseAttri
bute/name

The name of the user attribute that was verified.

Authenticating LDAP Users

Chapter 6: Managing Users and Accounts 149

Element Description

QnAResponseAttri
bute/result

The result of the verification. Possible values are:

■ MATCHED

■ NOT_MATCHED

■ NOT_VERIFIED

■ NOT_FOUND

Chapter 7: Managing AuthMinder Configurations 151

Chapter 7: Managing AuthMinder
Configurations

Managing configurations is a key part of AuthMinder management. You can manage
AuthMinder configurations at two levels:

■ Global, applicable to all organizations

■ Organization-level, applicable to an individual organization

When you set global configurations at the system level, all organizations in the system
can inherit them. You can also override these global settings at the organization-level,
and apply them only to the specific organization where they were set. The changes you
make to the configuration globally or at an organization-level are not applied
automatically. You need to refresh all server instances to apply these configuration
changes.

This chapter discusses the Web services operations that AuthMinder provides to create
and manage configuration profiles used to configure various credentials and
authentication policies. In AuthMinder, a profile comprises a logical grouping of
configuration settings for a particular credential. This chapter covers the following
topics:

■ Creating Configurations (see page 152)

■ Updating Configurations (see page 183)

■ Fetching Configurations (see page 184)

■ Assigning Default Configurations (see page 187)

■ Fetching Server Events (see page 191)

■ Checking Key Availability in HSM (see page 193)

■ Deleting Configurations (see page 195)

To perform the operations discussed in this chapter, you need to use the
ArcotWebFortAdminSvc.wsdl file.

Creating Configurations

152 Web Services Developer's Guide

Creating Configurations

Each end user in AuthMinder is associated with at least one credential (such as ArcotID
PKI, QnA, Password, or OTP) that they must use to log in to the system. With a large
number of end users enrolled with AuthMinder, you might find that the same credential
template can be applied as-is to many users. In such cases, AuthMinder provides you
the flexibility to create common ready-to-use credential configurations, known as
credential profiles that can be shared among multiple organizations and, thereby,
applied to multiple users. As a result, credential profiles simplify the management of
credential issuance.

Credential profiles specify issuance configuration properties, and credential attributes
such as, validity period, key strengths, and details related to password strength.
AuthMinder is shipped with a default profile for each credential.

Also, AuthMinder supports multiple authentication mechanisms. Every time an end user
attempts authentication against AuthMinder, the authentication process is controlled
by a set of rules referred to as authentication policies. These rules can be configured to
track the number of failed authentication attempts allowed before credential lockout,
and also to track user status before authentication.

You can create configurations either by using Administration Console or by using
Administration Web services. This section walks you through the following topics for
configuring credential profiles, authentication policies, domain key and master keys,
RADIUS, plug-ins, ASSP, and SAML tokens:

■ Preparing the Request Message (see page 152)

■ Invoking the Web Service (see page 181)

■ Interpreting the Response Message (see page 182)

Preparing the Request Message

The createRequest message is used to set the following information:

■ Credential Profiles (see page 153)

■ Authentication Policies (see page 162)

■ Miscellaneous Configurations (see page 166)

■ Domain Key and Master Keys (see page 166)

■ RADIUS Configurations (see page 169)

■ Credential Type Resolution Configurations (see page 174)

■ Plug-In Configurations (see page 175)

■ ASSP Configurations (see page 178)

■ SAML Token Configurations (see page 179)

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 153

Credential Profiles

AuthMinder provides profiles for all the supported credentials. To modify the default
credential profile or add new profiles, use the elements discussed in this section:

■ Common Profile Elements

■ ArcotID PKI Credential Profile Elements

■ Questions and Answers (QnA) Credential Profile Elements

■ Password Credential Profile Elements

■ OTP Credential Profile Elements

■ OATH OTP Credential Profile Elements

■ ArcotID OTP Credential Profile Elements

■ EMV OTP Credential Profile Elements

Common Profile Elements

The following table lists the common elements that are applicable to all credentials:

Element Mandatory Description

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in
tracking the related transactions.

Additional Input (additionalInput) Elements

pairs No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use
while returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Creating Configurations

154 Web Services Developer's Guide

Element Mandatory Description

Organization Detail (configurations/orgDetails) Elements

orgName Yes Indicates the name of the organization to which you
want to apply these configuration settings.

OR

isGlobal Yes Indicates whether you want to apply these
configuration settings at the global level, which means
these configurations will be available to all the
organizations in the system.

Credential Configuration Elements

The following elements are applicable to all credential configurations, namely
arcotIDIssuanceConfigs, qnaIssuanceConfigs, passwordIssuanceConfigs,
serverOTPIssuanceConfigs, oathIssuanceConfigs, arcotOTPIssuanceConfigs,
emvIssuanceConfigs.

name No Indicates the name of the new profile. Each profile is
identified by a unique profile name.

status No Indicates the configuration status. Possible values are:

■ ACTIVE

■ DISABLED

■ DELETED

■ DEFAULT

■ READONLY

multipleUsageC
ount

No

Indicates the number of times a credential can be
used.

usageType No Multiple credentials of the same type can be issued
for a user. The usage type identifies the purpose for
which each credential is used. For example, a user can
have a temporary password to perform a remote login
to the network. The usage type for this password can
be temporary.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 155

Element Mandatory Description

validity/
validityBegin
and validityEnd

No When creating a credential, you can set a period for
which the credential will be valid. The validityBegin
and validityEnd elements enable you to set the
validity period by using the following elements:

■ year
The year when the validity period begins or ends.

■ month
The month when the validity period begins or
ends.

■ day
The day on which the validity period begins or
ends

■ hour
The hour at which the validity period begins or
ends.

■ minute
The minute at which the validity period begins or
ends.

■ second
The second at which the validity period begins or
ends.

■ dateType
The start date or end date of the validity period.
Following are the supported date types:
1
Uses the current date of AuthMinder Server to
set the validity or disable period. This is not
applicable for validityEnd.
2
Indicates that the credential will be valid forever
and will not expire. This is not applicable for
validityBegin.
3
Uses the absolute date that is specified by your
application to set the validity or disable period.
4
Uses a relative date corresponding to the start
date. For example, if the relative date is one
month, then the end date would be one month
after the start date.

Creating Configurations

156 Web Services Developer's Guide

Element Mandatory Description

userCheck No AuthMinder uses the user check information before
performing some of the credential operations. The
following elements are used to perform user checks:

■ userActiveCheck
Indicates the user status. The issuance operation
will fail if the user is in the disabled state.

■ userAttributesToCheck
Indicates whether the user attributes match
certain values. You can set the attributes in
name-value pairs.
name
Indicates the attribute whose value you want to
match before creating the credential.
value
Indicates the corresponding value for the name.

customAttribut
es

No This element is used to define any custom attributes
for a credential profile. This helps in maintaining any
additional credential information. For example, if you
do not want the user to download their ArcotID PKI on
more than five systems, then you can create an
attribute with this information.

You can set the custom attributes in name-value pairs.

■ name
Indicates the name with which you want to create
the custom attribute.

■ value
Indicates the corresponding value for the name.

ArcotID Credential Profile Elements

The following table lists the elements that are specific to the ArcotID PKI credential
profile (arcotIDIssuanceConfigs):

Element Mandatory Description

keyLength No Indicates the size (in bits) of the key to be used in
ArcotID PKI’s Cryptographic Camouflage algorithm.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 157

Element Mandatory Description

unsignedAttrib
utes

No Indicates the attributes that are set while creating or
after creating an ArcotID PKI for the user. Such
attributes are called unsigned attributes because
these attributes (name-value pairs) are set in the
unsigned portion of the ArcotID PKI.

■ name
Indicates the name with which you want to create
the unsigned attribute.

■ value
Indicates the corresponding value for the name.

passwordStreng
thParameters

No The effectiveness of the password, which is
determined by a combination of the length of the
password and number of alphabets, numerals, and
special characters in it.

The following elements are used to set the strength of
a password:

■ minLength
The least number of characters that the password
can contain.The minimum length must be
between 1 and 64 characters.

■ maxLength
The maximum number of characters that the
password can contain.The maximum length must
be between 1 and 64 characters.

■ minAlphaChars
The least number of alphabetic characters (a-z
and A-Z) that the password can contain.

■ minNumericChars
The least number of numeric characters (0
through 9) that the password can contain.

■ minSpecialChars
The least number of special characters that the
password can contain. By default, all the special
characters excluding ASCII (0-31) characters are
allowed.

Note: The sum of all the elements must be less than
minLength.

Creating Configurations

158 Web Services Developer's Guide

Element Mandatory Description

historyConfig No This element is used to enforce users to not reuse old
ArcotID PKI passwords. Any one of the following
elements can be used for configuration:

■ count
Use this element if you want the current ArcotID
PKI password to be different from the last n
passwords.

■ time
Use this element if you want the current ArcotID
PKI password to be different from the passwords
created during a specified duration. For
information about the elements used to specify
duration, see the "validity/ validityBegin and
validityEnd" element.

Questions and Answers (QnA) Credential Profile Elements

The following table lists the elements that are specific to the QnA credential profile
(qnaIssuanceConfigs):

Element Mandatory Description

maxQuestions No Indicates the maximum number of questions and
answers the user must set during issuance.

minQuestions No Indicates the minimum number of questions and
answers the user can set during issuance.

questions No A list of pre-configured questions that users can use to
set up their QnA credential.

isCaseSensitive No Indicates whether the answers entered by the users
must be case-sensitive or not.

questionReturn
Mode

No Indicates how the questions must be selected for the
users to provide their answers. The supported values
are:

■ 1
Indicates a static set wherein a fixed set of
questions are selected from the configured set
and presented to users.

■ 2
Indicates a random set wherein the questions are
selected randomly from the configured set and
presented to users.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 159

Password Credential Profile Elements

The following table lists the elements that are specific to the Password credential profile
(passwordIssuanceConfigs):

Element Mandatory Description

enforceUnique
nessAcrossUsag
eTypes

No Multiple passwords that are set using the usageType
can be unique or the same.

generatePassw
ord

No Indicates whether the password should be generated
by AuthMinder Server.

passwordStreng
thParameters

No The effectiveness of password, which is determined
by a combination of the length of the password and
number of alphabets, numerals, and special
characters in it.

The following elements are used to set the strength of
a password:

■ minLength
The least number of characters that the password
can contain.The minimum length must be
between 1 and 64 characters.

■ maxLength
The maximum number of characters that the
password can contain.The maximum length must
be between 1 and 64 characters.

■ minAlphaChars
The least number of alphabetic characters (a-z
and A-Z) that the password can contain. This
value must be lesser than or equal to the value
specified in minLength.

■ minNumericChars
The least number of numeric characters (0
through 9) that the password can contain.

■ minSpecialChars
The least number of special characters that the
password can contain. By default, all the special
characters excluding ASCII (0-31) characters are
allowed.

Note: The sum of all the elements must be less than
minLength.

Creating Configurations

160 Web Services Developer's Guide

Element Mandatory Description

historyConfig No This element is used to enforce users to not reuse old
passwords. Select any one.

■ count
Use this element if you want the current
password to be different from the last passwords.

■ time
Use this element if you want the current
password to be different from the passwords
created during a specified duration. For
information about the elements used to specify
duration, see the "validity/ validityBegin and
validityEnd" element.

OTP Credential Profile Elements

The following table lists the elements that are specific to the OTP credential profile
(serverOTPIssuanceConfigs):

Element Mandatory Description

length No The length of the OTP. By default, the OTP length is 5.

type No Indicates whether the OTP is numeric or
alphanumeric. Following are the supported values:

■ 1: Generates a numeric OTP.

■ 2: Generates an alphanumeric OTP.

OATH OTP Credential Profile Elements

The OATH OTP credential (oathIssuanceConfigs) does not have any specific
configurations.

ArcotID OTP Credential Profile Elements

The following table lists the elements that are specific to the ArcotID OTP (also known as
ArcotID OTP-OATH) credential profile (arcotOTPIssuanceConfigs):

Element Mandatory Description

length No The length of the OTP.

type No The type of the OTP. Following are the supported
values:

■ HOTP

■ TOTP

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 161

Element Mandatory Description

provisioningAtt
ributes

No User attributes that must be set at the time of issuing
the credential.

customCardAttr
ibutes

No Additional attributes that you need to pass for the
ArcotID OTP-OATH credential in the name-value pair
format. These attributes are added in the card.

EMV OTP Credential Profile Elements

The following table lists the elements that are specific to the EMV OTP (also known as
ArcotID OTP-EMV) credential profile (emvIssuanceConfigs):

Element Mandatory Description

accountType No The Primary Account Number (PAN) of the EMV card.

attributeForPan
Sequence

No The user account attribute that contains the PAN
sequence, which identifies and differentiates cards
with the same PAN.

provisioningAtt
ributes

No User attributes that must be set at the time of issuing
the credential.

emvAttributes No EMV-specific attributes.

customCardAttr
ibutes

No Additional attributes that can be added at the time of
issuing the credential. These attributes are added in
the card.

Creating Configurations

162 Web Services Developer's Guide

Authentication Policies

The createRequest message is used to create authentication policies in the AuthMinder
database.

This section lists the elements that are required to set the credential policy information.

■ Common Policy Elements

■ ArcotID PKI Authentication Policy Elements

■ QnA Authentication Policy Elements

■ Password Authentication Policy Elements

■ OTP-Based Authentication Policy Elements

Common Policy Elements

The following table lists the common policy-related elements that are applicable to all
credentials:

Element Mandatory Description

name No Indicates the name of the new policy.

status No Indicates the status of the configuration. Possible
values are as follows:

■ ACTIVE

■ DISABLED

■ DELETED

■ DEFAULT

■ READONLY

maxStrikes No Indicates the number of failed attempts after which
the user’s credentials will be locked out.

warningPeriod No Indicates the number of days before the warning is
sent to the calling application about the user’s
impending credential expiration.

gracePeriod No Indicates the number of days a user is allowed to
authenticate successfully with their expired ArcotID
PKI credential.

autoUnlockPeri
od

No Indicates the number of hours after which a locked
credential can automatically be used to log in again.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 163

Element Mandatory Description

userCheck No AuthMinder uses the user check information before
performing some of the operations. The following
elements are used to perform user checks:

■ userActiveCheck
Indicates whether the user is active.

■ userAttributesToCheck
Indicates whether the user attributes match
certain values. You can set the attributes in
name-value pairs.
name
Indicates the name with which you want to create
the attribute.
value
Indicates the corresponding value for the name.

matchAcrossUs
ageType

No Indicates a match across usage types.

Multiple credentials of the same type can be issued for
a user. A description is necessary to identify the
purpose for which each credential is used. For
example, a user can have a temporary password to
perform a remote login to the network. The usage type
for this password can be temporary.

usageTypeToM
atch

No Indicates the usage type that needs to be matched.

ArcotID PKI Authentication Policy Elements

The following table lists the elements that are specific to the ArcotID PKI credential
authentication policy (arcotIDAuthConfigs):

Element Mandatory Description

challengeTime
out

No Indicates the duration for which the ArcotID PKI
challenge must be valid. By default, the validity period
is 300 seconds.

Creating Configurations

164 Web Services Developer's Guide

QnA Authentication Policy Elements

The following table lists the elements that are specific to the QnA credential
authentication policy (qnaAuthConfigs):

Element Mandatory Description

numQuestions
ToChallenge

No Indicates the number of questions that AuthMinder
must ask users during authentication. The default
value is 3.

minAnswersRe
quired

No Indicates the minimum number of questions for which
correct answers are required during authentication.
The default value is 3.

questionsChall
engeMode

No Indicates how the questions are selected for the
challenge. The supported values are:

■ 1
This indicates a random set wherein the questions
are selected randomly from the configured set.

■ 2
This indicates an alternate set wherein a new set
of questions is selected from the configured set,
which means the questions that were asked in the
last authentication prompt are skipped.

questionSetCha
ngeOption

No Specifies when AuthMinder Server must select a new
set of questions for the challenge.

■ 1
This indicates that a fixed set of questions are
selected from the configured set and presented to
the users.

■ 2
This indicates that a random set of questions are
selected from the configured set and presented to
the users.

isCVMEnabled No Indicates whether caller side verification is enabled or
not. The supported values are:

■ 0: Indicates the feature is disabled.

■ 1: Indicates the feature is enabled.

See "Questions and Answers Authentication" (see
page 264) for more information on caller side
verification.

challengeTime
out

No Indicates the duration for which the QnA challenge
must be valid. By default, the validity period is 300
seconds.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 165

Password Authentication Policy Elements

The following table lists the elements that are specific to the Password credential
authentication policy (passwordAuthConfigs):

Element Mandatory Description

numPositionsT
oChallenge

No Indicates the total number of password character
positions that have to be challenged by AuthMinder
Server.

Note: Applicable only for partial passwords.

challengeTime
out

No Indicates the duration for which the password
challenge has to be valid. By default, the validity period
is 300 seconds.

OTP-Based Authentication Policy Elements

The following table lists the elements that are specific to the OATH OTP, ArcotID OTP,
and EMV OTP credential authentication policy (oathAuthConfigs,arcotOTPAuthConfigs,
and emvAuthConfigs).

Note: The OTP generated by AuthMinder Server (serverOTPAuthConfigs) does not have
any specific configurations.

Element Mandatory Description

otpCounterTol
erance

No This element contains the OTP counter tolerance
parameters.

■ authLookAhead
Indicates the number of times the OTP counter on
AuthMinder Server is increased to verify the OTP
entered by the user.

■ authLookBack
Indicates the number of times the OTP counter on
AuthMinder Server is decreased to verify the OTP
entered by the user.

■ reSyncLookAhead
Indicates the number of times the OTP counter on
AuthMinder Server is increased to synchronize
with the OTP counter on the client device.

■ reSyncLookBack
Indicates the number of times the OTP counter on
AuthMinder Server is decreased to synchronize
with the OTP counter on the client device.

Creating Configurations

166 Web Services Developer's Guide

Miscellaneous Configurations

The following table lists the authentication-related miscellaneous configurations:

Element Mandatory Description

miscellaneousC
onfigs

No ■ nativeTokenTimeout
Native tokens are AuthMinder-proprietary tokens
that can be used multiple times before they
expire. This element indicates the validity time, in
seconds, of the token.

■ ottLength
A one-time token (OTT) can be used only once
before it expires. This element indicates the length
of the OTT.

■ ottTimeout
Indicates the validity time, in seconds, of the OTT.

Domain Key and Master Keys

Keys are used to protect the shared secret that is used to generate and authenticate
credentials, which include ArcotID PKI, OATH OTP, ArcotID OTP-OATH, and ArcotID
OTP-EMV. The key used to create and manage the ArcotID PKI is called Domain Key and
the keys used to create and manage other credentials are called Master Keys.

When the user tries to authenticate using their credential, AuthMinder first checks
whether the key that was used to protect the credential is valid. If the key is valid, then
the user will be authenticated on providing the correct credential. Else, the user
authentication fails.

By default, a key configuration is created when the AuthMinder Server is started for the
first time. You can use this default configuration or create your own configuration using
the keyConfigs element. You can create multiple key configurations, but only the
configuration that is assigned to the credential type is used for creating credentials and
authenticating those configurations. The other active configurations are used for
authentication only.

The keyConfigs element is used to create the key configurations. The following table
lists the key management-specific elements of this message:

Element Mandatory Description

name No Name for the configuration.

status No Indicates the status of the configuration.

label No The label that will be used to store the Domain Key.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 167

Element Mandatory Description

keyStatus No Indicates the status of the key. Following are the
supported values:

■ 1: The key is active. The configurations created
using this key can be used for both authentication
and issuance operations.

■ 2: The key is inactive. The configurations created
using this key might have expired. In this case, you
can extend the validity and continue to use the
credentials.

■ 3: The key is retired. The configurations created
using this key are not valid anymore, and the
credentials associated with this configuration will
expire.

keyInHSM

No Indicates whether you want to store the key in the
Hardware Security Module (HSM).

Creating Configurations

168 Web Services Developer's Guide

Element Mandatory Description

validity/
validityBegin
and validityEnd

No While creating a key, you can set a period for which
the key will be valid. When the key expires, the
credentials issued with that key also expires.
The validityBegin and validityEnd elements enable you
to set the validity period by using the following
elements:

■ year
The year when the validity period begins or ends.

■ month
The month when the validity period begins or
ends.

■ day
The day on which the validity period begins or
ends

■ hour
The hour at which the validity period begins or
ends.

■ minute
The minute at which the validity period begins or
ends.

■ second
The second at which the validity period begins or
ends.

■ dateType
The start date or end date of the validity period.
The following are the supported date types:
1
Uses the current date of AuthMinder Server to set
the validity or disable period. This is not applicable
for validityEnd.
2
Indicates that the credential will be valid forever
and will not expire. This is not applicable for
validityBegin.
3
Uses the absolute date that is specified by your
application to set the validity or disable period.
4
Uses a relative date corresponding to the start
date. For example, if the relative date is one
month, then the end date would be one month
after the start date.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 169

RADIUS Configurations

If configured, AuthMinder can serve as a RADIUS Server to the configured Network
Access Server (NAS) or the RADIUS clients.

This section walks you through preparing request messages for the following:

■ RADIUS Client

■ RADIUS Server

RADIUS Client

The radiusClientConfigs element of the createRequest message is used to configure
RADIUS Client. The following table lists the elements of this message:

Element Mandatory Description

name No Name for the configuration.

status No Indicates the status of the configuration.

Creating Configurations

170 Web Services Developer's Guide

Element Mandatory Description

radiusClient

No Contains the following elements:

■ authType
The authentication mechanism that will be used
for VPN authentication. The supported
authentication mechanisms are:
- RADIUS OTP
- In-Band Password
To use this method, configure the credential type
resolution.
- EAP

■ description
A string to describe the RADIUS client. The
description helps to identify the RADIUS client, if
multiple clients are configured.

■ maxPacketSize
The packet size for the RADIUS messages.

■ protocolVersion
The RADIUS version supported for the client being
added. The supported values are:
- 1.0
- 2.0

■ sharedSecret
The secret shared between the RADIUS client and
AuthMinder Server.

■ additionalRADIUSAttributes
Contains attributes that you want AuthMinder
Server to return in the response message sent to
the RADIUS client after successful authentication.
The attributes are set in name-value pairs.

■ defaultOrg
Name of the default organization that is supported
by the RADIUS client. This attribute is used in
In-Band authentication and is used to resolve the
organization name during authentication..

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 171

Element Mandatory Description

 ■ orgsSupported
List of organizations that are supported by the
RADIUS client, these organization are configured
at the global-level. This attribute is used in In-Band
authentication and is used to resolve the
organization name during authentication.

■ packetDropConditions
The conditions for which the AuthMinder server
will not process the RADIUS requests. Following
are the possible values:
1102: For user not found condition
5800: For credential not found condition
1000: For internal error
1051: For invalid requests

radiusClient

No ■ enableRetry
Indicates whether the RADIUS client should try to
send the request to AuthMinder Server if it does
not receive any response.

■ retryWindow
Indicates the duration in seconds for which the
client must wait to receive a response, in case the
enableRetry element is set to true. After this
period, the retry is considered invalid.

eapAuthTypeD
ata

No Contains the following elements related EAP
authentication. Set any of the following elements:

■ serverCertKeyPair/KeyPairInHSM
Set the serverCertKeyPair element to AuthMinder
Server certificate chain in PEM format.

■ serverCertKeyPair/KeyPairInP12
Set cerKeyP12 to the base64-encoded format of
AuthMinder Server certificate in PKCS#12 format.
Set certKeyP12Password to the password of the
PKCS#12 file.

Creating Configurations

172 Web Services Developer's Guide

RADIUS Server

AuthMinder can be used as a proxy server to pass any password-based authentication
requests to other servers that work on RADIUS protocol.

The radiusServerConfigs element of the createRequest message is used to configure
RADIUS Server.

The following table lists the elements of this message:

Element Mandatory Description

name No Name for the configuration.

status No Indicates the status of the configuration.

isEnabled No An option to enable AuthMinder Server to pass the
RADIUS requests to the other configured RADIUS
server.

useSystemConf
ig

No An option to use system configuration or organization
level configuration.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 173

Element Mandatory Description

radiusServers

No Contains the following elements:

■ authType
The authentication mechanism that will be used
for VPN authentication. The supported
authentication mechanisms are:
- RADIUS OTP
- In-Band Password

■ description
A string to describe the RADIUS server. The
description helps to identify the RADIUS server, if
multiple servers are configured.

■ maxPacketSize
The packet size for the RADIUS messages.

■ protocolVersion
The RADIUS version supported for the server being
added. The supported values are:
- 1.0
- 2.0

■ sharedSecret
The secret symmetric key shared between the
RADIUS server and AuthMinder Server.

■ additionalRADIUSAttributes
Contains attributes that you want AuthMinder
Server to forward to the RADIUS server. The
attributes are set in name-value pairs.

■ ipAddress
The IP Address of the RADIUS server.

■ port
The port number on which the RADIUS server is
listening.

Creating Configurations

174 Web Services Developer's Guide

Element Mandatory Description

 ■ readTimeout
Indicates the maximum time to wait for a
response from the RADIUS server.

■ retryCount
Indicates the number of times AuthMinder Server
should try to connect to RADIUS server if there is
no response from the AuthMinder Server.

■ failoverOrder
If multiple servers are configured, then this
element identifies the server priority, based on
this the requests are sent to a particular server in
case of failover.

Credential Type Resolution Configurations

The authentication requests that are presented to AuthMinder Server must specify the
type of credential that has to be used to process the request. In case of RADIUS and
ASSP authentication requests, the input requests do not specify the type of credential.
By default, RADIUS uses One-Time Password and ASSP uses password credential for
authentication.

To support any password-based authentication mechanisms for RADIUS and ASSP, or to
use verifyPlain authentication, you must create the Credential Type Resolution
configuration. You can map the input request to any of the following password type of
credentials that AuthMinder supports:

■ Password

■ One-Time Password

■ One-Time Token (OTT)

■ OATH OTP

■ ArcotID OTP OATH

■ ArcotID OTP EMV

■ LDAP Password

■ Native Token

The credTypeResolutionConfigs element of the createRequest message is used to
configure credential types.

The following table lists the elements of this message:

Element Mandatory Description

name No Name for the configuration.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 175

Element Mandatory Description

status No Indicates the status of the configuration.

credType No The type of credential that has to be used to
authenticate users with this credential type resolution
configuration. Following are the supported values:

■ 1: For password

■ 4: For OTP

■ 5: For OTT

■ 7: For OATH OTP

■ 8: For ArcotID OTP-OATH

■ 9: For ArcotID OTP-EMV

■ 10: For LDAP password

■ 11: For Native token

userAttributeF
orCredType

No The custom attributes of the user that defines the
credential type to be used to authenticate the user.
Include credType as one of the attributes.

Note: The user attributes that you provide here must
match the attributes that you have specified for the
user during user creation.

Plug-In Configurations

Plug-ins enable you to extend the functionality of AuthMinder Server. Using the
pluginConfigs element of the createRequest message, you can register and configure a
plug-in.

Important! To use plug-in configurations, first log in to Adminstration Console as the
MA and then register a plug-in.

The following table lists the pluginConfigs element of the createRequest message:

Element Mandatory Description

name No Name for the configuration.

status No Indicates the status of the configuration.

Creating Configurations

176 Web Services Developer's Guide

Element Mandatory Description

pluginConfigEl
ements

No Contains the following elements:

■ name
Indicates the name of the plug-in that you want to
configure.

■ type
Indicates the type of the plug-in element. For
example, integer, list, boolean, string, or file.

■ description
User friendly description for the plug-in element.

■ defaultValue
The default value of the plug-in element.

■ assignedValue
The value assigned for the plug-in element in string
format.

■ listValues
If the plug-in element is of the type list, then this
input specifies the values that are supported by
the list. For example, if the plug-in element type is
OTP, then the listValues would be Numeric,
Alphabetic, or Alpha-Numeric.

■ assignedValueBytes
The value assigned for the plug-in element in
base64-encoded format.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 177

Element Mandatory Description

events No An event is a pre-defined operation in the AuthMinder
system. You must define the events that will invoke a
configured plug-in. Use the following elements to
configure the plug-in events:

■ eventsSupported
The events supported by the plug-in.
- eventID
A numeric representation of the event. When
associating an event with a plug-in, the eventID is
required.
- eventName
A string representation of the event. When
associating an event with a plug-in.

■ eventsAvailable
For a given organization, the unused events that
can be associated with a plug-in.
- eventID
A numeric representation of the event. When
associating an event with a plug-in, the event ID is
required.
- eventName
A string representation of the event. When
associating an event with a plug-in, the eventName
is not required.

■ eventsAssociated
Events already associated with a plugin or those
that are available for use.
- eventID
A numeric representation of the event. When
associating an event with a plug-in, the eventID is
required.
- eventName
A string representation of the event. When
associating an event with a plug-in, the eventName
is not required.

isTemplate No Indicates whether the plug-in information is to be read
from a template.

Creating Configurations

178 Web Services Developer's Guide

ASSP Configurations

Adobe Signature Service Protocol (ASSP) is used for signing PDF documents using CA
SignFort. Before signing, users are authenticated by using AuthMinder authentication
methods. A SAML token is returned to the user after successful authentication. This
token is then verified by the SignFort Server. Using the asspConfigs element of the
createRequest message, you can configure ASSP.

The following table lists the asspConfigs element of the createRequest message:

Element Mandatory Description

name No Name for the configuration.

status No Indicates the status of the configuration.

tokenServer No The name of the server that issues the authentication
token.

roamingURL No The ArcotID PKI Roaming URL that will be used to
download ArcotID PKIs in case of ArcotID PKI Roaming
Download.

In case of ArcotID PKI Roaming Download, if the user
does not have their ArcotID PKI present on their
current system, then the ArcotID PKI Roaming URL is
used to authenticate to AuthMinder Server and
download the user’s ArcotID PKI.

mechanisms No The authentication mechanism that will be used for
authentication. The information required is:

■ mechanism
The authentication mechanism that will be used to
authenticate the user before signing.

■ status
1 indicates that ASSP authentication mechanism
will be used.

samlTokenSigni
ngCertKeyPair

No Indicates the Store path that contains AuthMinder
Server certificate, and the private key that will be used
by AuthMinder Server to issue the SAML token.
Following are the choices:

■ KeyPairInHSM
Set the certChainPEM element to AuthMinder
Server certificate chain in PEM format.

■ KeyPairInP12
Set cerKeyP12 to the base64-encoded format of
AuthMinder Server certificate in PKCS#12 format.
Set certKeyP12Password to the password of the
PKCS#12 file.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 179

Element Mandatory Description

samlTokenAttri
butes

No

The attributes of the SAML token. The attributes
required are:

■ issuerName
The name of the Issuer who will provide the SAML
token generated by AuthMinder.

■ oneTimeUse
Indicates whether the SAML token is to be used
only once for authentication.

■ assertionTimeOut
The duration after which the SAML token cannot
be used.

■ audiences
The details of the audience who can use the SAML
token.

kerberosUsePr
ocessCredentia
ls

No Indicates whether Kerberos is to be used as the
authentication method.

kerberosUserN
ame

No User name for Kerberos authentication.

kerberosPassw
ord

No Password for Kerberos authentication.

kerberosDomai
nName

No Domain name for Kerberos authentication.

SAML Token Configurations

AuthMinder supports different types of authentication tokens, and Secure Assertion
Markup Language (SAML) tokens are one among them (in addition to Native, OTT, and
Custom token types.)

If you want to issue SAML as authentication tokens, then you must configure the SAML
token properties. Using the samlTokenConfigs element of the createRequest message,
you can configure SAML.

The following table lists the samlTokenConfigs element of the createRequest message:

Element Mandatory Description

name No Name for the configuration.

status No Indicates the status of the configuration.

Creating Configurations

180 Web Services Developer's Guide

Element Mandatory Description

tokenSigningCe
rtKeyPair

No Indicates the path that contains AuthMinder Server
certificate, and the private key that will be used by
AuthMinder Server to issue the SAML token. Following
are the choices:

■ KeyPairInHSM
Set the certChainPEM element to AuthMinder
Server certificate chain in PEM format.

■ KeyPairInP12
Set cerKeyP12 to the base64-encoded format of
AuthMinder Server certificate in PKCS#12 format.
Set certKeyP12Password to the password of the
PKCS#12 file.

digestMethod No The algorithm that will be used for hashing the SAML
tokens.

signatureMeth
od

No The algorithm that will be used for signing the SAML
tokens.

samlTokenAttri
butes

No The attributes of the SAML token. The attributes
required are:

■ issuerName
The URL of AuthMinder Server.

■ oneTimeUse
Indicates whether the SAML token is to be used
only once for authentication.

■ assertionTimeOut
The duration after which the SAML token cannot
be used.

■ audiences
The details of the audience who can use the SAML
token.

subjectFormatS
AML11

No The format of the SAML subject for SAML 1.1.

subjectFormatS
AML20

No The format of the SAML subject for SAML 2.0.

Creating Configurations

Chapter 7: Managing AuthMinder Configurations 181

Element Mandatory Description

additionalAttri
butes

No You can set additional attributes, if required for the
SAML token generation. Following are the required
elements:

■ attributeNameSpace
The attribute namespace.

■ nameFormat
The attribute name format.

■ attributeName
The name of the attribute.

■ FriendlyName
The friendly name for the attribute.

Invoking the Web Service

To create configurations:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the create operation. See chapter, "Managing
Web Services Security" (see page 35) for more information on these details.

2. Use the createRequest elements to set the configuration information, as listed in
the tables in Credential Profiles (see page 153) and Authentication Policies (see
page 162).

3. Use the createRequest message and construct the input message by using the
details obtained in the preceding step.

4. Invoke the create operation of the ArcotWebFortAdminSvc service to create the
configuration.

5. This operation returns createResponse message that includes the transaction
identifier, message, reason code, and response code. Refer to the next section for
more information on the response message.

Creating Configurations

182 Web Services Developer's Guide

Interpreting the Response Message

For successful transactions, the response message, createResponse returns the
elements explained in the following table. These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

message Indicates the status of the transaction.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Code returned by the SDK in case of errors.

transactionID The unique identifier of the transaction.

additionalOutput The values returned for the additional input.

Updating Configurations

Chapter 7: Managing AuthMinder Configurations 183

Updating Configurations

The update operation enables you to update the following:

■ Credential Profiles

■ Authentication Policies

■ Domain Keys and Master Keys

■ RADIUS

■ Plug-ins

■ ASSP

■ SAML Tokens

This section walks you through the following topics for updating configurations:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you update configurations, you must refresh the system cache for the
changes to take effect. See "Refreshing the Organization Cache" (see page 50) for more
information on how to refresh the system cache.

Preparing the Request Message

The UpdateRequest message is used to update configurations in the AuthMinder
database. All the createRequest elements listed in the tables in Credential Profiles (see
page 153) and Authentication Policies (see page 162) can be updated using the update
operation. For information about each element, refer to the tables in Credential Profiles
(see page 153) and Authentication Policies (see page 162).

Invoking the Web Service

To update configurations:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the update operation. See chapter, "Managing
Web Services Security" (see page 35) for more information on these details.

2. Use the UpateRequest elements to update the configuration information.

3. Use UpateRequest message and construct the input message by using the details
obtained in the preceding step.

4. Invoke the update operation of the ArcotWebFortAdminSvc service to update the
configuration.

Fetching Configurations

184 Web Services Developer's Guide

This operation returns updateResponse message that includes the transaction
identifier, message, reason code, and response code. Refer to the next section for
more information on the response message.

Interpreting the Response Message

For successful transactions, the response message, updateResponse returns the
elements explained in the following table. These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

message Indicates the status of the transaction.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Response code returned by the AuthMinder Server in case of
errors.

transactionID The unique identifier of the transaction.

additionalOutput The values returned for the additional input.

Fetching Configurations

The fetch operation is used to fetch configurations.

This section walks you through the following topics for fetching configuration details:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The fetchRequest message is used to fetch configuration details. The following table lists
the common elements of this request message that are applicable to all credentials:

Element Mandatory Description

clientTxnId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Additional Input (additionalInput) Elements

Fetching Configurations

Chapter 7: Managing AuthMinder Configurations 185

Element Mandatory Description

pairs No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Organization Detail (configurationNames/orgDetails) Elements

orgName Yes Fetches the configurations that are used by the
specified organizations.

OR

isGlobal Yes Indicates if you want to fetch the configuration applied
at the global-level.

Configuration Elements

The following two elements are applicable to all configurations
(configurationNames/configurationname<Names>).

configNames No Fetches the configuration names for a particular
organization.

isAllConfigs No Indicates whether all configurations must be fetched.

isFetchOnlyNa
mes

No Indicates whether only the configuration name has to
be fetched.

Fetching Configurations

186 Web Services Developer's Guide

Invoking the Web Service

To fetch configuration details:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the fetch operation. See chapter, "Managing
Web Services Security" (see page 35) for more information on these details.

2. Use the FetchRequest elements to fetch the configuration details, as listed in the
preceding table.

3. Use the FetchRequest message and construct the input message by using the
details obtained in the preceding step.

4. Invoke the fetch operation of the ArcotWebFortAdminSvc service to fetch the
configuration details.

Interpreting the Response Message

For successful transactions, the response message, fetchResponse returns the elements
explained in the following table. These elements are included in the SOAP body. If there
are any errors, then the Fault response is included in the SOAP body. See appendix,
"Error Codes" (see page 353) for more information on the SOAP error messages.

Element Description

message Indicates the status of the transaction.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Code returned by the SDK in case of errors.

transactionID The unique identifier of the transaction.

additionalOutput The return values of the additional input.

configurations Returns the following:

■ configurationObjects: The configured objects.

■ configurationNames: The names of the configurations.

Assigning Default Configurations

Chapter 7: Managing AuthMinder Configurations 187

Assigning Default Configurations

After you have created the required credential profiles and authentication policies, you
need to assign them globally as a Global Administrator (GA) or to a specific organization.
If the Organization Administrator (OA) does not specify profiles and policies at their
organization level, then the global profiles and policies are used by default. On the other
hand, if a GA or an OA overwrites these configurations at their individual organization
level, then those configurations are applicable for the organization.

The assignDefault operation is used to assign default configurations. This section walks
you through the following topics for assigning default configurations:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The assignDefaultRequest message is used to assign default configurations. The
following table lists the elements of this request message:

Element Mandatory Description

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in
tracking the related transactions.

Additional Input (additionalInput) Elements

Assigning Default Configurations

188 Web Services Developer's Guide

Element Mandatory Description

pairs No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use
while returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Assign Default Elements (assignDefault/OrgDetails)

orgName Yes Indicates the name of the organization to which you
want to apply these configuration settings.

OR

isGlobal Yes Indicates whether you want to apply these
configuration settings at the global level, which means
these configurations will be available to all the
organizations in the system.

Assign Default Elements (assignDefault/<CredentialType>ConfigName)

arcotIDIssuance
ConfigName

No Name of the ArcotID PKI configuration credential
profile.

qnaIssuanceCo
nfigName

No Name of the QnA configuration credential profile.

passwordIssuan
ceConfigName

No Name of the Password configuration credential
profile.

serverOTPIssua
nceConfigName

No Name of the OTP configuration credential profile.

oathIssuanceCo
nfigName

No Name of the OATH OTP configuration credential
profile.

Assigning Default Configurations

Chapter 7: Managing AuthMinder Configurations 189

Element Mandatory Description

arcotOTPIssuan
ceConfigName

No Name of the ArcotID OTP configuration credential
profile.

emvIssuanceCo
nfigName

No Name of the EMV OTP configuration credential
profile.

arcotIDAuthCon
figName

No Name of the ArcotID PKI authentication policy profile.

qnaAuthConfig
Name

No Name of the QnA authentication policy profile.

passwordAuthC
onfigName

No Name of the Password authentication policy profile.

serverOTPAuth
ConfigName

No Name of the OTP authentication policy profile.

oathAuthConfig
Name

No Name of the OATH OTP authentication policy profile.

arcotOTPAuthC
onfigName

No Name of the ArcotID OTP authentication policy
profile.

emvAuthConfig
Name

No Name of the EMV OTP authentication policy profile.

radiusServerCo
nfigName

No Name of the RADIUS configuration.

arcotIDDomain
KeyConfigName

No Name of the ArcotID PKI domain key configuration
profile.

oathOTPMaster
KeyConfig

No Name of the OATH OTP master key configuration
profile.

arcotOTPMaste
rKeyConfig

No Name of the ArcotID OTP master key configuration
profile.

emvOTPMaster
KeyConfig

No Name of the EMV OTP master key configuration
profile.

asspConfigNam
e

No Name of the ASSP configuration profile.

samlTokenConfi
gName

No Name of the SAML Token configuration profile.

credTypeResolu
tionConfigNam
e

No Name of the configuration to be used to map the
incoming authentication request to a particular
credential type.

Assigning Default Configurations

190 Web Services Developer's Guide

Element Mandatory Description

radiusCredType
ResolutionConfi
gName

No In the case of RADIUS clients, by default, when
AuthMinder is configured to authenticate RADIUS
clients of SSL VPN type, it typically uses RADIUS OTP,
which is a One-Time Password (OTP) for
authenticating these clients. In addition to this
method, AuthMinder now supports other
password-based authentication mechanism for
authenticating RADIUS clients.

asspCredTypeR
esolutionConfig
Name

No By default, Adobe Signing Service Protocol (ASSP) uses
password authentication mechanism to authenticate
users before they sign the PDF documents. In addition
to this method, AuthMinder supports other
password-based authentication mechanism for this
purpose.

miscConfigNam
e

No Name of the miscellaneous configurations.

Invoking the Web Service

To assign default configurations:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the assignDefault operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. Use the assignDefault elements to assign default configurations, as listed in the
preceding table.

3. Use the assignDefault message and construct the input message by using the details
obtained in the preceding step.

4. Invoke the assignDefault operation of the ArcotWebFortAdminSvc service to delete
the configuration details.

Interpreting the Response Message

For successful transactions, the response message, assignDefaultResponse returns the
elements explained in the following table. These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

message Indicates the status of the transaction.

Fetching Server Events

Chapter 7: Managing AuthMinder Configurations 191

Element Description

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Code returned by the SDK in case of errors.

transactionID The unique identifier of the transaction.

additionalOutput The additional output corresponding to the additional input.

Fetching Server Events

The FetchEventDetailsRequest message is used to fetch events that are used to invoke a
configured plug-in.

This section walks you through the following topics for fetching configuration details:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The FetchEventDetailsRequest message is used to fetch events. The following table lists
the common elements of this request message that are applicable to all credentials:

Element Mandatory Description

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in
tracking the related transactions.

Additional Input (additionalInput) Elements

pairs No Fetches additional inputs defined to augment
AuthMinder’s user issuance capability using
plug-ins, write completely new custom user
issuance methods, or track transactions
end-to-end.

In all of these cases, the extra information is set in
name-value pairs.

■ name

Indicates the name used to create the key pair.

■ value

Indicates the corresponding value for the name.

Organization Detail (orgDetails) Elements

Fetching Server Events

192 Web Services Developer's Guide

Element Mandatory Description

orgName Yes Deletes the name of the organization to which
you applied the configuration settings.

OR

isGlobal Yes Indicates if you want to apply these configuration
settings at the global level.

Invoking the Web Service

To fetch event details:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the fetchServerEvents operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. Use the FetchServerEventsRequest elements to fetch event details, as listed in the
preceding table.

3. Use the FetchServerEventsRequest message and construct the input message by
using the details obtained in the preceding step.

4. Invoke the fetch operation of the ArcotWebFortAdminSvc service to fetch the event
details.

Interpreting the Response Message

For successful transactions, the response message, fetchResponse returns the elements
explained in the following table. These elements are included in the SOAP body. If there
are any errors, then the Fault response is included in the SOAP body. See appendix,
"Error Codes" (see page 353) for more information on the SOAP error messages.

Element Description

message Indicates the status of the transaction.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Code returned by the SDK in case of errors.

transactionID The unique identifier of the transaction.

Checking Key Availability in HSM

Chapter 7: Managing AuthMinder Configurations 193

Checking Key Availability in HSM

The isKeyAvailableInHSM operation is used to check if the key is present in the HSM.
This section walks you through the following topics for checking the HSM keys:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you delete configurations, you must refresh the system cache for the
changes to take effect. See "Refreshing the Organization Cache" (see page 50) for more
information on how to refresh the system cache.

Preparing the Request Message

The isKeyAvailableInHSMRequest message is used to check the key in HSM. The
following table lists the elements of this request message.

Element Mandatory Description

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Additional Input (additionalInput) Elements

pairs No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Key Details

Checking Key Availability in HSM

194 Web Services Developer's Guide

Element Mandatory Description

keyLabel Yes The label of the key that refers to the key that is
available in the HSM.

Invoking the Web Service

To delete configuration details:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the isKeyAvailableInHSM operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. Use the isKeyAvailableInHSMRequest elements to check the key details, as listed in
the preceding table.

3. Use the isKeyAvailableInHSMRequest message and construct the input message by
using the details obtained in the preceding step.

4. Invoke the isKeyAvailableInHSM operation of the ArcotWebFortAdminSvc service to
delete the configuration details.

Interpreting the Response Message

For successful transactions, the response message, isKeyAvailableInHSMResponse
returns the elements explained in the preceding table. These elements are included in
the SOAP body. If there are any errors, then the Fault response is included in the SOAP
body. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Element Description

message Indicates the status of the transaction.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Code returned by the SDK in case of errors.

transactionID The unique identifier of the transaction.

additionalOutput The return values corresponding to the additional input.

Deleting Configurations

Chapter 7: Managing AuthMinder Configurations 195

Deleting Configurations

The delete operation is used to delete configurations in AuthMinder. After you delete a
configuration, the information related to that configuration is still maintained in the
system. Therefore, you cannot create a configuration profile with the same name as
that of a deleted one. This section walks you through the following topics for deleting
configurations:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: After you delete configurations, you must refresh the system cache for the
changes to take effect. See "Refreshing the Organization Cache" (see page 50) for more
information on how to refresh the system cache.

Preparing the Request Message

The deleteRequest message is used to delete configurations. The following table lists
the common elements of this request message that are applicable to all credentials and
authentication policies.

Element Mandatory Description

clientTxId No Unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Additional Input (additionalInput) Elements

Deleting Configurations

196 Web Services Developer's Guide

Element Mandatory Description

pairs No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Organization Detail (configurationNames/orgDetails) Elements

orgName Yes Deletes the name of the organization to which you
applied the configuration settings.

OR

isGlobal Yes Indicates if you want to apply these configuration
settings at the global level.

Credential and Authentication Configuration Elements

The following elements are applicable to all credential and authentication policy
configurations.

configNames No Deletes the configuration names for a particular
organization.

isAllConfigs No Indicates whether all configurations must be deleted.

Deleting Configurations

Chapter 7: Managing AuthMinder Configurations 197

Invoking the Web Service

To delete configuration details:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the delete operation. See chapter, "Managing
Web Services Security" (see page 35) for more information on these details.

2. Use the DeleteRequest elements to delete the configuration details, as listed in the
preceding table.

3. Use the DeleteRequest message and construct the input message by using the
details obtained in the preceding step.

4. Invoke the delete operation of the ArcotWebFortAdminSvc service to delete the
configuration details.

Interpreting the Response Message

For successful transactions, the response message, deleteResponse returns the
elements explained in the following table. These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

message Indicates the status of the transaction.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Code returned by the SDK in case of errors.

transactionID The unique identifier of the transaction.

additionalOutput The return values corresponding to the additional input.

Chapter 8: Performing Credential Operations 199

Chapter 8: Performing Credential
Operations

This chapter describes the credential lifecycle operations that are supported by the
ArcotWebFortIssuanceSvc service. The operations listed in this chapter can be
performed on all credentials that are supported by AuthMinder, and can be performed
by using any of the following method:

■ By using AuthMinder SDKs

This mode enables you to automate the credential management operations
programmatically.

■ By using Administration Console

Administration Console is a Web-based application and is typically suitable for
Customer Support Representatives (CSRs), who handle the user requests (such as,
disabling the credential, enabling the credential, or resetting the credential
validity.)

Note: Refer to CA AuthMinder Administration Guide for more information on using
Administration Console.

Deleting Configurations

200 Web Services Developer's Guide

This section covers the following credential lifecycle operations:

■ Before You Proceed (see page 201)

■ Creating Credentials (see page 206)

■ Disabling Credentials (see page 215)

■ Enabling Credentials (see page 217)

■ Resetting Credentials (see page 219)

■ Fetching Credential Details (see page 221)

■ Reissuing Credentials (see page 223)

■ Resetting Credential Validity (see page 225)

■ Resetting Custom Attributes (see page 227)

■ Fetching QnA Configuration (see page 228)

■ Setting Unsigned Attributes (see page 231)

■ Deleting Unsigned Attributes (see page 234)

■ Adding Elements to ArcotID PKI Key Bag (see page 236)

■ Fetching ArcotID PKI Key Bag Elements (see page 239)

■ Deleting ArcotID PKI Key Bag Elements (see page 242)

■ Downloading Credentials (see page 245)

■ Deleting Credentials (see page 247)

To perform the operations discussed in this chapter, you need to use the
ArcotWebFortIssuanceSvc.wsdl file.

Note: Each operation discussed in this chapter can be performed simultaneously by
using different credentials. If the operation fails for a single credential, then the
operations for other credentials are also considered invalid. For example, if you are
creating ArcotID PKI, QnA, and OTP, and the ArcotID PKI and OTP creation was
successful, while the QnA creation failed, then all the three credentials have to be
created again.

Before You Proceed

Chapter 8: Performing Credential Operations 201

Before You Proceed

The Issuance Web service performs the user status checks (if enabled) before
performing the credential operations that are discussed in this chapter. This section lists
these user status checks, supported credential states, supported transitions between
the credential states, and the credential operations that are possible on a particular
credential state. It covers the following topics:

■ Checking the User Status (see page 201)

■ Credential States and Supported Transitions (see page 202)

■ Credential Operations and States (see page 204)

Checking the User Status

AuthMinder uses the user status information before performing some of the credential
operations. A user’s status in the database can be either INITIAL, ACTIVE, INACTIVE, or
DELETED.

Note: For Issuance Web service to perform these checks, you must enable this option
when you create configurations using the AuthMinder Administration Web Service.
Refer to chapter, "Managing AuthMinder Configurations" (see page 151) for more
information.

The following table lists all the credential operations and the user checks that are
performed depending on the type of operation:

Operation
 Checks

User Existence User Status User Attribute

Create Yes Yes Yes

Delete No No No

Disable No No No

Enable Yes Yes No

Fetch No No No

Fetch QnA Configuration No No No

Reissue Yes Yes No

Reset Yes Yes No

Reset Custom Attributes Yes Yes No

Reset Validity Yes Yes No

Download Credential Yes Yes No

Before You Proceed

202 Web Services Developer's Guide

Operation
 Checks

User Existence User Status User Attribute

Delete Unsigned Attributes No No No

Set Unsigned Attributes No No No

Add ArcotID Key Bag Elements No No No

Fetch ArcotID Key Bag Elements No No No

Delete ArcotID Key Bag
Elements

No No No

Credential States and Supported Transitions
AuthMinder supports the following states for a credential that is issued to a user:

Before You Proceed

Chapter 8: Performing Credential Operations 203

■ ACTIVE

Indicates that the credential is active and can be used for authentication.

■ DISABLED

The credential is disabled by the administrator.

■ LOCKED

The credential is locked when the user consecutively fails to authenticate for the
maximum number of negative attempts configured. For example if the maximum
attempts configured is 3, then the third attempt with wrong credential will lock the
credential.

■ VERIFIED

The credential is verified when the OTP submitted by the user is authenticated by
AuthMinder Server successfully.

Note: This status is applicable only for OTP.

■ DELETED

The credential of the user is deleted.

When you perform an operation on a credential, the status of the credential might be
changed after the operation is performed successfully on the credential. For example,
when the user successfully authenticates with their OTP, then status of the user’s OTP is
changed to VERIFIED.

The following table lists the transitions possible between the supported credential
states:

Current State

 Change State to

Enabled Locked Disabled Deleted
Verified
(for OTP
only)

Enabled Yes Yes Yes Yes Yes

Locked Yes Yes Yes Yes No

Disabled Yes No Yes Yes No

Deleted No No No Yes No

Verified No No No Yes No

Before You Proceed

204 Web Services Developer's Guide

Credential Operations and States

The following table lists all credential operations and whether each operation is allowed
on a specific state of the credential. If the state of the credential changes after an
operation, then the table also provides the next state of the credential.

Note: Allowed indicates that the operation can be performed, but the state of the
credential will not change after the operation.

Operation

 State

Enabled Locked Disabled Deleted
Verified
(for OTP
only)

Create Not allowed Not allowed Not allowed Allowed ->
Enabled

Not
applicable

Enable Allowed ->
Enabled

Allowed ->
Enabled

Allowed ->
Enabled

Not allowed Not
applicable

Disable Allowed ->
Disabled

Allowed ->
Disabled

Allowed ->
Disabled

Not allowed Not
applicable

Fetch Allowed Allowed Allowed Allowed Allowed

FetchQnAConfigur
ation

Allowed Allowed Allowed Allowed Not
applicable

Reset Allowed ->
Enabled

Allowed ->
Enabled

Allowed ->
Enabled

Not allowed Not
applicable

Reset Validity Allowed Allowed Allowed Not allowed Not
applicable

Download
Credential

Allowed Allowed Allowed Not allowed Not
applicable

Reset Custom
Attributes

Allowed Allowed Allowed Not allowed Not
applicable

Reissue Allowed ->
Enabled

Allowed ->
Enabled

Allowed ->
Enabled

Not allowed Not
applicable

Before You Proceed

Chapter 8: Performing Credential Operations 205

Operation

 State

Enabled Locked Disabled Deleted
Verified
(for OTP
only)

Delete Unsigned
Attributes (for
ArcotID only)

Allowed Allowed Allowed Not allowed Not
applicable

Set Unsigned
Attributes (for
ArcotID only)

Allowed Allowed Allowed Not allowed Not
applicable

Add ArcotID Key
Bag Elements

Allowed Allowed Allowed Not allowed

Not
applicable

Fetch ArcotID Key
Bag Elements

Allowed Allowed Allowed Not allowed

Not
applicable

Delete ArcotID Key
Bag Elements

Allowed Allowed Allowed Not allowed

Not
applicable

Delete Allowed ->
Deleted

Allowed ->
Deleted

Allowed ->
Deleted

Not allowed Not
applicable

Creating Credentials

206 Web Services Developer's Guide

Creating Credentials

 The ArcotWebFortIssuanceSvc provides the CreateCredential operation that contains
the elements to create the credentials for the user.

This section walks you through:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The CreateCredentialRequestMessage is used to create credentials for the users. The
request message contains the elements for user information, common information that
applies to all the credentials, and the credential-specific information.

This section lists the following input elements required for creating credentials:

■ Common Input Elements (see page 206)

■ ArcotID PKI Input Elements (see page 209)

■ One-Time Password (OTP) Input Elements (see page 210)

■ ArcotID OTP Input Elements (see page 210)

■ EMV OTP Input Elements (see page 211)

■ Questions and Answers (QnA) Input Elements (see page 211)

■ Password Input Elements (see page 212)

Common Input Elements

The following table lists the user and common credential elements:

Element Mandatory Description

Common User Input

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes Specifies the unique identifier of the user whose
credential has to be created.

orgName No Specifies the organization name to which the user
belongs to.

Creating Credentials

Chapter 8: Performing Credential Operations 207

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Note: The additionalInput element is available at the
end of the request message. You can add more than
one of these elements.

Common Credential Input

notes No Specifies the additional information that you want to
maintain for each credential in your application.

For example, if you do not want the user to download
their ArcotID PKI on more than five systems, then you
can create an attribute with this information.

You can set the custom attributes in name-value pairs.

■ name
Indicates the name with which you want to create
the custom attribute.

■ value
Indicates the corresponding value for the name.

profileName No Specifies the profile name of the credential. If it is not
passed, then the default profile for the organization is
used. If it is passed, then the profile name must be
available at the organization level.

validityEndTim
e

No Specifies the duration for which the credential must be
valid. The timestamp format is according to the
XS:Timestamp.

Creating Credentials

208 Web Services Developer's Guide

Element Mandatory Description

validityEndTim
eEx

No Specifies the duration for which the credential must be
valid. The validityEndTimeEx element uses the
ArcotDateType structure.

The validityEndTimeEx element takes the following
values:

■ year
The year when the validity period begins or ends.

■ month
The month when the validity period begins or
ends.

■ day
The day on which the validity period begins or
ends

■ hour
The hour at which the validity period begins or
ends.

■ minute
The minute at which the validity period begins or
ends.

 ■ second
The second at which the validity period begins or
ends.

■ dateType
The start date or end date of the validity period.
Following are the supported date types:
1
Uses the current date of AuthMinder Server to set
the validity or disable period.
2
Indicates that the credential will be valid forever
and will not expire.
3
Uses a date that is specified by your application to
set the validity or disable period.
4
Uses a relative date corresponding to the disable
start date. For example, if the relative date is one
month, then the disable end date would be one
month after the disable start date.

Creating Credentials

Chapter 8: Performing Credential Operations 209

Element Mandatory Description

disableStartTim
e

No If your users want to go on a vacation or on long leave,
then their credentials can be disabled only for this
period, after which the credential will be enabled
automatically. This feature facilitates credential
activation without the user making a request to User
Administrator (UA) to do so.

The disableStartTime element is used to specify the
duration from when the credential disable period must
start. The values of this element are same as
"validityEndTimeEx".

disableEndTim
e

No Specifies when the credential disable period must end.
The values of this element are same as
"validityEndTimeEx".

ArcotID PKI Input Elements

ArcotID PKI is a secure software credential that provides two-factor authentication. An
ArcotID PKI is a small data file that by itself can be used for strong authentication to a
variety of clients such as Web or Virtual Private Networks (VPNs). The ArcotID PKI file is
associated with a password. When the user authenticates with their ArcotID PKI, they
have to provide this password and their ArcotID PKI must be present on the system from
where the authentication is being performed.

The arcotIDInput element contains the elements that are required for creating ArcotID
PKI. The following table lists the ArcotID PKI-specific elements:

Element Mandatory Description

password No The ArcotID PKI password that has to be set for the
user.

unsignedAttrib
utes

No You can define ArcotID PKI attributes while or after
creating an ArcotID PKI for the user. Such attributes
are called unsigned attributes because these attributes
(name-value pairs) are set in the unsigned portion of
the ArcotID PKI. The attributes are defines as follows;

■ name
The name of the unsigned attribute.

■ value
The value corresponding to the name. The value
must be specified in XS:base64Binary format.

Note: If you add an attribute that already exists, then
the current attributes will be overwritten by the new
value.

Creating Credentials

210 Web Services Developer's Guide

Element Mandatory Description

fetchAttrbutes No The flag that indicates whether to fetch ArcotID PKI
unsigned attributes in the response.

One-Time Password (OTP) Input Elements

One-Time Password is a credential that is generated by AuthMinder Server, and it does
not require any credential-specific information.

OATH OTP Input Elements

AuthMinder supports hardware tokens that conform to Open Authentication (OATH)
standards. To use these tokens, you need to set the oathInput element to generate
OATH OTP. The following table lists the OATH OTP-specific elements:

Element Mandatory Description

tokenID No Specifies the unique identifier of the OATH token. The
token identifier is used to generate the OATH OTP.

reUseToken No Specifies whether the token can be issued to different
user, if unused for a long time. For example, if an
employee leaves an organization, then their token can
be reused for a new employee.

ArcotID OTP Input Elements

ArcotID OTP is a One-Time Password compliant to OATH standards. The client
application that you build takes the user’s password as an input and generates
passwords (also known as passcodes). The user uses this generated passcode at the
Web application that is protected by ArcotID OTP authentication. Based on the
authentication result, the user is granted access to the protected application.

The arcotOTPInput element contains the elements that are required for creating ArcotID
OTP credential. The following table lists the ArcotID OTP-specific elements:

Element Mandatory Description

password No Specifies the ArcotID OTP password.

Creating Credentials

Chapter 8: Performing Credential Operations 211

EMV OTP Input Elements

The emvInput element contains the elements that are required for supporting OTPs that
are compliant to Europay MasterCard VISA (EMV) standards. The following table lists
the EMV OTP-specific elements:

Element Mandatory Description

password No Specifies the EMV OTP password.

Questions and Answers (QnA) Input Elements

The qnaInput element contains the elements that are required for creating QnA
credential. The following table lists the ArcotID OTP-specific elements:

Element Mandatory Description

qna No The questions and answers that are required for QnA
authentication.

■ question
The questions for which the user must provide
answers.

■ answer
Answers corresponding to the questions set.

qnaReset The qnaReset element provides the following options:

■ deleteList
Indicates that the specified question list will be
deleted.

■ addList
The list of questions and answers that have to be
added.

■ changeAnswerList
The list of questions and answers that have to be
changed.

■ changeQuestionList
The list of current questions that have to be
changed and the list of newQuestions to which the
old questions have to be changed to.

Creating Credentials

212 Web Services Developer's Guide

Password Input Elements

The upInput element contains the elements that are required for creating Password
credential. The following table lists the elements for Password:

Element Mandatory Description

password No The password that the user needs to use for Password
authentication.

Invoking the Web Service

To create credentials for a user:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the CreateCredential operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. Use the userName and orgName elements to fetch the details of the user for whom
the credentials must be created.

3. Depending on the type of credential you want to create, use the respective
<CredentialName>Input element to obtain the credential information.

The input required for each credential is different. For example, password is needed
for Password as well as ArcotID PKI, while questions and corresponding answers are
required for QnA credentials.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use CreateCredentialRequestMessage and construct the input message by using
the details obtained in preceding steps.

6. Invoke the CreateCredential operation of the ArcotWebFortIssuanceSvc service to
create the credentials.

This operation returns an instance of the CreateCredentialResponseMessage that
includes the credential and transaction details.

Interpreting the Response Message

For successful transactions, the response message, CreateCredentialResponseMessage
returns the elements explained in the following table. These elements are included in
the SOAP body. If there are any errors, then the Fault response is included in the SOAP
body. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Method Description

User and Common Credential Information

Creating Credentials

Chapter 8: Performing Credential Operations 213

Method Description

userName The unique identifier of the user.

orgName The organization to which the user belongs to.

status The status of the credential. Following are the supported values:

■ ACTIVE (1)
The credential is active and can be used for authentication.

■ DISABLED (2)
The credential is disabled by the administrator.

■ LOCKED (3)
The credential is locked when the user consecutively fails to
authenticate for the maximum number of negative attempts
configured. For example if the maximum attempts configured
is 3, then the third attempt with wrong credential will lock
the credential.

■ DELETED (4)
The credential of the user is deleted from the database.

■ EXPIRED (5)
The credential of the user has expired.

■ VERIFIED (50)
The credential is verified when the OTP submitted by the
user is authenticated by AuthMinder Server successfully.

Note: This status is applicable only for OTP.

remainingUsageCo
unt

The number of times the credential can be used.

createTime The time when the credential was created.

lastUpdatedTime The time when the credential was updated last time.

validityStartTime The timestamp from when the credential is valid.

validityEndTime The date after which the credential expires.

disableStartTime The time when the credential has to be disabled.

disableEndTime The time when the disabled credential has to be enabled.

numberOfFailedAu
thAttempts

The total number of failed authentication attempts permitted for
the user.

lastSuccessAuthAtt
emptTime

The time when the last authentication attempt succeeded.

lastFailedAuthAtte
mptTime

The time when the last authentication attempt failed.

profileName The profile name with which the credential was created.

Creating Credentials

214 Web Services Developer's Guide

Method Description

profileVersion The version number of the profile.

notes The custom attributes that are set for the credential.

ArcotID Output

unsignedAttributes The unsigned attributes of the ArcotID PKI.

arcotID The ArcotID PKI that is created for the user.

OTP Output

otp The OTP of the user.

usageCount Number of times the OTP can be used.

OATH OTP Output

tokenID The unique identifier of the OATH token.

type The type of OATH OTP, whether it is HOTP or TOTP.

counterOffSet The OATH OTP count on the server.

ArcotOTP Output

card The ArcotID OTP of the user.

type The type of ArcotID OTP, whether it is HOTP or TOTP.

counterOffSet The ArcotID OTP count on the server.

EMV OTP Output

card The EMV OTP of the user.

counterOffSet The EMV OTP count on the server.

QnA Output

questions The questions set for the user.

Transaction Details

message Indicates the status of the transaction.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Code returned by the SDK in case of errors.

transactionID The unique identifier of the transaction.

additionalOutput The output for the additionalInput that was passed to
AuthMinder Server.

Disabling Credentials

Chapter 8: Performing Credential Operations 215

Disabling Credentials

User credentials can be disabled for a specified time interval. For example, if an
employee goes for a long vacation, then the credentials of this user can be disabled to
prevent any unauthorized access during their absence.

This section walks you through:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The DisableCredentialRequestMessage is used to disable credentials. The input
elements for disabling the credentials are same as that explained in the "Creating
Credentials" (see page 206) section. For more information about each element, refer to
the tables listed in the "Creating Credentials (see page 206)" section.

Invoking the Web Service

To disable user credentials:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the DisableCredential operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. Use the userName and orgName elements to fetch the details of the user whose
credentials must be disabled.

3. Depending on the type of credential you want to disable, use the respective
<CredentialName>Input element to obtain the credential information.

The input required for each credential is different. For example, password is needed
for Password as well as ArcotID PKI, while questions and corresponding answers are
required for QnA credentials.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use DisableCredentialRequestMessage and construct the input message by using
the details obtained in preceding steps.

6. Invoke the DisableCredential operation of the ArcotWebFortIssuanceSvc service to
disable the credentials.

This operation returns an instance of the DisableCredentialResponseMessage that
includes the credential and transaction details.

Disabling Credentials

216 Web Services Developer's Guide

Interpreting the Response Message

For successful transactions, the response message, DisableCredentialResponseMessage
returns the elements explained in the table containing information about the elements
that the response message, CreateCredentialResponseMessage, returns. These
elements are included in the SOAP body. If there are any errors, then the Fault response
is included in the SOAP body. See appendix, "Error Codes" (see page 353) for more
information on the SOAP error messages.

Enabling Credentials

Chapter 8: Performing Credential Operations 217

Enabling Credentials

 The EnableCredential operation is used to activate the disabled or locked credential of a
user. For example, a credential can be disabled or locked if a user tries to authenticate
by using the wrong credential or exceeds the configured maximum number of allowed
attempts.

This section walks you through:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The EnableCredentialRequestMessage is used to enable credentials. The input elements
for enabling the credentials are same as that explained in the "Creating Credentials"
(see page 206) section. For more information about each element, refer to the tables in
the "Creating Credentials (see page 206)" section.

Invoking the Web Service

To enable user credentials:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the EnableCredential operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. Use the userName and orgName elements to fetch the details of the user whose
credentials must be enabled.

3. Depending on the type of credential you want to enable, use the respective
<CredentialName>Input element to obtain the credential information.

The input required for each credential is different. For example, password is needed
for Password as well as ArcotID PKI, while questions and corresponding answers are
required for QnA credentials.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use EnableCredentialRequestMessage and construct the input message by using
the details obtained in preceding steps.

6. Invoke the EnableCredential operation of the ArcotWebFortIssuanceSvc service to
enable the credentials.

This operation returns an instance of the EnableCredentialResponseMessage that
includes the credential and transaction details.

Enabling Credentials

218 Web Services Developer's Guide

Interpreting the Response Message

For successful transactions, the response message, EnableCredentialResponseMessage
returns the elements explained in the table containing information about the elements
that the response message, CreateCredentialResponseMessage, returns. These
elements are included in the SOAP body. If there are any errors, then the Fault response
is included in the SOAP body. See appendix, "Error Codes" (see page 353) for more
information on the SOAP error messages.

Resetting Credentials

Chapter 8: Performing Credential Operations 219

Resetting Credentials

The Issuance Web service enables you to reset the credential. For example, you can
reset the ArcotID PKI password or questions and answers.

This section walks you through:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The ResetCredentialRequestMessage is used to reset credentials. The input elements for
enabling the credentials are same as that explained in the "Creating Credentials" (see
page 206) section. For more information about each element, refer to the tables in the
"Creating Credentials (see page 206)" section.

Invoking the Web Service

To reset user credentials:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the ResetCredential operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. Use the userName and orgName elements to fetch the details of the user whose
credentials information you want to reset.

3. Depending on the type of credential you want to reset, use the respective
<CredentialName>Input element to obtain the credential information.

The input required for each credential is different. For example, password is needed
for Password as well as ArcotID PKI, while questions and corresponding answers are
required for QnA credentials.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use ResetCredentialRequestMessage and construct the input message by using the
details obtained in preceding steps.

6. Invoke the ResetCredential operation of the ArcotWebFortIssuanceSvc service to
reset the credentials.

This operation returns an instance of the ResetCredentialResponseMessage that
includes the credential and transaction details.

Interpreting the Response Message

Resetting Credentials

220 Web Services Developer's Guide

For successful transactions, the response message, ResetCredentialResponseMessage
returns the elements explained in the table containing information about the elements
that the response message, CreateCredentialResponseMessage, returns. These
elements are included in the SOAP body. If there are any errors, then the Fault response
is included in the SOAP body. See appendix, "Error Codes" (see page 353) for more
information on the SOAP error messages.

Fetching Credential Details

Chapter 8: Performing Credential Operations 221

Fetching Credential Details

To read the details of the user credentials, you need to implement the FetchCredential
operation. This section walks you through:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The FetchCredentialRequestMessage is used to read the credential details. The input
elements for enabling the credentials are same as that explained in the "Creating
Credentials" (see page 206) section. For more information about each element, refer to
the tables listed in the "Creating Credentials (see page 206)" section.

Invoking the Web Service

To read a user’s credential information:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the FetchCredential operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. Use the userName and orgName elements to fetch the details of the user whose
credentials must be fetched.

3. Depending on the type of credential you want to fetch, use the respective
<CredentialName>Input element to obtain the credential information.

The input required for each credential is different. For example, password is needed
for Password as well as ArcotID PKI, while questions and corresponding answers are
required for QnA credentials.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use FetchCredentialRequestMessage and construct the input message by using the
details obtained in preceding steps.

6. Invoke the FetchCredential operation of the ArcotWebFortIssuanceSvc service to
fetch the credentials.

This operation returns an instance of the FetchCredentialResponseMessage that
includes the credential and transaction details.

Interpreting the Response Message

Fetching Credential Details

222 Web Services Developer's Guide

For successful transactions, the response message, FetchCredentialResponseMessage
returns the elements explained in the table containing information about the elements
that the response message, CreateCredentialResponseMessage, returns. These
elements are included in the SOAP body. If there are any errors, then the Fault response
is included in the SOAP body. See appendix, "Error Codes" (see page 353) for more
information on the SOAP error messages.

Reissuing Credentials

Chapter 8: Performing Credential Operations 223

Reissuing Credentials

 The Issuance Web service enables you to re-create the credentials for the user. If the
credential has been reissued for the user, then the user cannot log in by using their old
credential. This section walks you through:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The ReissueCredentialRequestMessage is used to reissue the credentials. The input
elements for reissuing the credentials are same as that explained in the "Creating
Credentials" (see page 206) section. For more information about each element, refer to
the tables listed in the "Creating Credentials (see page 206)" section.

Invoking the Web Service

To reissue credentials for a user:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the ReissueCredential operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. Use the userName and orgName elements to fetch the details of the user whose
credentials must be reissued.

3. Depending on the type of credential you want to reissue, use the respective
<CredentialName>Input element to obtain the credential information.

The input required for each credential is different. For example, password is needed
for Password as well as ArcotID PKI, while questions and corresponding answers are
required for QnA credentials.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use ReissueCredentialRequestMessage and construct the input message by using
the details obtained in preceding steps.

6. Invoke the ReissueCredential operation of the ArcotWebFortIssuanceSvc service to
reissue the credentials.

This operation returns an instance of the ReissueCredentialResponseMessage that
includes the credential and transaction details.

Interpreting the Response Message

Reissuing Credentials

224 Web Services Developer's Guide

For successful transactions, the response message, ReissueCredentialResponseMessage
returns the elements explained in the table containing information about the elements
that the response message, CreateCredentialResponseMessage, returns. These
elements are included in the SOAP body. If there are any errors, then the Fault response
is included in the SOAP body. See appendix, "Error Codes" (see page 353) for more
information on the SOAP error messages.

Resetting Credential Validity

Chapter 8: Performing Credential Operations 225

Resetting Credential Validity

Issued credentials are valid for the period that is specified at the time they are created.
The ResetCredentialValidity operation enables you to reset the validity period of the
credential before it expires. This operation is used to either extend or reduce the validity
period of the credential, but it does not reset the password or any other credential
attributes.

This section walks you through:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The ResetCredentialValidityRequestMessage is used to reset the validity of the
credentials. The input elements for resetting the credentials validity are same as that
explained in the "Creating Credentials" (see page 206) section. For more information
about each element, refer to the tables listed in the "Creating Credentials (see
page 206)" section.

Invoking the Web Service

To reset the validity of user credentials:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the ResetCredentialValidity operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. Use the userName and orgName elements to fetch the details of the user whose
credential validity must be reset.

3. Depending on the type of credential that has to be reset, use the respective
<CredentialName>Input element to obtain the credential information.

The input required for each credential is different. For example, password is needed
for Password as well as ArcotID PKI, while questions and corresponding answers are
required for QnA credentials.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use ResetCredentialValidityRequestMessage and construct the input message by
using the details obtained in preceding steps.

6. Invoke the ResetCredentialValidity operation of the ArcotWebFortIssuanceSvc
service to reset the credential validity.

Resetting Credential Validity

226 Web Services Developer's Guide

This operation returns an instance of the ResetCredentialValidityResponseMessage
that includes the credential and transaction details.

Interpreting the Response Message

For successful transactions, the response message,
ResetCredentialValidityResponseMessage returns the elements explained in the table
containing information about the elements that the response message,
CreateCredentialResponseMessage, returns. These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Resetting Custom Attributes

Chapter 8: Performing Credential Operations 227

Resetting Custom Attributes

The custom attributes associated with the credentials can be reset. The
ResetCredentialNotes operation enables you to reset the custom attributes of the
credential.

This section walks you through:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The ResetCredentialNotesRequestMessage is used to reset custom attributes. The input
elements for resetting the custom attributes associated with the credentials are same as
that explained in the "Creating Credentials" (see page 206) section. For more
information about each element, refer to the tables listed in the "Creating Credentials
(see page 206)" section.

Invoking the Web Service

To reset the custom attributes of user credentials:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the ResetCredentialNotes operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. Use the userName and orgName elements to fetch the details of the user whose
credential custom attributes must be reset.

3. Depending on the type of credential for which the attributes have to be reset, use
the respective <CredentialName>Input element to obtain the credential
information.

The input required for each credential is different. For example, password is needed
for Password as well as ArcotID PKI, while questions and corresponding answers are
required for QnA credentials.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use ResetCredentialNotesRequestMessage and construct the input message by
using the details obtained in preceding steps.

6. Invoke the ResetCredentialNotes operation of the ArcotWebFortIssuanceSvc service
to reset the credential custom attributes.

Fetching QnA Configuration

228 Web Services Developer's Guide

This operation returns an instance of the ResetCredentialNotesResponseMessage
that includes the credential and transaction details.

Interpreting the Response Message

For successful transactions, the response message,
ResetCredentialNotesResponseMessage returns the elements explained in the table
containing information about the elements that the response message,
CreateCredentialResponseMessage, returns. These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Fetching QnA Configuration

The number of questions that the user must set for QnA authentication might vary for
every organization. This section explains how to use Web services to fetch the questions
that are set for each organization. It covers the following topics:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The FetchQnAConfigurationRequestMessage is used to get the number of questions
that must be set by the user. It contains the elements listed in the following table:

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

orgName No Specifies the organization name to which the user
belongs to.

profileName No Specifies the profile name of the credential. If it is not
passed, then the default profile for the organization is
used.

fetchQuestions No Specifies whether to fetch the user questions.
Following are the possible values:

■ 0: If you do not want to fetch the questions.

■ 1: If you want to fetch the questions.

Fetching QnA Configuration

Chapter 8: Performing Credential Operations 229

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Fetching QnA Configuration

230 Web Services Developer's Guide

Invoking the Web Service

Perform the following steps to fetch QnA configuration:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the FetchQnAConfiguration operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. Use the orgName element to fetch the QnA details configured for the organization.

3. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

4. Use FetchQnAConfigurationRequestMessage and construct the input message by
using the details obtained in preceding steps.

5. Invoke the FetchQnAConfiguration operation of the ArcotWebFortIssuanceSvc
service to fetch the number of questions.

This operation returns an instance of the FetchQnAConfigurationResponseMessage
that includes the credential and transaction details.

Interpreting the Response Message

For successful transactions, the response message,
FetchQnAConfigurationResponseMessage returns the elements explained in the
following table. These elements are included in the SOAP body. If there are any errors,
then the Fault response is included in the SOAP body. See , "Error Codes" (see page 353)
for more information on the SOAP error messages.

Element Description

orgName The organization name to which the user belongs to.

profileName The profile name of the credential.

minQuestions The minimum number of questions that must be set by the user.

maxQuestions The maximum number of questions a user can set.

questions The questions for authenticating the users.

Note: The questions are returned if fetchQuestions flag is enabled
in the input.

Setting Unsigned Attributes

Chapter 8: Performing Credential Operations 231

Element Description

transactionDetails The transactions details include the following:

■ message
A string that defines the status of the operation.

■ reasonCode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ responseCode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ transactionID
Unique identifier of the transaction.

■ additionalOutput
The output for the additionalInput that was passed to
AuthMinder Server.

Setting Unsigned Attributes

This sections explains the Web service that must be used to set the ArcotID PKI unsigned
attributes. It walks you through following topics:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: This operation is applicable only for ArcotID PKI credential.

Preparing the Request Message

The SetArcotIDUnsignedAttributesRequestMessage is used to set the unsigned
attributes of the ArcotID PKI. It contains the elements listed in the following table.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes Specifies the unique identifier of the user for whom the
ArcotID PKI unsigned attributes have to be defined.

orgName No Specifies the organization name to which the user
belongs to.

Setting Unsigned Attributes

232 Web Services Developer's Guide

Element Mandatory Description

unsignedAttrib
utes

Yes Specifies the ArcotID PKI unsigned attributes in
name-value pairs.

■ name
Indicates the name with which you want to create
the unsigned attribute.

■ value
Indicates the corresponding value for the name.

additionalInput No Specifies the extra information that must be sent to
AuthMinder Server in name-value pairs.

■ name
Indicates the name with which you want to pass
additional information to the server.

■ value
Indicates the corresponding value for the name.

Setting Unsigned Attributes

Chapter 8: Performing Credential Operations 233

Invoking the Web Service

To set the unsigned attributes for the ArcotID PKI of user, you need to implement the
SetArcotIDUnsignedAttributes operation.

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the SetArcotIDUnsignedAttributes operation.
See chapter, "Managing Web Services Security" (see page 35) for more information
on these details.

2. Use the SetArcotIDUnsignedAttributes element to set the ArcotID PKI unsigned
attributes.

3. Use the userName and orgName elements to fetch the details of the user whose
ArcotID PKI unsigned attributes you want to set.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use SetArcotIDUnsignedAttributesRequestMessage and construct the input
message by using the details obtained in preceding steps.

6. Invoke the SetArcotIDUnsignedAttributes operation of the
ArcotWebFortIssuanceSvc service to set the ArcotID PKI unsigned attributes.

This operation returns an instance of the
SetArcotIDUnsignedAttributesResponseMessage that specifies the transaction
details.

Interpreting the Response Message

For successful transactions, the response message,
SetArcotIDUnsignedAttributesResponseMessage returns the elements explained in the
following table. These elements are included in the SOAP body. If there are any errors,
then the Fault response is included in the SOAP body. See "Error Codes" (see page 353)
for more information on the SOAP error messages.

Element Description

message A string that defines the status of the operation.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Unique code that is sent by AuthMinder Server if the operation
fails.

transactionID Unique identifier of the transaction.

additionalOutput The output for the additionalInput that was passed to
AuthMinder Server.

Deleting Unsigned Attributes

234 Web Services Developer's Guide

Deleting Unsigned Attributes

This sections explains the Web service that must be used to delete the ArcotID PKI
unsigned attributes. It walks you through following topics:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: This operation is applicable only for ArcotID PKI credential.

Preparing the Request Message

The DeleteArcotIDUnsignedAttributesRequestMessage is used to delete the unsigned
attributes of the ArcotID PKI. It contains the elements listed in the following table.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes Specifies the unique identifier of the user whose
ArcotID PKI unsigned attributes have to be deleted.

orgName No Specifies the organization name to which the user
belongs to.

unsignedAttrib
uteNames

Yes Specifies the ArcotID PKI unsigned attribute name.

additionalInput No Specifies the extra information that must be sent to
AuthMinder Server in name-value pairs.

■ name
Indicates the name of the unsigned attribute that
you want to delete.

■ value
Indicates the corresponding value for the name.

Deleting Unsigned Attributes

Chapter 8: Performing Credential Operations 235

Invoking the Web Service

To delete the unsigned attributes for the ArcotID PKI of a user, you need to implement
the DeleteArcotIDUnsignedAttributes operation.

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the DeleteArcotIDUnsignedAttributes
operation. See chapter, "Managing Web Services Security" (see page 35) for more
information on these details.

2. Use the userName and orgName elements to fetch the details of the user whose
ArcotID PKI unsigned attributes you want to delete.

3. Use the DeleteArcotIDUnsignedAttributes element to fetch the unsigned attributes
that you want to delete.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use DeleteArcotIDUnsignedAttributesRequestMessage and construct the input
message by using the details obtained in preceding steps.

6. Invoke the DeleteArcotIDUnsignedAttributes operation of the
ArcotWebFortIssuanceSvc service to delete the ArcotID PKI unsigned attributes.

This operation returns an instance of the
DeleteArcotIDUnsignedAttributesResponseMessage that specifies the transaction
details.

Interpreting the Response Message

For successful transactions, the response message,
DeleteArcotIDUnsignedAttributesResponseMessage returns the elements explained in
the following table. These elements are included in the SOAP body. If there are any
errors, then the Fault response is included in the SOAP body. See appendix, "Error
Codes" (see page 353) for more information on the SOAP error messages.

Element Description

message A string that defines the status of the operation.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Unique code that is sent by AuthMinder Server if the operation
fails.

transactionID Unique identifier of the transaction.

additionalOutput The output for the additionalInput that was passed to
AuthMinder Server.

Adding Elements to ArcotID PKI Key Bag

236 Web Services Developer's Guide

Adding Elements to ArcotID PKI Key Bag

ArcotID PKI can also be used to securely store the Open PKI keys and certificates. These
keys are typically used for different applications or operations such as, email signing
(S/MIME), document signing, and certificate-based authentication (open PKI).

The location where the open PKI keys and certificates are stored in the ArcotID PKI is
called key bag or key vault.

This sections explains the Web service that must be used to add keys and certificates to
the ArcotID PKI key bag. It walks you through following topics:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: This operation is applicable only for ArcotID PKI credential.

Preparing the Request Message

The ArcotIDKeyBagAddElementsRequestMessage is used to add keys and certificates to
the ArcotID PKI key bag. It contains the elements listed in the following table.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes Specifies the unique identifier of the user whose
certificates have to be added to their ArcotID PKI key
bag.

orgName No Specifies the organization name to which the user
belongs to.

profileName No Specifies the profile name of the credential. If it is not
passed, then the default profile for the organization is
used. If it is passed, then the profile name must be
available at the organization level.

elementSelecti
on

No Contains the following elements:

■ selectCertEncoding
If you enable this option, then AuthMinder Server
returns the certEncoding in response.

■ selectCertsDetails
If you enable this option, then AuthMinder Server
returns the certDetails in response.

Adding Elements to ArcotID PKI Key Bag

Chapter 8: Performing Credential Operations 237

Element Mandatory Description

additionalInput No Specifies the extra information that must be sent to
AuthMinder Server in name-value pairs.

■ name
Indicates the name of the unsigned attribute that
you want to delete.

■ value
Indicates the corresponding value for the name.

elements No Specifies the PKCS#12 file elements:

■ certEncoding: The PKCS#12 file is base-64
encoded format.

■ password:The passsword for the PKCS#12 file.

Adding Elements to ArcotID PKI Key Bag

238 Web Services Developer's Guide

Invoking the Web Service

To add the keys and certificates to the ArcotID PKI key bag, you need to implement the
ArcotIDKeyBagAddElements operation.

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the ArcotIDKeyBagAddElements operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. Use the userName and orgName elements to fetch the details of the user whose
ArcotID PKI unsigned attributes you want to add.

3. Use the elementSelection and elements element to fetch the certificate
information.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use ArcotIDKeyBagAddElementsRequestMessage and construct the input message
by using the details obtained in preceding steps.

6. Invoke the ArcotIDKeyBagAddElements operation of the ArcotWebFortIssuanceSvc
service to add the certificates.

This operation returns an instance of the
ArcotIDKeyBagAddElementsResponseMessage that specifies the transaction details.

Interpreting the Response Message

For successful transactions, the response message,
ArcotIDKeyBagAddElementsResponseMessage returns the elements explained in the
following table. These elements are included in the SOAP body. If there are any errors,
then the Fault response is included in the SOAP body. See appendix, "Error Codes" (see
page 353) for more information on the SOAP error messages.

Element Description

transactionDetails/
message

A string that defines the status of the operation.

transactionDetails/
reasonCode

Unique code that is sent by AuthMinder Server if the operation
fails.

transactionDetails/
responseCode

Unique code that is sent by AuthMinder Server if the operation
fails.

transactionDetails/
transactionID

Unique identifier of the transaction.

transactionDetails/
additionalOutput

The output for the additionalInput that was passed to
AuthMinder Server.

Fetching ArcotID PKI Key Bag Elements

Chapter 8: Performing Credential Operations 239

Element Description

certificates/certEn
coding

The encoding details that were requested in the input.

certificates/certsD
etails

Includes the following certificate details:

■ elementId: The identifier that denotes the unsigned
attribute.

■ issuerName: The name of the issuer whose issued the
certificate.

■ serialNumber: The serial number of the certificate.

■ certSubject: The subject of the certificate.

■ certValidFrom: The date from when the certificate is valid.

■ certValidTo: The date when the certificate expires.

■ hasPrivatekey: Indicates if the certificate contains the private
key.

Fetching ArcotID PKI Key Bag Elements

This section walks you through the following topics for fetching the certificate details
that are stored in the key bag:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: This operation is applicable only for ArcotID PKI credential.

Preparing the Request Message

The ArcotIDKeyBagGetElementsRequestMessage is used to fetch the details of keys and
certificates that are stored in the ArcotID PKI key bag. It contains the elements listed in
the following table.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes Specifies the unique identifier of the user whose
ArcotID PKI key bag elements have to be fetched.

orgName No Specifies the organization name to which the user
belongs to.

Fetching ArcotID PKI Key Bag Elements

240 Web Services Developer's Guide

Element Mandatory Description

profileName No Specifies the profile name of the credential. If it is not
passed, then the default profile for the organization is
used. If it is passed, then the profile name must be
available at the organization level.

elementSelecti
on

No Contains the following elements:

■ selectCertEncoding
If you enable this option, then AuthMinder Server
returns the certEncoding in response.

■ selectCertsDetails
If you enable this option, then AuthMinder Server
returns the certDetails in response.

additionalInput No Specifies the extra information that must be sent to
AuthMinder Server in name-value pairs.

■ name
Indicates the name of the unsigned attribute that
you want to delete.

■ value
Indicates the corresponding value for the name.

Fetching ArcotID PKI Key Bag Elements

Chapter 8: Performing Credential Operations 241

Invoking the Web Service

To fetch the keys and certificates stored in the ArcotID PKI key bag, you need to
implement the ArcotIDKeyBagGetElements operation.

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the ArcotIDKeyBagGetElements operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. Use the userName and orgName elements to fetch the details of the user whose
ArcotID PKI unsigned attributes you want to delete.

3. Use the elementSelection element to identify the certificate elements that you
want to fetch.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use ArcotIDKeyBagGetElementsRequestMessage and construct the input message
by using the details obtained in preceding steps.

6. Invoke the ArcotIDKeyBagGetElements operation of the ArcotWebFortIssuanceSvc
service to add the certificates.

This operation returns an instance of the
ArcotIDKeyBagGetElementsResponseMessage that specifies the transaction details.

Interpreting the Response Message

For successful transactions, the response message,
ArcotIDKeyBagGetElementsResponseMessage returns the elements explained in the
following table. These elements are included in the SOAP body. If there are any errors,
then the Fault response is included in the SOAP body. See appendix, "Error Codes" (see
page 353) for more information on the SOAP error messages.

Element Description

transactionDetails/
message

A string that defines the status of the operation.

transactionDetails/
reasonCode

Unique code that is sent by AuthMinder Server if the operation
fails.

transactionDetails/
responseCode

Unique code that is sent by AuthMinder Server if the operation
fails.

transactionDetails/
transactionID

Unique identifier of the transaction.

transactionDetails/
additionalOutput

The output for the additionalInput that was passed to
AuthMinder Server.

Deleting ArcotID PKI Key Bag Elements

242 Web Services Developer's Guide

Element Description

certificates/certEn
coding

The encoding details that were requested in the input.

certificates/certsD
etails

Includes the following certificate details:

■ elementId: The identifier that denotes the unsigned
attribute.

■ issuerName: The name of the issuer whose issued the
certificate.

■ serialNumber: The serial number of the certificate.

■ certSubject: The subject of the certificate.

■ certValidFrom: The date from when the certificate is valid.

■ certValidTo: The date when the certificate expires.

■ hasPrivatekey: Indicates if the certificate contains the private
key.

Deleting ArcotID PKI Key Bag Elements

The certificates are valid for a certain period, after which they expire. The expired
certificates cannot be used for any operation. In such cases, you can delete the expired
certificates stored in the key bag, and import new certificates.

This section walks you through the topics for deleting certificates stored in the ArcotID
PKI key bag:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: This operation is applicable only for ArcotID PKI credential.

Preparing the Request Message

The ArcotIDKeyBagDeleteElementsRequestMessage is used to delete the keys and
certificates that are stored in the ArcotID PKI key bag. It contains the elements listed in
the following table.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

Deleting ArcotID PKI Key Bag Elements

Chapter 8: Performing Credential Operations 243

Element Mandatory Description

userName Yes Specifies the unique identifier of the user whose key
bag elements have to be deleted.

orgName No Specifies the organization name to which the user
belongs to.

profileName No Specifies the profile name of the credential. If it is not
passed, then the default profile for the organization is
used. If it is passed, then the profile name must be
available at the organization.

elementSelecti
on

No Contains the following elements:

■ selectCertEncoding
If you enable this option, then AuthMinder Server
returns the certEncoding in response.

■ selectCertsDetails
If you enable this option, then AuthMinder Server
returns the certDetails in response.

additionalInput No Specifies the extra information that must be sent to
AuthMinder Server in name-value pairs.

■ name
Indicates the name of the unsigned attribute that
you want to delete.

■ value
Indicates the corresponding value for the name.

elementIds Yes The unique identifier of the elements that you want to
delete.

Deleting ArcotID PKI Key Bag Elements

244 Web Services Developer's Guide

Invoking the Web Service

To delete the keys and certificates stored in the ArcotID PKI key bag, you need to
implement the ArcotIDKeyBagDeleteElements operation.

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the ArcotIDKeyBagDeleteElements operation.
See chapter, "Managing Web Services Security" (see page 35) for more information
on these details.

2. Use the userName and orgName elements to fetch the details of the user whose
ArcotID PKI unsigned attributes you want to delete.

3. Use the elementSelection and elementIds element to identify the certificate
elements that you want to delete.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use ArcotIDKeyBagDeleteElementsRequestMessage and construct the input
message by using the details obtained in preceding steps.

6. Invoke the ArcotIDKeyBagDeleteElements operation of the
ArcotWebFortIssuanceSvc service to add the certificates.

This operation returns an instance of the
ArcotIDKeyBagDeleteElementsResponseMessage that specifies the transaction
details.

Interpreting the Response Message

For successful transactions, the response message,
ArcotIDKeyBagDeleteElementsResponseMessage returns the elements explained in the
following table. These elements are included in the SOAP body. If there are any errors,
then the Fault response is included in the SOAP body. See appendix, "Error Codes" (see
page 353) for more information on the SOAP error messages.

Element Description

message A string that defines the status of the operation.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Unique code that is sent by AuthMinder Server if the operation
fails.

transactionID Unique identifier of the transaction.

additionalOutput The output for the additionalInput that was passed to
AuthMinder Server.

Downloading Credentials

Chapter 8: Performing Credential Operations 245

Downloading Credentials

To download the credential to your device, you need to use the DownloadCredential
operation. This section walks you through:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Note: This operation is valid only for ArcotID PKI, ArcotID OTP-OATH, and ArcotID
OTP-EMV credentials.

Preparing the Request Message

The DownloadCredentialRequestMessage is used to download the credentials. The
input elements for downloading the credentials are same as that explained in the
"Creating Credentials" (see page 206) section. For more information about each
element, refer to the tables listed in the "Creating Credentials (see page 206)" section.

Invoking the Web Service

 To delete the credentials of a user:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the DownloadCredential operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. Use the userName and orgName elements to fetch the details of the user whose
credential you want to download.

3. Depending on the type of credential you want to delete, use the respective
<CredentialName>Input element to obtain the credential information.

The input required for each credential is different. For example, password is needed
for ArcotID PKI.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use DownloadCredentialRequestMessage and construct the input message by using
the details obtained in preceding steps.

6. Invoke the DownloadCredential operation of the ArcotWebFortIssuanceSvc service
to delete the credential.

This operation returns an instance of the DownloadCredentialResponseMessage
that includes the credentials and the transaction details.

Interpreting the Response Message

Downloading Credentials

246 Web Services Developer's Guide

For successful transactions, the response message,
DownloadCredentialResponseMessage returns the elements explained in the table
containing information about the elements that the response message,
CreateCredentialResponseMessage, returns. These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Deleting Credentials

Chapter 8: Performing Credential Operations 247

Deleting Credentials

This section walks you through:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The DeleteCredentialRequestMessage is used to delete the credentials. The input
elements for deleting the credentials are same as that explained in the "Creating
Credentials" (see page 206) section. For more information about each element, refer to
the tables listed in the "Creating Credentials (see page 206)" section.

Invoking the Web Service

 To delete the credentials of a user:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the DeleteCredential operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. Use the userName and orgName elements to fetch the details of the user whose
credential you want to delete.

3. Depending on the type of credential you want to delete, use the respective
<CredentialName>Input element to obtain the credential information.

The input required for each credential is different. For example, password is needed
for Password as well as ArcotID PKI, while questions and corresponding answers are
required for QnA credentials.

4. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

5. Use DeleteCredentialRequestMessage and construct the input message by using
the details obtained in preceding steps.

6. Invoke the DeleteCredential operation of the ArcotWebFortIssuanceSvc service to
delete the credential.

This operation returns an instance of the DeleteCredentialResponseMessage that
includes the credentials and the transaction details.

Interpreting the Response Message

Deleting Credentials

248 Web Services Developer's Guide

For successful transactions, the response message, DeleteCredentialResponseMessage
returns the elements explained in the table containing information about the elements
that the response message, CreateCredentialResponseMessage, returns. These
elements are included in the SOAP body. If there are any errors, then the Fault response
is included in the SOAP body. See appendix, "Error Codes" (see page 353) for more
information on the SOAP error messages.

Chapter 9: Integrating ArcotID PKI Client with Your Application 249

Chapter 9: Integrating ArcotID PKI Client
with Your Application

The ArcotID PKI Client is a software that is used by the end user to sign the challenge
provided by AuthMinder Server. If you are planning to implement ArcotID PKI-based
authentication, then you must integrate ArcotID PKI Client with your application before
you call ArcotID PKI authentication APIs. This chapter provides information on different
client types, details on how to integrate them with your application, and lists the APIs
provided by ArcotID PKI Client. It covers the following topics:

■ ArcotID PKI Client Overview (see page 249)

■ Copying ArcotID PKI Client Files (see page 250)

■ ArcotID PKI Client APIs (see page 251)

ArcotID PKI Client Overview

The ArcotID PKI Client is used for signing the AuthMinder-issued challenge at the user
end, but it also facilitates the download of the user’s ArcotID PKI. To support a wide
variety of end user environments, the ArcotID PKI Client is available as a Flash client and
as a signed Java applet. Each client type offers different levels of convenience and
capabilities. The degree of user interaction and administration rights required for
configuration vary depending on the client selected.

Flash Client

This implementation of ArcotID PKI Client runs in any Web browser that has Adobe Flash
Player (version 9 or higher) installed.

Note: If you are using ArcotID PKI Flash Client for ArcotID PKI operations, then the
application serving the Flash client must be enabled for HTTPS.

Copying ArcotID PKI Client Files

250 Web Services Developer's Guide

Signed Java Applet

This implementation of the ArcotID PKI Client can run in any Web browser that has Sun
Java Runtime Environment (JRE) installed.

Note: When using the signed Java applet, the user will be presented with a security
message that requires the user to accept the signed applet before it is invoked.

Copying ArcotID PKI Client Files

ArcotID PKI Client is an end-user system component. Therefore based on the client type
that you are planning to use, you must include the relevant files to the correct locations
on the system where the application is running.

This section discusses the files that needs to be packaged with the application:

■ For Flash Client (see page 250)

■ For Java Signed Applet (see page 251)

For Flash Client

The Flash client package contains the following files:

■ arcotclient.js

Contains the ArcotID PKI Flash Client APIs.

■ ArcotIDClient.swf

Contains the ArcotID PKI Flash Client implementation.

To configure a Flash Client:

1. Copy arcotclient.js and ArcotIDClient.swf files to an appropriate directory within
your application home.

2. Include the following JavaScript code in the Web page of your application from
where the APIs will be invoked:

<script type="text/javascript"

src="location_to_arcotclient.js"></script>

In the preceding code snippet, replace location_to_arcotclient.js with the path to
arcotclient.js.

3. Ensure that in all application pages, ArcotIDClient.swf is referred with same URL.

ArcotID PKI Client APIs

Chapter 9: Integrating ArcotID PKI Client with Your Application 251

For Java Signed Applet

The Java Signed Applet client package contains the following files:

■ arcotclient.js

Contains the Java Signed Applet client APIs.

■ ArcotApplet.jar (for Sun JRE)

Contains the Java Signed Applet client implementation.

To configure the Java Signed Applet Client:

1. Copy arcotclient.js and ArcotApplet.jar to an appropriate directory within your
application home.

2. Include the following JavaScript code in the relevant Web page of your application:

<script type="text/javascript"

src="location_to_arcotclient.js"></script>

In the preceding code snippet, replace location_to_arcotclient.js with the path to
arcotclient.js.

3. Ensure that in all application pages, the Java Applet is referred with same URL.

ArcotID PKI Client APIs

If you are implementing ArcotID PKI authentication, then your application must
integrate with ArcotID PKI Client APIs for:

■ Downloading ArcotID PKI (see page 252)

■ Signing the Challenge (see page 252)

ArcotID PKI Client APIs

252 Web Services Developer's Guide

Downloading ArcotID PKI

To download the ArcotID PKI from the application to the end-user system, you must use
the ImportArcotID() function. This function takes the base-64 encoded string of the
ArcotID PKI that has to be downloaded and the storage mode as the input parameters.

The ArcotID PKI can be temporarily downloaded for the current session or can be
downloaded permanently. This storage mode is specified by the storage medium
selected for storing the ArcotID PKI. An ArcotID PKI can be stored in any of the following:

■ Hard Disk

■ Universal Serial Bus (USB)

■ Memory

The downloaded ArcotID PKI is saved with the .aid extension. The name of the ArcotID
PKI file is derived from the hash value of user name, organization name, and domain
name.

Signing the Challenge

The challenge from AuthMinder Server must be signed by using the SignChallengeEx()
function of the client API.

Note: Refer to CA ArcotID Client Reference Guide for more information on the API
details.

Chapter 10: Authenticating Users 253

Chapter 10: Authenticating Users

This chapter describes the operations that are used for different authentication
methods supported by AuthMinder. This chapter covers the following topics:

■ ArcotID PKI Authentication (see page 254)

■ Questions and Answers Authentication (see page 264)

■ Password Authentication (see page 269)

■ One-Time Password Authentication (see page 277)

■ OATH One-Time Password Authentication (see page 280)

■ OATH One-Time Password Synchronization (see page 283)

■ ArcotID OTP (ArcotID OTP-OATH) Authentication (see page 286)

■ ArcotID OTP (ArcotID OTP-OATH) Synchronization (see page 289)

■ EMV OTP (ArcotID OTP-EMV) Authentication (see page 292)

■ EMV OTP (ArcotID OTP-EMV) Synchronization (see page 295)

■ Verifying Password Type Credentials (see page 298)

■ Verifying the Authentication Tokens (see page 301)

■ Fetching the PAM (see page 304)

To perform the operations discussed in this chapter, you need to use the
ArcotWebFortAuthSvc.wsdl file.

ArcotID PKI Authentication

254 Web Services Developer's Guide

ArcotID PKI Authentication

ArcotID PKI is a challenge-response type of authentication, where AuthMinder Server
provides a challenge. The signed challenge is sent by the ArcotID PKI Client to
AuthMinder Server through your application. This section explains how to download the
ArcotID PKI and then use it for authentication:

■ Step 1: ArcotID PKI Download (see page 254)

■ Step 2: ArcotID PKI Authentication (see page 258)

For successful ArcotID PKI authentication, you must ensure that you have integrated
ArcotID PKI Client with your application, as discussed in chapter, "Integrating ArcotID
PKI Client with Your Application" (see page 249).

Note: The ArcotID PKI download and authentication can be achieved in multiple ways,
see chapter, "Understanding AuthMinder WorkFlows" (see page 21) for more
information. This section focuses on the operations that are used to complete these
tasks.

Step 1: ArcotID PKI Download

 To perform ArcotID PKI authentication, the ArcotID PKI of the user has to be present on
the system from where the authentication request is originating. If the ArcotID PKI is not
present, then it needs to be downloaded to the system. In such a case the user must
perform a secondary authentication before the ArcotID PKI is downloaded.

The ArcotWebFortAuthSvc provides the GetArcotID operation that contains the
elements to download the ArcotID PKI of the users.

This section covers the following topics for downloading ArcotID PKI of the users:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The GetArcotIDRequestMessage is used to send the ArcotID PKI download request to
AuthMinder Server. The following table lists the elements of this message:

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

ArcotID PKI Authentication

Chapter 10: Authenticating Users 255

Element Mandatory Description

userName Yes The unique identifier of the user whose ArcotID PKI has
to be downloaded.

orgName No The organization name to which the user belongs to.

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Note: The additionalInput element is available at the
end of the request message. You can add more than
one of these elements.

ArcotID PKI Authentication

256 Web Services Developer's Guide

Invoking the Web Service

To download the ArcotID PKI:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the GetArcotID operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on the
header elements.

2. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

3. Use GetArcotIDRequestMessage and construct the input message. See the table in
the preceding section.

4. Invoke the GetArcotID operation of the ArcotWebFortAuthSvc service to fetch the
ArcotID PKI of the user to your application.

This operation returns an instance of the GetArcotIDResponseMessage, which
provides the ArcotID PKI of the user and transaction details. For more information,
see the table containing information about the elements that the response
message, GetArcotIDResponseMessage, returns.

5. The user’s ArcotID PKI is set in the HTML or Java Server Page (JSP).

6. Invoke the ImportArcotID client-side API to download the ArcotID PKI from your
application to the end user’s system.

Note: Refer to CA ArcotID Client Reference Guide for more information on the
ImportArcotID function. ArcotID PKI Client provides the SDK in JavaScript programming
language.

Interpreting the Response Message

For successful transactions, the response message, GetArcotIDResponseMessage
returns the elements explained in the following table. These elements are included in
the SOAP body. If there are any errors, then the Fault response is included in the SOAP
body. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Element Description

arcotID The ArcotID PKI of the user in the base-64 encoded format.

ArcotID PKI Authentication

Chapter 10: Authenticating Users 257

Element Description

transactionDetails Contains the following details of the transaction:

■ message
A string that defines the status of the operation.

■ reasoncode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ responseCode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ transactionID
Unique identifier of the transaction.

■ additionalOutput
The output for the additionalInput that was passed to
AuthMinder Server.

ArcotID PKI Authentication

258 Web Services Developer's Guide

Step 2: ArcotID PKI Authentication

ArcotID PKI is based on challenge response authentication. The ArcotID PKI Client first
fetches the challenge from AuthMinder Server, signs it, and then sends a request to
AuthMinder Server to verify the signed challenge.

This section walks you through:

■ Preparing Request Messages

■ Invoking the Web Service

■ Interpreting Response Messages

Preparing Request Messages

For ArcotID PKI authentication, you must prepare the following request messages:

■ Fetching Challenge

■ Verifying Signed Challenge

Fetching Challenge

The GetArcotIDChallengeRequestMessage is used to fetch the challenge from
AuthMinder Server. The following table lists the elements of this message:

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

ArcotID PKI Authentication

Chapter 10: Authenticating Users 259

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Verifying Signed Challenge

The VerifySignedChallengeRequestMessage is used to verify the signed challenge. The
following table lists the elements of this message:

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

orgName No The organization name to which the user belongs to.

signedChalleng
e

Yes The challenge that is signed by the ArcotID PKI Client
by using user’s ArcotID PKI password.

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

ArcotID PKI Authentication

260 Web Services Developer's Guide

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

ArcotID PKI Authentication

Chapter 10: Authenticating Users 261

Invoking the Web Service

To perform ArcotID PKI authentication:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the GetArcotIDChallenge operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. Use GetArcotIDChallengeRequestMessage and construct the input message.

3. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

4. Invoke the GetArcotIDChallenge operation of the ArcotWebFortAuthSvc service to
retrieve the challenge from AuthMinder Server.

This operation returns GetArcotIDChallengeResponseMessage, which has the
transaction details and also the challenge from the server.

5. The challenge is sent to the end user through HTML Page.

6. Invoke the ArcotID PKI Client-side method, SignChallengeEx() to sign the challenge.

The application collects the ArcotID PKI password, and the challenge is signed by
the ArcotID PKI Client using the ArcotID PKI password.

7. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the VerifyArcotIDSignedChallenge operation.
See chapter, "Managing Web Services Security" (see page 35) for more information
on these details.

8. Use VerifySignedChallengeRequestMessage and construct the input message.

9. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

10. Use VerifyArcotIDSignedChallenge operation of the ArcotWebFortAuthSvc service
to verify the signed challenge. Optionally, you can also specify the token type that
must be returned to the user after successful authentication by using the tokenTpe
element.

This operation returns an instance of the VerifySignedChallengeResponseMessage,
which provides the transaction details, credential details, and token information.

Interpreting Response Messages

Following are the response messages that are returned as part of ArcotID PKI
authentication:

■ Fetch Challenge Response Message

■ Verify Signed Challenge Response Message

Fetch Challenge Response Message

ArcotID PKI Authentication

262 Web Services Developer's Guide

For successful transactions, the response message,
GetArcotIDChallengeResponseMessage returns the elements explained in the following
table. These elements are included in the SOAP body. If there are any errors, then the
Fault response is included in the SOAP body. See appendix, "Error Codes" (see page 353)
for more information on the SOAP error messages.

Element Description

challenge Challenge returned by AuthMinder Server.

transactionDetails Contains the following transaction details:

■ message
A string that defines the status of the operation.

■ reasoncode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ responseCode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ transactionID
Unique identifier of the transaction.

■ additionalOutput
The output for the additionalInput that was passed to
AuthMinder Server.

Verify Signed Challenge Response Message

For successful transactions, the response message,
VerifySignedChallengeResponseMessage returns the elements explained in the
following table. These elements are included in the SOAP body. If there are any errors,
then the Fault response is included in the SOAP body. See appendix, "Error Codes" (see
page 353) for more information on the SOAP error messages.

Method Description

userName The name of the authenticating user.

orgName The organization to which the user belongs to.

authToken The authentication token returned by AuthMinder Server after
successful authentication.

tokenType The type of authentication token that is returned by AuthMinder
Server after successful authentication. See "Verifying the
Authentication Tokens" (see page 301) for more information.

daysLeftToExpire The number of days after which the credential expires.

status The status of the credential.

ArcotID PKI Authentication

Chapter 10: Authenticating Users 263

Method Description

remainingUsageCo
unt

The number of times the credential can be used.

createTime The time when the credential was created.

lastUpdatedTime The time when the credential was updated last time.

validityStartTime The date from when the credential is valid.

validityEndTime The date after which the credential expires.

disableStartTime The time when the credential has to be disabled.

disableEndTime The time when the disabled credential has to be enabled.

numberOfFailedAu
thAttempts

The total number of failed authentication attempts for the user.

lastSuccessAuthAtt
emptTime

The time when the last authentication attempt succeeded.

lastFailedAuthAtte
mptTime

The time when the last authentication attempt failed.

profileName The profile name with which the credential was created.

profileVersion The version number of the profile.

notes The custom attributes that are set for the credential.

transactionDetails Contains the following transaction details:

■ message
A string that defines the status of the operation.

■ reasoncode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ responseCode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ transactionID
Unique identifier of the transaction.

■ additionalOutput
The output for the additionalInput that was passed to
AuthMinder Server.

Questions and Answers Authentication

264 Web Services Developer's Guide

Questions and Answers Authentication

The Question and Answer (QnA) authentication mechanism can either be used as a
secondary authentication method for Step 1: ArcotID PKI Download (see page 254), or
Forgot Your Password (FYP) authentication, or can be used as an independent
authentication type.

In this mechanism, the user can either set their own set of questions and answers during
the QnA creation stage, or your application can choose to ask pre-defined questions to
the user. The maximum number of questions to be set, the number of questions to be
asked to the user, and the minimum correct answers to be collected during
authentication are all configurable parameters and can be set by using the
Administration Console.

This section walks you through the following topics for QnA authentication:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting Response Messages

Preparing the Request Message

For QnA authentication, you must prepare the following request messages:

■ Fetching Questions

■ Verifying Answers

Fetching Questions

The GetQuestionsRequestMessage is used to fetch the questions from AuthMinder
Server. The following table lists the elements of this message:

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization to which the user belongs to.

Questions and Answers Authentication

Chapter 10: Authenticating Users 265

Element Mandatory Description

fetchAnswers Yes The flag, which indicates whether to fetch the answers.

Following are the supported values:

■ 0: Indicates that the answers will not be fetched.
Use this option, if you want AuthMinder Server to
verify the answers.

■ 1: Indicates that the answers must be fetched.
You must enable this option if QnA authentication
is performed using the caller verification mode.
This mode enables you to collect the answers from
the user, verify the answers, and then send the
verification result to AuthMinder Server.

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Verifying Answers

The VerifyAnswersRequestMessage is used to verify the answers provided by the user.
The following table lists the elements of this message:

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

orgName No The organization name to which the user belongs to.

Questions and Answers Authentication

266 Web Services Developer's Guide

Element Mandatory Description

qna Yes Contains the following information:

■ questionID
The unique identifier of the question asked to the
user.

■ answer
The answer provided by the user.

■ verificationStatus
Indicates whether the answer provided is correct
or wrong.

Note: The verificationStatus element is valid only if
caller verification is enabled.

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Note: The additionalInput element is available at the
end of the request message. You can add more than
one of these elements.

Questions and Answers Authentication

Chapter 10: Authenticating Users 267

Invoking the Web Service

The following procedure outlines the QnA authentication steps:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the GetQuestions operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. Use GetQuestionsRequestMessage and construct the input message.

Note: In the request message, you must set the fetchAnswers element, if you want
to enable caller verification mode.

3. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

4. Invoke the GetQuestions operation of the ArcotWebFortAuthSvc service to retrieve
the user’s questions and answers from AuthMinder Server.

This operation returns GetQuestionsResponseMessage, which includes the
questions to be asked, answers for each question, transaction ID, message,
response code, and reason code.

5. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the VerifyAnswers operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

6. Use VerifyAnswersRequestMessage and construct the input message.

7. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

8. Invoke the VerifyAnswers operation of the ArcotWebFortAuthSvc service to verify
the answers provided by the user. Optionally, you can also specify the token type
that must be returned to the user after successful authentication by using the
tokenType element.

This operation returns VerifyAnswersResponseMessage, which provides the
transaction details, credential details, and token information.

Interpreting Response Messages

Following are the response messages that are returned as part of QnA authentication:

■ Fetch Questions Response Message

■ Verify Answer Response Message

Fetch Questions Response Message

Questions and Answers Authentication

268 Web Services Developer's Guide

For successful transactions, the response message, GetQuestionsResponseMessage
returns the elements explained in the following table. These elements are included in
the SOAP body. If there are any errors, then the Fault response is included in the SOAP
body. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Element Description

qna Contains the following question and answer details:

■ questionID
The unique identifier of the question asked to the user.

■ question
The question that has to be asked to the user.

■ answer
The answer for the corresponding question to be asked.

transactionDetails Contains the following transaction details:

■ message
A string that defines the status of the operation.

■ reasoncode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ responseCode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ transactionID
Unique identifier of the transaction.

■ additionalOutput
The output for the additionalInput that was passed to
AuthMinder Server.

Verify Answer Response Message

For successful transactions, the response message, VerifyAnswersResponseMessage
returns the elements explained in . These elements are included in the SOAP body. If
there are any errors, then the Fault response is included in the SOAP body. See
appendix. "Error Codes" (see page 353) for more information on the SOAP error
messages.

Password Authentication

Chapter 10: Authenticating Users 269

Password Authentication

The authentication Web service provides the VerifyPassword interface to perform the
traditional Password authentication. In this authentication mechanism, the user
specifies the user name and the corresponding password for authentication. The
password entered by the user is then verified.

AuthMinder supports the following types of Password authentication:

■ Complete Password Authentication (see page 269)

■ Partial Password Authentication (see page 272)

Complete Password Authentication

In this method, the security application prompts the user for complete password. If the
password entered by the user is correct, then the authentication is considered
successful.

The following topics for performing the complete password authentication are covered
in this section:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The VerifyPasswordRequestMessage is used to verify the password provided by the
users. The following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization name to which the user belongs to.

password Yes The password provided by the user.

Password Authentication

270 Web Services Developer's Guide

Element Mandatory Description

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

challengeID No The unique identifier of the challenge returned by
AuthMinder Server.

Note: The challengeID is not required for complete
password verification.

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Password Authentication

Chapter 10: Authenticating Users 271

Invoking the Web Service

To perform regular password authentication:

1. Implement the logic to collect the user’s password.

2. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the VerifyPassword operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

3. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

4. Use VerifyPasswordRequestMessage and construct the input message.

5. Invoke the VerifyPassword operation of the ArcotWebFortAuthSvc service to verify
the password provided by the user. Optionally, you can also specify the token type
that must be returned to the user after successful authentication by using the
tokenType element.

This operation returns VerifyPasswordResponseMessage, which provides the
transaction details, credential details, and token information.

Interpreting the Response Message

For successful transactions, the response message, VerifyPasswordResponseMessage
returns the elements explained in Verify Signed Challenge Response Message in Step 2:
ArcotID PKI Authentication (see page 258). These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Password Authentication

272 Web Services Developer's Guide

Partial Password Authentication

AuthMinder supports partial password authentication, if you enable this feature, then
the user will be challenged to enter the characters in different positions of the
password. For example, if the password is casablanca!, then the user can be asked to
enter the characters in positions 1, 3, and 8, which would be csn.

The following topics for performing partial password authentication are covered in this
section:

■ Preparing Request Messages

■ Invoking the Web Service

■ Interpreting Response Messages

Preparing Request Messages

For partial password authentication, you must prepare the following request messages:

■ Fetching Challenge

■ Verifying Password

Fetching Challenge

The GetPasswordChallengeRequestMessage is used to fetch the password challenge for
the user from AuthMinder Server. The following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization name to which the user belongs to.

Password Authentication

Chapter 10: Authenticating Users 273

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Verifying Password

The VerifyPasswordRequestMessage is used to verify the password provided by the
users. The following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization name to which the user belongs to.

password Yes The password provided by the user.

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

Password Authentication

274 Web Services Developer's Guide

Element Mandatory Description

challengeID No The unique identifier of the challenge returned by
AuthMinder Server.

Note: The challengeID is required for complete partial
password verification.

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Password Authentication

Chapter 10: Authenticating Users 275

Invoking the Web Service

To perform partial password authentication:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the GetPasswordChallenge operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

3. Use GetPasswordChallengeRequestMessage and construct the input message.

4. Invoke the GetPasswordChallenge operation of the ArcotWebFortAuthSvc service
to obtain the challenge from AuthMinder Server. The challenge contains the
password positions that the user has to answer.

5. Implement the logic to collect the user’s password.

6. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the VerifyPassword operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

7. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

8. Use VerifyPasswordRequestMessage and construct the input message.

9. Invoke the VerifyPassword operation of the ArcotWebFortAuthSvc service to verify
the password provided by the user. Optionally, you can also specify the token type
that must be returned to the user after successful authentication by using the
tokenType element.

This operation returns VerifyPasswordResponseMessage, which provides the
transaction details, credential details, and token information.

Interpreting Response Messages

Following are the response messages that are returned as part of QnA authentication:

■ Fetch Password Challenge Response Message

■ Verify Password Response Message

Fetch Password Challenge Response Message

Password Authentication

276 Web Services Developer's Guide

For successful transactions, the response message,
GetPasswordChallengeResponseMessage returns the elements explained in the
following table. These elements are included in the SOAP body. If there are any errors,
then the Fault response is included in the SOAP body. See appendix, "Error Codes" (see
page 353) for more information on the SOAP error messages.

Element Description

positions The password positions for which the user has to provide the
password characters.

challengeID The unique identifier of the challenge returned by AuthMinder
Server.

transactionDetails Contains the following transaction details:

■ message
A string that defines the status of the operation.

■ reasoncode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ responseCode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ transactionID
Unique identifier of the transaction.

■ additionalOutput
The output for the additionalInput that was passed to
AuthMinder Server.

Verify Password Response Message

For successful transactions, the response message, VerifyPasswordResponseMessage
returns the elements explained in Verify Signed Challenge Response Message in Step 2:
ArcotID PKI Authentication (see page 258). These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

One-Time Password Authentication

Chapter 10: Authenticating Users 277

One-Time Password Authentication

One-Time Password (OTP) is a numeric or an alpha-numeric string that is generated by
AuthMinder Server. AuthMinder supports OTPs that can be reused pre-configured
number of times. You can specify this setting by using Administration Console. The OTP
lifetime depends on the duration for which it is valid and number of times it can be
used.

The following topics for performing OTP authentication are covered in this section:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The VerifyOTPRequestMessage is used to verify the OTP provided by the users. The
following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization name to which the user belongs to.

otp Yes The OTP provided by the user.

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

One-Time Password Authentication

278 Web Services Developer's Guide

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

One-Time Password Authentication

Chapter 10: Authenticating Users 279

Invoking the Web Service

To perform OTP authentication:

1. Implement the logic to collect the OTP from the user.

2. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the VerifyOTP operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

3. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

4. Use VerifyOTPRequestMessage and construct the input message.

5. Invoke the VerifyOTP operation of the ArcotWebFortAuthSvc service to verify the
OTP of the user. Optionally, you can also specify the token type that must be
returned to the user after successful authentication by using the tokenType
element.

This operation returns VerifyOTPResponseMessage, which provides the transaction
details, credential details, and token information.

Interpreting the Response Message

For successful transactions, the response message, VerifyOTPResponseMessage returns
the elements explained in Verify Signed Challenge Response Message in Step 2: ArcotID
PKI Authentication (see page 258). These elements are included in the SOAP body. If
there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

OATH One-Time Password Authentication

280 Web Services Developer's Guide

OATH One-Time Password Authentication

The following topics for performing OATH-based OTP authentication are covered in this
section:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The VerifyOATHOTPRequestMessage is used to verify the OATH OTP provided by the
users. The following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization name to which the user belongs to.

otp Yes The OATH OTP provided by the user.

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

OATH One-Time Password Authentication

Chapter 10: Authenticating Users 281

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

OATH One-Time Password Authentication

282 Web Services Developer's Guide

Invoking the Web Service

To authenticate the OTPs that are OATH compliant:

1. Implement the logic to collect the OATH OTP from the user.

2. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the VerifyOATHOTP operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

3. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

4. Use VerifyOATHOTPRequestMessage and construct the input message.

5. Invoke the VerifyOATHOTP operation of the ArcotWebFortAuthSvc service to verify
the OATH OTP of the user. Optionally, you can also specify the token type that must
be returned to the user after successful authentication by using the tokenType
element.

This operation returns VerifyOATHOTPResponseMessage, which provides the
transaction details, credential details, and token information.

Interpreting the Response Message

For successful transactions, the response message, VerifyOATHOTPResponseMessage
returns the elements explained in Verify Signed Challenge Response Message in Step 2:
ArcotID PKI Authentication (see page 258). These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

OATH One-Time Password Synchronization

Chapter 10: Authenticating Users 283

OATH One-Time Password Synchronization

The following topics for synchronizing the OATH OTPs are covered in this section:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The SynchronizeOATHOTPRequestMessage is used to synchronize the client and server
OATH OTPs. The following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization name to which the user belongs to.

otpList Yes The subsequent client OATH OTPs to which the Server
OTP has to be synchronized.

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

OATH One-Time Password Synchronization

284 Web Services Developer's Guide

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

OATH One-Time Password Synchronization

Chapter 10: Authenticating Users 285

Invoking the Web Service

To synchronize the client and server OATH OTPs:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the SynchronizeOATHOTP operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

3. Use SynchronizeOATHOTPRequestMessage and construct the input message.

4. Invoke the SynchronizeOATHOTP operation of the ArcotWebFortAuthSvc service to
synchronize the server OTP with the client OTP. Optionally, you can also specify the
token type that must be returned to the user after successful authentication by
using the tokenType element.

This operation returns SynchronizeOATHOTPResponseMessage, which provides the
transaction details, credential details, and token information.

Interpreting the Response Message

For successful transactions, the response message,
SynchronizeOATHOTPResponseMessage returns the elements explained in Verify Signed
Challenge Response Message in Step 2: ArcotID PKI Authentication (see page 258).
These elements are included in the SOAP body. If there are any errors, then the Fault
response is included in the SOAP body. See appendix, "Error Codes" (see page 353) for
more information on the SOAP error messages.

ArcotID OTP (ArcotID OTP-OATH) Authentication

286 Web Services Developer's Guide

ArcotID OTP (ArcotID OTP-OATH) Authentication

The following topics for performing ArcotID OTP authentication are covered in this
section:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The VerifyArcotOTPRequestMessage is used to verify the ArcotID OTP provided by the
users. The following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization name to which the user belongs to.

otp Yes The ArcotID OTP provided by the user.

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

ArcotID OTP (ArcotID OTP-OATH) Authentication

Chapter 10: Authenticating Users 287

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

■ AR_WF_OTP_TXN_SIGN_DATA
Specifies the transaction data that the end user
enters in the Challenge field of the ArcotID OTP
client to generate a passcode in the Sign mode.
The maximum length of the signed data is 64
bytes. This implementation of the Transaction
Signing feature conforms to the OATH
Challenge-Response Algorithm (OCRA) as defined
by RFC 6287.

ArcotID OTP (ArcotID OTP-OATH) Authentication

288 Web Services Developer's Guide

Invoking the Web Service

To authenticate the ArcotID OTPs:

1. Implement the logic to collect the ArcotID OTP from the user.

2. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the VerifyArcotOTP operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

3. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

4. Use VerifyArcotOTPRequestMessage and construct the input message.

5. Invoke the VerifyArcotOTP operation of the ArcotWebFortAuthSvc service verify the
ArcotID OTP of the user. Optionally, you can also specify the token type that must
be returned to the user after successful authentication by using the tokenType
element.

This operation returns VerifyArcotOTPResponseMessage, which provides the
transaction details, credential details, and token information.

Interpreting the Response Message

For successful transactions, the response message, VerifyArcotOTPResponseMessage
returns the elements explained in Verify Signed Challenge Response Message in Step 2:
ArcotID PKI Authentication (see page 258). These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

ArcotID OTP (ArcotID OTP-OATH) Synchronization

Chapter 10: Authenticating Users 289

ArcotID OTP (ArcotID OTP-OATH) Synchronization

The following topics for synchronizing the ArcotID OTPs are covered in this section:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The SynchronizeArcotOTPRequestMessage is used to synchronize the client and server
ArcotID OTPs. The following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization name to which the user belongs to.

otpList Yes The subsequent client ArcotID OTPs to which the Server
OTP has to be synchronized.

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

ArcotID OTP (ArcotID OTP-OATH) Synchronization

290 Web Services Developer's Guide

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

ArcotID OTP (ArcotID OTP-OATH) Synchronization

Chapter 10: Authenticating Users 291

Invoking the Web Service

To synchronize the client and server ArcotID OTPs:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the SynchronizeArcotOTP operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
these details.

2. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

3. Use SynchronizeArcotOTPRequestMessage and construct the input message.

4. Invoke the SynchronizeArcotOTP operation of the ArcotWebFortAuthSvc service to
synchronize the server ArcotID OTP with the client ArcotID OTP. Optionally, you can
also specify the token type that must be returned to the user after successful
authentication by using the tokenType element.

This operation returns SynchronizeArcotOTPResponseMessage, which provides the
transaction details, credential details, and token information.

Interpreting the Response Message

For successful transactions, the response message,
SynchronizeArcotOTPResponseMessage returns the elements explained in Verify Signed
Challenge Response Message in Step 2: ArcotID PKI Authentication (see page 258).
These elements are included in the SOAP body. If there are any errors, then the Fault
response is included in the SOAP body. See appendix, "Error Codes" (see page 353) for
more information on the SOAP error messages.

EMV OTP (ArcotID OTP-EMV) Authentication

292 Web Services Developer's Guide

EMV OTP (ArcotID OTP-EMV) Authentication

The following topics for performing EMV OTP authentication are covered in this section:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The VerifyEMVRequestMessage is used to verify the EMV OTP provided by the users.
The following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization name to which the user belongs to.

otp Yes The EMV OTP provided by the user.

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

EMV OTP (ArcotID OTP-EMV) Authentication

Chapter 10: Authenticating Users 293

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

EMV OTP (ArcotID OTP-EMV) Authentication

294 Web Services Developer's Guide

Invoking the Web Service

To authenticate the EMV OTPs:

1. Implement the logic to collect the EMV OTP from the user.

2. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the VerifyEMV operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

3. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

4. Use VerifyEMVRequestMessage and construct the input message.

5. Invoke the VerifyEMV operation of the ArcotWebFortAuthSvc service verify the
EMV OTP of the user. Optionally, you can also specify the token type that must be
returned to the user after successful authentication by using the tokenType
element.

This operation returns VerifyEMVResponseMessage, which provides the transaction
details, credential details, and token information.

Interpreting the Response Message

For successful transactions, the response message, VerifyEMVResponseMessage returns
the elements explained in Verify Signed Challenge Response Message in Step 2: ArcotID
PKI Authentication (see page 258). These elements are included in the SOAP body. If
there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

EMV OTP (ArcotID OTP-EMV) Synchronization

Chapter 10: Authenticating Users 295

EMV OTP (ArcotID OTP-EMV) Synchronization

The following topics for synchronizing the EMV OTPs are covered in this section:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The SynchronizeEMVRequestMessage is used to synchronize the client and server EMV
OTPs. The following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The unique identifier of the user.

orgName No The organization name to which the user belongs to.

otpList Yes The subsequent client EMV OTPs to which the Server
OTP has to be synchronized.

tokenType No The type of authentication token that is expected from
AuthMinder Server after successful authentication. See
"Verifying the Authentication Tokens" (see page 301)
for more information.

EMV OTP (ArcotID OTP-EMV) Synchronization

296 Web Services Developer's Guide

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

EMV OTP (ArcotID OTP-EMV) Synchronization

Chapter 10: Authenticating Users 297

Invoking the Web Service

To synchronize the client and server EMV OTPs:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the SynchronizeEMV operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

3. Use SynchronizeEMVRequestMessage and construct the input message.

4. Invoke the SynchronizeEMV operation of the ArcotWebFortAuthSvc service to
synchronize the server EMV OTP with the client EMV OTP. Optionally, you can also
specify the token type that must be returned to the user after successful
authentication by using the tokenType element.

This operation returns SynchronizeEMVResponseMessage, which provides the
transaction details, credential details, and token information.

Interpreting the Response Message

For successful transactions, the response message, SynchronizeEMVResponseMessage
returns the elements explained in Verify Signed Challenge Response Message in Step 2:
ArcotID PKI Authentication (see page 258). These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Verifying Password Type Credentials

298 Web Services Developer's Guide

Verifying Password Type Credentials

The authentication requests that are presented to the AuthMinder Server must specify
the type of credential that has to be used to process the requests. In case of RADIUS and
ASSP authentication requests, the input requests do not have the provision to specify
the type of credential, and by default RADIUS uses One-Time Password and ASSP uses
password credential for authentication.

To support any password-based authentication mechanisms for RADIUS and ASSP, or to
map any input request with an unknown credential type to a particular password-based
authentication mechanism you must create the Credential Type Resolution
configuration. You can map the input request to any of the following credentials that
AuthMinder supports:

■ Password

■ OTP

■ OATH OTP

■ ArcotID OTP-OATH

■ ArcotID OTP-EMV

■ RADIUS OTP

■ LDAP Password

■ Native Token

If a particular input request uses the credential resolution configuration, then the
VerifyPlain operation is invoked to process that request. Based on the configuration, the
incoming user credential will be mapped to the credential that it is configured to.

Note: To use this feature, you should have configured the created credential type
resolution, as discussed in chapter, "Creating Configurations" (see page 152).

This section walks you through the following topics for verifying any password type
credential:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The VerifyPlainRequestMessage is used to verify any password type credentials that
AuthMinder supports. The following table lists the elements of this message.

Element Mandatory Description

Verifying Password Type Credentials

Chapter 10: Authenticating Users 299

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

userName Yes The name of the user whose credentials have to be
verified.

orgName No The name of the organization to which the
authenticating user belongs to.

password Yes The mapped password type credential with which the
user has to be authenticated.

tokenType No The type of authentication token that is returned to the
user after successful authentication.

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Verifying Password Type Credentials

300 Web Services Developer's Guide

Invoking the Web Service

To verify a password type credential:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the VerifyPlain operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

3. Use VerifyPlainRequestMessage and construct the input message.

4. Invoke the VerifyPlain operation of the ArcotWebFortAuthSvc service to verify the
user’s credential.

This operation returns VerifyPlainResponseMessage, which provides the credential
and transaction details.

Interpreting the Response Message

For successful transactions, the response message, VerifyPlainResponseMessage returns
the elements explained in Verify Signed Challenge Response Message in Step 2: ArcotID
PKI Authentication (see page 258). These elements are included in the SOAP body. If
there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Verifying the Authentication Tokens

Chapter 10: Authenticating Users 301

Verifying the Authentication Tokens

The AuthMinder Authentication Web service provides an appropriate token to the end
user after they authenticate successfully. The token is then presented to AuthMinder
Server, indicating that the user is authenticated and can be provided access to the
protected resources.

By using the Authentication Web service, you can specify whether the token has to be
returned after authentication or not. In addition, you can also specify the type of the
token that must be returned after authentication. The tokenType element specifies the
return token type and supports the following types of tokens:

■ Native Tokens

Specify this type when CA-proprietary (or Native) token is required after successful
authentication. This token can be used multiple times before it expires.

■ One-Time Tokens

Specify this type when one-time token is required after successful authentication.
This token can be used only one time before it expires.

■ SAML Tokens

Secure Assertion Markup Language (SAML) is an open standard, which specifies the
format of the authentication data exchanged between security domains. The
Native, Default, and One-Time tokens issued by AuthMinder can only be
interpreted by the AuthMinder Server, but the SAML tokens issued by the
AuthMinder Server can be interpreted by any other authentication system.
AuthMinder supports 1.1 and 2.0 versions of SAML:

■ SAML 1.1 Tokens

Specify this type of token when you are using custom (non-AuthMinder)
authentication mechanism that needs SAML 1.1 tokens after successful
authentication.

■ SAML 2.0 Tokens

Specify this type of token when you are using custom (non-AuthMinder)
authentication mechanism that needs SAML 2.0 tokens after successful
authentication.

■ Default Tokens

Specify this type of token when the default token configured at the server is to be
requested after successful authentication.

AuthMinder Server can verify only the Native and One-Time tokens that are issued to
the users. The authentication token must be verified in cases when you use the token
for Single Sign-On, wherein you authenticate the user once and allow them to use
multiple resources using the same authentication token.

This section walks you through the following topics for verifying authentication tokens:

Verifying the Authentication Tokens

302 Web Services Developer's Guide

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The VerifyAuthTokenRequestMessage is used to verify the authentication token
returned by AuthMinder Server. The following table lists the elements of this message.

Element Mandatory Description

clientTxnId No Specifies the unique transaction identifier that the
calling application can include. This identifier helps in
tracking the related transactions.

token No The authentication token that is returned to the user
after successful authentication.

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Verifying the Authentication Tokens

Chapter 10: Authenticating Users 303

Invoking the Web Service

To verify if a token is valid or not:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the VerifyAuthToken operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on these
details.

2. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

3. Use VerifyAuthTokenRequestMessage and construct the input message.

4. Invoke the VerifyAuthToken operation of the ArcotWebFortAuthSvc service to
verify the token of the user.

This operation returns VerifyAuthTokenResponseMessage, which provides the
credential and transaction details.

Interpreting the Response Message

For successful transactions, the response message, VerifyAuthTokenResponseMessage
returns the elements explained in the following table. These elements are included in
the SOAP body. If there are any errors, then the Fault response is included in the SOAP
body. See appendix, "Error Codes" (see page 353) for more information on the SOAP
error messages.

Method Description

userName The name of the user to whom the authentication token belongs
to.

orgName The organization to which the user belongs to.

Fetching the PAM

304 Web Services Developer's Guide

Method Description

transactionDetails Contains the following transaction details:

■ message
A string that defines the status of the operation.

■ reasoncode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ responseCode
Unique code that is sent by AuthMinder Server if the
operation fails.

■ transactionID
Unique identifier of the transaction.

■ additionalOutput
The output for the additionalInput that was passed to
AuthMinder Server.

Fetching the PAM

Personal Assurance Message (PAM) is a security feature that reassures the end users
that they are accessing the genuine site of your organization, and not a phished site. To
fetch the user’s PAM, you need to use the GetPAM operation.

The getPAM operation in the ArcotUserRegistrySvc service is used to perform the same
task. It is recommended that you use the getPAM operation in the ArcotUserRegistrySvc
service instead of GetPAM in the ArcotWebFortAuthSvc service to fetch the user’s PAM.
See "Fetching the Personal Assurance Message" (see page 137) for more information.

Chapter 11: Performing Bulk Operations 305

Chapter 11: Performing Bulk Operations

This chapter discusses the following AuthMinder operations that you can perform in
bulk:

■ Assigning Credentials to Users (see page 306)

■ Uploading OATH Tokens (see page 307)

■ Fetching OATH Tokens (see page 311)

To perform these operations, you need to use the ArcotWebFortBulkOperationsSvc.wsdl
file.

Assigning Credentials to Users

306 Web Services Developer's Guide

Assigning Credentials to Users

The Web services that are discussed in , "Performing Credential Operations" (see
page 199) are used to create the out-of-box credentials for a single user. Using bulk
operations Web services (ArcotWebFortBulkOperationsSvc), you can create and assign
credentials to users in bulk. This section walks you through the following topics for
creating credentials in bulk:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The AssignCredentialsRequest message is used to set the information required to create
credentials for users in bulk. The elements of this request message are same as
CreateCredential operation. Refer to the tables in the "Creating Credentials (see
page 206)" section for more information on the input elements. You can either pass
these elements or include them in an XML file an upload it using inputXML element.

Invoking the Web Service

To assign the credentials to the users in bulk:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the AssignCredentials operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on the
header elements.

2. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

3. Use AssignCredentialsRequest and construct the input message by using the details
obtained in preceding steps.

4. Invoke the AssignCredentials operation of the ArcotWebFortBulkOperationsSvc
service to upload the OATH tokens.

This operation returns an instance of the AssignCredentialsResponse that includes
the credential and transaction details.

Interpreting the Response Message

Uploading OATH Tokens

Chapter 11: Performing Bulk Operations 307

For successful transactions, the response message, UploadOATHTokenResponse returns
the elements explained in the following table. These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

message A string that defines the status of the operation.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Unique code that is sent by AuthMinder Server if the operation
fails.

transactionID Unique identifier of the transaction.

additionalOutput The output for the additionalInput that was passed to AuthMinder
Server.

batchID The unique identifier that helps to identify the batch of the
uploaded token.

Uploading OATH Tokens

This section walks you through the following topics for uploading the OATH tokens in
bulk:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The UplodaOATHTokensRequestMessage is used to bulk upload the OATH tokens in the
AuthMinder database.The following table lists the elements of this request message.

Element Mandatory Description

Common Elements

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Uploading OATH Tokens

308 Web Services Developer's Guide

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Common Key Elements

orgDetails/org
Name

No Indicates the name of the organization for which you
want to upload the OATH tokens.

orgDetails/isGl
obal

No Indicates whether you want to apply the OATH tokens
at the global level. If you choose this option, then the
OATH tokens will be available to all the organizations
present in the system.

remark No A text message to identify the OATH tokens.

key Yes The key that is used to generate the OTP.

OATH Token (keyContainer) Elements

Note: You can pass the OATH token information using the following elements or
include this information in an XML file and upload that file using the "inputXml"
element.

version Yes The version of the schema that defines the OATH token
information. The supported value for this element is
1.0.

EncryptionMet
hod/ algorithm

Yes The encryption method that is used to encrypt the
sensitive

information. For example, the Secret element.

Uploading OATH Tokens

Chapter 11: Performing Bulk Operations 309

Element Mandatory Description

EncryptionMet
hod/IV

Yes Base64-encoded value of the Initialization Vector that is
used in the encryption scheme. This is required only for
"AES128-CBC" among other supported algorithms.

TokenInfo/Ma
nufacturer

No The manufacturer information of the OATH token.

TokenInfo/Seri
alNo

No The unique serial number of the OATH token.

TokenInfo/Mo
del

No The unique model number that provides information
about the make of the OATH token.

TokenInfo/Add
itionalInfo

No Extra information that you want to set for the OATH
tokens. This information is set in name-value pairs.

■ Name
Indicates the name with which you want to create
the key pair.

■ Value
Indicates the corresponding value for the name.

Key/KeyAlgorit
hm

Yes The algorithm that is used to generate the OTP. The
supported values are:

■ HOTP: Indicates that the event-based OTPs are
supported.

■ TOTP: Indicates that the time-based OTPs are
supported.

Key/KeyId Yes The unique identifier of the token.

Key/OTPForma
t/Length

Yes Indicates the character length of the OTPs that are
generated using the OATH token.

Key/Secret Yes The shared secret that is used to generate OTPs.

Key/Counter No The counter that is used to generate OTPs in case of
the HOTPs. This counter defines the number of times
the user can use their OTP.

Key/Time No The time (in seconds) to start counting time steps in
case of TOTPs.

Key/TimeInter
val

No The time-step window that is used to generate TOTPs.
OTPs generated within a window are same.

This value is in seconds.

XML Information

Uploading OATH Tokens

310 Web Services Developer's Guide

Element Mandatory Description

inputXml No The XML file that defines the key container for One
Time Passwords that have to be issued by AuthMinder
Server.

Invoking the Web Service

To upload OATH tokens for users in bulk:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the UploadOATHTokens operation. See
chapter, "Managing Web Services Security" (see page 35) for more information on
the header elements.

2. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

3. Use UploadOATHTokensRequestMessage and construct the input message by using
the details obtained in preceding steps.

4. Invoke the UploadOATHTokens operation of the ArcotWebFortBulkOperationsSvc
service to upload the OATH tokens.

This operation returns an instance of the UploadOATHTokensResponseMessage
that includes the transaction details and batch identifier.

Interpreting the Response Message

For successful transactions, the response message, UploadOATHTokenResponse returns
the elements explained in the following table. These elements are included in the SOAP
body. If there are any errors, then the Fault response is included in the SOAP body. See
appendix, "Error Codes" (see page 353) for more information on the SOAP error
messages.

Element Description

message A string that defines the status of the operation.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

responseCode Unique code that is sent by AuthMinder Server if the operation
fails.

transactionID Unique identifier of the transaction.

additionalOutput The output for the additionalInput that was passed to AuthMinder
Server.

Fetching OATH Tokens

Chapter 11: Performing Bulk Operations 311

Element Description

batchID The unique identifier that helps to identify the batch of the
uploaded token.

Fetching OATH Tokens

This section walks you through the following topics for fetching the OATH tokens that
are uploaded for an organization:

■ Preparing the Request Message

■ Invoking the Web Service

■ Interpreting the Response Message

Preparing the Request Message

The FetchOATHTokensRequestMessage is used to fetch the OATH tokens from the
AuthMinder database.The following table lists the elements of this request message.

Element Mandatory Description

Common Elements

clientTxId No The unique transaction identifier that the calling
application can include. This identifier helps in tracking
the related transactions.

Fetching OATH Tokens

312 Web Services Developer's Guide

Element Mandatory Description

additionalInput
/pairs

No AuthMinder’s additionalInput element enables you to
set additional inputs if you want to augment
AuthMinder’s authentication capability by specifying
additional information. In such cases, you need to set
the extra information in name-value pairs.

■ name (The name with which you want to create
the key pair.)

■ value (The corresponding value for name.)

Note: You can add more than one of these elements.

Some of the pre-defined additional input parameters
include:

■ AR_WF_LOCALE_ID
Specifies the locale that AuthMinder will use while
returning the messages back to your calling
application.

■ AR_WF_CALLER_ID
This is useful in tracking transactions. You can use
session ID or client transaction ID (clientTxnId) for
specifying this information.

Organization Detail (orgDetails) Elements

fetchGlobal No Indicates whether you want to fetch the OATH tokens
that are assigned at the global level. Following are the
supported values:

■ yes: The OATH tokens that are uploaded for all
organizations are fetched.

■ no: The OATH tokens that are assigned to the
organizations listed in the orgList element are
fetched.

Or

orgList No Indicates the name of the organization for which you
want to upload the OATH tokens.

Token Elements

tokenID No The unique identifier of the OATH token.

batchID No The identifier that denotes the batch in which the
OATH token is manufactured.

Search Filter (tokenStatus) Elements

tokenStatusFilt
er/free

No The filter to fetch the tokens that are free and not yet
assigned to the users.

Fetching OATH Tokens

Chapter 11: Performing Bulk Operations 313

Element Mandatory Description

tokenStatusFilt
er/assigned

No The filter to fetch the tokens that are assigned to the
users.

tokenStatusFilt
er/abandoned

No The filter to fetch the tokens that are no longer used.

tokenStatusFilt
er/failed

No The filter that is used to fetch the tokens that failed
during upload. Token upload might fail in the following
cases:

■ If the seed decryption operation fails.

■ If the token has already been assigned to the user.

Invoking the Web Service

To fetch the OATH tokens assigned for users of an organization:

1. (Optional) Include the authentication and authorization details in the SOAP header
or in the additionalInput element of the FetchOATHTokens operation. See chapter,
"Managing Web Services Security" (see page 35) for more information on the
header elements.

2. (Optional) If you are implementing a plug-in, then invoke the additionalInput
element type to fill the additional input.

This type provides the additional information that is set as a name-value pair.

3. Use FetchOATHTokensRequestMessage and construct the input message by using
the details obtained in preceding steps.

4. Invoke the FetchOATHTokens operation of the ArcotWebFortBulkOperationsSvc
service to upload the OATH tokens.

This operation returns an instance of the FetchOATHTokensResponseMessage that
includes the credential and transaction details.

Interpreting the Response Message

For successful transactions, the response message, FetchOATHTokenResponse returns
the elements explained in the following table and the token information that is
uploaded. These elements are included in the SOAP body. If there are any errors, then
the Fault response is included in the SOAP body. See appendix, "Error Codes" (see
page 353) for more information on the SOAP error messages.

Element Description

message A string that defines the status of the operation.

reasonCode Unique code that is sent by AuthMinder Server if the operation
fails.

Fetching OATH Tokens

314 Web Services Developer's Guide

Element Description

responseCode Unique code that is sent by AuthMinder Server if the operation
fails.

transactionID Unique identifier of the transaction.

additionalOutput The output for the additionalInput that was passed to AuthMinder
Server.

batchID The unique identifier that helps to identify the batch of the
uploaded token.

Chapter 11: Performing Bulk Operations 315

Appendix A: Input Data Validations

To ensure that the system does not process invalid data, to enforce business rules, and
to ensure that user input is compatible with internal structures and schemas,
AuthMinder Server validates the data that it receives from the Web services. These
validations can be grouped as:

Note: Attribute length mentioned in the following table corresponds to the character
length.

AuthMinder Validation Checks

The following table lists the validation checks that are performed by AuthMinder.

Attribute Parameter Name Validation Criteria

Protocol Status PROTOCL_STATUS Checks for the following values:

■ PROTOCOL_STATUS_ACTIVE

■ PROTOCOL_STATUS_DISABLED

Port Number PORT_NUMBER Length is between 1 and 65535
characters.

Port Type PORT_TYPE ■ Is non-empty

■ Checks for the following values:

■ TCP

■ SSL

■ UDP

Client Root ID CLIENT_ROOT_ID Checks with a set of client root IDs

Server Certificate
chain encoding

SERVER_CERT_CHAIN
_ENCODING

■ Server certificate chain encoding is
non-empty.

■ Checks for the PEM format.

Server Certificate
Chain

SERVER_CERT_CHAIN Server certificate chain is valid.

Client Certificate
Chain

CLIENT_CERT_CHAIN Client certificate chain is valid.

Client Root CA
Certificate

CLIENT_ROOT_CA_CE
RT

Client root CA certificate is valid.

Server Root CA
Certificate

SERVER_ROOT_CA_CE
RT

Server root CA certificate is valid.

AuthMinder Validation Checks

316 Web Services Developer's Guide

Attribute Parameter Name Validation Criteria

Client Root CA
Certificates Count

CLIENT_ROOT_CA_CE
RT

Checks the count of CA certificate is
non-zero.

Client Root ID CLIENT_ROOT_ID Checks with a set of client root IDs.

Server Certificate
Chain Encoding

SERVER_CERT_CHAIN
_ENCODING

■ Server certificate chain encoding is
non-empty.

■ Checks for the PEM format.

Server Certificate
Chain

SERVER_CERT_CHAIN Server certificate chain is valid.

Client Certificate
Chain

CLIENT_CERT_CHAIN Client certificate chain is valid.

Client Root CA
Certificate

CLIENT_ROOT_CA_CE
RT

Client root CA certificate is valid.

Server Root CA
Certificate

SERVER_ROOT_CA_CE
RT

Server root CA certificate is valid.

Client Root CA
Certificate count

CLIENT_ROOT_CA_CE
RT

Checks the count of CA certificates is
non-zero.

Server Private Key
Encoding

SERVER_PRIVATE_KEY
_ENCODING

■ Server private key encoding is
non-empty.

■ Checks for the PEM format.

Locale Name LOCALE_NAME ■ Locale name is non-empty.

■ Checks locale name with the ISO set
of locales.

Client Root CA
Path

CLIENT_ROOT_CA_PA
TH

Client root CA path is non-empty.

Server ID SERVER_ID ■ Port number > 1.

■ Checks with a set of server identifiers.

Client Root CA
Certificate
Encoding

CLIENT_ROOT_CA_CE
RT_ENCODING

■ Client root CA certificate encoding is
non-empty.

■ Checks for the PEM format.

Certificate
Common Name

CERT_COMMON_NA
ME

■ Certificate common name is
non-empty.

■ Certificate common name length is
between 1 and 256.

■ Does not contain invalid characters
(ASCII 0-31).

AuthMinder Validation Checks

Chapter 11: Performing Bulk Operations 317

Attribute Parameter Name Validation Criteria

Certificate Country
Name

COUNTRY_NAME ■ Certificate country name is
non-empty.

■ Certificate country name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Certificate
Organization
Name

ORG_NAME ■ Certificate organization name is
non-empty.

■ Certificate organization name length
is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Certificate
Organization Unit
Name

ORG_UNIT_NAME ■ Certificate organization unit name is
non-empty.

■ Certificate organization unit name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Certificate State
Name

STATE_NAME ■ Certificate state name is non-empty.

■ Certificate state name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Certificate Locality
Name

LOCALITY_NAME ■ Certificate locality name is
non-empty.

■ Certificate locality name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Certificate Start
Date

START_TIME Checks for valid date format.

Certificate End
Date

END_TIME Checks for valid date format.

PKI Certificate PKI_CERTIFICATE PKI certificate is valid.

PKI Key PKI_KEY PKI key is valid.

AuthMinder Validation Checks

318 Web Services Developer's Guide

Attribute Parameter Name Validation Criteria

Certificate Chain
and Key Pair

PRIVATE_KEY_PAIR Certificate chain and key pair are valid.

PKCS12 Certificate
Chain

PKCS12_CERT_CHAIN
_KEY

PKCS12 certificate chain is valid.

PKCS7 Certificate
Chain

PKCS12_CERT_CHAIN
_KEY

PKCS7 certificate chain is valid.

User ID USER_ID Minimum value of user ID must be greater
than 1.

Group ID GROUP_ID Minimum value of group ID must be
greater than 1.

Create Time CREATE_TIME Checks for valid date format.

Last Modified
Time

LAST_MODIFIED_TIM
E

Checks for valid date format.

Start and End Date START_END_DATES Start date < End date.

User Attribute
Name

USER_ATTR_NAME User Attribute Name is non-empty.

WebFort
organization name

(checks for the
organization name
is ‘\n’, else go for
the validation)

ORG_NAME ■ Organization name is non-empty.

■ Organization name length is between
1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

User Existence
Check

USER_EXISTENCE_CH
ECK

Value of user existence check is 0 or 1.

User Active Check USER_ACTIVE_CHECK Value of user active check is 0 or 1.

Kerberos User
Name

KERBEROS_USER_NA
ME

■ Kerberos user name is non-empty.

■ Kerberos user name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Kerberos Domain
Name

KERBEROS_DOMAIN_
NAME

■ Kerberos domain name is non-empty.

■ Kerberos domain name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

AuthMinder Validation Checks

Chapter 11: Performing Bulk Operations 319

Attribute Parameter Name Validation Criteria

Kerberos
Password

KERBEROS_PASSWOR
D

■ Kerberos password is non-empty.

■ Kerberos password length is between
1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Authentication
User Password

AUTH_USER_PASSWO
RD

■ User password is non-empty.

■ User password is between 1 and 64.

■ Checks user password against to a set
of strings.

■ Does not contain invalid characters
(ASCII 0-31).

Password
Maximum Length

PWD_MAX_LENGTH ■ Minimum value of password
maximum length must be greater
than 4.

■ Maximum value of password
maximum length must be less than
64.

Password
Minimum Length

PWD_MIN_LENGTH ■ Minimum value of password
minimum length must be greater than
4.

■ Maximum value of password
minimum length must be less than 64.

Password
Minimum Special
Character Length

PWD_SPECIAL_CHAR_
MIN_LENGTH

■ Minimum value of password special
character length must be greater than
0.

■ Maximum value of password special
character minimum length must be
less than 64.

Password
Minimum
Alphabetic
Character Length

PWD_ALPHA_CHAR_
MIN_LENGTH

■ Minimum value of password
alphabetic character length must be
greater than 0.

■ Maximum value of password
alphabetic character length must be
less than 64.

AuthMinder Validation Checks

320 Web Services Developer's Guide

Attribute Parameter Name Validation Criteria

Password
Minimum Numeric
Character Length

PWD_NUMERIC_CHA
R_MIN_LENGTH

■ Minimum value of password numeric
character length must be greater than
0.

■ Maximum value of password numeric
character length must be less than 64.

Password Strength
Configuration

PASSWORD_STRENGT
H

Password strength attribute length must
be less than the password length.

Question AUTH_QUESTIONS ■ Question is non-empty.

■ Question length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Answer AUTH_ANSWERS ■ Answer is non-empty.

■ Answer length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Number of
Questions

NUM_OF_QNA ■ Number of questions must be greater
than the minimum number of
questions.

■ Number of questions must be lesser
than the maximum number of
questions.

Number of
Questions to Ask

QNA_NUM_QUESTIO
N_TO_ASK

■ Minimum questions to ask must be
greater than 1.

■ Maximum questions to ask must be
lesser than 10.

Minimum Number
of Correct
Answers Required

QNA_MIN_ANS_REQ
UIRED

■ Minimum correct answers must be
greater than 1.

■ Minimum correct answers must be
less than 10.

QnA Maximum
Questions

MAX_QUESTIONS ■ Minimum value of maximum
questions must be greater than 1.

■ Maximum value of maximum
questions must be less than 10.

QnA Minimum
Questions

MIN_QUESTIONS ■ Minimum value of minimum
questions must be greater than 2.

■ Maximum value of minimum
questions must be less than 10.

AuthMinder Validation Checks

Chapter 11: Performing Bulk Operations 321

Attribute Parameter Name Validation Criteria

QnA Challenge
Timeout in
Seconds

QNA_CHALLENGE_TI
MEOUT_SECS

QnA challenge timeout in seconds must be
between 1 and 7200.

Plain Key Type PLAIN_KEY_TYPE ■ Plain key type is non-empty.

■ Checks for the RSA value.

Arcot Key Type ARCOT_KEY_TYPE ■ Plain key type is non-empty.

■ Checks for the RSA value.

Plain Key Length PLAIN_KEY_LENGTH Plain key length value must be between
512 and 4096.

Arcot Key Length ARCOT_KEY_LENGTH Arcot key length is between 512 and 4096.

ArcotID Challenge
Timeout in
Seconds

ARCOTID_CHALLENGE
_TIMEOUT_SECS

The ArcotID PKI challenge timeout in
seconds is between 1 and 7200.

ArcotID Unsigned
Attribute Key
Check

AID_UNSIGNED_ATTR
IB_KEY

Unsigned attribute key is either USERID or
ORG.

Warning Period in
Days

WARNING_PERIOD_D
AYS

Warning period in days is greater than 0.

Grace Period in
Days

GRACE_PERIOD_DAYS Grace period in days is greater than 0.

Auto Unlock
Period in Hours

AUTO_UNLOCK_PERI
OD_HOURS

Auto-unlock period in hours is greater
than 0.

Authentication
OTT Token

AUTH_OTT_TOKEN ■ OTT token is non-empty.

■ OTT token length is between 4 and
64.

OTT Length OTT_LENGTH Value of OTT length is between 5 and 240.

OTT Timeout in
Seconds

OTT_TIMEOUT Value of OTT timeout in seconds is
between 1 and 172800.

OTP Length OTP_LENGTH Value of OTP length is between 4 and 64.

OTP Type OTP_TYPE Checks for numeric and alphanumeric
values.

OTP Multiple
Usage Count

OTP_MULTIPLE_USAG
E_COUNT

Multiple usage count of OTP is between 1
and 99999.

AuthMinder Validation Checks

322 Web Services Developer's Guide

Attribute Parameter Name Validation Criteria

Global
Authentication
Token Timeout in
Seconds

GLOBAL_AUTH_TOKE
N_TIMEOUT_SECS

Global authentication token timeout in
seconds is between 1 and 172800.

Maximum Strikes MAX_STRIKES Maximum strike count is between 1 and
100.

Transaction
Algorithm ID

TRANSALGO_ID Checks for the following values:

■ NATIVE_PLAIN_CS

■ NATIVE_PLAIN_CI

■ NATIVE_SHA1_CS

■ NATIVE_SHA1_CI

Organization
Credential
Configuration
Name

ORG_CRED_CONFIG_
NAME

Organization credential configuration
name is non-empty.

ArcotID Credential
Configuration
Name

ARCOTID_CRED_CON
FIG_NAME

■ ArcotID PKI credential configuration
name is non-empty.

■ Checks ArcotID PKI credential
configuration name with a set of
strings.

■ ArcotID PKI credential configuration
name length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

OTP Credential
Configuration
Name

OTP_CRED_CONFIG_
NAME

■ OTP credential configuration name is
non-empty.

■ Checks OTP credential configuration
name against to a set of strings.

■ OTP credential configuration name
length is between 1 and 64

■ Does not contain invalid characters
(ASCII 0-31).

AuthMinder Validation Checks

Chapter 11: Performing Bulk Operations 323

Attribute Parameter Name Validation Criteria

QnA Credential
Configuration
Name

QNA_CRED_CONFIG_
NAME

■ QnA credential configuration name is
non-empty.

■ Checks QnA credential configuration
name with a set of strings.

■ QnA credential configuration name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Password
Credential
Configuration
Name

UP_CRED_CONFIG_N
AME

■ Password credential configuration
name is non-empty.

■ Checks Password credential
configuration name with a set of
strings.

■ Password credential configuration
name length is between 1 and 64

■ Does not contain invalid characters
(ASCII 0-31).

ArcotID
Authentication
Policy Name

ARCOTID_AUTH_POLI
CY_NAME

■ ArcotID PKI authentication policy
name is non-empty.

■ Checks ArcotID PKI authentication
policy name with a set of strings.

■ ArcotID PKI authentication policy
name length is between 1 and 64

■ Does not contain invalid characters
(ASCII 0-31).

OTP
Authentication
Policy Name

OTP_AUTH_POLICY_N
AME

■ OTP authentication policy name is
non-empty.

■ Checks OTP authentication policy
name with a set of strings.

■ OTP authentication policy name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

AuthMinder Validation Checks

324 Web Services Developer's Guide

Attribute Parameter Name Validation Criteria

QnA
Authentication
Policy Name

QNA_AUTH_POLICY_
NAME

■ QnA authentication policy name is
non-empty.

■ Checks QnA authentication policy
name with a set of strings.

■ QnA authentication policy name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Password
Authentication
Policy Name

PASSWORD_AUTH_P
OLICY_NAME

■ Password authentication policy name
is non-empty.

■ Checks Password authentication
policy name with a set of strings.

■ Password authentication policy name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

General
Authentication
Policy Name

GENERAL_AUTH_POLI
CY_NAME

■ General authentication policy name is
non-empty.

■ Checks General authentication policy
name with a set of strings.

■ General authentication policy name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

RADIUS
Authentication
Policy Name

RADIUS_AUTH_POLIC
Y_NAME

■ RADIUS authentication policy name is
non-empty.

■ Checks RADIUS authentication policy
name with a set of strings.

■ RADIUS authentication policy name
length is between 1 and 64

■ Does not contain invalid characters
(ASCII 0-31).

AuthMinder Validation Checks

Chapter 11: Performing Bulk Operations 325

Attribute Parameter Name Validation Criteria

Kerberos
Authentication
Policy Name

KERBEROS_AUTH_PO
LICY_NAME

■ Kerberos authentication policy name
is non-empty.

■ Checks Kerberos authentication policy
name with a set of strings.

■ Kerberos authentication policy name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Mechanism Name MECHANISM_NAME ■ Mechanism name is non-empty.

■ Does not contain invalid characters
(ASCII 0-31).

■ Checks mechanism name with a set of
strings.

Mechanism Status MECHANISM_STATUS Checks for the following values:

■ MECHANISM_STATUS_ENABLE

■ MECHANISM_STATUS_DISABLED

Radius Client IP
Address

RADIUS_CLIENT_IP ■ Radius client IP address is non-empty.

■ Radius client IP address length is
between 7 and15.

■ Does the following checks:

■ It should contain integers and ‘.’

■ It should contain three dots

Radius Client
Shared Secret

RADIUS_ClIENT_SHAR
ED_SECRET

■ Radius client shared secret is
non-empty.

■ Radius client shared secret length is
between 1 and 1024.

Radius Client
Description

RADIUS_CLIENT_DESC ■ Radius client description length is
between 0 and 256.

■ Does not contain invalid characters
(ASCII 0-31).

Radius Client
Authentication
Type

RADIUS_CLIENT_AUT
H_TYPE

■ Radius client shared secret is
non-empty.

■ Checks for the following values:

■ OTT

■ INBAND

AuthMinder Validation Checks

326 Web Services Developer's Guide

Attribute Parameter Name Validation Criteria

Radius Client
Maximum Chunk
Size

RADIUS_CLIENT_MAX
_CHUNK_SIZE

RADIUS client maximum chunk size is
between 50 and 200.

Radius Version RADIUS_VERSION Checks for the following values:

■ 1

■ 2

Duplicate
Question and
Answers

DUPLICATE_QUESTIO
N_AND_ANSWER

■ Questions are not duplicate.

■ Answers are not duplicate.

■ Question is not same as answer.

Token Type AUTH_TOKEN_TYPE Checks for the following values:

■ DEFAULT_TOKEN

■ NATIVE_TOKEN

■ OTP_TOKEN

■ SAML11_TOKEN

■ SAML20_TOKEN

■ NO_TOKEN

Configuration
Name

CONFIG_NAME ■ Configuration name is non-empty.

■ Configuration name length is between
1 and64.

■ Does not contain invalid characters
(ASCII 0-31).

Pin PIN ■ Pin is non-empty.

■ Pin length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

OTP Maximum
Length

OTP_MAX_LENGTH OTP maximum length is between 4 and
64.

OTP Minimum
Length

OTP_MIN_LENGTH OTP minimum length is between 4 and 64.

Last Strike Time LAST_STRIKE_TIME Checks for valid date format.

Last Failed Time LAST_FAILED_TIME Checks for valid date format.

Last Succeeded
Time

LAST_SUCCEEDED_TI
ME

Checks for valid date format.

AuthMinder Validation Checks

Chapter 11: Performing Bulk Operations 327

Attribute Parameter Name Validation Criteria

Credential Status CRED_STATUS Checks for the following values:

■ ACTIVE

■ LOCKED

■ DISABLED

■ REVOKED

■ REISSUED

■ VERIFIED

Certificate Serial
Number

CERT_SERIAL_NUMBE
R

■ Certificate serial number is
non-empty.

■ Certificate serial number length is
between 1 and32.

■ Checks for the following characters:

■ 0 – 9

■ a – f

■ A - F

Password
Minimum and
Maximum Length

PWD_MIN_LENGTH Password minimum length is lesser than
password maximum length.

QnA Minimum
and Maximum
Questions

MIN_QUESTIONS QnA minimum questions is lesser than
QnA maximum questions.

Questions and
Correct Answers

QNA_NUM_QUESTIO
N_TO_ASK

Number of correct answers is lesser than
number of questions.

Host Name HOST_NAME ■ Host name is non-empty.

■ Host name length is between 1 and
64

■ Does not contain invalid characters
(ASCII 0-31).

URI URI_NAME ■ URI is non-empty.

■ URI length is between 1 and 1024.

■ Does not contain invalid characters
(ASCII 0-31).

Connection
Timeout

CONNECTION_TIMEO
UT

Connection timeout is between 0 and
2147483647.

AuthMinder Validation Checks

328 Web Services Developer's Guide

Attribute Parameter Name Validation Criteria

Read Timeout READ_TIMEOUT Read timeout is between 0 and
2147483647.

Idle Timeout IDLE_TIMEOUT Idle timeout is between 0 and
2147483647.

Minimum
Connections

MIN_CONNECTIONS Minimum connections is between 0 and
2147483647.

Maximum
Connections

MAX_CONNECTIONS Maximum connections is between 0 and
2147483647.

WebFort Event ID WF_EVENT_ID Checks for the set of valid events.

Instance name INSTANCE_NAME ■ Instance name is non-empty.

■ Instance name length is between 1
and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Log Level LOG_TXN_LOG_LEVEL Minimum database connections is
between 1 and 3.

Minimum DB
Connections

MIN_DB_CONNECTIO
NS

Minimum database connections is
between 1 and 128.

Maximum DB
Connections

MAX_DB_CONNECTIO
NS

Maximum database connections is
between 1 and 512.

Maximum DB
Connections
Against Minimum

MAX_DB_CONNECTIO
NS

Maximum database connections are less
than minimum database connections.

Increment DB
Connections

INC_DB_CONNECTIO
NS

■ Increment database connections must
be greater than 0.

■ Increment database connections must
be less than maximum database
connections-minimum database
connections.

ArcotID Unsigned
Attribute Key

(No validation on
value)

AID_UNSIGNED_ATTR
IB_KEY

Attributes with name USERID and ORG are
not allowed because these are created by
default while creating ArcotID PKI.
Therefore, these values cannot be
modified.

Custom Attributes NOTES_KEY/
NOTES_VALUE/
NOTES

■ Does not contain invalid characters
(ASCII 0-31).

■ Custom attribute string length must
be between 0 and 1024.

AuthMinder Validation Checks

Chapter 11: Performing Bulk Operations 329

Attribute Parameter Name Validation Criteria

SSL Trust Store
Group Name

SSL_TRUST_STORE_G
ROUP_NAME

■ SSL trust store group name is
non-empty.

■ SSL trust store group name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Minimum Threads MIN_THREADS Minimum thread count is between 1 and
1024.

Maximum Threads MAX_THREADS Maximum thread count is between 1 and
1024.

Threads Minimum
and Maximum
Count

MIN_THREADS Minimum thread count is less than
maximum thread count.

Additional Input ADDITIONAL_INPUTS
_NAME

Does not contain invalid characters (ASCII
0-31).

Server Statistics
Option

STATS_OPTION Checks for the following values:

■ CONSOLIDATED

■ PER_PROTOCOL

■ DATABASE

■ UDS_CLIENT

■ MAXVAL

Numeric Instance
Attribute

parameterName that
is passed to the
function

Checks only if the numeric instance
attributes are used.

Display Name DISPLAY_NAME ■ Display name is non-empty.

■ Display name length is between 0 and
256.

■ Does not contain invalid characters
(ASCII 0-31).

Logo URL LOGO_URL Checks if the URL format is valid.

Password
Challenge Validity

PASSWORD_CHALLEN
GE_TIMEOUT_SECS

Password challenge validity is between 1
and 7200.

ArcotID Card
Name

AUTH_CARD_NAME ■ ArcotID PKI Card Name is non-empty.

■ ArcotID PKI Card Name length is
between 1 and 8.

AuthMinder Validation Checks

330 Web Services Developer's Guide

Attribute Parameter Name Validation Criteria

Duplicate
Questions

DUPLICATE_QUESTIO
NS

Questions are not duplicate.

Duplicate Answers DUPLICATE_ANSWER
S

Answers are not duplicate.

Partial password
Length

PARTIAL_PWD_LENGT
H

Partial password length is between 0 and
64.

QnA Shuffle Mode QNA_SHUFFLE_MODE Checks for the following values:

■ RANDOM

■ ALTERNATIVE

QnA Shuffle Flag QNA_SHUFFLE_FLAG Checks for the following values:

■ SHUFFLE_ALWAYS

■ SHFFULE_AFTER_SUCCESS_AUTH

QnA Return Mode QNA_RETURN_MODE Checks for the following values:

■ STATIC

■ RANDOM

OATH One-Time
Password Length

OATH_OTP_LENGTH OATH One-Time Password length is
between 4 and 32.

OATH One-Time
Password Token
Type

OATH_OTP_TYPE Checks for the following values:

■ HOTP

■ TOTP

OATH One-Time
Password
Authentication
Look Ahead Count

OATH_OTP_AUTH_LO
OK_AHEAD

OATH One-Time Password Authentication
look ahead count is between 0 and 99999.

OATH One-Time
Password
Authentication
Look Back Count

OATH_OTP_AUTH_LO
OK_BACK

OATH One-Time Password Authentication
look back count is between 0 and 99999.

OATH One-Time
Password
Synchronization
Look Ahead Count

OATH_OTP_RESYNC_
LOOK_AHEAD

OATH One-Time Password
Synchronization look ahead count is
between 0 and 99999.

OATH One-Time
Password
Synchronization
Look Back Count

OATH_OTP_RESYNC_
LOOK_BACK

OATH One-Time Password
Synchronization look back count is
between 0 and 99999.

User Attributes Validation Checks

Chapter 11: Performing Bulk Operations 331

User Attributes Validation Checks

The following table explains the criteria that User Data Service (UDS) uses to validate
the input data.

Attribute Attribute ID Validation Criteria

User Name UserName Is non-empty.

 Length is between 1 and 256 characters.

 Does not contain invalid characters (ASCII 0-31).

First Name FirstName Is non-empty.

 Length is between 1 and 32 characters.

 Does not contain invalid characters (ASCII 0-31).

Middle Name MiddleName Length is between 0 and 32 characters.

Does not contain invalid characters (ASCII 0-31).

Last Name LastName Is non-empty.

 Length is between 1 and 32 characters.

 Does not contain invalid characters (ASCII 0-31).

Email Email Is non-empty.

 Length is between 1 and 128 characters.

 Does not contain invalid characters. All default
regular expressions are allowed.

Telephone
Number

TelephoneNum
ber

Is non-empty.

 Length is between 1 and 128 characters.

 Does not contain invalid characters (ASCII 0-31).

Personal
Assurance
Message

PAM Length is between 0 and 128 characters.

 Does not contain invalid characters (ASCII 0-31).

Personal
Assurance
Message URL

PAM URL Length is between 0 and 128 characters.

 Does not contain invalid characters, although
alphabets, number, and + / \ \ # $ % & - _ : . are
allowed.

Image Image Size is between 0 and 1024 KB.

User Attributes Validation Checks

332 Web Services Developer's Guide

Attribute Attribute ID Validation Criteria

 Is of one of the following formats:

■ JPEG

■ JPG

■ GIF

■ BMP

■ PNG

Account ID AccountID Length is between 0 and 256 characters.

 Is non-empty if the AccountType attribute is
enabled.

 Does not contain invalid characters (ASCII 0-31).

Account ID
Attribute1

AccountIDAttri
bute1

Length is between 0 and 256 characters.

 Does not contain invalid characters (ASCII 0-31).

Account ID
Attribute2

AccountIDAttri
bute2

Length is between 0 and 256 characters.

 Does not contain invalid characters (ASCII 0-31).

Account ID
Attribute3

AccountIDAttri
bute3

Length is between 0 and 256 characters.

 Does not contain invalid characters (ASCII 0-31).

User Custom
Attributes

User Custom
Attributes--

Maximum supported database column size for the
field is 2000 KB. The maximum length is dependent
on number of custom attributes, multi-byte
character support, and encryption.

 Does not contain invalid characters (ASCII 0-31).

Organization
Name

OrgName Is non-empty.

 Length is between 0 and 64 characters.

 Does not contain invalid characters.

Note: All keyboard characters are supported.

Display Name DisplayName Is non-empty.

 Length is between 0 and 128 characters.

 Does not contain invalid characters (ASCII 0-31).

Description Description Length is between 1 and 128 characters.

User Attributes Validation Checks

Chapter 11: Performing Bulk Operations 333

Attribute Attribute ID Validation Criteria

 Does not contain invalid characters (ASCII 0-31).

Account Type AccountType Length is between 0 and 64 characters.

 Does not contain invalid characters.

Note: All keyboard characters are supported.

Account Type
Display
Name

AccountType-D
isplayName

Is non-empty if the AccountType attribute is
enabled.

 Length is between 0 and 128 characters.

 Does not contain invalid characters (ASCII 0-31).

Organization
Custom
Attributes

Org Custom
Attributes

Length is between 0 and (2000 -(2 * No of custom
attributes - 1)) characters.

 Does not contain invalid characters (ASCII 0-31).

Account Type
Custom
Attribute

Account Type
Custom
Attribute

Length is between 0 and (2000 -(2 * No of custom
attributes - 1)) characters.

 Does not contain invalid characters (ASCII 0-31).

User Account
Custom
Attributes -
Name

User Account
Custom
Attributes
-Name

Length is between 0 and 64 characters.

 Does not contain invalid characters (ASCII 0-31).

User Account
Custom
Attributes -
Value

User Account
Custom
Attributes -
Value

Length is between 0 and 128 characters.

 Does not contain invalid characters (ASCII 0-31).

Key Label Key Label Is non-empty.

 Does not contain invalid characters.

Note: All keyboard characters are supported.

Chapter 11: Performing Bulk Operations 335

Appendix B: AuthMinder Logging

To effectively manage the communication between AuthMinder Server and your
application, it is necessary to get information about the activity and performance of the
Server as well as any problems that have occurred.

This appendix describes the various log files supported by AuthMinder, the severity
levels that you will see in these files, and the formats of these log files. It covers the
following topics:

■ About the Log Files (see page 336)

■ Format of the AuthMinder Log Files (see page 341)

■ Format of UDS and Administration Console Log Files (see page 342)

■ Supported Severity Levels (see page 343)

About the Log Files

336 Web Services Developer's Guide

About the Log Files

The AuthMinder log files can be categorized as:

■ Installation Log File (see page 337)

■ AuthMinder Server Startup Log File (see page 337)

■ AuthMinder Server Log File (see page 338)

■ UDS Log File (see page 339)

■ Administration Console Log File (see page 340)

The parameters that control logging in these files can be configured either by using the
relevant INI files (as is the case with Administration Console, UDS, and AuthMinder
Server startup log files) or by using Administration Console itself (as is the case with
AuthMinder log file.) The typical logging configuration options that you can change in
these files include:

■ Specifying log file name and path: AuthMinder enables you to specify the directory
for writing the log files and storing the backup log files. Specifying the diagnostic
logging directory allows administrators to manage system and network resources.

■ Log file size: The maximum number of bytes the log file can contain. When the log
files reach this size, a new file is created and the old file is moved to the backup
directory.

■ Using log file archiving: As AuthMinder components run and generate diagnostic
messages, the size of the log files increases. If you allow the log files to keep
increasing in size, then the administrator must monitor and clean up the log files
manually. AuthMinder enables you to specify configuration options that limit how
much log file data is collected and saved. AuthMinder lets you specify the
configuration option to control the size of diagnostic logging files. This lets you
determine a maximum size for the log files. When the maximum size is reached,
older log information is moved to the backup file before the newer log information
is saved.

■ Setting logging levels: AuthMinder also allows you to configure logging levels. By
configuring logging levels, the number of messages saved to diagnostic log files can
be reduced. For example, you can set the logging level so that the system only
reports and saves critical messages. See "Supported Severity Levels" (see page 343)
for more information on the supported log levels.

■ Specifying time zone information: AuthMinder enables you to either use the local
time zone for time stamping the logged information or use GMT for the same.

About the Log Files

Chapter 11: Performing Bulk Operations 337

Installation Log File

When you install AuthMinder, the installer records all the information that you supply
during the installation and the actions (such as creating the directory structure and
making registry entries) that it performs in the Arcot_WebFort_Install_[assign the value
for mm in your book]_<dd>_<yyyy>_<hh>_[assign the value for mm in your
book]_SpectroSERVER.log file. The information in this file is very useful in identifying the
source of the problems if the AuthMinder installation did not complete successfully.

The default location of this file is:

Windows:

<install_location>\

UNIX-Based Platforms:

<install_location>/

AuthMinder Server Startup Log File

When you start AuthMinder Server, it records all start-up (or boot) actions in the
arcotwebfortstartup.log file. The information in this file is very useful in identifying the
source of the problems if the AuthMinder service does not start up.

The default location of this file is:

Windows:

<install_location>\Arcot Systems\logs\

UNIX-Based:

<install_location>/arcot/logs/

About the Log Files

338 Web Services Developer's Guide

AuthMinder Server Log File

When you perform AuthMinder Server configurations for example, protocol
configurations, profile configurations, policy configurations, and authenticate users,
such configurations are written to the arcotwebfort.log file. The default location of this
file is:

Windows:

<install_location>\Arcot Systems\logs\

UNIX-Based:

<install_location>/arcot/logs/

The parameters that control logging in this file can be configured by using
Administration Console. To do so, you must use the instance-specific configuration
sub-screen that you can access by clicking the required instance in the Instance
Management screen.

In addition to the log file path, the maximum log file size (in bytes), backup directory,
logging level, and timestamp information, you can also control whether you want to
enable trace logging. See section, "Format of the AuthMinder Log Files" (see page 341)
for the details of the default format used in the file.

About the Log Files

Chapter 11: Performing Bulk Operations 339

UDS Log File

All User Data Service (UDS) information and actions are recorded in the arcotuds.log file.
This information includes:

■ UDS database connectivity information

■ UDS database configuration information

■ UDS instance information and the actions performed by this instance

The information in this file is very useful in identifying the source of the problems if
Administration Console could not connect to the UDS instance. The default location of
this file is:

Windows:

<install_location>\Arcot Systems\logs\

UNIX-Based:

<install_location>/arcot/logs/

The parameters that control logging in this file can be configured by using the
udsserver.ini file, which is available in the conf folder in ARCOT_HOME.

In addition to the logging level, log file name and path, the maximum file size (in bytes),
and archiving information, you can also control the layout of the logging pattern for UDS
by specifying the appropriate values for
log4j.appender.debuglog.layout.ConversionPattern. See section, "Format of UDS and
Administration Console Log Files" (see page 342) for details of the default format used
in the file.

About the Log Files

340 Web Services Developer's Guide

Administration Console Log File

When you deploy Administration Console and subsequently start it, the details of all its
actions and processed requests are recorded in the arcotadmin.log file. This information
includes:

■ Database connectivity information

■ Database configuration information

■ Instance information and the actions performed by this instance

■ UDS configuration information

■ Other Administration Console information specified by the Master Administrator,
such as cache refresh

The information in this file is very useful in identifying the source of the problems if
Administration Console does not start up. The default location of this file is:

Windows:

<install_location>\Arcot Systems\logs\

UNIX-Based:

<install_location>/arcot/logs/

The parameters that control logging in this file can be configured by using the
adminserver.ini file, which is available in the conf folder in ARCOT_HOME.

In addition to the logging level, log file name and path, the maximum log file size (in
bytes), and log file archiving information, you can also control the layout of the logging
pattern for the console by specifying the appropriate values for
log4j.appender.debuglog.layout.ConversionPattern. See section, "Format of UDS and
Administration Console Log Files" (see page 342) for the details of the default format
used in the file.

Format of the AuthMinder Log Files

Chapter 11: Performing Bulk Operations 341

Format of the AuthMinder Log Files

The following table describes the format of the entries in the following AuthMinder
loggers:

■ arcotwebfort.log (AuthMinder Server Log File (see page 338))

■ arcotwebfortstartup.log (AuthMinder Server Startup Log File (see page 337))

Column Description

Time Stamp The time when the entry was logged, translated to the time zone
you configured. The format of logging this information is:

mm/dd/yy HH:MM:SS.mis

Here, mis represents milliseconds.

Log Level (LEVEL)

(or Severity)

The severity level of the logged entry. See"Supported Severity
Levels" (see page 343) for more information.

Note: AuthMinder also provides trace logging, which contains the
flow details. The trace logs are logged in the arcotwebfort.log file.
The entries for the trace messages start with TRACE:.

Protocol Name

(PROTOCOLNAME)

The protocol used for the transaction. Possible values are:

■ AUTH_NATIVE

■ ADMIN_WS

■ ASSP_WS

■ RADIUS

■ SVRMGMT_WS

■ TXN_WS

In case the server is starting up, shutting down, or is in the
monitoring mode, then no protocol is used and the following
values are displayed, respectively:

■ STARTUP

■ SHUTDOWN

■ MONITOR

Thread ID
(THREADID)

The ID of the thread that logged the entry.

Transaction ID
(000TXNID)

The ID of the transaction that logged the entry.

Format of UDS and Administration Console Log Files

342 Web Services Developer's Guide

Column Description

Message The message logged by the Server in the log file in the
free-flowing format.

Note: The granularity of the message depends on the Log Level
that you set in the log file.

Format of UDS and Administration Console Log Files

The table describes the format of the entries in the following loggers:

■ arcotuds.log (UDS Log File (see page 339))

■ arcotadmin.log (Administration Console Log File (see page 340))

Column

Associated
Pattern

(In the Log File)

Description

Time Stamp %d{yyyy-MM-dd
hh:mm:ss,SSS z} :

The time when the entry was logged. This entry
uses the application server time zone. The
format of logging this information is:

yyyy-MM-dd hh:mm:ss,SSS z

Here, SSS represents milliseconds.

Thread ID [%t] : The ID of the thread that logged the entry.

Log Level (or
Severity)

%-5p : The severity level of the logged entry.

See Supported Severity Levels (see page 343) for
more information.

Logger Class %-5c{3}(%L) : The name of the logger that made the log
request.

Message %m%n : The message logged by the Server in the log file
in the free-flowing format.

Note: The granularity of the message depends on
the Log Level that you set in the log file.

Refer to the following URL for customizing the PatternLayout parameter in the UDS and
Administration Console log files:

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Supported Severity Levels

Chapter 11: Performing Bulk Operations 343

Supported Severity Levels

A log level (or severity level) enables you to specify the level of detail of the information
stored in the AuthMinder logs. This also enables you to control the rate at which the log
file will grow.

Server Log File Security Levels

The following table describes the log levels that you see in all log files, in the decreasing
order of severity.

 Log Level Description

0 FATAL Use this log level for serious, non-recoverable errors that can cause
the abrupt termination of the AuthMinder service.

1 WARNI
NG

Use this log level for undesirable run-time exceptions, potentially
harmful situations, and recoverable problems that are not yet
FATAL.

2 INFO Use this log level for capturing information on run-time events.

In other words, this information highlights the progress of the
application, which might include changes in:

■ Server state, such as start, stop, and restart.

■ Server properties.

■ State of services.

■ State of a processes on the Server.

3 DEBUG Use this log level for logging detailed information for debugging
purposes. This might include process tracing and changes in Server
states.

Note: For AuthMinder Server (arcotwebfort.log) you can set the logging to any of these
levels and also enable TRACE logging to capture the flow details.

Note: When you specify a log level, messages from all other levels of higher significance
are reported as well. For example if the LogLevel is specified as 3, then messages with
log levels of FATAL, WARNING, and INFO level are also captured.

Supported Severity Levels

344 Web Services Developer's Guide

Administration Console and UDS Log File Severity Levels

The following table describes the log levels that you see in Administration Console and
UDS log files, in the decreasing order of severity.

 Log Level Description

0 OFF Use this level to disable all logging.

1 FATAL Use this log level for serious, non-recoverable errors that can
cause the abrupt termination of Administration Console or UDS.

2 WARNIN
G

Use this log level for undesirable run-time exceptions, potentially
harmful situations, and recoverable problems that are not yet
FATAL.

3 ERROR Use this log level for recording error events that might still allow
the application to continue running.

4 INFO Use this log level for capturing information on run-time events. In
other words, this information highlights the progress of the
application, which might include changes in:

■ Server state, such as start, stop, and restart.

■ Server properties.

■ State of services.

■ State of a processes on the Server.

5 TRACE Use this log level for capturing finer-grained informational events
than DEBUG.

6 DEBUG Use this log level for logging detailed information for debugging
purposes. This might include process tracing and changes in
Server states.

7 ALL Use this log level to enable all logging.

Note: When you specify a log level, messages from all other levels of higher significance
are reported as well. For example if the LogLevel is specified as 4, then messages with
log levels of FATAL, WARNING, ERROR, and INFO are also captured.

Supported Severity Levels

Chapter 11: Performing Bulk Operations 345

Sample Entries for Each Log Level

The following subsections show a few sample entries (based on the Log Level) in the
WebFort log file.

FATAL
07/17/09 11:49:20.404 FATAL STARTUP 00002872 00WFMAIN - Unable to initialize the

database

07/17/09 11:49:20.405 FATAL STARTUP 00002872 00WFMAIN - Failed to load the ini

parameters

07/17/09 11:49:20.406 FATAL STARTUP 00002872 00WFMAIN - Cannot continue due to

setConfigData failure, SHUTTING DOWN

WARNING
07/17/09 12:50:05.848 INFO AUTH_NATIVE 00002780 00022508 - Fail to connect to

Database prdsn for 1 time(s). DbUsername system

07/17/09 12:50:05.848 INFO AUTH_NATIVE 00002780 00022508 - ReportError: SQL Error

State:08001, Native Error Code: FFFFFFFF, ODBC Error: [Arcot Systems][ODBC Oracle Wire

Protocol driver][Oracle]TNS-12505: TNS:listener could not resolve SID given in

connect descriptor

INFO
07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mMinConnections [4]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mMaxConnections [128]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mCurrPoolSize [4]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mNumDBFailure [0]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mCurrNumUsed [0]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mCurrNumAvailable [4]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [0]

mNumTimesConnIdxLocked [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [0]

mNumTimesConnIdxReleased [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [1]

mNumTimesConnIdxLocked [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [1]

mNumTimesConnIdxReleased [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [2]

mNumTimesConnIdxLocked [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [2]

mNumTimesConnIdxReleased [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [3]

mNumTimesConnIdxLocked [23]

Supported Severity Levels

346 Web Services Developer's Guide

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [3]

mNumTimesConnIdxReleased [23]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - ---------- logging stats

for databse [wf-test-p] : [primary] [ACTIVE] end ----------

DEBUG
03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 -

ArDBPoolManagerImpl::getLockedDBConnection: [primary] DSN [webfort] is active. Will

get the connection from this

03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 -

ArDBPoolManagerImpl::getLockedDBConnection: Returning DBPool [0112FD80]

03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 - ArDBM::Number of queries

being executed [1]

03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 - ArDBM::Found query string

for query-id : [SSL_TRUST_STORE_FETCH_ALL].

03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 - ArDBM::Executing

Query[ArWFSSLTrustStoreQuery_FetchAll]

03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 - Number of rows fetched

: 0

(For AuthMinder Server Only) Trace Logs
03/25/10 15:23:38.515 DEBUG SVRMGMT_WS 00004396 00000596 - TRACE: Released Cache

read lock on [01129D98]

03/25/10 15:23:38.515 DEBUG SVRMGMT_WS 00004396 00000596 - TRACE: CallTrace::Leaving

: [ArDBPoolManagerImpl::selectAnActivePool]. time : 0

03/25/10 15:23:38.515 DEBUG SVRMGMT_WS 00004396 00000596 - TRACE:

CallTrace::Entering : [ArDBPool::getLockedDBConnectionConst]

03/25/10 15:23:38.515 DEBUG SVRMGMT_WS 00004396 00000596 - TRACE:

ArDBPool::getLockedDBConnection [(primary)] : GotContext [1], [3] more connections

available

03/25/10 15:23:38.515 DEBUG SVRMGMT_WS 00004396 00000596 - TRACE: CallTrace::Leaving

: [ArDBPool::getLockedDBConnectionConst]. time : 0

Chapter 11: Performing Bulk Operations 347

Appendix C: Enabling SSL for Web Services

This appendix provides the steps to enable SSL communication between Web services
and AuthMinder Server.

Setting up SSL

To ensure integrity and confidentiality of the data being exchanged during a session,
WebFort supports Secure Socket Layer (SSL) communication between Web services and
WebFort Server. By default, the communication mode between all the components is
through Transmission Control Protocol (TCP).

The following figure shows the communication that are supported between WebFort
components:

Setting up SSL

348 Web Services Developer's Guide

Important! Before you enable SSL communication between Web services and WebFort
Server, you must obtain a digital certificate from a trusted Certificate Authority and
expose your application over an HTTPS-enabled server port.

To set up one-way SSL between Web services (Authentication and Issuance) and
WebFort Server, you must first configure the Transaction Web Services protocol by
using the Protocol Management page of Administration Console.

In case of two-way SSL, you must create the client store using the Trusted Certificates
Authorities page, configure the client store using the Protocol Management
(Transaction Web Services) page, and configure the client certificates using the
WebFort Connectivity (Transaction Web Services) page of Administration Console.

The following subsections walk you through the detailed steps for configuring:

■ One-Way SSL (see page 349)

■ Two-Way SSL (see page 350)

Note: In this communication, your application integrated with Web services is the client
and WebFort Server is the server.

Setting up SSL

Chapter 11: Performing Bulk Operations 349

One-Way SSL

Perform the following steps to set up SSL between Web services and AuthMinder
Server:

1. Access Administration Console in a Web browser.

2. Log in to Administration Console as the Master Administrator (MA).

3. Activate the Services and Server Configurations tab in the main menu.

4. Ensure that the WebFort tab in the submenu is active.

5. Under the Instance Configurations section, click the Protocol Management link to
display the Protocol Configuration page.

6. Select the Server Instance for which you want to configure the protocols.

7. In the List of Protocols section, click the Transaction Web Services protocol link

The page to configure the protocol appears.

8. Configure the following fields:

■ Ensure that the Protocol Status is Enabled.

■ In the Transport field, select SSL (1-Way).

■ Select Key in HSM if you want to store the SSL key in HSM.

■ (Only if you selected Key in HSM in the preceding step) Click the Browse button
adjacent to the Certificate Chain (in PEM Format) field to select the
AuthMinder root certificate.

■ Click the Browse button adjacent to the P12 File Containing Key Pair field to
select the AuthMinder root certificate.

■ Enter the password for the PKCS#12 store in the P12 File Password field.

9. Click the Save button.

10. Restart the AuthMinder Server instance.

Setting up SSL

350 Web Services Developer's Guide

Two-Way SSL

To enable SSL communication mode between Web services and AuthMinder Server:

1. Enable the application server where your client integrated with Web services is
deployed for SSL communication. Refer to your application server vendor
documentation for more information on how to do this.

2. Log in to Administration Console as the MA.

3. Activate the Services and Server Configurations tab in the main menu.

4. Activate the WebFort tab in the submenu.

5. Under Instance Configurations, click the Trusted Certificate Authorities link to
display the corresponding page.

The Trusted Certificate Authorities page appears.

6. Set the following information:

■ In the Name field, enter the name for the SSL trust store.

■ Click the Browse button to select the root certificate of the application server
where Web services client is deployed.

7. Click the Save button.

8. Under Instance Configurations, click the Protocol Management link to display the
corresponding page.

The Protocol Configuration page appears.

9. Select the Server Instance for which you want to configure the protocols.

10. In the List of Protocols section, click the Transaction Web Services link.

The page to configure the protocol appears.

11. Configure the following fields:

■ Ensure that the protocol is enabled.

■ In the Transport field, select SSL (2-Way).

■ Select Key in HSM if you want to store the SSL key in HSM.

■ (Only if you selected Key in HSM in the preceding step) Click the Browse button
adjacent to the Certificate Chain (in PEM Format) field to select the
AuthMinder root certificate.

■ Click the Browse button adjacent to the P12 File Containing Key Pair field to
select the AuthMinder root certificate.

■ Enter the password for the PKCS#12 store in the P12 File Password field.

■ Select the Client Store that you created in Step 6.

12. Click the Save button.

13. Restart the AuthMinder Server instance.

Setting up SSL

Chapter 11: Performing Bulk Operations 351

14. Activate the Services and Server Configurations tab in the main menu.

15. Activate the WebFort tab in the submenu.

16. Under System Configuration, click the WebFort Connectivity link to display the
corresponding page.

The WebFort Connectivity page appears.

17. Set the following for the Transaction Web Services protocol:

■ Ensure that the IP Address and Port number of AuthMinder Server is set
appropriately.

■ In the Transport field, select SSL.

■ Click the Browse button adjacent to the Server CA Certificate in PEM field to
select the AuthMinder root certificate.

■ Click the Browse button adjacent to the Client Certificate-Key Pair in PKCS#12
field to select the PKCS#12 file that contains the root certificate of the
application server where Java SDKs are deployed.

■ Enter the PKCS#12 file password in the Client PKCS#12 Password field.

18. Click the Save button.

19. Restart the AuthMinder Server instance.

20. Verify that the AuthMinder Server is enabled for SSL communication by performing
the following steps:

a. Navigate to the following location:

■ On Windows:

<install_location>\Arcot Systems\logs

■ On UNIX-Based Platforms:

<install_location>/arcot/logs

b. Open the arcotwebfortstartup.log file in a text editor.

c. Search for the following section:

Listing : [Successful listeners(Type-Port-FD)]

d. In this section, you must find the following line:

Transaction-WS............................... :

[SSL-9744-<Internal_listener_identifier>-[subject

[<cert_subject>] issuer [<cert_issuer>] sn

[<cert_serial_number>] device [<device_name>]]]

e. Close the file.

Chapter 11: Performing Bulk Operations 353

Appendix D: Error Codes

This appendix lists the error codes that are returned by the AuthMinder 7.0 Web
services. It covers the following error code types:

■ User Data Service Error Codes (see page 353)

■ AuthMinder Server Codes (see page 373)

User Data Service Error Codes

The following table lists the error codes and messages that returned by the Web
services used for managing organizations, users, and account types.

Error Code Error Message Possible Cause for Failure

31201 Unable to process
the database
query, {0}.

Note: This is a
critical error.

Possible Causes:

■ Invalid input parameter was specified.

■ Error occurred during encryption.

■ Database is down.

Solution:

1. Verify that the database information in
arcotcommon.ini is correct.

2. See if there are any database-related errors in
arcotadmin.log and arcotuds.log and take corrective
action.

3. If the issue is not resolved, then you must contact
CA Support.

User Data Service Error Codes

354 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31002 UDS is not
initialized.

Note: This is a
critical error, and
is typically seen
when UDS or
Administration
Console are
restarted.

Possible Causes:

■ ARCOT_HOME is not correctly set

■ Database is down.

■ Hardware encryption initialization failed.

Solution:

1. Verify that the database information in
arcotcommon.ini is correct.

2. See if there are any database-related errors in
arcotadmin.log and arcotuds.log and take corrective
action.

3. If the issue is not resolved, then you must contact
CA Support.

31003 Fatal error, restart
UDS.

This error is
expected when
UDS application
has encountered
an unexpected
error.

Possible Causes:

■ UDS did not correctly start up.

■ Database is down.

■ Hardware encryption initialization failed.

Solution:

1. Verify that the database information in
arcotcommon.ini is correct.

2. See if there are any database-related errors in
arcotadmin.log and arcotuds.log and take corrective
action.

3. Restart UDS.

31006 Configuration
parameter, {0} not
found.

This error occurs if
the specified UDS
configuration was
not found in the
ARUDSCONFIG
table.

Possible Causes:

■ Database was manually updated.

■ Information in database tables was not correctly
populated.

Solution:

1. See if there are any database-related errors in
arcotadmin.log and arcotuds.log and take corrective
action.

2. If the issue is not resolved, then you must contact
CA Support.

User Data Service Error Codes

Chapter 11: Performing Bulk Operations 355

Error Code Error Message Possible Cause for Failure

31007 Invalid
configuration
parameter value,
{0} for parameter
name, {1}.

This error occurs if
the specified UDS
configuration
contains invalid
value(s).

Possible Causes:

■ Database was manually updated.

■ Information in database tables was not correctly
populated.

Solution:

1. See if there are any database-related errors in
arcotadmin.log and arcotuds.log and take corrective
action.

2. If the issue is not resolved, then you must contact
CA Support.

31008 Unknown error.

This message
appears if an
unexpected
internal error
occurred.

Possible Cause:

Unexpected internal error.

Solution:

1. See the arcotadmin.log and arcotuds.log files and
take corrective action.

2. If the issue is not resolved, then you must contact
CA Support.

31009 General error: {0}.

This message
appears if an
unexpected
internal error
occurred.

Possible Cause:

Unexpected internal error.

Solution:

1. See the arcotadmin.log and arcotuds.log files and
take corrective action.

2. If the issue is not resolved, then you must contact
CA Support.

35100 Error
communicating
with data store.

Note: This is a
critical error that
occurs either
when the
connectivity with
the database
server is lost or
during processing
of a database
query.

Possible Causes:

■ The database is down.

■ There was an error during encryption or
decryption of data.

Solution:

1. See the arcotadmin.log and arcotuds.log files and
take corrective action.

2. If the issue is not resolved, then you must contact
CA Support.

User Data Service Error Codes

356 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

35101 Error while
loading
configuration file,
{0}.

Note: This is a
critical error and
occurs while
reading
configuration files
in the conf
directory of
ARCOT_HOME.

Possible Cause:

The configuration files are corrupted.

Solution:

1. Ensure that the configuration files contain the
required details.

2. Retry reading from the files.

35102 Configuration file,
{0} not found.

Possible Causes:

1. ARCOT_HOME is not set.

2. The required configuration files not found in the
conf directory of ARCOT_HOME.

Solution:

1. Verify if ARCOT_HOME points to the right
location.

2. Verify if the required configuration files exist in
the conf directory of ARCOT_HOME.

35103 ARCOT_HOME
environment
variable is not set.

Possible Cause:

ARCOT_HOME not set.

Solution:

Set the ARCOT_HOME to point to your Arcot
installation directory.

35105 Invalid input
parameter.

Possible Cause:

The input value provided for the specified
parameter is not valid.

Solution:

See User Attributes Validation Checks (see page 331)
for more information on valid input parameters.

35106 Missing input
parameter, {0}.

Possible Cause:

The specified input parameter is missing in the API
request.

Solution:

Provide the required parameter.

User Data Service Error Codes

Chapter 11: Performing Bulk Operations 357

Error Code Error Message Possible Cause for Failure

35107 Cannot update
global chosen
encryption set,
because the
organization
already contains
users.

Possible Cause:

One or more organizations refer to the global
encryption set, but users have already been created
in these organizations.

Solution:

Global encryption set cannot be updated when
there are users in the referring organizations.

35108 Error while audit
logging.

Possible Causes:

1. Database connectivity is lost.

2. Invalid input provided for the audit logs.

Solution:

See the arcotadmin.log and arcotuds.log files and
take corrective action.

35109 Field, {0} exceeded
maximum length,
{1}.

Possible Cause:

The specified field exceeded the allowed length.

Solution:

Provide a value within the expected range. See User
Attributes Validation Checks (see page 331) for more
information on valid input parameters.

35110 Field, {0} contains
invalid characters.

Possible Causes:

The value provided for the specified field contains
unsupported characters.

Solution:

Retry with valid inputs. See User Attributes
Validation Checks (see page 331) for more
information on valid input parameters.

31125 User, {0} not
found.

Possible Causes:

1. The user identifier specified in the request is not
valid.

2. The user does not exist in the system.

3. The user has been deleted.

Solution:

1. Provide valid user details.

2. Also, search for deleted users to verify whether
the user has been deleted.

User Data Service Error Codes

358 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31126 User, {0} not
unique. More than
one user found.

Possible Cause:

The specified user is not unique in the system. As a
result, more than one user returned for the given
UserID.

Solution:

1. Ensure that the UserID is unique.

2. Verify if the UserID mapping attribute exists in the
LDAP organization.

3. If the issue is not resolved, then you must contact
CA Support.

31118 Search field, {0}
not permitted.

Possible Cause:

User search is not permitted on the specified field.
For example, searching for an unmapped LDAP
attribute is not allowed.

Solution:

1. Search based on other fields.

2. Ensure that the required attributes are correctly
mapped.

31127 Operation, {0} not
supported. Invalid
current state {1} of
User, {2}.

Possible Causes:

■ The current operation is not supported for the
given user status.

■ The status of the specified user is either INITIAL
or INACTIVE.
For example, authentication operations are not
supported for INACTIVE users.

Solution:

Update the user status to a valid status and then
perform the operation. See User Attributes
Validation Checks (see page 331) for more
information on valid input parameters.

31104 Operation, {0} not
supported for
repository.

Possible Cause:

The current operation is not supported for the
repository. For example, Write operations are not
supported for LDAP repository.

Solution:

Unsupported operations must be independently
performed on the repository and must not go
through CA AuthMinder flows.

For example, users must be created in LDAP through
LDAP user interface or APIs.

User Data Service Error Codes

Chapter 11: Performing Bulk Operations 359

Error Code Error Message Possible Cause for Failure

31128 User, {0} already
exists.

Note: The
createUser API
throws this error.

Possible Cause:

The specified user already exists in the system.
Therefore, cannot create another user with the
same UserID.

Solution:

UserID must be unique in an organization. Create an
user with different UserID.

31119 User identifier, {0}
is mandatory.

Possible Cause:

API was called without providing user identifier,
which is mandatory for the given API call.

Solution:

Provide a valid user identifier in the API request.

31129 PAM is not set.

This is a C++ error
code.

Possible Causes:

1. Specified user was not found.

2. Database connectivity is lost.

Solution:

1. See the arcotadmin.log and arcotuds.log files and
take corrective action.

2. If the issue is not resolved, then you must contact
CA Support.

31131 Invalid
authentication
token.

Note: This is
observed when
the API is enabled
for authentication
and authorization.

Possible Causes:

1. The authentication token is not provided in the
request.

2. The specified authentication token is not valid or
has been tampered with.

Solution:

Provide a valid authentication token, if the API is
enabled for AnA

31132 Invalid
authentication
request.

Note: This is
observed when
the API is enabled
for authentication
and authorization.

Possible Causes:

1. The authentication token provided in the request
has expired.

2. The SOAP request is invalid.

Solution:

1. Provide a valid authentication token in the
request.

2. Obtain a new authentication token, if required.

User Data Service Error Codes

360 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31135 Hashing of
authentication
token failed.

Note: This is
observed when
the API is enabled
for authentication
and authorization.

Possible Causes:

1. The authentication token provided in the request
is invalid or has been tampered with.

2. The token could not be processed.

3. The securestore.enc file not found in the conf
directory of ARCOT_HOME.

Solution:

1. Provide a valid authentication token.

2. Re-create securestore.enc.

Book: See CA AuthMinder Administration Guide for
more information on how to create this file.

3. If the issue is not resolved, then you must contact
CA Support.

70611 Authentication
failed.

Possible Causes:

1. Incorrect username or password has been
specified in the request.

2. The administrator status is not valid.

3. The Account is locked.

4. Account has expired.

Solution:

Retry with valid password or contact the
administrator to unlock or activate the account.

70300 Administrator {0}
(organization: {1})
does not have the
privilege to
perform

administration
operations for
organization, {2}.

Note: This is
observed when
the API is enabled
for authentication
and authorization.

Possible Cause:

The administrator performing the operation has a
limited scope, and does not have the required
permissions to perform the current task.

Solution:

1. Contact an administrator at higher level for the
required permissions.

User Data Service Error Codes

Chapter 11: Performing Bulk Operations 361

Error Code Error Message Possible Cause for Failure

31136 Delete operation
for product {0}
failed.

Note: This error is
seen when the
Cascade Delete
feature is enabled.

Possible Cause:

A database error occurred during a delete operation.

Solution:

1. Retry the operation.

2. If the error persists, then you must contact CA
Support.

31137 Invalid search
expression.

Note: This error is
thrown by the
searchUsers API.

Possible Cause:

The search expression that you provided is not valid.

Solution:

Provide valid search expressions. Refer to the WSDL
documentation to know more about valid search
expressions.

31138 Invalid start ({0})
or end ({1}) index
specified.

Note: This error is
thrown by the
listUsers API.

Possible Causes:

1.The start or end index that you provided is not vv
lid (probably a a negative integer).

2. End index is less than the start index.

Solution:

Provide valid positive integers for the start and end
indexes.

31139 Page size, {0}
exceeded the
configured default
search count, {1}.

Note: This error is
thrown by the
listUsers API.

Possible Cause:

Number of users that you are trying to retrieve
exceeds the configured search count.

Solution:

Limit the number of users within the search count.
Or increase the search count.

31151 Start lock time and
End lock time are
not allowed for
ACTIVE user
status.

Possible Cause:

You have provided Start lock time and End lock time
as inputs along with the user status, ACTIVE.

Note: User status cannot be updated to ACTIVE if
Start lock time and End lock time are also specified
in the request.

Solution:

Do not provide Start and End lock dates for ACTIVE
user status. These inputs are valid only if the user
status is INACTIVE.

User Data Service Error Codes

362 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31152 Invalid lock period.
Start lock time
must be before
End lock time.

Possible Cause:

Start lock time is greater than the End lock time.

Solution:

Ensure that the Start lock time is always less than
the End lock time.

31153 Invalid lock Period.
Start lock time
cannot be before
current time.

Possible Cause:

Start lock time is less than the current time.

Solution:

Ensure that the Start lock time is always greater than
the current time.

36100 Invalid input
parameter: name,
{0} value, {1}.

Possible Cause:

The input value provided for the given parameter
name is not valid. For example, specified email
contains multi-byte characters.

Solution:

Provide valid input values. See User Attributes
Validation Checks (see page 331) for more
information on valid input parameters.

36101 Unsupported
encoding
exception: {0}.

Possible Cause:

Error while encoding or decoding user or
organization custom attributes. Invalid custom
attributes.

Solution:

Retry with valid inputs.

36102 Parser exception:
{0}.

Possible Cause:

Error occurred while parsing user details from
datastore.

For example, the error occurred while retrieving
information from the LDAP Date field.

Solution:

1. Retry the operation.

2. If the error persists, then you must contact CA
Support.

User Data Service Error Codes

Chapter 11: Performing Bulk Operations 363

Error Code Error Message Possible Cause for Failure

36103 {0}.

Possible Causes:

Error occurred while encrypting or decrypting user
data, because:

1. HSM is not reachable

2. Invalid Key Label is provided in the input.

3. Server Cache has not been updated.

Solution:

1. Retry after cache refresh.

2. Verify if the specified Key Label exists in the HSM.

3. Ensure that the HSM connectivity is not lost.

36106 User {0} not
updated.

Possible Causes:

1. Specified user not found.

2. Database connectivity is lost.

Solution:

1. Retry the operation.

2. See if there are any database-related errors in
arcotadmin.log and arcotuds.log and take corrective
action.

3. If the issue is not resolved, then you must contact
CA Support.

36107 Provided image
size, {0} KB,
exceeds the
maximum
supported size, {1}
KB.

Possible Cause:

The user image has exceeded the supported size.

Solution:

Ensure that the image size is within the supported
range. See User Attributes Validation Checks (see
page 331) for more information on valid input
parameters.

36108 Invalid image
format, {0}.
Supported image
formats are JPEG,
GIF, BMP, and
PNG only.

Possible Cause:

The format of the user image provided in the
request is not valid.

Solution:

Ensure that the image format you are using is
supported by UDS. See User Attributes Validation
Checks (see page 331) for more information on valid
input parameters.

User Data Service Error Codes

364 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31134 Invalid input
parameter. {0} is
not an enterprise
LDAP organization.

Possible Cause:

You passed non-LDAP organization details to the
LDAP-only API, such as API=performQnaVerification

Solution:

Ensure that you use the correct non-LDAP APIs.

31108 Invalid input
parameter: name,
{0} and value, {1}.

Possible Cause:

The value provided for the specified parameter is
not valid.

Solution:

Provide valid inputs. See User Attributes Validation
Checks (see page 331) for more information on valid
input parameters.

31109 Organization with
name {0} already
exists.

Possible Cause:

Organization with the specified name already exists.
As a result, another organization with the same
name cannot be created.

Solution:

Provide a unique organization name.

31110 Organization with
the display name
{0} already exists.

Possible Cause:

Organization with the specified display name already
exists. As a result, another organization with the
same display name cannot be created.

Solution:

Provide a unique display name for the organization.

31114 Operation, {0} is
not supported for
organization {1}
with status {2}.

Possible Cause:

The specified operation is not supported for the
specified status of an organization. For example,
setting an INACTIVE organization as default is not
allowed.

Solution:

Update the organization status and then perform
the operation.

31115 Organization, {0}
with status, {1}
does not exist.

Possible Cause:

The specified organization with the given status
does not exist.

Solution:

Verify if the organization exists and check if its status
has changed.

User Data Service Error Codes

Chapter 11: Performing Bulk Operations 365

Error Code Error Message Possible Cause for Failure

31116 Organization {0} is
already deleted.

Possible Cause:

The organization that you are trying to delete cannot
be deleted, because it has already been deleted.

Solution:

Ensure that you specify the correct organization
details.

31117 Unable to connect
to the repository,
{0}.

Possible Causes:

■ Repository is down.

■ Specified Repository connection details are not
correct.

Solution:

Check the repository connection details and retry.

31121 Invalid
organization
status, {0}.

Possible Cause:

The organization status is not valid for the given
operation. For example, the organization cannot be
created with status INACTIVE.

Solution:

Update the organization status to a valid one.

31122 Operation, {0} not
supported for
default
organization {1}.

Possible Cause:

The specified operation is not supported on Default
organization. For example, Default organization
cannot be deleted.

31124 Organization, {0}
does not exist.

Possible Causes:

■ The organization name provided as input is not
valid.

■ The Server cache has not been updated.

■ The organization with the specified name does
not exist.

Solution:

Retry the operation after cache refresh.

User Data Service Error Codes

366 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

31140 Attribute
encryption failed.

Possible Causes:

■ The organization display name provided as input
is not valid.

■ The Server cache has not been updated.

■ The organization with the specified display
name does not exist.

Solution:

Retry the operation after cache refresh.

31142 Invalid key label.
No key with alias,
{0} exists.

Note: This error is
thrown if the
system is
configured for
hardware
encryption.

Possible Causes:

■ The Key Label specified in the operation does
not exist in the HSM.

■ The HSM connection failed.

Solution:

1. Check the HSM connectivity.

2. Verify if the Key Label is present in the HSM.

31143 Organization {0}
exist with the
same LDAP
configuration.

Note: The
createOrg APIs
throw this error.

Possible Cause:

An LDAP organization with the same configuration
already exists.

Solution:

LDAP organizations must have unique
configurations. Update the existing organization or
create a new organization with different details.

31146 Error saving
custom attributes
for user {0}.

Note: This error is
thrown while
updating users’
custom attributes.

Possible Causes:

■ The specified user was not found.

■ The database connection failed.

Solution:

1. Retry the operation.

2. If the issue is not resolved, then you must contact
CA Support.

User Data Service Error Codes

Chapter 11: Performing Bulk Operations 367

Error Code Error Message Possible Cause for Failure

38100 Resource, {0} of
type, {1} does not
exist.

Note: This error is
thrown when the
processing of an
account type fails.

Possible Causes:

■ The specified account type does not exist.

■ The Server cache has not been updated.

Solution:

Refresh the cache and retry.

38101 Unknown or
unexpected error.

Possible Cause:

A critical internal error occurred.

Solution:

Contact CA Support.

39100 User account, {0}
not found for
account type, {1}.

Possible Causes:

The specified user account was not found for the
given account type, because:

■ The specified user does not have an account.

■ The account has been deleted.

Solution:

Verify if the input Account ID is valid.

39101 The custom
attribute, {0} is
invalid for account
type, {1}.

Possible Cause:

■ The specified account custom attribute does not
exist for the account type.

■ The Server cache has not been refreshed.

Solution:

1. Ensure that you provide a valid input.

2. Refresh the cache and retry.

39102 User identifier, {0}
not found for
organization, {1}.

Possible Cause:

The user identifier was not found for the
organization during deep search. In other words, the
specified identifier did not match any of the userid,
accountid, and accountid attributes.

Solution:

Provide valid user identifier.

User Data Service Error Codes

368 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

39103 Account(s)
creation failed for
user identifier, {0}
belonging to the
organization, {1}.

Note: This is a C++
error code.

Possible Causes:

■ The connection to the database failed.

■ An unexpected error occurred while creating
account(s).

Solution:

1. See if there are any related errors in
arcotadmin.log and arcotuds.log and take corrective
action.

2. Retry the operation.

39104 The specified user
account already
exists for user {0}.

Possible Cause:

The specified user account already exists.

Solution:

Ensure that you specify a unique account name.

39105 Account types do
not exist for
organization, {0}.

Possible Causes:

■ The specified account type is not available for
the organization.

■ The Server cache has not been refreshed.

Solution:

1. Ensure that you specify the correct account type
name.

2. Add the organization to the account type scope.

3. Retry after cache refresh.

39106 Account type
already exists.

Note: The APIs for
creating and
updating account
types throw this
error.

Possible Cause:

The specified account type exists in the system. As a
result, another accounttype with the same name or
display name cannot be created.

Solution:

Create an accounttype with a unique name or
display name.

39107 Account ID, {0}
already created
for the account
type, {1}.

Possible Cause:

The specified user account has already been created
for the given account type.

Solution:

The Account ID must be unique for a given account
type for an organization. Provide a different Account
ID and retry.

User Data Service Error Codes

Chapter 11: Performing Bulk Operations 369

Error Code Error Message Possible Cause for Failure

39201 SOAP action is
null.

Possible Cause:

The incoming SOAP request is not valid.

Solution:

1. Provide a valid SOAP request.

2. If problem persists, then contact CA Support.

55000 Invalid input
parameter, {0}.

Possible Cause:

The input value provided for the given parameter is
not valid.

Solution:

See User Attributes Validation Checks (see page 331)
for more information on valid input parameters.

55001 Missing input
parameter, {0}.

Possible Cause:

The required parameter is missing from the API
request.

Solution:

Provide the required parameter.

55002 Insufficient input
parameters.

Note: This is a C++
error code.

Possible Cause:

The API inputs are incomplete.

Solution:

Provide all the required inputs.

55003 Resource bundles
not found.

Note: This is a C++
error code.

Possible Causes:

■ ARCOT_HOME is not set.

■ The required properties files are missing from
the resourcebundles subdirectory in the conf
directory.

Solution:

Ensure that the ARCOT_HOME environment variable
is correctly set.

55004 Database error.

Note: This is a C++
error code.

Possible Causes:

■ The connection to the database failed.

■ An unexpected error occurred while writing to
or reading from the database.

Solution:

1. Refer to arcotadmin.log and arcotuds.log for more
information.

2. Retry the connection.

User Data Service Error Codes

370 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

55010 Error while
encrypting the
data.

N
o
t
e
:

T
h
i
s

i
s

a

C
+
+

e
r
r
o
r

c
o
d
e
.

Possible Causes:

■ The connection to the HSM failed.

■ An unexpected error occurred.

■ The Server cache has not been refreshed.

Solution:

1. Refer to arcotadmin.log and arcotuds.log for more
information.

2. Check HSM connection details.

3. Refresh the Server cache.

User Data Service Error Codes

Chapter 11: Performing Bulk Operations 371

Error Code Error Message Possible Cause for Failure

55011 Error while
decrypting the
data.

Note: This is a C++
error code.

Possible Causes:

■ The connection to the HSM failed.

■ An unexpected error occurred.

■ The Server cache has not been refreshed.

Solution:

1. Refer to arcotadmin.log and arcotuds.log for more
information.

2. Check HSM connection details.

3. Refresh the Server cache.

55012 Internal error
occurred.

Note: This is a C++
error code.

Possible Cause:

An unexpected error occurred.

Solution:

Refer to arcotadmin.log and arcotuds.log for more
information.

55100 Error while
retrieving
organization
configuration
data.

Note: This is a C++
error code.

Possible Causes:

■ The specified organization was not found in the
system.

■ The connection to the database failed.

■ The Server cache has not been refreshed.

Solution:

1. Refer to arcotadmin.log and arcotuds.log for more
information.

2. Check the database connection details.

3. Refresh the Server cache.

50030 Search size limit
exceeded the
maximum value.

Note: This is a C++
error code.

Possible Cause:

Search returned more than the maximum
configured limit.

Solution:

Refine your search criteria.

User Data Service Error Codes

372 Web Services Developer's Guide

Error Code Error Message Possible Cause for Failure

50031 Search base node
context needs to
be bound.

Possible Causes:

■ The connection to LDAP organization failed.

■ The specified LDAP connection details are not
valid.

Solution:

Ensure that the LDAP connection details are correct
and then retry.

50032 Search is not
expected to return
more than set
limit values.

Note: This error is
thrown by the
retrieveUser API in
context of LDAP
organizations.

Possible Causes:

1. The user you specified is not unique in the system
(LDAP). As a result, more than one user details were
returned for the given UserID.

2. The UserID attribute is not mapped to the correct
LDAP attribute.

Solution:

Ensure that the UserID is unique. Also verify the
UserID attribute mappings.

50033 Search criteria is
not valid.

Note: This is a C++
error code.

Possible Cause:

The search input that you provided is not valid.

Solution:

Provide valid search inputs.

50034 Unable to get
supporting data
access class.

Possible Cause:

■ The connection to LDAP organization failed.

■ The specified LDAP connection details are not
valid.

Solution:

Ensure that the LDAP connection details are correct
and then retry.

50035 LDAP node has to
be created before
referencing.

Possible Cause:

■ The connection to LDAP organization failed.

■ The specified LDAP connection details are not
valid.

Solution:

Ensure that the LDAP connection details are correct
and then retry.

AuthMinder Server Codes

Chapter 11: Performing Bulk Operations 373

Error Code Error Message Possible Cause for Failure

50036 LDAP repository
has to be
initialized.

Possible Cause:

■ The connection to LDAP organization failed.

■ The specified LDAP connection details are not
valid.

Solution:

Ensure that the LDAP connection details are correct
and then retry.

50037 Context is not
bound or cannot
be created.

Possible Cause:

■ The connection to LDAP organization failed.

■ The specified LDAP connection details are not
valid.

Solution:

Ensure that the LDAP connection details are correct
and then retry.

AuthMinder Server Codes

The following table lists the response codes, reason codes, the cause for failure, and
solution wherever applicable.

Response
Code

Reason
Code

Description Possible Cause for Failure

0

0 Operation completed
successfully.

N/A

6100 Authentication succeeded,
but the credential is in
grace period.

Action to Take:
Credential has already
expired. Notify the user to
get the credential
reissued.

6101 Authentication succeeded,
but the credential is in
warning period.

Action to Take:
Credential is about to
expire. Notify the user to
get the credential
reissued.

1000 0 Internal error. Possible Cause:
Unexpected internal error.

AuthMinder Server Codes

374 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

 2000 Database is not
operational.

Possible Cause:
Database is not
operational.

Solution:
Start the database.

Possible Cause:
Connection between the
server and database is not
complete.

Solution:
Establish the connection
between server and
database again using the
database parameters
available in
arcotcommon.ini file.

2001 Configuration is missing. Possible Cause:
Configuration required for
processing the transaction
is missing.

Solution:
Check the server
transaction logs for details
and ensure the required
configuration is created
and assigned.

Possible Cause:
Configuration required for
processing the transaction
is created but not available
in server cache.

Solution:
Refresh server cache.

AuthMinder Server Codes

Chapter 11: Performing Bulk Operations 375

Response
Code

Reason
Code

Description Possible Cause for Failure

2002 Transaction ID generation
failed.

Possible Cause:
Transaction ID generation
failed due to internal error
in the server.

Solution:
Most likely cause might be
because of database
failure. Check the server
transaction logs for details
and ensure appropriate
action is taken based on
the server logs.

6004 Internal error. Possible Cause:
Unexpected internal error.

1001 0 Access is denied. Possible Cause:
The operation being
invoked is
protected, and you need
to authenticate.

Solution:
Obtain authentication
credentials from your
administration to include
them in the call.

You must send the correct
credential or authorization
token while making the
Web Service call.

See chapter, "Managing
Web Services Security"
(see page 35) for more
information.

1050

0 Invalid parameter. Possible Cause:
The input parameter is
invalid.

Solution:
Provide a valid parameter.

AuthMinder Server Codes

376 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

2050 Value of one of the
parameters used in the
operation is empty.

Possible Cause:
The parameter passed to
the API is empty.

Solution:
Provide a non-empty value
for the parameter. See
appendix, "Input Data
Validations" (see
page 315) for the
supported parameter
values.

2051 Length of one of the
parameters used in the
operation has exceeded
the maximum allowed
value.

Tip: Length here refers to
length of the parameter,
for example password
length.

Possible Cause:
The length of the
parameter passed to the
API has exceeded the
maximum value.

Solution:
Provide the parameter
such that its length is less
than or equal to the
maximum allowed value.
See appendix, "Input Data
Validations" (see
page 315) for the
supported parameter
values.

2052 Length of one of the
parameters used in the
operation is less than
minimum allowed value.

Possible Cause:
The length of the
parameter passed to the
API is less than minimum
value.

Solution:
Provide the parameter
such that the length of the
parameter is greater than
or equal to the minimum
allowed value. See
appendix, "Input Data
Validations" (see
page 315) for the
supported parameter
values.

AuthMinder Server Codes

Chapter 11: Performing Bulk Operations 377

Response
Code

Reason
Code

Description Possible Cause for Failure

2053 Value of one of the
parameters used in the
operation exceeded the
maximum allowed value.

Tip: VALUE here refers to
value of the parameter,
for example ArcotID PKI
Plain Key length.

Possible Cause:
The value of the
parameter passed to the
API has exceeded the
maximum allowed value.

Solution:
Provide the parameter
such that the value of the
parameter is less than or
equal to the maximum
allowed value. See
appendix, "Input Data
Validations" (see
page 315) for the
supported parameter
values.

2054 Value of one of the
parameters used in the
operation is less than the
minimum allowed value.

Possible Cause:
The value of the
parameter passed to the
API is less than the
minimum allowed value.

Solution:
Provide the parameter
such that the value of the
parameter is greater than
or equal to the minimum
allowed value. See
appendix, "Input Data
Validations" (see
page 315) for the
supported parameter
values.

AuthMinder Server Codes

378 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

2055 Value of one of the
parameters used in the
operation is invalid.

Possible Cause:
The value of the
parameter passed to the
API is invalid.

For example, the allowed
values for user status are 0
and 1. If you set the value
of this as 5, then you will
get this error.

Solution:
Provide valid value for the
parameter. See appendix,
"Input Data Validations"
(see page 315) for the
supported parameter
values.

 2056 Value of one of the
parameters used in the
operation contains invalid
characters.

Possible Cause:
The parameter specified
by ParameterKey contains
invalid characters.

Solution:
Provide valid characters
for the parameter that is
specified by
ParameterKey.

1050

2057 One of the parameters
used in the operation does
not meet the formatting
requirements.

Possible Cause:
The parameter specified
by ParameterKey has
invalid format.

Solution:
Provide valid format for
the parameter that is
specified by
ParameterKey.

AuthMinder Server Codes

Chapter 11: Performing Bulk Operations 379

Response
Code

Reason
Code

Description Possible Cause for Failure

2058 The password has less
number of alphabets than
the minimum allowed
value.

Possible Cause:
The password provided
contains lesser number of
alphabets than the
password strength policy
allows.

Solution:
Refer to the relevant
password policy and
ensure that the password
strength is set correctly.

2059 The password has less
number of numeric
characters than the
minimum allowed value.

Possible Cause:
The password provided
contains lesser number of
numeric characters than
the password strength
policy allows.

Solution:
Refer to the relevant
password policy and
ensure that the password
strength is set correctly.

2060 The password has less
number of ASCII special
characters than the
minimum allowed value.

Possible Cause:
The password provided
contains lesser number of
ASCII special characters
than the password
strength policy allows.

Solution:
Refer to the relevant
password policy and
ensure that the password
strength is set correctly.

AuthMinder Server Codes

380 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

2061 Parameter is not
supported for this
operation.

Possible Cause:

The parameter that is
passed by the plug-in is
not supported by the
operation. For example, if
you pass SAML token
configuration name in the
createCredential
operation.

Solution:

Change the plug-in code
appropriately.

1050

2063 Password is invalid. Possible Cause:

The PKCS#12 files are
uploaded with a wrong
password.

Solution:

Ensure that you use the
correct password for the
PKCS#12 files.

2064 Update operation is not
supported for the
parameter.

Possible Cause:

You are trying to update a
read-only parameter.

Solution:

None.

2065 Parameter does not
match.

Possible Cause:

The organization name
specified in the XML file to
upload the OATH tokens
does not match with
organization name
specified in the operation.

Solution:

Provide the correct
organization name.

6000 Duplicate questions are
not supported.

Possible Cause:
Two or more questions are
same.

Solution:
Provide distinct questions.

AuthMinder Server Codes

Chapter 11: Performing Bulk Operations 381

Response
Code

Reason
Code

Description Possible Cause for Failure

6001 Duplicate answers are not
supported.

Possible Cause:
Two or more answers are
same.

Solution:
Provide distinct answers.

6002 The question cannot be
same as any of the
answers.

Possible Cause:
Question might be same
as any of the answers.

Solution:
Provide distinct question
and answer.

1050

6007 Credential history check
failed.

Possible Cause:

The credential that you are
trying to update failed the
password history
validation check.

Solution:

Ensure that the password
that you have specified
meets the history check
criterion.

6010 Question not found. Possible Cause:

Question that you are
trying to update, delete,
and for which you want to
update answer does not
exist.

Solution:

Ensure that you use the
correct question.

6105 Duplicate elements found. Possible Cause:

The PKCS12 file being
uploaded in to the ArcotID
PKI contains duplicate
elements.

Solution:

Upload a PKCS#12 file that
does not contain duplicate
entries.

AuthMinder Server Codes

382 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

6106 Invalid element reference. Possible Cause:

The element that you are
trying to delete does not
exist in the ArcotID PKI.

Solution:

Ensure that you use the
correct element identifier.

6200 Event is already assigned. Possible Cause:

The event is already
associated with an
organization.

Solution:

Choose a different event
to assign.

6201 Duplicate events are not
supported.

Possible Cause:

The event list passed
contains duplicate entries.

Solution:

Do not assign duplicate
events.

1051 0 Invalid request. Possible Cause:
The packet received is
invalid.

Solution:

1. Ensure correct SDK is
pointing to the server.

2.Ensure the port
cconfigured on the
client-side refers to the
appropriate server
protocol.

AuthMinder Server Codes

Chapter 11: Performing Bulk Operations 383

Response
Code

Reason
Code

Description Possible Cause for Failure

1060 0 The request is noted. Possible Cause:

Caller verification of the
QnA credential is
successful. In this case
server does not apply the
authentication policy.

Solution:

NA

1100 0 Organization is not found. Possible Cause:
Organization specified is
not present.

Solution:

1. Check if the
organization with the
given name is created.

2. After creating the
organization, the server
might need cache refresh.
Refresh the server cache.

3. Check if the name of the
organization passed is
correct.

1101 0 Credential configuration
not found for the
organization.

Possible Cause:
The configuration for the
specified credential is not
present.

Solution:

1. Check if the
configuration is created
for this organization.

2. Check if the
configuration is assigned

AuthMinder Server Codes

384 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

to this organization.

3. Creating and assigning
configuration might need
cache refresh. Refresh the
server cache.

1102 0 User not found. Possible Cause:
User is not present.

Solution:
Create the user or provide
the user information
correctly.

1103 0 Organization is not active. Possible Cause:
Organization is not active.

Solution:
Activate the organization
using Administration
Console.

1104 0 Configuration already
exists.

Possible Cause:

The configuration that you
are trying to create
already exists.

Solution:

If you want to create a
configuration, the use a
different configuration
name.

If you want to update an
existing configuration,
then use the correct
operation.

1150 0 User status is not active. Possible Cause:
User status is not active.

Solution:
Activate the user by using
Administration Console.

AuthMinder Server Codes

Chapter 11: Performing Bulk Operations 385

Response
Code

Reason
Code

Description Possible Cause for Failure

1151 0 User already exists. Possible Cause:
User already present in
the system.

Solution:
Create the user with
different user name or
provide the user details
correctly.

1152 0 Credential is invalid. Possible Cause:
Credential already present
for the user.

Solution:
Do not create a credential
that already exists for the
user.

5500 0 Processor is invalid.

Note that processor refers
to authentication
mechanism.

Possible Cause:
The mechanism requested
is not supported by the
system.

Solution:
Use mechanisms
supported by AuthMinder.

5501 0 Data not found. Possible Cause:

There was no data found
for the
specified OATH token
search criteria.

Solution:

Use a different search
criteria.

5600 0 The RADIUS client IP is not
valid.

Possible Cause:

Client IP used in the
RADIUS configuration is
not valid.

Solution:

Ensure that you use an
appropriate octet IP
format.

AuthMinder Server Codes

386 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

5601

0 The credential
configuration is not valid.

Possible Cause:

The configuration passed
in the input is not valid.

Solution:

Based on the operation
being performed there
could be multiple reasons
for this error. Check the
parameter details in the
response or check the
server logs for further
details.

2003 Configuration organization
does not match with the
request organization.

Possible Cause:

The organization name
specified in the OATH
token does not match with
the organization name
that you have specified in
the operation.

Solution:

Ensure that you provide
the correct organization
name.

5601

6005 OATH token not found. Possible Cause:

OATH token being
assigned is not uploaded
to the organization or it
might not be uploaded for
the organization the
current user belongs to.

Solution:

Check the token identifier
and ensure that you
upload the OATH token at
the global level or for the
current organization.

AuthMinder Server Codes

Chapter 11: Performing Bulk Operations 387

Response
Code

Reason
Code

Description Possible Cause for Failure

6006 OATH token is already
assigned to a user.

Possible Cause:

The OATH token has
already been assigned.

Solution:

Assign a different OATH
token for the user.

6009 OATH token is abandoned. Possible Cause:

The OATH token has been
used and abandoned.

Solution:

Assign a different OATH
token for the user or reuse
the same token by force-
assigning the token.

6104 Credential key is not
active.

Possible Cause:

The key with which the
credential is protected is
no longer ACTIVE.

Solution:

Reissue and use the new
credential.

5602 0 The protocol is not valid. Possible Cause:

The protocol that you are
trying to update or fetch is
not valid.

Solution:

Use a valid protocol
identifier.

5603 0 The credential
configuration for the
organization is not valid.

Possible Cause:

The credential
configuration name is not
valid.

Solution:

You must provide a valid
configuration name.

AuthMinder Server Codes

388 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

5605 0 SSL trust store group name
is invalid.

Possible Cause:
The provided organization
name is not valid.

Solution:
You must provide a valid
organization name.

5606 0 SSL trust store group is
invalid.

Possible Cause:

SSL trust store with this
name already exists.

Solution:

Create a trust store with a
different name.

5607 0 Invalid WebFort Server
instance name.

Possible Cause:

Server instance name
being set is not valid.

Solution:

Provide a valid instance
name.

5608 0 A RADIUS client with the
specified IP address is
already configured.

Possible Cause:

The IP address specified in
the operation has already
been configured.

Solution:

If the existing
configuration is not
correct, then delete that
configuration and create a
new configuration.

5700 0 Number of authentication
attempts exceeded.

Possible Cause:
Number of authentication
attempts for the credential
exceeded the allowed
limit.

Solution:
The administrator must
change the status of the
credential from locked to
active.

AuthMinder Server Codes

Chapter 11: Performing Bulk Operations 389

Response
Code

Reason
Code

Description Possible Cause for Failure

5701 0 Authentication token has
expired.

Possible Cause:
Authentication token
submitted by the user is
expired.

Solution:
Authenticate again.

5702 0 Challenge has expired. Possible Cause:
Challenge is expired.

Solution:
Request for the challenge
again.

5704

0 Credential has expired. Possible Cause:
The credential, which is
provided by the user is
expired.

Solution:
Get the new credential.

0 The credential configured
for ASSP has expired.

Possible Cause:

The credential, which is
provided by the user is
expired.

Solution:
Get the new credential.

6102 The credential validity
period has not yet started.

Possible Cause:

The credential has been
created for future use.

Solution:

Use the credential that is
within the validity period.

5705

0 Credential is not active. Possible Cause:
The credential, which is
provided by the user is not
active.

Solution:
The administrator must
activate the credential.

AuthMinder Server Codes

390 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

0 Credential is not active"
"ASSP" "The user (
$$(USER)$$) account is
inactive."

Possible Cause:
The credential, which is
provided by the user is not
active.

Solution:
The administrator must
activate the credential.

5706 0 Credential is reissued. Possible Cause:
Credential is reissued.

5707

0 The authentication
credentials provided are
incorrect.

Possible Cause:
The credential details
provided by the user are
incorrect.

Solution:
Provide the credential
details correctly.

0 The ASSP authentication
credentials provided are
incorrect.

Possible Cause:
The credential details
provided by the user are
incorrect.

Solution:
Provide the credential
details correctly.

6103 The authentication
credentials provided are
incorrect. Re-synchronize
the credential.

Possible Cause:

The OTP that is provided is
not in the configured
authentication window,
but can be synchronized.

Solution:

Synchronize the OTP
credential.

AuthMinder Server Codes

Chapter 11: Performing Bulk Operations 391

Response
Code

Reason
Code

Description Possible Cause for Failure

5800

0 Credential not found for
the user.

Possible Cause:
The credential does not
exist for the user.

Solution:
Create the credential.

Possible Cause:
The details provided by
the user might be
incorrect.

Solution:
Provide the correct details.

0 ASSP credential not found
for the user.

Possible Cause:
The credential does not
exist for the user.

Solution:
Create the credential.

Possible Cause:
The details provided by
the user might be
incorrect.

Solution:
Provide the correct details.

6004 The credential not found
for the user. It is already
been deleted.

Possible Cause:

The credential has already
deleted.

Solution:

You can perform a fetch
operation on the
credential to understand
the credential state.
Reissue the credential, if
required.

5801

0 Credential already present
for the user.

Possible Cause:
Credential already exists
for the user.

6008 Credential already present
for the PAN.

Possible Cause:
Credential already exists
for the user.

AuthMinder Server Codes

392 Web Services Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

6500 0 The event is not
supported.

Possible Cause:

The event that being
assigned to the plug-in is
not supported by
AuthMinder.

Solution:

Ensure that you use the
supported events.

6501 0 The operation is not
supported.

Possible Cause:

The credential input
provided is not valid. For
example, you might have
provided QnA input for the
downloadCredential
operation.

Solution:

Ensure that the input data
that you provide is correct.

	CA AuthMinder Web Services Developer's Guide
	Contact CA Technologies
	Contents
	1: Getting Started
	Introduction to the AuthMinder Web Services
	Organization Management Web Service
	Configuration Management Web Service
	User Management Web Service
	Administration Web Service
	Issuance Web Service
	Authentication Web Service
	Bulk Upload Web Service

	AuthMinder Web Services Features
	Before You Begin
	Develop Client Applications Using AuthMinder WSDL Files
	Quick Summary

	2: Understanding AuthMinder WorkFlows
	Enrollment Workflows
	Enrolling New Users
	Migrating Existing Users
	Migrating All Users
	Migrating Selected Users

	ArcotID PKI Authentication Workflow
	ArcotID PKI Roaming Download Workflow
	Forgot Your Password Workflow
	Workflow Summary

	3: Managing Web Services Security
	Authentication Header Elements
	Authorization Header Elements
	SOAP Header Namespace

	4: Managing Organizations
	Creating Organizations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating Organizations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating Organization Status
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Refreshing the Organization Cache
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Default Organization Details
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Organization Details
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Searching Organizations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching AuthMinder Database Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Directory Service Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting Organizations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	5: Configuration Management Web Service
	Managing Account Types
	Creating Account Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating Account Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Account Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting Account Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Email and Telephone Types
	Fetching Email Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Telephone Types
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching User Attributes Configured for Encryption
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	6: Managing Users and Accounts
	Before You Proceed
	User States
	Supported User State Transitions
	User Operations and States
	User Account Operations and States

	Performing User Operations
	Creating Users
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating Users
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating User Status
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching User Details
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Searching Users by Using Pagination
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Searching All Users
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching User Status
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating User Status
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting Users
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Performing User Account Operations
	Adding User Accounts
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Updating User Accounts
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching All Accounts of a User
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetch a User Account Details
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching User Details Using Accounts
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting User Accounts
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Setting the Personal Assurance Message
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching the Personal Assurance Message
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Setting Custom User Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Authenticating LDAP Users
	Using the LDAP Password
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Using Directory Service Attributes
	Fetching User Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message
	Fetching User Attribute Values
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message
	Verifying User Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	7: Managing AuthMinder Configurations
	Creating Configurations
	Preparing the Request Message
	Credential Profiles
	Common Profile Elements
	ArcotID Credential Profile Elements
	Questions and Answers (QnA) Credential Profile Elements
	Password Credential Profile Elements
	OTP Credential Profile Elements
	OATH OTP Credential Profile Elements
	ArcotID OTP Credential Profile Elements
	EMV OTP Credential Profile Elements
	Authentication Policies
	Common Policy Elements
	ArcotID PKI Authentication Policy Elements
	QnA Authentication Policy Elements
	Password Authentication Policy Elements
	OTP-Based Authentication Policy Elements
	Miscellaneous Configurations
	Domain Key and Master Keys
	RADIUS Configurations
	RADIUS Client
	RADIUS Server
	Credential Type Resolution Configurations
	Plug-In Configurations
	ASSP Configurations
	SAML Token Configurations

	Invoking the Web Service
	Interpreting the Response Message

	Updating Configurations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Configurations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Assigning Default Configurations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Server Events
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Checking Key Availability in HSM
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting Configurations
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	8: Performing Credential Operations
	Before You Proceed
	Checking the User Status
	Credential States and Supported Transitions
	Credential Operations and States

	Creating Credentials
	Preparing the Request Message
	Common Input Elements
	ArcotID PKI Input Elements
	One-Time Password (OTP) Input Elements
	OATH OTP Input Elements
	ArcotID OTP Input Elements
	EMV OTP Input Elements
	Questions and Answers (QnA) Input Elements
	Password Input Elements
	Invoking the Web Service
	Interpreting the Response Message

	Disabling Credentials
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Enabling Credentials
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Resetting Credentials
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching Credential Details
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Reissuing Credentials
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Resetting Credential Validity
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Resetting Custom Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching QnA Configuration
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Setting Unsigned Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting Unsigned Attributes
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Adding Elements to ArcotID PKI Key Bag
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching ArcotID PKI Key Bag Elements
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting ArcotID PKI Key Bag Elements
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Downloading Credentials
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Deleting Credentials
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	9: Integrating ArcotID PKI Client with Your Application
	ArcotID PKI Client Overview
	Flash Client
	Signed Java Applet

	Copying ArcotID PKI Client Files
	For Flash Client
	For Java Signed Applet

	ArcotID PKI Client APIs
	Downloading ArcotID PKI
	Signing the Challenge

	10: Authenticating Users
	ArcotID PKI Authentication
	Step 1: ArcotID PKI Download
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Step 2: ArcotID PKI Authentication
	Preparing Request Messages
	Fetching Challenge
	Verifying Signed Challenge
	Invoking the Web Service
	Interpreting Response Messages
	Fetch Challenge Response Message
	Verify Signed Challenge Response Message

	Questions and Answers Authentication
	Preparing the Request Message
	Fetching Questions
	Verifying Answers
	Invoking the Web Service
	Interpreting Response Messages
	Fetch Questions Response Message
	Verify Answer Response Message

	Password Authentication
	Complete Password Authentication
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Partial Password Authentication
	Preparing Request Messages
	Fetching Challenge
	Verifying Password
	Invoking the Web Service
	Interpreting Response Messages
	Fetch Password Challenge Response Message
	Verify Password Response Message

	One-Time Password Authentication
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	OATH One-Time Password Authentication
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	OATH One-Time Password Synchronization
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	ArcotID OTP (ArcotID OTP-OATH) Authentication
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	ArcotID OTP (ArcotID OTP-OATH) Synchronization
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	EMV OTP (ArcotID OTP-EMV) Authentication
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	EMV OTP (ArcotID OTP-EMV) Synchronization
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Verifying Password Type Credentials
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Verifying the Authentication Tokens
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching the PAM

	11: Performing Bulk Operations
	Assigning Credentials to Users
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Uploading OATH Tokens
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	Fetching OATH Tokens
	Preparing the Request Message
	Invoking the Web Service
	Interpreting the Response Message

	A: Input Data Validations
	AuthMinder Validation Checks
	User Attributes Validation Checks

	B: AuthMinder Logging
	About the Log Files
	Installation Log File
	AuthMinder Server Startup Log File
	AuthMinder Server Log File
	UDS Log File
	Administration Console Log File

	Format of the AuthMinder Log Files
	Format of UDS and Administration Console Log Files
	Supported Severity Levels
	Server Log File Security Levels
	Administration Console and UDS Log File Severity Levels
	Sample Entries for Each Log Level
	FATAL
	WARNING
	INFO
	DEBUG
	(For AuthMinder Server Only) Trace Logs

	C: Enabling SSL for Web Services
	Setting up SSL
	One-Way SSL
	Two-Way SSL

	D: Error Codes
	User Data Service Error Codes
	AuthMinder Server Codes

