

Rule Engine: JSR-94 Implementation Guide

r11

CA Aion® Rule Manager

This documentation and any related computer software help programs (hereinafter referred to as the

"Documentation") are for your informational purposes only and are subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,

without the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may

not be used or disclosed by you except as may be permitted in a separate confidentiality agreement between you and

CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation,

you may print a reasonable number of copies of the Documentation for internal use by you and your employees in

connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable license for such

software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify

in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT

WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER

OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,

INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR

LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and

is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with "Restricted Rights." Use, duplication or disclosure by the United States Government is subject to the

restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section

252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2009 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein

belong to their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA Aion® Rule Manager (CA Aion Rule Manager)

■ CA Aion® Business Rules Expert (CA Aion BRE)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access

the information you need for your Home Office, Small Business, and Enterprise

CA Technologies products. At http://ca.com/support, you can access the

following:

■ Online and telephone contact information for technical assistance and

customer services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA Technologies product

documentation, you can send a message to techpubs@ca.com.

If you would like to provide feedback about CA Technologies product

documentation, complete our short customer survey, which is available on the

CA Support website at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: The JSR-94 Specification 9

Introduction ... 9

JSR-94 Implementations ... 9

JSR-94 Services Overview ... 10

Using a JSR-94 Implementation in Java Code ... 12

CA Technologies's JSR-94 Implementation ... 14

Inference Engines ... 14

CA Technologies Extensions to the JSR-94 Specifications and Special Considerations 15

JSR-94 Implementations and Rule Languages .. 16

Rulebase Definition Language Fundamentals .. 16

Install and Configure CA Rule Engine .. 18

Configure and Execute Logging for CA Rule Engine .. 19

Documentation and Samples .. 22

Chapter 2: Using the CA Rule Engine 25

Construction of Java Client Applications .. 26

Rules for Constructing Java Classes .. 27

Using the WrapperMaker Tool .. 33

Adding Callback Methods .. 34

Acquire the RuleExecutionSet and RuleSession .. 35

Add and Retrieve Inference Engine Objects ... 44

Processing Considerations ... 49

Specify Unknown Rulebase Fields .. 49

Specify Instance Reference Fields .. 49

Specify Array Property Values ... 51

Specify Datetime String Values .. 51

Specify Duration String Values ... 52

Reset Rules and Switch Domains ... 52

Exception Catching.. 53

Query RuleExecutionSets and Rules .. 54

Query Common RuleExecutionSet and Rule Properties 54

Access CA Technologies's Extended RuleExecutionSet and Rule Properties 56

Use Cases for Building JSR94 Applications .. 59

Rulebase Structures ... 60

Construct an RDL Rulebase for Java Objects .. 64

6 Rule Engine: JSR-94 Implementation Guide

Chapter 3: RDL Rulebase Overview 67

Rulebase Fundamental Notions .. 67

Rulebase Structure ... 68

Rulebase Level ... 68

Domain Level ... 69

Ruleset Level ... 69

Scoping .. 69

RDL Characteristics ... 70

Object Naming.. 70

Object References .. 71

Data Types ... 72

Operators .. 74

Statements ... 78

Class-Inheritance Hierarchies .. 78

Extensibility .. 79

Rulesets and Rules ... 79

Priorities ... 79

Effectiveness Criteria .. 80

Decision-Tree Rules ... 81

Example Rules .. 83

Additional Notes .. 89

Binary Rulebases ... 89

Portability .. 89

Security .. 89

Durability .. 90

Chapter 4: Inferencing Overview 91

Fundamental Notions ... 91

Agenda Management ... 92

Rule Reactivity ... 93

Discretely Reactive Rules .. 93

Thread States .. 93

Unpending Rule Threads .. 98

Revisiting Unpended Rule Threads .. 101

Rule Retirement ... 101

Special Handling ... 101

For ANDing and ORing ... 102

For NULL Values ... 103

Forward Chaining .. 104

Sub-Inferencing ... 110

Contents 7

Chapter 5: Using Callback 111

Initialization Callback Methods .. 112

Change Callback Methods .. 114

Field Value Change Callback .. 116

Collection-Element Addition/Deletion Callback ... 117

Instance Creation/Deletion Callback ... 119

Chapter 6: Tutorial 121

Tutorial Scenario .. 122

Pricing Tier Decision Tree ... 123

Customer Financial Stability Decision Tree ... 124

Rulebase Interface Requirements ... 125

The Rulebase .. 126

Rulebase Class Definitions .. 126

Domain Interface Definition .. 129

Rulesets and Rules ... 131

Convert Infix Rulebase to RDL .. 141

Java Client Classes .. 142

Generate Java Client Classes from Rulebase ... 143

Retrofit Existing Classes .. 144

Client Application Class ... 151

Execute the Application .. 160

Obtain Log of Execution .. 162

Obtain Inferencing Summary Documents .. 163

Filter the Returned Rulebase Objects .. 165

Appendix A: Samples 169

Running a Sample Application .. 169

TLP Sample ... 170

TLP System ... 170

TLP Sample Rulebase .. 171

Java Applications for the TLP Sample .. 174

Shopping Cart Sample ... 176

Shopping Cart System ... 176

Shopping Cart Sample Rulebase .. 177

Sample Java Applications for the Shopping Cart Sample 180

Expense Approval Sample .. 181

Expense Approval System .. 181

The Expense Approval Sample Rulebase ... 182

Sample Java Applications for the Expense Approval Sample 183

8 Rule Engine: JSR-94 Implementation Guide

Appendix B: Verify JSR94 Compliance 185

Verify CA Rule Engine for Compliance ... 185

Index 189

Chapter 1: The JSR-94 Specification 9

Chapter 1: The JSR-94 Specification

This section contains the following topics:

Introduction (see page 9)

JSR-94 Implementations (see page 9)

CA Technologies's JSR-94 Implementation (see page 14)

JSR-94 Implementations and Rule Languages (see page 16)

Install and Configure CA Rule Engine (see page 18)

Documentation and Samples (see page 22)

Introduction

The CA Rule Engine implements interfaces specified by Java Specification

Request 94 (JSR-94). JSR-94 defines a Java runtime API for inference engines,

which permits an inference engine to be called from a Java program. The JSR-94

standard is a result of the Java Community Process. Before this standard was

established, each supplier of an inference engine was free to define its own way

of interacting with its inference engine. This was the situation before the

different suppliers of Java-based inference engines agreed upon a basic API for

interacting with such inference engines. This API is embodied in the JSR-94

specification.

Java provides no inferencing services. The Java language provides no special

commands for invoking inferencing. In addition, you cannot define rules within

the Java language. The simple branching structures, such as the Java if

statement, cannot be used as independent rules. Therefore, the inferencing

capability must be provided by a source outside of the language itself. For

inferencing to be performed from within the Java language, the Java language

requires an API to an inference engine. How a Java program is to interact with

the outside source of inferencing is defined by the JSR-94 standard.

The full JSR-94 specification is available on the Java Community Process website

at: http://www.jcp.org (type 94 into the JSR text box and press Enter).

JSR-94 Implementations

CA provides CA Rule Engine, a fully compliant JSR-94 implementation, for

invoking inferencing services directly from Java programs. A rulebase is more

than a mere aggregation of rules. It also contains additional information to allow

a rule engine to execute the rules. Since the JSR-94 standard only specifies

acquisition and use of a rule engine, the format of the rulebase is specific to CA

Rule Engine. For more information, see JSR-94 Implementations and Rule

Languages.

JSR-94 Implementations

10 Rule Engine: JSR-94 Implementation Guide

An understanding of CA Rule Engine requires an understanding of the JSR-94

specification. JSR-94 provides a set of services, or interfaces, which a client uses

to interact with an inference engine. These services are based on the assumption

that client application can execute a basic multiple-step cycle that consists of:

1. parse rules

2. register the rules that are to be executed with the inferencing service

3. load the rules (pass them to the inference engine)

4. add objects to the engine for the rules' consideration

5. execute the rules (inference and get results back from the engine)

The JSR-94 specification permits several vendor-specific extensions. For more

information on the use of CA Rule Engine, see CA Extensions to the JSR-94

Specification and Special Considerations.

JSR-94 Services Overview

The JSR-94 specification provides for two types of rule-related services:

■ Administrative services through the administrator API

■ Runtime services through the runtime API

Administrative services create, register, and query what are called rule

execution sets. A rule execution set is an executable collection of rules; that is, it

is just a synonym of rulebase adopted by the JSR-94 standard. The

RuleExecutionSet interface provides a Java program with a generic type that

characterizes executable rule sets for any vendor-specific inference engine.

JSR-94 Implementations

Chapter 1: The JSR-94 Specification 11

Runtime services address the actual inferencing operations. Runtime services

provide the means of establishing an inferencing session with a registered rule

execution set, introducing objects, i.e. data values, to an inferencing session,

invoking inferencing, and retrieving the results of inferencing.

The following diagram shows the overall structure of JSR-94 implementations:

JSR-94 implementations run in J2SE environments. The Java client program

begins by instantiating a RuleServiceProvider provided by the vendor specific

JSR-94 implementation. For information on how to instantiate a

RuleServiceProvider provided by the vendor-specific JSR-94 implementation,

see Construction of Java Client Applications.

JSR-94 Implementations

12 Rule Engine: JSR-94 Implementation Guide

The RuleServiceProvider provides methods for obtaining the RuleAdministrator

and the RuleRuntime, to instantiate the main service providers of the JSR-94

specification. The RuleAdministrator needs to be instantiated to obtain a

RuleExecutionSet. To obtain a RuleExecutionSet, it is first necessary to

instantiate a RuleExecutionSetProvider, whose role is to provide methods for

taking a rule source, for example, a textual document or binary file, and

returning a RuleExecutionSet based on that source. The vendor's

implementation of the overloaded createRuleExecutionSet() methods does what

is necessary to return an instance to the client application of the type

RuleExecutionSet appropriate for the particular inference engine, depending

upon the input to the method.

Note: There are two forms of RuleExecutionSet providers:

RuleExecutionSetProvider and LocalRuleExecutionSetProvider.

RuleExecutionSetProvider defines methods to create a RuleExecutionSet from

serializable sources. LocalRuleExecutionSetProvider allows creation of

RuleExecutionSet instances from non-serializable resources and is available only

to inference engines that are running in the JVM of the caller.

In addition, the RuleAdministrator provides services to register and deregister a

RuleExecutionSet with a URI. This must be done to invoke inferencing under the

RuleRuntime service and to set and/or query user and vendor-specific properties

of RuleExecutionSets and the rules they contain.

Once a RuleExecutionSet instance is obtained for the rules that will be executed,

it is necessary to obtain an instance of the RuleRuntime from the

RuleServiceProvider and to create a RuleSession. A RuleSession can be created

by passing the URI of the registered RuleExecutionSet to the RuleRuntime. The

JSR94 specification supports both stateful and stateless rule sessions. It is

possible to submit the rules and objects to the inference engine and to receive

the results in one synchronous call, i.e. a stateless rule session, or to conduct

interaction with the inference engine, i.e. a stateful rule session.

Finally, JSR-94 provides facilities for filtering the results obtained from

inferencing. An application can retrieve just the information in which it is

interested.

Using a JSR-94 Implementation in Java Code

The following Java code provides a template of what is involved in using a JSR-94

implementation in Java code, only the RuleServiceProvider registration string

and the name of CA's implementation class are specific to CA Rule Engine:

JSR-94 Implementations

Chapter 1: The JSR-94 Specification 13

String RULE_SERVICE_PROVIDER = "com.ca.cleverpath.aion.jsr94";

// Load the rule service provider of the vendor implementation.

// For more information on loading the service provider, see

// Acquiring the RuleServiceProvider.

Class.forName("com.ca.cleverpath.aion.jsr94.RuleServiceProviderImpl");

// Get the rule service provider from the provider manager.

RuleServiceProvider svcProvider =

 RuleServiceProviderManager.getRuleServiceProvider(RULE_SERVICE_PROVIDER);

// For the next series of steps, see Rule Administration: Acquiring

// and Registering the RuleExecutionSet.

// Get the Rule Administrator

RuleAdministrator ruleAdmin = svcProvider.getRuleAdministrator();

// Get the RuleExecutionSet provider

RuleExecutionSetProvider ruleSetProvider =

 ruleAdmin.getRuleExecutionSetProvider(null);

// Get a sample rulebase file.

RuleExecutionSet ruleSet = ruleSetProvider.createRuleExecutionSet(

 "file:/D:/InstallSoftware/JSR94/lib/rulebase.bin",null);

String ruleSetUri = "rulebases://" + ruleSet.getName();

ruleAdmin.registerRuleExecutionSet(ruleSetUri, ruleSet, null);

// For the next series of steps, see Establish a Rule Session.

// Create a RuleRuntime

RuleRuntime runtime = svcProvider.getRuleRuntime();

// Create a Stateless Rule Session using the RuleRuntime

StatelessRuleSession session = (StatelessRuleSession)runtime.createRuleSession(

 ruleSetUri, null, RuleRuntime.STATELESS_SESSION_TYPE);

// Enter local code to create client instances on the Java side.

// (Assume an instance, inst1, is created for input and an

// inst2 is created for output.)

// Enter local code to set properties of created instances

// Perform inferencing over the added objects with the rules

// passed to this session at create time. See Stateless versus

// Stateful Rule Sessions.

CA Technologies's JSR-94 Implementation

14 Rule Engine: JSR-94 Implementation Guide

List inputObjects = (List) new LinkedList();

inputObjects.add(inst1);

inputObjects.add(inst2); //NOTE: Also pass the output instance to the rulebase

List objectsReadBack = session.executeRules(inputObjects);

// Enter local code to process results, for example, iterate over

// objectsReadBack.

// Close the session with the inference engine.

session.release();

ruleAdmin.deregisterRuleExecutionSet("rulebases://" + ruleSet.getName(), null);

For a detailed explanation of this code, see Construction of Java Client

Applications. For a detailed example of an actual client application, see Client

Application Class.

CA Technologies's JSR-94 Implementation

This section introduces the general features of the CA Rule Engine, CA

Technologies's implementation of the JSR-94 specification. It summarizes

features of the underlying inference engine and CA Technologies's extensions to

the JSR-94 Specification.

Inference Engines

An inference engine is the foundation of every JSR-94 implementation. The

inference engine that is made available to Java client applications by CA Rule

Engine is implemented totally in Java. This is the same inference engine that is

utilized by other Java components of CA Aion Rule Manager.

The CA Rule Engine inference engine has its own API. However, client

applications of CA Rule Engine never use this API directly. Instead, CA Rule

Engine provides an API that complies with the JSR-94 specification and performs

any necessary transformations between the JSR-94 compliant API and the native

API of the internal inference engine.

CA Technologies's JSR-94 Implementation

Chapter 1: The JSR-94 Specification 15

The rule language used by CA Rule Engine is known as Rulebase Definition

Language (RDL). This manual describes this language and corresponding engine

behaviors in the following places:

■ Using CA Rule Engine provides a brief, high-level summary of the salient

features of the language required to understand the CA Rule Engine

extensions.

■ Overview of RDL Rulebases provides a summary of the features of the

language needed if writing a rulebase in native RDL.

■ Overview of Inferencing provides a summary of the behaviors of the

inference engine.

The separate RDL Specification provides the reference source and explains the

features of the language in detail.

To facilitate direct authoring of rules, CA Rule Engine also provides an infix rule

language that is much easier to understand by users. Infix rules can be used in

place of actual RDL rules in an RDL rulebase to form an infix rulebase. CA Rule

Engine provides an infix2rdl batch/script file tool to convert an infix rulebase to

its RDL equivalent and an rdl2infix batch/script file tool to do the reverse. For

more information, please refer to the separate guide for infix language.

CA Rule Engine provides the facilities to build, i.e. compile an RDL textual

rulebase as an executable rulebase. CA Rule Engine also provides facilities to

perform inferencing with such an executable rulebase. The structure of CA Rule

Engine closely follows the Administrative and Runtime services specified in

JSR94. There are subtle differences. For example, the input to JSR-94

createRuleExecutionSet() method can be a text file, written in RDL, or a pointer

to an executable rulebase. Because the inference engine requires an executable

rulebase as input, the method automatically compiles the text file. If the method

is called with a pointer to an executable rulebase, it will not call the CA Rule

Engine building service but just return the executable rulebase cast as a

RuleExecutionSet. CA Rule Engine hides the mechanisms for determining how to

pass back a rule execution set to the Java program from the user.

CA Technologies Extensions to the JSR-94 Specifications and Special

Considerations

The JSR-94 specification allows inference engine vendors to extend the API

specification in specific ways that are appropriate for their inference engine.

Vendors may specify properties of RuleExecutionSets and Rules that are unique

to their inference engine. CA Rule Engine introduces several properties that are

special to the CA Rule Engine inference engine. For more information on these

properties and how to access them, see Access CA Technologies's Extended

RuleExecutionSet and Rule Properties.

JSR-94 Implementations and Rule Languages

16 Rule Engine: JSR-94 Implementation Guide

There are special client-side considerations that deal with requirements for

writing the Java application program that uses CA Rule Engine. For more

information about these special considerations, see Constructing of Java Client

Applications.

Many of these properties and special considerations depend on features of the

underlying rule language used by the CA Rule Engine inference engine. For more

information about these features, see RDL Rulebase Overview.

JSR-94 Implementations and Rule Languages

Although the JSR-94 specification specifies the API to any compliant inference

engine, it does not mandate any specific rule language. One needs to formulate

the rules in the vendor-specific rule language of the particular inference engine

that is being invoked. For CA Rule Engine, this language is called the Rulebase

Definition Language (RDL).

RDL is an XML-based programming language for representing objects and

decision trees, the fundamental model on which rules are represented in RDL, in

rulebases. For more information on RDL, see Rulebase Definition Language

Fundamentals.

Rulebase Definition Language Fundamentals

To understand a CA Rule Engine rulebase, it is necessary to understand several

concepts that are unique to RDL and the CA Rule Engine inference engine. For

more information on these concepts, see RDL Rulebase Overview.

Rulebases expressed in RDL are hierarchically organized in three levels:

Domains

 Rulesets

 Rules

Domains, rulesets, and rules are named objects in an RDL rulebase; each may

occur multiple times at their respective levels. Domains provide a means of

grouping rulebase resources in functional units. Rulebase resources include

classes, instances, and rulesets. A rulebase may contain multiple domains, each

dealing with a separate aspect of the problem being solved. Rulesets are sets of

rules. An RDL ruleset is not to be confused with a RuleExecutionSet in JSR-94

standard, which is really equivalent to a whole rulebase. Rules have a unique

structure in RDL, which are based on a decision tree paradigm.

JSR-94 Implementations and Rule Languages

Chapter 1: The JSR-94 Specification 17

RDL supports classes. Classes are defined by their fields. Classes can be defined

at the rulebase level, the domain level and the ruleset level. Classes defined at a

higher level are accessible by objects defined in a lower level in the same

hierarchy, but not conversely. The classes defined at the rulebase level may be

interfaced with client applications. Instances of such classes pass information

between the rulebase and client application. Instances can be either statically

defined by a class or dynamically created at runtime, e.g. by rules. Additionally,

if the rulebase designates a class as an app-creatable class, the client application

can dynamically create instances for the class. All instances in RDL must be

named.

Each field in a class is described by its collection type and its data type. The

collection type can be either atomic or set. The data type can be one of Number,

Boolean, String, DateTime, Duration and instance reference. When a RDL

instance is instantiated, the state for a field is unknown and remains in that state

until it is resolved to a value by a rulebase statement or client operation. At the

time of resolution the field will become in the known state. The concept of

unknown is fundamental in inferencing in the sense that the goal of inferencing

is to use the available rules to resolve the unknown fields.

The purpose for an atomic instance reference field is to hold a reference to an

instance of specified class defined in the rulebase. The instance reference type is

different from other data types in the sense that it has three possible states:

unknown, reference to another valid instance, and a special value, the RDL

NULL, to indicate that it is known that that reference does not exist. For example,

if a field of a Person class is spouse, the RDL NULL value for that field means that

given person does not have a spouse, or is single.

In RDL, domains define critical aspects of how the rulebase will be exposed to the

outside world. The domain contains the specification of how the Java client

applications will invoke the rulebase. The following aspects of domains define

this interaction:

■ The appshared domain. A rulebase may contain multiple domains.

Domains may be specified as either internal to the rulebase or shared with

the client application. The latter are referred to as appshared domains, after

the attribute in the RDL that designates a domain to have this status.

Appshared domains specify the interface for passing objects between the

rulebase and client application.

■ Pre and postconditions. The pre- and postconditions of an appshared

domain define respectively the input values that the client application needs

to provide the rulebase for inferencing, and the output values that the client

application can retrieve from the rulebase. For client applications,

preconditions specify values that are both read and write; postconditions

specify read only values. Pre- and postconditions are designated fields of

instances of classes defined at the rulebase level.

Install and Configure CA Rule Engine

18 Rule Engine: JSR-94 Implementation Guide

The Java client application must interact with one and only one appshared

domain during any given invocation of the executeRules() method. The

appshared domain determines which objects the Java application must provide

to the inference engine and which objects can be retrieved from the inference

engine based on the specified pre and postconditions.

To help the Java programmer understand the structure of the rulebase interface,

CA Rule Engine provides an application interface document. This document is

obtained as a vendor-specific extension of the rule execution set properties. For

more information, see CA Extensions to the JSR-94 Specification and Special

Considerations.

Install and Configure CA Rule Engine

If you obtained CA Rule Engine distribution as a ZIP archive, installation only

requires extracting it to the desired location. A new folder containing the CA Rule

Engine distribution will be created at that location. In this guide, the distribution

folder is referred to as aionjre_home.

If you obtained CA Rule Engine as a component of another product, please refer

to your product documentation to determine the location of aionjre_home.

CA Rule Engine is compatible with JDK 1.4.2 or later. JDK 1.4.2 or later must be

installed to use CA Rule Engine to develop inference enabled applications. To

compile and run the samples using supplied scripts, Apache Ant 1.6.1 or later

also must be installed and found in PATH.

You must ensure that the following jar files are found on CLASSPATH when

developing and running your inference enabled application:

■ aionjre.jar

■ jsr94.jar

■ log4j.jar

The aionjre.jar file is located in the aionjre_home folder. The others are included

in the lib folder in the CA Rule Engine distribution for your convenience.

Install and Configure CA Rule Engine

Chapter 1: The JSR-94 Specification 19

Examples of CLASSPATH settings are shown in sample batch files (for Windows)

and corresponding shell scripts (for UNIX or Linux) provided in the samples

folder in the CA Rule Engine distribution. For more information on the sample

applications provided with CA Rule Engine, see Documentation and Samples.

The sample batch or script files also illustrate the use of log4j configuration for

CA Rule Engine. For more information on configuring log4j, see Configure

Logging and Execute for CA Rule Engine.

The CA Rule Engine specific files needed for running the JSR-94 Technology

Compatibility Kit (TCK) are located in the tckconfiguration folder in the CA Rule

Engine distribution.

More information

Verify JSR94 Compliance (see page 185)

Configure and Execute Logging for CA Rule Engine

CA Rule Engine logging uses the log4j package from Apache

(http://logging.apache.org).

Note: All messages from the CA Rule Engine are written to the log4j log file. In

the absence of log4j configuration, CA Rule Engine does not produce any log

messages. We recommend that log4j configuration be performed for CA Rule

Engine. We also recommend that UTF-8 encoding be configured for log4j

appender to support non-ASCII characters that may be used by a localized

rulebase.

The log4j logging framework must be configured initially by the user of CA Rule

Engine. This configuration is normally specified using a property file. For a

sample configuration property file, see Example: Configuration File for log4j. To

learn more about log4j and its configuration using a property file, please see the

log4j project documentation at http://logging.apache.org

Note: Other configuration techniques include an xml configuration file (which is

analogous to the sample property file, but in XML) and the use of API calls in

code.

Only the topmost logger for the com.ca.cleverpath.aion.jsr94 must be

configured. Set the log level for CA Rule Engine to an appropriate level to log the

desired CA Rule Engine messages. We recommend setting the logging level of

the topmost logger to at least WARN. For more information on logging levels, see

Guidelines for log4j Messages from CA Rule Engine. For a mapping of log4j

logging levels and CA Rule Engine engine trace levels, see Log4j Logging Levels

and CA Rule Engine Trace Levels.

Install and Configure CA Rule Engine

20 Rule Engine: JSR-94 Implementation Guide

To obtain a log file, execute the Java class with a -D parameter that sets the

log4j.configuration property to the URI of the desired configuration file. The

following example shows the case where the configuration file is in current

folder:

java -Dlog4j.configuration=log4j.properties com.ca.cleverpath.aion.jsr94.samples.tlp.TLPSession

If the configuration file is not in current folder, it should be specified in the full

URI format. For example, the –D parameter should be specified as:

 -Dlog4j.configuration=file:../log4j.properties

if the file log4j.properties is located one level above the current folder.

Example: Configuration File for log4j

Example

In the following example, the logging level for the topmost logger is set to WARN

and the path to the log file is defined to be C:\Temp\ and the name of the log file

is aionjre.log:

log4j configuration for CA Rule Engine

log4j.logger.com.ca.cleverpath.aion.jsr94=WARN, JSR94

#Define a file appender for output

log4j.appender.JSR94=org.apache.log4j.RollingFileAppender

log4j.appender.JSR94.File=C:\Temp\aionjre.log

Keep one backup file

log4j.appender.JSR94.MaxBackupIndex=1

log4j.appender.JSR94.MaxFileSize=2000KB

log4j.appender.JSR94.encoding=UTF-8

log4j.appender.JSR94.layout=org.apache.log4j.PatternLayout

log4j.appender.JSR94.layout.ConversionPattern=%d{HH:mm:ss,SSS} %p %t %c - %m%n

See the log4j.properties file in the samples folder inside the CA Rule Engine

distribution.

For more information on client applications using logging frameworks, see Client

Applications with Logging Frameworks Notes.

Client Applications with Logging Frameworks Notes

If the logging framework used by application is log4j, CA Rule Engine reuses the

application's log4j configuration and does not attempt to reconfigure log4j. Make

entries for CA Rule Engine's top most logger as shown in the sample logging

configuration file; for more information, see Example: Configuration File for

log4j.

Install and Configure CA Rule Engine

Chapter 1: The JSR-94 Specification 21

If the logging framework used by client application is not the log4j framework,

note that CA Rule Engine's log4j configuration and logging are separate from the

any client application's logging, configure log4j for CA Rule Engine.

Guidelines for log4j Messages from CA Rule Engine

The following guidelines show the correlation between log4j logging levels and

types of CA Rule Engine messages (logging levels are shown in ascending order):

■ DEBUG: Interesting information and significant stages for application can be

very detailed if desired so (for example, whenever CA Rule Engine sets field

values during a rule session).

■ INFO: Similar to lifecycle or highly significant events (for example, when a

session is created or released).

■ WARN: Output may not be as expected but processing will continue. For

example, CA Rule Engine warns users in the following situations:

When unknown values cannot be reported back to the client.

When Java instances cannot be created because there is no default

constructor for the Java class or no verified Java class corresponds to the

rulebase class.

■ ERROR: For exceptions and other errors generated by CA Rule Engine.

■ FATAL: For shutdown events when CA Rule Engine cannot continue, for

example, when rule service provider class cannot be registered.

For more information on these logging levels, please visit the javadoc link for

the log4j project documentation on http://logging.apache.org

Documentation and Samples

22 Rule Engine: JSR-94 Implementation Guide

Log4j Logging Levels and CA Rule Engine Trace Levels

The following mappings of log4j logging levels and CA Rule Engine engine trace

levels define the corresponding messages for the log4j log file:

■ ALL, DEBUG 3 - All messages including load, infer, user, error, and

warning messages will be allowed thru the message

handler.

■ INFO 1 - Messages of type MSGTYPE_TRACE_L1 with user,

error, and warning messages only allowed.

■ WARN 0 - Only messages of type error and warning are

allowed.

■ ERROR 0 - Only messages of type error are allowed.

■ FATAL No engine messages

■ OFF 0 - Ignore all messages (rule engine posts some

messages).

Note: There is no way to indicate CA Rule Engine's engine trace level 2. This

keeps a consistent mapping between log4j logging levels and CA Rule Engine's

engine trace level. Users can effectively trace level 1 or 3 by choosing logging

level as DEBUG or INFO.

For a description of all messages generated by CA Rule Engine, go to the

Overview page in the /doc/api folder inside the CA Rule Engine distribution. For

more information on available documentation and example application, see

Documentation and Samples.

Documentation and Samples

CA Rule Engine documentation, including API Javadocs, is provided in the /doc

folder inside the CA Rule Engine distribution.

Sample Java source code for the following client applications is provided in the

samples folder inside the CA Rule Engine distribution:

■ The TLP sample which illustrates general usage.

■ The shopping cart sample which illustrates the iterative decision feature.

■ The expense reimbursement sample which illustrates incremental supply of

preconditions.

Documentation and Samples

Chapter 1: The JSR-94 Specification 23

To compile and run these samples, the following sample batch files for Windows

and corresponding shell scripts for UNIX or Linux platforms are provided:

■ compilesamples to compile sample client applications

■ runXXXadmin to run the administrator part of the XXX sample.

■ runXXXsession to run the whole rule session of the XXX sample.

For more information on the sample client applications, see Sample CA Rule

Engine Applications.

Chapter 2: Using the CA Rule Engine 25

Chapter 2: Using the CA Rule Engine

Using the CA Rule Engine involves two levels of knowledge: knowledge of the

JSR-94 standard (see the chapter The JSR-94 Specification), and knowledge of

specific features of CA Rule Engine. Knowledge of appropriate techniques for

constructing Java applications is also necessary. These techniques involve close

coordination between the Java client and the structure of the rulebase.

Building a JSR-94 application can occur under either of the following use cases or

some combinations of the two:

■ You begin with a pre-existing rulebase for which you want to write

appropriate Java classes to call the rulebase from a Java application through

the JSR-94 interface, but you may or may not have direct access to the rule

author or RDL code to understand the rulebase interface. In this use case,

you may need to know how to query the interface of the rulebase. Once you

understand the requirements of the interface, you can construct the

appropriate Java classes.

■ You begin with pre-existing business objects defined by Java classes or by

developing the rulebase concurrently with Java developers. This use case

requires writing a rulebase to inference over these objects. Both sides, the

Java classes of your client application and the RDL rulebase, must work

together to make sure the Java classes are appropriate for the RDL rulebase

as in the first case. In addition, the rulebase must properly implement the

business logic behind the pre-existing business objects.

It is also possible to configure the use of CA Rule Engine in a Java application

under different solution architectures. A single Java client application may be

used to register a rule execution set and to execute that rule execution set or

these functions can be done in different Java applications. For more information

on rule execution sets, see JSR-94 Services Overview.

For more documentation of CA Rule Engine, see the contents in the doc folder in

the CA Rule Engine distribution.

This section contains the following topics:

Construction of Java Client Applications (see page 26)

Processing Considerations (see page 49)

Query RuleExecutionSets and Rules (see page 54)

Use Cases for Building JSR94 Applications (see page 59)

Construction of Java Client Applications

26 Rule Engine: JSR-94 Implementation Guide

Construction of Java Client Applications

This chapter presents the general principles for constructing the Java client

application. On the client side, CA Rule Engine makes the following extensions to

the JSR-94 specification:

■ Additional features, beyond standard bean features, are required for

constructing Java classes that map instances between the client side and the

inference engine.

■ If the rulebase contains two or more appshared domains, the inference

engine must be informed about which domain will be used by the client.

For more information, see CA Technologies Extensions to the JSR-94

Specification and Special Considerations.

The following major points must be understood when constructing the Java client

application:

■ There are CA Rule Engine specific rules for constructing Java classes so that

CA Rule Engine can coordinate instances on the client side with instances on

the rulebase/inference engine side.

■ Once the application classes are constructed correctly, the Java client

application must include JSR-94 specific coding to acquire a rule execution

set and rule session.

■ The application must add objects from the client application to the inference

engine and retrieve the results of inferencing following JSR-94 specification.

For more information, see Addition and Retrieval of Inference Engine

Objects. The JSR-94 specification also provides a way for the client

application to filter results of inferencing by supplying filter objects.

Note: For an existing rulebase, the supplied WrapperMaker tool can be used to

automatically construct the Java classes that wrap the rulebase classes. The

Java source code for the sample applications can be found in samples folder

inside the CA Rule Engine distribution. The sample applications also provide

client test applications.

More information

Rules for Constructing Java Classes (see page 27)

Specify a Shared Domain (see page 43)

Acquire the RuleExecutionSet and RuleSession (see page 35)

Using the WrapperMaker Tool (see page 33)

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 27

Rules for Constructing Java Classes

To be able to exchange information between the CA Rule Engine inference engine

and its Java client application, it is necessary to have wrapper (stub) Java classes

that wrap the corresponding rulebase level RDL classes that define pre- and

post-condition (input and output) fields. A wrapper class only needs to declare

property fields that correspond to RDL fields which are part of the rulebase

application interface. At runtime, user instantiates objects of wrapper classes,

initializes the pre-condition fields and adds the objects to rule session for

inference and obtains inference results through the post-condition fields of those

objects. The CA Rule Engine inference engine may also instantiate objects of

wrapper classes due to rule actions.

The CA Rule Engine inference engine uses Java reflection technique to

automatically match any user Java objects (instances) of wrapper classes added

to the session with its internal instances of corresponding RDL classes. In

addition to establishing correspondence between the wrapper class and the RDL

class for just that added object, CA Rule Engine also establishes class

correspondence for any instance reference fields defined in the class of that

object. It will also implicitly and recursively add any objects as values of instance

reference fields. When necessary, CA Rule Engine will also search for any

wrapper classes in the package of the class of that added object.

In addition to matching objects of a wrapper class, CA Rule Engine also accepts

objects of classes that are derived from that wrapper class and matches those

objects to internal instances of the RDL class that corresponds to the wrapper

class. In addition to normal Java class, the Java wrapper class for an RDL class

may be a Java interface and CA Rule Engine accepts any objects of a class that

implements that interface and matches those objects to internal instances of the

RDL class that corresponds to the interface.

For this matching to work correctly, the Java classes of objects added to the

inference engine must comply with specific rules described in the following

sections. The requirements can be met through inheritance or implemented

interface in addition to direct implementation in that class.

Rules for Public No-Argument Constructor and Property Accessors follow Java

rules for the construction of bean classes. The Java classes should also

implement the Serializable interface if serialization is needed. The other rules are

unique to using CA Rule Engine.

For more information on Java beans, please see the Java Beans tutorial at

http://java.sun.com

Note: Java client classes that represent rulebase classes must implement the

Serializable interface if the rule session needs to be serialized. The

WrapperMaker tool automatically generates serializable classes.

Construction of Java Client Applications

28 Rule Engine: JSR-94 Implementation Guide

Class Name Requirements

Correspondence between an RDL class and its Java wrapper class or interface is

established by matching the unqualified name of the Java wrapper class with the

RDL class name. Since RDL supports a much wider set of characters for its

identifiers, if it is necessary to write an RDL class for an existing Java class,

simply choose identical name should suffice. However, if it is necessary to write

a Java wrapper class or interface that directly corresponds to an RDL class, the

following method to map an RDL identifier to a Java identifier must be followed.

To establish the Java identifier that matches an existing RDL identifier, each

character of the RDL identifier is checked in sequence to see if that character can

be a Java identifier character at that position. If so, that character is directly

copied. Otherwise, that character is replaced with the string Uxxxx, where xxxx

represents the Unicode value of that character in the format of 4 hex digits. For

example, the “?” character will be replaced by “U003f”.

To follow Java class naming conventions, the first letter of the mapped identifier

may be capitalized as needed and that results in the unqualified name of the Java

wrapper class or interface. For a list of rulebase classes, see The App Interface

document.

For example, the Java class, testclients.myrulebase.Person or

testclients.myrulebase.person, may be the Java wrapper class for the RDL class

person. For RDL class Trial#5, the unqualified Java class name should be

TrialU00235.

Public No-Argument Constructor

The Java class should have a public no-argument constructor.

Example

public class RulebaseClass implements Serializable {

 // Property declarations

 // The constructor method

 public RulebaseClass()

 {

 // Any object initiation code (optional)

 }

 // Other methods

}

Note: If no constructor is specified for a class, Java will provide a default

constructor that fulfils the function of the public no-argument constructor.

However, if any other constructor is specified for the class, it is necessary to

explicitly state the no-argument constructor.

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 29

For more information

RDL Field Data Types and Java Property Types (see page 31)

Property Accessors

Correspondence between a property field of a Java wrapper class and a RDL field

of corresponding class is also established through name matching. The name of

a Java property field can be created from the corresponding RDL field name

similar to that of class names. The only difference is that to follow Java field

naming convention, the first letter of the mapped Java identifier may be

converted to lowercase as needed. In addition, since the Java field name is

obtained through bean introspection, supplemental BeanInfo class may be used

as an alternative.

For name matching to succeed, classes must support bean introspection. Beans

support introspection in the following ways:

■ By adhering to Bean specific rules, known as design patterns, when naming

Bean Property getter and setter method names. Every property must have

public get / set methods named following these design patterns. Consider

the following pair of methods:

public PropertyType getPropertyName();

public void setPropertyName(PropertyType v);

If either of these is detected, the bean class exposes the property called

propertyName of PropertyType, following the standard property naming

convention. Both get and set methods must be defined for the property to be

used with CA Rule Engine so that data can be transferred between the Java

application side and the inference engine side.

Note: Since RDL collection is set based, even though the type of the field is

array, there is no need to provide separate elemental getter and setter

methods required for an indexed property of a Java Bean class.

Construction of Java Client Applications

30 Rule Engine: JSR-94 Implementation Guide

■ By explicitly providing property, method, and event information with a

related Bean Information class. A Bean information class implements the

BeanInfo interface. A Bean Information class explicitly lists those Bean

features that are to be exposed to introspection. For example, the following

BeanInfo classes expose the properties job and owns of the person class to

introspection:

public class personBeanInfo extends SimpleBeanInfo {

 public PropertyDescriptor[] getPropertyDescriptors() {

 try {

 PropertyDescriptor desc1 = new PropertyDescriptor("job", person.class);

 PropertyDescriptor desc2 =

 new PropertyDescriptor("owns", person.class);

 PropertyDescriptor[] modifiedProperties = {desc1,desc2};

 return modifiedProperties;

 }

 catch(IntrospectionException error) {

 return new PropertyDescriptor[0];

 }

 }

}

Note: RDL permits the use of special symbols in field names that are not

permissible in Java property names; for example, #sick_days_per_year is a

valid field name in RDL. In this case, instead of naming the Java field

u0023sick_days_per_year, a BeanInfo class may be used to map a Java

property, sick_days_per_year, to the rulebase field. The following

PropertyDescriptor provides the necessary mapping:

PropertyDescriptor descn = new PropertyDescriptor("#sick_days_per_year",

 person.class, "getSick_days_per_year", "setSick_days_per_year");

In addition to naming requirements described above, the Java property field

should also meet the following requirements to allow data to be transferred

properly between the client application and CA Rule Engine:

Read and Write methods

The property should have both read and write methods

Data type compatible

The Java class for the property should be compatible with the rulebase

data type.

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 31

RDL Field Data Types and Java Property Types

The following list shows the RDL field data types with their Java property types.

The first Java data type is preferred (when more than one type is acceptable):

number (atomic):

BigDecimal, BigInteger, Double, Float, Integer, Long; int, long, double, float

(See note 1 below)

string (atomic):

String, StringBuffer

boolean (atomic):

Boolean, boolean (See note 1 below)

datetime (atomic):

String, StringBuffer

duration (atomic):

String, StringBuffer

inst_ref (atomic):

Java Class of same name (for example, Java class with unqualified name

Customer matches an instance reference field of RDL class Customer). (See

note 2 below)

set (collection):

Arrays of compatible data types, for example: BigDecimal [] for set of

numbers; Person[] for set of instance reference fields. (See note 3 below)

Construction of Java Client Applications

32 Rule Engine: JSR-94 Implementation Guide

Note:

1. Use of primitive types is not recommended in general. The use of boxed

object types (for example, Integer or Float instead of integer and float)

allows the user to specify Java null which indicates a field to be unknown to

CA Rule Engine. If a primitive type is used, CA Rule Engine cannot accept or

indicate any such fields to be unknown. Warnings are logged to the user in

situations in which CA Rule Engine cannot update an object with unknown

values. For more information, see Specify Unknown Rulebase Fields. In

addition, it is not possible to use initialization callback on a field if a primitive

type is used since the field will never be unknown. For more information, see

Initialization Callback Methods.

2. For atomic instance reference fields, an object with null instance name

stands for the special value of RDL NULL, i.e. asserting absence of a

reference. For example, if a field of a class Person is spouse, and an instance

of a Person is known to be single, a Person object with null instance name

can be set as the value of the spouse field of that Person instance to indicate

that that Person has no spouse. For more information, see Specify Instance

Reference Fields.

3. Please note that rulebase sets contain unique elements - whereas Java

arrays don't enforce uniqueness - so a resulting rulebase set may end up

containing fewer elements than does the Java array.

For definitions of the data types provided by RDL, see the Rule Definition

Language specification.

Instance Naming

Every Java object corresponding to a rulebase class instance is required to have

the instanceName property to indicate an instance name for the object. The

purpose of the instance name property is to establish correspondence between a

Java object and its same named rulebase instance. The instance names must be

unique for all Java objects corresponding to the instances of the same RDL class.

This property should be compatible with a rulebase string field and have both get

and set methods. For any object to be explicitly passed to the inference engine,

the instance name cannot be null or empty. An object with null instance name

can only be used as value for an instance reference field to indicate that instance

reference field has the value of RDL NULL, i.e. asserting absence of a reference.

Note: In compliance with the Property Accessors requirement, accessor

methods must be provided for the instanceName property or the property must

be listed in a BeanInfo class.

For any static instance inside a rulebase to be accessible by Java, there must

exist a Java instance of corresponding class with its instance name property

exactly matching the name of that static rulebase instance. To obtain the names

of rulebase static instances, see The App Interface document. CA Rule Engine

automatically synchronizes any dynamically created instances between the Java

side and the rulebase side.

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 33

Using the WrapperMaker Tool

The WrapperMaker tool facilitates the generation of Java classes that wrap the

rule engine classes for an existing rulebase. The WrapperMaker tool takes either

a rulebase file (RDL or binary) or a rulebase App Interface document file (see

Rulebase Structures) and perform the following tasks:

■ For any class defined at the rulebase level, the tool generates a

corresponding Java class that wraps the rulebase class. The generated

classes satisfy all requirements specified in Rules for Constructing Java

Classes. In addition, each generated class also provides a second

constructor that takes instance name as an argument, and methods

equals(), hashcode(), and toString().

■ The tool generates a template session Java class that declares all static

instances defined at the rulebase level as private static members of the

session class. The template session Java class also defines the

getRuleServiceProvider() function (which wraps CA Rule Engine specific

initializations for JSR-94) to facilitate the obtaining of the

RuleServiceProvider.

The user can add rule session logic to the template session Java class to perform

inference tasks.

For ease of invocation of the WrapperMaker tool, the wrappermaker batch or

script files have been supplied in the /bin folder in the CA Rule Engine

distribution. The syntax for invoking the tool is:

wrappermaker rulebase/APIfile [JavaPackageName [rootOutputFolder]]

where the user can also optionally specify the Java package name for the

generated Java class files and the root folder to which the hierarchy of classes

will be written. If a rulebase file is supplied as the first parameter, an App

Interface document file will also be generated. When optional parameters are

not supplied, the generated Java classes will be in the default package and files

will be written to the same folder where the rulebase file or App Interface

document file resides.

The WrapperMaker tool script also supports drag and drop operation if drag and

drop is supported by the OS GUI. When a rulebase file or an App Interface

document file is dropped onto the WrapperMaker tool script icon, it is equivalent

to invoke the script with the name of that file as the first parameter. Since a Java

IDE such as Eclipse can automatically adjust package names when a new Java

source file is added to a project, drag and drop operation may be the simplest

method for invoking the WrapperMaker tool.

For more information

Acquire the RuleExecutionSet and RuleSession (see page 35)

Construction of Java Client Applications

34 Rule Engine: JSR-94 Implementation Guide

Adding Callback Methods

The CA Rule Engine inference engine supports callbacks. A callback is a

user-defined method that is invoked by CA Rule Engine upon occurrence of

certain events. A callback is specific for a particular RDL class and field and must

be defined in the corresponding Java wrapper class or interface. Callback

methods are optional. Currently, CA Rule Engine supports two types of callbacks,

initialization callback and change callback. This section mentions only the syntax

of the callback methods. For a more detailed description and effective use of

callbacks, see Using Callbacks.

CA Rule Engine invokes the initialization callback method when it needs to access

the value of a field in processing a rule. The initialization callback method is also

called the onInit method. The exact name of the method depends on the name of

the field. For example, for a field named xYZ, the signature of the “onInit”

method should be defined as the following:

public void onInitXYZ()

CA Rule Engine invokes the change callback when it needs to modify the value of

a field or to create or delete a dynamic instance. Depending on whether the field

is a collection, or whether the operation is on the instance, the following five

types of change callback methods may be defined. All change callback methods

are optional.

To react to a change to the value of a field, client needs to define the “onChange”

method. For example, for a field named xYZ, the signature of the “onChange”

method should be defined as the following:

public boolean onChangeXYZ(fieldType fieldValue)

where fieldType is the actual data type of the field xYZ and fieldValue is the new

value. The method should return true if it chooses to update the field to the

specified value and false otherwise.

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 35

When the field is a collection field and the change is to add or remove elements

of that collection rather than setting a whole new collection to the field, the

following two callback methods will be invoked instead of the “onChange”

method:

public boolean onAddElementXYZ(fieldType fieldValue, int index)

public boolean onDeleteElementXYZ(fieldType fieldValue, int index)

The index value gives the position of the changed element. Since these two

methods tend to be more efficient in carrying out modification of the collection

field, it is recommended to implement them for a collection field even if no other

actions are needed. The WrapperMaker tool automatically generates them for

collection fields.

To react to dynamic instance creation and deletion by CA Rule Engine in carrying

out rule actions, the client needs to provide the following methods:

public static void onCreateInstance(instanceClass instanceObj)

public static void onDeleteInstance(instanceClass instanceObj)

where instanceClass is the name of the class enclosing the methods and

instanceObj is the changed instance object.

Acquire the RuleExecutionSet and RuleSession

Once the Java classes that wrap the corresponding rulebase classes are properly

defined (see Rules for Constructing Java Classes), the main application class

needs to be constructed. This class provides methods for acquiring the rule

execution sets and establishing a rule session that uses those classes that wrap

the rulebase classes. The WrapperMaker tool generated template session class

can be used as the starting point for the main application class.

Construction of Java Client Applications

36 Rule Engine: JSR-94 Implementation Guide

An overview of the required elements in the construction of the main application

class includes the following:

■ The JSR-94 related packages that must be imported into the client

application. For more information, see JSR-94 Packages.

■ The first step in any client application is to obtain the RuleServiceProvider.

The RuleServiceProvider is the entrance to all other services provided by a

JSR-94 implementation. For more information, see Acquire the

RuleServiceProvider.

■ For all systems, it is necessary to obtain and register a RuleExecutionSet.

However, some solution architectures may obtain and register the

RuleExecutionSet outside of the application that performs inferencing. For

more information, see Acquire and Register the RuleExecutionSet.

■ Finally, the application must establish a rule session, which provides an

executeRules() method for calling the inference engine with a

RuleExecutionSet. For more information, see Establish a Rule Session.

JSR94 Packages

The classes and interfaces defined by the JSR-94 specification are contained in

the following packages that correspond to the types of services specified in the

JSR-94 specification:

■ javax.rules provides the RuleServiceProvider, RuleRuntime, and

RuleSession types

■ javax.rules.admin provides RuleAdministrator and

RuleExecutionSetProviders

These packages must be implemented by the vendor. It is necessary to import

the javax.rules.* and javax.rules.admin.* namespaces to client applications. For

more information, see JSR-94 Services Overview.

In addition, the Java programmer may want to include any specific vendor

extensions that will be used in the client application. CA Rule Engine provides the

following additional interfaces as extensions to the JSR-94 specification:

■ com.ca.cleverpath.aion.jsr94.AionRulesEngineProperties provides constants

for referring to CA's extended rule execution set and rule properties.

■ com.ca.cleverpath.aion.jsr94.CARuleExecutionSetMetadata provides

methods for accessing CA's extended rule execution set metadata from

within a rule session
.

More information

Access CA Technologies's Extended RuleExecutionSet and Rule Properties (see

page 56)

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 37

Basic Program Structure and Solution Architectures Flow Diagram

All JSR-94 client applications follow a similar basic flow. The following chart

explains how a Java client application works with the JSR-94 interface.

How these steps are distributed in the client application is a matter of

architectural design. In one common solution architecture, all the preceding

steps may be implemented in a single Java application. In another solution

architecture, the steps through registering the RuleExecutionSet using the

RuleAdministrator may be performed in one client program, such as an admin

application, while querying RuleExecutionSets for property information and

inferencing with those RuleExecutionSets may be performed in a different client

application, i.e. the business application.

Construction of Java Client Applications

38 Rule Engine: JSR-94 Implementation Guide

For more information about the steps in the flow chart, see Acquire the

RuleServiceProvider (step 1), Acquire and Register the RuleExecutionSet (steps

2 - 5), Establish a Rule Session (step 6), and Addition and Retrieval of Inference

Objects (step 7). For more information about querying RuleExecutionSets and

Rules, see Query RuleExecutionSets and Rules.

For a detailed example of an actual client application, see Client Application

Class.

Note: Implementing some steps requires knowledge of the pure JSR-94 API

while other steps require specific knowledge of CA Rule Engine. Knowledge of

how to interface with the rulebase is also required. For more information on

obtaining information about the interface of the rulebase, see Rulebase

Structures.

Acquire the RuleServiceProvider

JSR-94 implementations provide a generally applicable

RuleServiceProviderManager, which provides the means of acquiring the

RuleServiceProvider. The RuleServiceProvider is the class that provides the

functionality appropriate to the vendor's own JSR-94 implementation. For

example, the RuleServiceProvider must provide vendor-specific

implementations for the RuleAdministrator and RuleRuntime interfaces. This

implementation must also register itself against a URI with the

RuleServiceProviderManager.

Each vendor implementing the JSR-94 specification must provide a unique

implementation of the RuleServiceProvider. CA Technologies's implementation

of the RuleServiceProvider is named:

com.ca.cleverpath.aion.jsr94.RuleServiceProviderImpl

Acquiring CA Technologies's RuleServiceProvider is accomplished with the

following steps:

■ The application provides a private static String variable named

RULE_SERVICE_PROVIDER, whose value is the URI of CA's rule service

provider class. The URI of the CA Technologies's rule service is:

com.ca.cleverpath.aion.jsr94

■ To ensure uniqueness of the registration URI with the

RuleServiceProviderManager, a unique name is used within the Java

package namespace of the vendor's JSR-94 implementation. To load CA

Technologies's RuleServiceProviderImpl and to register it with the

RuleServiceProviderManager, use the Class.forName() method:

Class.forName(“com.ca.cleverpath.aion.jsr94.RuleServiceProviderImpl”);

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 39

■ The RuleServiceProviderManager provides a public method to get an

instance of a RuleServiceProvider:

RuleServiceProvider getRuleServiceProvider(String uri);

Invoke this method using the RULE_SERVICE_PROVIDER variable:

RuleServiceProvider svcProvider =

 RuleServiceProviderManager.getRuleServiceProvider(RULE_SERVICE_PROVIDER);

The template session class generated by the WrapperMaker tool, see Using the

WrapperMaker Tool, supplies a getRuleServiceProvider() function that

implements the above steps.

Acquire and Register the RuleExecutionSet

After a RuleServiceProvider instance is acquired (for more information, see

Acquire the RuleServiceProvider), it is necessary to retrieve an instance of the

RuleAdministrator:

RuleAdministrator ruleAdmin = svcProvider.getRuleAdministrator();

The RuleAdministrator provides the following public methods:

RuleExecutionSetProvider getRuleExecutionSetProvider(Map propertiesMap);

LocalRuleExecutionSetProvider getLocalRuleExecutionSetProvider(

 Map propertiesMap);

void registerRuleExecutionSet(String bindUri, RuleExecutionSet ruleSet,

 Map propertiesMap);

void deregisterRuleExecutionSet(String bindUri, Map propertiesMap);

The next step for the application is to get an instance of the

RuleExecutionSetProvider or the LocalRuleExecutionSetProvider:

■ The RuleExecutionSetProvider defines methods to create a RuleExecutionSet

from a number of Serializable sources. Note that this Provider has methods

to create RuleExecutionSets from sources referenced through a URI, a

binary rulebase object, and an Element object that is the generated by an

XML parser parsing through an RDL rulebase. The URI can either point to a

RDL rulebase, or a binary rulebase file such as one obtained using the

getBinaryRuleBase() method of CA's implementation class

com.ca.cleverpath.aion.jsr94.admin.RuleExecutionSetImpl, which

implements the RuleExecutionSet interface in JSR-94.

■ The LocalRuleExecutionSetProvider defines methods to create a

RuleExecutionSet from local resources, such as InputStreams, binary

rulebase objects or character-based Readers. The Local Provider is easier to

use when creating the RuleExecutionSet from an XML rulebase file in RDL

format. The Local Provider requires that the rule engine be in the same JVM

as the caller.

Construction of Java Client Applications

40 Rule Engine: JSR-94 Implementation Guide

Example

For example, the following code fragment obtains an instance of the

LocalRuleExecutionSetProvider:

LocalRuleExecutionSetProvider ruleSetProvider =

 ruleAdmin.getLocalRuleExecutionSetProvider(null);

The client application must instantiate the appropriate rule execution set

provider and then use the appropriate createRuleExecutionSet() method of the

rule execution set provider to obtain an instance of the RuleExecutionSet.

For more information on the createRuleExecutionSet() method and its allowable

parameters, see documentation on the RuleExecutionSetProviderImpl and

LocalRuleExecutionSetProviderImpl classes in the Javadoc. CA Rule Engine

supports all input parameters of the createRuleExecutionSet() method. For

example, the following code fragment creates a rule execution set from a

rulebase file named “rulebase.xml” without any vendor-specific properties:

InputStream inStream = getResourceAsStream(“rulebase.xml”);

RuleExecutionSet ruleSet = ruleSetProvider.createRuleExecutionSet(

 inStream, null);

Note: In some cases, it may be necessary to create the appropriate input to the

createRuleExecutionSet(). For the sample code above, it is necessary to create

an InputStream from a rulebase file since LocalRuleExecutionSetProvider has

been used.

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 41

To perform inferencing with the RuleExecutionSet instance, register the

RuleExecutionSet through the RuleAdministrator. Specify the URI for the

execution set and invoke the registerRuleExecutionSet() method:

ruleAdmin.registerRuleExecutionSet(ruleset_uri, ruleSet, null);

where ruleset_uri specifies the desired URI for the RuleExecutionSet, e.g.

rulebases://shoppingcart for a rulebase named shoppingcart.

In a solution architecture where the administrative operations are performed in

one program and inferencing is performed in another program, the

administrative program must obtain an instance of the RuleRuntime from the

RuleServiceProvider and serialize it to a binary file:

RuleRuntime runtime = svcProvider.getRuleRuntime();

Use the following method to serialize the RuleRuntime into a binary file:

ObjectOutputStream serRuleRuntime = new ObjectOutputStream(

 new FileOutputStream("runtime.out"));

serRuleRuntime.writeObject(runtime);

where runtime references the RuleRuntime instance obtained from the

RuleServiceProvider.

For more information on obtaining the RuleRuntime, see Establish a Rule

Session.

Establish a Rule Session

To conduct inferencing through the JSR-94 API, a rule session needs to be

established, that is, an instance of either a stateless or stateful RuleSession

needs to be obtained. To accomplish this, obtain an instance of the RuleRuntime

first.

You can obtain a RuleRuntime instance in one of the following ways, depending

upon the solution architecture of the client application:

■ If the client application has created and registered its own RuleExecutionSet,

then the RuleRuntime can be obtained directly from the RuleServiceProvider.

RuleRuntime runtime = svcProvider.getRuleRuntime();

■ If the client application needs to use a RuleExecutionSet that was created

and registered in another program, obtain the RuleRuntime instance by

deserializing the serialized binary file of the RuleRuntime that was created in

that other program.

ObjectInputStream in;

in = new ObjectInputStream(new FileInputStream("runtime.out"));

RuleRuntime runtime = (RuleRuntime) in.readObject();

Construction of Java Client Applications

42 Rule Engine: JSR-94 Implementation Guide

For more information on serializing the RuleRuntime, see Acquire and Register

the RuleExecutionSet.

RuleRuntime serves the following purposes:

■ It provides the createRuleSession() method for obtaining a RuleSession

instance.

■ It provides the constants STATEFUL_SESSION_TYPE and

STATELESS_SESSION_TYPE that allows the client application to specify the

type of inferencing session it wishes to establish.

■ It enables the programmer to retrieve the list of RuleExecutionSet URIs that

are registered with the RuleAdministrator through the getRegistrations()

method. This capability is important if the solution architecture involved in

deserializing the RuleRuntime is on a different client application than the

application that registered the RuleExecutionSet.

The createRuleSession() method requires the following parameters:

■ The URI of the RuleExecutionSet that is to be used by the inference engine.

This URI may be directly available in the client application from the

registration of the RuleExecutionSet with the RuleAdministrator or obtained

through the getRegistrations() method of the RuleRuntime instance.

■ A property map. Under CA Rule Engine, the property map is used to specify

the name of the RDL domain that is used with the client application when the

rulebase contains more than one domain that is shared, and to specify the

generation of the optional Inferencing Summary document. For more

information, see Specify a Shared Domain and Obtain Rulebase Documents

respectively.

■ A specification of the rule session type. The method invocation should

specify either STATEFUL_SESSION_TYPE or STATELESS_SESSION_TYPE as

a parameter. This parameter determines how the client application interacts

with the inference engine, and in particular, how application objects are

passed to and retrieved from the inference engine. For more information,

see Addition and Retrieval of Inference Engine Objects.

A typical creation of a (stateful) rule session can be:

StatefulRuleSession session = (StatefulRuleSession)runtime.createRuleSession(

 rulesetUri, null, RuleRuntime.STATEFUL_SESSION_TYPE);

Note: The need to cast the instance returned by the createRuleSession()

method. The method returns a RuleSession, but the session instance needs to be

of a specific kind of session to allow the client application access to the

appropriate methods to interact with the inference engine.

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 43

Specify a Shared Domain

An RDL rulebase domain that is shared with a client application is called an

appshared domain; an RDL rulebase may contain many appshared domains. For

more information on appshared domains, see Rulebase Definition Language

Fundamentals.

A Java client application should interact with only one appshared rulebase

domain during an invocation of the executeRules() method. When a rulebase

shares more than one domain with client applications, the Java client application

must specify the domain for interaction.

The Java client application must identify the interaction domain to the inference

engine. The JSR-94 specification provides a convenient means for client

application to do this when the rule session is being instantiated. The second

parameter of createRuleSession() method, the propertiesMap parameter, can be

used to specify the name of the appshared domain to be used by the client

application.

To pass the properties map specifying the desired appshared domain to the rule

session, create a Java Hashtable and add the

AionRuleEngineProperties.RULE_INFERENCING_DOMAIN_NAME property to the

table mapped to the name of the target appshared domain name.

Example

Hashtable sessionProps = new Hashtable();

sessionProps.put(AionRulesEngineProperties.RULEBASE_INFERENCING_DOMAIN_NAME,

 "domain-name");

StatefulRuleSession session = (StatefulRuleSession)runtime.createRuleSession(

 rulesetUri, sessionProps, RuleRuntime.STATEFUL_SESSION_TYPE);

For a stateful rule session, it is possible to select a different domain for each

invocation of the executeRules() method. This can be achieved through

combined use of the property

AionRulesEngineProperties.RULEBASE_AUTO_PUSH_POP_DOMAIN with the

value Boolean.TRUE and the setInferencingDomainName() method of

CARuleExecutionSetMetadata (see Reset Rules and Switch Domains).

For more information regarding other AionRulesEngineProperties and how they

can be accessed, see Access CA Technologies's Extended RuleExecutionSet and

Rule Properties.

Note: Classes in the Java client application, which correspond to the rulebase

level classes that are used by the interacting appshared domain, must properly

wrap those rulebase level classes. For more information, see Rules for

Constructing Java Classes. Noncompliance of those Java classes with these rules

results in failure to establish the rule session or failure to add objects to the

inference engine.

Construction of Java Client Applications

44 Rule Engine: JSR-94 Implementation Guide

Add and Retrieve Inference Engine Objects

Because the inference engine, under JSR-94, is external to the Java client

application, it is necessary to add instances from the client side to the inference

engine side and to retrieve the results of inferencing back to the client

application. How Java instances are added to and retrieved from the inferencing

side depends upon whether the client application has established a stateful or a

stateless RuleSession. For more information on establishing RuleSessions, see

Establish a Rule Session.

Stateless Versus Stateful Rule Sessions

Both the StatelessRuleSession and StatefulRuleSession instances provide an

executeRules() method for invoking the RuleExecutionSet with which those

instances were created. The signatures of this method are radically different for

each of these rule session types.

A stateless rule session means that the inference engine does not maintain state.

That is, the whole inferencing process is completed from a single, synchronous

invocation from the client application. The client application cannot go back to

the same inferencing process after the single invocation is completed. When a

stateless rule session is established, Java client instances are added to and

results are retrieved from the inference engine in a single executeRules() call.

The executeRules() method provided by the StatelessRuleSession object takes a

list of object (references) as an input argument and returns a list of (references

to) objects that provide the results of the inferencing session. Once an object

reference is passed to the inference engine, it is impossible to modify that

reference within the stateless rule session.

Note: The StatelessRuleSession also provides an overloaded version of its

executeRules() method for also passing filter objects to the inference engine for

filtering the returned results. For more information on filters, see Object Filters.

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 45

For information on the StatelessRuleSession.executeRules() methods, see the

StatelessRuleSessionImpl class in the Javadoc.

A stateful inferencing session allows the client application to have multiple

interactions with the inference engine during the rule session. The inference

engine maintains state through these interactions. Objects can be added to and

removed from the inference engine in separate methods, and these methods are

independent of and can be interspersed with the

StatefulRuleSession.executeRules() method. The StatefulRuleSession offers a

number of methods to add objects, either singly or by means of a list, and to

update, retrieve, and remove objects. The executeRules() method within a

stateful rule session takes no arguments and returns void.

Important: The StatefulRuleSession is not intended to be used to execute

certain rules repeatedly for different combinations of precondition values, such

as applying the same rules for 100 individual cases. Such operations may not

yield expected results due to side effects from previous executions and behaviors

will be specific to each vendor implementation. The Java application should

instead repeatedly use StatelessRuleSession with each combination of

preconditions instead. The StatefulRuleSession is best used in situations where a

variable number of preconditions may be needed to resolve a problem depending

on the values of the supplied preconditions, and it is desirable to supply certain

preconditions only when it is necessary. For a use case illustrating this kind of

usage of the StatefulRuleSession, see Reimbursement Example.

If it is desired to have the stateful session to resolve to the same final results

compared with those from a stateless session given the exact same

preconditions just all at once, the kinds of interactions allowed during a stateful

session should be limited to those operations implicitly performed on behalf of

the stateless session. In general, it is always safe to add new objects or to

update a previously unknown field with a value during the stateful rule session,

while removing an object or changing the value of a known field without

resetting the session should be avoided. For more information, see the guide on

engine behavior.

It is possible to reset the state of the inference engine during a stateful rule

session using the reset() method. For more information on the methods of the

StatefulRuleSession, see the StatefulRuleSessionImpl class in the Javadoc.

Note: The object-add methods return Handles to the objects added to the

inference engine. These handles are used to interact with those objects during

the stateful rule session. For more information on Handles, see the HandleImpl

class in the Javadoc.

A rule session should always be released after all interaction with the inference

engine has been concluded:

session.release();

Construction of Java Client Applications

46 Rule Engine: JSR-94 Implementation Guide

Adding and Creating Objects During Rule Sessions

The following principles affect the interaction of objects across the Java client

and inference engine during a rule session when objects are either added to the

inference engine or created by the inference engine:

■ When an object is added that holds references to other objects as property

values corresponding to rulebase inst_ref fields, the referenced objects are

also added implicitly to the rule session. These implicitly added objects are

verified against the corresponding rulebase classes. For more information,

see Rules for Constructing Java Classes.

■ An object added to a rule session is merely made available for use by the

engine. Engine will only interact with an added object when any rule premise

needs to get the value of a field of that object or any rule action needs to

update the value of a field of that object. However, if an object is updated or

removed, engine is notified of the change.

■ CA Rule Engine may need to create new instances of Java objects

corresponding to rulebase instances created as a result of inferencing. CA

Rule Engine can create these objects only if the Java Class corresponding to

the rulebase instance's class has been verified and known to it.

■ Additionally, CA Rule Engine only creates or updates Java objects

corresponding to rulebase instances when rule actions require such changes.

In particular, if a post-condition field has been set previously, CA Rule Engine

will not reset it to unknown. It is client's responsibility to make sure all

post-condition fields are set to unknown (Java null value) prior to inference.

Difference between Objects for Static and Dynamic Instances

RDL makes a distinction between static and dynamic instances. Static instances

are declared in the definition of RDL class. Dynamic instances are created by the

engine based on rule actions or is created by the client if the RDL class is declared

to be application creatable.

For the same RDL class, even though objects of the same Java wrapper class are

used for both static and dynamic instances, client should note the following

subtle differences between them so as to avoid potential problems:

■ A static instance is always known to the engine. In principle, it is only

necessary to add an object corresponding to a static instance if it contains

pre and or post condition fields. For example, if the RDL class is intended for

an enumeration type and static instances defined in that class represents

values of the enumeration, it is only necessary to create objects for values

which are actually referred by other objects, and to add them to the session

prior to inference. CA Rule Engine will create additional objects for the

remaining values when needed. However, it is always correct to add all

objects for static instances to a rule session prior to inference.

Construction of Java Client Applications

Chapter 2: Using the CA Rule Engine 47

■ An object for a static instance should never be removed from a stateful rule

session. This is again due to the fact that static instances are always known

to the engine which makes it meaningless to remove such an object.

■ The CA Rule Engine can create objects for dynamic instances of any defined

RDL class. Client can only create objects for dynamic instances of RDL

classes which have been declared application creatable.

■ Any client created objects for dynamic instances must be added to the

session for CA Rule Engine to be aware of their existence. However, such

objects can be created or added prior to inference and during initialization

callback.

■ Client created objects for dynamic instances can be removed from a stateful

rule session.

Object Filters

Object filters are Java objects (instances) that provide a method by which a

JSR-94 implementation can return a subset of its objects to the client. These

instances are passed to a JSR-94 implementation, where they are used to filter

objects returned to the Java side. The JSR-94 specification stipulates several

techniques for using object filters:

■ The StatefulRuleSession.getObjects() and

StatelessRuleSession.executeRules() methods are offered with overloaded

forms that take an object filter.

For example, if the Java client application wants to retrieve only Customer

objects after executing rules, the filter instance that is passed to the

getObjects() or the executeRules() method should check the class of an

object to accept or reject it.

■ The RuleExecutionSet class provides the setDefaultObjectFilter() method to

set a default filter class name for a RuleExecutionSet instance. That default

filter class is used whenever the rule execution set is used in a session, that

is, if a rule execution set has a default object filter, then calling getObjects()

without specifying object filter will cause filtering to occur with the default

filter. For more information on the setDefaultObjectFilter(), see the

RuleExecutionSetImpl class in Javadoc.

Construction of Java Client Applications

48 Rule Engine: JSR-94 Implementation Guide

Filter classes must implement the ObjectFilter interface, which is provided by the

javax.rules package. This interface stipulates the following public methods:

Object filter(Object obj);

void reset();

ObjectFilter class implementations require the following.

■ A public constructor

■ The main filter() method that performs the filtering

The obj parameter is the object to be filtered. The return parameter is the

result of the filtering or the null value.

■ The reset() method to allow the filter to be reset to an initial state

This method needs to be implemented for stateful filters.

Example

For example, the following ObjectFilter implementation (taken from the JSR-94

Specification document), filters objects based on Class.

public class ClassFilter implements ObjectFilter

{

 private Class filterClass;

 public ClassFilter(Class clazz)

 {

 filterClass = clazz;

 }

 public Object filter(Object obj)

 {

 if (filterClass.isAssignableFrom(obj.getClass()))

 {

 return obj;

 }

 return null;

 }

 public void reset()

 {

 }

}

This example may not be suitable for an environment where multiple

ClassLoaders are present.

For more examples of ObjectFilters, see Filtering the Returned Rulebase Objects.

Processing Considerations

Chapter 2: Using the CA Rule Engine 49

Processing Considerations

This section explains various special processing considerations that are relevant

to programming the Java client application.

Specify Unknown Rulebase Fields

A Java null value for a Java property to CA Rule Engine specifies that the

corresponding rulebase field is unknown for all types of rulebase fields. For

example, assuming a Java class Person, which contains the field spouse, has

been constructed properly, the following specifies to CA Rule Engine that

Audery's spouse is unknown.

Person p = new Person("Audery");

p.setSpouse(null);

However, Java null value cannot be assigned to a Java primitive type variable,

such as an int type variable. Thus it is impossible to specify that a rulebase field

corresponding to a Java property of a primitive type is unknown to CA Rule

Engine on input, nor can CA Rule Engine on output indicate that the value for that

field is still unknown. Therefore, use of primitive type should be avoided if

possible.

Specify Instance Reference Fields

Instance reference fields in CA Rule Engine are used to refer to another rulebase

objects of the same class or of different classes. Since a Java property of a class

type is also a reference to an object of that class, that Java property can be used

directly to indicate instance reference relationship to CA Rule Engine. For

example, using the Person class mentioned above again, the spouse field

apparently is a reference to another object of the Person class. Thus the Person

class may be defined as the following:

Processing Considerations

50 Rule Engine: JSR-94 Implementation Guide

public class Person implements Serializable {

 private String instanceName = null;

 private Person spouse = null;

 // Other Property declarations

 // The constructor method

 public Person()

 {

 // Optional object initiation code

 }

 public Person(String name)

 {

 this.instanceName = name;

 // Optional object initiation code

 }

 public String getInstanceName() {

 return this.instanceName;

 }

 public void setInstanceName(String instanceName) {

 this.instanceName = instanceName;

 }

 public Person getSpouse() {

 return this.spouse;

 }

 public void setSpouse(Person spouse) {

 this.spouse = spouse;

 }

 // Other methods

}

And the following indicates to CA Rule Engine that Fred and Mary are spouses:

Person pFred = new Person("Fred");

Person pMary = new Person("Mary");

pFred.setSpouse(pMary);

pMary.setSpouse(pFred);

However, if it is known that Max is single, a special value must be reserved to

specify to CA Rule Engine that Max does not have a spouse. That special value

corresponds to the RDL NULL value. Now that the Java null value has been used

to specify unknown already, the special instance with null instance name is used

for this purpose. So the following should be used for Max:

Person pMax = new Person("Max");

Person pRDLNull = new Person(); // instanceName is null by default

pMax.setSpouse(pRDLNull);

Processing Considerations

Chapter 2: Using the CA Rule Engine 51

Specify Array Property Values

Arrays are used to represent rulebase fields that are defined as sets. In this case:

■ A null value of the array indicates unknown value. For example, Integer[]

intArray = null defines an array that is unknown.

■ Arrays of zero length indicate an empty set, which is a known value. For

example, intArray = new Integer[] { } indicates that there are no current

integers members in the array intArray.

■ Arrays of length greater than zero are translated into corresponding rulebase

sets with the corresponding instance members, but taking into account

element uniqueness.

Any null value used as a member value in an array that corresponds to a

rulebase set is ignored and a WARN message generated. Such usage is not

meaningful to rulebase and thus should be avoided. For example, intArray[0] =

null, where intArray is an array of Integers, yields an empty set (the null value is

ignored) of numbers, if there is only one element in that array. If valid, unique

and non-null members are also present in that array, that array defines a set of

just those values to the inference engine. The reason to ignore any array

element that is null is to satisfy the requirement that all objects in CA Rule

Engine must be named and thus can never be unknown. Only fields of an object

may be unknown. Therefore, it is impossible to have a rulebase set of objects

that contain unknown objects.

Specify Datetime String Values

CA Rule Engine accepts and returns datetime string values in the World Wide

Web Consortium (W3C) schema format. For more information on datetime

handling and the W3C schema format, refer to the RDL specification.

For datetime values, the datetime string may specify:

■ Only a date value (for example, "2000-01-23")

■ Only a time value (for example, "15:34:23" or "10:43")

Both a date and time value (for example, "2000-01-23T15:34:23")

Any form of the datetime string may optionally specify a “Z” suffix (for example,

"2000-01-23T15:34:23Z") indicating a GMT value. The absence of this suffix

indicates a local-time value.

Processing Considerations

52 Rule Engine: JSR-94 Implementation Guide

Specify Duration String Values

CA Rule Engine accepts and returns duration string values in the World Wide Web

Consortium (W3C) schema format. For duration, W3C schema format is

extended to allow specification of an optional start datetime for precise duration

handing. For more information on duration handling and the W3C schema

format, refer to the RDL specification. The start date time extension for duration

constants allows a datetime value, which must include a date portion, to be

appended to a W3C duration value with “;” as delimiter between them to indicate

that the duration value starts at the specified datetime.

For duration values, both positive and negative values are allowed, the duration

string may specify:

■ Only date constituent values (for example, “P3Y” and “-P1M2D”)

■ Only time constituent values (for example, “PT23M”)

■ Both date and time constituent values (for example,

"P12Y9M15DT10H11M23S")

■ Any of above with start date time (for example, “P3Y;2001-04-01”, i.e. a

duration of 3 years starting from April 1, 2001, and “-P3Y;2001-04-01”, i.e.

a duration of 3 years going backwards from April 1, 2001)

Reset Rules and Switch Domains

There are cases where it may be desirable for a stateful rule session to simply

reset the rules while retaining the input data, such as in the case of carrying out

experiments where most of the parameters are held constant and only one or

few are modified at a time. Resetting the session also erases all input data, which

means that all objects have to be added again even though most of them have

not changed. It is more efficient to update the changed objects and reset the

rules only. Resetting rules in the inference engine of CA Rule Engine is carried

out through popping the domain and pushing it back in again. The JSR-94 API

doesn’t define a method that resets the rules, but user can use the property

AionRulesEngineProperties.RULEBASE_AUTO_PUSH_POP_DOMAIN with the

value Boolean.TRUE to configure the stateful rule session so that each invocation

of the executeRules() method automatically performs the domain popping and

pushing and thus resetting the rules without losing data.

Processing Considerations

Chapter 2: Using the CA Rule Engine 53

The same feature, which carries out automatic domain popping and pushing by

executeRules() method, can also be used to switch to a different appshared

domain in combination with the setInferencingDomainName() method of

CARuleExecutionSetMetadata. The following sample code illustrates domain

switching during runtime:

Hashtable sessionProps = new Hashtable();

sessionProps.put(AionRulesEngineProperties.RULEBASE_AUTO_PUSH_POP_DOMAIN,

Boolean.TRUE);

sessionProps.put(AionRulesEngineProperties.RULEBASE_INFERENCING_DOMAIN_NAME,

"Domain1");

StatefulRuleSession session =

(StatefulRuleSession)runtime.createRuleSession(rulesetUri, sessionProps,

RuleRuntime.STATEFUL_SESSION_TYPE);

…

session.executeRules(); // Inference over Domain1

…

// Now switch to Domain2

CARuleExecutionSetMetadata mData =

(CARuleExecutionSetMetadata)session.getRuleExecutionSetMetadata();

mData.setInferencingDomainName("Domain2");

…

session.executeRules(); // Inference over Domain2

…

Note: The feature, which carries out automatic domain popping and pushing by

executeRules() method, disables the incremental inference feature of the

stateful rule session which requires rule states to be maintained across

successive invocations of executeRules() method. However, these two features

generally apply to different circumstances.

Exception Catching

Methods exposed by CA Rule Engine support exceptions. These exceptions are

thrown by the inference engine. For more information on the methods that throw

exceptions, see the Javadoc. For more information on exception messages,

follow the “error, warning and trace messages” link that is in the Overview page

of Javadoc.

It is recommended that the Java client application use standard Java try/catch

programming around CA Rule Engine methods that throw exceptions.

Query RuleExecutionSets and Rules

54 Rule Engine: JSR-94 Implementation Guide

Query RuleExecutionSets and Rules

The JSR-94 specification requires that vendors provide a method for querying

RuleExecutionSets and Rules. This method is provided by the RuleAdministration

functionality and the RuleSession API. The specification requires support of a

common set of properties because the JSR-94 specification fully expects that

individual vendors will want to include their RuleExecutionSet and Rule

properties; the JSR-94 specification allows extensions to accommodate these

vendor-specific properties. For more information on CA's property extensions,

see Access CA's Extended RuleExecutionSet and Rule Properties.

Query Common RuleExecutionSet and Rule Properties

When a RuleExecutionSet instance is obtained from the appropriate

RuleExecutionSetProvider (see Acquire and Register the RuleExecutionSet), that

RuleExecutionSet may be queried. The RuleExecutionSet interface provides the

following query operations:

String getName();

String getDescription();

String getDefaultObjectFilter();

List getRules();

For more information on these operations, see the RuleExecutionSetImpl class in

the Javadoc.

The first two operations are straightforward. For more information on

getDefaultObjectFilter(), see Object Filters. The operation getRules() returns a

list of rules. For example:

List rules = ruleset.getRules();

Each rule provides the following operations to retrieve its name and description:

String getName();

String getDescription();

Query RuleExecutionSets and Rules

Chapter 2: Using the CA Rule Engine 55

Rules may be accessed by iterating through the list of rules. For example:

Iterator iter = rules.iterator();

while (iter.hasNext()) {

 Rule rule = (Rule)iter.next();

 System.out.println("\tRule name: " + rule.getName());

 System.out.pringln("\tRule description: " + rule.getDescription());

}

Both the RuleExecutionSet and Rule interface offer operations by which vendor

specific properties can be set and retrieved. Each interface provides the following

operations:

Object getProperty(Object key);

void setProperty(Object key, Object value);

For more information on these operations, see the RuleExecutionSetImpl and

RuleImpl classes in the Javadoc.

For more information on properties used by CA Rule Engine, see Access CA's

Extended RuleExecutionSet and Rule Properties.

Query RuleExecutionSets and Rules

56 Rule Engine: JSR-94 Implementation Guide

Access CA Technologies's Extended RuleExecutionSet and Rule Properties

JSR-94 permits the inference engine vendor to extend the interface specification

to allow a vendor to provide client applications with specific information about

RuleExecutionSets and rules that are unique to the vendor's implementation of

the standard. These methods include:

■ User or vendor-defined properties can be accessed through the

getProperty() and setProperty() methods of the RuleExecutionSet and Rule

classes.

■ RuleExecutionSet properties that pertain to the use of the RuleExecutionSet

within a rule session can be accessed from a RuleSession instance using the

RuleSession.getRuleExecutionSetMetadata() method, which returns an

instance of RuleExecutionSetMetadata. The RuleExecutionSetMetadata API

allows access to rule execution set properties such as the RuleExecutionSet

URI, name, and description. CA Technologies has specifically extended this

class. The accessor methods of CA's extended version of this interface are

specifically designed to retrieve the CA Technologies-defined properties of

RuleExecutionSets.

Note: Rule information is not available through the

CARuleExecutionSetMetadata interface.

In CA Rule Engine, the sets of properties that can be obtained by

RuleExecutionSet.getProperties() have corresponding specific CA

Technologies accessors of CARuleExecutionSetMetadata. However, if a

property is only applicable to a particular execution of the rule session (for

example, the optionally generated Inferencing Summary document), then

that property can only be obtained using CARuleExecutionSetMetadata. An

inferencing summary document is an XML document that summarizes rule

behavior during the course of a rule session. For more information on

obtaining this optional document, see Obtain Rulebase Documents.

All object names (constants) for the CA extended RuleExecutionSet and Rule

properties are provided in the AionRulesEngineProperties interface. This

interface must be imported into any application program that will access

RuleExecutionSet and Rule properties.

The following table summarizes extended properties provided by CA Rule Engine

for rules:

Property Property Constant

Unqualified name of the rule RULE_NAME

Priority of the rule RULE_PRIORITY

Name of the domain of the rule RULE_RULESETDOMAIN

Name of the ruleset to which the rule belongs RULE_RULESETNAME

Query RuleExecutionSets and Rules

Chapter 2: Using the CA Rule Engine 57

Property Property Constant

Priority of the ruleset to which the rule belongs RULE_RULESETPRIORITY

Example

The following example retrieves the name of the ruleset to which a given rule

belongs:

String ruleSetName = (String) rule.getProperty(

 AionRulesEngineProperties.RULE_RULESETNAME);

Important! These CA Technologies specific properties are exposed as Read-Only.

Invocations of the RuleExecutionSet.setProperty() and Rule.setProperty()

methods to set these properties will not be allowed. For more information, see

the documentation on the setProperty() methods for the RuleExecutionSetImpl

and RuleImpl classes in the Javadoc.

The following table summarizes the extended properties and the corresponding

operations of the CARuleExecutionSetMetadata interface provided by CA Rule

Engine for RuleExecutionSets that are not specific to a rule session:

Property Property Constant CARuleExecutionSetMetadat

a operation

The application interface

document

RULEBASE_APP_INTERFACE_DOCUMENT getAppInterfaceDocument()

Compilation date/time RULEBASE_COMPILATION_DATETIME getCompilationDateTime()

Binary format level of the

rulebase

RULEBASE_FORMAT_LEVEL getFormatLevel()

Currently supported

binary format level for

rulebases

RULEBASE_LATEST_FORMAT_LEVEL getCurrentFormatLevel()

The load map XML

document for the

RuleExecutionSet

(rulebase)

RULEBASE_LOAD_MAP_DOCUMENT getLoadMapDocument()

Query RuleExecutionSets and Rules

58 Rule Engine: JSR-94 Implementation Guide

Example

For example, to retrieve the rulebase format level of a RuleExecutionSet from

outside a rule session the following code can be used:

String ruleSetFormatLevel = (String) ruleSet.getProperty(

 AionRulesEngineProperties.RULEBASE_FORMAT_LEVEL);

To retrieve this same information from within a rule session through the

CARuleExecutionSetMetadata API, the following code can be used (where

session references a previously created RuleSession):

CARuleExecutionSetMetadata ruleExecSetInfo = (CARuleExecutionSetMetadata)

 session.getRuleExecutionSetMetadata();

String ruleSetFormatLevel = ruleExecSetInfo.getFormatLevel();

Note that the instance returned by the getRuleExecutionSetMetadata() method

must be explicitly cast as an instance of CARuleExecutionSetMetadata to make

the CA Technologies-extended accessors available to the client application.

RuleExecutionSet metadata can be obtained from within a rule session

regardless of whether the rule session is stateless or stateful.

For more information on the RULEBASE_APP_INTERFACE_DOCUMENT and

RULEBASE_LOAD_MAP_DOCUMENT properties, see Rulebase Structures.

The following table summarizes the extended properties and the corresponding

operations of the CARuleExecutionSetMetadata interface provided by CA Rule

Engine for RuleExecutionSets that are rule session specific:

Property Property Constant CARuleExecutionS

etMetadata

operation

Name of the appshared

domain to use

RULEBASE_INFERENCING_DOMAIN_NAME getInferencingDomai

nName()/setInferenc

ingDomainName()

Whether to generate

inferencing summary

RULEBASE_GENERATE_INFERENCING_SUMMARY isGeneratingInferenc

ingSummary()

Whether to automatically

push/pop domain

RULEBASE_AUTO_PUSH_POP_DOMAIN isAutoPushPopDomai

n()

Use Cases for Building JSR94 Applications

Chapter 2: Using the CA Rule Engine 59

The values for the all the properties shown in the table above are user-defined.

If used, they must be specified at the same time that the rule execution set is

created. Since they are specific to a rule session, the value of these properties

should be queried using the CARuleExecutionSetMetadata operations. The value

for RULEBASE_INFERENCING_DOMAIN_NAME property should be the name of

selected domain in String type. It is required only when more than one

appshared domains are defined in the rulebase. For a rulebase with multiple

appshared domains the setInferencingDomainName() method can be used to

switch domains at runtime, see Reset Rules and Switch Domains. The values for

properties RULEBASE_GENERATE_INFERENCING_SUMMARY and

RULEBASE_AUTO_PUSH_POP_DOMAIN should be Boolean.TRUE to turn on the

specified features for the rule session. Both properties are optional and need to

be defined only when the respective feature is desired.

Since the optional inferencing summary document is a RuleExecutionSet

property that pertains to the execution of a specific rule session, it is only

available through the getInferencingSummary() method of the

CARuleExecutionSetMetadata API. This optional document is generated if the

RULEBASE_GENERATE_INFERENCING_SUMMARY property is set to

Boolean.TRUE at the creation of the rule session. For more information, see

Obtain Rulebase Documents.

Use Cases for Building JSR94 Applications

JSR-94 applications can be built according to the following use cases:

■ You may begin with a pre-existing rulebase for which you want to write

appropriate Java classes to send data to the rulebase, but you may or may

not have direct access to the rule author or RDL code to understand the

object interface. In this use case, you likely need to know how to query the

interface of the rulebase. For more information, see Rulebase Structures.

■ You may begin with pre-existing business objects defined by Java or by

developing the rulebase concurrently with Java developers. In this use case,

there is a need to prepare a rulebase (in RDL) to inference over these

objects. For more information, see Construct an RDL Rulebase for Java

Objects.

■ Combination of the above two cases, such as that you may begin with a

pre-existing rulebase, for which there is a need to add new rules to handle

some new business objects.

Use Cases for Building JSR94 Applications

60 Rule Engine: JSR-94 Implementation Guide

Rulebase Structures

If the rulebase has been already been composed before defining the Java

objects, for example, if the rulebase has been written by a person familiar with

business logic, the Java programmer must have access to some details of the

rulebase before constructing the Java application. Structural information about

the rulebase is provided in the documents - the App Interface and Loadmap

documents that can be obtained through CA Rule Engine. For more information,

see Obtain Rulebase Documents.

Note: For the immediate purpose of constructing the Java client application, the

App Interface document is the more important one of the two.

The App Interface and Loadmap documents are XML documents; knowledge of

how to parse XML is necessary to read the documents. For more information on

the content of these documents, see The App Interface Document and The

Rulebase Loadmap Document. Details related to these documents are provided

in the Javadoc in the com.ca.cleverpath.aion.rulesp.core.common package. See

XMLDoc_AppInterface and XMLDoc_LoadMap within the rulesp.core.common

package. In addition, the XML schemas for these documents are provided in the

schema folder inside the CA Rule Engine distribution.

Obtain Rulebase Documents

Rulebase documents are obtained as values of CA extended properties of

RuleExecutionSets. For more information on the CA extended properties for CA

Rule Engine, see Access CA's Extended RuleExecutionSet and Rule Properties.

Three kinds of documents are available: the App Interface document, the

Loadmap document and the optionally generated Inferencing Summary

document. See the respective sections for these documents below for more

information.

The App Interface document and the Loadmap document are static for a rulebase

and thus may be obtained for the RuleExecutionSet with the

RuleExecustionSet.getProperty() method or directly through a

CARuleExecutionSetMetadata accessor. The Inferencing Summary document is

tied to a rule session and thus can only be obtained through the

CARuleExecutionSetMetadata accessor method getInferencingSummary().

Example

Use Cases for Building JSR94 Applications

Chapter 2: Using the CA Rule Engine 61

For example, to obtain the App Interface document through the getProperty()

method, the following can be used (where ruleset references a RuleExecutionSet

instance):

String xmldoc = (String) ruleSet.getProperty(

 AionRulesEngineProperties.RULEBASE_APP_INTERFACE_DOCUMENT);

Note: If a rulebase file is passed to the WrapperMaker tool to generate the Java

classes, an App Interface document is also written out. It can be used to facilitate

selection of the appropriate appshared domain if more than one such domains

exist in the rulebase.

The corresponding AionRulesEngineProperties constant for obtaining the

loadmap is RULEBASE_LOAD_MAP_DOCUMENT.

Equivalent code to obtain the App Interface document within a rule session using

the CARuleExecutionSetMetadata API is (where session references a

RuleSession instance):

CARuleExecutionSetMetadata ruleExecSetInfo =

 (CARuleExecutionSetMetadata) session.getRuleExecutionSetMetadata();

String xmldoc = ruleExecSetInfo.getAppInterfaceDocument();

The corresponding CARuleExecutionSetMetadata accessor to obtain the loadmap

is getLoadMapDocument(). For more information on the

CARuleExecutionSetMetadata accessors, see the

CARuleExecutionSetMetadataImpl class in the Javadoc.

The Inferencing Summary document is generated only when the

RULEBASE_GENERATE_INFERENCING_SUMMARY property is set to true at the

creation of the rule session. The procedure to set that property is identical to that

of specifying the desired appshared domain for a rule session. For example, the

following code fragment creates a stateful rule session that will generate the

Inferencing Summary document upon execution:

Hashtable sessionProps = new Hashtable();

sessionProps.put(AionRulesEngineProperties.RULEBASE_GENERATE_INFERENCING_SUMMARY,

 new Boolean(true));

StatefulRuleSession session = (StatefulRuleSession)runtime.createRuleSession(

 rulesetUri, sessionProps, RuleRuntime.STATEFUL_SESSION_TYPE);

After execution of the session, the Inferencing Summary document can be

obtained by:

CARuleExecutionSetMetadata ruleExecSetInfo = (CARuleExecutionSetMetadata)

session.getRuleExecutionSetMetadata();

String xmldoc = ruleExecSetInfo.getInferencingSummary();

Use Cases for Building JSR94 Applications

62 Rule Engine: JSR-94 Implementation Guide

The App Interface Document

The App Interface document is an XML document that summarizes the rulebase

objects that are shared with applications. It is the critical document for

constructing the classes in a Java client application that will correspond to

classes in the rulebase. For more information on the rules of constructing Java

classes that will correspond to rulebase classes, see Rules for Constructing Java

Classes.

The document covers the following features of the rulebase interface with the

Java client application:

■ The appshared domains of the rulebase. Although the rulebase may

provide several domains that can be shared with Java client applications, a

rule session can only interface with a single domain at a time. For more

information, see Specify a Shared Domain. Information provided with the

domains is their names (to be used as a RuleSession property when creating

the rule session), the pre-/postconditions fields that correspond to the input

and output values of the inferencing session, and if appropriate, the list of

application creatable classes within the domain.

■ The classes that must be created in the Java client application. This

information determines how classes are to be named in the Java client

application, see Class Name Requirements. The class definitions also provide

the field names and data types and names of class instances.

■ The names and data types of the fields of the class. The Java

application client must define its classes as Beans with the proper properties

and accessors. For more information, see Property Accessors and Property

Matching. For more information on rules for matching rulebase field types to

property types in the Java client application, see Relationship Between RDL

Field Data Types and Java Property Types.

■ The names of rulebase class instances. The names of instances in the

rulebase are especially important because the Java client application classes

must provide an instanceName property. Instances passed to the inference

engine must hold the corresponding rulebase instance name as the value of

this property. For more information, see Instance Naming.

For a complete description and example of the App Interface document, see

XMLDoc_AppInterface link in the com.ca.cleverpath.aion.rulesp.core.common

package in the Javadoc. The schema of the App Interface document is provided

in the schema/appinterface folder inside the CA Rule Engine distribution.

Use Cases for Building JSR94 Applications

Chapter 2: Using the CA Rule Engine 63

The Rulebase Loadmap Document

The Loadmap document is an XML document that summarizes the objects

defined within a binary rulebase. This informative document is a concise and

complete summary of a rulebase's content. However, Loadmap documents detail

objects that may be inaccessible to client apps (for example, rulebase-private

classes) and therefore are probably more useful to rulebase authors than to Java

client programmers. The loadmap covers:

■ Rulebase initialization methods. Initialization methods carry out

operations, such as setting a field with certain value, prior to inferencing

over the rules. For more information on initialization methods, see the guide

on RDL.

■ Rulebase associations. Associations are reciprocal relationships between

class instances. For more information on associations, see the guide on RDL.

■ Rulebase classes. Information on classes includes a class's parent and

child classes, fields, and instances. For more information on classes, see the

guide on RDL..

■ Domains. The <domains> element of the Loadmap covers each domain in

the rulebase and its contents. It covers the initialization, associations,

classes, pre- and postconditions, creatable classes, and rulesets of each

domain. For more information, see the guide on RDL.. More information on

rulesets is also provided by this document, including the information on each

rule in a ruleset. Rule information is limited to the effective dates of the rule

and a list of terms (class/field/instance) used by the rule. The actual rule

structure is not revealed.

■ Internal References. References are cross-references between the

rulebase elements as determined by the RDL parser.

For a complete description and example of the Loadmap document, see

XMLDoc_LoadMap link in the com.ca.cleverpath.aion.rulesp.core.common

package in the Javadoc. The schema of the Loadmap document is provided in the

schema/loadmap folder inside the CA Rule Engine distribution.

The Inferencing Summary Document

The Inferencing Summary document is an optionally generated XML document

that summarizes rule behavior during the course of an inferencing session.

Though rule behavior can be gleaned from detailed log messages, infer

summaries offer some important advantages:

■ When summary totals, rather than event detail, are sought, the data format

is more convenient.

■ As compared to detailed tracing, summaries have less impact on Engine

performance.

■ As a summary, the data representation is compact.

Use Cases for Building JSR94 Applications

64 Rule Engine: JSR-94 Implementation Guide

This last advantage (compactness) is particularly important when analyzing

behavior for rules with iterative decisions - rules with possibly thousands of rule

threads.

The Inferencing Summary document is a valuable aid to tuning the performance

of a rulebase and thus mostly useful to rule authors. It covers summaries at the

following nested levels:

■ Rulebase level. The document's root element (<infer_summary>)

describes overall document properties and summarizes overall behavior of

the inferencing session.

■ Domain level. The root element's children are one or more Domain

elements (<domain>). The Domain elements summarize domain-level

inferencing activity.

■ Ruleset level. A Domain element's children are zero or more Ruleset

elements (<ruleset>). The Ruleset elements summarize ruleset-level

inferencing activity.

■ Rule level. A Ruleset element's children are one or more Rule elements

(<rule>). The Rule elements summarize rule-level inferencing activity.

■ Decision level. A Rule element's children are zero or more Decision

elements (<decision>). The Decision elements summarize decision-level

inferencing activity.

■ Alternative level. A Decision element's children are zero or more

Alternative elements (<alternative>). An alternative is one action branch off

a decision. The Alternative elements summarize alternative-level inferencing

activity.

For a complete description and example of the Inferencing Summary document,

see XMLDoc_InferSummary link in the

com.ca.cleverpath.aion.rulesp.core.common package in the Javadoc. The

schema of the Inferencing Summary document is provided in the

schema/infersummary folder inside the CA Rule Engine distribution.

Construct an RDL Rulebase for Java Objects

In some applications of CA Rule Engine, the business objects may have already

been defined as Java classes. In this use case, the goal is to enhance the use of

these business objects by providing a context in which the objects are processed

by business rules.

Use Cases for Building JSR94 Applications

Chapter 2: Using the CA Rule Engine 65

The rulebase for this application needs to implement the business logic behind

the set of business objects. When authoring a rulebase, it may be easier to use

the more readable infix rule language to define rules. The Infix2RDL tool can be

used to convert a rulebase with infix rules to a pure RDL rulebase. To facilitate

understanding of existing RDL rulebase, the RDL2Infix tool can be used to

convert an RDL rulebase back to one with infix rules. For more information on

Infix2RDL tool, RDL2Infix tool and RDL features see Using the Infix2RDL Tool,

Using the RDL2Infix Tool, and Overview of RDL rulebases respectively.

It may also be necessary to retrofit the Java class definitions to be used by the

RDL rulebase that will be created. The retrofitting may require verifying that:

■ The Java classes are fully defined according to the standard for Beans. For

more information, see Public No-Argument Constructor and Property

Accessors.

Note: Any object name exposed to JSR-94 clients must be a valid

Java-object name. BeanInfo may be used to map names not valid in Java.

■ Class names and property names accord with the expected rules for

interfacing with an RDL rulebase. For more information, see Class Name

Requirements and Property Matching. Property types are compatible to the

corresponding RDL data types. For more information, see Relationship

Between RDL Field Data Types and Java Property Types.

■ All classes must have an instanceName property with proper accessor

methods. For more information, see Instance Naming.

■ All Java client classes must implement the Serializable interface if

serialization of session is needed.

One approach to retrofitting existing Java classes is to determine the rulebase

structure first so that a prototype rulebase can be created with dummy rules if

needed, then use the WrapperMaker tool (see Using the WrapperMaker Tool) to

generate the required Java classes from the prototype rulebase and then merge

the existing Java classes with the generated ones.

Using the Infix2RDL Tool

The Infix2RDL tool facilitates the process of authoring RDL rulebases by

converting a rulebase with infix rules to a pure RDL rulebase, thus allowing the

much more readable infix language to be used to define rules.

Use Cases for Building JSR94 Applications

66 Rule Engine: JSR-94 Implementation Guide

For ease of invocation of the Infix2RDL tool, the infix2rdl batch/script files have

been supplied in the bin folder inside the CA Rule Engine distribution. The syntax

for invoking the tool is:

infix2rdl rulebase_infix.xml [rulebase.xml]

where rulebase_infix.xml represents the file name of the rulebase with infix

rules, and rulebase.xml represents the file name of the generated RDL rulebase.

It is customary to name the infix rulebase with the _infix.xml suffix. If this

convention is used, the file name of the generated RDL rulebase is optional, and

the Infix2RDL tool script will by default generate the file name for the output RDL

rulebase by removing the _infix portion from the input file name. If this

convention is not used, one needs to explicitly specify the file name of the

generated RDL rulebase.

The Infix2RDL tool script also supports drag and drop operation if drag and drop

is supported by the OS GUI and the above naming convention is used. When an

infix rulebase file is dropped onto the Infix2RDL tool script icon, it is equivalent to

invoke the script with the name of that file as the first parameter.

Using the RDL2Infix Tool

The RDL2Infix tool facilitates the understanding of existing RDL rulebases by

converting a pure RDL rulebase to one with infix rules.

For ease of invocating the RDL2Infix tool, the rdl2infix batch/script files have

been supplied in the bin folder inside the CA Rule Engine distribution. The syntax

for invoking the tool is:

rdl2infix rulebase.xml [rulebase_infix.xml]

where “rulebase.xml” represents the file name of the RDL rulebase, and

“rulebase_infix.xml” represents the file name of the generated rulebase with

infix rules. It is customary to name the infix rulebase with the “_infix.xml” suffix.

If this convention is used, the file name of the generated infix rulebase is

optional, and the RDL2Infix tool script will by default generate the file name for

the output infix rulebase by appending the “_infix” portion to the input file name.

If this convention is not used, you need to explicitly specify the file name of the

generated infix rulebase.

The RDL2Infix tool script also supports drag and drop operation if drag and drop

is supported by the OS GUI and if the above naming convention is used. When a

RDL rulebase file is dropped onto the RDL2Infix tool script icon, it is equivalent to

invoking the script with the name of that file as the first parameter.

Chapter 3: RDL Rulebase Overview 67

Chapter 3: RDL Rulebase Overview

This chapter presents an overview of CA Rule Engine rulebases. The presentation

is at a conceptual level; it does not get into the specifics of the RDL. For a

complete description of RDL, refer to the RDL Specification.

CA Rule Engine rulebases are coded as XML documents in the Rulebase Definition

Language (RDL). For clarity, this document often employs an infix-style notation

for illustrating rule logic. For a human reader, this notation is easier to follow

than the corresponding native RDL (XML) code.

This section contains the following topics:

Rulebase Fundamental Notions (see page 67)

Rulebase Structure (see page 68)

RDL Characteristics (see page 70)

Rulesets and Rules (see page 79)

Binary Rulebases (see page 89)

Rulebase Fundamental Notions

Rule

A rule is an atom of knowledge expressing dependencies amongst field

values. A rule consists of one or more premises (Boolean expressions

typically testing field values) and, associated with each premise, an action

(statements typically changing field values).

Rulebase

A rulebase is a collection of objects defining not only the rules but also

organizational objects (e.g., rulesets, domains) and the objects referenced

by the rules (e.g., classes, instances and fields). A rulebase may consist of

hundreds, even thousands, of rules.

Rulebase Structure

68 Rule Engine: JSR-94 Implementation Guide

Rule author

A rule author or rulebase author is one who maintains rulebases - usually

via a tool such as a rulebase editor. The rule author is a knowledge expert

who encodes some or all of her/his knowledge in the form of rules. The

author's expertise may involve any knowledge area - e.g., loan approval,

medical analysis, chemical analysis, etc.

At inferencing time, a field may be in either a resolved (has a value) or

unresolved (does not have a value) state.

Rules typically have dependencies on one another - i.e., one rule's premises may

test field values resolved by another rule's action. Likewise, multiple rules may

be alternatives to one another - i.e., perhaps resolving the same fields to

different values depending on premise conditions.

The rule author may specify rules in any order - so there needs to be some sort

of generic mechanism for determining how best to apply rules for resolving field

values. We call this mechanism an inference engine (or Engine).

During inferencing, the Engine maintains a hierarchical agenda of active

rulesets and rules.

When the Engine initializes a rule on the agenda, the Engine creates a rule

thread. The thread is a runtime instantiation of the rule - and, due to decision

iteration, the thread may, in turn, spawn additional child threads; and a child

thread may do the same. As such, a rule extends the agenda hierarchy with its

own hierarchy of threads.

When visiting a rule thread, the Engine evaluates the thread's premises and, if a

premise is TRUE, the Engine performs the corresponding action for the thread.

The Engine performs at most one action on behalf of a thread.

Rulebase Structure

An RDL rulebase is organized into a hierarchy of objects.

Rulebase Level

At the topmost level, a rulebase defines zero or more of the following:

■ Rulebase-level Initialization Methods invoked when the Engine loads a

rulebase

These methods typically initialize "constant fields". For example, MAX_AGE.

■ Rulebase-level Classes defining fields and static instances

Rulebase Structure

Chapter 3: RDL Rulebase Overview 69

■ Rulebase-level Associations defining reciprocal relationships between fields

of rulebase-level classes

For example, an Ownership Association may establish a relationship

between a Person.owns field (declared as a set of Ducks) and a Duck.owner

field (declared as an instance-reference to a Person). The Engine maintains

this relationship. For example, if a Duck changes ownership, the Engine

automatically updates the Person.owns fields for both the previous and new

owners.

■ Domains for specifying categories of knowledge.

Domain Level

Each domain, in turn, may define zero or more of the following:

■ Domain-level Initialization Methods (invoked when the Engine loads a

domain)

■ Domain-level Classes

■ Domain-level Associations (applicable to domain-level classes)

■ Rulesets for specifying collections of rules

Ruleset Level

Each ruleset, in turn, may define zero or more of the following:

■ Ruleset-level Initialization Methods (invoked when the Engine loads a

ruleset)

■ Ruleset-level Classes

■ Ruleset-level Associations (applicable to ruleset-level classes)

■ Rules for specifying atomic knowledge

Scoping

Objects are scoped according to their position within the hierarchy. For example:

■ A rule can access not only rulebase-level classes but also classes defined by

its enclosing domain and ruleset.

■ A domain-level initialization method can access not only rulebase-level

classes but also classes defined by its enclosing domain.

RDL Characteristics

70 Rule Engine: JSR-94 Implementation Guide

A lower-level object will obscure same-named objects at higher levels. For

example, both the rulebase-level and ruleset-level may define a class: Class1 -

but the ruleset's rules will only see the ruleset-level Class1. In order to reference

the rulebase-level class, a rule would need to further qualify the class name.

RDL Characteristics

RDL

RDL is a specialized language for encoding rulebases. It supports only those

features needed for the definition of rules and their associated objects.

RDL is not a general-purpose programming language. It does not include

more general-use facilities such as I/O or data-formatting facilities.

Likewise, it does not support IF/THEN/ELSE statements, because RDL

centralizes decision making.

In other cases, RDL avoids language constructs that complicate or hinder

inferencing. For example, RDL disallows expressions from having

side-effects. As a result, an expression's evaluation cannot result in

field-value changes.

The following terms describe RDL specific characteristics:

Object Naming

Object names consist of Unicode characters and are case insensitive.

Object names must be non-empty and may not include any of the following

characters:

■ Blank space ()

■ Double quote ("")

■ Period (.)

■ Comma (,)

■ Colon (:)

■ Parenthesis (open or close)

■ Asterisk (*)

Important: Do not define object names that begin with an underscore (_). Such

names are reserved for intrinsic identifiers defined in RDL. For example: _global,

_curr_datetime.

RDL Characteristics

Chapter 3: RDL Rulebase Overview 71

Object References

When referencing a rulebase object, RDL code can reference the object directly

or indirectly by references to other objects. As seen in examples, RDL code must

qualify names only to the extent necessary to avoid ambiguity.

Direct References

If field1 is declared by only one class (Class1) and that class defines only one

static instance (Instance1), the RDL code can simply reference the field by its

name:

field1

However, if the class defines multiple instances, the RDL code must further

qualify the field name:

Instance1.field1

If multiple classes declare fields and instances of the same name, the RDL code

may need to further qualify the field name:

Class1.Instance1.field1

RDL code may also need to qualify names when different levels of the rulebase

hierarchy declare objects of the same name. In this case, the lowest-level

declaration will obscure the higher-level declarations.

So, if the rulebase-level, domain-level and ruleset-level all declare instances of

Class1, RDL code may need to qualify names in the following manner:

_global.Class1.Instance1.field1

domain1.Class1.Instance1.field1

ruleset1.Class1.Instance1.field1

In cases where the rulebase employs the same object name for classes, domains

and rulesets, the RDL may need to further qualify a name by anchoring it at the

rulebase-level:

_global.domain1.ruleset1.Class1.Instance1.field1

Indirect References

RDL code can also reference objects indirectly using a series of instance

references:

Duck1.owner.spouse.manager.spouse.myDog.age

RDL Characteristics

72 Rule Engine: JSR-94 Implementation Guide

In contrast to direct references (which can be resolved at compilation time),

indirect references require resolution at inferencing time.

When resolving such references, all kinds of things can go "wrong". For example,

Duck1 may not have an owner. This situation is discussed in a subsequent

section of this chapter.

Data Types

RDL supports data types for both atomic (individual) values and collection

values.

Atomic Data Types with Magnitude

Rule logic can compare values of these data types not only for equality/inequality

but also for magnitude (for example, A > B):

Number

A numeric data type of specified precision (digits to the right of the decimal

point) that does not distinguish between integers and floating-point values.

The values are of arbitrary size and precision. The Engine automatically

rounds values appropriately.

String

A sequence of Unicode characters.

DateTime

A data type for a datetime value (e.g., 2004-01-20 14:46:22), a date-only

value (e.g., 2004-01-20) or a time-only value (for example, 14:46:22). This

data type makes provision for both GMT and client-local time.

Note: In Engine server environments, one may need to take into account

the possibility that the client and server may not share the same local time;

and that different concurrent clients of the server may have different local

times. The Engine resolves these discrepancies by converting all DateTime

values to client-local time - so a given Engine instance will only see DateTime

values in terms of its own client's local time.

The Engine's geographic location is therefore transparent to client

applications. Those clients don't care whether the Engine's server is in

Bombay or Hong Kong - or if the server changes location.

RDL Characteristics

Chapter 3: RDL Rulebase Overview 73

Duration

A data type for a span of time expressed in years, months, days, hours,

minutes or seconds - or of any combination of these. Duration values may be

signed (positive/negative).

Duration values may optionally specify a start DateTime. The Engine applies

the start DateTime for more-precise interpretation of year and month

counts. When evaluating expressions involving a Duration value lacking a

start DateTime, the Engine attempts to infer a start DateTime from other

expression operands - thereby improving the interpretation of the Duration

value. If all else fails, the Engine applies a default start DateTime

(2001-01-01T00:00:00).

Atomic Data Types without Magnitude

Rule logic can compare values of these data types only for equality/inequality:

Boolean

A data type with values: TRUE and FALSE.

Instance Reference

A reference to a class instance. For example, a Duck owner-field may be an

instance reference to a Person - indicating the Person owning a Duck.

This data type also defines a constant: NULL that can be used to indicate the

absence of a reference. For example, if a Duck had no owner, the Duck's

owner-field would reflect a NULL value.

Note: that a NULL value is a value - so, if a Duck has no owner, the owner

field is resolved. The owner field would be unresolved if we didn't know if the

Duck had an owner.

Sets

The RDL also supports Sets: ordered collections of unique elements of the same

data type. For example, a Set of instance references may indicate the Duck

instances owned by a given Person. A Set of Numbers may indicate relevant

chapters of a Book.

Note: that Set elements must be unique, so a Number Set for Student test

scores reflects only distinctive (and not duplicate) test scores. In order to retain

duplicate test scores, you can use a Set of Grade instances.

The RDL does not support Sets of Sets.

RDL Characteristics

74 Rule Engine: JSR-94 Implementation Guide

Operators

In the following sub-sections, operators are classified according to their return

types. For example, an operator calculating a substring position within a String

value returns a Number value, so this operator is classified as a Number (not

String) operator.

Operators that Return a Numeric Value

■ Calculating unary plus/minus of a Number expression

■ Adding, subtracting, multiplying and dividing of a Number expression with

another Number expression

■ Calculating the maximum/minimum of two Number expressions

■ Calculating the length of a String

■ Calculating the number of elements in a Set

■ Calculating the number of instances in a Class

■ Calculating the position of a substring within a String value. For example:

strIndex of description for "Mr."

■ Calculating trigonometric relationships (sin, cos, tan, acos, asin, atan, and

atan2) and converting between degrees and radians

■ Calculating mathematical values (absolute value, ceiling, exponentiation,

floor, log, modulus, power and square root)

■ Decoding DateTime components (year, month, day-of-month, day-of-week,

hour, minute, second)

■ Decoding Duration components (years, months, days, hours, minutes,

seconds)

■ Filtering and/or transforming Class instances or Set elements to obtain a

Number value. For example:

select one p in Person

 such that p.age >=21

 return p.weight

 default -1

■ Calculating the sum, average and standard deviation of Number values

associated with Class instances or Set elements. For example:

summation of p in Person using p.age

RDL Characteristics

Chapter 3: RDL Rulebase Overview 75

Operators that Return a Boolean Value

■ Calculating NOT of a Boolean expression

■ Calculating AND and OR of a variable number of Boolean expressions

■ Comparing two atomic expressions of the same data type for equality,

inequality or magnitude (less-than, less-than-or-equal-to, greater-than,

greater-than-or-equal-to)

■ Testing for value inclusion within a range of values. For example:

 >=1 .. <100 or >dtm:2001-01-01 .. <=dtm:2005-03-17

■ Comparing two Set expressions of the same data type for equality or

inequality

■ Comparing two Set expressions of the same data type for subset or superset

relationships

■ Testing for element inclusion within a Set

■ Testing for intersection of two Sets

■ Determining whether a field is currently resolved or not

■ Determining whether a String value matches a regular-expression pattern.

For example:

ipAddr matches "[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+"

■ Filtering and/or transforming Class instances or Set elements to obtain a

Boolean value. For example:

select one p in Person

 such that p.age >=21

 return p.isAvailable

 default false

■ Determining the existence of Class instances or Set elements satisfying

selection criteria. For example:

exists p in Person such that p.age >=21

Operators that Return a String Value

■ Concatenating the textual values of a variable number of expressions (of any

data type)

■ Calculating the maximum or minimum of two String expressions

■ Calculating the substring of a String value. For example:

subString of description from n1 to n2

■ Eliminating and/or consolidating of white-space within a String value

RDL Characteristics

76 Rule Engine: JSR-94 Implementation Guide

■ Replacing substrings via a regular-expression pattern. For example:

strReplace description with "xyz" for "a*b"

■ Filtering and/or transforming Class instances or Set elements to obtain a

String value. For example:

select one p in Person

 such that p.age >=21

 return p.name

 default "<none>"

Operators that Return an Instance Reference Value

Filtering or transforming Class instances or Set elements to obtain an Instance

Reference value. For example:

select one p in Person

 such that p.age >=21

 return p.spouse

 default null

Operators that Return a DateTime Value

■ Adding a Duration expression to a DateTime expression

■ Subtracting a Duration expression from a DateTime expression

■ Calculating the maximum or minimum of two DateTime expressions

■ Encoding a DateTime value. For example:

make datetime with dtmYear 1947 dtmMonth 5 dtmDayOfMonth 17 dtmGMT false

■ Filtering or transforming Class instances or Set elements to obtain a

DateTime value. For example:

select one p in Person

 such that p.age >=21

 return p.birthDate

 default dtm:1900-01-01

■ Calculating the average of DateTime values associated with Class instances

or Set elements. For example:

average of p in Person using p.birthDate

In addition to these operators, the RDL also defines intrinsic identifiers for

fetching the current time-of-day (_curr_datetime) and the Engine-instance's

creation datetime (_base_datetime).

RDL Characteristics

Chapter 3: RDL Rulebase Overview 77

Operators that Return a Duration Value

■ Adding two Duration expressions

■ Subtracting two Duration expressions

■ Subtracting two DateTime expressions

■ Multiplying a Duration expression by a Number expression

■ Dividing a Duration expression by a Number expression

■ Calculating the maximum or minimum of two Duration expressions

■ Calculating the absolute value of a Duration value

■ Rephrasing of a Duration value into an equivalent, more-regular form at a

specified level. For example:

durNormalize dur:2y145m90dt49h123m73s to durYears

The result is: dur:14y4m3dt3h4m13s

■ Filtering or transforming Class instances or Set elements to obtain a

Duration value. For example:

select one p in Person

 such that p.age >=21

 return p.vacationTaken

 default dur:0y

■ Calculating the sum, average and standard deviation of Duration values

associated with Class instances or Set elements. For example:

summation of p in Person using p.vacationTaken

■ Calculating the standard deviation of DateTime values associated with Class

instances or Set elements. For example:

stddev of p in Person using p.birthDate

Operators that Return a Set Value

■ Filtering or transforming Class instances or Set elements to obtain a new Set

value. For example, for a Set of spouses for adult Persons:

select all p in Person such that p.age >=21 return p.spouse

■ Sorting Class instances or Set elements according to one or more sort levels.

For example, to sort vouchers overall into ascending sequence by expiration

date, and then to sort same-date vouchers into descending sequence by

value:

sort v in Vouchers

 using v.expirationDate ascending

 using v.value descending

end

RDL Characteristics

78 Rule Engine: JSR-94 Implementation Guide

■ Selecting Set elements by their position. For example, for selecting the first

three elements of a Set (similar to the substring operator for String values):

subCollection of personSet from 0 to 3

Statements

The following types of statements are provided:

■ Statement for local-variable declaration

■ Assignment statement

■ Statements for generation of error, warning and trace messages

■ Instance creation statement

■ Instance deletion statement

■ Sub-inferencing and stop-inferencing statements

■ Statements for Set union, intersection and difference

■ Statements for element addition to or removal from a Set

■ Statements for seeding a random-number generator and fetching values

from it

There is no need for IF-type statements because the RDL locates all decision

making in rule premises. In this way, decisions are more centralized and

accessible; and rule actions tend to be cleaner and more atomic.

Class-Inheritance Hierarchies

The RDL supports a simplified form of class-inheritance hierarchies.

A hierarchy must be fully contained within a given level of the rulebase

hierarchy. For example, a domain-level class must be derived from another

domain-level class of the same domain. The class cannot be derived from a

rulebase-level class or a class from another domain.

All fields are instance-level (not class-level) fields.

All fields are at a public (not private or protected) access level.

Only leaf (not parent) classes can be instantiated.

Rulesets and Rules

Chapter 3: RDL Rulebase Overview 79

Extensibility

A rulebase author can decorate RDL rulebases with custom XML elements and

attributes.

The author distinguishes these elements or attributes from RDL elements or

attributes by prefixing them with namespace prefixes.

Example

<rulebase name="rulebase1" myEditor:dtCreate="2005-01-20">

 ...

 <myEditor:data>

 <desc>Some descriptive text</desc>

 ...

 </myEditor:data>

 ...

</rulebase>

The CA Rule Engine Compiler ignores all such elements and attributes. The

Compiler also ignores any sub-elements or textual content of those ignored

elements.

Rulesets and Rules

A rule author can organize rules into rulesets. The following topics describe their

characteristics.

Priorities

Both rulesets and rules may specify priority values.

An object's priority value affects its position within the inferencing agenda.

Objects of higher priority precede objects of lower priority. The ordering of

objects of equal priority is purposely undefined.

The default priority is 0 (zero).

Rule priorities only have meaning within the containing ruleset; ruleset priorities

only have meaning within the containing domain. So a rule with priority 1000 in

a ruleset with priority 10 will precede lower-priority rules within the same ruleset

- but will follow all rules within a ruleset with priority 11.

Rulesets and Rules

80 Rule Engine: JSR-94 Implementation Guide

Generally speaking, the use of priorities is discouraged because it can defeat the

whole point of inferencing. There are a few situations that require the use of

priorities. One might legitimately employ priorities when defining validation rules

(rules for validating input-field values) or default rules (rules that fire when

higher-priority rules fail to resolve field values). However, even in those cases,

there may be cleaner solutions that can be found without resorting to priorities.

Effectiveness Criteria

Both rulesets and rules may specify effectiveness criteria.

An object's effectiveness criteria are defined in terms of datetime relationships

and determine whether the Engine will include the object on the inferencing

agenda.

By default, the Engine always includes rulesets and rules on the agenda.

Effectiveness criteria can range from simple to complex.

Example

Simple criteria:

Between 2000-08-31 15:34 and 2003-03-30 11:54:12

Complex criteria:

On 3rd Saturday/Sunday

 between 09:00-15:00

 on 1st 15 days of April and September

 of any year

Multiple criteria can be specified for a given object. For example, the criteria

might specify different time-ranges for different days of the week for different

months of different years.

When testing criteria, the Engine applies its own instance-creation timestamp

(_base_datetime) - so all criteria are consistently tested against the same

DateTime value.

Effectiveness criteria may be specified in either GMT or client-local time. In the

former case, the Engine will enforce the criteria uniformly for all clients

(regardless of geographic location). In the latter case, the Engine will enforce the

criteria differently for a San Francisco client than for a Paris client.

Rulesets and Rules

Chapter 3: RDL Rulebase Overview 81

Decision-Tree Rules

The RDL applies a "minimalist" approach when it comes to rule types. The RDL

supports only one rule type: a decision-tree rule.

The idea here is that this rule type is sufficiently powerful and flexible so that

end-user rulebase editors should be able to map all of their higher-level rule

types to this one RDL rule type.

Overall Structure

A decision-tree rule consists of one or more named decisions:

rule "Rule1"

decision "main"

 ...

decision "next"

 ...

decision "next2"

 ...

...

The decisions can have any name (not just the names shown) - but the names

must be unique as decision names within the enclosing rule.

Each decision, in turn, specifies a base expression followed by zero or more test

cases:

decision "main"

 eval <baseExpr>

 then

 case <selExpr1>:

 <action1>

 case <selExpr2>:

 <action2>

 otherwise:

 <action3>

 unknown:

 <action4>

 end

The above decision is a non-iterative decision. The RDL also supports iterative

decisions - decisions specifying an iteration variable and iteration expression:

decision "main"

 for <iterVar> in <iterExpr>

 eval <baseExpr>

 then

 ...

 end

Rulesets and Rules

82 Rule Engine: JSR-94 Implementation Guide

Some test cases specify selection expressions and others (OTHERWISE,

UNKNOWN) don't specify such expressions. All forms of test cases are optional.

Although a decision may specify multiple test cases with selection expressions, a

decision may only specify at most one OTHERWISE and/or UNKNOWN test case.

Test cases involving selection expressions can share a test-case action:

decision "main"

 eval <baseExpr>

 then

 case <selExpr1>:

 <action1>

 case <selExpr2>:

 case <selExpr3>:

 <action2>

 otherwise:

 <action3>

 unknown:

 <action4>

 end

The base expression and any selection expressions can be of any data type or

complexity - but all must be of the same data type.

We collectively refer to the base, selection, OTHERWISE and UNKNOWN

expressions as the decision's premise expressions. A rule involving multiple

decisions will have multiple sets of premise expressions (one set per decision).

Overall Semantics

Other sections will go into more detail - but here are some gross details

concerning decision semantics:

The Engine evaluates premises and performs actions in the context of a rule

thread. Every rule is associated with at least one thread.

■ For a non-iterative decision, the decision is associated with exactly one

thread - and the Engine processes the decision in the context of that thread.

■ For an iterative decision, the decision may be associated with multiple

threads. The Engine evaluates the decision's iteration expression in the

context of the decision's initial thread - but then spawns additional threads

according to the elements generated by the iteration expression. All

subsequent decision processing takes place in the contexts of the additional

threads.

Rulesets and Rules

Chapter 3: RDL Rulebase Overview 83

The Engine will evaluate the base expression (within an appropriate thread) and

compares its value against those of the various selection expressions (if any) in

the order specified.

■ If a match is found, the Engine will perform that test case's action (using the

same thread).

■ If a match is not found, the Engine exercises the action for the OTHERWISE

test case (if defined) using the same thread.

■ If the Engine is unable to evaluate the base expression due to its reference to

an unresolved field, the Engine exercises the action for the UNKNOWN test

case (if defined) using the same thread.

When processing a decision, the Engine performs at most one action per thread.

In some cases, the Engine may not perform any action for a thread.

Test Case Actions

There are two varieties of test-case actions:

■ A statement action specifies a block of zero or more RDL statements. The

Engine performs this action by executing all of the RDL statements (if any) in

the order specified.

■ A decision action references another of the rule's decisions. The Engine

performs this action by pursuing the referenced decision as a sub-decision of

the current one.

Example Rules

This section illustrates both single-decision and multiple-decision rules, as well

as rules with and without iterative decisions.

Simple Single-Decision Rule

The following example is a single-decision rule similar to IF/THEN rules found in

traditional rule languages:

rule "Example1"

decision "number"

 eval (num1 + num2) < 0

 then

 case = true:

 do X=1 Y=10 end

 end

Rulesets and Rules

84 Rule Engine: JSR-94 Implementation Guide

The rule's decision is non-iterative, so the Engine associates only one thread with

the rule and processes the decision in the context of that thread.

Examples

For: num=5, num2=-7

Results: X=1, Y=10

For: num=5, num2=-4

Results: X unresolved, Y unresolved

Multi-Decision Rule - All Data Types

The following example is a multi-decision rule illustrating base or selection

expressions of all data types.

All of the rule's decisions are non-iterative - so the Engine associates only one

thread with the rule and processes all decisions in the context of that thread.

Example

Each selection expression involves a literal constant - so each decision is similar

to a SWITCH statement within a conventional programming language:

rule "Example2"

decision "number"

 eval (num1 + num2)

 then

 case < 0:

 do X=1 Y=10 end

 case > 10:

 decision boolean

 case = 5:

 decision string

 default:

 decision boolean

 unknown:

 decision instref

 end

decision "boolean"

 eval ((num1 > num2) and bool1)

 then

 case = true:

 decision string

 case = false:

 do X=2 Y=12 end

 unknown:

 decision instref

 end

Rulesets and Rules

Chapter 3: RDL Rulebase Overview 85

decision "string"

 eval (str1 & str2)

 then

 case = "abcdef":

 decision datetime

 default:

 decision instref

 end

decision "instref"

 eval spouse

 then

 case = person1:

 decision datetime

 case = null:

 decision duration

 end

decision "datetime"

 eval (dtm1 + dur:5d)

 then

 case >= dtm:2001-06-01:

 decision set

 default:

 decision duration

 end

decision "duration"

 eval (dur1 - dur2)

 then

 case < dur:10d:

 do X=3 end

 default:

 decision set

 end

decision "set"

 eval scores

 then

 case includes 100:

 do X=4 end

 case intersects set(10, 20, 30, 40, 50):

 do X=6 Y=16 end

 case = set():

 do X=5 end

 case >= set(70, 80, 90):

 do Y=14 end

 end

Rulesets and Rules

86 Rule Engine: JSR-94 Implementation Guide

Examples

For: num1=5, num2=-7

Results: X=1, Y=10

For: num1=5, num2=0, str1="x", str2="y", spouse=null,

 dur1=dur:100d, dur2=dur:91d

Results: X=3, Y unresolved

For: num1=5, num2 unresolved, spouse=person1, dtm1=dtm:2001-05-28,

 scores=set(60, 70, 80, 90)

Results: X unresolved, Y=14

For: num1=5, num2 unresolved, spouse=person2

Results: X unresolved, Y unresolved

Note: The Engine might not find any action to perform.

Single-Decision Rule - Complex Selection Expressions

This example is a single-decision rule where the base expression is a literal

constant and the selection expressions are non-constant expressions:

rule "Example3"

decision "main"

 eval true

 then

 case = (A < B and B < C):

 do X=1 end

 case = (B < A):

 do X=2 end

 case = (B > 10 or B > C):

 do X=3 end

 end

As with all earlier examples, the Engine associates only one thread with the rule.

Examples

For: A=1, B=2, C=3

Results: X=1

For: A=1, B=0

Results: X=2

For: A=5, B=5, C=1

Results: X=3

For: A=5, B=5, C=10

Results: X unresolved

Rulesets and Rules

Chapter 3: RDL Rulebase Overview 87

Single-Decision Rule - with Iteration

The following example is a single-decision rule with an iterative decision:

// Filter out vouchers that have expired.

// Retained vouchers are added to filteredVouchers.

rule "Example5"

decision main

 for v in ShoppingCart.theCart.theCustomer.vouchers

 eval v.expirationDate >= _base_datetime

 then

 case true:

 do

 combine v into filteredVouchers

 end

 end

When processing this rule, the Engine spawns an additional thread for each

instance of a customer voucher.

Each thread checks the voucher's expiration date and, if the voucher has not yet

expired, the thread adds that voucher to a Set (filteredVouchers).

The result is a Set (possibly empty) specifying all unexpired vouchers.

Rulesets and Rules

88 Rule Engine: JSR-94 Implementation Guide

Multi-Decision Rule - with Iteration

Example

The following example is a multi-decision rule illustrating a mix of iterative and

non-iterative decisions:

// Apply filtered vouchers to the item groups.

// Any vouchers applied are marked as "isUsed".

rule "Example6"

decision main

 for v in filteredVouchers

 eval true

 then

 case true: decision findGroup

 end

decision findGroup

 for g in ItemGroup

 eval g.category = v.itemCategory

 then

 case true: decision checkAmount

 end

decision checkAmount

 eval v.value <= g.totalPurchases

 then

 case true:

 do

 g.totalPurchases = g.totalPurchases - v.value

 v.isUsed = true

 end

 end

When processing this rule, the Engine first spawns an additional thread for each

instance of a filtered voucher. For each of these, the second decision finds an

item group associated with a filtered voucher - by spawning additional threads

for each instance of class ItemGroup. For each pairing of a filtered voucher with

an item group, the third decision conditionally reduces the group's total

purchases and marks the voucher as "used".

As a result, the group total-purchases will reflect applied vouchers; and the

vouchers will indicate whether they have been "used".

Note: Iteration expressions may be defined either by Sets (filteredVouchers) or

classes (ItemGroup).

Binary Rulebases

Chapter 3: RDL Rulebase Overview 89

Additional Notes

■ Except for exactly one decision (the root decision), each decision must be

referenced as a sub-decision by some other decision within the rule.

■ A given decision can reference multiple different decisions as sub-decisions

(in different test-case actions). The decision may also reference the same

decision multiple times as a sub-decision (in different test-case actions).

■ A given decision may be referenced as a sub-decision by multiple other

decisions.

■ The rule can specify the decisions in any order without regard to how

decisions reference one another as sub-decisions. The CA Rule Engine

Compiler determines the root decision.

■ The Compiler detects and rejects cyclical references amongst decisions.

■ A sub-decision can inherit iteration variables from other decisions.

Binary Rulebases

A binary rulebase is a more-efficient runtime representation of an RDL rulebase.

The CA Rule Engine Engine accepts only binary (not RDL) rulebases - so one

must first employ CA Rule Engine administrative services to compile an RDL

rulebase to a binary rulebase; and then employ CA Rule Engine runtime services

to inferencing over the binary rulebase.

Portability

The binary rulebase format is portable across hardware, software and language

environments.

A binary rulebase does not include any platform-specific objects (for example,

Java-specific or OS-specific objects). All integral values employ a standardized

big-endian format. All textual values employ a standardized Unicode UTF-8

encoding.

Security

Due to its unpublished format, a binary rulebase is reasonably secure against

reverse engineering. Therefore, the intellectual property contained therein is

reasonably protected. Such protection may be particularly important to

third-party rulebase vendors.

Binary Rulebases

90 Rule Engine: JSR-94 Implementation Guide

Durability

A binary rulebase is durable across future CA Rule Engine releases because CA

Rule Engine compilation services make it easy to upgrade older-format rulebases

to the latest format level.

If the CA Rule Engine encounters an older-format rulebase, it automatically

upgrades that rulebase (with a warning message). Note that the Engine does not

retain the results. Therefore, in order to avoid repeated automatic-upgrades,

one should re-compile the rulebase manually.

Chapter 4: Inferencing Overview 91

Chapter 4: Inferencing Overview

This chapter presents an overview of CA Rule Engine inferencing. The

presentation is at a conceptual level. For a fuller description of inferencing, refer

to the Engine Behavior Specification. For clarity, this document often employs an

infix-style notation for illustrating rule logic. For a human reader, this notation is

easier to follow than is the corresponding raw RDL (XML) code. Note that this

infix-style notation is for illustrative purposes only - and that the CA Rule Engine

Compiler supports only RDL as a textual language for defining rulebases.

The end-user must first apply CA Rule Engine administrative services to compile

RDL-coded rulebases into binary rulebases; and then applies CA Rule Engine

runtime services to invoke the inference engine (Engine) for rule processing.

This section contains the following topics:

Fundamental Notions (see page 91)

Agenda Management (see page 92)

Rule Reactivity (see page 93)

Discretely Reactive Rules (see page 93)

Special Handling (see page 101)

Forward Chaining (see page 104)

Sub-Inferencing (see page 110)

Fundamental Notions

Rule

A rule is an atom of knowledge expressing dependencies amongst field

values. A rule consists of one or more premises (Boolean expressions

typically testing field values) and, associated with each premise, an action

(statements typically changing field values).

Rulebase

A rulebase is a collection of objects defining not only the rules but also

organizational objects (e.g., rulesets, domains) and the objects referenced

by the rules (e.g., classes, instances and fields). A rulebase may consist of

hundreds, even thousands, of rules.

Agenda Management

92 Rule Engine: JSR-94 Implementation Guide

Rule author

A rule author or rulebase author is one who maintains rulebases - usually

via a tool such as a rulebase editor. The rule author is a knowledge expert

who encodes some or all of her/his knowledge in the form of rules. The

author's expertise may involve any knowledge area - e.g., loan approval,

medical analysis, chemical analysis, etc.

At inferencing time, a field may be in either a resolved (has a value) or

unresolved (does not have a value) state.

Rules typically have dependencies on one another - i.e., one rule's premises may

test field values resolved by another rule's action. Likewise, multiple rules may

be alternatives to one another - i.e., perhaps resolving the same fields to

different values depending on premise conditions.

The rule author may specify rules in any order - so there needs to be some sort

of generic mechanism for determining how best to apply rules for resolving field

values. We call this mechanism an inference engine (or Engine).

During inferencing, the Engine maintains a hierarchical agenda of active

rulesets and rules.

When the Engine initializes a rule on the agenda, the Engine creates a rule

thread. The thread is a runtime instantiation of the rule - and, due to decision

iteration, the thread may, in turn, spawn additional child threads; and a child

thread may do the same. As such, a rule extends the agenda hierarchy with its

own hierarchy of threads.

When visiting a rule thread, the Engine evaluates the thread's premises and, if a

premise is TRUE, the Engine performs the corresponding action for the thread.

The Engine performs at most one action on behalf of a thread.

If the Engine is unable to evaluate a premise or to complete an action due to an

unresolved-field value, the Engine will pend the thread - i.e., defer further

processing of the thread until relevant fields are resolved (by the actions of other

threads).

Agenda Management

When the Engine loads a domain, the Engine establishes a hierarchical

inferencing agenda for that domain. The Engine populates the agenda with

rulesets for that domain (assuming any effectiveness criteria are satisfied). The

rulesets, in turn, then populate the agenda with rules for that ruleset (assuming

any effectiveness criteria are satisfied).

Rule Reactivity

Chapter 4: Inferencing Overview 93

The Engine initializes an agenda rule with an initial thread specific to that rule.

The initial thread may, in turn, subsequently spawn additional child threads - and

each of those threads may spawn yet other threads - so the rule may eventually

extend the agenda hierarchy with a thread hierarchy.

During the course of inferencing, the Engine may retire rules from the agenda. If

all of a ruleset's rules have retired, the Engine also retires the ruleset from the

agenda.

At the end of inferencing, the agenda may or may not be empty.

The Engine retains the agenda so long as the domain remains loaded.

Rule Reactivity

The Engine currently supports discretely-reactive rules.

For this type of rule, a rule's threads react to field-value modifications only while

threads are pended and, even then, only in a restricted manner.

In the future, the Engine may also support continually-reactive rules - rules that

are continuously and more-fully reactive to field-value modifications.

Discretely Reactive Rules

For this type of rule, a rule's threads react to field-value modifications only while

threads are pended and, even then, only in a restricted manner.

Discretely reactive rules are inherently more efficient, more stable and safer

than continually reactive rules. For example, it should be impossible for a rule

author to write discretely-reactive rules that loop endlessly. Such looping would

be possible for continually reactive rules.

Thread States

The Engine processes rule threads independently of one another.

All threads are initialized in a READY state.

As the Engine visits rule threads, thread states change:

■ If the Engine can find a non-empty statement-action to perform and can

complete execution of all the action statements, the Engine sets the thread's

state to FIRED and retires the thread from the agenda.

Discretely Reactive Rules

94 Rule Engine: JSR-94 Implementation Guide

■ If the Engine cannot find a statement-action to perform - or only finds an

empty statement-action - the Engine sets the thread's state to FAILED and

retires the thread from the agenda.

■ If the Engine is unable to evaluate premise expressions or to complete

statement-actions due to references to unresolved fields, the Engine sets the

thread's state to PENDED but retains the thread on the agenda. Other

threads (of the same or different rules) may subsequently modify field

values - thereby unpending the pended thread and return it to a READY

state.

The Engine visits only READY rule threads. When the Engine visits a thread, the

thread's state always changes to a non-READY state.

A thread may remain indefinitely in a PENDED state because relevant fields were

never resolved.

Examples with Non-Iterative Decisions

Example

An example rule with a non-iterative decision:

rule "rule1"

decision "main"

 eval (A + B)

 then

 case = C:

 do X=3 Y=Z end

 case >= 10:

 do end

 end

Assume that the rule thread is initially in a READY state. Since the rule consists

of a single, non-iterative decision, the Engine will employ this thread as the

context for all of this rule's processing.

Discretely Reactive Rules

Chapter 4: Inferencing Overview 95

Examples

For: A=1, B=2, C=3, Z=0

Results: FIRED

For: A=1, B=9, C=4

Results: FAILED (empty statement action)

For: A=1, B=2, C=4

Results: FAILED (no statement-action found)

For: A=1, B unresolved

Results: PENDED

For: A=1, B=9, C unresolved

Results: PENDED

For: A=1, B=2, C=3, Z unresolved

Results: PENDED

Note: how the Engine insists on processing test cases in the order specified. For

example, for A=1 and B=9, the Engine will never advance past the first test case

while C is unresolved - even though the second test case matches the

base-expression value.

Here is another example rule with an UNKNOWN test case:

rule "rule2"

decision "main"

 eval (A + B)

 then

 case = C:

 do X=3 Y=Z end

 case >= 10:

 do end

 unknown:

 do X=4 end

 end

Discretely Reactive Rules

96 Rule Engine: JSR-94 Implementation Guide

Examples

For: A=1, B=2, C=3, Z=0

Results: FIRED

For: A=1, B=9, C=4

Results: FAILED (empty statement action)

For: A=1, B=2, C=4

Results: FAILED (no statement-action found)

For: A=1, B unresolved

Results: FIRED

For: A=1, B=9, C unresolved

Results: PENDED

For: A=1, B=2, C=3, Z unresolved

Results: PENDED

Note: The UNKNOWN test case only applies when the Engine is unable to

evaluate the base-expression. It does not apply when the Engine is unable to

evaluate either selection or action expressions.

Example with Iterative Decisions

Example

An example rule with an iterative decision:

rule "ruleA"

decision "main"

 for p in Person1.spouse.relatives

 eval p.age

 then

 case = Person1.age:

 do X=3 Y=p.weight end

 case = p.spouse.age:

 do end

 end

Discretely Reactive Rules

Chapter 4: Inferencing Overview 97

Since the rule consists of an iterative decision, the Engine will begin rule

processing in an initial thread - but then spawn additional threads for the

remainder of the processing.

Example

If Person1's spouse is unknown or the spouse's relatives are unknown, the

Engine pends the rule's initial thread on the iteration expression.

Assuming that relatives are known, the Engine spawns a new thread for each of

the relatives.

The new threads will fire, fail or pend independently of one another.

Assume that Person1's age is 50 and that there are six relatives (PersonA,

PersonB, PersonC, PersonD, PersonE and PersonF) and that:

■ PersonA's age is unknown

■ PersonB's age is 50 but weight is unknown

■ PersonC's age is 50 and weight is 100

■ PersonD's age is 35 but spouse is unknown

■ PersonE's age is 37 and her/his spouse's age is 37

■ PersonF's age is 42 and her/his spouse's age is 39

In this case, the Engine will spawn six new threads (one per relative) and:

■ PersonA's thread will pend on its base expression

■ PersonB's thread will pend on a test-case action

■ PersonC's thread will fire and retire from inferencing

■ PersonD's thread will pend on a test-case expression

■ PersonE's thread will fail (due to an empty action) and retire from inferencing

■ PersonF's thread will fail (no test-case found) and retire from inferencing

At this point, the rule will be associated with three threads.

Discretely Reactive Rules

98 Rule Engine: JSR-94 Implementation Guide

Unpending Rule Threads

The Engine unpends threads in one of two situations:

■ When relevant unresolved fields are resolved

■ When relevant resolved fields change value

The Engine returns an unpended thread to a READY (ready to visit) state.

Handling varies according to whether the thread was pended on a premise

reference or an action reference.

When Pended on a Premise Reference

The Engine unpends the rule according to whether the rule specifies iterative

decisions.

For Rules Without Iterative Decisions

Consider the following rule:

rule "rule1"

decision "main"

 eval A

 then

 case = B:

 do X=C Y=D end

 case >= 10:

 decision next

 end

decision "next"

 eval E

 then

 case = F:

 do X=G Y=H end

 end

Discretely Reactive Rules

Chapter 4: Inferencing Overview 99

In cases where the rule thread is pended on a premise reference, other premise

fields (including those in other decisions) may be relevant for unpending:

If the thread pended on a reference to A, the Engine unpends the thread only on

resolution of A. The thread's active decision remains main.

If the thread pended on a reference to B, the Engine unpends the thread on

either resolution of B or a value change for A. The thread's active decision

remains main.

If the thread pended on a reference to E, the Engine unpends the thread on

either resolution of E or a value change for A or B. If E is resolved, the thread's

active decision remains next. If A or B change value, the active decision becomes

main.

If the thread pended on a reference to F, the Engine will unpend the thread on

either resolution of F or a value change for A, B or E. If F is resolved or E changes

value, the thread's active decision remains next. If A or B change value, the

active decision becomes main.

Note: As a result of unpending a thread, the Engine may also redefine the active

decision for the thread.

For Rules With Iterative Decisions

Unpending for rules with iterative decisions is very similar to rules without

iterative decisions, except that only fields referenced since the latest iteration

are relevant for unpending.

Consider the following rule:

rule "rule1"

decision "main"

 eval A

 then

 case = B:

 do X=C Y=D end

 case >= 10:

 decision next

 end

decision "next"

 for p in Person

 eval p.E

 then

 case = p.F:

 do X=p.G Y=p.H end

 end

Discretely Reactive Rules

100 Rule Engine: JSR-94 Implementation Guide

If the thread is premise-pended on p.E or p.F, the Engine unpends the thread

only as those fields are resolved or change value. In that case, the thread's

active decision remains next.

Note: The thread does not unpend as any of the premise references for earlier

decisions change value. Likewise, the Engine ignores any changes in the

membership of class Person.

When Pended on an Action Reference

In cases where a thread is pended on an action reference, only fields referenced

by the problem statement are relevant for unpending. This handling applies to

both iterative and non-iterative decisions.

Exmaple

Returning to the earlier example:

rule "rule1"

decision "main"

 eval A

 then

 case = B:

 do X=C Y=D end

 case >= 10:

 decision next

 end

decision "next"

 eval E

 then

 case = F:

 do X=G Y=H end

 end

If the thread pended on a reference to C, the Engine unpends the thread only on

resolution of C. The thread's active decision remains main.

If the thread pended on a reference to D, the Engine unpends the thread only on

resolution of D or a value change for C. The thread's active decision remains

main.

If the thread pended on a reference to G, the Engine unpends the thread only on

resolution of G. The thread's active decision remains next.

If the thread pended on a reference to H, the Engine will unpend the thread only

on resolution of H or a value change for G. The thread's active decision remains

next.

Special Handling

Chapter 4: Inferencing Overview 101

Revisiting Unpended Rule Threads

During the course of inferencing, the Engine may visit, pend, unpend, or revisit

a given thread multiple times:

■ When revisiting a thread previously pended on a premise reference, the

Engine returns to the thread's active decision and completely re-evaluates

its premise expressions (starting with the base expression).

■ When revisiting a thread previously pended on an action reference, the

Engine returns to the thread's active decision and re-executes the problem

action statement (starting at the beginning) - without re-executing any

previous action statements.

Rule Retirement

The Engine retires the rule from the inferencing agenda when all of the rule's

threads have retired (by either firing or failing). The rule remains on the agenda

as long as at least one thread is in a PENDED or READY state.

Instance Deletion

The Engine supports both statically-defined and dynamically-created class

instances.

During inferencing, RDL code (or Engine client) may delete dynamically-created

instances. In response, the Engine automatically cleans up references to a

deleted instance:

■ For any atomic field references, Engine will reset the field to NULL. The

Engine will similarly handle atomic local-variable references.

■ For any collection field references, the Engine will remove the reference as

an element from the collection. The Engine will similarly handle collection

local-variable references.

■ For any rule-thread references, the Engine will, depending on the

circumstances, either unpend the thread or terminate threads associated

with the deleted instance.

For further information, refer to the Engine Reference document.

Special Handling

The Engine provides special handling for some expressions in order to improve

efficiency or simplify usage.

Special Handling

102 Rule Engine: JSR-94 Implementation Guide

For ANDing and ORing

The Engine processes some expressions in such a way so as to avoid needlessly

pending threads.

For example, consider the following ORed expression:

isHealthy or isWealthy or isWise

If a Person is wise but we don't know if s/he is healthy or wealthy (i.e., those

fields are unresolved), the Engine avoids pending and evaluates the overall

expression as TRUE.

Similar handling applies to the ANDed expression:

isHealthy and isWealthy and isWise

If a Person is not wise but we don't know if she is healthy or wealthy, the Engine

again avoids pending the thread by evaluating the overall expression as FALSE.

Note: The ANDing and ORing may be implicit. For example, sub-range

expressions:

A >=B .. <C

are implicit AND operations.

Likewise, "stacked" rule-decision test cases. For example:

case < B:

case > C:

 do X=1 end

are implicit OR operations.

Special Handling

Chapter 4: Inferencing Overview 103

For NULL Values

Fields may be indirectly referenced using paths of instance-references. For

example:

Duck1.owner.spouse.age < 35

In order to evaluate the above expression, the Engine must follow these links to

find the appropriate field value (for example, the age of Duck1's owner's

spouse).

If while following the links, the Engine detects an intermediate field with a NULL

value, the Engine evaluates the immediate comparison as FALSE. So, if Duck1

has no owner or the owner has no spouse, the Engine evaluates the comparison

result will be FALSE.

This handling simplifies logic so that it does not have to be awkwardly coded as:

Duck1.owner <> null

 and Duck1.owner.spouse <> null

 and Duck1.owner.spouse.age < 35

Note: As a consequence, both of the following exhaustive comparisons evaluate

as FALSE when Duck1 has no owner or the owner has no spouse:

Duck1.owner.spouse.age < 35

Duck1.owner.spouse.age >= 35

The Engine applies the same handling for indirect references to Boolean fields,

for example:

Duck1.owner.spouse.isWise

If Duck1 has no owner or the owner has no spouse, the Engine evaluates the field

value as FALSE.

This special handling only applies in the above contexts. If NULL values are

detected outside these contexts, the Engine generates an invalid NULL reference

error. Consider the statement:

age = Duck1.owner.spouse.age

In this case, if Duck1 has no owner or the owner has no spouse, the Engine

generates an error.

Forward Chaining

104 Rule Engine: JSR-94 Implementation Guide

Forward Chaining

The Engine employs a forward-chaining strategy for resolving field values.

This means that:

■ The Engine visits all rules at least once during inferencing - unless a rule

thread prematurely terminates inferencing via a stop-inferencing statement.

■ The Engine seeks to maximize the number of FIRED or FAILED threads.

■ When selecting a thread to visit, the Engine always selects the first READY

thread within the inferencing agenda.

Forward-chaining is useful for determining all the consequences of the

pre-condition values.

Forward Chaining

Chapter 4: Inferencing Overview 105

Consider an agenda with the following discretely-reactive rules:

rule "Rule1" (READY)

decision "main"

 eval A > 10

 then

 case =TRUE: do D=1 end

 end

rule "Rule2" (READY)

decision "main"

 eval B > 0 or C < 10

 then

 case =TRUE: do X=2 end

 end

rule "Rule3" (READY)

decision "main"

 eval B < 10

 then

 case =TRUE: do Y=D end

 end

rule "Rule4" (READY)

decision "main"

 eval A < 10

 then

 case =TRUE: do C=12 end

 end

rule "Rule5" (READY)

decision "main"

 eval A < 10

 then

 case =TRUE: do B=3 end

 end

Note: All decisions are non-iterative - so the Engine processes each rule in the

context of a single rule thread.

Forward Chaining

106 Rule Engine: JSR-94 Implementation Guide

Assume that field: A is currently resolved to the value: 5 - but that all other fields

are unresolved.

The Engine first visits Rule1's thread. The Engine fails the thread and retires it

from the agenda.

The Engine next visits Rule2's thread and pends it on premise references to fields

B and C.

The resulting agenda is:

rule "Rule2" (thread PENDED on B & C)

decision "main"

 eval B > 0 or C < 10

 then

 case =TRUE: do X=2 end

 end

rule "Rule3" (thread READY)

decision "main"

 eval B < 10

 then

 case =TRUE: do Y=D end

 end

rule "Rule4" (thread READY)

decision "main"

 eval A < 10

 then

 case =TRUE: do C=12 end

 end

rule "Rule5" (thread READY)

decision "main"

 eval A < 10

 then

 case =TRUE: do B=3 end

 end

Forward Chaining

Chapter 4: Inferencing Overview 107

The Engine next visits Rule3's thread and pends it on a premise reference to

field: B.

The resulting agenda is as follows:

rule "Rule2" (thread PENDED on B & C)

decision "main"

 eval B > 0 or C < 10

 then

 case =TRUE: do X=2 end

 end

rule "Rule3" (thread PENDED on B)

decision "main"

 eval B < 10

 then

 case =TRUE: do Y=D end

 end

rule "Rule4" (thread READY)

decision "main"

 eval A < 10

 then

 case =TRUE: do C=12 end

 end

rule "Rule5" (thread READY)

decision "main"

 eval A < 10

 then

 case =TRUE: do B=3 end

 end

Forward Chaining

108 Rule Engine: JSR-94 Implementation Guide

The Engine next visits Rule4's thread and fires it. The action unpends Rule2's

thread. The Engine removes Rule4 from the agenda.

The resulting agenda is as follows:

rule "Rule2" (thread READY)

decision "main"

 eval B > 0 or C < 10

 then

 case =TRUE: do X=2 end

 end

rule "Rule3" (thread PENDED on B)

decision "main"

 eval B < 10

 then

 case =TRUE: do Y=D end

 end

rule "Rule5" (thread READY)

decision "main"

 eval A < 10

 then

 case =TRUE: do B=3 end

 end

The Engine next visits Rule2's thread but pends it on a premise reference to field:

B.

The resulting agenda is as follows:

rule "Rule2" (thread PENDED on B)

decision "main"

 eval B > 0 or C < 10

 then

 case =TRUE: do X=2 end

 end

rule "Rule3" (thread PENDED on B)

decision "main"

 eval B < 10

 then

 case =TRUE: do Y=D end

 end

rule "Rule5" (thread READY)

decision "main"

 eval A < 10

 then

 case =TRUE: do B=3 end

 end

Forward Chaining

Chapter 4: Inferencing Overview 109

The Engine next visits Rule5's thread and fires it. The action unpends threads for

both Rule2 and Rule3. The Engine removes Rule5 from the agenda.

The resulting agenda is as follows:

rule "Rule2" (thread READY)

decision "main"

 eval B > 0 or C < 10

 then

 case =TRUE: do X=2 end

 end

rule "Rule3" (thread READY)

decision "main"

 eval B < 10

 then

 case =TRUE: do Y=D end

 end

The Engine next visits the Rule2 thread, fires it and removes it from the agenda.

The resulting agenda is as follows:

rule "Rule3" (thread READY)

decision "main"

 eval B < 10

 then

 case =TRUE: do Y=D end

 end

The Engine next visits Rule3's thread - but pends it on its action reference to

field: D.

Since there are no more rule threads to visit, the Engine terminates inferencing

with the final agenda:

rule "Rule3" (thread PENDED on D)

decision "main"

 eval B < 10

 then

 case =TRUE: do Y=D end

 end

Rule3's thread may remain pended indefinitely - unless D is a pre-condition field

and the client application resolves it.

The final field status is:

A=5, B=3, C=12, D unresolved, X=2, Y unresolved

Sub-Inferencing

110 Rule Engine: JSR-94 Implementation Guide

Sub-Inferencing

During the course of inferencing, a rule-thread action may sub-inference into

another rulebase domain - in order to pursue an inferencing sub-problem.

The Engine imposes no limits on sub-inferencing - i.e., a thread in a

sub-inference domain may, in turn, sub-inference into yet another domain - so

Domain1 may sub-inference to Domain2 and Domain2 may, in turn,

sub-inference to Domain3, and so on.

The Engine will disallow a given domain from being loaded more than once

during sub-inferencing. For example, Domain1 may sub-inference to Domain2

but Domain2 may not then sub-inference (directly or indirectly) back to

Domain1.

When a thread action invokes sub-inferencing, the Engine suspends inferencing

within the current domain, de-activates the current domain, activates the new

domain and then begins inferencing within that domain. The Engine assigns a

separate inferencing agenda to the new domain - so rules from different domains

are not mixed together within the same agenda.

As the Engine fires threads within the new domain, the Engine may unpend

threads in ascendant domains - but the Engine will not revisit those threads until

their owning domain again becomes active.

At the completion of inferencing within the new domain, the Engine de-activates

it, unloads it, re-activates the prior domain and then resumes execution of the

interrupted rule-thread action.

Chapter 5: Using Callback 111

Chapter 5: Using Callback

The CA Rule Engine inference engine provides a level of

interactivity beyond the standard stateful rule session using

callback methods.

A callback is a client-defined method invoked by the CA Rule

Engine inference engine upon the occurrence of certain events.

A triggering event is specific for a particular RDL class and field

and the corresponding callback method must be defined or

declared in the corresponding Java wrapper class or interface

and not just in any derived or implementation classes.

Callback methods are event-specific and permit the client to

supplement or to react to engine processing in a

just-in-time-fashion.

Currently, two types of callbacks are supported by CA Rule

Engine that can be used by client application: initialization

callback and change callback. Using of callbacks by client is

always optional. The client determines whether to define any

callback methods for both types of callbacks.

Callbacks are transparent to the rulebase author. The author

can design rulebases without knowing or caring whether clients

will specify handlers. Likewise, for rulebases shared by multiple

clients, some clients may specify handlers and others may not.

While the client may carry out any action unrelated to rule

inference in a callback handler method, only limited actions

related to rule inference may be carried out in a particular type

of callback method.

This section contains the following topics:

Initialization Callback Methods (see page 112)

Change Callback Methods (see page 114)

Initialization Callback Methods

112 Rule Engine: JSR-94 Implementation Guide

Initialization Callback Methods

The CA Rule Engine inference engine invokes an Initialization

Callback Method for resolving unresolved pre-condition field

values.

Some situations where the callback method may be particularly

useful are:

■ When the Engine may potentially need to draw upon a large

volume of input data - but for a given inferencing scenario,

the Engine needs to access only a small subset of the data

(as determined by the rules at runtime)

For example, in a large corporation, the rules may need to

reference the management hierarchy for a given employee.

There may be thousands of employees but for any given

session, the rules only need to reference the managers

associated with the given employee. In this scenario, it

would be impractical for a client to initialize pre-condition

values for all possible employees - on the chance that the

rules might need to reference those employees.

■ When the client needs to access external resources at

runtime - resources inaccessible to RDL code - e.g.,

databases, remote servers, code libraries.

Initialization callback is tied to a particular precondition field. To

use the initialization callback feature, client needs to define the

“onInit” method. The exact name of the method depends on the

name of the field. For example, for a field named xYZ, the

signature of the “onInit” method should be defined as the

following:

public void onInitXYZ()

Initialization Callback Methods

Chapter 5: Using Callback 113

The CA Rule Engine inference engine invokes an initialization

callback method only as necessary - as it actually needs values

in order to make a decision. As such, the initialization callback is

supportive of "first-chance" processing.

Any initialization callback handling logic implemented in the

"onInit" method must not carry out any actions that modify the

status of any of the rules. In a stateful rule session, the client

method may optionally get any other objects from the rule

session for inspection only. However, the client wrapper class

may need to separately retain a reference to the stateful rule

session object for that purpose in order to use the “getObject”

calls of the stateful rule session.

Note: Adding new objects to the session does not modify the

status of any of the rules. It is fine for the initialization callback

method to add one or more new objects which serve as a value

to an instance reference field that is being initialized. In fact,

adding new objects that correspond to dynamic instances in

initialization callback is more preferable to adding all needed

dynamic instances upfront especially when the number of

potentially needed dynamic instances is large.

The “onInit” method normally sets a value to the field for which

it is defined. If the handling logic decides not to initialize the

field, it can simply leave the field untouched.

The engine will invoke an initialization callback method at most

once for each object and will cache the returned value for

subsequent use. Client can avoid the invocation of a defined

initialization callback method on a particular object by setting a

non-null value to the concerned field of that object.

Change Callback Methods

114 Rule Engine: JSR-94 Implementation Guide

Even though in principle callbacks and rulebase design are not

dependent on each other, there is a subtle effect on the use of

initialization callback and application created dynamic instances

related to rulebase design. This is due to the fact that

initialization callback is only available at the field level.

If an application created dynamic instance is referred in rules

through an instance reference field, that dynamic instance may

be created and added to the session in the initialization callback

method of that instance reference field. If such a dynamic

instance is referred in rules only through class iteration, the

dynamic instance must be added to the session prior to

inference for the rule engine to be aware of its existence.

Therefore, writing rules that refer to dynamic instances through

instance reference variables may allow better flexibility on using

initialization callback to create objects for dynamic instances.

For the case of class iteration, one can instead use an instance

reference field in a container class that refers to a collection of

that particular class. This instance reference field iterates over

the collection so as to allow objects for client created dynamic

instances to be instantiated in the initialization callback of that

instance reference field.

Change Callback Methods

The CA Rule Engine inference engine invokes a Change Callback

Method upon modifying a pre or post-condition field value, and

when dynamically creating or deleting class instances visible to

the client. However, a change callback method will not be

invoked if the change is requested by the client, such as invoking

the “updateObject” call of a stateful rule session, or as the result

of client provided initialization callback.

Change Callback Methods

Chapter 5: Using Callback 115

Some situations where the Change Callbacks may be particularly

useful:

■ When the Engine may potentially generate a broad range of

results - but, for a given inferencing scenario, the Engine

may need to generate only a small subset of those results

(as determined by the rules at runtime).

For example, in a large corporation, the rules may need to

modify the data for managers in the hierarchy of a given

employee. For any given session, the rules only need to

update the managers associated with the given employee.

In this scenario, it would be impractical for a client to fetch

post-condition values for all possible managers on the

chance that the rules might have updated for those

managers.

■ When the client needs to access external resources at

runtime, resources that are inaccessible to RDL code - e.g.,

databases, remote servers, code libraries.

■ When it is necessary to take certain external actions as soon

as the value of a concerned field is changed rather than wait

till the end of inference.

A Change Callback Method is the inverse of an Initialization

Callback Method and may be used in conjunction with it.

Unlike an initialization callback method which is invoked at most

only once, a change callback method may be invoked multiple

times if the engine needs to update the same field multiple

times. For value change callback, the new value provided may

be the Java null value if the field is to be set to unknown by the

engine and the client provided callback is expected to handle

that special case.

Another difference between an initialization callback method and

a change callback method is that new objects cannot be created

and added to the session in a change callback method.

Depending on whether the field is a collection, or whether the

operation is on an instance itself, the following three types of

change callback methods may be defined.

Change Callback Methods

116 Rule Engine: JSR-94 Implementation Guide

Field Value Change Callback

The CA Rule Engineinference engine invokes the field value

change callback method when the value of a field is changed by

the engine. One exception is that if the field is a collection field

and the change is to add or remove an element of that collection,

instead of invoking this callback method, CA Rule Engine invokes

the more specific Element Add/Remove change callback for

improved processing efficiency.

To react to a change to the value of a field, client needs to define

the onChange method. For example, for a field named xYZ, the

signature of the onChange method should be defined as the

following:

public boolean onChangeXYZ(fieldType fieldValue)

where fieldType is the actual data type of the field xYZ and

fieldValue is the new value.

The existing field value of the Java wrapper class is not modified

when a client supplied change callback method for a field change

event is invoked. This may provide the old value to the method.

The callback method has the option to update the field value of

the Java wrapper object to the provided new value if desired.

The method should return true if it chooses to update the field to

the specified value and false otherwise. The CA Rule Engine

inference engine updates the field value of the Java wrapper

class immediately after the user supplied callback method

returns false, to keep it synchronized.

Change Callback Methods

Chapter 5: Using Callback 117

A client field value change callback method may not carry out

any actions that modify state of the current rule session

including updating a changed field to a value other than the

provided new value. In a stateful rule session, the client handler

may optionally get any other objects from the rule session for

inspection only. However, the client wrapper class may need to

separately retain a reference to the stateful rule session object

for that purpose in order to use the getObject calls of the stateful

rule session.

As an alternative to the above approach, if all the actions to be

taken are also appropriate for the Java Bean setter method of

the field, the actions can be directly implemented in the setter

method without defining the onChangeXYZ() method since

default behavior without a client supplied change callback for CA

Rule Engine is to invoke the setter method to update the value of

the field.

Collection-Element Addition/Deletion Callback

When the field is a collection field and the change is to add or

remove elements of that collection rather than setting a whole

new collection to the field, the following two callback methods

will be invoked instead of the onChange method:

public boolean onAddElementXYZ(fieldType fieldValue, int index)

public boolean onDeleteElementXYZ(fieldType fieldValue, int index)

where fieldType is the actual elemental data type of the field xYZ

and fieldValue is the changed element. The index value gives the

position of the changed element. The index value is zero based.

Change Callback Methods

118 Rule Engine: JSR-94 Implementation Guide

The reason to have these two separate callbacks for collection

element addition and deletion is to allow possibly more efficient

handling of the collection than that can be done through direct

array modifications. The assumption is that a Java collection

object such as an ArrayList is actually used in implementation in

the Java wrapper class for a collection field but is exposed as an

array to CA Rule Engine. CA Rule Engine requires array interface

for better type verification purposes. Due to this reason, it is

recommended that client always implements them for a

collection field for carrying out the actual change even if no other

actions are needed. The WrapperMaker tool automatically

generates such callback implementations for collection fields.

The existing field value of the Java wrapper class is not modified

when a client supplied change callback method for an element

addition or deletion change event is invoked. This may provide

the old value to the method. It is preferred for efficiency

purposes for the element addition or deletion change callback to

update the field value by actually adding or deleting the provided

element. The method should return true if it chooses to do so

and false otherwise. The CA Rule Engine inference engine

updates the field value of the Java wrapper class immediately

after the user supplied callback method returns false, to keep it

synchronized.

A client element addition or deletion change callback method

may not carry out any actions that modify the state of the

current rule session including updating the changed field to a

value other than the intended new value. In a stateful rule

session, the client handler may optionally get any other objects

from the rule session for inspection only. However, the client

wrapper class may need to separately retain a reference to the

stateful rule session object for that purpose in order to use the

getObject calls of the stateful rule session.

Change Callback Methods

Chapter 5: Using Callback 119

Instance Creation/Deletion Callback

The CA Rule Engine inference engine invokes the instance

creation or deletion change callback method when rule actions

creates or deletes a dynamic instance.

To react to dynamic instance creation and deletion by CA Rule

Engine, the client needs to provide the following methods:

public static void onCreateInstance(instanceClass instanceObj)

public static void onDeleteInstance(instanceClass instanceObj)

where instanceClass is the name of the class enclosing the

methods and instanceObj is the changed instance object.

Upon entry to the onCreateInstance method, the Java wrapper

object corresponding to the newly created engine instance

would have been automatically added to the session. However,

user should not expect this instance to have any fields initialized

except the instanceName field.

In the onCreateInstance method, it is not forbidden to set initial

values to any pre-condition fields of the new instance using the

setter methods of that instance provided no new objects need to

be added to the session. However, unless such field initialization

is only appropriate for engine created instances, client should

instead use initialization callback for that purpose. An

initialization callback will be invoked for all objects of that class

regardless if the object is static, created by user or by engine.

This callback method will only be invoked for engine created

instances.

Change Callback Methods

120 Rule Engine: JSR-94 Implementation Guide

The Java wrapper object corresponding to the deleted engine

instance will be automatically deleted from the session upon the

return of the onDeleteInstance method.

A client instance creation or deletion change callback method

may not carry out any actions that modify the state of the

current rule session. For example, while the use of setter

methods to initialize pre-condition fields is allowed, use of the

“updateObject” calls of a stateful rule session to push the

changes to the engine is not allowed.

Chapter 6: Tutorial 121

Chapter 6: Tutorial

This chapter explains the procedures of using CA Rule Engine in

detail, both from the client side and from the rulebase side.

Starting with a sample business scenario, this tutorial explains

the authoring of RDL rulebase with the infix rule language and

the Infix2RDL tool, the use of the WrapperMaker tool to generate

the Java classes that wrap the rulebase classes, the addition of

session details to the generated template session class and the

invocation of inferencing services.

A properly installed CA Rule Engine distribution is required to

follow the steps in this tutorial. See Install and Configure CA Rule

Engine for more information. In addition, if drag and drop

invocation of tool scripts is not used, it is also necessary to add

the bin folder of the CA Rule Engine distribution on the PATH. In

order to run the resulting application, it is also necessary to

make sure the current folder, or “.”, have been put on the

CLASSPATH.

All tutorial related files are located in the tutorial folder of the CA

Rule Engine distribution kit.

This section contains the following topics:

Tutorial Scenario (see page 122)

The Rulebase (see page 126)

Java Client Classes (see page 142)

Execute the Application (see page 160)

Tutorial Scenario

122 Rule Engine: JSR-94 Implementation Guide

Tutorial Scenario

The business scenario for the system that is developed in this

tutorial is to determine the pricing tier of a customer's insurance

policy for a fictitious company, Forward Insurance. Both

rulebase authoring and development of Java application are

covered. In order for this tutorial to be applicable for both use

cases mentioned in Using CA Rule Engine, extra requirements

that simulate one or the other situations will be added in the

course of this tutorial.

At Forward Insurance, the pricing tier is determined on the basis

of the customer's financial stability as well as information on the

level of liability involved in the policy. Additional rules are used

to determine the customer's financial stability. This example

represents these rules as decision trees that can be mapped

directly to rule structures in RDL.

Tutorial Scenario

Chapter 6: Tutorial 123

Pricing Tier Decision Tree

The pricing tier rule looks at customer financial stability in terms

of whether it is Excellent, Average, or Poor. Examining of policy

liability is relevant only if the financial stability is Excellent or

Average. If the financial stability is Poor, the customer's

application will be rejected. Policy liability can be High, Med, or

Low.

The pricing tier decision tree can also be expressed as a decision

table.

Tutorial Scenario

124 Rule Engine: JSR-94 Implementation Guide

Customer Financial Stability Decision Tree

Customer financial stability is based on the customer's time in

business, the number of bankruptcies experienced by the

customer, and the policy liability. If the customer has been in

business for 1 year or less, Forward Insurance considers the

financial stability to be Poor. If the customer has been in

business for between 1 and 5 years and has one bankruptcy in

that period, then the policy liability must be considered to

determine financial stability. If the customer has been in

business for more than 5 years, Policy liability is the principal

determinant of financial stability. Bankruptcies need to be

considered only if the policy liability is High. The determination

of customer financial stability is shown in the following decision

tree:

The customer financial stability rule is a true decision tree and

cannot be expressed as a single decision table. Notice that the

order in which bankruptcies and policy liability are considered

depends on which branch of time in business is pursued, and the

difference in branch conditions for the bankruptcies.

Tutorial Scenario

Chapter 6: Tutorial 125

Rulebase Interface Requirements

It is important to consider how these rules interface with their

environment. The system is expected to accept the following as

inputs related to the customer and the coverage.

The following information relates to the customer:

■ The time in business is to be specified to the rulebase as a

duration value.

■ Bankruptcies experienced by the customer. The information

will be passed to the rulebase as a set of dates on which the

bankruptcies occurred.

The coverage must specify the liability involved in the policy. The

policy liability can be High, Med, or Low. Moreover, it should be

possible to pass policy liability as unknown to the rulebase, in

which case the rulebase assumes that the policy liability is High.

The system returns the pricing tier.

To simulate the use case where rulebase authoring is subject to

existing business objects, the policy liability must be passed to

the rulebase as an object of type LiabilityType. The pricing tier

will also be returned through an object of type InsuranceAgent.

The InsuranceAgent object is returned to the client application

from the rulebase, providing the pricing tier.

From the above requirements, four classes will be needed to

form the interface between the rulebase and the client

application: Customer, Coverage, LiabilityType and

InsuranceAgent. For further information on the classes used in

the system, see Rulebase Class Definitions. The structure of the

rulebase interface with client applications is specified in Domain

Interface Definition.

The Rulebase

126 Rule Engine: JSR-94 Implementation Guide

The Rulebase

For this tutorial, it is assumed that a suitable XML editor is

available for creating an RDL rulebase. In fact, a simple text

editor suffices. You create a rulebase named

Forward_Insurance_Pricing_Tier. The infix rule language will be

used in authoring the rules in this tutorial, so forward_infix.xml

may be used as the filename of the rulebase. The rulebase code

is opened with the following skeleton XML code:

<?xml version="1.0" encoding="UTF-8"?>

<rulebase name="Forward_Insurance_Pricing_Tier">

</rulebase>

Rulebase Class Definitions

A required step in constructing an RDL rulebase is to define the

classes that are used by the rules. In general, it is necessary to

settle the scope of the classes to be defined. Classes can exist at

three levels: the rulebase level (with full visibility to all elements

of the rulebase), the domain level, or the ruleset level. However,

any rulebase class that is part of the application interface of the

rulebase, i.e. have corresponding Java classes that wrap them,

must be defined at the rulebase level. On the other hand, if a

class is only internally used during rule inferencing, it may be

better to settle the class at domain or ruleset level as

appropriate.

This is a design issue that must be considered in relationship to

the domains and rulesets that are projected to be part of the

rulebase. In the case of Forward Insurance scenario, however,

the four interface classes will be all that are needed. That means

the scope of the classes in this tutorial will be at the rulebase

level.

The Rulebase

Chapter 6: Tutorial 127

The Customer class requires two fields to support rulebase

inputs: timeInBusiness of type duration, and bankruptcies of

type set of datetimes. In addition, it provides the

financialStability field of type string, which will be resolved

internally by rules. To store values for these fields, an instance

must be specified. Since the system only needs to process one

customer at a time, a static instance suffices. The instance is

named theCustomer. The RDL code for this class is given below:

<class name="Customer">

 <field name="financialStability">

 <datatype_string coll_type="none"/>

 </field>

 <field name="timeInBusiness">

 <datatype_duration coll_type="none"/>

 </field>

 <field name="bankruptcies">

 <datatype_datetime coll_type="set"/>

 </field>

 <instance name="theCustomer"/>

</class>

Since this class is at the rulebase level, the above <class>

element should be a direct child of the <rulebase> element. In

fact, since all classes in this tutorial are at the rulebase level,

each should be a direct child of the <rulebase> element.

The Rulebase

128 Rule Engine: JSR-94 Implementation Guide

The Coverage class requires one field, the policy liability. This

field, however, must reference an instance of another class, the

LiabilityType class. The field is of type instref and points to an

instance of LiabilityType. The possible liabilities of a policy are

represented by three instances of LiabilityType: Low, Med, or

High. The liability field of Coverage points to one of these

instances. Again a static instance will suffice for the Coverage

class and it is named thePolicy.

<class name="Coverage">

 <field name="liability">

 <datatype_instref coll_type="none">

 <identifier name="LiabilityType"/>

 </datatype_instref>

 </field>

 <instance name="thePolicy"/>

</class>

The LiabilityType class represents an enumeration. In RDL an

enumeration can simply be represented as a list of static

instances of the given class.

<class name="LiabilityType">

 <instance name="Low"/>

 <instance name="Med"/>

 <instance name="High"/>

</class>

Finally, define the InsuranceAgent class and its instance, agent.

Define this class with a single field, pricingTier, of type string.

<class name="InsuranceAgent">

 <field name="pricingTier">

 <datatype_string coll_type="none"/>

 </field>

 <instance name="agent"/>

</class>

This completes the necessary class definitions to support the

System Specification.

The Rulebase

Chapter 6: Tutorial 129

Domain Interface Definition

The domain, named PricingTierDomain, must be specified as

appshared in order to interface with the Java client application.

The <domain> element must also be a direct child of the

<rulebase> element. The following skeleton RDL code declares

this <domain> element:

<domain appshared="true" name="PricingTierDomain">

</domain>

The Rulebase

130 Rule Engine: JSR-94 Implementation Guide

Because this domain is appshared, you must specify the

interface fields- both preconditions and postcondition. The

specifications consist of the full identifier_path specification to

the instance field that is part of the interface. The levels of

identifiers involved in these path specifications are class,

instance, and field. The customer's timeInBusiness and

bankruptcy information, as well as the policy's liability type are

the precondition fields. Only the pricingTier field of the agent

needs to be specified as a postcondition.

<interface_fields>

 <precondition_list>

 <identifier_path>

 <identifier name="Customer"/>

 <identifier name="theCustomer"/>

 <identifier name="timeInBusiness"/>

 </identifier_path>

 <identifier_path>

 <identifier name="Coverage"/>

 <identifier name="thePolicy"/>

 <identifier name="liability"/>

 </identifier_path>

 <identifier_path>

 <identifier name="Customer"/>

 <identifier name="theCustomer"/>

 <identifier name="bankruptcies"/>

 </identifier_path>

 </precondition_list>

 <postcondition_list>

 <identifier_path>

 <identifier name="InsuranceAgent"/>

 <identifier name="agent"/>

 <identifier name="pricingTier"/>

 </identifier_path>

 </postcondition_list>

</interface_fields>

The Rulebase

Chapter 6: Tutorial 131

There are no application creatable classes in this example. In

general, if a variable number of objects of a class are needed to

be passed to CA Rule Engine by the client, the class needs to be

declared as application creatable. For example, suppose a

customer can buy multiple policies from Forward Insurance and

the pricing tier for each policy will be related to other ones,

which means the policies must all be considered at once. The

Coverage class will then need to be declared as application

creatable. In this tutorial, the rulebase specifies an empty

<appcreatable_classes> element:

<appcreatable_classes/>

Both <interface_fields> and <appcreatable_classes> elements

are optional, and if used must be direct children of the

<domain> element.

Rulesets and Rules

Rulesets provide an arbitrary means of grouping rules. In this

case all the rules could be placed into a single ruleset; however,

two rulesets are used for illustration purposes:

■ The pricing tier ruleset, which contains the single pricing tier

decision tree rule.

■ The customer financial stability ruleset, which comprises the

customer financial stability decision tree rule and the default

policy liability decision tree rule.

Both the pricing tier decision tree and the customer financial

stability decision tree use multiple levels of nodes. These are

expressed as multiple decisions within each decision tree.

The <ruleset> elements should be the direct children of the

<domain> element to which domain the rulesets belong.

Similarly the <rule> elements should be direct children of the

<ruleset> element to which ruleset the rules belong.

The Rulebase

132 Rule Engine: JSR-94 Implementation Guide

Pricing Tier Ruleset and Rule

The following skeleton RDL code declares the pricing tier ruleset:

<ruleset name="PricingTierRuleSet">

 <effective_ranges/>

</ruleset>

If needed, an optional priority attribute can also be added to the

ruleset declaration, e.g. <ruleset name="PricingTierRuleSet"

priority="10">. The ruleset is defined with an empty

<effective_ranges> element. This element is actually optional

since effective ranges are not used in the Forward Insurance

case. It is included just to illustrate where the element would be

if it is used.

In the pricing tier ruleset, there is only the pricing tier rule. The

following skeleton RDL code declares the pricing tier rule. This

<rule> element should be a direct child of the pricing tier

<ruleset> element. As in the <ruleset> element, an optional

priority attribute can be added and an empty

<effective_ranges> element is included just to illustrate where

the element would be if it is used.

<rule name="PricingTierRule">

 <effective_ranges/>

</rule>

Up to now, standard RDL elements have been used in the

construction of the Forward Insurance pricing tier rulebase.

While RDL elements can also be used directly in authoring rules,

the infix rule language, which is documented separately, is much

more concise and readable in authoring rules. This tutorial will

illustrate the use of the infix language and the conversion from

an infix rulebase to pure RDL rulebase using the Infix2RDL tool.

The Rulebase

Chapter 6: Tutorial 133

To use the infix language in authoring the body of a rule, a

CDATA section is needed to enclose the rule body. This CDATA

section should be direct child of the <rule> element. The code

below shows the infix version of the pricing tier rule:

<![CDATA[

decision PricingTier

eval theCustomer.financialStability

then

 case "Excellent": decision ExcellentCustomer

 case "Average": decision AverageCustomer

 case "Poor": do agent.pricingTier = "Reject" end

end

decision AverageCustomer

eval thePolicy.liability

then

 case Low: do agent.pricingTier = "B" end

 case Med: do agent.pricingTier = "C" end

 case High: do agent.pricingTier = "Refer" end

end

decision ExcellentCustomer

eval thePolicy.liability

then

 case Low: do agent.pricingTier = "A" end

 case Med: do agent.pricingTier = "B" end

 case High: do agent.pricingTier = "C" end

end

]]>

Referring back to The Pricing Tier Decision Tree, it can be seen

that each decision section in the above code corresponds to a

decision node in the decision tree. The item in the eval portion of

the decision corresponds to that to be evaluated in the decision

node. The different case clauses of the decision correspond to

the branches off the decision tree node.

From another point of view, a decision block is also similar to the

switch…case statement in programming languages such as Java.

However, the case conditions allowed in the infix language can

be much more complicated.

The Rulebase

134 Rule Engine: JSR-94 Implementation Guide

Just to illustrate how much more concise and readable the infix

rule language is compared with the raw RDL code in authoring

rules, the following is the RDL equivalent of the pricing tier infix

rule:

<dec_tree_body>

 <decision name="PricingTier">

 <identifier_path>

 <identifier name="theCustomer"/>

 <identifier name="financialStability"/>

 </identifier_path>

 <dec_test_group>

 <part_eq_op>

 <string_constant value="Excellent"/>

 </part_eq_op>

 <dec_ref name="ExcellentCustomer"/>

 </dec_test_group>

 <dec_test_group>

 <part_eq_op>

 <string_constant value="Average"/>

 </part_eq_op>

 <dec_ref name="AverageCustomer"/>

 </dec_test_group>

 <dec_test_group>

 <part_eq_op>

 <string_constant value="Poor"/>

 </part_eq_op>

 <dec_statements>

 <assign_stmt>

 <identifier_path>

 <identifier name="agent"/>

 <identifier name="pricingTier"/>

 </identifier_path>

 <string_constant value="Reject"/>

 </assign_stmt>

 </dec_statements>

 </dec_test_group>

 </decision>

The Rulebase

Chapter 6: Tutorial 135

 <decision name="AverageCustomer">

 <identifier_path>

 <identifier name="thePolicy"/>

 <identifier name="liability"/>

 </identifier_path>

 <dec_test_group>

 <part_eq_op>

 <identifier name="Low"/>

 </part_eq_op>

 <dec_statements>

 <assign_stmt>

 <identifier_path>

 <identifier name="agent"/>

 <identifier name="pricingTier"/>

 </identifier_path>

 <string_constant value="B"/>

 </assign_stmt>

 </dec_statements>

 </dec_test_group>

 <dec_test_group>

 <part_eq_op>

 <identifier name="Med"/>

 </part_eq_op>

 <dec_statements>

 <assign_stmt>

 <identifier_path>

 <identifier name="agent"/>

 <identifier name="pricingTier"/>

 </identifier_path>

 <string_constant value="C"/>

 </assign_stmt>

 </dec_statements>

 </dec_test_group>

The Rulebase

136 Rule Engine: JSR-94 Implementation Guide

 <dec_test_group>

 <part_eq_op>

 <identifier name="High"/>

 </part_eq_op>

 <dec_statements>

 <assign_stmt>

 <identifier_path>

 <identifier name="agent"/>

 <identifier name="pricingTier"/>

 </identifier_path>

 <string_constant value="Refer"/>

 </assign_stmt>

 </dec_statements>

 </dec_test_group>

 </decision>

 <decision name="ExcellentCustomer">

 <identifier_path>

 <identifier name="thePolicy"/>

 <identifier name="liability"/>

 </identifier_path>

 <dec_test_group>

 <part_eq_op>

 <identifier name="Low"/>

 </part_eq_op>

 <dec_statements>

 <assign_stmt>

 <identifier_path>

 <identifier name="agent"/>

 <identifier name="pricingTier"/>

 </identifier_path>

 <string_constant value="A"/>

 </assign_stmt>

 </dec_statements>

 </dec_test_group>

The Rulebase

Chapter 6: Tutorial 137

 <dec_test_group>

 <part_eq_op>

 <identifier name="Med"/>

 </part_eq_op>

 <dec_statements>

 <assign_stmt>

 <identifier_path>

 <identifier name="agent"/>

 <identifier name="pricingTier"/>

 </identifier_path>

 <string_constant value="B"/>

 </assign_stmt>

 </dec_statements>

 </dec_test_group>

 <dec_test_group>

 <part_eq_op>

 <identifier name="High"/>

 </part_eq_op>

 <dec_statements>

 <assign_stmt>

 <identifier_path>

 <identifier name="agent"/>

 <identifier name="pricingTier"/>

 </identifier_path>

 <string_constant value="C"/>

 </assign_stmt>

 </dec_statements>

 </dec_test_group>

 </decision>

</dec_tree_body>

Customer Financial Stability Ruleset and Rules

The customer financial stability ruleset consists of two decision

trees: the customer financial stability rule, and the default policy

liability rule assigning a liability of High to the policy if the

liability is unknown.

The Rulebase

138 Rule Engine: JSR-94 Implementation Guide

As in the pricing tier ruleset, the following skeleton RDL code

declares the customer financial stability ruleset. But this time

the optional <effective_ranges> element is dropped to show

that this element is indeed optional.

<ruleset name="CustomerFinancialStabilityRuleset">

</ruleset>

Customer Financial Stability Rule

The following skeleton RDL code declares the customer financial

stability rule. This <rule> element should be a direct child of the

customer financial stability <ruleset> element. As in the

<ruleset> element, the optional <effective_ranges> element is

dropped just to illustrate that the element is indeed optional.

<rule name="CustomerFinancialStabilityRule">

</rule>

The code below shows the infix version of the customer financial

stability rule. It should be a direct child of the above <rule>

element:

<![CDATA[

decision customerFinancialStability

eval theCustomer.timeInBusiness

then

 case <= dur:1Y: do theCustomer.financialStability = "Poor"

end

 case > dur:1Y .. <= dur:5Y: decision

oneToFiveYearsInBusiness

 otherwise: decision overFiveYearsInBusiness

end

decision oneToFiveYearsInBusiness

eval sizeof theCustomer.bankruptcies

then

 case 0: do theCustomer.financialStability = "Average" end

 case 1: decision underFiveYearsInBusinessOneBankruptcy

 otherwise: do theCustomer.financialStability = "Poor" end

end

The Rulebase

Chapter 6: Tutorial 139

decision overFiveYearsInBusiness

eval thePolicy.liability

then

 case Low: do theCustomer.financialStability = "Excellent"

end

 case Med: do theCustomer.financialStability = "Average" end

 otherwise: decision overfiveYearsInBusinessHighLiability

end

decision underFiveYearsInBusinessOneBankruptcy

eval thePolicy.liability

then

 case Low: do theCustomer.financialStability = "Excellent"

end

 case Med: do theCustomer.financialStability = "Average" end

 otherwise: do theCustomer.financialStability = "Poor" end

end

decision overfiveYearsInBusinessHighLiability

eval sizeof theCustomer.bankruptcies

then

 case 0: do theCustomer.financialStability = "Average" end

 otherwise: do theCustomer.financialStability = "Poor" end

end

]]>

Referring back to the decision tree figure in The Customer

Financial Stability Decision Tree, it can be seen that as in the

case of the pricing tier rule, the same correspondence exists

between the decision blocks in above infix rule body and decision

nodes of the decision tree, between the item in the eval part of

the decision and that inside the decision tree node, and between

the case clauses of each decision and the branches off the

corresponding decision node.

One thing to note is that instead of listing all the conditions of

each eval test as the in the case of the pricing tier rule, the

customer financial stability rule uses the otherwise clause for the

last branch of the decisions. In comparison to the switch…case

statement in programming languages such as Java, the

otherwise clauses in rule language corresponds to the default

clause in Java statement.

The Rulebase

140 Rule Engine: JSR-94 Implementation Guide

Default Liability Rule

The following rule insures that liability points to the High

LiabilityType if it is passed to the rulebase as unknown. This time

the CDATA block for the infix rule is already put inside the rule

body:

 <rule name="DefaultLiabilityRule">

<![CDATA[

decision main

eval liability

then

 unknown: do liability = High end

end

]]>

 </rule>

The unknown clause in the above decision block is a distinct

feature of rule language. It specifies the action to take if the item

in the eval part of the decision is unknown. The unknown clause

has no correspondence in the switch…case statement in

programming languages such as Java.

Note: The CDATA block is not indented. However, indention is

not significant. Since CDATA block is shown verbatim from a

base indention determined by an XML viewer, such as in the case

of the Internet Explorer, any indention introduced here will

become excessive when the XML viewer renders the rulebase

document. The CDATA blocks of previous rules are not indented

either. But that might not be obvious since those blocks are not

shown inside the <rule> tags.

Save the completed rulebase. It is necessary to convert this

rulebase with infix rules, or the infix rulebase, to one that uses

pure RDL so that it can be used by CA Rule Engine.

The Rulebase

Chapter 6: Tutorial 141

Convert Infix Rulebase to RDL

The infix rulebase cannot be used with CA Rule Engine directly. It

must be converted to pure RDL first. This can be achieved by

using the Infix2RDL tool script that is provided in the bin folder

of the CA Rule Engine distribution.

Assuming the requirements outlined at the beginning of this

chapter have been met, if the OS GUI supports drag and drop,

like Windows Explorer for example, one can drag the icon of the

infix rulebase file and drop it onto the icon of the Infix2RDL tool

script in the bin folder of the CA Rule Engine distribution to

generate the pure RDL rulebase as the forward.xml file that will

be located in the same folder as the infix rulebase file.

As an alternative to drag and drop as described above, one can

also start a command shell, change to the directory of the infix

rulebase file, and use the following command to convert the infix

rulebase to one that uses pure RDL:

infix2rdl forward_infix.xml

Since the file name of the infix rulebase follows the naming

convention of having the _infix.xml suffix, there is no need to

specify the optional name for the generated RDL rulebase file.

That also made it possible to use drag and drop. The script will

automatically save the RDL rulebase in the forward.xml file.

Java Client Classes

142 Rule Engine: JSR-94 Implementation Guide

Java Client Classes

The Java client application consists of five classes, four

corresponding to those of the rulebase (Customer, LiabilityType,

Coverage, and InsuranceAgent), and one class to construct the

objects and to invoke the rulebase. The classes that correspond

to the domain of the rulebase must comply with the Rules for

Constructing Java Classes. In particular, unqualified class names

must agree with the rulebase class names. In addition, property

names must also agree with their counterparts in the rulebase.

These classes must:

■ Provide an instanceName attribute and proper accessor

methods.

■ Comply with the standards of Java Beans.

In addition, these classes should implement the Serializable

interface. Otherwise the client is prevented from using any

serialization features.

Care must be taken to insure appropriate mapping of Java

Property types to corresponding rulebase data types. For

example, where the rulebase specifies that timeInBusiness is of

duration type, the corresponding property must be treated as a

string in the Java class. For more information on type mapping,

see Relationship between RDL Field Data Types and Java

Property Types.

The WrapperMaker tool can be used to generate the Java classes

that correspond to the rulebase classes and a template class for

invoking the rulebase. The generated classes satisfy the above

requirements. In addition to being used directly, the generated

classes can also be used as guides in retrofitting existing classes.

Java Client Classes

Chapter 6: Tutorial 143

Generate Java Client Classes from Rulebase

To invoke the rulebase for inferencing in Java using JSR-94 API

of CA Rule Engine, it is necessary to create the Java classes that

wrap the corresponding rulebase classes and an additional

application class. This can be achieved by using the

WrapperMaker tool script that is provided in the bin folder of the

CA Rule Engine distribution.

Assuming the requirements outlined at the beginning of this

chapter have been met, if the OS GUI supports drag and drop,

like Windows Explorer for example, one can drag the icon of the

rulebase file and drop it onto the icon of the WrapperMaker tool

script in the bin folder of the CA Rule Engine distribution to

generate the Java class files that will be located in the same

folder as the rulebase file. By doing that, the following five Java

files are generated:

■ Customer.java

■ Coverage.java

■ InsuranceAgent.java

■ LiabilityType.java

■ Forward_Insurance_Pricing_TierSession.java

The first four Java classes correspond to the rulebase classes of

the same name. The last one is a template application class for

invoking the rulebase. In addition, the WrapperMaker tool also

generates the forward_api.xml file that contains the App

Interface document for the rulebase, see The App Interface

Document.

As an alternative to drag and drop as described above, one can

also start a command shell, change to the directory of the

rulebase file, and use the following command to generate the

same set of files:

wrappermaker forward.xml

Java Client Classes

144 Rule Engine: JSR-94 Implementation Guide

Using drag and drop or the above command, the generated Java

classes will be put in the default package and the files will be put

in the same folder as the rulebase file. If command line approach

is used, one can also optionally specify the package name for the

Java classes and the root location of the Java files. For example,

if one is using a Windows computer, would like to put the

generated classes in the com.forwardinsurance package and

would like to have the root of the generated class hierarchy in

the “C:\PricingTier” folder, the following command can be used

for that purpose:

wrappermaker forward.xml com.forwardinsurance C:\PricingTier

Since changing package name and copying Java files to desired

locations can be easily carried out by a Java IDE, drag and drop

invocation of the WrapperMaker tool likely suffices. For the

purpose of this tutorial, the Java classes will be kept in the

default package.

Retrofit Existing Classes

If one is starting with an existing rulebase and writing a Java

application from scratch, the next step can be simply to add code

to invoke the rulebase to the template rulebase application

class. To simulate the process of retrofitting existing classes for

use with CA Rule Engine, it is assumed that there are existing

classes for the insurance agent class and the policy liability class.

However, since customer's time in business and bankruptcy

information, and the policy liability will be input to the rulebase

directly, there is freedom in the definition of the Customer and

Coverage classes that merely serve as containers for above

information. The WrapperMaker generated version of those two

classes can be used without modification.

Java Client Classes

Chapter 6: Tutorial 145

Note: In the Customer class, the WrapperMaker tool

automatically implemented the collection field bankruptcies with

an ArrayList and generated the following element change

callback methods:

 public boolean onAddElementBankruptcies(String

bankruptciesElem, int index) {

 // TODO: Add additional handling logic here

 if (this.bankruptcies == null)

 this.bankruptcies = new ArrayList();

 this.bankruptcies.add(index, bankruptciesElem);

 return true;

 }

 public boolean onDeleteElementBankruptcies(String

bankruptciesElem, int index) {

 // TODO: Add additional handling logic here

 this.bankruptcies.remove(index);

 return true;

 }

Since the data type for bean property bankruptcies is an array of

Strings for the RDL collection of date time values, the above

callbacks can carry out any element additions and deletions

much more efficiently compared with constructing a whole new

array and setting it to using the setter, which would otherwise be

done by CA Rule Engine.

Java Client Classes

146 Rule Engine: JSR-94 Implementation Guide

Retrofit the InsuranceAgent Class

Suppose the existing class for an insurance agent is defined like

the following:

public class InsuranceAgent {

 private String claimStatus = null;

 private String name = null;

 private String pricingTier = null;

 /**

 * Constructs from the agent name

 * @param name the agent name

 */

 public InsuranceAgent(String name) {

 super();

 this.name = name;

 }

 /**

 * Returns the value of name

 * @return String

 */

 public String getName() {

 return this.name;

 }

 /**

 * Returns the value of pricingTier

 * @return String

 */

 public String getPricingTier() {

 return this.pricingTier;

 }

 /**

 * Sets the value of pricingTier

 * @param pricingTier value to be set

 */

 public void setPricingTier(String pricingTier) {

 this.pricingTier = pricingTier;

 }

Java Client Classes

Chapter 6: Tutorial 147

 /**

 * Processes a claim and return status

 * @param claimNum the claim number

 * @return String

 */

 public String processClaim(int claimNum) {

 // Processing details omitted.

 return this.claimStatus;

 }

}

It is apparent that the existing class has problems on all

requirements mentioned earlier. However, it is rather

straightforward to merge the WrapperMaker tool generated

version of this class with the existing class:

■ The easiest one to fix is to implement the Serializable

interface. It is just a matter of importing the interface and

adding the declaration to the opening of the class. Copying

those from the WrapperMaker version suffices.

■ The instanceName attribute overlaps with the existing name

field. Since name is a private field, it can simply be renamed

to instanceName and the existing getName() method and

constructor can be modified to use this.instanceName

instead without affecting current clients of this class. The

accessor methods for the instanceName attribute can be

simply copied over from the WrapperMaker version.

■ The missing public no-argument constructor can also be

copied over from the WrapperMaker version.

Note: The WrapperMaker version of the InsuranceAgent class

also contains methods equals(), hashcode() and toString().

These methods are not required to invoke rulebase inference but

help user of a generated class to perform actions such as

comparison and report/logging. Since the original

InsuranceAgent class does not contain those functions but does

contain additional field that necessities changes to those

functions and this tutorial will not make use of them, these

functions are not merged into the resulting InsuranceAgent

class.

Java Client Classes

148 Rule Engine: JSR-94 Implementation Guide

The following listing shows the merged results of the

InsuranceAgent class (also save the code as

InsuranceAgent.java to replace the WrapperMaker generated

copy if manual changes described above have not been made):

import java.io.Serializable;

public class InsuranceAgent implements Serializable {

 private String claimStatus = null;

 private String instanceName = null;

 private String pricingTier = null;

 /**

 * The default empty constructor

 */

 public InsuranceAgent() {

 super();

 this.instanceName = null;

 this.pricingTier = null;

 }

 /**

 * Constructs from the instance name

 * @param instanceName the instance name

 */

 public InsuranceAgent(String instanceName) {

 super();

 this.instanceName = instanceName;

 }

 /**

 * Returns the value of instanceName

 * @return String

 */

 public String getInstanceName() {

 return this.instanceName;

 }

 /**

 * Sets the value of instanceName

 * @param instanceName value to be set

 */

 public void setInstanceName(String instanceName) {

Java Client Classes

Chapter 6: Tutorial 149

 this.instanceName = instanceName;

 }

 /**

 * Returns the value of name

 * @return String

 */

 public String getName() {

 return this.instanceName;

 }

 /**

 * Returns the value of pricingTier

 * @return String

 */

 public String getPricingTier() {

 return this.pricingTier;

 }

 /**

 * Sets the value of pricingTier

 * @param pricingTier value to be set

 */

 public void setPricingTier(String pricingTier) {

 this.pricingTier = pricingTier;

 }

 /**

 * Processes a claim and return status

 * @param claimNum the claim number

 * @return String

 */

 public String processClaim(int claimNum) {

 // Processing details omitted.

 return this.claimStatus;

 }

}

Java Client Classes

150 Rule Engine: JSR-94 Implementation Guide

Adapt the Liability Class

Suppose the existing class for policy liability is defined like the

following (also save the code as Liability.java in the same folder

as other source files for later use):

public class Liability {

 private static int enumCount = 0;

 private int enumVal;

 private String name;

 private Liability(String type)

 {

 name = type;

 enumVal = enumCount;

 enumCount++;

 }

 public String toString() { return name; }

 public int toInt() { return enumVal; }

 public static final Liability LOW = new Liability("Low");

 public static final Liability MED = new Liability("Med");

 public static final Liability HIGH = new Liability("High");

}

Like the original InsuranceAgent class, the Liability class also

fails to meet any of the requirements given earlier. However, the

situation is much direr for retrofitting this class to work with CA

Rule Engine. It is apparent that this class follows the type-safe

enum idiom, and for the idiom to work, no public constructors

are allowed. That precludes the possibility of retrofitting the

Liability class to work with CA Rule Engine since a public

no-argument constructor is required in that case, let alone to

mention that implementing serialization for type-safe enum is

quite complicated.

Java Client Classes

Chapter 6: Tutorial 151

The workaround is to introduce a new class that adapts the

Liability class. In fact, the naming of the policy liability class in

the rulebase as LiabilityType rather than simply Liability fits

exactly this purpose, and the WrapperMaker generated

LiabilityType class can be modified slightly to suit the purpose.

In principle, the LiabilityType class should support conversion

between itself and the Liability class. In the context of this

tutorial, since policy liability is just an input to the rulebase,

conversion from the Liability class to the LiabilityType class

suffices. That can be done by simply introducing a new

constructor to the WrapperMaker generated LiabilityType class

that takes a Liability typed object as parameter. This new

constructor can be defined as follows:

/**

 * Constructs from existing Liability object

 * @param objLiability the existing Liability object

 */

public LiabilityType(Liability objLiability) {

 this(objLiability.toString());

}

That is the only needed modification to the generated

LiabilityType class.

Client Application Class

Finally, there must be a class for invoking the rulebase, and the

WrapperMaker generated

Forward_Insurance_Pricing_TierSession class is a template for

such a class.

Note: Unlike the Java classes that have rulebase

correspondents, the name of the session template class can be

changed to any desired one. The WrapperMaker tool appends

Session to the name of the rulebase to form the default name for

that class.

Java Client Classes

152 Rule Engine: JSR-94 Implementation Guide

The WrapperMaker generated session template class mainly

provides two convenience features for a user planning to use the

JSR-94 API to invoke an CA Rule Engine rulebase:

■ The first is that the template class defines all static instances

of rulebase classes that are part of the application interface

as private static fields of the session class. In many cases,

the static rulebase instances may be all that are needed to

perform the require inference task and with their

corresponding Java instances to be fields of the session

class, it will be easy to set and retrieve properties before and

after the inference execution since there is no need to keep

track of handles to them. These fields are declared as static

in anticipation that function that invokes the inference may

be declared static as well for ease of invocation by users of

this session class. However, depending on specific situation,

one may choose a different approach and can simply remove

such field definitions in that case.

■ The other convenience feature is that the template class

defines the getRuleServiceProvider() function that

encapsulates the CA Rule Engine specific initialization for

using the JSR-94 API to carry out inferencing.

The remaining task is to implement a method that accepts inputs

to the rulebase and returns desired output. In this tutorial, the

static method infer() takes this role. To be more realistic, this

session class will also provide methods to register and deregister

the pricing tier rule execution set. In order to make the result

runable, a main() method and a performPricingTierInference()

method are also added to invoke the infer() method on a couple

of test cases.

Java Client Classes

Chapter 6: Tutorial 153

The following is the complete listing of the resulting Forward

Insurance pricing tier session class:

import javax.rules.*;

import javax.rules.admin.*;

import java.io.InputStream;

import java.util.List;

import java.util.LinkedList;

/**

 * Invoke inference using JSR-94 API to get pricing tier

 */

public class Forward_Insurance_Pricing_TierSession {

 // Static instances defined in rulebase

 private static Customer theCustomer = new

Customer("theCustomer");

 private static Coverage thePolicy = new Coverage("thePolicy");

 // The rule service provider ID as defined by CA implementation.

 private static final String RULE_SERVICE_PROVIDER =

"com.ca.cleverpath.aion.jsr94";

 // The URI for the rule execution set

 private static String ruleSetUri = "rulebases://forward";

 /**

 * Get the CA implementation of rule service provider

 * @return the rule service provider object

 * @throws Exception

 */

 private static RuleServiceProvider getRuleServiceProvider()

throws Exception {

 // Load the CA implementation of rule service provider.

 // Loading this class will automatically register this

 // provider with the provider manager.

 Class.forName(RULE_SERVICE_PROVIDER +

".RuleServiceProviderImpl");

 // Get the rule service provider from the provider manager

and return it.

Java Client Classes

154 Rule Engine: JSR-94 Implementation Guide

 return

RuleServiceProviderManager.getRuleServiceProvider(RULE_SERVICE_PR

OVIDER);

 }

 /**

 * Register the pricing tier rule execution set

 */

 public static void registerPTRuleExecutionSet() {

 try {

 // Get the rule service provider

 RuleServiceProvider svcProvider =

getRuleServiceProvider();

 // Get the Rule Administrator

 RuleAdministrator ruleAdmin =

svcProvider.getRuleAdministrator();

 // Get the Local Rule Set provider

 LocalRuleExecutionSetProvider ruleSetProvider =

 ruleAdmin.getLocalRuleExecutionSetProvider(null);

 // Get an input stream to the Rulebase XML file.

 InputStream inStream =

Forward_Insurance_Pricing_TierSession.class.getResourceAsStream("

forward.xml");

 // Create the RuleExecutionSet for the rulebase file

 RuleExecutionSet ruleSet =

ruleSetProvider.createRuleExecutionSet(inStream, null);

 // Close the reader

 inStream.close();

 // Register the rule execution set

 ruleAdmin.registerRuleExecutionSet(ruleSetUri,

ruleSet, null);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

Java Client Classes

Chapter 6: Tutorial 155

 /**

 * Deregister the pricing tier rule execution set

 */

 public static void deregisterPTRuleExecutionSet() {

 try {

 // Get the rule service provider

 RuleServiceProvider svcProvider =

getRuleServiceProvider();

 // Get the Rule Administrator

 RuleAdministrator ruleAdmin =

svcProvider.getRuleAdministrator();

 // Deregister the rule execution set

 ruleAdmin.deregisterRuleExecutionSet(ruleSetUri,

null);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

Java Client Classes

156 Rule Engine: JSR-94 Implementation Guide

 /**

 * Executes pricing tier rulebase with the given inputs

 * @param customerTimeInBusiness, W3C style duration string

 * @param customerBankruptcies, array of W3C style datetime

strings

 * @param policyLiability, one of the three enum instances or

null for unknown

 * @return the InsuranceAgent that has the pricing tier info

 */

 public static InsuranceAgent infer(String

customerTimeInBusiness,

 String[] customerBankruptcies, Liability

policyLiability) {

 // Create an agent object to hold results

 InsuranceAgent agent = new InsuranceAgent("agent");

 try {

 // Get the rule service provider

 RuleServiceProvider svcProvider =

getRuleServiceProvider();

 // Create a runtime

 RuleRuntime runtime = svcProvider.getRuleRuntime();

 // Create a Stateless Rule Session using the Runtime

instance

 // If the pricing tier rule execution set has not been

registered,

 // register it and note the fact.

 boolean previouslyRegistered = true;

 StatelessRuleSession session = null;

 try {

 session = (StatelessRuleSession)

runtime.createRuleSession(

 ruleSetUri,

 null,

 RuleRuntime.STATELESS_SESSION_TYPE);

 } catch (RuleExecutionSetNotFoundException e) {

 registerPTRuleExecutionSet();

 session = (StatelessRuleSession)

runtime.createRuleSession(

 ruleSetUri,

 null,

 RuleRuntime.STATELESS_SESSION_TYPE);

Java Client Classes

Chapter 6: Tutorial 157

 previouslyRegistered = false;

 }

 // Set the input fields

theCustomer.setTimeInBusiness(customerTimeInBusiness);

 theCustomer.setBankruptcies(customerBankruptcies);

 // Need to support unknown liability so test if input is

null

 thePolicy.setLiability((policyLiability == null) ? null

: new

 LiabilityType(policyLiability));

 // Add the objects to the list to be passed to the rule

engine.

 List inputObjects = new LinkedList();

 inputObjects.add(theCustomer);

 inputObjects.add(thePolicy);

 inputObjects.add(agent);

 // EXECUTE THE RULES!

 // LiabilityType object will be passed implicitly

 // because it is referenced by policy.

 session.executeRules(inputObjects);

 // Release session

 session.release();

 // Deregister rule execution set if it is registered by

this call

 if (!previouslyRegistered)

 deregisterPTRuleExecutionSet();

 } catch (Exception e) {

 e.printStackTrace();

 return null;

 }

 return agent;

 }

Java Client Classes

158 Rule Engine: JSR-94 Implementation Guide

 /**

 * Carry out and report pricing tier inference using the given

inputs to rulebase

 * @param customerTimeInBusiness, W3C style duration string

 * @param customerBankruptcies, array of W3C style datetime

strings

 * @param policyLiability, one of the three enum instances or

null for unknown

 */

 private static void doPricingTierInference(String

customerTimeInBusiness,

 String[] customerBankruptcies, Liability

policyLiability) {

 System.out.println("Customer time in business: " +

 ((customerTimeInBusiness == null) ? "unknown" :

customerTimeInBusiness));

 System.out.println("Customer bankrupted " +

 ((customerBankruptcies == null) ? "unknown" :

 Integer.toString(customerBankruptcies.length)) + "

time(s)");

 System.out.println("Policy liability is " +

 ((policyLiability == null) ? "unknown" :

policyLiability.toString()));

 InsuranceAgent agent = infer(customerTimeInBusiness,

 customerBankruptcies, policyLiability);

 String tier = agent.getPricingTier();

 System.out.println("Resulting pricing tier is: " +

 ((tier == null) ? "unknown" : tier));

 System.out.println();

 }

 public static void main(String[] args) {

 doPricingTierInference("P3Y", new String[] {"2003-06-24"},

null);

 doPricingTierInference("P7Y", new String[] {},

Liability.MED);

 doPricingTierInference("P2Y", null, Liability.MED);

 }

}

Java Client Classes

Chapter 6: Tutorial 159

A few things about the implementation of the session class to

note are:

■ Additional imports are necessary to support (1) invoking the

JSR-94 admin functions, (2) converting the forward.xml file

into an InputStream to feed into CA Rule Engine, and (3)

passing a list of objects to the rulebase.

■ The WrapperMaker generated field definitions for the three

liability types and the insurance agent object have been

removed. For the case of liability type objects, they are not

explicitly used. As for the insurance agent object, returning

a dynamically constructed one will reduce the chance that

the caller will refer to an object that has been changed by a

subsequence inference session. However, if it is known that

the caller will not hold the returned reference to the

insurance agent object for later use, the WrapperMaker

generated static insurance agent object can be used to

reduce memory usage.

■ The return value of the executeRules() call is not used. In

principle, that return value contains the references to

objects returned after inferencing and should be examined

to retrieve the results. In this case, since the insurance

agent object is in the scope of the infer() function, there is

no need to retrieve another reference to it from the return

value of the executeRules() call.

■ The infer() method registers the pricing tier rule execution

set on the fly and deregister afterwards if the caller has not

registered it before. This structure allows easy usage by a

causal user. However, the caller should separately register

and deregister the rule execution set for batch operation to

improve efficiency.

Execute the Application

160 Rule Engine: JSR-94 Implementation Guide

Execute the Application

In principle, a separate caller program will invoke the

Forward_Insurance_Pricing_TierSession.infer() method to

perform the pricing tier analysis. For simplicity, the session class

has been made directly runnable. To execute it, just start a

command shell and change directory to the folder that contains

the code files for this tutorial. Assuming default has been taken

when running the Infix2RDL and the WrapperMaker tools, this

folder should contain the following 3 XML files and 6 Java source

files:

■ forward_infix.xml

■ forward_api.xml

■ forward.xml

■ Customer.java

■ Coverage.java

■ InsuranceAgent.java (modified as previously described)

■ Liability.java (saved as previously described)

■ LiabilityType.java (modified as previously described)

■ Forward_Insurance_Pricing_TierSession.java (modified as

previously described)

Execute the Application

Chapter 6: Tutorial 161

First the Java source files need to be compiled. Assuming PATH

and CLASSPATH have been set as described at the beginning of

this chapter, the following command compiles the Java source

files:

javac *.java

The following command can be used to run the application:

java Forward_Insurance_Pricing_TierSession

The following outputs should be the results of the execution:

Customer time in business: P3Y

Customer bankrupted 1 time(s)

Policy liability is unknown

Resulting pricing tier is: Reject

Customer time in business: P7Y

Customer bankrupted 0 time(s)

Policy liability is Med

Resulting pricing tier is: C

Customer time in business: P2Y

Customer bankrupted unknown time(s)

Policy liability is Med

Resulting pricing tier is: unknown

For the first two cases, the pricing tier rulebase successfully

resolved the pricing tier and the results can be easily verified by

referring back to the decision trees given in The Pricing Tier

Decision Tree and The Customer Financial Stability Decision

Tree, and taking the default liability type rule into account. For

the last case, with the customer's bankruptcy information as

unknown, the existing rules cannot resolve the case and the

resulting pricing tier is still unknown.

Execute the Application

162 Rule Engine: JSR-94 Implementation Guide

Obtain Log of Execution

To obtain a log of execution, it is necessary to configure the

logging for CA Rule Engine, see Configure and Execute Logging

for CA Rule Engine. For this tutorial, the sample configuration file

“log4j.properties” available in the samples folder in the CA Rule

Engine distribution can be used. That file configures CA Rule

Engine for logging at the WARN level, in append mode. Just copy

that file to the folder containing the tutorial files and run the

application with the following command:

java -Dlog4j.configuration=log4j.properties

Forward_Insurance_Pricing_TierSession

The file JSR94-wrapper.log can be found after the execution.

Since log4j.properties is loaded by log4j's default configuration

algorithm, the option -Dlog4j.configuration=log4j.properties is

actually optional. The content of the file will be similar to the

following (note that the lines are wrapped):

14:24:47,461 ERROR com.ca.cleverpath.aion.jsr94.RuleRuntimeImpl

main - JSR94-6003: Specified uri: rulebases://forward cannot be

resolved to a registered RuleExecutionSet

14:24:48,853 ERROR com.ca.cleverpath.aion.jsr94.RuleRuntimeImpl

main - JSR94-6003: Specified uri: rulebases://forward cannot be

resolved to a registered RuleExecutionSet

14:24:48,993 ERROR com.ca.cleverpath.aion.jsr94.RuleRuntimeImpl

main - JSR94-6003: Specified uri: rulebases://forward cannot be

resolved to a registered RuleExecutionSet

The preceding three lines are the results of executing the first

createRuleSession() call in the infer() method. Since the main()

method neglected to register the pricing tier rulebase

beforehand, the call results in a

RuleExecutionSetNotFoundException being thrown, which the

infer() method handled by dynamically registering the rule

execution set and created the rule session by executing the

second createRuleSession() call.

Execute the Application

Chapter 6: Tutorial 163

Obtain Inferencing Summary Documents

Changes to the Forward_Insurance_Pricing_TierSession class

will be needed to obtain the optionally generated Inferencing

Summary documents for rule behaviors during an inference

session. For general information for obtaining Inferencing

Summary documents, see Obtain Rulebase Documents. Specific

to this tutorial, the following changes to

Forward_Insurance_Pricing_TierSession .java file will be

needed:

1. Add the following import statements at the beginning of the

file for defining a property map and for obtaining and writing

out the Inferencing Summary documents:

import

com.ca.cleverpath.aion.jsr94.AionRulesEngineProperties;

import java.util.Hashtable;

import

com.ca.cleverpath.aion.jsr94.CARuleExecutionSetMetadata;

import java.io.FileWriter;

2. Just before the inner try block of the infer() method, add the

following definition of the property map:

Hashtable sessionProps = new Hashtable();

sessionProps.put(

AionRulesEngineProperties.RULEBASE_GENERATE_INFERENCING_SUMMA

RY,

 new Boolean(true)

);

Execute the Application

164 Rule Engine: JSR-94 Implementation Guide

Change the third parameter of the two createRuleSession()

calls in the infer() method from null to sessionProps.

Add the following in between the session.executeRules() call

and the session.release() call:

// Obtain and write out Inferencing Summary document

 CARuleExecutionSetMetadata ruleExecSetInfo =

(CARuleExecutionSetMetadata)

 session.getRuleExecutionSetMetadata();

 String xmldoc = ruleExecSetInfo.getInferencingSummary();

 FileWriter xmlFile = new FileWriter("inferSummary-" +

 customerTimeInBusiness + ".xml");

 xmlFile.write(xmldoc);

 xmlFile.close();

Save and recompile the Forward_Insurance_Pricing_TierSession

.java file and run the application again. Three Inferencing

Summary document files corresponding to the three sample

cases are generated in the same folder. Comparing the rule

behavior for the PricingTierRule between the first case (the P3Y

case):

<rule abort_count="0" fail_count="0" fire_count="1"

name="PricingTierRule"

 objid="" pend_count="1">

 <decision base_pend_count="1" iter_pend_count="0"

name="PricingTier" objid="">

 <alternative abort_count="0" action_pend_count="0"

altpos="3" apply_count="1"

 premise_pend_count="0"/>

 </decision>

</rule>

and the third case (the P2Y case):

<rule abort_count="0" fail_count="0" fire_count="0"

name="PricingTierRule"

 objid="" pend_count="1">

 <decision base_pend_count="1" iter_pend_count="0"

name="PricingTier" objid=""/>

</rule>

It can be seen that the rule fired in the first case and thus

resolved the pricing tier for that case but not in the third case so

the pricing tier was still unknown for it.

Execute the Application

Chapter 6: Tutorial 165

Filter the Returned Rulebase Objects

In the preceding implementation of the session class, the

executeRules() method returned a list of objects that included

the rulebase precondition objects as well as the postcondition

objects. That can become more evident if the executeRules() call

in the infer() method is replaced following:

List objectsReadBack = session.executeRules(inputObjects);

System.out.println("Number of objects returned is " +

objectsReadBack.size());

Recompile and run the application will cause the following line of

output being added to all three cases:

Number of objects returned is 4.

With the four objects being the theCustomer, thePolicy and

agent objects that was explicitly passed to CA Rule Engine

engine and the implicitly passed policy liability object of the class

LiabilityType.

Suppose that the list of objects were prepared by a different

function, and thus the agent object is not in the scope of the

function that executes the inference, and it must be retrieved

from the returned list of object references. It will be desirable

then to return just the InsuranceAgent object. The

executeRules() method would still return a list of objects, but

that list would contain only one object, namely the postcondition

object, agent.

It is possible to achieve this level of control over what is returned

by the rulebase through the use of ObjectFilters. For an

explanation of ObjectFilters, see Object Filters. This section

shows how to write an ObjectFilter that would return just the

InsuranceAgent instance and how to incorporate this object into

the session implementation code.

Execute the Application

166 Rule Engine: JSR-94 Implementation Guide

Write ObjectFilters

An ObjectFilter is a special type of object that can be passed to

either a stateful or stateless rule session. CA Rule Engine knows

how to use this special object to decide which objects it will

return to the client application. It is essential that the object

passed to the session implements the Object filter(Object

object) method of the ObjectFilter class. If an ObjectFilter has

been provided, CA Rule Engine calls this method and passes as

the input argument the object that it wants to return to the client

application. The implementation code has the option of returning

that object (if it is to be returned to the client application) or

returning null if the object is not to be returned.

Execute the Application

Chapter 6: Tutorial 167

A simple ObjectFilter for filtering only the InsuranceAgent object

is as follows (also save the code as AgentObjectFilter.java in the

source file folder):

// java imports

import javax.rules.ObjectFilter;

/**

* Utility filter class for the tutorial application.

 * <p>

 * This class implements an ObjectFilter that will be used to select

the

 * InsuranceAgent instance to return to the Java client application.

*/

public class AgentObjectFilter implements ObjectFilter

{

 /** AgentObjectFilter constructor. */

 public AgentObjectFilter() { }

 /** @see javax.rules.ObjectFilter#filter */

 public Object filter(Object object)

 {

 if (object instanceof InsuranceAgent)

 return object;

 return null;

 }

 /** @see javax.rules.ObjectFilter#reset */

 public void reset() { }

}

Execute the Application

168 Rule Engine: JSR-94 Implementation Guide

Returning Only the InsuranceAgent Object

The code in this section further modifies the

Forward_Insurance_Pricing_TierSession class code, see Client

Application Class, to create the filter object and then passes the

filter object to the session object by using the overloaded form of

the executeRules() method. Replace the executeRules() call in

the infer() with the following:

//create an ObjectFilter that returns only InsuranceAgent objects.

AgentObjectFilter insuranceAgentFilter = new AgentObjectFilter();

List objectsReadBack = session.executeRules(inputObjects, insuranceAgentFilter);

Compile the AgentObjectFilter.java file, recompile the

Forward_Insurance_Pricing_TierSession.java file and run the

application again, the number of returned objects changed to

one as indicated by the following line of output in all three cases:

Number of objects returned is 1.

Appendix A: Samples 169

Appendix A: Samples

This appendix describes the sample applications included in the CA Rule Engine

distribution. Each sample application includes a rulebase and Java source files

for invoking inference using that rulebase through the JSR-94 API provided by

CA Rule Engine. The description given for each sample explains the scenario

behind it and provides notes on specific features of the rulebase and its

associated Java implementation.

All sample related files are located in the samples folder in the CA Rule Engine

distribution. The Java source files of each sample are put inside the

com.ca.cleverpath.aion.jsr94.samples.sampleName package, where

sampleName is the name of the sample in lowercase letters without space. The

samples folder in the CA Rule Engine distribution is the root folder of the

packages. For each sample rulebase, both infix version and pure RDL versions

are provided respectively in the infix and xml folders which are at the same level

as the sampleName folders that contain Java source files. Script files for building

and running the provided samples can be found directly under the samples

folder.

Running a Sample Application

In order to build and run the provided sample applications, the CA Rule Engine

distribution must have been properly installed. See Install and Configure CA Rule

Engine for more information. The batch/script files provide in the samples folder

do take care of CLASSPATH settings for the sample applications.

The following sample batch files for Windows and corresponding shell scripts for

UNIX/Linux platform are provided to compile and run the samples:

■ compilesamples to compile all sample client applications.

■ runsampleNameadmin to run the administrator part of the sampleName

sample. For example, the runtlpadmin script runs the administrator part of

the TLP sample.

■ runsampleNamesession to run the whole rule session of the sampleName

sample. For example, the runtlpsession script runs the rule session part of

the TLP sample.

These sample batch files also illustrate the CLASSPATH settings needed and the

use of log4j logging framework configuration for CA Rule Engine. In the sample

batch files, the default way to configure log4j framework is using the System

property log4j.configuration. Applications can choose to configure log4j in one of

the many ways that the framework supports.

TLP Sample

170 Rule Engine: JSR-94 Implementation Guide

Since the purposes for the sample applications are more for illustrating ideas and

they evolved from test cases for the CA Rule Engine, the implementation of the

Java session classes for the sample applications is not polished. User is

encouraged to modify the sample applications, especially the session classes to

their own needs, e.g. to test different precondition values. The provided scripts

help in build and run the customized samples.

Also see the Readme in the samples folder in the CA Rule Engine distribution for

any updated instructions on running the sample applications.

TLP Sample

The TLP sample is a version of the Forward Insurance case used in the Tutorial

chapter. To avoid conflicting names, the name of the company in this sample is

changed to TLP. This sample demonstrates the use of multiple domains to

organize rules for different purposes.

TLP System

The TLP insurance company wants to use inferencing for the calculation of

pricing tier to be used by its insurance agents in preparing quotes. In the

process, additional rules are also used for the calculation of intermediate results

such as the property-insurance risk based on building materials, customer

information, and so forth.

The following are the inputs to this sample application:

■ Customer Information:

Time in business

Occurrences of bankruptcies (date and times for them)

Years at current address

■ Coverage or policy information:

Type of coverage (“Building,” “Contents” or “Malpractice”)

Type of risk (“Medical,” “Construction” or “Retail”)

■ Property information:

Type of construction (“Brick,” “Stick” or “Straw”)

Property value

Construction date

Information on whether excessive prior losses have been paid

TLP Sample

Appendix A: Samples 171

The following are the outputs from this sample application:

■ Intermediate results calculated:

Customer financial stability (“Poor,” “Average” or “Excellent”)

Coverage liability (“Low,” “Med” or “High”)

Property Risk (“Low,” “Med” or “High”)

■ Final result calculated:

Pricing Tier for use by Insurance Agent (“A,” “B,” “C” or “Reject”)

Additionally, in the sample application, the pricing tier is adjusted based on the

region of the property.

The following are inputs for adjusting pricing tier:

■ Property information:

Region of the property (“Region1,” “Region2” or “Region3”)

■ Insurance agent information:

The calculated pricing tier (“A,” “B,” “C” or “Reject”)

The following are the outputs from this adjustment:

■ Insurance agent information:

The adjusted pricing tier (“A,” “B,” “C” or “Reject”)

TLP Sample Rulebase

The TLP sample rulebase defines two appshared domains, PricingTierDomain

and RegionAdjustmentDomain, for calculating the pricing tier and the adjusted

pricing tier respectively. In both appshared domains, the corresponding inputs

(see Sample JSR-94 Applications) appear as pre-conditions and the resulting

outputs including the intermediate terms appear as post-conditions.

TLP Sample

172 Rule Engine: JSR-94 Implementation Guide

In the PricingTierDomain, the following are the rules for calculating outputs from

inputs:

■ The coverage liability rule calculates coverage liability based on type of

coverage and type of risk.

■ The property age rule calculates the age of the property based on its

construction date.

■ The property risk rule calculates property risk based on type of construction,

age of the property, information on whether excessive prior losses have

been paid and property value.

Note: The age of the property is calculated based on its construction date.

■ The customer financial stability rule calculates customer financial stability

based on years in business, number of bankruptcies and years at current

address.

■ The pricing tier rule calculates the final result-pricing tier based on

previously calculated intermediate results (coverage liability, property risk

and customer financial stability).

■ Additionally, there are some rules for assigning default values to the

pre-conditions when their values are unknown. For example, if the

construction type of the property is unknown, it is assigned a value of

“Straw” by default.

In the RegionAdjustmentDomain, outputs are calculated from inputs. The region

adjustment rule calculates the adjusted pricing tier based on the region of the

property and the calculated pricing tier.

The sample rulebase defines the following rulebase classes and static instances

to capture the business objects:

■ Customer, static instance: theCustomer

Fields:

timeInBusiness, rulebase data type: duration

bankruptcies, rulebase data type: set of datetime

yearsAtCurrentAddress, rulebase data type: number with precision 0

financialStability, rulebase data type: string

TLP Sample

Appendix A: Samples 173

■ Coverage, static instance: thePolicy

Fields:

typeOfCoverage, rulebase data type: string

typeOfRisk, rulebase data type: string

liability, rulebase data type: string

Note: The fields typeOfCoverage and typeOfRisk can also be defined as

inst-ref type that refers to CoverageType and RiskType classes that have

static instances enumerate the types of coverage and types of risk. The

Property class below adopts such an approach for its typeOfConstruction and

region fields. The advantage of that approach is better error handling at

compile time.

■ Property, static instance: theProperty

Fields:

value, rulebase data type: number with precision 0

constructionDate, rulebase data type: datetime

hasExcessiveLossesPaid, rulebase data type: boolean

typeOfConstruction, rulebase data type: inst_ref to ConstructionType class

region, rulebase data type: inst_ref to PropertyRegion class

risk, rulebase data type: string

■ InsuranceAgent, static instance: agent

Fields:

pricingTier, rulebase data type: string

adjustedTier, rulebase data type: string

■ ConstructionType, static instances: Brick, Stick, Straw

■ PropertyRegion, static instances: Region1, Region2, Region3

TLP Sample

174 Rule Engine: JSR-94 Implementation Guide

Java Applications for the TLP Sample

The package used for the TLP sample application is:

com.ca.cleverpath.aion.jsr94.samples.tlp

The following bean classes are defined to match the rulebase classes defined in

the sample rulebase:

■ Customer

Properties:

instanceName, Java data type: String

yearsAtCurrentAddress, Java data type: Integer

timeInBusiness, Java data type: String

bankruptcies, Java data type: String[]

financialStability, Java data type: String

Note: For a number field like the yearsAtCurrentAddress field, the preferred

Java data type is BigDecimal, which is used by the WrapperMaker tool for the

Java data type corresponding to the number type in RDL regardless of

precision specified by RDL. However, depending on actual values for that

field and other constraints, alternative data types such as Integer may be

used instead.

■ Coverage

Properties:

instanceName, Java data type: String

typeOfCoverage, Java data type: String

typeOfRisk, Java data type: String

liability, Java data type: String

■ Property

Properties:

instanceName, Java data type: String

value, Java data type: Integer

constructionDate , Java data type: String

hasExcessiveLossesPaid, Java data type: Boolean

typeOfConstruction, Java data type: ConstructionType class

region, Java data type: PropertyRegion class

risk, Java data type: String

TLP Sample

Appendix A: Samples 175

■ InsuranceAgent

Properties:

instanceName, Java data type: String

pricingTier, Java data type: String

adjustedTier, Java data type: String

■ ConstructionType

Property: instanceName, Java data type: String

■ PropertyRegion

Property: instanceName, Java data type: String

These classes define the business objects. Note that the class names have been

carefully chosen so that the unqualified Java class names correspond to

matching rulebase class names. The bean class property names match the

rulebase class field names and the Java data types for the bean class properties

are compatible with the rulebase field types. For CA Rule Engine component to

verify the Java classes and objects, these rules need to be followed.

For the TLP sample, the following sample application programs are provided to

illustrate the use of CA Rule Engine, CA's implementation of the JSR-94:

■ TLPAdmin.java illustrates creation of a RuleExecutionSet from the sample

rulebase TLP.xml file and shows all properties of the rule set using the

administrator API of JSR-94.

■ TLPSession.java illustrates a full cycle of operations for inferencing using the

sample rulebase .xml file. This includes not only some administrative

functionality, such as registering the rule set, but also runtime functionality,

such as creating a stateful rule session, adding objects to it and executing

rules on it. In particular, it illustrates the selection of a domain in creating a

rule session.

Another point to note is that the WrapperMaker tool was not used in the creation

of the Java classes for the TLP sample since this sample was developed before

the tool. For those classes that wrap the corresponding rulebase classes, the

difference is limited to the selection of a different numerical Java type for the

rulebase number type, e.g. use of Integer rather than BigDecimal. For the

session class, it doesn't declare the private static fields corresponding to the

static instances inside the rulebase as would the WrapperMaker tool. It rather

defines those inside the function that carries out inference. However, the

difference is more on the side of programming style.

Shopping Cart Sample

176 Rule Engine: JSR-94 Implementation Guide

Shopping Cart Sample

The Shopping Cart Sample illustrates the use of iterative expressions and

decisions in rulebase design. The design of the rulebase also illustrates the use of

client creatable classes. It is also illustrates the use of private classes (for

example, classes that are not used in either preconditions or postconditions) and

the private classes may be defined at a lower level than the rulebase level,

depending how such a class is used.

Shopping Cart System

A fictitious online merchant would like to use rules to automatically apply

vouchers a customer has against eligible purchases in his shopping cart,

computes overall discounts and issuing new vouchers based on various

properties of the customer and the items purchased.

The following are the inputs to this sample application:

■ Customer Information:

ID number

One of three regions (“Region1,” “Region2” or “Region3”) where customer is

located

Vouchers the customer has

■ Shopping cart Information:

Customer using this cart

Items the customer purchased

■ Item:

Price

Description

■ Voucher:

Value

Expiration date

Category

Whether used

Shopping Cart Sample

Appendix A: Samples 177

The following are the outputs from this sample application:

■ For the shopping cart:

Total amount of purchase, i.e. sum of item price

Net amount of purchase, i.e. after applying qualified vouchers

Average item price

Standard deviation of item price

■ For the customer:

Discount rate for the customer to be applied to the overall transaction.

Updated vouchers with new ones if applicable.

Shopping Cart Sample Rulebase

The Shopping cart sample rulebase defines the DiscountsAndVouchers

appshared domain for calculating discounts and processing vouchers. There are

four rulesets defined in that domain:

■ The Validation ruleset groups rules to validate the preconditions that the

user input to the system.

■ The PrelimCalcs ruleset groups rules to calculate the purchase amount and

statistics for the items in the shopping cart.

■ The ApplyDiscountRate ruleset groups rules to calculate the discount rate for

the customer to be applied to the overall transaction.

■ The ApplyVouchers ruleset contains the rule to issue new vouchers to

customer for eligible transaction.

Shopping Cart Sample

178 Rule Engine: JSR-94 Implementation Guide

The four rulesets are prioritized according to the above listing order so that they

are invoked in that sequence. Within the PrelimCalcs and the ApplyDiscountRate

rulesets, rules are also prioritized so that they can be applied sequentially.

The design of the class structure in the Shopping Cart sample rulebase largely

follows those dictated by the input and outputs of the system with some less

intuitive design changes just to illustrate certain functionality of the RDL. The

following classes are defined at the rulebase level:

■ Customer, creatable by application

Fields:

id, rulebase data type: number with precision 0

discountRate, rulebase data type: number with precision 1

region, rulebase data type: inst-ref to CustomerRegion class

vouchers, rulebase data type: inst-ref to set of Vocuher class objects

iiCategory, rulebase data type: inst-ref to IICustomerCategory class

■ CustomerRegion, static instances: REGION1, REGION2, REGION3

■ Item, creatable by application

Fields:

price, rulebase data type: number with precision 2

description, rulebase data type: string

iiCategory, rulebase data type: string

■ ShoppingCart, static instance theCart

Fields:

theCustomer, rulebase data type: inst-ref to Customer class

netPurchases, rulebase data type: number with precision 2

totalPurchases, rulebase data type: number with precision 2

avgPrice, rulebase data type: number with precision 2

stdDevPrice, rulebase data type: number with precision 6

■ Voucher, creatable by application

Fields:

value, rulebase data type: number with precision 2

expirationDate, rulebase data type: datetime

itemCategory, rulebase data type: string

isUsed, rulebase data type: boolean

■ IICustomerCategory, static instances: GOLD, SILVER, BRONZE

Shopping Cart Sample

Appendix A: Samples 179

■ IIItemGroup

Fields:

category, rulebase data type: string

totalPurchases, rulebase data type: number with precision 2

minItemPrice, rulebase data type: number with precision 2

items, rulebase data type: inst-ref to set of Item class objects

Note: Any field whose name begins with ii is used internally by the rulebase. This

is also true for any class whose name begins with II.

In addition to classes defined at the rulebase level, this sample rulebase also

defines a private class at the ruleset level for the PrelimCalcs ruleset.

Even though the items conceptually should belong to the shopping cart, this

sample chooses to use rules to load the items from all client-created Item

instances so that the shopping cart class does not need to contain references to

them.

Other design details of the rules of interests include:

■ Rule: Validation.ValidateItems illustrates use of the SUBSTRING and

STRINDEX operators.

■ Rule: PrelimCalcs.SortFilteredVouchers illustrates use of SORT operator for

sorting vouchers at multiple levels.

■ Rule: PrelimCalcs.CalcitemGroups illustrates use of the iterative EXISTS and

SELECT ONE operators. It also creates instances of a class (IIItemGroup).

■ Rule: PrelimCalcs.SummarizeGroupItems illustrates use of the iterative

SUMMATION, SELECT ONE and SORT operators - and includes an example of

nested expressions.

■ Rule: PrelimCalcs.ApplySortedVouchers illustrates use of “nested iteration”.

■ Rule: PrelimCalcs.SummarizeCartContents illustrates use of the iterative

SUMMATION, AVERAGE and STANDARD DEVIATION operators.

■ Rule: ApplyDiscountRate.IncreaseDiscountRate illustrates use of the sizeOf

operator for calculating the number of Item instances.

■ Rule: ApplyVouchers.AwardNewVouchers illustrates use of the

SUBCOLLECTION, SORT and AVERAGE operators to calculate voucher

values; and the use of DateTime and Duration values to calculate a 90-day

expiration date for a new voucher. It also creates instances of a class

(Voucher).

Shopping Cart Sample

180 Rule Engine: JSR-94 Implementation Guide

Sample Java Applications for the Shopping Cart Sample

The package used for the Shopping Cart sample application is:

com.ca.cleverpath.aion.jsr94.samples.shoppingcart

The bean classes that match the rulebase classes are created using the

WrapperMaker tool so the details of those are omitted. Please refer to Using the

WrapperMaker Tool for more information on construction of them.

Like the TLP sample, two application programs are provided. The

ShoppingCartAdmin.java illustrates the use of some Administrator API of JSR-94

using the shoppingcart.xml rulebase.

The ShoppingCartSession.java illustrates the inference process:

1. The session sample application sets up the rulebase for use through the

JSR-94 API.

2. The session sample application creates a Customer object, initializes some of

its fields, and assigns it to the static ShoppingCart object. The application

also creates four Voucher instances, initializes them, and sets them to the

Customer object.

3. The application defines the contents of the ShoppingCart by creating eight

Item instances and initializing them. Note that each Item description

includes a prefix describing the Item's category (for example, "Dec" for

"Decoration", "Rec" for "Recreation", and so on). These categories

correspond to the previously-described Voucher itemCategories.

At this point, the application adds the object to CA Rule Engine and invokes

inferencing. Note that some object are added implicitly via reference.

During inferencing, the rules:

■ Validate pre-condition values

■ Selectively apply vouchers against purchased items

■ Calculate various ShoppingCart statistics and a discount rate to be applied to

the overall transaction

■ Conditionally generate additional vouchers

Upon returning from inferencing, the application fetches the results and verifies

them.

If the ShoppingCart contains no Items, the avgPrice (average) and stdDevPrice

(standard deviation) fields are unresolved.

The returned vouchers indicate not only older vouchers applied to this

transaction but also any new vouchers generated by the rules.

Expense Approval Sample

Appendix A: Samples 181

Expense Approval Sample

The Expense Approval Sample is a simple application that illustrates the use of

stateful session to provide preconditions incrementally only as they are needed.

The design of the rulebase also illustrates the use of associations that

automatically match client created receipt and approval objects to the expense

object. The rulebase also illustrates the use of initialization method to set value

to certain rulebase fields.

Expense Approval System

A fictitious company wants to use rules to automatically process expense

approval. It wants to cut expenses by asking the user to provide only enough

information on the expense case for a decision can be made.

For any expense approval item, an amount and a description are required. The

user enters those two items to start the process. Based on the expense amount

and description, the system also may require the user to provide a receipt and

manager approval before a decision can be made.

The following are the inputs to this sample application:

■ Amount of expense

■ Description of expense

■ Receipt

■ Manager approval

Receipt and Manager Approval are entered only if necessary.

The outputs from this sample application are:

■ Approval status

■ Message indicating what is needed next (if decision can't be made).

Expense Approval Sample

182 Rule Engine: JSR-94 Implementation Guide

The Expense Approval Sample Rulebase

The rules for this expense approval sample are:

■ If amount is less than or equal to limit for tips and the description contains

the word tip, the expense is approved. Otherwise, receipt is required.

■ If provided receipt does not match the expense item or of different amount,

the expense is denied.

■ If amount is less than or equal to limit for small expense and a receipt

matching this expense and for the exact amount is provided, the expense is

approved.

■ Manager review and approval is needed for amount exceeding limit for small

expense.

The Expense Approval sample rulebase defines the ExpensePolicy appshared

domain to process items to be reimbursed. There is a single ruleset, the

ExpenseRuleSet, defined inside that domain. Inside this ruleset, the

ExpenseRule rule, implements the rules for expense approval as its decisions. In

order to provide feedback to the user on what needs to be supplied next, two

reporting rules, requestReceipt and requestApproval, are also defined in the

ExpenseRuleSet. Different priorities are assigned to the three rules so that the

main ExpenseRule is processed first and reporting of receipt request occurs

before that of approval.

The rulebase structure is designed to illustrate the use of association in RDL and

to use stateful session to request additional preconditions only when that is

necessary. The following classes are defined at the rulebase level:

■ ExpenseItem, static instance theItem

Fields:

amount, rulebase data type: number with precision 2

description, rulebase data type: string

receiptObj, rulebase data type: inst-ref to Receipt object

approvalObj, rulebase data type: inst-ref to Approval object

approvalStatus, rulebase data type: Boolean

tipLimit, rulebase data type: number with precision 2

smallLimit, rulebase data type: number with precision 2

■ Receipt

Fields:

amount, rulebase data type: number with precision 2

item, rulebase data type: inst-ref to ExpenseItem object

Expense Approval Sample

Appendix A: Samples 183

■ Approval

Fields:

item, rulebase data type: inst-ref to ExpenseItem object

■ Message, static instance theMessage

Fields:

msgText, rulebase data type: string

The first four fields of the theItem instance, all fields of Receipt objects and

Approval objects are preconditions. The approvalStatus field of the theItem

instance and the msgText field of the theMessage instance are postconditions.

The tipLimit and smallLimit fields of the theItem instance are internal rulebase

fields that are initialized with an initialization method of the rulebase.

This rulebase also defines two associations, ReceiptAndItem and

ApprovalAndItem. They associate receipt with its expense item and approval

with its expense item respectively. CA Rule Engine makes sure associated fields

are synchronized, e.g. if a Receipt object is set to refer to an ExpenseItem

object, CA Rule Engine makes sure the ExpenseItem object is also set to refer to

that Receipt object.

The two reporting rules and the Message class are purely for purposes of

reporting to user what is needed to complete the expense approval process. If

such feedback is not needed, those two rules and the Message class can simply

be omitted.

Sample Java Applications for the Expense Approval Sample

The package used for the Expense Approval sample application is:

com.ca.cleverpath.aion.jsr94.samples.expense

The bean classes that match the rulebase classes are created using the

WrapperMaker tool so the details of those are omitted. Please refer to Using the

WrapperMaker Tool for more information on construction of them.

Like previous samples, two application programs are provided. The

ExpenseAdmin.java illustrates the use of some Administrator API of JSR-94

using the expense.xml rulebase.

Expense Approval Sample

184 Rule Engine: JSR-94 Implementation Guide

The ExpenseSession.java illustrates the whole inference process:

1. The session sample application sets up the rulebase for use through the

JSR-94 API.

2. The session sample application sets amount and description and starts

inferencing. What distinguishes this sample from the previous two is that the

session contains multiple calls to execute the rules.

3. After the initial inference terminates, this sample application checks and

sees that expense approval process is not yet resolved and receipt is needed

to continue. Then it creates a Receipt object for this expense and added that

to the session and starts inference again. After the inference terminates

again without resolving the approval process for lack of manager's approval,

this sample application creates an Approval object for the expense and

continues with inference. This time the expense process is resolved with the

expense approved.

This sample illustrates the use of stateful rule session to carry out incremental

inferencing. Incremental inferencing means that just a minimal set of

preconditions are provided to start inferencing and additional preconditions are

provided only when it is apparent that they are needed under the circumstance.

When the Java Receipt object and the Java Approval object were created, it was

the Java ExpenseItem object that was set to the item fields of Receipt and

Approval objects. These two new objects were not set to the inst-ref fields

declared in the rulebase ExpenseItem object. Those two fields of the rulebase

ExpenseItem object are not even declared as preconditions so it is impossible to

set them on the Java side anyway. However, inside the rulebase, those two

objects are actually addressed from the ExpenseItem object. What happened

was that the two associations ReceiptAndItem and ApprovalAndItem defined in

the rulebase automatically updated the two internal inst-ref fields of the

ExpenseItem object to refer to the Receipt and Approval objects.

Appendix B: Verify JSR94 Compliance 185

Appendix B: Verify JSR94 Compliance

The TCK for a Java standard specification allows a vendor implementing the

standard to determine if the implementation is compliant with the specification.

CA has confirmed that CA Rule Engine, CA's JSR-94 implementation, passes the

TCK. For vendor-specific configuration files and rule execution set files to be

used with the test compatibility kit, see the tckconfiguration folder inside the CA

Rule Engine distribution.

Note: A TCK tests only for compliance and does not perform any functional tests

on the vendor's implementation.

The JSR-94 Java Rule Engine API specification is bundled with its own TCK. More

information about this TCK can be found with the document on TCK that comes

with the specification download.

Verify CA Rule Engine for Compliance

CA Technologies has verified that CA Rule Engine passes the TCK. The

installation folder for CA Rule Engine is referred to as aionjre_home in the steps

mentioned below.

To verify CA Rule Engine for JSR-94 standard compliance, follow these

steps:

1. Download the JSR-94 v1.0 specification and install it. The remaining steps in

this procedure refer to the installation directory as jsr94-1.0_home.

The Technology Compatibility Kit (TCK) for JSR-94 (the Java Rule Engine

API) is officially available as part of the full specification download from the

Java Community Process website at: http://www.jcp.org (type 94 in the

JSR text box and press Enter). TCK 1.0 requires Java 1.4.2.

2. Back up the original TCK-related rule set .xml files:

■ jsr94-1.0_home/lib/tck_res_1.xml

■ jsr94-1.0_home/lib/tck_res_2.xml

Copy the following CA implementation-specific .jar files to the

jsr94-1.0_home/lib folder:

■ aionjre_home/aionjre.jar

■ aionjre_home/tckconfiguration/aion-jsr94-tck.jar

Verify CA Rule Engine for Compliance

186 Rule Engine: JSR-94 Implementation Guide

3. Copy the aionjre_home/lib/log4j.jar file to the jsr94-1.0_home/lib folder.

4. Copy the following CA implementation-specific rule set .xml files, to the

jsr94-1.0_home/lib folder:

■ aionjre_home/tckconfiguration/tck_res_1.xml

■ aionjre_home/tckconfiguration/tck_res_2.xml

5. Back up the original TCK configuration file, jsr94-1.0_home/lib/tck.conf.

Copy the aionjre_home/tckconfiguration/tck.conf file to jsr94-1.0_home/lib

folder and go to the next step.

Alternatively, one can edit it to have a tck.conf file with the configuration for

CA Technologies's implementation:

<tck-configuration>

 <rule-service-provider>

com.ca.cleverpath.aion.jsr94.RuleServiceProviderImpl</rule-service-provider>

<rule-service-provider-jar-url>file:lib/aionjre.jar</rule-service-provider-jar-ur

l>

 <rule-execution-set-location>./lib</rule-execution-set-location>

<test-factory>com.ca.cleverpath.aion.jsr94.tck.util.TestFactory</test-factory>

 <rule-execution-set-uri>file:lib/tck_res_1.xml</rule-execution-set-uri>

</tck-configuration>

6. Back up the original TCK Ant script file, jsr94-1.0_home/run_tck.xml.

Copy the aionjre_home/tckconfiguration/run_tck.xml file to jsr94-1.0_home

folder and go to the next step.

Alternatively, one can edit it to have a run_tck.xml file with the classpath

updated for the tck.run.tests target, reflecting all the jar files needed for CA's

implementation.

Add the following jar files from jsr94-1.0_home/lib folder to the classpath:

■ aionjre.jar

■ aion-jsr94-tck.jar

■ log4j.jar

An example of the entries to be added to the classpath for the two junit tasks

in the tck.run.tests target is as follows:

<pathelement location="${lib.dir}/aionjre.jar"/>

<pathelement location="${lib.dir}/aion-jsr94-tck.jar"/>

<pathelement location="${lib.dir}/log4j.jar"/>

Verify CA Rule Engine for Compliance

Appendix B: Verify JSR94 Compliance 187

7. Run the Ant script file run_tck.xml from the jsr94-1.0_home folder. A sample

command on Windows resembles the following:

ant\bin\ant -f run_tck.xml

You can find a report of all the tests run by the TCK in the folder,

jsr94-1.0_home/reports.

In addition to TCK 1.0, CA Technologies has confirmed that CA Rule Engine

passes TCK 1.0.1. The steps above can also be used to verify compliance to TCK

1.0.1.

Index 189

Index

A

administrative services, description of • 10

ALL, DEBUG Log4j logging level • 22

App Interface document • 62

appshared domain • 16, 43

array property values, specify • 51

B

batch files, sample • 22, 169

Bean

information class • 29

BeanInfo interface • 29

build a JSR-94 application • 25

C

class name requirements • 28

classes

use of • 16

CLASSPATH variable • 18

client application class • 151

client-side considerations • 15

configure and execute logging • 19

construction of Java client applications • 26

constructor, public no-argument • 28

customer

class • 126

financial stability

decision tree • 124

rule • 171

ruleset • 131

ruleset and rules • 137

D

-D parameter • 19

datetime

string values • 52

documentation and examples, location of • 22

domain

interface definition • 129

domains, use of • 16

duration

string values, specify • 52

E

ERROR Log4j logging level • 22

exceptions • 53

executeRules() method • 165

F

FATAL Log4j logging level • 22

G

getProperty() method • 56

I

inference engine

description of • 14

objects, add and retrieve • 44

INFO Log4j logging level • 22

J

Java

classes, rules for constructing • 27

client

applications • 14, 26

classes • 142

Community Process • 9

property types • 31

sample source code • 26

Specification Request 94 (JSR-94),

description of • 9

JSR-94

buid an application • 25

compliance, verify • 185

diagram of implementations • 10

implementation of • 9

implementation template • 12

install and configure • 18

packages • 36

services, overview of • 10

Technology Compatibility Kit (TCK) • 18

Wrapper • 25

jsr94.jar • 18

L

Log4j

documentation, location of • 19

190 Rule Engine: JSR-94 Implementation Guide

logging levels • 22

messages from wrapper classes • 21

log4j.jar • 18

logging framework, use of • 20

M

mappings, datatype • 31

methods

executeRules() • 165

N

named objects, description of • 16

notes on datatype mappings • 31

O

object

filters, use of • 47

ObjectFilters, write • 166

OFF Log4j logging level • 22

P

pricing tier

decision tree • 123

rule • 171

ruleset • 131

PricingTierDomain • 171

processing considerations • 49

properties, rule • 56

property

accessors • 29

public no-argument constructor • 28

Q

query common ruleExecutionSet instances and

rule properties • 54

R

RegionAdmustmentDomain • 171

reset() method • 44

returned rulebase objects, filter the • 165

rule

properties • 56

session, establish a • 41

RuleAdministrator • 10, 38

rulebase

class definitions • 126

documents, obtain • 60

interface requirements • 125

loadmap document • 63

structures • 60

Rulebase Definition Language (RDL)

description of • 16

textual rulebase, compile • 14

RuleExecutionSet • 10

RuleExecutionSetProviders • 10

RuleRuntime • 10, 38, 39

RuleServiceProvider • 10, 38

RuleServiceProviderImpl • 38

RuleServiceProviderManager • 38

rulesets and rules • 131

RuleSP (Rule Service Provider) • 14

trace levels • 22

runtime services, description of • 10

S

session instance • 41

setProperty() method • 56

shared domain, specify a • 43

stateful rule sessions • 10, 44

stateless rule sessions • 10, 44

T

TestRulebaseClient code • 165

U

URI of CA's rule service provider class • 38

W

WARN Log4j logging level • 22

X

XML

configuration file • 19

parse • 60

	CA Aion Rule Manager Rule Engine: JSR-94 Implementation Guide
	Contents
	1: The JSR-94 Specification
	Introduction
	JSR-94 Implementations
	JSR-94 Services Overview
	Using a JSR-94 Implementation in Java Code

	CA Technologies's JSR-94 Implementation
	Inference Engines
	CA Technologies Extensions to the JSR-94 Specifications and Special Considerations

	JSR-94 Implementations and Rule Languages
	Rulebase Definition Language Fundamentals

	Install and Configure CA Rule Engine
	Configure and Execute Logging for CA Rule Engine
	Example: Configuration File for log4j
	Client Applications with Logging Frameworks Notes
	Guidelines for log4j Messages from CA Rule Engine
	Log4j Logging Levels and CA Rule Engine Trace Levels

	Documentation and Samples

	2: Using the CA Rule Engine
	Construction of Java Client Applications
	Rules for Constructing Java Classes
	Class Name Requirements
	Public No-Argument Constructor
	Property Accessors
	RDL Field Data Types and Java Property Types
	Instance Naming

	Using the WrapperMaker Tool
	Adding Callback Methods
	Acquire the RuleExecutionSet and RuleSession
	JSR94 Packages
	Basic Program Structure and Solution Architectures Flow Diagram
	Acquire the RuleServiceProvider
	Acquire and Register the RuleExecutionSet
	Establish a Rule Session
	Specify a Shared Domain

	Add and Retrieve Inference Engine Objects
	Stateless Versus Stateful Rule Sessions
	Adding and Creating Objects During Rule Sessions
	Difference between Objects for Static and Dynamic Instances
	Object Filters

	Processing Considerations
	Specify Unknown Rulebase Fields
	Specify Instance Reference Fields
	Specify Array Property Values
	Specify Datetime String Values
	Specify Duration String Values
	Reset Rules and Switch Domains
	Exception Catching

	Query RuleExecutionSets and Rules
	Query Common RuleExecutionSet and Rule Properties
	Access CA Technologies's Extended RuleExecutionSet and Rule Properties

	Use Cases for Building JSR94 Applications
	Rulebase Structures
	Obtain Rulebase Documents
	The App Interface Document
	The Rulebase Loadmap Document
	The Inferencing Summary Document

	Construct an RDL Rulebase for Java Objects
	Using the Infix2RDL Tool
	Using the RDL2Infix Tool

	3: RDL Rulebase Overview
	Rulebase Fundamental Notions
	Rulebase Structure
	Rulebase Level
	Domain Level
	Ruleset Level
	Scoping

	RDL Characteristics
	Object Naming
	Object References
	Direct References
	Indirect References

	Data Types
	Atomic Data Types with Magnitude
	Atomic Data Types without Magnitude
	Sets

	Operators
	Operators that Return a Numeric Value
	Operators that Return a Boolean Value
	Operators that Return a String Value
	Operators that Return an Instance Reference Value
	Operators that Return a DateTime Value
	Operators that Return a Duration Value
	Operators that Return a Set Value

	Statements
	Class-Inheritance Hierarchies
	Extensibility

	Rulesets and Rules
	Priorities
	Effectiveness Criteria
	Decision-Tree Rules
	Overall Structure
	Overall Semantics
	Test Case Actions

	Example Rules
	Simple Single-Decision Rule
	Multi-Decision Rule - All Data Types
	Single-Decision Rule - Complex Selection Expressions
	Single-Decision Rule - with Iteration
	Multi-Decision Rule - with Iteration

	Additional Notes

	Binary Rulebases
	Portability
	Security
	Durability

	4: Inferencing Overview
	Fundamental Notions
	Agenda Management
	Rule Reactivity
	Discretely Reactive Rules
	Thread States
	Examples with Non-Iterative Decisions
	Example with Iterative Decisions

	Unpending Rule Threads
	When Pended on a Premise Reference
	When Pended on an Action Reference

	Revisiting Unpended Rule Threads
	Rule Retirement
	Instance Deletion

	Special Handling
	For ANDing and ORing
	For NULL Values

	Forward Chaining
	Sub-Inferencing

	5: Using Callback
	Initialization Callback Methods
	Change Callback Methods
	Field Value Change Callback
	Collection-Element Addition/Deletion Callback
	Instance Creation/Deletion Callback

	6: Tutorial
	Tutorial Scenario
	Pricing Tier Decision Tree
	Customer Financial Stability Decision Tree
	Rulebase Interface Requirements

	The Rulebase
	Rulebase Class Definitions
	Domain Interface Definition
	Rulesets and Rules
	Pricing Tier Ruleset and Rule
	Customer Financial Stability Ruleset and Rules
	Customer Financial Stability Rule
	Default Liability Rule

	Convert Infix Rulebase to RDL

	Java Client Classes
	Generate Java Client Classes from Rulebase
	Retrofit Existing Classes
	Retrofit the InsuranceAgent Class
	Adapt the Liability Class

	Client Application Class

	Execute the Application
	Obtain Log of Execution
	Obtain Inferencing Summary Documents
	Filter the Returned Rulebase Objects
	Write ObjectFilters
	Returning Only the InsuranceAgent Object

	A: Samples
	Running a Sample Application
	TLP Sample
	TLP System
	TLP Sample Rulebase
	Java Applications for the TLP Sample

	Shopping Cart Sample
	Shopping Cart System
	Shopping Cart Sample Rulebase
	Sample Java Applications for the Shopping Cart Sample

	Expense Approval Sample
	Expense Approval System
	The Expense Approval Sample Rulebase
	Sample Java Applications for the Expense Approval Sample

	B: Verify JSR94 Compliance
	Verify CA Rule Engine for Compliance

	Index

