

Java Developer's Guide
r7.1.01

CA AuthMinder™

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Getting Started 9

Introduction to the AuthMinder Java SDK ... 9

Sample Application ... 10

AuthMinder SDK Features .. 11

Before You Begin .. 12

Chapter 2: Understanding AuthMinder WorkFlows 13

Enrollment Workflows ... 13

Enrolling New Users .. 14

Migrating Existing Users .. 14

ArcotID PKI Authentication Workflow .. 18

ArcotID PKI Roaming Download Workflow .. 20

Forgot Your Password Workflow ... 22

Workflow Summary ... 23

Chapter 3: Before You Use the SDK 25

Accessing AuthMinder SDK Javadocs ... 26

Adding Authentication Files in CLASSPATH .. 26

Adding Issuance Files in CLASSPATH .. 28

Chapter 4: Managing Users 31

Chapter 5: Integrating ArcotID PKI Client with Application 33

ArcotID PKI Client Overview ... 33

Flash Client .. 33

Signed Java Applet .. 34

Copying ArcotID PKI Client Files ... 34

For Flash Client .. 34

For Java Signed Applet .. 35

ArcotID PKI Client APIs ... 35

Downloading ArcotID PKI .. 36

Signing the Challenge .. 36

6 Java Developer's Guide

Chapter 6: Performing Issuance Operations 37

Initializing the Issuance SDK ... 37

Method 1: Initializing the SDK by Using the Map.. 37

Method 2: Initializing the SDK by Using the Properties File .. 38

Before You Proceed .. 38

Checking the User Status .. 39

Credential States and Supported Transitions ... 40

Credential Operations and States ... 41

Credential Operations .. 43

Preparing Additional Input .. 45

Preparing the Input ... 46

Creating Credentials .. 51

Disabling Credentials ... 52

Enabling Credentials.. 53

Resetting Credentials .. 54

Fetching Credential Details ... 55

Downloading Credentials .. 56

Reissuing Credentials .. 57

Resetting Credential Validity ... 58

Resetting Custom Attributes ... 59

Fetching QnA Configuration .. 60

Adding Elements to ArcotID PKI Key Bag .. 61

Fetching ArcotID PKI Key Bag Elements .. 62

Deleting ArcotID PKI Key Bag Elements .. 63

Setting Unsigned Attributes .. 64

Deleting Unsigned Attributes .. 65

Deleting Credentials .. 66

Reading the Output ... 67

Credential Operations Summary ... 69

Chapter 7: Authenticating Users 89

Initializing the Authentication SDK ... 89

Method 1: Initializing the SDK by Using the Map.. 90

Method 2: Initializing the SDK by Using the Properties File .. 90

Preparing Additional Input ... 92

ArcotID PKI Authentication .. 93

Questions and Answers Authentication ... 94

QnA Authentication Using Caller Verification Feature.. 95

QnA Authentication Using Server Verification .. 96

Password Authentication ... 97

Complete Password Authentication ... 97

Contents 7

Partial Password Authentication ... 98

One-Time Password Authentication .. 98

OATH One-Time Password Authentication .. 99

OATH One-Time Password Synchronization .. 99

ArcotID OTP (ArcotID OTP-OATH) Authentication ... 99

ArcotOTP (ArcotOTP-OATH) Synchronization .. 100

EMV (ArcotID OTP-EMV) Authentication ... 100

EMV (ArcotID OTP-EMV) Password Synchronization ... 100

Verifying Password Type Credentials ... 101

Verifying the Authentication Tokens.. 102

Fetching the PAM ... 103

Authentication Operations Summary .. 104

Appendix A: Input Data Validations 107

Appendix B: AuthMinder Logging 125

About the Log Files ... 126

Installation Log File ... 127

AuthMinder Server Startup Log File .. 127

AuthMinder Server Log File... 128

UDS Log File ... 129

Administration Console Log File .. 130

Format of the AuthMinder Log Files .. 131

Format of UDS and Administration Console Log Files .. 132

Supported Severity Levels .. 132

Server Log File Security Levels .. 133

Administration Console and UDS Log File Severity Levels .. 133

Sample Entries for Each Log Level ... 135

Appendix C: Additional Settings 137

Configuring Multiple AuthMinder Server Instances ... 137

Setting up SSL ... 138

One-Way SSL ... 140

Two-Way SSL ... 142

Appendix D: SDK Exceptions and Error Codes 145

Exceptions .. 145

Common Exceptions ... 145

Issuance Exceptions .. 146

Authentication Exceptions .. 147

8 Java Developer's Guide

Error Codes ... 147

SDK Codes ... 148

Server Codes ... 150

Appendix E: AuthMinder Sample Application 169

Configuring Sample Application ... 170

Selecting ArcotID PKI Client .. 171

Configuring Sample Application Log File .. 171

Creating Users .. 172

Creating ArcotID PKI Credential ... 173

Downloading ArcotID PKI ... 174

Authenticating Using ArcotID PKI ... 175

Chapter 1: Getting Started 9

Chapter 1: Getting Started

This chapter discusses the APIs provided by CA AuthMinder (later referred to as
AuthMinder) Java SDK and the checks that you must perform before using the Java SDK:

■ Introduction to the AuthMinder Java SDK (see page 9)

■ AuthMinder SDK Features (see page 11)

■ Before You Begin (see page 12)

This guide provides information on how to develop Web applications that use the strong
and versatile modes of authentication provided by CA AuthMinder. This guide discusses
Java classes and methods that you can use to programmatically integrate with
AuthMinder SDK.

Note: CA AuthMinder still contains the terms Arcot and WebFort in some of its code
objects and other artifacts. Therefore, you will find occurrences of Arcot and WebFort in
all CA AuthMinder documentation. In addition, some of the topics in this guide do not
follow the standard formatting guidelines. These inconsistencies will be fixed in a future
release.

Introduction to the AuthMinder Java SDK

The AuthMinder Software Development Kit (SDK) provides a programmatic interface
that includes a set of APIs to integrate with your application. It has two types of SDKs:

Authentication SDK

The AuthMinder Authentication SDK provides the APIs that can be used to authenticate
the credentials supported by AuthMinder.

Issuance SDK

The AuthMinder Issuance SDK interacts with the AuthMinder Server to create, read, and
update user credential information in the AuthMinder database. You can perform the
following operations by using the Issuance SDK:

■ Create credentials for the users

■ Perform credential lifecycle management operations, such as enabling, disabling,
resetting, resetting validity, resetting custom attributes, fetching, and deleting

■ Manage ArcotID PKI key bag

Introduction to the AuthMinder Java SDK

10 Java Developer's Guide

Sample Application

The Sample Application shipped with AuthMinder serves as a code reference for the
Authentication and Issuance Java SDKs. The following JSP files are shipped as a part of
the AuthMinder Sample Application:

■ User Operations

Note: From 7.0 release onwards, the user operations have to be performed using
Web Services that are shipped with AuthMinder. The JSP pages that the Sample
Application provides is for backward compatibility.

■ ArWFCreateUser.jsp - This page is used to create the user.

■ ArWFFetchUser.jsp - This page is used to fetch the user details.

■ ArWFUpdateUser.jsp - This page is used to update the user information.

■ ArWFUserStatusChange.jsp - This page is used to enable or disable user.

■ ArWFFetchPAM.jsp - This page is used to fetch user’s Personal Assurance
Message (PAM).

■ Credential Operations

■ ArWFCreate<Credential>.jsp - This page is used to create credential.

■ ArWFFetch<Credential>.jsp - This page is used to fetch the credential details.

■ ArWFCredStatusChange.jsp - This page is used to enable or disable user’s
credential.

■ ArWFReset<Credential>.jsp - This page is used to reset and reissue credential.

■ ArWFResetValidity.jsp - This page is used to reset the credential validity.

■ ArWFResetNotes.jsp - This page is used to reset the credential custom
attributes.

■ (Only ArcotID) ArWFDownloadarcotID.jsp - This page is used to download the
ArcotID PKI.

■ (Only ArcotID) ArWFSetArcotIDUnsignedAttributes.jsp - This page is used to set
the unsigned attributes in ArcotID PKI.

■ (Only ArcotID) ArWFDeleteArcotIDUnsignedAttributes.jsp - This page is used to
delete the unsigned attributes in ArcotID PKI.

■ (Only ArcotID) ArWFFetchArcotIDKBE.jsp - This page is used to fetch the
unsigned attributes of the ArcotID PKI.

■ (Only ArcotID) ArWFAddArcotIDKBE.jsp - This page is used to add unsigned
attributes to the ArcotID PKI.

■ (Only ArcotID) ArWFDeleteArcotIDKBE.jsp - This page is used to delete
unsigned attributes of the ArcotID PKI.

■ ArWF<Credential>Authenticate.jsp - This page is used to authenticate the user
with the credential.

AuthMinder SDK Features

Chapter 1: Getting Started 11

■ ArWFUPPartialPwdAuthenticate.jsp - This page is used to authenticate the
users with their partial password.

■ ArWFQnACallerSideAuthenticate.jsp - This page is used to authenticate the
users with their QnA credential by using caller-side verification.

■ ArWF<Credential>Synchronization.jsp - This page is used to synchronize the
OTPs on the client device with the AuthMinder Server. This page is applicable
for OATH OTP, ArcotID OTP-OATH, and ArcotID OTP-EMV credentials.

■ (Only ArcotID) ArWFSelectArcotIDClient.jsp - This page is used to select the
ArcotID PKI Client.

Note: For the operations not covered by the Sample Application, see relevant Javadocs.

AuthMinder SDK Features

 This section discusses the salient features of the Authentication and Issuance SDKs.

■ SSL Support

You can secure the connection between the Java SDK and AuthMinder Server by
using Secure Socket Layer (SSL). To set up SSL between SDK and AuthMinder Server,
you must edit the AuthMinder properties files, see "Setting up SSL" (see page 138)
for more information on how to do this.

■ Failover

Java SDKs support failover mechanism, if an instance of AuthMinder Server is not
operational, then the SDKs automatically connect to any of the additional
configured instances. See "Configuring Multiple AuthMinder Server Instances" (see
page 137) for more information on how to do this.

■ Multiple Ways to Initialize SDK

You can initialize Authentication or Issuance SDKs by using either the properties file
or with a map. See "Initializing the Issuance SDK" (see page 37) or "Initializing the
Authentication SDK" (see page 89) for more information on how to do this.

■ Handling Multiple Operations Using Single Function

You can perform credential lifecycle operations on different credentials
simultaneously. For example, you can create ArcotID PKI, Question and Answer, and
One-Time Password credentials simultaneously using a single create() function.

■ Support for Additional Parameters

In addition to the mandatory inputs, the APIs also accepts additional input that can
be passed as name-value pair. This input can include information, such as locale,
calling application details, or profile.

Before You Begin

12 Java Developer's Guide

Before You Begin

Before you start writing your code using the AuthMinder APIs to integrate your
application with AuthMinder, ensure that:

■ AuthMinder is installed and running on the required operating system.

■ You have installed the correct version of the JDK required for using the AuthMinder
Java SDK. See the CA AuthMinder Installation and Deployment Guide for this
information.

Chapter 2: Understanding AuthMinder WorkFlows 13

Chapter 2: Understanding AuthMinder
WorkFlows

AuthMinder enables you to design different workflows that can be built using the
Authentication and Issuance SDKs. Based on your organization’s requirements, you can
design these workflows without significantly changing the existing online experience for
your users in most cases.

Note: The tasks that are listed in this chapter can be customized in multiple ways. The
workflows depicted here are examples of the typical workflows. You need not follow the
exact steps for each procedure mentioned in this chapter.

This chapter describes the sample workflows and provides an overview of each:

■ Enrollment Workflows (see page 13)

■ ArcotID PKI Authentication Workflow (see page 18)

■ ArcotID PKI Roaming Download Workflow (see page 20)

■ Forgot Your Password Workflow (see page 22)

■ Workflow Summary (see page 23)

Enrollment Workflows

Enrollment is the process of creating a user and creating credentials for the user. The
user account can either reside in the AuthMinder database or in an external directory
service such as Microsoft's Active Directory Service (ADS) or SunOne Directory Server. If
directory service is used, then user need not be created in AuthMinder, but their
attributes must be mapped to the AuthMinder database attributes.

Note: See CA AuthMinder Administration Guide for information on how to map the user
attributes from the external directory to the AuthMinder database entries.

Based on whether you are enrolling a new user or migrating existing users to
AuthMinder authentication, the enrollment workflow can include:

■ Enrolling New Users (see page 14)

■ Migrating Existing Users (see page 14)

Enrollment Workflows

14 Java Developer's Guide

Enrolling New Users

To enroll new users in your system, you need to use AuthMinder Web Services. You
need to call the createUserRequest message in the ArcotUserRegistrySvc Web service
from your application.

Book: Refer to CA AuthMinder Web Services Developer’s Guide for more information on
creating new users.

Migrating Existing Users

AuthMinder enables you to easily migrate the users from your existing authentication
method to ArcotID PKI authentication.

Note: If you are using a Directory Service (LDAP), then AuthMinder must be connected
to the LDAP and you must map the LDAP attributes to the attributes supported by
AuthMinder. See CA AuthMinder Administration Guide for more information on this.

■ Migrating All Users (see page 14)

■ Migrating Selected Users (see page 16)

Migrating All Users

The typical steps to migrate all users are:

1. User logs in to your application.

The users log in to your application by using your existing authentication method.

2. Your application collects the information from user required to create the
credential.

Your application can either display the appropriate pages to the user. For example,
you can prompt the user to set the password for ArcotID PKI or you can set the
existing password as the ArcotID PKI password, and collect questions and answers if
Question and Answer (QnA) is used for secondary authentication.

3. Your application invokes the create() method in the CredentialIssuance interface.

Your application invokes the create() method in the CredentialIssuance interface to
create ArcotID PKI for the user.

4. AuthMinder returns the result.

If the create operation was successful, then user’s ArcotID PKI is returned.

5. Application downloads the ArcotID PKI on the user’s system.

If the create() function was successful, then the application downloads the ArcotID
PKI to the enduser’s system without any user interaction.

Enrollment Workflows

Chapter 2: Understanding AuthMinder WorkFlows 15

The following figure illustrates the workflow for migrating all users in the system:

Enrollment Workflows

16 Java Developer's Guide

Migrating Selected Users

The typical steps to migrate selected users are:

1. User logs in to your application.

The users log in to your application by using your existing authentication method.

2. Application gets the user status.

Application retrieves user information and identifies whether the user account is
marked for migration.

3. Application redirects user.

Upon successful authentication, the user is redirected to migration page.

4. Your application collects the information from user required to create the
credential.

Your application can either display the appropriate pages to the user. For example,
you can prompt the user to set the password for ArcotID PKI or you can set the
existing password as the ArcotID PKI password, and collect questions and answers if
QnA is used for secondary authentication.

5. Your application invokes the create() method in the CredentialIssuance interface.

Your application invokes the create() method in the CredentialIssuance interface to
create ArcotID PKI for the user.

6. AuthMinder returns the result.

If the create operation was successful, then user’s ArcotID PKI is returned.

7. Application downloads the ArcotID PKI on the user’s system.

If the create() function was successful, then the application downloads the ArcotID
PKI to the enduser’s system without any user interaction.

Enrollment Workflows

Chapter 2: Understanding AuthMinder WorkFlows 17

The following figure illustrates the workflow for migrating the users to ArcotID PKI
authentication in bulk:

ArcotID PKI Authentication Workflow

18 Java Developer's Guide

ArcotID PKI Authentication Workflow

During authentication, when a user specifies the credential in the authentication page,
the credential is first verified by AuthMinder Server, after which the user is
authenticated.

The following workflow lists the steps for ArcotID PKI authentication:

Note: In case of other credentials, refer to chapter, "Authenticating Users" (see page 89)
for details of methods to invoke.

1. Application calls AuthMinder’s ArcotIDAuth.getChallenge() function.

Your application loads the ArcotID PKI Client and makes an explicit call to the
getChallenge() function in ArcotIDAuth interface. See "ArcotID PKI Authentication"
(see page 93) for more information on the API.

2. User provides the credentials.

User specifies the user name and ArcotID PKI password to log in.

3. Your application invokes the ArcotID PKI Client.

The ArcotID PKI Client signs the challenge.

4. AuthMinder verifies the signed challenge.

Your application invokes the verifySignedChallenge() function in ArcotIDAuth
interface to verify the challenge that is signed by using the ArcotID PKI password.

5. AuthMinder authenticates the user.

If the verifySignedChallenge() call was successful, then the authentication token is
generated and the user is authenticated successfully.

See "Verifying the Authentication Tokens" (see page 102) for more information on
the different tokens supported by AuthMinder.

The following figure illustrates the workflow for ArcotID PKI authentication process:

ArcotID PKI Authentication Workflow

Chapter 2: Understanding AuthMinder WorkFlows 19

ArcotID PKI Roaming Download Workflow

20 Java Developer's Guide

ArcotID PKI Roaming Download Workflow

To perform ArcotID PKI authentication, the ArcotID PKI of the user must be present on
the user’s system that is used for the current authentication session. If the user is
travelling or does not have access to the system, where their ArcotID PKI is stored, then
the user has to download the ArcotID PKI from the AuthMinder Server and then perform
the authentication.

The typical steps for roaming download of the ArcotID PKI are:

1. User logs in to your online application.

Your application authenticates the user.

2. User chooses to download the ArcotID PKI.

Your application displays the appropriate page to the user to download their
ArcotID PKI.

3. AuthMinder performs secondary authentication.

Based on the secondary authentication mechanism that you are using, your
application displays appropriate pages to the user. For example, you can prompt
the user to:

■ Answer the security questions that they selected while enrolling with your
application.

■ Enter the One-Time Password (OTP), which is sent to the user by email, SMS, or
other customized method.

4. Your application calls AuthMinder’s Issuance.Cred.downloadCredential function.

If the secondary authentication was successful, only then your application should
call the downloadCredential() function in the CredentialIssuance interface. This call
downloads the corresponding ArcotID PKI to the application.

5. Download the ArcotID PKI to the user’s system.

Invoke the ImportArcotID() client-side API to download the ArcotID PKI to the
enduser’s system without any user interaction.

The following figure illustrates the workflow for roaming download of ArcotID PKI:

ArcotID PKI Roaming Download Workflow

Chapter 2: Understanding AuthMinder WorkFlows 21

Forgot Your Password Workflow

22 Java Developer's Guide

Forgot Your Password Workflow

If a user forgets their ArcotID PKI password, then Forgot Your Password (FYP) workflow
can be used to reset the password.

In this method, the user is prompted to answer the questions, which they had set during
enrollment or you can use any other customized method of your choice.

The typical steps for FYP workflow are:

1. User provides the user name.

User specifies the user name to log in.

2. User clicks the FYP link.

Because the user does not remember their password, they click the FYP link.

3. AuthMinder performs secondary authentication.

Based on the secondary authentication mechanism that you are using, the
appropriate pages are displayed to the user. For example, the user can be
prompted to:

■ Answer the security questions that they selected while enrolling with your
application.

■ Enter the One-Time Password (OTP), which is sent to them by email, SMS, or
other customized method.

4. Your application calls AuthMinder’s resetCredential() function in the
CredentialIssuance interface.

If the secondary authentication was successful, then your application must invoke
the resetCredential() function in the CredentialIssuance interface. Your application
prompts the user for new password and pass this as input for resetCredential()
function.

See "Resetting Credentials" (see page 54) for more information on the APIs used to
reset the credential.

The following figure illustrates the Forgot Your Password workflow:

Workflow Summary

Chapter 2: Understanding AuthMinder WorkFlows 23

Workflow Summary

The following table provides a brief summary of the workflows that can be implemented
by using the AuthMinder APIs:

Workflow Description Dependent Workflows

Enrollment Creates a new user in the AuthMinder
database or migrate the existing users
to AuthMinder.

None

Creating the
Credentials

Create the credentials for the user. ■ Enrollment

Authentication Authenticates the user by using the
credentials provided by the user.

■ Enrollment

■ Creating the
Credentials

Workflow Summary

24 Java Developer's Guide

Workflow Description Dependent Workflows

ArcotID PKI
Download

Downloads the ArcotID PKI of the user
to the system.

■ Enrollment

■ Creating the
Credentials

Migration Migrates the user to ArcotID PKI
authentication.

None

FYP Resets the password. ■ Enrollment

■ Creating the
Credentials

Chapter 3: Before You Use the SDK 25

Chapter 3: Before You Use the SDK

The Authentication and Issuance SDKs constitutes a set of APIs that provide a way for
your online application to programmatically integrate with AuthMinder. The
AuthMinder Java SDK consists of the following components:

■ The Authentication Java classes

■ The Issuance Java classes

■ Javadoc for the associated Java classes and methods

Note: The Sample Application shipped with AuthMinder demonstrates the usage of the
Java classes and methods. See appendix, "AuthMinder Sample Application" (see
page 169) for more information on AuthMinder Sample Application.

Before you use the Issuance or Authentication SDK, you must include the related JAR
files in the CLASSPATH. If you are using Properties files in your application, then you
must also include them in the CLASSPATH.

This chapter walks you through the steps that you must perform before you call the
Issuance and Authentication API methods from your application:

■ Accessing AuthMinder SDK Javadocs (see page 26)

■ Adding Authentication Files in CLASSPATH (see page 26)

■ Adding Issuance Files in CLASSPATH (see page 28)

Accessing AuthMinder SDK Javadocs

26 Java Developer's Guide

Accessing AuthMinder SDK Javadocs

You can use the Javadoc provided with the AuthMinder SDK to integrate authentication
and issuance services to new or existing Java applications.

If you are updating an application that is already integrated with AuthMinder, then you
must refer to the Release Notes for deprecated Java APIs before making changes.

The Authentication SDK Javadoc
(Arcot-WebFort-7.1.01-authentication-sdk-javadocs.zip) and the Issuance SDK Javadoc
(Arcot-WebFort-7.1.01-issuance-sdk-javadocs.zip) are present in the following location:

For Windows:
<install_location>\Arcot Systems\docs\webfort

For Unix Platforms:
<install_location>/arcot/docs/webfort

Adding Authentication Files in CLASSPATH

To use the Authentication APIs, you must add its JAR files (see the following table) and
the webfort.authentication.properties file in the CLASSPATH, and also ensure that the
properties file is present in CLASSPATH/properties folder.

JAR Files

The JAR files that are required for the Authentication SDK are available in the following
location:

For Windows:
<install_location>\Arcot Systems\sdk\client\java\lib

For Unix Platforms:
<install_location>/arcot/sdk/client/java/lib

File Name Description

arcot/arcot-webfort-common.ja
r

The proprietary Java Archive (JAR) file containing the
set of shared components used by Authentication
SDK.

arcot/arcot-webfort-authenticat
ion.jar

Contains the Authentication APIs.

Adding Authentication Files in CLASSPATH

Chapter 3: Before You Use the SDK 27

File Name Description

external/bcprov-jdk15-146.jar Used for cryptographic functions. For example,
reading server PEM certificate.

external/commons-pool-1.5.5.ja
r

Used for connection pooling.

Properties File

The webfort.authentication.properties file containing the AuthMinder Server
connectivity is used to initialize the Authentication SDK. You can also initialize the
Authentication API through the init (see "Initializing the Authentication SDK" (see
page 89)) API, which accepts the name-value pairs as input parameters.

Note: You can also copy the AuthMinder Server connectivity parameters from
webfort.authentication.properties to some other file and use that file for initializing the
SDK.

The properties file is available at the following location:

For Windows:
<install_location>\Arcot Systems\sdk\client\java\properties

For Unix Platforms:
<install_location>/arcot/sdk/client/java/properties

Note: If you want to edit the properties file to configure more AuthMinder Server
instances and for SSL, then refer to appendix, "Additional Settings" (see page 137) for
more information.

Adding Issuance Files in CLASSPATH

28 Java Developer's Guide

Adding Issuance Files in CLASSPATH

To use the Issuance APIs, you must add its JAR files (see the following table) and the
webfort.issuance.properties file in the CLASSPATH, and also ensure that the properties
file is present in CLASSPATH/properties folder.

JAR Files

The JAR files that are required for the Issuance SDK are available in the following
location:

For Windows:
<install_location>\Arcot Systems\sdk\client\java\lib

For Unix Platforms:
<install_location>/arcot/sdk/client/java/lib

File Name Description

arcot/arcot-webfort-common.jar The proprietary Java Archive (JAR) file containing
the set of shared components used by Issuance
SDK.

arcot/arcot-webfort-issuance.jar The JAR file containing the Issuance APIs.

external/bcprov-jdk15-146.jar Used for cryptographic functions. For example,
reading server PEM certificate.

external/commons-pool-1.5.5.jar Used for connection pooling.

Adding Issuance Files in CLASSPATH

Chapter 3: Before You Use the SDK 29

Properties Files

The webfort.issuance.properties file containing the AuthMinder Server connectivity is
used to initialize the Issuance SDK. You can also initialize the Issuance API through the
init API (see "Initializing the Issuance SDK" (see page 37)), which accepts the name-value
pairs as input parameters.

Note: You can also copy the AuthMinder Server connectivity parameters from
webfort.issuance.properties to some other file and use that file for initializing the SDK.

The properties file is available at the following location:

For Windows:
<install_location>\Arcot Systems\sdk\client\java\properties

For Unix Platforms:
<install_location>/arcot/sdk/client/java/properties

Note: If you want to edit the properties file to configure more AuthMinder Server
instances and for SSL, then refer to appendix, "Additional Settings" (see page 137) for
more information.

Chapter 4: Managing Users 31

Chapter 4: Managing Users

Creating a new user in AuthMinder is a one-time operation, performed only when a new
user is to be added to AuthMinder database.

In previous releases, the Issuance Java API provided a programmable interface, which
could be used by Java clients (such as Java Servlets and JSP pages) to send user
management requests to AuthMinder Server. In release 7.0, the user management
interfaces and methods have been deprecated from the Issuance API (Issuance). Now,
you must use the User Management Web service (ArcotUserRegistrySvc) for the
purpose. This Web service creates a request message that is sent to the AuthMinder
Server, receives the response, and packages it as return response to be read by your
application.

Book: Refer to the section, "Performing User Operations" in Chapter 6, "Managing Users
and Accounts" in the CA AuthMinder Web Services Developer’s Guide for more
information on how to use the User Management Web service for creating and
managing users in AuthMinder. This chapter provides an overview of how to use the
Web service to create users in AuthMinder database and operations it provides.

Chapter 5: Integrating ArcotID PKI Client with Application 33

Chapter 5: Integrating ArcotID PKI Client
with Application

The ArcotID PKI Client is a software that is used by the end user to sign the challenge
provided by the AuthMinder Server. If you are planning to implement ArcotID PKI-based
authentication, then you must integrate ArcotID PKI Client with application before you
call ArcotID PKI authentication APIs. This chapter provides information on different
client types, details on how to integrate them with application, and lists the APIs
provided by ArcotID PKI Client. It covers the following topics:

■ ArcotID PKI Client Overview (see page 33)

■ Copying ArcotID PKI Client Files (see page 34)

■ ArcotID PKI Client APIs (see page 35)

ArcotID PKI Client Overview

The ArcotID PKI Client is used for signing the AuthMinder-issued challenge at the user
end, but it also facilitates the download of the user’s ArcotID PKI. To support a wide
variety of end user environments, the ArcotID PKI Client is available as a Flash client and
as a signed Java applet. Each client type offers different levels of convenience and
capabilities. The degree of user interaction and administration rights required for
configuration vary depending on the client selected.

Flash Client

This implementation of ArcotID PKI Client runs in any Web browser that has Adobe Flash
Player (version 9 or higher) installed.

Note: If you are using ArcotID PKI Flash Client for ArcotID PKI operations, then the
application serving the Flash client must be enabled for HTTPS.

Copying ArcotID PKI Client Files

34 Java Developer's Guide

Signed Java Applet

This implementation of the ArcotID PKI Client can run in any Web browser that has Sun
Java Runtime Environment (JRE) installed.

Note: When using the CA signed Java applet, the user will be presented with a security
message that requires the user to accept the signed applet before it is invoked.

Copying ArcotID PKI Client Files

ArcotID PKI Client is an end-user system component. Therefore based on the client type
that you are planning to use, you must package the relevant files to the correct locations
on the system where the application is running.

This section discusses the files that needs to be packaged with the application:

■ For Flash Client (see page 34)

■ For Java Signed Applet (see page 35)

For Flash Client

The Flash client package contains the following files:

■ arcotclient.js

Contains the ArcotID PKI Flash Client APIs.

■ ArcotIDClient.swf

Contains the ArcotID PKI Flash Client implementation.

To configure a Flash Client:

1. Copy arcotclient.js and ArcotIDClient.swf files to an appropriate directory within
your application home.

2. Include the following JavaScript code in the Web page of your application from
where the APIs will be invoked:

<script type="text/javascript"

src="location_to_arcotclient.js"></script>

In the preceding code snippet, replace location_to_arcotclient.js with the path to
arcotclient.js.

3. Ensure that in the all application pages, ArcotIDClient.swf is referred with same
URL.

ArcotID PKI Client APIs

Chapter 5: Integrating ArcotID PKI Client with Application 35

For Java Signed Applet

The Java Signed Applet client package contains the following files:

■ arcotclient.js

Contains the Java Signed Applet client APIs.

■ ArcotApplet.jar (for Sun JRE)

Contains the Java Signed Applet client implementation.

To configure the Java Signed Applet Client:

1. Copy arcotclient.js and ArcotApplet.jar to an appropriate directory within your
application home.

2. Include the following JavaScript code in the relevant Web page of your application:

<script type="text/javascript"

src="location_to_arcotclient.js"></script>

In the preceding code snippet, replace location_to_arcotclient.js with the path to
arcotclient.js.

3. Ensure that in the all application pages, the Java Applet is referred with same URL.

ArcotID PKI Client APIs

If you are implementing ArcotID PKI authentication, then your application must
integrate with ArcotID PKI Client APIs for:

■ Downloading ArcotID PKI (see page 36)

■ Signing the Challenge (see page 36)

ArcotID PKI Client APIs

36 Java Developer's Guide

Downloading ArcotID PKI

To download the ArcotID PKI from the application to the end-user system, you must use
the ImportArcotID() function. This function takes the base-64 encoded string of the
ArcotID PKI that has to be downloaded and the storage mode as the input parameters.

The ArcotID PKI can be temporarily downloaded for the current session or can be
downloaded permanently. This storage mode is specified by the storage medium
selected for storing the ArcotID PKI. An ArcotID PKI can be stored in any of the following:

■ Hard Disk

■ Universal Serial Bus (USB)

■ Memory

The downloaded ArcotID PKI is saved with the .aid extension. The name of the ArcotID
PKI file is derived from the hash value of user name, organization name, and domain
name.

Signing the Challenge

The challenge from the AuthMinder Server must be signed by using the
SignChallengeEx() function of the client API.

Book: Refer to ArcotID Client Reference Guide for more information on the API details.

Chapter 6: Performing Issuance Operations 37

Chapter 6: Performing Issuance Operations

For AuthMinder to authenticate users, an account for each user has to be created in the
database, as discussed in the chapter, "Managing Users" (see page 31). Then you need
to create credentials for users.

This chapter provides description of the APIs that are used for credential operations. It
covers the following topics:

■ Initializing the Issuance SDK (see page 37)

■ Before You Proceed (see page 38)

■ Credential Operations (see page 43)

Initializing the Issuance SDK

Initialize the Issuance SDK by using the Issuance class in the
com.arcot.webfort.issuance.api package. After initialization, it returns an appropriate
message to the calling application.

The Issuance class provides two methods to initialize the Issuance SDK.

Method 1: Initializing the SDK by Using the Map

This method initializes the Issuance Application based on the map provided. The
following table provides the details of the init() method:

Description Input Values Output Value

Initializes the
Issuance SDK by
using the provided
map.

■ map
The key-value pair specifying the
configuration information. The map
values are same as the parameters listed
in the webfort.issuance.properties file.

Book: Refer to appendix, "Configuration Files
and Options" in the CA AuthMinder
Installation and Deployment Guide for more
information on the parameters in this
properties file.

■ locale
The locale of the API. The default value is
set to en_US.

Returns an
exception if the
SDK is not
initialized
successfully.

Before You Proceed

38 Java Developer's Guide

Method 2: Initializing the SDK by Using the Properties File

This method initializes the Issuance SDK by using the parameters listed in the properties
file. If you pass NULL, then the parameters are read from the
webfort.issuance.properties file. If you provide a different file name containing these
configuration parameters, then that file is read instead.

The following table provides the details of the initialization method using the properties
method:

Description Input Values Output Value

Initializes the
Issuance SDK by
using the
properties file.

■ location
The absolute path of the properties file.
By default, this file is available at
<install_location>/sdk/client/java/properti
es

■ locale
The locale of the API. The default value is
set to en_US.

Returns an
exception if the
SDK is not
initialized
successfully.

Releasing the Issuance SDK Resources

The Issuance class also provides a method to release the resources such as sockets that
are used by Issuance SDK.

Important! This method must be invoked before re-initializing the SDK.

The following table provides the details of the release() method:

Description Input Values Output Value

Releases the
Issuance SDK.

The locale of the API. Returns an exception if the API is
not released successfully.

Before You Proceed

The Issuance SDK performs the user status checks (if enabled) before performing the
credential operations that are discussed in this chapter. This section lists these user
status checks, supported credential states, supported transitions between the credential
states, and the credential operations that are possible on a particular credential state. It
covers the following topics:

■ Checking the User Status (see page 39)

■ Credential States and Supported Transitions (see page 40)

■ Credential Operations and States (see page 41)

Before You Proceed

Chapter 6: Performing Issuance Operations 39

Checking the User Status

AuthMinder uses the user status information before performing some of the credential
operations. A user’s status in the database can be either INITIAL, ACTIVE, INACTIVE, or
DELETED.

Note: For Issuance SDK to perform these checks, you must enable this option when you
create configurations using the Administration Console. Refer to the section, "Credential
Profiles and Policies" in Chapter 5, "Managing Global AuthMinder Configurations" in the
CA AuthMinder Administration Guide for more information.

The following table lists all the credential operations and the user checks that are
performed depending on the type of operation:

Operation
 Checks

User Existence User Status User Attribute

Create Yes Yes Yes

Delete No No No

Disable No No No

Enable Yes Yes No

Fetch No No No

Fetch QnA Configuration No No No

Reissue Yes Yes No

Reset Yes Yes No

Reset Custom Attributes Yes Yes No

Reset Validity Yes Yes No

Download Credential Yes Yes No

Delete Unsigned
Attributes

No No No

Set Unsigned Attributes No No No

Add ArcotID Key Bag
Elements

No No No

Fetch ArcotID Key Bag
Elements

No No No

Delete ArcotID Key Bag
Elements

No No No

Before You Proceed

40 Java Developer's Guide

Credential States and Supported Transitions
AuthMinder supports the following states for a credential that is issued to a user:

■ ACTIVE

Indicates that the credential is active and can be used for authentication.

■ DISABLED

The credential is disabled by the administrator.

■ LOCKED

The credential is locked when the user consecutively fails to authenticate for the
maximum number of negative attempts configured. For example if the maximum
attempts configured is 3, then the third attempt with wrong credential will lock the
credential.

■ VERIFIED

The credential is verified when the OTP submitted by the user is authenticated by
the AuthMinder Server successfully.

Note: This status is applicable only for OTP.

■ DELETED

The credential of the user is deleted.

When you perform an operation on a credential, the status of the credential might be
changed after the operation is performed successfully on the credential. For example,
when the user successfully authenticates with their OTP, then status of the user’s OTP is
changed to VERIFIED.

The following table lists the transitions possible between the supported credential
states:

Current State

 Change State to

Enabled Locked Disabled Deleted
Verified
(for OTP
only)

Active Yes Yes Yes Yes Yes

Locked Yes Yes Yes Yes No

Disabled Yes No Yes Yes No

Deleted No No No Yes No

Verified No No No Yes No

Before You Proceed

Chapter 6: Performing Issuance Operations 41

Credential Operations and States

The following table lists all credential operations and whether each operation is allowed
on a specific state of the credential. If the state of the credential changes after an
operation, then the table also provides the next state of the credential.

Note: Allowed indicates that the operation can be performed, but the state of the
credential will not change after the operation.

Operation

 State

Enabled Locked Disabled Deleted
Verified
(for OTP
only)

Create Not allowed Not allowed Not allowed Allowed ->
Enabled

Not
applicable

Enable Allowed ->
Enabled

Allowed ->
Enabled

Allowed ->
Enabled

Not allowed Not
applicable

Disable Allowed ->
Disabled

Allowed ->
Disabled

Allowed ->
Disabled

Not allowed Not
applicable

Fetch Allowed Allowed Allowed Allowed Allowed

FetchQnAConfig
uration

Allowed Allowed Allowed Allowed Not
applicable

Reset Allowed ->
Enabled

Allowed ->
Enabled

Allowed ->
Enabled

Not allowed Not
applicable

Reset Validity Allowed Allowed Allowed Not allowed Not
applicable

Download
Credential

Allowed Allowed Allowed Not allowed Not
applicable

Reset Custom
Attributes

Allowed Allowed Allowed Not allowed Not
applicable

Reissue Allowed ->
Enabled

Allowed ->
Enabled

Allowed ->
Enabled

Not allowed Not
applicable

Before You Proceed

42 Java Developer's Guide

Operation

 State

Enabled Locked Disabled Deleted
Verified
(for OTP
only)

Delete Unsigned
Attributes (for
ArcotID only)

Allowed Allowed Allowed Not allowed Not
applicable

Set Unsigned
Attributes (for
ArcotID only)

Allowed Allowed Allowed Not allowed Not
applicable

Add ArcotID Key
Bag Elements

Allowed Allowed Allowed Not allowed

Not
applicable

Fetch ArcotID
Key Bag
Elements

Allowed Allowed Allowed Not allowed

Not
applicable

Delete ArcotID
Key Bag
Elements

Allowed Allowed Allowed Not allowed

Not
applicable

Delete Allowed ->
Deleted

Allowed ->
Deleted

Allowed ->
Deleted

Not allowed Not
applicable

Credential Operations

Chapter 6: Performing Issuance Operations 43

Credential Operations

This section describes the credential lifecycle operations that are supported by the
Issuance API. The operations listed in this chapter can be performed on all credentials
that are supported by AuthMinder, and can be performed by using any of the following
method:

■ By using AuthMinder SDKs

This mode enables you to automate the credential management operations
programmatically.

■ By using Administration Console

Administration Console is a Web-based application and is typically suitable for
Customer Support Representatives (CSRs), who handle the user requests (such as,
disabling the credential, enabling the credential, or resetting the credential
validity.)

Note: Refer to CA AuthMinder Administration Guide for more information on using
the Administration Console.

This section covers the following credential lifecycle operations:

■ Preparing Additional Input (see page 45)

■ Preparing the Input (see page 46)

■ Creating Credentials (see page 51)

■ Disabling Credentials (see page 52)

■ Enabling Credentials (see page 53)

■ Resetting Credentials (see page 54)

■ Fetching Credential Details (see page 55)

■ Downloading Credentials (see page 56)

■ Reissuing Credentials (see page 57)

■ Resetting Credential Validity (see page 58)

■ Resetting Custom Attributes (see page 59)

■ Fetching QnA Configuration (see page 60)

■ Adding Elements to ArcotID PKI Key Bag (see page 61)

■ Fetching ArcotID PKI Key Bag Elements (see page 62)

■ Deleting ArcotID PKI Key Bag Elements (see page 63)

■ Setting Unsigned Attributes (see page 64)

■ Deleting Unsigned Attributes (see page 65)

Credential Operations

44 Java Developer's Guide

■ Deleting Credentials (see page 66)

■ Reading the Output (see page 67)

■ Credential Operations Summary (see page 69)

Note: Each operation discussed in this chapter can be performed simultaneously by
using different credentials. If the operation fails for a single credential, then the
operations for other credentials are also considered invalid. For example, if you are
creating ArcotID PKI, QnA, and OTP, and the ArcotID PKI and OTP creation was
successful, while the QnA creation failed, then all the three credentials have to be
created again.

Credential Operations

Chapter 6: Performing Issuance Operations 45

Preparing Additional Input

You need to prepare additional inputs if you plan to augment AuthMinder’s standard
authentication capability by implementing plug-ins, then you need to set the extra
information that must be sent to AuthMinder Server in name-value pairs. AuthMinder’s
com.arcot.webfort.common.api provides you the AdditionalInput class, which enables
you to set this additional information that you plan to use.

Some of the pre-defined additional input parameters supported by the AdditionalInput
class are:

■ AR_WF_LOCALE_ID

Specifies the locale that AuthMinder will use in returning the messages back to the
calling application.

■ AR_WF_CALLER_ID

This is useful in tracking transactions. You can use session ID or transaction ID for
specifying this information.

■ AR_WF_OTP_TXN_SIGN_DATA

Specifies the transaction data that the end user enters in the Challenge field of the
ArcotID PKI OTP client to generate a passcode in the Sign mode. The maximum
length of the signed data is 64 bytes. This implementation of the Transaction
Signing feature conforms to the OATH Challenge-Response Algorithm (OCRA) as
defined by RFC 6287.

■ AR_WF_TXN_FILE_LOG_TRACE

Enables TRACE logging for the transaction. The presence of the identifier
irrespective of the value enables TRACE logging.

■ AR_WF_TXN_FILE_LOG_LEVEL

Used to control the log level for the transaction. The supported values are:

■ 1 for WARNING

■ 2 for INFO

■ 3 for DETAIL

See appendix, "AuthMinder Logging" (see page 125) for more information on log
levels.

■ AR_WF_TXN_LOG_SENSITIVE_DATA

Indicates whether the sensitive data must be logged for the current transaction. For
example, USERNAME of the user. The presence of the identifier irrespective of the
value enables this logging.

■ AR_WF_TXN_DB_LOG_QUERY_DETAILS

Indicates whether the database query execution has to be logged in detail. The
presence of the identifier irrespective of the value enables this logging.

Credential Operations

46 Java Developer's Guide

Preparing the Input

Preparing the input for this interface and sub-interface includes preparing:

■ Common Input (see page 46)

■ Credential-Specific Input (see page 48)

Common Input

The CredentialInput interface provides the common configurations to all the credential
types. The following information is set by using this interface:

■ Validity

■ Custom Attributes

■ Profile Name

■ Disable Period

Validity

The Issuance API enables you to set a period for which the credential will be valid.
Invoke the setValidity() method of the CredentialInput class if you want to pass a
specific calendar date, or use setValidityEx() class if you want to use the ArcotDate.Type
Class to set the validity date.

The validity of the credential is taken as input by resetValidity() methods.

Custom Attributes

 The Issuance API enables you to add custom attributes for each credential type. This
feature helps you to maintain any additional credential information. For example, if you
do not want the user to download their ArcotID PKI on more than five systems, then you
can create an attribute with this information. This is taken as input by create() or
resetNotes() methods.

To add custom attributes, invoke the setNote() method of the CredentialInput class.

Credential Operations

Chapter 6: Performing Issuance Operations 47

Profile Name

Typically, same set of credential information could well be applied to many users. In
such cases, to avoid the cumbersome task of entering the credentials for each user
individually, you can create a profile with all common information and share this profile
among multiple users. Each profile is identified by a unique Profile Name.

The Issuance API enables you to set the profile name for the credential. To set the
profile name, invoke the setProfileName() method of the CredentialInput class.

Note: If the profile is not set, then the default profile for the credential is used.

Disable Period

If your users want to go on a vacation or on long leave, then their credentials can be
disabled only for that period, after which the credentials will be enabled automatically.
This feature facilitates credential activation without the user making a request to User
Administrator (UA) to do so.

The Issuance API enables you to set the disable period for the credential. To set the
disable period, invoke the setDisableStartTime() and setDisableEndTime() methods of
the CredentialInput class. The setDisableStartTime() and setDisableEndTime() methods
use the ArcotDate.Type Class for setting the disable period.

ArcotDate.Type Class

The ArcotDate.Type class enables you to set the validity, disable start and end periods
by using the following date formats:

■ Current Date

Uses the current date of the AuthMinder Server to set the validity or disable period.

■ Forever Date

Specifies the credential will be valid forever and will not expire.

■ Relative Date

Uses a relative date corresponding to the disable start date. For example, if the
relative date is one month, then disable end date would be one month after the
disable start date.

■ Specific Date

Uses a date that is specified by your application to set the validity or disable period.

Credential Operations

48 Java Developer's Guide

Credential-Specific Input

The com.arcot.webfort.issuance.api package provides the interface that you can use to
set the information specific to the following supported credentials:

■ Preparing ArcotID PKI Input

■ Preparing QnA Input

■ Preparing Password Input

■ Preparing OATH OTP Input

■ Preparing ArcotID OTP Input

■ Preparing EMV OTP Input

Preparing ArcotID PKI Input

The following ArcotID PKI inputs can be set by using the ArcotIDInput class:

1. Unsigned Attributes

 You can define ArcotID PKI attributes while or after creating an ArcotID PKI for the
user. Such attributes are called unsigned attributes because these attributes
(name-value pairs) are set in the unsigned portion of the ArcotID PKI.

Note: If you add an attribute that already exists, then the current attributes will be
overwritten by the new value.

To set unsigned attributes:

a. Use the ArcotIDInput class to obtain the methods that set the information of
the ArcotID PKI.

b. Use ArcotIDAttribute class to define the unsigned attributes to set in the
ArcotID PKI.

c. Invoke the setUnsignedAttributes method in the ArcotIDInput class.

2. Password

To set the password for the ArcotID PKI or change the current ArcotID PKI
password, you must use the setPassword method. To set the ArcotID PKI password:

a. Use the ArcotIDInput class to obtain the methods that set the information of
the ArcotID PKI.

b. Invoke the setPassword method in the ArcotIDInput class.

3. ArcotID PKI Attributes

To fetch ArcotID PKI attributes in ArcotIDResponse, you must enable the
setFetchAttributeFlag() flag. To fetch ArcotID PKI attributes:

a. Use the ArcotIDInput class to obtain the methods that set the information of
the ArcotID PKI.

Credential Operations

Chapter 6: Performing Issuance Operations 49

b. Invoke the setFetchAttribute method in the ArcotIDInput class.

Preparing QnA Input

The following QnA inputs can be set by using the QnAInput class:

1. Set Questions and Answers

The questions and answers for the QnA authentication must be set by using the
QnAInput class. To add the questions and answers:

a. Use the QnAInput class to obtain the methods that set the information of QnA.

b. Invoke the setQuestionAnswer method in the QnAInput class.

2. Update Questions and Answers

The questions and answers for the QnA authentication must be updated by using
the QnAInput class. To update the questions and answers:

a. Use the QnAInput class to obtain the methods that set the information of QnA.

b. Invoke the updateQuestionAnswer method in the QnAInput class. You can
update the following:

■ Add questions and answers

■ Change answers of questions

■ Change questions

■ Delete questions

Preparing Password Input

The password for the password authentication is set by using the UPInput class. To set
the password:

1. Use the UPInput class to obtain the methods that set the information of password.

2. Invoke the setPassword method in the UPInput class.

Preparing OATH OTP Input

The following OATH OTP inputs can be set by using the OATHOTPInput class:

1. Token Identifier

To set the token ID that is used to issue the OATH OTP you must use the
OATHOTPInput class. To set the token ID:

Credential Operations

50 Java Developer's Guide

a. Use the OATHOTPInput class to obtain the methods that set the token ID of the
OTP.

b. Invoke the setTokenID method in the OATHOTPInput class.

2. Reuse Token

To set if the abandoned token can be reused, you must use the OATHOTPInput
class. To reuse the token:

a. Use the OATHOTPInput class to obtain the methods that set the token ID of the
OTP.

b. Invoke the setReUseToken method in the OATHOTPInput class.

Preparing ArcotID OTP Input

To set or change the password that is used to generate ArcotID OTP, you must use the
setPassword method, as follows:

1. Use the ArcotOTPInput class to obtain the methods that set the information of the
ArcotID PKI.

2. Invoke the setPassword method in the ArcotOTPInput class.

Preparing EMV OTP Input

EMV OTPs are compliant to Europay MasterCard VISA (EMV) standards. To set or change
the password that is used to generate EMV OTP, you must use the setPassword method,
as follows:

1. Use the EMVInput class to obtain the methods that set the information of the EMV
OTP.

2. Invoke the setPassword method in the EMVInput class.

Credential Operations

Chapter 6: Performing Issuance Operations 51

Creating Credentials

The com.arcot.webfort.issuance.api package provides the CredentialIssuance interface
that contains the methods to create the credentials for the user.

To create credentials:

1. Depending on the type of credential you want to create, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for password as well as ArcotID PKI credential, while questions and corresponding
answers are required for QnA credentials.

Note: See "Credential Operations Summary" (see page 69) for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the common
information of the credential.

3. Invoke the CredentialInputList class to pass the input classes of different
credentials.

4. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

5. Invoke the create() method of the CredentialIssuance interface to create the
credentials.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

52 Java Developer's Guide

Disabling Credentials

User credentials can be disabled for a specified time interval. For example, if an
employee goes for long vacation, then the credentials of this user can be disabled to
prevent any unauthorized access during their absence.

To disable credentials:

1. Depending on the type of credential you want to disable, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for password as well as ArcotID PKI credential, while questions and corresponding
answers are required for QnA credentials.

Note: See "Credential Operations Summary" (see page 69) for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the common
information of the credential.

3. Invoke the CredentialInputList class to pass the input classes of different
credentials.

4. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

5. Invoke the disable() method of the CredentialIssuance interface to disable the
credentials.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

Chapter 6: Performing Issuance Operations 53

Enabling Credentials

The enable method is used to activate the disabled or locked credential of a user. For
example, a credential can be disabled or locked if a user tries to authenticate by using
the wrong credential or exceeds the configured maximum number of allowed attempts.

To enable a credential:

1. Depending on the type of credential you want to enable, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for password as well as ArcotID PKI credential, while questions and corresponding
answers are required for QnA credentials.

Note: See "Credential Operations Summary" (see page 69) for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the common
information of the credential.

3. Invoke the CredentialInputList class to pass the input classes of different
credentials.

4. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

5. Invoke the enable() method of the CredentialIssuance interface to enable the
credentials.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

54 Java Developer's Guide

Resetting Credentials

The Issuance APIs enables you to reset the credential. For example, you can reset the
ArcotID PKI password or questions and answers.

To reset the credential:

1. Depending on the type of credential you want to reset, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for password as well as ArcotID PKI credential, while questions and corresponding
answers are required for QnA credentials.

Note: See "Credential Operations Summary" (see page 69) for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the common
information of the credential.

3. Invoke the CredentialInputList class to pass the input classes of different
credentials.

4. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

5. Invoke the resetCredential() method of the CredentialIssuance interface to reset
the credential.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

Chapter 6: Performing Issuance Operations 55

Fetching Credential Details

To read the details of the user credentials, you need to implement the fetch() method.

To read a user’s credential information:

1. Depending on the type of credential whose details have to be fetched, use the
respective <CredentialName>Input class to obtain an object that implements the
class.

The input required for each credential is different. For example, password is needed
for password as well as ArcotID PKI credential, while questions and corresponding
answers are required for QnA credentials.

Note: See "Credential Operations Summary" (see page 69) for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the common
information of the credential.

3. Invoke the CredentialInputList class to pass the input classes of different
credentials.

4. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

5. Invoke the fetch() method of the CredentialIssuance interface to read the credential
details.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

56 Java Developer's Guide

Downloading Credentials

To download the credentials of the users to their system, you need to implement the
downloadCredential() method. This method is used for ArcotID PKI, ArcotID OTP-OATH,
and ArcotID OTP-EMV credentials.

To download the credential information:

1. Depending on the type of credential whose details have to be fetched, use the
respective <CredentialName>Input class to obtain an object that implements the
class.

The input required for each credential is different. For example, password is needed
for password as well as ArcotID PKI credential, while questions and corresponding
answers are required for QnA credentials.

Note: See "Credential Operations Summary" (see page 69) for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the common
information of the credential.

3. Invoke the CredentialInputList class to pass the input classes of different
credentials.

4. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

5. Invoke the downloadCredential() method of the CredentialIssuance interface to
download the credentials.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

Chapter 6: Performing Issuance Operations 57

Reissuing Credentials

The Issuance API enables you to re-create the credentials for the user. If the credential
has been reissued for the user, then the user cannot log in by using their old credential.

To reissue a credential:

1. Depending on the type of credential you want to reissue, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for password as well as ArcotID PKI credential, while questions and corresponding
answers are required for QnA credentials.

Note: See "Credential Operations Summary" (see page 69) for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the common
information of the credential.

3. Invoke the CredentialInputList class to pass the input classes of different
credentials.

4. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

5. Invoke the reissue() method of the CredentialIssuance interface to recreate the
credential.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

58 Java Developer's Guide

Resetting Credential Validity

Issued credentials are valid for the period that is specified at the time they are created.
The CredentialIssuance interface provides resetValidity() method, which helps to reset
the validity period of the credential before it expires. This method is used to either
extend or reduce the validity period of the credential, but it does not reset the password
or any other credential attributes.

To reset the validity of the credential:

1. Depending on the type of credential that has to be reset, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for password as well as ArcotID PKI credential, while questions and corresponding
answers are required for QnA credentials.

Note: See "Credential Operations Summary" (see page 69) for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the common
information of the credential.

3. Invoke the CredentialInputList class to pass the input classes of different
credentials.

4. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

5. Invoke the resetValidity() method of the CredentialIssuance interface to reset the
validity of the credential.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

Chapter 6: Performing Issuance Operations 59

Resetting Custom Attributes

The custom attributes associated with the credentials can be reset. The
CredentialIssuance interface provides resetNotes() method, which helps to reset the
custom attributes of the credential.

To reset the custom attributes of the credential:

1. Depending on the type of credential for which the attributes have to be reset, use
the respective <CredentialName>Input class to obtain an object that implements
the class.

The input required for each credential is different. For example, password is needed
for password as well as ArcotID PKI credential, while questions and corresponding
answers are required for QnA credentials.

Note: See "Credential Operations Summary" (see page 69) for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the common
information of the credential.

3. Invoke the CredentialInputList class to pass the input classes of different
credentials.

4. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

5. Invoke the resetNotes() method of the CredentialIssuance interface to reset the
custom attributes.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

60 Java Developer's Guide

Fetching QnA Configuration

The number of questions that the user must set for QnA authentication might vary for
every organization. This section explains how to use SDK to fetch this information:

1. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

2. Invoke the fetchQnAConfiguration() method of the CredentialIssuance interface to
fetch the number of questions.

This method returns an instance of the CredentialResponse interface, which
specifies the details of all credentials and the transaction.

Credential Operations

Chapter 6: Performing Issuance Operations 61

Adding Elements to ArcotID PKI Key Bag

ArcotID PKI can also be used to securely store the Open PKI keys and certificates. These
keys are typically used for different applications or operations such as, email signing
(S/MIME), document signing, and certificate-based authentication (open PKI).

The location where the open PKI keys and certificates are stored in the ArcotID PKI is
called key bag or key vault.

To add elements to ArcotID PKI key bag, you need to implement the addElements()
method in the ArcotIDKBMIssuance interface.

1. Use the ArcotIDKeyBagElementSelection and ArcotIDKeyBagElementSet classes to
obtain the elements that you need to add to the key bag.

2. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

3. Invoke the addElements() method of the ArcotIDKBMIssuance interface to add
elements to the ArcotID PKI key bag.

This method returns an instance of the TransactionDetails interface, which specifies
the transaction ID, message, response code, and reason code.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

62 Java Developer's Guide

Fetching ArcotID PKI Key Bag Elements

To fetch elements of the ArcotID PKI key bag, you need to implement the getElements()
method in the ArcotIDKBMIssuance interface.

1. Use the ArcotIDKeyBagElementSelection and ArcotIDKeyBagElementSet classes to
obtain the elements that you need to fetch from the key bag.

2. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

3. Invoke the getElements() method of the ArcotIDKBMIssuance interface to fetch
elements of the ArcotID PKI key bag.

This method returns an instance of the TransactionDetails interface, which specifies
the transaction ID, message, response code, and reason code.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

Chapter 6: Performing Issuance Operations 63

Deleting ArcotID PKI Key Bag Elements

To delete elements of the ArcotID PKI key bag, you need to implement the
deleteElements() method in the ArcotIDKBMIssuance interface.

1. Get the unique identifier of the element that you want to delete from the key bag.

2. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

3. Invoke the deleteElements() method of the ArcotIDKBMIssuance interface to delete
elements of the ArcotID PKI key bag.

This method returns an instance of the TransactionDetails interface, which specifies
the transaction ID, message, response code, and reason code.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

64 Java Developer's Guide

Setting Unsigned Attributes

To set the unsigned attributes for the ArcotID PKI of user, you need to implement the
setArcotIDUnsignedAttributes() method.

Note: This operation is applicable only for ArcotID PKI credential.

1. Use the ArcotIDAttributes class to set the ArcotID PKI unsigned attributes.

2. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

3. Invoke the setArcotIDUnsignedAttributes() method of the CredentialIssuance
interface to set the ArcotID PKI unsigned attributes.

This method returns an instance of the TransactionDetails interface, which specifies
the transaction ID, message, response code, and reason code.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

Chapter 6: Performing Issuance Operations 65

Deleting Unsigned Attributes

To delete the unsigned attributes for the ArcotID PKI of a user, you need to implement
the deleteArcotIDUnsignedAttributes() method.

Note: This operation is applicable only for ArcotID PKI credential.

Perform the following steps to delete the unsigned attributes of the ArcotID PKI:

1. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

2. Invoke the deleteArcotIDUnsignedAttributes() method of the CredentialIssuance
interface to delete the ArcotID PKI unsigned attributes.

This method returns an instance of the TransactionDetails interface, which specifies
the transaction ID, message, response code, and reason code.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

66 Java Developer's Guide

Deleting Credentials

To delete the credentials of a user:

1. Depending on the type of credential you want to delete, use the respective
<CredentialName>Input class to obtain an object that implements the class.

The input required for each credential is different. For example, password is needed
for password as well as ArcotID PKI credential, while questions and corresponding
answers are required for QnA credentials.

Note: See "Credential Operations Summary" (see page 69) for the input details
required by different credentials.

2. Use the CredentialInput abstract class to obtain the methods that set the common
information of the credential.

3. Invoke the CredentialInputList class to pass the input classes of different
credentials.

4. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to fill the AdditionalInput.

This class provides the additional information that is set as a name-value pair. See
"Preparing Additional Input" (see page 45) for more information.

5. Invoke the delete() method of the CredentialIssuance interface to delete the
credential.

This method returns an instance of the ConfigurationResponse interface, which
specifies the QnA configuration details.

Handling Errors

Exceptions are returned for any errors that occurred while executing any of the Issuance
API methods. The com.arcot.webfort.issuance.api.exception and
com.arcot.webfort.common.api.exception packages contain these exceptions. See
"Issuance Exceptions" (see page 146) and "Common Exceptions" (see page 145) for
more information on exception classes.

Note that if no exception is thrown, then processing was successful and the return
object can be referenced for processing results. The lack of an error does not necessarily
mean that the request was successful.

Credential Operations

Chapter 6: Performing Issuance Operations 67

Reading the Output

The following table lists the methods that fetch the credential and user details:

Note: Most of the methods listed in the following table can also return NULL.

Method Description

Common Output Methods

getCreateTime() Fetches the time when the credential was created.

getDisableEndTime() Fetches the time when the disabled credential has
to be enabled.

getDisableStartTime() Fetches the time when the credential has to be
disabled.

getLastFailedAuthAttemptTime() Fetches the time when the last authentication
attempt failed.

getLastSuccessAuthAttemptTime
()

Fetches the time when the last authentication
attempt succeeded.

getLastUpdatedTime() Fetches the time when the credential was updated
last time.

getNotes() Fetches the custom attributes that are set for the
credential.

getNumberOfFailedAuthAttempt
s()

Fetches the total number of failed authentication
attempts for the user.

getOrgName() Fetches the organization name to which the user
belongs.

getProfileName() Fetches the profile name with which the credential
was created.

getProfileVersion() Fetches the version number of the profile.

getRemainingUsageCount() Fetches the number of times the credential can be
used.

getStatus() Fetches the status of the credential.

getUserName() Fetches the name of the authenticating user.

getValidityEndTime() Fetches the date after which the credential expires.

getValidityStartTime() Fetches the date from when the credential is valid.

ArcotID Output Method

getUnsignedAttributes() Fetches the unsigned attributes of the ArcotID PKI
that the user has set.

Credential Operations

68 Java Developer's Guide

Method Description

QnA Output Method

getQuestions() Fetches the questions set for the user.

Password Output Method

Only the common output methods are available for this authentication method.

One-Time Password Output Methods

getOTP() Fetches the One-Time Password (OTP) for the user.

getUsageCount() Fetches the number of times the OTP can be used.

OATH One-Time Password Output Methods

getCounterOffSet() Fetches the OATH OTP count on the server.

getLength() Fetches the length the OATH OTP issued to the
user.

getTokenID() Fetches the OATH OTP token ID.

getType() Fetches the type of OATH OTP (HOTP or TOTP) that
has to be issued to the user.

ArcotOTP Output Methods

getCard() Fetches the ArcotID OTP card generated by the
AuthMinder Server.

getCounterOffSet() Fetches the ArcotID OTP count on the server.

getType() Fetches the type of ArcotID OTP (HOTP or TOTP).

EMV OTP Output Methods

getCard() Fetches the OTP card generated by the AuthMinder
Server.

getCounterOffSet() Fetches the EMV OTP count on the server.

Credential Operations

Chapter 6: Performing Issuance Operations 69

Credential Operations Summary

This section provides the input parameters required for performing lifecycle
management operations for each credential and the expected output for:

■ ArcotID PKI Operations (see page 69)

■ Password Operations (see page 73)

■ Question and Answer Operations (see page 76)

■ One-Time Password Operations (see page 79)

■ OATH OTP Operations (see page 81)

■ ArcotID OTP Operations (see page 83)

■ EMV OTP Operations (see page 86)

ArcotID PKI Operations

The following table provides the input and output information for ArcotID PKI
operations:

Operation
(Function Used)

Input Required Expected Output

Creating credential

(create())
■ User name (userName).

■ (Optional) Organization name
(orgName).

■ ArcotID password (password).

■ (Optional) ArcotID attributes
(unsignedAttributes).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential. If it is not passed, then
the default profile for the
organization is used. If it is passed,
then the profile name must be
available at the organization.

■ (Optional) Custom attributes that
you have maintained for each
credential in your application.

■ CredentialDetails

■ TransactionDetails

Credential Operations

70 Java Developer's Guide

Operation
(Function Used)

Input Required Expected Output

Resetting
credential
(resetCredentail())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ ArcotID password (password).

■ (Optional) ArcotID attributes
(unsignedAttributes).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Fetching credential
(fetch())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Reissuing
credential
(reissue())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ ArcotID password (password).

■ (Optional) ArcotID attributes
(unsignedAttributes).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Credential Operations

Chapter 6: Performing Issuance Operations 71

Operation
(Function Used)

Input Required Expected Output

Resetting
credential validity
(resetValidity())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Time when the validity of the
credential ends
(validityEndTimeEx).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Resetting custom
attributes
(resetNotes())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Custom attributes that you have
maintained in your application.

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Disabling
credential
(disable())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Enabling
credential
(enable())

Deleting credential
(delete())

Setting ArcotID
unsigned attribute

(setArcotIDUnsign
edAttributes())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ ArcotID attributes
(unsignedAttributes).

■ (Optional) Profile name of the
credential.

TransactionDetails

Credential Operations

72 Java Developer's Guide

Operation
(Function Used)

Input Required Expected Output

Adding key bag
attributes
(addElements())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Certificate elements (elementSet).

■ ArcotID key bag details
(ArcotIDKeyBagElementSlection).

■ (Optional) Profile name of the
credential.

TransactionDetails

Fetching key bag
attributes
(getElements())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ ArcotID key bag details
(ArcotIDKeyBagElementSlection).

■ (Optional) Profile name of the
credential.

Deleting key bag
attributes
(deleteElements())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Certificate element identifiers
(elementIds).

■ (Optional) Profile name of the
credential.

Downloading
Credential
(downloadCredent
ial())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

Credential Operations

Chapter 6: Performing Issuance Operations 73

Operation
(Function Used)

Input Required Expected Output

Deleting unsigned
attribute

(deleteArcotIDUnsi
gnedAttributes())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Array of ArcotID unsigned
attributes.

■ (Optional) Profile name of the
credential.

Password Operations

The following table provides the input and output information for password operations:

Operation
(Function Used)

Input Required Expected Output

Creating credential

(create())
■ User name (userName).

■ (Optional) Organization name
(orgName).

■ Password (password).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential. If it is not passed, then
the default profile for the
organization is used. If it is passed,
then the profile name must be
available at the organization.

■ (Optional) Custom attributes that
you have maintained for each
credential in your application.

■ CredentialDetails

■ TransactionDetails

Credential Operations

74 Java Developer's Guide

Operation
(Function Used)

Input Required Expected Output

Resetting
credential
(resetCredentail())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ Password (password).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Fetching credential
(fetch())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Reissuing
credential
(reissue())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ Password (password).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Resetting
credential validity
(resetValidity())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Time when the validity of the
credential ends
(validityEndTimeEx).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Credential Operations

Chapter 6: Performing Issuance Operations 75

Operation
(Function Used)

Input Required Expected Output

Resetting custom
attributes
(resetNotes())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Custom attributes that you have
maintained in your application.

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Disabling
credential
(disable())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Enabling
credential
(enable())

Deleting credential
(delete())

Credential Operations

76 Java Developer's Guide

Question and Answer Operations

The following table provides the input and output information for QnA operations:

Operation
(Function Used)

Input Required Expected Output

Creating credential

(create())
■ User name (userName).

■ (Optional) Organization name
(orgName).

■ List of questions and answers
(question and answer).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential. If it is not passed, then
the default profile for the
organization is used. If it is passed,
then the profile name must be
available at the organization.

■ (Optional) Custom attributes that
you have maintained for each
credential in your application.

■ CredentialDetails

■ TransactionDetails

Resetting
credential
(resetCredentail())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ List of questions and answers
(question and answer).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential. If it is not passed, then
the default profile for the
organization is used. If it is passed,
then the profile name must be
available at the organization.

■ CredentialDetails

■ TransactionDetails

Credential Operations

Chapter 6: Performing Issuance Operations 77

Operation
(Function Used)

Input Required Expected Output

Fetching credential
(fetch())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Fetching credential
configuration
(fetchQnAConfigur
ation())

■ (Optional) Organization name
(orgName).

■ (Optional) Profile name of the
credential. If it is not passed, then
the default profile for the
organization is used. If it is passed,
then the profile name must be
available at the organization.

■ (Optional) Additional Input
(AdditionalInput).

■ QnAConfiguration

■ TransactionDetails

Fetching credential
configuration
(fetchQnAConfigur
ation())

■ (Optional) Organization name
(orgName).

■ (Optional) Profile name of the
credential. If it is not passed, then
the default profile for the
organization is used. If it is passed,
then the profile name must be
available at the organization.

■ (Optional) Additional Input
(AdditionalInput).

■ Questions to fetch (fetchQuestions)

■ QnAConfiguration

■ TransactionDetails

■ questions

Reissuing
credential
(reissue())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ List of questions and answers
(question and answer).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Credential Operations

78 Java Developer's Guide

Operation
(Function Used)

Input Required Expected Output

Resetting
credential validity
(resetValidity())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Time when the validity of the
credential ends
(validityEndTimeEx).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Resetting custom
attributes
(resetNotes())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Disabling
credential
(disable())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Enabling credential
(enable())

Deleting credential
(delete())

Credential Operations

Chapter 6: Performing Issuance Operations 79

One-Time Password Operations

The following table provides the input and output information for OTP operations:

Operation
(Function Used)

Input Required Expected Output

Creating credential

(create())
■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential. If it is not passed, then
the default profile for the
organization is used. If it is passed,
then the profile name must be
available at the organization.

■ (Optional) Custom attributes that
you have maintained for each
credential in your application.

■ CredentialDetails

■ TransactionDetails

■ Password

Fetching credential
(fetch())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Resetting
credential
(resetCredentail())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

■ Password

Credential Operations

80 Java Developer's Guide

Operation
(Function Used)

Input Required Expected Output

Resetting
credential validity
(resetValidity())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Time when the validity of the
credential ends
(validityEndTimeEx).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Reissuing
credential
(reissue())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Resetting custom
attributes
(resetNotes())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Custom attributes that you have
maintained in your application.

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Disabling
credential
(disable())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Enabling
credential
(enable())

Deleting credential
(delete())

Credential Operations

Chapter 6: Performing Issuance Operations 81

OATH OTP Operations

The following table provides the input and output information for OATH OTP
operations:

Operation
(Function Used)

Input Required Expected Output

Creating credential

(create())
■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential. If it is not passed, then
the default profile for the
organization is used. If it is passed,
then the profile name must be
available at the organization.

■ (Optional) Custom attributes that
you have maintained for each
credential in your application.

■ CredentialDetails

■ TransactionDetails

■ Password

Fetching credential
(fetch())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Resetting
credential
(resetCredentail())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

■ Password

Credential Operations

82 Java Developer's Guide

Operation
(Function Used)

Input Required Expected Output

Resetting
credential validity
(resetValidity())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Time when the validity of the
credential ends
(validityEndTimeEx).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Reissuing
credential
(reissue())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Downloading
Credential
(downloadCredent
ial())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ Password (password).

■ CredentialDetails

■ TransactionDetails

Resetting custom
attributes
(resetNotes())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Custom attributes that you have
maintained in your application.

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Credential Operations

Chapter 6: Performing Issuance Operations 83

Operation
(Function Used)

Input Required Expected Output

Disabling
credential
(disable())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Enabling
credential
(enable())

Deleting credential
(delete())

ArcotID OTP Operations

The following table provides the input and output information for ArcotID OTP
operations:

Operation
(Function Used)

Input Required Expected Output

Creating credential

(create())
■ User name (userName).

■ (Optional) Organization name
(orgName).

■ Password (password)

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential. If it is not passed, then
the default profile for the
organization is used. If it is passed,
then the profile name must be
available at the organization.

■ (Optional) Custom attributes that
you have maintained for each
credential in your application.

■ CredentialDetails

■ TransactionDetails

■ Password

Credential Operations

84 Java Developer's Guide

Operation
(Function Used)

Input Required Expected Output

Fetching credential
(fetch())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Resetting
credential
(resetCredentail())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ Password (password)

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

■ Password

Resetting
credential validity
(resetValidity())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Time when the validity of the
credential ends
(validityEndTimeEx).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Reissue (reset()) ■ User name (userName).

■ (Optional) Organization name
(orgName).

■ Password (password)

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

■ Password

Credential Operations

Chapter 6: Performing Issuance Operations 85

Operation
(Function Used)

Input Required Expected Output

Resetting custom
attributes
(resetNotes())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Custom attributes that you have
maintained in your application.

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Downloading
Credential
(downloadCredent
ial())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Disabling
credential
(disable())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Enabling
credential
(enable())

Deleting credential
(delete())

Credential Operations

86 Java Developer's Guide

EMV OTP Operations

The following table provides the input and output information for EMV OTP operations:

Operation
(Function Used)

Input Required Expected Output

Creating
credential

(create())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential. If it is not passed, then
the default profile for the
organization is used. If it is passed,
then the profile name must be
available at the organization.

■ (Optional) Custom attributes that
you have maintained for each
credential in your application.

■ CredentialDetails

■ TransactionDetails

■ Password

Fetching
credential
(fetch())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Resetting
credential
(resetCredentail())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

■ Password

Credential Operations

Chapter 6: Performing Issuance Operations 87

Operation
(Function Used)

Input Required Expected Output

Resetting
credential validity
(resetValidity())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Time when the validity of the
credential ends
(validityEndTimeEx).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Reissue (reissue()) ■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

■ Password

Resetting custom
attributes
(resetNotes())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ Custom attributes that you have
maintained in your application.

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Downloading
Credential
(downloadCredent
ial())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ Password (password).

■ CredentialDetails

■ TransactionDetails

Credential Operations

88 Java Developer's Guide

Operation
(Function Used)

Input Required Expected Output

Disabling
credential
(disable())

■ User name (userName).

■ (Optional) Organization name
(orgName).

■ (Optional) Additional Input
(AdditionalInput).

■ (Optional) Profile name of the
credential.

■ CredentialDetails

■ TransactionDetails

Enabling
credential
(enable())

Deleting
credential
(delete())

Chapter 7: Authenticating Users 89

Chapter 7: Authenticating Users

This chapter introduces you to the APIs that are used for different authentication
methods supported by AuthMinder. This chapter covers the following topics:

■ Initializing the Authentication SDK (see page 89)

■ Preparing Additional Input (see page 92)

■ ArcotID PKI Authentication (see page 93)

■ Questions and Answers Authentication (see page 94)

■ Password Authentication (see page 97)

■ One-Time Password Authentication (see page 98)

■ OATH One-Time Password Authentication (see page 99)

■ OATH One-Time Password Synchronization (see page 99)

■ ArcotID OTP (ArcotID OTP-OATH) Authentication (see page 99)

■ ArcotID OTP (ArcotID OTP-OATH) Synchronization (see page 100)

■ EMV (ArcotID OTP-EMV) Authentication (see page 100)

■ EMV (ArcotID OTP-EMV) Password Synchronization (see page 100)

■ Verifying Password Type Credentials (see page 101)

■ Verifying the Authentication Tokens (see page 102)

■ Fetching the PAM (see page 103)

■ Authentication Operations Summary (see page 104)

Initializing the Authentication SDK

Initialize the Authentication SDK by using the Authentication class in the
com.arcot.webfort.authentication.api package. The initialization process caches all the
database tables, creates the database pool, and loggers. After initialization, it returns an
appropriate message to the calling application.

Note: You cannot apply any configuration changes after you initialize the API. To enable
the configuration changes, you must re-initialize the API.

The Authentication class provides two methods to initialize the Authentication SDK.

Initializing the Authentication SDK

90 Java Developer's Guide

Method 1: Initializing the SDK by Using the Map

This method initializes the Authentication SDK based on the map provided. The
following table provides the details of the init() method:

Description Input Values Output Value

Initializes the
Authentication SDK by
using the provided map.

■ map
The key-value pair specifying the
configuration information. The map
values are same as the parameters
listed in the
webfort.authentication.properties
file.

Book: Refer to appendix, "Configuration
Files and Options" in the CA AuthMinder
Installation and Deployment Guide for
more information on the parameters in
this properties file.

■ locale
The locale of the API. The default
value is set to en_US.

Returns an
exception if the
SDK is not
initialized
successfully.

Method 2: Initializing the SDK by Using the Properties File

This method initializes the Authentication SDK by using the parameters listed in the
properties file. If you pass NULL, then the parameters are read from the
webfort.authentication.properties file. If you provide a different file name containing
these configuration parameters, then that file is read instead.

The following table provides the details of the initialization method using the properties
method:

Description Input Values Output Value

Initializes the
Authentication
SDK by using the
properties file.

■ location
The absolute path of the properties
file.
Be default, this file is available at
<install_location>/sdk/client/java/p
roperties

■ locale
The locale of the API. The default
value is set to en_US.

Returns an exception if
the SDK is not initialized
successfully.

Initializing the Authentication SDK

Chapter 7: Authenticating Users 91

Releasing the Authentication API Resources

The Authentication class also provides a method to release the resources such as
sockets that are used by Authentication SDK.

Important! This method must be invoked before re-initializing the SDK.

The following table provides the details of the release() method:

Description Input Values Output Value

Releases the
Authentication
SDK.

The locale of the API. Returns an exception if the API is
not released successfully.

Preparing Additional Input

92 Java Developer's Guide

Preparing Additional Input

You need to prepare additional inputs if you plan to augment AuthMinder’s standard
authentication capability by implementing plug-ins, then you need to set the extra
information that must be sent to AuthMinder Server in name-value pairs. AuthMinder’s
com.arcot.webfort.common.api provides you the AdditionalInput class, which enables
you to set this additional information that you plan to use.

Some of the pre-defined additional input parameters supported by the AdditionalInput
class are:

■ AR_WF_LOCALE_ID

Specifies the locale that AuthMinder will use in returning the messages back to the
calling application.

■ AR_WF_CALLER_ID

This is useful in tracking transactions. You can use session ID or transaction ID for
specifying this information.

■ AR_WF_TXN_FILE_LOG_TRACE

Enables the TRACE logging for the transaction. The presence of the identifier
irrespective of the value enables TRACE logging.

■ AR_WF_TXN_FILE_LOG_LEVEL

Used to control the log level for the transaction. The supported values are:

■ 1 for WARNING

■ 2 for INFO

■ 3 for DETAIL

See appendix, "AuthMinder Logging" (see page 125) for more information on log
levels.

■ AR_WF_TXN_LOG_SENSITIVE_DATA

Is used to indicate whether the sensitive data must be logged for the current
transaction. For example, USERNAME of the user. The presence of the identifier
irrespective of the value enables this logging.

■ AR_WF_TXN_DB_LOG_QUERY_DETAILS

Is used to indicate whether the database query execution has to be logged in detail.
The presence of the identifier irrespective of the value enables this logging.

■ AR_WF_OTP_TXN_SIGN_DATA

Specifies the transaction data that the end user enters in the Challenge field of the
ArcotID OTP client to generate a passcode in the Sign mode. The maximum length
of the signed data is 64 bytes. This implementation of the Transaction Signing
feature conforms to the OATH Challenge-Response Algorithm (OCRA) as defined by
RFC 6287.

ArcotID PKI Authentication

Chapter 7: Authenticating Users 93

ArcotID PKI Authentication

ArcotID PKI is a challenge-response type of authentication, where AuthMinder Server
provides a challenge. The signed challenge is sent by the ArcotID PKI Client to the
AuthMinder Server through the application. The following topics are explained in this
section:

1. ArcotID PKI Download

2. ArcotID PKI Authentication

For successful ArcotID PKI authentication, you must ensure that you have integrated
ArcotID PKI Client with application, as discussed in chapter, "Integrating ArcotID PKI
Client with Application" (see page 33).

Note: The ArcotID PKI download and authentication can be in multiple ways, see
chapter, "Understanding AuthMinder WorkFlows" (see page 13) for more information.
This section focuses on the APIs that are used for these operations.

ArcotID PKI Download

 To perform ArcotID PKI authentication, the ArcotID PKI of the user has to be present on
the system from where the authentication request is originating. If the ArcotID PKI is not
present, then it needs to be downloaded to the system. In such a case the user must
perform a secondary authentication before the ArcotID PKI is downloaded.

To download the ArcotID PKI:

1. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

2. Invoke the getArcotID() method of the ArcotIDAuth interface to fetch the ArcotID
PKI of the user to your application.

This method returns an instance of the ArcotIDResponse interface, which will have
the ArcotID PKI of the user.

3. The user’s ArcotID PKI is set in the HTML or Java Server Page (JSP).

4. Invoke the ImportArcotID() client-side API to download the ArcotID PKI from your
application to the end user’s system.

ArcotID PKI Authentication

To perform ArcotID PKI authentication:

Questions and Answers Authentication

94 Java Developer's Guide

1. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

2. Invoke the getChallenge() method of the ArcotIDAuth interface to retrieve the
challenge form the AuthMinder Server.

This method returns an instance of the ArcotIDChallengeResponse, which has the
transaction details and also the challenge from the server.

3. The challenge is sent to the end user through HTML Page.

4. Invoke the ArcotID PKI Client-side method, SignChallengeEx() to sign the challenge.

The application collects the ArcotID PKI password and the challenge is signed by the
ArcotID PKI Client using the ArcotID PKI password.

5. Invoke the verifySignedChallenge() method of the ArcotIDAuth interface to verify
the signed challenge. Optionally, you can also specify the token type that must be
returned to the user after successful authentication by using the AuthTokenType
class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

Questions and Answers Authentication

The Question and Answer (QnA) authentication mechanism can either be used as a
secondary authentication method for ArcotID PKI Download, or Forgot Your Password
(FYP) authentication, or can be used as an independent authentication type.

In this mechanism, the user can either set their own set of questions and answers during
the QnA creation stage, or your application can choose to ask pre-defined questions to
the user. The maximum number of questions to be set, the number of questions to be
asked to the user, and the minimum correct answers to be collected during
authentication are all configurable parameters and can be set by using the
Administration Console.

AuthMinder provides a facility called caller verification, which enables you to collect the
answers from the user, verify the answers, and then send the verification result to the
AuthMinder Server.

Questions and Answers Authentication

Chapter 7: Authenticating Users 95

QnA Authentication Using Caller Verification Feature

The following steps explains how to perform QnA authentication if caller verification
feature is enabled:

1. Invoke the getQuestions() method of the QnAAuth interface to retrieve the user’s
questions and answers from the AuthMinder Server.

Note: The QnAAuth interface provides two getQuestions() methods, you must call
the method that takes the boolean input (fetchAnswers) to fetch the answers.

This method returns an instance of the QnAResponse interface, which includes the
questions to be asked, answers for each question, transaction ID, message,
response code, and reason code.

2. Prepare an object to hold the questions and answers of the user. For this, you must
invoke the methods of AuthQnAInfo interface in the following order:

a. getNumberofQuestions

Invoke this method to know the number of questions that are set for the user.

b. getQuestion

Invoke this method to get the questions that are set for the user. The number
of questions fetched by this method depends on the number returned by the
getNumberofQuestions() method.

c. Implement the logic to collect the answers from the user for the questions
retrieved from AuthMinder Server.

d. answerQuestion

Note: The AuthQnAInfo interface provides two answerQuestion() methods, you
must call the method that takes the verification status as one of the input.

Invoke this method to set the answer collected by the application.

3. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

4. Invoke the verifyAnswers() method of the QnAAuth interface by passing the
AuthQnAInfo object created in Step 2 to verify the answers provided by the user.
Optionally, you can also specify the token type that must be returned to the user
after successful authentication by using the AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

Questions and Answers Authentication

96 Java Developer's Guide

QnA Authentication Using Server Verification

The following steps explain how to perform QnA authentication if the QnA credential is
directly verified by AuthMinder Server:

1. Invoke the getQuestions() method of the QnAAuth interface to retrieve the user’s
questions and answers from the AuthMinder Server.

Note: The QnAAuth interface provides two getQuestions() methods, you must call
the method that fetches the questions only.

This method returns an instance of the QnAResponse interface, which includes the
questions to be asked, answers for each question, transaction ID, message,
response code, and reason code.

2. Prepare an object to hold the questions and answers of the user. For this, you must
invoke the methods of AuthQnAInfo interface in the following order:

a. getNumberofQuestions

Invoke this method to know the number of questions that are set for the user.

b. getQuestion

Invoke this method to get the questions that are set for the user. The number
of questions fetched by this method depends on the number returned by the
getNumberofQuestions() method.

c. Implement the logic to collect the answers from the user for the questions
retrieved from AuthMinder Server.

d. answerQuestion

Note: The AuthQnAInfo interface provides two answerQuestion() methods, you
must call the method that takes does not take verification status as one of the
input.

Invoke this method to set the answer collected by the application.

3. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

4. Invoke the verifyAnswers() method of the QnAAuth interface by passing the
AuthQnAInfo object created in Step 2 to verify the answers provided by the user.
Optionally, you can also specify the token type that must be returned to the user
after successful authentication by using the AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

Password Authentication

Chapter 7: Authenticating Users 97

Password Authentication

The authentication API provides the PasswordAuth interface to perform the traditional
password authentication. In this authentication mechanism, the user specifies the user
name and the corresponding password for authentication. The password entered by the
user is then verified.

AuthMinder supports partial password authentication, if you enable this feature, then
the user will be challenged to enter the characters in different positions of the
password. For example, if the password is casablanca!, then the user can be asked to
enter the characters in positions 1, 3, and 8, which would be csn.

Complete Password Authentication

To perform regular password authentication:

1. Implement the logic to collect the user’s password.

2. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

3. Invoke the verifyPassword() method of the PasswordAuth interface to verify the
password provided by the user. Optionally, you can also specify the token type that
must be returned to the user after successful authentication by using the
AuthTokenType class.

Note: You need to invoke the verifyPassword() method that does not take the
challenge identifier (challengeID) as one of the input parameter.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

One-Time Password Authentication

98 Java Developer's Guide

Partial Password Authentication

To perform partial password authentication:

1. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

2. Invoke the getPasswordChallenge() method of the PasswordAuth interface to
obtain the challenge from the AuthMinder Server.

This method returns the unique identifier for the challenge and the password
character positions that the user has to answer.

3. Implement the logic to collect the user’s password.

4. Invoke the verifyPassword() method of the PasswordAuth interface to verify the
password provided by the user. Optionally, you can also specify the token type that
must be returned to the user after successful authentication by using the
AuthTokenType class.

Note: You need to invoke the verifyPassword() method that takes the challenge
identifier (challengeID) as one of the input parameter.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

One-Time Password Authentication

One-Time Password (OTP) is a numeric or an alpha-numeric string that is generated by
the AuthMinder Server. AuthMinder supports OTPs that can be reused pre-configured
number of times. You can specify this setting by using the Administration Console. The
OTP lifetime depends on the duration for which it is valid and number of times it can be
used.

To perform OTP authentication:

1. Implement the logic to collect the OTP from the user.

2. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

3. Invoke the verifyOTP() method of the OTPAuth interface to verify the OTP of the
user. Optionally, you can also specify the token type that must be returned to the
user after successful authentication by using the AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

OATH One-Time Password Authentication

Chapter 7: Authenticating Users 99

OATH One-Time Password Authentication

To authenticate the OTPs that are OATH compliant:

1. Implement the logic to collect the OATH OTP from the user.

2. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

3. Invoke the verifyOTP() method of the OATHAuth interface to verify the OTP of the
user. Optionally, you can also specify the token type that must be returned to the
user after successful authentication by using the AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

OATH One-Time Password Synchronization

To synchronize the clint and server OATH OTP:

1. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

2. Invoke the synchronizeOTP() method of the OATHAuth interface to synchronize the
server OTP with the client OTP. Optionally, you can also specify the token type that
must be returned to the user after successful authentication by using the
AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

ArcotID OTP (ArcotID OTP-OATH) Authentication

To authenticate OATH-complaint ArcotID OTPs:

1. Implement the logic to collect the ArcotID OTP from the user.

2. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

3. Invoke the verifyOTP() method of the ArcotOTPAuth interface to verify the OTP of
the user. Optionally, you can also specify the token type that must be returned to
the user after successful authentication by using the AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

ArcotOTP (ArcotOTP-OATH) Synchronization

100 Java Developer's Guide

ArcotOTP (ArcotOTP-OATH) Synchronization

To synchronize the client and server OATH-compliant ArcotOTP:

1. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

2. Invoke the synchronizeOTP() method of the ArcotOTPAuth interface to synchronize
the server ArcotOTP with the client ArcotOTP. Optionally, you can also specify the
token type that must be returned to the user after successful authentication by
using the AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

EMV (ArcotID OTP-EMV) Authentication

To authenticate the ArcotID OTPs that are EMV compliant:

1. Implement the logic to collect the EMV OTP from the user.

2. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

3. Invoke the verifyOTP() method of the EMVAuth interface to verify the OTP of the
user. Optionally, you can also specify the token type that must be returned to the
user after successful authentication by using the AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

EMV (ArcotID OTP-EMV) Password Synchronization

To synchronize the client and server EMV-compliant ArcotID OTP:

1. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

2. Invoke the synchronizeOTP() method of the EMVAuth interface to synchronize the
server OTP with the client OTP. Optionally, you can also specify the token type that
must be returned to the user after successful authentication by using the
AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

Verifying Password Type Credentials

Chapter 7: Authenticating Users 101

Verifying Password Type Credentials

The authentication requests that are presented to the AuthMinder Server must specify
the type of credential that has to be used to process the requests. In case of RADIUS and
ASSP authentication requests, the input requests do not have the provision to specify
the type of credential, and by default RADIUS uses One-Time Password and ASSP uses
password credential for authentication.

To support any password-based authentication mechanisms for RADIUS and ASSP, or to
map any input request with an unknown credential type to a particular password-based
authentication mechanism you must create the Credential Type Resolution
configuration. You can map the input request to any of the following credentials that
AuthMinder supports:

■ Password

■ OTP

■ OATH OTP

■ ArcotID OTP-OATH

■ ArcotID OTP-EMV

■ RADIUS OTP

■ LDAP Password

■ Native Token

If a particular input request uses the credential resolution configuration, then the
verifyPlain method in the PlainAuth interface is invoked to process that request. Based
on the configuration, the incoming user credential will be mapped to the credential that
it is configured to.

Note: To use this feature, you should have configured the created credential type
resolution using the Administration Console. Refer to CA AuthMinder Administration
Guide for more information.

To verify a password type credential:

1. Implement the logic to collect the password from the user.

2. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

3. Invoke the verifyPlain() method of the PlainAuth interface to verify the password of
the user. Optionally, you can also specify the token type that must be returned to
the user after successful authentication by using the AuthTokenType class.

This method returns an instance of the AuthResponse interface, which provides the
transaction details, credential details, and token information.

Verifying the Authentication Tokens

102 Java Developer's Guide

Verifying the Authentication Tokens

The AuthMinder Authentication SDK provides an appropriate token to the end user
after they authenticate successfully. The token is then presented to the AuthMinder
Server, indicating that the user is authenticated and can be provided access to the
protected resources.

By using the Authentication Web service, you can specify whether the token has to be
returned after authentication or not. In addition, you can also specify the type of the
token that must be returned after authentication. The verifyAuthToken method
specifies the return token type and supports the following types of tokens:

■ Native Tokens

Specify this type when CA-proprietary (or Native) token is required after successful
authentication. This token can be used multiple times before it expires.

■ One-Time Tokens

Specify this type when one-time token is required after successful authentication.
This token can be used only one time before it expires.

■ SAML Tokens

Secure Assertion Markup Language (SAML) is an open standard, which specifies the
format of the authentication data exchanged between security domains. The
Native, Default, and One-Time tokens issued by AuthMinder can only be
interpreted by the AuthMinder Server, but the SAML tokens issued by the
AuthMinder Server can be interpreted by any other authentication system.
AuthMinder supports 1.1 and 2.0 versions of SAML:

■ SAML 1.1 Tokens

Specify this type of token when you are using custom (non-AuthMinder)
authentication mechanism that needs SAML 1.1 tokens after successful
authentication.

■ SAML 2.0 Tokens

Specify this type of token when you are using custom (non-AuthMinder)
authentication mechanism that needs SAML 2.0 tokens after successful
authentication.

Fetching the PAM

Chapter 7: Authenticating Users 103

■ Default Tokens

Specify this type of token when the default token configured at the server is to be
requested after successful authentication.

■ Custom

Specify this type of token when you are performing custom credential
authentication.

AuthMinder Server can verify only the Native and One-Time tokens that are issued to
the users. The authentication token must be verified in cases when you use the token
for Single Sign-On, wherein you authenticate the user once and allow them to use
multiple resources using the same authentication token.

To verify if a token is valid or not:

1. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

2. Invoke the verifyAuthToken() method in Authentication class to verify the token of
the user.

This method returns an instance of the AuthTokenResponse interface, which
provides the credential and transaction details.

Fetching the PAM

Personal Assurance Message (PAM) is a security feature that reassures the end users
that they are accessing the genuine site of your organization, and not a phished site.

Important! For the CA Advanced Authentication out-of-the-box flows, PAM is not
enabled. However, this feature is available as a custom option.

To obtain the PAM of a user:

1. (Optional) If you are implementing a plug-in, then invoke the setAdditionalInput()
method in the AdditionalInput class to obtain an object that implements the class.

See "Preparing Additional Input" (see page 92) for more information.

2. Invoke the getPAM() method in Authentication class to fetch the PAM of the user.

This method returns an instance of the PAMResponse interface, which provides the
user details, PAM, and transaction details.

Authentication Operations Summary

104 Java Developer's Guide

Authentication Operations Summary

The following table provides a summary of the input parameters required for
performing authentication operations discussed in this chapter:

Operation Input Required Expected Output

ArcotID ■ User name (userName)

■ (Optional) Organization name (orgName)

Note: If the organization name is not provided,
then the user is assumed to belong to the default
organization.

■ Signed challenge (signedResponse)

■ (Optional) Additional Input (AdditionalInput)

■ (Optional) Authentication token type
(AuthTokenType)

■ AuthResponse

QnA ■ User name (userName)

■ (Optional) Organization name (orgName)

Note: If the organization name is not provided,
then the user is assumed to belong to the default
organization.

■ Question and Answers for authentication
(qnaInfo)

■ (Optional) Additional Input (AdditionalInput)

■ (Optional) Authentication token type
(AuthTokenType)

Password ■ User name (userName)

■ (Optional) Organization name (orgName)

Note: If the organization name is not provided,
then the user is assumed to belong to the default
organization.

■ User password for authentication (password)

■ (Optional) Additional Input (AdditionalInput)

■ (Optional) Authentication token type
(AuthTokenType)

Authentication Operations Summary

Chapter 7: Authenticating Users 105

Operation Input Required Expected Output

OTP ■ User name (userName)

■ (Optional) Organization name (orgName)

Note: If the organization name is not provided,
then the user is assumed to belong to the default
organization.

■ One-time password for authentication (otp)

■ (Optional) Additional Input (AdditionalInput)

■ (Optional) Authentication token type
(AuthTokenType)

Password
type
credential

■ User name (userName)

■ (Optional) Organization name (orgName)

Note: If the organization name is not provided,
then the user is assumed to belong to the default
organization.

■ User password for authentication (password)

■ (Optional) Additional Input (AdditionalInput)

■ (Optional) Authentication token type
(AuthTokenType)

■ AuthResponse

OATH OTP ■ User name (userName)

■ (Optional) Organization name (orgName)

Note: If the organization name is not provided,
then the user is assumed to belong to the default
organization.

■ OATH OTP for authentication (otp)

■ (Optional) Additional Input (AdditionalInput)

■ (Optional) Authentication token type
(AuthTokenType)

ArcotOTP-
OATH

■ User name (userName)

■ (Optional) Organization name (orgName)

Note: If the organization name is not provided,
then the user is assumed to belong to the default
organization.

■ ArcotOTP for authentication (otp)

■ (Optional) Additional Input (AdditionalInput)

■ (Optional) Authentication token type
(AuthTokenType)

Authentication Operations Summary

106 Java Developer's Guide

Operation Input Required Expected Output

ArcotOTP-E
MV

■ User name (userName)

■ (Optional) Organization name (orgName)

Note: If the organization name is not provided,
then the user is assumed to belong to the default
organization.

■ ArcotOTP for authentication (otp)

■ (Optional) Additional Input (AdditionalInput)

■ (Optional) Authentication token type
(AuthTokenType)

Appendix A: Input Data Validations 107

Appendix A: Input Data Validations

To ensure that the system does not process invalid data, to enforce business rules, and
to ensure that user input is compatible with internal structures and schemas,
AuthMinder Server validates the data that it receives from the APIs. The following table
explains the criteria that the AuthMinder Server uses to validate this input data:

Note: Attribute length mentioned in the following table corresponds to the character
length.

Attribute Parameter Name Validation Criteria

Protocol Status PROTOCL_STATUS Checks for the following values:

■ PROTOCOL_STATUS_ACTIVE

■ PROTOCOL_STATUS_DISABLED

Port Number PORT_NUMBER Length is between 1 and 65535
characters.

Port Type PORT_TYPE ■ Is non-empty

■ Checks for the following values:

■ TCP

■ SSL

■ UDP

Client Root ID CLIENT_ROOT_ID Checks with a set of client root IDs

Server Certificate
chain encoding

SERVER_CERT_CHAIN_
ENCODING

■ Server certificate chain encoding is
non-empty.

■ Checks for the PEM format.

Server Certificate
Chain

SERVER_CERT_CHAIN Server certificate chain is valid.

Client Certificate
Chain

CLIENT_CERT_CHAIN Client certificate chain is valid.

Client Root CA
Certificate

CLIENT_ROOT_CA_CE
RT

Client root CA certificate is valid.

Server Root CA
Certificate

SERVER_ROOT_CA_CE
RT

Server root CA certificate is valid.

Client Root CA
Certificates Count

CLIENT_ROOT_CA_CE
RT

Checks the count of CA certificates is
non-zero.

Client Root ID CLIENT_ROOT_ID Checks with a set of client root IDs.

Authentication Operations Summary

108 Java Developer's Guide

Attribute Parameter Name Validation Criteria

Server Certificate
Chain Encoding

SERVER_CERT_CHAIN_
ENCODING

■ Server certificate chain encoding is
non-empty.

■ Checks for the PEM format.

Server Certificate
Chain

SERVER_CERT_CHAIN Server certificate chain is valid.

Client Certificate
Chain

CLIENT_CERT_CHAIN Client certificate chain is valid.

Client Root CA
Certificate

CLIENT_ROOT_CA_CE
RT

Client root CA certificate is valid.

Server Root CA
Certificate

SERVER_ROOT_CA_CE
RT

Server root CA certificate is valid.

Client Root CA
Certificate count

CLIENT_ROOT_CA_CE
RT

Checks the count of CA certificates is
non-zero.

Server Private Key
Encoding

SERVER_PRIVATE_KEY
_ENCODING

■ Server private key encoding is
non-empty.

■ Checks for the PEM format.

Locale Name LOCALE_NAME ■ Locale name is non-empty.

■ Checks locale name with the ISO set
of locales.

Client Root CA
Path

CLIENT_ROOT_CA_PA
TH

Client root CA path is non-empty.

Server ID SERVER_ID ■ Port number > 1.

■ Checks with a set of server
identifiers.

Client Root CA
Certificate
Encoding

CLIENT_ROOT_CA_CE
RT_ENCODING

■ Client root CA certificate encoding is
non-empty.

■ Checks for the PEM format.

Certificate
Common Name

CERT_COMMON_NA
ME

■ Certificate common name is
non-empty.

■ Certificate common name length is
between 1 and 256.

■ Does not contain invalid characters
(ASCII 0-31).

Authentication Operations Summary

Appendix A: Input Data Validations 109

Attribute Parameter Name Validation Criteria

Certificate Country
Name

COUNTRY_NAME ■ Certificate country name is
non-empty.

■ Certificate country name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Certificate
Organization Name

ORG_NAME ■ Certificate organization name is
non-empty.

■ Certificate organization name length
is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Certificate
Organization Unit
Name

ORG_UNIT_NAME ■ Certificate organization unit name is
non-empty.

■ Certificate organization unit name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Certificate State
Name

STATE_NAME ■ Certificate state name is non-empty.

■ Certificate state name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Certificate Locality
Name

LOCALITY_NAME ■ Certificate locality name is
non-empty.

■ Certificate locality name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Certificate Start
Date

START_TIME Checks for valid date format.

Certificate End
Date

END_TIME Checks for valid date format.

PKI Certificate PKI_CERTIFICATE PKI certificate is valid.

PKI Key PKI_KEY PKI key is valid.

Authentication Operations Summary

110 Java Developer's Guide

Attribute Parameter Name Validation Criteria

Certificate Chain
and Key Pair

PRIVATE_KEY_PAIR Certificate chain and key pair are valid.

PKCS12 Certificate
Chain

PKCS12_CERT_CHAIN_
KEY

PKCS12 certificate chain is valid.

PKCS7 Certificate
Chain

PKCS12_CERT_CHAIN_
KEY

PKCS7 certificate chain is valid.

User ID USER_ID Minimum value of user ID must be
greater than 1.

Group ID GROUP_ID Minimum value of group ID must be
greater than 1.

Create Time CREATE_TIME Checks for valid date format.

Last Modified Time LAST_MODIFIED_TIME Checks for valid date format.

Start and End Date START_END_DATES Start date < End date.

User Attribute
Name

USER_ATTR_NAME User Attribute Name is non-empty.

WebFort
organization name

(checks for the
organization name
is ‘\n’, else
validate)

ORG_NAME ■ Organization name is non-empty.

■ Organization name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

User Existence
Check

USER_EXISTENCE_CHE
CK

Value of user existence check is 0 or 1.

User Active Check USER_ACTIVE_CHECK Value of user active check is 0 or 1.

Kerberos User
Name

KERBEROS_USER_NA
ME

■ Kerberos user name is non-empty.

■ Kerberos user name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Kerberos Domain
Name

KERBEROS_DOMAIN_
NAME

■ Kerberos domain name is
non-empty.

■ Kerberos domain name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Authentication Operations Summary

Appendix A: Input Data Validations 111

Attribute Parameter Name Validation Criteria

Kerberos Password KERBEROS_PASSWOR
D

■ Kerberos password is non-empty.

■ Kerberos password length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Authentication
User Password

AUTH_USER_PASSWO
RD

■ User password is non-empty.

■ User password is between 1 and 64.

■ Checks user password against to a
set of strings.

■ Does not contain invalid characters
(ASCII 0-31).

Password
Maximum Length

PWD_MAX_LENGTH ■ Minimum value of password
maximum length must be greater
than 4.

■ Maximum value of password
maximum length must be less than
64.

Password
Minimum Length

PWD_MIN_LENGTH ■ Minimum value of password
minimum length must be greater
than 4.

■ Maximum value of password
minimum length must be less than
64.

Password
Minimum Special
Character Length

PWD_SPECIAL_CHAR_
MIN_LENGTH

■ Minimum value of password special
character length must be greater
than 0.

■ Maximum value of password special
character minimum length must be
less than 64.

Password
Minimum
Alphabetic
Character Length

PWD_ALPHA_CHAR_
MIN_LENGTH

■ Minimum value of password
alphabetic character length must be
greater than 0.

■ Maximum value of password
alphabetic character length must be
less than 64.

Authentication Operations Summary

112 Java Developer's Guide

Attribute Parameter Name Validation Criteria

Password
Minimum Numeric
Character Length

PWD_NUMERIC_CHAR
_MIN_LENGTH

■ Minimum value of password numeric
character length must be greater
than 0.

■ Maximum value of password
numeric character length must be
less than 64.

Password Strength
Configuration

PASSWORD_STRENGT
H

Password strength attribute length must
be less than the password length.

Question AUTH_QUESTIONS ■ Question is non-empty.

■ Question length is between 1 and
64.

■ Does not contain invalid characters
(ASCII 0-31).

Answer AUTH_ANSWERS ■ Answer is non-empty.

■ Answer length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Number of
Questions

NUM_OF_QNA ■ Number of questions must be
greater than the minimum number
of questions.

■ Number of questions must be lesser
than the maximum number of
questions.

Number of
Questions to Ask

QNA_NUM_QUESTIO
N_TO_ASK

■ Minimum questions to ask must be
greater than 1.

■ Maximum questions to ask must be
lesser than 10.

Minimum Number
of Correct Answers
Required

QNA_MIN_ANS_REQU
IRED

■ Minimum correct answers must be
greater than 1.

■ Minimum correct answers must be
less than 10.

QnA Maximum
Questions

MAX_QUESTIONS ■ Minimum value of maximum
questions must be greater than 1.

■ Maximum value of maximum
questions must be less than 10.

Authentication Operations Summary

Appendix A: Input Data Validations 113

Attribute Parameter Name Validation Criteria

QnA Minimum
Questions

MIN_QUESTIONS ■ Minimum value of minimum
questions must be greater than 2.

■ Maximum value of minimum
questions must be less than 10.

QnA Challenge
Timeout in
Seconds

QNA_CHALLENGE_TI
MEOUT_SECS

QnA challenge timeout in seconds must
be between 1 and 7200.

Plain Key Type PLAIN_KEY_TYPE ■ Plain key type is non-empty.

■ Checks for the RSA value.

Arcot Key Type ARCOT_KEY_TYPE ■ Plain key type is non-empty.

■ Checks for the RSA value.

Plain Key Length PLAIN_KEY_LENGTH Plain key length value must be between
512 and 4096.

Arcot Key Length ARCOT_KEY_LENGTH Arcot key length is between 512 and
4096.

ArcotID Challenge
Timeout in
Seconds

ARCOTID_CHALLENGE
_TIMEOUT_SECS

The ArcotID PKI challenge timeout in
seconds is between 1 and 7200.

ArcotID Unsigned
Attribute Key
Check

AID_UNSIGNED_ATTRI
B_KEY

Unsigned attribute key is either USERID
or ORG.

Warning Period in
Days

WARNING_PERIOD_D
AYS

Warning period in days is greater than 0.

Grace Period in
Days

GRACE_PERIOD_DAYS Grace period in days is greater than 0.

Auto Unlock Period
in Hours

AUTO_UNLOCK_PERIO
D_HOURS

Auto-unlock period in hours is greater
than 0.

Authentication
OTT Token

AUTH_OTT_TOKEN ■ OTT token is non-empty.

■ OTT token length is between 4 and
64.

OTT Length OTT_LENGTH Value of OTT length is between 5 and
240.

OTT Timeout in
Seconds

OTT_TIMEOUT Value of OTT timeout in seconds is
between 1 and 172800.

OTP Length OTP_LENGTH Value of OTP length is between 4 and 64.

Authentication Operations Summary

114 Java Developer's Guide

Attribute Parameter Name Validation Criteria

OTP Type OTP_TYPE Checks for numeric and alphanumeric
values.

OTP Multiple
Usage Count

OTP_MULTIPLE_USAG
E_COUNT

Multiple usage count of OTP is between 1
and 99999.

Global
Authentication
Token Timeout in
Seconds

GLOBAL_AUTH_TOKE
N_TIMEOUT_SECS

Global authentication token timeout in
seconds is between 1 and 172800.

Maximum Strikes MAX_STRIKES Maximum strike count is between 1 and
100.

Transaction
Algorithm ID

TRANSALGO_ID Checks for the following values:

■ NATIVE_PLAIN_CS

■ NATIVE_PLAIN_CI

■ NATIVE_SHA1_CS

■ NATIVE_SHA1_CI

Organization
Credential
Configuration
Name

ORG_CRED_CONFIG_
NAME

Organization credential configuration
name is non-empty.

ArcotID Credential
Configuration
Name

ARCOTID_CRED_CONF
IG_NAME

■ ArcotID PKI credential configuration
name is non-empty.

■ Checks ArcotID PKI credential
configuration name with a set of
strings.

■ ArcotID PKI credential configuration
name length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

OTP Credential
Configuration
Name

OTP_CRED_CONFIG_N
AME

■ OTP credential configuration name is
non-empty.

■ Checks OTP credential configuration
name against to a set of strings.

■ OTP credential configuration name
length is between 1 and 64

■ Does not contain invalid characters
(ASCII 0-31).

Authentication Operations Summary

Appendix A: Input Data Validations 115

Attribute Parameter Name Validation Criteria

QnA Credential
Configuration
Name

QNA_CRED_CONFIG_
NAME

■ QnA credential configuration name is
non-empty.

■ Checks QnA credential configuration
name with a set of strings.

■ QnA credential configuration name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Password
Credential
Configuration
Name

UP_CRED_CONFIG_NA
ME

■ Password credential configuration
name is non-empty.

■ Checks Password credential
configuration name with a set of
strings.

■ Password credential configuration
name length is between 1 and 64

■ Does not contain invalid characters
(ASCII 0-31).

ArcotID
Authentication
Policy Name

ARCOTID_AUTH_POLI
CY_NAME

■ ArcotID PKI authentication policy
name is non-empty.

■ Checks ArcotID PKI authentication
policy name with a set of strings.

■ ArcotID PKI authentication policy
name length is between 1 and 64

■ Does not contain invalid characters
(ASCII 0-31).

OTP
Authentication
Policy Name

OTP_AUTH_POLICY_N
AME

■ OTP authentication policy name is
non-empty.

■ Checks OTP authentication policy
name with a set of strings.

■ OTP authentication policy name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Authentication Operations Summary

116 Java Developer's Guide

Attribute Parameter Name Validation Criteria

QnA
Authentication
Policy Name

QNA_AUTH_POLICY_N
AME

■ QnA authentication policy name is
non-empty.

■ Checks QnA authentication policy
name with a set of strings.

■ QnA authentication policy name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Password
Authentication
Policy Name

PASSWORD_AUTH_PO
LICY_NAME

■ Password authentication policy
name is non-empty.

■ Checks Password authentication
policy name with a set of strings.

■ Password authentication policy
name length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

General
Authentication
Policy Name

GENERAL_AUTH_POLI
CY_NAME

■ General authentication policy name
is non-empty.

■ Checks General authentication policy
name with a set of strings.

■ General authentication policy name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

RADIUS
Authentication
Policy Name

RADIUS_AUTH_POLICY
_NAME

■ RADIUS authentication policy name
is non-empty.

■ Checks RADIUS authentication policy
name with a set of strings.

■ RADIUS authentication policy name
length is between 1 and 64

■ Does not contain invalid characters
(ASCII 0-31).

Authentication Operations Summary

Appendix A: Input Data Validations 117

Attribute Parameter Name Validation Criteria

Kerberos
Authentication
Policy Name

KERBEROS_AUTH_POL
ICY_NAME

■ Kerberos authentication policy name
is non-empty.

■ Checks Kerberos authentication
policy name with a set of strings.

■ Kerberos authentication policy name
length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Mechanism Name MECHANISM_NAME ■ Mechanism name is non-empty.

■ Does not contain invalid characters
(ASCII 0-31).

■ Checks mechanism name with a set
of strings.

Mechanism Status MECHANISM_STATUS Checks for the following values:

■ MECHANISM_STATUS_ENABLE

■ MECHANISM_STATUS_DISABLED

Radius Client IP
Address

RADIUS_CLIENT_IP ■ Radius client IP address is
non-empty.

■ Radius client IP address length is
between 7 and15.

■ Does the following checks:

■ It should contain integers and ‘.’

■ It should contain three dots

Radius Client
Shared Secret

RADIUS_ClIENT_SHAR
ED_SECRET

■ Radius client shared secret is
non-empty.

■ Radius client shared secret length is
between 1 and 1024.

Radius Client
Description

RADIUS_CLIENT_DESC ■ Radius client description length is
between 0 and 256.

■ Does not contain invalid characters
(ASCII 0-31).

Authentication Operations Summary

118 Java Developer's Guide

Attribute Parameter Name Validation Criteria

Radius Client
Authentication
Type

RADIUS_CLIENT_AUTH
_TYPE

■ Radius client shared secret is
non-empty.

■ Checks for the following values:

■ OTT

■ INBAND

Radius Client
Maximum Chunk
Size

RADIUS_CLIENT_MAX
_CHUNK_SIZE

RADIUS client maximum chunk size is
between 50 and 200.

Radius Version RADIUS_VERSION Checks for the following values:

■ 1

■ 2

Duplicate Question
and Answers

DUPLICATE_QUESTIO
N_AND_ANSWER

■ Questions are not duplicate.

■ Answers are not duplicate.

■ Question is not same as answer.

Token Type AUTH_TOKEN_TYPE Checks for the following values:

■ DEFAULT_TOKEN

■ NATIVE_TOKEN

■ OTP_TOKEN

■ SAML11_TOKEN

■ SAML20_TOKEN

■ NO_TOKEN

Configuration
Name

CONFIG_NAME ■ Configuration name is non-empty.

■ Configuration name length is
between 1 and64.

■ Does not contain invalid characters
(ASCII 0-31).

Pin PIN ■ Pin is non-empty.

■ Pin length is between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

OTP Maximum
Length

OTP_MAX_LENGTH OTP maximum length is between 4 and
64.

OTP Minimum
Length

OTP_MIN_LENGTH OTP minimum length is between 4 and
64.

Authentication Operations Summary

Appendix A: Input Data Validations 119

Attribute Parameter Name Validation Criteria

Last Strike Time LAST_STRIKE_TIME Checks for valid date format.

Last Failed Time LAST_FAILED_TIME Checks for valid date format.

Last Succeeded
Time

LAST_SUCCEEDED_TI
ME

Checks for valid date format.

Credential Status CRED_STATUS Checks for the following values:

■ ACTIVE

■ LOCKED

■ DISABLED

■ REVOKED

■ REISSUED

■ VERIFIED

Certificate Serial
Number

CERT_SERIAL_NUMBE
R

■ Certificate serial number is
non-empty.

■ Certificate serial number length is
between 1 and32.

■ Checks for the following characters:

■ 0 – 9

■ a – f

■ A - F

Password
Minimum and
Maximum Length

PWD_MIN_LENGTH Password minimum length is lesser than
password maximum length.

QnA Minimum and
Maximum
Questions

MIN_QUESTIONS QnA minimum questions is lesser than
QnA maximum questions.

Questions and
Correct Answers

QNA_NUM_QUESTIO
N_TO_ASK

Number of correct answers is lesser than
number of questions.

Host Name HOST_NAME ■ Host name is non-empty.

■ Host name length is between 1 and
64

■ Does not contain invalid characters
(ASCII 0-31).

Authentication Operations Summary

120 Java Developer's Guide

Attribute Parameter Name Validation Criteria

URI URI_NAME ■ URI is non-empty.

■ URI length is between 1 and 1024.

■ Does not contain invalid characters
(ASCII 0-31).

Connection
Timeout

CONNECTION_TIMEO
UT

Connection timeout is between 0 and
2147483647.

Read Timeout READ_TIMEOUT Read timeout is between 0 and
2147483647.

Idle Timeout IDLE_TIMEOUT Idle timeout is between 0 and
2147483647.

Minimum
Connections

MIN_CONNECTIONS Minimum connections is between 0 and
2147483647.

Maximum
Connections

MAX_CONNECTIONS Maximum connections is between 0 and
2147483647.

WebFort Event ID WF_EVENT_ID Checks for the set of valid events.

Instance name INSTANCE_NAME ■ Instance name is non-empty.

■ Instance name length is between 1
and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Log Level LOG_TXN_LOG_LEVEL Minimum database connections is
between 1 and 3.

Minimum DB
Connections

MIN_DB_CONNECTIO
NS

Minimum database connections is
between 1 and 128.

Maximum DB
Connections

MAX_DB_CONNECTIO
NS

Maximum database connections is
between 1 and 512.

Maximum DB
Connections
Against Minimum

MAX_DB_CONNECTIO
NS

Maximum database connections are less
than minimum database connections.

Increment DB
Connections

INC_DB_CONNECTION
S

■ Increment database connections
must be greater than 0.

■ Increment database connections
must be less than maximum
database connections-minimum
database connections.

Authentication Operations Summary

Appendix A: Input Data Validations 121

Attribute Parameter Name Validation Criteria

ArcotID Unsigned
Attribute Key

(No validation on
value)

AID_UNSIGNED_ATTRI
B_KEY

Attributes with name USERID and ORG
are not allowed because these are
created while creating ArcotID PKI.
Therefore, these values cannot be
modified.

Custom Attributes NOTES_KEY/
NOTES_VALUE/ NOTES

■ Does not contain invalid characters
(ASCII 0-31).

■ Custom attribute string length must
be between 0 and 1024.

SSL Trust Store
Group Name

SSL_TRUST_STORE_GR
OUP_NAME

■ SSL trust store group name is
non-empty.

■ SSL trust store group name length is
between 1 and 64.

■ Does not contain invalid characters
(ASCII 0-31).

Minimum Threads MIN_THREADS Minimum thread count is between 1 and
1024.

Maximum Threads MAX_THREADS Maximum thread count is between 1 and
1024.

Threads Minimum
and Maximum
Count

MIN_THREADS Minimum thread count is less than
maximum thread count.

Additional Input ADDITIONAL_INPUTS_
NAME

Does not contain invalid characters (ASCII
0-31).

Server Statistics
Option

STATS_OPTION Checks for the following values:

■ CONSOLIDATED

■ PER_PROTOCOL

■ DATABASE

■ UDS_CLIENT

■ MAXVAL

Numeric Instance
Attribute

parameterName that
is passed to the
function

Checks only if the numeric instance
attributes are used.

Authentication Operations Summary

122 Java Developer's Guide

Attribute Parameter Name Validation Criteria

Display Name DISPLAY_NAME ■ Display name is non-empty.

■ Display name length is between 0
and 256.

■ Does not contain invalid characters
(ASCII 0-31).

Logo URL LOGO_URL Checks if the URL format is valid.

Password
Challenge Validity

PASSWORD_CHALLEN
GE_TIMEOUT_SECS

Password challenge validity is between 1
and 7200.

ArcotID Card Name AUTH_CARD_NAME ■ ArcotID PKI Card Name is
non-empty.

■ ArcotID PKI Card Name length is
between 1 and 8.

Duplicate
Questions

DUPLICATE_QUESTIO
NS

Questions are not duplicate.

Duplicate Answers DUPLICATE_ANSWERS Answers are not duplicate.

Partial password
Length

PARTIAL_PWD_LENGT
H

Partial password length is between 0 and
64.

QnA Shuffle Mode QNA_SHUFFLE_MODE Checks for the following values:

■ RANDOM

■ ALTERNATIVE

QnA Shuffle Flag QNA_SHUFFLE_FLAG Checks for the following values:

■ SHUFFLE_ALWAYS

■ SHFFULE_AFTER_SUCCESS_AUTH

QnA Return Mode QNA_RETURN_MODE Checks for the following values:

■ STATIC

■ RANDOM

OATH One-Time
Password Length

OATH_OTP_LENGTH OATH One-Time Password length is
between 4 and 32.

OATH One-Time
Password Token
Type

OATH_OTP_TYPE Checks for the following values:

■ HOTP

■ TOTP

OATH One-Time
Password
Authentication
Look Ahead Count

OATH_OTP_AUTH_LO
OK_AHEAD

OATH One-Time Password
Authentication look ahead count is
between 0 and 99999.

Authentication Operations Summary

Appendix A: Input Data Validations 123

Attribute Parameter Name Validation Criteria

OATH One-Time
Password
Authentication
Look Back Count

OATH_OTP_AUTH_LO
OK_BACK

OATH One-Time Password
Authentication look back count is
between 0 and 99999.

OATH One-Time
Password
Synchronization
Look Ahead Count

OATH_OTP_RESYNC_L
OOK_AHEAD

OATH One-Time Password
Synchronization look ahead count is
between 0 and 99999.

OATH One-Time
Password
Synchronization
Look Back Count

OATH_OTP_RESYNC_L
OOK_BACK

OATH One-Time Password
Synchronization look back count is
between 0 and 99999.

Appendix B: AuthMinder Logging 125

Appendix B: AuthMinder Logging

To effectively manage the communication between AuthMinder Server and your
application, it is necessary to get information about the activity and performance of the
Server as well as any problems that have occurred.

This appendix describes the various log files supported by AuthMinder, the severity
levels that you will see in these files, and the formats of these log files. It covers the
following topics:

■ About the Log Files (see page 126)

■ Format of the AuthMinder Log Files (see page 131)

■ Format of UDS and Administration Console Log Files (see page 132)

■ Supported Severity Levels (see page 132)

About the Log Files

126 Java Developer's Guide

About the Log Files

The AuthMinder log files can be categorized as:

■ Installation Log File (see page 127)

■ AuthMinder Server Startup Log File (see page 127)

■ AuthMinder Server Log File (see page 128)

■ UDS Log File (see page 129)

■ Administration Console Log File (see page 130)

The parameters that control logging in these files can be configured either by using the
relevant INI files (as is the case with Administration Console, UDS, and AuthMinder
Server startup log files) or by using the Administration Console itself (as is the case with
AuthMinder log file.) The typical logging configuration options that you can change in
these files include:

■ Specifying log file name and path: AuthMinder enables you to specify the directory
for writing the log files and storing the backup log files. Specifying the diagnostic
logging directory allows administrators to manage system and network resources.

■ Log file size: The maximum number of bytes the log file can contain. When the log
files reach this size, a new file is created and the old file is moved to the backup
directory.

■ Using log file archiving: As AuthMinder components run and generate diagnostic
messages, the size of the log files increases. If you allow the log files to keep
increasing in size, then the administrator must monitor and clean up the log files
manually. AuthMinder enables you to specify configuration options that limit how
much log file data is collected and saved. AuthMinder lets you specify the
configuration option to control the size of diagnostic logging files. This lets you
determine a maximum size for the log files. When the maximum size is reached,
older log information is moved to the backup file before the newer log information
is saved.

■ Setting logging levels: AuthMinder also allows you to configure logging levels. By
configuring logging levels, the number of messages saved to diagnostic log files can
be reduced. For example, you can set the logging level so that the system only
reports and saves critical messages. See "Supported Severity Levels" (see page 132)
for more information on the supported log levels.

■ Specifying time zone information: AuthMinder enables you to either use the local
time zone for time stamping the logged information or use GMT for the same.

About the Log Files

Appendix B: AuthMinder Logging 127

Installation Log File

When you install AuthMinder, the installer records all the information that you supply
during the installation and the actions (such as creating the directory structure and
making registry entries) that it performs in the Arcot_WebFort_Install_[assign the value
for mm in your book]_<dd>_<yyyy>_<hh>_[assign the value for mm in your
book]_SpectroSERVER.log file. The information in this file is very useful in identifying the
source of the problems if the AuthMinder installation did not complete successfully.

The default location of this file is:

Windows:
<install_location>\

UNIX-Based Platforms:
<install_location>/

AuthMinder Server Startup Log File

When you start the AuthMinder Server, it records all start-up (or boot) actions in the
arcotwebfortstartup.log file. The information in this file is very useful in identifying the
source of the problems if the AuthMinder service does not start up.

The default location of this file is:

Windows:
<install_location>\Arcot Systems\logs\

UNIX-Based:
<install_location>/arcot/logs/

About the Log Files

128 Java Developer's Guide

AuthMinder Server Log File

When you perform AuthMinder Server configurations for example, protocol
configurations, profile configurations, policy configurations, and authenticate users,
such configurations are written to the arcotwebfort.log file. The default location of this
file is:

Windows:
<install_location>\Arcot Systems\logs\

UNIX-Based:
<install_location>/arcot/logs/

The parameters that control logging in this file can be configured by using the
Administration Console. To do so, you must use the instance-specific configuration
sub-screen that you can access by clicking the required instance in the Instance
Management screen.

In addition to the log file path, the maximum log file size (in bytes), backup directory,
logging level, and timestamp information, you can also control whether you want to
enable trace logging. See section, "Format of the AuthMinder Log Files" (see page 131)
for the details of the default format used in the file.

About the Log Files

Appendix B: AuthMinder Logging 129

UDS Log File

All User Data Service (UDS) information and actions are recorded in the arcotuds.log file.
This information includes:

■ UDS database connectivity information

■ UDS database configuration information

■ UDS instance information and the actions performed by this instance

The information in this file is very useful in identifying the source of the problems if the
Administration Console could not connect to the UDS instance. The default location of
this file is:

Windows:
<install_location>\Arcot Systems\logs\

UNIX-Based:
<install_location>/arcot/logs/

The parameters that control logging in this file can be configured by using the
udsserver.ini file, which is available in the conf folder in ARCOT_HOME.

In addition to the logging level, log file name and path, the maximum file size (in bytes),
and archiving information, you can also control the layout of the logging pattern for UDS
by specifying the appropriate values for
log4j.appender.debuglog.layout.ConversionPattern. See section, "Format of UDS and
Administration Console Log Files" (see page 132) for details of the default format used
in the file.

About the Log Files

130 Java Developer's Guide

Administration Console Log File

When you deploy the Administration Console and subsequently start it, the details of all
its actions and processed requests are recorded in the arcotadmin.log file. This
information includes:

■ Database connectivity information

■ Database configuration information

■ Instance information and the actions performed by this instance

■ UDS configuration information

■ Other Administration Console information specified by the Master Administrator,
such as cache refresh

The information in this file is very useful in identifying the source of the problems if the
Administration Console does not start up. The default location of this file is:

Windows:
<install_location>\Arcot Systems\logs\

UNIX-Based:
<install_location>/arcot/logs/

The parameters that control logging in this file can be configured by using the
adminserver.ini file, which is available in the conf folder in ARCOT_HOME.

In addition to the logging level, log file name and path, the maximum log file size (in
bytes), and log file archiving information, you can also control the layout of the logging
pattern for the console by specifying the appropriate values for
log4j.appender.debuglog.layout.ConversionPattern. See section, "Format of UDS and
Administration Console Log Files" (see page 132) for the details of the default format
used in the file.

Format of the AuthMinder Log Files

Appendix B: AuthMinder Logging 131

Format of the AuthMinder Log Files

The following table describes the format of the entries in the following AuthMinder
loggers:

■ arcotwebfort.log (AuthMinder Server Log File (see page 128))

■ arcotwebfortstartup.log (AuthMinder Server Startup Log File (see page 127))

Column Description

Time Stamp The time when the entry was logged, translated to the time
zone you configured. The format of logging this information is:

mm/dd/yy HH:MM:SS.mis

Here, mis represents milliseconds.

Log Level (LEVEL)

(or Severity)

The severity level of the logged entry. See"Supported Severity
Levels" (see page 132) for more information.

Note: AuthMinder also provides trace logging, which contains
the flow details. The trace logs are logged in the
arcotwebfort.log file. The entries for the trace messages start
with TRACE:.

Protocol Name

(PROTOCOLNAME
)

The protocol used for the transaction. Possible values are:

■ AUTH_NATIVE

■ ADMIN_WS

■ ASSP_WS

■ RADIUS

■ SVRMGMT_WS

■ TXN_WS

In case the server is starting up, shutting down, or is in the
monitoring mode, then no protocol is used and the following
values are displayed, respectively:

■ STARTUP

■ SHUTDOWN

■ MONITOR

Thread ID
(THREADID)

The ID of the thread that logged the entry.

Transaction ID
(000TXNID)

The ID of the transaction that logged the entry.

Message The message logged by the Server in the log file in the
free-flowing format.

Note: The granularity of the message depends on the Log
Level that you set in the log file.

Format of UDS and Administration Console Log Files

132 Java Developer's Guide

Format of UDS and Administration Console Log Files

The following table describes the format of the entries in the following loggers:

■ arcotuds.log (UDS Log File (see page 129))

■ arcotadmin.log (Administration Console Log File (see page 130))

Column

Associated
Pattern

(In the Log File)

Description

Time Stamp %d{yyyy-MM-dd
hh:mm:ss,SSS z} :

The time when the entry was logged. This entry
uses the application server time zone. The
format of logging this information is:

yyyy-MM-dd hh:mm:ss,SSS z

Here, SSS represents milliseconds.

Thread ID [%t] : The ID of the thread that logged the entry.

Log Level (or
Severity)

%-5p : The severity level of the logged entry.

See Supported Severity Levels (see page 132) for
more information.

Logger Class %-5c{3}(%L) : The name of the logger that made the log
request.

Message %m%n : The message logged by the Server in the log file
in the free-flowing format.

Note: The granularity of the message depends
on the Log Level that you set in the log file.

Refer to the following URL for customizing the PatternLayout parameter in the UDS and
Administration Console log files:

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Supported Severity Levels

A log level (or severity level) enables you to specify the level of detail of the information
stored in the AuthMinder logs. This also enables you to control the rate at which the log
file will grow.

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Supported Severity Levels

Appendix B: AuthMinder Logging 133

Server Log File Security Levels

The following table describes the log levels that you see in all log files, in the decreasing
order of severity:

 Log Level Description

0 FATAL Use this log level for serious, non-recoverable errors that can
cause the abrupt termination of the AuthMinder service.

1 WARNI
NG

Use this log level for undesirable run-time exceptions, potentially
harmful situations, and recoverable problems that are not yet
FATAL.

2 INFO Use this log level for capturing information on run-time events.

In other words, this information highlights the progress of the
application, which might include changes in:

■ Server state, such as start, stop, and restart.

■ Server properties.

■ State of services.

■ State of a processes on the Server.

3 DEBUG Use this log level for logging detailed information for debugging
purposes. This might include process tracing and changes in
Server states.

Note: For AuthMinder Server (arcotwebfort.log) you can set the logging to any of these
levels and also enable TRACE logging to capture the flow details.

Note: When you specify a log level, messages from all other levels of higher significance
are reported as well. For example if the LogLevel is specified as 3, then messages with
log levels of FATAL, WARNING, and INFO level are also captured.

Administration Console and UDS Log File Severity Levels

The following table describes the log levels that you see in Administration Console and
UDS log files, in the decreasing order of severity:

 Log Level Description

0 OFF Use this level to disable all logging.

1 FATAL Use this log level for serious, non-recoverable errors that can
cause the abrupt termination of Administration Console or UDS.

2 WARNIN
G

Use this log level for undesirable run-time exceptions, potentially
harmful situations, and recoverable problems that are not yet
FATAL.

Supported Severity Levels

134 Java Developer's Guide

 Log Level Description

3 ERROR Use this log level for recording error events that might still allow
the application to continue running.

4 INFO Use this log level for capturing information on run-time events. In
other words, this information highlights the progress of the
application, which might include changes in:

■ Server state, such as start, stop, and restart.

■ Server properties.

■ State of services.

■ State of a processes on the Server.

5 TRACE Use this log level for capturing finer-grained informational events
than DEBUG.

6 DEBUG Use this log level for logging detailed information for debugging
purposes. This might include process tracing and changes in
Server states.

7 ALL Use this log level to enable all logging.

Note: When you specify a log level, messages from all other levels of higher significance
are reported as well. For example if the LogLevel is specified as 4, then messages with
log levels of FATAL, WARNING, ERROR, and INFO are also captured.

Supported Severity Levels

Appendix B: AuthMinder Logging 135

Sample Entries for Each Log Level

The following subsections show a few sample entries (based on the Log Level) in the
WebFort log file.

FATAL
07/17/09 11:49:20.404 FATAL STARTUP 00002872 00WFMAIN - Unable to initialize the database

07/17/09 11:49:20.405 FATAL STARTUP 00002872 00WFMAIN - Failed to load the ini parameters

07/17/09 11:49:20.406 FATAL STARTUP 00002872 00WFMAIN - Cannot continue due to setConfigData

failure, SHUTTING DOWN

WARNING
07/17/09 12:50:05.848 INFO AUTH_NATIVE 00002780 00022508 - Fail to connect to Database prdsn for 1

time(s). DbUsername system

07/17/09 12:50:05.848 INFO AUTH_NATIVE 00002780 00022508 - ReportError: SQL Error State:08001,

Native Error Code: FFFFFFFF, ODBC Error: [Arcot Systems][ODBC Oracle Wire Protocol

driver][Oracle]TNS-12505: TNS:listener could not resolve SID given in connect descriptor

INFO
07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mMinConnections [4]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mMaxConnections [128]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mCurrPoolSize [4]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mNumDBFailure [0]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mCurrNumUsed [0]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - mCurrNumAvailable [4]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [0] mNumTimesConnIdxLocked [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [0] mNumTimesConnIdxReleased [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [1] mNumTimesConnIdxLocked [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [1] mNumTimesConnIdxReleased [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [2] mNumTimesConnIdxLocked [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [2] mNumTimesConnIdxReleased [24]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [3] mNumTimesConnIdxLocked [23]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - idx [3] mNumTimesConnIdxReleased [23]

07/17/09 11:51:20.166 INFO MONITOR 00000424 STATSMON - ---------- logging stats for databse [wf-test-p] :

[primary] [ACTIVE] end ----------

DEBUG
03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 -

ArDBPoolManagerImpl::getLockedDBConnection: [primary] DSN [webfort] is active. Will get the connection from

this

Supported Severity Levels

136 Java Developer's Guide

03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 -

ArDBPoolManagerImpl::getLockedDBConnection: Returning DBPool [0112FD80]

03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 - ArDBM::Number of queries being

executed [1]

03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 - ArDBM::Found query string for query-id :

[SSL_TRUST_STORE_FETCH_ALL].

03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 - ArDBM::Executing

Query[ArWFSSLTrustStoreQuery_FetchAll]

03/25/10 15:29:30.921 DEBUG SVRMGMT_WS 00000536 00000620 - Number of rows fetched : 0

(For WebFort Server Only) Trace Logs
03/25/10 15:23:38.515 DEBUG SVRMGMT_WS 00004396 00000596 - TRACE: Released Cache read lock on

[01129D98]

03/25/10 15:23:38.515 DEBUG SVRMGMT_WS 00004396 00000596 - TRACE: CallTrace::Leaving :

[ArDBPoolManagerImpl::selectAnActivePool]. time : 0

03/25/10 15:23:38.515 DEBUG SVRMGMT_WS 00004396 00000596 - TRACE: CallTrace::Entering :

[ArDBPool::getLockedDBConnectionConst]

03/25/10 15:23:38.515 DEBUG SVRMGMT_WS 00004396 00000596 - TRACE:

ArDBPool::getLockedDBConnection [(primary)] : GotContext [1], [3] more connections available

03/25/10 15:23:38.515 DEBUG SVRMGMT_WS 00004396 00000596 - TRACE: CallTrace::Leaving :

[ArDBPool::getLockedDBConnectionConst]. time : 0

Appendix C: Additional Settings 137

Appendix C: Additional Settings

This appendix discusses the following topics:

■ Configuring Multiple AuthMinder Server Instances (see page 137)

■ Setting up SSL (see page 138)

Configuring Multiple AuthMinder Server Instances

To configure Java SDKs with multiple AuthMinder Server instances, you must edit the
properties file. By default, the file provides entries to configure 1 AuthMinder Server
instance. These entries are appended with 1, indicating that only one server is
configured. Depending on the number of instances you want to configure, you must
duplicate these entries and append the instance number accordingly.

Perform the following steps to configure AuthMinder Server instance:

1. Depending on the SDK you are configuring, open the respective properties file
available in the following folder:

Windows:

<install_location>\Arcot Systems\sdk\client\java\properties

Unix-Based Platforms:

<install_location>/arcot/sdk/client/java/properties

2. Set the value of the transport.<n> parameter to the required communication mode.
By default, it is set to TCP, see "Setting up SSL" (see page 138) if you want to change
the communication mode.

3. Set the value of host.<n> parameter to the host name or the IP address of the
AuthMinder Server.

4. Set the value of port.<n> parameter to the port number on which the Transaction
Native protocol is listening. The default port number for Transaction Native
protocol is 9742.

Book: Refer to appendix, "Configuration Files and Options" in the CA AuthMinder
Installation and Deployment Guide for more information on the
webfort.authentication.properties and webfort.issuance.properties files.

Setting up SSL

138 Java Developer's Guide

Setting up SSL

To ensure integrity and confidentiality of the data being exchanged during a session,
AuthMinder supports Secure Socket Layer (SSL) communication between Java SDKs and
AuthMinder Server. By default, the communication mode between all the components
is through Transmission Control Protocol (TCP).

The following figure shows the communication that are supported between AuthMinder
components:

Setting up SSL

Appendix C: Additional Settings 139

Important! Before you enable SSL communication between Java SDKs and AuthMinder
Server, you must obtain a digital certificate from a trusted Certificate Authority and
expose your application over an HTTPS-enabled server port.

To set up one-way SSL between Java SDKs (Authentication and Issuance) and
AuthMinder Server, you must first configure the Transaction Native protocol by using
the Protocol Management page of the Administration Console and then configure the
webfort.authentication.properties and webfort.issuance.properties files.

In case of two-way SSL, you must create the client store using the Trusted Certificates
Authorities page, configure the client store using the Protocol Management
(Transaction Native) page, configure the client certificates using the WebFort
Connectivity (Transaction Native) page of the Administration Console, and then
configure the webfort.authentication.properties and webfort.issuance.properties files.

Note: If you want to enable SSL between Administration Web Service and AuthMinder
Server, then you need to follow the steps mentioned in this section.

The following subsections walk you through the detailed steps for configuring:

■ One-Way SSL (see page 140)

■ Two-Way SSL (see page 142)

Note: In this communication, your application integrated with the Java SDKs is the client
and AuthMinder Server is the server.

Setting up SSL

140 Java Developer's Guide

One-Way SSL

To enable SSL communication mode between Java SDKs and AuthMinder Server:

1. Access the Administration Console in a Web browser.

2. Ensure that you are logged in as the MA.

3. Activate the Services and Server Configurations tab in the main menu.

4. Ensure that the WebFort tab in the submenu is active.

5. Under the Instance Configurations section, click the Protocol Management link to
display the Protocol Configuration page.

6. Select the Server Instance for which you want to configure the protocols.

7. In the List of Protocols section, click the Transaction Native protocol link

The page to configure the protocol appears.

8. Configure the following fields:

■ Ensure that the Protocol Status is Enabled.

■ In the Transport field, select SSL (1-Way).

■ Select Key in HSM if you want to store the SSL key in HSM.

■ (Only if you selected Key in HSM in the preceding step) Click the Browse button
adjacent to the Certificate Chain (in PEM Format) field to select the
AuthMinder root certificate.

■ Click the Browse button adjacent to the P12 File Containing Key Pair field to
select the AuthMinder root certificate.

■ Enter the password for the PKCS#12 store in the P12 File Password field.

9. Click the Save button.

10. Restart the AuthMinder Server instance.

11. Navigate to the following location:

■ On Windows:

<install_location>\Arcot Systems\sdk\client\java\properties

■ On UNIX-Based Platforms:

<install_location>/arcot/sdk/client/java/properties

12. Open the webfort.authentication.properties file in an editor window.

a. Set the following parameters:

■ authentication.transport = SSL (By default, this parameter is set to TCP.)

■ authentication.serverCACertPEMPath =
<absolute_path_of_Root_Certificate_in_PEM_FORMAT>

For example, you can specify authentication.serverCACertPEMPath =
<install_location>/certs/<ca_cert>.pem.

Setting up SSL

Appendix C: Additional Settings 141

Book: Refer to appendix, "Configuration Files and Options" in the CA
AuthMinder Installation and Deployment Guide for more information on the
webfort.authentication.properties file.

b. Save the changes and close the file.

13. Open the webfort.issuance.properties file in an editor window.

a. Set the following parameters:

■ issuance.transport = SSL (By default, this parameter is set to TCP.)

■ issaunce.serverCACertPEMPath =
<absolute_path_of_Root_Certificate_in_PEM_FORMAT>

For example, you can specify issuance.serverCACertPEMPath =
<install_location>/certs/<ca_cert>.pem.

Book: Refer to appendix, "Configuration Files and Options" in the CA
AuthMinder Installation and Deployment Guide for more information on the
webfort.issuance.properties file.

b. Save the changes and close the file.

14. Restart the application server where Java SDKs are deployed.

Setting up SSL

142 Java Developer's Guide

Two-Way SSL

To enable SSL communication mode between Java SDKs and AuthMinder Server:

1. Enable the application server where Java SDKs are deployed for SSL communication.
Refer to your application server vendor documentation for more information on
how to do this.

2. Access the Administration Console in a Web browser.

3. Log in to Administration Console as the MA.

4. Activate the Services and Server Configurations tab in the main menu.

5. Activate the WebFort tab in the submenu.

6. Under Instance Configurations, click the Trusted Certificate Authorities link to
display the corresponding page.

The Trusted Certificate Authorities page appears.

7. Set the following information:

■ In the Name field, enter the name for the SSL trust store.

■ Click the Browse button to select the root certificate of the application server
where Java SDKs are deployed.

8. Click the Save button.

9. Under Instance Configurations, click the Protocol Management link to display the
corresponding page.

The Protocol Configuration page appears.

10. Select the Server Instance for which you want to configure the protocols.

11. In the List of Protocols section, click the Transaction Native link.

The page to configure the protocol appears.

12. Configure the following fields:

■ Ensure that the protocol is enabled.

■ In the Transport field, select SSL (2-Way).

■ Select Key in HSM if you want to store the SSL key in HSM.

■ (Only if you selected Key in HSM in the preceding step) Click the Browse button
adjacent to the Certificate Chain (in PEM Format) field to select the
AuthMinder root certificate.

■ Click the Browse button adjacent to the P12 File Containing Key Pair field to
select the AuthMinder root certificate.

■ Enter the password for the PKCS#12 store in the P12 File Password field.

■ Select the Client Store that you created in Step 7.

13. Click the Save button.

Setting up SSL

Appendix C: Additional Settings 143

14. Restart the AuthMinder Server instance.

15. Activate the Services and Server Configurations tab in the main menu.

16. Activate the WebFort tab in the submenu.

17. Under System Configuration, click the WebFort Connectivity link to display the
corresponding page.

The WebFort Connectivity page appears.

18. Set the following for the Transaction Native protocol:

■ Ensure that the IP Address and Port number of the AuthMinder Server is set
appropriately.

■ In the Transport field, select SSL.

■ Click the Browse button adjacent to the Server CA Certificate in PEM field to
select the AuthMinder root certificate.

■ Click the Browse button adjacent to the Client Certificate-Key Pair in PKCS#12
field to select the PKCS#12 file that contains the root certificate of the
application server where Java SDKs are deployed.

■ Enter the PKCS#12 file password in the Client PKCS#12 Password field.

19. Click the Save button.

20. Restart the AuthMinder Server instance.

21. Navigate to the following location:

■ On Windows:

<install_location>\Arcot Systems\sdk\client\java\properties

■ On UNIX-Based Platforms:

<install_location>/arcot/sdk/client/java/properties

22. Open the webfort.authentication.properties file in an editor window.

a. Set the following parameters:

■ authentication.transport = SSL (By default, this parameter is set to TCP.)

■ authentication.serverCACertPEMPath =
<absolute_path_of_Root_Certificate_in_PEM_FORMAT>

For example, you can specify authentication.serverCACertPEMPath =
<install_location>/certs/<ca_cert>.pem.

Book: Refer to appendix, "Configuration Files and Options" in the CA
AuthMinder Installation and Deployment Guide for more information on the
webfort.authentication.properties file.

b. Save the changes and close the file.

23. Open the webfort.issuance.properties file in an editor window.

a. Set the following parameters:

Setting up SSL

144 Java Developer's Guide

■ issuance.transport = SSL (By default, this parameter is set to TCP.)

■ issaunce.serverCACertPEMPath =
<absolute_path_of_Root_Certificate_in_PEM_FORMAT>

For example, you can specify issuance.serverCACertPEMPath =
<install_location>/certs/<ca_cert>.pem.

Book: Refer to appendix, "Configuration Files and Options" in the CA
AuthMinder Installation and Deployment Guide for more information on the
webfort.issuance.properties file.

b. Save the changes and close the file.

24. Restart the application server where your Java SDKs are deployed.

25. Verify that the AuthMinder Server is enabled for SSL communication by performing
the following steps:

a. Navigate to the following location:

■ On Windows:

<install_location>\Arcot Systems\logs

■ On UNIX-Based Platforms:

<install_location>/arcot/logs

b. Open the arcotwebfortstartup.log file in a text editor.

c. Search for the following section:

Listing : [Successful listeners(Type-Port-FD)]

d. In this section, you must find the following line:

Transaction-Native............................... :

[SSL-9742-<Internal_listener_identifier>-[subject [<cert_subject>] issuer

[<cert_issuer>] sn [<cert_serial_number>] device [<device_name>]]]

e. Close the file.

Appendix D: SDK Exceptions and Error Codes 145

Appendix D: SDK Exceptions and Error
Codes

This appendix lists all exceptions and error codes that are returned by the AuthMinder
7.1.01 SDKs. It covers the following topics:

■ Exceptions (see page 145)

■ Error Codes (see page 147)

Exceptions

AuthMinder exceptions have been categorized as:

■ Common Exceptions (see page 145)

■ Issuance Exceptions (see page 146)

■ Authentication Exceptions (see page 147)

Common Exceptions

The com.arcot.webfort.common.api.exception package provides the exceptions that are
returned by AuthMinder Server and SDKs. The following table lists the exceptions of this
package:

Classes
Exception
Returned
By

Description

CredentialNotFoundException Server This exception is returned if the
credential with which the user is
trying to authenticate was not
found.

InvalidParamException Server This exception is returned if any of
the parameter used in the
operation has invalid value.

InvalidSDKConfigurationException SDK This exception is returned if the
configuration file, whose absolute
path is provided as the API input for
initializing the API cannot be read.

SDKAlreadyInitializedException SDK This exception is returned if the
SDK is already initialized.

Exceptions

146 Java Developer's Guide

Classes
Exception
Returned
By

Description

SDKException SDK This exception is the base class for
all client-side exceptions.

SDKInternalErrorException SDK This exception occurs if:

■ The request is not valid.

■ The SDK failed to release
connections.

■ The SDK generated an
unclassified error.

SDKNotInitializedException SDK This exception is returned if you are
using the function before
initializing the SDK.

ServerException Server Server Base class for all server-side
exceptions.

ServerUnreachableException SDK SDK This exception is returned if the
SDK was not able to connect to the
AuthMinder Server.

TransactionException Server This exception is returned if there is
internal error while executing the
transactions. For example, UDS is
not running or the databases are
down.

UserNotFoundException Server This exception is returned if the
user trying to perform the
operation is not enrolled in
AuthMinder.

Issuance Exceptions

The com.arcot.webfort.issuance.api.exception package provides the exception classes
that are returned based on user and credential status. The following table lists the
issuance exceptions returned by AuthMinder Server:

Classes Description

CredentialAlreadyExistsException This exception is returned if you try to create
the credential type that the user already has.
The user cannot have multiple credentials of
same type.

Error Codes

Appendix D: SDK Exceptions and Error Codes 147

Classes Description

UserAlreadyExistsException This exception is returned if you try to create a
user with a user name that already exists.

Authentication Exceptions

The com.arcot.webfort.authentication.api.exception package provides the exception
classes that are returned based on user authentication and credential status. The
following table lists the authentication exceptions returned by AuthMinder Server:

Classes Description

AttemptsExhaustedException This exception is returned if the user tried to
authenticate with the wrong credential for the
maximum allowed authentication attempts.

CredReissuedException This exception is returned if the credential with
which the user is trying to authenticate has been
reissued.

InactiveAccountException This exception is returned if the user trying to
authenticate with the credential that is in one of
the following states:

■ Disabled

■ Locked

■ Deleted

■ Verified (for OTP only)

InvalidCredException This exception is returned if the credential
provided by the user is not valid.

Error Codes

 AuthMinder error codes have been categorized as:

■ SDK Codes (see page 148)

■ Server Codes (see page 150)

Error Codes

148 Java Developer's Guide

SDK Codes

The following table lists the SDK response codes, cause for failure, and solution
wherever applicable:

SDK Response
Code

Description Possible Cause for Failure

0 The SDK has successfully sent
the request and has received
the response from the server
or vice-versa.

Note: This does not imply
that the transaction was
successful.

N/A

1 Internal error occurred in SDK
due to some unexpected
reason.

Possible Cause:
Unexpected behavior by the
SDK.

2

(Returned by
SDKNotInitialized
Exception)

SDK not initialized
successfully.

Possible Cause:
Returned when API is called
without initializing.

Solution:
Check if the function to
initialize the SDK has
completed successfully.

3

(Returned by
SDKAlreadyInitial
izedException)

SDK is already initialized. Possible Cause:
User is trying to initialize the
SDK that has already been
initialized.

4 The configuration file, whose
absolute path is provided as
the input to the initialization
API cannot be read.

Possible Cause:
The configuration file path
might be incorrect.

Solution:
Provide the correct
configuration file path.

Possible Cause:
Permissions to read the
configuration file are not set.

Solution:
Provide Read permission to
the configuration file.

Error Codes

Appendix D: SDK Exceptions and Error Codes 149

SDK Response
Code

Description Possible Cause for Failure

5

(Returned by
ServerUnreachab
leException)

The SDK is not able to send
requests to the configured
server.

Possible Cause:
Server host or port, or both
might not be configured
correctly.

Solution:
Provide correct host and port
number.

Possible Cause:
Server might not be running.

Solution:
Start the server.

Possible Cause:
If SSL is configured, then
certificates might not be
configured correctly.

Solution:
Configure the SSL certificates
correctly.

6 Buffer sent through the
output structure is not
sufficient.

Possible Cause:
The buffer passed in the
output structure(s) is not
sufficient for the data to be
filled.

Solution:
Send sufficient buffer to store
all the data.

Error Codes

150 Java Developer's Guide

SDK Response
Code

Description Possible Cause for Failure

7

(Returned by
InvalidSDKConfig
urationException
)

The SDK configuration is
incorrect.

Possible Cause:
Server host or port, or both
might not be configured
correctly.

Solution:
Provide correct host and port
number.

Possible Cause:
If SSL is configured, then
certificates might not be
correct.

Solution:
Configure a valid client
PKCS#12 file and server root
CA certificate.

999

(Returned by
SDKInternalError
Exception)

Internal error. Possible Cause:
Unexpected SDK internal
error.

Server Codes

The following table lists the response codes, reason codes, the cause for failure, and
solution wherever applicable:

Respon
se Code

Reason
Code

Description Possible Cause for Failure

0 0 Operation completed
successfully.

N/A

6100 Authentication succeeded,
but the credential is in grace
period.

Action to Take:
Credential has already
expired. Notify the user to
get the credential reissued.

6101 Authentication succeeded,
but the credential is in
warning period.

Action to Take:
Credential is about to expire.
Notify the user to get the
credential reissued.

1000 0 Internal error. Possible Cause:
Unexpected internal error.

Error Codes

Appendix D: SDK Exceptions and Error Codes 151

Respon
se Code

Reason
Code

Description Possible Cause for Failure

 2000 Database is not operational. Possible Cause:
Database is not operational.

Solution:
Start the database.

Possible Cause:
Connection between the
server and database is not
complete.

Solution:
Establish the connection
between server and
database again using the
database parameters
available in arcotcommon.ini
file.

1000 2001 Configuration is missing. Possible Cause:
Configuration required for
processing the transaction is
missing.

Solution:
Check the server transaction
logs for details and ensure
the required configuration is
created and assigned.

Possible Cause:
Configuration required for
processing the transaction is
created but not available in
server cache.

Solution:
Refresh server cache.

2002 Transaction ID generation
failed.

Possible Cause:
Transaction ID generation
failed due to internal error in
the server.

Solution:
Most likely cause might be
because of database failure.
Check the server transaction
logs for details and ensure
appropriate action is taken
based on the server logs.

Error Codes

152 Java Developer's Guide

Respon
se Code

Reason
Code

Description Possible Cause for Failure

6004 Internal error. Possible Cause:
Unexpected internal error.

1001 0 Access is denied. Possible Cause:
The operation being invoked
is
protected, and you need to
authenticate.

Solution:
Obtain authentication
credentials from your
administration to include
them in the call.

1050 0 Invalid parameter. Possible Cause:
The input parameter is
invalid.

Solution:
Provide a valid parameter.

2050 Value of one of the
parameters used in the
operation is empty.

Possible Cause:
The parameter passed to the
API is empty.

Solution:
Provide a non-empty value
for the parameter. See
appendix, "Input Data
Validations" (see page 107)
for the supported parameter
values.

2051 Length of one of the
parameters used in the
operation has exceeded the
maximum allowed value.

Tip: Length here refers to
length of the parameter, for
example password length.

Possible Cause:
The length of the parameter
passed to the API has
exceeded the maximum
value.

Solution:
Provide the parameter such
that its length is less than or
equal to the maximum
allowed value. See appendix,
"Input Data Validations" (see
page 107) for the supported
parameter values.

Error Codes

Appendix D: SDK Exceptions and Error Codes 153

Respon
se Code

Reason
Code

Description Possible Cause for Failure

2052 Length of one of the
parameters used in the
operation is less than
minimum allowed value.

Possible Cause:
The length of the parameter
passed to the API is less than
minimum value.

Solution:
Provide the parameter such
that the length of the
parameter is greater than or
equal to the minimum
allowed value. See appendix,
"Input Data Validations" (see
page 107) for the supported
parameter values.

1050 2053 Value of one of the
parameters used in the
operation exceeded the
maximum allowed value.

Tip: VALUE here refers to
value of the parameter, for
example ArcotID PKI Plain key
length.

Possible Cause:
The value of the parameter
passed to the API has
exceeded the maximum
allowed value.

Solution:
Provide the parameter such
that the value of the
parameter is less than or
equal to the maximum
allowed value. See appendix,
"Input Data Validations" (see
page 107) for the supported
parameter values.

2054 Value of one of the
parameters used in the
operation is less than the
minimum allowed value.

Possible Cause:
The value of the parameter
passed to the API is less than
the minimum allowed value.

Solution:
Provide the parameter such
that the value of the
parameter is greater than or
equal to the minimum
allowed value. See appendix,
"Input Data Validations" (see
page 107) for the supported
parameter values.

Error Codes

154 Java Developer's Guide

Respon
se Code

Reason
Code

Description Possible Cause for Failure

2055 Value of one of the
parameters used in the
operation is invalid.

Possible Cause:
The value of the parameter
passed to the API is invalid.

For example, the allowed
values for user status are 0
and 1. If you set the value of
this as 5, then you will get
this error.

Solution:
Provide valid value for the
parameter. See appendix,
"Input Data Validations" (see
page 107) for the supported
parameter values.

2056 Value of one of the
parameters used in the
operation contains invalid
characters.

Possible Cause:
The parameter specified by
ParameterKey contains
invalid characters.

Solution:
Provide valid characters for
the parameter that is
specified by ParameterKey.

1050 2057 One of the parameters used
in the operation does not
meet the formatting
requirements.

Possible Cause:
The parameter specified by
ParameterKey has invalid
format.

Solution:
Provide valid format for the
parameter that is specified
by ParameterKey.

2058 The password has less
number of alphabets than the
minimum allowed value.

Possible Cause:
The password provided
contains lesser number of
alphabets than the password
strength policy allows.

Solution:
Refer to the relevant
password policy and ensure
that the password strength is
set correctly.

Error Codes

Appendix D: SDK Exceptions and Error Codes 155

Respon
se Code

Reason
Code

Description Possible Cause for Failure

2059 The password has less
number of numeric
characters than the minimum
allowed value.

Possible Cause:
The password provided
contains lesser number of
numeric characters than the
password strength policy
allows.

Solution:
Refer to the relevant
password policy and ensure
that the password strength is
set correctly.

2060 The password has less
number of ASCII special
characters than the minimum
allowed value.

Possible Cause:
The password provided
contains lesser number of
ASCII special characters than
the password strength policy
allows.

Solution:
Refer to the relevant
password policy and ensure
that the password strength is
set correctly.

2061 Parameter is not supported
for this operation.

Possible Cause:

The parameter that is passed
by the plug-in is not
supported by the operation.
For example, if you pass
SAML token configuration
name in the createCredential
operation.

Solution:

Change the plug-in code
appropriately.

1050 2063 Password is invalid. Possible Cause:

The PKCS#12 files are
uploaded with a wrong
password.

Solution:

Ensure that you use the
correct password for the
PKCS#12 files.

Error Codes

156 Java Developer's Guide

Respon
se Code

Reason
Code

Description Possible Cause for Failure

2064 Update operation is not
supported for the parameter.

Possible Cause:

You are trying to update a
read-only parameter.

Solution:

None.

2065 Parameter does not match. Possible Cause:

The organization name
specified in the XML file to
upload the OATH tokens
does not match with
organization name specified
in the operation.

Solution:

Provide the correct
organization name.

6000 Duplicate questions are not
supported.

Possible Cause:
Two or more questions are
same.

Solution:
Provide distinct questions.

6001 Duplicate answers are not
supported.

Possible Cause:
Two or more answers are
same.

Solution:
Provide distinct answers.

6002 The question cannot be same
as any of the answers.

Possible Cause:
Question might be same as
any of the answers.

Solution:
Provide distinct question and
answer.

Error Codes

Appendix D: SDK Exceptions and Error Codes 157

Respon
se Code

Reason
Code

Description Possible Cause for Failure

1050 6007 Credential history check
failed.

Possible Cause:

The credential that you are
trying to update failed the
password history
validation check.

Solution:

Ensure that the password
that you have specified
meets the history check
criterion.

6010 Question not found. Possible Cause:

Question that you are trying
to update, delete, and for
which you want to update
answer does not exist.

Solution:

Ensure that you use the
correct question.

6105 Duplicate elements found. Possible Cause:

The PKCS12 file being
uploaded in to the ArcotID
PKI contains duplicate
elements.

Solution:

Upload a PKCS#12 file that
does not contain duplicate
entries.

6106 Invalid element reference. Possible Cause:

The element that you are
trying to delete does not
exist in the ArcotID PKI.

Solution:

Ensure that you use the
correct element identifier.

Error Codes

158 Java Developer's Guide

Respon
se Code

Reason
Code

Description Possible Cause for Failure

6200 Event is already assigned. Possible Cause:

The event is already
associated with an
organization.

Solution:

Choose a different event to
assign.

6201 Duplicate events are not
supported.

Possible Cause:

The event list passed
contains duplicate entries.

Solution:

Do not assign duplicate
events.

1051 0 Invalid request. Possible Cause:
The packet received is
invalid.

Solution:

1. Ensure correct SDK is
pointing to the server.

 2.Ensure the port configured
on the client-side refers to
the appropriate server
protocol.

1060 0 The request is noted. Possible Cause:

Caller verification of the QnA
credential is successful. In
this case server does not
apply the authentication
policy.

Solution:

NA

1100 0 Organization is not found. Possible Cause:

Error Codes

Appendix D: SDK Exceptions and Error Codes 159

Respon
se Code

Reason
Code

Description Possible Cause for Failure

Organization specified is not
present.

Solution:

1. Check if the organization
with the given name is
created.

2.After creating the
organization, the server
might need cache refresh.
Refresh tt e server cache.

3. Check if the name of the
organization passed is
correct.

1101 0 Credential configuration not
found for the organization.

Possible Cause:
The configuration for the
specified credential is not
present.

Solution:

1. Check if the configuration
is created for this
organization.

2. Check if the configuration
is assigned to this
organization.

3. Creating and assigning
configuration might need
cache refresh. Refresh the
server cache.

1102 0 User not found. Possible Cause:
User is not present.

Solution:
Create the user or provide
the user information
correctly.

1103 0 Organization is not active. Possible Cause:
Organization is not active.

Solution:
Activate the organization
using Administration
Console.

Error Codes

160 Java Developer's Guide

Respon
se Code

Reason
Code

Description Possible Cause for Failure

1104 0 Configuration already exists. Possible Cause:

The configuration that you
are trying to create already
exists.

Solution:

If you want to create a
configuration, the use a
different configuration
name.

If you want to update an
existing configuration, then
use the correct operation.

1150 0 User status is not active. Possible Cause:
User status is not active.

Solution:
Activate the user by using
Administration Console.

5501 0 Data not found. Possible Cause:

There was no data found for
the
specified OATH token search
criteria.

Solution:

Use a different search
criteria.

5600 0 The RADIUS client IP is not
valid.

Possible Cause:

Client IP used in the RADIUS
configuration is not valid.

Solution:

Ensure that you use an
appropriate octet IP format.

Error Codes

Appendix D: SDK Exceptions and Error Codes 161

Respon
se Code

Reason
Code

Description Possible Cause for Failure

5601 0 The credential configuration
is not valid.

Possible Cause:

The configuration passed in
the input is not valid.

Solution:

Based on the operation
being performed there could
be multiple reasons for this
error. Check the parameter
details in the response or
check the server logs for
further details.

2003 Configuration organization
does not match with the
request organization.

Possible Cause:

The organization name
specified in the OATH token
does not match with the
organization name that you
have specified in the
operation.

Solution:

Ensure that you provide the
correct organization name.

5601 6005 OATH token not found. Possible Cause:

OATH token being assigned
is not uploaded to the
organization or it might not
be uploaded for the
organization the current user
belongs to.

Solution:

Check the token identifier
and ensure that you upload
the OATH token at the global
level or for the current
organization.

6006 OATH token is already
assigned to a user.

Possible Cause:

The OATH token has already
been assigned.

Solution:

Assign a different OATH
token for the user.

Error Codes

162 Java Developer's Guide

Respon
se Code

Reason
Code

Description Possible Cause for Failure

6009 OATH token is abandoned. Possible Cause:

The OATH token has been
used and abandoned.

Solution:

Assign a different OATH
token for the user or reuse
the same token by force-
assigning the token.

6104 Credential key is not active. Possible Cause:

The key with which the
credential is protected is no
longer ACTIVE.

Solution:

Reissue and use the new
credential.

5602 0 The protocol is not valid. Possible Cause:

The protocol that you are
trying to update or fetch is
not valid.

Solution:

Use a valid protocol
identifier.

5603 0 The credential configuration
for the organization is not
valid.

Possible Cause:

The credential configuration
name is not valid.

Solution:

You must provide a valid
configuration name.

5605 0 SSL trust store group name is
invalid.

Possible Cause:
The provided organization
name is not valid.

Solution:
You must provide a valid
organization name.

Error Codes

Appendix D: SDK Exceptions and Error Codes 163

Respon
se Code

Reason
Code

Description Possible Cause for Failure

5606 0 SSL trust store group is
invalid.

Possible Cause:

SSL trust store with this
name already exists.

Solution:

Create a trust store with a
different name.

5607 0 Invalid WebFort Server
instance name.

Possible Cause:

Server instance name being
set is not valid.

Solution:

Provide a valid instance
name.

5608 0 A RADIUS client with the
specified IP address is already
configured.

Possible Cause:

The IP address specified in
the operation

has already been configured.

Solution:

If the existing configuration
is not correct,

then delete that
configuration and create

a new configuration.

5700 0 Number of authentication
attempts exceeded.

Possible Cause:
Number of authentication
attempts for the credential
exceeded the allowed limit.

Solution:
The administrator must
change the status of the
credential from locked to
active.

5701 0 Authentication token has
expired.

Possible Cause:
Authentication token
submitted by the user is
expired.

Solution:
Authenticate again.

Error Codes

164 Java Developer's Guide

Respon
se Code

Reason
Code

Description Possible Cause for Failure

5702 0 Challenge has expired. Possible Cause:
Challenge is expired.

Solution:
Request for the challenge
again.

5704 0 Credential has expired. Possible Cause:
The credential, which is
provided by the user is
expired.

Solution:
Get the new credential.

0 The credential configured for
ASSP has expired.

Possible Cause:
The credential, which is
provided by the user is
expired.

Solution:
Get the new credential.

6102 The credential validity period
has not yet started.

Possible Cause:

The credential has been
created for future use.

Solution:

Use the credential that is
within the validity period.

5705 0 Credential is not active. Possible Cause:
The credential, which is
provided by the user is not
active.

Solution:
The administrator must
activate the credential.

Error Codes

Appendix D: SDK Exceptions and Error Codes 165

Respon
se Code

Reason
Code

Description Possible Cause for Failure

0 Credential is not active"
"ASSP" "The user (
$$(USER)$$) account is
inactive."

Possible Cause:
The credential, which is
provided by the user is not
active.

Solution:
The administrator must
activate the credential.

5706 0 Credential is reissued. Possible Cause:
Credential is reissued.

5707 0 The authentication
credentials provided are
incorrect.

Possible Cause:
The credential details
provided by the user are
incorrect.

Solution:
Provide the credential details
correctly.

0 The ASSP authentication
credentials provided are
incorrect.

Possible Cause:
The credential details
provided by the user are
incorrect.

Solution:
Provide the credential details
correctly.

6103 The authentication
credentials provided are
incorrect. Re-synchronize the
credential.

Possible Cause:

The OTP that is provided is
not in the configured
authentication window, but
can be synchronized.

Solution:

Synchronize the OTP
credential.

Error Codes

166 Java Developer's Guide

Respon
se Code

Reason
Code

Description Possible Cause for Failure

5800 0 Credential not found for the
user.

Possible Cause:
The credential does not exist
for the user.

Solution:
Create the credential.

Possible Cause:
The details provided by the
user might be incorrect.

Solution:
Provide the correct details.

0 ASSP credential not found for
the user.

Possible Cause:
The credential does not exist
for the user.

Solution:
Create the credential.

Possible Cause:
The details provided by the
user might be incorrect.

Solution:
Provide the correct details.

6004 The credential not found for
the user. It is already been
deleted.

Possible Cause:

The credential has already
deleted.

Solution:

You can perform a fetch
operation on the credential
to understand the credential
state. Reissue the credential,
if required.

5801 0 Credential already present for
the user.

Possible Cause:
Credential already exists for
the user.

6008 Credential already present for
the PAN.

Possible Cause:
Credential already exists for
the user.

Error Codes

Appendix D: SDK Exceptions and Error Codes 167

Respon
se Code

Reason
Code

Description Possible Cause for Failure

6500 0 The event is not supported. Possible Cause:

The event that being
assigned to the plug-in is not
supported by AuthMinder.

Solution:

Ensure that you use the
supported events.

6501 0 The operation is not
supported.

Possible Cause:

The credential input
provided is not valid. For
example, you might have
provided QnA input for the
downloadCredential
operation.

Solution:

Ensure that the input data
that you provide is correct.

Appendix E: AuthMinder Sample Application 169

Appendix E: AuthMinder Sample
Application

AuthMinder is shipped with a Sample Application, which demonstrates how to use the
Java APIs.

Important! Sample Application must only be used as a code-reference and not for
production.

Before you use the Sample Application, you must first configure it to communicate with
AuthMinder Server. The following topics are covered in this appendix:

■ Configuring Sample Application (see page 170)

■ Selecting ArcotID PKI Client (see page 171)

■ Configuring Sample Application Log File (see page 171)

■ Creating Users (see page 172)

■ Creating ArcotID PKI Credential (see page 173)

■ Downloading ArcotID PKI (see page 174)

■ Authenticating Using ArcotID PKI (see page 175)

Note: This appendix only explains how to configure the Sample Application and select
the ArcotID PKI Client type, but does not explain the other operations that can be
performed easily using Sample Application.

Configuring Sample Application

170 Java Developer's Guide

Configuring Sample Application

The Setup page enables you to set the AuthMinder server host name or IP address, port
at which the authentication and issuance service is available, and the Sample
Application log file name and location. Perform the following steps to do so:

1. Launch Sample Application in a Web browser window. The default URL for Sample
Application is:

http://<host>:CA Portal/webfort-7.1.01-sample-application

The WebFort 7.1.01 Sample Application page appears.

2. In the left-hand pane, expand the Setup button and then click Server Connectivity
link to display the WebFort Server Connectivity page.

3. Specify the values for the configuration parameters listed in the following table:

Field Default Value Description

IP Address localhost The host name or the IP address where the
AuthMinder Server is available.

Port 9742 The port at which the Authentication or the
Issuance service is available.

Maximum
Active
Connections

64 The maximum number of connections
maintained between the Sample Application and
AuthMinder Server.

4. Click Set Up to configure the connection.

To configure the Sample Application to communicate with an additional AuthMinder
Server instance:

1. Click the [+] sign preceding Additional Server Configurations.

2. Specify the IP Address and Port connection parameters.

3. Click Set Up to configure the connection.

Selecting ArcotID PKI Client

Appendix E: AuthMinder Sample Application 171

Selecting ArcotID PKI Client

Before you perform any ArcotID PKI-related operations, you must choose the
appropriate type of ArcotID PKI Client that you want to use, along with the required
storage medium where you want to store the downloaded ArcotID PKI.

Note: The ArcotID PKI Client type and the download type that you select on this page
will persist for your current browser session.

To select the ArcotID PKI Client:

1. Access the Sample Application using the following URL:

http://<host>:CA Portal/webfort-7.1.01-sample-application/

2. In the left-hand pane, click Setup -> ArcotID Client to open ArcotID Client Settings
page.

3. In the Choose ArcotID Client section, select the type of client that has to be used to
authenticate the ArcotID PKI.

Note: If you choose the Flash client, then the Sample Application must be enabled
for HTTPS.

4. Select the type of medium where you want to store the ArcotID PKI from the
Choose ArcotID Download Type section.

See section, "Downloading ArcotID PKI (see page 36) for more information on the
supported download types.

5. In the Choose Where & When to Obtain the ArcotID Challenge section, select the
mode of obtaining the ArcotID PKI challenge.

6. Click Select to save the settings.

7. The "The operation was successful" message appears if the ArcotID PKI Client
configuration was performed successfully.

Configuring Sample Application Log File

To configure the log file, which Sample Application uses to write the logs:

1. From the sidebar, expand the Setup button and then click Logger link to display the
Logger Configuration page.

2. Enter the absolute path to the Sample Application log file in the Log File Path
folder. By default, the Sample Application log file is generated in the
<APP_SERVER_HOME> folder.

3. Select the Log Level. See the "Supported Severity Levels (see page 132)" section for
more information on the log levels.

4. Click Set Up to configure the log file.

Creating Users

172 Java Developer's Guide

Creating Users

Note: From this release onwards, the user creation must be performed either using
Administration Console or Web services.

To create users using Administration Console:

1. Log in to the Administration Console as a Global Administrator (GA) or an
Organization Administrator (OA). The URL for the purpose is:

http://<host>:CA Portal/arcotadmin/adminlogin.htm

2. If already not activated, activate the Manage Users and Administrators sub-tab
under the Users and Administrators tab.

3. In the left-hand pane, under Manage Users and Administrators, click Create User
to open the Create User page.

4. On the Create User page:

a. Enter a unique user name, their organization name, and optionally, other user
information in the User Details section

b. If required, specify other user information in the corresponding fields on the
page.

c. Select the required User Status.

d. Click Create User.

The "Successfully created the user" message appears if the specified user was
successfully added to the database.

5. Return to the WebFort Sample Application page.

Creating ArcotID PKI Credential

Appendix E: AuthMinder Sample Application 173

Creating ArcotID PKI Credential

To create ArcotID PKI credential for users:

1. Access the Sample Application using the following URL:

http://<host>:CA Portal/webfort-7.1.01-sample-application/

2. In the left-hand pane, click ArcotID -> Issuance -> Create to open Create ArcotID
page.

3. Specify the name of the user you created in the User Name field.

4. If required, specify the user’s organization in the Organization field.

5. Specify the password to be used for authentication in the ArcotID Password field.

6. If required, specify the profile that has to be used to issue ArcotID PKI in the Profile
Name field.

7. If required, specify the name-vale pairs of the Unsigned Attributes. The attributes
are set in the unsigned portion of the ArcotID PKI.

8. If required, specify the Custom Attributes to be used for creating the ArcotID PKI.

9. If required, specify the Additional Input that you want to pass to the AuthMinder
Server.

10. If required, pass the following Transaction Logging Parameters:

■ In the Log Level field, choose the logging level.

See "Supported Severity Levels" (see page 132) for more information.

■ Select Enable Trace Logging if you want to capture flow details.

■ Select Enable DB Logging if you want to log the database activities.

■ Select Enable Sensitive Data Logging if you want to log the sensitive data.

11. Click Create to create the credential.

The "The operation was successful" message appears if the ArcotID PKI was created
successfully for the user.

Downloading ArcotID PKI

174 Java Developer's Guide

Downloading ArcotID PKI

To download the ArcotID PKI:

1. Access the Sample Application using the following URL:

http://<host>:CA Portal/webfort-7.1.01-sample-application/

2. In the left-hand pane, click ArcotID -> Issuance -> Download to open the Download
ArcotID page.

3. Specify the name of the user you created in the User Name field.

4. If required, specify the user’s organization in the Organization field.

5. If required, specify the profile that has been used to issue ArcotID PKI in the Profile
Name field.

6. If required, specify the Additional Input that you want to pass to the AuthMinder
Server.

7. If required, pass the following Transaction Logging Parameters:

■ In the Log Level field, choose the logging level.

See "Supported Severity Levels" (see page 132) for more information.

■ Select Enable Trace Logging if you want to capture flow details.

■ Select Enable DB Logging if you want to log the database activities.

■ Select Enable Sensitive Data Logging if you want to log the sensitive data.

8. Click Download to download the user’s ArcotID PKI.

Authenticating Using ArcotID PKI

Appendix E: AuthMinder Sample Application 175

Authenticating Using ArcotID PKI

To authenticate using the ArcotID PKI:

1. Access the Sample Application using the following URL:

http://<host>:CA Portal/webfort-7.1.01-sample-application/

2. In left-hand pane, click ArcotID -> Authentication -> Authenticate to open the
ArcotID Authentication page.

3. Specify the name of the user you created in the User Name field.

4. Specify the user’s organization in the Organization field.

5. Specify the user’s ArcotID PKI password in the ArcotID Password field.

6. If you are using aliases to identify the users, then specify the Application Context
based on the alias of the user that you want to authenticate.

7. If required, select the Token Type that has to be returned to the user after
successful authentication.

See "Verifying the Authentication Tokens" (see page 102) for more information on
token types.

8. If required, specify the Authentication Policy Name that has to be used for
authenticating users.

9. If you have selected SAML as the token type, then specify the SAML Policy Name to
be used.

10. If required, specify the Additional Input that you want to pass to the AuthMinder
Server.

11. If required, pass the following Transaction Logging Parameters:

■ In the Log Level field, choose the logging level.

See "Supported Severity Levels" (see page 132) for more information.

■ Select Enable Trace Logging if you want to capture flow details.

■ Select Enable DB Logging if you want to log the database activities.

■ Select Enable Sensitive Data Logging if you want to log the sensitive data.

12. Click Authenticate to verify the user’s ArcotID PKI.

	CA AuthMinder Java Developer's Guide
	Contact CA Technologies
	Contents
	1: Getting Started
	Introduction to the AuthMinder Java SDK
	Authentication SDK
	Issuance SDK
	Sample Application

	AuthMinder SDK Features
	Before You Begin

	2: Understanding AuthMinder WorkFlows
	Enrollment Workflows
	Enrolling New Users
	Migrating Existing Users
	Migrating All Users
	Migrating Selected Users

	ArcotID PKI Authentication Workflow
	ArcotID PKI Roaming Download Workflow
	Forgot Your Password Workflow
	Workflow Summary

	3: Before You Use the SDK
	Accessing AuthMinder SDK Javadocs
	For Windows:
	For Unix Platforms:

	Adding Authentication Files in CLASSPATH
	JAR Files
	For Windows:
	For Unix Platforms:
	Properties File
	For Windows:
	For Unix Platforms:

	Adding Issuance Files in CLASSPATH
	JAR Files
	For Windows:
	For Unix Platforms:
	Properties Files
	For Windows:
	For Unix Platforms:

	4: Managing Users
	5: Integrating ArcotID PKI Client with Application
	ArcotID PKI Client Overview
	Flash Client
	Signed Java Applet

	Copying ArcotID PKI Client Files
	For Flash Client
	For Java Signed Applet

	ArcotID PKI Client APIs
	Downloading ArcotID PKI
	Signing the Challenge

	6: Performing Issuance Operations
	Initializing the Issuance SDK
	Method 1: Initializing the SDK by Using the Map
	Method 2: Initializing the SDK by Using the Properties File
	Releasing the Issuance SDK Resources

	Before You Proceed
	Checking the User Status
	Credential States and Supported Transitions
	Credential Operations and States

	Credential Operations
	Preparing Additional Input
	Preparing the Input
	Common Input
	Validity
	Custom Attributes
	Profile Name
	Disable Period
	ArcotDate.Type Class
	Credential-Specific Input
	Preparing ArcotID PKI Input
	Preparing QnA Input
	Preparing Password Input
	Preparing OATH OTP Input
	Preparing ArcotID OTP Input
	Preparing EMV OTP Input

	Creating Credentials
	Handling Errors

	Disabling Credentials
	Handling Errors

	Enabling Credentials
	Handling Errors

	Resetting Credentials
	Handling Errors

	Fetching Credential Details
	Handling Errors

	Downloading Credentials
	Handling Errors

	Reissuing Credentials
	Handling Errors

	Resetting Credential Validity
	Handling Errors

	Resetting Custom Attributes
	Handling Errors

	Fetching QnA Configuration
	Adding Elements to ArcotID PKI Key Bag
	Handling Errors

	Fetching ArcotID PKI Key Bag Elements
	Handling Errors

	Deleting ArcotID PKI Key Bag Elements
	Handling Errors

	Setting Unsigned Attributes
	Handling Errors

	Deleting Unsigned Attributes
	Handling Errors

	Deleting Credentials
	Handling Errors

	Reading the Output
	Credential Operations Summary
	ArcotID PKI Operations
	Password Operations
	Question and Answer Operations
	One-Time Password Operations
	OATH OTP Operations
	ArcotID OTP Operations
	EMV OTP Operations

	7: Authenticating Users
	Initializing the Authentication SDK
	Method 1: Initializing the SDK by Using the Map
	Method 2: Initializing the SDK by Using the Properties File
	Releasing the Authentication API Resources

	Preparing Additional Input
	ArcotID PKI Authentication
	ArcotID PKI Download
	ArcotID PKI Authentication

	Questions and Answers Authentication
	QnA Authentication Using Caller Verification Feature
	QnA Authentication Using Server Verification

	Password Authentication
	Complete Password Authentication
	Partial Password Authentication

	One-Time Password Authentication
	OATH One-Time Password Authentication
	OATH One-Time Password Synchronization
	ArcotID OTP (ArcotID OTP-OATH) Authentication
	ArcotOTP (ArcotOTP-OATH) Synchronization
	EMV (ArcotID OTP-EMV) Authentication
	EMV (ArcotID OTP-EMV) Password Synchronization
	Verifying Password Type Credentials
	Verifying the Authentication Tokens
	Fetching the PAM
	Authentication Operations Summary

	A: Input Data Validations
	B: AuthMinder Logging
	About the Log Files
	Installation Log File
	Windows:
	UNIX-Based Platforms:

	AuthMinder Server Startup Log File
	Windows:
	UNIX-Based:

	AuthMinder Server Log File
	Windows:
	UNIX-Based:

	UDS Log File
	Windows:
	UNIX-Based:

	Administration Console Log File
	Windows:
	UNIX-Based:

	Format of the AuthMinder Log Files
	Format of UDS and Administration Console Log Files
	Supported Severity Levels
	Server Log File Security Levels
	Administration Console and UDS Log File Severity Levels
	Sample Entries for Each Log Level
	FATAL
	WARNING
	INFO
	DEBUG
	(For WebFort Server Only) Trace Logs

	C: Additional Settings
	Configuring Multiple AuthMinder Server Instances
	Setting up SSL
	One-Way SSL
	Two-Way SSL

	D: SDK Exceptions and Error Codes
	Exceptions
	Common Exceptions
	Issuance Exceptions
	Authentication Exceptions

	Error Codes
	SDK Codes
	Server Codes

	E: AuthMinder Sample Application
	Configuring Sample Application
	Selecting ArcotID PKI Client
	Configuring Sample Application Log File
	Creating Users
	Creating ArcotID PKI Credential
	Downloading ArcotID PKI
	Authenticating Using ArcotID PKI

