

Rules Guide

r11

CA Aion® Business Rules Expert

This documentation and any related computer software help programs (hereinafter referred to as the

"Documentation") are for your informational purposes only and are subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,

without the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may

not be used or disclosed by you except as may be permitted in a separate confidentiality agreement between you and

CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation,

you may print a reasonable number of copies of the Documentation for internal use by you and your employees in

connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable license for such

software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify

in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT

WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER

OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,

INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR

LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and

is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with "Restricted Rights." Use, duplication or disclosure by the United States Government is subject to the

restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section

252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2009 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein

belong to their respective companies.

CA Product References

This document references the following CA products:

■ CA Aion® Business Rules Expert (CA Aion BRE)

Contact CA

Contact Technical Support

For your convenience, CA provides one site where you can access the

information you need for your Home Office, Small Business, and Enterprise CA

products. At http://ca.com/support, you can access the following:

■ Online and telephone contact information for technical assistance and

customer services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA product documentation, you can

send a message to techpubs@ca.com.

If you would like to provide feedback about CA product documentation, complete

our short customer survey, which is also available on the CA Support website,

found at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introducing Rules 11

Audience ... 11

Rule Basics ... 12

Rules .. 12

Rules Can Represent Knowledge ... 13

Knowledge Base .. 14

Inference Engine .. 14

Procedural Code or Rules? ... 14

Anatomy of a Knowledge-Based Application .. 15

Rules and Chaining ... 16

Location of Rule Methods .. 16

Structure of a Simple Rule .. 17

Rule Editor ... 17

Rule Analyzer .. 18

Chapter 2: Chaining 19

Forward Chaining ... 19

Data-Driven Inferencing ... 19

Reasoning with Forward Chaining .. 21

New Data Supply for Forward Chaining ... 21

Rule Firing ... 22

Forward Chaining Input and Output .. 22

Why Use Forward Chaining Rules? ... 23

Typical Forward Chaining Applications .. 24

Backward Chaining ... 24

Goal-Directed Inferencing ... 24

Actions of Backward Chaining .. 25

Reasoning with Backward Chaining ... 25

Backward Chaining Input and Output .. 27

Why Use Backward Chaining? .. 28

Typical Backward Chaining Applications .. 28

Conversational Systems Built with Backward Chaining .. 29

Generate the Interface .. 29

How to Link the Interface into Client/Server Environments 32

6 Rules Guide

Chapter 3: The Inference Block 37

Anatomy of an Inference Block .. 37

Sample Inference Block ... 38

InferBegin and InferEnd ... 39

Posting and Scope .. 39

Direct and Indirect Posting .. 40

A Revised Example .. 40

A More Complex Example ... 41

Posting Order versus Priority Order .. 41

Object-Oriented Knowledge ... 43

Chapter 4: Runtime Issues 45

Posting Time or Chaining Time? ... 45

Local Attributes ... 45

Local Variables ... 45

Other Language Limitations in Rules ... 46

Dynamic Posting .. 46

Chaining Considerations... 47

Inference Blocks and Scope ... 47

End of the Chaining Process ... 48

Multiple Execution .. 51

UNKNOWN Attributes ... 52

How to Call Methods from a Rule or Inference Block ... 55

Limitations on Chaining over Complex Data Types .. 55

Demons .. 56

Firing of Demons ... 56

Scope of Demons ... 56

Dynamic Rule Runtime Considerations ... 57

How to Load and Post Dynamic Rules .. 57

Instance Binding .. 62

Error Checking .. 66

Chapter 5: Pattern Matching 69

Pattern Matching Rules .. 69

Pattern Matching over One Class ... 70

Pattern Matching over Two Classes ... 70

Pattern Matching over a Class with Two Binding Variables 71

Pattern Matching over Interfaces ... 72

Advanced Pattern Matching ... 73

Flights.app Sample ... 73

Bindings.. 75

Contents 7

Orderby Clause ... 78

Where Clause ... 79

SingleFire Rules .. 81

Inference Engine and Multiple ifmatch Rules .. 82

Chapter 6: Decision Tables 83

Benefits of Using Decision Tables .. 84

How to Create and Open Decision Tables ... 84

Create Decision Table ... 84

Open an Existing Decision Table ... 85

How to View and Modify Decision Table Properties .. 85

Add and Modify Conditions .. 86

Add and Modify Actions ... 89

Delete a Rule ... 92

Ordering Conditions and Actions ... 93

Cutting and Pasting Conditions and Actions ... 94

Displaying a Decision Table .. 94

Customizing the Decision Table Editor .. 95

Compressing a Decision Table ... 96

Manually Collapsing Subtables ... 98

Achieving Optimal Condition Order for Compressibility 99

Runtime Execution ... 100

Rule Posting ... 100

Condition Evaluation ... 101

Action Execution ... 101

Chaining .. 101

Rephrasing IFRules as Decision Tables .. 102

One-to-One Mappings .. 102

ANDed Premise Expressions .. 102

Consolidating IFRules into a Single Decision Table ... 103

Dynamic Decision Tables ... 103

Dynamic Decision Table Runtime Considerations ... 104

Chapter 7: Truth Maintenance 107

Truth Maintenance Operations and Terminology ... 107

Operational Context .. 108

Tickling Demon and Pattern-Matching Rules ... 109

Available Runtime Information .. 109

TM-Assignment .. 109

TM-Retraction ... 111

TM-Confirmation ... 113

8 Rules Guide

Chapter 8: Maintaining the Dynamic Rulebase 115

Dynamic Rulebase Administrator ... 116

The Default and Empty Rulebases ... 117

Importing a Domain Interface .. 119

Dynamic Rulebase Scenarios ... 124

Dynamic Rule Manager ... 126

Selecting a Rulebase and Opening a Domain ... 127

Creating and Maintaining Dynamic Rules .. 129

Dynamic Decision Table Editor .. 129

Creating a New Dynamic Decision Table ... 130

Opening an Existing Dynamic Decision Table ... 130

Viewing and Modifying Dynamic Decision Table Properties 130

Adding and Modifying Conditions .. 131

Adding and Modifying Actions ... 133

Decision Table Editor Functions ... 136

Displaying a Dynamic Decision Table .. 137

Customizing the Decision Table Editor ... 138

Compressing a Decision Table .. 139

Accessing the Dynamic Rule Repository ... 139

Chapter 9: Constructing Non-Persistent Dynamic Rules 141

Facilities for Constructing Non-Persistent Dynamic Rules 141

Non-Persistent Dynamic Decision Tables .. 142

Non-Persistent Rule Definer Class ... 144

Constructing Decision Table Conditions .. 144

Constructing Decision Table Actions ... 147

Posting a Non-Persistent Decision Table ... 151

Appendix A: Summary of Inferencing Constructs 153

Inference Block .. 153

Chaining Statements ... 154

Rule Types .. 154

Production Rule .. 155

Decision Table Rule .. 155

Pattern Matching Rule .. 155

Production Demons .. 156

Pattern Matching Demons .. 157

Knowability Expressions .. 157

Truth Maintenance Operations .. 157

Contents 9

Appendix B: How the Inference Engine Works 159

Forward Chaining .. 159

Forward Chaining Example ... 160

Backward Chaining .. 161

Backward Chaining Example .. 162

Appendix C: Rulebase Structure 165

Table Domain ... 166

Table DIMember ... 166

Table DecTable .. 168

Table Condition .. 168

Table Action ... 169

Table RPValue ... 169

Table SubAction ... 170

Table HighID .. 170

Table Users ... 171

Table CheckOut ... 171

Index 173

Chapter 1: Introducing Rules 11

Chapter 1: Introducing Rules

In CA Aion Business Rules Expert (BRE), rules represent knowledge. Rules are a

natural means for capturing and automating business policies and procedures

because they use simple if…then logic in a declarative form. Rules encourage

business user communication and maintenance. In some cases, rules allow

complex systems—systems that would be difficult to build any other way—to be

modeled.

Rules test and make assignments to attributes of the business objects that are

the focus of your application. Rules allow non-programmer ―experts‖ in the

business area to see and maintain application rules to validate business rule logic

and quickly implement changes in rules to react to changes in the business.

This CA Aion BRE Rules Guide describes rules and how to write them.

Note: Unless otherwise indicated, the term Windows refers to any Microsoft

Windows operating system supported by CA Aion BRE, including Windows XP,

Windows 2003, Windows 2008, and Windows Vista. See the product Readme file

for details about operating system support.

This guide assumes that the appropriate components of CA Aion BRE have been

installed at your site. Instructions for installing the product can be found in the

CA Aion Getting Started.

This section contains the following topics:

Audience (see page 11)

Rule Basics (see page 12)

Rules (see page 12)

Rules and Chaining (see page 16)

Location of Rule Methods (see page 16)

Structure of a Simple Rule (see page 17)

Rule Editor (see page 17)

Rule Analyzer (see page 18)

Audience

This guide is intended for developers at all levels and for business rules experts.

Rule Basics

12 Rules Guide

Rule Basics

Rules are the business core of your application. They express the business logic

of an application in a manner that a non-programmer can readily understand.

With rules, business logic can be created and maintained by a domain specialist

or a programmer; either person can write rules for your application.

Rules

An application performs several essential tasks that are auxiliary to the analysis

of business data. Written procedurally, these may include:

■ A Graphical User Interface (GUI) that creates windows and dialogs for

requesting input from users and for displaying output

■ Database access code for retrieving raw data from a SQL or desktop

database

■ These are the actual values the application analyzes to reach a business

decision. For example, a loan-processing application needs personal and

financial information about a loan applicant. This information may come

from a database of applicants.

■ Application logic that determines how an application starts and ends, calls

the main window, and indicates overall flow of control within the program

■ Business logic where raw data is analyzed and logical conclusions reached

The user of an application can consult the business expertise modeled in

rules. For instance, a loan officer could run an application that indicates

whether a loan request should be approved, and for what amount.

Rules

Chapter 1: Introducing Rules 13

Rules Can Represent Knowledge

To represent knowledge in a business application, rules make use of business

classes that have names such as Invoice, Customer, Salesperson, and Product.

These business classes are usually more complex and business-oriented than the

raw data (for example, records retrieved directly from a database) and are

generally created by a programmer for use by the person who writes rules.

Attributes of business classes represent business facts. Relationships between

these facts take the form of if-then statements, or rules. In this way, rules model

domain-specific knowledge about business practices, policies, and regulations.

For example, in a loan-processing application, the salary of an applicant is a fact

that you can represent as:

pApplicant.Salary=45000

The individual applying for the loan is represented by pApplicant and the salary

is $45,000. In programming terms, pApplicant is a pointer to an instance of the

Applicant class, and Salary is an attribute of the instance. The assignment sets

the value of the attribute to $45,000. You can use a TRUE/FALSE (Boolean)

attribute called Approve to represent approval of a loan request as follows:

pApplicant.Approve=TRUE

Current bank policy may be to accept only those applicants earning over

$30,000. You could represent this knowledge in the following way:

if pApplicant.Salary < 30000

then pApplicant.Approve=FALSE

To cover all applicants, you could write rules for each possible combination of

facts (salary, credit history, requested amount, and so on). Generally speaking,

you do not need to worry about the order in which you write rules.

Rules

14 Rules Guide

Knowledge Base

The collection of rules in an application constitutes a knowledge base. The

programs you create with rules are often referred to as knowledge-based

applications. Because knowledge bases use rules inferencing, they can also be

called rule bases.

The knowledge base portion of an application is so crucial that a developer may

choose to isolate rules in their own application component and then make it

available to other applications, using such interfaces as COM, or when using

C++. With this type of isolation of rules, a domain-specialist could design a

knowledge base component that programmers could integrate with different

GUIs and database access components as needed. What makes this division of

labor possible is the clear distinction that CA Aion BRE draws between knowledge

representation (contained in rules) and inference logic (performed by the

inference engine)

Inference Engine

The inference engine is a set of algorithms that process the rules you have

written. When you invoke the inference engine, it processes your rules

efficiently, drawing inferences from known facts and controlling the order in

which rules come into play.

The inference engine liberates software development resources to concentrate

on domain-specific issues rather than the intricacies of computer programming.

Yet the engine is flexible enough to adapt to various rules-inferencing situations.

Special keywords in the language allow you to specify how the engine should

process your rules.

Experts in the field of knowledge systems sometimes speak of ―running a

knowledge base through an inference engine.‖ In concrete terms, this means

that you invoke the inference engine to process a set of rules.

Procedural Code or Rules?

Most software applications in use today are written with procedural code, which

specifies exactly how control should flow from statement to statement. The

programmer must use exhaustive step-by-step instructions-complex looping

constructs, conditional statements, and algorithms-for arriving at results. A very

flexible tool, procedural code is the province of the software programmer.

Rules

Chapter 1: Introducing Rules 15

Aion BRE rules encode business logic using if-then rules that a non-programmer

can quickly master. The writer of rules does not worry about algorithms, control

flow, or even rule order, but concentrates instead on translating domain-specific

knowledge into a set of rules. When the application is executed, the inference

engine processes the rules, drawing logical conclusions. Since rules do not

specify a set of procedures but simply state business facts and relationships,

they are referred to as declarative code.

Anatomy of a Knowledge-Based Application

A CA Aion BRE knowledge-based application uses rule-based

knowledge-domain-specific data interpreted by the algorithms of an inference

engine-to solve business problems. A knowledge base is one part of an

application that may also contain a GUI and a database access component.

Rules and Chaining

16 Rules Guide

Rules and Chaining

The inference engine examines rules one at a time. When the rule premise is

true, the engine executes-or fires-the rule. When the rule premise is false, the

rule is discarded for that invocation of the engine, and is referred to as having

failed. When a rule has incomplete information in its premise, the engine pends

the rule-putting it aside until the missing values can be supplied by querying a

database, asking the user, calculating from known values, or firing other rules.

The inference engine processes rules by inferring new facts from facts that are

already known. These newly established facts may enable the firing of rules that

could not previously be determined. Once fired, these rules may in turn establish

new facts that permit other rules to be fired. Together, they form a chain from

the first rule to the last. A knowledge base consists of several such chains of

rules.

As rules are fired, the inference engine invokes the actions of those rules. The

action of the final rule in the chain usually determines an attribute value or

executes a method of particular interest to your business process.

Because of the linked nature of knowledge base rules, rule processing is referred

to as chaining. When you want the inference engine to process rules, you use

one of the two chaining keywords in the language: forwardchain or

backwardchain.

Location of Rule Methods

You can locate rule methods in almost any class, although typically you place

them in data classes or in business classes.

If rules access attributes in one class only, you generally place the rules in that

class. In such cases, it is convenient to have the rules in the same class as the

raw data they operate on. Validation of the data in query classes is often done

this way.

When knowledge applies to the core purpose of an application-for example,

processing a loan request-rules often reside in their own business classes. These

classes often correspond to tasks in the problem model and represent

higher-level business-solving processes. The rules usually access data from

more than one class.

Structure of a Simple Rule

Chapter 1: Introducing Rules 17

Structure of a Simple Rule

A simple rule has the following structure:

rule Rulename

ifrule premise

then action

end

■ The keyword rule begins a rule and must be followed by the rule name,

which is a standard identifier or a quoted string.

Note: A standard identifier must start with a letter (A-Z). Remaining

characters can be a letter, number, or the underscore. The identifier cannot

be a reserved word. Identifiers are not case-sensitive.

■ The ifrule clause, or premise, is used to examine attributes of a class or

instance and specify one or more conditions that they should meet.

■ The then clause, or action, invokes methods or otherwise causes data in the

instance to change (for example, by assigning values to attributes).

An action is executed only when the premise conditions are satisfied.

■ The keyword end marks the end of a rule.

Here is the loan processing example, using the proper syntax:

rule RejectUnder30K

ifrule pApplicant.salary<30000

then pApplicant.approve=FALSE

end

You can use quotation marks to include spaces in a rule name:

rule “Reject if salary > $30,000”

ifrule pApplicant.salary<30000

then pApplicant.approve=FALSE

end

Rule Editor

The Rule Editor provides a structured environment for writing and editing rules.

Information about the Rule Editor is available from its context-sensitive help (F1)

and in the CA Aion BRE Product Guide.

Rule Analyzer

18 Rules Guide

Rule Analyzer

The Rule Analyzer displays the rules that can change the value of a given

attribute. From the Rule Analyzer, you can view the organization and

relationship between rules and the attributes they use. You can also view these

relationships by toggling the Forward Mode option in the right-click menu. When

the Forward Mode option is not checked, the Analyzer is in Backward Mode.

■ Use Forward Mode when you want to know which rules fire when you assign

a value to an attribute, and which attributes are assigned values as a result.

■ Use Backward Mode when you want to see which rules can assign values to

an attribute, and to determine which attributes are needed to get a rule to

fire.

Information about the Rule Analyzer is available from its context-sensitive help

(F1) and in the Product Guide.

Chapter 2: Chaining 19

Chapter 2: Chaining

Chaining is the process by which rules are evaluated. There are two types of

chaining, forward chaining and backward chaining. Each of these types of

chaining is best suited to particular kinds of tasks. This chapter explains what

chains are and how they work in CA Aion BRE.

This section contains the following topics:

Forward Chaining (see page 19)

Backward Chaining (see page 24)

Conversational Systems Built with Backward Chaining (see page 29)

Forward Chaining

Sometimes you want your application to accept all input data and then start

firing applicable chains of rules. The process can continue until all the

consequences of the input data have rippled through the knowledge base.

The result of executing your application is a set of attribute values on which

business decisions can be based. The actions of some rules may also execute

methods to perform such business actions as modifying a database, generating

notification letters, or contacting a credit bureau. This type of rule processing is

called forward chaining and has the following characteristics:

■ It is data-driven reasoning

■ The inference engine generally considers rules in the order posted

■ The inference engine can determine the full ripple effect of input data

(You can have the inference engine exhaust all rules before it terminates.)

Data-Driven Inferencing

The forward chaining process starts with the attribute values provided by the

user or retrieved from a database. Forward chaining continues when new data

become known (that is, as new attribute values are assigned by firing rules).

Forward chaining is, thus, data-driven.

The inference engine fires rules as the data in their premise becomes true. Rule

firing produces new data, which in turn may cause other rules to be fired. The

forward chaining process usually continues until all the knowledge has been

exhausted and all possible conclusions have been reached. If you prefer, you can

specify a goal attribute. If forward chaining determines a value for the attribute,

then the inference engine stops.

Forward Chaining

20 Rules Guide

With data-driven inferencing, a small amount of input data can result in a large

amount of inferred information.

Forward Chaining

Chapter 2: Chaining 21

Reasoning with Forward Chaining

Forward chaining execution progresses as follows:

1. Enter new data.

2. Forward chaining rules fire when their premises are TRUE.

3. Rule actions set new data values.

4. Inference engine repeats Steps 2 and 3 until it reaches a termination

condition or exhausts all rules.

New Data Supply for Forward Chaining

New data for forward chaining may come from interactions with the application's

end-user, or from other sources, such as an external database. With forward

chaining it is common to ask for all needed data before starting the inference

engine with the forwardchain keyword. You have the flexibility, however, to

invoke the inference engine several times, contacting the user or a database to

supply attribute values in between invocations.

Forward Chaining

22 Rules Guide

Rule Firing

A rule fires only when all the facts referred to in its premise are available to the

inference engine. The inference engine does not automatically try to supply

unknown values in a rule's premise. Instead, it pends such rules and revisits

them when the missing values become known. For example, assume that a rule

has the following premise:

rule “Good rating: approve any loan under 10K”

ifrule pApplicant.CreditRating = “GOOD” and Loan<10000

then

pApplicant.Approve =TRUE

end

Consider what happens when the second part of the premise is true (Loan is

―9000‖), but the first part is not known (CreditRating is unknown). In that case,

the inference engine pends the rule and waits until the value is supplied by the

firing of other rules.

If you want the end-user (for example, the loan officer) to provide values during

execution of the application, you can write procedural code that requests such

data, perhaps using a dialog. If you want to create a question-and-answer style

session, however, backward chaining may be the more efficient choice.

Forward Chaining Input and Output

Data-driven inferencing has a characteristic pattern of soliciting data from and

presenting results to the application user.

For simplicity's sake, we said that a forward chaining application generally

obtains new data up front. In practice, it is often more efficient to process

information in several chunks. In an application with user interaction,

information is requested form by form (or dialog by dialog in an application with

a graphical user interface). The first form's worth of data is processed by a

forwardchain command. As a result, new attribute values may be assigned. Then

your application displays a second form to solicit new data, and executes a

second forwardchain command. This time, the inference engine processes rules

that have been enabled by the newly solicited and inferred data. Contrast this

with a question-by-question application, in which the inference engine is invoked

after each new piece of data is obtained.

Forward Chaining

Chapter 2: Chaining 23

Display of Forward Chaining Results

The results of forward chaining are often presented immediately to the user as

an on-screen display or printed report; they may also be stored outside the

application in a database. Of course, it is possible the results will serve as input

for another invocation of the inference engine.

Typical forward chaining output formats include:

■ Displaying a message informing the user of the rules' results as they fire

■ Creating output to be written to an external database

Note: When the current session of the knowledge-based application is over,

all data entered by the user or inferred by the inference engine is cleared.

Therefore, any information that you want to store permanently should be

written to a database or other file before the end of the session.

Why Use Forward Chaining Rules?

Forward chaining answers the question: ―Given some facts, what are the

consequences of those facts?‖

There are a number of situations that adapt themselves well to forward chaining

rules, as shown in the following table.

Situation Examples

You want to know everything that can

possibly be concluded about a set of

data.

Monitoring for mechanical problems on

a production line

Scanning a new loan application for

problem areas

Many conclusions are possible from a

single data item.

Filtering sensor data

You have several elements that can be

configured in multiple ways. There is

no one right answer; you want to know

the various possibilities.

Configuring computer systems from

hardware components

Scheduling employees and equipment

for production purposes

Backward Chaining

24 Rules Guide

Typical Forward Chaining Applications

Forward chaining is especially well suited to applications that track incoming

information and need to respond to variable amounts of new data. It is excellent

for synthesis-especially situations such as scheduling and configuration, which

can yield many outcomes from a few inputs. Typically, forward chaining

applications either collect input data in forms or infer new data as the rules are

processed.

Backward Chaining

Sometimes you are not interested in the complete ripple effect of input data. You

may want to focus on a given outcome and be satisfied as soon as a particular

attribute is assigned a value. In that case, you should use the backwardchain

command to invoke the inference engine.

For example, our loan processing application can be written using either forward

chaining or backward chaining. If you want to find all the ―weak spots‖ in the loan

requester's profile, you should use forward chaining. A mortgage broker would

be interested in this information, so he/she could detail to his/her client all the

factors that led to a loan rejection. The client could then determine whether

certain factors (such as other outstanding debt) could be modified.

On the other hand, the bank's loan officer might simply want to know whether

the current loan profile qualifies or not. A single disqualifying factor would be

enough to cause the loan request to be rejected. Thus, a forward chaining

command that exhausted all the rules would be inefficient.

The application should use the language keyword backwardchain, with a goal

attribute of Approve. The inference engine examines rules to find one that

assigns a value to Approve. If the rule cannot be fired because of an incomplete

premise, the inference engine tries to form a chain of rules that leads to this rule.

As soon as a value for Approve is determined, the inference engine stops.

Inferencing that employs backward chaining has the following characteristics:

■ Reasoning is goal-directed.

■ The inference engine considers rules according to their actions.

■ Subgoals (explained below) are automatically set and, if possible, resolved.

Goal-Directed Inferencing

Backward chaining is goal-directed-it uses rules to infer knowledge to

accomplish goals. You can picture a chain of rules stretching backwards from a

goal to its subgoals to the data that can resolve the goal.

Backward Chaining

Chapter 2: Chaining 25

Actions of Backward Chaining

The following actions give backward chaining its name:

■ The inference engine starts at the desired goal and works backwards to

resolve that goal.

■ The inference engine ―backs into‖ rules by looking at the then clause first.

Reasoning with Backward Chaining

In backward chaining, the inference engine's execution cycle is:

1. Identify the top-level goal from the backwardchain keyword.

2. Look for a rule that resolves the goal in its then clauses.

3. If the rule is not dependent on undefined premise attributes, fire the rule.

Otherwise, pend the rule and add its undefined premise attributes as

subgoals for backward chaining.

4. Repeat Steps 2 and 3, but augment the search to include subgoals. Of

course, you may want to write procedural code that supplies a value for a

subgoal.

5. Continue chaining backward until either the top-level goal is reached, the

engine exhausts all rules, or the engine detects a STOPCHAIN statement.

Initiation of Backward Chaining

Backward chaining is initiated to satisfy a goal. This goal is to find a value for an

attribute that has no value, that is, it is unknown. The inference engine treats

this as the initiating or top-level goal for backward chaining.

Backward Chaining

26 Rules Guide

Indetification of Pertinent Rules

The inference engine looks for rules that have an action (then clause) addressing

the unresolved top-level goal. For instance, in our example, pertinent rules are

those whose action assigns a value to Approve.

Indetification of Subgoals

As the inference engine tries to apply rules to resolve the top-level goal, it

develops a list of subgoals-that is, other values that must be found before it can

reach the final resolution. These subgoals derive from the premises (ifrule

clauses) of rules whose actions match the top-level goal. Each unknown portion

of the premise becomes a subgoal for the inference engine to resolve. A subgoal

may have subgoals of its own, which may in turn have subgoals, stretching back

to some known piece of data.

Resolving Goals

Each goal that the inference engine has to resolve, whether the top-level goal or

a subgoal identified during backward chaining, can be resolved in any of the

following ways:

■ Backward chaining with additional rules

■ Asking the user for information

■ Accessing values in an external database

■ Executing external calculations and other external programs

The inference engine automatically searches additional rules to resolve goals and

subgoals. If the other options are desired, the programmer writes procedural

code to implement them.

Since backward chaining rules search for supporting data on an as-needed basis

(you do not need all the data up front), the inference engine only considers those

rules that lead to resolving a particular goal. Backward chaining ends when the

top-level goal is successfully resolved or when all means for resolving it have

been tried and have failed. You can also use a STOPCHAIN statement.

Backward Chaining

Chapter 2: Chaining 27

Simple Example

The following illustration shows the fundamentals of backward chaining. Many

variations are possible. For example, you can prioritize rules so that the

inference engine processes them in a certain order.

An experienced programmer can assign priorities to expedite processing and

micro-manage use of computer resources. A beginner, however, can rely on the

inference engine to determine the ordering of rule processing.

Backward Chaining Input and Output

Goal-directed reasoning also has a characteristic pattern of soliciting data from

and presenting results to the application user. Backward chaining works best

when there are relatively few possible outputs (for example, advice messages)

but many possible inputs (for example, pieces of information about a problem

situation), most of which are not relevant to every situation.

Input to Rules

The main categories of input to backward chaining include:

■ Pre-existing values in the knowledge base

■ Questions asked of the user

■ Values accessed in an external database

■ Execution of internal or external calculations

Note: For information about constructing backward chaining systems in which

the inference engine asks the user for information, see Conversational Systems

Using Backward Chaining (see page 29).

Backward Chaining

28 Rules Guide

Output from Rules

The output from backward chaining usually answers the questions: ―What is the

value?‖ or ―From these facts, can I conclude a particular result?‖ Often, a simple

message dialog box will suffice. In other cases, backward chaining rules resolve

multiple goals during a single execution of the inference engine. As with forward

chaining, you can display results in an on-screen or printed report and save

results to an external database.

Why Use Backward Chaining?

There are a number of situations in which you should consider using backward

chaining, as shown in the following table.

Situation Examples

There is a clear set of

statements-hopefully small-that needs

to be confirmed or denied.

Which machine is causing this quality

control problem?

A large number of questions could be

asked of the user, but typically only a

few of them must be asked to resolve a

particular situation.

When processing an auto insurance

claim for vandalism damage, it is not

necessary to ask about personal

injuries.

Data collection is costly or tedious. It is

advantageous to collect only

information that is actually needed as

it is needed.

Real-time observations by the user.

Results from computation or

CPU-intensive models (perhaps

external to the knowledge base).

Typical Backward Chaining Applications

Backward chaining is especially well suited to diagnostic applications where the

inference engine recommends a course of action based on data input. When

designing a backward chaining application, you should be able to enumerate all

possible conclusions that the inference engine could reach. In backward

chaining, inputs tend to be open-ended and numerous, and outcomes limited to

a fixed set. In general, any analysis task, such as diagnosis and classification, is

susceptible to solution through backward chaining.

Conversational Systems Built with Backward Chaining

Chapter 2: Chaining 29

Conversational Systems Built with Backward Chaining

The classic ideal of an expert system is to be capable of carrying on an intelligent

conversation with the user of the system, asking only those questions that are

relevant to the particular context of solving a present problem. For example, if

the subject of a health diagnosis is male, an expert diagnostic system should not

ask questions relevant to a woman's health.

Backward chaining is the generally accepted inferencing strategy used to

construct such conversational systems. The reason for this is that backward

chaining pursues subgoals only within the specific context of the main goal that

the inferencing engine is pursuing. When a subgoal cannot be satisfied through

firing other rules, it is typical for the inference engine to raise a question so that

the system user can provide the value of the subgoal.

CA Aion BRE supports constructing conversational systems using backward

chaining; however, the inference engine does not automatically generate

questions to the user. The programmer must write code that tells the interfacing

layer how to raise the questions. Generating the Interface describes various

strategies and architectures for generating conversational systems with CA Aion

BRE in different environments.

Generate the Interface

CA Aion BRE provides the following ways to generate a dialog with the user:

■ IFRULEs

■ WhenSourced() event method

You can use the CA Aion BRE native WinLib facilities to generate a GUI. The

simplest means of presenting a question to the user is to use WinLib to generate

a dialog box containing the question. To do this, you must include WinLib in the

application, and write the appropriate code for initiating and processing the

dialog box (retrieving the answer).

Note: GUIV7Lib provides the ask() method which makes generating simple

dialog boxes easier. For information about non-native ways to initiate a dialog,

see How to Link the Interface into Client/Server Environments (see page 32).

Conversational Systems Built with Backward Chaining

30 Rules Guide

Use Rules to Initiate the Dialog

You can write rules that fire to raise questions. These rules have the following

format:

IFRULE IsUnknown(->Attrib)

THEN

// Code that raises a question about Attrib and

// sets the value of Attrib based upon the response.

END

Each attribute for which a question may need to be raised should have a

corresponding rule of this form. The priority of this rule should be set below that

of the other rules for the attribute because you probably want this rule to be fired

only after the inference engine has exhausted all other inferencing possibilities.

Note: It is desirable to confine these rules to a separate rule method that is

always posted with the ruleset, or rulesets, containing those attributes that

these rules ask about. These rules should be excluded from any verification

process using VALENS.

Use the WhenSourced Event Method to Initiate the Dialog

Another approach to raise questions uses the WhenSourced() event method.

The WhenSourced() method is provided by the _Object class of SysLib. CA Aion

BRE automatically invokes the WhenSourced() method whenever the inference

engine seeks a value for an engine-linked attribute during chaining. It is helpful

in supporting backward chaining systems.

There are several steps required to have CA Aion BRE invoke the WhenSourced(

) method:

1. In the inference block, link attributes for which you want to generate

questions to the current inference engine:

var eng is integer

eng = EngineGetCurrent()

EngineLinkGoal(eng, ->Attrib)

■ If your class has many attributes that participate in the inferencing

process, you probably do not want to list each attribute.

■ Through the CA Aion BRE metaprogramming facilities, it is possible to

loop through your class to get a pointer to each attribute and link each to

the current inference engine.

■ When looping through a class to get a pointer to each attribute, use the

GetAttribute() method of AttributePointer.

Conversational Systems Built with Backward Chaining

Chapter 2: Chaining 31

2. Write the code for the WhenSourced() method.

The WhenSourced() method is defined in _Object. You should specialize

WhenSourced() in the class where the attribute(s) to be linked are defined

(or in a parent class). The signature of the WhenSourced() method is:

WhenSourced(pat is attributePointer, lastchance is Boolean)

where:

pat

Provides a pointer to the attribute that is being sourced.

lastchance

Is TRUE when the engine cannot resolve the attribute and chaining is

about to terminate.

The simplest way is to specialize the WhenSourced() method to test the

attributePointer parameter and execute the appropriate code for raising the

question to the user.

For example:

If pat = ->Attrib then

// code to raise the question

else

// other attribute tests

end

A more sophisticated approach is to code a series of additional methods for

each question to be generated. Following the CA Aion BRE style of naming

such methods, these names would have the form:

WhenattribNameSourced

The WhenSourced() method would then contain just general code for

invoking the appropriate method:

var methodname is String

methodname = “When” & GetAttributeName(pat) & “Sourced”

invokeMethod(current, methodname, 0, 0, 0)

If you wish to generate the question only after the inference engine has

exhausted all rules for the primary goal, then you should execute the preceding

code under the condition that lastchance = TRUE.

Note: Last chance sourcing may not exactly mimic the order of questions as

using IFRULEs that fire strictly under the regime of backward chaining. For more

information about the WhenSourced() method, see the online help.

Conversational Systems Built with Backward Chaining

32 Rules Guide

How to Link the Interface into Client/Server Environments

When CA Aion BRE is used in a client/server environment, constructing a

conversational interface typically involves building an Aion component as a

server that performs inferencing, with a client interface built in Visual Basic,

C/C++, Java, or C#. For example, the Aion server may be a server running in the

.NET environment (under the Common Language Runtime, or CLR) that

communicates with a client component built using C# or other .NET compatible

language. It is also possible to use commercially available interface building

tools, for example, a user interface built with PowerBuilder may use the CA Aion

BRE C interface layer.

Similar to supporting a native Aion interface, the Aion server will most likely use

IFRULEs and WhenSourced() event methods to support client interface

mechanisms within a client/server environment. However, because the Aion

server does not have direct access to the client's interface mechanisms,

programming to support these interface mechanisms differs from supporting a

native Aion interface.

Note: For more information about using IFRULEs or WhenSourced () to maintain

a conversation interface, see Use Rules to Initiate the Dialog (see page 30) and

Use the WhenSourced Event Method to Initiate the Dialog (see page 30).

To construct a conversational interface within a client/server environment, it is

necessary to establish the appropriate interface links between the Aion server

and the client interface. That is, the Aion server must export methods that are

capable of supporting the client in initiating inferencing, obtaining the text for

the question to be asked, and returning the response to Aion. Depending upon

whether your client/server environment is capable of supporting stateful

conversations, these methods must be programmed differently.

Client/server environments that offer only stateless servers, such as COM,

require callbacks to achieve a conversational interface. To see an example of

using a callback between a COM client and a COM server, see the CA Aion BRE

example in \COM\animals.

Conversational Systems Built with Backward Chaining

Chapter 2: Chaining 33

Stateful conversations, in which the Aion server maintains the internal state of

the inference engine over different transactions, require additional programming

considerations. When returning the response to a question that the server has

requested the client to ask its user, the client must be assured of getting back to

the same server instance that it had originally invoked to initiate inferencing.

Doing this requires thread management. To achieve the best thread

management in a multi-user environment, it is recommended to use CA Aion

BRE servers with a J2EE environment (with the Java interface layer) or the .NET

environment (with managed C++ interface layer).

Note: CA Aion BRE provides examples of supporting a conversational interface.

The examples are DynaInfer and the BackwardChain in the /Java example set.

First, study the DynaInfer example. This example is primarily meant to illustrate

the InferBegin() and InferEnd() methods (explained below). The approach

explained in this chapter follows more closely the BackwardChain example. For

programming considerations related to maintaining state throughout a

conversational session, see Access a Stateful Server from the Client (see

page 33) and Program the Server Side (see page 34) in this chapter.

Access a Stateful Server from the Client

After the client has called a method on the Aion server to invoke inferencing, the

server must return the result of the inferencing, not information about how to

ask a question. To address the problem of providing information about the

question to ask, the Aion server must pass back to the client an indicator that

inferencing is incomplete and that a question needs to be asked. The client must

then retrieve information about how to ask the question from the Aion server.

Client pseudo code for carrying on a conversational interface may look like the

following:

AionServer.initiateInferecnceBlock()

Loop until result is found

statusResult = AionServer.invokeInferencing()

// This statement reinitiates inferencing on

// subsequent iterations of the loop.

if statusResult = needToAskQuestion then

questionInfo = AionServer.obtainQuestionInfo()

questionResult = askUserQuestion(questionInfo)

AionServer.setUserAnswer(questionResult)

elseif statusResult = inferencingComplete then

result = AionServer.obtainInferencingResult()

else // Server is unable to reach a result

result = NULL

exit Loop

end

End

Conversational Systems Built with Backward Chaining

34 Rules Guide

Other client code is possible. For instance, the CA Aion BRE BackwardChain

example (in the \AionBRE\examples\Java folder) uses exception throwing in

place of inferencing the statusResult code. The following section will discuss how

the server side is programmed to support this client interaction.

Program the Server Side

The client code in Access a Stateful Server from the Client (see page 33), in this

chapter, demonstrates the mechanisms the Aion server must provide to the

client. The Aion server must provide:

■ An interface method for the client to initiate inferencing; that is, to post

rules.

■ A means to designate incomplete inferencing, that is, to designate the need

to raise a question.

To support the preceding client code, the Aion server will need to introduce

its own inferencing status code for this purpose and return it through the

inference engine. This may be accomplished by invoking the stoprun()

method using the special status code whenever a question needs to be

raised on the client side. The CA Aion BRE BackwardChain example (in the

\AionBRE\examples\Java folder) employs exception throwing to alert the

client when the principal goal remains unknown and a question needs to be

raised for a subgoal.

Note: Exception throwing may not be available in all environments.

■ An interface method for the client to obtain information about what question

to ask.

■ An interface method for the client to return the response. This method will

set the attribute (subgoal) requiring the response.

■ A means to invoke and reinitialize inferencing.

The Aion server can use other approaches to support a conversational interface

that directly use the engine history. For an example of other approaches, see the

CA Aion BRE example in \AionBRE\examples\DynaInfer.

Note: In this section, it is assumed that either IFRULEs or WhenSourced ()

event methods are used to set up the information in the Aion server that is

required by the client to ask the intended question.

Instead of executing code to raise the question directly to the user, the IFRULEs

and WhenSourced() event-methods must set up sufficient information in the

Aion server for the client to ask the appropriate question. That is, the Aion server

must save information about the attribute that the inference engine is currently

pursuing. To preserve this information, the Aion server usually saves the

attributePointer to attribute.

Conversational Systems Built with Backward Chaining

Chapter 2: Chaining 35

The Aion server must also make this information about the attribute available to

the client in a usable form, for example, as a string representing the name of the

attribute. This information is made available to the client through an appropriate

interface method.

Note: CA Aion BRE constraints provide a convenient mechanism to specify valid

responses to questions that the user is asked during backward chaining.

Constraints can be made available to the client through the

getAttributeConstraint() method of attributePointer. For more information

about constraints, see Constraints in the chapter ―Aion Objects Overview‖ in the

User Guide.

The attributePointer is reused to set the value of the attribute when the client

returns the response.

Note: For more information, see the SetAttributeValue() method in the

AttributePointer class of SysLib in the online Reference. For information about

invoking and reinitializing inferencing, see Invoke and Reinitialize Inferencing

within a Stateful Conversation (see page 35).

Invoke and Reinitialize Inferencing Within a Stateful Conversation

Because the CA Aion BRE application must stop inferencing to return the proper

inferencing status to the client, the principal issue in linking a conversational

interface in a client/server environment is how the inference engine will maintain

state during the conversation and resume inferencing in an efficient way. If the

standard inference block (Infer/End) is used in this context, then the state of the

inference engine is lost when CA Aion BRE exits the inference block. Upon the

return to inferencing, the CA Aion BRE application would have to rerun the

complete chain with the new information until it reaches another unknown

attribute, at which point the process, including executing the complete chain

again, is recycled.

Fortunately, CA Aion BRE provides an alternative way of creating an inference

block, called dynamically bound inference blocks, using the InferBegin() and

InferEnd() methods. These methods allow the inference engine to maintain

state across different invocations of inferencing from the client.

Note: For more information about dynamically bound inference blocks, see

InferBegin and InferEnd (see page 39).For an example, see the DynaInfer

example.

Conversational Systems Built with Backward Chaining

36 Rules Guide

When using InferBegin() and InferEnd(), it is necessary to return to the same

inference engine when using dynamically bound inference blocks. To accomplish

this:

■ The CA Aion BRE server must provide separate interface methods for

initiating an inference block (which should also post rules) and for invoking

inferencing.

For example, the InferBegin() invocation cannot be in the same method that

invokes backward chaining; otherwise, a new inference engine will be

created with each iteration.

■ The initiating interface method is called only once per consultation session

by the client, whereas the inference invoking method is always called in a

loop, as shown in Access a Stateful Server from the Client (see page 33) in

this chapter.

Note: For more information about developing a conversational interface using

Java, see Supporting Backward Chaining in the chapter ―Generating and Using

the Java Interface Layer‖ in the User Guide. The information contained in that

section is also relevant for developing a conversational interface using a C#

client.

Chapter 3: The Inference Block 37

Chapter 3: The Inference Block

The previous chapters discuss simple rules and the operation of the

backwardchain and forwardchain keywords. To write and process rules, you

need one more construct-the inference block.

An inference block is written in a method and contains all code dealing with

inferencing. It begins with the keyword INFER and finishes with the keyword

END. Two things always occur in an inference block:

■ Rules are posted

■ A chaining command is issued (backwardchain or forwardchain)

■ An inference block may contain more than one chaining command.

An inference block may contain other language statements, including method

calls and regular if-then statements (not to be confused with the ifrule keyword

used in rules).

A class may contain several inference blocks, which may be dynamically nested.

This section contains the following topics:

Anatomy of an Inference Block (see page 37)

Posting and Scope (see page 39)

Object-Oriented Knowledge (see page 43)

Anatomy of an Inference Block

In an inference block, two main events happen. First, the rules are posted, then

the inferencing engine processes the rules.

Anatomy of an Inference Block

38 Rules Guide

Sample Inference Block

As an example, consider the following, in which ->Approve is a pointer to the

attribute Approve. Indentation, line spacing, and comments are for convenience

only:

INFER

// Loan Rule 1

rule "Good Rating: approve any loan under 10K"

ifrule CreditRating = "GOOD" AND Loan<10000

then

Approve=TRUE

End

// Loan Rule 2

rule "High Income: approve any loan under 10K"

ifrule Income > 50000 AND Loan<10000

then

Approve=TRUE

End

// Loan Rule 3

rule "High Income/Good Rating: approve any amount"

ifrule CreditRating = "GOOD" AND Income > 50000

then

Approve=TRUE

End

// Loan Rule 4

rule "If no reason to approve, then reject"

ifrule ISUNKNOWN(->Approve)

then

Approve=FALSE

End

backwardchain(->Approve)

TellUser()

end

This example demonstrates that a domain expert, such as a loan officer, could

write rules without knowing anything about if-then-else or procedural

constructs. When the knowledge base includes 400 rules, instead of just four,

this simplicity translates into real savings in development time.

The use of backwardchain means that as soon as the inference engine arrives at

a value for Approve, it stops. Our loan officer does not care about all the ways a

loan could qualify; he just wants a Yes or a No.

The example could be modified to meet the needs of a mortgage broker if we use

forwardchain instead. In the case of a rejection, she could discover all the rules

that assigned Approve a value of FALSE.

Posting and Scope

Chapter 3: The Inference Block 39

The TellUser() statement demonstrates that you can call methods from within

an inference block. In this case, it might display a dialog box that states whether

the loan request was approved or rejected. If we used forwardchain instead,

TellUser() might display fired rules that assigned a value to Approve.

InferBegin and InferEnd

Inference blocks can be made even more flexible by using the InferBegin and

InferEnd methods. Unlike inference blocks that are statically bounded via

INFER/END statements, InferBegin and InferEnd can create dynamically

bounded inference blocks that can span multiple methods. In other words,

starting a block, posting its rules, chaining the rules, and terminating the block

may all be performed by different methods. For example:

VAR hInfer IS INTEGER

// Begins inference block

hInfer = InferBegin("ResolveGoal1", INFER_HISTORY)

VAR bSuccess IS BOOLEAN

// Ends inference block

bSuccess = InferEnd(hInfer)

This increased flexibility lends itself to scenarios whereby a client drives a server

and the server''s inferencing block needs to remain open across client-server

interaction. The client and server may reside in the same or different

components.

InferBegin and InferEnd are semantically equivalent to INFER and END

respectively, and can be substituted for them if desired. However, they cannot

be mixed in the same inference block. Attempting to terminate an InferBegin()

block with an END statement results in a syntax error (because of an extraneous

END statement). Attempting to terminate an INFER block with InferEnd() results

in a syntax error (because of a missing END statement).

Posting and Scope

When control enters the inference block, all rules are posted according to their

order in the block. Posting a rule means it is available to the inference engine to

be fired, failed, or pended during forward or backward chaining. Although all

posted rules are available, the inference engine may reach a goal before all

posted rules have been examined.

Rules are available only to the inference block in which they are posted;

therefore, each inference block creates its own scope for the processing of rules.

The same rules can be processed by different invocations of the inference

engine; however, they must be posted separately in each inference block.

Posting and Scope

40 Rules Guide

Direct and Indirect Posting

It is not always practical to post rules directly, that is, by writing them explicitly

in the inference block as shown in the example. You may want to reuse rules in

several inference blocks. You may want to streamline the inference block, which

can become too full as the number of rules grows.

There is a convenient and modular alternative-indirect posting of rules. You write

the rules in their own method, and then call the method from the inference block.

Because they contain nothing but rules, these methods are known as rule

methods, or sometimes, rule packets. With large knowledge bases, the indirect

style of posting rules is a necessity. We can rewrite our example using rule

methods.

A Revised Example

In this example, revised from Sample Inference Block, we create a rule method

called LoanRules() to contain the first three rules-the ones that test income level

and credit status. We chose to leave the last rule out of the LoanRules() method.

For an explanation, see the next section.

INFER

LoanRules() // Post loan rules 1, 2, & 3

rule "If no reason to approve, then reject"

ifrule ISUNKOWN (-> Approve)

then

Approve = FALSE

end

backwardchain (->Approve)

TellUser()

end

Posting and Scope

Chapter 3: The Inference Block 41

A More Complex Example

With your rules tucked away in the LoanRules() method, it becomes easy to

modify the inference block to carry out more sophisticated tasks:

INFER

LoanRules() /*Post loan rules*/

AskUserRules() /*Post rules to ask user for values*/

CreditCheckRules() /*Post rules to check credit rating*/

rule "If no reason to approve, then reject"

ifrule ISUNKNOWN(->Approve)

then

Approve=FALSE

end

backwardchain (->Approve)

TellUser()

end

We created a method called AskUserRules() that has rules for soliciting such

information as income and requested loan amount. One of the rules calls a dialog

box to ask the user for this information, if it is missing.

We also added a method called CreditCheckRules() that has a rule to check if the

CreditRating data exists. If not, it automatically connects to the Credit Bureau

and runs a credit check.

The LoanRules() method does not include the rule called ―If no reason to

approve, then reject.‖ This last-resort rule should be fired only when the engine

has pursued dependencies (that is, unresolved attributes) in any of the other

three rules. If all four rules were placed in the LoanRules() method, you might

encounter the following problem: The first three rules might pend due to

incomplete information, and then the last-resort rule would fire before the user

had been asked or the Credit Bureau contacted.

Posting Order versus Priority Order

The preceding example demonstrates how you can improve your application by

arranging the inference order in which rules are posted. The credit-checking

rules (for CreditRating) are posted after the ask-user rules (for Income and

Loan) because connecting to the Credit Bureau costs time and resources. As

such, we want to avoid firing the credit-checking rules unless we absolutely need

to do so. And, if we can approve the loan based on Income and Loan without

examining CreditRating, we should do so. By positioning the credit-checking

rules after the ask-user rules, we accomplish this efficiently.

In many situations, you may want more control over the rule order. You may find

it inconvenient to move large numbers of rules around after they are written, or

you may wish to post a last-resort rule ahead of other rules.

Posting and Scope

42 Rules Guide

The posting order is the order in which the inference engine encounters rule

definitions during execution of the inference block. Aion posts rules

consecutively from the top of the block. Rules may reside directly in the

inference block or in rule methods that you call from it. The posting order for a

block includes both kinds of rules.

Priority order governs the order in which the inference engine examines rules

during forward or backward chaining. Priority indicates which is the next

available rule. By default, the posting order and the priority order are the same.

You can specify a different priority order by assigning priority numbers to rules.

Priority numbers work in the following way:

■ The greater the value, the higher the priority.

■ Priority numbers must be integers and may be positive, negative, or zero.

■ If several rules have the same priority number, the inference engine decides

order among them by using the posting order.

Note: If you do not specify a priority, the priority number for a rule is zero by

default.

The following table of seven hypothetical rules illustrates these points. Assume

that all rules are in the same inference block:

You use the keyword priority to assign priority numbers. Consider the example in

the previous section. From a packaging standpoint, the last resort rule could be

grouped with the LoanRules() method to improve the overall organization of the

code.

We avoided putting it there in the first place, you may remember, because we do

not want the last-resort rule to fire if other sources of information-Credit Bureau

or loan officer-could alter the outcome. Priority numbers can solve this problem,

letting us place all four rules together in the LoanRules() method.

Object-Oriented Knowledge

Chapter 3: The Inference Block 43

For instance, you might assign a negative integer to the last-resort rule. You

could also use priority numbers, if you did not want to depend on posting order.

In that case, the other three rules in LoanRules() might have a priority of 5, and

the rules in CreditCheckrules() and AskUserRules() a priority of 3.

The LoanRules() method would look like this:

rule "Good Rating: approve any loan under 10K"

priority 5

ifrule CreditRating = "GOOD" AND Loan<10000

then

Approve=TRUE

end

rule "High Income/Bad Rating: approve any loan under 10K"

priority 5

ifrule Income > 50000 AND Loan<10000

then

Approve=TRUE

end

rule "High Income/Good Rating: approve any amount"

priority 5

ifrule CreditRating = "GOOD" AND Income > 50000

then

Approve=TRUE

end

rule "If no reason to approve, then reject"

priority -2

if rule ISUNKNOWN(->Approve)

then

Approve=FALSE

end

The inference block would be streamlined, easy to understand and maintain:

INFER

LoanRules()

AskUserRules()

CreditCheckRules()

backwardchain (->Approve)

TellUser()

end

Object-Oriented Knowledge

An Aion application is completely object-oriented. The class hierarchy

encompasses all functionality-including rules and inferencing.

Object-Oriented Knowledge

44 Rules Guide

Rules and inference blocks participate in object orientation because they are an

integral part of the method in which you write them. The characteristics of a

method affect the rules and inference blocks in it. For instance:

■ If a method has access rights to particular attributes and methods, so do its

rules and inference blocks.

■ If a method has a private or protected access type, then access to its rules

and inference blocks is limited, too.

■ If you want rules and inference blocks to be globally accessible in your

application, give the method an access type of public.

■ If the attributes and methods belong to a different class, you specify class or

instance name when accessing them in a rule or inference block.

■ If rules and inference blocks reside in an instance method, they use the same

instance with which you called the method.

■ Unqualified names in rules refer to attributes and methods of the current

instance and class. (Unqualified names are those that do not specify a class

or instance name.)

■ Rules and inference blocks participate in inheritance.

■ The current instance may belong to the class in which the rule is defined or

to a descendant class. If you make an unqualified method call in a rule, you

do not know ahead of time to which class the instance belongs. Hence,

polymorphism applies to rules and inference blocks, too.

■ Rules and inference blocks can be specialized by specializing the method in

which they reside.

Chapter 4: Runtime Issues 45

Chapter 4: Runtime Issues

This chapter discusses posting, chaining, demons, and runtime considerations

for dynamic rules. Use the information in this chapter to assist in designing and

coding your Aion applications.

This section contains the following topics:

Posting Time or Chaining Time? (see page 45)

Chaining Considerations (see page 47)

Demons (see page 56)

Dynamic Rule Runtime Considerations (see page 57)

Posting Time or Chaining Time?

Consider what happens to a rule method at runtime. As a method is executed,

rules are posted in preparation for processing by the inference engine. The

posted rules are not executed until a backwardchain or forwardchain keyword is

reached. This temporal separation in the execution of rule methods and their

rules has several important implications for programming in Aion.

Keep in mind these two distinct ―times‖ to understand how rules behave. Posting

time is when the method is executed and the rules posted. Chaining time is when

the inference engine executes the rules.

Local Attributes

Local attributes are attributes of the class to which a rule belongs. Local

attributes accessed in a rule refer to the same instance and class as the rule's

method. Aion establishes the current instance or current class for a rule at

posting time. Attributes are correctly resolved when rule premises are evaluated

or actions executed. Within an inference block, different rules may be associated

with different current instances and classes.

Local Variables

Local variables, which you declare in a method, behave differently from local

attributes, which belong to the class. To understand local variables, you should

know that each rule premise or action is treated as if it were an individual

function. By the time a rule is executed, its method has already passed out of

scope, along with the method's local variables.

Posting Time or Chaining Time?

46 Rules Guide

Local variables are re-initialized every time a rule action is executed. Values do

not persist between examinations or executions of a rule.

If you want to use a method's local variable in a rule action, declare the variable

at the beginning of the action. You should do this in the interest of

comprehensible code. If you do not, however, Aion declares it implicitly for you.

You can use the local variable within the action only.

Other Language Limitations in Rules

When you use the Aion language in a rule premise or action, these restrictions

apply:

■ Return-statements cannot be used in a rule.

Note: The method you would intend to make return would already have

passed out of scope.

■ Arguments that you pass to the rule's method cannot be referenced in a rule.

Note: The arguments have the same lifetime as the method.

Dynamic Posting

A complex application can contain hundreds, even thousands, of rules. Some

uses of your application may require only a subset of these rules to arrive at a

solution. To enhance performance of the inference engine, limit the number of

rules posted to only those necessary for each case or problem.

You can dynamically control the posting of rules. When you test one or more

conditions before posting a group of rules, we speak of dynamic posting-which is

accomplished by rules or by procedural logic.

Meta-Rules

Some rules exist to post other rules. When a rule is fired, its action may post one

or more other rules. Rules that augment knowledge during the inference process

are referred as meta-rules. For example, the following rule adds the knowledge

required to diagnose skin disease only after a generic set of symptoms has been

identified:

RULE "Skin-Disease"

IFRULE SkinDiseaseSymptoms

THEN

SkinDiseaseKnowledge.diagnose // post rules

END

Chaining Considerations

Chapter 4: Runtime Issues 47

Conditional Posting

You can also employ regular if-then statements to control which rule methods

are called, as in the following:

INFER

/* Conditional Knowledge Posting */

BusinessObject.MyRules1 // post common rules

IF Individual.NotPolicyHolder

THEN BusinessObject.MyRules2 // post specific rules

END

/* Inference Logic */

FORWARDCHAIN

END

Comparison of Meta-Rules and Conditional Posting

In general, you use conditional posting when posting due to non-inferencing

criteria. You post using meta-rules when posting due to an inferencing result.

Chaining Considerations

When you are coding the section of the inference block that contains the chaining

command, it may help you to know a little more about the following:

■ Inference block scoping

■ Stopping the chaining process

■ Multiple execution of premises, actions, and the chaining command

■ Unknown attributes

■ Calling methods from rules

■ Limitations regarding chaining over complex data types

Inference Blocks and Scope

An inference block provides the scope for the inferencing operations. All rules

posted in the same inference block are in the same inference scope. When

pursuing a goal or exhaustively firing rules, the inference engine examines all

rules currently in scope.

Chaining Considerations

48 Rules Guide

Nested Inference Blocks

There may be times when you want to interrupt the current scope, create a

limited scope for resolving a sub-problem, and then resume the interrupted

scope. Aion accommodates this need with nested inference blocks. A nested

inference block processes locally posted rules only; it does not examine or fire

rules from inference blocks of higher or lower scope.

When combined with conditional statements, nested inference blocks provide for

truly dynamic inferencing, in which a line of reasoning is pursed only under

selected circumstances.

Note: Nested inference blocks are allowed, but not nested chaining. You cannot

issue one chaining command when another is still executing. Do not invoke

chaining from within a rule action.

Rule Readying

During inferencing in a nested inference block, readying of rules in higher scopes

does occur. The engine notes actions (such as assignments to attributes or

creation of an instance) that might affect a rule in a higher scope. The engine

then changes the rule state from Pended to Ready. Later, when the higher scope

is reentered, the newly readied rules will be considered by the engine.

End of the Chaining Process

Once you have started the forward or backward chaining process, three

conditions can bring it to a halt:

■ The goal is achieved (value determined for the goal attribute).

■ Rules are exhausted.

■ A STOPCHAIN is executed.

Normal Return Codes

The chaining command returns an integer value that tells you what made the

inferencing process terminate. Return values are defined as constant class

attributes in the _ENGINE class. You can access these return codes in your

application logic. Under certain circumstances, you may want to determine new

input and execute the chaining command again.

There are four normal return codes for forwardchain and backwardchain:

Return code Rule processing terminated because…

CHAIN_COMPLETED The goal attribute was assigned a value.

Chaining Considerations

Chapter 4: Runtime Issues 49

Return code Rule processing terminated because…

CHAIN_FAILED A chaining error was detected. For example,

nested chaining was attempted.

CHAIN_OUTOFRULES The rules were exhausted and the goal attribute

was not assigned a value.

CHAIN_STOPNV A stopchain statement did not define any other

return code.

Backward Chaining

The backward chaining syntax is as follows:

<return code> = backwardchain (<GoalPointer>)

backwardchain (GoalPointer)

where <GoalPointer> defines an attributepointer to the goal.

You must specify a goal attribute for backward chaining. Depending on how you

designed your rules, the CHAIN_OUTOFRULES return code may signal that

inferencing did not reach a definite conclusion.

Forward Chaining

Forward chaining often continues until all the consequences of input data have

rippled through the rules. Usually, it is not pursuing a goal attribute. The

CHAIN_OUTOFRULES return code would signal that your inferencing has been a

success.

You can also set a goal attribute for forward chaining. Unlike backward chaining,

the goal attribute is optional. In this situation, a CHAIN_OUTOFRULES return

code might be viewed as a failure, and CHAIN_COMPLETED as success.

The syntax can conform to any one of the following lines:

<return code> = forwardchain (<GoalPointer>)

forwardchain ()

forwardchain

where <GoalPointer> defines an attributepointer to an optional goal.

Chaining Considerations

50 Rules Guide

Stopchain Statement

You can stop chaining under other circumstances than the defaults. Issue the

stopchain statement anywhere in a rule's action to terminate chaining. In

general, you test for some condition before using stopchain, as in the following

example:

RULE "No charge if senior citizen"

IFRULE SeniorCitizen

THEN

charge = 0

STOPCHAIN

END

Return Codes

The stopchain statement supports an optional return code, which returns to the

chaining command. The stopchain return code becomes the return code for the

whole forwardchain or backwardchain statement.

stopchain // no return-code

stopchain <RetCode> // with return-code

The integer expression <RetCode> defines the command return code.

For your convenience, the following standard return codes have been defined as

constant class attributes in the class _Engine. A standard meaning is noted for

each, but they can mean whatever you decide.

Return code Handy when...

STOP_DONE …chaining completes normally.

STOP_ERROR …you use stopchain because an error has been

detected.

STOP_EXIT …you use stopchain to force the termination of

chaining under special circumstances.

Chaining Considerations

Chapter 4: Runtime Issues 51

However, <RetCode> can evaluate to any integer value.

You can employ the preceding standard return codes, or you can create your own

return codes. Restrict these return codes to non-negative values, because the

inference engine employs negative values for the standard return codes.

Examples of usage:

stopchain

stopchain STOP_DONE

stopchain(123)

stopchain 3 * Method1("Duck")

Note: Aion does not check non-negative, developer defined return codes nor

does it range check those codes. The restriction is simply a convention for

avoiding conflict with current and future Engine-defined return codes.

StopChain Does Not Terminate Rule Action

The stopchain statement terminates chaining only-it does not terminate the

current rule's action. When stopchain is encountered, the engine records the

stopchain return code, if any, and then execution of the rule's action continues.

The engine terminates chaining at completion of the rule's action.

Stopchain Priority

If, during processing of a given rule, multiple stopchain statements are

executed, the return code is determined by the last-executed stopchain

statement.

Sometimes during processing of a rule, a stopchain statement is executed and

the goal attribute is resolved. The return code reflects the stopchain

statement-not the goal completion.

Multiple Execution

Parts of rules and inference blocks can be executed several times during the

processing of rules. For the sake of performance, you may wish to consider the

following:

Chaining Considerations

52 Rules Guide

Multiple Execution of Chaining

Sometimes it is necessary to execute the chaining statement multiple times

within the inference block. A classic example is the case of a backward chaining

engine that may not resolve its main goal the first time.

The code can be programmed to detect such a condition and resolve some of the

remaining sub-goals by either querying the user or applying default values. You

then reexecute the inference command, and the inference engine uses the new

values to process the rules. Consider the following example:

INFER

BusinessObject.MyRules1 /* Rule Posting */

LOOP

BREAKIF BACKWARDCHAIN(Goal) = CHAIN_COMPLETED

hnd = _Engine.GetCurrentEngine() /* Retrieve engine's */

goals = _Engine.EngineGetGoals(hnd) /* sub-goal list */

AskUser(goals) /* have user resolve one/more sub-goals */

END

END

UNKNOWN Attributes

The discovery and resolution of UNKNOWN attributes is one of the fundamental

tasks of chaining. Rule attributes that have not been assigned a value are said to

be UNKNOWN. Once an UNKNOWN attribute is assigned a value (even NULL), it

becomes KNOWN. Attributes that contain an initial value are KNOWN attributes.

Note: NULL is a value. An attribute with a value of NULL is not UNKNOWN.

Test for UNKNOWN

Before starting or restarting an inferencing process, you may need to know if a

goal attribute is UNKNOWN. If you find it is KNOWN, you can call the engine

method _Engine.GoalMakeUnknown() to clear the value before using the

chaining command again. For example _Engine.GoalMakeUnknown(->x).

Two operators can be used to test the whether a variable or attribute is KNOWN

or UNKNOWN. The operators are isknown and isunknown. For example:

RULE DefaultX

IFRULE ISUNKNOWN(->x)

x = DEFAULT

END

RULE StopOnX

IFRULE ISKNOWN(->x)

STOPCHAIN

END

Chaining Considerations

Chapter 4: Runtime Issues 53

UNKNOWN in Called Method Causes Rule to Pend

For example, consider what happens when you call a method from within the

premise of a rule. If the engine encounters an UNKNOWN attribute, the rule is

pended. During backward chaining, the attribute is added to the list of subgoals.

Note: This is not true for methods not written in the Aion language.

When UNKNOWN Does Not Cause Rule to Pend

In general, when the engine executes a rule, an UNKNOWN attribute causes the

rule to pend. There are three exceptions:

Exception Reason

the isunknown operator You can use it without causing the rule to pend

because isunknown returns a Boolean value.

However, the isknown operator can cause a rule

to pend.

ifmatch rules

when demons

whenmatch demons

These rules and demons never pend.

AND/OR Node These nodes are short-circuited in a special

way.

AND/OR Nodes and UNKNOWN

The AND and the OR operators in rules behave in a way that adapts the standard

C-language short-circuiting to the world of rules inferencing. Let's consider the

AND operator first:

A AND B

When the Aion inference engine encounters that construct in a rule, it first tests

whether A is UNKNOWN. If it is, the engine does not pend the rule immediately.

Instead, it goes ahead and tests B. If B is false, then there is no point in pursuing

A at this time. Hence, the rule is not pended; it is failed. Consider the OR

operator next:

A OR B

What happens if A is UKNOWN? In this case, too, the engine does not pend the

rule at once. It checks B next. If B is TRUE, then it fires the rule without going

through the trouble of pending it first and resolving A.

Chaining Considerations

54 Rules Guide

Partial Execution of Premise and Action

During the inferencing process, a rule premise can be partially executed several

times until it evaluates to either TRUE or FALSE. A rule action may also be

partially executed many times until all attributes referenced in the action have

been assigned values.

Note: To improve inferencing performance, avoid time-consuming method calls

and any side-effects during the execution of a premise or action.

The following examples illustrate how to remove time-consuming conditions

from a premise:

Rules Examples

Original rule RULE InefficientRule

IFRULE ExpensiveCondition() AND CheapCondition()

 THEN

Attribute1 = 123

END

More efficient rules RULE MoreEfficientRule

IFRULE CheapCondition() AND ExpensiveCondition()

 THEN

Attribute1 = 123

END

The original rule is inefficient because it always evaluates ExpensiveCondition,

even when CheapCondition is FALSE. The second rule is more efficient than the

original rule because it avoids evaluation of ExpensiveCondition if

CheapCondition is FALSE. However, it will still evaluate ExpensiveCondition

when CheapCondition is unknown. An even more efficient rule is:

RULE MostEfficientRule

IFRULE CheapCondition()

THEN

IF ExpensiveCondition() THEN

Attribute1 = 123

END

END

This form of the rule is the most efficient one because it evaluates

ExpensiveCondition only if CheapCondition is known to be TRUE.

Chaining Considerations

Chapter 4: Runtime Issues 55

How to Call Methods from a Rule or Inference Block

When calling methods from a rule or inference block, two things you should take

into consideration are:

■ Non-inferencing statements

■ Automatic in-lining of methods

Non-Inferencing Statements

All language statements can be used in the inference block, not just those

statements with inferencing keywords. We have seen how the regular if-then

statement can be used to dynamically manage rule posting. You can also call

methods as you would outside the inference block. For example, you might call a

method to initialize data. Then you could issue the chaining command, followed

by a method call to process the resulting data.

INFER

KnowledgeObject1.MyRules1

Individual.LoadData

FORWARDCHAIN

Individual.ProcessData

END

Automatic In-Lining of Methods

When you call a method from within a rule, the method is expanded in-line

automatically. Keep this in mind if you are calling lengthy methods from within

rules. You may want to assign the return value from such a method to an

attribute and then access only the attribute from your rule.

Also keep in mind that rules can pend if the engine encounters an UNKNOWN

attribute referenced by the in-lined method.

More information:

UNKNOWN in Called Method Causes Rule to Pend (see page 53)

Limitations on Chaining over Complex Data Types

Beyond the simple data types such as integer, real, string, and boolean, Aion

also offers complex data types such as List and Array. Chaining, however, is

limited to the simple data types. That is, complex data types such as lists and

arrays cannot serve as goals of chaining. Although syntactically permitted at the

present time, such statements as backwardchain(->MyList), where MyList is a

list of simple data type, will not invoke any consideration of the rules. This

limitation applies to both backward and forward chaining.

Demons

56 Rules Guide

It should also be noted that Truth Maintenance operations do not apply to

complex data types. For example, values assigned to a list during truth

maintenance will not be retracted if the reasoning is retracted. For more

information, see Truth Maintenance (see page 107).

Moreover, inferencing behavior becomes unpredictable when lists are used in

rule premises, for example, IFRULE/WHEN AttribList includes ―specificValue‖.

The use of complex data types in rule and demon premises is discouraged.

Demons

Demons are very special rules that monitor events and fire when the events

occur. For example, a demon might monitor a gauge value. When the gauge

reaches a critical level, the demon's action fires automatically.

Demons become active immediately upon posting; they do not require a

chaining statement to activate them. When the demon is posted, the engine

evaluates the premise and, if TRUE, executes the demon's action. Thereafter,

the engine monitors the status of demon premise attributes to detect

modification, and when modified, the demon is refired. Demons have two forms,

depending on how many instances you are monitoring:

■ when-intended for monitoring a single instance at a time

■ whenmatch-used to monitor several instances via pattern matching

Firing of Demons

Any assignment to a monitored attribute of a demon causes the premise of the

demon to be re-evaluated. Note the following characteristics:

■ If the premise evaluates to TRUE, the demon is fired immediately-that is,

demons are fired ―inline‖ with the actions of other rules.

■ A demon may be fired multiple times, unlike an ifrule, which is discarded

after it fires.

Scope of Demons

Demons remain active until the inference block in which they were defined is

exited. Normal inference block scoping does not apply to demons. Actions in a

nested inference block can fire a demon posted by a higher-level inference block.

Note: Posting too many Demon rules can slow down the performance of your

application.

Dynamic Rule Runtime Considerations

Chapter 4: Runtime Issues 57

Dynamic Rule Runtime Considerations

Dynamic rules are a powerful feature of Aion for defining rules to the knowledge

bases at execution time. For more information about dynamic rules, see the

―System Considerations for Supporting Business Rules‖ chapter in the User

Guide. Dynamic rules differ from static rules, which are defined at edit-time and

are compiled into the knowledge base executable. Dynamic rules are typically

achieved by storing rules in an external medium called a rulebase. Rulebases are

most commonly relational databases, such as an MS Access, a Sybase SQL

Server or an Oracle database. Dynamic rules that are stored in an external

medium are call persistent dynamic rules. Aion also provides support for

dynamic rules that are created by logic in the knowledge base itself at execution

time, see Constructing Non-Persistent Dynamic Rules (see page 141).

Note: Aion provides a default rulebase in MS Access format, Rulebase.mdb, that

contains no rules. This rulebase can be found in the \Rulebase subdirectory of

the Aion BRE install directory. For more information about this default rulebase,

see The Default and Empty Rulebases (see page 117).

This section covers the runtime considerations pertaining to persistent dynamic

rules, which is the most common form of dynamic rules. The principal runtime

concerns regarding persistent dynamic rules center on how to load them from an

external medium and post them to the inference engine. Aion also requires

special consideration be given to instance binding, which, for dynamic rules,

involves issues that are not found with static rules. These issues must be

addressed at rule posting time. The section concludes by considering how errors

that occur during dynamic rule processing (loading and posting) can be handled.

How to Load and Post Dynamic Rules

Once the domain expert defines decision rules in the rulebase, the Aion

application developer must load and post these rules in the Aion knowledge

base.

Important! The Aion application must include the DynRDLib library from the

\BRE\init directory.

For more information about DynRDLib, see the ―DynRDLib‖ chapter in the online

Reference.

Note: The Aion BRE applications in the BRE\examples\DynaRule directory

provide illustrations of loading and posting dynamic rules.

Connect to the Rulebase

A rulebase may be any relational database with which Aion can connect, either

natively or through ODBC.

Dynamic Rule Runtime Considerations

58 Rules Guide

DynRDLib provides a default connection that points to an ODBC Source named

―Aion Rulebase‖. This ODBC Source, which is created during installation if you

have chosen to install the ODBC drivers, points to the default rulebase,

Rulebase.mdb, in the \BRE\Rulebase subdirectory.

DynRDLib also provides a service to change the settings of the default

connection, RuleBaseServices.SetConnectionProperties(). This service allows

you to establish or change the properties of your connection to a rulebase. For

example, to stipulate your own data source, use the following code before calling

any other services of DynRDLib:

RuleBaseServices.SetConnectionProperties(DRV_ODBC, "your_source_name")

SetConnectionProperties() also allows you to invoke any of the direct Aion

database connections. To connect to an Oracle 8 rulebase on a server called

―ora_prod8‖ under the userid/password ―scott/tiger‖, invoke

SetConnectionProperties() with the following arguments:

RuleBaseServices.SetConnectionProperties(DRV_ORACLE8, "", "ora_prod8", "scott",

"tiger")

When a direct connection is used to connect to a rulebase, the second argument

of SetConnectionProperties() is the name of the database rather than the name

of the data source. (Oracle does not require a database name; therefore it is

nulled-out by passing an empty string.)

When SetConnectionProperties()is required, it must be called before attempting

to use any database service to load a domain or any dynamic rules from that

domain. For more information about SetConnectionProperties(), see the

―DynRDLib‖ chapter in the online Reference.

Dynamic Rule Runtime Considerations

Chapter 4: Runtime Issues 59

Load a Domain

External dynamic rules must first be loaded into the knowledge base. This may

be done at any time prior to attempting to post the dynamic rules to the

inference engine. Loading is a normal database operation. Thus, loading does

not have to performed within an INFER block.

Important! The first step is to load the domain that contains the target rules.

Dynamic rules can be loaded only through the domain to which they belong.

The following code loads a domain from the rulebase

var DomainName is string = "name"

// The name of the Domain that you wish to load.

var pDom is &Domain

// Domain is a class provided by DynRDLib

pDom = LoadDomainByName(DomainName)

// Perform error processing if pDom is NULL

As an alternative to loading a specific domain by name, the Domain class also

provides a method to load all domains from the current rulebase:

LoadAllDomains().

Load Dynamic Rules

Loading dynamic rules requires a Runtime Facility provided by a DynRDLib class

specifically designed to handle the type of rule that is to be loaded. For dynamic

decision tables, this facility is the class DecTableRuntime. The runtime facility

provides the LoadRuleByName() method by which dynamic rule are loaded.

Dynamic rules must be loaded from a domain. In the following example, we are

loading a dynamic decision table from the domain we loaded previously by

specify the pointer to the domain as an input argument to

DecTableRuntime.LoadRulebyName() method.

var RuleName is string = "name"

var pDT is &DecTableRuntime

pDT = DecTableRuntime.LoadRulebyName(RuleName, pDom)

// Perform error processing if pDT is NULL.

The loaded dynamic rule is, in effect, an instance of the runtime facility. As we

shall see in the following section, the runtime facility also provides a method for

posting instances to the inference engine.

Dynamic Rule Runtime Considerations

60 Rules Guide

The preceding example shows that rules are loaded by name. What does the

Aion application programmer do if the names of rules are unknown? There are

several alternatives:

■ The application programmer can use the Domain.GetRuleNames() method

once the Domain is loaded to retreive a list of all rule names in a domain. The

list may be restricted to a just those rules that apply to a specific domain

interface source (Aion application library) or list of sources by using the

Domain.SetActiveSources() method before calling the GetRuleNames()

method.

■ The RuleLookup class methods can be used to do more robust rule name

lookups

Once a list of rule names is obtained, a loop can easily be constructed to process

this list and to load each rule using the methods of the runtime facility.

For more information about loading rules, see Loading Invalid and Inactive Rules

(see page 61).

Post and Inference Over Dynamic Rules

As is the case with static rules in Aion, dynamic rules must be posted to the

inference engine within the context of an INFER block. The runtime facility used

to load the dynamic rule also provides an instance method for posting dynamic

rules to the inference engine. In the case of dynamic decision tables, the posting

service is offered by DecTableRuntime.PostDTbl(). The following example posts

the dynamic decision table that was loaded in the preceding example.

INFER

var hRule is integer

hRule = pDT.PostDTbl()

// pDT is &DecTableRunTime, see preceding code

// Perform error processing if hRule is NULL

// Invoke forward or backward chaining

END

For more information about posting dynamic decision tables, see Dynamic

Decision Table Runtime Considerations (see page 104).

Once the dynamic rule is posted, it is treated by the inference engine as if it were

a statically defined rule. Rules can be reposted at any time without being

reloaded from the database as long as they have not been cleared. For more

information about clearing rules, see Housekeeping Considerations (see

page 61).

Note: Error processing is critical for the posting process because the posting

facility must perform extensive validation of the dynamic rule before it can

posted to the inference engine. For more information about the error processing

facilities, see Error Checking (see page 66).

Dynamic Rule Runtime Considerations

Chapter 4: Runtime Issues 61

Housekeeping Considerations

Once dynamic rules are posted to the inference engine, it is no longer necessary

for them to exist as objects in the knowledge base (unless, of course, they must

be reused in another cycle of the knowledge-base process). It is possible to clear

(delete) all resources for the domain, including any loaded rules belonging to

that domain, by invoking the ClearDomain() method provided by the runtime

facility, for example,

pDom.ClearDomain()

// pDom is &Domain initialized when the domain was loaded.

If not invoked after posting, ClearDomain() should always be invoked before

exiting the method that loaded the Domain. For more information about the

runtime facility for dynamic rules, see Loading Dynamic Rules (see page 59).

Note: The runtime facility also makes available a ClearRule() method to delete

individual rules. This method is iteratively called within ClearDomain().

Invalid and Inactive Rules Loading

At any one time, a rulebase is likely to consist of valid rules, invalid rules, and

rules that are inactive. Invalid rules might be rules that are only partially

completed. Inactive rules may be former versions of current rules that have been

kept in the rulebase for historical purposes or rules that are to be activated at

some future time. For more information about inactivating rules, see Dynamic

Rule Manager (see page 126). Invalid rules are inactive by default.

Aion accommodates loading both invalid and inactive rules. The loading facility

does not care if the rule being loaded is valid, invalid, or inactive! Therefore, it is

important to learn what facilities Aion provides for controlling loading and

posting rules.

Rules are loaded by name or (internal) ID. It is the responsibility of the Aion

application developer to insure that the rule is of the appropriate type for the

application. The methods Domain.GetRuleNames() (as well as

Domain.GetRuleIDs()) provides boolean parameters to specify whether names

of inactive / invalid rules are to be returned. To load only valid rules, the

application developer must set these parameters to FALSE when retrieving the

names of the rules of a domain. LoadRulebyName() may then be safely called in

a loop with the returned list.

Note: The include_inactive and include_invalid parameters of

Domain.GetRuleNames() and Domain.GetRuleIDs() are TRUE by default.

Dynamic Rule Runtime Considerations

62 Rules Guide

If inactive and invalid rules are loaded, the application developer can determine

the status of a rule by calling the IsEditStyle() method on the loaded rule

instance. The method takes a constant as an input parameter and returns a

boolean indicating whether the rule instance is of the edit status indicated by the

input parameter. Relevant edit styles are:

■ DTBL_EF_INACTIVE: Is the current rule instance inactive?

■ DTBL_EF_INVALID: Is the current rule instance invalid?

Aion allows posting inactive rules. The posting facility, for example, PostDTbl(),

provides a parameter to indicate whether inactive rules should be posted. This

parameter, post_inactive, is set to FALSE by default.

Naturally, invalid rules cannot be posted. However, it should be noted that a rule

that is valid from the rulebase perspective may still be determined to be invalid

within the knowledge base that posts it. For example, a domain interface

member referenced by the rule may have been deleted from the Aion application

but not from the rulebase.

Note: For more information about keeping the Aion application and rulebase

synchronized, see Dynamic Rulebase Administrator (see page 116). For more

information about error checking during rule posting, see Special Error Codes for

Invalid and Inactive Rules (see page 67).

Instance Binding

Instance binding implicitly occurs in the context of static rules. IFRULEs,

including static decision tables, and WHEN demons are bound to the instance

that posts them. Attributes and methods used in these rules are bound to the

attributes (values) and methods of the posting instance. If rules reference other

instances, the posting instance must contain a pointer attributes to the other

instances that its rules use. However, the domain interface exposes methods

outside of their ordinary OO context. Instance domain interface members are not

explicitly associated with specific instances. Therefore, there are important

considerations related to instance binding that the Aion application developer

must keep in mind when it comes to dynamic rules that reference instance

domain interface members.

Note: Binding is not an issue for the domain interface members that are class

methods, because all public class methods are globally available.

The lack of OO context for instance domain interface members has important

consequences. A dynamic rule, unlike IFRULEs and static decision tables, can be

associated with multiple OO contexts at the same time. In other words, a

dynamic rule can be associated with multiple Aion instances, where each

instance belongs to a different class. When dynamic rules are used there does

not need to be a special instance (the posting instance) that contains pointer

attributes to other instances needed by a rule.

Dynamic Rule Runtime Considerations

Chapter 4: Runtime Issues 63

Dynamic rules do not observe the same binding conventions as static rules. Aion

must figure out, for each posted dynamic rule, what Aion instance will serve as

the binding for each reference to an instance domain interface member in the

rule. If there is only one instance of the class to which a domain interface

member belongs, Aion will automatically use that instance as the binding for the

reference of that domain interface member. In this case, binding is

unambiguous. But in other situations Aion needs some help from the Aion

application developer to bind to the appropriate instance.

When a domain interface member belongs to a class that has more than one

instance at rule posting time, including even the class of the posting instance,

the situation changes. In this case, it is the application developer's responsibility

to inform Aion which instance or instances should serve as bindings for

references to domain interface members in the dynamic rule. One way to fulfill

this responsibility is to invoke the posting facility with a list of pointers to the

intended instances as its input argument (for more information about posting

dynamic rules, see Posting and Inferencing over Dynamic Rules). For example,

the relevant signature of the PostDTbl() method is:

PostDTbl(BindList is list of &_Object = NULL) : integer

The list of pointers to binding instances) does not have to be in any particular

order; Aion will figure out which pointers provide bindings for which domain

interface member references.

Note: For more information about posting methods, see the Source Information

column referenced for each type of dynamic rule in Posting and Inferencing Over

Dynamic Rules.

Binding Conventions for Dynamic Rules

To summarize Aion's binding conventions for dynamic rules:

■ No binding is required for references to domain interface members that are

class methods.

■ No binding is required for references to instance domain interface members

when there is only one instance at posting time of the class owning the

domain interface member.

Dynamic Rule Runtime Considerations

64 Rules Guide

■ A binding must be provided for any references to instance domain interface

members when there are two or more instances at posting time of the class

owning the domain interface member. A pointer to the appropriate instance

can be passed in the input argument of the posting method, for example,

PostDTbl().

Note: The pointer current may be passed in the argument if there are two or

more instances of the class one of whose instance posts the dynamic rule.

■ A binding must be provided for any references to domain interface members

that represent an _Interface method when there are two or more instances

whose class implements the _Interface either directly or indirectly. In other

words, if class A, which implements _Interface X-able has one instance, and

class B, which also implements X-able, has one instance, a binding must be

provided for the reference to the X-able domain interface member.

These binding conventions are compatible with inheritance: the binding

instance's class may be a descendent of the class in which the domain interface

member is defined, and the method invoked on the binding instance may be a

specialization of the method represented by the domain interface member. In

each situation, the invoked method of the binding instance or the invoked class

method must be enabled.

Alternative Approach to Instance Binding

Aion also provides a ―manual‖, or ―pinpoint‖, means of instance binding that

allows the Aion application developer to bind references for domain interface

members on a Condition-by-Condition or Action-by-Action basis. A combination

of two methods is used. The first step involves obtaining a pointer to the

Condition or Action for which one wants to bind the reference by invoking one of

the runtime component methods listed in the following table. These methods are

provided by dynamic rule's runtime facility (for information about a dynamic

rule's runtime facility, see ―Loading Dynamic Rules‖). The second step is to

perform the binding by invoking one of the SetBindingByXXX() methods that

belongs to the DIMember class in DynRDLib on instance pointed to by the

handle.

The following table summarizes the runtime component methods for the

dynamic decision tables. These methods return a pointer to particular

component in a dynamic decision table and other information about that

component.

DecTableRuntime Component

Methods

Returned Handle

GetDTblCondition() Obtains a pointer to a specific

Condition

GetDTblCheckmarkAction() Obtains a pointer to a specific

Checkmark Action

Dynamic Rule Runtime Considerations

Chapter 4: Runtime Issues 65

DecTableRuntime Component

Methods

Returned Handle

GetDTblValueAction() Obtains a pointer to a specific Value

Action

GetDTblActionAction() Obtains a list of pointers to the actions

comprising a multiple domain action

(MDA).

For more information about using these methods, see ―Dynamic Decision Table

Runtime Considerations.‖

Having obtained the domain interface member whose reference must be bound,

one can then bind the reference either by using a pointer to the intended

instance, SetBindingByPointer(), or by the name of the intended instance,

SetBindingbyName() as follows:

pDI.SetBindingByName(instance_name) // OR

pDI.SetBindingByInstance(pInst)

where 'instance_name' is a String and 'pInst' is a pointer to an _Object. The

SetBinding methods return a boolean to indicate success or failure of the binding

operation.

Rules pertaining to manual, or pinpoint, binding are:

■ Manual binding must be performed prior to invoking the posting method, for

example, PostDTbl(), which now may be invoked without input arguments if

all required references are established by this approach.

■ A combination of binding strategies may be used to bind instances to a

dynamic rule (see the DPDRules example).

Manual binding must be used when a dynamic rule references two instances of

the same class. Because the input argument to posting method of a dynamic rule

is not sorted, two pointers to the same class cannot be passed. Each instance

must be manually bound to the reference of the specific domain interface

member in the dynamic rule.

Dynamic Rule Runtime Considerations

66 Rules Guide

Error Checking

The DynRDLib contains a class, RuleBaseServices, that provides class methods

for obtaining information about the current state of the dynamic rules in the

knowledge base. One of these services provides information on the latest

recorded error. It is, therefore, a recommended practice to test for any error

when making non-querying operations to the dynamic rule structures specifically

supported by DynRDLib. The operations in DynRDLib generally return a value

indicating whether they were successfully. This return value may be a boolean,

FALSE indicating failure, an integer, zero indicating failure, or NULL indicating

failure. The Aion application developer is responsible for finding out the type of

return value for an invoked operation and setting up the error testing

appropriately.

RuleBaseServices provides two methods for obtaining information on the last

error encountered:

GetErrorInfo(errorMessage:String) : errorCode:Integer

GetErrorValues(...) // long list of arguments

GetErrorInfo() returns a formatted error message, which is compiled from error

details; whereas GetErrorValues() returns the detailed error information.

A typical use of the GetErrorInfo() is provided in the DPDRule example:

var errCode is integer

var errMsg is string

var returnValue is Boolean

// DynDRLib operation returning returnValue

If returnValue = FALSE then

errCode = RuleBaseServices.GetErrorInfo(errMsg)

MessageBox(errMsg, "Error")

// Cleanup operations

End

Note: In the previous section, we introduced the SetBindingBy methods of the

DIMember class. The DIMember class resides in DynRLib, and therefore cannot

avail itself of the RuleBaseServices to track error conditions occurring in its

methods. DIMember provides its own error information method: GetDIErrorInfo(

), for example,

errCode = pDI.GetDIErrorInfo(errMsg)

This method must be invoked for error checking after a call to a DIMember

operation, for example, SetBindingbyName(). The DIMember class also

provides a GetDIErrorValues() method for detailed information on an error.

Note: For more information about the methods involved in error processing in

DynRLib and DynRDLib, see ―DynRLib‖ and ―DynRDLib‖ chapters in the Online

Reference.

Dynamic Rule Runtime Considerations

Chapter 4: Runtime Issues 67

Special Error Codes for Invalid and Inactive Rules

Aion accommodates loading invalid and inactive rules, see Loading Invalid and

Inactive Rules. Rule posting is sensitive to these possibilities:

■ The dynamic rule posting facility allows inactive rules to be posted. However,

an inactive rule will be rejected with a

DYNRERROR_Attempt_to_post_inactive_rule error code if the post_inactive

parameter of the posting facility is FALSE.

■ A known invalid rule cannot be posted and will be rejected by the posting

facility with a DYNRERROR_Attempt_to_post_invalid_rule error code.

Different processing may be justified in this situation in contrast to valid

rulebase rules that are rejected by the posting application, for example, if a

rulebase domain interface member has been deleted from the application.

Chapter 5: Pattern Matching 69

Chapter 5: Pattern Matching

The rules we have seen so far deal with only one instance of a business class.

This is acceptable for an application that a loan officer or mortgage broker

consults on an ad hoc basis. But you might need an application to process large

numbers of loan requests from several branch banks. Pattern Matching rules

help you do this quickly and efficiently.

This section contains the following topics:

Pattern Matching Rules (see page 69)

Advanced Pattern Matching (see page 73)

Pattern Matching Rules

In procedural programming, you use some kind of looping construct and then

iterate over all the instances of a business class. However, coding this process

can be too time-consuming and complicated for a non-programmer.

Aion has a special kind of rule for this situation that is powerful yet easier to

learn-pattern matching rules. A pattern matching rule can iterate over many

instances of a class or over the instances of several classes. Pattern matching

also iterates through a class to include child classes. For example, pattern

matching on a class student also includes instances of classes freshman,

sophomore, junior, and senior. When an instance meets certain conditions, the

action of the rule sets a value or executes a method. Because this process is akin

to holding up each instance to a model to see whether a given set of attributes

matches, it is called pattern matching.

The format of a pattern matching rule is as follows:

rule Rulename

ifmatch Bound variable(s)

where pattern (attributes to be matched)

then action

END

Prior to the rule definition, you must bind one or more variables to your

class(es). After the rule, you would write the forwardchain command, since

pattern matching is available only with forward chaining.

Pattern Matching Rules

70 Rules Guide

Pattern Matching over One Class

We can rewrite one of our previous rules to cover a whole class of individual

applicants:

INFER

bind App to Applicant

rule “Approve under $10,000”

ifmatch App

where App.loan < 10000 AND App.CreditRating = “GOOD”

then

App.Approve=TRUE

end

forwardchain

end

In the example, Applicant is a class, and the bind statement binds the variable

App to the class. The rule iterates over all instances of the Applicant class. The

other loan application rules could be re-written in similar fashion.

Pattern Matching over Two Classes

If your data is at all complex, you probably have more than one business class.

In Aion, you can write pattern matching rules for the instances of two or more

classes. In the interest of simplicity and performance efficiency, we will consider

pattern matching over two classes. We will abandon our loan-request application

example in favor of a weekly scheduling application that uses pattern matching

and forward chaining.

The scheduling application has two classes, a Worker class and a Task class.

Each worker has certain shifts that he is available for work during the week. He

is also certified at certain skills, such as forklift operator, quality-assurance

inspector, assembly line supervisor, etc. Each task is for a specific work shift

during the week, and requires a worker with particular skills.

Following is a table of attributes that the two classes might have:

Attributes of Worker Class Attributes of Task Class

ID ID

List of WorkshiftsUnassigned Workshift

List of SkillsMastered SkillNeeded

List of TasksAssigned Assigned

Pattern Matching Rules

Chapter 5: Pattern Matching 71

Since a worker has multiple workshifts, skills, and tasks, we use the Aion

keyword list that works like automatic arrays. For information about the Aion

language, consult the online Reference. The Workshift attribute of Task Class is

one of the 21 possible time periods in a week, assuming three shifts per day.

The attribute Assigned holds Boolean values-a TRUE or FALSE indicating whether

a Task instance has been assigned to a Worker instance yet. One possible

pattern matching rule is the following:

INFER

bind InstWorker to Worker

bind InstTask to Task

rule “Assign outstanding tasks to available workers”

ifmatch InstWorker, InstTask

where InstWorker.WorkshiftsUnassigned includes InstTask.Workshift

and InstWorker.SkillsMastered includes InstTask.SkillNeeded

then

Add(InstWorker.TasksAssigned, InstTask.ID)

Remove(InstWorker.WorkshiftsUnassigned, Task.Workshift)

InstTask.Assigned = TRUE

end

forwardchain

end

Therefore, InstWorker.SkillsMastered includes InstTask.SkillNeeded. This

returns TRUE if an instance of Worker has mastered the skill required by a task.

Pattern Matching over a Class with Two Binding Variables

There are times in data analysis when you do not want to merely find instances

that have a particular value for an attribute. Instead, you want groups of

instances that share the same value for the attribute, regardless of what it is. To

understand the distinction, think of the difference between finding all employees

who make a given salary, say $50,000, and finding groups of employees who

make the same salary-which may be $35,500, $45,600, $51,378, etc.

Aion gives you the capability to find such groupings by using pattern matching.

In essence, you have one class whose instances fall into two groups. You can

create a pattern matching rule that treats the class as if it were two. To do so,

you create two binding variables, one for each subgroup.

Consider a university in which graduate students serve as instructors of

introductory-level classes. The student population consists of two

subgroups-those who are just students and those who are also instructors. If you

have one class called Student, pattern matching allows you to declare two

variables for the class-one for pupils and one for instructors. Then you write

ifmatch rules just as you would for two classes.

Pattern Matching Rules

72 Rules Guide

Pattern Matching over Interfaces

During data analysis, you may want to find instances for one or more classes

which implement a particular interface (behavior). For example, you may want

to pattern match over instances of all classes that implement an interface named

Flyable. You can perform such matching by associating bind variables to

interfaces (as well as to classes) - for example,

bind bFlyable to Flyable // interface

bind bCargo to Cargo // class

rule "Send cargo by any flyable means"

ifmatch bFlyable, bCargo

end

The inference engine examines instances in the same fashion as it would if the

bind variables were Class-associated. It examines the instances:

■ When the Pattern Matching rule/demon is posted

■ As the instances are created

■ As relevant instance attributes change value

■ As instances are deleted

Pattern matching over interfaces is very useful when considering that, by binding

interfaces to class instances and then pattern matching using those bind

variables, one is able to find patterns in otherwise unrelated classes, for

example,

//assume HasFeathers is an interface

bind bFeathered to HasFeathers //interface

rule “Defeather all feathered objects”

ifmatch bFeathered

where

bFeathered <> NULL

then

Defeather(bFeathered)

end

The engine pattern matches over all instances of all Classes that implement the

interface (directly or indirectly) and will Defeather those instances.

Note: Interface associated bind variables can only reference methods

associated with interfaces.

Advanced Pattern Matching

Chapter 5: Pattern Matching 73

Advanced Pattern Matching

Pattern matching rules allow you to reason conveniently and efficiently about

instances of one or more classes. If you are new to pattern matching in Aion,

read the Pattern Matching section in this chapter.

Flights.app Sample

You can gain an understanding of pattern matching's more advanced aspects by

examining the sample Aion application called Flights. To access it, select File,

Open and double-click Flights.app in the examples directory.

The Flights application is based on a well-established example from the field of

artificial intelligence. It demonstrates the concept of exploding knowledge:

Every time a pattern-matching rule fires, new instances are created, which may

cause the rule to fire again and create more instances. These expanding cycles

continue until a goal is reached.

The goal of Flights is to get from a starting city to a destination city by the

shortest route. The user chooses from a list of seven United States cities. The

catch is that direct flights are few and short. To make it across the United States,

you must take several flights-for example, Los Angeles to Denver, Denver to

Chicago, Chicago to New York.

The sample may be clearer if you conceive of Flights as Rails. Think of taking the

train between any two of the seven cities. Railroad tracks are fixed in number

and only go ―direct‖ to the closest cities. All other journeys consist of several

legs.

Following is a list of the 20 flights you can use to link together a route:

Start City Stop City

Start City Stop City Mileage

ATL CHI CHI ATL 708

ATL NOL NOL ATL 480

CHI NOL NOL CHI 919

CHI SFO SFO CHI 2173

CHI PHX PHX CHI 1742

MIA NOL NOL MIA 860

NOL PHX PHX NOL 1496

NYC CHI CHI NYC 809

PHX SFO SFO PHX 762

Advanced Pattern Matching

74 Rules Guide

Start City Stop City

Start City Stop City Mileage

NYC MIA MIA NYC 1334

The Rules

Flights consists of just two rules, both of them pattern-matching:

FlightRules() Method

bind pnode to Node

bind pflight to Flight

var temp is pointer to Node

// Expand

RULE MatchFlight

ifmatch pnode, pflight

where pnode.CurrentCity = pflight.StartCity

orderby pnode.TotalMiles + pflight.Miles

then

if (not Node.Exists(pflight.StopCity)) then

temp = Node.Create()

temp.CurrentCity = pflight.StopCity

temp.TotalMiles = pnode.TotalMiles + pflight.Miles

temp.VisitedCities = pnode.VisitedCities

add(temp.VisitedCities,pflight.StopCity)

end

end

StopRule() Method

bind pnode to Node

// Stop condition

RULE MatchingFlight

ifmatch pnode

where pnode.CurrentCity = TargetCity

then

stopchain

end

Exists() Method

// Takes string argument StopCity

var temp is pointer to Node

var nodes is list of pointer to Node

Advanced Pattern Matching

Chapter 5: Pattern Matching 75

nodes = list(Node)

for nodes, temp

if temp.CurrentCity = StopCity then

// DebugNode = temp

return(TRUE)

end

end

return(FALSE)

What Are Flight Class and Node Class?

The instances of Flight class are the 20 direct flights listed above. Each Flight

instance has these attributes: StartCity, StopCity, and Miles. The last attribute is

the distance between the cities in miles.

The Node class represents routes. A route consists of one or more connecting

flights. A Node instance has these attributes: CurrentCity, VisitedCities, and

TotalMiles.

■ The CurrentCity attribute tells you how far you have progressed.

■ The VisitedCities come from the StartCity and StopCity attributes of the

flights you have taken so far.

■ The TotalMiles calculates the combined distance of those flights.

Note: The first instance of Node is a single city-the starting city of your route.

The VisitedCities is NULL, and TotalMiles is equal to zero.

Bindings

There are two distinct uses of the word binding in pattern-matching rules:

■ Binding a pointer to an instance

■ Rule-instance binding

It is important to understand the difference.

Advanced Pattern Matching

76 Rules Guide

Binding a Pointer to an Instance

Consider a simpler example for a moment-one with a single class:

bind pCust to Customer

rule SpecialCustomerCreditLimit

ifmatch pCust

where pCust.Kind = “special”

then pCust.SetCreditLimit(10000)

END

The bind declaration must be made before posting the corresponding rule. This is

one kind of binding-the binding between an instance of Customer class and the

pointer variable pCust.

Rule-instance Binding

The ifmatch rule considers the instances one at a time. The where clause tests to

see if there is a match-that is, if the Kind attribute is special. If there is a match,

the inference engine binds the Customer instance to the rule so that the action

clause can be fired.

This is the second kind of binding-one that impacts pattern-matching efficiency.

Since these bindings are relatively costly in computing resources, the engine

refrains from making them until it has found instances that meet the where

clause conditions. When we discuss ramifications of pattern matching bindings,

we are referring to the rule-instance binding.

Bindings in Flights

Let's return to the Flights example. The first line of FlightRules() binds a variable

called pnode to the class Node, and variable pflight to the class Flight. In each

case, the variable points successively to an instance of the class.

Each combination of a Flight instance with a Node instance is compared. When a

combination meets the conditions in the where clause, a binding is created and

the rule fired for that binding. The result may be a new Node instance based on

the data of the two instances.

Say that you are starting at Atlanta (ATL) and want to go to San Francisco (SFO).

The first Node instance has these attributes:

CurrentCity VisitedCities TotalMiles

―ATL‖ NULL 0

Advanced Pattern Matching

Chapter 5: Pattern Matching 77

The where clause in FlightRules() compares CurrentCity of the Node instance

with StartCity of each Flight instance:

where pnode.CurrentCity = pflight.StartCity

Two Flight instances meet the criteria: ATL-CHI and ATL-NOL. Each combination

of instances is bound with the MatchFlight rule:

Node Instance Flight Instance

ATL ATL-NOL

ATL ATL-CHI

The rule action fires once for each rule-instances binding:

then

if (not Node.Exists(pflight.StopCity)) then

temp = Node.Create()

temp.CurrentCity = pflight.StopCity

temp.TotalMiles = pnode.TotalMiles + pflight.Miles

temp.VisitedCities = pnode.VisitedCities

add(temp.VisitedCities,pflight.StopCity)

end

Since nodes do not exist for either of the flight termination cities, the result is

that two new instances of Node are created, bringing the total to three:

CurrentCity VisitedCities TotalMiles

―ATL‖ NULL 0

―NOL‖ ―ATL‖ 480

―CHI‖ ―ATL‖ 708

Explosion of Knowledge

Whenever instances are created by firing an ifmatch rule, the inference engine

evaluates the rule premise with these new instances, and fires the action if

appropriate. The number of available instances can thus ―explode‖ during

inferencing. When evaluating the premise, the engine must consider a number of

instance-combinations equal to the cross product of the current instances of

Node and Flights. For example, if there are 3 nodes and 20 flights, the engine

must consider 60 bindings (3 x 20 = 60).

Advanced Pattern Matching

78 Rules Guide

Achieving the Goal of Flights

Any Node instance that had ―SFO‖ as the CurrentCity would be considered as a

possible solution for Flights. The simplest way to achieve the goal would be to

continue until all possible routes to SFO were created, and then select the

shortest one. For purposes of efficiency, however, Flights.app was written

differently using the orderby clause.

Orderby Clause

Rule-instance bindings are not fired immediately after they are created. First the

inference engine creates all bindings that satisfy the where clause. Then it

proceeds to fire them in an order that you can specify, using the orderby clause

of an ifmatch rule.

The orderby clause can contain one of the following:

■ MOSTRECENT keyword-The rule-instance bindings are fired, starting with

the last one created (LIFO). This keyword can also be used in non-orderby

code.

■ LEASTRECENT keyword-The rule-instance bindings are fired, starting with

the first one created (FIFO). This keyword can also be used in non-orderby

code.

■ One or more integer expressions that allow you to rank the bindings-The

inference engine starts with the binding that has the lowest ranking.

Controlling this order often increases the efficiency of your pattern matching. If

a solution can be reached before firing all bindings, you can optimize inferencing

performance.

If an orderby clause is not specified, the engine fires bindings starting with the

first binding created (LEASTRECENT).

If a rule on a parent class has a LEASTRECENT or MOSTRECENT clause, and

instances matching the criteria exist in various subclasses, the bindings are

ordered correctly only within each class and not across all instances of all

subclasses. For example:

inst_a = PARCL.Create()

inst_d = SUBCL.Create()

inst_b = PARCL.Create()

inst_d = SUBCL.Create()

inst_c = PARCL.Create()

Advanced Pattern Matching

Chapter 5: Pattern Matching 79

The binding order is inst_a, inst_b, inst_c, inst_d, inst_e (rather than inst_a,

inst_d, inst_b, then inst_e). To order bindings by recency across all subclasses,

create an integer attribute to hold the order in which the instances were created,

then use ORDERBY on that attribute.

New Instances Join the Firing Queue

Whenever a rule is fired that creates new instances, the engine considers the

instances for generating additional bindings. The new bindings (if any)

immediately join the old bindings in the firing queue. When the engine decides

which binding to fire next, it checks the value in the orderby clause.

Orderby in Flights

The inferencing in Flights.app is highly efficient because of the following: of the

existing bindings, the engine always fires the one that would create the Node

instance with the smallest TotalMiles. In this way, you can always be sure that

each new Node instance is the shortest route to the CurrentCity. By the time you

get to CurrentCity = ―SFO,‖ you automatically have the shortest route.

The orderby clause in Flights.app looks like this:

orderby pnode.TotalMiles + pflight.Miles

Where Clause

The where clause in Flights compares instances from the two classes to see

whether they meet certain conditions. This process is similar to doing a table

JOIN in SQL. The clause looks like this:

where pnode.CurrentCity = pflight.StartCity

If the CurrentCity of a Node instance equals the StartCity of a Flight instance, the

two are bound to the rule and enter the firing queue.

In other situations, you put conditions in the where clause to ―filter‖ instances of

a single class before combining the instances of multiple classes. This is similar

to doing a SQL SELECT on records of a single table prior to doing a JOIN.

Advanced Pattern Matching

80 Rules Guide

For Flights, imagine that the original list of flights included some in countries

outside the United States. To figure the shortest route from Atlanta to San

Francisco most efficiently, you would want to consider only flights within the

United States. Assuming that the Flight class has a new attribute called Country,

you could modify the where clause of the MatchFlight rule in the following way:

RULE MatchFlight

ifmatch pnode, pflight

where pnode.CurrentCity = pflight.StartCity

and pflight.Country = “USA”

orderby pnode.TotalMiles + pflight.Miles

then

if (not Node.Exists(pflight.StopCity)) then

temp = Node.Create()

temp.CurrentCity = pflight.StopCity

temp.TotalMiles = pnode.TotalMiles + pflight.Miles

temp.VisitedCities = pnode.VisitedCities

add(temp.VisitedCities,pflight.StopCity)

end

Order Unimportant in Where Clause

For maximum efficiency, the engine must filter out non-U.S. flights before

matching Flight and Node instances. In Aion, however, you need not worry about

the order in which these statements appear in the where clause. The inference

engine analyzes your statements and applies them in the most efficient order.

Where TRUE clause

Aion does not support the where TRUE clause. The where clause must reference

all bind variables defined in an ifmatch rule. If it does not, a syntax error occurs.

Advanced Pattern Matching

Chapter 5: Pattern Matching 81

SingleFire Rules

Rule authors can classify a pattern-matching rule as a SingleFire rule. The

singlefire keyword is inserted into the rule when you check the Rule Editor's

SingleFire checkbox. After firing a SingleFire rule on the first appropriate

binding, the inference engine changes the rule's state from READY to FIRED.

After that, the engine ignores events associated with that rule's bind variables.

For example:

bind bP to Person

bind bD to Duck

rule "Associate Persons and Ducks"

ifmatch bP, bD

where

bP.Age > 10

and bP.Age = bD.Age

singlefire

then

// Some actions

end

This option applies only to IFMATCH rules; it does not apply to WHENMATCH

demons.

Note: The SingleFire option is mutually exclusive with the demon option; that is,

when the demon option is checked, the SingleFire option is disabled.

An application can restore a SingleFire rule back to a READY state using the

existing SysLib method:

_Engine.EngineRuleReset(...)

Once reset, the rule again reacts to events associated with its bind variables, but

only to subsequent events and not to events that occur while it is in a FIRED

state.

When calculating bindings for a SingleFire rule, the inference engine attempts to

minimize the number of bindings. If the rule uses LEASTRECENT (default)

ordering and does not specify ORDERBY clauses, the engine immediately fires

the rule when it finds the first binding. Otherwise, it calculates all of the bindings

before firing the rule.

Advanced Pattern Matching

82 Rules Guide

Inference Engine and Multiple ifmatch Rules

So far we have considered only the one ifmatch rule in FlightRules(). Flights has

another rule, however-the one in StopRules():

bind pnode to Node

// Stop condition

RULE MatchingFlight

ifmatch pnode

where pnode.CurrentCity = TargetCity

then

stopchain

end

This rule tests to see if the CurrentCity of any existing Node instance equals the

user's final destination, or TargetCity. To see how it is used, examine the

inference block in InvokeFlightRules():

INFER

StopRule()

FlightRules()

forwardchain

end

Because there are no priority clauses, priority order is the same as posting order.

Thus, StopRule() has a higher priority than FlightRules().

With respect to priority order, the inference engine treats ifmatch rules similarly

to the way it treats IFRULEs. Whenever an UNKNOWN attribute is resolved or a

new instance is created, the engine goes back to the top of the priority order and

visits the stop rule.

Therefore, every time a new instance of Node is created, the engine visits the

stop rule to see if pnode.CurrentCity = TargetCity. As soon as a match happens,

inferencing ends. Since the orderby clause guarantees that each node is truly the

shortest route from Atlanta, the first node that ends in San Francisco achieves

the goal.

Chapter 6: Decision Tables 83

Chapter 6: Decision Tables

A decision table is a tabular rule that evaluates a set of conditions and executes

a set of actions based on that evaluation. The Decision Table Editor uses a

graphical display to show the order and flow of the logic and the actions that can

result.

A decision table is similar to a collection of IFRULEs with related premises and

actions (see the section Rephrasing IFRULEs as Decision Tables in this chapter).

Like IFRULEs, decision tables can use attributes and methods, and can be used in

forward or backward chaining. However, decision tables do not match over

instances of one or more classes like an IFMATCH rule.

Through the use of domain interfaces, decision tables have the capability of

being dynamic. (For more information about domain interfaces and dynamic

rules, see the chapter ―System Considerations for Supporting Business Rules‖ in

the User Guide.) In particular, this means that decision tables can be stored

outside the Aion IDE and maintained by domain experts. For more information

about rule management by domain experts, see Maintaining the Dynamic

Rulebase (see page 115). The section Dynamic Decision Tables discusses

handling dynamic decision tables in the Aion knowledge base.

This section contains the following topics:

Benefits of Using Decision Tables (see page 84)

How to Create and Open Decision Tables (see page 84)

How to View and Modify Decision Table Properties (see page 85)

Customizing the Decision Table Editor (see page 95)

Compressing a Decision Table (see page 96)

Runtime Execution (see page 100)

Chaining (see page 101)

Rephrasing IFRules as Decision Tables (see page 102)

Dynamic Decision Tables (see page 103)

Benefits of Using Decision Tables

84 Rules Guide

Benefits of Using Decision Tables

Using a decision table instead of a set of production rules can offer the following

benefits:

■ It is easier to ensure completeness and consistency, and to avoid

redundancy in specifying a discreet set of conditions and test values, and

relating those conditions to a set of actions.

■ Aion decision tables include a runtime algorithm to optimize the execution of

the decision table rule by ignoring conditions that do not contribute to

determining a specific action.

Decision tables are generally favored over rules by domain experts, because

decision tables provide a simple view, or ―full picture,‖ that may not be easily

gleaned from a list of discreet production rules.

How to Create and Open Decision Tables

Creating a Decision Table entails opening the Decision Table editor, adding new

Conditions and Actions, and generating the table. After you have created a

Decision Table, you can modify it using the Decision Table editor.

Create Decision Table

To create a decision table

1. From the Logic menu, choose New, Decision Table to display the New

Decision Table dialog.

2. Type a name for the new decision table in the Name field.

3. Choose an Owning Class from the drop-down list.

4. Click OK. A new method object is created in the application, and the Decision

Table Editor opens.

When first created, the Decision Table Editor defaults to the empty Table page.

Click the Properties tab to choose properties for the method. Click the

Conditions/Actions tab to specify conditions and actions.

To create a new Condition, see Add and Modify Conditions (see page 86). To

create a new Action, see Add and Modify Actions (see page 89).

After you have created conditions or actions, the decision table is created (or

updated) when you choose Save on the toolbar. The decision table displays when

you choose the Table tab. If Auto Refresh is turned on, the table will be

automatically generated when you click on the Table tab.

How to View and Modify Decision Table Properties

Chapter 6: Decision Tables 85

Open an Existing Decision Table

You can open an existing decision table method in the Decision Table Editor or in

the Method Editor. However, it is advisable always to use the Decision Table

Editor to view or edit a decision table method.

Note: In the CA Aion BRE IDE, decision table methods are identified by the icon

shown above.

■ To open a decision table in the Decision Table Editor, from within the Project

Workspace or Aion Explorer, highlight the Decision Table object and do one

of the following:

– Double-click

– Right-click, then choose Open from the pop-up menu

■ To open a Decision Table in the Rule Analyzer, right-click the Decision Table

object, then choose Analyze from the pop-up menu.

■ To open a Decision Table in the Method Editor, do one of the following:

– Select the object, and from the Aion Logic menu choose Properties

– Right-click the object and choose Properties from the pop-up menu.

Note: Opening a Decision Table method in the Method Editor is nor

recommended.

The code for the decision table is displayed on the Implementation tab of the

Method Editor.

Important! Do not use the Method Editor to modify a decision table. Make

changes to the table using the Decision Table Editor.

How to View and Modify Decision Table Properties

To view or modify decision table properties, click the Properties tab in the

Decision Table Editor.

■ The Method Name field displays the name of the method used to post the

rule.

■ The Rule Name field is the name of the rule (within the method). This name

is used by the Debugger and trace to identify the rule.

■ Priority sets the priority used by the engine to order this rule with other

posted rules. This value can be any integer or integer constant, or it can be

left blank.

How to View and Modify Decision Table Properties

86 Rules Guide

■ The Class Method checkbox is checked if the method is a class method

(instead of an instance method).

■ This box is dimmed for inherited methods or methods not under the _Object

class.

■ The Layout buttons permit you to choose whether to display the table in

Landscape (horizontal) or Portrait (vertical) view.

Note: You can also change views by right-clicking in the Decision Table Editor

Table page and selecting Toggle Layout from the pop-up menu.

Add and Modify Conditions

Conditions define the premises of a Decision Table rule. A Condition is composed

of a Condition Name and a number of test cells. Test cells display ranges or

values specified in the Condition row. Conditions can be defined either by

specifying (the implementation of) a condition or by specifying a Domain

Condition.

To add a condition

1. Do one of the following:

■ Right-click in the Condition area of the Decision Table Editor, then select

New from the right-click pop-up menu.

■ From the Logic menu, choose New, Condition.

■ Click the Add Condition button on the Decision Table toolbar.

2. Select Specify Condition or Domain Condition from the pop-up menu.

The condition properties pane appears to the right of the Conditions/Actions

page.

a. For Specify Condition: enter a name of your own choosing to describe

the condition in the Name field.

If no name is entered, the default condition name, newConditionRow,

will be used.

b. For Domain Condition: select a condition domain interface member from

the Name field drop-down list.

3. In the Test Values field, enter test values for comparing with values obtained

from the knowledge base by the condition's implementation.

If no operator is specified, equal (=) is implied.

■ Values must be literal expressions or constants; they cannot be

non-constant attributes or methods.

■ String values must be enclosed in quotes.

How to View and Modify Decision Table Properties

Chapter 6: Decision Tables 87

■ Valid operators include: <,>,<>,<=,>=.

■ To specify a numeric range, use the range operator .. between the

extreme values of the range. For example, >18..<=65, which would be

read ―Greater than 18 and less than or equal to 65.‖

■ Boolean constants are TRUE, FALSE; Yes, No.

4. Choose Test unknown value if you wish to include Unknown as one of the

values the inference engine explicitly tests for.

5. Choose Test for Other Values if the rule should check for condition values

other than those listed in the Test Values.

If this checkbox is turned on, an ELSE cell is displayed in the table to indicate

the decision path to take when values other than those explicitly listed are

encountered.

6. For Specify Condition only: enter the source from which Aion will obtain the

value to be tested by this condition in the Implementation field.

Values can be any of the following:

■ The name of an Aion class, for example, Department.

■ A boolean expression; for example, Age > 50.

■ An Aion method that returns a value; for example, GetDepartment().

To modify Condition properties

1. In the Decision Table Editor Table page, right-click a Condition Name cell.

2. Select the Edit <name> pop-up to display condition properties in the

Conditions/Actions page.

How to View and Modify Decision Table Properties

88 Rules Guide

To view the effect of changes, click the Table tab. Changes are automatically

applied if Auto Refresh is checked in the Table page pop-up menu. Or you can

select Refresh from the Table page pop-up menu to apply changes.

Note: You can tell Aion to use Auto Refresh to refresh the table each time a

condition or action is modified or added by checking Automatically Refresh in the

Decision Table Options dialog (select Tools, Options, Decision Table).

What do these choices represent?

By using Domain Interface Members to support dynamic rules, Aion has

introduced a new way to construct decision tables: with Domain Interface

members. The Specify Condition style represents the 8.1/8.1.1 style of defining

conditions and constructing decision tables, while Domain Condition permits

static decision tables to be defined with Domain Interface members. The use of

Domain Condition is encouraged.

■ Specify Condition: you must create a name for the Condition and specify its

implementation to terms of an existing Attribute or Method.

■ Domain Condition: you may use a previously defined Domain Interface

Condition member as the Condition by selecting its label from the Name

drop-down list. In this case the Implementation is automatically provided: it

is the method designated by the selected Domain Interface member label.

Note: A decision table may consist of both specified implementations and

Domain Interface members.

How to View and Modify Decision Table Properties

Chapter 6: Decision Tables 89

Rules for entering test value specifications are:

■ Use of ',' (the comma) is not allowed.

■ In the Decision Table Editor in the Aion IDE, string test values must be

enclosed in quotes.

■ Real test values have to be specified in USA settings without the use of ','

Note: Real and integer values are displayed according to the country format

Setting.

■ When specifying a range, place < or > before equals (=). Start range is >

value or >= value. Optionally use '..' with an end range < value, <= value.

Add and Modify Actions

Actions define the activities to be taken by the decision table rule if the

conditions are met. Actions are composed of an action and a number of selector

cells. Actions can be defined in three ways: Specify Action, Domain Action, and

Multiple Domain Action.

To add a action

1. Right-click in the Action pane and select New from the right-click pop-up

menu.

Or

From the Logic menu, choose New, Action

2. Select Specify Action, Domain Action, or Multiple Domain Action from the

pop-up menu.

The action properties pane appears to the right of the Conditions/Actions

page.

a. For Specify Action: enter a name to describe the action in the Name field.

If no name is entered, the name defaults to newActionRow.

b. For Domain Action: select the label of an Action domain interface

member from the Name field drop-down list. Notice that, if present, the

type of input argument to the domain interface member is indicated;

otherwise (none) is indicated. The description of the selected domain

interface member is provided.

c. For Multiple Domain Actions: enter a name to describe the action in the

Name field. If no name is entered, the name defaults to newActionRow.

A list of labels of Action domain interface members that are possible

values for Multiple Domain Action is provided

How to View and Modify Decision Table Properties

90 Rules Guide

3. For Specify Action only: enter the statement(s) that are to be executed when

the action is to be performed in the Implementation field. This can be any

Aion executable statement or block of code, including

■ An assignment statement; for example, Department = ―CS‖

■ A fully specified Aion method; for example, SetDepartment(―CS‖).

Actions should be limited to a few lines of code.

To modify action properties

1. In the Decision Table Editor's Table page, right-click an Action Name cell.

2. Select the Edit <name> pop-up to display action properties in the Conditions

/ Actions page.

To view the effect of changes, click the Table tab. Changes are automatically

applied if Auto Refresh is checked in the Table page pop-up menu. Or you can

select Refresh from the Table page pop-up menu to apply changes.

Note: You can tell Aion to use Auto Refresh to refresh the table each time a

condition or action is modified or added by checking Automatically Refresh in the

Decision Table Options dialog (select Tools, Options, Decision Table).

How to View and Modify Decision Table Properties

Chapter 6: Decision Tables 91

■ Specify Action: Like Specify Condition, Specify Action follows the 8.1 style of

defining Actions.

You must create a name for the Action and specify the implementation of

that action by means of an explicit method call or attribute-value

assignment.

Where the implementation is a method call without arguments, this style is

satisfactory. However, when the implementation requires different

arguments to be passed to a method, or different values to be assigned to an

attribute, this style tends to produce large decision tables, because each

different argument or value has to be explicitly defined in a separate Action.

Domain Interfaces provide a means to address this problem. Both Domain

Action and Multiple Domain Action make use of Domain Interface Members.

Using Domain Interface members provides additional capabilities not

provided by specifying an Action. For this reason, the use of Domain Action

and Multiple Domain Action is encouraged over Specify Action.

■ Domain Action: Like Domain Condition, Domain Action allows you to choose

a previously defined Domain Interface Action as the Action by selecting its

label from the Name drop-down list, and, again, the implementation is

automatically provided by the Domain Interface Member. However, in the

case of Domain Actions, there are two possibilities:

– The Domain Interface Member does not take an input argument. In this

case, a specified action and the Domain Action look much the same in

the decision table itself: invocation of both is indicated by an ―X‖ in the

appropriate Action Selector cell of the decision table.

– The Domain Interface Member takes an input argument. In this case,

you must specify the appropriate value to be passed as that argument in

the Action Selector cell of the decision table where the Action is to be

invoked. This technique reduces the table bloat that was produced when

actions involved different arguments or attribute-value assignments.

■ Multiple Domain Action: This option allows you to specify Domain Interface

Actions in the Action Selector cells of a decision table.

One row can be used to invoke different actions as long as these actions are

mutually exclusive. In this case, you must create a name of the Action, as is

done in the Specify Action style. The difference is that during decision table

construction, an Action Selector cell of a Multiple Domain Action

automatically transforms into a drop-down list when it becomes the focus.

The list consists of Domain Interface Member labels that may be selected for

that cell. Valid Domain Interface Members are those that (1) are defined to

be of type Action, and (2) do not require an input argument.

How to View and Modify Decision Table Properties

92 Rules Guide

Summary: Specifying Selector Cells

If no selector cells for Actions are specified for a given combination of condition

cells, the corresponding action cells are highlighted in the Decision Table Editor.

(By default, highlighting is red.) This highlighting is a warning that there is a

potential ―hole‖ (that is, a possible outcome for which no action is specified) in

the table logic. This could be valid if the combination of values is impossible, that

is:

Has Driver License = TRUE

and Age < 16

A blank selector cell indicates that the decision table will invoke no activity for an

Action for the combination of Conditions. To invoke a result for the decision

table, the selector cell must be specified. Selector cells are specified in three

ways depending upon the nature of the action.

■ Action specified by name and domain interface member with no input

argument:

Place an ―X‖ in the selector cell by left clicking in the cell. The ―X‖ may be

toggled off by left clicking in the cell a second time.

■ Domain interface member with an input argument:

Type the value of the input argument in the selector cell. Rules for action

selector values are:

– Use of ',' (the comma) is not allowed.

– In the Decision Table Editor in the Aion IDE, string selector values must

be enclosed in quotes.

– Real test values have to be specified in USA settings without the use of ','

Note: Real and integer values are displayed according to the country

format Setting.

– Boolean values will be shown in True/False format.

■ For multiple domain actions:

Select the appropriate action domain interface member from the drop-down

list. To cancel the action for that combination of conditions, select the first

element in the drop-down list, which is always the NULL value.

Delete a Rule

To delete a rule from the rulebase:

1. Select the rule in the Domain Workspace of the Decision Table Editor.

2. Choose Edit, Delete, or right-click to display a pop-up menu and choose

Delete.

How to View and Modify Decision Table Properties

Chapter 6: Decision Tables 93

Ordering Conditions and Actions

When the Conditions/Actions tab is displayed, you can use the Move Up and

Move Down arrows to change the order of conditions or actions in the generated

decision table.

In the Conditions/Actions page, to change the order of the conditions

or actions of the decision table:

1. Select a condition or action in its respective pane.

2. Click the arrow buttons on the Decision Table Editor toolbar to move the

selected condition or action up or down.

Note: Aion also provides an automatic means to order conditions to achieve the

minimal number of combinations of conditions, see Achieving Optimal Condition

Order for Compressibility (see page 99).

How to View and Modify Decision Table Properties

94 Rules Guide

Cutting and Pasting Conditions and Actions

To cut and paste conditions and actions:

1. Select a condition or action in its respective pane.

■ Select Cut or Copy from the right-click menu

OR

■ From the Edit menu, select Cut or Copy.

2. Select Paste from the right-click menu or the Edit menu. The Condition(s) or

Action(s) are pasted after the selected item.

Note: To rearrange Conditions or Actions, see Ordering Conditions and Actions

in this chapter.

To cut, copy, or paste subtable contents:

Right-click in a Decision Table column heading, and select Cut Values, Copy

Values, or Paste Values from the Collapse pop-up menu.

Displaying a Decision Table

You may control the appearance and/or behavior of a decision table on the Table

page by right clicking in a non-table area of the page. A pop-up menu appears

with the following options:

Menu Option Explanation Related Topic

Show compressed See Compressing a

Decision Table in this

chapter

Selecting the compression

algorithm can be

performed on the Decision

Table Options dialog

(Tools, Options, Decision

Table). For the procedure,

see Customizing the

Decision Table Editor (see

page 95).

Optimum condition

order

See Achieving Optimal

Condition Order for

Compressibility (see

page 99)

Toggle layout Changes display between

landscape and portrait.

Layout can be set on the

Properties page, see How

to View and Modify

Decision Table Properties

(see page 85).

Customizing the Decision Table Editor

Chapter 6: Decision Tables 95

Menu Option Explanation Related Topic

Refresh Redraws the decision

table according to the

latest changes to the

definitions of the

conditions and/or actions.

Auto refresh Toggles automatically

refreshing of the decision

table. Automatic

refreshing cause the table

to redrawn when it is

redisplayed following any

changes to the definitions

of the conditions and/or

actions.

Auto refresh can be set for

all decision tables in the

Decision Table Options

dialog (Tools, Options,

Decision Table). For the

procedure, see

Customizing the Decision

Table Editor (see page 95).

Customizing the Decision Table Editor

You can use the Decision Table Options dialog (Tools, Options, Decision Table) to

set options that control how the editor displays Decision Tables. Use the fields

and options in the Decision Table Options dialog as follows:

■ Compressed View-Specifies what algorithms should be used to display

Decision Tables in compressed view

■ Hide All Combinations with no Actions-Automatically hides any condition

test values of the Decision Table that do not result in an action

■ Hide Groups with no Actions-Automatically hides condition test values of

the Decision Table if an entire group of test values do not result in an

action

■ Combine Values with same Actions-Combines condition test values that

lead to the same action. For example, if A and B had the same result,

they would be combined into a column labeled ―A or B.‖

Compressing a Decision Table

96 Rules Guide

■ Table Display-Contains options related to the display of the table

■ Automatically Refresh-Refreshes the Decision Table display immediately

after changes are made

■ Minimum Action Cell Width-Sets the minimum number of characters that

a cell.will display.

■ Maximum Characters in Cell-Sets the maximum number of characters

(width) that a cell will display of its contents.

■ No Action Color-Lets you choose the color used to indicate an action cell

with no action specified

Domain Interface Filter-Indicates whether domain interface members

defined in the application's included libraries are included in the domain

interface members to which the application has access for constructing

conditions and actions.

You can also select the font in which the Decision Table displays information. See

the Fonts section of the ―Creating and Editing Applications‖ chapter of the User

Guide.

Compressing a Decision Table

Compression is an edit-time feature concerned with making optimal use of

screen real estate when displaying a decision table. Values are suppressed when

those values are not relevant for distinguishing between different actions.

Compression makes the Decision Table easier to understand by hiding irrelevant

parts of the Decision Table and combining redundant parts.

To compress the decision table:

1. Right-click in the Decision Table Editor's Table page.

2. In the right-click pop-up menu, check Show Compressed.

Or:

From the View menu, select Show Compressed.

A rectangular marker appears in the upper left corner of the Table page to

show that you are in compressed view.

Compressing a Decision Table

Chapter 6: Decision Tables 97

There are three kinds of compression used by the Decision Table Editor. These

can be accessed from Decision Table Options (see Customizing the Decision

Table Editor).

■ Hide All Combinations with no Actions-If any condition combination (from

the topmost condition test value) does not result in an action, the condition

test value and its subtable are not displayed. By default this compression

algorithm is turned off.

■ Hide Groups with no Actions-If an entire group of condition combinations

does not result in any actions, that group of condition test values are not

displayed in the Decision Table Editor.

■ Combine Values with same Actions - If two or more condition test values

result in the same actions, that is, they have the same subtables, these test

values are combined into a single subtable and the values are OR'd together.

The following examples demonstrate each kind of compression using a Condition

row with three possible values, ―CEO‖, ―VP‖, and ―ELSE‖, and an Action row with

two possible outcomes, Approved and Rejected.

In the first example, the uncompressed Decision Table shows no actions are

executed for the ―VP‖ column:

When you compress the Decision Table, the ―VP‖ column is removed from the

display:

In the second example, values ―CEO‖ and ―VP‖ always result in the same action.

Compressing a Decision Table

98 Rules Guide

A compressed Decision Table combines those cells into a cell that reads ―CEO

[OR] VP‖ as shown in the following table:

If a cell has the same action as an ―ELSE‖ cell, the cell value is conceptually OR'd

with the ELSE cell but the value is not shown with the ―ELSE‖ cell. For example,

if the Condition cells with a common action were ―VP‖ and ―ELSE‖, the Condition

row would have two cells that read ―CEO‖ and ―ELSE.‖

Note: Actions of compressed subtables are not editable.

Manually Collapsing Subtables

Aion allows you to manually specify particular parts of the decision table that you

may wish to collapse temporarily so that you can focus on a particular area of a

table.

To collapse or expand the decision table in either normal or compressed

view

1. Right-click in the test cell at the top of the condition you wish to collapse, and

select Collapse (Collapse, Collapse Down, Collapse All, Expand, Expand

Down, Expand All) from the right-click pop-up menu.

2. Left click on the test cell at the top of the condition you wish to collapse.

Left clicking on a collapsed Condition Test cell or right clicking on the cell and

selecting ―expand down‖ restores the subtable.

Note: Actions under manually collapsed subtables are not editable.

Compressing a Decision Table

Chapter 6: Decision Tables 99

Achieving Optimal Condition Order for Compressibility

Aion also provides a sophisticated algorithm for determining the optimum order

of the Conditions in your decision table to achieve optimum compressibility.

To determine whether the order of the conditions of the decision table

produces the fewest number of results when the table is compressed

1. Right-click in the Decision Table Editor's Table page.

2. In the right-click pop-up menu, check Optimum Condition Order.

If a more optimum condition order is possible, you will be asked whether you

would like the table to be reorganized in that order.

If the algorithm can find an optimum order, you will be asked if you wish to have

the table reorganized in that order. In the following example, Aion has

determined that greater compressibility (fewer action columns) could be

achieved if the first and second Conditions (Need Web Browser and Department)

were reversed, that is, the second Condition should be first. Answering ―Yes‖

automatically reorders your Conditions and displays a compressed view of your

decision table.

If the algorithm cannot determine a condition ordering that is smaller then the

current order of the Conditions, you will receive the message ―Current condition

order is a minimum.‖

Note: Using optimal compressibility may also result in improved execution of the

decision table.

Runtime Execution

100 Rules Guide

Runtime Execution

The following Decision Table, which will be called ClassifyPerson, is used as an

example throughout this section:

ClassifyPerson groups people according to selected physical characteristics.

Depending on a person's characteristics, a person may belong to zero, one or

two groups. For example, a younger man with brown hair belongs to both groups

whereas an older man with brown hair belongs to neither group. This Decision

Table consists of three Conditions (Gender, Age, Hair Color) and two Actions

(Group1, Group2).

Rule Posting

An Aion application posts a Decision Table by invoking the Decision Table's

method. As with an IFRULE, a Decision Table may be posted with an inferencing

priority.

The engine posts Decision Tables in a READY state. The engine resets the rule to

a FIRED state when the engine evaluates the conditions and finds one or more

actions associated with the evaluation outcome. In the above example, the

engine fires the rule for:

■ All young men of any hair color

■ Older men with red hair

■ All women of any age and hair color

The engine resets the rule to a FAILED state when, upon evaluating the rule's

Conditions, the engine cannot find any Actions associated with the evaluation

outcome. In the above example, the engine fails the rule for older men with

brown hair.

The engine resets the rule to a PENDED state when the engine detects an

UNKNOWN attribute

Chaining

Chapter 6: Decision Tables 101

Condition Evaluation

The engine evaluates Conditions in the order specified within the Decision Table.

So, in ClassifyPersons, the engine always evaluates Gender before Age, and Age

before HairColor. You can change the Condition evaluation order by rearranging

Conditions; see the section Ordering Conditions and Actions (see page 93).

The engine employs test values in the order specified within their Condition row.

In ClassifyPersons, the engine always tests Gender against ―Male‖ before it tests

Gender against ―Female.‖

If test values overlap - for example, Age: <21, >18..<40, >30 the engine stops

testing upon finding the first applicable test value. For example, if Age evaluates

to 19, the engine stops with the first test value. If Age evaluates to 35, the

engine stops with the second test value. The engine employs the third test value

only for Ages >=40.

If desired, an ELSE cell can be used to test for all other values that are not

defined in the condition, except UNKNOWN. If a condition is UNKNOWN, it does

not yet have a value, so the inference engine does not take the ELSE path.

The engine avoids pending Decision Table-rules if, despite UNKNOWN

attribute(s), it can safely determine the Actions to be performed. For example,

the engine can safely fire the rule for a red-haired person-even though the

person's gender and age are unknown because all red-haired persons belong to

Group1 but not Group2.

Action Execution

The engine may perform multiple Actions as an outcome of Condition evaluation.

When multiple Actions apply, the engine performs them in the order specified

within the Decision Table-rule. In ClassifyPersons, for a brown-haired younger

man, the engine performs Group1 actions before Group2. If the engine detects

UNKNOWN attributes while performing Actions, it pends the rule-just as it would

for an IFRULE's Action.

Chaining

Decision Table-rules fully participate in chaining along with rules of any other

type. The engine can use a Decision Table-rule for both forward chaining and

backward chaining. Once the engine has fired or failed a Decision Table-rule, the

rule no longer participates in chaining, unless reinstated due to Truth

Maintenance side-effects.

Rephrasing IFRules as Decision Tables

102 Rules Guide

When backward chaining, the engine selects a Decision Table-rule if any of its

Actions can resolve the primary goal or any current subgoals. When firing a

Decision Table-rule, the engine evaluates Conditions and performs Actions as it

does for forward chaining, that is, the engine does NOT somehow focus on

particular Conditions or Actions which are known to contribute to goal resolution.

As a result, the rule may fire without contributing to goal resolution. And, as

noted above, once fired or failed, the rule no longer participates in chaining.

Rephrasing IFRules as Decision Tables

Decision Table rules are generalizations of IFRules, which means that IFRules

can be rephrased in terms of Decision Tables.

One-to-One Mappings

The following IFRule could be rephrased as shown in the decision table, where

that Get Person's Age and Set Eligibility are condition names or domain interface

labels for the corresponding application methods.

IFRULE pPerson.GetAge() < 21 THEN

pPerson.SetEligibility(FALSE)

END

Get Person's Age <21

Set Eligibility FALSE

ANDed Premise Expressions

If an IFRule premise is an ANDed expression, the rule could be rephrased as a

decision table with multiple conditions. For example, the following IFRule can be

rephrased as the decision table shown immediately following:

IFRULE pPerson.GetAge() >= 21

AND pPerson.GetHeight() > 60

THEN

pPerson.SetEligibility(TRUE)

END

Get Person's Age >=21

Get Person's Height >60

Set Eligibility TRUE

Dynamic Decision Tables

Chapter 6: Decision Tables 103

Consolidating IFRules into a Single Decision Table

If multiple IFRules can be logically grouped within the same decision table,

runtime efficiencies can result. For example, you could rephrase the following

IFRules as the decision table immediately following:

IFRULE pPerson.GetAge() >= 21

AND pPerson.GetHeight() > 60

THEN

pPerson.SetEligibility(TRUE)

END

IFRULE pPerson.GetAge() >= 21

AND pPerson.GetHeight() < 60

THEN

pPerson.SetEligibility(FALSE)

END

IFRULE pPerson.GetAge() < 21

THEN

pPerson.SetEligibility(FALSE)

END

Get Person's Age >=21 ELSE

Get Person's Height >60 ELSE >60 ELSE

Set Eligibility TRUE FALSE FALSE FALSE

Dynamic Decision Tables

Aion provides the ability to make decision tables dynamic. For more information

about dynamic rules, see the chapter ―System Considerations for Supporting

Business Rules‖ in the User Guide. Making decision tables dynamic means that

decision tables can saved in a persistent medium and loaded at runtime or

created within the Aion knowledge base at runtime. For more information about

creating decision tables at runtime, see the Constructing Non-Persistent

Dynamic Rules (see page 141).

Aion provides a default decision table editor for editing persistent dynamic rules

outside the IDE (see Dynamic Decision Table Editor (see page 129)). The

dynamic decision table editor is not significantly different from the static decision

table editor in the Aion IDE. The dynamic decision table editor can use only

domain interface members; thus it cannot specify an implementation of a

Condition or Action. For more information about the difference between

specifying an implementation for a condition or action of a decision table at edit

time and using a domain interface member, see the sections Adding and

Modifying Conditions (see page 131) and Adding and Modifying Actions (see

page 133).

Dynamic Decision Tables

104 Rules Guide

Dynamic Decision Table Runtime Considerations

For general information pertaining to the runtime considerations pertinent to any

dynamic rule, see Dynamic Rule Runtime Considerations.

The name of the runtime facility provided by DynRDLib to support dynamic

decision tables is DecTableRuntime. The posting method provided by

DecTableRuntime is PostDTbl(). The following example posts a dynamic decision

table (an instance of DecTableRuntime):

INFER

var hRule is integer

hRule = pDT.PostDTbl()

// pDT is &DecTableRunTime

// Perform error processing if hRule is NULL

// Invoke forward or backwardchaining

END

The relevant signature of the PostDTbl() method is:

PostDTbl(BindList is list of &_Object = NULL, ...) : integer

where BindList is a list of pointers to binding instances. For more information

about binding instances, see Instance Binding (see page 62). See the DPDRules

example for an example of binding instances at posting time. Note particularly

the way in which a binding is provided for references to domain interface

members implemented in the Decision class:

hRule = pDT.PostDTbl(list(pDecision))

Note: BindList does not have to be in any particular order; Aion will figure out

which pointers provide bindings for which domain interface member references

in the dynamic decision table.

An alternative to using BindList involving manual binding of instances is

discussed in Dynamic Rule Runtime Considerations. Manual binding requires

invoking the appropriate GetDTblXXX() method to obtain a pointer to the

domain interface member of a dynamic rule that requires a binding instance. In

the following, ―pos‖ is an input argument indicating the position of a domain

interface member within the Condition or Action of a dynamic rule and ―pDI‖ is a

pointer to that domain interface member.

GetDTblCondition(in pos is Integer, out pDI is &DIMember, out TestValues is String)

GetDTblCheckmarkAction(in pos is Integer, out pDI is &DIMember, out Selector is list

of Boolean)

GetDTblValueAction(in pos is Integer, out pDI is &DIMember, out Selectors is String)

GetDTblActionAction(in pos is Integer, out Description is String, out Selectors is

list of &DIMember).

Dynamic Decision Tables

Chapter 6: Decision Tables 105

Output arguments other than pDI may be ignored for instance binding except in

the case of GetDTblActionAction(). The second output argument provides the

list of pointers to the domain interface members that make-up the possible

actions invoked by this multiple action Action. In the case of multiple actions, the

references to each instance domain interface member in the action list must

have a proper binding.

Manual instance binding for dynamic decision tables is illustrated in the DPDRule

example. In the following, ―pDT‖ is a pointer to a dynamic decision table

instance, ―2‖ identifies the second Condition in that dynamic decision table,

―pDI‖ is a pointer to a DIMember instance, and ―Testvalues‖ is a string. We

obtain pDI with the statement:

pDT.GetDTblCondition(2, pDI, TestValues)

Having obtained the pointer to a domain interface member, one can then bind

the reference either by using a pointer to the intended instance,

SetBindingByPointer(), or by the name of the intended instance,

SetBindingByName(). Here we bind a particular instance of the class Duck (the

"Pet Duck" instance), by means of the SetBindingByName() method:

if pDI.SetBindingByName("Pet Duck") = FALSE then

// Error processing.

The MDDRules example illustrates an approach that avoids having to know

ahead of time the exact position of the domain interface member for whose

reference in the rule you wish to provide a binding. By using the

meta-programming capabilities of the dynamic rule libraries, it is possible to

identify the position of a particular domain interface member in a dynamic

decision table at run time based upon the name of the domain interface member.

Note: For more information about the methods discussed in this section, see the

―DynRLib‖ chapter of the online Reference.

Chapter 7: Truth Maintenance 107

Chapter 7: Truth Maintenance

This chapter describes the Aion truth maintenance inferencing feature and how

to use it to do non-monotonic (or what-if) reasoning. For the sake of brevity, this

chapter often refers to truth maintenance by the acronym TM.

The kind of inferencing we have discussed so far is called monotonic reasoning,

which assumes that attribute values change and rules fire or fail at most once

during the rules inferencing process. Monotonic reasoning is great for

applications that seek to arrive at a particular answer or establish the

consequences of certain known data.

There are occasions, however, where you would like to see how conditionally

changing a particular piece of data could alter the result. Consider a loan

processing application, in which modifying just one input, such as the amount of

outstanding debt, could alter the bank’s decision to approve or reject the loan.

Such inferencing, in which attribute values can change value and rules can refire

multiple times during the course of current rules processing, is called

non-monotonic, or sometimes what-if, reasoning. Aion provides non-monotonic

reasoning through the use of the truth maintenance feature.

With truth maintenance, you make a conditional assignment to an attribute. If

you subsequently confirm or retract that assignment, the inference engine

confirms or retracts the consequences of that assignment.

This section contains the following topics:

Truth Maintenance Operations and Terminology (see page 107)

Truth Maintenance Operations and Terminology

There are three truth maintenance operations in Aion:

Operation Syntax

TM-Assignment <attrib> ?= <value>

TM-Retraction retract (<attribpointer>)

TM-Confirmation confirm (<attribpointer>)

Truth Maintenance Operations and Terminology

108 Rules Guide

These operations affect the retractability of the specified attribute. When an

attribute is non-retractable, its assigned value (if any) may be changed-but not

retracted or undone. All attributes are initially non-retractable. When an

attribute is retractable, its assigned value is tentative-that is, the value may be

discarded in favor of the attribute's previous non-retractable value.

Over time, an attribute may alternate between a retractable and non-retractable

state.

■ TM-assignment assigns a tentative value to an attribute and sets the

attribute to the retractable state.

■ TM-retraction discards the tentative value, restores the non-retractable

value, and sets the attribute back to the non-retractable state.

■ TM-confirmation makes the tentative value permanent, and then sets the

attribute back to the non-retractable state.

Operational Context

Truth maintenance operations can execute anywhere within an INFER block

except as part of a rule's premise evaluation. The INFER block must specify the

history option or inherit it from an ascendant INFER block.

The Aion interpreter enforces these restrictions via runtime error messages.

When outside of this context, generated code ignores TM-retraction and

TM-confirmation and treats TM-assignment as a non-truth-maintenance

assignment.

Truth maintenance operations may be usefully employed for both forward and

backward chaining. TM-assignments within one INFER block may be

TM-retracted and/or TM-confirmed within nested INFER blocks of a lower scope.

Keep in mind the following restrictions:

■ Truth maintenance operations must be applied to either class attributes or

instance attributes-but not to local variables of a method.

■ Truth maintenance operations may not be applied to list, array, or binary

attributes.

■ Truth maintenance operations may not be specified within a

pattern-matching (IfMatch) rule or in a WhenMatch demon.

Truth Maintenance Operations and Terminology

Chapter 7: Truth Maintenance 109

Tickling Demon and Pattern-Matching Rules

The following table summarizes how truth maintenance affects pattern-matching

rules and demons. If the truth maintenance operation can tickle the rule-type in

question, Yes appears in the corresponding cell. For demons, ―tickling‖ means

firing. For ifmatch rules, it means readying.

ifmatch Rules when Demons whenmatch Demons

TM-Assignment No Yes No

TM-Confirmation Yes Yes Yes

TM-Retraction No No No

Available Runtime Information

The _Engine class defines numerous class methods, such as EngineGetHistory(

), for accessing runtime information concerning inferencing progress and results.

Although available for non-truth-maintenance scenarios, this information is

particularly useful in truth maintenance scenarios for explaining or justifying

inferencing results. The _Engine class methods are described in the ―SysLib‖

chapter of the online Reference.

TM-Assignment

TM-assignment assigns a tentative value to an attribute and sets the attribute to

the retractable state. For example:

Make a regular assignment in a rule. Attrib1 = 5

In a subsequent rule, make a TM-assignment. Attrib1 ?= 32

In the above table, Attrib1 becomes a retractable attribute. The attribute's value

may later be TM-retracted back to 5 or TM-confirmed as 32. Prior to a

TM-assignment, an attribute may be non-retractable or it may already be

retractable.

Truth Maintenance Operations and Terminology

110 Rules Guide

Implicit TM-Assignments

If an ifrule fires while it is dependent on a retractable attribute, all

non-TM-assignments executed as part of that rule's action are implicit

TM-assignments-even though they are coded as non-TM-assignments. For

example, consider what happens if bAttrib1 is currently a retractable boolean

attribute and the following rule fires:

rule “Illustration of Implicit TMAssignment”

ifrule bAttrib1

then

AttribA = 23 // implicit TMAssignment

AttribB = 99 // implicit TMAssignment

end

As a result of the rule's action, AttribA and AttribB are now retractable attributes.

When an attribute receives an implicit TM-assignment, it is subsequently

TM-retractable or TM-confirmable-just as though it had received an explicit

TM-assignment.

Ignored TM-Assignments

The inference engine ignores a TM-Assignment that would end up not changing

the current value of the attribute, as in the following circumstances.

Successive TM-Assignments with Same Value

The engine ignores a TM-assignment to a retractable attribute if the assignment

would end up not changing the attribute value. For example, if Attrib1 is

currently TM-assigned a value of 5, and, during subsequent rule processing, it is

again TM-assigned a value of 5 (explicitly or implicitly), the engine ignores the

second TM-assignment.

In the case of an explicit TM-assignment followed by an implicit TM-assignment

of the same value, the engine ignores the second TM-assignment but the engine

also ―upgrades‖ the earlier TM-assignment to an implicit one. The rationale here

is that implicit TM-assignments carry with them a somewhat higher confidence

level than do explicit TM-assignments. Therefore, the engine should therefore

upgrade the earlier explicit TM-assignment to reflect this higher confidence level.

The engine does not ignore successive TM-assignments of different values to an

attribute. For more information about TM-retractions, see TM-Retraction.

Truth Maintenance Operations and Terminology

Chapter 7: Truth Maintenance 111

Non-TM-Assignment Followed by TM-Assignment with Same Value

The engine also ignores a TM-assignment to a non-retractable attribute if the

assignment would not change the attribute value. For example, if Attrib1 is

currently non-TM-assigned a value of six, and, during subsequent rule

processing, it is TM-assigned a value of six (explicitly or implicitly), the engine

ignores the second assignment.

TM-Retraction

TM-retraction discards a retractable attribute's tentative value and restores the

attribute to its previous non-retractable state and value. Consider the following,

which restores Attrib1 to the value 5 and makes the attribute non-retractable. If,

prior to TM-assignment, the attribute's value was undefined, it is restored as an

undefined value:

Make a regular assignment in a rule. Attrib1 = 5

In a subsequent rule, make a TM-assignment. Attrib1 ?= 32

In a third rule, you can retract the TM-assignment. The

value returns to 5.
retract (->Attrib1)

Ignored TM-Retractions

The engine ignores attempted TM-retractions of a non-retractable attribute.

Implicit TM-Retractions

The engine makes implicit TM-retractions in the following circumstances.

Successive TM-Assignments with Different Values

Successive TM-assignments of different values to an attribute are interspersed

with implicit TM-retractions. Thus, the following sequence implicitly TM-retracts

Attrib1 back to 11 before TM-assigning it the value 13:

Make a regular assignment in a rule. Attrib1 = 11

In a subsequent rule, make a TM-assignment. Attrib1 ?= 12

In another rule, make a second TM-assignment.

The engine makes an implicit TM-retraction first.

Attrib1 ?= 13

Make a TM-retraction. The value returns to 11, not 12. retract (->Attrib1)

Truth Maintenance Operations and Terminology

112 Rules Guide

TMAssignment Followed by non-TM Assignment with Different Value

A TM-assignment followed by a non-TM-assignment to the same target attribute

but with a different value will be interspersed with an implicit TM-retraction. So,

for example, this example implicitly TM-retracts Attrib1 back to the value 11

before non-TM assigning the value 13 to it.

Make a regular assignment in a rule. Attrib1 = 11

In a subsequent rule, make a TM-assignment. Attrib1 ?= 12

In another rule, make a regular assignment.

The engine makes an implicit TM-retraction first.

Attrib1 = 13

A TM-assignment followed by a non-TM-assignment to the same target attribute

and with the same value does not cause an implicit TM-retraction. For more

information about TM-confirmations, see TM-Confirmation.

Operations such as the _Engine class method GoalMakeUnknown(->Attrib) are

not considered assignments (TM- or otherwise) and therefore do not trigger

implicit truth maintenance operations.

Side-Effects of TM-Retractions

When TM-retracting an attribute, the engine may also retract associated

attributes and reset the states of associated rules.

Algorithm

The engine first restores the attribute back to its previous state and value. The

engine next identifies rules that have fired or failed subsequent to the attribute's

last TM-assignment. For each such rule:

Fired or failed rule Fired rule only

Engine resets the rule's state to

READY, if the firing or failing was

dependent on the retracted attribute.

For each attribute that was

TM-assigned (explicitly or implicitly)

via the rule's action, the engine

recursively applies this algorithm to

the attribute.

The affected rules may reside within the current INFER block or any INFER block

of higher scope.

Truth Maintenance Operations and Terminology

Chapter 7: Truth Maintenance 113

TM-Confirmation

TM-confirmation restores a retractable attribute back to a non-retractable state;

but retains the attribute's tentative value as the attribute's value for that state.

Thus, if Attrib1 was TM-assigned the value 13, the following statement would

make Attrib1 non-retractable yet retain the value 13:

confirm(->Attrib1)

Ignored TM-Confirmations

The engine ignores attempted TM-confirmations of a non-retractable attribute.

Implicit TM-Confirmations

The engine makes implicit TM-confirmations in the following circumstances.

TM-Assignment Followed by non-TM Assignment with Same Value

A TM-assignment followed by a non-TM assignment to the same target attribute

but with the same value will be interspersed with an implicit TM-confirmation.

Consider the following example, in which you implicitly TM-confirm Attrib1 with

the value of 11):

Make a TM-assignment in a rule. Attrib1 ?= 11

In a subsequent rule, make a regular assignment. The

engine implicitly TM-confirms the value 11 first
Attrib1 = 11

Automatic TM-Confirmation at Inference Block Termination

When an inference block terminates execution, the engine examines all

attributes TM-assigned (explicitly or implicitly) via the actions of the block's fired

rules. For each such attribute, if the attribute is still retractable, the engine

implicitly TM-confirms that attribute.

Side Effects of TM-Confirmations

When TM-confirming an attribute, the engine may also confirm associated

attributes and reset the states of associated rules. It does so in the following

way.

Algorithm

The engine first confirms the attribute with its current value. It then attends to

rules with the retractable attribute in their premise, treating pended rules

differently from fired rules.

Truth Maintenance Operations and Terminology

114 Rules Guide

Pended Rules

The engine identifies all pended rules which are dependent on the confirmed

attribute. For each such rule, the engine resets the rule's state to READY. The

affected rules may reside within the current INFER block or any ascendant INFER

block.

Fired Rules

The engine identifies rules that have fired subsequent to the attribute's last

TM-assignment and that were:

■ Dependent on the confirmed attribute as a retractable attribute; but

■ Not dependent on any other retractable attributes.

For each such rule, the engine does the following: for each attribute implicitly

TMAssigned via the rule's action, the Engine recursively applies the algorithm to

the attribute.

Note:

■ As a side effect, the Engine does not confirm attributes that were

explicitly TM-assigned by rule actions.

■ The affected rules may reside within the current INFER block or any

INFER block of higher scope.

Chapter 8: Maintaining the Dynamic Rulebase 115

Chapter 8: Maintaining the Dynamic

Rulebase

Aion provides two principal facilities for maintaining persistent dynamic rules.

(For more information about dynamic rules, see Dynamic Rules in the User

Guide.) These facilities are:

■ Dynamic Rulebase Administrator. The Dynamic Rulebase Administrator

provides facilities for administering the rulebase. Rulebase administration

includes controlling user access to rulebase management functions and

keeping the rulebase in sync with the Aion applications that use dynamic

rules. In particular, the Dynamic Rulebase Administrator enables a domain

interface of an Aion application to be imported into a rulebase. (For a

definition of domain interface, see the Domain Interfaces section in the User

Guide.) The Dynamic Rulebase Administrator also provides facilities to keep

the rulebase synchronized with the changes made to the domain interface in

the Aion application. For more information about the Dynamic Rulebase

Administrator, see the Dynamic Rulebase Administrator (see page 116).

■ Dynamic Rule Manager. The Dynamic Rule Manager enables a domain expert

to create and maintain dynamic rules outside the Aion development

environment and to access the Dynamic Rule Repository. The Dynamic Rule

Manager provides dynamic rule editors that are similar to the rule editors in

the Aion development environment. It also allows access to the Dynamic

Rule Repository for saving and viewing rule history. For more information

about the Dynamic Rule Manager, see the Dynamic Rule Manager (see

page 126).

The Dynamic Rule Manager provides a user interface into the Aion rulebase.

However, in a robust business application, Aion users will want to augment the

rulebase with customized fields or even additional tables, and therefore will

require extensions to the Dynamic Rule Manager. These extensions will take the

form of utilities and user-written application programs to manage the new

rulebase features. Aion also provides a library (DynRELib) that includes facilities

for updating the core dynamic rule structures in the Aion rulebase (if you choose

to write your own rule editor). For a description of the structure of the default

Aion rulebase, see the appendix ―Rulebase Structure‖.

Note: For more information about DynRELib, see the ―DynRELib‖ chapter in the

online Reference.

This section contains the following topics:

Dynamic Rulebase Administrator (see page 116)

Dynamic Rule Manager (see page 126)

Dynamic Decision Table Editor (see page 129)

Dynamic Rulebase Administrator

116 Rules Guide

Dynamic Rulebase Administrator

The Dynamic Rulebase Administrator provides the following functionality:

■ The Dynamic Rulebase Administrator allows user access permissions to be

specified at the user/domain level. User access permissions define what

functionality of the Dynamic Rule Manager a business user is entitled to use.

For more information about specifying user access permissions, see

Establishing User Access Permissions in the ―Dynamic Rule Management‖

chapter of the User Guide.

■ The Dynamic Rulebase Administrator initializes an empty rulebase with the

domain interface members defined in an Aion application. See Importing a

Domain Interface in this chapter.

Note: The rulebase for an application can be created under any relational

Database Manager supported by Aion's DataLib, such as Oracle, Sybase,

DB2, or any ODBC supported database. Aion provides a default empty

rulebase called Rulebase.mdb in the \Rulebase subdirectory of the Aion, for

Windows, install directory for Windows. For more information about the

default rulebase, see The Default and Empty Rulebases (see page 117).

■ The Dynamic Rulebase Administrator allows the Aion application developer

to organize the domain interface members of an Aion knowledge base into

domains, which may be identified during system analysis. For more

information about domains and their role in system development, see the

sections Domain Interfaces and especially Role of the Domain Interface in

System Development in the User Guide.

■ The Dynamic Rulebase Administrator provides facilities for synchronizing the

domain interface members in the rulebase with the domain interface

members defined in the Aion application as the Aion application itself

changes. See Dynamic Rulebase Scenarios (see page 124).

■ The Dynamic Rulebase Administrator allows the domain’s definitions within

the rulebase to be cloned when a clone operation is requested. When menu

item Clone is selected, a pop up dialog box will appear and end users can

enter the new domain name.

■ The Dynamic Rulebase Administrator provides option to save all the decision

tables in the rulebase as HTML.

Dynamic Rulebase Administrator

Chapter 8: Maintaining the Dynamic Rulebase 117

■ The Dynamic Rulebase Administrator provides the option to save the cross

reference information within that domain when a domain is selected,

otherwise the cross reference information within the entire rulebase will be

saved.

Note: When Save Term References as HTML is selected, a popup dialog box

appears and you can enter a term pattern or a term name. This option is also

available for Save Rule References as HTML. The following Wild card search

is supported:

*

Represents any string of zero or more characters

Example: Get* — Finds all terms started with ―get‖

?

Lists any single character

Example: G?t — Find all terms started with ―g‖, ended with ―t‖, and

have one and only one character between g and t.

\

Lists escape character

Example: *\? — Find all terms ended with a '?'

The search is case-insensitive.

Note: The Dynamic Rulebase Administrator is itself an Aion application

developed with COBSLib.

The Default and Empty Rulebases

During installation, Aion installs two rulebases in the \Rulebase subdirectory.

Both rulebases are in MS Access format:

■ Default rulebase (Rulebase.mdb)

■ Empty rulebase (EmptyRulebase.mdb)

The default rulebase is Rulebase.mdb. The characteristics of the default rulebase

are:

1. At startup it contains no rules.

2. The ODBC Source, ―Aion Rulebase‖, points to this rulebase. A connection to

this Source is provided by DynRDLib.

3. It allows read/write access.

4. It is required by the Dynamic Rulebase Administrator for initial startup.

Dynamic Rulebase Administrator

118 Rules Guide

You can use the default rulebase to begin your own rulebase development. If you

use this rulebase for your own development project, you may want to consider

whether you should move the rulebase to a development directory and create

your own ODBC Source pointing to it.

To connect to an ODBC Source for the default rulebase (rulebase.mdb):

1. Open the Windows Control Panel and double-click the ODBC Data Sources

icon to open the ODBC Data Source Administrator

2. Click the Add button. This displays the Create New Data Source dialog.

3. Scroll down the list box and highlight the desired driver; for example,

Microsoft Access Driver (*.mdb).

4. Click the Finish button. This displays the ODBC Microsoft Access Setup.

5. Enter the Data Source Name required by your application in the Data Source

Name Field. To use the Aion-supplied default ODBC driver, use the data

source name ―Aion Rulebase.‖ Otherwise, enter the name that you have

chosen for the Data Source in your application.

6. Optionally, enter a description of the Source (the database being accessed).

7. Click the Select button under Database.

8. Navigate the directories to find the rulebase to connect. The Aion default

rulebase is rulebase.mdb. The default location of this rulebase is the

\Rulebase subdirectory of the Aion install directory.

9. Highlight the name of the target rulebase in the Data Name list box. Click

OK.

10. Click OK on the ODBC Microsoft Access Setup

11. Click OK on the ODBC Data Source Administrator.

The other rulebase is the empty rulebase-EmptyRulebase.mdb. It also contains

no rules. However, the empty rulebase allows read only access. It is a permanent

backup of the default rulebase. To use this rulebase (that is, to restore the

default rulebase), copy it to the install \rulebase directory, rename it, and

change its properties to allow read/write access.

The \rulebase directory is located on the first level below the root which is

created by installing Dynamic Rule Manager(DRM).

Aion also provides SQL scripts for creating rulebases, SQLScript.sql, in the

\Rulebase subdirectory. This text file contains SQL for creating a rulebase under

MS Access, Sybase, Oracle, and DB2.

Dynamic Rulebase Administrator

Chapter 8: Maintaining the Dynamic Rulebase 119

Importing a Domain Interface

To open the Dynamic Rulebase Administrator, click on the Dynamic Rulebase

Administrator icon that is included in the Aion program group.

The left panel is called the Rulebase Workspace. It consists of a tree list

presenting (in hierarchical order):

■ The rulebase (the word ―Domains‖; this is the common root of all trees)

■ The domains within in this rulebase.

■ The Aion applications, or Sources, from which the domain interface members

within this domain have been imported.

■ The domain interface members that have been imported from this Source.

The right panel is called the DI Member Detail View. It consists of a listing of the

domain interface members for the current highlighted item in the Rulebase

Workspace and shows:

■ The Domain to which this member belongs and the Source (Aion application)

from which it was imported.

■ The domain interface member name (label) and its description.

■ The domain interface member type: Condition or Action. The type is also

indicated by the icon to the left of the domain interface member name, if

View, Detail View Options, Display SubImages is activated.

■ The domain interface member value type. If the domain interface member is

a Condition, then the value type represents the value type returned by the

underlying (Get) accessor method. If the domain interface member is an

Action, then the value type represents the type of input argument, if one is

required, to the underlying implementing method.

Dynamic Rulebase Administrator

120 Rules Guide

■ The date and time that the Aion application (Source) containing this domain

interface member was last saved prior to this member being synchronized

with the rulebase.

Note: This date does not necessarily represent the date that this domain

interface member was changed in the application. For example, the domain

interface member may be changed on January 1 but the application might

not be synchronized with the rulebase until January 8. Between January 1

and January 8 the application would have probably been saved several times

with other changes unrelated to this domain interface member. The Last

Update would be the date on which the application was last saved (perhaps

January 7) before its synchronization on January 8.

■ The most recent activity (imported or updated) and the date it was

performed on this domain interface member in the rulebase.

The View menu provides controls for displaying the contents of this panel.

Importing the members of a domain interface involves the following steps:

1. Connecting to a Rulebase and Opening an Aion application.

2. Establishing a domain in which to import domain interface members from the

application.

3. Synchronizing the domain interface members into the domain.

Connecting to a Rulebase and Opening an Aion Application

Select a rulebase from the File, Settings menu option to open the Dynamic Rule

Settings dialog. In the Dynamic Rule Settings dialog:

1. Enter your name in the User Name field

Specify the database access information of the rulebase with which you wish

to connect:

■ Select the Interface. Interface is either ODBC or a native database

interface to a database manager

■ Specify the Database, that is, the name of the rulebase. In case of

ODBC, select the ODBC Source.

■ Complete Server, User ID, and Password as appropriate for the database

being accessed.

Dynamic Rulebase Administrator

Chapter 8: Maintaining the Dynamic Rulebase 121

The connection can be tested before attempting to actually open a domain in

the rulebase by clicking the Test button.

The other principal driver of the Dynamic Rulebase Administrator is an Aion

knowledge base. An Aion knowledge base must be opened in the

Administrator in order for the Administrator to access the domain interface

that has been defined in that application. To open an Aion application in the

Administrator:

2. Choose File, Open Source and select the desired application from the

directory box.

3. Click Open.

The name of the Dynamic Rulebase Administrator window will change to

reflect the name of the opened source (application).

Editing (deleting and renaming) is performed by highlighting an item in the

Rulebase Workspace. You may delete or rename domains and sources, but

domain interface members can only be deleted.

Important! Renaming sources should be performed only if the original Aion

application (library) has been renamed. Mistakenly renaming a source to a

non-existent application could prevent all elements of the domains using that

source from being accessible by Aion.

Highlighting and right clicking on a domain interface member in the DI Member

Detail View is equivalent to highlighting and right clicking the name of domain

interface member in the Rulebase Workspace. You may use either the Edit menu

from the main menu bar or right click on the highlighted item and select the Edit

option from the pop-up menu. Options on the Edit menu may be grayed out if

they are not available at the level of the highlighted item. Editing may be

performed without an Aion application being opened.

Administering the rulebase (creating new domains and importing and

synchronizing domain interface members) is performed by highlighting an item

in the Rulebase Workspace or in the Detail View and selecting the desired option

from the Rulebase menu. Alternatively, the Rulebase options may be selected

from the pop-up menu by right-clicking a highlighted item.

Establishing a Domain

Whenever the rulebase level (the root node of the tree) is the selected item in

the Rulebase Workspace, the Administrator automatically selects the last

domain to which domain interface members have been imported as a default

target domain.

Note: The rulebase level is selected by default when the rulebase is opened.

Dynamic Rulebase Administrator

122 Rules Guide

To establish a domain other than the default, highlight the name of the domain

or any element below the domain (a Source or domain interface member

belonging to that domain) in the Rulebase Workspace. You may also select an

item in the Detail View to establish a domain and source.

To establish a new domain, choose New Domain from the Rulebase menu. The

New Rulebase Domain dialog will appear. Enter the name of the new domain and

click OK. The name of the domain will be added to the Rulebase Workspace.

Synchronizing Domain Interface Members

An application may export its domain interface members to several different

domains. Indeed, it is possible to export the same domain interface member to

multiple rulebase domains. Thus, rules in different domains can share the same

domain interface members (share the same business vocabulary).

Similarly, a domain may contain domain interface members imported from

different Aion applications.

Once an Aion application is opened in the Administrator and a domain

established, domain interface members must be imported from the application

and the domain must be synchronized with changes made to the application

since the last import or synchronization.

To access the Import/Synchronize dialog, choose the Import/Synchronize option

from the Rulebase menu.

Dynamic Rulebase Administrator

Chapter 8: Maintaining the Dynamic Rulebase 123

The Import/Synchronize dialog provides two lists:

■ Unsynchronized DI Members-A list of domain interface members that do not

currently match between the application (Source) and rulebase (Domain).

■ Synchronized DI Members-A list of domain interface members in the domain

that currently do correspond to domain interface members in the Source.

The list of unsynchronized domain interface members specifies the reason that a

match cannot be found between the Source and Domain (Synchronization Type

column). To synchronize an item from the upper list, highlight the item and click

the Synchronize button. Unless the item is being deleted from the domain, the

item will move to the lower list. It is possible to highlight all items in a particular

category by selecting one or more of the Synchronization Type checkboxes. For

an explanation of these types, see Comparing Domain Interface Members in the

Application and Rulebase (see page 124). Clicking the Synchronize button

synchronizes all items that are highlighted.

Importing Domain Interface Members

To import domain interface members:

1. Open a rulebase and an Aion application.

2. Highlight a domain to which domain interface members will be imported in

the Rulebase Workspace,

OR

To create a new domain

a. Choose Rulebase, New Domain from the Administrator menu, or

right-click in the Rulebase Workspace and choose Rulebase, New

Domain for the pop-up menu.

b. When the New Rulebase Domain dialog appears, enter the name of the

Domain and click OK.

3. Choose Rulebase, Import/Synchronize from the Administrator menu,

OR

Right click on the highlighted domain and select Rulebase,

Import/Synchronize from the pop-up menu.

The Import/Synchronize dialog displays.

4. Check the ―In Source, not in Domain‖ Synchronization Style,

OR

Highlight the specific items in the Unsynchronized DI Member list that are In

Source, not in Domain that you wish to import.

5. Click the Synchronize button.

Dynamic Rulebase Administrator

124 Rules Guide

Comparing Domain Interface Members in the Application and Rulebase

The checkboxes in the Synchronize Types group determine what groups of

application (Source) or rulebase domain interface members are selected for

synchronization in the Unsynchronized DI Members list.

■ In Source, not in Domain-Shows the domain interface members in the

application that have not yet been imported into the selected domain of the

rulebase.

■ In Domain, not in Source-Shows the domain interface members in the

selected domain of the rulebase that do not have corresponding domain

interface members in the application.

■ Different DI member properties-Shows the domain interface members in the

Source and selected domain with the same names but whose properties are

different.

Properties of a domain interface member include:

■ Type (whether it is a Condition or Action domain interface member)

■ Input argument (whether it has an input argument and the type of that

argument)

■ Return type (the data type of the return value from the method

implementing the domain interface member)

■ Description

Note: A caution icon in the Import/Synchronize dialog indicate properties that

do not agree for a domain interface member.

For more information about synchronizing the application domain interface and

the rulebase, see Dynamic Rulebase Scenarios (see page 124).

Dynamic Rulebase Scenarios

As an Aion application is developed, features of the domain interface will

undoubtedly change. Domain interface members may be added or deleted;

properties and even the names of the existing domain interface members may

be altered. The Dynamic Rulebase Administrator, designed to keep the rulebase

synchronized with later modifications made to Aion applications, facilitates

making corresponding changes in the rulebase.

For step-by-step procedures used in these scenarios, see Importing Domain

Interface Members (see page 119).

Dynamic Rulebase Administrator

Chapter 8: Maintaining the Dynamic Rulebase 125

Scenario 1: Add a new domain interface member to the domain interface

Open the rulebase and application in the Dynamic Rulebase Administrator and,

in the Rulebase Workspace, select the domain to which the new member is to be

imported. If the member is to be imported to a newly constructed domain, it

does not matter what domain is current. Select Rulebase, New Domain; then

Rulebase, Import/Synchronize.

Highlight the name of the new domain interface member in the Unsynchronized

DI Members list or select the ―In Source, not in Domain‖ Synchronization Type to

select all new domain interface members. Click the Synchronize button to import

the domain interface member into the rulebase. You have a choice to add the

domain interface members to just the current domain or to all domains in the

rulebase by checking the Apply to all Domains checkbox.

Scenario 2: Change the properties (other than the name) of an existing domain interface member

Open the rulebase and application in the Dynamic Rulebase Administrator and,

in the Rulebase Workspace, select the domain to which the member that has

been changed belongs. Select Rulebase, Import/Synchronize.

Highlight the name of the changed domain interface member in the

Unsynchronized DI Members list or select the ―Different DI member properties‖

Synchronization Type to select all changed domain interface members. Click the

Synchronize button. You have a choice to applying the changes to just domain

interface members in the current domain or in all domains in the rulebase by

checking the Apply to all Domains checkbox.

Scenario 3: Change the name (label) of a domain interface member that has already been

imported into the rulebase

After opening the rulebase in the Dynamic Rulebase Administrator (you do not

have to open the application), right click on the domain interface for which you

want to change its name in the Rulebase Workspace or DI Member Detail View.

Select Edit, Rename from the pop-up menu. Enter the new name of the domain

interface member in the Rename DI Member dialog. Click Ok. You have a choice

to rename just the selected domain interface member or all the domain interface

members with that name in the rulebase by checking the Apply to all Domains

checkbox on the Rename DI Member dialog.

Scenario 4: Delete an imported domain interface member from the application

After opening the rulebase in the Dynamic Rulebase Administrator (you do not

have to open the application), right click on the domain interface member that

you wish to delete in the Rulebase Workspace or DI Member Detail View. Select

Edit, Delete from the pop-up menu. Click Ok in the Delete DI Member dialog. You

have a choice to delete just the selected domain interface member or all the

domain interface members with that name in the rulebase by checking the Apply

to all Domains checkbox on the Delete DI Member dialog.

Dynamic Rule Manager

126 Rules Guide

If the domain interface member has already been deleted in the application, you

may also select a domain that contains this member and go to the

Import/Synchronize dialog. Select the ―In Domain, not in Source‖

Synchronization Type. Click the Synchronize button. The domain interface

member will be deleted from the domain. Again, you have the choice to delete

the domain interface member just from the current domain or from all domains

in the rule by checking the Apply to All Domains checkbox.

Note: If the domain interface member is already used in rules, it cannot be

deleted. A list of the rules using that domain interface member will be displayed.

The Dynamic Rule Manager must be used either to delete the rules or to change

them to use another domain interface member. The Dynamic Rulebase

Administrator can then be used to delete the domain interface member from the

domain.

Important! Attempting to inference using a dynamic rule whose domain

interface members have been deleted from the application will cause a runtime

error.

Scenario 5: Move an imported domain interface member from one application to another

Open the rulebase and application in the Dynamic Rulebase Administrator. In

this scenario synchronizing the rulebase with the application requires two steps.

The first step is the delete the domain interface from the domain in which it

resided. See Scenario 4: Delete an imported domain interface member from the

application (see page 125).

The second step is to select the Source in which this member now belongs. This

may be done by clicking the browse (ellipsis) button on the Import/Synchronize

dialog and selecting the desired Source. Highlight the name of the domain

interface member in the Unsynchronized DI Members list or select the ―In

Source, not in Domain‖ Synchronization Type to select all new domain interface

members with respect to that domain. Click the Synchronize button.

Dynamic Rule Manager

Once the Domain Interface has been imported into the rulebase, the domain

expert can use the Dynamic Rule Manager to begin populating a Domain in the

rulebase with dynamic rules. The Dynamic Rule Manager organizes the rules into

Domains. For information about the concept of Domain, see the ―System

Considerations for Supporting Business Rules‖ chapter of the User Guide.

Dynamic Rule Manager

Chapter 8: Maintaining the Dynamic Rulebase 127

To create dynamic rules, the domain expert

1. Selects a domain in the Dynamic Rule Manager to which the rule will belong.

2. Selects Domain Interface members that have been previously imported into

the domain for constructing the Conditions and Actions for dynamic rules.

For more information about populating a domain with Domain Interface

members, see the Dynamic Rulebase Administrator in this chapter. Domain

Interface members are referenced through domain interface labels.

3. Specifies the Condition test values and Action values that will define the rule.

4. Constructs the dynamic rule and saves it to the rulebase.

Optionally, the domain expert may also check the new rule into the Dynamic

Rule Repository. For more information about the accessing the Dynamic Rule

Repository, see Accessing the Dynamic Rule Repository (see page 139).

Selecting a Rulebase and Opening a Domain

To access the Dynamic Rule Manager, click the Dynamic Rule Manager icon

provided in the Aion Program Group.

Select a rulebase by using the File, Settings menu option to open the Dynamic

Rule Settings dialog.

To open a rulebase

1. In the Dynamic Rule Settings dialog, enter your name in the User Name field.

2. Specify the database access information of the rulebase with which you wish

to connect:

a. Select the Interface. The Interface is either ODBC or a native database

interface to a database manager

b. Specify the Database, that is, the name of the rulebase. In case of

ODBC, select the ODBC Source.

c. Complete Server, User ID, and Password as appropriate for the database

being accessed.

The connection can be tested before attempting to actually open a domain in the

rulebase by clicking the Test pushbutton.

To open a domain using the Dynamic Rule Manager:

1. Choose File, Settings to verify that the Dynamic Rule Manager is pointing to

the correct rulebase. To open a different rulebase, see To open a rulebase:

earlier in this chapter.

2. Choose File, Open Domain. The Select Rule Domain dialog appears.

Select the desired domain from the Domain drop-down list.

Dynamic Rule Manager

128 Rules Guide

3. Optionally, check the Use as Default Domain checkbox.

Note: A domain opens automatically if you previously checked Use as

Default Domain. If the desired domain does not open by default, the

Dynamic Rule Manager may not be pointing to the correct rulebase.

4. Click OK.

To open another domain in the same rulebase, choose File, Open Domain.

Note: A Domain is automatically opened if you have checked a domain as the

default domain in the Select Rule Domain dialog. If the desired default domain is

not opened automatically, it may be because the manager is not pointing to the

desired rulebase.

The Dynamic Rule Manager appears as follows when a domain is opened:

Dynamic Decision Table Editor

Chapter 8: Maintaining the Dynamic Rulebase 129

Creating and Maintaining Dynamic Rules

The Dynamic Rule Manager is used to create, view, or maintain dynamic rules:

■ To create a new dynamic rule, select Rule, New from the Dynamic Rule

Manager menu, or click the appropriate new rule icon on the Dynamic Rule

Manager toolbar.

■ To view or maintain an existing dynamic rule, double click the rule in Domain

Workspace or highlight the rule and select Rule, Open for the Dynamic Rule

Manager menu.

Note: Currently, Aion supports creating and maintaining only dynamic decision

tables.

Dynamic Decision Table Editor

The Dynamic Decision Table Editor provides much the same functionality as the

static decision table editor in the Aion BRE development environment.

Decision tables are displayed in the Dynamic Rule Manager with the icon shown.

This icon serves to identify decision tables in the Domain Workspace as well as

representing the New Decision Table icon on the toolbar.

Dynamic Decision Table Editor

130 Rules Guide

Creating a New Dynamic Decision Table

To create a new decision table

1. Choose Rule, New, Decision Table... to display the New Rule dialog.

2. Enter the decision table name and click OK to display the Dynamic Decision

Table Editor in the Output Window.

3. The editor opens to a blank Table page. The typical procedure would be to

click the Conditions/Actions tab to begin defining the conditions and actions

that make up the dynamic rule.

For more information about creating decision tables, see Create Decision Table

(see page 84).

Opening an Existing Dynamic Decision Table

To view or edit a dynamic rule:

1. Double-click the desired dynamic rule icon in the Rules tree in the Domain

Workspace.

Or, highlight the name of the rule in the Domain Workspace and choose Rule,

Open from the Dynamic Rule Manager menu.

2. Click the Properties, Table, or Conditions/Actions tab as appropriate.

Viewing and Modifying Dynamic Decision Table Properties

To view or modify properties of the decision table, click on the Properties tab of

the decision table editor.

The Property page of the Dynamic Decision Table Editor appears as:

Dynamic Decision Table Editor

Chapter 8: Maintaining the Dynamic Rulebase 131

Adding and Modifying Conditions

Conditions define the premises of a Decision Table rule. A Condition is composed

of a Condition Name and a number of Test cells. Test cells display ranges or

values specified in the Condition row.

In the Dynamic Decision Table Editor, one can use only domain interface

members, which are referenced through their labels. To add a Condition, select

Domain Condition for the Condition pop-up menu.

Domain Condition allows you select a domain interface member from the Name

drop-down list.

To define a dynamic decision table condition

1. In the Dynamic Rule Manager, choose Rule, New, Decision Table... to open

the Decision Table Editor.

2. Click the Conditions/Actions tab.

3. Right-click in the Condition area to display the Condition menu, and select

New, Domain Condition.

4. Select a name for the new Condition from the domain interface Members

drop-down list. (This list contains all domain interface members that are

Conditions.)

5. Define the values for the selected domain interface Member.

■ Use of ',' (the comma) is not allowed.

■ String test values will be automatically quoted. To test for a quoted

value, specify it as a quoted string prefaced by '=', as in the test value =

―my quoted string‖. If quotes are not specified (= my quoted string), the

editor assume the test value is simply = my quoted string. ELSE,

UKNOWN and NULL values will not be quoted. When it is necessary to

test for the string value ―Null‖ instead of the NULL value, specify =

―Null‖.

Dynamic Decision Table Editor

132 Rules Guide

■ Real test values have to be specified in USA settings without the use of ','

Note: Real and integer values are displayed according to the country

format Setting.

■ When specifying a range, place < or > before equals (=). Start range is

> value or >= value. Optionally use '..' with an end range < value, <=

value

6. You can arrange the order of Conditions by highlighting a Condition and

clicking the up/down arrows.

7. Repeat Steps 3-5 as necessary.

8. Check Test Unknown Value/Test Other Values, as appropriate.

Test values for a condition are specified according to the following rules:

■ Use of ',' (the comma) is not allowed.

■ In the Dynamic Decision Table Editor, string test values are automatically

quoted. For more details on automatic string quoting, see the preceding

procedure To define a dynamic decision table condition.

■ Real test values have to be specified in USA settings without the use of ','

Note: Real and integer values are displayed according to the country format

Setting.

■ When specifying a range, place < or > before equals (=). Start range is >

value or >= value. Optionally use '..' with an end range < value, <= value

Dynamic Decision Table Editor

Chapter 8: Maintaining the Dynamic Rulebase 133

Adding and Modifying Actions

Actions define the activities to be taken by the Decision Table rule if the

conditions are met. Actions are composed of an Action and a number of Selector

cells.

In the Dynamic Decision Table Editor, one can use only domain interface

members, which are referenced through their labels. There are two types of

Actions that can be selected from the Action pop-up menu.

What do these types of Actions represent?

■ Domain Action

Like Domain Condition, Domain Action allows you to choose a previously

defined Domain Interface Action as the Action by selecting its label from the

Name drop-down list. However, in the case of Domain Actions, there are two

possibilities:

– The Domain Interface Member does not take an input argument. In this

case, a specified action and the Domain Action look much the same in

the decision table itself. Invocation of both is indicated by an ―X‖ in the

appropriate Action Selector cell of the decision table.

– The Domain Interface Member takes an input argument. In this case,

you must specify the appropriate value to be passed as that argument in

the Action Selector cell of the decision table where the Action is to be

invoked. This technique reduces the table bloat that was produced when

actions involved different arguments or attribute-value assignments.

Dynamic Decision Table Editor

134 Rules Guide

■ Multiple Domain Action

This option allows you to specify Domain Interface Actions in the Action

Selector cells of a decision table. Thus, one row can be used to invoke

different actions as long as these actions are mutually exclusive. In this case,

you must create a name of the Action, as is done in the Specify Action style.

The difference is that during decision table construction, an Action Selector

cell of a Multiple Domain Action automatically transforms into a drop-down

list when if it becomes the focus. The list consists of Domain Interface

Member labels that may be selected for that cell. Valid Domain Interface

Members are those that (1) are defined to be of type Action, and (2) do not

require an input argument.

To define a dynamic decision table action

1. In the Dynamic Rule Manager, choose Rule, New, Decision Table... to display

the Decision Table Editor.

2. Click the Conditions/Actions tab.

3. Right-click in the Action area to display the Action menu.

4. Select New, Domain Action or New, Multiple Domain Action, depending on

the number of methods you require.

Domain Action-May be a domain interface Member that takes at most one

input argument.

Multiple Domain Action-May take a list of different domain interface

Members, none of which can have an input argument.

5. Enter a name for the new Action.

For a Domain Action, use the name of the domain interface Member to be

executed when that Action is indicated in the decision table. For a Multiple

Domain Action, enter a name of your choice.

6. Repeat steps 3-5 as necessary.

7. Optionally, arrange the order of Actions by clicking the up/down arrows.

8. Click the Table tab. If Auto Refresh is checked, the decision table will be built.

Otherwise, right-click anywhere on the table and select Refresh or Auto

RefreshSpecify the appropriate actions for each combination of Condition

values:

■ For Domain Actions

If the domain interface member does not have an input argument, a

checkmark appears in the Action cell when it is clicked.

Dynamic Decision Table Editor

Chapter 8: Maintaining the Dynamic Rulebase 135

If the domain interface member has an input argument, enter a value for

that argument in the Action cell. This value is passed at execution time to

the method that implements the domain interface member. The

following conditions apply to entering values in Action cells:

– Use of ',' is not allowed.

– String action values will be quoted automatically.

– Real testvalues have to be specified in USA settings without the use

of ','.

Note: Real and integer values are displayed according to the country

format Setting.

■ For Multiple Domain Actions

Clicking the Action cell displays a drop-down list containing domain

interface Members that may be specified as the value for this Action cell.

The first member of the drop-down list is blank in case you need to

cancel a previously selected domain interface member.

Multiple Domain Actions only support domain interface members that do

not have an input argument.

9. Choose File, Save to save the decision table.

Note: It is possible to save incomplete and invalid rules. For example, this

can occur when the:

■ Table has no actions

■ Table has no action values (table is empty)

■ Table has an invalid value for a type, ―This‖ is not a Boolean

■ Table has invalid range specification < 23 .. > 100

This feature allows you to save your work and return to it later. When the

table is invalid, the Active checkmark on the Properties page will be disabled

if it is checked on.

Summary: Specifying Selector Cells

If no selector cells for Actions are specified for a given combination of condition

cells, the corresponding action cells are highlighted in the Decision Table Editor.

(By default, highlighting is red.) This highlighting is a warning that there is a

potential ―hole‖ (that is, a possible outcome for which no action is specified) in

the table logic. This could be valid if the combination of values is impossible, that

is:

Has Driver License = TRUE

and Age < 16

Dynamic Decision Table Editor

136 Rules Guide

A blank selector cell indicates that the decision table will invoke no activity for an

Action for the combination of Conditions. To invoke a result for the decision

table, the selector cell must be specified. Selector cells are specified in three

ways depending upon the nature of the action.

■ Domain interface member with no input argument:

Place an ―X‖ in the selector cell by left clicking in the cell. Left clicking in the

cell a second time may toggle the ―X‖ off.

■ Domain interface member with an input argument:

Type the value of the input argument in the selector cell. Rules for action

selector values are:

– Use of ',' (the comma) is not allowed.

– In the Dynamic Decision Table Editor, string selector values are

automatically quoted.

– Real test values have to be specified in USA settings without the use of ','

.

Note: Real and integer values are displayed according to the country

format Setting.

– Boolean values are shown in True/False format.

■ For multiple domain actions:

Select the appropriate action domain interface member from the drop-down

list. To cancel the action for that combination of conditions, select the first

element in the drop-down list, which is always an empty value.

Decision Table Editor Functions

The functions described below are the same in the static and dynamic rule

editors. For more information, see Decision Tables (see page 83).

Deleting a Rule

To delete a rule from the rulebase:

1. Select the rule in the Domain Workspace of the Decision Table Editor.

2. Choose Edit, Delete, or right-click to display a pop-up menu and choose

Delete.

Dynamic Decision Table Editor

Chapter 8: Maintaining the Dynamic Rulebase 137

Ordering Conditions and Actions

When the Conditions/Actions page is displayed, you can use the Move Up and

Move Down arrows to change the order of Conditions or Actions in the generated

decision table.

For step-by-step procedures for changing the order of Conditions or Actions, see

Decision Tables (see page 83).

Note: Aion also provides an automatic means to order conditions to achieve the

minimal number of combinations of conditions. For more information, see

Achieving Optimal Condition Order for Compressibility (see page 99).

Cutting and Pasting Conditions and Actions

For step-by-step procedures for cutting and pasting conditions and actions, and

for cutting and pasting sub-table contents, see Decision Tables (see page 83).

Displaying a Dynamic Decision Table

You can control the appearance and/or behavior of a decision table on the Table

page by right clicking in a non-table area of the page. A pop-up menu appears

with the following options:

Menu Option Explanation Related Topic

Show compressed See Compressing a Dynamic

Decision Table

Optimum condition

order

See Achieving Optimal Condition

Order for Compressibility

Dynamic Decision Table Editor

138 Rules Guide

Menu Option Explanation Related Topic

Toggle layout Changes display between

landscape and portrait.

Layout can be set on

the Properties page,

see Viewing and

Modifying Dynamic

Decision Table

Properties (see

page 130)

Refresh Redraws the decision table

according to the latest changes to

the definitions of the conditions

and/or actions.

Auto refresh Toggles automatically refreshing

of the decision table. Automatic

refreshing cause the table to

redrawn when it is redisplayed

following any changes to the

definitions of the conditions

and/or actions.

Customizing the Decision Table Editor

You can use the Decision Table Options dialog to set options that control how the

editor displays decision tables. Select the Decision Table Options command from

the File menu. For more information about setting these options, see

Customizing the Decision Table Editor (see page 95).

Note: The Domain Interface Filter group is not available in the Dynamic Rule

Manager.

You can also select the font in which the Decision Table displays information.

Select the Fonts command from the File menu.

Note: For more information about setting fonts, see the Fonts section of the

―Creating and Editing Applications‖ chapter of the User Guide.

Dynamic Decision Table Editor

Chapter 8: Maintaining the Dynamic Rulebase 139

Compressing a Decision Table

Compression is an edit-time feature concerned with making optimal use of

screen real estate when displaying a decision table. Values are suppressed when

those values are not relevant for distinguishing between different actions.

Compressing a decision table is done by right clicking on the background of the

Table page and selecting ―Show compressed‖ from the pop-up menu. For

examples of compression, see Compressing a Decision Table (see page 96).

Note: Actions of compressed subtables are not editable.

Manually Collapsing Subtables

Aion allows you to manually specify particular parts of the decision table that you

may wish to collapse temporarily so that you can focus on a particular area of a

table. For step-by-step procedures for compressing and collapsing the decision

table, see Compressing a Decision Table (see page 96).

Note: Actions under manually collapsed subtables are not editable.

Achieving Optimal Condition Order for Compressibility

Aion also provides a sophisticated algorithm for determining the optimum order

of the Conditions in your decision table to achieve optimum compressibility. For

step-by-step procedures for compressing and collapsing the decision table, see

Compressing a Decision Table (see page 96).

For more information about determining the order of conditions to achieve

greatest compressibility, see Achieving Optimal Condition Order for

Compressibility (see page 99).

Accessing the Dynamic Rule Repository

The Dynamic Rule Manager also provides access to the Dynamic Rule Repository.

The Dynamic Rule Repository supports a business rule process for maintaining

business rules. (For more information about business rule maintenance

scenarios supported by the Dynamic Rule Repository, see "Business Rule

Maintenance Scenarios in the Dynamic Rule Management" chapter of the User

Guide). The Dynamic Rule Repository is not Aion-related software and may not

be available in all environments. Dynamic rule repository functionality is

provided by means of a Source Code Control (SCC) compatible source code

control program (such programs include Microsoft Visual SourceSafe and CA

Harvest Change Manager). Dynamic rules can be saved as source code within

the database of the source code control program. The Dynamic Rule Manager

uses the standard SCC application programmer's interface (API) to provide a

subset of the functionality of the source code control program for dynamic rules.

Dynamic Decision Table Editor

140 Rules Guide

Advantages of using the Dynamic Rule Repository include controlling access to

rules through the check-out/check-in protections offered by a source code

control program. These protections prevent two business experts from changing

the same rule at the same time.

To access the Dynamic Rule Repository, right click the name of a rule in the

Domain Workspace. This action invokes a pop-up menu that opens up the source

code control program API functions provided within the Dynamic Rule Manager.

Chapter 9: Constructing Non-Persistent Dynamic Rules 141

Chapter 9: Constructing Non-Persistent

Dynamic Rules

Dynamic rules are assembled for execution at runtime rather than being

compiled into the knowledge base executable. One way to achieve dynamic rules

is to store rules in a rulebase and load them into the knowledge base at run time.

Such rules are known as persistent dynamic rules. The Aion mechanisms that

support persistent dynamic rules also support their opposite, namely,

non-persistent dynamic rules. Non-persistent dynamic rules are rules created at

runtime within the knowledge itself. Instead of programming a rule, the Aion

application developer programs logic that literally constructs the definition of a

rule as the knowledge base is executing. Rules defined in this manner do not

exist beyond the execution of the knowledge base.

Using non-persistent rules could be beneficial if the structure of the rules is

highly dependent upon changing, external conditions. For example,

non-persistent rules could be used when the conditions and actions that should

be considered, and how they should be considered, depends on available data.

Another potential use of non-persistent rules is to construct rules that the

knowledge base reads from an XML document. In this case, the knowledge base

must also have access to an XML translator.

Note: Non-persistent dynamic rules are intended for use by advanced Aion

application developers.

This section contains the following topics:

Facilities for Constructing Non-Persistent Dynamic Rules (see page 141)

Non-Persistent Dynamic Decision Tables (see page 142)

Facilities for Constructing Non-Persistent Dynamic Rules

The facilities required by Aion for building non-persistent dynamic rules are:

■ The library DynRLib. This library provides the basic mechanisms for defining

and posting non-persistent dynamic rules. These mechanisms include:

– The DIMember class. The instances of this class are individual domain

interface member objects that are referenced in a dynamic rule.

– The XXXRule_Defn_Interface interface, where XXX represents a type of

dynamic rule supported by Aion. These interfaces provide the methods

by which a dynamic rule can be defined to the inference engine.

Non-Persistent Dynamic Decision Tables

142 Rules Guide

– Posting facilities provided by XXXRule_Services, where 'XXX' represents

a type of dynamic rule supported by Aion. Posting facilities provide the

PostRule() method.

Note: Currently Aion supports only dynamic decision tables. The only Rule

Services provided by DynRLib is DecisionTableRule_Services and the only

interface is DecisionTableRule_Defn_Interface.

■ An application class that implements the methods specified in the

XXXRule_Defn_Interface interface for the type of non-persistent rule that

will be created in the application.

– A non-persistent rule is created as an instance of the class that

implements the XXXRule_Defn_Interface interface.

– The methods of XXXRule_Defn_Interface are used by the posting facility

to parse the values for the conditions and actions (DIMembers)

comprising the non-persistent rule.

■ Any additional application structures that may be necessary to implement

the methods of the XXXRule_Defn_Interface interface.

These structures provide the condition and action values that comprise the

non-persistent rule and are used to associate these values with the domain

interface members (instances of DIMember class) that are referenced in the

rule.

■ An agent (class) that has responsibility for constructing the non-persistent

rule. This class, defined by the Aion application developer, typically also

posts and inferences over rules.

Non-Persistent Dynamic Decision Tables

The NPDRules example in the \Examples\DynaRule\NPDRule directory serves as

the basis of following explanation of non-persistent dynamic decision tables. In

NPDRules, the following classes and methods fulfill the facilities that are required

to create non-persistent dynamic rules.

Note: For more information about these facilities, see Facilities for Constructing

Non-Persistent Dynamic Rules (see page 141).

■ A class that implements the DecisionTableRule_Defn_Interface interface.

In NPDRules, this class is Sample_DTbl_Definer.

Note: For more information about constructing an implementation of this

interface, see Non-Persistent Rule Definer Class (see page 144).

The Sample_DTbl_Definer class can serve as a typical model for defining

such classes, although other ways of implementing the methods of

DecisionTableRule_Defn_Interface are possible. The functionality of

Sample_Dtbl_Definer is completely general, and it may be used in other

applications just as it is implemented here.

Non-Persistent Dynamic Decision Tables

Chapter 9: Constructing Non-Persistent Dynamic Rules 143

■ Mechanisms to define the condition and action values and to hold the

association of these values with the domain interface members of the

non-persistent rule.

In NPDRules, these mechanisms are provided by the ConditionData and

ActionData classes. Interface methods implemented in

Sample_Dtbl_Definer made reference to instances of these structures to

obtain the values of conditions and actions of the dynamic rule.

Although other application strategies are possible for defining the required

mechanisms, these classes are also completely general and can be reused in

other applications just as they are implemented in NPDRules.

■ An agent that constructs and posts the non-persistent rules.

In NPDRules, this agent is the Examples class. In its PostDTbl() method, the

Examples class:

1. Creates the domain interface members that are referenced by the

non-persistent decision table being constructed.

2. Specifies the condition and action values for each domain interface

member and associates these values with the appropriate domain

interface member

3. Posts the decision table.

PostDTbl() invokes the _DefineDTblConditions() and _DefineDTBlActions()

methods. These methods construct the instances of the ConditionData and

ActionData classes that define the condition and action values for the

methods referenced by the non-persistent decision table. These methods

contain highly domain specific content.

Note: For more information, see Constructing Decision Table Conditions

(see page 144) and Constructing Decision Table Actions (see page 147). For

more information about posting the decision table that has now been

constructed, see Posting a Non-Persistent Decision Table (see page 151).

Non-Persistent Dynamic Decision Tables

144 Rules Guide

Non-Persistent Rule Definer Class

In NPDRules, the non-persistent rule Definer class, Sample_DTbl_Definer class

must implement two principal types of methods:

■ The DecisionTableRule_Defn_Interface:GetDTblXXX() methods, which are

general purpose methods for retrieving information about the condition test

values or action selectors of a dynamic decision table. These methods are

used by Aion during posting. For more information about these methods, see

―DynRDLib‖ in the online Reference.

■ The non-interface method InitRuleData() method, which is called to define a

non-persistent rule. Its input arguments are:

argRuleName is String

argRulePriority is integer

argConditionArray is array of &ConditionData

argActionArray is array of &ActionData

The ―trick‖ is to pass this method the pointers to structures that hold the

condition and action values that define the desired decision table. Conditions

and Actions are defined as instances of the ConditionData and ActionData

classes, respectively.

Constructing Decision Table Conditions

In NPDRules, see the _DefineDTblConditions() method in the Examples class.

Notice that the argument of this method (an array of pointers to ConditionData)

is an input to the InitRuleData() method in the Sample__DTbl_Definer class. In

this method, instances of the ConditionData class are constructed, each of which

represents a Condition of a decision table. Pointers to these instances are saved

in an array, which serves as the method's output argument.

The first step is to dimension, or redimension, the array so that it will hold the

pointers to Conditions that you want in the decision table.

Array.Redimension(ConditionArray, 2) // Two Conditions

A Condition of a dynamic decision table must always reference a domain

interface member. A domain interface member is represented by an instance of

the class DIMember in DynRLib. The next step in building a definition for a

non-persistent dynamic decision table is to create an instance of the DIMember

class that defines the domain interface member you want to reference in your

condition. Simply specifying a label for the domain interface member can do this.

(Of course, this must be a valid domain interface member defined in the

application or one of its imported libraries.)

var pDI is &DIMember

pDI = DIMember.Create(NULL, "Person Age?", NULL)

Non-Persistent Dynamic Decision Tables

Chapter 9: Constructing Non-Persistent Dynamic Rules 145

The ConditionData instance that defines a Condition in a non-persistent decision

table must:

■ Point to this domain interface member

■ Describe the test values that are relevant in the Condition

For example:

var iEle is integer = 0

iEle = iEle +1

ConditionArray(iEle) = ConditionData.Create()

// Create a ConditionData data instance and set an

// array element to point to that instance.

ConditionArray(iEle).SetMember(pDI)

// Point this ConditionData instance to the Person

// Age? Domain interface member

var TestValues is string

TestValues = ">=21..<=150" &CHAR_TAB & "unknown"

// Specify the test values for this Condition just as

// they would be specified in the decision table

// editor. Values must be separated by a CHAR_TAB

ConditionArray(iEle).SetTestValues(TestValues)

Note: For more information about constructing Condition test values, see

Condition Test-Value String Format (see page 145).

Important! An instance binding may be required for a Condition. This binding

may be set during the Condition construction phase (see the example in

NPDRules) or be passed as an input argument in the posting method (see Posting

a Non-Persistent Decision Table (see page 151)). For more information about

instance binding, see Dynamic Rule Runtime Considerations (see page 57).

The preceding procedure is repeated for each Condition in the decision table.

Condition Test-Value String Format

The test-value string of a Condition specifies all the test values associated with

the Condition. The application specifies condition test-value strings as

arguments to the ValidateConditionTestValues() method in the

DecisionTableRule_Services class and the GetDTblCondition() method in the

DecisionTableRule_Defn_Interface class.

Within the test-value string, tab characters (CHAR_TAB) delimit test values. Text

is not case-sensitive and all values must be in quotes. At most, there can be one

ELSE test value specified for a Condition and, if specified, it must be the last test

value.

Non-Persistent Dynamic Decision Tables

146 Rules Guide

Examples

The following are examples of valid test-value strings.

To describe the following set of condition values

12 =NULL <>13 UNKNOWN ELSE

use:

“12”

& CHAR_TAB & “=null”

& CHAR_TAB & “<>13”

& CHAR_TAB & “unknown”

& CHAR_TAB & “else”

To describe the following set of condition values

<100 >=100 .. <200 >=200

use:

“<100”

& CHAR_TAB & “>=100 .. <200”

& CHAR_TAB & “>=200”

To describe the following set of condition values

True false

use:

“true” & CHAR_TAB & “false”

To describe the following set of condition values:

―Max‖ =―Sally‖ >=―Xerxes‖ NULL ELSE

Non-Persistent Dynamic Decision Tables

Chapter 9: Constructing Non-Persistent Dynamic Rules 147

use:

CHAR_QUOTE & “Max” & CHAR_QUOTE

& CHAR_TAB & “=” & CHAR_QUOTE & “Sally” & CHAR_QUOTE

& CHAR_TAB & “>=” & CHAR_QUOTE & “Xerxes” & CHAR_QUOTE

& CHAR_TAB & “null”

& CHAR_TAB & “else”

Notice the use of CHAR_QUOTEs in the final example. CHAR_QUOTEs are

necessary to enclose the string being concatenated in quotes, which is required

of test value cells containing string values.

Constructing Decision Table Actions

In NPDRules, see the _DefineDTblActions() method in the Examples class.

Notice that the argument of this method (an array of pointers to ActionData) is

an input to the InitRuleData() method just as in _DefineDtblConditions(). In

this method, instances of the ActionData are created, each of which represents

an Action of a decision table. Pointers to these instances are saved in an array,

which serves as the method's output argument.

Thus, the process of defining a non-persistent decision table Action is quite

similar to the process of defining a Condition. In particular, an instance of the

DIMember class must be created and an instance of ActionData must point to

that DIMember instance. The only difference between the two processes is that

three types of Actions that can be specified for a decision table. These actions

are:

■ Checkmark actions

■ Value actions

■ Multiple Domain Action actions (MDAs).

Aion provides constants that specify the type of action. In NPDRules, see the

SetActionType() method in the ActionData class that is used to define an

ActionData instance as supporting a particular type of action.

■ DYNRACTIONTYPE_CHECKMARKS defines an Action whose domain interface

member does not take an input argument.

■ DYNRACTIONTYPE_VALUES defines an Action whose domain interface

member does take an input argument.

■ DYNRACTIONTYPE_ACTIONS defines an Action that can invoke other domain

interface members.

In particular, for all Action types, the number of Action selectors must exactly

equal the number of decision table outcomes. If the decision table has six

possible outcomes, each Action must specify exactly six selectors. There are no

―defaults‖ if fewer selectors are specified.

Non-Persistent Dynamic Decision Tables

148 Rules Guide

Checkmark Actions

The selectors for a checkmark action are Booleans, where TRUE represents an

invocation of the domain interface member. Create a list of Booleans that

describes the set of actions making up the Action. Use the Boolean value FALSE

to indicate that the domain interface member is not to be invoked for the

combination of values.

To describe an action row that looks like the following example

Action1 X X

Use the following list of Booleans: (False, True, True, False)

Value Actions

The selector for a value action is a string of concatenated values that represent

the input arguments to the domain interface member. Create a tab-delimited

string of concatenated values that describes the Action, where each value is

expressed as strings. The requirements governing how this value-string is

created are similar to defining test values for Conditions. To designate a selector

cell with no value, concatenate a tab, immediately followed by another.

Note: For more information about patterns of constructing value strings for

value actions, see ValueAction Selector Format (see page 149).

Multiple Domain Action (MDA) Actions

This type of action is the most complex. First, each MDA Action selector must be

created as an instance of the DIMember class. It is then necessary to create a list

of pointers to these instance that describes the set of actions making up the MDA

Action. To designate a selector cell with no value, include a pointer with the value

of NULL in the list.

To describe an MDA action row that looks like the following example

Action1 Set Status Sound Alarm Sound Alarm

Use the list (pSetStatus, NULL, pSoundAlarm, pSoundAlarm), where each

pointer points to the appropriate DIMember instance.

Multiple Domain Action actions require two pieces of information:

■ A description (a user chosen name for the MDA Action)

■ The list of selectors (pointers to domain interface actions)

Non-Persistent Dynamic Decision Tables

Chapter 9: Constructing Non-Persistent Dynamic Rules 149

Again, should any Action require an instance binding, including those domain

interface members created as selectors of an MDA Action, the binding must be

established during this Action construction phrase or passed as an argument in

the non-persistent decision table posting method, see ValueAction Selector

Format (see page 149).

The above procedure must be repeated for each Action in the decision table.

ValueAction Selector Format

For Actions of the type DYNRACTIONTYPE_VALUES, the selector is a string

specifying all the value selectors associated with the Action.

Within the string, tab characters (CHAR_TAB) delimit values. Successive tab

characters indicate non-selection. The total number of value selectors and

non-selectors should match the number of decision table dynamic rule outcomes

exactly. Otherwise, a subsequent decision table dynamic rule posting or

validation service will fail.

Value selectors must be constants of a data type compatible with the data type

of the first parameter of the Action's domain interface member method. Special

considerations include the following:

■ For parameters of any data type, NULL is always a valid selector value.

■ For parameters of data type string, string constants must be in quotes.

■ For parameters of data type real, value selectors can be either integer or real

constants.

Examples

The following are examples of valid value-selector strings for each data type.

Integer Selectors

To describe an action row with the following values:

Action1 123 -13 NULL

Use the following example:

“123”

& CHAR_TAB & “-13”

& CHAR_TAB // Non-selection of 3rd outcome

& CHAR_TAB & “null”

Note: The absence of a value in the third column must be indicated by an

extra CHAR_TAB to ―jump over‖ the cell.

Non-Persistent Dynamic Decision Tables

150 Rules Guide

Real Selectors

To describe an action row with the following values:

Action1 12.356 -12 -12.356e+2 NULL

Use the following example:

“12.356”

& CHAR_TAB & “-12”

& CHAR_TAB & “-12.356e+2”

& CHAR_TAB & “null”

Boolean Selectors

To describe an action row with the following values:

Action1 True false NULL

Use the following example:

“true”

& CHAR_TAB & “false”

& CHAR_TAB & “null”

String Selectors

To describe an action row with the following values:

Action1 ―abc‖ ―123 56 abc‖ NULL

Use the following example:

CHAR_QUOTE & “abc” & CHAR_QUOTE

& CHAR_TAB & CHAR_QUOTE & “123 56 abc” & CHAR_QUOTE

& CHAR_TAB & “null”

Notice the use of CHAR_QUOTEs to indicate that the string value is enclosed

in quotes, as required for selector cells containing a string value.

Non-Persistent Dynamic Decision Tables

Chapter 9: Constructing Non-Persistent Dynamic Rules 151

Posting a Non-Persistent Decision Table

When posting a persistent dynamic decision table, Aion requires the use of the

PostDTbl() method, which is provided by the DecTableRuntime services in

DynRDLib. For posting non-persistent decision tables, there is a separate posting

method, PostRule(), provided by DecisionTableRule_Services in DynRLib. The

former is an instance method of the persistent decision table itself that has been

loaded from the (external) rulebase. The latter is a class method. The

relationship between them is that the PostDTbl() method calls the PostRule()

method. Thus, in posting a non-persistent dynamic rule, the Aion programmer is

explicitly invoking the mechanisms that Aion itself uses internally to post

persistent dynamic rules.

Because PostRule() is a class method and not a method of the non-persistent

decision table itself, when posting a non-persistent decision table it is necessary

to pass the pointer to the non-persistent rule definer object, that is, to the

instance of the class that implements the DecisionTableRule_Defn_Interface

_Interface. The signature of DecisionTableRule_Services:PostRule() is:

PostRule(pDefiner is &DecisionTableRule_Defn_Interface, pInstBindings is list of

&_Object = NULL) : integer

Where Sample_DTbl_Definer is the class implementing the dynamic decision

table _Interface, you can post a non-persistent decision table with the following

code:

var hRule is integer

var pDefiner is &Sample_DTbl_Definer

pDefiner = Sample_DTbl_Definer.Create()

.

.

.

// Insert code to set the properties of the pDefiner

// instance as shown above. Invoke InitRuleData() with

// the appropriate arguments.

.

.

// Now post the decision table that has been defined:

hRule = DecisionTableRule_Services.PostRule(pDefiner)

// Here we assume no (further) instance bindings are

// required.

Appendix A: Summary of Inferencing Constructs 153

Appendix A: Summary of Inferencing

Constructs

This appendix includes a list of the inference block constructs.

This section contains the following topics:

Inference Block (see page 153)

Chaining Statements (see page 154)

Rule Types (see page 154)

Production Demons (see page 156)

Pattern Matching Demons (see page 157)

Knowability Expressions (see page 157)

Truth Maintenance Operations (see page 157)

Inference Block

All rule definition and chaining must occur within the runtime context of an

inference block:

INFER

PostSomeRules()

FORWARDCHAIN()

END

If the inference engine needs to retain historical information for Truth

Maintenance operations or debugging purposes, the inference block should be

specified with the HISTORY option:

INFER HISTORY

PostSomeRules()

FORWARDCHAIN()

END

Chaining Statements

154 Rules Guide

Chaining Statements

There are two inferencing strategies, forward chaining and backward chaining.

Forward chaining can optionally specify a goal using an attributepointer, and it

can optionally return an integer return code:

FORWARDCHAIN()

FORWARDCHAIN(->goal)

VAR rc IS INTEGER

rc = FORWARDCHAIN()

Backward chaining must specify a goal using an attributepointer, and it can

optionally return an integer return code:

BACKWARDCHAIN(->goal)

VAR rc IS INTEGER

rc = BACKWARDCHAIN(->goal)

During inferencing, the STOPCHAIN statement will terminate chaining:

STOPCHAIN()

The STOPCHAIN statement may optionally specify an integer expression which

will become the chaining statement's return code:

STOPCHAIN(Obj.GetErrorCode())

Rule Types

This section discusses the following types of Rules:

■ Production Rule

■ Decision Table

■ Pattern Matching Rule

Rule Types

Appendix A: Summary of Inferencing Constructs 155

Production Rule

A production rule applies to single instances of classes. It can be employed for

both forward chaining and backward chaining.

RULE StartingRule // RuleName

IFRULE Obj.GetValue() < 3 // RulePremise

THEN

// RuleActions

Obj.SetStatus(TRUE)

Person.Notify(Obj)

STOPCHAIN(100)

END

The rule may optionally specify a posting PRIORITY as an integer expression:

RULE "Another Rule" // RuleName

PRIORITY 100

IFRULE Person.Age <12 AND Dog.Age > 1

THEN

Person.AssignDog(Dog)

END

Decision Table Rule

A decision table rule is a generalization of a production rule. It applies to single

instances of classes. It can be employed for both forward chaining and backward

chaining.

Decision tables consists of multiple conditions and actions. Decision tables are

defined and maintained using the Decision Table Editor, shown in the following

figure:{bmc Art\\DT_256.BMP}

Pattern Matching Rule

A pattern matching rule applies collectively to all instances of one or more

classes. It can be employed only for forward chaining.

Pattern matching rules symbolically refer to instances using bind variables. The

bind variables must be declared prior to the rule's definition:

BIND bParent TO Parent // for Parent class

BIND bChild TO Child // for Child class

Production Demons

156 Rules Guide

The rule then references the bind variables as instances of the associated

classes:

RULE MatchParentsWithChildren

IFMATCH bParent, bChild

WHERE

bParent.GetNumKids() > 0

AND bParent.LastName = bChild.LastName

THEN

School.SendReportCard(bChild, bParent)

END

The rule may optionally specify a posting PRIORITY. It can also optionally specify

a list of integer expressions indicating how the resulting bindings should be

ordered [ORDERBY]. It can also optionally specify whether bindings should be

returned in LEASTRECENT or MOSTRECENT order [LEASTRECENT is the default].

BIND bChild1 TO Child

BIND bChild2 TO Child

RULE "Match children with the same first name"

PRIORITY 20

IFMATCH bChild1, bChild2

WHERE

bChild1 <> bChild2

AND bChild1.FirstName = bChild2.FirstName

ORDERBY AverageAge(bChild1, bChild2), AverageHeight(bChild1, bChild2)

MOSTRECENT

THEN

 Report.AddItem(bChild1, bChild2)

END

Production Demons

A production demon is the demon version of a production rule. It applies to single

instances of classes. It can be employed for both forward chaining and backward

chaining.

RULE CheckForMaxTemperature

WHEN Boiler.Temperature > MaxSafeTemperature

THEN

SendAlert("Boiler is now too hot!")

END

The demon may optionally specify a posting PRIORITY as an integer expression.

Pattern Matching Demons

Appendix A: Summary of Inferencing Constructs 157

Pattern Matching Demons

A pattern matching demon is the demon version of a pattern matching rule. It

applies collectively to all instances of a single class. It can be employed for both

forward chaining and backward chaining.

BIND bCat TO Cat

RULE "Check for fat cats"

WHENMATCH bCat

WHERE

bCat.Weight > 20

THEN

bCat.StartDiet()

END

The demon may optionally specify a posting PRIORITY as an integer expression.

Knowability Expressions

These expressions determine an attribute's UNKNOWN status. Each expression

accepts an attributepointer argument and returns a Boolean value:

// Never causes a rule to pend

ISUNKNOWN(->Person.Age)

// May cause a rule to pend

ISKNOWN(->Salary)

Truth Maintenance Operations

A TMAssignment associates an attribute with a retractable value:

Person.Status ?= OK

A TMRetraction restores the attribute back to its previous nonretractable value:

RETRACT(->Person.Status)

Truth Maintenance Operations

158 Rules Guide

A TMConfirmation establishes an attribute's current retractable value as its new

nonretractable value:

CONFIRM(->Person.Status)

For truth maintenance operations, the inference block must be specified with the

HISTORY option:

INFER HISTORY

...

END

Appendix B: How the Inference Engine Works 159

Appendix B: How the Inference Engine

Works

The Aion inference engine is sophisticated enough to process your rules very

efficiently. Occasionally, however, you may feel the need to understand how the

engine does its job. Various aspects of the process have been discussed

throughout this and the preceding chapter. We will put the pieces together here.

If the terms are unfamiliar, please go back and read the other material first.

This section contains the following topics:

Forward Chaining (see page 159)

Backward Chaining (see page 161)

Forward Chaining

The inference engine starts by posting rules, which may exist directly in the

INFER block or in rule methods called from the INFER block. Initially, all rules

have a state of Ready.

The engine visits the rules in priority order. This is not necessarily the order in

which they were posted, but the order specified by their priority keyword.

■ If the premise can be evaluated to TRUE, the rule fires.

■ If the premise can be evaluated to FALSE, the rule fails.

■ Whether TRUE or FALSE, the rule is finished. Its state is changed to Fired or

Failed, and the engine will not visit it anymore.

■ If any attributes in the premise are UNKNOWN, the rule is pended-that is,

the engine changes the rule's state from Ready to Pended. The engine adds

the attribute to a list of attributes to be watched.

Then, the engine proceeds to the next Ready rule in the priority order and fires,

fails, or pends it.

Whenever a rule fires and its action makes an assignment to an attribute for a

pended rule, the engine takes notice. It changes the rule dependent on the

attribute from Pended to Ready and, thus, readies the rule for further

consideration. The engine then goes back to the top of the posted-rule list and

takes another pass at the Ready rules, visiting them in priority order.

Forward Chaining

160 Rules Guide

Forward chaining can end in three ways. You can:

■ Allow inferencing to continue until all rules have fired, failed, or pended, and

no Ready rules remain.

■ Define a goal attribute, which will halt the inferencing process as soon as it

has been assigned a value. Goal attributes are optional for forward chaining.

■ Use a stopchain command.

Forward Chaining Example

In the following example, we gather facts from symptoms. There are three

Symptom attributes. One or more of these should be assigned values prior to

inferencing. There are three Fact attributes. All of these should be UNKNOWN

prior to inferencing. Some of these may be assigned values during inferencing.

The inferencing code is as follows:

// Gather Facts from Symptoms

var rc is integer

infer

rule "GF1: Condition under which Fact1 is true"

ifrule not Fact2

then

Fact1 = TRUE

end

rule "GF2: Condition under which Fact1 is false"

ifrule Fact2 and Fact3

then

Fact1 = FALSE

end

rule "GF3: Condition under which Fact2 is true"

ifrule Symptom1 and Symptom2

then

Fact2 = TRUE

end

rule "GF4: Condition under which Fact2 is false"

ifrule not Symptom1 and Symptom3

then

Fact2 = FALSE

end

rule "GF5: Condition under which Fact3 is true"

ifrule Symptom2 and Symptom3

then

Backward Chaining

Appendix B: How the Inference Engine Works 161

Fact3 = TRUE

end

rule "GF6: Condition under which Fact3 is false"

ifrule Symptom1 and not Symptom2

then

Fact3 = FALSE

end

rule "GF7: Make sure we have enough Symptoms"

priority 100

ifrule isunknown(->Symptom1)

or isunknown(->Symptom2)

or isunknown(->Symptom3)

then

stopchain

end

// Perform chaining

rc = forwardchain()

end // of infer

return rc

If there are no symptoms, rule GF7 terminates chaining using the STOPCHAIN

command. The facts all remain UNKNOWN and the chaining return code is

CHAIN_STOPNV.

Note that GF7 is a high PRIORITY rule. Its priority assures that the Engine will

examine it before examining any of the other rules. Some rules (GF1 and GF2)

establish facts from other facts. These rules are therefore dependent on other

facts and will pend until those other facts are established. Other rules establish

facts directly from symptoms and will pend if symptoms are UNKNOWN.

Assuming that at least one symptom has been defined, one or more of the facts

are defined and the chaining return code is CHAIN_OUTOFRULES.

Backward Chaining

Posting is the same as in forward chaining, and all posted rules start in the Ready

state. Since backward chaining is goal-driven, however, the engine processes

rules a little differently-it starts by creating a goal list. Initially, the goal list

contains only the main goal as specified by the chaining statement.

The engine visits the first rule in priority order and ascertains if the rule action

contains an assignment to the goal attribute. If not, the engine moves on to the

next rule in priority order.

Backward Chaining

162 Rules Guide

If so, the engine tries to evaluate the premise:

■ A TRUE premise causes the rule to fire. The rule's state changes to Fired.

■ A FALSE premise causes the rule to fail. The rule's state changes to Failed.

■ If the premise contains one or more UNKNOWN attributes, they are added to

the goal list as subgoals. The rule's state changes to Pended. The engine

then goes back to the start of the priority order and visits the first Ready

rule.

The engine proceeds through the Ready rules in priority order. With each rule, it

checks to see if the action contains assignments to any of the attributes in the

goal list. If so, the engine tries to evaluate the rule premise. If not, the rule is

passed over.

The engine starts back at the top of the priority order whenever the following

happens:

■ A rule is fired, and its action makes an assignment to a subgoal. All pended

rules that contain the subgoal change to the Ready state.

■ A rule is pended. The UNKNOWN attribute is added to the goal list.

As in forward chaining, the engine continues until the main goal is assigned, no

Ready rules remain, or you issue the stopchain command. Backward chaining

requires, however, that you specify a goal attribute.

Backward Chaining Example

This example continues where the last example left off. Having established facts,

we are now drawing conclusions and from those conclusions, we are drawing an

overall conclusion. There are two Conclusion attributes. Both of these should be

UNKNOWN prior to inferencing. Some of these may be assigned values during

inferencing. There is one OverallConclusion attribute. This attribute is the goal of

the backward chaining and it should be UNKNOWN prior to inferencing. The

inferencing code is as follows:

// Draw Overall Conclusion from Facts

var rc is integer

infer

rule "DC1: Can conclude Outcome1"

ifrule Conclusion1 and not Conclusion2

then

OverallConclusion = "Outcome1"

end

rule "DC2: Can conclude Outcome2"

ifrule Conclusion1 and Conclusion2

then

OverallConclusion = "Outcome2"

end

Backward Chaining

Appendix B: How the Inference Engine Works 163

rule "DC3: Can conclude Conclusion1 as true [1 of 2]"

ifrule Fact1 and not Fact2

then

Conclusion1 = TRUE

end

rule "DC4: Can conclude Conclusion1 as true [2 of 2]"

ifrule Fact2 and Fact3

then

Conclusion1 = TRUE

end

rule "DC5: Can conclude Conclusion2 as true"

ifrule not Fact2 and Fact3

then

Conclusion2 = TRUE

end

rule "DC6: Can conclude Conclusion2 as false"

ifrule Fact2 and Fact3

then

Conclusion2 = FALSE

end

// Perform chaining

rc = backwardchain(->OverallConclusion)

end // of infer

return rc

Because rules DC1 and DC2 define values for the overall conclusion, the Engine

attempts to fire them first. This would happen regardless of the placement or

priority of these rules within the INFER block. Since these rules are dependent on

other conclusions, they will pend until those other conclusions are established.

The Engine attempts to fire the remaining rules because they establish values for

conclusions needed by DC1 and DC2.

At the end of inferencing, there are two possible outcomes:

■ Either DC1 or DC2 has fired (but not both). In this case, the overall

conclusion is defined and the chaining return code is CHAIN_COMPLETED.

■ Neither DC1 nor DC2 has fired. In this case, the overall conclusion remains

UNKNOWN and the chaining return code is CHAIN_OUTOFRULES.

Appendix C: Rulebase Structure 165

Appendix C: Rulebase Structure

The following Entity/Relationship diagram depicts the default rulebase structure

for dynamic decision tables.

Note 1: Conceptually, the relationship between Domain and DIMember is

many-to-many: a domain may contain many domain interface members and a

domain interface member can belong to many domains. However, the

relationship is implemented as a one-to-many relationship: the same domain

interface member has multiple occurrences in the DIMember table for each

domain to which it belongs.

Note 2: Conceptually, the relationship between DecTable and Condition and

DecTable and Action is mandatory: a (valid) decision table must have at least

Condition and at least one Action. These relationships are optional to allow

partially completed decision tables to be saved in the rulebase.

Table Domain

166 Rules Guide

Note 3: Conceptually, the relationships between Condition and RPValue and

Action and RPValue are one-to-one. However, it is necessary for the rulebase to

accommodate the possibility that the length of the string describing the

Condition or Action value may exceed the length of the rulebase field. In this

case, Aion will automatically parse the value string and create multiple RPValue

entries for a single Condition or Action.

This section contains the following topics:

Table Domain (see page 166)

Table DIMember (see page 166)

Table DecTable (see page 168)

Table Condition (see page 168)

Table Action (see page 169)

Table RPValue (see page 169)

Table SubAction (see page 170)

Table HighID (see page 170)

Table Users (see page 171)

Table CheckOut (see page 171)

Table Domain

Defines each domain in the current rulebase. Domains provide a means to group

dynamic rules within a common area, subject matter or discipline.

Field Type Size Description Key

DomainID Number (Long) 4 System assigned unique identifier for this

domain.

Primary,

ascending

Name Text 64 Name of the domain

EditFlags Number (Long) 4 Bit mapped field representing a set of flags for

this domain.

Table DIMember

Defines an occurrence of a domain interface member within a domain.

Field Type Size Description Key

DomainID Number (Long) 4 System assigned unique identifier for the

domain to which this domain interface

member belongs.

Foreign,

ascending

Table DIMember

Appendix C: Rulebase Structure 167

Field Type Size Description Key

DIID Number (Long) 4 System assigned unique identifier for this

domain interface member.

Primary,

ascending

Label Text 96 Name of this domain interface member.

DIType Number

(Integer)

2 Code identifying the Type of domain

interface member:

1 = Condition

2 = Action with no argument

3 = Action with one input argument

ValType Number

(Integer)

2 Code identifying the type of return value

(for Conditions) or input argument (for

Actions)

0 = None

1 = String

2 = Boolean

3 = Integer

4 = Real

Descript Memo - Comments on this domain interface

member.

Source Text 64 Aion application (library) from which this

domain interface member was imported.

LastUpdt Text 20 Date and time that the Source containing

this DIMember was last saved prior to this

member being synchronized with the

rulebase.

Status Text 64 The last activity and the date/time that

this activity was performed on this

member. Activity values are ―imported‖

and ―updated‖.

EditFlags Number (Long) 4 Bit mapped field representing a set of

flags for this DIMember.

Table DecTable

168 Rules Guide

Table DecTable

Defines a decision table (property information) within a domain.

Field Type Size Description Key

DomainID Number (Long) 4 System assigned unique identifier for

the domain to which this decision table

belongs.

Foreign, ascending

RuleID Number (Long) 4 System assigned unique identifier for

this decision table.

Index, ascending

RuleType Number

(Integer)

2 Code identifying the type of this

dynamic rule. (1 = Decision Table).

Name Text 200 Name assigned to this decision table.

Descript Memo - Comments on this decision table.

Priority Number (Long) 4 Priority assigned to this decision table:

determines order in which the decision

table is evaluated by the inference

engine.

EditFlags Number (Long) 4 Bit mapped field representing a set of

flags for this domain.

Table Condition

Defines a Condition for a dynamic rule.

Field Type Size Description Key

PartID Number (Long) 4 System assigned unique identifier for this

Condition.

Index, ascending

PartType Number

(Integer)

2 Code identifying the type of Condition. (1

= Condition)

RuleID Number (Long) 4 System assigned unique identifier for the

dynamic rule to which this Condition

belongs

Foreign,

ascending

PartSeq Number

(Integer)

2 The position of this Condition amongst the

Conditions of the owning decision table.

DIID Number (Long) 4 System assigned unique identifier for the

domain interface member from which this

Condition is derived

Foreign,

ascending

Table Action

Appendix C: Rulebase Structure 169

Table Action

Defines an Action for a dynamic rule.

Field Type Size Description Key

PartID Number (Long) 4 System assigned unique identifier for this

Action.

Index, ascending

PartType Number

(Integer)

2 Code identifying the type of Action:

2 = Action with no argument

3 = Action with one input argument

4 = Multiple Domain Action

RuleID Number (Long) 4 System assigned unique identifier for the

dynamic rule to which this Action belongs

Foreign,

ascending

PartSeq Number

(Integer)

2 The position of this Action amongst the

Actions of the owning decision table.

DIID Number (Long) 4 System assigned unique identifier for the

domain interface member from which this

Action is derived.

Foreign,

ascending

GrpLabel Text 96 Name assigned to Multiple Domain Action

Action

Table RPValue

Defines the values and how these values occur in a decision table for Conditions

and Actions. Each RPValue entry is owned by a Condition or Action.

Field Type Size Description Key

ValID Number (Long) 4 System assigned unique identifier for this

RPValue entry

Index, ascending

PartID Number (Long) 4 System assigned unique identifier for the

Condition or Action that this RPValue entry

defines.

Foreign,

ascending

ValSeq Number

(Integer)

2 The sequence of the RPValue entry amongst

those owned by the Condition or Action.

(Typical this will be 1, see Note 3) (see

page 165).

Table SubAction

170 Rules Guide

Field Type Size Description Key

ValStr Memo - A string containing the test values of the

owning Condition or the list of Action

values. For Actions of type 2, relevant

columns in which this Action is invoked; for

Actions of type 3, the input arguments to be

passed to the domain interface member.

Table SubAction

Defines the action domain interface members that are to be invoked in a Multiple

Domain Action Action.

Note: Entries in this table are owned only by Actions of PartType = 4.

Field Type Size Description Key

ValID Number

(Long)

4 System assigned unique identifier for this

SubAction entry.

Index, ascending

PartID Number

(Long)

4 System assigned unique identifier for the

Action that this SubAction entry belongs.

Foreign,

ascending

DIID Number

(Long)

4 System assigned unique identifier for domain

interface member from which this SubAction

is derived.

Foreign,

ascending

ValSeq Number

(Integer)

2 The sequence of this SubAction entry

amongst those owned by the Action.

ValStr Memo - A string identifying the relevant columns in

which this SubAction is invoked.

Table HighID

Controls the assignment of IDs within the rulebase.

Note: This table is for system use only.

Field Type Size Description Key

MaxID Number

(Long)

4 Maximum allowable ID

in this rulebase.

Table Users

Appendix C: Rulebase Structure 171

Field Type Size Description Key

HIOID Number

(Long)

4 Currently assigned

highest ID

Table Users

Defines the level of privileges that a user may exercise in a domain.

Field Type Size Description Key

Name Text 64 System ID of users of the rulebase. Index, ascending,

dups

DomainID Number

(Long)

4 Unique identifier for the domain on

which this user has privileges.

Index, ascending,

NULL, dups

Permissions Number

(Long)

4 Code defining the level of privileges

this user enjoys in the specified

domain.

Table CheckOut

Retains a record of rules that have been checked-out of the rule repository.

Note: This table is required only if the Dynamic Rule Manager invokes a source

code control program to serve as a rule repository (not shown in database

illustration).

Field Type Size Description Key

USERID Text 64 System ID of the user who has

checked out the rule.

Index, ascending,

dups

RuleName VarChar 200 Name of the rule that has been

checked out by the user

Index, ascending

DomainID Number

(Long)

4 Identifier for the domain to which this

rule belongs.

Index, ascending,

dups

OutTime Text 32 Time stamp: when this rule was

checked out of the repository by the

user.

Index 173

Index

A

action rows • 133

Decision Table • 133

adding actions • 89

Decision Table • 89

algorithms • 14

inference engine • 14, 22

applications • 24, 28

backward chaining • 28

forward chaining • 24

ask() method • 29

GUIv7Lib • 29

attributes • 45, 52, 109, 111

local • 45

TMAssignment • 109

TMRetraction • 111

UNKNOWN • 52

B

backward chaining • 24, 25, 27, 28

applications • 28

defined • 24

input/output • 27

reasoning • 25

when to use • 28

Backward Mode • 18

Rule Analyzer • 18

BackwardChain • 32

example • 32

bases • 14

knowledge • 14

business • 37

logic • 37

C

C/C++/C# • 32

a client interface built in • 32

callbacks • 32

chaining • 16, 19, 24

rules • 16

code • 14

procedural • 14

COM • 32

Common Language Runtime (CLR) • 32

Condition Name • 131

Decision Table • 131

conditions • 86

Decision Table • 86

conditions rows • 131

Decision Table • 131

conversational interface • 33

pseudo code to carry on a • 33

conversational systems • 29

creating decision tables • 84

customer support • iii

D

data • 21

supplying • 21

data-driven inferencing • 19

Decision Table • 84, 86, 89, 95, 96, 100, 101,

103, 131, 133, 138

action execution • 101

action rows • 133

adding actions • 89

chaining • 101

compressing • 96

condition evaluation • 101

conditions • 86

conditions rows • 131

consolidating IFRules into • 103

creating • 84

customizing • 138

Decision Table Editor • 95

modifying actions • 89

opening • 84

options • 95

rule posting • 100

runtime execution • 100

Decision Table Editor • 95

dialog box • 29

using the interface layer • 29

direct posting • 40

rules • 40

DynaInfer • 32

example • 32

dynamic • 46

d inferencing • 46

dynamic decision tables • 142

non-persistent • 142

Dynamic Rule Manager • 126

174 Rules Guide

dynamic rulebase • 115, 124

maintaining • 115

scenarios • 124

Dynamic Rulebase Administrator • 116

dynamic rules • 57, 102, 116, 126, 141

managing • 126

non-persistent • 141

persistent • 141

rephrasing IFRules as • 102

rulebase administration • 116

runtime considerations • 57

dynamically-bound inference block • 35, 39

E

editing rules • 17

Rule Editor • 17

environment • 32

maintaining client/server • 32

NET • 32

examples • 32, 40

BackwardChain • 32

conversational interface • 32

DynaInfer • 32

rule posting • 40

expert system • 29

F

forward chaining • 19, 21, 22, 23, 24

applications • 24

defined • 19

input/output • 22

reasoning • 21, 25

supplying new data • 21

when to use • 23

Forward Mode • 18

Rule Analyzer • 18

G

generate a dialog box • 29

goal-directed • 24

inferencing • 24

GUI • 29

presenting a question • 29

GUIv7Lib • 29

ask() method • 29

I

indirect posting • 40

rules • 40

InferBegin • 39

InferBegin() • 35

inference block • 38, 39, 40

example • 38, 40

posting • 39

scope • 39

inference engine • 14, 22

algorithms • 14

rules premise • 22

inferencing • 19, 24, 46

dynamic • 46

goal-directed • 24

inferencing data-driven • 19

InferEnd() • 35

initiating a dialog • 30

using rules • 30

using WhenSourced() • 30

input • 22, 27

backward chaining • 27

forward chaining • 22

invokeInferencing() • 33

J

J2EE environment • 32

K

keyword • 16, 17, 19, 24, 37, 41

backward chaining • 19

backwardchain • 16, 24

defined • 17, 19, 24, 37, 41

END • 17, 37

forwardchain • 16, 19

ifrule • 17

INFER • 37

priority • 41

rule • 17

knowledge • 43

bases • 14

location • 16

methods • 16

object-oriented • 43

L

Last chance sourcing • 30

local • 45

attributes • 45

variables • 45

location • 16

knowledge • 16

Index 175

methods • 16

logic • 37

business • 37

M

maintaining • 32, 35

state of server • 35

x client/server environment • 32

matching • 69

pattern • 69

methods • 16

knowledge • 16

location • 16

modifying actions • 89

Decision Table • 89

multi-user environment • 32

N

NET environment • 32

non-persistent dynamic rules • 141

defined • 141

facilities • 141

O

object-oriented knowledge • 43

opening • 84

decision tables • 84

output • 22, 27

backward chaining • 27

forward chaining • 22

P

persistent dynamic rules • 141

defined • 141

posting rules • 39

PowerBuilder • 32

x a user interface built with • 32

premises • 22

presenting a question • 29

GUI • 29

procedural code • 14

pseudo code • 33

to carry on a conversational interface • 33

R

reasoning • 21, 25

backward chaining • 25

forward chaining • 21

Rule Editor • 17

rules • 14, 16, 17, 22, 23, 30, 37, 40

chaining • 16, 19, 24

examples of posting • 40

forward chaining • 23

initiating a dialog • 30

overview • 37

satisfying premise • 22

simple • 17

versus procedural code • 14

runtime considerations • 57

dynamic rules • 57

S

satisfying rule premise • 22

scopes • 39

setUserAnswer() • 33

simple • 17

rules • 17

SingleFire rules • 81

state of server • 32, 35

maintaining • 32, 35

stateless servers • 32

statusResult • 35

supplying data • 21

T

technical support • iii

Test cells • 131

Decision Table • 131

TMAssignment attribute • 109

TMConfirmation attribute • 113

TMRetraction attribute • 111

truth maintenance • 109

operations • 109

U

UNKNOWN attributes • 52

V

variables • 45

local • 45

Visual Basic • 32

a client interface built in • 32

W

WhenSourced() • 30

x initiating a dialog • 30

176 Rules Guide

WinLib • 29

X

x client/server environment • 32

	CA Aion Business Rules Expert Rules Guide
	Contents
	1: Introducing Rules
	Audience
	Rule Basics
	Rules
	Rules Can Represent Knowledge
	Knowledge Base
	Inference Engine
	Procedural Code or Rules?
	Anatomy of a Knowledge-Based Application

	Rules and Chaining
	Location of Rule Methods
	Structure of a Simple Rule
	Rule Editor
	Rule Analyzer

	2: Chaining
	Forward Chaining
	Data-Driven Inferencing
	Reasoning with Forward Chaining
	New Data Supply for Forward Chaining
	Rule Firing
	Forward Chaining Input and Output
	Display of Forward Chaining Results

	Why Use Forward Chaining Rules?
	Typical Forward Chaining Applications

	Backward Chaining
	Goal-Directed Inferencing
	Actions of Backward Chaining
	Reasoning with Backward Chaining
	Initiation of Backward Chaining
	Indetification of Pertinent Rules
	Indetification of Subgoals
	Resolving Goals
	Simple Example

	Backward Chaining Input and Output
	Input to Rules
	Output from Rules

	Why Use Backward Chaining?
	Typical Backward Chaining Applications

	Conversational Systems Built with Backward Chaining
	Generate the Interface
	Use Rules to Initiate the Dialog
	Use the WhenSourced Event Method to Initiate the Dialog

	How to Link the Interface into Client/Server Environments
	Access a Stateful Server from the Client
	Program the Server Side
	Invoke and Reinitialize Inferencing Within a Stateful Conversation

	3: The Inference Block
	Anatomy of an Inference Block
	Sample Inference Block
	InferBegin and InferEnd

	Posting and Scope
	Direct and Indirect Posting
	A Revised Example
	A More Complex Example
	Posting Order versus Priority Order

	Object-Oriented Knowledge

	4: Runtime Issues
	Posting Time or Chaining Time?
	Local Attributes
	Local Variables
	Other Language Limitations in Rules
	Dynamic Posting
	Meta-Rules
	Conditional Posting
	Comparison of Meta-Rules and Conditional Posting

	Chaining Considerations
	Inference Blocks and Scope
	Nested Inference Blocks
	Rule Readying

	End of the Chaining Process
	Normal Return Codes
	Backward Chaining
	Forward Chaining

	Stopchain Statement
	Return Codes
	StopChain Does Not Terminate Rule Action
	Stopchain Priority

	Multiple Execution
	Multiple Execution of Chaining

	UNKNOWN Attributes
	Test for UNKNOWN
	UNKNOWN in Called Method Causes Rule to Pend
	When UNKNOWN Does Not Cause Rule to Pend
	AND/OR Nodes and UNKNOWN
	Partial Execution of Premise and Action

	How to Call Methods from a Rule or Inference Block
	Non-Inferencing Statements
	Automatic In-Lining of Methods

	Limitations on Chaining over Complex Data Types

	Demons
	Firing of Demons
	Scope of Demons

	Dynamic Rule Runtime Considerations
	How to Load and Post Dynamic Rules
	Connect to the Rulebase
	Load a Domain
	Load Dynamic Rules
	Post and Inference Over Dynamic Rules
	Housekeeping Considerations
	Invalid and Inactive Rules Loading

	Instance Binding
	Binding Conventions for Dynamic Rules
	Alternative Approach to Instance Binding

	Error Checking
	Special Error Codes for Invalid and Inactive Rules

	5: Pattern Matching
	Pattern Matching Rules
	Pattern Matching over One Class
	Pattern Matching over Two Classes
	Pattern Matching over a Class with Two Binding Variables
	Pattern Matching over Interfaces

	Advanced Pattern Matching
	Flights.app Sample
	The Rules
	What Are Flight Class and Node Class?

	Bindings
	Binding a Pointer to an Instance
	Rule-instance Binding
	Bindings in Flights
	Explosion of Knowledge
	Achieving the Goal of Flights

	Orderby Clause
	New Instances Join the Firing Queue
	Orderby in Flights

	Where Clause
	Order Unimportant in Where Clause
	Where TRUE clause

	SingleFire Rules
	Inference Engine and Multiple ifmatch Rules

	6: Decision Tables
	Benefits of Using Decision Tables
	How to Create and Open Decision Tables
	Create Decision Table
	Open an Existing Decision Table

	How to View and Modify Decision Table Properties
	Add and Modify Conditions
	Add and Modify Actions
	Summary: Specifying Selector Cells

	Delete a Rule
	Ordering Conditions and Actions
	Cutting and Pasting Conditions and Actions
	Displaying a Decision Table

	Customizing the Decision Table Editor
	Compressing a Decision Table
	Manually Collapsing Subtables
	Achieving Optimal Condition Order for Compressibility

	Runtime Execution
	Rule Posting
	Condition Evaluation
	Action Execution

	Chaining
	Rephrasing IFRules as Decision Tables
	One-to-One Mappings
	ANDed Premise Expressions
	Consolidating IFRules into a Single Decision Table

	Dynamic Decision Tables
	Dynamic Decision Table Runtime Considerations

	7: Truth Maintenance
	Truth Maintenance Operations and Terminology
	Operational Context
	Tickling Demon and Pattern-Matching Rules
	Available Runtime Information
	TM-Assignment
	Implicit TM-Assignments
	Ignored TM-Assignments
	Successive TM-Assignments with Same Value
	Non-TM-Assignment Followed by TM-Assignment with Same Value

	TM-Retraction
	Ignored TM-Retractions
	Implicit TM-Retractions
	Successive TM-Assignments with Different Values
	TMAssignment Followed by non-TM Assignment with Different Value

	Side-Effects of TM-Retractions
	Algorithm

	TM-Confirmation
	Ignored TM-Confirmations
	Implicit TM-Confirmations
	TM-Assignment Followed by non-TM Assignment with Same Value
	Automatic TM-Confirmation at Inference Block Termination

	Side Effects of TM-Confirmations
	Algorithm
	Pended Rules
	Fired Rules

	8: Maintaining the Dynamic Rulebase
	Dynamic Rulebase Administrator
	The Default and Empty Rulebases
	Importing a Domain Interface
	Connecting to a Rulebase and Opening an Aion Application
	Establishing a Domain
	Synchronizing Domain Interface Members
	Importing Domain Interface Members
	Comparing Domain Interface Members in the Application and Rulebase

	Dynamic Rulebase Scenarios
	Scenario 1: Add a new domain interface member to the domain interface
	Scenario 2: Change the properties (other than the name) of an existing domain interface member
	Scenario 3: Change the name (label) of a domain interface member that has already been imported into the rulebase
	Scenario 4: Delete an imported domain interface member from the application
	Scenario 5: Move an imported domain interface member from one application to another

	Dynamic Rule Manager
	Selecting a Rulebase and Opening a Domain
	Creating and Maintaining Dynamic Rules

	Dynamic Decision Table Editor
	Creating a New Dynamic Decision Table
	Opening an Existing Dynamic Decision Table
	Viewing and Modifying Dynamic Decision Table Properties
	Adding and Modifying Conditions
	Adding and Modifying Actions
	Summary: Specifying Selector Cells

	Decision Table Editor Functions
	Deleting a Rule
	Ordering Conditions and Actions
	Cutting and Pasting Conditions and Actions

	Displaying a Dynamic Decision Table
	Customizing the Decision Table Editor
	Compressing a Decision Table
	Manually Collapsing Subtables
	Achieving Optimal Condition Order for Compressibility

	Accessing the Dynamic Rule Repository

	9: Constructing Non-Persistent Dynamic Rules
	Facilities for Constructing Non-Persistent Dynamic Rules
	Non-Persistent Dynamic Decision Tables
	Non-Persistent Rule Definer Class
	Constructing Decision Table Conditions
	Condition Test-Value String Format
	Examples

	Constructing Decision Table Actions
	Checkmark Actions
	Value Actions
	Multiple Domain Action (MDA) Actions
	ValueAction Selector Format
	Examples

	Posting a Non-Persistent Decision Table

	A: Summary of Inferencing Constructs
	Inference Block
	Chaining Statements
	Rule Types
	Production Rule
	Decision Table Rule
	Pattern Matching Rule

	Production Demons
	Pattern Matching Demons
	Knowability Expressions
	Truth Maintenance Operations

	B: How the Inference Engine Works
	Forward Chaining
	Forward Chaining Example

	Backward Chaining
	Backward Chaining Example

	C: Rulebase Structure
	Table Domain
	Table DIMember
	Table DecTable
	Table Condition
	Table Action
	Table RPValue
	Table SubAction
	Table HighID
	Table Users
	Table CheckOut

	Index

