

Authentication Developer's Guide
r2.2

CA ArcotID OTP Platform
Independent Java Library

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © [set copyright date variable] CA. All rights reserved. All trademarks, trade names, service marks, and logos
referenced herein belong to their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 7

ArcotID OTP Overview .. 8

Chapter 2: Preparing for Integration 9

Integration Requirements .. 9

Chapter 3: Understanding ArcotID OTP APIs 11

Provisioning ArcotID OTP Accounts.. 12

API Details ... 13

How a Provisioning Request Works .. 14

Exception ... 16

Choosing Custom Storage Medium .. 16

Storing Accounts in Memory .. 17

Generating Passcodes .. 17

API Details ... 18

Resetting ArcotID OTP PIN ... 20

API Details ... 20

Managing Accounts .. 20

Fetching Accounts ... 21

Deleting Accounts ... 22

Device Locking .. 23

Device Locking Using Non-Default Parameters... 23

API Details ... 23

Reading ArcotID OTP Account Details .. 24

ArcotID OTP Details ... 24

Fetching ArcotID OTP Details .. 25

Managing Additional ArcotID OTP Attributes ... 26

Saving Additional ArcotID OTP Attributes ... 26

Synchronizing the Client and Server .. 27

API Details ... 27

How a Synchronization Request Works .. 28

Exception ... 28

Fetching Library Version ... 29

API Details ... 29

Serializing and Deserializing an Account Object .. 29

API Details ... 29

6 Authentication Developer's Guide

Chapter 4: ArcotID OTP SDK Exceptions and Error Codes 31

Exceptions .. 31

Error Codes ... 31

Chapter 1: Introduction 7

Chapter 1: Introduction

Computers and mobile devices are now also used as a medium for home banking and
performing financial transactions. Because these transactions involve sensitive user
data, relying on just user name for authentication is not sufficient.

To secure the online transactions from Man-in-the-Middle (MITM) and other related
attacks, CA AuthMinder provides client applications that are based on CA ArcotID PKI
and CA ArcotID OTP credentials. These software credentials provide two-factor
authentication and are based on the patented Cryptographic Camouflage technique for
securely storing keys.

There are client applications for computers and mobile devices.

To address your business requirements, you can extend and use the ArcotID OTP Client
application. Alternatively, you can develop your own client application by using the
Software Development Kit (SDK) that is shipped along with the client application.

This guide is intended to be a reference manual for you as you enhance the existing
client application or create custom client applications for use with the ArcotID OTP for
authentication on computers and mobile devices.

Note: The platform-independent version of the ArcotID OTP SDK is written in Java. This
guide provides information about this platform-independent Java library (later referred
to as "SDK" in this guide). For information about the ArcotID OTP SDK that is written in
the Java, JavaScript, and Objective C programming languages for various mobile devices
and computers, see the CA ArcotID OTP Authentication Developer’s Guide.

Important! Implementations of most client features provided in the SDK can be used
with very little or no modification. However, only sample implementations of the Device
Locking feature and the Storage feature are provided in the SDK. If you want to use
these two features, you must use the SDK to develop your own implementations.

Note: CA ArcotID OTP still contains the terms Arcot, WebFort and ArcotOTP in some of
its code objects and other artifacts. Therefore, you will find occurrences of Arcot and
ArcotOTP in all CA ArcotID OTP documentation. In addition, some of the topics in this
guide do not follow the standard formatting guidelines. These inconsistencies will be
fixed in a future release.

ArcotID OTP Overview

8 Authentication Developer's Guide

ArcotID OTP Overview

ArcotID OTP is a One-Time Password compliant to OATH standards. The client
application that you build by using ArcotID OTP SDK takes the user’s PIN as an input and
generates passwords (also known as passcodes) on the user’s device. The user uses this
generated passcode at the Web application or at the VPN gateway that is protected by
ArcotID OTP authentication. Based on the authentication result, the user is granted
access to the protected application.

The passcode generation is an offline process, which means the client application need
not connect to the authentication server for generating passcodes.

ArcotID OTP library supports industry-standard passcode generation methods such as,
counter-based passwords (HOTP), time-based passwords (TOTP), MasterCard Chip
Authentication Program (CAP), and VISA Dynamic Passcode Authentication (DPA).

Chapter 2: Preparing for Integration 9

Chapter 2: Preparing for Integration

Before you start writing your code to integrate your application with ArcotID OTP SDK,
ensure that:

■ A release of CA AuthMinder that is supported by this release of ArcotID OTP Client
is installed and running on a publically accessible system.

■ The ArcotID OTP profile is set by using the Administration Console.

Note: The lifecycle management of ArcotID OTP credential is handled by
AuthMinder. By default, these credentials have default settings, which will be used
during issuance. If you want to change these settings, then configure the credential
profiles by using Administration Console. Refer to CA AuthMinder Administration
Guide for more information.

■ The application you are integrating with supports the operating systems listed in
the "Integration Requirements (see page 9)" section.

Integration Requirements

The following table lists the software required to integrate the ArcotID OTP
platform-independent Java library with your application.

Operating System

Any operating system that runs Java Runtime Environment (JRE) 6.0 or later.

Chapter 3: Understanding ArcotID OTP APIs 11

Chapter 3: Understanding ArcotID OTP APIs

This chapter discusses the ArcotID OTP Software Development Kit (SDK) that you can
use to build client applications for authenticating users by using their ArcotID OTP. The
most common tasks performed using this SDK are provisioning the ArcotID OTP
account to the user’s device and generating passcodes. Other tasks that you can
perform using the SDK include resetting ArcotID OTP PIN, fetching and deleting the
accounts from default location, storing accounts in a custom location, locking account to
the device by using device parameters of your choice, and checking library version.

The chapter first introduces you to the interfaces and classes that you will be using for
different tasks mentioned in the preceding paragraph, and later explains the usage in
detail.

■ Provisioning (Downloading) ArcotID OTP Accounts

To perform ArcotID OTP authentication, you need to first create an account for the
user that contains the ArcotID OTP information and save it on their device. The
Provisioning ArcotID OTP Accounts (see page 12) section discusses the
provisionRequest() method in the OTP class that you need to use to create ArcotID
OTP accounts.

■ Storing Accounts

After an account has been provisioned, it must be stored on the user’s device. The
Choosing Custom Storage Medium (see page 16) section provides information
about storing accounts. The Storing Accounts in Memory (see page 17) section
describes a sample implementation for using memory as the storage location.

■ Generating Passcodes

To perform ArcotID OTP authentication, the users have to first generate passcode,
which is required during authentication. The Generating Passcodes (see page 17)
section discusses the generateOTP() method in OTP class that you need to use to
generate passcodes.

■ Resetting ArcotID OTP PIN

The Resetting ArcotID OTP PIN (see page 20) section discusses the resetPin method
in the OTP class that you can use to change the user’s ArcotID OTP PIN.

Provisioning ArcotID OTP Accounts

12 Authentication Developer's Guide

■ Managing Accounts

The Managing Accounts (see page 20) section discusses the methods of OTP class
that you need to use for reading and deleting ArcotID OTP accounts stored in the
default location.

■ Device Locking

Depending on the device that is being used, ArcotID OTP library supports default
parameters for locking the account to the device. If you want to lock an account to
the device by using the device parameters of your choice, then implement the
DeviceLock interface, as discussed in the Device Locking (see page 23) section.

■ Reading ArcotID OTP Account Details

The Reading ArcotID OTP Account Details (see page 24) section discusses the OTP
class fields that hold the ArcotID OTP details such as, unique identifier for the
account, timestamp when the account was used, number of times the account was
used, and friendly name for the account. It also discusses the classes that are used
to set and get additional ArcotID OTP attributes.

■ Synchronizing the Client and Server

The Synchronizing the Client and Server (see page 27) section discusses how to use
the syncRequest() method to construct and send a synchronization request to the
server.

■ Checking ArcotID OTP SDK Version

The Checking Library Version (see page 29) section discusses the getVersion()
method in the OTP class for checking the version of the ArcotID OTP SDK.

■ Converting the ArcotID OTP

The Converting the ArcotID OTP (see page 29) section discusses the
provisionRequest() method and callback() method for converting the ArcotID OTP
into a string and back into an account object.

Provisioning ArcotID OTP Accounts

The provisionRequest() method is used to construct and send an account provisioning
request to the server. The callback() method is invoked after the request is sent to the
server. In an asynchronous implementation, typically, the provisionRequest() method
and callback() method are invoked multiple times until the success status is received in
the callback() method.

Note: The provisionRequest() method replaces the provisionAccount() method in the
SDK. The provisionAccount() method has been retained in the SDK only for backward
compatibility purposes.

Provisioning ArcotID OTP Accounts

Chapter 3: Understanding ArcotID OTP APIs 13

API Details

The following table lists the input and output parameters of the provisionRequest()
method:

Parameter Description

Input Parameters

args Map containing name-value pairs.

For the initial provisionRequest call, the following
name-value pairs are populated in the map:

URL: Request URL string

ACCOUNTID: User identifier string

ACTCODE: Activation code to validate the request.

CONN_OBJECT: (Optional) Network connection object

Refer to JavaDocs for more information on the other
supported name-value pairs.

Output Parameters

None.

Provisioning ArcotID OTP Accounts

14 Authentication Developer's Guide

How a Provisioning Request Works

This section explains the sequence of events that take place when a provisioning
request is sent to the server. Apply this information while using the provisionRequest()
method and callback() method in your implementation.

The following events take place when a provisioning request is sent to the server:

1. When the provisionRequest() method is invoked the first time, it sends the
provisioning request to the server. This request contains the following parameters:

■ URL

■ ACCOUNTID

■ ACTCODE

■ CONN_OBJECT (optional)

2. The callback() method is invoked. The parameters returned by this method depend
on what happens next:

Note: The client application must free up the parameters map after each
provisionRequest() call and the corresponding callback() call.

■ If the request succeeds, then the callback() method returns the following
parameter values:

■ URL

■ ACCOUNTID

■ ACTCODE

■ CONN_OBJECT (only if this parameter was sent in the initial request)

■ REQUESTTYPE=”provisioning”

■ PINTYPE=1/0

■ MINPINLENGTH=<minimum-PIN-length>

■ XML=<response>

■ DLTA=<time-difference-between-the-server-and-client-application>

■ STATE=PINREQUIRED

 The PINREQUIRED state indicates that the server is requesting the PIN.

■ If the request fails for any reason, then the callback() method returns the
following parameter values:

■ URL

■ ACCOUNTID

■ ACTCODE

■ CONN_OBJECT (only if this parameter was sent in the initial request)

Provisioning ArcotID OTP Accounts

Chapter 3: Understanding ArcotID OTP APIs 15

■ REQUESTTYPE=”provisioning”

■ ERR_CODE=<error-code>

■ ERR_MSG=<error-message>

■ PLATFORM_MSG=<error-message-returnedf-by-the-underlying-platform>

3. The provisionRequest() method is invoked again. The parameters passed by this
method depend on the state returned by the callback() method. For the
PINREQUIRED state of the callback() method, the following are the parameters
(with some sample values) sent by the provisionRequest() method. Note that the
original set of parameters are included in the request again.

■ URL

■ ACCOUNTID

■ ACTCODE

■ CONN_OBJECT (only if this parameter was sent in the initial request)

■ REQUESTTYPE=”provisioning”

■ PINTYPE

■ MINPINLENGTH

■ XML

■ DLTA

■ STATE=PINREQUIRED

■ PINVALUE

4. After the request is processed by the server, the parameters returned by the
callback() method depend on whether the request has succeeded or failed:

■ If the request was successfully processed, then the callback() method returns
the following parameter values:

■ URL

■ ACCOUNTID

■ ACTCODE

■ CONN_OBJECT (only if this parameter was sent in the initial request)

■ REQUESTTYPE=\xE2\x80\x9Dprovisioning”

■ ACCOUNT_KEY=<newly-created-account-key>

■ PINVALUE=<masked-newly-created-PIN>

■ STATE=DONE

■ If the request fails, then the callback() method returns the following parameter
values:

■ URL

Choosing Custom Storage Medium

16 Authentication Developer's Guide

■ ACCOUNTID

■ ACTCODE

■ CONN_OBJECT (only if this parameter was sent in the initial request)

■ REQUESTTYPE=”provisioning”

■ ERR_CODE=<error-code>

■ ERR_MSG=<error-message>

■ PLATFORM_MSG=<error-message-returned-by-the-underlying-platform>

Exception

ArcotOTPCommException is returned if any errors are encountered while processing a
provisioning request. See chapter, "ArcotID OTP SDK Exceptions and Error Codes" (see
page 31) for more information on the exception class and errors returned by ArcotID
OTP SDK.

Choosing Custom Storage Medium

ArcotID OTP library enables you to store accounts in the storage medium of your choice.
You implement the Store interface to define the storage medium, and then set that as
the default.

Perform the following steps to set up a custom storage:

1. Implement the Store interface to use the custom storage.

2. Invoke the setStore() method in the OTP class to initialize the storage medium.

The ProxyStore class is a basic implementation of the Store interface. Each method of
this class throws RuntimeException to indicate that it is just a sample and that it must be
replaced.

Storing Accounts in Memory

Chapter 3: Understanding ArcotID OTP APIs 17

Storing Accounts in Memory

ArcotID OTP library provides a sample implementation for storing the accounts in device
memory.

Note:

■ If you exit the application, then the data stored in the memory will be lost.

■ The sample implementations that are provided with the ArcotID OTP library must
be used for reference only.

Perform the following steps to store accounts in memory:

1. Invoke the MemoryStore class to use memory as a storage medium.

2. Invoke the setStore() method in the OTP class to initialize the storage medium.

Generating Passcodes

To perform ArcotID OTP authentication, users have to first generate a passcode on their
device and then submit it at the authenticating website to access the protected source.
To generate the passcode, use the generateOTP() method in the API class.

ArcotID OTP SDK supports major industry-standard One-Time Password (OTP)
generation algorithms. Based on the algorithm that you are using, you must prepare the
input data and hash this data. The following table lists the fields that hold the input data
required for generating passcodes.

Note: MasterCard Chip Authentication Program (CAP) and VISA Dynamic Passcode
Authentication (DPA) algorithms support different modes for generating passcodes.
Refer to the vendor documentation for more information on these modes.

Field Description

CAP and DPA Password Fields

P_MODE Specifies that modes are being used for generating passcodes.
The possible values for this parameter are:

■ M_1

■ M_2

■ M_2_TDS

■ M_3

Generating Passcodes

18 Authentication Developer's Guide

Field Description

M_1 Specifies that Mode 1 is being used for generating passcodes. If
you are using this mode, then you have to collect the following
information:

■ P_AA

■ P_TRCC

■ P_UN

M_2 Specifies that Mode 2 is being used for generating passcodes.
This mode does not require any other additional information.

M_2_TDS Specifies that Mode 2 with TDS is being used for generating
passcodes. This mode supports10 entries for passing any
additional information.

M_3 Specifies that Mode 3 is being used for generating passcodes. If
you are using this mode, then you have to collect P_UN.

P_AA Specifies the amount that is used in the transaction.

P_TRCC Specifies the type of currency that is used in the transaction.

P_UN Specifies the challenge that is used in the transaction.

P_DATA This field is used to pass additional information that is required
by M_2_TDS mode.

Time-Based OTP Password Fields

P_TIME Specifies the time for which the OTP is valid.

Note: This value needs to be provided only if an OTP is being
generated for a time other than the current time.

API Details

The following table lists the input and output parameters of the generateOTP() method.

Parameter Description

Input Parameters

Id The unique identifier of the account.

pwd ArcotID OTP PIN.

Generating Passcodes

Chapter 3: Understanding ArcotID OTP APIs 19

Parameter Description

params The parameters that are required for generating passcodes.
You need to set the parameters based on the type of OTP
to be generated. For example:

■ TOTP
Hashtable params = new Hashtable();
params.put(OTP.P_TIME, "123456789");
Note: As mentioned in the previous table, the P_TIME
value needs to be provided only if an OTP is being
generated for a time other than the current time.

■ CAP or DPA Mode 1
Hashtable params = new Hashtable();
params.put(OTP.P_MODE, OTP.M_1);
params.put(OTP.P_AA, "123.45");
params.put(OTP.P_UN, "0123456789");

■ CAP or DPA Mode 2 with TDS
Hashtable params = new Hashtable();
params.put(OTP.P_MODE, OTP.M_2_TDS);
params.put(OTP.P_DATA + "0", "123");
params.put(OTP.P_DATA + "1", "456");
params.put(OTP.P_DATA + "2", "789");

■ CAP or DPA Mode 3
Hashtable params = new Hashtable();
params.put(OTP.P_MODE, OTP.M_3);
params.put(OTP.P_UN, "0123456789");

Output Parameters

The generated passcode.

Exception

The OTPException class is returned if there any errors while signing the challenge. See
chapter, "ArcotID OTP SDK Exceptions and Error Codes" (see page 31) for more
information on the exception class and errors returned by ArcotID OTP SDK.

Resetting ArcotID OTP PIN

20 Authentication Developer's Guide

Resetting ArcotID OTP PIN

The ArcotID OTP SDK provides functions that you can use to reset the user’s ArcotID OTP
PIN. The user might be prompted to reset their PIN, if they forget their current PIN.
Before resetting the PIN, you must prompt the users need to perform secondary
authentication to prove their identity. Typically, Security Questions and Answers or
One-Time Passwords are used as secondary authentication mechanisms.

To reset the PIN, you need to use the resetPin() method in the OTP class.

API Details

The following table lists the input and output parameters of the resetPin() method.

Parameter Description

Input Parameters

id The unique identifier of the account.

oldPin User’s current ArcotID OTP PIN.

newPin New PIN that the user wants to set.

Output Parameters

None.

Exception

The OTPException class is returned if there any errors while executing the
provisionAccount() method. See chapter, "ArcotID OTP SDK Exceptions and Error Codes"
(see page 31) for more information on the exception class and errors returned by
ArcotID OTP SDK.

Managing Accounts

This section discusses the APIs that you need to use for managing the accounts in
default storage:

■ Fetching Accounts (see page 21)

■ Deleting Accounts (see page 22)

Managing Accounts

Chapter 3: Understanding ArcotID OTP APIs 21

Fetching Accounts

To fetch the accounts from the default storage, you need to use the API class. This class
provides different options to read accounts as mentioned in the following table:

Method Description

getAccount() Fetches the account based on the account identifier that
is passed as an input.

getAllAccounts() Fetches all the accounts that are present on the device.

Note: You can also fetch accounts based on the ArcotID
OTP namespace. To do this, pass the namespace as an
input parameter to the getAllAccounts() method.

This method fetches all the accounts whose domains
match the namespace passed to the method. For
example, if you pass ARCOT.COM as a namespace to the
method, then it returns accounts belonging to
ARCOT.COM, A.ARCOT.COM, B.ARCOT.COM, and so on.

API Details

The following table lists the input and output parameters of the getAccount() method:

Parameter Description

Input Parameters

id The unique identifier of the account that has to be
fetched.

Output Parameters

account The requested account.

The following table lists the input and output parameters of the getAllAccounts()
method:

Parameter Description

Input Parameters

None.

Output Parameters

account An array of all the accounts present in the storage.

Managing Accounts

22 Authentication Developer's Guide

The following table lists the input and output parameters of the getAllAccounts()
method when a namespace is passed as input:

Parameter Description

Input Parameters

ns The namespace of the requested accounts.

Output Parameters

account Array of accounts belonging to the specified namespace
(domain) and also accounts from other namespaces that
contain the search string in their name.

Exception

The OTPException class is returned if there any errors while reading the account from
the storage location. See chapter, "ArcotID OTP SDK Exceptions and Error Codes" (see
page 31) for more information on the exception class and errors returned by ArcotID
OTP SDK.

Deleting Accounts

To delete accounts, use the deleteAccount() method in the API class.

API Details

The following table lists the input and output parameters of the deleteAccount()
method:

Parameter Description

Input Parameters

id The unique identifier of the account that has to be
deleted.

Output Parameters

None.

Exception

The OTPException class is returned if there any errors while deleting the account from
the storage location. See chapter, "ArcotID OTP SDK Exceptions and Error Codes" (see
page 31) for more information on the exception class and errors returned by ArcotID
OTP SDK.

Device Locking

Chapter 3: Understanding ArcotID OTP APIs 23

Device Locking

Device locking enables an account to be locked to a specific device, so that the account
is unusable if it is copied to another account to be locked to a specific device. A device is
locked at the time when an account is stored on the device. By default, this feature is
enabled.

Based on the operating system, ArcotID OTP SDK supports different parameters to
derive the unique identifier of the device for locking the account. If you want to use
other device parameters for device locking, then see Device Locking Using Non-Default
Parameters (see page 23) for more information.

The SystemDeviceLock class is a basic implementation of the DeviceLock interface. This
class is an extension of the ProxyDeviceLock class, and it is intended for use as a sample.
To use the Device Locking feature, extend the ProxyDeviceLock class.

Note: You can disable the Device Locking feature by passing a NULL value to the
setDeviceLock() method.

Device Locking Using Non-Default Parameters

To lock an account to a device by using attributes other than the default attributes
supported by ArcotID OTP SDK:

1. Implement the getKey() method in the DeviceLock interface.

The getKey() method returns the unique identifier of the device that you have
requested.

2. Invoke the setDeviceLock() method in the OTP class.

The setDeviceLock() method locks the account to the device by using the
parameters that are fetched by the getKey() method.

API Details

The following table lists the input and output parameters of getKey() method:

Parameter Description

Input Parameters

None.

Output Parameters

device identifier The unique identifier of the device.

Reading ArcotID OTP Account Details

24 Authentication Developer's Guide

Exception

The OTPException class is returned if there any errors while locking the account to the
device See chapter, "ArcotID OTP SDK Exceptions and Error Codes" (see page 31) for
more information on the exception class and errors returned by ArcotID OTP SDK.

Reading ArcotID OTP Account Details

This section walks you through the following topics related to Account class:

■ ArcotID OTP Details (see page 24)

■ Fetching ArcotID OTP Details (see page 25)

■ Managing Additional ArcotID OTP Attributes (see page 26)

■ Saving Additional ArcotID OTP Attributes (see page 26)

ArcotID OTP Details

The following table lists the fields that hold the basic ArcotID OTP information:

Field Description

A_DLTA The time difference between the client and the server.

A_IAF_AA The attribute that specifies whether the amount is required
to perform transaction.

A_IAF_TRCC The attribute that specifies whether currency is required to
perform transaction.

A_IAF_UN The attribute that specifies whether challenge is required to
perform transaction.

A_MPL The attribute that holds the Minimum PIN Length of the
account.

A_PINTYPE_ALPHANUM
ERIC

The attribute that specifies the possible PIN types for the
account.

A_PINTYPE_NUMERIC The attribute that specifies the possible PIN types for the
account.

A_PINTYPE_NUMERIC and A_PINTYPE_ALPHANUMERIC
attributes are the possible values returned by getPINType().

A_PROTOCOLVER The version of the protocol that is used for communication
between the client and server.

A_RESETSUPPORT The attribute for specifying whether reset is supported.

Reading ArcotID OTP Account Details

Chapter 3: Understanding ArcotID OTP APIs 25

Field Description

accountId The unique identifier of the ArcotID OTP account.

algo The algorithm that is used to generate passcodes.

creationTime The timestamp when the ArcotID OTP account was created.

expiryTime The timestamp when the ArcotID OTP account expires.

lastUsed The timestamp when the ArcotID OTP account was last used.

logoUrl The URL of the logo image, this image is displayed on the
application.

Note: This field is for future use.

name A user friendly name for the account.

ns The namespace of the ArcotID OTP. It is typically the domain
name to which the ArcotID OTP belongs to.

org The organization to which the user for whom the account is
being created belongs.

provisioningURL This field is deprecated. Use the provUrl field.

provUrl The URL of the AuthMinder authentication server.

uses The number of times ArcotID OTP has been used.

Fetching ArcotID OTP Details

The following table lists the input and output parameters of the getId() method that is
used to fetch the ArcotID OTP information:

Parameter Description

Input Parameters

None.

Output Parameters

Identifier of the ArcotID OTP account.

Reading ArcotID OTP Account Details

26 Authentication Developer's Guide

Managing Additional ArcotID OTP Attributes

To set the ArcotID OTP information that cannot be passed by using the fields listed in
ArcotID OTP Details (see page 24), you need to use the setAttribute() method and pass
that information as name-value pairs, and to read that information use getAttribute()
method. The following table explains these methods:

Method Description

setAttribute() This method is used to set the ArcotID OTP information that
cannot be passed by using the fields listed in ArcotID OTP
Details (see page 24). The additional information is passed as
name-value pairs.

Input Parameters:

■ The name of the attribute. For example, if you want to
display your organization copyright information along
with the user details on the application, then you can set a
new attribute called Copyright.

Output Parameters:

■ The value (in string format) that has to be set for the
attribute.

getAttribute() This method is used to read the value of ArcotID OTP
attributes.

Input Parameters:

■ The name of the attribute, whose value has to be fetched.

Output Parameters:

■ Attribute value in string format.

getMinPINLength() This method is used to get the minimum PIN length that must
be used for the account.

getPINType() This method is used to get the PIN type of the account.
A_PINTYPE_ALPHA_NUMERIC and A_PINTYPE_NUMERIC are
examples of the PIN types.

Saving Additional ArcotID OTP Attributes

After you set a new ArcotID OTP attribute or change any existing ArcotID OTP attribute,
you need to save these changes by invoking the saveAccount() method in the API class.

Perform the following steps to save the changes made to accounts:

1. Prepare an instance of the Account object that has to be saved.

2. Invoke the saveAccount() method to save the account.

Synchronizing the Client and Server

Chapter 3: Understanding ArcotID OTP APIs 27

API Details

The following table lists the input and output parameters of the saveAccount() method:

Parameter Description

Input Parameters

acc The account that has to be saved.

Output Parameters

None.

Exception

The OTPException class is returned if there any errors while checking the library version.
See chapter, "ArcotID OTP SDK Exceptions and Error Codes" (see page 31) for more
information on the exception class and errors returned by ArcotID OTP SDK.

Synchronizing the Client and Server

The ArcotID OTP account details on the client must be in synchronization with the
server. Otherwise, authentication will fail. If the account details are not in
synchronization, then use the syncRequest() method in the Account class to
re-synchronize them. The syncRequest() method is used to construct and send a
synchronization request for fetching the OTP counter or timestamp synchronization
value from the server. If the request is successful, the client receives the success status
in the callback() method.

API Details

The following table lists the input and output parameters of the syncRequest() method:

Parameter Description

Input Parameters

args Map containing the following name-value pairs:

ACCOUNT: Account object

CONN_OBJECT: (Optional) Network connection object

Output Parameters

None.

Synchronizing the Client and Server

28 Authentication Developer's Guide

How a Synchronization Request Works

This section explains the sequence of events that take place when a synchronization
request is sent to the server. Apply this information while using the syncRequest()
method and callback() method in your implementation.

The following events take place when a synchronization request is sent to the server:

1. When the syncRequest() method is invoked the first time, it sends the
synchronization request to the server. This request contains the following
parameters:

■ ACCOUNT_OBJ

■ CONN_OBJECT (optional)

2. The callback() method is invoked. The parameters returned by this method depend
on what happens next:

Note: The client application must free up the parameters map after each
provisionRequest() call and the corresponding callback() call.

■ If the request succeeds, then the callback() method returns the following
parameter values:

■ REQUESTTYPE =”softsync”

■ ACCOUNT_OBJ

■ CONN_OBJECT (only if this parameter was sent in the initial request)

■ STATE=DONE

■ If the request fails, then the callback() method returns the following parameter
values:

■ REQUESTTYPE=”softsync”

■ ERR_CODE=<error-code>

■ ERR_MSG=<error-message>

■ PLATFORM_MSG=<error-message-returned-by-the-underlying-platform>

Exception

ArcotOTPCommException is returned if any errors are encountered while sending a
synchronization request. See chapter, "ArcotID OTP SDK Exceptions and Error Codes"
(see page 31) for more information on the exception class and errors returned by
ArcotID OTP SDK.

Fetching Library Version

Chapter 3: Understanding ArcotID OTP APIs 29

Fetching Library Version

To fetch the version of the ArcotID OTP library that you are using, you need to use the
getVersion() method in the API class.

API Details

The following table lists the input and output parameters of the getVersion() method:

Parameter Description

Input Parameters

None.

Output Parameters

The version number of the ArcotID OTP library.

Exception

The OTPException class is returned if there any errors while checking the library version.
See chapter, "ArcotID OTP SDK Exceptions and Error Codes" (see page 31) for more
information on the exception class and errors returned by ArcotID OTP SDK.

Serializing and Deserializing an Account Object

The AccountFormat class provides methods for converting an ArcotID OTP account
object into a string and for converting the string representation of an ArcotID OTP into
an account object.

API Details

The parse() method converts the string representation of an ArcotID OTP into an
account object. The following table lists the input and output parameters of the parse()
method:

Parameter Description

Input Parameters

s String representation of an ArcotID OTP account object.

Serializing and Deserializing an Account Object

30 Authentication Developer's Guide

Parameter Description

Output Parameters

ArcotID OTP account object.

The format() method converts an ArcotID OTP account object into a string. The
following table lists the input and output parameters of the format() method:

Parameter Description

Input Parameters

Account ArcotID OTP account object.

Output Parameters

String representation of the ArcotID OTP account object.

Chapter 4: ArcotID OTP SDK Exceptions and Error Codes 31

Chapter 4: ArcotID OTP SDK Exceptions and
Error Codes

This chapter lists all exceptions and error codes that are returned by ArcotID OTP SDK. It
covers the following topics:

■ Exceptions (see page 31)

■ Error Codes (see page 31)

Exceptions

If there are any errors while processing the ArcotID OTP APIs, then the OTPException
class is returned. This class provide an constructor class OTPException, which takes error
code, error message, and throwable as input.

To fetch the error code for a particular error, the OTPException class provides getcode()
method, which returns the error code.

Error Codes

The following table lists the error codes returned by ArcotID OTP APIs:

Code Code Message Description

Default Errors

1 E_UNKNOWN Internal error.

Storage Errors (10-19)

11 E_STORE_WRITE There was an error while saving the account.

12 E_STORE_READ There was an error while reading the account.

13 E_STORE_DELET
E

There was an error while deleting the account.

14 E_STORE_ACCES
S

There was an error while accessing the account.

User Input Errors

31 E_BAD_NS The One-Time Password (OTP) algorithm is invalid.

32 E_BAD_XML The Activation Code provided by the user is invalid.

33 E_BAD_ID The user identifier is invalid.

Error Codes

32 Authentication Developer's Guide

Code Code Message Description

34 E_BAD_ACCOUN
T

The URL of AuthMinder Server is not configured
correctly.

35 E_BAD_PIN The ArcotID OTP passcode entered by the user is invalid.

36 E_BAD_ALGO The algorithm used for generating passcode is invalid.

37 E_BAD_CS The ArcotID OTP card string is invalid.

38 E_BAD_ATTR The attributes of the ArcotID OTP card passed are invalid.

Processing Errors

41 E_PROC_SERVER The AuthMinder Server returned an error.

42 E_PROC_XML There was an error while processing the input XML.

43 E_PROC_DEVLO
CK

There was an error while locking the ArcotID OTP to the
device.

ArcotID OTP Card Errors

51 E_TOTP_TIME The time period for which the TOTP is valid has elapsed.

52 E_CAP_MODE The Client Authentication Program (CAP) mode used for
generating passcode is invalid.

53 E_CAP_AA The amount key is either not passed or the key length is
incorrect.

54 E_CAP_TDS The key to specify Mode2TDS mode is either not passed
or the key length is incorrect.

55 E_CAP_TRCC The currency challenge key is either not passed or the
key length is incorrect.

56 E_CAP_UN The challenge key is either not passed or the key length
is incorrect.

	CA ArcotID OTP Platform Independent Java Library Authentication Developer's Guide
	Contact CA Technologies
	Contents
	1: Introduction
	ArcotID OTP Overview

	2: Preparing for Integration
	Integration Requirements

	3: Understanding ArcotID OTP APIs
	Provisioning ArcotID OTP Accounts
	API Details
	How a Provisioning Request Works
	Exception

	Choosing Custom Storage Medium
	Storing Accounts in Memory
	Generating Passcodes
	API Details
	Exception

	Resetting ArcotID OTP PIN
	API Details
	Exception

	Managing Accounts
	Fetching Accounts
	API Details
	Exception

	Deleting Accounts
	API Details
	Exception

	Device Locking
	Device Locking Using Non-Default Parameters
	API Details
	Exception

	Reading ArcotID OTP Account Details
	ArcotID OTP Details
	Fetching ArcotID OTP Details
	Managing Additional ArcotID OTP Attributes
	Saving Additional ArcotID OTP Attributes
	API Details
	Exception

	Synchronizing the Client and Server
	API Details
	How a Synchronization Request Works
	Exception

	Fetching Library Version
	API Details
	Exception

	Serializing and Deserializing an Account Object
	API Details

	4: ArcotID OTP SDK Exceptions and Error Codes
	Exceptions
	Error Codes

