

Java Developer's Guide
r3.1.01

CA RiskMinder

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Getting Started 9

Introduction to the RiskMinder SDK .. 10

Risk Evaluation API .. 10

RiskMinder SDK Features ... 11

Overview of the Integration Steps ... 12

Before You Begin .. 14

Chapter 2: Understanding RiskMinder Workflows 15

Enrollment Workflows ... 15

Explicit Enrollment .. 16

Implicit Enrollment .. 21

Risk Evaluation Workflows ... 23

Pre-Login Risk Evaluation Workflow ... 24

Post-Login Risk Evaluation Workflow .. 26

Workflow Summary ... 31

Chapter 3: Before You Begin 33

Configuring Java APIs ... 34

Including Risk Evaluation JAR Files in CLASSPATH .. 35

Including Properties Files in CLASSPATH .. 36

Initializing the Risk Evaluation API ... 36

Method 1: Initializing the API by Using the Properties File ... 37

Method 2: Initializing the API by Using the Map .. 38

Preparing Additional Inputs ... 39

Chapter 4: Managing Users 41

Chapter 5: Collecting Device ID and DeviceDNA 43

End-User Device Identification Basics .. 43

Device ID ... 44

Machine FingerPrint (MFP) ... 45

DeviceDNA .. 45

File that You Will Need ... 46

Configuring Device ID and DeviceDNA ... 46

Step 1: Include the Javascript File ... 47

6 Java Developer's Guide

Step 2: Initialize Device ID and DeviceDNA Collection .. 48

Step 3: Collect the Device ID and DeviceDNA ... 50

Step 4: Collect the IP Address ... 50

Sample Code Reference ... 51

Understanding the APIs for Retrieving DeviceDNA in the Sample Code... 52

Collecting the IP Address .. 55

Chapter 6: Performing Risk Evaluation 57

Evaluating Risks and Performing Post-Evaluation .. 58

Managing Associations ... 62

Listing Associations ... 63

Deleting Associations .. 65

Appendix A: Additional SDK Configurations 67

Configuring a Backup RiskMinder Server Instance ... 68

RM_3.1--SSL Communication Between RiskMinder Components ... 69

RM_3.1--Setting Up SSL Communication Between Java SDK and RiskMinder Server ... 70

Configuring One-Way SSL .. 71

Configuring Two-Way SSL ... 73

Appendix B: Sample Code 77

Sample Code for Risk Evaluation and Post-Evaluation ... 78

Appendix C: Java API Reference 91

Accessing the Javadoc HTML Documentation .. 91

Risk Evaluation API ... 92

Third-Party JARs Used by Risk Evaluation API .. 94

Appendix D: Exceptions and Error Codes 95

RiskMinder SDK Exceptions .. 95

Risk Evaluation Server Exceptions ... 95

Risk Evaluation SDK Exceptions ... 96

RiskMinder Server Response Codes ... 97

Appendix E: Input Data Validations 111

Appendix F: RiskMinder Logging 117

About the Log Files ... 118

Contents 7

Installation Log File ... 119

Startup Log Files .. 119

Transaction Log Files ... 122

Administration Console Log File .. 125

UDS Log File ... 126

RM_3.1--Format of the RiskMinder Server and Case Management Server Log Files .. 127

Format of UDS and Administration Console Log Files .. 128

Supported Severity Levels .. 128

Server Log File Severity Levels .. 129

Administration Console and UDS Log File Severity Levels .. 129

Sample Entries for Each Log Level ... 131

Appendix G: RiskMinder Sample Application 133

Understanding the Sample Application ... 133

Sample Application Components .. 134

Sample Application Recommendations .. 135

Installing and Configuring the Sample Application .. 136

Configuring Sample Application .. 136

Performing Risk Evaluation .. 139

Performing Risk Evaluation on Gathered Information .. 140

Editing the Gathered User Information .. 141

API Workflow and Reference .. 142

Creating Users .. 143

Creating a User .. 143

Performing Risk Evaluation for the User that You Created ... 144

Chapter 1: Getting Started 9

Chapter 1: Getting Started

This guide provides information about how to use CA RiskMinder (referred to as
RiskMinder later in the guide) Java classes and methods to enable your online
application to programmatically perform risk evaluation and related tasks. This
document describes the Java implementation of the RiskMinder SDK.

Sample Code (see page 77) provides a fully-functional sample code that you can run to
test the supported user-related operations, risk evaluation, and post-evaluation
functionality of RiskMinder.

RiskMinder is an adaptive authentication solution that evaluates each online transaction
in real time by examining a wide range of collected data against the configured rules. It
then assigns each transaction a risk score and advice. The higher the risk score, the
greater is the possibility of a fraud, the negative the advice. Based on your business
policies, your application can then use this risk score and advice to approve or decline a
transaction, ask for additional authentication, or alert a customer service
representative.

RiskMinder offers you the flexibility to modify the configuration parameters of any of
the risk evaluation rules in keeping with your policies and risk-mitigation requirements.
It also gives you the flexibility to modify the default scoring configurations, scoring
priorities, and risk score for any rule and selectively enable or disable the execution of
one or more rules.

Besides pre-configured out-of-the-box rules, RiskMinder’s field-programmable custom
rules capability allows for industry-specific rules to be selectively deployed and
augmented based on your requirements.

See "Understanding RiskMinder Basics" in the CA RiskMinder Installation and
Deployment Guide to understand the basic concepts of RiskMinder and its architecture.

This section introduces you to the Java APIs provided by RiskMinder. It covers the
following topics:

■ Introduction to the RiskMinder SDK (see page 10)

■ RiskMinder SDK Features (see page 11)

■ Overview of the Integration Steps (see page 12)

■ Before You Begin (see page 14)

Note: CA RiskMinder still contains the terms Arcot and RiskFort in some of its code
objects and other artifacts. Therefore, you will find occurrences of Arcot and RiskFort in
all CA RiskMinder documentation. In addition, some of the topics in this guide do not
follow the standard formatting guidelines. These inconsistencies will be fixed in a future
release.

Introduction to the RiskMinder SDK

10 Java Developer's Guide

Introduction to the RiskMinder SDK

The RiskMinder software development kit (SDK) provides a programmatic front-end to
RiskMinder. It provides APIs for interacting with RiskMinder Server to perform the tasks
needed for assessing each transaction (Risk Evaluation APIs).

After you install RiskMinder, the Java SDKs are available at the following location:

Microsoft Windows:
<install_location>\Arcot Systems\sdk\java\lib\arcot\

UNIX-Based Platforms:
<install_location>/arcot/sdk/java/lib/arcot/

Tip: If you have not installed RiskMinder yet, you can still access these Javadocs in the
Documentation directory of the RiskMinder package you receive.

Risk Evaluation API

The Risk Evaluation API (arcot-riskfort-evaluaterisk.jar) is the interface to RiskMinder
Server, which provides the logic for evaluating risk associated with a transaction and
returning an appropriate advice.

Based on the various factors collected from user’s system and the result of configured
rules that are triggered, this API returns a score and a corresponding advice. If
RiskMinder recommends additional authentication (which is performed by your
application), then this API also returns a final advice based on the feedback of this
secondary authentication received from your application.

During risk evaluation, a Device ID is passed to the API, which is then used by
RiskMinder Server to form a user-device association in the database. The Device ID is
stored on the end user's device.

This association (or device binding) helps identify the risk for transactions originating
from a system used by the user for a transaction. Users who are not bound are more
likely to be challenged in order to be authenticated. You can also list and delete these
associations by using this API.

Note: Users can be bound to more than one device (for example, someone using a work
and home computer) and a single device can be bound to more than one user (for
example, a family sharing a computer).

RiskMinder SDK Features

Chapter 1: Getting Started 11

RiskMinder SDK Features

This section discusses the salient features of the Risk Evaluation SDK.

■ Multiple Ways to Initialize the SDKs

You can initialize Risk Evaluation SDK either by using properties file or by using a
map. See "Before You Begin" (see page 33) for more information on how to do this.

■ Support for SDK Failover

Java SDKs support failover mechanism, if an instance of RiskMinder Server is not
operational, then the SDKs automatically connect to any of the additional
configured instances. See "Configuring a Backup RiskMinder Server Instance" (see
page 68) for more information on how to do this.

■ Support for SSL

You can secure the connection between the Java SDK and RiskMinder Server by
using Secure Socket Layer (SSL). To set up SSL between SDK and RiskMinder Server,
you must edit the properties files. See "SSL Communication Between RiskMinder
Components" (see page 69) for more information on how to do this.

■ Support for Additional Parameters

In addition to the mandatory inputs, the APIs also accepts additional input that can
be passed as name-value pair. This input can include information, such as locale,
calling application details, or additional transaction details.

Overview of the Integration Steps

12 Java Developer's Guide

Overview of the Integration Steps

The RiskMinder SDK offers you multiple degrees of freedom in the available integration
methods and the types of risk-based authentication flows. (See "Understanding
RiskMinder Workflows" (see page 15) for more information on supported workflows.)
This enables you to design the optimal authentication solution that best suits your
organization’s requirements.

The RiskMinder flows can be integrated with your online application at the points
discussed in following subsections.

Before a User Logs in to Your Application (and Just Accesses the Login Page)

In this case, your application must invoke RiskMinder’s evaluateRisk() function call from
the login page (before the user specifies the login credentials) to assess the risk
associated with the incoming data. For example, you can evaluate the IP address and/or
the country for Negative IP and Negative Country checks.

Note: Negative IP addresses is a collection of IP addresses that have been the origin of
known anonymizer proxies or fraudulent or malicious transactions in past. Similarly,
Negative countries is a collection of all countries from which fraudulent or malicious
transactions have been recorded in past.

In this case, you can also evaluate other RiskMinder rules that do not require user
information. These include Device Velocity Check and any custom rules you might have
implemented.

After a User Logs in to Your Online Application (By Specifying the User Name and Password to
Access Their Account or the Protected Resource)

In this case:

1. Your application must invoke RiskMinder from the main page of your application
that appears after successful login. The following scenarios are possible:

■ User is enrolled with RiskMinder, and must undergo risk evaluation.

In this case, your application must invoke RiskMinder’s evaluateRisk() function
call by passing user, device signature (collected by using the DeviceDNA
Javascript provided by RiskMinder), IP address, and transaction details for
assessing the risk:

■ If the received user data is assigned a low score after rule execution (based
on the incoming data and the data stored for this user or device), then the
advice is ALLOW. In this case, your application grants access to the user to
the protected resource or Web page and allows the user to continue with
the transaction.

Overview of the Integration Steps

Chapter 1: Getting Started 13

■ If the received user data is assigned a high score after rule execution
(based on the incoming data and the data stored for this user or device),
then the advice is DENY. In this case, your organizational policies
determine the outcome. The transaction can be denied or can be
forwarded to a security analyst (known as Customer Support
Representative (CSR) in RiskMinder terminology) for review and further
action.

■ If a transaction is flagged as suspicious, then the advice is INCREASEAUTH.
In this case, your application must perform a secondary authentication,
which can include industry-standard one-time password (OTP) or security
questions (such as mother’s maiden name and date of birth).

Note: You can also use CA AuthMinder for this purpose.
See http://www.ca.com/us/two-factor-authentication.aspx for more
information.

 Only if your application authenticates the user during the secondary
authentication, then you must grant the user access to the protected
resource or Web page and allow the user to continue with the transaction.

■ User is new to RiskMinder, and therefore must be enrolled with it.

In this case, your application must invoke RiskMinder’s createUserRequest
message in the ArcotUserRegistrySvc Web service by passing user details to
create the user in RiskMinder database.

Important! Because RiskMinder works "behind the scene" for an end user, it is
recommended that you do not change the end-user experience for this
enrollment.

After RiskMinder "knows" the user after this enrollment, then you must call the
evaluateRisk() function and allow the user to proceed with the transaction, if
the advice is ALLOW.

See "Enrollment Workflows" (see page 15) for more information on the two
different ways in which you can enroll users.

2. Your application invokes RiskMinder’s postEvaluate() function after the
evaluateRisk() function. RiskMinder Server determines whether to create a
user-device association and update the attributes based on the results of this
function.

Before You Begin

14 Java Developer's Guide

Before You Begin

Before you integrate your application with RiskMinder, RiskMinder must be installed
and configured, ensuring that:

■ The systems on which you plan to install RiskMinder meets the system
requirements.

Book: Refer to the system requirements in the CA RiskMinder Installation and
Deployment Guide.

■ You have completed the configuration and planning-related information:

■ You have installed and configured the required number of RiskMinder database
instances.

Book: See "Configuring Database Server" and "Database-Related
Post-Installation Tasks" in the CA RiskMinder Installation and Deployment
Guide for detailed instructions.

■ You have installed the applicable version of JDK on the system where you plan
to install RiskMinder components that use JDK.

■ You have also installed the required application server.

Book: See "Requirements for Java-Dependent Components" in the CA
RiskMinder Installation and Deployment Guide.

In case of single-system deployment of RiskMinder (see "Deploying RiskMinder on a
Single System" in the CA RiskMinder Installation and Deployment Guide for more
information). Ensure that the all the components are up.

In case of distributed-system deployment of RiskMinder (see "Deploying RiskMinder on
a Distributed System" in the CA RiskMinder Installation and Deployment Guide for more
information). Ensure that the connection is established between all the components and
that they successfully communicate with each other.

Chapter 2: Understanding RiskMinder Workflows 15

Chapter 2: Understanding RiskMinder
Workflows

RiskMinder provides many workflows that can be integrated and used by your online
application. Based on your organizational requirements, you can integrate these
workflows, without changing the existing online experience for your users in most cases,
except when RiskMinder generates the INCREASEAUTH advice.

This section describes these workflows and provides an overview of each workflow so
you can understand the different processes involved:

■ Enrollment Workflows (see page 15)

■ Risk Evaluation Workflows (see page 23)

■ Workflow Summary (see page 31)

Enrollment Workflows

Every time your application forwards a request for risk analysis, RiskMinder uses the
Unknown User Check rule to determine if the user details exist in the RiskMinder
database. If this information is not found, then RiskMinder treats the incoming request
as a first-time (or unknown) user request and recommends the ALERT advice. In such
cases, you must enroll the user so that the next time they undergo risk evaluation, they
do not see the same advice.

Enrollment is the process of creating a new user in the RiskMinder database. As
discussed in the following subsections, you can enroll the user explicitly by calling the
createUserRequest message in the ArcotUserRegistrySvc Web service from your
application. After enrollment, you must perform risk evaluation (as discussed in "Risk
Evaluation Workflows" (see page 23)).

You can also implicitly create the user by setting the Mode of User Enrollment as
Implicit in the Miscellaneous Configurations page of Administration Console. If you
enable this option, then every time you perform risk evaluation for an unknown user (as
discussed in "Risk Evaluation Workflows" (see page 23)), the user is automatically
created in the system.

However if the user is not registered with your application (in other words, is unknown
to your application), then you must take action according to your organizational policies.

Enrollment Workflows

16 Java Developer's Guide

Explicit Enrollment

In case of explicit enrollment, you must explicitly call RiskMinder’s createUserRequest
message in the ArcotUserRegistrySvc Web service from your application’s code to create
a user in RiskMinder database. You can call this function either before (Scenario 1 (see
page 17)) or after (Scenario 2 (see page 19)) you perform risk evaluation (by using the
evaluateRisk()call.)

Enrollment Workflows

Chapter 2: Understanding RiskMinder Workflows 17

Scenario 1

The steps for the explicit enrollment workflow, if you call the createUserRequest
message in the ArcotUserRegistrySvc Web service before evaluateRisk() function are:

1. User logs in to your online application.

Your system validates if the user exists in your system. If the user name is not valid,
then your application must take appropriate action.

2. Your application calls RiskMinder’s createUserRequest message.

At this stage, your application must make an explicit call to the createUserRequest
message in the ArcotUserRegistrySvc Web service. In this call, you must pass all
pertinent user details, such as user’s name, last name, organization, email, and their
personal assurance message (PAM) to RiskMinder.

Book: See "Managing Users and Accounts" in the CA RiskMinder Web Services
Developer’s Guide for detailed information on the createUserRequest message.

3. RiskMinder creates the user in the database.

If the createUserRequest call was successful, then RiskMinder creates the user
record in the RiskMinder database. With this, user is enrolled with RiskMinder.

4. Your application collects information required by RiskMinder.

At this stage, your application collects information from the user’s system that will
be used by RiskMinder for analyzing risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored on the end user's
device.

■ Transaction information that includes the name of the channel being used by
the user, a numeric identifier for the transaction, and some other information
about the transaction.

■ Location information that includes IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

5. Your application calls RiskMinder’s evaluateRisk() for risk analysis.

In this case, because you enrolled the user before performing risk analysis, the
RiskMinder system "knows" the user and does not generate the ALERT advice. Refer
to "Risk Evaluation Workflows" (see page 23) for more information.

6. RiskMinder performs risk analysis.

RiskMinder generates a risk score and an advice.

Enrollment Workflows

18 Java Developer's Guide

7. Your application stores the Device ID on the end user’s device.

Your application must store the Device ID returned by evaluateRisk() as a cookie on
the device that the end user is using for the current transaction.

The following figure illustrates the explicit enrollment workflow when you make the
createUserRequest message call before the evaluateRisk() call.

Enrollment Workflows

Chapter 2: Understanding RiskMinder Workflows 19

Scenario 2

The steps for the explicit enrollment workflow, if you call the CreateUserRequest
message after evaluateRisk() function, are:

1. User logs into your online application.

Your system validates if the user exists in your system. If the user name is not valid,
then your application must take appropriate action.

2. Your application collects information required by RiskMinder.

At this stage, your application collects information from the user’s system that will
be used by RiskMinder for analyzing risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored on the end user's
device.

■ Location information that includes IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

3. Your application calls RiskMinder’s evaluateRisk() function.

At this stage, your application must call the evaluateRisk() function in riskfortAPI. In
this call, you must pass all the user and device information that you collected in the
preceding step to RiskMinder.

4. RiskMinder performs risk analysis.

RiskMinder performs risk analysis for the user and generates an advice. In this case,
because the user is not yet "known" to the RiskMinder system, the ALERT advice is
generated.

5. Your application calls RiskMinder’s createUserRequest message.

At this stage, your application must make an explicit call to the createUserRequest
message in the ArcotUserRegistrySvc Web service. In this call, you must pass all
pertinent user details, such as user’s name, last name, organization, e-mail, and
their personal assurance message (PAM) to RiskMinder.

Book: See "Managing Users and Accounts" in the CA RiskMinder Web Services
Developer’s Guide for detailed information on the createUserRequest message.

6. RiskMinder creates the user in the database.

If the createUserRequest call was successful, then RiskMinder creates the user
record in the RiskMinder database. With this, user is enrolled with RiskMinder.

7. Your application calls RiskMinder’s evaluateRisk() function again.

Enrollment Workflows

20 Java Developer's Guide

At this stage, your application must again call the evaluateRisk() function in
riskfortAPI. In this call, you must ensure that you pass all the user and device
information that you collected in Step 2 to RiskMinder.

8. RiskMinder performs risk analysis for the user.

In this case, RiskMinder executes the rules and generates the risk score and the
advice.

9. Your application stores the Device ID on the end user’s system.

Your application must store the Device ID returned by evaluateRisk() as a cookie on
the device that the end user is using for the current transaction.

The following figure illustrates the explicit enrollment workflow when you call the
CreateUserRequest message before the evaluateRisk() call.

Enrollment Workflows

Chapter 2: Understanding RiskMinder Workflows 21

Implicit Enrollment

In case of implicit enrollment, you do not need to call RiskMinder’s createUserRequest
message explicitly from your application’s code to create a user in RiskMinder database.
Instead when RiskMinder generates the ALERT advice for an "unknown user", it
automatically calls the function to enroll the user.

For this enrollment to work, it is important that you first set the Mode of User
Enrollment as Implicit in the Miscellaneous Configurations page of Administration
Console.

The steps for the implicit enrollment workflow are:

1. User logs into your online application.

Your system validates if the user exists in your system. If the user name is not valid,
then your application must take appropriate action.

2. Your application collects information required by RiskMinder.

At this stage, your application collects information from the user’s system that will
be used by RiskMinder for analyzing risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored on the end user's
device.

■ Location information that includes IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

3. Your application calls RiskMinder’s evaluateRisk() function.

At this stage, your application must call the evaluateRisk() function in riskfortAPI. In
this call, you must pass all the user and device information that you collected in the
preceding step to RiskMinder.

4. RiskMinder performs risk analysis for the user.

In this case, because the user is not yet "known" to the RiskMinder system, the
default ALERT advice is generated.

5. RiskMinder creates the user in database.

For an ALERT advice that is generated, RiskMinder uses the createUserRequest
message in the ArcotUserRegistrySvc Web service to create the user record in the
RiskMinder database. With this, the user is enrolled with RiskMinder.

Book: See "Managing Users and Accounts" in the CA RiskMinder Web Services
Developer’s Guide for detailed information on the createUserRequest message.

Enrollment Workflows

22 Java Developer's Guide

6. Your application calls RiskMinder’s evaluateRisk() function again.

At this stage, your application must again call the evaluateRisk() function in
riskfortAPI. In this call, you must ensure that you pass all the user and device
information that you collected in Step 2 to RiskMinder.

7. RiskMinder performs risk analysis for the user.

In this case, RiskMinder executes the rules and generates the risk score and the
advice.

8. Your application stores the Device ID on the end user’s system.

After the user has been created, your application must store the Device ID returned
by evaluateRisk() as a cookie on the device that user is using for the current
transaction.

The following figure illustrates the implicit enrollment workflow when RiskMinder
automatically creates the user.

Risk Evaluation Workflows

Chapter 2: Understanding RiskMinder Workflows 23

Risk Evaluation Workflows

The risk evaluation workflows enable your online application to determine if the
incoming user request is potentially risky or not:

■ If the risk is low, the user is allowed to access your online application.

■ If the risk is high, the user is denied access to your system.

■ If the transaction is tagged as suspicious, this workflow also prompts your
application to challenge users for additional authentication to prove their
identity.

If the user fails this additional authentication, then it is recommended that you
do not allow the user to access the protected resource(s).

You can implement RiskMinder’s risk analysis capability either before the user logs in to
your online application or after they have successfully logged in and are performing a
transaction. Depending on when you call RiskMinder’s evaluateRisk() function, the
following workflows are possible:

■ Pre-Login Risk Evaluation Workflow (see page 24)

■ Post-Login Risk Evaluation Workflow (see page 26)

Risk Evaluation Workflows

24 Java Developer's Guide

Pre-Login Risk Evaluation Workflow

When a user accesses your online application, you can assess them for potential risk
even before they log in by implementing this workflow. This workflow will only use
inputs related to device identification and location information (such as IP address,
Device ID, and DeviceDNA) and rules that do not require user-specific information as the
criterion for risk evaluation.

If you call RiskMinder’s risk analysis capability even before a user logs in to your online
application, then the risk evaluation workflow is as follows:

1. User accesses your online application.

When a user accesses your online application, you can assess them for potential risk
even before they log in.

2. Your application collects information required by RiskMinder.

At this stage, your application collects information from the user’s system that will
be used by RiskMinder for analyzing risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored on the end user's
device.

■ Location information that includes IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

3. Your application calls RiskMinder’s evaluateRisk() function.

At this stage, your application must call the evaluateRisk() function in riskfortAPI. In
this call, you must pass the information that you collected in the preceding step to
RiskMinder.

4. RiskMinder performs risk analysis for the user.

RiskMinder generates the appropriate risk score and advice based on the passed
user inputs and configured rules.

5. Your application validates the user.

Based on RiskMinder’s recommendation, your application can allow the user to
proceed with the login process or can deny access to your system.

The following figure illustrates the Pre-login risk evaluation workflow.

Risk Evaluation Workflows

Chapter 2: Understanding RiskMinder Workflows 25

Risk Evaluation Workflows

26 Java Developer's Guide

Post-Login Risk Evaluation Workflow

When a user accesses your online application, you can first log them in and then
comprehensively assess them for potential risks by implementing this workflow. This
workflow uses device identification information and number of factors, such as network
information, user information, and (if implemented) transaction information to evaluate
users.

Based on the result of the evaluateRisk() function, RiskMinder determines whether to
create an association and update the attributes during the postEvaluate() call:

■ In case of ALLOW, the user-device association information is updated.

■ In case of ALERT and DENY, the user-device association information is not updated
at all.

■ In case of INCREASEAUTH, the user-device association information is updated, but
the user association information is created only if the result of the additional
authentication ("Secondary Authentication Workflow" (see page 29)) was
successful.

If you call RiskMinder’s risk analysis capability after you authenticate a user in to your
online application, then the risk evaluation workflow is as follows:

1. User logs into your online application.

Your system validates if the user exists in your system. If the user is not valid, then
your application must take appropriate action.

2. Your application collects information required by RiskMinder.

At this stage, your application collects information from the user’s system that will
be used by RiskMinder for analyzing risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored at the client-end.

■ Location information that includes IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

3. Your application calls RiskMinder’s evaluateRisk() function.

At this stage, your application must call the evaluateRisk() function in riskfortAPI. In
this call, you must pass all the user and device information that you collected in the
preceding step to RiskMinder.

4. RiskMinder performs risk analysis for the user.

Risk Evaluation Workflows

Chapter 2: Understanding RiskMinder Workflows 27

RiskMinder evaluates the risk using the incoming inputs and the configured rules.
Based on the result of rules that were executed and whether the information
matched, RiskMinder generates:

■ ALERT, if the information for the user does not exist in the RiskMinder
database.

■ ALLOW, if the risk score is low.

■ DENY, if the risk score is high.

■ INCREASEAUTH, if the incoming information is suspicious.

If the advice is INCREASEAUTH, then refer to "Secondary Authentication Workflow"
(see page 29) for more information on how to proceed.

5. Your application takes the appropriate action by using RiskMinder’s
recommendation.

Based on the result of the evaluateRisk() call, your application either allows the user
to continue with the transaction, denies them access to the protected resource, or
performs secondary authentication.

See "Secondary Authentication Workflow" (see page 29) for more information.

6. Your application calls RiskMinder’s postEvaluate() function.

At this stage, your application must call the postEvaluate() function in riskfortAPI.
Based on the output generated by the evaluateRisk() call, this call helps RiskMinder
to generate the final advice and update the device and association information.

In this call, you must pass the risk score and advice from the evaluateRisk() call, the
result of secondary authentication (if the advice in the previous step was
INCREASEAUTH), and any association name, if the user specified one.

7. RiskMinder updates the device and association information.

If any change is detected in the incoming data, RiskMinder updates the data and
association information in the RiskMinder database.

The following figure illustrates the Post-login risk evaluation workflow.

Risk Evaluation Workflows

28 Java Developer's Guide

Risk Evaluation Workflows

Chapter 2: Understanding RiskMinder Workflows 29

Secondary Authentication Workflow

When RiskMinder generates the INCREASEAUTH advice, it transfers the control back to
your application temporarily for secondary authentication. In this case, your application
must implement some mechanism for performing additional authentication. For
example, your application can display industry-standard security (or challenge)
questions to the user (such as mother’s maiden name and date of birth) or make them
undergo out-of-band phone authentication.

After you determine whether the user authenticated successfully or not, you must
forward the result to RiskMinder, which uses this feedback to generate the final advice,
update device information, create association information, and to store the feedback to
use for risk analysis of future transactions.

The risk evaluation workflow in case of secondary authentication is as follows:

1. User logs into your online application.

Your system validates if the user exists in your system. If the user is not valid, then
your application must take appropriate action.

2. Your application collects information required by RiskMinder.

At this stage, your application collects information from the user’s system that will
be used by RiskMinder for analyzing risk:

■ User system information that includes operating system, platform, browser
information (such as browser language, HTTP header information), locale, and
screen settings. Your application uses RiskMinder's Utility Script called
riskminder-client.js to collect this information.

■ Device information that includes Device ID, which is stored on the end user's
device.

■ Location information that includes IP address and Internet Service Provider
related information.

■ (Optionally, if you are using additional information) Additional Inputs that are
specific to custom rules or the channel selected.

3. Your application calls RiskMinder’s evaluateRisk() function.

At this stage, your application must call the evaluateRisk() function in riskfortAPI. In
this call, you must pass all the user and device information that you collected in the
preceding step to RiskMinder.

4. RiskMinder performs risk analysis for the user.

If RiskMinder flags the transaction as suspicious, it generates the INCREASEAUTH
advice. This implies that extra credentials are required to help further authenticate
the user.

5. Your application performs secondary authentication.

Risk Evaluation Workflows

30 Java Developer's Guide

Based on the secondary authentication mechanism that you are using, your
application displays appropriate pages to the user. For example, you can prompt
the user to:

■ Answer the security questions that they selected while enrolling with your
application.

■ Perform One-Time Password (OTP) authentication.

■ Perform phone authentication.

After receiving user input, your application determines the outcome of the
additional authentication.

6. Your application calls RiskMinder’s postEvaluate() function and forwards the
result of the secondary authentication to RiskMinder.

At this stage, irrespective of the fact whether the user failed or cleared the
secondary authentication, your application must pass the result back to RiskMinder.
This information helps RiskMinder build an up-to-date and accurate user history.

To do so, your application must call the postEvaluate() function in riskfortAPI. In this
call, you must pass the risk score and advice from the evaluateRisk() call, the result
of secondary authentication, and any association name, if the user specified one.

7. RiskMinder generates the final advice.

By using your application’s feedback regarding the secondary authentication,
RiskMinder generates the final advice.

8. RiskMinder updates the device information and creates the association
information.

Based on the result of the postEvaluate() call, RiskMinder also updates the device
attributes and creates the association information in the RiskMinder database.

9. Your application takes the appropriate action.

Based on the result of the postEvaluate() call, your application either allows the
user to continue with the transaction or denies them access to the protected
resource.

The following figure illustrates the secondary authentication risk evaluation
workflow.

Workflow Summary

Chapter 2: Understanding RiskMinder Workflows 31

Workflow Summary

The following table provides a brief summary of the workflows provided by RiskMinder.

Note: All these workflows, except for secondary authentication workflow, are
implemented "behind the scenes" and do not change the user experience.

Workflow
Sub-Type of
the Workflow

Description
Dependant
Workflows

Enrollment

Explicit

Scenario 1: Creates a user in the
RiskMinder database, when you
call the createUserRequest
message before evaluateRisk().

In this case, the end user never
gets an ALERT advice.

■ Post-Login
Risk
Evaluation

Scenario 2: Creates a user in the
RiskMinder database, when you
call the createUserRequest
message after evaluateRisk().

■ Post-Login
Risk
Evaluation

Workflow Summary

32 Java Developer's Guide

Workflow
Sub-Type of
the Workflow

Description
Dependant
Workflows

Implicit RiskMinder automatically
creates a user in the RiskMinder
database, without you having to
make the createUserRequest
message call.

■ Post-Login
Risk
Evaluation

Risk Evaluation

Pre-Login Analyzes the risk of a
transaction before the user logs
in to your online application
system.

None

Post-Login Analyzes the risk of a
transaction after the user logs
in to your online application
system.

Also updates user information
and device association
information.

■ Enrollment

■ Secondary
Authenticatio
n

In case of
Secondary
Authentication

Provides the final advice in case
your application performed a
secondary authentication after
RiskMinder recommended
INCREASEAUTH.

Also updates user information
and device association
information.

■ Post-Login
Risk
Evaluation

Chapter 3: Before You Begin 33

Chapter 3: Before You Begin

Before you use the Risk Evaluation API, you must include the related JAR files in the
CLASSPATH. If you are using Properties files in your application, then you must also
include them in the CLASSPATH. After including the required JAR files or Properties files
in CLASSPATH, you must next Initialize the API.

This section covers the following topics:

■ Configuring Java APIs (see page 34)

■ Including Risk Evaluation JAR Files in CLASSPATH (see page 35)

■ Including Properties Files in CLASSPATH (see page 36)

■ Initializing the Risk Evaluation API (see page 36)

■ Preparing Additional Inputs (see page 39)

Configuring Java APIs

34 Java Developer's Guide

Configuring Java APIs

To configure RiskMinder Risk Evaluation APIs for using with a J2EE application:

Note: The following instructions are based on Apache Tomcat Server. The configuration
process might vary depending on the application server you are using. Refer to the
application server documentation for detailed information on these instructions.

1. Before proceeding with the configuration steps in this section, ensure that the JARs
required for implementing the Java APIs are installed at:

■ For Microsoft Windows: <install_location>\Arcot Systems\sdk\java\lib\

■ For UNIX-Based Platforms: <install_location>/arcot/sdk/java/lib/

2. Copy the listed JAR files (from the location where they are installed) to the
appropriate location in your <APP_SERVER_HOME> directory. (For example, on
Apache Tomcat this location is <Application_Home>/WEB-INF/lib/.)

■ /sdk/java/lib/arcot/arcot_core.jar

■ /sdk/java/lib/arcot/arcot-pool.jar

■ /sdk/java/lib/arcot/arcot-riskfort-evaluaterisk.jar

■ /sdk/java/lib/arcot/arcot-riskfort-mfp.jar

■ /sdk/java/lib/external/bcprov-jdk14-139.jar

■ /sdk/java/lib/external/commons-lang-2.0.jar

■ /sdk/java/lib/external/commons-pool-1.4.jar

For example, on Apache Tomcat 5.5, you will need to copy these files to C:\Program
Files\Apache Software Foundation\Tomcat
5.5\webapps\<Your_Application>\WEB-INF\lib\.

3. Configure the log4j.properties.risk-evaluation and riskfort.risk-evaluation.properties
files as follows:

■ If the application already has a configured log4j.properties.risk-evaluation file,
then merge it with the following log configuration files:

■ On Microsoft Windows:

<install_location>\Arcot

Systems\sdk\java\properties\log4j.properties.risk-evaluatio

n

and

<install_location>\Arcot

Systems\sdk\java\properties\riskfort.risk-evaluation.proper

ties

■ On UNIX-Based Platforms:

<install_location>/arcot/sdk/java/properties/log4j.properties.risk-evaluation

and

Including Risk Evaluation JAR Files in CLASSPATH

Chapter 3: Before You Begin 35

<install_location>/arcot/sdk/java/properties/riskfort.risk-

evaluation.properties

■ If the application does not have the log4j.properties file already configured,
then:

a. Rename log4j.properties.risk-evaluation to log4j.properties.

b. Merge riskfort.risk-evaluation.properties with log4j.properties.

c. Copy the log4j.properties file to:

 <Application_Home>/WEB-INF/classes/properties/

For example, on Apache Tomcat 5.5, you will need to copy log4j.properties to
C:\Program Files\Apache Software Foundation\Tomcat
5.5\webapps\<Your_Application>\WEB-INF\classes\.

Including Risk Evaluation JAR Files in CLASSPATH

To use the API, you need to include the Risk Evaluation JAR files in the CLASSPATH
variable. To do so:

1. If required, you need to copy the Risk Evaluation JAR files listed in the following
tables to the appropriate directory (say lib) in your <APPLICATION_CONTEXT>.

For Microsoft Windows

Primary JAR Files arcot_core.jar

arcot-pool.jar

arcot-riskfort-evaluaterisk.j
ar

arcot-riskfort-mfp.jar

<install_location>\Arcot
Systems\sdk\java\lib\arcot\

Other JAR Files bcprov-jdk14-131.jar

commons-lang-2.0.jar

commons-pool-1.4.jar

<install_location>\Arcot
Systems\sdk\java\lib\external\

For UNIX-Based Platforms

Primary JAR Files arcot_core.jar

arcot-pool.jar

arcot-riskfort-evaluaterisk.j
ar

arcot-riskfort-mfp.jar

<install_location>/arcot/sdk/java
/lib/arcot/

Other JAR Files bcprov-jdk14-131.jar

commons-lang-2.0.jar

commons-pool-1.4.jar

<install_location>/arcot/sdk/java
/lib/external/

Including Properties Files in CLASSPATH

36 Java Developer's Guide

2. Add the parent directory (in the <APPLICATION_CONTEXT>) of the directory to
which you copied the JARs to the CLASSPATH environment variable.

Including Properties Files in CLASSPATH

If your application is using Properties files, then the riskfort.risk-evaluation.properties
file must be included in CLASSPATH. To ensure this:

1. Copy the properties directory from the following location to the appropriate
directory (say classes) in your <APPLICATION_CONTEXT>.

■ For Microsoft Windows

<install_location>\Arcot Systems\sdk\java\

■ For UNIX-Based Platforms

<install_location>/arcot/sdk/java/

2. Also add the parent directory of the properties directory to the CLASSPATH
environment variable.

Initializing the Risk Evaluation API

Initialize the Risk Evaluation API by using the RiskFactory class in the
com.arcot.riskfortAPI package. The initialization process creates all connection pools,
creates the database pool, and initializes loggers. After initialization, it returns an
appropriate object to your calling application.

Note: You cannot apply any configuration changes after you initialize the API. To enable
the configuration changes, you must re-initialize the API.

The RiskFactory class provides two methods, as discussed in the following subsections,
to initialize the Risk Evaluation APIs:

■ Method 1: Initializing the API by Using the Properties File (see page 37)

■ Method 2: Initializing the API by Using the Map (see page 38)

Initializing the Risk Evaluation API

Chapter 3: Before You Begin 37

Method 1: Initializing the API by Using the Properties File

The initialize(java.lang.String propertyLocation) method initializes the Risk Evaluation
API by using the parameters listed in the input Properties file. If you pass NULL, then the
parameters are read from the riskfort.risk-evaluation.properties file, which is present in
the properties directory of CLASSPATH.

The fields and format of this properties file must be as follows:

//RiskFort Server IP address

HOST.1=

//RiskFort Server port number

PORT.1=

//Type of the connection. Possible values include SSL and TCP.

TRANSPORT_TYPE=

//Required if TRANSPORT_TYPE is set to SSL. The file must be in

//PEM format. Provide the complete path for the file.

CA_CERT_FILE=

The following table provides the details of the initialize() method.

Description Input Parameter Output Value

Initializes the Risk
Evaluation API by
using the specified
Properties file.

■ propertyLocation
The absolute path of the
Properties file.

Note: If you do not pass any
value, then the value defaults to
the default location of
riskfort.risk-evaluation.properties.

Throws RFSDKException if
the API was not initialized
successfully.

Initializing the Risk Evaluation API

38 Java Developer's Guide

Method 2: Initializing the API by Using the Map

The initialize(java.util.Map initproperty) method in the RiskFactory class initializes the
Risk Evaluation API based on the property map provided. The following table provides
the details of the map that initialize() method uses.

Description Input Value Output Value

Initializes the Risk
Evaluation API by
using the provided
map.

■ map
The key-value pair specifying
the configuration
information. The supported
keys are:
– HOST.1
The IP address of the host
where RiskMinder Server is
available.
– PORT.1
The port at which RiskMinder
Server is available. Default
value is 7680.
– TRANSPORT_TYPE
The type of the connection.
Possible values include SSL
and TCP.
– CA_CERT_FILE
(Required only if
TRANSPORT_TYPE is set to
SSL.) The path for the CA
certificate file of the server.
The file must be in PEM
format. Provide the complete
path for the file.

Throws RFSDKException if
the API was not initialized
successfully.

Preparing Additional Inputs

Chapter 3: Before You Begin 39

Preparing Additional Inputs

In addition to the mandatory inputs, the Risk Evaluation API also accepts additional
inputs in form of name-value pairs. These additional inputs are especially useful if you
want to create custom rules and Evaluation Callouts. This is because any parameter can
be added to this class and can be passed to the custom rules and Evaluation Callouts.
These inputs can then be used for evaluating risk.

The input to this class can include information, such as locale, calling application details,
or other transaction-related details that can be used for risk evaluation. These
additional name-value custom parameters can help you capture the real-time inputs
from each transaction, and are processed by deployed custom rules for successful risk
evaluation.

RiskMinder’s com.arcot.riskfortAPI.AdditionalInputs package provides you the
AdditionalInputs class, which enables you to set the additional information that you
plan to use. Some of the pre-defined additional input parameters supported by the Risk
Evaluation AdditionalInputs class include:

■ AR_RF_LOCALE_ID

Specifies the locale that RiskMinder will use while returning the messages back to
your calling application.

■ AR_RF_CALLER_ID

Specifies the transaction identifier in your calling application. This is useful for
end-to-end tracking of transactions.

To implement custom risk evaluation parameters:

1. Use the AdditionalInputs() method to obtain an object that implements the
AdditionalInputs class.

2. Set the necessary inputs for the returned object by using the put() method. The
syntax of the method is:

public void put(java.lang.String name, java.lang.String value)

If the additional input is not present with the given name (name of the input
parameter), then one is created. Otherwise, it is overwritten with the new value
(value of the input parameter). It is recommended that you do not use large strings
either for name or for value.

Note: The name and value parameters must not contain = and the newline
character (\n). The API behavior is undefined if name and value contain any of these
characters.

Chapter 4: Managing Users 41

Chapter 4: Managing Users

Creating a new user in RiskMinder is a one-time operation, performed only when a new
user is to be added to RiskMinder database. Typically, this is an existing user of your
application accessing RiskMinder for the first time.

In previous releases, the Issuance Java API provided a programmable interface, which
could be used by Java clients (such as Java Servlets and JSP pages) to send
Issuance-related requests to RiskMinder Server. In this release (3.1.01), the Issuance API
(Issuance) has been deprecated. Now, you must use the User Management Web service
(ArcotUserRegistrySvc) for the purpose.

Book: Refer to "Creating Users" in "Managing Users " in the CA RiskMinder
Administration Guide for more information on how to create users.

Chapter 5: Collecting Device ID and DeviceDNA 43

Chapter 5: Collecting Device ID and
DeviceDNA

Important! If you are an existing customer of RiskMinder and have integrated your
application with a previous release of RiskMinder, then it is strongly recommended that
you use the new APIs to leverage the full benefit of enhanced Device ID and DeviceDNA.
In addition, the older APIs will be deprecated soon.

RiskMinder uses user-device (desktop computers, laptops, and notebooks) information
as one of the parameters to determine the risk associated with a login attempt or a
transaction. As a result, the verification of the online identity of the end user is a
challenge. RiskMinder also uses Device ID and DeviceDNA technologies (in addition to
other inputs, as discussed in "Understanding RiskMinder Workflows" (see page 15)) for
this purpose. These technologies enable RiskMinder to build the user profile and to
transparently provide accurate results by using the hardware that users already possess,
without changing the end-user experience significantly.

This section provides detailed information on how to get and set Device ID and collect
the DeviceDNA data from the end user’s device and pass it to RiskMinder. It covers the
following topics:

■ End-User Device Identification Basics (see page 43)

■ File that You Will Need (see page 46)

■ Configuring Device ID and DeviceDNA (see page 46)

■ Sample Code Reference (see page 51)

■ Collecting the IP Address (see page 55)

End-User Device Identification Basics

This section introduces you to the techniques RiskMinder uses to gather the end-user
device identification information.

End-User Device Identification Basics

44 Java Developer's Guide

Device ID

The Device ID is a device identifier string that RiskMinder generates on the end user’s
device to identify and track the device that the end user uses for logging into your
online application and performing transactions. The Device ID information is in
encrypted format.

The following are the options for storing the Device ID on the end user's device. The
plugin store is the most persistent storage option.

■ AuthMinder Plugin store: The AuthMinder plugin store is automatically created on
the end user’s device when the CA ArcotID OTP Client is installed on the end user’s
device. Among the storage options listed in this section, the plugin store is the most
persistent storage option. A Device ID that is placed in the plugin store cannot be
deleted by common end user actions such as clearing browser cache and deleting
browser cookies. The plugin store is supported from CA RiskMinder Client release
2.1 onward.

■ Local storage provided in HTML5

■ UserData store: This store is available only in Microsoft Internet Explorer

■ Cookie store: Typically, on Microsoft Windows, the Device ID is stored in one of the
following folders:

■ Internet Explorer on Microsoft Windows 7 or 2008:

C:\Documents and Settings\<user_profile>\Application

Data\Microsoft\Windows\Cookies\

■ Internet Explorer on Microsoft Windows 2003 or XP:

C:\Documents and Settings\<user_profile>\Cookies\

■ Mozilla Firefox:

C:\Documents and Settings\<user_profile>\Application

Data\Mozilla\Firefox\Profiles\<random_dirname>\cookies.sqli

te

■ Safari:

C:\Documents and Settings\<user_name>\Application Data\Apple

Computer\Safari\cookies.plist

Important! From CA RiskMinder Client version 2.0 onward, the Device ID is not stored as
a Flash cookie. If you have existing Flash cookies from an earlier release, then these
cookies are automatically migrated to one of the stores listed earlier in this section.

End-User Device Identification Basics

Chapter 5: Collecting Device ID and DeviceDNA 45

Machine FingerPrint (MFP)

Machine FingerPrint (also referred to as Device fingerprinting or PC fingerprinting in
industry terms) represents the browser information and device identification attributes
(such as operating system, installed software applications, screen display settings,
multimedia components, and other attributes) that are gathered from the end user’s
system and are analyzed to generate a risk profile of a device in real time. Some of the
attributes that are collected from the end user\xE2\x80\x99s device include:

■ Browser information (such as name, UserAgent, major version, minor version,
JavaScript version, HTTP headers)

■ Operating system name and version

■ Screen settings (such as height, width, color depth)

■ System information (such as time zone, language, system locale)

For every transaction performed by the end user, RiskMinder matches the
corresponding MFP stored in its database with the incoming information. If this match
percentage (%) is equal to or more than the value specified for the Device-MFP Match
rule in Administration Console, then it is considered "safe".

DeviceDNA

DeviceDNA is a device identification and analytics technique that uses both Machine
FingerPrint (MFP) (see page 45) and Device ID (see page 44) for more accurate
information analyses. For accuracy, more information is collected than in case of MFP.
For example:

■ Additional system information (such as platform, CPU, MEP, system fonts, camera,
and speaker information)

■ Additional browser information (such as vendor, VendorSubID, BuildID)

■ Additional screen settings (such as buffer depth, pixel depth, DeviceXDPI,
DeviceYDPI)

■ Plug-in information (such as QuickTime, Flash, Microsoft Windows Media Player,
ShockWave, Internet Explorer plug-ins)

■ Network information (such as connection type)

File that You Will Need

46 Java Developer's Guide

File that You Will Need

You will need the file listed in the following table, available when you install RiskMinder,
to collect the Device ID and DeviceDNA information from the end user’s device.

Location File Name Description

Microsoft Windows:
<install_location>\
Arcot Systems\sdk\
devicedna\

Solaris:
<install_location>/arcot/
sdk/devicedna/

riskminder-client.j
s

This file contains the functions to
gather the Device ID- and
DeviceDNA-related information from
the end user’s device and to generate
the single-encoded String with all the
DeviceDNA values.

Note: In the same location as riskminder-client.js, you will also see a file called
riskminder-client.swf. This latter file is internally used by riskminder-client.js. So, you will
not need to explicitly use this file.
However, riskminder-client.swf must always be present in the same location as
riskminder-client.js, when you include it.

Configuring Device ID and DeviceDNA

To implement the functionality of the DeviceDNA and Device ID collection, you must
implement corresponding code snippets into each page of your application that
contains an event that requires risk assessment. For example, for risk assessment of a
login event, your application must implement the required JavaScript files and code
snippets into the login page. Similarly for a pre-login event, the steps discussed in this
section must trigger when a user accesses the first page of your online application.

The steps to build the DeviceDNA and collect the Device ID from the end user’s device
are:

■ Step 1: Include the Javascript File (see page 47)

■ Step 2: Initialize Device ID and DeviceDNA Collection (see page 48)

■ Step 3: Collect the Device ID and DeviceDNA (see page 50)

■ Step 4: Collect the IP Address (see page 50)

You can implement these steps either in a single page of your online application, or
across multiple pages (depending on how many pages you show during the login
process) before you call the evaluateRisk() method.

Configuring Device ID and DeviceDNA

Chapter 5: Collecting Device ID and DeviceDNA 47

Step 1: Include the Javascript File

You will need to modify the appropriate Web pages, such as the login or index page
(say, index.jsp or login.jsp) to enable them to gather MFP and DeviceDNA-related
information, and collect the Device ID (cookie) from the end user’s device.

Note: See "Enrollment Workflows" (see page 15) for more information on when and
how RiskMinder sets the Device ID on the end user’s device.

To implement the script codes:

1. Copy the entire devicedna directory from the following location to the appropriate
Web application folder (say,
<APP_SERVER_HOME>/<Your_Application_Home>/devicedna/):

■ On Microsoft Windows

<install_location>\Arcot Systems\sdk\

■ On UNIX-Based Platforms

<install_location>/arcot/sdk/

2. Include the riskminder-client.js file in the required application pages. We assume
that these files are located in a folder that is relative to the folder containing
index.jsp.

<script type="text/javascript"

src="devicedna/riskminder-client.js"></script>

Configuring Device ID and DeviceDNA

48 Java Developer's Guide

Step 2: Initialize Device ID and DeviceDNA Collection

Note: Refer to the code in "Sample Code Reference" (see page 51) to understand this
step better.

To implement the Device ID and DeviceDNA collection, include (declare) the following
parameters in your HTML code before processing anything related to DeviceDNA:

<html>

<script type="text/javascript" src="devicedna/riskminder-client.js"></script>

<script type="text/javascript">

var client;

window.onload = function()

{

 init();

}

function init(){

 client = new ca.rm.Client();

 var contextPath = "<%=request.getContextPath()%>";

 client.setProperty("baseurl", contextPath);

 client.loadFlash(readyCallback);

}

function readyCallback(flag)

{

 // set desired configurations...

 configureClient();

 client.processDNA();

}

function configureClient() {

 // set the desired name for the cookie

 client.setProperty("didname", "rmclient");

 // turn off flash

 client.setProperty("noFlash", true);

 /// configure MESC values

 client.setProperty("mescmaxIterations", 2);

Configuring Device ID and DeviceDNA

Chapter 5: Collecting Device ID and DeviceDNA 49

 client.setProperty("mesccalibrationduration", 150);

 client.setProperty("mescintervaldelay", 45);

 // etc...

 //Refer to the setProperty() API description in "Understanding the APIs for

Retrieving DeviceDNA in the Sample Code" (see page 52) for the complete list of

configuration parameters that you can use according to your requirements.

}

<body>

 //Your HTML code here

</body>

</html>

}

Note: Refer to the setProperty() API description in Understanding the APIs for Retrieving
DeviceDNA in the Sample Code (see page 52) for the complete list of configuration
parameters that you can use.

Sample Application Reference

You can also refer to index.jsp, which is a part of the RiskMinder Sample Application.
This file showcases the collection of DeviceDNA and other required information and sets
these parameters for the session. After you deploy the Sample Application, this file is
available at:

<RISKMINDER_SAMPLEAPP_HOME>\index.jsp

For example, if you are using Apache Tomcat 5.5, then the location of index.jsp will be
<Tomcat_Home>\webapps\riskfort-3.1.01-sample-application\index.jsp.

Configuring Device ID and DeviceDNA

50 Java Developer's Guide

Step 3: Collect the Device ID and DeviceDNA

You must now ensure that you now get the Device ID along with the DeviceDNA, as
follows:

1. Ensure that on click of the Login (or Submit) button on the page, the following code
snippet is called:

<input type="button" value="Login"

onClick="collectSystemInfo();">

2. Ensure that you have defined the collectSystemInfo() function. For example, you
can use the following code snippet:

function collectSystemInfo()

{

 client.processDNA();

 var json = client.getDNA();

 var did = client.getDID();

 document.CollectMFPToEvaluate.DDNA = json;

 document.CollectMFPToEvaluate.DeviceID = did ;

 //post to server, both the DeviceDNA and Device ID values for risk eval

}

3. After you have collected the DeviceDNA and the Device ID, as required, you must
pass this collected information as input to evaluateRisk() method.

See "Performing Risk Evaluation" (see page 57) for more information.

Step 4: Collect the IP Address

RiskMinder does not provide any mechanism to collect the IP address of the end-user
device. As a result, you must implement your own logic to do so.

See "Collecting the IP Address" (see page 55) for recommendations.

Sample Code Reference

Chapter 5: Collecting Device ID and DeviceDNA 51

Sample Code Reference

The following sample code illustrates how to implement RiskMinder’s DeviceDNA and
Device ID collection mechanism. It showcases the collection logic in one file (say,
index.jsp). However, you can implement appropriate code snippets in different pages,
depending on the number of pages you show before you call the evaluateRisk() method.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<script type="text/javascript"

src="<%=request.getContextPath()%>/devicedna/riskminder-client.js"></script>

<script language="javascript">

var client;

 function init(){

try{

client = new ca.rm.Client();

var contextPath = "<%=request.getContextPath()%>";

client.setProperty("baseurl", contextPath);

client.loadFlash(readyCallback);

}catch(e){

alert(e.message);

}

}

 function collectingSystemInfo() {

try{

client.setProperty("externalip", "<%=request.getRemoteHost()%>");

computeDDNA();

}catch(e){

alert(e);

}

}

 function readyCallback(flag){

 configureClient();

 client.processDNA();

 }

 function configureClient(flag){

 //configure the client properties.

 client.setProperty("format", "json");

 client.setProperty("didname", "RISKFORT_COOKIE");

 }

Sample Code Reference

52 Java Developer's Guide

 function computeDDNA() {

client.processDNA();

var dna = client.getDNA();

var did = client.getDID();

//forward this info to appropriate servlet to perform risk eval

document.CollectMFPToEvaluate.IpAddress.value = '<%=request.getRemoteHost()%>';

document.CollectMFPToEvaluate.CallerID.value = "MyCallerID";

document.CollectMFPToEvaluate.DeviceID.value = did;

document.CollectMFPToEvaluate.MFP.value = dna;

document.CollectMFPToEvaluate.submit();

 }

 </script>

</head>

<body onload="init()">

<form name="CollectMFPToEvaluate" method="POST" action="ArRFMFPCollectionServlet">

<input type="hidden" name="MFP" value="">

<input type="hidden" name="IpAddress">

<input type="hidden" name="CallerID">

<input type="hidden" name="DeviceID">

<h1 align="center">Arcot RiskFort Sample Application</h1>

<input type="button" style="width: 150px" name="Login" value="Login"

onclick="collectingSystemInfo();"/>

</form>

</body>

</html>

Understanding the APIs for Retrieving DeviceDNA in the Sample Code

The RiskMinder Client runs on the client browser and collects the device signature and
Device ID. All the client-side controls for RiskMinder are provided in the RiskMinder
Client Javascript API. This API allows you to program the functionality of the client using
JavaScript.

This section describes the RiskMinder Client APIs that are used to retrieve the
DeviceDNA.

ca.rm.Client()

Main JavaScript class that exposes all the published APIs of the RiskMinder Client.

Sample Code Reference

Chapter 5: Collecting Device ID and DeviceDNA 53

getVersion()

Returns a String that specifies the version of the RiskMinder Client. The current
supported version is 2.1.

setProperty(key,val)

Specifies the configuration values for the RiskMinder Client. The following table
describes the properties that you can set for this method.

Property Key Description

baseurl The context path of the Web application that is using DeviceDNA.

This value must be set immediately after creating an instance of
ca.rm.Client JavaScript object.

No default value is supported.

didname The cookie or local storage item name. Device ID cookie is set by
using this name. The value should be a string.

flashdatastorenam
e

The name of the Flash local store where the Flash Device ID was
stored (in earlier releases).

flashPath Not being used currently. This property is reserved for future use.

format The format in which DeviceDNA results should be returned. The
value should be one of the following a strings:

■ HTML

■ JSON

jobs Not being used currently. This property is reserved for future use.

store The storage area for Device ID. The value should be one of the
following strings:

■ plugin

■ localstorage

■ cookie

■ default

externalIP The IP address of the system from which the page containing the
Client was served.

noFlash The indication whether the Flash movie bundled with the Client
should be used for gathering additional attributes for DeviceDNA.
The value should be boolean - true or false. By default, noFlash is
set to false, which implies that the Flash movie will be used.

Sample Code Reference

54 Java Developer's Guide

Property Key Description

MESC-Related Configurations

MESC stands for Machine Effective Speed Calculations. An attempt is made to
estimate processor speed by executing several runs of batched arithmetic operations.
In our case, it is integer addition for specified intervals of time.

mescmaxIteration
s

Specifies how many runs of the batched arithmetic operations
should be executed. Default value is 2.

mesccalibrationDu
ration

Specifies the duration for which each batch of arithmetic
operations should run. The value is specified in milliseconds. The
default value is 200ms.

mescintervalDelay Specifies the delay (in number of milliseconds) between
successive runs. The value is specified in milliseconds. The default
value is 50ms.

getProperty(key)

This API returns the currently defined value for the property represented by the key. Key
values are same as for setProperty(). See the table in Understanding the APIs for
Retrieving DeviceDNA in the Sample Code (see page 52) for more information.

loadFlash(callback)

This API loads the flash movie that is part of the RiskMinder Client and initializes it. The
Callback function should be a JavaScript function taking a boolean flag as parameter and
defined in the Web page that is calling this method.

At the end of initialization, the Callback function is invoked with parameter set to true, if
the Flash movie initialization was successful. Else, the Callback function is invoked with
parameter set to false.

processDNA()

This is the main API of the RiskMinder Client. It retrieves a number of system attributes
from the end-user system and from the software installed on this system. It then
computes the corresponding DeviceDNA using these values.

All the configuration settings are taken into consideration by the processDNA function
while computing the DeviceDNA.

Collecting the IP Address

Chapter 5: Collecting Device ID and DeviceDNA 55

getDNA()

This API returns a string that represents the end-user system’s DeviceDNA, as computed
by the RiskMinder Client. The DeviceDNA string can either be in the HTML format or
JSON format. This is controlled by the value that is specified for the format property.

getTimeTaken()

This API returns the time taken (in milliseconds) by the processDNA() call to compute
the end-user system’s DeviceDNA.

setDID(value)

This function stores the Device ID on the end user's device. The Device ID string must be
specified in the value parameter of the function.

getDID()

This function returns the Device ID that has been stored on the end user's device. This
function also migrates older Flash cookie with the same cookie name (if present) to the
Browser (HTTP) cookie store.

deleteDID()

This function deletes the Device ID that has been set on the end user's device by the
RiskMinder Client.

Collecting the IP Address

The end user accessing your online application might be a home user or might be
accessing it from their corporate network. In case of latter category of users, chances
are that they might be "hidden" behind a proxy server. As a result, the way you will
collect the IP address of an end user who is accessing your online application from
behind a proxy will be different from the user who accesses it directly from home.

If the End User is Accessing Your Application Directly

If the end user is accessing your application directly, then you can use the
getRemoteAddr() method of the HttpServletRequest interface in your JSP. This method
returns a string that contains the IP address of the client that sent the request.

Chapter 6: Performing Risk Evaluation 57

Chapter 6: Performing Risk Evaluation

When a user accesses your online application, the application forwards the request to
RiskMinder for risk analysis. RiskMinder can evaluate risk for all users, whether they are
first-time users (and therefore not "known" to RiskMinder) or if they are already
enrolled with the RiskMinder system.

The Risk Evaluation Java API provides a programmable interface, which can be used by
Java clients (such as Java Servlets and JSP pages) to send risk evaluation-related
requests to RiskMinder Server. This API creates a request message that is sent to
RiskMinder Server, receives the response, and packages it as return structures to be
read by the client.

This section provides an overview of how to use the Java API to perform risk evaluation
and the methods and interfaces it implements. A description of the API interfaces and
methods used to list and delete associations in the RiskMinder database is also
provided. Each risk evaluation-related and association management task description is
followed by a sample code snippet that you can use in your code to perform the task.
The section covers following topics:

■ Evaluating Risks and Performing Post-Evaluation (see page 58)

■ Managing Associations (see page 62)

Evaluating Risks and Performing Post-Evaluation

58 Java Developer's Guide

Evaluating Risks and Performing Post-Evaluation

To evaluate the risk associated with a transaction and to perform the subsequent
post-evaluation, you need to use the RiskXActionAPI interface (in the
com.arcot.riskfortAPI package. This interface represents the client-side interface to
RiskMinder Server’s risk evaluation functionality and exposes the supported API for risk
evaluation workflows.

To evaluate risk of a transaction and perform post-evaluation tasks:

1. Ensure that you have initialized the Risk Evaluation API by using the RiskFactory
class.

See "Initializing the Risk Evaluation API" (see page 36) in "Before You Begin" (see
page 33) for more information.

2. If required, prepare the additional inputs for the transaction, by using the
AdditionalInputs class in the com.arcot.riskfortAPI.AdditionalInputs package.

See "Preparing Additional Inputs" (see page 39) in "Before You Begin" (see page 33)
for more information.

3. Use the RiskFactory.getRiskXActionAPI() static method to obtain an object that
implements the RiskXActionAPI interface.

This method returns the RiskXActionAPI object created as a part of the RiskFactory
API initialization.

4. Use the RiskXActionAPI.evaluateRisk() method to obtain an object of the
RiskAssessment class.

This method requires the following input parameters:

a. Define and set the CallerID string variable, which will be used by your
application for tracking purposes across calls.

b. Invoke the buildDeviceSignature() method by using a DeviceContext object to
build the JSON signature that you built, as discussed in "Collecting Device ID
and DeviceDNA" (see page 43).

c. Create a LocationContext object, and then invoke the LocationContext object's
setIpAddress() method to set the IP address to that of the user's system.

d. Create a UserContext object, and then use the UserContext object's setUserID()
method to set a unique ID for the user.

e. Create a TransactionContext object and, if required, set the necessary
properties for the returned object by using the methods in this class
(setAction() and setChannel()).

f. If you are using extra information, then use the AdditionalInputs object that
you created in Step 2. Set the necessary properties for the returned object by
using the AdditionalInputs.put(name,value) method.

These are additional inputs in form of name-value pairs. For example:

Evaluating Risks and Performing Post-Evaluation

Chapter 6: Performing Risk Evaluation 59

MerchantID=id;MerchantCountry=country;MerchantName=name

5. Obtain the resulting RiskAssessment RiskAdvice object by using the
RiskAssessment.getRiskAdvice() method.

Important! If the advice is INCREASEAUTH, then your application must perform
secondary authentication and pass the result of this authentication to RiskMinder
by using the PostEvaluate() method.

6. Finally, use the RiskXActionAPI.postEvaluate() method to determine the final
outcome of the transaction and return a PostEvaluateResponse object.

The postEvaluate() method updates the Device Signature information for the user,
if it changed and creates or updates user-device associations, if required.

You will need to pass the result of secondary authentication to the method, if you
performed any.

7. You can query the resulting PostEvaluateResponse object by using the
PostEvaluateResponse.isAllowAdvised() method to:

■ Determine whether or not to permit the transaction to proceed.

■ Update the information related to the transaction in the RiskMinder database.

Handling Errors

Any errors that occurred during the execution of any of the Risk Evaluation API methods
can result in one of the following two exceptions being thrown:

■ RiskException is thrown if the error occurred at RiskMinder Server-end. In this case,
the SDK only "relays" the information to your code. The RiskException object has
getReasonCode, getResponseCode,and getTransactionId members that contain the
reason code, error code, and transaction identifier (generated at RiskMinder
Server-end) associated with the error that occurred.

■ RFSDKException is, typically, thrown if the error occurred at the SDK-end. The
RFSDKException object has getResponseCode and getTransactionId members that
contain the error code and transaction identifier (generated at RiskMinder
Server-end) associated with the error that occurred.

Sample Code for Risk Evaluation and Post Evaluation

Note: Refer to "Sample Code for Risk Evaluation and Post-Evaluation" (see page 78) in
appendix for a detailed working code sample.

You can use the following sample code snippet to understand how to implement the risk
evaluation and post-evaluation capability of RiskMinder in your application code.

public static void sampleCode() {

 String propertyLocation=

"/properties/riskfort.risk-evaluation.properties";

 try {

 RiskFactory.initialize(propertyLocation);

 RiskXActionAPI riskXActionAPI = RiskFactory.getRiskXActionAPI();

Evaluating Risks and Performing Post-Evaluation

60 Java Developer's Guide

 String callerId;

 UserContext userContext = new UserContext();

 LocationContext locationContext = new LocationContext();

 DeviceContext deviceContext = new DeviceContext();

 TransactionContext transactionContext = new TransactionContext();

 AdditionalInputs additionalInputs = new AdditionalInputs();

 // string used by the calling application for tracking across

 // calls

 callerId="MyApplicationTrackingId";

 // Unique identifier for the user. In case of a Bank it may be

 // user's bank account number

 // It may be name of the user in some other case.

 userContext.setUserId("USER1");

 // IP address of the user's machine, typically, extracted from

 // the HTTP header

 locationContext.setIpAddress(InetAddress.getByName("10.150.1.1"));

 // JSON Signature comes from mfp_json.js, in this example the

 // signature is hard coded

 // for the sample use.

 String jsonSignature =

"{\"navigator\":{\"platform\":\"Win32\",\"appName\":\"Netscape\",\"appCodeName\":

\"Mozilla\",\"appVersion\":\"5.0 (Windows;

en-US)\",\"language\":\"en-US\",\"oscpu\":\"Windows NT

5.0\",\"vendor\":\"\",\"vendorSub\":\"\",\"product\":\"Gecko\",\"productSub\":\"2

0070312\",\"securityPolicy\":\"\",\"userAgent\":\"Mozilla/5.0 (Windows; U; Windows

NT 5.0; en-US; rv:1.8.0.11) Gecko/20070312

Firefox/1.5.0.11\",\"cookieEnabled\":true,\"onLine\":true},\"plugins\":[{\"name\"

:\"Adobe Acrobat Plugin\",\"version\":\"7.00\"},{\"name\":\"Macromedia

Director\",\"version\":\"10.1\"},{\"name\":\"Windows Media Player Plug-in Dynamic

Link Library\",\"version\":\"\"},{\"name\":\"Macromedia Shockwave

Flash\",\"version\":\"9.0\"},{\"name\":\"Java Virtual

Machine\",\"version\":\"1.6.0\"}],\"screen\":{\"availHeight\":690,\"availWidth\":

1024,\"colorDepth\":32,\"height\":768,\"pixelDepth\":32,\"width\":1024},\"extra\"

:{\"javascript_ver\":\"1.6\",\"timezone\":-330}}";

 deviceContext.buildDeviceSignature(jsonSignature,null,null);

 String

userDeviceId="GPXp+4e0hzzxzh6YLlPZqKgXCGbBXB8E0ghZnFXHq8o3HLRaww6c4g==";

 // The device id collected from the user machine

 deviceContext.setDeviceID("HTTP_COOKIE", userDeviceId);

 // Providing the addition inputs.

 additionalInputs.put("MerchantID","id") ;

 additionalInputs.put("MerchantCountry","country") ;

 additionalInputs.put("MerchantName","name") ;

Evaluating Risks and Performing Post-Evaluation

Chapter 6: Performing Risk Evaluation 61

 transactionContext.setAction("Login");

 RiskAssessment riskAssessment=null;

 riskAssessment = riskXActionAPI.evaluateRisk(callerId , deviceContext,

locationContext , userContext, transactionContext, additionalInputs);

 boolean secondaryAuthenticationStatus = true;

 String associationName = "USER1inHomePC";

 if

(riskAssessment.getRiskAdvice().equals(RiskAssessment.RISK_ADVICE_INCREASEAUTH))

{

 // then you may ask for secondary authentication

 //if(secondaryAuthentication succeeded)

 // secondaryAuthenticationStatus = true;

 //else

 // secondaryAuthenticationStatus = false

 }

 PostEvaluateResponse postEvaluateResponse =

 riskXActionAPI.postEvaluate(callerId, riskAssessment,

secondaryAuthenticationStatus, associationName);

 if(postEvaluateResponse.isAllowAdvised()) {

 //Allow the transaction to be completed

 }

 else {

 //Deny and terminate the transaction

 }

 } catch (IOException e) {

 //Looks like the property file location is not valid

 e.printStackTrace();

 } catch (RiskException e) {

 //One of the RiskFort API calls broke

 e.printStackTrace();

 }

}

Managing Associations

62 Java Developer's Guide

Managing Associations

RiskMinder uniquely identifies a user as a valid user of your system by automatically
associating (or binding) a user to the device that they use to access your application.
This is referred to as an association (or device binding) in RiskMinder terminology. Users
who are not bound are more likely to be challenged in order to be authenticated.

RiskMinder also allows users to be bound to more than one devices. For example, a user
can use a work and a home computer to access your application. Similarly, you can bind
a single device to more than one users. For example, members of a family can use one
computer to access your application.

Important! It is recommended that you discourage users from creating associations
with publicly shared devices, such as systems in an Internet cafe or kiosk.

Association management includes:

■ Listing Associations (see page 63)

■ Deleting Associations (see page 65)

Managing Associations

Chapter 6: Performing Risk Evaluation 63

Listing Associations

To list all the stored associations for a specified user:

1. Ensure that you have initialized the Risk Evaluation API by using the RiskFactory
class.

See "Initializing the Risk Evaluation API" (see page 36) in "Before You Begin" (see
page 33) for more information on this.

2. If required, prepare the additional inputs for the transaction, by using the
AdditionalInputs class in the com.arcot.riskfortAPI.AdditionalInputs package.

See "Preparing Additional Inputs" (see page 39) in "Before You Begin" (see page 33)
for more information on this.

3. Use the RiskFactory.getRiskXActionAPI() static method to obtain an object that
implements the RiskXActionAPI interface.

This method returns the RiskXActionAPI object created as a part of the RiskFactory
API initialization.

4. Define and set the CallerID string variable, which will be used by your application
for tracking purposes across calls.

5. Create a UserContext object, and then use the UserContext object's setUserID()
method to set a unique ID for the user.

6. Set the necessary properties for the returned object.

For example, you can set the user ID by calling the UserContext.setUserId() method.

7. Call the RiskXActionAPI.listAssociations() method to create a
ListAssociationResponse object.

The following code snippet shows the usage of the method to list all existing
associations.

public ListAssociationResponse listAssociations(java.lang.String callerId,

 UserContext userContext,

 AdditionalInputs additionalInputs)

 throws RFSDKException, RFSDKException

The ListAssociationResponse.getAllAssociations() method returns an array of all
known associations for the specified user.

Managing Associations

64 Java Developer's Guide

Handling Errors

Any errors that occurred during the execution of any of the Risk Evaluation API methods
can result in one of the following two exceptions being thrown:

■ RiskException is thrown if the error occurred at RiskMinder Server-end. In this case,
the SDK simply "relays" the information to your code. The RiskException object has
getReasonCode, getResponseCode,and getTransactionId members that contain the
reason code, error code, and transaction identifier (generated at RiskMinder
Server-end) associated with the error that occurred.

■ RFSDKException is, typically, thrown if the error occurred at the SDK-end. The
RFSDKException object has getResponseCode and getTransactionId members that
contain the error code and transaction identifier (generated at RiskMinder
Server-end) associated with the error that occurred.

Managing Associations

Chapter 6: Performing Risk Evaluation 65

Deleting Associations

To delete the specified user-device association for a user:

1. Ensure that you have initialized the Risk Evaluation API by using the RiskFactory
class.

See "Initializing the Risk Evaluation API" (see page 36) in "Performing Risk
Evaluation" (see page 57) for more information on this.

2. If required, prepare the additional inputs for the transaction, by using the
AdditionalInputs class in the com.arcot.riskfortAPI.AdditionalInputs package.

See "Preparing Additional Inputs" (see page 39) in "Before You Begin" (see page 33)
for more information on this.

3. Use the RiskXActionAPI.evaluateRisk() method to obtain an object of the
RiskAssessment class.Use the RiskFactory.getRiskXActionAPI() static method to
obtain an object that implements the RiskXActionAPI interface.

This method returns the RiskXActionAPI object created as a part of the RiskFactory
API initialization.

4. Define and set the CallerID string variable, which will be used by your application
for tracking purposes across calls.

5. Create a UserContext object, and then use the UserContext object's setUserID()
method to set a unique ID for the user.

6. Set the necessary properties for the returned object.

For example, you can set the user ID by calling the UserContext.setUserId() method.

7. Obtain a ListAssociationsResponse object by invoking
RiskXActionAPI.listAssociations. Then invoke ListAssociationResponse's
getAllAssociations() method. This method returns an array of type
UserDeviceAssociation. You can use UserDeviceAssociation.getAssociationName()
for each UserDeviceAssociation object to get the name of the association.

8. Call the RiskXActionAPI.deleteAssociation() method to delete the association.

The following code snippet shows the usage of the method to delete user-device
associations.

public DeleteAssociationResponse deleteAssociation(java.lang.String callerId,

 UserContext userContext,

 java.lang.String associationName,

 AdditionalInputs additionalInputs)

 throws RiskException, RFSDKException

The DeleteAssociationResponse.DeleteAssociationResponse() method deletes the
association for the user that you specified.

Handling Errors

Any errors that occurred during the execution of any of the Risk Evaluation API methods
can result in one of the following two exceptions being thrown:

Managing Associations

66 Java Developer's Guide

■ RiskException is thrown if the error occurred at RiskMinder Server-end. In this case,
the SDK simply "relays" the information to your code. The RiskException object has
getReasonCode, getResponseCode,and getTransactionId members that contain the
reason code, error code, and transaction identifier (generated at RiskMinder
Server-end) associated with the error that occurred.

■ RFSDKException is, typically, thrown if the error occurred at the SDK-end. The
RFSDKException object has getResponseCode and getTransactionId members that
contain the error code and transaction identifier (generated at RiskMinder
Server-end) associated with the error that occurred.

Appendix A: Additional SDK Configurations 67

Appendix A: Additional SDK Configurations

This appendix discusses the following miscellaneous topics:

■ Configuring a Backup RiskMinder Server Instance (see page 68)

■ SSL Communication Between RiskMinder Components (see page 69)

■ Configuring One-Way SSL (see page 71)

■ Configuring Two-Way SSL (see page 73)

Note: Case Management Queuing Server does not communicate directly with the Java
SDKs. Therefore, you do not need to configure SSL communication between SDKs and
Case Management Queuing Server.

Configuring a Backup RiskMinder Server Instance

68 Java Developer's Guide

Configuring a Backup RiskMinder Server Instance

RiskMinder enables you to configure the Java SDK to communicate with a primary
RiskFort Server instance at any given time. However, you can configure it to fail over to
a backup instance if the primary instance fails. To do so, you must edit the SDK
properties file (riskfort.risk-evaluation.properties). In case the backup is unavailable for
some reason, then the JDK fails over back to the primary instance.

By default, this properties file provides the entries to configure one RiskFort Server
instance. These entries are appended with 1, which indicates that only one instance is
configured. To configure the backup instance, you must duplicate these entries and
append the instance number (2) accordingly.

To configure the backup server instance:

1. Ensure that you have the required instances of RiskFort up and running.

Book: Depending on your deployment - Single-System or Distributed - see
"Deploying RiskFort On a Single System" or "Deploying RiskFort on a Distributed
System", respectively, in CA RiskMinder Installation and Deployment Guide for
detailed information on how to bring up instances of RiskFort.

2. Navigate to the following location:

■ On Microsoft Windows:

<install_location>\Arcot Systems\sdk\java\properties\

■ On UNIX-Based Platforms:

<install_location>/arcot/sdk/java/properties/

3. Open riskfort.risk-evaluation.properties by using an editor of your choice.

4. Ensure that the value of HOST.1 is set to the host name or the IP address of the
primary server instance.

5. Also ensure that the value of PORT.1 parameter is set to the port number on which
the RiskFort Native or the Transaction Web Service protocol is listening.

6. Add the following un-commented entry:

HOST.2=

PORT.2=

7. Set the value of the corresponding TRANSPORT.<n> parameter to the required
communication mode. By default, it is set to TCP.

See "SSL Communication Between RiskMinder Components" (see page 69) if you
want to change the communication mode to SSL.

8. Save the changes and close the file.

RM_3.1--SSL Communication Between RiskMinder Components

Appendix A: Additional SDK Configurations 69

RM_3.1--SSL Communication Between RiskMinder Components

In addition to supporting TCP-based communication between RiskMinder Server and the
SDKs, RiskMinder also supports Secure Socket Layer (SSL) for secure communication
between these components. RiskMinder can be configured for one-way Secure Socket
Layer (SSL) with server-side certificates or two-way SSL with server-side and client-side
certificates between the Server and SDKs, as shown in the following figure.

RM_3.1--Setting Up SSL Communication Between Java SDK and RiskMinder Server

70 Java Developer's Guide

Although the default mode of communication is TCP, RiskMinder Server supports SSL
communication (two-way as well as one-way) with the following components to ensure
integrity and confidentiality of the data being exchanged during a transaction:

■ Case Management Queuing Server

■ RiskMinder Database

■ User Data Service

■ RiskMinder Risk Evaluation SDK

■ Sample Application

■ Evaluation Callout

■ Scoring Callout

Note: RiskMinder enables you to write your own custom Evaluation rule, based on your
business requirements. This custom rule is called Evaluation Callout. Similarly,
RiskMinder also enables you to write your own custom Scoring logic called Scoring
Callout.
Refer to CA RiskMinder Administration Guide for more information on these Callouts.

RM_3.1--Setting Up SSL Communication Between Java SDK and
RiskMinder Server

To enable RiskMinder Java SDK for SSL communication, you must first configure your
client that accesses the SDK for SSL communication, then configure the Native (SSL)
protocol by using Administration Console.

■ Configuring One-Way SSL (see page 71)

■ Configuring Two-Way SSL (see page 73)

RM_3.1--Setting Up SSL Communication Between Java SDK and RiskMinder Server

Appendix A: Additional SDK Configurations 71

Configuring One-Way SSL

To set up one-way SSL between the Risk Evaluation SDK and RiskFort Server, you must
first configure the RiskFort Native (SSL) protocol by using Administration Console and
then configure the riskfort.risk-evaluation.properties file.

To configure one-way SSL between Java SDK and RiskFort Server:

1. Ensure that you are logged in as the MA.

2. Activate the Services and Server Configurations tab in the main menu.

3. Ensure that the RiskFort tab is active.

4. Under the Instance Configuration section, click the Protocol Configuration link to
display the Protocol Configuration page.

5. Select the Server Instance for which you want to configure the SSL.

6. In the List of Protocols section, click the Native (SSL) protocol link to display the
page for configuring the protocol.

7. Configure the following fields:

■ Ensure that the Protocol Status is Enabled.

If not, then select the Change Protocol Status option and then from the Action
list, select Enable.

■ Ensure that the Port is set to the correct SSL port value.

■ Select SSL from the Transport list.

■ If you want to store the SSL key on an HSM, then select the Key in HSM option.

■ Click the Browse button adjacent to the Server Certificate Chain field to select
RiskFort Server root certificate.

■ (Only if you did not select the Key in HSM option) Click the Browse button
adjacent to the Server Private Key field to select RiskFort Server private key.

8. Click the Save button.

9. Restart RiskFort Server:

■ On Microsoft Windows: Click the Start button, navigate to Settings, Control
Panel, Administrative Tools, and Services. Double-click Arcot RiskFort Service
from the listed services.

■ On UNIX-Based Platforms: Navigate to <install_location>/arcot/bin/ and
specify the ./riskfortserver start command in the console window.

10. Navigate to the following location:

■ On Microsoft Windows:

<install_location>\Arcot Systems\sdk\java\properties\

■ On UNIX-Based Platforms:

<install_location>/arcot/sdk/java/properties/

RM_3.1--Setting Up SSL Communication Between Java SDK and RiskMinder Server

72 Java Developer's Guide

11. Open the riskfort.risk-evaluation.properties file in an editor window of your choice.

Book: Refer to appendix, "Configuration Files and Options" in CA RiskMinder
Installation and Deployment Guide for more information on the
riskfort.risk-evaluation.properties file.

a. Set the following parameters:

■ TRANSPORT_TYPE= SSL (By default, this parameter is set to TCP.)

■ CA_CERT_FILE=
<absolute_path_to_Server_root_certificate_in_PEM_format>

 For example, you can specify one of the following:

 CA_CERT_FILE=<install_location>/certs/<ca_cert>.pem

 CA_CERT_FILE=<install_location>\\certs\\<ca_cert>.pem

 For example, you can specify CA_CERT_FILE=
<install_location>/certs/<ca_cert>.pem.

 Important! In the absolute path that you specify, ensure that you use \\ or
/ instead of \. This is because the change might not work, if you use the
conventional \ that is used in Microsoft Windows for specifying paths.

■ CLIENT_P12_FILE=cliencert.p12

■ CLIENT_P12_PASSWORD=******

b. Save the changes and close the file.

12. Restart the application server where your Java SDK is deployed.

RM_3.1--Setting Up SSL Communication Between Java SDK and RiskMinder Server

Appendix A: Additional SDK Configurations 73

Configuring Two-Way SSL

To set up two-way SSL between the Risk Evaluation SDK and RiskMinder Server, you
must first upload the root certificates for the CAs trusted by RiskMinder, then configure
the RiskFort Native (SSL) protocol by using Administration Console, and finally configure
the riskfort.risk-evaluation.properties file.

To configure two-way SSL between Java SDK and RiskMinder Server:

1. Enable the application server where Java SDKs are deployed for SSL communication.

Refer to your application server vendor documentation for detailed information.

2. Log in to Administration Console using a Master Administrator account.

3. Activate the Services and Server Configurations tab in the main menu.

4. Ensure that the RiskFort tab is active.

5. Under the Instance Configuration section, click the Protocol Configuration link to
display the Protocol Configuration page.

6. Under System Configuration, click the Trusted Certificate Authorities link to display
the RiskMinder Server Trusted Certificate Authorities page.

7. Set the following information on the page:

■ In the Name field, enter the name for the SSL trust store.

■ Click the Browse button adjacent to the first Root CAs field and navigate to and
select the root certificate of the application server where Java SDKs are
deployed.

8. Click the Save button.

9. Under the Instance Configuration section, click the Protocol Configuration link to
display the Protocol Configuration page.

10. Select the Server Instance for which you want to configure the SSL.

11. In the List of Protocols section, click the Native (SSL) protocol link to display the
page for configuring the protocol.

12. Configure the following fields:

■ Ensure that the Protocol Status is Enabled.

If not, then select the Change Protocol Status option and then from the Action
list, select Enable.

■ Ensure that the Port is set to the correct SSL port value.

■ Select SSL from the Transport list.

■ If you want to store the SSL key on an HSM, then select the Key in HSM option.

■ Click the Browse button adjacent to the Server Certificate Chain field to select
the RiskMinder Server root certificate.

RM_3.1--Setting Up SSL Communication Between Java SDK and RiskMinder Server

74 Java Developer's Guide

■ (Only if you did not select the Key in HSM option) Click the Browse button
adjacent to the Server Private Key field to select the RiskMinder Server private
key.

■ Select the Client Store that you created in Step 7.

13. Click the Save button.

14. Restart RiskMinder Server:

■ On Microsoft Windows: Click the Start button, navigate to Settings, Control
Panel, Administrative Tools, and Services. Double-click Arcot RiskFort Service
from the listed services.

■ On UNIX-Based Platforms: Navigate to <install_location>/arcot/bin/ and
specify the ./riskfortserver start command in the console window.

15. Navigate to the following location:

■ On Microsoft Windows:

<install_location>\Arcot Systems\sdk\java\properties\

■ On UNIX-Based Platforms:

<install_location>/arcot/sdk/java/properties/

16. Open the riskfort.risk-evaluation.properties file in an editor window of your choice.

Book: Refer to appendix, "Configuration Files and Options" in CA RiskMinder
Installation and Deployment Guide for more information on the
riskfort.risk-evaluation.properties file.

a. Set the following parameters:

■ TRANSPORT_TYPE= SSL (By default, this parameter is set to TCP.)

■ CA_CERT_FILE=
<absolute_path_to_Server_root_certificate_in_PEM_format>

For example, you can specify one of the following:

■ CA_CERT_FILE=<install_location>/certs/<ca_cert>.pem

■ CA_CERT_FILE=<install_location>\\certs\\<ca_cert>.pem

For example, you can specify CA_CERT_FILE=
<install_location>/certs/<ca_cert>.pem.

Important! In the absolute path that you specify, ensure that you use \\ or /
instead of \. This is because the change might not work, if you use the
conventional \ that is used in Microsoft Windows for specifying paths.

b. Save the changes and close the file.

17. Restart the application server where your Java SDK is deployed.

18. Verify that RiskMinder Server is enabled for SSL communication by performing the
following steps:

a. Navigate to the following location:

RM_3.1--Setting Up SSL Communication Between Java SDK and RiskMinder Server

Appendix A: Additional SDK Configurations 75

b. Open the arcotriskfortstartup.log file in a text editor.

c. Check for the following line:

Started listener for [RiskFort Native (SSL)] [7681] [SSL]

[RiskFort]

If you located this line, then two-way SSL was set successfully.

d. Close the file.

Appendix B: Sample Code 77

Appendix B: Sample Code

This appendix provides the sample codes that you can run to test the Risk evaluation
and post-evaluation (Sample Code for Risk Evaluation and Post-Evaluation (see page 78))
functionality of RiskMinder.

Important! Before you run this code, ensure that you have completed all the tasks in
"Before You Begin" (see page 33).

Sample Code for Risk Evaluation and Post-Evaluation

78 Java Developer's Guide

Sample Code for Risk Evaluation and Post-Evaluation

You can plug the following sample code snippet in to your application code to test the
risk evaluation and post-evaluation functionality of RiskFort.

/* Packages to be imported for RiskFort Transaction API */

import java.io.IOException;

import java.net.InetAddress;

import java.net.UnknownHostException;

import java.util.Map;

import java.util.HashMap;

import com.arcot.riskfortAPI.DeviceContext;

import com.arcot.riskfortAPI.LocationContext;

import com.arcot.riskfortAPI.PostEvaluateResponse;

import com.arcot.riskfortAPI.RiskAssessment;

import com.arcot.riskfortAPI.RiskException;

import com.arcot.riskfortAPI.RFSDKException;

import com.arcot.riskfortAPI.RiskFactory;

import com.arcot.riskfortAPI.RiskXActionAPI;

import com.arcot.riskfortAPI.TransactionContext;

import com.arcot.riskfortAPI.UserContext;

import com.arcot.riskfortAPI.AdditionalInputs;

public class Assess_Risk {

// In this example values are hard coded for sample use.

public static void main(String[] args) {

 /*

 initialize:

 Initializes API object from the input property file.

 initialize() should be called only once at the application startup.

 Following are the fields and format of the property file.

 HOST.1=RiskFort server IP address

 PORT.1=RiskFort server port number

 TRANSPORT_TYPE = Connection Type. Possible values are TLS/TCP

 CA_CERT_FILE = Required if TRANSPORT_TYPE = TLS: CA certificate file. server

CA certificate (in PEM format) file path.

 public static synchronized void initialize(String propertyLocation)

 throws IOException, RiskException;

 Parameters:

 propertyLocation - Represents the location to be passed as a parameter with

respect to the class path.

 If <code>null</code> is passed, it will take default location is

properties/riskfort.risk-evaluation.properties.

 Returns:

Sample Code for Risk Evaluation and Post-Evaluation

Appendix B: Sample Code 79

 Throws:

 RiskException - If request fails for any reason.

 IOException

 */

 // Sample code to initialize the API object from the input property file.

 // Create a RiskXActionAPI object.

 RiskXActionAPI api = null;

 String propertiesFileLocation =

"/properties/riskfort.risk-evaluation.properties";

 try {

 System.out.println("Initializing RiskFort API using " +

propertiesFileLocation);

 // Initializes RiskXActionAPI object from the input property file.

 RiskFactory.initialize(propertiesFileLocation);

 // Get RiskXActionAPI object that has been initialized earlier.

 api = RiskFactory.getRiskXActionAPI();

 System.out.println("RiskFort API initialized.");

 }

 catch (IOException e) {

 // Take suitable action.

 }

 catch (RFSDKException e) {

 /* The following methods on UserRepositoryException object can be used to get the

error codes and error messages as follows:

 * String code = e.getErrorCode();

 * String message = e.getMessage();

 */

 System.out.println("Exception during initialize.");

 /* System.out.println("Error code: " + e.getErrorCode()); */

 System.out.println("Error message: " + e.getMessage());

 /* The following error codes are returned by the API. */

 /* ERRCODE_INVALID_INPUT

 * This can be caused due to two reasons.

 * 1. Possible Reason:

 * The transport type mentioned in the properties file is invalid.

 * Possible Action:

 * Mention the valid transport type in the "riskfort.risk-evaluation.properties"

file.

Sample Code for Risk Evaluation and Post-Evaluation

80 Java Developer's Guide

 * 2. Possible Reason:

 * If TRANSPORT_TYPE=TLS in the properties file, the primary key file used for

TLS was not found.

 * Possible Action:

 * Check for the correctness of the path to the primary key file.

 */

 /* ERRCODE_RISKXACTIONAPI_ALREADY_INITIALIZED

 * Possible Reason:

 * The API being initialized has already been initialized.

 * Possible Action:

 * Get the RiskXActionAPI object and continue with the transaction.

 */

 /* ERROR_CONF_INVALID_POOL

 * Possible Reason:

 * Inability to create a pool of live connections to RiskFort Server.

 * Possible Action:

 *

 */

 /* ERROR_CONF_NOT_AVAILABLE

 * This can be caused due to two reasons.

 * 1. Possible Reason:

 * The properties file could not be read.

 * Possible Action:

 * Check for the correctness of the path to the properties file.

 * 2. Possible Reason:

 * The Root CA for the server certificate is invalid.

 * Possible Action:

 * Get a valid server certificate.

 */

 }

 /*

 evaluateRisk:

 Evaluates risk associated with the transaction and returns an advice accordingly.

It also provides a new DeviceId.

 Actions to be taken by the calling application are:

 1. The output DeviceId should be stored on the user machine in some form. Most

common way is to store it as a HTTP cookie. Nevertheless, storing it as a HTTP cookie

has the risk of it being deleted when user deletes all cookies on the machine.

 2. Retrieve the DeviceId from user machine and set it using setDeviceID.

 3. If RiskAdvice is equal to INCREASEAUTH, perform second authentication and

pass the result of the second authentication to RiskFort using PostEvaluate.

 public RiskAssessment evaluateRisk(java.lang.String callerId,

 DeviceContext deviceContext,

Sample Code for Risk Evaluation and Post-Evaluation

Appendix B: Sample Code 81

 LocationContext locationContext,

 UserContext userContext,

 TransactionContext transactionContext,

 AdditionalInputs additionalInputs)

 throws RiskException

 Parameters:

 callerId - An identifier as decided by the application calling the API for it's

own tracking.

 deviceContext - Device contextual information.

 locationContext - Location contextual information(IP address).

 userContext - User contextual information.

 transactionContext - Transaction contextual information.

 additionalInputs - Additional inputs that may be needed for different operations

 Returns:

 RiskAssessment - Contains RiskAdvice, a new DeviceId which should be placed on

the user machine, a RiskScore and other transaction related information.

 Throws:

 RiskException - If request fails for any reason.

 */

 // Sample code to evaluate risk associated with the transaction.

 RiskAssessment riskAssessment = null;

 System.out.println("The following information is used to assess the risk associated

with the transaction.");

 // Build the context to be used for risk evaluation

 String callerId = "MyApplicationTrackingId"; // string used by the calling

application for tracking across calls.

 // input user related information.

 UserContext userContext = new UserContext();

 //Unique identifier for the user. For example, in case of a bank it may be user's

bank account number.

 userContext.setUserId("TestUser");

 userContext.setOrg("DEFAULTORG");

 System.out.println("Username: " + userContext.getUserID());

 System.out.println("Organization Name:" + userContext.getOrg());

 // input device related information

 DeviceContext deviceContext = new DeviceContext();

 // JSON Signature comes from json.js.

Sample Code for Risk Evaluation and Post-Evaluation

82 Java Developer's Guide

 String jsonSignature =

"{\"navigator\":{\"platform\":\"Win32\",\"appName\":\"Netscape\",\"appCodeName\":

\"Mozilla\",\"appVersion\":\"5.0 (Windows;

en-US)\",\"language\":\"en-US\",\"oscpu\":\"Windows NT

5.0\",\"vendor\":\"\",\"vendorSub\":\"\",\"product\":\"Gecko\",\"productSub\":\"2

0070312\",\"securityPolicy\":\"\",\"userAgent\":\"Mozilla/5.0 (Windows; U; Windows

NT 5.0; en-US; rv:1.8.0.11) Gecko/20070312

Firefox/1.5.0.11\",\"cookieEnabled\":true,\"onLine\":true},\"plugins\":[{\"name\"

:\"Adobe Acrobat Plugin\",\"version\":\"7.00\"},{\"name\":\"Macromedia

Director\",\"version\":\"10.1\"},{\"name\":\"Windows Media Player Plug-in Dynamic

Link Library\",\"version\":\"\"},{\"name\":\"Macromedia Shockwave

Flash\",\"version\":\"9.0\"},{\"name\":\"Java Virtual

Machine\",\"version\":\"1.6.0\"}],\"screen\":{\"availHeight\":690,\"availWidth\":

1024,\"colorDepth\":32,\"height\":768,\"pixelDepth\":32,\"width\":1024},\"extra\"

:{\"javascript_ver\":\"1.6\",\"timezone\":-330}}";

 deviceContext.buildDeviceSignature(jsonSignature, null, null);

 System.out.println("Device Signature: " + deviceContext.getDeviceSignature());

 // Set the device id

 String idType = "HTTP_COOKIE";

 /* During the first call to evaluateRisk, deviceId=null as the device is not

recognized by RiskFort server.

 * RiskFort server then sets a deviceId in a cookie on the user's machine which is

passed to RiskFort server during subsequent transactions.

 */

 String deviceId = null;

 deviceContext.setDeviceID(idType, deviceId);

 /* For each transaction, either the deviceId or the aggregatorID but not both should

to be set.

deviceContext.setAggregatorID("LcPywTghrtyed6KDuRcMbWiFFTYR2oFThfdDOtBKqKcdEXsH9d

FIFfrr/dsfdud");

 System.out.println("Aggregator ID: " + deviceContext.getAggregatorID());

 */

 // input location related information.

 LocationContext locationContext = new LocationContext();

 InetAddress ipAddress = null;

 // IP address of the user's machine, typically extracted from the HTTP header.

 try {

 ipAddress = InetAddress.getByName("127.0.0.1");

 } catch (UnknownHostException e) {

 // Take suitable action.

 }

Sample Code for Risk Evaluation and Post-Evaluation

Appendix B: Sample Code 83

 locationContext.setIpAddress(ipAddress);

 System.out.println("Ip address: " + locationContext.getIPAddress());

 // input transaction related information.

 TransactionContext transactionContext = new TransactionContext();

 transactionContext.setAction("action");

 transactionContext.setChannel("DEFAULT");

 /*For each transaction, either the extensible elements must be set in the transaction

context or the additional inputs must be set.

transactionContext.setExtensibleElements("MerchantID=id;MerchantCountry=country;M

erchantName=name");

 */

 HashMap<String,String> additionalInputs = new HashMap<String,String>();

 String extName1 = "MerchantID";

 String extValue1 = "id";

 String extName2 = "MerchantCountry";

 String extValue2 = "country";

 String extName3 = "MerchantName";

 String extValue3 = "name";

 //Below attributes has to be supplied when organization is configured for using

accounts.(not required otherwise)

 //In this case, USERID attribute inside userContext will be treated as account so

below information is required

 // to identify the actual use to which this account belongs.

 String extName4 = "ACCOUNTTYPE";

 String extValue4 = "accType";

 String extName5 = "PARENTUSERID"; //If organization is configured for using accounts

and implicit user creation is enabled.

 String extValue5 = "parentid";

 if(extName1 != null && extName1 != "")

 additionalInputs.put(extName1, extValue1);

 if(extName2 != null && extName2 != "")

 additionalInputs.put(extName2, extValue2);

 if(extName3 != null && extName3 != "")

 additionalInputs.put(extName3, extValue3);

 if(extName4 != null && extName4 != "")

 additionalInputs.put(extName4, extValue4);

 if(extName5 != null && extName5 != "")

 additionalInputs.put(extName5, extValue5);

 try {

 System.out.println("evaluateRisk called.");

 // Call the API to evaluate the risk associated with the transaction.

 riskAssessment = api.evaluateRisk(callerId, deviceContext, locationContext,

userContext, transactionContext /*, additionalInputs */);

Sample Code for Risk Evaluation and Post-Evaluation

84 Java Developer's Guide

 System.out.println("evaluateRisk succeeded.");

 System.out.println("Device Id set on the user's machine: " +

riskAssessment.getOutputDeviceId());

 } catch (RFSDKException e) {

 /* The following methods on UserRepositoryException object can be used to get the

error codes and error messages as follows:

 * String code = e.getErrorCode();

 * String message = e.getMessage();

 */

 System.out.println("Exception in 'evaluateRisk'.");

 /*System.out.println("Error code: " + e.getErrorCode());*/

 System.out.println("Error message: " + e.getMessage());

 /* The following error codes are returned by the API. */

 /* ERRCODE_INVALID_PACKET_FROM_SERVER

 * Possible Reason:

 * Invalid Packet type received from the server.

 * Possible Action:

 * Report transaction failure and ask for a retry.

 */

 /* ERRCODE_PARSING_DATA

 * Possible Reason:

 * Error in parsing the xml from the server.

 * Possible Action:

 * Report transaction failure and ask for a retry.

 */

 }

 catch (RiskException e) {

 /* The following methods on UserRepositoryException object can be used to get the

error codes and error messages as follows:

 * String code = e.getErrorCode();

 * String message = e.getMessage();

 */

 System.out.println("Exception in 'evaluateRisk'.");

 /*System.out.println("Error code: " + e.getErrorCode());*/

 System.out.println("Error message: " + e.getMessage());

 /* The following error codes are returned by the API. */

 /* ERRCODE_INVALID_PACKET_FROM_SERVER

 * Possible Reason:

 * Invalid Packet type received from the server.

 * Possible Action:

 * Report transaction failure and ask for a retry.

 */

Sample Code for Risk Evaluation and Post-Evaluation

Appendix B: Sample Code 85

 /* ERRCODE_PARSING_DATA

 * Possible Reason:

 * Error in parsing the xml from the server.

 * Possible Action:

 * Report transaction failure and ask for a retry.

 */

 }

 /*

 postEvaluate:

 Helps to make the final decision on the transaction based on the output of

evaluateRisk and any second authentication that may have been performed by the calling

application.

 Also takes care of updating information in the RiskFort system as needed.

 public PostEvaluateResponse postEvaluate(java.lang.String callerId,

 RiskAssessment riskAssessment,

 boolean secondaryAuthenticationStatus,

 java.lang.String associationName,

 AdditionalInputs additionalInputs)

 throws RiskException;

 Parameters:

 callerId - An identifier as decided by the application calling the API for it's

own tracking.

 riskAssessment - The output from evaluateRisk.

 secondaryAuthenticationStatus - Result of second authentication.

 Pass "true" if secondary authentication succeeded, "false" otherwise.

 If evaluateRisk returned an advice other than INCREASEAUTH (i.e. secondary

authentication was not asked for), pass "false".

 associationName - A value that user chose as the association name for the machine

from where the transaction has been carried out.

 User should be recommended not to choose association for shared machines, in

which case "null" can be passed.

 additionalInputs - Additional inputs that may be needed for different operations.

This has been kept for future use.

 Returns:

 PostEvaluateResponse - Indicates whether or not this transaction should be allowed

to continue. Can be checked using isAllowAdvised() which returns "true" if the

transaction should be allowed and "false" if it should be denied.

 Throws:

 RiskException - If request fails for any reason.

 */

Sample Code for Risk Evaluation and Post-Evaluation

86 Java Developer's Guide

 // Sample code to make the final decision on the transaction based on the output

of evaluateRisk and any second authentication that may have been performed by the

calling application.

 // Here the RiskAssessment object passed as input is the object returned by the call

to evaluateRisk()

 PostEvaluateResponse postEvalResponse = null;

 String associationName; // the association name for the machine from where the

transaction has been carried out

 boolean secondaryAuthenticationStatus; // Result of any second authentication that

may have been performed by the calling application.

 // Build the context to be used in the postEvaluate call.

 associationName = "testAssociationName";

 secondaryAuthenticationStatus = true;

 /* Map */ additionalInputs = new HashMap<String,String>();

 //Below attributes has to be supplied when organization is configured for using

accounts.(not required otherwise)

 //In this case, USERID attribute inside userContext will be treated as account

so below information is required

 // to identify the actual use to which this account belongs. This has to be supplied

in postEvaluate as well.

 /*String */ extName1 = "ACCOUNTTYPE";

 /*String */ extValue1 = "accType";

 /*String */ extName2 = "PARENTUSERID"; //If organization is configured for using

accounts and implicit user creation is enabled.

 /*String */ extValue2 = "parentid";

 if(extName1 != null && extName1 != "")

 additionalInputs.put(extName1, extValue1);

 if(extName2 != null && extName2 != "")

 additionalInputs.put(extName2, extValue2);

 try {

 System.out.println("Calling postEvaluate with Secondary Authentication Status =

" + secondaryAuthenticationStatus);

 System.out.println("Association name passed: " + associationName);

 // Call the API to make the final decision based on evaluateRisk and second

Authentication.

 postEvalResponse = api.postEvaluate(callerId, riskAssessment,

secondaryAuthenticationStatus, associationName /*, additionalInputs*/);

 System.out.println("postEvaluate succeeded.");

 } catch (RFSDKException e) {

Sample Code for Risk Evaluation and Post-Evaluation

Appendix B: Sample Code 87

 /* The following methods on UserRepositoryException object can be used to get the

error codes and error messages as follows:

 * String code = e.getErrorCode();

 * String message = e.getMessage();

 */

 System.out.println("Exception in 'postEvaluate'.");

 /* System.out.println("Error code: " + e.getErrorCode()); */

 System.out.println("Error message: " + e.getMessage());

 /* The following error codes are returned by the API. */

 /* ERRCODE_INVALID_PACKET_FROM_SERVER

 * Possible Reason:

 * Invalid Packet type received from the server.

 * Possible Action:

 * Report transaction failure and ask for a retry.

 */

 /* ERRCODE_PARSING_DATA

 * Possible Reason:

 * Error in parsing the xml from the server.

 * Possible Action:

 * Report transaction failure and ask for a retry.

 */

 }

 catch (RiskException e) {

 /* The following methods on UserRepositoryException object can be used to get the

error codes and error messages as follows:

 * String code = e.getErrorCode();

 * String message = e.getMessage();

 */

 System.out.println("Exception in 'postEvaluate'.");

 /* System.out.println("Error code: " + e.getErrorCode()); */

 System.out.println("Error message: " + e.getMessage());

 /* The following error codes are returned by the API. */

 /* ERRCODE_INVALID_PACKET_FROM_SERVER

 * Possible Reason:

 * Invalid Packet type received from the server.

 * Possible Action:

 * Report transaction failure and ask for a retry.

 */

 /* ERRCODE_PARSING_DATA

 * Possible Reason:

 * Error in parsing the xml from the server.

 * Possible Action:

Sample Code for Risk Evaluation and Post-Evaluation

88 Java Developer's Guide

 * Report transaction failure and ask for a retry.

 */

 }

 System.out.println("Risk Evaluation done.");

 }

}

To Compile on Microsoft Windows

To compile this test program, save it in a file called Assess_Risk.java. Make sure that the
arcot-riskfort-evaluaterisk.jar and related jar files arcot_core.jar, arcot-riskfort-mfp.jar,
bcprov-jdk14-131.jar, commons-lang-2.0.jar, commons-pool-1.4.jar are in the JAVA
compiler’s CLASSPATH. Then run the JAVA compiler.

The arcot-riskfort-evaluaterisk.jar file is usually present in the sdk\java\lib\arcot
directory in the RiskMinder installation directory. If your Assess_Risk.java file is saved in
\Program Files\Arcot Systems\sdk\java, then use the following command shown below.
If your JAVA file is not in this directory, provide the full pathname to the sdk\java\lib
directory in CLASSPATH.

> cd \program files\arcot systems\sdk\java

> javac -classpath

".;lib\arcot\arcot-riskfort-evaluaterisk.jar;lib\arcot\arcot_core.jar;lib\arcot\a

rcot-riskfort-mfp.jar;lib\external\bcprov-jdk14-131.jar;lib\external\commons-lang

-2.0.jar;lib\external\commons-pool-1.4.jar;%CLASSPATH%" Assess_Risk.java

This creates the output file Assess_Risk.class in the same directory as the JAVA file.

To Compile on UNIX-Based Platforms

To compile this test program, save it in a file called Assess_Risk.java. Make sure that the
arcot-riskfort-evaluaterisk.jar and related jar files arcot_core.jar, arcot-riskfort-mfp.jar,
bcprov-jdk14-131.jar, commons-lang-2.0.jar, commons-pool-1.4.jar are in the JAVA
compiler’s CLASSPATH. Then run the JAVA compiler.

The arcot-riskfort-evaluaterisk.jar file is usually present in the sdk/java/lib/arcot
directory in the RiskMinder installation directory. If your Assess_Risk.java file is saved in
/opt/arcot/sdk/java, use the following command shown below. If your JAVA file is not in
this directory, provide the full pathname to the sdk/java/lib directory in CLASSPATH.

> cd /opt/arcot/sdk/java

Sample Code for Risk Evaluation and Post-Evaluation

Appendix B: Sample Code 89

> javac -classpath

".:./lib/arcot/arcot-riskfort-evaluaterisk.jar:./lib/arcot/arcot_core.jar:./lib/a

rcot/arcot-riskfort-mfp.jar:./lib/external/bcprov-jdk14-131.jar:./lib/external/co

mmons-lang-2.0.jar:./lib/external/commons-pool-1.4.jar:$CLASSPATH"

Assess_Risk.java

This creates output file Assess_Risk.class in the same directory as the JAVA file.

To Run on Microsoft Windows

Before you can run the test, the RiskMinder Service must be installed and started. To
run the test, make sure that the SDK library is in the path and
arcot-riskfort-evaluaterisk.jar is in the CLASSPATH then run the JAVA command as
shown below.

To run the test, use the following commands:

> cd \program files\arcot systems\sdk\java

> java -classpath

".;lib\arcot\arcot-riskfort-evaluaterisk.jar;lib\arcot\arcot_core.jar;lib\arcot\a

rcot-riskfort-mfp.jar;lib\external\bcprov-jdk14-131.jarlib\external\commons-lang-

2.0.jarlib\external\commons-pool-1.4.jar;%CLASSPATH%" Assess_Risk

To Run on UNIX-Based Platforms

Before you can run the test, the RiskMinder Service must be installed and started. To
run the test, make sure that the SDK library is in the path and
arcot-riskfort-evaluaterisk.jar is in the CLASSPATH then run the JAVA command as
shown below.

To run the test, use the following commands:

> cd /opt/arcot/sdk/java

> java -classpath

".:./lib/arcot/arcot-riskfort-evaluaterisk.jar:./lib/arcot/arcot_core.jar:./lib/a

rcot/arcot-riskfort-mfp.jar:./lib/external/bcprov-jdk14-131.jar:./lib/external/co

mmons-lang-2.0.jar:./lib/external/commons-pool-1.4.jar:$CLASSPATH" Assess_Risk

Expected Output

After running the provided sample code, you should see the following output:

Initializing RiskFort API using /riskfort.risk-evaluation.properties

RiskFort API initialized.

The following information is used to assess the risk associated with the transaction.

Username: TestUser

Sample Code for Risk Evaluation and Post-Evaluation

90 Java Developer's Guide

Organization Name:DEFAULTORG

Device Signature:

{"navigator":{"platform":"Win32","appName":"Netscape","appCodeName":"Mozilla","ap

pVersion":"5.0 (Windows; en-US)","language":"en-US","oscpu":"Windows NT

5.0","vendor":"","vendorSub":"","product":"Gecko","productSub":"20070312","securi

tyPolicy":"","userAgent":"Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US;

rv:1.8.0.11) Gecko/20070312

Firefox/1.5.0.11","cookieEnabled":true,"onLine":true},"plugins":[{"name":"Adobe

Acrobat Plugin","version":"7.00"},{"name":"Macromedia

Director","version":"10.1"},{"name":"Windows Media Player Plug-in Dynamic Link

Library","version":""},{"name":"Macromedia Shockwave

Flash","version":"9.0"},{"name":"Java Virtual

Machine","version":"1.6.0"}],"screen":{"availHeight":690,"availWidth":1024,"color

Depth":32,"height":768,"pixelDepth":32,"width":1024},"extra":{"javascript_ver":"1

.6","timezone":-330}}

Ip address: /127.0.0.1

evaluateRisk called.

evaluateRisk succeeded.

Device Id set on the user's machine:

qcd+Vq3NC6qAafCDbsFCBrup0y+z+ci8qjV5QmZI9GWuFGbbX9oIgw==

Calling postEvaluate with Secondary Authentication Status = true

Association name passed: testAssociationName

postEvaluate succeeded.

Risk Evaluation done.

Appendix C: Java API Reference 91

Appendix C: Java API Reference

The RiskFort SDK constitutes a set of Java classes and methods that provide a way for
your online application to programmatically integrate with RiskFort objects. The RiskFort
Java SDK consists of the following components:

■ The Risk Evaluation Java classes

■ Javadoc information for the associated Java classes and methods

Note: The Sample Application shipped with RiskFort demonstrates the usage of the Java
classes and methods.See appendix, "RiskFort Sample Application" (see page 133) for
more information on RiskFort Sample Application.

Accessing the Javadoc HTML Documentation

You can use the Javadoc information provided with the RiskFort SDK along with this
guide and other Java reference materials, to add RiskFort Risk Evaluation services to
new or existing Java applications.

If you are updating an existing RiskFort application, then you must consult the Release
Notes and Javadoc HTML documentation for deprecated Java APIs before making any
changes.

You can access the latest Javadocs by installing RisKFort and copying the Javadocs from
the docs directory. (You can then copy the Javadocs to another location on your
development system.) Alternatively, you can also access the Javadocs directly from the
Documentation directory in the RiskMinder installation package, without having to
install RiskFort.

See the table in Risk Evaluation API (see page 92) for the installation locations of the
RiskFort Javadocs.

Risk Evaluation API

92 Java Developer's Guide

Risk Evaluation API

The following table lists the files that are installed as a part of the Risk Evaluation SDK
component. The base location for these files is:

■ Microsoft Windows

<install_location>\Arcot Systems\

■ UNIX-Based Platforms

<install_location>/arcot/

Location File Name Description

docs\riskfort\
(Microsoft Windows)

docs/riskfort/

(UNIX Platforms)

Arcot-RiskFort-3.1.0
1-risk-evaluation-sdk
-
javadocs.zip

or

Arcot-RiskFort-3.1.0
1-risk-evaluation-sdk
-
javadocs.tar.gz

Javadoc HTML documentation for
the Java classes and methods
provided with the Risk Evaluation
Java API.

samples\java\

(Microsoft Windows)

samples/java/

(UNIX Platforms)

riskfort-3.1.01-sampl
e-application.war

The demonstration that illustrates
the use of Risk Evaluation APIs.

See appendix, "RiskFort Sample
Application" (see page 133) for more
information on how to run and use
the Sample Application.

riskfort-3.1.01-sampl
e-callouts.war

The demonstration that illustrates
the use of the Callout feature.

Book: See appendix, "Working with
Sample Callouts" in CA RiskMinder
Administration Guide for more
information on how to run and use
the Sample Callouts.

arcot_core.jar The proprietary Java Archive (JAR)
file containing the set of shared
components, toolkits, and services
used to build the CA products.

Risk Evaluation API

Appendix C: Java API Reference 93

Location File Name Description

sdk\java\lib\arcot\

(Microsoft Windows)

sdk/java/lib/arcot/

(UNIX Platforms)

arcot-pool.jar The Java Archive (JAR) file containing
the classes and methods required for
connection pooling between the
RiskFort resource pack and User
Data Service (UDS).

arcot-riskfort-evalua
terisk.jar

The Java Archive (JAR) file containing
the classes and methods associated
with the Risk Evaluation API.

arcot-riskfort-mfp.
jar

The Java Archive (JAR) file containing
the classes and methods associated
with Device ID and DeviceDNA
collection.

sdk\java\properties\

(Microsoft Windows)

sdk/java/properties/

(UNIX Platforms)

log4j.properties.risk-
evaluation

The properties file used by classes
and methods associated with the
Risk Evaluation API to specify the
logging behavior.

riskfort.risk-evaluati
on.properties

The properties file used by classes
and methods associated with the
Risk Evaluation API to read RiskFort
Server information.

sdk\devicedna\

(Microsoft Windows)

sdk/devicedna/

(UNIX Platforms)

riskminder-client.js This file contains the functions to
gather the Device ID- and
DeviceDNA-related information from
the end user’s device and to
generate the single-encoded String
with all the DeviceDNA values.

Third-Party JARs Used by Risk Evaluation API

94 Java Developer's Guide

Third-Party JARs Used by Risk Evaluation API

The Risk Evaluation API also uses the third-party JARs listed in the following table.

■ On Microsoft Windows

<install_location>\Arcot Systems\sdk\java\lib\external\

■ On UNIX-Based Platforms

<install_location>/arcot/sdk/java/lib/external/

File Name Description

bcprov-jdk14-139.jar The Bouncy Castle APIs for supporting cryptographic
operations.

http://www.bouncycastle.org/latest_releases.html

commons-lang-2.0.jar

The Apache Java utility packages that provide support for
string manipulation methods, basic numerical methods,
object reflection, creation and serialization, and system
properties.

http://commons.apache.org/lang/

commons-pool-1.4.jar The Apache package for supporting object-pooling
implementations.

http://commons.apache.org/pool/

Appendix D: Exceptions and Error Codes 95

Appendix D: Exceptions and Error Codes

This appendix lists all exceptions and error codes thrown by the RiskMinder SDKs:

■ RiskMinder SDK Exceptions (see page 95)

■ RiskMinder Server Response Codes (see page 97)

RiskMinder SDK Exceptions

This section lists and describes the types of exceptions that you might see:

■ Risk Evaluation Server Exceptions (see page 95)

■ Risk Evaluation SDK Exceptions (see page 96)

Risk Evaluation Server Exceptions

The RiskMinder Risk Evaluation API throws the RiskException, if a Server operation
failed. The getResponseCode() function of the RiskException class returns the string
value corresponding to the type of error, the getTransactionId() method returns the
Server-generated transaction ID for which the error occurred, and the getReasonCode()
method returns the Server's TransactionID for the transaction, if one is provided.

The possible RiskException errors, their corresponding values, and descriptions are
listed in the following table.

Response Code Value Description

INVALID_MESSAGE_TYPE 7021 The API identifier (message type) in the
response sent from the Server is not valid.
The packet might be corrupted.

RiskMinder SDK Exceptions

96 Java Developer's Guide

Risk Evaluation SDK Exceptions

The RiskMinder Risk Evaluation SDK throws RFSDKException, if the incoming
configuration information used by the SDK is not correct, and as a result, if a related
operation might fail. This exception class also relays Server errors to your application.

The getResponseCode() function of the RFSDKException class returns the string value
corresponding to the type of error. If the exception was generated at the Server-end,
then the getTransactionId() method returns the Server-generated transaction ID for
which the error occurred.

The possible RFSDKException errors, their corresponding values, and descriptions are
listed in the following table.

 Response Code Value Description

BUILDRESPONSE_ERROR 7016 The SDK encountered an error while
interpreting the response XML from the
Server.

CONFIGURATION_INVALID_P
OOL

7010 The connection to RiskMinder Server could
not be established.

CONFIGURATION_NOT_AVAI
LABLE

7009 The configuration keys of properties that are
used for configuring the API could not be read
correctly from the properties file.

ENCODING_NOT_SUPPORTE
D

7014 The response that the SDK received from the
Server contains encoding that is not
supported.

ERROR_PARSING_DATA 7006 The SDK could not parse the response from
the Server.

INTERNAL_ERROR 7002 The error was caused due to an internal SDK
error.

INVALID_ADVICE_CODE 7019 The Advice code passed to postevaluate() is
not valid.

INVALID_INPUT_PARAMETE
RS

7005 The value of the parameter passed to the API
is invalid.

INVALID_MESSAGE_TYPE 7021 The API identifier (message type) in the
response sent from the Server is not valid.
The packet might be corrupted.

INVALID_PACKET_FROM_SE
RVER

7003 The Server packet is either malformed or is
corrupted.

MISSING_INPUT_PARAMETE
RS

7013 One or more mandatory parameters needed
by the API are missing.

RiskMinder Server Response Codes

Appendix D: Exceptions and Error Codes 97

 Response Code Value Description

RISKXACTIONAPI_ALREADY_I
NITIALIZED

7008 The RiskXActionAPI interface has already
been initialized by the Server.

RISKXACTIONAPI_INITIALIZA
TION_
FAILURE

7023 The RiskXActionAPI interface could not be
successfully initialized.

RISKXACTIONAPI_NOT_INITI
ALIZED

7007 The RiskXActionAPI interface has not yet been
initialized by the Server.

SUCCESS 7000 The operation was successful.

TCP_COMMUNICATION_ERR
OR

7011 A (TCP-based) communication error occurred
between the SDK and the Server.

TCP_CONNECTION_ERROR 7012 The SDK could not establish a (TCP-based)
connection to RiskMinder Server.

USER_RECORD_NOT_FOUND 7018 The specified user information was not found
in the RiskMinder database.

XML_PARSE_ERROR 7020 One or more XML parameters are either
incomplete or are missing.

RiskMinder Server Response Codes

The following table lists the response codes, reason codes, the possible cause for the
failure, and solution wherever applicable.

Response
Code

Reason
Code

Description Possible Cause for Failure

0 0 The operation was
successful.

NA.

1000 2002 There was an internal
error.

Possible Cause:
Unexpected internal error.

RiskMinder Server Response Codes

98 Java Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

1050 0 Value of one of the
parameters used in
the operation is
invalid.

Possible Cause:
The value of the parameter passed to the
API is invalid.

For example, the allowed values for user
status are 0 and 1. If you set the value of
this as 5, then you will get this error.

Solution:
Provide valid value for the parameter.

See appendix, "Input Data Validations"
(see page 111) for the supported
parameter values.

2050 Value of one of the
parameters used in
the operation is
empty.

Possible Cause:
The parameter passed to the API is
empty.

Solution:
Provide a non-empty value for the
parameter.

See appendix, "Input Data Validations"
(see page 111) for the supported
parameter values.

1050 2051 The length of one of
the parameters used
in the operation has
exceeded the
maximum allowed
value.

Note: Length here
refers to length of
the parameter, for
example password
length.

Possible Cause:
The length of the parameter passed to
the API has exceeded the maximum
value.

Solution:
Provide the parameter such that its
length is less than or equal to the
maximum allowed value.

See appendix, "Input Data Validations"
(see page 111) for the supported
parameter values.

2052 The length of one of
the parameters used
in the operation is
less than minimum
allowed value.

Possible Cause:
The length of the parameter passed to
the API is less than minimum value.

Solution:
Provide the parameter such that the
length of the parameter is greater than or
equal to the minimum allowed value. See
appendix, "Input Data Validations" (see
page 111) for the supported parameter
values.

RiskMinder Server Response Codes

Appendix D: Exceptions and Error Codes 99

Response
Code

Reason
Code

Description Possible Cause for Failure

1050 2053 Value of one of the
parameters used in
the operation
exceeded the
maximum allowed
value.

Note: Value here
refers to the value of
the parameter.

Possible Cause:
The value of the parameter passed to the
API has exceeded the maximum allowed
value.

Solution:
Provide the parameter such that the
value of the parameter is less than or
equal to the maximum allowed value.

See appendix, "Input Data Validations"
(see page 111) for the supported
parameter values.

2054 Value of one of the
parameters used in
the operation is less
than the minimum
allowed value.

Possible Cause:
The value of the parameter passed to the
API is less than the minimum allowed
value.

Solution:
Provide the parameter such that the
value of the parameter is greater than or
equal to the minimum allowed value.

See appendix, "Input Data Validations"
(see page 111) for the supported
parameter values.

2055 Value of one of the
parameters used in
the operation is
invalid.

Possible Cause:
The value of the parameter passed to the
API is invalid.

For example, the allowed values for user
status are 0 and 1. If you set the value of
this as 5, then you will get this error.

Solution:
Provide valid value for the parameter.

See appendix, "Input Data Validations"
(see page 111) for the supported
parameter values.

2056 Value of one of the
parameters used in
the operation
contains invalid
characters.

Possible Cause:
The parameter specified by
ParameterKey contains invalid
characters.

Solution:
Provide valid characters for the
parameter that is specified by
ParameterKey.

RiskMinder Server Response Codes

100 Java Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

1050 2057 One of the
parameters used in
the operation does
not meet the
formatting
requirements.

Possible Cause:
The parameter specified by
ParameterKey has invalid format.

Solution:
Provide valid format for the parameter
that is specified by ParameterKey.

2061 Value of one of the
parameters used in
the operation is not
allowed.

Possible Cause:
The parameter specified by
ParameterKey has invalid format.

Solution:
Provide valid format for the parameter
that is specified by ParameterKey.

8104 The specified Callout
URL is not valid.

Possible Cause:
The specified URL is incorrect.

Solution:
Provide the valid URL.

8105 The specified
duration is not valid.

Possible Cause:
The Start Date is greater than the End
Date.

The specified value for Start Date and/or
the End Date is in the past.

Solution:
The Start Date must be greater than the
End Date and these should be the current
or future dates (as this is the duration for
the exception user).

7000 0 The operation was
successful.

NA.

8000

7001 0 There was an internal
error.

Possible Cause:
Unexpected internal error.

8000 There was an internal
error.

Possible Cause:
Unexpected internal error.

8108 There was an internal
error.

Possible Cause:
Unexpected internal error.

8122 There was an internal
error.

Possible Cause:
Unexpected internal error.

RiskMinder Server Response Codes

Appendix D: Exceptions and Error Codes 101

Response
Code

Reason
Code

Description Possible Cause for Failure

7501 0 The current
operation on the
database failed.

Possible Cause:
Database is not running.

Solution:
Start the database.

Possible Cause:
Connection between the Server and
database is not complete.

Solution:
Establish the connection between Server
and database again.

Possible Cause:
The operation failed because of an
internal error.

Solution:
Check the database logs for details and
ensure appropriate action is taken based
on these logs.

7502 0 An exception
occurred because of
an unexpected
internal error.

Possible Cause:

Internal error because of unexpected
Server behavior.

Solution:

Most likely cause might be Server or
database failure. Check the Server
transaction and database logs for details
and ensure appropriate action is taken
based on the Server logs.

7503 0 The time could not
be successfully
fetched.

Possible Cause:
The database settings are not set
correctly in arcotcommon.ini.

Solution:
Verify and correct the database- related
parameters in the file.

7511 8000 The received Device
Signature is not valid.

Possible Cause:
The Server cannot parse the Device
Signature. Either the packet was
corrupted or there was an issue while
building the signature.

Solution:
Ensure that the Device Signature is
correctly built.

RiskMinder Server Response Codes

102 Java Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7664 8000 There was an internal
error in the
operation.

Possible Cause:
Unexpected internal error.

Solution:
Most likely cause might be Server or
database failure. Check the Server
transaction and database logs for details
and ensure appropriate action is taken
based on the Server logs.

7664 8122 The Device ID could
not be generated.

Possible Cause:
This could be because of a possible
internal error at the server end or
because of corrupted data.

7664 8199 The Case Queue that
you are trying to
access does not have
any cases.

Possible Cause:
No cases were found in the specified
Queue.

Solution:
Try to access the Queue again after some
time.

7664 8200 There was an internal
error in the Case
Management
operation.

Possible Cause:
Unexpected internal error.

Solution:
Most likely cause might be Case
Management Server or database failure.
Check the Server transaction and
database logs for details and ensure
appropriate action is taken based on the
Server logs.

7664 8201 No Queue is assigned
to the Case
administrator.

Possible Cause:
No Queue assigned to the Case
administrator.

Solution:
Ensure that the Case administrator is
assigned a Queue before the operation.

7664 8202 There was an internal
error in the Case
Management
operation.

Possible Cause:
The Case was not successfully reassigned.

Solution:
Ensure that the Case is assigned to an
administrator.

RiskMinder Server Response Codes

Appendix D: Exceptions and Error Codes 103

Response
Code

Reason
Code

Description Possible Cause for Failure

7664 8203 There was an internal
error in the Case
Management
operation.

Possible Cause:
Unexpected internal error.

Solution:
Most likely cause might be Case
Management Server or database failure.
Check the Server transaction and
database logs for details and ensure
appropriate action is taken based on the
Server logs.

7664 8204 The specified Queue
was not found in the
system.

Possible Cause:
The Queue that you are trying t access
does not exist.

Solution:
Ensure that you are using the correct
Queue name and parameters for the
operation.

7664 8205 There was an internal
error in the Case
Management
operation.

Possible Cause:
The Queue Schedule that you are trying
to create could not be successfully
created.

Solution:
Ensure that you are using the correct
Schedule name and parameters for the
operation.

7664 8207 There was an internal
error because the
Server is shutting
down.

Possible Cause:
The Server shutdown is in progress.

Solution:
Wait for sometime for the Server to
come up again and then try performing
the operation.

7666 8000 The length of one of
the parameters used
in the operation has
exceeded the
maximum allowed
value.

Possible Cause:
The length of the specified parameter has
exceeded the maximum value.

Solution:
Provide valid rule for the parameter. See
Appendix E, "Input Data Validations" (see
page 111) for the supported parameter
values.

RiskMinder Server Response Codes

104 Java Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7666 8113 No Association Name
parameter was not
found in the request.

Possible Cause:
The Association Name parameter is
missing from the request.

Solution:
Ensure that the request contains a valid
Tag Name.

7666 8114 The value of one of
the parameters used
in the operation is
not valid.

Possible Cause:
The parameter specified by
ParameterKey has invalid value.

Solution:
Provide valid format and value for the
parameter that is specified by
ParameterKey.

7666 8135 The Device ID used in
the operation is not
valid.

Possible Cause:
The specified Device ID is not valid.

Solution:
Ensure that you provide a valid value for
the Device ID.

7667 8000 The length of one of
the parameters used
in the operation has
exceeded the
maximum allowed
value.

Possible Cause:
The length of the parameter passed to
the API has exceeded the maximum
value.

Solution:
Provide valid value for the parameter.
See appendix, "Input Data Validations"
(see page 111) for the supported
parameter values.

7667 8140 The length of the
User Name
parameter has
exceeded the
maximum allowed
value.

Possible Cause:
The length of the User Name parameter
has exceeded the maximum value.

Solution:
Ensure that the parameter is of valid
length. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

RiskMinder Server Response Codes

Appendix D: Exceptions and Error Codes 105

Response
Code

Reason
Code

Description Possible Cause for Failure

7667 8144 The length of the
Association Name
parameter has
exceeded the
maximum allowed
value.

Possible Cause:
The length of the Association Name
parameter has exceeded the maximum
value.

Solution:
Ensure that the parameter is of valid
length. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

7667 8146 The length of the
Transaction Type
Name parameter has
exceeded the
maximum allowed
value.

Possible Cause:
The length of the Transaction Type Name
parameter has exceeded the maximum
value.

Solution:
Ensure that the parameter is of valid
length. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

7667 8148 The length of the
First Name
parameter has
exceeded the
maximum allowed
value.

Possible Cause:
The length of the First Name parameter
has exceeded the maximum value.

Solution:
Ensure that the parameter is of valid
length. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

7667 8150 The length of the Last
Name parameter has
exceeded the
maximum allowed
value.

Possible Cause:
The length of the Last Name parameter
has exceeded the maximum value.

Solution:
Ensure that the parameter is of valid
length. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

7667 8152 The length of the
PAM parameter has
exceeded the
maximum allowed
value.

Possible Cause:
The length of the PAM parameter has
exceeded the maximum value.

Solution:
Ensure that the parameter is of valid
length. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

RiskMinder Server Response Codes

106 Java Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7667 8154 The length of the
Email ID parameter
has exceeded the
maximum allowed
value.

Possible Cause:
The length of the Email ID parameter has
exceeded the maximum value.

Solution:
Ensure that the parameter is of valid
length. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

7667 8156 The length of the
Organization Name
parameter has
exceeded the
maximum allowed
value.

Possible Cause:
The length of the Organization Name
parameter has exceeded the maximum
value.

Solution:
Provide valid rule for the parameter. See
appendix, "Input Data Validations" (see
page 111) for the supported parameter
values.

7668 8000 One of the
parameters specified
for the operation
contains prohibited
characters.

Possible Cause:
A specified parameter contains
prohibited characters.

Solution:
Provide valid format and value for the
parameter that is specified. See
appendix, "Input Data Validations" (see
page 111) for the supported parameter
values.

7668 8141 The User Name
parameter contains
prohibited
characters.

Possible Cause:
The User Name parameter has prohibited
characters.

Solution:
Provide valid format and value for the
parameter. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

7668 8145 The Association
Name parameter
contains prohibited
characters.

Possible Cause:
The Association Name parameter has
prohibited characters.

Solution:
Provide valid format and value for the
parameter. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

RiskMinder Server Response Codes

Appendix D: Exceptions and Error Codes 107

Response
Code

Reason
Code

Description Possible Cause for Failure

7668 8147 The Transaction Type
parameter contains
prohibited
characters.

Possible Cause:
The Transaction Type parameter has
prohibited characters.

Solution:
Provide valid format and value for the
parameter. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

7668 8149 The First Name
parameter contains
prohibited
characters.

Possible Cause:
The First Name parameter has prohibited
characters.

Solution:
Provide valid format and value for the
parameter. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

7668 8151 The Last Name
parameter contains
prohibited
characters.

Possible Cause:
The Last Name parameter has prohibited
characters.

Solution:
Provide valid format and value for the
parameter. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

7668 8153 The PAM (Personal
Assurance Message)
parameter contains
prohibited
characters.

Possible Cause:
The PAM parameter has prohibited
characters.

Solution:
Provide valid format and value for the
parameter. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

7668 8155 The EMAIL ID
parameter contains
prohibited
characters.

Possible Cause:
The EMAIL ID parameter has prohibited
characters.

Solution:
Provide valid format and value for the
parameter. See appendix, "Input Data
Validations" (see page 111) for the
supported parameter values.

RiskMinder Server Response Codes

108 Java Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7669 8158 The EMAIL ID
parameter used in
the operation does
not meet the
formatting
requirements.

Possible Cause:
The EMAIL ID parameter specified by
ParameterKey has invalid format.

Solution:
Provide valid format for the parameter.

7670 8000 The value of one of
the configurations
used in the operation
does not exist.

Possible Cause:
The specified configuration for the
organization is not correct.

Solution:
Ensure that the specified organization
configuration is correct.

Possible Cause:
There is no configured ruleset for the
specified transaction.

Solution:
Ensure that the specified ruleset exists or
that you specify correct ruleset
information.

7670 8120 The value of ruleset
configuration used in
the operation does
not exist for the
specified Channel.

Possible Cause:
The specified configuration for the
organization and/or channel is not
correct.

Solution:
Ensure that the configuration information
that you specify is correct.

Possible Cause:
There is no ruleset configured for the
specified channel of the organization.

Solution:
Ensure that the specified ruleset exists or
that you specify correct ruleset
information.

RiskMinder Server Response Codes

Appendix D: Exceptions and Error Codes 109

Response
Code

Reason
Code

Description Possible Cause for Failure

7670 8121 The value of ruleset
configuration used in
the operation does
not exist.

Possible Cause:
The specified configuration for the
organization is not correct.

Solution:
Ensure that the specified organization
configuration is correct.

Possible Cause:
There is no configured ruleset for the
specified transaction.

Solution:
Ensure that the specified ruleset exists or
that you specify correct ruleset
information.

7671 8000 There was a failure in
creating the
association.

Possible Cause:
The specified information is not valid.

Solution:
Ensure that the inputs you specify are
correct.

7671 8109 There was a failure in
deleting the
association.

Possible Cause:
The specified association does not exist.

Solution:
Ensure that the specified association
exists.

7672 8115 The details for the
Organization Name
that you specified for
the operation is not
active.

Possible Cause:
The specified organization has been
deactivated.

Solution:
Ensure that the organization is valid and
active.

7672 8139 The details for the
Organization Name
that you specified for
the operation were
not found.

Possible Cause:
The specified organization is unknown
and was not found in the system.

Solution:
Ensure that the organization is valid and
active.

7673 8000 The specified input is
not valid.

Possible Cause:
The specified input is not valid.

Solution:
You must provide a valid input in the
required format.

RiskMinder Server Response Codes

110 Java Developer's Guide

Response
Code

Reason
Code

Description Possible Cause for Failure

7673 8184 The specified input is
not valid.

Possible Cause:
The user information is not provided.

Solution:
Ensure that you provide the required
information for a valid and active user.

7678 8000 The Organization
Name that you
specified for the
operation was not
found.

Possible Cause:
The specified organization does not exist.

Solution:
You must provide a valid organization
name.

7679 8000 The Organization
Name that you
specified for the
operation is not valid.

Possible Cause:
The specified input is not valid.

Solution:
You must provide a valid input in the
required format.

7681 8000 The User Name that
you specified for the
operation was not
found.

Possible Cause:
The specified user does not exist.

Solution:
You must provide a valid user name.

7683 8000 The User Name that
you specified for the
operation already
exists.

Possible Cause:
The specified user already exists in the
system.

Solution:
You must provide a distinct user name.

7684 8000 The user account for
the corresponding
User Name that you
specified for the
operation has been
disabled.

Possible Cause:
The specified user account has been
deactivated.

Solution:
Ensure that the user is active.

7690 8000 The user account for
the User Name that
you specified for the
operation already
exists.

Possible Cause:
The specified user account already exists
in the system.

Solution:
You must provide a distinct user account
name.

Appendix E: Input Data Validations 111

Appendix E: Input Data Validations

To ensure that the system does not process invalid data, to enforce business rules, and
to ensure that user input is compatible with internal structures and schemas,
RiskMinder validates the data that it receives from the APIs.

The following table explains the criteria that RiskMinder Server uses to validate this
input data.

Note: Attribute length mentioned in the following table corresponds to the character
length. Attribute ID is referred to as paramName in the Java APIs.

Attribute Attribute ID Validation Criteria

User Name

USER_NAME Is non-empty.

Length is between 1 and 256
characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Organization Name

ORG_NAME Is non-empty.

Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Display Organization
Name

DISPLAY_ORG_NAME Is non-empty.

Length is between 1 and 1024
characters.

Machine Fingerprint
DEVICESIGNATURE No validation, except that RiskMinder

Server must be able to parse it.

Action

ACTION Is non-empty.

Length is between 1 and 32 characters.

Does not contain whitespace
characters.

DeviceID
DEVICEIDVALUE Is generated by RiskMinder Server, so

that the Server is able to parse it.

Device Type

DEVICEIDTYPE Has one of the following values:

■ HTTP

RiskMinder Server Response Codes

112 Java Developer's Guide

Attribute Attribute ID Validation Criteria

Rule Annotation
RULEANNOTATION No validation, except that RiskMinder

Server must be able to parse it.

Start Time START_TIME Is non-empty.

End Time END_TIME Is non-empty.

Create Time

CREATE_TIME Is non-empty.

Is less than or equal to the current
time.

Last Modified Time

LAST_MODIFIED_TIM
E

Is non-empty.

Is less than or equal to the current
time.

Configuration Name

CONFIG_NAME Configuration name is non-empty.

Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Channel Name

CHANNEL_NAME Channel name is non-empty.

Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Configuration State
CONFIG_STATE Is non-empty.

Length is between 0 and 2 characters.

Configuration State
for Administration
Web Service

CONFIG_STATE_WS Is non-empty.

Length is not more than 5 characters.

Country Name

COUNTRY_NAME Is non-empty.

Length is between 0 and 50 characters.

Does not contain invalid characters
(ASCII 0-31), although ASCII 32-127 are
allowed.

Country Code

COUNTRY_CODE Is non-empty.

Length is between 1 and 2 characters.

Can contain numbers, alphabets,
underscore, and dot.

Start IP START_IP Is non-empty.

RiskMinder Server Response Codes

Appendix E: Input Data Validations 113

Attribute Attribute ID Validation Criteria

Length is between 0 and 4294967295
characters.

Follows the IP address format.

End IP END_IP Length is between 0 and 4294967295
characters.

Follows the IP address format.

Mask

MASK Length is between 0 and 4294967295
characters.

Follows the IP address format.

Start IP

START_IP_STR Is non-empty.

Length is between 7 and 15 characters.

Follows the IP address format.

End IP
END_IP_STR Length is between 7 and 15 characters.

Follows the IP address format.

Mask
MASK_STR Length is between 7 and 15 characters.

Follows the IP address format.

Type TYPE --

Start IP Filter

START_IP_FILTER Is non-empty.

Length is between 7 and 15 characters.

Follows the IP address format.

Source IP Filter

SOURCE_IP_FILTER Is non-empty.

Length is between 7 and 15 characters.

Follows the IP address format.

Rule Name

RULE_NAME Is non-empty.

Length is between 1 and 128
characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Rule Mnemonic
RULE_MNEMONIC Is non-empty.

Length is between 1 and 25 characters.

RiskMinder Server Response Codes

114 Java Developer's Guide

Attribute Attribute ID Validation Criteria

Does not contain invalid characters,
although numbers, alphabets,
underscore (_), and hyphen (-) are
allowed.

Rule Description
Name

RULE_DESCR_NAME Length is between 1 and 128
characters.

Rule Description
RULE_DESCRIPTION Length is between 1 and 1024

characters.

Rule Library Name RULE_LIB Is non-empty.

Parameter Name

RULE_PARAM_NAME Is non-empty.

Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Parameter Value

RULE_PARAM_VALUE
_STR

Is non-empty.

Length is between 1 and 512
characters.

Parameter Value
RULE_PARAM_VALUE
_BIN

Is non-empty.

Parameter Type
RULE_PARAM_TYPE Is non-empty.

Length is between 1 and 4 characters.

Aggregator Name

AGGREGATOR_NAME Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Aggregator ID

AGGREGATOR_ID Is non-empty.

Length is between 1 and 128
characters.

Combination Rule
Name1

COMBINATION_RULE
_
NAME1

Is non-empty.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Combination Rule
Name2

COMBINATION_RULE
_
NAME2

Is non-empty.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Combination Rule
Match1

COMBINATION_RULE
_
MATCH1

Is non-empty.

Length is between 0 and 1 characters.

RiskMinder Server Response Codes

Appendix E: Input Data Validations 115

Attribute Attribute ID Validation Criteria

Combination Rule
Match2

COMBINATION_RULE
_
MATCH2

Is non-empty.

Length is between 0 and 1 characters.

Advice ADVICE Length is between 1 and 64 characters.

Score SCORE Value is between 1 and 100.

Scoring Priority SCORING_PRIORITY Value is between 1 and 2147483647.

Execution Enabled EXECUTIONENABLED Value must either be 0 or 1.

Scoring Enabled SCORINGENABLED Value must either be 0 or 1.

Other Organization
Name

OTHERORGNAME Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Other Configuration
Name

OTHERCONFIGNAME Length is between 1 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Sharing Type
SHARINGTYPE Is non-empty.

Value is between 1 and 3.

Callout Type CALLOUT_TYPE Value is between 0 and 2.

Callout URL

CALLOUT_URL Is non-empty.

Length is between 0 and 150
characters.

Does not contain invalid characters,
although alphabets, number, and + / \
\ # $ % & - _ : . are allowed.

Callout Timeout CALLOUT_TIMEOUT Value is between 0 and 1000000.

Instance Name

INSTANCE_NAME Length is between 0 and 32 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Protocol Module
Name

PROTOCOL_MODULE
_NAME

Length is between 0 and 128
characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

Client SSL TrustStore
Name

CLIENT_SSL_TRUST_S
TORE_NAME

Length is between 0 and 64 characters.

Does not contain invalid characters,
although ASCII 32-127 are allowed.

RiskMinder Server Response Codes

116 Java Developer's Guide

Attribute Attribute ID Validation Criteria

Connection Timeout
CONNECTION_TIMEO
UT

Value is between 0 and 1000000.

Client Certificate CLIENT_CERT --

Client Key CLIENT_KEY --

Server Root CA
Certificate

SERVER_ROOT_CA_CE
RT

--

Server Private Key SERVER_PRIVATE_KEY --

Read Timeout READ_TIMEOUT --

Minimum
Connections

MIN_CONNECTION --

Maximum
Connections

MAX_CONNECTION --

Full Distinguished
Name of the
Certificate

CERT_SUBJECT --

Issuer Name ISSUER_NAME --

Server SSL
Authentication

SERVER_AUTH_SSL --

Client SSL
Authentication

CLIENT_AUTH_SSL --

Action

TRANS_ACTION Is non-empty.

Length is between 1 and 32 characters.

Does not contain invalid characters
(ASCII 0-31).

Association Name

ASSOC_NAME Is non-empty.

Length is between 1 and 32 characters.

Does not contain invalid characters
(ASCII 0-31).

Appendix F: RiskMinder Logging 117

Appendix F: RiskMinder Logging

To effectively manage the communication between RiskMinder Server and your
application, it is necessary to get information about the activity and performance of the
Server and other components, as well as any problems that might have occurred.

This appendix describes the various log files supported by RiskMinder, the severity
levels that you will see in these files, and the formats of these log files. It covers the
following topics:

■ About the Log Files (see page 118)

■ Format of the RiskMinder Server and Case Management Server Log Files (see
page 127)

■ Format of UDS and Administration Console Log Files (see page 128)

■ Supported Severity Levels (see page 128)

About the Log Files

118 Java Developer's Guide

About the Log Files

The RiskMinder log files can be categorized as:

■ Installation Log File (see page 119)

■ Startup Log Files (see page 119)

■ Transaction Log Files (see page 122)

■ Administration Console Log File (see page 125)

■ UDS Log File (see page 126)

The parameters that control logging in these files can be configured either by using the
relevant INI files (as is the case with UDS, Administration Console, and Server Startup log
files) or by using Administration Console itself (as is the case with RiskMinder log file.)
The typical logging configuration options that you can change in these files include:

■ Specifying log file name and path: RiskMinder enables you to specify the directory
for writing the log files and storing the backup log files.

■ Log file size: The maximum number of bytes the log file can contain. When the log
files reach this size, a new file with the specified name is created and the old file is
moved to the backup directory.

■ Using log file archiving: As RiskMinder components run and generate diagnostic
messages, the size of the log files increases. If you allow the log files to keep
increasing in size, then the administrator must monitor and clean up the log files
manually. RiskMinder enables you to specify configuration options that limit how
much log file data is collected and saved. RiskMinder lets you specify the
configuration option to control the size of diagnostic logging files. This lets you
determine a maximum size for the log files. When the maximum size is reached,
older log information is moved to the backup file before the newer log information
is saved.

■ Setting logging levels: RiskMinder also allows you to configure logging levels. By
configuring logging levels, the number of messages saved to diagnostic log files can
be reduced; or reversely, the number of messages can be increased to obtain
greater details. For example, you can set the logging level so that the system only
reports and saves critical messages. See "Supported Severity Levels" (see page 128)
for more information on the supported log levels.

■ Specifying time zone information: RiskMinder enables you to either use the local
time zone for time stamping the logged information or use GMT for the same.

About the Log Files

Appendix F: RiskMinder Logging 119

Installation Log File

When you install RiskMinder, the installer records all the information that you supply
during the installation and the actions (such as creating the directory structure and
making registry entries) that it performs in the Arcot_RiskFort_Install<timestamp>.log
file. The information in this file is very useful in identifying the source of the problems if
the RiskMinder installation did not complete successfully.

The default location of this file is at the same level as the <install_location>.

Startup Log Files

Because RiskMinder comprises two server modules, RiskMinder Server and Case
Management Queuing Server, you will see two startup log files:

■ RiskMinder Server Startup Log File (see page 119)

■ Case Management Queuing Server Startup Log File (see page 121)

The default location of these files is:

On Microsoft Windows:

<install_location>\Arcot Systems\logs\

On UNIX-Based Platforms:

<install_location>/arcot/logs/

RiskMinder Server Startup Log File

When you start RiskMinder Server, it records all startup (or boot) actions in the
arcotriskfortstartup.log file. The information in this file is very useful in identifying the
source of the problems if the RiskMinder service does not start up.

In this file, all logging-related parameters (specified under the [arcot/riskfort/logger]
section) are controlled by Administration Console. To do so, you must use the
instance-specific configuration page that you can access by clicking the required
instance in the Instance Management page.

About the Log Files

120 Java Developer's Guide

RM_3.1--Changing RiskMinder Startup Logging Parameters

If you want to change the logging parameters that you see when RiskMinder Server
starts up, then:

1. Navigate to the conf directory in ARCOT_HOME.

2. Open arcotcommon.ini in a text editor of your choice.

3. Add the following section at the end of the file:

[arcot/riskfort/startup]

LogFile=

LogFileSize=10485760

BackupLogFileDir=

LogLevel=

LogTimeGMT=0

The following table explains these parameters.

Parameter Default Description

LogFile The file path to the default directory and the
file name of the log file.

Note: This path is relative to ARCOT_HOME,
<install_location>\Arcot Systems\ for
Microsoft Windows and
<install_location>/arcot/ for UNIX-based
platforms.

LogFileSize 10485760 The maximum number of bytes the log file can
contain. When a log file reaches this size, a
new file is started and the old file is moved to
the location specified for BackupLogFileDir.

BackupLogFileDir The location of the directory where backup log
files are maintained, after the current file
exceeds LogFileSize bytes.

Note: This path is relative to ARCOT_HOME,
<install_location>\Arcot Systems\ for
Microsoft Windows and
<install_location>/arcot/ for UNIX-based
platforms.

About the Log Files

Appendix F: RiskMinder Logging 121

Parameter Default Description

LogLevel The default logging level for the server, unless
an override is specified.

The possible values are:

■ 0 FATAL

■ 1 WARNING

■ 2 INFO

■ 3 DETAIL

LogTimeGMT 0 The parameter which indicates the time zone
of the time stamp in the log files.

The possible values are:

■ 0 Local Time

■ 1 GMT

1. Set the required values for the parameters that you want to change.

2. Save and close the file.

3. Restart RiskMinder Server.

Case Management Queuing Server Startup Log File

When you start the RiskMinder Case Management Queuing Server, it records all startup
(or boot) actions in the arcotriskfortcasemgmtstartup.log file. The information in this file
is very useful in identifying the source of the problems if the Case Management Queuing
service does not start up.

In this file, all logging-related parameters (specified under the
[arcot/riskfortcasemgmtserver/logger]section) are controlled by Administration
Console. To do so, you must use the instance-specific configuration page that you can
access by clicking the required instance in the Instance Management page.

About the Log Files

122 Java Developer's Guide

Changing Case Management Queuing Server Startup Logging Parameters

If you want to change the logging parameters that you see when Case Management
Queuing Server starts up, then:

1. Navigate to the conf directory in ARCOT_HOME.

2. Open arcotcommon.ini in a text editor of your choice.

3. Add the following section at the end of the file:

[arcot/riskfortcasemgmtserver/startup]

LogFile=

LogFileSize=10485760

BackupLogFileDir=

LogLevel=

LogTimeGMT=0

The table in Changing RiskMinder Startup Logging Parameters (see page 120)
explains these parameters.

4. Set the required values for the parameters that you want to change.

5. Save and close the file.

6. Restart RiskMinder Server.

Transaction Log Files

The transaction logs consist of:

■ RiskMinder Server Log (see page 123)

■ Case Management Server Log File (see page 124)

About the Log Files

Appendix F: RiskMinder Logging 123

RM_3.1--RiskMinder Server Log

RiskMinder records all requests processed by the server and related actions in the
arcotriskfort.log file. The default location of this file is:

On Microsoft Windows:

<install_location>\Arcot Systems\logs\

On UNIX-Based Platforms:

<install_location>/arcot/logs/

Note: You cannot use the RiskMinder logger to configure your application’s logs. You
can access these logs by using the tool used by the third-party application server (such
as Apache Tomcat or IBM Websphere) that is hosting your application.

All logging-related parameters can be configured by using Administration Console. To do
so, you must use the instance-specific configuration page that you can access by clicking
the required instance in the Instance Management page.

In addition to the log file path, the maximum log file size (in bytes), backup directory,
logging level, and timestamp information, you can also control whether you want to
enable trace logging. See "Format of the RiskMinder Server and Case Management
Server Log Files" (see page 127) for details of the default format used in the file.

About the Log Files

124 Java Developer's Guide

Case Management Server Log File

When you deploy the Case Management Server module and subsequently start it, the
details of all its actions and processed requests are recorded in the
arcotriskfortcasemgmtserver.log file. The default location of this file is:

On Microsoft Windows:

<install_location>\Arcot Systems\logs\

On UNIX-Based Platforms:

<install_location>/arcot/logs/

Note: You cannot use the RiskMinder logger to configure your application’s logs. You
can access these logs by using the tool used by the third-party application server (such
as Apache Tomcat or IBM Websphere) that is hosting your application.

All logging-related parameters (specified under the
[arcot/riskfortcasemgmtserver/logger] section) can be configured by using
Administration Console. To do so, you must use the instance-specific configuration page
that you can access by clicking the required instance in the Instance Management page.

In addition to the log file path, the maximum log file size (in bytes), backup directory,
logging level, and timestamp information, you can also control whether you want to
enable trace logging. See "Format of the RiskMinder Server and Case Management
Server Log Files" (see page 127) for the details of the default format used in the file.

About the Log Files

Appendix F: RiskMinder Logging 125

Administration Console Log File

When you deploy Administration Console and subsequently start it, the details of all its
actions and processed requests are recorded in the arcotadmin.log file. This information
includes:

■ Database connectivity information

■ Database configuration information

■ Instance information and the actions performed by this instance

■ UDS configuration information

■ Other Administration Console information specified by the Master Administrator,
such as cache refresh

The information in this file is very useful in identifying the source of the problems if
Administration Console does not start up. The default location of this file is:

On Microsoft Windows:

<install_location>\Arcot Systems\logs\

On UNIX-Based Platforms:

<install_location>/arcot/logs/

The parameters that control logging in these files can be configured by using the
adminserver.ini file, which is available in the conf folder in ARCOT_HOME.

In addition to the logging level, log file name and path, the maximum log file size (in
bytes), log file archiving information, you can also control the layout of the logging
pattern for the Console by specifying the appropriate values for
log4j.appender.debuglog.layout.ConversionPattern.

See "Format of UDS and Administration Console Log Files" (see page 128) for details of
the default format used in the file.

About the Log Files

126 Java Developer's Guide

UDS Log File

Important! This file is generated only if you deployed the arcotuds.war file to enable
LDAP connectivity.

All User Data Service (UDS) information and actions are recorded in the arcotuds.log file.
This information includes:

■ UDS database connectivity information

■ UDS database configuration information

■ UDS instance information and the actions performed by this instance

The information in this file is very useful in identifying the source of the problems if
Administration Console could not connect to the UDS instance. The default location of
this file is:

On Microsoft Windows:

<install_location>\Arcot Systems\logs\

On UNIX-Based Platforms:

<install_location>/arcot/logs/

The parameters that control logging in this files can be configured by using the
udsserver.ini file, which is available in the conf folder in ARCOT_HOME.

In addition to the logging level, log file name and path, the maximum file size (in bytes),
and archiving information, you can also control the layout of the logging pattern for UDS
by specifying the appropriate values for
log4j.appender.debuglog.layout.ConversionPattern.

See "Format of UDS and Administration Console Log Files" (see page 128) for details of
the default format used in the file.

RM_3.1--Format of the RiskMinder Server and Case Management Server Log Files

Appendix F: RiskMinder Logging 127

RM_3.1--Format of the RiskMinder Server and Case
Management Server Log Files

The following table describes the format of the entries in the RiskMinder logger,
arcotriskfort.log and arcotriskfortcasemgmtserver.log, as discussed in "Transaction Log
Files" (see page 122).

Column Description

Time Stamp The time the entry was logged, translated to the specified time
zone.

The format of logging this information is:

www mmm dd HH:MM:SS.mis yy z

In the preceding format:

■ www represents weekday.

■ mis represents milliseconds.

■ z represents the time zone you specified in the
arcotcommon.ini file.

Log Level

(or Severity)

The severity level of the logged entry.

See "Supported Severity Levels" (see page 128) for detailed
information.

Process ID (pid) The ID of the process that logged the entry.

Thread ID (tid) The ID of the thread that logged the entry.

Transaction ID The ID of the transaction that logged the entry.

Message The message logged by the Server in the free-flowing format.

Note: The granularity of this message depends on the Log
Level that you set in arcotcommon.ini.

Format of UDS and Administration Console Log Files

128 Java Developer's Guide

Format of UDS and Administration Console Log Files

The following table describes the format of the entries in the following loggers:

■ arcotuds.log (UDS Log File (see page 126))

■ arcotadmin.log (Administration Console Log File (see page 125))

Column

Associated
Pattern

(In the Log File)

Description

Time Stamp %d{yyyy-MM-dd
hh:mm:ss,SSS z} :

The time when the entry was logged. This
entry uses the application server time zone.
The format of logging this information is:

yyyy-MM-dd hh:mm:ss,mis z

Here:

■ mis represents milliseconds.

■ z represents the time zone.

Thread ID [%t] : The ID of the thread that logged the entry.

Log Level (or
Severity)

%-5p : The severity level of the logged entry.

See "Supported Severity Levels" (see
page 128) for more information.

Logger Class %-5c{3}(%L) : The name of the logger that made the log
request.

Message %m%n : The message logged by the Server in the log
file in the free-flowing format.

Note: The granularity of the message depends
on the Log Level that you set in the log file.

Refer to the following URL for customizing the PatternLayout parameter in the UDS and
Administration Console log files:

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Supported Severity Levels

A log level (or severity level) enables you to specify the level of detail of the information
stored in the RiskMinder logs. This also enables you to control the rate at which the log
file will grow.

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/patternlayout.html/n
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/patternlayout.html/n

Supported Severity Levels

Appendix F: RiskMinder Logging 129

Server Log File Severity Levels

The following table describes the log levels that you see in server log files, in the
decreasing order of severity.

 Log Level Description

0 FATAL Use this log level for serious, non-recoverable errors that can
cause the abrupt termination of the RiskMinder service.

At the FATAL level, only situations which indicate a fatal problem
will be logged.

1 WARNI
NG

Use this log level for undesirable run-time exceptions, potentially
harmful situations, and recoverable problems that are not yet
FATAL.

2 INFO Use this log level for capturing information on run-time events.

In other words, this information highlights the progress of the
application, which might include changes in:

■ Server state, such as start, stop, and restart.

■ Server properties.

■ State of services.

■ State of processes on the Server.

For example, there are some logs that will always be printed to
indicate that requests are being received and that they are being
processed. These logs appear at the INFO level.

3 LOW

DETAIL

Use this log level for logging detailed information for debugging
purposes. This might include process tracing and changes in
Server states.

Note: When you specify a log level, messages from all other levels of higher significance
are reported as well. For example if the LogLevel is specified as 3, then messages with
log levels of FATAL, WARNING, and INFO level are also captured.

Administration Console and UDS Log File Severity Levels

The following table describes the log levels that you see in Administration Console and
UDS log files, in the decreasing order of severity.

 Log Level Description

0 OFF Use this level to disable all logging.

1 FATAL Use this log level for serious, non-recoverable errors that can
cause the abrupt termination of the RiskMinder service.

Supported Severity Levels

130 Java Developer's Guide

 Log Level Description

2 WARNI
NG

Use this log level for undesirable run-time exceptions, potentially
harmful situations, and recoverable problems that are not yet
FATAL.

3 ERROR Use this log level for recording error events that might still allow
the application to continue running.

4 INFO Use this log level for capturing information on run-time events. In
other words, this information highlights the progress of the
application, which might include changes in:

■ Server state, such as start, stop, and restart.

■ Server properties.

■ State of services.

■ State of a processes on the Server.

5 TRACE Use this log level for capturing finer-grained informational events
than DEBUG.

6 DEBUG Use this log level for logging detailed information for debugging
purposes. This might include process tracing and changes in
Server states.

7 ALL Use this log level to enable all logging.

Note: When you specify a log level, messages from all other levels of higher significance
are reported as well. For example if the LogLevel is specified as 4, then messages with
log levels of FATAL, WARNING, ERROR, and INFO level are also captured.

Supported Severity Levels

Appendix F: RiskMinder Logging 131

Sample Entries for Each Log Level

The following subsections show a few sample entries (based on the Log Level) in the
RiskMinder log files.

FATAL
May 27 18:31:01.585 2010 GMT FATAL: pid 4756 tid 5152: 0: 0: Cannot continue due to

ARRF_LIB_init failure, SHUTTING DOWN

WARNING
May 24 14:47:39.756 2010 GMT WARNING: pid 5232 tid 5576: 0: 110000: EVALHTTPCALLOUT

: Transport Exception : create: No Transports Available

INFO
May 24 14:41:43.758 2010 GMT INFO: pid 3492 tid 4904: 0: 109002: Error in

ArPFExtRuleSetEval::evaluate Could not get user context (two parallel requests)

May 25 10:01:28.131 2010 GMT WARNING: pid 1048 tid 3104: 8: 0: Error in

ArRFCaseStatus::startInit: No data found

DETAIL
May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Entering USERRISKEVALVELOCITY Rule Evaluation function

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE: VELOCITY_DURATION=[60],

VELOCITY_DURATION_UNIT=[MINUTES], VELOCITY_TRANSACTION_COUNT=[5]

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Entering UserRiskEvalVelocityRule

durationToTimeConvertor

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Exiting UserRiskEvalVelocityRule durationToTimeConvertor

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Entering UserRiskEvalVelocityRule

callUserEvalVelocityRule

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Entering

ArUserRiskEvalVelocityDBO::decisionLogicForUserVelocity

Supported Severity Levels

132 Java Developer's Guide

May 24 14:52:01.219 2010 GMT INFO: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Entering decisionLogicForUserVelocity

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Exiting

ArUserRiskEvalVelocityDBO::decisionLogicForUserVelocity

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Exiting UserRiskEvalVelocityRule

callUserEvalVelocityRule

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : USERRISKEVALVELOCITY.RESULT=[0]

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : USERRISKEVALVELOCITY.DETAIL=[RESULT=0;TCOUNT=2;

ACT=mection]

May 24 14:52:01.219 2010 GMT LOW: pid 2132 tid 1356: 0: 111004:

USERRISKEVALVELOCITYRULE : Exiting USERRISKEVALVELOCITY Rule Evaluation function

Appendix G: RiskMinder Sample Application 133

Appendix G: RiskMinder Sample Application

RiskMinder is shipped with a Sample Application that serves as a "template" of simple
Java primitives (code) that demonstrate the usage of RiskMinder Java APIs and how
your application can be integrated with RiskMinder. In this manner, Sample Application
also serves to standardize the integration process between RiskMinder and your
application.

Important! Sample Application must not be used in your production environment. It is
recommended that you build your own Web application by using Sample Application
only as a code-reference. In a production environment, Sample Application can only be
used to verify if RiskMinder was installed successfully, and if is able to perform
risk-evaluation operations.

This appendix introduces you to the RiskMinder Sample Application and walks you
through the following sections:

■ Understanding the Sample Application (see page 133)

■ Installing and Configuring the Sample Application (see page 136)

■ Performing Risk Evaluation (see page 139)

■ Creating Users (see page 143)

Understanding the Sample Application

To deploy RiskMinder in your environment, you need to integrate its APIs with your
online application. Sample Application uses RiskMinder Java APIs to demonstrate the
most common functionality of RiskMinder, discussed in detail in "Performing Risk
Evaluation" (see page 139).

However, before you explore the risk evaluation capability of Sample Application, you
must understand the Sample Application Components (see page 134) and Sample
Application Recommendations (see page 135).

Understanding the Sample Application

134 Java Developer's Guide

Sample Application Components

Sample Application constitutes the following:

■ Servlets: Platform-independent server-side modules that can be used to add new
functionality to a Web server. (Servlets are an equivalent of an applets, however,
unlike applets, they do not have a user interface. They just enable you to access the
existing business logic by the help of user interface provided by JSPs.

■ Helpers: Classes that provide the extra functionality that is not a part of the class
that makes use of them. As a result, helper classes help making the code
maintainable and reusable.

For example, if a class needs to display the value of a number, it could just display it
raw, or alternately format it neatly (comma-separated format, for example). To do
the formatting instead, the class can make use of another class, which is referred to
as a helper class.

■ JSPs: Java Server Pages (JSPs) that enable you to create and serve dynamic Web
content that is server- and platform-independent.

These Sample Application components are organized in a model-view-controller (MVC)
framework, which separates the user interface of your application from the underlying
business logic. As a result, it is much easier to modify either the user interface of the
application or the business rules or both without affecting the other.

The following figure illustrates the interaction between the components of Sample
Application (after a user is successfully authenticated by your application.)

Understanding the Sample Application

Appendix G: RiskMinder Sample Application 135

As illustrated in the preceding figure, the flow of information between the various
components of Sample Application is as follows:

1. User initiates a transaction using the browser window.

Note: This step assumes that the end user is already successfully logged in after
being authenticated by your application.

2. The servlet processes the request and invokes the corresponding helper function so
that it can, in turn, invoke the required RiskMinder SDK.

3. The helper function calls the appropriate API to interact with RiskMinder Server by
passing the inputs forwarded by the servlet in the preceding step.

4. RiskMinder Server assesses the input and returns a risk score and an advice. In each
case, an object of the relevant type is returned.

If the assessment failed, an exception is generated.

5. The helper function returns the object created by RiskMinder SDK along with the
response to the corresponding servlet.

In case of a failure, the helper function catches all exceptions and displays a
meaningful error message.

6. The servlet receives the response from the helper function, sets the corresponding
values in request attribute, and forwards it to a JSP.

7. The JSP parses the request attribute set by the servlet, generates an HTTP response,
and forwards it to the browser.

This response is then displayed to the user.

Sample Application Recommendations

In this integration model, it is recommended that:

■ You can use the helper functions without any modifications.

■ You replace all Sample Application-provided JSPs with your own to control the look
and feel of the user interface of the application.

Note: Read the API documentation before changing the code.

■ You replace all Sample Application-provided servlets with your own controller logic.

■ You do not use Sample Application in your production environment. Instead, it is
recommended that build your own Web application by using Sample Application
only as a code-reference.

Installing and Configuring the Sample Application

136 Java Developer's Guide

Installing and Configuring the Sample Application

You can install the Sample Application in the following two ways:

■ If you select the Complete option while running the RiskMinder installer. When you
do so, the Sample Application is also installed along with other RiskMinder
components.

■ If you select the Custom installation option, then you must select the SDKs and
Sample Application option on the Component Selection screen to install the
Sample Application.

Book: For detailed information on prerequisites of the Sample Application and its
deployment, refer to the CA RiskMinder Installation and Deployment Guide.

On Microsoft Windows

To install (and later configure) RiskMinder and the Sample Application on Microsoft
Windows successfully, the user account that you plan to use for installation must belong
to the Administrators group. Else, some critical steps in the installation, such as DNS
creation and configuration and RiskMinder service creation, will not go through
successfully, though the installation might complete without any errors.

On UNIX-Based Platforms

The installation UNIX-based platforms is not restricted to the root account. You can
install as a non-root user also.

Configuring Sample Application

You can deploy Sample Application in any of the scenarios discussed in the following
sub-sections.

Installing and Configuring the Sample Application

Appendix G: RiskMinder Sample Application 137

Sample Application and RiskMinder on the Same System

Important! If Sample Application and RiskMinder Server are running on the same
system, you do not have to perform any steps in this section to configure Sample
Application.

However if your RiskMinder Server uses a port other than the default (7680), then the
only deployment steps you need to perform is to change the port number. To do so:

1. Ensure that the riskfort-3.1.01-sample-application.war is deployed on the
application server.

Book: To ensure that Sample Application is deployed correctly, refer to the CA
RiskMinder Installation and Deployment Guide for details.

2. Navigate to the location where the WAR file is deployed and open
riskfort.risk-evaluation.properties file.

Note: The deployment procedure (and App_Home) will depend on the application
server that you are using.

Refer to your application server documentation for detailed instructions.

On Apache Tomcat, riskfort.risk-evaluation.properties is typically available at
<Tomcat_Home>\webapps\riskfort-3.1.01-sample-application\WEB-INF\classes\pro
perties\riskfort.risk-evaluation.properties.

3. Ensure that the value of HOST.1 is localhost.

4. Change the value of PORT.1.

PORT.1 represents the port on which RiskMinder Server is listening to the incoming
requests. For example, PORT.1=7680.

Installing and Configuring the Sample Application

138 Java Developer's Guide

Sample Application and RiskMinder on Different Systems

If Sample Application and RiskMinder Server are running on different systems, then you
must complete the following steps to configure Sample Application:

1. Ensure that the riskfort-3.1.01-sample-application.war is deployed on the
application server.

Book: To ensure that Sample Application is deployed correctly, refer to the CA
RiskMinder Installation and Deployment Guide for details.

2. Navigate to the location where the Sample Application WAR file is deployed and
open riskfort.risk-evaluation.properties file.

Note: The deployment procedure (and App_Home) will depend on the application
server that you are using.
Refer to your application server documentation for detailed instructions.

On Apache Tomcat, riskfort.risk-evaluation.properties is typically available at
<Tomcat_Home>\webapps\riskfort-3.1.01-sample-application\WEB-INF\classes\pro
perties\riskfort.risk-evaluation.properties.

3. Change the value of HOST.1.

HOST.1 represents the host name or IP address of RiskMinder Server. For example,
HOST.1=10.150.1.111.

4. Change the value of PORT.1.

PORT.1 represents the port on which RiskMinder Server is listening to the incoming
requests. For example, PORT.1=7680.

5. (Optional, if RiskMinder Server not running in SSL mode) Perform this step only if
you want to secure the communication between Sample Application and
RiskMinder Server over SSL.

In this case, change the value of TRANSPORT_TYPE to SSL:

TRANSPORT_TYPE=SSL

6. (Optional, if RiskMinder Server not running in SSL mode) Specify server CA
certificate location for CA_CERT_FILE=<Server_CA_certificate_location>.

Important! The certificate must be in PEM format.

For example, CA_CERT_FILE=C:\certs\riskfort_ca.pem

7. Save the changes and close the open files.

8. Restart the application server on which the Sample Application is running.

With the completion of these steps, your Sample Application deployment is also
complete. You can now start using it to understand the API workflow for each supported
operation, as demonstrated in the following sections.

Performing Risk Evaluation

Appendix G: RiskMinder Sample Application 139

Performing Risk Evaluation

RiskMinder Sample Application demonstrates some of these aspects of the RiskMinder
risk-evaluation process. It covers the following:

■ Performing Risk Evaluation on Gathered Information (see page 140)

■ Editing the Gathered User Information (see page 141)

■ API Workflow and Reference (see page 142)

Performing Risk Evaluation

140 Java Developer's Guide

Performing Risk Evaluation on Gathered Information

Sample Application demonstrates how APIs are used to perform risk evaluation on the
gathered data. To view the demonstration, perform the following steps:

1. Access the Sample Application URL in a browser window. This URL typically is:

http://<app_server_host_name>:<port_number>/riskfort-3.1.01-sample-application
/index.jsp

In the preceding URL, <app_server_host_name> represents the host name or IP
address of the application server on which Sample Application has been deployed
and <port_number> represents the port number at which Sample Application is
available.

The RiskMinder Sample Application landing page appears.

2. Click Evaluate Risk to open the Risk Evaluation page.

3. On the page, specify:

■ The name of the user who is being evaluated for risk in the User Name field.

Note: You can also specify the name of a user who is not yet enrolled with Sample
Application, as discussed in "Performing Risk Evaluation" (see page 139).

■ (Optional) The name of the organization to which the user belongs in the User
Organization field.

Note: If you leave the User Organization field empty, the value is automatically set
to DEFAULTORG.

■ (Optional) The name of the Channel where the transaction originated.

■ (Optional) The corresponding Name and Value fields with Additional Inputs,
such as locale information and transaction amount for the current transaction.

4. Click Evaluate Risk to generate the Risk Score and Risk Advice for the specified user.

The Risk Evaluation Results page appears. If the user is not enrolled with
RiskMinder, then the advice is typically, ALERT. This advice changes when you
create the user in RiskMinder database, as discussed in "Creating Users" (see
page 143) later in this appendix.

5. Click Store DeviceID to store the specified type of Device ID information (Step 2) on
the end user's device.

6. Click Next Step to perform post evaluation for the specified user.

The Post Evaluation page appears.

Important! As indicated on the page, if the advice on the previous page was
INCREASEAUTH, then it is recommended that you plug-in your secondary
authentication mechanism, so that the user performs another authentication
before performing RiskMinder post-evaluation steps.

7. Click Post Evaluate to generate and display the final Risk Advice for your
application.

Performing Risk Evaluation

Appendix G: RiskMinder Sample Application 141

The final result is displayed in the Post Evaluation Results frame of the page.

Editing the Gathered User Information

Sample Application also allows you to edit the collected Device ID information of an
existing user. This enables you to simulate real-life situations a user might run in to. For
example, if you change the IP address of an enrolled user, then you can simulate that
the user is logging in from a different location.

For demonstration purposes, the data that you can edit by using Sample Application is:

■ IP Address

■ Device ID

After a user’s information is updated, they must undergo the risk-evaluation procedure.
In such cases, RiskMinder typically generates the INCREASEAUTH advice.

To edit a user’s information by using Sample Application, perform the following tasks:

1. On the RiskMinder Sample Application page, Click Risk Evaluation to open the Risk
Evaluation input page.

2. Specify the User Name, and if required the User organization.

3. Click Edit Inputs to open the Edit Risk-Evaluation Inputs page.

4. Change the IP address in the IP Address of My Machine field or the Device ID in the
Device ID of My Machine field, or both.

5. Click Evaluate Risk to generate the Risk Score and Risk Advice for the specified user.

The Risk Evaluation Results page should appear with an ALERT advice.

6. Click Store DeviceID to store the specified type of Device ID information on the end
user's device.

7. Click Next Step to perform post evaluation for the specified user.

The Post Evaluation page appears.

8. Specify the result of secondary authentication (to simulate the scenario where
RiskMinder receives the result of this additional authentication) in the Result of
Secondary Authentication field.

9. Click Post Evaluate to generate and display the final Risk Advice for your
application.

The final result is displayed in the Post Evaluation Results frame of the page.

Performing Risk Evaluation

142 Java Developer's Guide

API Workflow and Reference

When you use Sample Application for risk evaluation:

1. The ArRFInitHandler.class of the com.arcot.riskfort.sampleapp.initialize package is
invoked.

After the initialization is complete, RiskMinder is ready to serve the requests.

2. RiskFactory, which is responsible for RiskMinder-related operations, is invoked by
the ArRFEvaluateHelper.class in the com.arcot.riskfort.sampleapp.helpers package.

When the evaluateRisk() method in ArRFEvaluateHelper.class is called, the
RiskXActionAPI interface is invoked.

3. To perform risk evaluation, your application’s servlet, .jsp, or any other calling file
must call the evaluateRisk() method of the ArRFEvaluateHelper class.

This method returns the RiskAssessment object as response, which contains
riskScore, riskAdvice, deviceID, and related information to your application.

Important! Based on the generated risk score and advice at this stage, your
application must provide logic to perform the required action, such as forward the
transaction request to a CSR or force the user to perform additional authentication.

4. To perform post evaluation, your application’s servlet, .jsp, or any other calling file
must call the postEvaluateHelper() method of the ArRFEvaluateHelper class.

Important! The postEvaluateHelper() method must be called only after the
evaluateRisk() method was executed.

This method accepts CallerID, RiskAssessment object (returned by the
evaluateRisk() function), and result of your secondary authentication, if any,
(secondaryAuthenticationStatus), and association name (optional) as input and
returns to your application the postEvaluateResponseObj object, which contains the
final advice.

The class and method required in the preceding workflow are described in the
following table.

API Description

Class: ArRFEvaluateHelper The helper class that contains the methods
required for risk evaluation and post evaluation.

Method: evaluateRisk() The method that generates the Risk Score and
Risk Advice.

Method: postEvaluateHelper() The method that generates the final Risk Advice.
This advice is a Boolean value. In case of True, the
advice is ALLOW, while in case of False, the advice
is to not ALLOW the transaction.

This method must be called only after
evaluateRisk() has been executed.

Creating Users

Appendix G: RiskMinder Sample Application 143

Creating Users

Creating a new user in RiskMinder is a one-time operation, which is performed only
when a new user is to be added to RiskMinder. This user typically is an existing user of
your application accessing RiskMinder for the first time.

This section describes how the Sample Application demonstrates the creation of a user
and then explains the API workflow for the same:

■ Creating a User (see page 143)

■ Performing Risk Evaluation for the User that You Created (see page 144)

Creating a User

From this release, the Issuance API that was responsible for user creation has been
deprecated. You can create end users in the system:

■ Either by using Administration Console.

■ Or by making a call to the createUserRequest message in the ArcotUserRegistrySvc
Web service.

The following procedure walks you through the steps for creating a user by using
Administration Console.

Book: If you want to create a user by using the Web service, then refer to "Creating
Users" in "Managing Users and Accounts" in the CA RiskMinder Web Services
Developer’s Guide.

To create a user:

1. Ensure that you are logged in with the required privileges and scope to create the
user.

2. Activate the Users and Administrators tab.

3. Under the Manage Users and Administrators section, click the Create User link to
display the Create User page.

4. On the page, enter the required details of the user.

5. Click Create User to create the user.

Creating Users

144 Java Developer's Guide

Performing Risk Evaluation for the User that You Created

If now you perform risk evaluation (Step 2 on page G-146 through Step 4 on page G-148,
as mentioned in "Performing Risk Evaluation on Gathered Information" (see page 140))
for the user that you just created, you will see the Risk Score and Risk Advice values as
65 and INCREASEAUTH, respectively, on the Risk Evaluation Results page.

When you click Next Step to perform post evaluation, you will see the Post Evaluation
page as follows.

If you now select SUCCESS in the Result of Secondary Authentication field and click Post
Evaluate, you will see the Final Risk Advice as ALLOW.

After you see the ALLOW advice for a user, then for next risk evaluation result you will
always see ALLOW, unless you changed any on the user IP or Device ID information.

	CA RiskMinder Java Developer's Guide
	Contact CA Technologies
	Contents
	1: Getting Started
	Introduction to the RiskMinder SDK
	Microsoft Windows:
	UNIX-Based Platforms:
	Risk Evaluation API

	RiskMinder SDK Features
	Overview of the Integration Steps
	Before a User Logs in to Your Application (and Just Accesses the Login Page)
	After a User Logs in to Your Online Application (By Specifying the User Name and Password to Access Their Account or the Protected Resource)

	Before You Begin

	2: Understanding RiskMinder Workflows
	Enrollment Workflows
	Explicit Enrollment
	Scenario 1
	Scenario 2

	Implicit Enrollment

	Risk Evaluation Workflows
	Pre-Login Risk Evaluation Workflow
	Post-Login Risk Evaluation Workflow
	Secondary Authentication Workflow

	Workflow Summary

	3: Before You Begin
	Configuring Java APIs
	Including Risk Evaluation JAR Files in CLASSPATH
	Including Properties Files in CLASSPATH
	Initializing the Risk Evaluation API
	Method 1: Initializing the API by Using the Properties File
	Method 2: Initializing the API by Using the Map

	Preparing Additional Inputs

	4: Managing Users
	5: Collecting Device ID and DeviceDNA
	End-User Device Identification Basics
	Device ID
	Machine FingerPrint (MFP)
	DeviceDNA

	File that You Will Need
	Configuring Device ID and DeviceDNA
	Step 1: Include the Javascript File
	Step 2: Initialize Device ID and DeviceDNA Collection
	Sample Application Reference

	Step 3: Collect the Device ID and DeviceDNA
	Step 4: Collect the IP Address

	Sample Code Reference
	Understanding the APIs for Retrieving DeviceDNA in the Sample Code
	ca.rm.Client()
	getVersion()
	setProperty(key,val)
	getProperty(key)
	loadFlash(callback)
	processDNA()
	getDNA()
	getTimeTaken()
	setDID(value)
	getDID()
	deleteDID()

	Collecting the IP Address
	If the End User is Accessing Your Application Directly

	6: Performing Risk Evaluation
	Evaluating Risks and Performing Post-Evaluation
	Handling Errors
	Sample Code for Risk Evaluation and Post Evaluation

	Managing Associations
	Listing Associations
	Handling Errors

	Deleting Associations
	Handling Errors

	A: Additional SDK Configurations
	Configuring a Backup RiskMinder Server Instance
	RM_3.1--SSL Communication Between RiskMinder Components
	RM_3.1--Setting Up SSL Communication Between Java SDK and RiskMinder Server
	Configuring One-Way SSL
	Configuring Two-Way SSL

	B: Sample Code
	Sample Code for Risk Evaluation and Post-Evaluation
	To Compile on Microsoft Windows
	To Compile on UNIX-Based Platforms
	To Run on Microsoft Windows
	To Run on UNIX-Based Platforms
	Expected Output

	C: Java API Reference
	Accessing the Javadoc HTML Documentation
	Risk Evaluation API
	Third-Party JARs Used by Risk Evaluation API

	D: Exceptions and Error Codes
	RiskMinder SDK Exceptions
	Risk Evaluation Server Exceptions
	Risk Evaluation SDK Exceptions

	RiskMinder Server Response Codes

	E: Input Data Validations
	F: RiskMinder Logging
	About the Log Files
	Installation Log File
	Startup Log Files
	RiskMinder Server Startup Log File
	RM_3.1--Changing RiskMinder Startup Logging Parameters
	Case Management Queuing Server Startup Log File
	Changing Case Management Queuing Server Startup Logging Parameters

	Transaction Log Files
	RM_3.1--RiskMinder Server Log
	Case Management Server Log File

	Administration Console Log File
	UDS Log File

	RM_3.1--Format of the RiskMinder Server and Case Management Server Log Files
	Format of UDS and Administration Console Log Files
	Supported Severity Levels
	Server Log File Severity Levels
	Administration Console and UDS Log File Severity Levels
	Sample Entries for Each Log Level
	FATAL
	WARNING
	INFO
	DETAIL

	G: RiskMinder Sample Application
	Understanding the Sample Application
	Sample Application Components
	Sample Application Recommendations

	Installing and Configuring the Sample Application
	On Microsoft Windows
	On UNIX-Based Platforms
	Configuring Sample Application
	Sample Application and RiskMinder on the Same System
	Sample Application and RiskMinder on Different Systems

	Performing Risk Evaluation
	Performing Risk Evaluation on Gathered Information
	Editing the Gathered User Information
	API Workflow and Reference

	Creating Users
	Creating a User
	Performing Risk Evaluation for the User that You Created

