

Product Guide

r11

CA Aion® Business Rules Expert

This documentation and any related computer software help programs (hereinafter referred to as the

"Documentation") are for your informational purposes only and are subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,

without the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may

not be used or disclosed by you except as may be permitted in a separate confidentiality agreement between you and

CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation,

you may print a reasonable number of copies of the Documentation for internal use by you and your employees in

connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable license for such

software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify

in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT

WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER

OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,

INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR

LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and

is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with "Restricted Rights." Use, duplication or disclosure by the United States Government is subject to the

restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section

252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2009 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein

belong to their respective companies.

CA Product References

This document references the following CA products:

■ CA Aion® Business Rules Expert (CA Aion BRE)

Contact CA

Contact Technical Support

For your convenience, CA provides one site where you can access the

information you need for your Home Office, Small Business, and Enterprise CA

products. At http://ca.com/support, you can access the following:

■ Online and telephone contact information for technical assistance and

customer services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA product documentation, you can

send a message to techpubs@ca.com.

If you would like to provide feedback about CA product documentation, complete

our short customer survey, which is also available on the CA Support website,

found at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 19

Rules and Inferencing ... 19

Full Object Orientation .. 20

Component-Based Development ... 21

Multiple Application Architectures .. 21

Graphical User Interface Builder ... 22

Visual Editors and the Method Editor ... 22

Aion BRE Language ... 22

Database Support .. 23

Rapid Application Development .. 23

Chapter 2: Installation and Setup and Uninstall 25

Installation Prerequisites .. 25

Install on Microsoft Windows .. 26

Custom Installation ... 29

Uninstall on Microsoft Windows .. 30

Install on Linux/UNIX server .. 31

Console-Mode Installation ... 31

Graphical-Mode Installation .. 32

Uninstall Linux/UNIX server ... 39

Silent Installation ... 40

Chapter 3: Overview of CA Aion BRE Objects 43

Applications .. 43

Libraries Are Functional Units .. 44

Included Libraries ... 44

Stand-Alone Aion BRE Applications ... 45

Benefits of Included Libraries .. 45

Library Boundaries .. 46

Object Orientation .. 47

Basic Object-Oriented Terms .. 47

Apply the Object-Oriented Paradigm ... 48

Inheritance ... 49

Polymorphism .. 50

Associations .. 51

Class Containment .. 52

6 Product Guide

Attached Objects ... 57

Constraints ... 59

Access Types ... 61

Comparing Terms ... 62

Anatomy of a Class ... 63

Attributes .. 63

Methods .. 67

Constants .. 69

Dynamic versus Static Instances .. 70

Static Instances .. 71

Dynamic Instances .. 71

Implement Interfaces ... 72

Develop Interfaces .. 72

Associate Interfaces to Classes .. 74

Associate Interfaces to Class Instances and Generic Methods 75

Implicit Typecasting ... 76

Associated SysLib Methods .. 78

Inference Considerations .. 78

Chapter 4: How You Create and Edit Applications 79

Create Applications ... 79

.APP and .BIN Files ... 80

Set Mainframe Line Length .. 80

Open Applications ... 80

Save Applications ... 81

Read-Only Applications .. 81

Back Up Applications .. 81

Restore Applications .. 82

Restore Closed Applications ... 83

Restore Open Applications ... 83

Develop Applications for Non-Windows Platforms ... 84

The Command Line ... 88

Customize the Development Environment .. 89

Directories Tab Page .. 90

View Applications ... 91

Manipulate Windows .. 91

Object Icons .. 92

Fonts .. 93

The Output Window ... 93

Output Window Tab Pages ... 94

The Project Workspace .. 96

View Inheritance and Ownership Information ... 96

Contents 7

Project Workspace Tab Pages .. 96

The Explorer ... 99

Set Explorer/Workspace Options .. 100

The Rule Analyzer ... 102

Editors .. 102

Standard Tab Pages .. 103

Standard Procedures ... 103

Association Editor .. 104

Attribute Editor .. 105

Class Editor ... 106

Decision Table Editor ... 106

Instance Editor .. 107

Menu Editor ... 107

Method Editor ... 107

Rule Editor .. 108

Query Editor ... 109

Stored Procedure Editor .. 110

Tool Editor .. 111

Window Editor ... 111

Create a Constrained Attribute ... 112

Specify a Constraint.. 113

Attribute Declarations Using Constrained Data Types 114

Operation of Constraints ... 115

Copy and Paste Objects .. 117

Delete Objects .. 118

Edit Toolbars .. 118

Supplied Toolbars .. 119

Customize Toolbars .. 122

Work with Included Libraries ... 122

Include and Remove Libraries .. 123

Work with Source Control .. 126

Set Source Control Safeguards ... 127

Source Control Menu Options ... 128

Enable Concurrent Development .. 129

Change Management .. 130

Change Management Functions ... 130

Produce Reports for an Application .. 133

Printed Report Contents .. 134

CA Aion BRE Documentation .. 134

Search for Objects by Name .. 136

Search for Objects by Multiple Criteria .. 136

Replace Text .. 136

8 Product Guide

Search Across Applications ... 137

Chapter 5: Create a Graphical User Interface 139

How You Create a GUI ... 139

Step 1-Define data requirements. ... 139

Step 2-Construct the application's main frame window. 140

Step 3-Create dialog boxes. .. 140

Step 4-Add logic. .. 140

Work with Object Properties .. 141

Open and Use Properties Dialog Boxes .. 141

Work with Windows and Dialog Boxes ... 146

Subclass Supplied Classes .. 146

Multiple Document Interface .. 148

Create Windows and Dialog Boxes .. 149

Edit Windows and Dialog Boxes ... 149

Standard Window and Dialog Box Properties ... 150

Add Controls to Windows ... 151

Controls Supplied by CA Aion BRE ... 152

Create Controls .. 154

Edit Controls .. 155

Order Keyboard Focus .. 156

Work with Control Groups .. 156

Radio Buttons ... 156

Tab Controls ... 158

Add ActiveX Controls to Your GUI ... 159

Insert OLE Objects into an Application ... 160

Splitter Windows ... 160

Control Properties .. 161

Add Menus to Windows .. 163

Create Menu Titles ... 164

Add Menu Items to Menu Titles ... 165

Attach Menu Titles to Windows ... 166

Pop-Up Menus ... 166

Menu Properties ... 167

Menu Conventions ... 171

Add Toolbars to Windows .. 171

Create Toolbars .. 171

Addi Tool Items to Toolbars .. 173

Attach Toolbars to Windows .. 173

Toolbar Properties ... 173

Toolbar Conventions ... 175

Add Graphics to Windows .. 175

Contents 9

Layered Graphics .. 176

The Order Controls ... 176

Create Resources .. 177

Graphics Properties .. 177

Implement Logic to Run Your GUI .. 178

Window and Dialog Box Logic ... 179

Control Logic .. 182

Menu Logic .. 183

Toolbar Logic .. 185

Graphic Logic .. 185

Conclusion .. 186

Chapter 6: Write Logic 187

Write Application Logic ... 187

Sample Applications.. 188

About Methods .. 188

Library Methods ... 189

Event-Triggered Methods ... 189

External Methods .. 189

Method Editor ... 190

Open an Existing Method in the Editor ... 190

Create a New Method .. 190

Specify a Method's Properties ... 191

Specify the Method's Implementation ... 195

Parse and Save a Method ... 196

How You Program Aion BRE .. 197

Arguments in Method Calls ... 197

Attribute Data Types ... 198

Local Variables .. 200

Return Values ... 201

Call an Instance Methods ... 202

Call a Class Methods ... 203

Associations ... 203

Attribute and Class Pointers .. 205

Specialize a Method .. 206

Unspecialize a Specialized Method .. 207

Write Logic for Windows and Dialogs .. 207

Create and Open the Application Window .. 207

Create Dialogs at Runtime .. 208

The DialogBox Class ... 208

Set Initial Values for Controls ... 209

Use Dialogs to Get User Input .. 210

10 Product Guide

Report Status Using a Modeless Dialog .. 211

Process Data .. 211

Iterate Instances of a Query .. 212

Use Markers to Control Data Selection... 212

Define Other Objects .. 213

Attribute Editor .. 213

Accessor Methods .. 214

Instance Values Dialog ... 214

Use the Language Paster ... 215

Chapter 7: Access Data 217

Data and Aion BRE Classes ... 217

Data Manipulation ... 218

Update the Database ... 218

Basic Steps in Working with Data ... 218

Define a Database Connection .. 222

Define a Query .. 222

Use Inheritance to Reuse Queries ... 223

Concurrency Control ... 224

Create a Query .. 224

Query Editor ... 224

Field Attributes .. 226

Use Markers with Query Classes .. 227

Change the Properties of a Query ... 228

Dynamic versus Static SQL ... 228

Build Queries Using Static SQL .. 230

Write SQL Statements ... 231

SQL Paster Utility .. 232

Define a Stored Procedure ... 232

Queries and Stored Procedures ... 233

Create Stored Procedures .. 233

The Stored Procedure Editor .. 233

Add Markers to Stored Procedures .. 235

Data Test Facility .. 236

Select Statement Field ... 236

Markers List ... 237

Result Set Field .. 237

Load Data from a Database .. 237

Load Data ... 238

Cursor Management ... 238

Manual Load Mode ... 239

WhenFetched() ... 241

Contents 11

Save Modifications to the Database ... 243

Data-Update Mechanisms .. 244

Update Data with Automatic and Manual Commit Modes 244

Automatic Commit Mode ... 245

Manual Commit Mode .. 245

WhenUpdated() ... 246

Database Errors ... 248

Define Records and Serialize Data .. 249

Construct Records ... 249

Record Elements ... 251

Serializie Data ... 253

MQLib to Access MQSeries ... 253

Code the Queue Manager ... 254

MQLib Data Objects .. 255

Chapter 8: Process XML 257

SAXLib - Read XML Documents ... 258

How SAXLib Functions .. 259

Attributes Class .. 261

Process Exceptions ... 261

Use SAXLib .. 262

Use the SAX API ... 263

DOMLib - Read and Write XML Documents .. 265

Initialization ... 267

Process the DOM Tree .. 268

XML Maintenance Using DOMLib .. 269

Add Elements to an XML Document ... 269

Delete Elements from an XML Document .. 270

Create an XML Document .. 271

Handle Character Data as Element Values ... 273

Generate Applications Based on XML Schemas ... 273

General Approach .. 274

Details .. 275

Use the XsdConverter .. 277

Process the XML Document with the Generated Application 278

Read an XML Document .. 279

Write an XML Document .. 279

Update an XML Document .. 280

Automatic Unmarshalling and Marshalling ... 281

Load() Method .. 281

Dump() Method .. 282

The Purchase Order Example ... 282

12 Product Guide

Chapter 9: Domain Interfaces and Dynamic Rules 285

Domain Interfaces ... 286

Role of the Domain Interface in System Development 288

Create Domain Interface Members .. 290

Dynamic Rules .. 291

Useages for Dynamic Rules ... 292

Dynamic Rules Task Flow ... 293

Support for Dynamic Rules: Aion BRE-Supplied Libraries 294

External Rules: Use Dynamic Rules or Generate Static Rules with COBSLib? 295

Accommodation of Rules for Any Format .. 296

No Performance Degradation ... 296

Immediate Use of External Rules.. 296

Runtime Loading of Rules .. 297

Styles of Rules .. 297

Chapter 10: Use the Rule Manager Wizard 299

Process Overview .. 299

Invoke the Rule Manager Wizard ... 300

Chapter 11: Dynamic Rule Management 303

Rule Repository Functionality ... 304

Set Up the Rule Repository ... 304

The Business Rule Management Process ... 305

Establish User Access Permissions .. 306

Dynamic Rule Repository Functionality .. 307

Business Rule Maintenance Scenarios ... 312

Chapter 12: Aion BRE Reports 315

About Aion BRE Reports .. 315

Aion--IOLib and IOWLib .. 316

Aion--How you Create a Report ... 316

Aion--IOLib Classes .. 317

Canvas .. 317

Artist ... 318

Fine Artist ... 318

HTMLArtist .. 318

IOWLib Classes .. 319

WindowArtist .. 319

PrinterArtist ... 319

Work with a Report Canvas... 319

Contents 13

Create the Canvas Instance .. 320

Start the Report Page .. 320

Define the Overall Appearance .. 320

Specify Font Attributes ... 322

Write Text and Images to the Canvas ... 322

Add Blank Lines.. 323

Specify Tables ... 324

End the Report .. 324

How You Use the Artists .. 325

Create the Artist Instance .. 325

Specify the Output Device .. 325

Render a Canvas ... 327

Sample Application .. 327

The Sample Canvas .. 328

Output Options .. 329

Output the Report to a Window ... 330

Output the Report to a Text File .. 331

Output the Report to an HTML File .. 332

Send the Report Output to a Printer ... 333

Chapter 13: Generate and Use C and C++ Components 335

Build an Aion BRE Component with an Interface Layer ... 335

Invoke Aion BRE Methods from C/C++ Clients ... 336

Use Exported Aion BRE Methods in a C Program ... 337

Use Exported Aion BRE Methods in a C++ Program .. 339

Invoke C Functions from Aion BRE .. 339

How to Create an External Method in Aion BRE .. 340

Call an External Method (Runtime) .. 341

Data Type Mappings ... 341

Input Arguments .. 342

Output Arguments ... 342

Return Values ... 342

Mapping Between Aion BRE and C Data Types ... 342

Aion BRE Strings in C and C++ ... 343

NULL Values ... 349

Chapter 14: Generate and Use Managed C++ Components 351

The Managed C++ Interface Layer .. 351

Managed Code ... 351

Structure of the Managed C++ Interface Layer .. 353

Set up the Environment .. 355

14 Product Guide

Create an Aion BRE Component with the Managed C++ Interface 355

Code an Exported Class .. 355

Build the Aion BRE Application .. 356

Write and Compile the .NET Client .. 356

Deploy a Managed C++ Component ... 357

Application Programming for .NET: The Basics ... 357

Support for Output Parameters ... 358

Support for Complex Data Types .. 360

Object Management Under .NET .. 360

Data Type Conversion .. 362

Chapter 15: Generate and Use Java Components 363

The Java Interface Layer ... 363

Elements in the Java Interface Layer .. 364

Set Up the Environment .. 366

Create an Aion BRE component Using the Java Interface 366

Code an Exported Class .. 367

Build the Aion BRE Application .. 367

Write and Compile the Java Client .. 368

Test the Java Interface ... 369

The Basics of Java Application Programming ... 369

Java Objects ... 370

Data Conversions and Exception Handling ... 371

Java Object Management ... 373

Supports Backward Chaining ... 374

Aion BRE Deployment on the Web .. 376

Roles and Responsibilities .. 376

Servlet Technology .. 377

Java Servlet Programming Considerations ... 380

Thread Management ... 382

General Definitions ... 383

Support for Concurrency and Session Safety ... 384

Resource Load Issues .. 385

Additional Information ... 385

Chapter 16: Generate and Use COM Components 387

Automation ... 388

ActiveX ... 388

DCOM ... 388

MTS .. 389

COM+ ... 389

Contents 15

Aion BRE and COM ... 389

Aion BRE and COM+ ... 389

Object Generation Overview .. 390

Set Up the Environment .. 390

COM Object Generation .. 390

ActiveX Object Generation .. 391

MTS Object Generation ... 391

COM+ Object Generation ... 391

MVS COM Object Generation .. 391

Generate COM or ActiveX Objects ... 392

Data Type Support in Automation Servers ... 392

Register the COM Object ... 393

Configure DCOM ... 393

Test the DCOM Configuration ... 393

COM+ Application Configuration .. 394

Use Aion as an Automation Client or Server ... 394

Include COM Objects in Aion Applications .. 394

Data Type Support in Automation Clients .. 395

AutoLib Example .. 395

Start() Method in client.app .. 396

Implement Callbacks Between COM Servers ... 396

COM Interface Server Side Example .. 397

COM+ Services: Server Side .. 398

Chapter 17: Deploy Aion BRE Components as Web Services 399

Program Aion BRE Components as Web Services .. 399

Use Complex Data Types ... 400

Program Standards for Web Services .. 400

Do I Need To Install Apache Axis? .. 401

Validate the Apache Axis Setup ... 402

Generate an Aion BRE Component as a Web Service 403

Deploy Aion BRE Web Service Components on Microsoft Windows 403

Deploy Aion BRE Web Service Components on UNIX/Linux 405

Prerequisite ... 405

Prepare for WebLogic Deployment .. 405

Prepare for WebSphere Deployment .. 406

Deploy the Aion BRE Application .. 408

Code Generation for Web Service Deployment ... 409

Client Programming Considerations ... 410

Administering Aion-Based Web services ... 411

Additional Resources on Web Services .. 411

16 Product Guide

Chapter 18: Debug Aion BRE Applications 413

Debugger Features .. 415

Embedded Component Debugging .. 416

The Debugger Window ... 418

The Debugger Toolbar .. 418

Stack List Box ... 419

Arguments Pane ... 420

Watched Attribute Pane .. 421

Method Body Pane ... 421

Instance Counter .. 422

Debugger Tab Pages ... 422

Breakpoints ... 429

Data Breakpoints .. 429

Code Breakpoints .. 430

Set and Remove Data Breakpoints .. 430

Set and Remove Code Breakpoints .. 431

Watchpoints ... 432

Set and Remove Watchpoints ... 432

Debugger Settings ... 432

Configure Debugger Settings ... 432

Debug Aion BRE Applications ... 433

Set Breakpoints and Watchpoints ... 433

Control the Flow of Execution ... 433

View and Modify Data Values ... 434

Use the Call Stack ... 435

Debugging Rule-Based Inference ... 436

Backward Chaining ... 437

Forward Chaining .. 437

Special Considerations for Decision Tables ... 437

Shut Down the Debug Session .. 438

Chapter 19: Run and Build Applications 439

Run Aion BRE Applications ... 439

Run Aion BRE Applications Interpretively .. 439

Run Stand-Alone Applications ... 439

Compile Applications ... 440

Prepare to Build Aion BRE Applications .. 441

Configure Build Settings .. 441

Configure Library Properties .. 442

Build the Application ... 443

Stop the Build ... 443

Contents 17

Use Interface Layers ... 444

Select an Interface Layer ... 445

Deploy the Application ... 446

Appendix A: CA Aion Business Rules Expert with UML Modeling Software 447

Object Types .. 447

Transferred Properties ... 448

Associations, Association Ends, and Pointers ... 449

Associations in UML .. 449

Association Classes .. 450

Map Association Ends to Pointers ... 450

Import and Export UML Models ... 451

Import UML Models .. 452

Merge UML Models with Aion Applications .. 452

Export to UML Models .. 454

CA Component Modeler .. 454

Data Type Mapping .. 455

Modeling _Interfaces ... 456

Standards ... 456

Appendix B: Aion--Acknowledgements 459

Apache Software License, Version 2.0 ... 460

Apache Software License, Version 1.1 ... 464

BusinessObjects Software License .. 467

CA Trusted Open Source License.. 480

HP Java 2 Runtime Environment 1.4.2 .. 488

HP-UX Runtime Environment for the Java 2 Platform, Version 1.4 490

IBM 32-bit Runtime Environment for AIX, Java 2 Technology Edition, Version 1.4 492

IBM Java 2 Runtime Environment 1.3.1 ... 496

IBM zSeries Developer Kit for Linux, Java 2 Technology Edition 501

ICU License ... 505

ImageMagick Studio ... 506

Java 2 Runtime Environment (J2RE), Standard Edition, Version 1.4.x 508

Java Naming and Directory Interface (JNDI), Version 1.2.1 510

Java XML Pack Summer '02 Bundle ... 512

JavaBeans Activation Framework, Version 1.0.2 ... 514

JavaMail, Version 1.3 .. 516

Sun Microsystems, Inc. Java 2 Runtime Environment 1.4.2 518

JUnit 3.8.1 .. 521

OpenSSL 0.9.7c ... 527

Sun Microsystems, Inc. JIMI SDK, Version 2.0 ... 530

18 Product Guide

TPSR P05273_11 .. 532

Werken digital SAXPath 1.0 .. 538

Werken Company Jaxen 1.0 .. 540

Index 543

Chapter 1: Introduction 19

Chapter 1: Introduction

CA Aion BRE provides an integrated development environment that allows

organizations to build intelligent components and applications that can be

flexibly deployed throughout the enterprise. Combining business rules

technology and object-oriented programming, CA Aion BRE allows companies to

build maintainable applications that capture the knowledge and expertise of their

organizations. The term Aion BRE refers to the technology of CA Aion BRE. Aion

BRE applications can be deployed as distributed components across a range of

enterprise architectures and platforms.

This guide describes the CA Aion BRE facilities for prototyping, creating, and

testing knowledge-based applications. Context-sensitive help also provides links

to CA Aion BRE online help for step-by-step instructions for using these facilities.

Note: Unless otherwise indicated, the term Windows refers to any Microsoft

Windows operating system supported by CA Aion BRE, including Microsoft Vista,

Microsoft Windows XP and Microsoft Windows 2003. Please consult the CA Aion

BRE Readme (Operating System Support) for the service levels of each operating

system that are supported.

This section contains the following topics:

Rules and Inferencing (see page 19)

Full Object Orientation (see page 20)

Component-Based Development (see page 21)

Multiple Application Architectures (see page 21)

Graphical User Interface Builder (see page 22)

Visual Editors and the Method Editor (see page 22)

Aion BRE Language (see page 22)

Database Support (see page 23)

Rapid Application Development (see page 23)

Rules and Inferencing

In CA Aion BRE, knowledge is represented by rules. In general, rules are simple,

non-procedural if-then statements, written without consideration of control flow.

Rules test and make assignments to attributes of the business objects that are

the focus of your application. You write rules in method bodies.

Full Object Orientation

20 Product Guide

An inferencing command occurs in a method body. It passes control to the

inference engine, which reasons-draws logical conclusions-about the business

data by processing the rules. CA Aion BRE supports four kinds of

rule-processing:

■ Forward chaining: the engine runs data through all rules to see the

consequences.

■ Backward chaining: starts with a goal, which is an attribute set by one or

more of the rules. The engine only uses rules that lead to conclusions about

the goal attribute.

■ Pattern matching: a simple and powerful way to iterate over the instances of

one or more classes.

■ Truth maintenance: allows “what-if” scenarios to be run, in which you can

tentatively set attribute values, determine their consequences, and then

retract the values.

Rules and Inferencing are discussed in detail in the CA Aion BRE Rules Guide and

CA Aion BRE Rules online help.

Full Object Orientation

Development in CA Aion BRE is completely object-oriented. All aspects of an

application from the user interface to data access are created from the class

libraries shipped with CA Aion BRE. You can use these supplied classes directly,

or you can create new ones by subclassing.

Rules are also treated as objects in CA Aion BRE. This enables rules to benefit

from the protection of data encapsulation and reuse made possible by

inheritance and polymorphism. A single programming paradigm can carry you

throughout the development process.

More information:

Overview of CA Aion BRE Objects (see page 43)

Component-Based Development

Chapter 1: Introduction 21

Component-Based Development

You can partition your Aion BRE application into components. Separating the

application into components for the graphical user interface, database access,

and knowledge base (the rules) can speed up development. A different

developer or team can work on each component.

Component-based development also means you do not have to start from

scratch with each new application. Any Aion BRE component-or an entire

application-can be included in a new application to streamline development time.

You are not limited to using components created in CA Aion BRE. You can plug in

Active-X controls and access their methods from your Aion BRE application. If

you have C or C++ DLLs you want to use, you can access functions exported

from them, too.

Aion BRE applications can also be used by foreign components. You can expose

exported methods by wrapping the Aion BRE component in an interface layer.

You build the component as a COM, Java, C, or C++ object by choosing the

appropriate interface at build-time.

Components are discussed in the following chapters of this guide:

■ Generate and Use C and C++ Components

■ Generate and Use Managed C++ Components

■ Generate and Use Java Components

■ Generate and Use COM Components

Multiple Application Architectures

You can create Aion BRE components for a variety of client-server architectures.

For example, you might place the database access component on one server, the

rules on another, and the graphical user interface on a third. You have your

choice of interfaces to wrap the components: C/C++, Managed C++, Java, and

COM. Furthermore, you can access existing foreign components, using their

exported methods or exposing Aion BRE methods to them. All of these object

components can communicate with Aion BRE components across a LAN, WAN,

IBM MQSeries queues, and the Internet. Under the Web, CA Aion BRE supports

J2EE servlet technology.

Graphical User Interface Builder

22 Product Guide

Graphical User Interface Builder

CA Aion BRE offers state-of-the art facilities to create a graphical user interface

(GUI) for your application. You add and edit controls visually by dragging their

icons onto a window or dialog box and then moving, resizing and otherwise

modifying their properties. Supported controls include rich edit windows,

multi-column list boxes, tree controls, image lists, and tab pages.

More Information:

Create a Graphical User Interface (see page 139)

Visual Editors and the Method Editor

You create an application using various visual editors. Each object type has its

own editor. For example, you modify class properties in the Class Editor and

instance values and properties in the Instance editor. The Window, Menu,

Toolbar and Tab editors let you visually assemble and edit a GUI. Database

access is handled through the Stored Procedure and Query editors. CA Aion BRE

provides a Rule Editor and a Decision Table editor for modifying knowledge

objects.

CA Aion BRE automatically generates code from the visual editors, but you also

can modify Aion BRE code programmatically in the Method Editor. Anything the

visual editors do can be coded manually in the Method Editor. Sometimes you

will use a visual editor and the Method Editor in tandem, as when you right-click

a control in one of the GUI editors and use the Method Editor to input an event

handler for each event you wish to define. The Method Editor displays code in

customizable colors, and visually distinguishes keywords, string literals,

comments, and so forth.

Aion BRE Language

CA Aion BRE has an easy-to-learn object-oriented language for writing methods

(including both procedural logic and non-procedural rules). Procedural logic is

written in this language. CA Aion BRE expresses non-procedural logic through

the use of INFER block constructs.

The Aion BRE language is described in the CA Aion BRE online help.

Database Support

Chapter 1: Introduction 23

Database Support

An Aion BRE application can connect to a database and retrieve data. You define

SQL queries and stored procedures in CA Aion BRE by subclassing the supplied

classes. Each record of the result set is an instance of that subclass.

Aion BRE supports native drivers for Oracle10g, Oracle11g, Sybase ASE 12.5,

Microsoft SQL Server 2005 and 2008, and IBM DB2 for LUW 8.1 and 9.1 and IBM

DB2 for zOS 8.1 and 9.1 as well as an ODBC driver.

Note: To assure that DB2 database access is successful the user must use the

same version of DB2 Client and Server.

Rapid Application Development

The CA Aion BRE development environment features a comprehensive set of

development tools, including a graphical debugger and extensive tracing

facilities. In addition to standard debugger behavior, the Aion BRE Debugger lets

you step through the execution of rules and view the state of any given rule.

Aion BRE applications run in interpreted mode within the integrated

development environment (IDE), providing immediate feedback during the

development process. At any point during the development of a standalone

application, you can run it interpretively, or you can fully build it into an

executable, using a C++ compiler from within Aion.

More Information:

Run and Build Applications (see page 439)

Chapter 2: Installation and Setup and Uninstall 25

Chapter 2: Installation and Setup and

Uninstall

This section contains the following topics:

Installation Prerequisites (see page 25)

Install on Microsoft Windows (see page 26)

Uninstall on Microsoft Windows (see page 30)

Install on Linux/UNIX server (see page 31)

Uninstall Linux/UNIX server (see page 39)

Silent Installation (see page 40)

Installation Prerequisites

Before you begin any of the procedures in this chapter, be sure to do the

following:

■ Review the CA Aion BRE Readme.

This document contains late-breaking product news and information about

installation considerations, system requirements, hardware requirements,

operating systems supported, pre-installation requirements, third-party

software compatibility, known issues and how to contact CA Technical

Support.

■ Privileges required

In order to install CA Aion BRE on Microsoft Windows Vista or Microsoft

Windows 2003, you must log onto Microsoft Windows as a user with

administrator privileges. On UNIX/Linux, you must log on as a user with root

privileges if installing into system directory that is /opt/CA.

■ For the required space that will be used in the Linux/Unix /tmp folder you

should specify 300MB or more.

Install on Microsoft Windows

26 Product Guide

Install on Microsoft Windows

CA Aion BRE release 11.0 is a multiplatform application.

To install CA Aion BRE, follow this steps:

1. Obtain the general multiplatform installers link and go to Windows platform

and find VM directory.

Note:

■ You can change the default install directory.

■ You will see the installation log file, aionbre_install.log, if you copy

DISK1 to your local directory and then install. If you install from the

remote sever the aionbe_install.log will not generate. This is a known

issue that can be found in the CA Aion BRE Readme file.

2. Double click on setup.exe.

The install wizard starts and the InstallAnywhere preparing to install screen

displays.

When the prepare install completes the Introduction screen displays

3. Read the important information on the Introduction screen.

4. Click next.

Install on Microsoft Windows

Chapter 2: Installation and Setup and Uninstall 27

The License Agreement screen displays.

5. Read the entire License Agreement, select I agree, and click Next.

Note: If you do not agree with the terms of the License Agreement, you

must click I do NOT accept and the installation process ends.

The Choose Install Set screen displays.

Select the type of installation. Typical is the Default.

6. If you selected Typical, click Next.

Note: The Typical install will install the following features (ASCII) to the

system

– Aion BRE Dynamic Rule Manager

– Aion BRE Dynamic Rulebase Administrator

– Aion BRE Dynamic Integrated Development System

– Help

Install on Microsoft Windows

28 Product Guide

The Choose Install Folder screen displays.

Note: You can change the default install directory.

7. Click Next to accept the installation path, or click Choose... to select a

different installation directory.

Install on Microsoft Windows

Chapter 2: Installation and Setup and Uninstall 29

The Pre-Installation Summary screen displays.

8. Click Install.

The Installing CA Aion Business Rules Expert screen displays.

The Install Complete screen displays.

9. Click Done.

Custom Installation

In the Custom installation, you can choose the desired features with an option of

Unicode or ASCII (non-Unicode). After you choose Custom install set on the

Choose Install Set panel, click Next. The panel of Choose Install Features will be

displayed. By default, all features are unchecked:

■ Aion BRE Integrated Development System (IDE)

■ Aion BRE Execution System (RUNTIME)

■ Aion Advanced Builder Option (COBSLIB)

■ Aion BRE Dynamic Rule Manager (DRM)

■ Aion BRE Examples

■ Help

Uninstall on Microsoft Windows

30 Product Guide

After you select the feature(s), click Next. The panel of Choose Install Folder will

be displayed. Make a change or take the default location and click Next. The

panel of Choose The Type Of Executables will be displayed. The user can choose

to install Unicode executables or ASCII (non-Unicode) executables. Make a

choice and click Next. In the Pre-Installation Summary panel you have a final

opportunity to review all necessary information about this install. Click on Install

button to start.

Note: The feature DRM will install both Dynamic Rule Manager and Dynamic

Rulebase Administrator.

If you installed ASCII executables of Aion BRE and later decide to switch to

Unicode, you must first uninstall ASCII and then install Unicode executables,

and visa verse.

Uninstall on Microsoft Windows

To uninstall CA Aion BRE on Microsoft Windows, follow these steps:

1. Click Start and go to Settings, Control Panel, Add or Remove Programs.

2. Select CA Aion Business Rules Expert.

3. Click Change/Remove.

The uninstallation wizard removes CA Aion BRE from your system. You have

options of uninstalling entire product or uninstalling features.

Note: You can also uninstall AION BRE using uninstallaionbre.exe from Aion

BRE HOME directory

4. After uninstall you need to reboot your system.

Install on Linux/UNIX server

Chapter 2: Installation and Setup and Uninstall 31

Install on Linux/UNIX server

Console-Mode Installation

Obtain the AionBRE r11 installation program for Linux/Unix platform for

installation.

To start the install CA Aion BRE for Linux/Unix with Console-Mode,

follow these steps:

1. Log in to the target Linux/Unix system with root privileges.

2. Go to the VM directory where you downloaded the installation program.

3. Launch the installation by entering the following command:

If root log in

sh ./setup.bin -i console

If regular user log in with sudo access right

sudo sh ./setup.bin -i console

To complete the Console-Mode installation procedure, follow these

steps:

Note: For each section in the install, enter the number associated with your

choice or by press Enter to accept the default.

1. Introduction prompt, press Enter to continue the installation process.

2. License Agreement prompt, please read the entire agreement and indicate

your acceptance or rejection of its terms.

3. Type "Y" to accept, the installation process will be continued.

4. Type "N" to reject, the installation process will be terminated.

5. Choose Install Set prompt, press Enter (currently only Typical available).

6. Choose Install Folder prompt.

7. If accept default install folder as /opt/CA/AionBRE, press Enter.

8. If instead of default folder with another install folder, please input an

absolute path then press Enter.

9. Pre-Installation Summary prompt, press Enter to continue process.

10. Ready To Install prompt, press Enter to continue process.

11. Installing prompt, it will take a few minutes to complete.

12. Installation Complete prompt, press Enter to exit the installation program.

Install on Linux/UNIX server

32 Product Guide

Graphical-Mode Installation

To run graphical-mode installation, make sure your current login session must

support the Java-based GUI, if the installation detects the current session

doesn't support Java-based GUI, the error will display and installation be

terminated.

To start the install CA Aion BRE for Linux/Unix with Graphical-Mode,

follow these steps:

1. Log in to the target Linux/Unix system with root privileges.

2. Go to the VM directory where you downloaded the installation program

3. Launch the installation by entering the following command

If root log in

sh ./setup.bin

If regular user log in with sudo access right

sudo sh ./setup.bin

To complete the Graphical-Mode installation procedure, follow these

steps.

1. Launching Installation program

Install on Linux/UNIX server

Chapter 2: Installation and Setup and Uninstall 33

2. Introduction displays, read the important information on the Introduction

screen.

Install on Linux/UNIX server

34 Product Guide

3. The License Agreement screen displays.

Read the entire License Agreement, select I agree, and click Next

Note: If you do NOT accept the terms of License Agreement, the installation

process will be terminated.

Install on Linux/UNIX server

Chapter 2: Installation and Setup and Uninstall 35

4. The Choose Install Set displays. Choose "Typical" and click Next.

Note: There is no different between the Typical and Custom.

Install on Linux/UNIX server

36 Product Guide

5. The Choose Install Folder displays.

You may click Choose… to select your specific install folder other than default

install folder /opt/CA/AionBRE

Install on Linux/UNIX server

Chapter 2: Installation and Setup and Uninstall 37

6. The Pre-Installation Summary screen displays, click Install.

Install on Linux/UNIX server

38 Product Guide

7. Installing progress displays.

Uninstall Linux/UNIX server

Chapter 2: Installation and Setup and Uninstall 39

8. The Install Complete screen displays, click Done to exit installation program.

Uninstall Linux/UNIX server

If your session supports a graphical user interface, the uninstall program will

start in graphical mode, otherwise, it will start in console mode.

To uninstall in the console mode, follow these steps:

1. Go to $AION_HOME/Uninstall_AionBRE directory.

$AION_HOME represents the directory in which you installed Aion BRE

2. Enter ./Uninstall_CA_Aion_Business_Rules_Expert at prompt

Console-Mode

 Uninstalling… is displayed.

 It'll take less than 30 second to complete uninstall Aion BRE

Silent Installation

40 Product Guide

To uninstall in Graphical-Mode, follow this step:

1. Follow the uninstallation wizard to complete uninstall Aion BRE

Important! The uninstall process will not delete files that have changed since

the install. This includes any applications that have been rebuilt from source.

Directories that contain files that have changed will not be deleted.

Silent Installation

Silent mode which enables an installer to run without any user interaction, is

fully supported on Windows and all UNIX platforms. Silent Installation may be

down with default setting defined in the installer or with a respond file.

To Silent Installation with default settings defined in the installer,

follow these steps:

1. The installer performs the Typical type install and install the product to the

directory \Program Files\CA\AionBRE.

For Windows, issue the command:

setup.exe -i silent

For Unix/Linux, issue the command:

sh ./setup.bin -i silent

To Silent Installation with a response file, follow these steps:

1. The installer retrieves the values for various InstallAnywhere variables used

to control the install from the response file. The response file can be named

liberally. The example of the typical content of the response file follows:

For Windows:

INSTALLER_UI=silent

USER_INSTALL_DIR=C:\\Program Files\\CA\\AionBRE

For Unix/Linux:

INSTALLER_UI=silent

USER_INSTALL_DIR=/opt/CA/AionBRE

Silent Installation

Chapter 2: Installation and Setup and Uninstall 41

2. To do silent install with response file, type the following command with the

direct or relative path to the properties file:

For Windows, issue the command

setup.exe -f myresponse.properties

or

setup.exe -f C:\mypaths\myresponse.properties

For Unix/Linux, issue the command

sh ./setup.bin -f myresponse.properties

or

sh ./setup.bin -f /home/installer.properties

Note: The installer generates its own properties file installer.properties in

both Graphical-Mode and Silent mode installs. The better practice is to make

your own properties file with different name.

Chapter 3: Overview of CA Aion BRE Objects 43

Chapter 3: Overview of CA Aion BRE

Objects

This chapter contains a high level overview of Aion BRE objects.

CA Aion BRE is a fully object-oriented development environment. A single class

hierarchy provides all components of an Aion BRE application knowledge bases,

user interfaces, and database access. When creating an application, it is typically

convenient to work with class libraries classes grouped together because of the

functionality they provide. Libraries streamline application development and

permit the efficient re-use of code.

This section contains the following topics:

Applications (see page 43)

Object Orientation (see page 47)

Anatomy of a Class (see page 63)

Dynamic versus Static Instances (see page 70)

Implement Interfaces (see page 72)

Applications

An Aion BRE application is object-oriented and consists of the following

elements:

■ Classes

■ Instances of classes

■ Methods and attributes that make up classes

■ Constants

Aion BRE-supplied applications (such as SysLib) are called system libraries.

Applications developed using Aion BRE are called custom libraries. An Aion

BRE application can include system libraries and custom libraries.

Every class in an Aion BRE application ultimately derives from the _system class

defined in the Aion-supplied (and automatically included) SysLib library, which

means Aion BRE application is a single class hierarchy. When creating an

application, however, this view of the class hierarchy is of little use. A

programmer needs to know which classes work together to produce the desired

functionality.

Note: If you are unclear about object-oriented terms like class and instance,

skip forward to the Overview of Object Orientation section.

Applications

44 Product Guide

Libraries Are Functional Units

In order to provide a more helpful view of classes, CA Aion BRE uses class

libraries-collections of classes grouped by the functionality they provide. The

classes of a library need not be related by inheritance or reside on the same

branch of the class hierarchy.

Consider WinLib, an Aion-supplied library with five classes at the top level,

including CommonDialog and _Image. The fact that they are grouped on the

same level does not imply that they are sibling classes.

The following illustration shows WinLib classes:

For instance, the base class of CommonDialog is _System, while the base class of

_Image is _Resource. The criterion for inclusion in WinLib is whether a class

enables the creation and display of standard windows, dialog boxes, and

controls, not where it falls in the single class hierarchy.

Of course, each top-level class in WinLib has several levels of subclasses that are

also part of WinLib. Consequently, the classes in WinLib form several trees, and

within a tree the classes are related by inheritance.

An Aion BRE developer does not need to know the distant ancestry of the class

being used. Knowing the base class one or two generations above your class is

usually adequate. Within a library, the whole class hierarchy is not always

visible. Instead the developer works from an alphabetical list of classes.

Included Libraries

To access classes and instances in a System Library or custom library, you must

include the library in your application. After you do so, you can view and subclass

the included library's classes.

An application consists of its own library (the application, itself) and any included

libraries (SysLib, at a minimum). If an included library, itself, contains an

included library, including the outer library means you automatically get the

nested library, too. For example, the system library IOWLib contains another

system library named IOLib. If you include IOWLib, your application

automatically includes IOLib as well.

Applications

Chapter 3: Overview of CA Aion BRE Objects 45

Aion system libraries provide support for a wide variety of functionalities,

including user interfaces, database connections, data access, report creation,

and generation of object communication layers.

In addition to Aion BRE system libraries, you can include any custom Aion BRE

application as well. This permits re-use of existing Aion BRE code.

Stand-Alone Aion BRE Applications

A stand-alone Aion BRE application is one that can be run (as compiled or

interpretively) without having to be called or included. A stand-alone application

contains a class method named Start in a class that has the Entry Class property

checked. Typically (although not necessarily), this entry class is called Main. For

an application to be stand-alone, it must have only one entry class and Start

method, and the entry class must reside in the application itself, not an included

library or application.

Note: When you include a stand-alone application in another Aion BRE

application, CA Aion BRE ignores the Start method in the included application.

Once an application is started, all subsequent execution is controlled by message

passing between classes and instances.

Benefits of Included Libraries

The main reason for creating and including modular application components is to

partition a project into logically-related, manageable units. Two primary benefits

of partitioning an application are:

■ Different developers or teams of developers can work on different libraries

simultaneously without hindering each other's work

■ You can reuse a library in other applications.

You can facilitate team development by dividing an application into libraries and

placing it under source control. A developer modifies a library by checking out a

copy to a local drive. When changes have been successfully incorporated and

tested, the developer checks the library back in. You can more easily track

modifications because they are modular. Each set of changes affects only one

version of one library.

Applications

46 Product Guide

Partitioning an application into libraries facilitates code reuse as well. For

example, you might divide an application's main business processing into a

collection of applications. You could reuse the well-designed logic in several

applications, while creating separate GUIs for each application. Included libraries

promote consistency and economy in the development process.

You can also employ code re-use to promote a common look and feel for all

applications across an enterprise. Simply isolate your specialized GUI classes in

a custom library of GUI elements.

Library Boundaries

A base class can belong to one library while its subclass belongs to another.

Thus, an included library has boundaries, both upper and lower, where it is

contiguous with other libraries. Library boundaries dictate how you edit a library

as well as how you access its classes and instances.

Edit Libraries Across a Boundary

You cannot edit an included library directly from an application. The application

in which it is included has read-only access to the library's classes and instances.

If you wish to edit classes of an included library, you have two choices:

■ Open the library from within the IDE. Aion BRE closes the application you

were working on and opens the library for editing.

■ Subclass the class you wish to use. The subclass is part of your application

library and you can modify it as needed. This process does not modify the

included library.

Create Instances Across a Boundary

Aion BRE allows you to create instances from a class defined in another library.

For example, the Connection class is defined in the DataLib. When you establish

a database connection for a project, a static instance is automatically created in

your application library. Similarly, dynamic instances of simple GUI controls, like

check boxes and radio buttons, can arise directly from the WinLib classes without

subclassing.

For most purposes, however, this approach is too limiting. A class someone else

wrote rarely has exactly the behavior and data structure you desire.

Object Orientation

Chapter 3: Overview of CA Aion BRE Objects 47

Subclass Across a Boundary

This is a technique you will use often, as it provides great flexibility. Some

classes you must subclass before using them. An example is any container class

in WinLib, such as the DialogBox class, StandardWindow class, or MenuTitle

class.

In other situations, you can use a class directly by instantiating it in your

application, but you are better off subclassing first. For example, it is best to

subclass the CheckBox or RadioButton class before using either one in your

application.

Subclassing not only allows you to specialize a class, but to create a custom

library as well. In the example mentioned previously, you can create a custom

library of your company's GUI classes to standardize the look and feel of

applications without having to re-code. This approach, however, requires that

you subclass all classes that are to be part of the custom library.

Object Orientation

Object orientation is a powerful conceptual framework for modeling relationships

between entities. Applicable to diverse domains, it has become one of the central

paradigms of software development. Object orientation can model the business

data in a program, and it can model relationships between modules of code as

well.

Since object-oriented theory and practice is such a vast field, this section seeks

only to outline object-oriented terms and concepts used in CA Aion BRE. For

further information on object orientation, you can find many fine books in the

computer section of your bookstore.

Basic Object-Oriented Terms

Objects model things in the world, such as companies, employees, animals, cars,

bank accounts, events, and even programming code. An object may be

understood as an individual entity that encapsulates a specific set of

data-creating an interior where data may be hidden from direct outside

manipulation. An object interacts with the outside world through certain

behaviors that it advertises publicly. Among these behaviors is manipulation of

the data encapsulated in it.

Other objects may request these behaviors by passing the object a message.

Since the outside world knows only the messages to which an object responds,

behaviors of an object can be encapsulated too. The details of how the object

handles the message and produces the behavior may be hidden from outside

manipulation.

Object Orientation

48 Product Guide

A class is a like a factory or template for producing objects. A class is composed

of a set of behaviors and a set of molds for data. You create one or more objects

from a class, using the class as a pattern. Each object has the same behaviors as

the class and fills in the molds with its own data values.

In CA Aion BRE, the behaviors of a class or instance are called methods. The data

holders are known as attributes. Together the methods and attributes of a class

constitute its members. To avoid confusion with the many generic meanings of

the word objects, Aion refers to them as instances. Creating an instance of a

class is known as instantiating the class.

Apply the Object-Oriented Paradigm

Of the fields to which object theory can be applied, the two that concern

developers most are analysis of business data and programming itself.

Apply to Business Data

The previous object-oriented paradigm described can be applied readily to

business data. For instance, a Customer class may be instantiated once for each

individual customer of a company. An Invoice class yields an individual instance

for each purchase. The Customer instances and the Invoice instances

encapsulate attributes. They execute methods when sent agreed-upon

messages.

Apply to Code

The simplest way to conceive of object-oriented programming is to see attributes

as variables (or better yet, as data structures made up of several variables of

diverse data types). Methods are functions. Sending a message is just like calling

a function.

Object orientation adds the notion of a class. A class combines a certain type of

data structure with particular functions. Each instance is a individual data

structure holding actual data values. A class or instance can represent software

entities such as windows, controls, queries, and database connections.

Object Orientation

Chapter 3: Overview of CA Aion BRE Objects 49

The data encapsulated in an instance has a special relationship with its methods.

In fact, you can protect an attribute from being accessed by functions that are

not part of the class. Encapsulation brings much greater data protection than

normal structured programming can provide.

Encapsulation includes a class's functions. A calling function defined outside the

class need only know the name and parameters of the called function.

Implementation details, such as which attributes are used and which other

functions called, can be hidden. You can prevent the caller from accessing that

data or calling those functions by marking the attributes and methods as private.

The attributes and methods that you make accessible to functions outside the

class constitute its public interface.

The first essential feature of object orientation, encapsulation, can benefit

application programming from GUI design to database access to business logic.

Inheritance

The second essential characteristic of object orientation is inheritance, which

permits extensive reuse of code within a program. Inheritance defines a

relationship between classes in which a derived class inherits the methods and

attributes of a base class. This can be described as an “is-a” relationship; it is the

relationship people normally have in mind when they think hierarchically.

For example, a pediatrician is a type of medical doctor, which is a type of

professional. The Pediatrician class inherits from the Medical Doctor class. The

Medical Doctor class has attributes such as “medical degree” and methods such

as “suture a wound” and “take a temperature.” To these, the Pediatrician class

adds such attributes as “board certification” and methods such as “administering

childhood immunizations.”

As you can see, the derived class (also known as a subclass) inherits the

members of its base class. The derived class can also add new members to those

it inherits.

It enjoys another ability as well-that of modifying an inherited member, while

preserving the member name. This process is known as specialization. The

implementation of the class changes, but the public interface remains the same.

Returning to our example: a Pediatrician inherits “take a temperature” from

Medical Doctor, but may implement it in a specialized way for his patients.

Due to inheritance, modifications you make in a class can be propagated down

the class hierarchy, greatly simplifying code maintenance. Inheritance also

means that defining new classes is a matter of adding new members to a

subclass and specializing inherited members.

Object Orientation

50 Product Guide

Polymorphism

The third essential characteristic of object orientation is polymorphism, a word

derived from the Greek for many and formed. Polymorphism is a little obscure,

but powerful, making possible full support of specialization. In brief, it enables

your code to call a method without indicating which instance or class the method

belongs to.

Normally object-oriented programming requires that you specify the particular

instance to be manipulated by the called method, using notation that looks like

this:

InstanceName.MethodName

This is known as a fully qualified name.

Call Methods of the Same Class

There are occasions, though, in which you would not specify an instance name.

For example, when you call a method, it may perform tasks by calling other

methods of the same class. You would not want those other calls to specify an

instance, since all instances of a class should be able to use the same logic.

Unqualified method calls work fine within a class-until a plain inherited method

calls a specialized one. In that case, you risk getting the original method (defined

in the base class), instead of the specialized method (defined in the current

class) that you actually want.

The principle of polymorphism guarantees that you get the correct method when

such calls are made. It does this by introducing the concept of the current

instance. When an unqualified call is made, a pointer to the current instance is

implicitly passed to the called method. As an object-oriented language, Aion

takes care of all this for you.

Pass an Instance as an Argument

Another important example of polymorphism occurs when you pass an instance

(or pointer to an instance) as an argument to a method. The data type of the

argument specifies a class. At runtime the actual instance may be of the

specified class. But polymorphism stipulates that the instance may also be of any

descendant class of the specified class! As a fully object-oriented language, CA

Aion BRE correctly resolves qualified calls within the method body according to

the class of the actual instance passed at runtime.

Object Orientation

Chapter 3: Overview of CA Aion BRE Objects 51

Associations

As powerful as Encapsulation, Inheritance, and Polymorphism are in supporting

object-oriented programming (OOP), they are not sufficient to model real world

objects, which is the ultimate goal of OOP. Objects exist in a great variety of

relationships (for example, mother-of, employee-of, more-expensive-than, and

so on). These relationships are called associations and they come in an infinite

variety and are of varying complexity. Associations are said to have multiplicity,

or cardinality, which designates how many of one element can exist in a single

occurrence of the association. For example, the association of Company to

Employee is said to be a one-to-many association: Each Company can have

many Employees. On the other hand, the association of Employee to Company is

typically only one-to-one, because an employee can (typically) be employed by

only one company.

When programming in Aion, the developer is free to create as many associations

between classes as are necessary to model the solution to the problem. An

association is (usually) created by defining in one of the associated classes a

pointer (for 1-to-1 associations) or a list of pointers (for 1-to-many associations)

to instances of the other associated class. For example, to define the Employs

relationship between the classes Company and Employee, an Attribute or

variable would be defined in the class Company of the type list of pointers to

Employee. Similarly, the programmer may wish to define the association

Employed-By in which case the class Employee would have Attribute or variable

of type pointer to Company.

Defining an association between classes means that instance of one class can

access the public methods and attributes of instances of the associated class.

Where pAssocClass is an Attribute or variable defined as a pointer to AssocClass,

the notation by which a class can access the GetName() method of an instance

of AssocClass is:

pAssocClass.GetName().

Note: It is the responsibility of the Aion programmer to create and destruct the

relevant associated instances. In an ordinary association, instances are not

automatically created or destroyed (compare this situation with the functionality

provided by Class Containment). Forgetting to destruct a created instance can

cause stranded memory (a chunk of garbage memory that is inaccessible).

Association Classes

Besides the strategy of defining pointers between associated instances, CA Aion

BRE provides another way of constructing associations. An Aion-supplied class

called _Association can be used to define an association as a thing. _Associations

are used when the association being modeled has attributes in its own right that

the system needs. For example, the Marriage association (between spouses)

typical has such properties as Date and Place. These properties are not easily

handled if the instances just have Spouse-of pointers pointing to each other.

Object Orientation

52 Product Guide

Association Classes have the additional advantage of automatically supporting

dissolution of the relationship. When associations are implemented as pointers

and the instance pointed-to is deleted, there should always a separate operation

of NULLing the pointer attribute. Failure to NULL the pointer leaves an invalid

pointer value. On the hand, if the association is implemented with an instance of

a specialized _Association, the _Association instance is automatically deleted

when one of its association ends is deleted. There is no more need to worry about

cleaning up pointers!

For more information on Association classes, see the CA Aion BRE online help

following sections:

■ Association Editor

■ Using Associations

■ Association Class in the “SysLib”

Association classes are illustrated in the Associate and Exasscintf examples

provided with Aion.

Class Containment

A common association between objects is the has-a or part-of relationship. This

association is so common that it is often represented by a special symbol in OO

models. For example, the Unified Modeling Language (UML), which is the

industry standard for OO modeling, distinguishes two types of part-of

relationships called aggregation and composition, which are represented by an

open and closed diamond respectively. Aion offers support for a kind of part-of

relationship called Class Containment. Class Containment is, in fact, a more

constrained, that is stronger, form of the part-of relationship than what UML calls

composition.

In the UML, a composite relationship is defined as:

■ The part may be part of only one composite at a time.

■ The composite has responsibility for the creation and destruction of its parts.

Object Orientation

Chapter 3: Overview of CA Aion BRE Objects 53

A typical part-of relationship involving composition is the relationship between a

school and its departments. This relationship is different from a department's

relationship to its members (instructors), which is a relationship of aggregation.

A school has responsibility for creating and destructing its departments and a

school's departments can belong to only that school. On the other hand,

instructors are neither created nor destructed by their departments (that is, their

lifetimes are not the responsibility of their departments), and some schools allow

their instructors to be members of different departments at the same time. In

the UML, composition is modeled as (where 1 represents the multiplicity of the

Part-to-Composite relationship, that is, 1 to 1, and the * (asterisk) symbol

represents the multiplicity of the Composite-to-Part relationship, that is., 1 to

0-to-many):

Object Orientation

54 Product Guide

Aion Class Containment goes beyond composition by adding two constraints:

■ There can be only one part per unique compositional relationship, that is, the

multiplicity of the relationship must always be equal to 1 on the part end of

the association. Existence of the part is totally coincident with that the

composite, that is, the part is created and destroyed at the same time as the

composite is created and destroyed. That is, the lifetime of the composite

and the part exactly coincide.

These additional constraints strengthen the semantics of the Class Containment

relationship beyond that of composition. Class Containment may be modeled by

means of specific qualifiers on the Part end of the association:

Attribute Level Class Containment

CA Aion BRE supports Class Containment at two levels. The first level is the

Attribute level. Class Containment means that the container will have special

kind attribute whose value is an instance of the contained class. The Aion

developer specifies Class Containment at this level by declaring an Attribute's

Type to be the contained class in the Attribute Editor. That is, the Type

specification for the Attribute is just the name of the contained class rather than

pointer to the contained class. This declaration means that an instance of the

contained class will be created automatically whenever an instance of the

container is created and similarly for its destruction. In more technical terms,

during the execution of the constructor of a container instance, the constructor

of the contained class is invoked, and similarly regarding the container's

destructor.

Object Orientation

Chapter 3: Overview of CA Aion BRE Objects 55

Reference to the (public) methods and attributes of the contained class is

accomplished through the Attribute of the container. For example, where an

Attribute of the container is ContainerAttribute, the value of an attribute of the

contained part may be set by invoking its SetPartAttribute() method as follows:

ContainerAttribute.SetPartAttribute(value)

Notice that the same syntax is used as if the ContainerAttribute had been

declared a pointer to the contained class. Indeed, under the covers, Aion is

maintaining a pointer to the contained instance. What Class Containment

provides over a pointer is powerful, automatic existence/lifetime control.

Class Containment is especially appropriate when constructing a representation

of an object, for example, a form such as an application for a loan, that may have

subparts, such as an Address part or Financial history part. Often these subparts

may require methods of their own in order to specify functionality that is

appropriate only for them. Class Containment provides a convenient means of

allocating these methods to different objects and thereby not cluttering the main

object with many specific methods.

CA Aion BRE employs Class Containment for constructing GUI objects such as

Dialog Boxes. Dialog boxes typically contain other GUI widgets such as check

boxes, pushbuttons, and text windows. These widgets are defined as instances

of GUI classes. When a specific pushbutton is placed on a Dialog Box, a special

attribute is created for that particular pushbutton of type Pushbutton. Thus,

when the Dialog Box itself is created and destructed, all of the contained objects

are created and destructed at the same time.

Class Containment for Local Variables

CA Aion BRE extends Class Containment to a second level: local variable

declarations. It is possible to declare a local variable, for example., mylvar, in a

method to be of a type defined by a Class

Example:

var mylvar is SomeClass

rather than declaring mylvar to be a pointer to SomeClass (which is typically

abbreviated &SomeClass). The advantage of using Class Containment for local

variable declarations is that an instance of SomeClass is not only automatically

created when the method begins processing (which saves an explicit Create()

step) but is automatically destructed when the method finishes. Automatic

control over destruction avoids the problem of accidentally leaving memory

stranded at the conclusion of method when deleting the instance might easily be

forgotten. When a method finishes, the local variable goes away. But an instance

explicitly created by invoking a class's Create() method will remain in memory

as garbage unless explicitly deleted with a corresponding Delete() invocation.

Using Class Containment for local variable declarations alleviates this concern.

Object Orientation

56 Product Guide

Rules for Assigning Values

As mentioned previously, the same syntax is involved when accessing the

methods or attributes of an instance via Class Containment or a pointer.

However, there is a difference between these two modes of reference. Consider

the following two declarations:

Attribute or variable: HomeAddress is Address

Attribute or variable: pHomeAddress is pointer to Address

Where Street is an attribute of Address, legal assignments are:

HomeAddress.Street = “King Street”

pHomeAddress.Street = “King Street”

However, pointer values may be assigned only to Attributes or variables

explicitly defined as a pointer.

Example:

The following are legal assignments:

pHomeAddress = Address.Create()

pHomeAddress = NULL

pHomeAddress = pOtherAddress

// where pOtherAddress is of type pointer to Address,

these same assignments are illegal for Class Containment. The following

assignment will cause an error message in Aion.

HomeAddress = pOtherAddress

This type of assignment was syntactically permitted in earlier versions of Aion,

but it is easy to see why it is an error. The instance to which HomeAddress is

pointing would have been changed. This would seem to be permissible because

“under the covers” HomeAddress is just a pointer. However, what instance will

CA Aion BRE now destruct? It will not be the instance that was created in the

original declaration, because reference to that instance has been lost. The

memory allocated to the original instance will be stranded!

Note: Attributes and variables defined with Class Containment can never have

the value NULL. For obvious reasons, a Delete() message cannot be sent to a

contained instance. Doing so produces a runtime error.

Object Orientation

Chapter 3: Overview of CA Aion BRE Objects 57

Attached Objects

Besides supporting standard associations, Association Classes, and Class

Containment (a specialized association), CA Aion BRE also supports a special

relationship called Attachment. The _Object class makes available the Attach()

instance method:

Attach(pat is attributePointer, pcl is classpointer to _System = NULL)

An object's Attach() method can be invoked with either a pointer to an Attribute

or a classpointer. The object is then “attached to” the attribute or class. Aion

provides special functionality for attached objects.

One very common use of Attachment is to attach GUI controls to appropriate

value holders. For example, the following statement attaches NameBox (for

example, a Text Window) to a value holder (Attribute) identified in the input

argument:

NameBox.Attach(->valueholder)

The value of the NameBox control is stored in the value holder Attribute to which

NameBox is attached. CA Aion BRE automatically retrieves the value contained in

value holder for display in the NameBox when the GUI control is created on the

screen. Furthermore, the Assign() method can be used to automatically transfer

any data entered into that control on the screen to the value holder to which it is

attached.

This use of Attachment is illustrated in the Attach example that is provided with

CA Aion BRE.

Another, more advanced use of Attachment supports the metaprogramming

functionality of CA Aion BRE. For example, an attached object receives “When”

events, such as WhenModified or WhenDeleted, for the class to which it is

attached. In other words, attached objects can monitor a class for specific

activity to the instances of that class. Through Attached Objects, Aion provides

an internal and simple means of implementing a form of the famous Observer

pattern (see Erich Gamma, et al., Design Patterns: Elements of Reusable

Object-Oriented Software. Reading, MA: Addison-Wesley Longman, 1995).

The opposite of the Attach() method is the Detach() method, which detaches an

object from any attribute or class to which it is attached.

More Information:

Aion _Object Event Methods (see page 58)

Object Orientation

58 Product Guide

Aion _Object Event Methods

Event methods are methods that CA Aion BRE automatically invokes when

specific types of events occur. The names of these methods follow the form

“WheneventType”. Event methods are used throughout CA Aion BRE, especially,

in the GUI environment (WinLib), but they are also used to simplify data

manipulation (see When… methods for the Data and Query classes). This section

addresses the event methods provided by _Object. These methods are:

■ WhenCreated

■ WhenDeleted

■ WhenFlushed

■ WhenModified

■ WhenSoftDeleted

■ WhenSourced

With the exception of WhenSourced, these methods require attached objects

through which they are called. For more information on the WhenSourced

method, see the section Using the WhenSourced Event Method in the CA Aion

BRE Rules Guide.

To implement these methods, define an Observer class (subclass of _Object) on

which you provide specialized implementations of whichever event method you

wish to utilize. Before creating the first instance of the class that is to be

monitored, make sure you create an instance of the Observer Class, and attach

it to the class being monitored:

var pO is &Observer

pO = Observer.Create()

pO.Attach(NULL, ClassName)

where ClassName represents the class to be monitored. The Observer class

implements specialized versions of the event methods.

Note: An instance may be attached to its own class so that it can receive event

methods. In other words, events methods may be directly implemented on a

class when that class is to be monitored by its own instances. Each newly

created instance of the class must be attached to the class. However, this

approach has limited applicability. For example, it does not support automatic

invocations of WhenCreated() and should not be used to support WhenFlushed(

).

The following table summarizes when these event methods are invoked.

Event Method When Invoked

WhenCreated() When a new instance of the class is created

Object Orientation

Chapter 3: Overview of CA Aion BRE Objects 59

Event Method When Invoked

(immediately after invocation of the class's own Create

method).

Note: The effect of WhenCreated() can also be

achieved by specializing the Create() method.

WhenDeleted() When a new instance of the class is deleted

(immediately after invocation of the class's own Delete

method).

Note: The effect of WhenDeleted() can also be

achieved by specializing the Delete() method.

WhenFlushed() Before instances of a class are flushed, that is., before

the Delete() methods of the instances that to be flushed

are invoked. WhenFlushed() is invoked only once per

invocation of ClassName.Flush().

WhenModified() After any attribute of the class is modified. The input

parameter specifies the attribute that was modified.

WhenSoftDeleted() Before a data instance that was loaded from a database

is to be deleted. The input parameter specifies what

individual is about to be deleted.

For more information on these event methods, consult the CA Aion BRE online

help.

Note: In the list of specializable methods for classes derived from _Object, you

will also see an event method WhenAttributeModified(). This is a public class

method of _System and is to be called only by CA Aion BRE. You should not use

this method yourself.

Constraints

CA Aion BRE provides a unique object-oriented approach to defining constraints

on attributes. Constraints prevent attributes from being assigned values that are

inconsistent with the constraint specification. In CA Aion BRE constraints are

defined as data types that can be assigned to attributes. For example, a

constraint IntGreaterThanZero could be defined as a data type specifying an

integer greater than zero (0). To apply this constraint to an attribute (for

example, Age), the programmer declares the attribute to be of type

IntGreaterThanZero.

Object Orientation

60 Product Guide

Constraint checking is provided for the following types:

■ Integer

■ Real

■ Boolean

■ String

■ Lists and Arrays of the preceding types

To implement constraints, SysLib provides the following types that are subtypes

of Integer, Real, Boolean, and String respectively:

■ ConstrainedInteger

■ ConstrainedReal

■ ConstrainedBoolean

■ ConstrainedString

Constrained lists or arrays can be defined to be of type List (or Array) of

Constraineddatatype, where the expression Constraineddatatype refers to any

of these four new data types.

Structure of Constrained Data Types

A constrained data type provides four class methods and one class attribute. For

example, the ConstrainedInteger data type has the following structure:

Object Orientation

Chapter 3: Overview of CA Aion BRE Objects 61

The method IsWithinConstraints() is not used frequently by Aion programmers.

CA Aion BRE automatically performs testing for compliance with constraints at

both edit time and runtime.

There are three ways to retrieve the constraint itself from a

Constraineddatatype. The GetConstraints() method retrieves the constraint

expression as a complete string. GetValueList() returns the constraint values as

a list of values. (However, if the constraint is negative, “is not from”,

GetValueList() returns NULL.) Finally, FormatConstraints() returns the

constraint expression as a list of strings. These methods offer the Aion

programmer a broad set of options for processing constraints, for example,

including them in special application output.

Note: These methods are also available through the AttributePointer class in

SysLib. For more information of the corresponding methods in SysLib, see

AttributePointer Class in the CA Aion BRE online help.

The Constraints attribute is a special attribute. It holds the constraint to be

applied to attributes of this type. Because it is used to specify a functional feature

of the Aion language, the following restrictions are imposed on this attribute

■ It has to be of type string.

■ Its access type must be protected.

■ This attribute cannot be assigned except by edit time changes to its initial

value field.

These constrained data types cannot themselves be used to specify a constraint.

They must be subtyped before they can be used to specify a constraint on an

attribute.

More Information:

Operation of Constraints (see page 115)

Specify a Constraint (see page 113)

Access Types

You assign an access type property to methods, attributes and constants. Access

type determines which methods in the application can access them. Aion BRE

provides three access types, allowing different levels of protection for each

element.

Access Type Element can be accessed

Private Only by a method belonging to the same class.

Object Orientation

62 Product Guide

Access Type Element can be accessed

Protected By a method belonging to the same class or to any

descendant class.

Public By any method or function in the application.

The default access type is Protected. To change access type to Public or Private,

select the check box on the Properties tab page for the attributes or methods.

Accessor Methods

An alternative to giving attributes a Public or Protected access type, is to make

them Private and then create accessor methods. An accessor method is a public

method that accesses private attributes in the same class as itself. There are two

accessor methods: one that gets the current value, and one that sets the

attribute to a new value.

Using accessor methods makes it harder for you to accidentally change an

attribute.

Comparing Terms

If you are familiar with other kinds of programming, you may be wondering how

CA Aion BRE fits in with what you already know. The following table maps the

Aion object-oriented terms to the closest term in database programming, the C

language, and the C++ language. Aion and C++ terminology is parallel, since

they refer to the same concepts.

Aion

BRE

Term

Database term C term C++ term Java term

Class Table definition Struct Class Class

Attribute Field or column Field of Struct Data member Field

Instance Record or row Variable of type

Struct

Object Object

Method Stored Procedure Function Member

function

Method

Class

attribute

Non-repeating

attribute

Static global

variable

Static

member

variable

Static field

Constant Constant #define #define;

Constant

Static final

field

Anatomy of a Class

Chapter 3: Overview of CA Aion BRE Objects 63

Anatomy of a Class

A class consists of attributes and methods. These are discussed on the following

pages.

Attributes

An attribute is a value holder that can store a single value or a list of values,

such as: 17, “George Washington”, or 3,5,7,9. Like any value holder, an

attribute has a data type and can only store values of that type. When you define

an attribute in an application, you can specify its initial value. You access an

attribute by its name.

Attribute Data Types

You specify a data type when you create an attribute. Aion provides a number of

predefined data types, such as string and integer. To indicate that the attribute

holds a list of values, use the language construct list of (list of string or list of

integer). The system-supplied library called SysLib contains the definitions of the

data types.

Data Type Description Example

Binary A binary value can be any arbitrary

sequence up to 2 gigabytes. Binary

values can be used to build

complex structures to pass to

external methods.

bitmap image

sound

video

complex structure

Boolean Holds a value of either true (1) or

false (0). The results of

comparisons (for example, “If A >

B”) are Boolean values.

TRUE

FALSE

Classname The name of the class whose

instances can be values of the

attribute.

Constrained

Data Type

The name of a (subtype of a)

constrained data type that

specifies restrictions on the range

of values of the attribute.

Date Holds any date, including year,

month, and day. Use a date data

type to create a formatted

representation of the date value.

Date values can be entered in

June 21, 1998

06/21/1998

21/06/1998

1998/06/21

21-June-1998

Anatomy of a Class

64 Product Guide

Data Type Description Example

various formats, as specified by

the application.

Integer Holds a four-byte integer value

between -2,147,483,648 and

+2,147,483,648. Typically, an

integer is represented as a decimal

(base 10), octal (base 8), or

hexadecimal (base 16) number

that represents a value.

1205

+33691

-7898

Real Holds an eight-byte floating-point

value between +1.0E+306.

Financial data typically requires a

real data type.

98.6

-000.02

String Holds up to 65,512 characters,

inclusive. Text data requires a

string data type. String values

must be surround by quotation

marks. To specify quotation marks

within a string, use two sets of

quotation marks.

“yellow”

“Jane Doe”

“(800) 555-1212”

“Error: ““Not found”””

Time Holds any time value, to the

nearest second, for dates after

January 1, 1970. Includes the

year, month, day, hour, minute,

and second. Time values can be

entered in various formats, as

specified by the application.

June 21, 1998 4:15pm

06/21/1998 4:15pm

21/06/1998 16:15

1998/06/21 16:15

21-Jun-1998 4:15pm

Pointer to

classname

The name of the class whose

instances can be referenced by the

value of the attribute.

Classpointer to

classname

Holds a pointer to the named class

or any class from which that class

derives (directly or indirectly). In

this way, classpointer allows for an

extra level of indirection beyond

using a simple pointer to the

named class.

Attributepointer Holds a pointer to an instance

attribute or a class attribute that is

not a constant. Attributepointers

allow you to refer to another

attribute dynamically.

Anatomy of a Class

Chapter 3: Overview of CA Aion BRE Objects 65

Most of the preceding data types are like those in other programming languages.

However, further definition is required in the case of the following four data

types, classname, constrained data type, pointer to classname, classpointer to

classname and attributepointer.

Classname versus Pointer to Classname

If the attribute is of type classname, the relationship between the classes is

containment. If the attribute is of type pointer to classname, the relationship is

association.

For containment, consider a dialog box with a radio button. The dialog box class

has an attribute of type RadioButton. Look at the dialog box class in the Project

Workspace and find the attribute. Its name may have the letters rb in it,

although this notation is not required. You can recognize an attached instance

because the attribute displays an empty value and the Type column says:

RadioButton. Even though you cannot see a pointer name, a pointer to the

attached runtime instance does indeed exist. CA Aion BRE uses it to make

containment work properly.

For association, consider the Department and Employee classes mentioned

earlier. Each Employee instance has an attribute of type pointer to Department.

They all point to the same instance of Department. Aion does not automatically

create or destroy the Department instance named Marketing every time an

Employee instance is created or destroyed.

Remember that for attributes of type Classname, Aion BRE automatically takes

care of creating and destroying the instance. For attributes of type pointer to

Classname you must create the associated instance, create a pointer to it, and

destroy the instance when you are done with it. Failure to attend to these

matters can lead to a memory leak.

Constrained Data Type

Aion BRE allows the programmer to define subtypes of the

Constrained<DataTypes> types. These subtypes hold constraints on what

values can be assigned to an attribute.CA Aion BRE will automatically

assignments made to an attribute at both edit time and runtime to insure that

any assignment will not violate the declared constraint.

Anatomy of a Class

66 Product Guide

Classpointers

An attribute of the type classpointer holds a pointer to the specified class or to

any of classname's subclasses. Only class attributes and class methods can be

accessed with the class pointer.

For example, you sometimes need to access class attributes and class methods

when no instances of the class yet exist. You might write the following, where

pQuery is a class pointer to a Query class.

pQuery.Flush()

pQuery.Load()

Attributepointers

You can use an attribute of the type attributepointer to refer to another attribute.

Through an attribute pointer you can retrieve the properties of an attribute and

retrieve and set the value of an attribute.

The attributepointer data type is often used when using the meta-programming

capabilities of Aion BRE.

User-Defined Data Types

Any of the predefined Aion BRE data types can be customized through

inheritance and specialization. From your application, subclass a data type

defined in the system-supplied library, SysLib. If you have several data types

you use frequently, such as military time or European currency formats, you may

wish to create an application that contains nothing but these custom data types.

You can then use it as an included library in applications that need these data

types. You can define a custom data type, and then reuse it in any number of text

windows.

To define a custom data type

1. Click Logic, New Datatype

2. Enter the new datatype's class name

3. Select a base class

4. Press OK.

5. Then, customize the characteristics of the new class

Class Attributes

So far we have mainly discussed instance attributes. When we do not use a

modifier in front of attribute, we mean instance attribute. An instance attribute

can hold a different value for each instance.

Anatomy of a Class

Chapter 3: Overview of CA Aion BRE Objects 67

A class attribute describes a characteristic of the class as a whole. It holds a

single data value for the class, rather than a different value for each instance in

the class. Class attributes are often used for counters, since the total number of

instances is the same for all instances of a class. Like an instance attribute, a

class attribute has a data type.

You also use class attributes when a class has no instances. For instance, the

SQL SELECT statement is assigned to a class attribute of a query class. The

reason for this is simple: the SELECT statement has to be issued before any

records have been retrieved or any instances created.

To create a class attribute

1. Create an attribute.

2. In the Properties tab, click the Class Attribute check box.

Methods

Like a procedure or a function, a method contains logic to perform algorithms

and calculations. In the body of a method, you access and modify values of

attributes and local variables and call other methods.

Like attributes, methods come in two varieties: instance and class. When we say

method without a modifier, we mean instance methods. An instance method

operates directly on the data in an instance.

You indicate to which instance a method is bound by using a fully qualified name

that specifies the instance or class. At other times, you can call a method without

an instance or class name.

More Information:

Call Methods of the Same Class (see page 50)

Pass Arguments To Methods

Aion methods take two kinds of arguments, which differ in how they are passed

to a method. An input argument is passed by value. An output argument is

passed by reference.

Remember as well that a method can return a single value, which is considered

the data type or return type of the method.

Anatomy of a Class

68 Product Guide

Input Arguments

Input arguments are passed by value. A copy of the input arguments value is

passed to the method, and the method cannot change the value.

Note: An input argument can have a value of NULL.

Output Arguments

Output arguments are passed by reference. Output arguments must be

variables, and a pointer to an output arguments variable is passed to the

method. The method can then access the variable's current value and change

the variable's value.

Specify Input and Output Argument

Output arguments are mandatory. If they are declared for the method, they

must be specified in the method call.

Input arguments proceeding output arguments are mandatory. Input arguments

following output arguments are optional, if they are declared with a default

value. If input arguments following output arguments are not declared with a

default value, they are mandatory.

Local Variables

A method may have variables declared within the method body, which are

created when control enters the method and destroyed when control exits.

Hence, they cannot be accessed outside the method. You can use local variables

for calculations and looping. A local variable is not an attribute of an instance or

class attribute.

Class Methods

A counterpart to class attributes, class methods are also associated with the

class itself, rather than a particular instance. Class methods exist and are

callable before any instances of a class are created. Class methods access class

attributes, or operate on groups of instances. SysLib provides the following

frequently used class methods:

■ Create() creates an instance and returns a pointer to the newly created

instance. Once an instance is created, the application can begin invoking

instance methods of the instance.

■ MessageBox() uses a modal dialog box to display an informational or error

message.

Anatomy of a Class

Chapter 3: Overview of CA Aion BRE Objects 69

External Methods

In general, methods are considered to be internal, which means their

implementation is written within CA Aion BRE using the Aion BRE language.

However, you can also call external methods. An external method is

implemented outside CA Aion BRE. Its implementation, or method body, exists

outside CA Aion BRE as a named entry point in a dynamic link library (DLL).

Disabled Methods

In general, all methods are active. The disabled method is used primarily for

system-invoked methods, or events. Because the method is defined, you can

see its name and parameters. Because the method is not callable, however,

there is no performance penalty when the program is executed. To define

behavior for the method, specialize it within your application.

Under special circumstances, you might wish to create your own disabled

methods.

Constants

A constant is a value holder whose value does not change during the execution

of your program. It is a numeric or string literal that you want to refer to by name

in your application.

In Aion a constant is a special kind of attribute, and shares the properties of an

attribute:

■ It is defined in a class.

■ It has a data type.

■ It has an access type.

■ It can be inherited (though not specialized).

A constant is implemented as a class attribute whose value cannot change during

execution.

Dynamic versus Static Instances

70 Product Guide

To create a constant

1. Create an attribute in a class

2. From the attribute's Properties tab select the Class Attribute check box

3. From the attribute's Properties tab select the Constant check box.

Note: Prior to Aion 8.1.1, the CHAR_LF attribute for the _Datatype class in

SysLib was defined as a constant. Since 8.1.1, CHAR_LF is defined as a

non-constant. This change allows Aion to initialize CHAR_LF at runtime based on

the operating system. As a result, applications that try to define their own

constants and initialize them to a value that includes CHAR_LF will not parse or

resolve at edit time. The solution is to initialize attributes that refer to CHAR_LF

at runtime, preferably in _TaskInitialize() of the entry class.

Examples of constants:

Note: Constants are generally written in capital letters:

Constant Type Value

MAX_LENGTH integer 10

INTEREST_RATE real 7.85

RGB_COLORS list of string (“red”, “green”, “blue”)

Dynamic versus Static Instances

You work with instances continually while developing an Aion BRE application.

You specify dialog boxes and windows for your application, insert icons and

bitmaps in them, and specify SQL queries to retrieve data for analysis. These

processes all involve instances of classes, yet they are not all the same kind of

instance.

Dynamic versus Static Instances

Chapter 3: Overview of CA Aion BRE Objects 71

Static Instances

Also known as edit-time instances, they are the less frequent kind of instance in

Aion BRE. You create a static instance at edit time, giving it a name by which you

can access its attributes. Pointers are not necessary. When an Aion BRE

application starts executing, the exact amount of storage is reserved for the

static instances. This is possible because you know at edit time exactly how

many instances will exist at runtime

In CA Aion BRE, you use static instances mainly in two circumstances:

■ For the Connection instance that establishes a connection from an Aion BRE

application to an external database.

■ For the resources of an application-in particular, the bitmaps, cursors, and

icons used in the GUI.

You can see static instances in the Aion BRE IDE. In the Project Workspace and

the Aion BRE Explorer, static instances are represented by their own icon. You

can right-click and view their properties. You can edit their properties in the

Instance editor.

Dynamic Instances

These are also known as runtime instances. Most instances in Aion BRE are

dynamic instances. You cannot tell at edit time how many dynamic instances of

a class will be created when the program is executed. Think of a query that can

result in an unpredictable number of records, each of which is an instance. Or

consider a Multiple Document Interface (MDI) application, which allows any

number of document window instances to be created and opened.

Since you cannot know how many instances of a class will exist at runtime, you

do not name a dynamic instance. You need a pointer to the instance instead of a

name. The new instances are allocated storage in the section of application

memory called the free store, or the heap. Allocation to the heap grows and

shrinks during program execution as dynamic instances are created and deleted.

It is necessary to use the heap because an Aion BRE application cannot know at

startup time how much memory to set aside for instances.

Implement Interfaces

72 Product Guide

To access attributes of the instance, you must use the pointer with dot notation,

as in the following:

pMyDialog.AttributeName.

If the class is a container, as MyDialog is, you can specify the attribute of an

attached push button like this:

pMyDialog.MyPB.AttributeName

In the example, MyPB is of type PushButton. Aion keeps track of the actual

instance for you and accesses its methods correctly.

Note: It is important to understand that dynamic instances do not appear in the

Project Workspace or the Aion BRE Explorer. Since the instances only exist at

runtime, there is nothing to display at edit time.

Implement Interfaces

Aion Interface Inheritance permits Classes to be associated with behaviors

known as Interfaces. You can use interfaces as a means for defining a behavioral

protocol that can be shared by otherwise unrelated classes.

A Class may directly implement Interfaces or it may inherit Interface

implementations from ascendant Classes within the _Object hierarchy. Likewise,

if a class implements an interface, it acquires not only the behaviors associated

with that interface, but also the behaviors of interfaces ascendant to that

interface within the _Interface hierarchy.

Develop Interfaces

All interfaces are directly or indirectly derived from a method-less class

_Interface, _Interface is derived from _System. Interface development in Aion

must conform to specific restrictions and standards.

Implement Interfaces

Chapter 3: Overview of CA Aion BRE Objects 73

Interfaces can declare only abstract public instance methods, they cannot

declare:

■ Class methods

■ Private methods

■ Protected methods

■ Any form of data

■ Implementations for any of its methods (except as noted on the following

page)

■ Variables

– variables can not be defined to be of type _Interface

– A variable can only be defined as a pointer to an _Interface

Interface development must include the following standards:

■ An interface must be uniquely named. The interface can not share its name

with another interface or class.

■ There can be only one parent interface. The parent interface must be

another interface.

■ When inheriting methods, an interface inherits methods from its direct

parent and all indirect parents.

■ Parent and child methods, of the same name, must share the same

signature:

– Number of parameters

– Ordered parameter types

– Return value types

Implement Interfaces

74 Product Guide

To create a new interface

1. From the Aion Logic menu, choose New, Interface.

The New Interface dialog appears prompting you to enter a name for your

interface. _Interface is selected as the default parent interface in the base

class field.

2. Enter the name of your new interface. Click OK.

A class editor opens with the new interface active.

3. Create the interface behavioral protocol by declaring methods to be

associated with the interface.

Note: If the method has a return value, the method's implementation must

specify a “Dummy” return statement, otherwise, no statements should be

specified for the method's implementation. See following for sample dummy

values.

return 0 //for an integer return value

or

return NULL // for a string or pointer return value

Associate Interfaces to Classes

Although classes continue to be restricted to single inheritance, a given class can

be associated with multiple interfaces.

To associate interfaces with a class

1. Double-click the class that you want to work with.

The class editor opens.

2. Select the Properties sheet tab.

3. In the Interfaces field name the interface(s) associated with the class.

Note: If the class implements multiple interfaces you must separate the

interfaces with commas.

Implement Interfaces

Chapter 3: Overview of CA Aion BRE Objects 75

Example:

Class implementing multiple interfaces, given the following interfaces:

Interface Intf1 specifies two methods:

f() with no arguments & an integer return value

g() with no arguments & an integer return value

Interface Intf2 specifies two methods:

f() with no arguments & an integer return value

h(in p1 is integer) with no return value

If ClassA implements both Intf1 & Intf2, it must define or inherit public instance

methods corresponding to all methods associated with each of its interfaces.

If any of the interfaces is, in turn, derived from other interfaces, ClassA must

additionally define or inherit public instance methods corresponding to all

methods associated with the ascendant interfaces.

Example:

In the preceding example, classA must define or inherit the following public

methods:

f() with no arguments & an integer return value

g() with no arguments & an integer return value

h(in p1 is integer) with no return value

Note: The class implementation of the methods must have the same argument

types and return-value type as in the interface declaration; otherwise, Aion flags

the conflict as an error.

Associate Interfaces to Class Instances and Generic Methods

Once classes and interfaces are associated, class instances can be referenced via

interface pointers.

Given the following interface:

Interface Flyable specifies three methods

Takeoff() with no arguments & a Boolean return value

Set Altitude(in altitude is integer) with no return value

Land(in destination is string) with a Boolean return value

Implement Interfaces

76 Product Guide

With the following classes, Airplane and Duck-that implement that interface-you

can write a generic method that applies to all classes implementing the interface:

FLyTo(in pObj is &Flyable,

in altitude is integer,

in destination is string)

returns a Boolean value

Implementation:

var bSuccess is Boolean = false // be pessemistic

if pObj.Takeoff() then

pObj.SetAltitude(altitude)

if pObj.Land(destination) then

bSuccess = TRUE

end

end

return bSuccess

and, in turn, invoke the generic method via instance and interface pointers:

// fly an airplane via an interface pointer

var pFlyObj is &Flyable

pFlyObj = Airplane.Create()

FlyTo(pFlyObj, 8000, “Phoenix”)

// fly another airplane via an instance pointer

var pAirplane is &Airplane

pAirplane = Airplane.create()

FlyTo(pAirplane, 5000, “New York”)

// fly a Duck

FlyTo(Duck.Create(), 50, “Redwood City”)

Implicit Typecasting

The preceding examples illustrate Implicit Typecasting - The automatic

conversion between instance pointers and interface pointers.

Typecasting occurs in assignment statements and parameter passing.

Implement Interfaces

Chapter 3: Overview of CA Aion BRE Objects 77

Cast Instance Pointers to Interface Pointers

Aion performs casting if the instance pointer's class (for example, Airplane)

implements the interface pointer's interface; otherwise, the Aion Interpreter

flags the usage as invalid.

Examples:

// assume airplanes are flyable

var pFlyObj is &Flyable

pFlyObj = Airplane.Create()

// assume ducks implement some interface (any interface)

var pIntf is &_Interface

pIntf = pDuck

Cast Interface Pointers to Class Instance Pointers

Given the following interface:

interface Sortable specifies one method:

Compare(in pOther is &Sortable) with an integer return value

In this case, the interface-method's pointer is a pointer to another Sortable

instance. Classes that implement this interface must expect to convert such

pointers to instance pointers

Example of a Duck method:

// Assume ducks are sortable & are to be compared.

// Return -1 if current duck weighs less than other duck;

// Return 1 if current duck weighs more than other duck;

// Return 0 if ducks weigh the same.

Compare(in pOther is &Sortable)

returns an integer value

Implementation:

var pOtherDuck is &Duck

pOtherDuck = pOther // typecast

if current.weight < pOtherDuck.weight then

return -1

end

if current.weight > pOtherDuck.weight then

return 1

end

// same-size ducks

return 0

Aion performs casting if the instance pointer's class (for example, Duck)

implements that interface pointer's interface; otherwise, the Aion interpreter

flags the usage as invalid

Implement Interfaces

78 Product Guide

Cast Between Interface Pointers

If the pointers are associated with different interfaces, CA Aion BRE performs

casting if one of the interfaces is derived from the other interface; otherwise, the

Aion BRE parser flags the usage as invalid.

Example:

// assume that FlyableAnimal is an interface

// derived from interface: Flyable

var pFAnimal is &FlyableAnimal

var pFlyable is &Flyable

pFAnimal = ...

pFlyable = pFAnimal

var pIntf is &_Interface

pIntf = pFAnimal

No casting is required if the pointers are associated with the same interface.

Associated SysLib Methods

The SysLib.ClassPointer class defines the following methods that can be useful

when working with interfaces:

GetInterfaces() identifies the interfaces implemented (directly or indirectly) by

a given class.

GetInterfaceClasses() identifies the classes implementing (directly or indirectly)

a given interface.

Inference Considerations

Pattern-matching bind-variables may be bound to interfaces (as well as to

classes).

Example:

For a comprehensive example of Interface implementation see the \examples

folder.

examples\intf_inh\intf_inh.app

Note: For additional information on Pattern Matching with bound interfaces, see

the “Pattern Matching over Interfaces” chapter in the CA Aion BRE Rules Guide.

Chapter 4: How You Create and Edit Applications 79

Chapter 4: How You Create and Edit

Applications

This chapter explains how to create, edit, and manage applications and libraries

using the CA Aion BRE development system.

Note: This chapter uses the terms application and library interchangeably.

This section contains the following topics:

Create Applications (see page 79)

Save Applications (see page 81)

Back Up Applications (see page 81)

Restore Applications (see page 82)

Develop Applications for Non-Windows Platforms (see page 84)

The Command Line (see page 88)

Customize the Development Environment (see page 89)

View Applications (see page 91)

The Output Window (see page 93)

The Project Workspace (see page 96)

The Explorer (see page 99)

The Rule Analyzer (see page 102)

Editors (see page 102)

Create a Constrained Attribute (see page 112)

Copy and Paste Objects (see page 117)

Delete Objects (see page 118)

Edit Toolbars (see page 118)

Customize Toolbars (see page 122)

Work with Included Libraries (see page 122)

Work with Source Control (see page 126)

Change Management (see page 130)

Produce Reports for an Application (see page 133)

Search for Objects by Name (see page 136)

Search for Objects by Multiple Criteria (see page 136)

Replace Text (see page 136)

Search Across Applications (see page 137)

Create Applications

For step-by-step instructions to create an application or library, see the section

“Create an Application” in the CA Aion BRE online help.

Create Applications

80 Product Guide

.APP and .BIN Files

The .app file, called a source file, serves as a blueprint for the .bin-or

working-files. The working files comprise not only the working copy of your

application, but also files needed to debug, run, and build your application. You

write to the .app file and the working files only when you choose Save from the

File menu.

If the .bin files are out-of-date or missing when you try to open an application,

CA Aion BRE prompts you to restore them from the application's source file. For

example, if you use a source code management system, your local copy of an

application's .bin files will be out-of-date when you “get” a new version of the

.app file from the source code system after another developer has worked on

that file. To update the .bin files, you must restore the application from its

source, the newly “gotten” .app file.

More Information:

Restore Applications (see page 82)

Set Mainframe Line Length

When you transfer Aion BRE applications from the PC to the Mainframe, you can

specify the line length and activate Line Wrapping to accommodate line length

restrictions on the Mainframe host.

Use the Mainframe Deployment Options dialog to activate line wrapping and to

set the line length that is allowed while saving the application file (*.app file)

For more information on setting the mainframe line length, see Setting the

Mainframe Line Length in the CA Aion BRE online help.

Open Applications

For more information on opening applications, see Open an Application in the CA

Aion BRE online help.

Note: Only one application can be open at a time in the Aion IDE. To edit

multiple applications at the same time, open multiple sessions of the IDE. You

can then cut and paste objects from one application to another across the

various IDEs.

Save Applications

Chapter 4: How You Create and Edit Applications 81

Save Applications

For step-by-step procedures on saving applications, see Save an Application in

the CA Aion BRE online help.

Read-Only Applications

Read-only applications can be viewed and printed, but they cannot be modified.

For more information on working with read-only applications, see the following

topics in the CA Aion BRE online help:

■ Open a Read-Only Application

■ Save a Read-Only Application

Back Up Applications

For step-by-step procedures on backing up applications, see Back Up an

Application in the CA Aion BRE online help.

Whenever you save an application, CA Aion BRE copies the old .app file to an

ApplicationName.bak file located in the application's .bin directory.

Restore Applications

82 Product Guide

Restore Applications

When you save an application, CA Aion BRE saves not only to the application's

working files, but also to the application's source file, ApplicationName.app.

Because the source file serves as a blueprint for the working files, you can

regenerate-or restore-all the application's working files from this .app file.

The ability to restore an entire application from a single file provides the

following benefits:

■ Easy backup and transfer-You can save or move all of an application's

working files by copying only the .app file.

■ Protection against unexpected events-If the working files become

corrupt, you can restore the application to the state it was in when last

saved.

■ Quick library updates-If an included library is modified, you can

incorporate these modifications into the application simply by restoring the

application from its source file.

■ Simple source control-Since you can regenerate an application's working

files from its source file, you can safeguard an entire application by checking

only its source file in and out of a third-party source-code control program

using the built-in support for SCC API-supported source control systems.

Note: If your application uses graphic resources (bitmaps, cursors, and icons)

and ActiveX controls, you must also backup and transfer the files that contain

these objects (namely .bmp, .cur, .ico, and ApplicationName.stg files) to restore

the application successfully.

If these files are stored in any location other than an application's current

directory, you may need to use the Instance editor's Properties tab page to

modify the resources' paths before a transferred application's images can be

restored.

Note: The case of the application file name under UNIX must be exactly the

same as the case of the application name under the bound library4 sections, and

inside any include file statements.

More Information:

Create Resources (see page 177)

Restore Applications

Chapter 4: How You Create and Edit Applications 83

Restore Closed Applications

There are several situations in which you must restore an application's working

(.bin) files from its source (.app) file before you can open the application:

■ When you check an .app file out from a source control program

■ When you move an .app file from one machine to another

■ When the application's working files are either out-of-date or missing

For step-by-step procedures on restoring closed applications, see Restore a

Closed Application in the CA Aion BRE online help.

Open Before Restoring

If an application's .bin files are missing and you try to open the application's .app

file before restoring the application, you receive the following message:

ApplicationName.app cannot be opened. Would you like to restore from source?

To restore and open the application, click Yes.

Restore Open Applications

When you modify an application's included libraries, you must update the

application to incorporate the library changes into the application. To update an

application, restore the application from its source file. Doing this incorporates

all changes made to the included libraries since the application was last restored.

You should restore an open application whenever you revise any of its included

libraries.

If you do not restore an application after you update an included library, the

time-and-date stamps of the application and of the included library become

unsynchronized. When this occurs, CA Aion BRE places a red box with a slash

through it over the Libraries node icon and over the icon of the out-of-sync

included library (see the Libraries tab page of the Project Workspace):

Restoring the application from source resolves the discrepancy and removes the

red boxes.

Develop Applications for Non-Windows Platforms

84 Product Guide

Note: When you add an included library to an application, that library's included

libraries are also added to the application in piggyback fashion-that is, they are

carried in by the directly included library. Like directly included libraries,

piggybacking libraries can get out-of-sync with the main application. To bring

such libraries into sync with an application, see the CA Aion BRE online help.

For step-by-step procedures on restoring open applications, see Restore an

Open Application in the CA Aion BRE online help.

Develop Applications for Non-Windows Platforms

The Aion IDE is the standard environment for developing and editing of

applications for mainframe (OS/390, z/OS, and Linux) and UNIX platforms (AIX,

Solaris, HP-UX). For example, applications stored on the mainframe can be

edited and run from the Windows environment.

Note: Using this development approach, only Aion BRE application (.app) files

are transported between platforms, not binary (.bin) files or .dll files.

To access Aion BRE remote development capabilities, select Remote

Development from the File menu. In order to use remote development, the

Enable Remote Development check box on the Remote Development menu must

be checked. You must also establish the settings for file transfer before saving to

or restoring from a remote source. Select Remote Settings from the Remote

Development submenu. The Settings dialog saves information to the Windows

registry. You may establish settings to both the mainframe and a UNIX platform,

because information of each of these connections is saved separately. For more

information on establishing the settings for a remote connection, see Remote

Settings in the CA Aion BRE online help.

Develop Applications for Non-Windows Platforms

Chapter 4: How You Create and Edit Applications 85

All remote functions utilize dialogs similar to the following:

Develop Applications for Non-Windows Platforms

86 Product Guide

The title bar distinguishes which function is being performed and identifies the

remote platform. The local file name is always displayed at the top, and below it

a large Status list box. Functional pushbuttons are at the bottom.

■ FTP processing is asynchronous; that is, an FTP command is issued, and then

monitored until done; if successful, and more is to be done, then the next

FTP command is issued.

■ Processing may be interrupted by clicking Cancel. For Restore and Save, the

transfer will be aborted. For Build, Run, and Submit, if the job has yet to be

submitted, it won't be. If it has been, the job will in fact run to completion,

but the output will not be fetched back for review. In all cases the dialog may

be closed and other Aion tasks undertaken.

■ Once processing is complete (or cancelled), the dialog remains open: click

Done to close it and proceed with other Aion tasks. Or, click OK to perform

processing again.

■ The Status listbox is initialized with just the first line, "Click OK to start

processing." Once OK is clicked, two sorts of messages are displayed:

informational messages describing where Aion is in the process, and status

messages from FTP reporting the status of the current FTP request. FTP

messages are prefixed with FTP.

■ All messages may be ignored for jobs that succeed. For debugging purposes,

they are useful, indicating how far processing went, and all the file names

used.

■ The FTP Disconnect request is always last, and never monitored.

Develop Applications for Non-Windows Platforms

Chapter 4: How You Create and Edit Applications 87

For step-by-step procedures for using the remote development capabilities of CA

Aion BRE, see the following topics in the CA Aion BRE online help.

Note: These options are not available if Remote Development is not enabled. If

the remote platform is UNIX (based on the Settings), Build, Run, and Submit are

grayed out. If no application is open, Save, Build, and Run are grayed out. If an

application is “active” (open, changed, but not yet saved), Restore is grayed out.

■ Restore Applications from Remote System

The Restore Remote operation invokes the Aion internal FTP client (reftp) to

download a copy of an MVS or UNIX application to the Windows platform.

The application is restored from source, and the .bin file is built locally in

Windows. Local development can then occur as with any other Windows

application. The local copy of the application can be saved with File, Save. If

desired, it may also be built locally for local testing.

Note: If no application is currently open, you can specify any application, by

name, during Remote Restore. But when there is an application already

open, then only that application may be remotely restored. An application

must be unchanged and saved for it to be restored.

■ Save Applications to Remote System

The Save Remote operation saves the application locally. It then invokes the

Aion internal FTP client (reftp) to upload a copy of the application to the host

platform. Any file may be saved remotely, whether or not it was restored

remotely. Applications may also be restored remotely for local use. For

existing applications, the old MVS or UNIX dataset is overwritten.

Note: Any application can be remotely saved, whether or not it was

remotely restored. The application must be currently opened.

■ Build Applications on a Remote Source (MVS only)

Remote Build builds the remote version of an application on the mainframe.

The results of the build are returned back to the Windows environment for

review. The first step is to restore the application that is already resident on

the remote platform.

Note: Remote Build uses the version that is currently available on the

remote platform. For this reason, invoking Remote Build is preceded by a

prompt for a Remote Save.

■ Run Applications on a Remote Source (MVS only)

Remote Run invokes program REEXEC on the mainframe and runs the

remote copy of an application interpretively. Results are received back for

user review.

Note: The current remote version of the .bin file is used, as last created (for

example, by Remote Build. For this reason, invoking Remote Run is preceded

by a prompt for a Remote Build.

The Command Line

88 Product Guide

■ Submit Jobs to a Remote Source (MVS only)

Remote Submit allows the application developer to submit any JCL file to the

mainframe. This permits the application developer to execute any

mainframe program (for example, a built Aion BRE application, DB2 bind job,

COBOL compiles, or clean-up jobs) from the Aion BRE development

environment running under Windows. Another use for Remote Submit is to

accommodate special Remote Build or Remote Run needs. For example, if an

application writes to a SYSOUT file not defined in proc BARUN, the JCL

generated by Remote Run, localpath.appname.run, may be edited to add the

additional DD card. This same Run dataset can be specified as input to

Remote Submit.

Results of a remotely submitted job are returned to the Windows

environment.

Note: There is no automatic clean up of work files and FTP submitted jobs under

MVS. It is the user's responsibility to effect proper clean-up of the remote

platform. Ideally, work files should by default be written to work disks and be

automatically deleted. Alternatively, steps may be added to the procs to perform

deletes, or, JCL may be written to invoke the standard BADELETE procs and

submitted using Remote Submit. For additional information on cleaning up the

job queue, see Clean-Up Procedures in the CA Aion BRE online help.

The Command Line

CA Aion BRE lets you work with applications from both the Windows and UNIX

command lines. When working with applications from the command line, you

must include the complete path name of the application, unless it is in the same

location as the Redev Aion executable. Following are the available line

commands and their options:

Command Options Explanation

reexec - reexec c:\aionnn\myapp.app

Runs the application.

 debug reexec c:\aionnn\myapp.app -redebug

Displays the application in the Aion debugger.

respawn - respawn c:\aionnn\myapp.app

Opens the application and forces a restore from

source if the application cannot open.

 clean respawn c:\aionnn\myapp.app -clean

Removes generated code, object files, and more.

Customize the Development Environment

Chapter 4: How You Create and Edit Applications 89

Command Options Explanation

 comp respawn c:\aionnn\myapp.app -comp

Compiles generated code.

 gen respawn c:\aionnn\myapp.app -gen

Generates code for application.

 link respawn c:\aionnn\myapp.app -link

Creates shared library.

 res respawn c:\aionnn\myapp.app -res

Restores application only.

 trace respawn c:\aionnn\myapp.app -trace

Enables tracing in generated code.

redev redev c:\aionnn\myapp.app

Opens the application. If no application is specified,

it opens redev.

Customize the Development Environment

Use the Settings dialog to set directory, run, and build defaults for your Aion

development environment.

To open the Settings dialog, choose Settings from the File menu.

Note: Changes made in the Settings dialog take effect immediately. You do not

need to exit and restart Aion to apply them.

Customize the Development Environment

90 Product Guide

Directories Tab Page

In the Directories tab page, you specify system locations for accessed and

generated files.

■ In the Included Libraries Path field, you can specify the full path for any

library (whether custom-built or supplied by Aion) that you include in an

application. This field can contain paths to multiple directories. Place a

semicolon (;) between each path as follows:

C:\Program Files\CA\AionBRE\init;

During a build, if your application includes a custom library, Aion looks in the

directories specified here for the library's LIB file.

Note: The information contained in this field can also be modified in the

System field of the Included Library Editor. In addition, you can use the

Included Library Editor's Application field to specify paths to custom libraries

included in your application.

For more information about the System and Application fields, see the

Included Library Editor Fields in the Include and Remove Libraries (see

page 123).

■ In the Working Directory field, you can specify a default directory for file

operations (from the File menu, choose New, Open, Restore from Source,

Delete, and Save As). The specified directory is preloaded into the Create In,

Look In, Delete From, or Save In fields of the dialogs that open when you

select these operations. By specifying a commonly used directory here, you

may save time when using the File menu to access or generate files.

If you do not specify a directory in the Working Directory field, the current

directory is loaded into the file operation dialogs.

■ In the Trace Output Directory field, you can specify the directory in which the

Execution Trace Output file (ApplicationName.trc) is stored. If a location is

not specified here, the Trace file is written to the directory designated for

temporary files by Windows.

■ The AionDoc Directory field specifies where AionDoc HTML files are saved.

■ Verify that the Build Directory field lists the Aion Build directory:

<INSTALL_DIR>\build

This is the directory that CA Aion BRE uses to locate the system files it needs

to build an application. The default value in this field is automatically set

during installation and should not require modification. If no directory is

specified in this field, you cannot build your application.
I

View Applications

Chapter 4: How You Create and Edit Applications 91

■ n the Compiler Directory field, you must specify the top-level directory

where the compiler is stored. For example C:\Program Files\Microsoft Visual

Studio 8.

■ The Java Home Directory box specifies the root path. For example

C:\Program Files\Java\jdk1.6.0_03 The the following directories are in the

Java Home Directory box:

%java_home%\bin\javac

%java_home%\bin\jar

%java_home%\include

%java_home%\include\win32

More Information:

Run and Build Applications (see page 439)

View Applications

CA Aion BRE displays information about an application in a variety of windows:

■ Output Window

■ Project Workspace

■ Explorer

■ Editors

These windows open inside the Aion main frame window.

Manipulate Windows

You can size the Aion main frame window and the windows it contains.

For step-by-step procedures on manipulating windows in the following ways, see

Manipulating Windows in the CA Aion BRE online help:

■ Resizing

■ Detaching a dockable window

■ Redocking

■ Disabling and re-enabling the docking feature

View Applications

92 Product Guide

Enlarge the Main Frame Work Area

If you move the Project Workspace window on top of the Output Window when

the Output Window is docked at the bottom of the main frame window, Aion will

display the two windows side-by-side in the space formerly occupied by the

Output Window alone. This arrangement enlarges the remaining work area of

the main frame window, giving you more room to display the editors. You can

expand either window across the other by clicking the Expand Docked Window

button (located near the top left corner of each window as shown in the following

figure). To redisplay both windows, click the button again.

Object Icons

Each object name displayed in the Aion IDE is preceded by an icon that indicates

the object's type. The Aion IDE icons are:

Class

Attribute

Method

Instance

Library

Class

Attribute
Class

Method

Rule

Window

Query

Menu

Toolbar

Dialog box

Box

Stored

Procedure

Menu

Item

Tool

Item

The Output Window

Chapter 4: How You Create and Edit Applications 93

Rule

Method

Decision

Table
Domain

Interface

Menu Bar

CA Aion BRE has many toolbars, but only one menu bar. When you open an

application, Aion displays nine options in the menu bar:

The availability of these options and of the items on their sub-menus depends

upon your location in the IDE. Whenever the following sections of this chapter

refer to a “menu bar option,” they are referring to one of the options shown in the

preceding figure.

Fonts

For step-by-step procedures on modifying font characteristics, see Modifying

Fonts in the CA Aion BRE online help:

You can modify font characteristics for the following types of text in the IDE:

■ Imagelist

■ Treelist

■ Method Editor

■ Decision Table cells

The Output Window

The Output Window displays information about operations performed during the

development of an application.

When you first open CA Aion BRE, the Output Window is the only window

displayed. If you exit CA Aion BRE when the Output Window is closed, no window

will be displayed the next time you open Aion.

For step-by-step procedures for opening or closing the Output Window, see

Using the Output Window in the CA Aion BRE online help.

More Information:

Output Window Tab Pages (see page 94)

The Output Window

94 Product Guide

Output Window Tab Pages

The Output Window contains four tab pages: Invalids, History, Results, and

Build. To display a tab page, click its corresponding tab at the bottom of the

window.

Display Headers

To display column headers on any Output Window tab page that contains

columns, click the Output Window, and then from the View menu, choose Show

Labels.

To adjust the width of columns, size the headers with your cursor.

Open Editors

To open the editor for any object displayed on a tab page, double-click the

object.

More Information:

Editors (see page 102)

Invalids

The Invalids tab page lists application objects that contain errors, the name of

the library in which these objects reside, and a description of each error.

Whenever objects are listed on the Invalids tab page, a red box with a slash

through it appears on the Invalids tab and in the status bar.

The Output Window

Chapter 4: How You Create and Edit Applications 95

History

The History tab page maintains a running list of the objects you open during an

Aion BRE session. This list speeds the development process by making it easy to

return to the same objects again and again. To reopen objects in their editors or

to move open objects to the top of the main frame window, simply double-click

their name on this list.

Objects are displayed on the History tab page as follows:

■ When an object is first opened, its name is added to the top of the list.

■ When an object is closed, its name remains on the list, moving lower as

subsequent objects are opened.

■ When an object's editor is relayered in the main frame window, the object's

name is repositioned in the list to reflect its new position among the open

editors.

■ When an object's editor moves to the top of the main frame window after

another editor closes, the object's name moves to the top of the list.

■ If no other objects are open when you close an object, the list remains

unchanged.

■ When an object displayed in the list is deleted from the application, the

object remains in the list but is preceded by a grayed icon.

Such objects are inaccessible.

For step-by-step procedures for clearing the History and Results tab pages, see

Output Window Tab Pages in the CA Aion BRE online help.

Results

The Results tab page displays the results of search and search-and-replace

operations. Each top-level node in the display is a description of one operation.

The objects listed beneath each top-level node are objects containing the name

or string specified in the particular operation. To hide (or collapse) these

subnodes, click the box containing a minus sign next to the search description.

The most recent search appears at the bottom of the list.

Build

The Build tab page displays the progress and results of the current Build

operation (from the File menu, choose Build), including compiler and linker

errors.

The Project Workspace

96 Product Guide

The Project Workspace

The Project Workspace window enables you to view an application's classes and

included libraries from various perspectives. By default, the Project Workspace

opens automatically when you open an application. There are, however, other

ways to open and close this window.

For step-by-step procedures for other ways of opening and closing the Project

Workspace, see Using the Project Workspace in the CA Aion BRE online help.

View Inheritance and Ownership Information

The Project Workspace displays various groups of classes. Within these groups,

classes are arranged alphabetically rather than on the basis of inheritance. You

can, however, view the class from which a class has been derived (known as a

base class) in the Project Workspace as follows:

To display the name of a class's base class in the Project Workspace

■ From the View menu, choose Show Parent.

You can also view the attributes and methods owned by a class:

To display objects owned by a class in the Project Workspace

■ Click the plus (+) icon in front of the class's name.

More Information:

The Explorer (see page 99)

Project Workspace Tab Pages

The Project Workspace contains five tab pages: Libraries, Classes, Rules,

Domain Interface, and Exports. To display a tab page, click its corresponding tab

at the bottom of the window.

Open Editors

To open the editor for any object displayed on a tab page, double-click the

object, or right-click the object and select Open from the pop-up menu.

Note: Double-clicking a library on the Libraries tab page will open the library in

another session of CA Aion BRE. To open an included library's class in the current

session of Aion, simply expand the appropriate library and then double-click the

class.

The Project Workspace

Chapter 4: How You Create and Edit Applications 97

More Information:

Editors (see page 102)

Libraries

The Libraries tab page alphabetically lists the application's included libraries,

static instances, classes, and class members in a tree control that can be

expanded and collapsed by clicking the minus and plus signs displayed on the

tree's left. To display the base classes of all the classes listed on this tab page,

highlight any object on the tab page, and from the View menu, choose Show

Parent.

Expand the Libraries node to view a list of the libraries included in the

application. Libraries can be included both directly (through the Included Library

Editor) and indirectly (as included libraries of directly included libraries). To see

which is which, choose Edit Library Includes from the File menu. The indirectly

included libraries will not be listed in the Included Libraries field of the Included

Library Editor dialog.

Expand the Instances node to view a list of the application's static instances. In

Aion BRE applications, static instances are usually connections, resources

(bitmaps, cursors, and icons), or user-created objects.

Expand the Classes node to view a list of the application's classes. To view the

methods and attributes owned by a particular class, expand that class's node.

Classes

The Classes tab page facilitates object reuse by providing quick access to

developer-created classes. The page divides these classes into seven groups:

■ Windows and Dialogs

■ Groups and Pages

■ Menus and Tools

■ Queries and Stored Procedures

■ Associations

■ _Interfaces

■ User-Specified Classes

The Project Workspace

98 Product Guide

When you create a class that belongs to one of the first six groups, CA Aion BRE

automatically adds that class to the appropriate group in the Classes tab page.

User-Specified Classes, is designed to hold classes that cannot be categorized in

any of the other groups. You must manually add classes to the User-Specified

Classes group.

Note: Classes displayed on the Classes tab page come not only from the open

application, but also from the application's included libraries. Classes supplied by

Aion cannot be added to this page.

For step-by-step procedures for adding a class to the User Objects group, see

Project Workspace Tab Pages in the CA Aion BRE online help.

Rules

The Rules tab page lists all the classes in the application that own methods

containing rules.

For step-by-step procedures for displaying rules on the Rules tab page and

opening the Method Editor for a specific rule, see Project Workspace Tab Pages in

the CA Aion BRE online help.

More Information:

Method Editor (see page 107)

Method Editor (see page 190)

Domain Interface

The Domain Interface page lists all the classes in the application that own

domain interface members. To display the domain interface members on the

Domain Interface tab page, expand the classes listed on the Domain Interface

tab page. A list of the domain interface labels that have been assigned to domain

interface members (methods) of the class is displayed beneath each class.

To open the Method Editor for a specific domain interface label, double-click the

domain interface label on the Domain Interface tab page. Click the Properties tab

on the Method Editor and go to the Domain Interface Member Definition page on

the Properties page, or click the Implementation tab on the Method Editor.

More Information:

Method Editor (see page 190)

Method Editor (see page 107)

The Explorer

Chapter 4: How You Create and Edit Applications 99

Exports

The Exports tab page lists all the classes in the application that have been

designated as Export classes in the Class Editor (Property page). The public

methods of exported classes constitute the exposed methods in the interface

layer of an Aion component.

For step-by-step procedures for displaying the public methods on the Exports tab

page and opening the Method Editor for a specific method, see Project

Workspace Tab Pages in the CA Aion BRE online help.

More Information:

Class Editor (see page 106)

Method Editor (see page 107)

Method Editor (see page 190)

The Explorer

You can view the genealogical structure of an application's classes to see how a

particular class is related to other classes by opening the Explorer. The Explorer

depicts relationships among the application's classes based on the

object-oriented concept of inheritance. In contrast, the Project Workspace

provides an alphabetized listing of an application's classes. If you know the name

of the class you are seeking but are unfamiliar with the class's lineage, the

Project Workspace is the best place to look.

The Explorer

100 Product Guide

The Explorer contains two panes. In its left pane, it displays a class tree. In its

right pane, it displays a list of objects owned by whichever class is highlighted in

the left pane. To see how the views provided by the Explorer and the Project

Workspace differ, compare the position of the ApplEndowment class in the

Explorer (left panel) with its position in the following Project Workspace:

More Information:

The Project Workspace (see page 96)

Set Explorer/Workspace Options

You can use the Explorer/Workspace Options dialog to set options that allow you

to expand a library and view your local classes and all classes found in libraries

that include the expanded library.

From the Explorer/Workspace Options dialog you can set the Open Multiple

Explorers option so that Aion will allow you to have multiple Explorer windows

running in the active Aion session. You can also set the Domain Interface Group

By Libraries option, which causes the Domain Interface tab page to show domain

interfaces across libraries rather than grouping them by class.

For step-by-step procedures for customizing the Explorer, see Setting

Explorer/Workspace Options in the CA Aion BRE online help.

The Explorer

Chapter 4: How You Create and Edit Applications 101

Specialize Through the Explorer

The Explorer shows each object's place in an application's hierarchy, enabling

you to see both the classes from which the object inherits characteristics and the

classes to which it passes its own unique characteristics. This scoping

information makes it easy for you to see how widespread the effects of your

specializing and unspecializing operations will be.

In addition, if you must specialize or unspecialize a lot of objects, it is more

efficient to do so on an object-by-object basis down a branch of this hierarchy

rather than in a more disjointed manner outside the inheritance context, such as

in the Project Workspace.

Discover Where an Object Resides

The fastest way to find out where an object resides in an application is to execute

the Explore command on the object.

Example:

1. Select a method in Winlib from the Project Workspace.

2. Open the Explorer. CA Aion BRE quickly drills down to the method's home.

View Options for the Explorer

To customize the Explorer's display, use the following options on the View menu:

■ Select Show Inherited to display objects inherited from the base class of the

selected class. By default, only objects defined in a class are listed in the

Explorer's right pane.

■ Select Show Publics Only to display only objects whose access type is public

(versus private or protected).

■ Select Show Parent to display either the base class (in the case of classes) or

the owning class (in the case of class members) in brackets to the right of

each object listed in the Explorer.

■ Select Show Labels to display column headings in the Show Details view.

This option does not take effect unless Show Details is turned on.

■ Select Show Details to display each object's data type, access type, and

owning library and to indicate whether the object is inherited or specialized.

■ Select Expand Current to display the subclasses (if any) of a selected class.

To fully expand a hierarchy, select a class or library in the Explorer, and press

Shift+Enter.

The Rule Analyzer

102 Product Guide

The Rule Analyzer

The Rule Analyzer displays the rules that can change the value of a given

attribute. Use the Rule Analyzer to perform the following tasks:

■ Determine the rules that influence an attribute.

■ View the text of a rule or attribute that is selected.

For step-by-step procedures for opening the Rule Analyzer, see Using the Rule

Analyzer in the CA Aion BRE online help.

From the Rule Analyzer, you can view the organization and relationship between

rules and the attributes they use. You can also view these relationships by

checking the Forward Mode option in the right click pop-up menu. When the

Forward Mode option is not checked, the Analyzer is in Backward Mode.

■ Use Forward Mode when you want to know which rules will fire when you

assign a value to an attribute, and what attributes will be assigned values as

a result.

■ Use Backward copy Mode when you want to see which rules can assign

values to an attribute, and to determine which attributes are needed to get a

rule to fire.

Editors

CA Aion BRE has many editors. Most of the application development process

takes place in these editors. This section describes tab pages, procedures, and

then provides a brief overview of each following editors.

■ Association Editor

■ Class Editor

■ Decision Table Editor

■ Format Editor

■ Instance Editor

■ Menu Editor

■ Method Editor

■ Rule Editor

■ Query Editor

■ Stored Procedure Editor

■ Tool Editor

■ Window Editor

Editors

Chapter 4: How You Create and Edit Applications 103

Standard Tab Pages

The following tab pages are common to many editors:

■ The Properties tab page enables you to view and modify values for the open

object.

■ The Uses tab page displays objects to which the open object refers.

■ The Used By tab page displays objects that refer to the open object.

Standard Procedures

You can perform the following functions in each of the editors:

■ You can open application objects in the appropriate editor

■ You can open the base class and subclasses of a class in an editor

■ You can save work done in editors

■ You can discard work done in editors

These procedures are described on the following pages. To learn how to perform

procedures that are specific to a particular editor, see the cross-reference listed

in that editor's description under Editors.

Editors are sizable, floating windows that open in the Aion main frame window.

You cannot open an editor. Instead, you must “open” an object, thereby opening

the particular editor in which the object is displayed and changed.

CA Aion BRE imposes no limit on how many editors can be open at the same time

in a single session. Your memory and system resources, however, may impose

limits.

When you open an editor, the Aion BRE menu bar changes to display the options

available for that editor. Some of the options, including Save and Close on the

File menu, apply to the entire application, not just to the open editor.

Important! Following the Save or Close Editor procedure adds your changes to

the working application, but it does not add your changes to disk. You must

choose Save from the File menu to save your changes to disk.

For step-by-step procedures for the listed operations, see the following topics in

the CA Aion BRE online help:

■ Opening Objects in Editors

■ Opening Base Classes and Subclasses from Editors

■ Saving Changes in Editors

■ Discarding Changes in Editors

Editors

104 Product Guide

Association Editor

Use the Association Editor to perform the following tasks:

■ Define associations between classes

■ Specify the roles that each class plays in the association

By an association is meant a set of reciprocating attributes between two classes.

For example, classes may be associated as owner and owned, husband-of and

wife-of, or whole and part. In traditional programming, associations are typically

implemented by pointer attributes: each class in the association maintains a

pointer or list of pointers to (instances of) its associated class.

In CA Aion BRE, associations between classes are often handled by creating a

subclass of SysLib's _Association class rather than by hard-coded pointers. For

example, a subclass of _Association called Ownership might define a relationship

between the class PropertyOwner and the class Property that governs how an

application links various instances of these classes. The _Association class

provides the methods and attributes necessary to define the structure of an

association you wish to establish and to facilitate coding operations on that

association.

The Association Editor makes it easy for you to create subclasses of the

_Association class. The Association Editor allows you give a specific name to the

association, for example, Ownership, or Marriage, and to define the following

properties of the association:

■ Multiplicity constraints on the number of instances of each class that are

permitted to be associated within a single association

■ The roles played by each class in the association. (Roles provide public-like

attributes of the associated classes that allow programmatic navigation of

the association.)

Editors

Chapter 4: How You Create and Edit Applications 105

For step-by-step procedures for using the Association Editor, see Using the

Association Editor in the CA Aion BRE online help.

For greater flexibility in your designs, the Association Editor permits you to

define associations over _Interfaces. For example, aggregation could be defined

as an association over _Interfaces IWhole and IPart. The advantage of using

_Interfaces in this case is that you can now create a bill of materials structure of

aggregates of aggregates using just one association. A class representing an

element in the bill of materials could implement both the IWhole and IPart

_Interfaces.

For more information about associations, see the following in the CA Aion BRE

online help:

■ Associations

■ Using Associations

■ Association Class

Attribute Editor

Use the Attribute Editor to perform the following tasks:

■ Change attribute properties such as name, data type, access type, and initial

value

■ Record comments about the attribute

■ View lists of objects that use and that are used by the attribute

More Information:

Attributes (see page 213)

Editors

106 Product Guide

Class Editor

Use the Class Editor to perform the following tasks:

■ Change the name of a class

■ Designate a class as the application's entry class

■ Add a class to the Objects tab page under User Objects

■ Export a class

■ Specify interfaces for a class (see Develop Interfaces)

■ Record comments about a class

■ View lists of objects that use and that are used by a class

■ View a list of the methods and attributes owned by a class

■ Specialize inherited members of a class

Members Tab Page
The Class Editor's Members tab page contains a list of class members (the methods, attributes, and constants owned by a class). To customize how information displays on the Members tab page, use options on the menu bar's View menu.

For step-by-step procedures for using the Class Editor to specialize class

members, see Using the Class Editor in the CA Aion BRE online help.

More Information:

Set Explorer/Workspace Options (see page 100)

Object Generation Overview (see page 390)

Decision Table Editor

A decision table consists of a set of conditions and a set of actions. It is similar to

a collection if IFRULES with related premises and actions. Decision tables display

logic and decision flow in a graphical, easy-to-follow format.

Use the Decision Table Editor to create and maintain decision tables. Creating a

decision table includes opening the Decision Table Editor, adding new Conditions

and Actions, and generating the table.

More Information:

Editing Decision Tables, see Creating and Opening Decision Tables in the

“Decision Tables” chapter of the CA Aion BRE Rules Guide.

Editors

Chapter 4: How You Create and Edit Applications 107

Instance Editor

Use the Instance Editor to perform the following tasks:

■ Modify attributes (such as filename and handle) of static instances

■ View a list of objects that use and that are used by the instance

More Information:

Create Resources (see page 177)

Dynamic versus Static Instances (see page 70)

Menu Editor

Use the Menu Editor to edit menus for graphical user interfaces. The Menu Editor

displays a graphical representation of a menu title and its menu items. The

position of each item in the Menu Editor's display indicates where it appears on

the menu at runtime.

When the Menu Editor is open, you have access to the following tools:

■ Commands on the Screen menu that you can use to:

– Add titles and items to the open menu

– Re-arrange the items in each title contained in the open menu

■ Add Menu Item button on the Menu Create toolbar

■ Properties dialog for each menu title and item

■ Method Editor, in which you can create event-triggered methods such as

WhenChosen and WhenSelected for menu items you create in the editor

More Information:

Add Controls to Windows (see page 151)

Method Editor

Use the Method Editor to perform the following tasks:

■ Change method properties such as name, data type, access type, and style

(class, external, disabled, event, or DI member)

■ Record comments about the method

■ View and modify the method's input/output arguments and its body

Editors

108 Product Guide

Implementation Tab Page

Use the Method Editor's Implementation tab page to edit a method's

input/output arguments and its body. The Method Editor toolbar and the mouse

pop-up menu can help you format and parse logic statements on this page. You

can also edit arguments on the Properties page.

For step-by-step procedures for opening the editor for a method and for invoking

help for a method, see Using the Method Editor in the CA Aion BRE online help.

Customize the Method Editor

You can modify the way code is displayed on the Method Editors Implementation

page by using the Method Editor Options. The values set in this dialog are

recorded in your system registry, not in the application's files, so they apply to all

CA Aion BRE sessions run on your machine.

For step-by-step procedures for customizing the Method Editor's

Implementation page, see Customizing the Method Editor in the CA Aion BRE

online help.

More Information:

Choose Fonts (see page 144)

Method Editor (see page 190)

Rule Editor

The Rule Editor provides a structured environment for writing and editing rules.

Use the Rule Editor to perform the following tasks:

■ Browse the rules in an entire rule method.

■ Easily add or remove rules by cutting or pasting items.

■ Edit all the properties of a rule.

■ Add new rules using the Logic menu options: New, If Rule, When Rule, When

Match, or If Match.

For step-by-step procedures for opening the Rule Editor, see Using the Rule

Editor in the CA Aion BRE online help.

Editors

Chapter 4: How You Create and Edit Applications 109

Properties Tab Page

Use the Properties tab page to set the following properties for the Rule Method:

■ Method Name

■ Access type

– Public

– Protected

– Private

■ Comments

■ Class Method (Use the check box to set the Class Method property)

Rules Tab Page

Use the Rules tab page to toggle the current rule method, and to edit the

following properties for each rule:

■ Rule Name

■ Priority

■ Demon Rule (use the check box to set the Demon Rule property)

■ Comments

■ Premise

■ Action

More Information:

For Rules and Inferencing see the CA Aion BRE Rules Guide and CA Aion BRE

Rules online help.

Query Editor

Use the Query Editor to perform the following tasks:

■ Browse through a catalog of database tables and of the columns within those

tables

■ Define field attributes mapped to the table columns

■ Change the query's Select statement

Editors

110 Product Guide

■ Change the properties of a query. This facility controls what information is

retrieved from the database by the query editor, what conventions are used

to construct the SQL statement, how NULL database values are treated in

Aion, and whether static or dynamic SQL will be used (dynamic SQL is the

default).

Note: To change the properties of a query, it is necessary to access the

Query Properties dialog:

1. Open the query editor for the query class that you want to work with.

2. In the top right pane of the Query Editor, right-click the query class icon.

3. Select Properties from the pop-up menu. The Query Properties dialog

will open.

More Information:

Query Editor (see page 224)

Stored Procedure Editor

Use the Stored Procedure Editor to perform the following tasks:

■ Browse through a catalog of a database's stored procedures and of the

parameters within those stored procedures

■ Define markers mapped to the parameters

■ Change the stored procedure's Execute statement

More Information:

Access Data (see page 217)

Editors

Chapter 4: How You Create and Edit Applications 111

Tool Editor

The Tool Editor displays a graphical representation of a toolbar. Use this editor to

create toolbars for graphical user interfaces.

When the Tool Editor is open, the following features are available:

■ Commands on the Screen menu that you can use to

■ Add tools to the open toolbar

– Rearrange the tools contained in the open toolbar

■ The Add Toolbar Item button on the Menu Create toolbar

■ The Properties dialog for each toolbar and tool item

■ The Method Editor, in which you can write event-triggered methods such as

WhenChosen and WhenSelected for tools

More Information:

Add Toolbars to Windows (see page 171)

Window Editor

Use the Window Editor to construct windows and dialog boxes.

When the Window Editor is open, you have access to the following tools:

■ Color and font bars to modify a control's color and text

■ Layout toolbar to organize the elements of the window or dialog box

■ Properties dialog to change appearance, behavior, and title of the window or

dialog box

■ Screen menu to create controls and add event-triggered methods to them

■ Test mode to preview the runtime appearance of the window or dialog box

■ Window Editor toolbar to add controls and graphics to the window or dialog

box

More Information:

Work with Windows and Dialog Boxes (see page 146)

Create a Constrained Attribute

112 Product Guide

Create a Constrained Attribute

CA Aion BRE allows the programmer to specify constraints on attributes, that is,

to restrict the possible values of an attribute to a specific subset of the total

values that an attribute of the given type may have. For example, a String

attribute, which can have an infinite number of values, may be restricted to just

the seven values that comprise the days of the week. In Aion, such constraints

are provided through the mechanism of a constrained data type.

The procedure for defining a constrained data type is described in Specifying a

Constrained Data Type in the CA Aion BRE online help.

The following section describes, in detail, how to construct the specification of a

constraint-in other words, how to specify the Initial value of the Constraints

attribute.

More Information:

Overview of CA Aion BRE Objects (see page 43)

Create a Constrained Attribute

Chapter 4: How You Create and Edit Applications 113

Specify a Constraint

The basic constructions used to specify a constraint are:

Is from(constraintExpression) or Is not from(constraintExpression)

Where constraintExpression is an atomic expression or a combination of atomic

expressions separated by a comma. Atomic expressions consists of the following

expressions:

■ The keyword NULL

■ A specific integer, real, string, or Boolean valueA Range expression (not

supported for strings and Booleans)

Integer values may range between +/- 2147483646; real values may range

between 1.0E+/-306. Strings must be quoted in constraint expressions.

Range expressions specify ranges of values and are formulated similarly to the

syntax used in the decision table editor, that is, ranges between numerical limits

are expressed with the “..” operator. The following constraint operators are

available:

■ =, <, <=, >, >=

Note: It is possible to define attribute constants in terms of Constrained Data

Types. The constraint would be restricted to the single value that is the value of

the constant attribute.

Note: Because constraints are specified as a string in the Initial Value field of the

Constraints attribute, internal strings need to be double quoted; for example:

"is from(""Green"", ""Red"")"

Examples:

Valid range expressions are:

■ <= 100

■ > 0

■ = 1 (equivalent to a constant attribute)

■ >20..<50

■ >=20..<50

■ >20..<=50

■ >=20..<=50

Create a Constrained Attribute

114 Product Guide

Valid values for constraints on integers are:

■ Is from (NULL, >=1..<=100)

■ Is from (>=20..<30, >=70)

■ Is not from (-25, 10, 20, NULL), which is equivalent to

– Is not from (=-25, =10, =20, =NULL)

– Is from (35), which is equivalent to a constant attribute

Valid values for constraints on strings are:

■ Is not from (“Gray”, “Black”)

■ Is not from (“Black”)

■ Is from (“Red”), which is equivalent to a constant attribute

■ Is from (“Red”, “Blue”, “Green”, “Yellow”, NULL)

Valid values for constraints on Booleans are:

■ Is not from (NULL)

■ Is from (TRUE, FALSE)

Invalid value ranges, such as the following, will be detected at edit time:

■ Is from (>=20..>100)

Note: Redundant constraint expressions such as Is from (NULL, NULL) or Is

from (“Red”, “Red”) will not be flagged as an error.

However, logical errors across atomic expressions, such as the following, will not

be checked for:

■ Is not from (>10, > 25): a constraint expression subsumes another

■ Is from (<10, >10): incompatible constraint expressions, no value complies

with the constraint

You cannot constrain individual elements of an array or list differently, but you

can constrain all elements of an array or list to a set of values. In other words, a

single constraint on the array or list applies to each member of the array or list.

Constraints on arrays and lists are specified in a similar manner as for individual

basic data types.

Attribute Declarations Using Constrained Data Types

Once a constrained data type has been defined, it may be used to declare the

Type of an attribute. User defined constrained data types created in an Aion BRE

application are automatically made available in the Type drop-down box of the

Attribute editor.

Create a Constrained Attribute

Chapter 4: How You Create and Edit Applications 115

Constraints Restrictions

The following conventions apply to using constrained data types in an Aion BRE

application:

■ An array can be assigned a value of NULL even if NULL is not included in the

list of its constraints. For lists and the other four basic data types, this is not

the case; if you want NULL to be a valid value you must specify NULL as one

of the valid values in the constraint list.

■ You cannot declare local variables of any of the four constrained data types

or of types derived from these four.

■ You cannot declare class/instance attributes to be of the four basic

constrained data types; the type must be a type derived from any of these

four constrained types.

■ Method return types or arguments cannot be any of the four constrained

types or types derived from these.

Operation of Constraints

This section describes the edit-time and runtime operation of constraints and

runtime behavior when a constraint violation is detected.

Edit-Time Considerations

A constraint on an attribute is in effect at edit time. Constraint checking is

applied to direct assignments and assignments made through the initial value

field.

■ Constraining the Initial Value Field

The default “Initial value” for any attribute is NULL. For constrained

attributes, an edit time error message will be displayed if NULL is specified as

an “initial value” but is not included in the list of constraints for that attribute.

The only exception to this rule occurs in the case of arrays, where NULL will

be allowed as an “initial value” even if it is not specified in the constraints.

Create a Constrained Attribute

116 Product Guide

■ Effect on assignments and comparisons

Any assignment to a constrained attribute must use a value consistent with

the specified constraint on that attribute, otherwise an error message will be

displayed.

However, edit-time checks on comparison are not performed. For example, if

intAttrb is an integer attribute constrained to be <= 100, the following

comparisons will not be detected as errors at edit-time:

if intAttrib > 120. . . // Comparison will always be false at runtime

loop . . . breakif (intAttrib > 120) // Will allow an infinite loop!

Nor will constraints be enforced on For-loops controls. The following code will

not signal an error at edit-time:

for intAttrib = 120 to . . . // Note: local variables are typically used

for // loop control

Runtime Considerations

Constraint violations are detected at runtime in the following situations:

■ expression evaluation, for example (where intAttrb is constraint to be <=

100):

intAttrib = 5 * XYZ // where XYZ is any non-constant expression and its

 // value, multiplied by 5 exceeds 100.

■ return value from a method, for example:

intAttrib = XYZ_method(5) // where XYZ_method returns a values that exceeds

 // 100 based upon its input argument.

■ the attribute being passed as an output argument of a method, for example,

XYZ_method(out Quantity) // where XYZ_method sets the value of the output

 // argument to be > 100

However, CA Aion BRE does not enforce constraints in for-loop assignments. For

example, the following code will not be detected to be in error even at runtime

and may lead to unpredictable results if the control attribute is used in the body

of the loop (again, where intAttrib is constraint to be <= 100):

for intAttrib = 120 to . . .

Runtime Behavior

How CA Aion BRE indicates a constraint violation at runtime differs between the

interpretive (debugging) environment and the production (compiled)

environment. Also, constraint violation behavior is different when using certain

methods of attributepointer.

Copy and Paste Objects

Chapter 4: How You Create and Edit Applications 117

Behavior at interpretive runtime is a follows:

■ On Windows:

When the application is run interpretively, a constraint violation will be

reported using a dialog box. The user may choose to continue with the

execution of application. Execution will continue with the new value. This

kind of continuation will allow for further debugging of code.

■ On UNIX and Mainframe:

An error message will be displayed on the standard output and execution will

be aborted.

On the other hand, at compiled runtime constraint violations will be written to

the aion.log file under the Windows environment if tracing is turned off. Under

Unix and on the mainframe, violations will be reported through standard output.

In addition, an error message indicating the constraint violation will be written to

the trace file if tracing has been turned on. In all cases, execution of the

application will be aborted.

Finally, the following methods of AttributePointer return FALSE if the given

attribute value violates a constraint on the attribute:

■ AttributePointer::AssignAttributeValue()

■ AttributePointer::SetAttributeValue()

■ AttributePointer::SetNullValue()

In case of a constraint violation, there is no application abort or no error message

displayed. It is the programmer's responsibility to handle the return value and

process it accordingly.

Note: A value of FALSE could also be returned if the assignment fails for any

other reason, such as a mismatch in the base type of the attribute and the value.

Copy and Paste Objects

You can copy and paste objects within the same application and between

different applications.

For step-by-step procedures for copying and pasting an object, see Copying and

Pasting Objects in the CA Aion BRE online help.

For step-by-step procedures for copying, and pasting controls, see Copying and

Pasting Controls in the CA Aion BRE online help.

Delete Objects

118 Product Guide

Delete Objects

You can delete application objects from the following locations:

■ Class Editor

■ Explorer

■ Output Window

■ Project Workspace

For step-by-step procedures for deleting an object, see Deleting Objects in the

CA Aion BRE online help.

For step-by-step procedures for deleting controls, see Deleting Controls in the

online Procedures.

Edit Toolbars

CA Aion BRE provides a number of ready-made toolbars to give you quick access

to common editing tasks. You can change the set of toolbars displayed during a

development session and the set of tools displayed on a toolbar. You can also

create your own toolbars.

Like the Output Window and the Project Workspace, toolbars can be docked

(horizontally or vertically) or floated, and they can be dragged outside the Aion

main frame window. By default, toolbars are docked to the top of the main frame

window.

To display balloon help that describes a tool's function, place your cursor over

the tool, and leave it there for a moment.

See Using Edit Toolbars in the CA Aion BRE online help for step-by-step

procedures for performing the following operations:

■ Relocating a toolbar

■ Adding a tool to a toolbar

■ Removing a tool from one toolbar and adding it to another

■ Deleting a tool from a toolbar

■ Restoring a toolbar's original set of tools

For step-by-step procedures for creating a new toolbar, see Creating a New

Toolbar in the CA Aion BRE online help.

Edit Toolbars

Chapter 4: How You Create and Edit Applications 119

More Information:

View Applications (see page 91)

Customize Toolbars (see page 122)

Supplied Toolbars

The toolbars described in this section are standard.

Data Create Toolbar

Use the Data Create tools to add database connections, queries, and stored

procedures to your application.

Decision Table Toolbar

Use the Decision Table tools to order rows in, and to add conditions and actions

to a decision table.

Edit Toolbar

Use the Edit tools to undo, cut, copy, and paste the following items:

■ Selected objects in the Project Workspace, the Explorer, and the editors

■ Selected text strings in edit control fields (such as name, comment, or

method body fields)

Edit Toolbars

120 Product Guide

Flow Control Toolbar

Use the Flow Control tools to open, save, and close editors and to explore, find,

and open objects.

When a class is open in an editor, the Flow Control toolbar gives you quick access

to the class's base class and subclasses. To open its base class, click the blue

L-shaped arrow icon. To open its subclasses, select them from the drop-down list

box. The subclasses in the preceding figure are displayed when WinLib's

FrameWindow class is open.

Layout Toolbar

Use the Layout tools to carry out various aligning, sizing, spacing, and ordering

tasks in the Window Editor.

Menu Create Toolbar

Use the Menu Create tools to add menu items to menu titles and tool items to

toolbars.

Method Editor Toolbar

Use the Method Editor tools when formatting and parsing logic statements in

method bodies. These tools enable you to tab lines left and right, comment lines

out, paste in operators and constructs, and find and replace text within a method

body.

Edit Toolbars

Chapter 4: How You Create and Edit Applications 121

Object Create Toolbar

Use the Object Create tools to add classes, attributes, methods, and instances to

your application.

Other Create Toolbar

Use the Other Create tools to add data types, associations, and interfaces to your

application.

Query Editor Toolbar

Use the Query Editor tools to add field attributes, markers, and calculated fields

and to invoke the SQL paster and the query test facility.

Standard Toolbar

Use the Standard tools to create, open, close, save, run, debug, and build

applications; to show and hide the Project Workspace and Output Window; and

to open the CA Aion BRE online help.

Window Create Toolbar

Use the Window Create tools to add standard windows, dialog boxes, control

groups, menu titles, toolbars (runtime), and ActiveX controls to your application.

Customize Toolbars

122 Product Guide

Window Editor Toolbar

Use the Window Editor tools to add controls and graphics to windows as you build

them in the Window Editor.

Customize Toolbars

Use the Customize dialog to perform the following tasks:

■ Change the set of displayed toolbars

■ Change the set of tools displayed on a particular toolbar

For step-by-step procedures for customizing a toolbar, see Using Edit-Time

Toolbars in the CA Aion BRE online help.

Work with Included Libraries

The ability to include libraries in applications enables you to share code among

applications. You can share screens and simple functions or entire business

models. When you include a library in an application, all the classes and

instances defined in that library become available for use in the current

application.

To display a list of the libraries included in an application, expand the Libraries

node on the Libraries tab page of the Project Workspace.

Note: Not all libraries in this list have been directly included in the application.

Some have piggybacked in as included libraries of directly included libraries. To

learn which are which, open the Included Library Editor.

For step-by-step procedures for displaying the properties of an included library,

see Working with Included Libraries in the CA Aion BRE online help.

More Information:

Applications (see page 43)

Work with Included Libraries

Chapter 4: How You Create and Edit Applications 123

Include and Remove Libraries

You must use the Included Library Editor for the following tasks:

■ To include a supplied or custom-built library in an application

■ To remove an included library from an application

■ To view information about an application's included libraries

To open the Included Library Editor, choose Edit Library Includes from the File

menu.

Note: The Edit Library Includes option is available only for applications that have

no unsaved changes. If this option is disabled, choose Save from the File menu

to enable it.

Included Library Editor Fields

Use the fields in the Included Library Editor as follows:

■ The Included Libraries field lists the libraries that have been directly included

in the application. To view information about a library or to remove a library

from the application, you must first select it in the Included Libraries field.

Libraries that appear beneath the Libraries node on the Project Workspace's

Libraries tab page but that do not appear in the Included Libraries field were

not directly included in the application. Instead, they piggybacked in as an

included library of one of the libraries listed in this field. When you select a

library in the Included Libraries field, a list of its included libraries (that is,

the piggybacked libraries) is displayed beside the Included Libraries label in

the Library Specific Information field (see the next bulleted item).

■ The Library Specific Information field lists the selected library's included

libraries and displays all text entered on the Comments tab page of the

selected library's Library Properties dialog.

The Run Compiled option specifies whether to run the included library's built

version (checked) or its interpreted version (unchecked) when you run the

application. If you run the built version, you cannot debug into the included

library at runtime.

Work with Included Libraries

124 Product Guide

■ The Included Library Path fields specify the directories in which an

application's included libraries (whether custom-built or supplied by Aion)

are located. These fields can include multiple directories. Place a semicolon

(;) between paths as follows:

C:\Program Files\CA\AionBRE\init;c:\libs

System-The paths entered in this field are used by all applications opened

on your computer, and they persist from one session of Aion to the next.

Note: The information contained in the System field can also be modified in

the Included Library Path field of the Settings dialog.

Application-The paths entered in this field are written to an application's

.app file and are used only by that application. This feature enables you to

transfer an application to other users without their needing to know the

location of your application's included libraries (provided they are using the

same network, drive names, and directory structure as you).

For step-by-step procedures for including a library in or removing a library from

an application, see Including and Removing Libraries in the CA Aion BRE online

help.

More Information:

Customize the Development Environment (see page 89)

Open Applications That Have Included Libraries

When you open an application that has included libraries, Aion searches for the

included libraries in the following three locations, checking these locations in the

order listed:

■ The directory in which the application is located (that is, the “current”

directory)

■ The Application field of the Included Library Editor

■ The Included Library Path field of the Settings dialog

Keep this search order in mind when deciding where to locate an application's

included libraries. If several libraries on your system have the same name, Aion

uses the first of those libraries that it finds when searching for an application's

included libraries.

Note: If an application's included libraries are not stored in one of these three

locations, the application either will not open or will open with invalids.

More Information:

Customize the Development Environment (see page 89)

Work with Included Libraries

Chapter 4: How You Create and Edit Applications 125

Libraries Included with Aion BRE

CA Aion BRE ships with the following libraries installed.

■ actxlib.app

■ autolib.app

■ cobslib.app

■ complib.app

■ datalib.app

■ domlib.app

■ dynrdlib.app

■ dynrelib.app

■ dynrlib.app

■ empty.app

■ guiv7lib.app

■ iolib.app

■ iowlib.app

■ mqlib.app

■ reclib.app

■ rmlib.app

■ saxlib.app

■ starter.app

■ syslib.app

■ varlib.app

■ winlib.app

■ xmllib.app

■ xsdlib.app

Work with Source Control

126 Product Guide

Work with Source Control

Source control programs safeguard application code in a multideveloper

environment by permitting only one developer at a time to modify application

files housed in a source control program. Source control programs also save and

store sequential versions of application files, preserving your code at various

stages of development and enabling developers to review the history of a file's

changes and to revert to an earlier version of the file if necessary.

Aion BRE works with any third-party source control program that conforms to the

SCC API standard established by Microsoft.

Note: For information about installing a particular source control program, see

the documentation provided by the program's supplier.

You can add an entire Aion BRE application to a source control program by

adding only the application's .app file or files and any graphic resource files that

it uses (such as .bmp, .cur, .ico, and .stg directory files).

Note: To facilitate simultaneous development under source control, you should

divide your application into smaller libraries. Aion will generate an .app file for

each library. This allows developers to check out an .app file that encompasses

just one part-or module-of the application without locking other developers out

of their respective modules.

More Information:

.APP and .BIN Files (see page 80)

Work with Source Control

Chapter 4: How You Create and Edit Applications 127

Set Source Control Safeguards

CA Aion BRE provides optional prompts to help keep your interaction with a

source control program error-free. You set these prompts in the Source Control

Options dialog.

To open the Source Control Options dialog, from the Tools menu, select Options,

Source Control.

The Source Control dialog options are global: they affect all applications running

on your computer; their values are stored in your system's registry; and they

persist from one session to the next.

■ To display a dialog that lets you check out a file from source control if you try

to edit the file while it is checked in, select the Check out source file when

edited option.

■ To display a dialog that lets you check files in to source control if they are

checked out when you close Aion, select the Check in file when closing the

application option.

■ To display a dialog that lets you save an application if you try to check the

application in to source control without saving its changes, select the Prompt

to save application before source control operation option.

Note: By default, Aion prompts you to save the application before and after

source control operations. You should not disable this prompt.

■ To display a dialog that lets you restore an application if you check the

application's .app file out to a directory containing the application's

out-of-date .bin files, select the Prompt to restore application after source

control operation option.

■ To see additional options (if any) supported by your source control program,

click Advanced. (If the source control manager that you use does not support

additional options, this button is disabled.)

When Advanced is clicked, the source control program displays its

Preferences dialog and is responsible for getting and for maintaining the

persistence of information in that dialog.

Work with Source Control

128 Product Guide

Source Control Menu Options

The Source Control option on the Tools menu supports the following source

control program operations. Depending on the state of an application, some

options may be unavailable at certain times. In addition, not all source control

programs support all these options.

Operation Result

Get Latest Version Copies the latest version of the .app file from

source control into the current working directory

but does not prevent the master copy of the .app

file from being checked out and edited by other

users.

Check Out Copies the latest version of the .app file from

source control into the current working directory

and makes the master file read-only for all other

users.

Check In Copies the checked out version of the .app file

from your working directory to source control,

creating a new version of source control's master

file.

Undo Check Out Nullifies a check out that has not been checked in,

canceling all changes made since the file was

checked out.

Add to Source Control Copies the selected application's .app file to

source control if the .app file is not already in

source control.

Remove from Source

Control

Deletes the currently selected application's .app

file from source control.

Show History Displays a list of all the versions of the .app file

stored in source control.

Show Differences Displays the differences between a version of the

.app file in source control and the corresponding

.app file in your working directory.

Source Control Properties Displays information about the .app file in source

control.

Work with Source Control

Chapter 4: How You Create and Edit Applications 129

Operation Result

Share from Source Control Copies a file from another source control project

into the current project, creating a link between

the two projects. Checking the file in to or out of

either project checks it in to and out of both

projects.

Refresh Status Updates the file status display in the source

control window (which tracks file changes made

by all source control users).

Source Control Browser Finds the source control program, and opens it in

Aion.

For step-by-step procedures for adding an application to Source Control and for

checking an application in and out of Source Control, see Working with Source

Control in the CA Aion BRE online help.

Enable Concurrent Development

If you want multiple developers to work on the same .app file at the same time

and then to merge their changes in source control, you must set the appropriate

option in the source control program when you install it. You cannot enable this

option through Aion.

For more information about enabling concurrent development through source

control, refer to the documentation that came with your source control program.

Change Management

130 Product Guide

Change Management

Source control programs coordinate development at the component level by

allowing only one developer at a time to work on an .app file. Change

Management, on the other hand, tracks, documents, and controls development

at the object-property level, enabling multiple developers to work concurrently

on the same .app file and then to merge their changes.

For step-by-step procedures for working concurrently on the same .app file, see

Working with Change Management in the CA Aion BRE online help.

For step-by-step procedures for performing additional change management

operations, see the following topics:

■ Set the Baseline

■ View Change Files

■ Create a Change File (see CA Aion BRE online help)

■ Save Changes to a File

■ Apply Change File

Change Management Functions

The Change Management functions, located on the Tools menu, Work Group

option, perform the following tasks:

■ Track changes made to object properties in application files

■ Enable developers to document why changes have been made

■ Display records of changes for online viewing

■ Save records of changes for archiving, printing, and applying to files

■ Apply changes to application files, reporting any conflicts that arise

The following sections explain how to use the Change Management functions.

Set the Baseline

A baseline file is a copy of an .app file that preserves the .app file's code at a

given moment of development, creating a gauge against which Aion can track

subsequent changes made to the properties of the objects in the .app file. To

begin tracking modifications with Change Management, you must generate a

baseline file for the .app file.

For step-by-step procedures for setting the baseline file, see Setting the Baseline

in the CA Aion BRE online help.

Change Management

Chapter 4: How You Create and Edit Applications 131

View Changes

Once you create a baseline file, you can use the View Changes function of

Change Management to see the differences between the baseline file and the

current state of your .app file.

To view differences between the baseline and the current file

From the Tools menu, choose Work Group, View Changes. The View Current

Changes dialog opens:

Note: To display changes made to an .app file, you must set a baseline for the

.app file before you modify it. You do not, however, need to create a change file

for it.

If you select View Changes before setting a baseline or, if you previously set a

baseline, before making any changes to a file, Aion displays the message No

Changes in Change File instead of the View Current Changes dialog.

For more information, see Viewing Change Files in the CA Aion BRE online help.

Changed Components Field

The Changed Components field of the View Current Changes dialog lists all the

objects (that is, classes, methods, attributes, and instances) that have changed

in the .app file since the baseline file was last generated. In addition, if you add

or remove an included library, this field displays an item that compares your

application's baseline set of included libraries with its current set.

Change Management

132 Product Guide

Each item in the list is prefaced by one of the following identifying words:

■ Insert-identifies an object that was added to the .app file after the baseline

was set.

■ Delete-identifies an object that was removed from the .app file after the

baseline was set.

■ Change-identifies an object that was modified after the baseline was set.

The information following the identifier consists of (1) the object's name, (2) its

owning class, and (3) its type. For example, the following entry indicates that a

method named Create and owned by the class AppWindow was modified after

the baseline was set:

change: Create AppWindow (Method)

Changed Component Information Field

When you click an object in the Changed Components field, details about the

properties of the object that were changed are displayed in the Changed

Component Information field. The current state of the property displays first,

and the baseline state displays beneath the heading “Old Value.”

Save Changes to a File

To preserve a record of the changes made to an .app file, you must save them to

a change file. Change files are ASCII text files that contain the results of a

comparison between the current state of an .app file and its baseline. Change

files list all objects and object properties that have been added, revised, or

deleted in the .app file since the baseline (or .bsl) file was last generated.

For step-by-step procedures for creating and viewing change files and applying

change files, see Working with Change Management in the CA Aion BRE online

help.

Apply Change File

Use the Apply Change File function to incorporate a change file's changes into an

.app file. If you have change files from several independently modified copies of

an .app file, you can use this function to merge those change files into a single

.app file.

For step-by-step procedures for creating, saving, and viewing change files and

applying change files, see Applying Change Files in the CA Aion BRE online help.

Produce Reports for an Application

Chapter 4: How You Create and Edit Applications 133

Manual Repairs

When applying multiple change files to a master .app file, be aware that a

change made to an object property in one change file can overwrite a change

made previously to the same property by another change file. To avoid doing a

lot of manual repair work to fix overwritten changes, it is a good idea to review

the changes in all change files before applying any of the change files to the

master. You can then order the application of the change files to avoid canceling

out as many changes as possible.

For example, if change file A adds a significant amount of code to a method while

change file B contains a one-line change to the same method (among other

changes) and you want to incorporate both method changes into the master file,

applying file A after file B will minimize the repair you must make to the master

file to get both changes into the final version of the method.

Produce Reports for an Application

CA Aion BRE provides facilities for producing reports about the contents of a

knowledge base. These include reports on:

■ Specific objects

■ An entire library

■ A single class

■ Aion documentation, including the business logic of the application (the

applications static rules and decision tables)

The Application Print utility provides the ability to print hardcopy reports about

specific objects, an entire library, or a single class. You can define the content of

these reports in the Application Print Utility dialog.

For step-by-step procedures for configuring the application print utility to print

hard-copy reports directly from the knowledge base, see the following topics in

the CA Aion BRE online help:

■ Printing Reports for a Specific Object

■ Printing Reports for an Entire Library

■ Printing Reports for a Single Class

Generating Aion Documentation requires special considerations.

More Information:

Printed Report Contents (see page 134)

CA Aion BRE Documentation (see page 134)

Produce Reports for an Application

134 Product Guide

Printed Report Contents

Reports printed using the Application Print utility are structured as follows:

■ The header-specified in the Application Print Utility dialog-appears at the top

of each page.

■ The first item in a global report is the application's name, which appears in

boldface type. This item does not appear in local reports. If you check the

Detail Library Info option, information about an application's owner, build,

and revisions follows its name.

■ In global reports, a list of included libraries follows the application

information. This list of libraries does not appear in local reports. If you check

the Detail Library Info option, information about a library's owner, build, and

revision follows each library name.

■ In global reports, a list of all the application's classes appears after the list of

included libraries. This list does not appear in local reports.

■ Finally, a section devoted to each listed class appears. This is the first and

only section of local reports which contains information about just one class.

Comments and information about the class's members (attributes,

constants, static instances, and methods) and about its base class appear in

these sections. If you do not check the Header Format option, detailed

information about each of the class's methods is also printed.

For step-by-step procedures for printing an application report, see Printing an

Application Report in the CA Aion BRE online help.

CA Aion BRE Documentation

The CA Aion BRE Documentation (AionDoc) report provides customizable

documentation of an Aion BRE knowledge base in an HTML format. The

advantages of the Aion Documentation report are that it can include multiple

libraries and it can focused to produce documentation for a specific purpose. For

example, the report can be customized to report just the exported classes of an

application (the interface of the Aion BRE component) or to report the business

logic of the application from the perspective of management and domain

experts.

Produce Reports for an Application

Chapter 4: How You Create and Edit Applications 135

The CA Aion BRE Documentation report is generated by selecting the Generate

AionDoc option on the File menu. Reporting options provided by the AionDoc

wizard allow you to generate documentation for

■ Any or all libraries contained in the application

■ The exported classes in the application

■ The datatype, class, and interface hierarchies

■ The business logic of the application (the rules and decision tables of the

application)

■ The implementation of methods

■ Any static objects

■ The rule network

To remain in the dialog and enable the Close Wizard button for optional use,

uncheck the Close Wizard at Close checkbox.

For a step-by-step procedure for generating an CA Aion BRE Documentation

Report, see Generating CA Aion BRE Documentation in the CA Aion BRE online

help.

The CA Aion BRE Documentation report includes indexes for Libraries, Classes,

and Rules in an application. The Libraries report contains the complete class

hierarchies, up through SysLib, of the classes in the selected library; the Classes

report contains documentation on each class in the libraries selected in the

AionDoc wizard according to the desired options; the Rules report contains the

documentation and content of the rules methods in the selected libraries

according to the desired reporting options. Rich hypertext links in each report

allows convenient navigation.

The CA Aion BRE Documentation HTML-file must be linked with a cascading style

sheet. To view the report with a predefined style sheet, aiondoc.css, the AionDoc

output path should point to the directory containing aiondoc.css. By default this

directory is the \AionDoc subdirectory within the Aion install directory. The

aiondoc.css file can be customized by users familiar with cascading style sheets.

The HTML file that Aion generates can be viewed and printed with Internet

Explorer 5.

Note: Aion supports the use of HTML tags in Class and Rule comments. These

tags will be used when formatting these comments in the Aion Documentation

report.

Search for Objects by Name

136 Product Guide

Search for Objects by Name

The Look Up Object utility helps you find a single object quickly. This utility is

useful when you know the name of the object that you want to find but cannot

remember what class or included library it belongs to.

For step-by-step procedures for using the Look Up Object utility, see Searching

for Objects by Name in the CA Aion BRE online help.

Search for Objects by Multiple Criteria

Use the Find utility to search for objects or text strings in an application and its

included libraries. This utility is especially useful for finding groups of related

objects. For example:

■ To list all classes containing “win” in their names, enter *win* in the Name

field, and check Class in the Types field.

■ To list all methods whose names begin with “When,” enter When* in the

Name field, and check Method in the Types field.

■ To list all objects containing the text “create,” enter create in the Search

String field, enter an asterisk (*) in the Name field, and check Any in the

Types field.

You can also use the Find utility to get a count of objects by type.

Example:

■ To see how many attributes the open application contains, leave the Search

String field blank, enter an asterisk (*) in the Name field, check Attribute in

the Types field, and select Global. On the Results tab page of the Output

Window, the list of attributes returned from the search will be grouped under

a header stating how many attributes were found. For example,

Attribute in all classes defined in local library {97 objects found}

For step-by-step procedures for using the Find utility, see Using the Find Utility in

the CA Aion BRE online help.

Replace Text

Use the Replace utility to find and replace text in an application.

For step-by-step procedures for using the Replace utility, see Replacing Text in

the CA Aion BRE online help.

Search Across Applications

Chapter 4: How You Create and Edit Applications 137

Search Across Applications

The Find Library utility enables you to search for objects that reside in

applications other than the one in which you are working. This utility searches

through all applications located on a specified path, looking for objects by name,

looking for keywords in Comment properties, or looking for objects that contain

the specified search string in any of their properties.

For step-by-step procedures for using the Find Library utility to search across

applications, see Searching Across Applications in the CA Aion BRE online help.

More Information:

Create a Graphical User Interface (see page 139)

Chapter 5: Create a Graphical User Interface 139

Chapter 5: Create a Graphical User

Interface

CA Aion BRE provides tools for building a graphical user interface (GUI). This

chapter explains how to use those tools to create windows, controls, and

graphics for your application. This chapter also discusses techniques for

specializing the GUI objects supplied by CA Aion BRE to fit your application's

needs, and how to integrate your GUI objects with application logic.

For additional information on specific GUI objects and the classes from which

they are derived, see the “WinLib” chapter in the CA Aion BRE online help.

This section contains the following topics:

How You Create a GUI (see page 139)

Work with Object Properties (see page 141)

Work with Windows and Dialog Boxes (see page 146)

Add Controls to Windows (see page 151)

Add Menus to Windows (see page 163)

Add Toolbars to Windows (see page 171)

Add Graphics to Windows (see page 175)

Implement Logic to Run Your GUI (see page 178)

Conclusion (see page 186)

How You Create a GUI

In CA Aion BRE, there are four main steps to creating a graphical user interface.

After completing Step 1 and mapping out a design for your GUI, refer to the

following sections of this chapter to learn how to complete Steps 2, 3, and 4.

Step 1-Define data requirements.

Whether your application gathers its data from external databases, from user

input, or from a combination of these sources, you should define the graphical

requirements for working with that data before you begin creating your

interface.

How You Create a GUI

140 Product Guide

Step 2-Construct the application's main frame window.

New Aion BRE applications come with a main frame window named AppWindow

and the code required to create and open this window at runtime. AppWindow

contains no menus, toolbars, controls, or graphics, so you must create these

objects and attach them to AppWindow using the following tools:

■ Menu Editor to design menu titles and menu items

■ Tool Editor to design toolbars

■ Window Editor toolbar to add controls and graphics

■ Screen menu to design, attach, and align controls

■ Color and font tools to refine the appearance of the main frame window and

its elements

■ Properties dialog boxes to change text and other features of the main frame

window and its elements

More Information:

Stand-Alone Aion BRE Applications (see page 45)

Step 3-Create dialog boxes.

Each dialog box that you create is displayed in the Window Editor. When a dialog

box is open in the editor, use the tools listed in Step 2 to customize it.

Step 4-Add logic.

Logic provides the network of decisions that run your application. GUI objects

require logic to perform the following tasks:

■ Opening AppWindow when the application starts.

■ Loading values into controls on the main frame window.

■ Opening dialog boxes. Such logic is normally included in an event-triggered

method attached to a menu item, push button, or toolbar.

■ Enabling controls on a dialog box to interact with other controls (choosing

one control enables another, and so forth).

■ Validating and processing user input in a dialog box. Input can be accepted

by controls on the dialog box.

■ Manipulating and saving collected data.

Work with Object Properties

Chapter 5: Create a Graphical User Interface 141

Work with Object Properties

In CA Aion BRE, each GUI object has multiple characteristics, or properties, that

describe the object. For example, a push button has properties such as Attribute

Name, Owning Class, Style, and Text (among others). A push button designed to

process user input on a dialog box might have the following values in those

properties:

■ Attribute Name: EnterInput

■ Owning Class: PushButton

■ Text: Enter

■ Style: Default Push Button

You set the values for an object's properties in the object's Properties dialog box.

All GUI objects-including windows, dialog boxes, menu titles, menu items,

toolbars, tool items, controls, and graphics-have Properties dialog boxes.

Open and Use Properties Dialog Boxes

This section discusses properties that are common to most interface objects. To

learn about properties that are specific to specific objects and to learn how to

open an object's Properties dialog box, see one of the following sections:

■ Standard Window and Dialog Box Properties

■ Control Properties

■ Menu Properties

■ Toolbar Properties

■ Graphic Properties

GUI Properties versus Container Properties

If you double-click a menu title, toolbar, or control group in the Window Editor of

its parent window, the clicked control's Container Properties dialog box, not its

Properties dialog box, opens:

Work with Object Properties

142 Product Guide

The Container Properties dialog box enables you to change the attribute name of

the control. A control's attribute name appears beneath its owning class in the

Project Workspace and on the Members tab page of its owning class's Class

Editor. The Properties dialog box, on the other hand, enables you to set the

control's runtime characteristics, which are the topic of this discussion.

Common Object Properties

Some properties are common to many or all application objects. For example, all

objects have an Attribute Name property. The following sections describe

common object properties.

Attribute Name

This is the object's system name. If you do not enter a name in this field

when you first save the object, a name is automatically assigned to the

object. Use this name to refer to the object in application logic (for example,

AttributeName.SetEnabled(true)). When you create event-triggered logic

for the object, the system uses this name in method titles such as

WhenAttributeNameChosen and WhenAttributeNameSelected.

Note: If you change the Attribute Name, references to the old name in the

application logic become invalid. To find and validate invalid references, use

the Invalids tab page in the Output Window.

Work with Object Properties

Chapter 5: Create a Graphical User Interface 143

Basic Window Styles

The window styles that you assign to a control determine aspects of both the

control's appearance and its behavior. There are four basic window styles:

■ Disabled-Use to disable a control when its parent window first opens.

Typically, a disabled control is enabled when a user chooses an

appropriate option with another control. To enable a disabled control at

runtime, use the SetEnabled method.

■ Group-Use to gather controls into groups that function (in some ways)

as one control. When you assign the Group style to a control, all the

controls that follow it-as listed in the Order Controls dialog box-become

part of that control's group. The group ends at the next control assigned

the Group style.

■ For example, if controls A, B, C, and D are listed alphabetically in the

Order Controls dialog box and you assign the Group style to controls A

and D, controls A, B, and C make up one group.

■ When controls are grouped, users can move keyboard focus among the

controls in the group with the arrow keys. When buttons are grouped,

users can choose only one radio button per group.

■ From the Window Editor Screen menu, choose Order to display the Order

Controls dialog box.

■ Tab Stop-Use to halt keyboard focus at a control when a user moves

focus among a window's controls with the tab key. When a user hits the

tab key, focus jumps to the next control-as listed in the Order Controls

dialog box-that has the Tab Stop style set. Controls without this style are

passed over.

■ Visible-Use to display a control when its parent window first opens. This

is the default for all controls.

■ To make an invisible control visible (or vice versa) at runtime, use the

SetVisible method.

Color

Many Properties dialog boxes include a Color push button. Click this to open

the Color dialog box, where you can set foreground (text) and background

colors for a control.

Owning Class

This is the name of the class from which an object is instantiated. The owning

class can be the original object class supplied in WinLib or a

developer-defined subclass.

Work with Object Properties

144 Product Guide

Pointer

This is the cursor shape displayed when a user moves the mouse pointer

over a control. When you click the Pointer push button, the Open Cursor

dialog box displays a list of predefined mouse pointer resources in the

Defined Pointers field. Select one of these, or use the list boxes for

Directories and Pointer Files to create a cursor resource from another .cur

file. If you do not select a pointer for this field, the predefined cur_normal

arrow cursor is used by default.

Note: The Pointer field must contain the name of a resource's static

instance, not the name of the *.cur file from which the resource was created.

For more information, see Create Resources.

Text/Title

Text specified in a Text or Title field is displayed on a control. This property

is available with controls:

■ Check boxes

■ Group boxes

■ Push buttons

■ Radio buttons

■ Static text

■ Tab pages

■ Text windows

Note: To display text with other controls, create a label using a static text

control.

Choose Fonts

You can use any font available through Windows on your interface objects. If

your application later runs on a computer that does not have the same font,

Windows substitutes the closest available font. To be reasonably sure that your

choice is always available, choose from the fonts provided by Windows.

For step-by-step procedures for choosing a font in the Window Editor, see

Choosing Fonts in the CA Aion BRE online help.

Work with Object Properties

Chapter 5: Create a Graphical User Interface 145

Choose Colors

Normally, the user's system determines interface object colors. Windows users

select a color scheme provided with Windows or create their own custom colors,

and these colors are used in all applications. In Aion BRE applications, however,

you can override the user's default system colors for some GUI objects.

Resetting a color is not recommended for general use. It can, however, help

emphasize a critical control or message. Colors can also be useful when working

with graphics. The Color dialog box offers you a wide range of colors and lets you

define custom colors.

The effect of changing the text color depends on the type of control you choose.

For controls that do not display text at edit time-such as combo boxes, list boxes,

and many text windows-the text colors you choose apply to text entered or

displayed at runtime

For step-by-step procedures for choosing colors in the Window Editor or in the

Color dialog box, see Choosing Colors in the CA Aion BRE online help.

Scope of Color Change

The extent to which you can change a control's color varies from control to

control as described in the following table:

Control Type Color Change

Check box

Radio button

Static text

Text, outline, and background change.

Combo box

Edit window

Group box

List box

Text window

Text and background change. Outline remains

black.

Image list

Tree list

Only background changes.

Image button

Progress bar

Push button

Scroll bar

Slider

Tab

Up-down

Nothing changes-color option is unavailable.

Work with Windows and Dialog Boxes

146 Product Guide

Work with Windows and Dialog Boxes

Often, an application contains one standard window and many dialog boxes. The

standard-or main frame-window frames the application and serves as a gateway

into it. The dialog boxes, which are also a type of window, open from this main

frame window, prompting users for input or displaying messages. Multiple

Document Interface (MDI) applications, which require a standard window for

each displayed view, are an extension of this single standard window design.

More Information:

Multiple Document Interface (see page 148)

Subclass Supplied Classes

CA Aion BRE provides two classes, StandardWindow and DialogBox, from which

you can create windows and dialog boxes for your GUI. These classes are derived

from the FrameWindow class in the WinLib supplied library.

StandardWindow and DialogBox are bare-bone containers designed to serve

only as base classes. When you create a window or dialog box using the Aion BRE

visual GUI-building tools, a subclass derived from one of these supplied classes

is automatically generated for you. This subclass inherits all the members

(attributes, constants, and methods) of its base class.

Using the tools provided in the Window Editor, you can customize a subclass by

modifying its inherited members to suit your application's needs. After

customizing a subclass, you can then use it as a base class for creating other

windows or dialog boxes.

Note: Developer-created subclasses are added to the application itself, not to an

included custom or supplied library, such as WinLib.

Example:

The AutoDialogBox class in the WinLib supplied library is an example of a

subclass that is used as a base class. When you create a dialog box in Aion BRE,

you can choose to derive it from either the DialogBox or the AutoDialogBox class.

AutoDialogBox itself, however, is derived from DialogBox. As a subclass of

DialogBox, AutoDialogBox shares most of DialogBox's characteristics, but it also

has three extra methods (Create, WhenCancelChosen, and WhenOKChosen) and

three push buttons (Cancel, Help, and OK) that are not part of DialogBox. Thus,

any dialog box derived from AutoDialogBox inherits not only the standard

characteristics of DialogBox but also the distinguishing characteristics of

AutoDialogBox.

Work with Windows and Dialog Boxes

Chapter 5: Create a Graphical User Interface 147

More Information:

Overview of CA Aion BRE Objects (see page 43)

StandardWindow Class

Windows derived from the StandardWindow class can use drop-down menus to

display available options. When a user selects an option from a standard window

menu, the logic initiated may act on information displayed in that window or it

may open a dialog box and perform its tasks there. No matter where the logic is

carried out, however, control returns to the standard window when the logic

concludes.

Note: Although the Window Editor allows you to add menus to child windows

(standard windows with the Child style set), child windows cannot have menus.

At runtime, a child window that contains menus does not display a menu bar.

The default standard window is nonmodal. Users can shift focus from a nonmodal

window to another window without first exiting the nonmodal window. This

allows users to work in other windows while the nonmodal window remains open.

AppWindow, the default main frame window for all new Aion BRE applications, is

derived from StandardWindow.

DialogBox Class

Use the DialogBox class to create dialog box windows that open in response to

user actions (such as selecting a menu option or clicking a button) and that

display, or prompt users to input, a related set of information.

The default dialog box is modal. Because modal dialog boxes must be closed

before the application can continue, they force the user to complete and process

the tasks that they contain.

AutoDialogBox Class

AutoDialogBox is a subclass of the DialogBox class. All dialog boxes derived from

AutoDialog contain three standard push buttons:

■ OK

■ Cancel

■ Help

Work with Windows and Dialog Boxes

148 Product Guide

And the following three predefined methods:

■ Create

■ WhenCancelChosen

■ WhenOKChosen

As defined, the WhenOKChosen method automatically validates user input when

the Auto Validation property of a control in an autodialog box is enabled.

AutoDialogBox has been added to the WinLib for your convenience. If you prefer,

you can construct your own input-validating subclass of DialogBox, adding the

necessary buttons and writing your own versions of the WhenChosen method.

More Information:

Auto Validation (see page 162)

Multiple Document Interface

You can create either Single Document Interface (SDI) or Multiple Document

Interface (MDI) windows with Aion BRE. Deciding which to use is a design

decision that depends on the data your application must handle. The default

style for a standard window created with Aion BRE is SDI.

MDI functionality enables you to display multiple standard windows in an

application simultaneously. Each of these windows is known as an MDI child

window. The child windows are contained in an MDI parent window. Users can

open several MDI child windows at the same time without reloading the parent

window. They can switch between the open child windows and work in whichever

window is active. Child windows can be moved to the edge of a parent window,

but they cannot be displayed outside it. (See, for example, the Aion BRE editors,

which are MDI child windows of the Aion BRE main frame window.)

Work with Windows and Dialog Boxes

Chapter 5: Create a Graphical User Interface 149

A typical MDI application is composed of a main frame window marked as the

parent window and a number of child windows that open from the parent.

In CA Aion BRE, MDI windows come with methods that perform the functions

found in the Window menu of most Windows applications. To use these methods,

add a Window menu containing various MDI display options (such as Cascade,

Tile Horizontally, and so forth) to your MDI application's menu bar, and then

attach the MDI methods that Aion provides to these display options.

To learn how to create MDI windows, see To create an MDI parent or child

window in the Window Type section in the CA Aion BRE online help.

To learn how to create menu titles and menu items, see Creating Menu Titles in

the CA Aion BRE online help.

For more information about MDI methods, see the StandardWindow Methods

section in the “WinLib” chapter in the CA Aion BRE online help.

Create Windows and Dialog Boxes

The New Standard Window dialog provides necessary fields for defining a new

window for a GUI.

The New Dialog Box dialog provides necessary fields for defining a new dialog for

a GUI.

For step-by-step procedures to create windows and dialog boxes, see Creating

Windows and Dialog Boxes in the CA Aion BRE online help.

Edit Windows and Dialog Boxes

To edit a window or dialog box in the Window Editor, use the procedures that

follow.

Note: In CA Aion BRE both the StandardWindow class and the DialogBox class

are derived from the FrameWindow class. Thus, editing procedures are usually

the same for both windows and dialog boxes. In the following procedures, the

word window stands for both window and dialog box.

See the following topics in the CA Aion BRE online help for step-by-step

procedures for performing these operations:

■ Resizing a Window

■ Repositioning a Window

■ Previewing a Window

■ Deleting a Window

Work with Windows and Dialog Boxes

150 Product Guide

Standard Window and Dialog Box Properties

When you create a new standard window or dialog box, it comes with a set of

default property values. To review or modify these values, open the window or

dialog box's Properties dialog.

For step-by-step procedures to open a window or a dialog box's Properties dialog

box, see Standard Window and Dialog Box Properties in the CA Aion BRE online

help.

Common Properties

The StandardWindow and DialogBox Properties dialog boxes contain three tab

pages: General, Style, and Title.

More Information:

Common Object Properties (see page 142)

Style Properties

By default, standard windows can be resized at runtime but dialog boxes cannot.

To change these sizing defaults, select the appropriate Style option:

■ Dialog Border-makes the window or dialog box unsizeable at runtime.

■ Size Border-makes the window or dialog box sizeable at runtime.

Initial State

The value for the Initial State property determines how a standard window looks

when it is first opened. This property does not apply to dialog boxes.

You can choose among three styles when setting a standard window's Initial

state:

■ Maximized-covers the entire screen area when it opens. (A maximized MDI

child window covers the entire work area of the main frame window.)

■ Minimized-first displayed as an icon.

■ Normal-opens to the size set in the Window Editor. You set this size in the

editor by dragging the window's sizing handles.

Add Controls to Windows

Chapter 5: Create a Graphical User Interface 151

Window Type

Use this property, which applies only to standard windows, to create either

Single Document Interface (SDI) or Multiple Document Interface (MDI)

windows.

For step-by-step procedures for creating an MDI parent or child window, see

Window Type in the CA Aion BRE online help.

Add Controls to Windows

Controls are the interface objects that sit on top of a window, displaying values,

prompting for input, or both. Technically speaking, controls are windows. The

relationship between a container window and the control windows that it

contains is often referred to as a parent-child relationship, the container being

the parent and the controls being the children. In Aion BRE, a control is an

attribute of its parent window's class.

CA Aion BRE provides a wide range of common Windows controls to help you

design GUIs that have the look and feel of Windows. All Aion BRE controls are

derived from the WindowObject class, which is located in the WinLib supplied

library.

There are two types of controls in Aion BRE:

■ Container controls

Container controls are controls to which other controls can be attached.

There are only six container controls in Aion BRE: control groups, menu

titles, splitter windows, tab controls, tab pages, and toolbars. For more

information about these controls, see the CA Aion BRE online help following

sections:

– Working with Control Groups

– Creating Menu Titles

– Working with Splitter Windows

– Working with Tabs

– Creating Toolbars

■ Controls that cannot contain other controls

All controls supplied by Aion BRE except those mentioned above fall into this

category.

Add Controls to Windows

152 Product Guide

Controls Supplied by CA Aion BRE

The following table provides a brief description of the Aion BRE controls. For

more information about a particular control, see the “WinLib” chapter in the CA

Aion BRE online help.

Control Description

Check Box A rectangular box used to turn on or off an option. When an

option is selected, an X appears in the box. Check boxes can

be displayed with labels.

Combo Box A list box combined with a text window. When users select

an item in the list box, it is displayed in the text window.

There are three types of combo boxes:

Simple-The list box is always displayed. If the user types

text in the window, the list box highlights the first selection

that matches the entry.

Drop-down-The list box drops down when the user selects

the drop-down arrow next to the control. If the user types

text in the window, the list box highlights the first selection

that matches the entry.

Drop-down list-The list box drops down when the user

selects the drop-down arrow next to the control. To enter

text in the window, users must select directly from the list;

they cannot type text in the window.

Edit Window A window in which users can enter and edit text. Although

similar to a Text Window control, it is designed to handle a

larger volume of text.

Group Box A frame or box that can be labeled and that encloses a set of

related options. It is a visual device only; controls enclosed

in a group box are not children of the group box.

Image Button

A push button labeled with a bitmap image instead of with

text.

Image List

A window that displays a collection of icons with labels (as in

the right panel of the Windows Explorer) or columnar lists of

text with or without icons. An image list can have four

different views: icon, small icon, list, and report.

List Box

A window that displays a list of items that users can select,

such as a single-column list of filenames or a multicolumn,

labeled list of class instances and their respective attributes.

In a single-selection list box, users can select only one item.

In a multiple-selection list box, users can select a range of

items.

Add Controls to Windows

Chapter 5: Create a Graphical User Interface 153

Control Description

In a checklist list box, users can select a variety of items,

adjacent or not. Users cannot type a selection in a list box.

Menu Title

The root item and container window for menu bar

drop-down menus.

Progress Bar

A rectangular window that is gradually filled with a color

from left to right as an operation progresses, indicating the

percentage of the operation, such as printing, that has been

completed.

Push Button

A rectangular button, labeled with text, that initiates a

command.

Radio Button

A round button used to select one of a group of mutually

exclusive options (users can select only one button at a time

in a group). When an option is selected, a black dot appears

in the button.

Scroll Bar

A horizontal or vertical bar containing arrows that can be

clicked and a box that can be clicked and dragged to scroll

the contents of another control, such as a list box, text

window, or combo box.

Slider

A window that contains an indicator on a gauge displaying

optional tick marks. Users can move the indicator in

specified increments to set a value-such as speed,

brightness, or volume-from a continuous range. Also called

a trackbar.

Splitter Window

A window divided either horizontally or vertically into two

panes by a splitter bar. Users can resize the panes at

runtime by moving the bar. Each pane can display one

instance of any class descended from WinLib's Window

class.

Static Text

A text field that can be used to label other controls. It takes

no input from users.

Tab

A window whose display is analogous to dividers in a

notebook or labeled folders in a file cabinet. It enables you to

define multiple pages for the same area of a window or

dialog box. Each page contains information or controls that a

user can display by selecting the corresponding tab.

Note: In Aion BRE, a tab control is composed of two types of

container controls: a tabbed window (which can contain only

tab pages) and a tab page (which can contain most other

controls).

Add Controls to Windows

154 Product Guide

Control Description

Text Window

A window that displays text and that can accept user input.

Users can either select the displayed text or delete it and

type new text. Compare Edit Window control.

Toolbar A bar-like container window used to group tool items.

Tree List

A window that displays a hierarchical list of items. Each item

consists of a label and an optional bitmapped image, and

each item can have a list of sub-items associated with it. By

clicking the + button associated with it, users can expand

(display) and collapse (hide) the associated list of

sub-items.The class list on the Libraries tab page of the

Project Workspace and the left panel of the Windows

Explorer are examples of tree list controls.

Up-Down Also called a spin button. A pair of arrows that users can click

to increase or decrease a value, such as a scroll position or a

number displayed in a companion control (known as a buddy

window). To the user, an up-down control and its buddy

window often look like a single control. Up-down controls are

used most often with text windows to allow the selection of

numeric values.

Create Controls

When working in the Window Editor, use the Window Editor's toolbar and the

menu bar's Screen menu to create and add controls to windows and dialog

boxes.

See the following topics in the CA Aion BRE online help for step-by-step

procedures:

■ Creating Control Groups

■ Creating Menu Titles

■ Creating Splitter Windows

■ Adding Tab Controls to a Window

■ Adding Tab Pages to Tab Controls

■ Adding Controls to Tab Pages

■ Creating Toolbars

■ Creating Other Controls

Add Controls to Windows

Chapter 5: Create a Graphical User Interface 155

Edit Controls

Use the following tools to edit and arrange controls in the Window Editor:

■ Window Editor toolbar

■ Menu bar's Screen menu

■ Layout toolbar

For step-by-step procedures for editing and arranging controls in the Window

Editor, see the following topics in the CA Aion BRE online help:

■ Displaying the Grid

■ Selecting Multiple Controls

■ Moving Controls

■ Aligning and Spacing Controls

■ Sizing Controls

■ Copying and Pasting Controls

■ Deleting Controls

Label Controls

Many controls, such as check boxes, group boxes, push buttons, radio buttons,

and text windows, have Text or Title properties in which you can enter a label to

describe the control's function. Providing descriptive labels is not mandatory, but

doing so helps end users interact more efficiently with your application's

interface.

For step-by-step procedures for labeling controls, see Labeling Controls in the CA

Aion BRE online help.

Static Text

To create labels for controls that do not have Text or Title properties, use static

text controls.

Add Mnemonics to Labels

Check boxes, image buttons, push buttons, radio buttons, and static text

support mnemonics. To create mnemonics for these controls, enter an

ampersand (&) in the control's Text field immediately in front of the character

you want to assign the mnemonic to.

For example, entering &Sort in a button's Text field makes it possible to choose

the radio button labeled Sort by pressing Alt+S when the dialog box that

contains the radio button is in focus.

Add Controls to Windows

156 Product Guide

Order Keyboard Focus

At runtime, users can move keyboard focus from one control to another in a

window or a dialog box by pressing the Tab key. To be included in this sequence,

a control's Tab Stop option must be enabled. You enable this option and set the

sequence in which controls come into focus by using the Window Editor's Order

Controls dialog box.

For step-by-step procedures for setting and clearing a tab stop and for changing

the order of tab stops, see Ordering Keyboard Focus in the CA Aion BRE online

help.

Work with Control Groups

Most controls are added directly to a window in the Window Editor. You can,

however, create groups of controls without immediately attaching the groups to

a particular window. You can then use these control groups on any number of

windows.

Create Control Groups

Like standard windows and dialog boxes, control groups are created by

subclassing a supplied base class. The default base class for a control group is

the GroupBox class in WinLib, but you can choose other base classes, including

control groups you create or control groups stored in included custom libraries.

For step-by-step procedures for creating control groups, see Creating Control

Groups in the CA Aion BRE online help.

Attach Control Groups

For step-by-step procedures for attaching control groups, see Attaching Control

Groups in the CA Aion BRE online help.

Radio Buttons

When you add more than one radio button directly to a window, you create a

group of radio buttons by default, for all radio buttons that are immediate

children of a window interact as a single group unless you divide them into

multiple groups.

Add Controls to Windows

Chapter 5: Create a Graphical User Interface 157

A group of radio buttons functions as follows:

■ The user can either ignore the group (choose none of the radio buttons) or

choose one radio button.

■ When one radio button in the group is selected and the user chooses

another, the first radio button is unselected. (Moving focus to a radio button

with the arrow keys chooses the radio button and deselects all others in its

group.)

■ When focus is on the last radio button in a group and the user presses either

the down-arrow or right-arrow key, focus shifts to the first radio button in

the same group.

■ Similarly, when focus is on the first radio button in a group and the user

presses either the up-arrow or left-arrow key, focus shifts to the last radio

button in the group.

To create multiple groups of radio buttons on a window, use one of the following

three techniques:

■ Group the radio buttons with the Group style on the radio button Properties

dialog box.

Radio buttons that are set apart from others by the Group style interact with

each other as a group, but they do not interact with any other radio buttons

on the window.

To create a group of radio buttons with the Group style:

– Make sure the radio buttons that you want to put in a group are listed

consecutively in the Order Controls dialog box.

– Assign the Group style to the first radio button in the group.

– Assign the Group style to the next control (of any type) that follows the

last radio button in the group.

Add Controls to Windows

158 Product Guide

■ Put the radio buttons in group boxes.

Group boxes separate radio buttons visually, not programmatically. Thus,

although group boxes help users see which radio buttons are grouped

together in a window, you must use group boxes in conjunction with the

Group style to create programmatically distinct groups of radio buttons.

To create a group of radio buttons within a group box

a. Add a group box to the window in the Window Editor, and drag the

appropriate radio buttons into it.

b. From the Screen menu, choose Order to open the Order Controls dialog

box.

c. In the Child Windows list, select the group box and move it above the

consecutively listed radio buttons that you want to group.

d. Since the group box has the Group style set by default, you do not need

to assign the Group style to the first radio button in the group.

e. Assign the Group style to the next control (of any type) that follows the

last radio button in the group.

■ Put the radio buttons in control groups, and attach the control groups to the

window.

Tab Controls

Tab controls enable you to place multiple groups-or pages-of controls in the

same area of a window. Building tab controls is a three-step process:

1. Add a tab control to the appropriate window.

2. Add tab pages to the tab control.

3. Add controls to the tab pages.

Descriptions of these steps and detailed procedures are available under the

following topics in the CA Aion BRE online help:

■ Adding Tab Controls to Windows

■ Adding Tab Pages to Tab Controls

■ Adding Controls to Tab Pages

Add Controls to Windows

Chapter 5: Create a Graphical User Interface 159

Add ActiveX Controls to Your GUI

ActiveX controls-formerly known as OLE controls or OCX controls-are proprietary

software objects that you can add to your applications, thereby reusing

segments of code written by other developers.

Note: You can add only 32-bit ActiveX controls to your GUI; 16-bit controls are

incompatible with Aion BRE applications.

Adding an ActiveX control to your GUI is a two-step process:

1. Add the control to your application.

2. Add the control to your GUI, modifying the control's properties if necessary.

Descriptions of these processes and step-by-step procedures are available under

the following topics in the CA Aion BRE online help:

■ Adding ActiveX Controls to Applications

■ Adding ActiveX Controls to GUI Windows

■ Modifying ActiveX Controls

■ Inserting OLE Objects into an Application

Merge ActiveX and Application Menu Bars

Some ActiveX controls display menu bars containing commands that apply to the

ActiveX control itself.

More Information:

Persistent Groups (see page 168)

ActiveX Control Properties Dialog Box

If you double-click an ActiveX control or right-click the control and select

Properties from the pop-up menu, the ActiveX Control Properties dialog box

opens.

Use this dialog to change the attribute name of the ActiveX control as it appears

in the parent window class.

To learn more about how to use ActiveX controls in Aion BRE applications, see

the following documentation:

■ Persistent Groups in the Menu Propertiessection

■ The Generating and Using COM Components chapter in this guide

■ The ACTXLib chapter in the CA Aion BRE online help.

Add Controls to Windows

160 Product Guide

Insert OLE Objects into an Application

For step-by-step procedures for adding an OLE object to your application, see

Inserting OLE Objects into an Application in the CA Aion BRE online help.

Force Update Modifications from an OLE Object

For step-by-step procedures for embedding an OLE object in your application,

see Forcing Update Modifications from an OLE Object in the CA Aion BRE online

help.

If the OLE Frame object does not display the changes made to it, you are

probably working with an object that does not send regular change notifications

to Aion.

Splitter Windows

A splitter window displays information in two panes separated by a vertical or

horizontal splitter bar. Users move the splitter bar to resize panes. Each pane

can display an instance of any class that:

■ Is descended from Window class, and

■ Has the WS_CHILD style.

These classes include:

– Image lists

– Tree lists

– Standard windows

– Other splitter windows.

A splitter window must be attached to a container. Valid parents for a splitter

window are limited to:

■ A standard window

■ A dialog box

■ A tab page

■ Another splitter window

Add Controls to Windows

Chapter 5: Create a Graphical User Interface 161

Descriptions of the following processes and step-by-step procedures are

available under the following topics in the CA Aion BRE online help:

■ Programming Splitter Windows

■ Defining Splitter Windows

■ Defining Splitter Windows as Vertical or Horizontal

■ Creating Splitter Windows Dynamically

Display a Standard Window in a Pane

When a pane displays a standard window, some of the controls contained in the

standard window must be resized explicitly. Among these controls are text

windows and static text.

To resize these controls, modify the WhenSized() event of the standard window.

In the method body of WhenSized() include code that resizes text windows and

static text by calling their SetRect() method. Consult the WhenSized() method

of FileInfo class in the Splitter Demo for an example.

Control Properties

A control is made up of two elements:

■ A window handle that attaches the control to its parent window (the handle

is an attribute of the control's parent class)

■ Values that describe the way the control looks and acts on the GUI

Each of these elements has its own set of properties, which you can modify in the

following places:

■ Use the Properties tab page of the control's Attribute Editor to modify

properties that affect the control's role as an attribute of an owning class.

These properties include the control's name, its base class, and whether it is

private, protected, or public.

To open a control's Attribute Editor, double-click the control's name in the

Project Workspace, the Output Window, or the Explorer.

■ Use the control's Properties dialog box to modify properties that affect the

way the control looks and acts on the GUI. These properties include the

control's text, whether it is initially disabled, and its keyboard focus.

To open the Properties dialog box for most controls, double-click the control in its

parent window's Window Editor.

The properties contained in the Properties dialog are the topic of this discussion.

Add Controls to Windows

162 Product Guide

More Information:

Common Object Properties (see page 142)

Common Properties

Common properties have controls in common with other GUI objects,

Auto Validation

An Auto Validation check box appears on the Properties dialog box of many

control types, including check boxes, combo boxes, edit windows, list boxes,

radio buttons, and text windows.

If you add a control to an autodialog box or to a dialog box to validate user input

and check the control's Auto Validation property, the validation logic that is

triggered when a user chooses the OK push button in that dialog box analyzes

the control's input to ensure that it is correctly formatted.

Define the Format of User Input

Most controls accept and display only one data type. Check boxes, for example,

display or return only Boolean values, represented by checked or unchecked

conditions. For this type of control, you indicate that validation logic is to be

generated by simply checking the Auto Validation box.

For text windows, however, the Auto Validation feature lets you choose an input

format from a number of data type and masking options. When you check a text

window's Auto Validation property, the window's Value Type field is enabled:

Add Menus to Windows

Chapter 5: Create a Graphical User Interface 163

In this field, you can restrict input accepted by the text window to values of a

specific data type. You can then click the Format push button to open the Format

Editor and choose a masking option for the selected data type.

For example, the following figure shows the Format Editor for data of type string:

Use the options in the Format Editor to further limit the type of input that the

Auto Validation feature permits the user to enter.

Note: The Value Pairs tab of the Format Editor is a data translation mechanism

that enables you to link values stored in a database with values displayed or

entered on an application's user interface. Use Value Pairs when defining custom

data types for an application using the Logic menu's New, Datatype option, not

when setting masks for a predefined data type.

Add Menus to Windows

In CA Aion BRE, you add menus to your GUI by creating menu title objects and

then attaching them to standard windows (menu titles cannot be attached to

dialog boxes). A menu title object consists of both the title that is displayed on a

window's menu bar and the items that populate the title's drop-down menu.

Initially, menu titles are created as independent objects that are not linked to a

window. Once created, however, they can be attached to any number of

windows.

Add Menus to Windows

164 Product Guide

Create Menu Titles

Like standard windows or dialog boxes, menu titles are created by subclassing a

supplied base class. After adding application-specific menu items and logic to

this subclass, you can, if you like, use it as the base class for the rest of your

application's menus. By doing so, you pass your modifications on to the new

menus through inheritance.

In CA Aion BRE, the default base class for a menu title is the MenuTitle class

(located in the WinLib library).

For step-by-step procedures for creating a menu title, see Creating Menu Titles

in the CA Aion BRE online help.

More Information:

Overview of CA Aion BRE Objects (see page 43)

Menu Editor Display

The Menu Editor displays a menu title, its menu items, and their hierarchical

relationships to one another. The position of each object in the hierarchy

indicates where it appears on the menu at runtime. In the following figure, a

menu title called AionFileMenu is open in the Menu Editor. (To display column

headings in the Menu Editor, click the pointer in the editor, and then choose

Show Labels from the View menu.)

Add Menus to Windows

Chapter 5: Create a Graphical User Interface 165

■ The object displayed in the first level of the hierarchy under the Menu Text

column is the menu title that you are creating or editing (see File in the

preceding figure).

If you attach a menu title to a window, the text string in this column is

displayed in the window's menu bar.

If you attach a menu title to another menu title (see Run in the preceding

figure), you create a submenu, and the text string in this column is displayed

in the main menu with a cascading menu symbol (|) to its right.

■ Objects in the hierarchy's second level (see New, Open, and so forth, in the

preceding figure) are menu items that are displayed when the menu title is

chosen and the drop-down menu is opened. Objects in this column can be

menu items that execute developer-defined events or menu titles that open

cascading menus.

■ If there is a menu title in the hierarchy's second level (see Run in the

preceding figure), a third level of objects descends from it. These objects are

menu items that appear in a submenu.

The following figure shows the runtime version of the menu depicted in the

preceding figure:

Add Menu Items to Menu Titles

Once you have created a menu title, use the Menu Editor to create items for the

menu title's drop-down menu.

For step-by-step procedures for working with menu items, see the following

topics in the CA Aion BRE online help:

■ Add Menu Items to Menu Titles

■ Rearrange Menu Items

■ Deleting Menu Items

Add Menus to Windows

166 Product Guide

Attach Menu Titles to Windows

After creating a menu title in the Menu Editor, you can attach it to more than one

window or to another menu title. You can define the logic for the menu title

before or after you attach it to a window. If you define the logic before you attach

the menu title, the logic is included wherever you attach it. If you define the logic

after you attach the menu title to a window, the logic is localized to that window.

For step-by-step procedures for attaching a menu title to a window, see

Attaching Menu Titles to Windows in the CA Aion BRE online help.

Create Submenus

You create submenus-also called cascading menus-by attaching menu titles to

other menu titles.

For step-by-step procedures for creating a submenu, see Creating Submenus in

the CA Aion BRE online help.

Pop-Up Menus

You can use menu titles to create not only menus that “drop-down” from a

window's menu bar, but also menus that “pop-up” when users right-click a

window or a control.

You create pop-up menus just as you do drop-down menus. Like drop-down

menus, pop-up menus can contain submenus. Unlike drop-down menus,

however, pop-up menus do not display their top-level titles on the screen.

You can attach pop-up menus to standard windows, to dialog boxes, and to any

control derived from WinLib's Window class.

For step-by-step procedures for attaching a pop-up menu to a window or control,

see Pop-Up Menus in the CA Aion BRE online help.

More Information:

Create Menu Titles (see page 164)

Add Menu Items to Menu Titles (see page 165)

Add Menus to Windows

Chapter 5: Create a Graphical User Interface 167

Response Invoked by a Right-Click

The Window class in WinLib has a method, WhenRButtonClicked, that governs

the way applications respond to right-clicks on windows and controls at runtime.

Depending on how you implement this method, a right-click invokes the

following responses:

■ If you specialized the WhenRButtonClicked method for the clicked object, CA

Aion BRE performs the action specified in the specialized method. (See To

specialize the WhenRButtonClicked method for a window or dialog box, and

To specialize the WhenRButtonClicked method for a control in the

Specializing the WhenRButtonClicked Method section.)

■ If you have not specialized the WhenRButtonClicked method and …

a. …the clicked object has a pop-up menu attached to it, CA Aion BRE

displays the object's pop-up menu.

b. …the clicked object does not have a pop-up menu but the object's parent

window does, Aion displays the parent window's pop-up menu.

c. …neither the clicked object nor its parent window has a pop-up menu,

Aion does nothing.

For step-by-step procedures for specializing the WhenRButtonClicked method

for a window or dialog box, see Specializing the WhenRButtonClicked Method in

CA Aion BRE online help.

Menu Properties

You can use the MenuTitle and MenuItem Properties dialog boxes to set property

values for a menu title and its individual menu items.

To open the Properties dialog box for menu titles or menu items, double-click the

menu title or menu item in the Menu Editor.

Common Properties

The following properties are common to both menu titles and menu items:

Property Description

Disabled Grays or dims the menu title or menu item to

indicate that users cannot choose it. To enable the

title or item, use the SetEnabled method.

Help Text Displays the specified text in the main frame

window's status bar when the menu title or menu

item is selected at runtime.

Add Menus to Windows

168 Product Guide

Menu Title Properties

Menu titles also have the following property:

Property Description

Persistent Group Controls whether a menu title remains on an Aion

BRE application's menu bar when the application's

menu is merged with the menu of an ActiveX

control.

Persistent Groups

Some ActiveX controls display menu bars containing commands that apply to the

ActiveX control itself. To customize the way these menu bars merge with an Aion

BRE application's menu bar when an ActiveX control is in focus, use the

Persistent Group property in the MenuTitle Properties dialog box.

A merged menu can contain up to six groups of menu titles, and each of these

groups can contain any number of titles. Aion BRE menu titles can belong only to

the first, third, and fifth groups. ActiveX menu titles can belong only to the

second, fourth, and sixth groups.

You assign Aion BRE menu titles to groups by entering one of the following

numbers in a menu title's Persistent Group field:

■ Zero (0)-By default, all Aion BRE menu titles belong to Persistent Group 0.

Persistent Group 0 menu titles are not persistent and do not appear on

merged menu bars. If all the menu titles on an application's menu bar belong

to Persistent Group 0, an ActiveX control's menu bar completely replaces the

application's when the ActiveX control is in focus.

■ One (1)-Persistent Group 1 menu titles belong to the first group of a

merged menu and thus appear on the leftmost side of a merged menu bar.

■ Two (2)-Persistent Group 2 menu titles belong to the third group of a

merged menu bar, appearing immediately to the right of the first group of

ActiveX menu titles (which belong to the second group of a merged menu).

■ Three (3)-Persistent Group 3 menu titles belong to the fifth group of a

merged menu bar, appearing immediately to the right of the second group of

ActiveX menu titles (which belong to the fourth group of a merged menu).

Add Menus to Windows

Chapter 5: Create a Graphical User Interface 169

Example:

Consider an Aion BRE application that has four menu titles: File, Dates, Settings,

and View. When merging takes place, you want to arrange these menu titles as

follows:

■ Retain File and Dates as the leftmost items on the menu bar.

■ Allow the ActiveX control to place menu items to the right of Dates.

■ Remove Settings.

■ Retain Views and place it to the right of the ActiveX control's first menu title.

To do this,

■ Assign File and Dates to Persistent Group 1.

■ Assign the ActiveX control's first menu item to the second group of the

merged menu and the rest of its menu items to the fourth group.

■ Leave Settings in Persistent Group 0.

■ Assign View to Persistent Group 2 (which is the third group of a merged

menu).

Menu Item Properties

When you add a menu item to a menu title, the MenuItem Properties dialog

opens. In addition to properties common to most objects (see Working with

Object Properties), this dialog contains the following properties peculiar to menu

items:

Property Description

Checked

Sets the initial state of the menu item to “checked.”

By default, a check mark is displayed to the left of

checked menu items at runtime. If you want an image

other than a check mark to be displayed in this state,

specify that image in the Checked Image field of the

MenuItem Properties dialog.When a user chooses a

checked menu item at runtime, the logic triggered by

the user event can call SetChecked(FALSE) to remove

the check mark.

Checked Image

Specifies the bitmap displayed to the left of a menu

item when the menu item's state is set to “checked.”

If you leave this field blank, a default check mark is

displayed instead.For information about the kind of

bitmaps that can be displayed on menu items, see the

description of Normal Image.

Add Menus to Windows

170 Product Guide

Property Description

Normal Image

Specifies the bitmap displayed to the left of a menu

item when the menu item's state is “unchecked.” If

you leave this field blank, no image is displayed in the

unchecked state. Each image displayed on the File

menu is defined as a Normal Image on the

corresponding menu item's Properties dialog.

Specifications for Menu Item Bitmaps

Note: For the best results, use monochrome

bitmaps. Multicolored bitmaps may create

undesirable effects.

Note: The space available to display bitmaps on

menu items is very small. Since Aion BRE does not

automatically resize bitmaps to fit inside this space,

you may need to resize bitmaps manually before they

will display correctly. For more information about

using bitmaps in applications, see Create Resources.

Separator Displays the menu item as a horizontal bar. Use this

style to group menu items visually.

Create Mnemonics and Shortcut Keys

Both mnemonics (for menu titles and menu items) and shortcut keys (for menu

items) are set on the Properties dialog. Mnemonics are the underlined characters

in menu text that are used to open a menu title or to choose a menu item from

an open menu. Shortcut keys are key combinations that typically include Ctrl,

Alt, or Shift. Shortcut keystrokes bypass menus to choose items directly.

For step-by-step procedures for creating mnemonics and shortcut keys, see

Creating Mnemonics and Shortcut Keys in the CA Aion BRE online help.

Add Toolbars to Windows

Chapter 5: Create a Graphical User Interface 171

Menu Conventions

To create user-friendly menus, follow these Windows conventions when building

menus for your application:

■ Place the File menu on the far left side of the menu bar, and include the

Open, Close, and Exit items on File's drop-down menu.

■ Place the Edit menu immediately to the right of the File menu.

■ Place the Help menu to the right of all other menu titles.

■ Use an ellipsis (...) to indicate that choosing a menu item opens a dialog.

Note: Aion BRE automatically uses an arrow () to indicate that choosing a

menu item opens a submenu.

■ Use separators to group related menu items visually. For example, see the

group composed of Save and Save As in the File menu on the Aion BRE menu

bar.

■ Use mnemonics (one-letter abbreviations) and shortcut keys (keyboard

accelerators) to create alternative menu access methods.

More Information:

Create Mnemonics and Shortcut Keys (see page 170)

Add Toolbars to Windows

In CA Aion BRE, you add toolbars to your GUI by creating toolbar objects and

then attaching them to windows or dialog boxes. A toolbar object consists of both

the toolbar “window” and the tool items that the window contains. Initially,

toolbars are created as independent objects that are not linked to any window.

Once created, they can be attached to any number of windows or dialog boxes.

Create Toolbars

Like standard windows or dialog boxes, you can create toolbars by subclassing a

supplied base class. After adding application-specific tools and logic to this

subclass, you can use it as the base class for the rest of your application's

toolbars. By doing so, you pass your modifications on to the new toolbars

through inheritance.

In CA Aion BRE, the default base class for a toolbar is the ToolBar class in the

WinLib library.

For step-by-step procedures for creating toolbars, see Creating Toolbars in the

CA Aion BRE online help.

Add Toolbars to Windows

172 Product Guide

More Information:

Overview of CA Aion BRE Objects (see page 43)

Tool Editor Display

The Tool Editor displays a toolbar and the tool items it contains. In the following

figure, a toolbar called Standard is open in the Tool Editor:

The toolbar icon at the top of the editor represents a ToolBar subclass (see

Standard in the preceding figure). This subclass contains the tool items listed

beneath it in the Tool Editor. To display these tool items in a window, you must

attach the toolbar to that window. You can attach more than one toolbar to a

window, and you can reuse toolbars.

Descending from the toolbar icon is a list of tool items that the toolbar contains

(for example, see New in the preceding figure). These tool items are displayed

when the toolbar is attached to a window. After creating a

WhenToolItemNameChosen method for a tool item in the Tool Editor, you can

open the Method Editor and write the logic that executes when a user clicks the

tool at runtime.

The following figure depicts the runtime version of the Standard toolbar in the

preceding figure:

More Information:

Toolbar Logic (see page 185)

Add Toolbars to Windows

Chapter 5: Create a Graphical User Interface 173

Addi Tool Items to Toolbars

Once you have created a toolbar, use the Tool Editor to create tool items for the

toolbar. Tool items are the buttons, or tools displayed on toolbars that users click

to initiate actions in an application.

For step-by-step procedures for performing the following operations, see the CA

Aion BRE online help.

■ Adding a Tool Item to a Toolbar

■ Rearranging Tools

■ Deleting Tools

Attach Toolbars to Windows

Once you create a toolbar object (that is, a toolbar and its tool items), you can

attach the object to more than one window. In addition, you can define the logic

for the object before or after you attach it to a window. If you define the logic

before you attach the object, the logic is included wherever you attach the

object. If you define the logic after you attach the object to a window, the logic

is localized to that window.

Note: You must create a toolbar object in the Tool Editor before you can attach

it to a window.

For step-by-step procedures for attaching a toolbar to a window, see Attaching

Toolbars to Windows in the CA Aion BRE online help.

Toolbar Properties

You can use the ToolBar and Tool Properties dialogs to set property values for a

toolbar and its individual tools.

To open the Properties dialog for toolbars and tool items, double-click the toolbar

or tool item in the Tool Editor.

The following properties can be set in the ToolBar Properties dialog:

Property Description

Enable Balloon Help

Displays descriptive labels, also called “tool tips,”

under tools when the cursor is placed over them.

The text displayed is the text entered in the Help

Text field of a tool's Properties dialog box.

Font Sets the font for toolbars that display text.

Add Toolbars to Windows

174 Product Guide

Property Description

Normal Displays only icons on tools. This is the default

style.

Position Sets the location of the toolbar in the window.

Choose between horizontal (top or bottom) and

vertical (left or right). Choose Snap to Frame to

attach the toolbar to the window's edge.

Show Text on Tools

Displays both icons and text on tools. The text

displayed is the text entered in the Text field of a

tool's Properties dialog. (To display only text on a

tool, leave the tool's Icon field blank.)

Tool Item Size Specifies the size (in pixels) of tool icons.

Tool Item Properties

The following properties can be set in the Tool Properties dialog:

Property Description

Group Adds a space to the left of the tool on the toolbar,

creating a visual, but not a programmatically-linked,

group of tools.

Help Text

If the Enable Balloon Help style is chosen in the

Toolbar Properties dialog, this property provides text

for the label that appears beneath the tool when the

cursor moves over the tool.

Icon Specifies an icon to display on the tool.

Tool Item Styles Command: Creates tools that immediately pop back

“up” after a user depresses them.

 Toggle: Creates tools that stay in the “down” position

after a user depresses them.

 Exclusive Toggle: Creates a group of Toggle tools in

which only one tool can be in the “down” position at a

time.

Add Graphics to Windows

Chapter 5: Create a Graphical User Interface 175

Toolbar Conventions

Tools on a toolbar usually duplicate items in an application's menus but provide

quicker access to oft-used commands than the menus do. Since tools can be

chosen only with the mouse, it is customary to provide a way to initiate the same

action from the keyboard. Typical Windows keyboard alternatives include the

following:

■ A mnemonic indicated by an underscore in the corresponding menu title or

menu item. The user simultaneously presses Alt and the underscored letter.

■ A shortcut key displayed next to the corresponding menu item. The shortcut

can be any combination of the Alt key, the Ctrl key, the function keys, and

alphanumeric characters.

More Information:

Create Mnemonics and Shortcut Keys (see page 170)

Add Graphics to Windows

Sometimes, a graphic represents a value or a concept more clearly than words or

sets of controls do. You can use three types of graphics on standard windows and

dialog boxes:

■ Bitmaps and icons created outside CA Aion BRE

Many software programs create images that are compatible with Aion BRE

applications. Bitmaps used in Aion BRE must conform to the Windows .bmp

file format although they do not need a .bmp file extension. Icons used in

Aion BRE must conform to the Windows .ico format although they do not

need a .ico file extension.

Bitmaps are used to display pictures in many areas of the screen. Icons are

often used to build toolbars (for example, see the tool and color bars in the

Window Editor).

■ Lines, ellipses, and rectangles

Graphics composed of these elements can be drawn directly in the Window

Editor.

■ By applying these to the preceding graphics described, you can make areas

of a graphic respond to the mouse pointer.

For step-by-step procedures for the following operations, see Adding Graphics to

Windows in the CA Aion BRE online help.

■ Adding bitmaps, icons, and graphics

■ Adding hot regions to bitmaps

Add Graphics to Windows

176 Product Guide

Layered Graphics

Use the Order Controls dialog to layer your graphics on top of each other. The

first graphic in the Child Windows list is displayed on the bottom layer of the

window; the last graphic in the list is displayed on the top layer of the window.

Example:

Consider the following arrangement of graphics:

In the Order Controls dialog, the graphics in the preceding figure are listed as

follows:

For step-by-step procedures for changing the layering of graphics, see Layering

Graphics in the CA Aion BRE online help.

The Order Controls

Use the Order Controls dialog to perform any of the following tasks:

■ To rearrange menu items

■ To rearrange tools on a toolbar

■ To set or clear a tab stop

■ To create multiple groups of buttons on a window

■ To change the layering of graphics

Add Graphics to Windows

Chapter 5: Create a Graphical User Interface 177

Create Resources

Graphic images such as bitmaps, cursor shapes, and icons are incorporated into

Aion BRE applications as resources. A resource is a static instance composed of

a handle and a filename. The handle hooks a graphic control to an image file

located outside your application. The filename specifies the path to the image

file.

You can create resources either as a separate task or as you define a control's

properties. All instances of an application's user-created resources are

alphabetically listed in the Project Workspace under the Instances node. To open

a resource in the Instance Editor, double-click the resource's name in the Project

Workspace.

■ For step-by-step procedures for either of the following operations, see

Creating Resources in the CA Aion BRE online help:

■ Creating a resource without adding it to a control

■ Creating resources while setting a control's property values

Graphics Properties

You can use the Bitmap, Icon, Ellipse, Line, Rectangle, and Hot Region Properties

dialogs to set property values for graphics. To open these Properties dialogs,

double-click the graphic in the Window Editor.

Each graphic type has its own set of properties. The following table contains a

selection of properties drawn from all graphic types:

Property Description

Auto Drag Enables users to drag and drop the graphic into a new

location. Applies to all graphic types except hot

regions.

Data Specifies the name of the bitmap or icon resource that

is displayed on a control. The File button associated

with this field opens a standard Windows file dialog box

in which you can either choose an existing resource or

create a new resource for the control.

Note: The Data field must contain the name of a

resource's static instance, not the name of the .bmp or

.ico file from which the resource was created. To learn

more about creating graphic resources for applications,

see Create Resources.

Invert Style Reverses the colors on a monochrome bitmap.

Invert When Selected Reverses the colors on a monochrome hot region when

Implement Logic to Run Your GUI

178 Product Guide

Property Description

the region is selected.

Pointer Specifies a mouse pointer for a hot region. When a user

moves the pointer over a hot region, the pointer

changes to the specified shape.

Text Specifies descriptive text to display on ellipses and

rectangles.

Implement Logic to Run Your GUI

The preceding sections of this chapter explains how to create the classes that

you need to construct your GUI. This final section discusses how to instantiate

those classes at runtime and how to make them interact with the user and with

each other. To do this, you must move your attention from the front end of the

GUI to its back end: the application logic.

Application logic is composed of rules and methods that contain instructions

governing how an application operates. In graphical applications, most logic is

triggered by user actions with the keyboard or mouse. These actions are referred

to as user events. In Aion BRE, the logic is encapsulated in methods, which are

small units of code. Event-triggered methods, called whenever their related

events occur, define an application's response to specific user events.

Events and methods are linked through the methods' names. When a user acts

on an interface object, the system looks for a method whose name includes the

attribute name of the object and the type of event. For example, when a user

chooses a push button named OK, the system looks for a method named

WhenOKChosen in the subclass of StandardWindow or DialogBox to which the

push button is attached; likewise, when a user chooses a menu item named

FileOpen, the system looks for a method named WhenFileOpenChosen in the

subclass of MenuTitle to which the menu item is attached. If the method exists,

it is triggered; if it does not, the system looks for a method named simply

WhenChosen (without the attribute name) in the control's base class.

Since developer-defined logic in most Aion BRE applications is defined in

event-triggered methods and since most event-triggered methods are

associated with the controls you add to a window, Aion BRE makes it easy for you

to open and write specialized methods through the Menu, Tool, and Window

editors.

The following sections discuss the logic associated with particular windows,

controls, and graphics.

Implement Logic to Run Your GUI

Chapter 5: Create a Graphical User Interface 179

More Information:

Write Logic (see page 187)

Window and Dialog Box Logic

An Aion BRE application contains one standard window, called the application

window, that opens when the application is started and remains open until the

application is closed. All other standard windows and dialog boxes in an

application open and close in response to user events. To designate which user

events open and close a particular window or dialog box, you must create

event-triggered methods that call the predefined Open, OpenModal, or Close

methods.

OpenApp, Open, and OpenModal

Each standard window and dialog box comes with predefined methods, inherited

from WinLib, that can be used to open it:

■ The OpenApp method opens standard windows only. Use this method to

open the first window in an application, which is referred to as the application

window. After opening the application window, OpenApp turns control of the

application over to the user.

Only one window can be opened in an application using the OpenApp

method. This window remains open until the application is closed. Open all

other windows with the Open method.

■ The Open method opens both standard windows and dialog boxes

nonmodally. Users can shift focus from a nonmodal window to another

window without closing the nonmodal window. This allows users to work in

other windows while the nonmodal window is open.

Use nonmodal windows and dialog boxes for information that does not need

to be processed immediately. For example, if users of an order entry

application must be able to interrupt the input of a customer return form to

take a customer phone order or to open and use another instance of the

return form, the windows containing these forms must be nonmodal.

Note: If you send the Open method to a window before the application

window is open, the window that receives the message does not open.

Implement Logic to Run Your GUI

180 Product Guide

■ The OpenModal method opens dialog boxes only. Use this method to open a

dialog box modally. To shift focus from a modal dialog box to another

window in the same application, users must either close or cancel the dialog

box. (Users can, however, shift focus to other applications on the desktop

while a modal dialog box is open.)

Use OpenModal when a user response is required before proceeding. For

example, a user may be required to enter a login name and a password

before other functions can be enabled.

Close

The Close method, inherited from WinLib, closes windows and dialog boxes

and removes them from the screen, passing a return code if a dialog box was

opened by a call to OpenModal.

WhenOpened, WhenClosed

Sometimes, you need to perform special processing when a window is

opened or closed, such as loading data into a Query or sending input to a

database. The WhenOpened and WhenClosed methods let you do this. As

supplied, WhenOpened and WhenClosed do nothing. To use these methods,

you must specialize them and add logic.

WhenFocusChanged

Before a user can act directly on a window, he must shift keyboard focus to

the window by clicking it. The system indicates which window has focus by

highlighting the window's title bar.

Shifting focus from window to window is usually handled automatically by

the WhenFocusChanged method, which executes when focus moves to or

from a particular window. You can, however, specialize this method. For

example, Window A contains a list of users. You can edit basic user

information in A. Window B contains detailed user information. If changes

made in A can affect information in B, you might want B to do a data refresh

whenever it gets focus. To accomplish this, specialize the

WhenFocusChanged method for B by adding refresh code to it.

Implement Logic to Run Your GUI

Chapter 5: Create a Graphical User Interface 181

Remarks

■ Opening child window controls

While you must explicitly define methods to open standard windows and

dialog boxes, child window controls attached to windows and dialog boxes

are automatically opened when their parent window opens.

■ Using menu items to open windows

One way to open windows and dialog boxes is by selecting menu items.

For example, when Aion BRE users choose Open from the File menu, a file

selection dialog box opens. To do this, the method triggered by choosing

Open from the File menu contains only one line of code, which calls the

OpenModal method to open the appropriate dialog box. After the file

selection dialog box opens, a user can either open a file or cancel the dialog

box. The logic required to carry out these actions is contained in

event-triggered methods created for the Open and Cancel buttons.

■ Processing data before opening windows

In some situations, background processing is required before a window or

dialog box can open. A menu item called List Employees might contain logic

that loads data from a database. After loading the data, the logic calls Open

or OpenModal to open a dialog box containing a report window that displays

a list of employees.

■ Closing windows versus closing dialog boxes

Most windows are closed by selecting a menu or tool item. Most dialog boxes

are closed by clicking a push button. In either case, the method triggered by

the user's action must call the Close method to achieve the desired result.

■ Using push buttons to close windows

Using Close and Cancel buttons to close dialog boxes requires relatively

simple logic. The logic for OK buttons is more complex. Before closing a

dialog box with the Close method, the WhenOKChosen method must validate

user input in the dialog box. If the input is invalid, the method reports the

error to the user without closing the dialog box. If the input is valid, the

method takes additional actions, such as writing the input to the database,

and then closes the dialog box.

Implement Logic to Run Your GUI

182 Product Guide

Control Logic

When setting up logic for controls on a window, keep in mind that not every

control requires an event-triggered method. Many user events, such as choosing

a button or entering text in a window, simply set a value. No logic needs to be

defined for these controls.

User events that set values in one control, however, may trigger reactions in or

determine the contents of other controls. Frequently, choosing a value affects

the availability of other options, and this should be reflected in the window by

enabling controls that represent available options and disabling controls that

represent unavailable options.

For example, on the Style and Icon tab page of the Aion BRE Tool Properties

dialog box, choosing the Group option makes the Exclusive Toggle option

available. Hence, the button that represents the Exclusive Toggle option is

enabled when the Group check box is checked.

Logic for this kind of control interaction is set up in event-triggered methods. In

the preceding example, the logic could be contained in a WhenGroupChosen

method invoked when the Group option is chosen. WhenGroupChosen would use

the SetEnabled method to enable the Exclusive Toggle option as follows:

RBExclusiveToggle.SetEnabled(true)

Respond to Multiple Events

There are a variety of user events that can trigger responses in Aion BRE

applications, including checking, choosing, collapsing, deleting, editing,

expanding, inputting, opening, selecting, and sizing. While many controls

respond to only one of these events, some controls-such as image lists, list

boxes, menu items, tab controls, and tree lists-can respond to more than one

type of user event.

In list boxes, for example, users can single-click an item in the list box to select

the item, which highlights it but initiates no other action; or they can double-click

an item to choose it, initiating further processing. To enable list box items to

respond to both a single- and a double-click, Aion BRE lets you create a method

for each event:

■ WhenListBoxNameSelected, triggered by a single-click

■ WhenListBoxNameChosen, triggered by a double-click

The events that a control can respond to are listed in the control's Events dialog

box. You define the logic that each event triggers in the Method Editor.

Implement Logic to Run Your GUI

Chapter 5: Create a Graphical User Interface 183

Define Events for Controls

Use the mouse pop-up menu to create methods for controls.

For step-by-step procedures for creating event-triggered methods for a control,

see Defining Events for Controls in the CA Aion BRE online help.

More Information:

Write Logic (see page 187)

Menu Logic

Menu logic is invoked by user events. To make the menus in your application

function, define an event-triggered method for each menu item. (When a user

chooses a menu title-which can appear either on a menu bar or, in the case of

cascading menus, on a drop-down menu-a drop-down menu opens

automatically without the need for developer-defined logic.)

For step-by-step procedures for creating event-triggered methods for a menu

item, see Menu Logic in the CA Aion BRE online help.

To learn how to write logic for the method, see the “Writing Logic” chapter.

Typical Menu Logic

The following three sections discuss typical logic implemented in event-triggered

methods for menu items.

Opening Dialog Boxes

Choosing a menu item frequently opens a dialog box. To implement this kind

of action, the WhenChosen method for that menu item must include a call to

either the Open or OpenModal method for the dialog box. An example found

in most applications is the Open option on the File menu. This action can be

implemented in a method named WhenFileOpenChosen, which needs to

contain only one statement:

pFileDialog.OpenModal

Implement Logic to Run Your GUI

184 Product Guide

Processing Before Opening a Dialog Box

In some cases, you want to process data before opening a dialog.

Example:

The main window of your application might have a Reports menu title

containing a Customer List item. The following logic could be triggered when

a user chooses Customer List from the Reports menu:

CustomerMarker1 = InputValue1

CustomerMarker2 = InputValue2

Customer_Query.Load

pCustListDlg = CustListDlg.Create

pCustListDlg.OpenModal

The first three statements load selected values from a database; the fourth

creates the dialog box; and the fifth opens it to display the data in a tree list.

Adding a Check Mark to a Chosen Menu Item

Another common action is to add a check mark to a chosen menu item. This

is useful for menu items that toggle between two conditions, such as

whether or not a window is displayed (see the Show Output option on the

Aion BRE View menu, for example).

To implement this action, make sure the Checked style is enabled in the

menu item's Properties dialog. Then have the menu item's WhenChosen

method call the predefined SetChecked method.

Example:

If the menu item's attribute name is ShowOutput, the

WhenShowOutputChosen method can use the following logic to see whether

the menu item is currently chosen and then to display or hide the check mark

accordingly:

If ShowOutput.GetStyle(MIS_CHECKED) = false

then ShowOutput.SetChecked(true)

else ShowOutput.SetChecked(false)

end

Implement Logic to Run Your GUI

Chapter 5: Create a Graphical User Interface 185

Toolbar Logic

The toolbar itself does not respond to user input, but each tool item can have a

WhenChosen method that functions like the WhenChosen method for menu

items

Tool items can be used to implement methods residing in Aion BRE-supplied

libraries. For example, a dialog box with an edit window could have the following

functions implemented as tools:

■ Cutting and pasting text. The WhenChosen methods for the cut and paste

tools would call the EditWindow's CutSelected and Paste methods.

■ Finding text. The WhenChosen method for the find tool would call the

FindText method.

For step-by-step procedures for creating event-triggered logic for a tool, see

Toolbar Logic in the CA Aion BRE online help.

More Information:

Write Logic (see page 187)

Typical Menu Logic (see page 183)

Graphic Logic

Graphic logic consists of the following:

■ Bitmap Response to User Events

■ Dragging and Dropping Graphics

■ Creating Methods for Graphics

Bitmap Response to User Events

There are two ways to enable bitmaps to respond to user events:

■ Create a WhenBitmapNameChosen method for the bitmap itself. Users can

trigger this method by clicking anywhere on the bitmap.

■ Create one or more hot regions and their WhenHotRegionNameChosen

methods for the bitmap. Use multiple hot regions to associate different logic

with different areas of the bitmap.

Conclusion

186 Product Guide

Dragging and Dropping Graphics

If you assign the Auto Drag style to bitmaps, icons, ellipses, and rectangles,

users can move these graphic objects at runtime by holding down the left mouse

button and dragging.

To trigger a response when a user releases the graphic after moving it, define a

WhenDropped method for it.

Create a Methods for Graphics

For step-by-step procedures for creating methods for graphics, see Graphic

Logic in the CA Aion BRE online help.

Conclusion

Now that you have been introduced to the Aion BRE GUI building tools, you

should be able to construct all the windows, dialog boxes, controls, and graphics

that your application needs to interact with its users.

If you need more information about particular GUI objects and the classes from

which they are derived, see the “WinLib” chapter in the CA Aion BRE online help.

Chapter 6: Write Logic 187

Chapter 6: Write Logic

This chapter provides an overview of Aion BRE methods. It includes examples of

common programming tasks where application logic is required. This chapter

also contains a discussion of how to use the Method editor and other tools to

create application logic.

This section contains the following topics:

Write Application Logic (see page 187)

About Methods (see page 188)

Method Editor (see page 190)

Create a New Method (see page 190)

How You Program Aion BRE (see page 197)

Specialize a Method (see page 206)

Write Logic for Windows and Dialogs (see page 207)

Process Data (see page 211)

Define Other Objects (see page 213)

Use the Language Paster (see page 215)

Write Application Logic

Like a procedure or a function, a method contains logic to perform algorithms

and calculations. In the body of a method, you access and modify values of

attributes and local variables and call other methods. Method logic is written in

the proprietary Aion BRE language.

Depending on the functionality you are implementing, Aion BRE application logic

can be written from scratch, inherited from a method in a system-supplied

library, or automatically generated (as in the case of an event). Among other

things, you can use Aion BRE application logic to perform the following runtime

tasks:

■ Create, open, and close application windows

■ Use a dialog box to retrieve user input or show status information

■ Control and process data retrieved from a database

■ Process Rule logic

Like attributes, methods come in two varieties: instance and class. In this

documentation, the un-modified term method means instance method. An

instance method operates directly on the data in an instance. You indicate which

instance a method is bound to by using a fully qualified name that specifies the

instance or class.

About Methods

188 Product Guide

Sample Applications

CA Aion BRE provides many sample applications. To see examples of application

logic, open these applications in Aion. You can find the sample application files

underneath the Aion BRE installation directory, in the \Examples subdirectory.

About Methods

In CA Aion BRE, all application logic is contained within methods. Methods exist

as objects in Aion. Methods can be grouped loosely into two categories:

■ Procedural methods-You use procedural methods to:

– Define the high-level flow control logic of your application

– Set and retrieve values of class and instance attributes

– Respond to user interface events, such as clicking an OK button

– Create and delete instances

– Create, open, and close window instances

– Access and process data from databases

■ Knowledge methods-You use knowledge methods to:

– Define rules

– Control rule posting and inferencing

Knowledge methods themselves have two forms:

■ Inference method-A procedural method containing an Infer block.

– Inference methods may define rules locally, that is, within the Infer

block, or invoke a rule method.

■ Rule method-A non-procedural method containing just the declarative

statement of rules.

This chapter focuses on how to write procedural methods. Knowledge methods

are discussed in the CA Aion BRE Rules Guide and CA Aion BRE Rules online help.

About Methods

Chapter 6: Write Logic 189

Library Methods

CA Aion BRE provides a set of libraries (such as SysLib, WinLib, and DataLib),

referred to as Aion BRE-supplied libraries, or system libraries. Methods

contained in these system libraries are library methods.

Example:

■ SysLib-required for all applications; contains an extensive set of methods

for manipulating basic data types

■ WinLib-contains methods for building a user interface

■ DataLib-contains methods for accessing data stored in a database

Each of these libraries contain many useful methods which can be reused. You

can also specialize and inherit them through subclassing. CA Aion BRE supplies

other system libraries in addition to these. The CA Aion BRE online help contains

detailed information about all system libraries. You can also include custom

libraries in an application.

Event-Triggered Methods

Event-triggered methods are those called when an event or action occurs. Most

events are triggered from the user interface when a button is pressed or when a

menu item is selected. Events can also be triggered when a row is fetched from

a database or when an error occurs during a database update attempt. Event

method names usually start with “When”, as in WhenChosen or WhenFetched.

External Methods

Typically, most methods in an Aion BRE application are written in the Aion BRE

method language. However, an Aion BRE application can also call methods

whose logic exists in external objects (external methods). You might use

external methods to reuse code or to access system-level routines not provided

by system libraries.

Many of the methods defined in the Aion BRE-supplied libraries are external

methods. The DLLs providing the implementation for these methods are located

in the directory where CA Aion BRE is installed.

More Information:

Generate and Use C and C++ Components (see page 335)

Method Editor

190 Product Guide

Method Editor

Use the Aion BRE Method Editor to write or modify application logic. The Method

Editor opens when you create a new method (from the Logic menu, choose New,

Method), or when you double-click a method name in the project workspace.

Open an Existing Method in the Editor

In the Project Workspace, methods are indicated by the triangle icon.

For step-by-step procedures for opening an existing method in the editor, see

Opening an Existing Method in the Editor in the CA Aion BRE online help.

Note: You can always open the method editor by double-clicking a method name

in the Project Workspace, or by double-clicking the method name from within

another method's body.

More Information:

Object Icons (see page 92)

Create a New Method

For step-by-step procedures for creating a new method, see Creating a New

Method in the CA Aion BRE online help.

Create a New Method

Chapter 6: Write Logic 191

Specify a Method's Properties

View and set a method's properties on the Properties page of the Method Editor.

■ The top of the page displays name of the method's owning class, which is the

class to which this method belongs. Also displayed is the name of the library

in which the method is located. A method is always located in the same

library as its owning class. Both the Owning Class and Library are set when

the class is created.

Note: The value in this field updates automatically if you copy or move the

method to another class, or if you rename the owning class.

■ The Name field contains the name for the method. This is the name used

when calling the method.

Note: Aion BRE internally supplies the name for event-triggered methods

and method calls. Do not change the name of an event-triggered method.

■ Use the Access Type section to determine which other classes and instances

can reference the method.

Private

Only the current class or instance can reference the method.

Protected

Only the current class, its derived classes, and instances of those classes

can reference the method.

Public

All classes and instances can reference the method.

Note: It is common practice to make attributes private or protected and to

provide public methods (accessor methods) to get and set the values of the

attributes. This practice ensures that other classes and instances cannot

directly modify the attribute. Moreover, creating the accessors with the

properly formatted names is important for supporting the Java Interface

Layer.

Create a New Method

192 Product Guide

For more information related to creator accessor methods, see Creating

Accessors in the CA Aion BRE online help.

■ In the Type combo-box, specify the data type of the return value (if there is

one).

Note: If a method has a return type, all control paths in the method's

implementation must return a value.

The type can be primitive, or a construct (such as list of string, or list of

pointer to object).

■ In the Arguments field, define any input arguments and output arguments

for the method.

Input arguments

If you write a method that operates on values passed to it, you must

define an input argument for each value.

Output arguments

These correspond to the values that are passed back to the calling

method. Output arguments are also used for values that are passed in to

a method, modified, and then passed back to the calling method.

List input and output arguments in the order that they must be specified when

the method is called. For each argument, you must specify the data type.

IN pAppl is pointer to ApplicantPersonalInfo [= value]

IN policy is integer

IN pRep is pointer to Canvas

OUT str is string

value is an optional parameter that specifies a default value for the argument.

Create a New Method

Chapter 6: Write Logic 193

Note: It is common practice to list input arguments before output arguments,

but it is not required; you can inter-mix input and output arguments.

■ In the Style section, choose one or more styles for the method, specifying

how the method is defined or how it will be used:

Class Method

When checked, specifies that the method is a class method rather than

an instance method.

External

When checked, specifies that the implementation for the method body is

external to the application. External methods are typically written in C

and must be exported to an entry point in a DLL file accompanying the

application. When this box is checked, the External Method Definition tab

becomes available.

Disabled

When checked, the method is ignored instead of being used for

processing an event. This is useful for methods that are defined in base

classes but intended to be specialized in subclasses. You can disable the

method in the base class, thereby ensuring that the method is not

executed by subclasses that inherit it without specializing it.

Event

This is a system-level property, used internally by Aion. When checked,

specifies that the method is a COM event method. The method calls an

event method of a COM or OLE object.

DI Member

When checked, specifies that the method is a Domain Interface Member,

and the Domain Interface Member Definition tab becomes available.

Create a New Method

194 Product Guide

■ External Definition page

If External is checked and you select the External Definition tab, the

following fields are enabled:

Convention

Specifies which calling convention to use for the external method.

Choose a value from the drop-down list box.

Procedure Name

The name of the routine inside the DLL to execute

Library Name

The name of the DLL containing the called routine

Prototype Button

Click this button to views the prototype for this function. This review can

help you ensure that arguments are specified properly.

■ Domain Interface Member Definition page

If DI Member is checked and you select the Domain Interface Definition tab,

the following fields are enabled:

Type

Click the Condition or Action button to choose the type of DI member.

Label

A symbolic name for the DI member assigned by the application

developer

Description

Optional descriptive text associated with the DI member

Comments

Optional comments text associated with the DI member

More Information:

Return Values (see page 201)

Create a New Method

Chapter 6: Write Logic 195

Specify the Method's Implementation

The Implementation page contains the method body (code) as well as any

Arguments. You write or modify logic by typing (or pasting) directly in the body

pane. Statements can use language operators, data value references, and calls

to library methods or application methods.

■ The top frame contains the method's arguments. These are the same

arguments that are displayed on the Properties page. The arguments are

displayed here for easy reference when you are writing the method body.

You can edit the arguments from this page or from the Properties page.

■ The bottom frame contains the method's body. The method body contains

the Aion BRE language statements that are executed when the method is

called.

Write the Method Body

Writing a method body can entail:

■ Defining local variables

■ Choosing the Aion BRE language operators and system-supplied methods to

use

■ Choosing the custom (user-defined) methods to use

■ Ensuring that output arguments and return values are set properly

Edit and Format Features

The Aion BRE Editor pop-up menu gives you rapid access to most common

editing operations. Right-click anywhere in the method body pane to display the

editing pop-up menu.

■ To use Cut, Copy, and Delete, select text before opening the pop-up menu;

to use Paste, you must have cut or copied text to the clipboard before

opening the pop-up menu.

■ To use Shift right, Shift left, Comment, and Un-comment, place the cursor in

the appropriate line. These menu items apply to currently selected text or to

the line where the cursor is located.

■ To affect more than one line, select text on multiple lines before choosing a

menu item

The Method Editor toolbar lets you easily search, comment, or format

statements.

Create a New Method

196 Product Guide

Note: To specify which toolbars display, from the Aion BRE Tools menu, choose

Customize.

Lookup Feature

Use the Lookup feature when writing logic or analyzing an existing method. If,

from within method code you double-click the name of an object (method,

attribute, constant, and so on), information about the object is displayed.

■ Double-click a method name to open it in another Method Editor. Use this

feature to look up arguments and return values when writing a method call.

■ Double-click any other type of object to open its Properties dialog. Use this

when referring to an attribute to look up its access type and its owning class.

You can also use the Lookup option on the Tools menu to search for and display

a particular object.

Parse and Save a Method

When the contents of the Method Editor change, an asterisk displays next to the

method name in the Editor title bar.

To save the contents of the Method Editor, use toolbar buttons, the menu, or

shortcut keys. When you save the method, the asterisk disappears.

Parse the Logic

When the contents of an editor change, the save toolbar is enabled.

The Save Changes button saves the Method Editor to the application, but not to

disk. The Method Editor remains open to allow continued editing of the method.

Note: The changes are not saved to disk until you choose Save from the File

menu.

In the process of saving the editor contents, Aion parses the method. If a logic

error is found, error text displays in the Output pane (at the bottom of the Aion

BRE window), and the method icon displays an “invalid” symbol.

The Save Changes button provides an easy way to test object syntax and

integrity, as well as perform iterative changes. The Close Editor button closes the

Method Editor and prompts to save any changes.

Save the Application and the Editor

To save the application, choose Save from the Aion BRE File menu. If you have

not saved changes in the Method Editor, you are prompted to do so.

How You Program Aion BRE

Chapter 6: Write Logic 197

How You Program Aion BRE

The Aion BRE method language provides the basic constructs for writing complex

logic. The language provides conditional control, iteration, comparison, and

method and attribute referencing. A comprehensive set of data types and

intrinsic functions is provided.

Arguments in Method Calls

When specifying arguments in method calls, match the data type and sequence

of the arguments in the called method. Arguments are separated with commas,

and can contain literal values (including NULL), expressions, or the name of a

value holder.

Note: On UNIX platforms, the maximum number of arguments for an Aion BRE

method is 64.

Example:

This specifies a text string as an input argument for a text window instance:

NameWindow.SetText ("Type Here")

To use an output argument, define a value holder (such as a local variable) in the

calling method, pass that value holder to the called method as an output

argument, and then set the argument value in the called method body with an

assignment (=) statement.

Output arguments are passed by reference, meaning that the called method

receives a pointer to the actual data value. Changes made to the data from

within the called method affect the calling method.

Example:

This calls a method that returns information in a set of output arguments (which

are local variables defined in the calling method).

NameWindow.GetFontInfo(facevar,stylevar,widthvar, heightvar)

Note: A method call is not required to specify a value or value holder for input

arguments that are defined in the called method with an explicitly assigned

default value (using = in the definition).

You can pass values into a method with input arguments but you cannot change

them in the method body. If you want to modify the value of an argument inside

a method, you must use an output argument and set the value of the argument

(using an assignment) before the call to the method.

How You Program Aion BRE

198 Product Guide

Example:

This is a method named Build_customer_list builds a list of customers from a

data source.

Build_customer_list ("name",cust_list)

The input argument determines if the customers are listed by name or company.

The logic in the method uses Add statements to add the customers to a list

named customer_list. Cust_list is passed back as an output argument. The

argument name is a literal input argument that indicates how customers should

be listed. Cust_list is defined as a local variable in the calling method.

Attribute Data Types

Aion provides a number of predefined data types, such as string and integer. To

indicate that the attribute holds a list of values, use the language construct list of

(list of string or list of integer). The system-supplied library called SysLib

contains the definitions of the data types.

Data type Description Example

binary A binary value can be any arbitrary

sequence up to 2 gigabytes. Binary

values can be used to build complex

structures to pass to external

methods.

bitmap image

sound

video

complex structure

Boolean Holds a value of either true (1) or

false (0). The results of

comparisons (for example, “If A >

B”) are Boolean values.

TRUE

FALSE

classname The name of the class whose

instances can be values of the

attribute.

constrained

data type

The name of a (subtype of a)

constrained data type that specifies

restrictions on the range of values of

the attribute.

date Holds any date, including year,

month, and day. Use a date data

type to create a formatted

representation of the date value.

Date values can be entered in

June 21, 1998

06/21/1998

21/06/1998

1998/06/21

21-June-1998

How You Program Aion BRE

Chapter 6: Write Logic 199

Data type Description Example

various formats, as specified by the

application.

integer Holds a four-byte integer value

between -2,147,483,648 and

+2,147,483,648. Typically, an

integer is represented as a decimal

(base 10), octal (base 8), or

hexadecimal (base 16) number that

represents a value.

1205

+33691

-7898

real Holds an eight-byte floating-point

value between +1.0E+306.

Financial data typically requires a

real data type.

98.6

-000.02

string Holds up to 65,512 characters,

inclusive. Text data requires a string

data type. String values must be

surround by quotation marks. To

specify quotation marks within a

string, use two sets of quotation

marks.

“yellow”

“Jane Doe”

“(800) 555-1212”

“Error: ““Not found”””

time Holds any time value, to the nearest

second, for dates after January 1,

1970. Includes the year, month,

day, hour, minute, and second.

Time values can be entered in

various formats, as specified by the

application.

June 21, 1998 4:15pm

06/21/1998 4:15pm

21/06/1998 16:15

1998/06/21 16:15

21-Jun-1998 4:15pm

pointer to

classname

The name of the class whose

instances can be referenced by the

value of the attribute.

classpointer to

classname

Holds a pointer to the named class

or any class from which that class

derives (directly or indirectly). In

this way, classpointer allows for an

extra level of indirection beyond

using a simple pointer to the named

class.

How You Program Aion BRE

200 Product Guide

Data type Description Example

attributepointer Holds a pointer to an instance

attribute or a class attribute that is

not a constant. Attributepointers

allow you to refer to another

attribute dynamically.

Local Variables

Local variables are declared within the method body, and are created when

control enters the method and released when control exits. These variables

cannot be accessed from outside of the defining method. You can use local

variables for calculations and looping. A local variable is not an attribute of an

instance.

Local variables can be declared dynamically (for example in an IF block).

Variables defined this way exist only in the scope of the containing block.

Example:

IF a + b then

var i integer

 .

 .

END

In this case, the variable i is only recognized inside the IF block, and if referenced

outside the block, it is considered an undeclared variable.

How You Program Aion BRE

Chapter 6: Write Logic 201

The syntax for declaring a variable is:

var varname [,varname] [is] data type [= value]

where varname is the variable name, and the optional value is an initial default

value for the variable, and which can be a constant or a literal value. data type

can be a primitive data type (such as integer), a construct (such as pointer to or

list of primitive data types), or a classname (class containment).

var i,j integer

var k integer = 6

var a is string

var pJob is pointer to Jobs

var aPolicy is Policy

“pointer to” can also be indicated by prefacing the (pointed-to) object-name with

an & symbol.

var p &pClass

Note: Local variables cannot be declared to be of a type defined by a

Constrained Data Type.

Return Values

You can use return values to:

■ Return a single value. If a method passes only one value to its calling

method, you can pass the value using the method's return value. If a method

passes more than one value to its calling method, it is common practice to

use output arguments for the values.

Or

■ Indicate the success or failure of the method. Methods typically return zero

(0) for success and nonzero for an error. The nonzero value typically

specifies an error code number.

If a method has a return type, all control paths in the method's implementation

must return a value. You set the return value with a Return statement inside the

method body. The value is then available to the calling method. The calling

method does not need to act on the returned value. For example, if a method

returns an error code, the calling method can ignore that error.

For step-by-step procedures for defining and using a return value, see Return

Values in the CA Aion BRE online help.

How You Program Aion BRE

202 Product Guide

Call an Instance Methods

Instance methods operating on a specific instance must specify that instance in

the call. The instance name is specified differently if the call is operating on a

static instance, such as a connection, or a dynamic instance, such as an interface

component.

There are three ways to reference an instance:

■ Current

■ Name of the instance (static instances only)

■ Name of an attribute or local variable whose value is a pointer to an instance

Static Instances

To reference a static instance, use its name.

The following statement calls Commit for a database Connection named

local_dBase.

local_dBase.Commit

Dynamic Instances

Dynamic instances (such as windows or data fetched from a database) are not

created until program execution. To reference an instance method for a dynamic

instance, use an attribute or local variable that holds a pointer to the instance.

The syntax for calling an instance method is attributename.methodname.

Example:

pApp is an attribute of type Pointer to StandardWindow:

pApp = AppWindow.Create

pApp.OpenApp()

Current Instance

For an instance method to operate on the current instance, omit the instance

reference from the call, or use the current language construct.

You can input current as the default value for an argument. The following code

adds the current instance (a specific client) to a list and then saves the list to a

database:

add(pClientList, current)

SaveList(pClientList)

How You Program Aion BRE

Chapter 6: Write Logic 203

When an instance method is executing and a method or attribute is referenced

without being prefixed with an instance reference, the current instance is

assumed.

Example:

This example might be used in the WhenOKChosen method of a dialog box to

close the dialog. The method body does not need to reference the dialog instance

because the current instance is the dialog.

// Must specify a name

if length(twName.Text) > 0 then

// Close the dialog

 close()

end

Call a Class Methods

Class methods operate on all instances of a class or a selected subset of the

instances. In an application with an Employee class, class methods may return

values such as the number of employees in a specific department and their

average amount of accrued vacation.

For step-by-step procedures for calling a class method, see Calling Class

Methods in the CA Aion BRE online help.

Associations

To maintain an association between instances of two classes, it often

advantageous to define the association as a subclass of SysLib's _Associations

class. Subclasses of _Associations are known as association classes. The

Association editor allows the programmer to create association classes.

There are two advantages of defining an association as an association class:

■ You can assign properties to the association. For example, MarriageDate

may be assigned to the association class Marriage.

■ You may use the roles specified in the Association editor as public attributes

(instance pointer or lists of instance pointer depending on the multiplicity of

the association) of the associated classes. Using roles is especially helpful if

the associations change membership during execution of the knowledge

base.

How You Program Aion BRE

204 Product Guide

To establish an association between two instances of the associated classes, you

should call the Establish() methods of your association class and pass it pointers

to instances.

Example:

var pMarriage is pointer to Marriage

pMarriage = Marriage.Establish(phusband, pwife).

Establish() creates an instance of the Marriage association and returns a pointer

to that instance. This instance maintains the pointers to each of the associated

instances. Related instances are represented by an instance of the association

class. To delete the association, invoke the association instance's Dissolve()

method.

Example:

pMarriage.Dissolve().

Note: If the call to Establish() violates a constraint on the association, Aion will

abend. To address this, it is recommended that the association's OkToEstablish(

) method be called before calling Establish(). OkToEstablish() returns a Boolean

that allows the programmer to proceed with the establishment of the association

or handle the error condition.

The use of roles is especially helpful. For example, if Owns designates the role of

PropertyOwner to Property, the following construction yields the properties

owned by a property owner:

pInstanceOfPropertyOwner.Owns => List of Property instances

Aion BRE automatically maintains this list. If the property owner sells a property,

that is, if a particular instance of the Ownership relationship is dissolved, the

next time the preceding statement is invoked, the sold property will not be part

of the Owns list.

Similarly, the owner of a given property can be referenced through the OwnedBy

role (defined as the role of PropertyOwner in the Ownership association. For

example:

pInstanceOfProperty.OwnedBy => pInstanceOfPropertyOwner

Even though roles function as public attributes of the associated classes, they do

not appear as attributes on these classes.

More Information:

Association Editor (see page 104)

How You Program Aion BRE

Chapter 6: Write Logic 205

Attribute and Class Pointers

Besides pointers to instances, Aion BRE provides two additional types of

pointers: attribute pointers and class pointers. This section describes how to

assign values and use these new types of pointers.

Attribute Pointer

An attribute pointer points to an attribute. Attribute pointers are typically

used when specifying the goal attribute in a chaining statement and in the

meta-programming capabilities of Aion BRE.

Attribute pointers are usually assigned by means of system methods, for

example, Pointer::LookupAttribute(). To assign a value directly to an

attribute pointer you must use the “->” operator:

■ For instance attributes, the syntax is ->pointer to instance.Attrib1. The

pointer to the instance can be omitted when the attribute pointer refers

to an attribute of the current instance. This omission commonly occurs

when specifying the goal attribute in a chaining statement.

■ For class attributes, the syntax is ->classpointer.Attrib1. Where Attrib1

is a directly accessible class attribute, classpointer may be omitted. (A

directly accessible class attribute is a class attribute of the current class

or any unique public class attribute.)

Class Pointer

A class pointer holds a pointer to the specified class or to any of that class's

subclasses. Thus, polymorphism is supported through class pointers just as

it is through instance pointers.

In general, you can specify a class pointer using one of two alternative

syntaxes:

■ The standalone class name, for example, BusinessInfo.

Exception: When declaring an initial value of an attribute defined as a

classpointer, the “->” operator is required.

■ The “->” operator, for example, ->BusinessInfo.

Exception: When dereferencing a classpointer, the stand-alone class

name must be used. An expression of the form ->BusinessInfo.Attrib1,

where Attrib1 is a class attribute, is construed by the interpreter to be an

attribute pointer to Attrib1. Expression of the form

->BusinessInfo.Method1() causes a syntax error.

Specialize a Method

206 Product Guide

The following groups of expressions are equivalent:

var pcl is classpointer to BusinessInfo

pcl = BusinessInfo

pcl = ->BusinessInfo

and

GetDerivedClasses(BusinessInfo)

GetDerivedClasses(->BusinessInfo)

Only class attributes and class methods can be accessed through a class

pointer. The most common use of a class pointer occurs when you

qualify the name of a class method or attribute with the name of the

owning class. For example, when you create an instance of a class, you

must qualify the Create() with the name of class whose Create() method

you wish to invoke:

MyClass.Create()

In this case, “MyClass” is, in fact, a class pointer.

Specialize a Method

Specialization is the process of distinguishing class objects from the parent

objects from which they were derived.

You can specialize any available method, including those supplied with Aion BRE.

You might specialize a library method to modify actions built into the system. Or,

you can specialize an event method to add behavior to the default actions of a

window or control.

When you specialize a method, the default logic for the method is still available.

You can perform the default logic any time during the execution of the method by

calling the method defined in the parent class. The methods you are most likely

to specialize are WhenOpened and WhenClosed from WinLib, and WhenFetched

from DataLib.

Specialized versions of these methods include up to call a method using the

parent class of the current instance:

return(up.WhenUpdated(argument))

Note: If you are working with a developer-created class library, or creating a

library of your own, you may find yourself specializing methods other than those

supplied with Aion BRE.

For step-by-step procedures for specializing a method, see Specializing a Method

in the CA Aion BRE online help.

Write Logic for Windows and Dialogs

Chapter 6: Write Logic 207

Unspecialize a Specialized Method

You can unspecialize a method that has previously been specialized.

Unspecializing deletes the specialized logic and returns the method to its default

function.

Note: When you unspecialize a method, any specialized code in the method is

deleted.

For step-by-step procedures for unspecializing a specialized method, see

Unspecializing a Specialized Method in the CA Aion BRE online help.

Write Logic for Windows and Dialogs

In a graphical application, you write logic to create, open, and close application

windows and dialog boxes. Typically, windows are opened or closed in response

to user events (for example, when the end-user chooses a menu option or clicks

a button).

Note: CA Aion BRE supplies prewritten methods for many common tasks, such

as Closing and Opening windows. For these functions, you do not need to write

methods from scratch; you simply access these prewritten methods from your

code, or subclass and specialize the corresponding Aion BRE-supplied class.

Create and Open the Application Window

By default, an application window is opened when an Aion BRE application begins

executing. While, at edit-time you use the Window Editor to define the look of

this initial window, the window is created and opened at runtime.

Typically the logic for creating and opening this initial window is located in the

Start method of the entry class. When you first create an Aion BRE application

(using the New option from the File menu), Aion automatically generates the

logic needed to create and open the initial window, and places the logic in the

Start Method of the Main class.

The default (generated) Start method uses the following code to create and open

the application window:

pApp = AppWindow.Create()

pApp.OpenApp()

A Create method is called, and returns a pointer to the initial window. You can

then use the pointer to reference the window in Open(), Close(), or other

window method calls.

Write Logic for Windows and Dialogs

208 Product Guide

Create Dialogs at Runtime

Typically, an application has several dialogs for gathering user input and

displaying information. You can choose to create all dialogs at one time in the

entry class, or to create them upon demand.

For a small number of dialogs, the easiest strategy is to create all dialogs in the

Start method of the entry class, store pointers to them in public class attributes

defined in the Main class, and then open and close the dialogs throughout the

application.

This code fragment creates two additional dialogs, a List Dialog and a Dept

dialog, where pListDlg and pDeptDlg are class attributes defined in Main:

// Create application dialogs

pListDlg = ListDlg.Create()

pDeptDlg = DeptDlg.Create()

// Create and open application window

pApp = AppWindow.Create()

pApp.OpenApp()

However, as the number of dialogs grows, this strategy can impose a heavy

burden during program initialization.

An extension to this strategy is to delay window creation until the dialogs are

actually needed. In this case, you do not use the Start method to create dialogs;

you use the method that opens each dialog to create it. The following code

fragment demonstrates this technique:

// Create the dialog

if (pListDlg = NULL) then

pListDlg = ListDlg.Create()

end

// Open it

pListDlg.OpenModal()

Note: All class attributes have an initial value of NULL.

The DialogBox Class

Dialog Boxes are used at runtime to gather input from a user or to show status

information. In CA Aion BRE, a dialog is represented as an instance of the

DialogBox class in WinLib. The attributes of a Dialog Box contain information

about it, and there is an attribute for each control contained within the dialog.

You can open dialogs by calling either the OpenModal method or the Open

method. Calling OpenModal opens a modal dialog at runtime, whereas calling

Open causes a modeless dialog to open at runtime.

Write Logic for Windows and Dialogs

Chapter 6: Write Logic 209

Set Initial Values for Controls

Before opening a dialog, you must set its initial control values. You can specialize

the Aion BRE WhenOpened method to set these initial values, thereby

encapsulating related logic in the dialog.

Each control provides public methods to set its value. For example, you can set

the contents of a text window using the SetText method

Example:

pListDlg.twName.SetText("Jones")

You can set the contents of a list box using the SetStrings method

Example:

reps = list("Fred", "Sally", "Bill")

pListDlg.twReps.SetStrings(reps)

You can specify the initial values of many controls within the Window editor;

however, in some cases the initial state of the controls depends on the state of

other attributes. These controls must be initialized programmatically just before

the call to OpenModal or Open:

// Set initial values

pListDlg.twName.SetText("Jones")

pListDlg.rbMarriedStatus.SetChosen(FALSE)

// Open the dialog

pListDlg.OpenModal()

Write Logic for Windows and Dialogs

210 Product Guide

Use Dialogs to Get User Input

User input is obtained from a control on the dialog. Typically, the input is

gathered from an event method defined for a push button.

Each control that can accept user input has an attribute that stores its current

value. When accessing the value of a control, you refer directly to the public

attribute of the control that holds the value.

Example:

A radio button has a Boolean attribute named Chosen that stores whether the

button has been selected. This attribute can be referenced in your method as

follows:

if rbMarriedStatus.Chosen = TRUE then

...

end

The preceding example does not prefix the reference to the attribute

(rbMarriedStatus) with the pointer to the dialog (pListDlg). This is because the

dialog instance is the current instance and therefore the attribute reference is

assumed to be a part of the dialog. In general, writing instance methods that

work with the current instance provides the greatest reusability of objects.

Attributes of other control types may have a different name and data type, but

you handle them in the same general way. With a text window, for example, the

value set by the user is stored in the string attribute named Text

Example:

if twName.Text = "Smith" then

...

end

Process Data

Chapter 6: Write Logic 211

Report Status Using a Modeless Dialog

Using a modeless status dialog is a common approach to reporting status to the

user during long operations (such as a percentage-completed indicator). A dialog

of this type has a single text control.

The dialog is opened just before the long operation begins, and then at specific

points during the process, status is written to the text window.

// Create and open status dialog

if (pStatusDlg = NULL) then

pStatusDlg = StatusDlg.Create()

end

pStatusDlg.Open()

// Perform long operation

for idx = 1 to 100000

CalculateSomething()

// Update status every 100 calculations

if (idx mod 100 = 0) then

msg = format(idx) & " calculations performed")

pStatusDlg.twMsg.SetText(msg)

pStatusDlg.Refresh()

end

end

// Close status dialog

pStatusDlg.Close()

Process Data

Another common task for logic involves working with rows of data retrieved from

a database.

Process Data

212 Product Guide

Iterate Instances of a Query

Typically, after data is loaded as instances, you iterate the instances to perform

application-specific logic. The following code block shows a method that loads all

employees of a company, then builds a list of strings used to set the values of a

list box where names is a local variable of type list of string and pEmp is a local

variable of type pointer to EmployeeQuery.

var names list of string

var pEmp &EmployeeQuery

// Load the data

EmployeeQuery.Load()

// Iterate over the instances of the class

names = NULL

for EmployeeQuery, pEmp

// Add the name to the string list

add(names,pEmp->EMP_NAME)

end

// Set the names into the list box

pListDlg.lbNames.SetStrings(names)

// Delete the query instances

EmployeeQuery.Flush()

Use Markers to Control Data Selection

Using markers is the most common way to control data selection from a

database. It is better to use markers to control the select statement of a query

than to create many different queries. The following example sets the values of

three markers based on the values of the controls on a dialog. After the marker

values are established, the query is loaded.

// Get the criteria from the user

if (pListDlg.OpenModal() = 0) then

return

end

// Set representative markers

mkRep = pListDlg.coRep.selection

if (length(mkRep) = 0) then

mkRep = NULL

end

Define Other Objects

Chapter 6: Write Logic 213

// Set contact marker

mkContact = pListDlg.twContact.text

if (length(mkContact) = 0) then

mkContact = NULL

end

// Set problem type marker

mkType = NULL

if pListDlg.rbBug.chosen then add(mkType,"SFTWR")

if pListDlg.rbEnh.chosen then add(mkType,"ENHRQ")

if pListDlg.rbDoc.chosen then add(mkType,"DCERR")

// Load the data

ProblemQuery.Load()

Define Other Objects

You can also define the following three additional types of attributes. Create

these objects using their respective editors (from the Logic menu, choose New,

objtype where objtype is the type of object).

■ Attributes

■ Classes

■ Instances

Note: When creating a new object, remember to specify the class where it is

defined. By default, the owning class is based on the current selection in the

Project Workspace, or the owning class of the current method.

Attribute Editor

Use the Attribute Editor to define an attribute. From the Logic menu, choose

New, Attribute to open the editor.

Attributes

Attributes are value holders that declare storage in every instance of the class

where they are defined. For example, an employee name might be an attribute

defined in an Employee class.

Define Other Objects

214 Product Guide

Class Attributes

Class attributes are value holders that declare storage within the class where

they are defined. Additional storage is not declared in the instances of the class.

Therefore, class attributes are used to declare global information for the class

itself. For example, the average salary for all employees might be stored as a

class attribute of the Employee class.

To define a class attribute, check the Class Attribute check box on the Attribute

editor.

Constants

Constants are value holders stored within the class where they are defined. The

value of a constant is established during development, and you cannot change it

during program execution. You cannot specialize constants.

To define a constant, check the Constant check box on the Attribute Editor for a

Class Attribute.

Accessor Methods

To automatically generate Accessor Methods (that is, Get and Set methods),

when an attribute is selected, use the Create Accessor option from the Logic

menu.

More Information:

Creating accessor methods, see Creating Accessors in the CA Aion BRE online

help.

Instance Values Dialog

Instances are the actual objects of an application. Usually you create them

dynamically, but you can also create them statically during program

development. Static instances are useful when an application has predefined

data values for attributes unlikely to change during execution.

One example of static instances is found in the Connection class in DataLib. Aion

creates a static instance of the Connection class when you choose New

Connection from the Data menu, using the values you supply to set the values of

the Interface, Data Source UserID, and Password attributes.

Use the Language Paster

Chapter 6: Write Logic 215

Use the Language Paster

Use the Language Paster to insert a predefined language statement of one of the

following kinds into the Method editor:

Operators

Logical operators such as equal to (=) and less than (<)

Constructs

Logical language structures such as If/Then/Else

Rules

Code that executes knowledge

For step-by-step procedures for using the Language Paster, see Using the

Language Paster in the CA Aion BRE online help.

Chapter 7: Access Data 217

Chapter 7: Access Data

This chapter examines accessing data from Aion BRE applications, including

establishing a database connection, defining queries and stored procedures,

loading data, and committing transactions. In addition, it describes the way in

which CA Aion BRE accesses IBM MQSeries functionality, and supports the use of

MQSeries-compliant objects.

This section provides an overview of the process whereby CA Aion BRE accesses

and manipulates data from server databases.

This section contains the following topics:

Data and Aion BRE Classes (see page 217)

Define a Database Connection (see page 222)

Define a Query (see page 222)

Write SQL Statements (see page 231)

Define a Stored Procedure (see page 232)

Data Test Facility (see page 236)

Load Data from a Database (see page 237)

Save Modifications to the Database (see page 243)

Database Errors (see page 248)

Define Records and Serialize Data (see page 249)

MQLib to Access MQSeries (see page 253)

Data and Aion BRE Classes

Data is loaded into CA Aion BRE in the form of instances of a class. The

application-defined class is a subclass of either the Query or StoredProcedure

class (these are predefined in DataLib).

■ Use the Query class if the data is the result of an SQL SELECT statement.

■ Use the StoredProcedure class if the data is the result of a stored procedure

invocation.

When an SQL SELECT statement or a stored procedure is issued against the

database, the database retrieves all rows that satisfy the request and returns the

set of rows, or the result set, to the application. When data loads into an Aion

BRE application, each row of the result set is transformed into a runtime instance

of the class that initiated the database interaction.

Data and Aion BRE Classes

218 Product Guide

Data Manipulation

Once the data is loaded in the form of instances, the application can manipulate

the data visually or programmatically.

■ Visual display and modification of data is controlled using the windows and

controls provided by WinLib and IOWLib.

■ Programmatic manipulation of the data is accomplished using the Aion BRE

language to change attribute values.

Update the Database

DataLib tracks all visual or programmatic modification of query instances, such

as modifications made to attribute values, or the creation or deletion of an

instance. Then, DataLib automatically generates the necessary INSERT, DELETE,

and UPDATE SQL statements to reflect the changes back to the database.

To ensure integrity, when data is accessed by several users at the same time,

DataLib provides two modes for transaction management.

■ Default-commits updates to the database after every UPDATE, INSERT, or

DELETE SQL statement

■ Application-defined-updates during a transaction are committed to the

database as a unit

Basic Steps in Working with Data

The following basic steps enable Aion BRE to access and manipulate data from a

server database:

1. Define a database connection.

2. Create a query or stored procedure invocation to specify the SQL SELECT or

EXECUTE statement and the structure of the result set.

3. Write logic to load data into the query, or use the Auto-Load feature.

4. Write logic to manipulate data programmatically, and logic to save

modifications to the database.

Data and Aion BRE Classes

Chapter 7: Access Data 219

Define a Database Connection

Establish a connection to a data source, such as an ODBC data source, or to a

database such as Oracle or Sybase. The connection, once established, takes the

form of a static instance of the Aion BRE Connection class. An application can

create and use any number of connections.

Note: To access a database through ODBC, a data source must have been

defined using the ODBC Administrator. To access a database using a native

driver, you must know the server machine's network name or address (or its

alias).

Invoke a Query or Stored Procedure

A Query defines the following:

■ SQL SELECT statement used to obtain a result set

■ Field attributes that map to the columns in the result set

■ Connection on which the database interaction takes place

You can define any number of queries for a connection. Queries are defined using

the Query Editor.

Write the SQL Statement (Query Editor)

Use the Query Editor to write the SQL statement that initiates database

interaction. The Query Editor has a built-in SQL parser to verify the basic syntax

of the SELECT statement. The SELECT statement can include a class attribute

defined in the Query, or a marker. The value of the marker is substituted in the

SELECT statement during execution.

The Query Editor includes a graphical display of catalog information so you can

choose which columns participate in the SELECT list of the SQL SELECT

statement.

Create the SELECT List

The SELECT list specifies which columns to retrieve from the database when the

SELECT statement is issued. You can use any number of columns from one or

many tables to establish the SELECT list.

Note: CA Aion BRE also supports multiple table updates.

For every column chosen from the catalog information pane, the Query class

creates a field attribute to hold the value of the column when data is loaded.

Data and Aion BRE Classes

220 Product Guide

Test the Query

Once you define the field attributes, markers, and a SELECT statement, you can

test whether the query properly executes against the database. The Test option

on the Data menu (available when the Query Editor is open) runs the SELECT

statement against the database, and then displays returned data in tabular

format.

More Information:

Define a Query (see page 222)

Write Data-Loading Logic

Once components are defined, you write logic to initiate the database

interaction. The only required statement is the invocation of the Load() method

(of the Query class).

Invoking the Query class Load() method causes all rows of the result set to be

loaded into the application as runtime instances of the Query class.

Example:

The following example shows a typical code block establishing values for two

markers, and then calls the Load method to retrieve matching rows from the

database.

// Set the WHERE clause markers

mkDepartment = "Finance"

mkLocation = 177

// Load all matching employees

MyQuery.Load()

Note: The preceding example assumes you are Auto-Loading (which is the

default). If you choose to Manually Load rows, the code is slightly different.

Write Logic to Update the Database

Once data has been loaded, DataLib automatically begins tracking modifications.

You can modify data using Aion BRE language statements. DataLib tracks

changes made to attribute values, newly created instances, and instances that

are deleted.

To update the database with data changes, use the Save() method. Save()

issues the appropriate SQL INSERT, DELETE, or UPDATE statement for each

modification outstanding against the Query data.

Data and Aion BRE Classes

Chapter 7: Access Data 221

Example:

The following code fragment shows an example of data loading, followed by

modification that results in both DELETE and UPDATE SQL statements being

issued when the Save() method is called.

// Set the WHERE clause marker

mkDepartment = "FINANCE"

// Load all matching employees

MyQuery.Load()

// Loop through the instances of the Query

var p is pointer to MyQuery

for MyQuery, p

// Delete all temporary employees

if p.Status = "TEMP" then

p.Delete()

// Give everyone else a raise

else

p.Salary = p.Salary + 100

end

end

// Update the database

MyQuery.Save()

Transaction Management

Connections control transactions with the database. By default, DataLib defines

a transaction as a single SQL UPDATE, INSERT, or DELETE statement. Therefore,

during a Query's Save() operation, each SQL statement is committed

individually.

By using the Connect, Commit, and Rollback methods of the connection class,

DataLib lets an application define its own user-defined transaction.

More Information:

Update Data with Automatic and Manual Commit Modes (see page 244)

Define a Database Connection

222 Product Guide

Define a Database Connection

A connection is a conduit between a database and an Aion BRE application. When

appropriate methods are invoked during program execution, data flows from the

database into the application or from the application back to the database.

CA Aion BRE uses a database driver to communicate with the database.

Currently, DataLib supports the following native drivers:

■ Oracle 10g and 11g

■ Sybase 12.5.4

■ Microsoft SQLServer 2005 and 2008

■ IBM DB2 for LUW 8.1 and 9.1

■ IBM DB2 for zOS 8.1 and 9.1

■ ODBC (for accessing a wide range of databases and files)

Note: To assure that DB2 database access is successful, the user must use the

same version of DB2 Client and Server.

To work with database data (both at design-time and runtime), at least one

connection must be defined. The attributes of the Connection class hold

information necessary for making the physical connection to the database. For

example, connecting to a Sybase database using the native Sybase driver

requires a user name, password, location of the host machine, and sometimes a

database name; all of which is stored in the Connection class.

For step-by-step procedures for defining a connection in your application, see

Creating a Connection in the CA Aion BRE online help.

Define a Query

The Query class defines a read/write database interaction initiated by an SQL

SELECT statement. The Query class uses Field Attributes to map to columns in a

result set, and Class Attributes to hold information about the database

interaction, such as the following:

■ The SELECT statement

■ Any marker values within the SELECT statement

When your application calls methods at runtime, data you describe in the Query

Definition window (of the Query Editor) is loaded into the application. After data

is loaded, DataLib tracks all modifications to instances of the Query so it can

automatically update the database with appropriate changes.

A query definition is developed using the Query editor.

Define a Query

Chapter 7: Access Data 223

Each definition contains the following components:

■ One Field Attribute for each column in the result set

Note: Each Field Attribute is mapped to a field in the database.

■ Any number of additional attributes to hold application-defined information.

(Additional attributes are often used to hold values calculated from values of

Field Attributes)

■ Specialized Class Attributes that define properties of the query, such as the

SELECT statement, and a pointer to the Connection instance

■ Any number of additional Class Attributes to define variables for the SELECT

statement

Note: A Class Attribute used as a variable in the SELECT statement is called

a Marker.

■ Inherited methods that provide the ability to load from a database, and save

modifications back to the database

■ Any number of application-defined methods

Use Inheritance to Reuse Queries

Most queries are derived directly from the Query class. It is possible, however,

for any query to serve as the base class for a new Query. The new query inherits

the Field Attributes and properties of the base class. Typically, both the result set

and the SQL SELECT statement are further specialized.

Because all field attributes from the base Query are inherited and cannot be

removed, the SELECT list of the derived Query's SELECT statement must contain

the original columns in the original order.

New field attributes can be defined on the derived Query, but because locally

defined field attributes are ordered after inherited field attributes, you need to

specify new field attributes at the end of the SELECT list.

Note: Use the %columns, %tables, and %markers directives in the SELECT

statement to automatically generate the SELECT list from field attribute

definitions.

Define a Query

224 Product Guide

Concurrency Control

Concurrency control refers to the Aion BRE object locking options. You choose a

locking option at the query level to apply to all transactions processed through

the query.

CA Aion BRE uses optimistic locking. To enforce read-only locking, verify that

none of the field attributes are specified as Key. To enforce pessimistic locking,

add the corresponding keywords to the SQL statement.

Create a Query

The New Query dialog provides necessary fields for defining a query and starts

the Query Editor.

For step-by-step procedures, see Creating a Query in the CA Aion BRE online

help.

Query Editor

Use the Query Editor to define a query for an Aion BRE application. An application

can contain an unlimited number of Queries.

Use the Query Editor to:

■ Display catalog information associated with the connection

■ Easily create field attributes and map them to columns in the result set

■ Create field attributes and map them to calculated fields in the SELECT list of

the SELECT statement

■ Create markers for the SELECT statement

■ Use the SQL Paster to assist in writing the SELECT statement

■ Test the query against the database.

Define a Query

Chapter 7: Access Data 225

Open the Query Editor

To open the Query Editor, right-click on a Query Class and choose Open from the

pop-up menu.

The Catalog Information pane graphically displays the available tables and

columns on the connection associated with the query. Use the Catalog

Information tree to browse tables within the database and to browse the

columns defined for each table.

Note: If, when the connection was defined, filters were removed for other object

types (such as synonyms), those types appear in the Catalog Information pane

as well.

The Query Definition pane contains all Attributes and Markers defined for the

query. As you create Field Attributes from columns, they display in this pane.

The SELECT Statement pane contains the SELECT statement. By default, it

appears as above, with placeholders for markers and attributes. You can also

hard-code a SELECT statement here.

View Table Data

For step-by-step procedures for viewing table data, see Viewing Table Data in

the CA Aion BRE online help.

Include Columns

For step-by-step procedures for including one or more columns in a query, see

Including Columns in a Query in the CA Aion BRE online help.

Change Field Attributes

You edit field attributes in an Attribute Editor, which features tables to display

field and data properties. Double-click on a field attribute in the Query Editor to

display the attribute in the Attribute editor.

More Information:

Field Attributes (see page 226)

Write the SELECT Statement

The Select Statement pane (in the lower-right corner of the Query Editor)

contains the SELECT statement for the query. Following is the default SELECT

statement.

select %columns from %tables where %markers

Define a Query

226 Product Guide

It specifies that all field attributes defined for the query will participate in the

SELECT list. DataLib automatically builds the SELECT list at program execution.

You can add to this statement by typing directly in the field, by pasting from the

clipboard, or by using the SQL Paster

More Information:

SQL Paster Utility (see page 232)

Test the Query

Use the Data.Test facility to test whether a query has been properly defined. This

facility takes the query's SELECT statement, the list of field attributes, and the

initial values of any defined markers, and constructs the SELECT statement that

will execute during program execution.

To test the query, choose Test from the Data menu in the Query Editor.

Field Attributes

Use the Field Attribute Properties dialog to identify key fields, to mark fields as

unmapped, to inherit from your predefined data types, and, when necessary, to

modify the system-generated data type for the field.

The Field Attribute Properties dialog is accessible whenever the Query Editor is

open.

For step-by-step procedures for creating and modifying field attributes, see

Creating Field Attributes in the CA Aion BRE online help.

Calculated Fields

Field attributes can be used to display values that do not directly correspond to

database columns. Use the following guidelines with calculated fields.

■ If the field is calculated by application logic, set up the field as Unmapped

(meaning the field is not involved in database interaction). You can then use

application logic to assign a value to the field. (Frequently, the value is

calculated by the WhenFetched method.)

■ If the field is calculated by an SQL expression, write the SQL expression in

the alias for the field you are adding.

For step-by-step procedures for adding a calculated field, see Adding a

Calculated Field in the CA Aion BRE online help.

Define a Query

Chapter 7: Access Data 227

Use Markers with Query Classes

A marker is a class attribute defined within the Query class you are defining. You

can use markers as variables, particularly within the WHERE clause of the

SELECT statement.

Mapped and Unmapped Markers

Mapped markers have an alias property that specifies table.column. Mapped

markers are used only with the SQL directive %markers. Use mapped markers

when writing a WHERE clause with many AND expressions. The default SELECT

statement uses mapped markers to search for all non-NULL columns. The

SELECT statement is automatically expanded for markers that are lists.

select %columns from %tables where %markers

If you wish to eliminate a clause from the list of mapped markers, assign the

mapped marker the value NULL.

Note: The value NULL in Aion BRE is not the same as reserved word NULL in

SQL. You cannot use mapped markers to query columns whose value is NULL.

You must either hard-code the condition, for example, WHERE %markers AND

(Age IS NULL), or use unmapped markers.

For step-by-step procedures for creating a mapped marker, see Creating a

Mapped Marker in the CA Aion BRE online help.

Use unmapped markers to assign a value to a specific query column or when

using an OR clause. Assign a value to a marker through application logic, just as

you would assign a value to another attribute. The following SELECT statement

uses unmapped markers to specify an employee's name and department.

select %columns from %tables

where EMP_NAME = :mkEmpName and

DEPT_ID = :mkDeptId

When an unmapped marker is set to NULL in Aion BRE, the entire contents of the

clause within parentheses containing the unmapped marker is replaced by 1=1,

which always yields True. This feature supports dynamic clause elimination.

Dynamic clause elimination allows you to include or exclude a condition in the

SQL WHERE clause at runtime. For example, to dynamically eliminate the clause

(Age IS NULL) create an unmapped marker of type Boolean. In the SQL query

statement specify (where mkAgeNull is the name of the Boolean unmapped

marker)

...WHERE...AND (1=:mkAgeNull AND Age IS NULL)

Define a Query

228 Product Guide

Setting mkAgeNull to TRUE will cause the SQL clause to be rendered (1=1 AND

Age IS NULL); setting mkAgeNull to NULL, will cause the clause to be rendered

simply as (1=1).

Important! In order to avoid inadvertently eliminating other conditions of the

query, bound the unmapped marker portion of the query conditions with

parentheses, even if those parentheses would not otherwise clarify or determine

the meaning of the overall search clause.

Note: To map an unmapped marker, double click the name of the marker in the

Query editor and add an alias in the Marker Properties dialog.

For step-by-step procedures for creating an unmapped marker for a Query class,

see Creating a Marker in the CA Aion BRE online help.

For step-by-step procedures for modifying a query, see Modifying Queries in the

CA Aion BRE online help.

Change the Properties of a Query

The Query Properties dialog allows the programmer to expand the information

retrieved by the query editor from the database (by default, the query editor

retrieves table and views), and to specify how Aion BRE handles features of the

query. For example, you can use this dialog to specify whether the extended

names convention is used in the database, which requires quoting of names in

the query; how NULL values will be treated when they are brought into CA Aion

BRE; and whether static SQL will be used to perform the query.

Important! If Use Static SQL is checked, the query class name becomes

restricted to a length of 18 characters. This restriction--which must be

considered when creating the query class--is imposed by the pre-compiler that

generates the C file from the .sqc file.

More Information:

Dynamic versus Static SQL (see page 228)

Dynamic versus Static SQL

SQL statements can be invoked by Aion BRE query classes either statically or

dynamically. The default state of query class is to execute SQL statements

dynamically. You can use the Query Properties dialog to set individual query

classes to use static SQL.

Note: Currently static SQL is only available for DB2 on Windows and MVS

platforms.

Define a Query

Chapter 7: Access Data 229

Dynamic SQL

■ The dynamic SQL statements are constructed and prepared at run time. With

dynamic SQL you can perform the following functions not available with

static SQL:

■ Dynamic SQL statements can be changed at runtime.

■ Query class attribute marker values can be NULL with dynamic SQL.

Note: Fully qualified table names (owner.table) must be used when creating a

dynamic connection to a DB2 database.

Static SQL

The source form of static SQL statements generated for Aion BRE applications

are written in the C language. Static SQL statements are prepared before the

program is executed, and the operational form of the statement persists beyond

the execution of the program. For any given static SQL query, the following SQL

statements are generated:

Note: Currently NULL values for markers are not supported with static SQL.

■ SQL Select

■ Update

■ Insert

■ Delete

Note: The query must specify a key field and have at least one field designated

read/write for these statements to be generated. If there is no key field specified

the update, insert, and delete statements will not be generated.

The steps in the preparation of static SQL statements are:

Pre-compilation

The pre-compilation of the static SQL statements is performed by respawn. This

process checks the syntax of the SQL statements and, if successful, generates a

bind file and a pre-compiled C file.

Binding

During the binding process, the bind plan generated during the pre-compile step

is bound to the database.

Compilation and Linking

During this process, the pre-compiled C file generated during the pre-compile

step is compiled and linked into a library.

Define a Query

230 Product Guide

Build Queries Using Static SQL

This section describes the requirements and the process for building queries

using static SQL. When you build an application with Static SQL, Aion BRE

generates the standard JCL, plus an additional file containing the static SQL

statements (.sqc file). The build process for Static SQL is invoked via

respawn.exe. Before starting RESPAWN, you must enter the RESPAWN

command in a command window creating using the DB2 command DB2CMD.

Note: Aion BRE applications can not be built with static SQL through the Aion

BRE IDE.

System Configuration Requirements

You must have DB2 client v2.1.2 with SDK or higher installed on your system.

Start RESPAWN

Note: Before starting the RESPAWN process, all File and Library settings must

be configured through the IDE.

For step-by-step procedures for starting RESPAWN, see Starting RESPAWN in

the CA Aion BRE online help.

More Information:

Run and Build Applications (see page 439)

RESPAWN Static SQL Build Process

To RESPAWN initiates the static SQL build process, follow these steps:

1. Source files are generated.

Aion generates an .SQC file for static SQL.

2. Aion compiles the application.

3. Aion invokes mscsdb2.bat, which completes the following processes:

DB2 prep (pre-compilation)-The following steps are included in the DB2

prep:

■ Connect to DB2, invoking the pre-compiler

■ Generate C file and Bind files

DB2 bind (binding)-The following steps are included in the DB2 bind

■ Static SQL statements are bound

■ Disconnect

Write SQL Statements

Chapter 7: Access Data 231

4. Linking of the .OBJ files is completed.

5. Clear of all associated files and processes.

Note: RESPAWN compiles only one application at a time. If you have

included libraries, ensure that RESPAWN is executed for each user-defined

library. This process is not essential for system libraries.

Write SQL Statements

After defining Field Attributes in a query, the application contains a mapping of

the database tables and columns it needs to access. To make specific selections

from the tables and columns, provide an SQL SELECT statement.

The default SELECT statement automatically selects all columns from all tables

referenced by field attributes. To define a more complex selection criterion,

modify the default SELECT statement.

For example, add a WHERE clause to constrain the records returned in the result

set. Use an ORDER BY statement to control ordering of rows in the result set.

The SELECT statement is the only SQL statement you define in an application.

The SQL UPDATE, INSERT, and DELETE statements are generated automatically

by DataLib when the Save method is invoked.

Note: If required, direct execution of non-SELECT statements can be issued

directly against the connection (using the Execute() method of the Connection

class).

If you wish to modify (or hard-code) the statement, you can type directly in the

Select statement pane, paste from the clipboard, or use the SQL Paster utility.

Define a Stored Procedure

232 Product Guide

SQL Paster Utility

Use the SQL Paster to build a SELECT statement by selecting from lists of SQL

constructs, catalog information, and relevant application components (such as

field attributes and markers).

To open the SQL Paster from the Query Editor, choose SQL Paster from the Data

menu. The SQL Paster dialog displays.

Note: Before using the SQL Paster, verify the cursor is at the correct paste

location in the SELECT statement.

For step-by-step procedures for setting up static WHERE, GROUP BY, and ORDER

BY clauses, see the following topics in the CA Aion BRE online help:

■ Setting Up a Static WHERE Clause

■ Setting Up a GROUP BY Clause

■ Setting Up an ORDER BY Clause

Define a Stored Procedure

A stored procedure is a combination of SQL statements and flow-control

constructs used to perform database functions such as data updates and

queries.

Stored procedures are created (and reside) on the database server. Typically,

they are written and maintained by a database administrator; however, many

stored procedures are provided directly by the database vendor. Stored

procedures can accept input arguments, and, for certain databases, can return a

result set.

■ An Aion BRE application can invoke a stored procedure when a program is

running. Stored procedures offer the following advantages:

■ They execute more rapidly than SQL statements residing in your application.

■ They have a centralized location.

Also, if modifications to a stored procedure are necessary, you do not need to

modify, recompile, and redistribute your application (unless, of course, the

stored procedure name or its arguments change).

Define a Stored Procedure

Chapter 7: Access Data 233

Queries and Stored Procedures

During program execution, DataLib treats a stored procedure invocation like a

read-only query. Stored procedures differ significantly from queries.

Unlike queries, stored procedures have the following properties:

■ They do not support the Save method. Any updates to the database are

completely encapsulated within the stored procedure on the database.

■ They use the SQL statement EXECUTE instead of SELECT. Therefore, their

flexibility is limited by implementation on the database.

■ They have widely varied implementation support from database to database.

For example, few stored procedure implementations support returning a

result set. Also, syntax for invoking a stored procedure is not standard

among databases.

■ They have limited catalog support from database vendors. As a result,

manual definition of the result set and arguments of a stored procedure is

often required.

Create Stored Procedures

The New Stored Procedures dialog provides necessary fields for defining a stored

procedures and starts the Stored Procedure Editor.

For step-by-step procedures, see Creating Stored Procedures in the CA Aion BRE

online help.

The Stored Procedure Editor

The Stored Procedure editor is an environment in which you can construct a

Stored Procedure class.

Use it to:

■ Display catalog information associated with the connection.

■ Create field attributes and map them to columns in the result set.

■ Create markers for the arguments of the Execute statement.

■ Test the stored procedure against the database.

Define a Stored Procedure

234 Product Guide

Catalog Information Pane

The Catalog Information pane graphically displays all stored procedures

available on the connection (specified when you created the Stored Procedure).

You can use the Catalog Information Tree to browse the stored procedures

defined on the database, and, if support for arguments is available from the

database driver, the arguments defined for each stored procedure.

The catalog information is displayed hierarchically; to expand or contract it,

double-click on the stored procedure name. When a stored procedure is

expanded, its arguments display. In addition, if the database provides the

necessary support, the result set columns display.

Locating Stored Procedures in the Application

Use the Objects tab of the Application viewer to view all stored procedures and

queries in the application.

For step-by-step procedures for reviewing or modifying a stored procedure, see

Reviewing or Modifying Stored Procedures in the CA Aion BRE online help.

Define the Result Set

If the stored procedure returns a result set, all columns in the result set

associated with the stored procedure are returned. You cannot specify a subset

of columns to return.

For step-by-step procedures for defining the result set, see Defining the Result

Set in the CA Aion BRE online help.

Define a Stored Procedure

Chapter 7: Access Data 235

Add Markers to Stored Procedures

A marker is a class attribute defined within a StoredProcedure class. You assign

a value to a marker through application logic, just as you assign a value to any

other attribute.

You can use markers as variables within the EXECUTE statement. Typically,

markers hold the values for input arguments to the stored procedure. Use

markers to receive return values and output argument values from the stored

procedure.

Note: For output arguments, specify the OUTPUT keyword in the

EXECUTE statement.

Example

This example uses markers to specify the name and department of an employee

for a stored procedure on a Sybase database.

exec get_employee @name = :mkEmpName,

@dept = :mkDeptId

Example:

This example uses markers for receiving an integer return code and sending a

message string from an Oracle stored procedure:

exec :mkRetCode get_message (:mkMsgStr)

For step-by-step procedures for creating a marker for a stored procedure, see

Creating a Marker in the CA Aion BRE online help.

Writing the EXECUTE Statement

The lower right pane of the Stored Procedure Editor is the Execute Statement

pane, used to write the EXECUTE statement for the stored procedure. The syntax

of the EXECUTE statement varies according to the conventions of the database

accessed.

For information about the syntax requirements of a particular database, consult

the appropriate database documentation or ODBC documentation. The following

table lists the request syntax for each type of database driver. Text in square

brackets [] represent optional arguments:

Database Request Syntax

ODBC call procedure_name [(arg1, arg2, . . . argn)]

Data Test Facility

236 Product Guide

Database Request Syntax

Examples:

call get_employee

call get_employee ('SMITH', NULL, 'SALES')

SQL Server and Sybase exec procedure_name [arg1, arg2, . . . argn]

Parentheses are not used. Examples:

exec get_employee

exec get_employee @name = 'SMITH'

exec get_employee 'SMITH', NULL, 'SALES'

Oracle exec [return_arg] procedure_name [(arg1, arg2, . . .

argn)]

Examples:

exec get_employee

exec get_employee (name => 'SMITH')

exec get_employee ('SMITH', NULL, 'SALES')

exec :mkReturn get_code

Test the Stored Procedure

Use the Data.Test facility to verify that the Stored Procedure is properly defined.

Data.Test takes the EXECUTE statement of the Stored Procedure, the list of field

attributes, and the initial values of all defined markers, and constructs the

EXECUTE statement that executes when the program is run.

Data Test Facility

The Data Test facility tests queries and stored procedures during development.

To open the data.test facility, choose Test from the Data menu when the Query

Editor or Stored Procedure Editor is open.

The Data Test dialog displays. It contains the fields described in the following

sections.

Select Statement Field

The Select Statement field displays the SELECT statement from the query after

all marker substitutions have been performed. To make changes to the SELECT

statement, use the Query editor, and then restart the Data.Test facility.

Load Data from a Database

Chapter 7: Access Data 237

Markers List

The Markers pane lists the markers defined for the query. Double-click a marker

name to see its properties (including initial value). Data.Test substitutes the

marker's initial value in the SELECT statement.

To change the initial value of the marker, in the list box, double-click on a marker

to display the Marker Properties dialog.

When finished, you can click Execute to re-execute the SELECT statement after

modifying it or the marker's initial values.

Result Set Field

The Result Set pane shows the results of issuing the SELECT statement against

the database. When you invoke Data.Test, the SELECT statement automatically

executes, and, if successful, displays the results in this field.

To control the maximum number of rows retrieved, use the Maximum Number of

Rows to be Fetched control (at the top of the dialog).

Load Data from a Database

CA Aion BRE can load (retrieve) data in Automatic mode or Manual mode.

Automatic mode is the default.

The following sections apply to the Automatic loading mode.

Load Data from a Database

238 Product Guide

Load Data

You can set up a data loading process using the Automatic mode very easily.

Once you have a query defined, write a simple Load statement to load the result

set of the query into Aion BRE instances.

In Automatic loading mode, when you call the query Load method, all rows

selected by the query definition are loaded. The query manages the database

cursor.

By default, multiple rows are fetched at a time during database load processing.

The number of rows that are fetched per database request is established by the

ROWSET_SIZE attribute of the Data class.

When the ROWSET_SIZE is one, a single row fetch is used instead.

The performance of a multiple row fetch is estimated two times faster than a

single row fetch.

Note: You will rarely need to alter the ROWSET_SIZE attribute.

Cursor Management

Unlike Manual mode, when you load data using Automatic mode, the query

manages the database cursor. You need not write additional logic to control

opening and closing of the database cursor.

In Automatic mode, a Load call is not preceded by a Connect call. To combine

manual commit with Automatic load, use a Connect call to initiate manual

commit mode:

Server_connection.Connect(true)

//initiates manual commit mode

Inventory_query.Load

//loads data in default mode

where Server_connection is a connection and Inventory_query is a query class.

Note: If you define markers for a query, assign values to the markers before

loading the data.

Load Data from a Database

Chapter 7: Access Data 239

Manual Load Mode

Loading data in Manual mode gives you more flexibility than Automatic mode

because you control the database cursor and load rows individually with calls to

the Fetch method. With Manual loading mode, you explicitly write the logic to

establish the connection. Further explicit calls open the database cursor, fetch

the desired data, and finally, close the database cursor.

Loading data manually means creating more method calls. This in turn means

more flexibility, because you can evaluate each row as it is fetched and decide

whether or not to display it. You can also calculate an additional value based on

the data and display it.

Database Cursor Processing

Whenever you establish a connection to a database, you open a cursor in the

database. In Manual mode, you write the logic that contains the step-by-step

processing of the database cursor you establish with the Open method call. The

step-by-step logic used in manual load mode is made up of four method calls for

a specific query:

Connect

Manually establishes the database connection

Open

Initializes the database cursor

Fetch

Fetches and loads data into database columns

Close

Disengages the database cursor

The Open operation opens the related connection and opens a cursor in the

database. Call Fetch to load rows, and end with a Close call. You can write a

WhenFetched method to analyze or decode each row as it is loaded.

WhenFetched executes as part of the load operation. The steps you take after

loading data depend on how you are handling the data. The next section

demonstrates different ways to handle the Open-Fetch-Close calls.

Load Data from a Database

240 Product Guide

Manual Loading Examples

In Manual loading mode, you open a cursor in the database, fetch rows, and then

close the cursor. Opening the cursor opens the appropriate connection, as in the

following:

Inventory_query.Open

Inventory_query.Fetch

Inventory_query.Close

//manual load and default commit modes

To operate in both Manual load and Manual commit modes, use the following:

Server_connection.Connect(true)

Inventory_query.Open

Inventory_query.Fetch

Inventory_query.Close

//manual load and manual commit modes

Manual Cursor-Processing Examples

The following example is from an application containing these components:

■ Customer_Connection-Connection that references a customer data source

■ Customer_Query-A query with a SELECT statement

■ Cust_List_Dialog-An autodialog with three text windows for displaying

CustomerName, CustomerID, and CustomerAddress

Load Data from a Database

Chapter 7: Access Data 241

To load the data, write the Connect, Open, Fetch, and Close statements. Try

placing the Fetch in a Loop construct as in the following example:

//Set markers for loading data

CustID1 = IDWindow1.Text

CustID2 = IDWindow2.Text

//Open the connection

Customer_Connection.Connect

Customer_Query.Open

//Loop getting data

Loop

//Break on end of data

if Customer_Query.Fetch = 100 then

break

end

end

//Close database

Customer_Query.Close

Note: The code block includes setting the values for initializing a pair of markers.

WhenFetched()

The data selection criteria provided by SQL SELECT statements is sometimes

insufficient. Your application may require more refined data selection to evaluate

rows of data as they are loaded into an application, or refined save and commit

logic when you are saving instances back to the database.

The WhenFetched method provides additional control and power to the data

loading process. The WhenFetched method is executed for every row that is

retrieved using the Fetch and Load methods. The WhenFetched method is

executed whenever a row is fetched from the database. It processes each row of

the result set (determined by the query SELECT statement) as it is retrieved.

An Aion BRE developer can create a WhenFetched method for any query or

stored procedure.

The WhenFetched method also lets you accept (using TRUE) or reject (using

FALSE) each row of the result set as it is loaded. You can process each row

returned from the database to determine whether to create a corresponding

instance in Aion BRE. WhenFetched operates like other When methods. The

method is invoked automatically once for every row returned.

Load Data from a Database

242 Product Guide

Enable WhenFetched()

The WhenFetched method defined in DataLib is disabled. Specialize the

WhenFetched method and enable it in the Query class for which WhenFetched

processing occurs.

Use WhenFetched()

The WhenFetched method is an instance method. Each time a row of the result

set is read from either the Load or Fetch statement of a Query or from the

execute processing of a Stored Procedure, CA Aion BRE engages the

WhenFetched method.

This means data from the current row of the result set is loaded into an Aion BRE

instance, and the WhenFetched method is activated on that instance. Aion BRE

architecture lets you examine the columns of the selected row-by referring to the

attributes of the current instance from within the method. Once the

WhenFetched method has control, your logic begins executing. The full power of

the Aion BRE language lets you control processing.

At some point, the method you create must issue a return statement and a value

of either TRUE or FALSE. If the method returns FALSE, the instance is deleted. If

the method returns TRUE, the data values are accepted and processing

continues with the next row. Typically most rows are accepted.

In Automatic loading mode (the default), WhenFetched is called during the Load

operation. In Manual loading mode, WhenFetched is called by Fetch.

You can use WhenFetched to find a specific column's value (for example,

maximum or minimum), and store it in a class attribute. This lets you avoid

returning the value in every row of the result set. Consider the following query,

which queries the salary of every employee as well as the maximum salary. The

name of the maximum salary column is Changes.

SELECT NAME,SALARY,MAX(SALARY) FROM EMPLOYEE

This SQL statement returns one row in a result set for every employee. Each row

has three columns. The third column, MAX(SALARY), is identical for every row.

You may prefer to issue the following SQL statement and use it in conjunction

with a WhenFetched method:

SELECT NAME,SALARY from EMPLOYEE

Save Modifications to the Database

Chapter 7: Access Data 243

In the method body of the WhenFetched method for the preceding query shown,

the following logic is used to find the maximum value in the Changes column:

If max_salary < current.salary

then

max_salary = current.salary

end

return(true)

WhenFetched methods always return a Boolean value of true or false. A return

value of TRUE indicates that the row is accepted and loaded as an instance of the

class into the Query. A return value of FALSE indicates that the row is not loaded.

You can extend the WhenFetched method (used in conjunction with the previous

method shown) to compute the average or standard salary deviation.

num_employee = num_employee + 1

avg_salary = avg_salary +

(current.salary - avg_salary) /

num_employee

You also can exclude from the average salary computation any row containing

undesired data.

Example:

To exclude any salary equal to 0 (as may exist in the case of an employee who is

paid hourly) in computing the average.

if current.salary <> 0 then

num_employee = num_employee + 1

avg_salary = avg_salary +

(current.salary - avg_salary) /

num_employee

end

Save Modifications to the Database

This section discusses the various ways of saving modifications you make to the

database.

Save Modifications to the Database

244 Product Guide

Data-Update Mechanisms

Typically, updating data is achieved by writing code that generates the Save

method. Once loaded, data can be updated in these ways:

■ User input into components of your application's graphical interface

■ Language statements issued by application logic

Update Data with Automatic and Manual Commit Modes

The call sequence for saving data depends on the commit (transaction

management) mode you are using. There are two commit modes for creating

SQL inserts, updates, and deletes, and for managing transactions: Automatic

commit mode and Manual commit mode.

■ Automatic commit mode is the default mode. In Automatic commit mode,

calling Save (for the query that loaded the data) generates SQL statements

(UPDATE, INSERT, and DELETE) and sends them to the database. The

format of the call is straightforward:

Inventory_query.Save

■ In Manual commit mode, calling Save for the query generates the same

UPDATE, INSERT, and DELETE statements, but they are held in the

connection until you call Commit or Rollback. This lets you perform

verification or checking before committing the transactions. The basic

sequence of method calls is Save followed by Commit or Rollback.

Inventory_query.Save

Server_connection.Commit

Use Manual mode to check after saving and to determine whether to commit

or roll back the database transaction.

Note: The form of the Connect statement determines whether you will use

Manual commit mode.

More Information:

Manual Commit Mode (see page 245)

Save Modifications to the Database

Chapter 7: Access Data 245

Automatic Commit Mode

Unless you indicate otherwise, your application runs in Automatic commit mode.

The query tracks all changes to loaded data, and holds the current data values as

a single operation.

To commit data, call the query Save method. Save automatically generates SQL

UPDATE, INSERT, and DELETE statements, and sends them to the connection.

The connection's role in Automatic mode is to commit each statement as it is

received. There is no Rollback method in Automatic mode.

To initiate Automatic Mode Processing, call Save for the query, as in the following

example:

Customer_Query.Save

To clear rather than save changes, call Flush for the query, as in the following

example:

Customer_Query.Flush

Note: Flushing cancels pending inserts, deletes, and updates. It also clears the

query, freeing up space taken by unneeded data, and ensures that database

information retrieved by subsequent queries is not duplicated.

Manual Commit Mode

In Manual commit mode, the query tracks all changes to loaded data and holds

the current values, but as separate operations. When you call Save, the query

generates SQL UPDATE, INSERT, or DELETE statements, and sends them to the

connection.

The connection does nothing until you call its Commit method. Then it commits

all pending SQL statements. You can still flush the query, clearing any pending

updates. You also have a Rollback method that lets you roll back the last set of

database updates pending SQL statements.

Save Modifications to the Database

246 Product Guide

Enable Manual Commit

To use manual commit mode, call the Connect method with an argument of

TRUE. This disables Automatic commit mode and lets you set up logic for Manual

commit mode.

Example:

Customer_Connection.Connect(TRUE)

Customer_Query.Save

//perform any status checking required

Customer_Connection.Commit

The query generated SQL UPDATE, INSERT, and DELETE statements for all data

changes in the query when Save was called. These statements are held by the

connection, so you can perform any status checking required by your

application. Depending on the outcome of your status check, you can call

Commit or Rollback for the connection.

Important! If there is already have an active connection (initiated by the Load

or Loadlist methods), transitioning from automatic mode to manual mode

requires that a disconnect is called before the manual mode connect.

WhenUpdated()

As has been previously stated in this chapter, the data selection criteria of SQL

SELECT statements may be limited. Your application may require a more refined

data selection to evaluate rows of data as they are loaded into an application, or

refined save and commit logic when saving instances to the data source.

Use the WhenUpdated method to transform data as it is returned from the

application back to the database. WhenUpdated provides more specific

data-saving criteria than INSERT, UPDATE, or DELETE operations triggered by

the Save method.

Multiple Table Queries and Outer Joins

Queries that select columns from multiple tables also support updates across all

included tables. However, each included table must have at least one field

attribute defined as Key.

You can use the field attribute Outer Join style in conjunction with WhenUpdated

to insert rather than update a row in a table during Save processing.

Save Modifications to the Database

Chapter 7: Access Data 247

Example:

For example, if you had a table of problems and another table of optional

problem characteristics, a query might use an outer join to manipulate the

problem and its characteristics as one unit. If the problem did not have an entry

in the characteristics table, NULL is returned for all columns. However, if

characteristics are assigned to a problem that did not have any previously, the

update process needs to insert a row, rather than update one.

Use the following syntax:

//Update the value for the outer join field attribute

if (joinfield_table2 = NULL) then

joinfield_table2 = joinfield_table1

end

When to Use WhenUpdated()

Include WhenUpdated routines to evaluate updates generated by Save. A

WhenUpdated method for a query or stored procedure is executed every time an

INSERT, UPDATE, or DELETE is processed. The function of the WhenUpdated

routines is to accept or reject each instance. According to the criteria defined in

the method, the save is accepted or rejected.

You can specialize and enable the WhenUpdated method, process the arguments

described, and use it to process SQL statements (UPDATE, INSERT, and DELETE)

generated during a Save operation. You can use the SQL_* constant to

determine which kind of statement is being processed, and take appropriate

action. Specialized versions for WhenUpdated must send Up to accept the row

for an update. Use the following syntax:

return(up.WhenUpdated(argument))

In the preceding example, the argument could be SQL_DELETE, SQL_INSERT or

SQL_UPDATE.

To reject the update, return(FALSE).

Database Errors

248 Product Guide

Example:

For example, use WhenUpdated to check for a valid salary value before updating

a row to an employee database, as in the following example (which returns a

Boolean value). A return value of TRUE indicates that the update is accepted. A

return value of FALSE indicates that the update is rejected:

//Check for salary and reject if invalid

if(current.salary < 0)

Then return(FALSE)

end

//Update row for proper salary

return(up.WhenUpdated(nSQL_op))

Database Errors

Errors can occur when you use an application to access and manipulate data in

an external database. In Aion BRE, possible data access errors can occur during

the following operations:

■ Connecting to the database

■ Loading (fetching) data from the database

■ Saving data back to the database

Other types of errors may occur during Fetch and Save operations. Aion BRE

provides the following three methods for reporting database errors:

GetError

Called by WhenError, retrieves any native database errors issued. The errors

are returned to WhenError, which reports them to the user

WhenError

Reports on the Aion BRE database interaction interrupted by the error. It

also calls GetError to retrieve any native database errors issued

WhenSaveError

Processes any errors that occur during a Save operation

Runtime errors that are caught in a runtime library (such as DataLib) must be

reported by the library writer. Because DataLib sends WhenError to the

connection on which the error occurred, the error reporting can be customized by

users of the library.

Define Records and Serialize Data

Chapter 7: Access Data 249

Define Records and Serialize Data

Records are typically defined by a Cobol Data Division 01 level, a struct in C, or

a DSECT in OS/390 Assembler. The values of attributes of an object can be

mapped into a record structure. To aid Aion BRE programmers in defining

records and performing record I/O, Aion provides RecLib. Record I/O is defined

as the need to write out multiple attributes (of mixed types) as one continuous

piece of storage, and to read one continuous piece of storage into multiple

attributes.

RecLib provides the ability to serialize a record as a binary stream, that is, to

write a complex structure as one stream and then to restructure that stream into

the proper format by parsing its serialized form. Record I/O is accomplished by

“flattening” a series of attributes into one binary buffer. The reverse process is

accomplished by parsing multiple attributes out of one binary buffer.

Serialization enables the Aion BRE application to write and retrieve the attributes

of an object as a binary stream. (Object serialization is an important feature of

the Java language.)

RecLib supports complex record structures such as records that consist of other

records. For more information on RecLib, see the “RecLib” chapter in the CA Aion

BRE online help.

Note: Physical I/O of a record is performed using existing Aion BRE capabilities.

Construct Records

A record is defined by instantiating the Record class and populating its Elements

attribute (defined as a list of pointers to Element) with pointers to the constituent

instances of the Fields class and/or other Records making up the record's

structure. Fields are represented by instances of the specific DatatypeField

classes that hold the values for the fields of the record. Care must be taken to list

the pointers to the elements of the record in the appropriate order that

represents the structure of the record.

The following sections describe the attributes of the Field and Record classes.

Define Records and Serialize Data

250 Product Guide

Field Attributes

Field supports the following datatypes (see the type attribute / TYPE_

constants):

■ Binary

■ Integer

■ Real

■ String

■ Variable length string

■ Pointer to a string value

Note: that the other Aion BRE datatypes such as Date and Time may be built

from other types, byte by byte, by using a Binary Field.

The following Notes pertain to Field attributes:

■ All datatypes except VarStringField and PointerStrField have their length

attribute fixed at edit time. These methods have a SetLength() method. (No

accommodation is made for calculating string lengths based on a trailing

NULL.)

■ The usage attribute specifies whether a Field is used as input-only,

output-only, or filler Fields according to the following constants:

USAGE_FLATTEN_ONLY:

Field will not be parsed; that is, its space in the Binary buffer will be

skipped over without writing to any attribute.

USAGE_PARSE_ONLY:

Field will leave the corresponding space in the Buffer untouched during

flattening.

USAGE_FLATTEN_AND_PARSE (the default):

Field is to be both written to and read out of the buffer.

USAGE_FILLER:

Field is filler only. USAGE_FILLER suppresses writing to the buffer and

reading the buffer to an attribute.

Aion provides static instances Filler1 through Filler7 defined as USAGE_FILLER,

which are provided as a convenient way to specify alignment.

Define Records and Serialize Data

Chapter 7: Access Data 251

Work with DatatypeFields

Instances of DatatypeFields must be created to contain the actual data of a

record. The value is held in the Value attribute. (A default value can be set by the

user in the Default attribute. This attribute is used during flattening when Value

has the value of NULL. The default value of Default is NULL.)

An exception to the DatatypeFields is the Value attribute of the StringPtrField

data type. StringPtrFiled allows the value of a string attribute to reside in the

attribute of an object. The Value attribute, called pValue in this case, takes an

attributepointer to the attribute of an instance that holds the intended string

value. Using the StringPtrField datatype means that the data itself does not have

to be moved to the Value attribute of the DataTypeField instance. The special

methods SetPointer() and GetPointer() are provided to manipulate the value of

pValue.

After the attributepointer, pValue, has been set, it is possible to use the GetData(

) and SetData() methods to get and set the attribute's value in its “home”

object. These methods use pValue to obtain the original string value.

In general, data in Fields may be accessed directly, regardless of any Record(s)

they may belong to, through their accessor, SetData(), GetData() methods.

Note: There is no total length specification; it is calculated just in time.

Record Elements

A record is defined by setting the Elements attribute of the Record class to a list

of elements (Fields or other Records). The order in which the list is constructed

constitutes the structure of the record.

Note: that the Record class is itself an Element. Therefore, this structure allows

Record instances to point to other Record instances

Note: Fields and Records may be shared by different (parent) Records.

However, including a Record in itself will result in a runtime error during parsing

or flattening.

There are two ways to construct a record definition: statically and dynamically.

Both of these techniques are illustrated in the Records example in the \Record

Handling examples directory.

Define Records and Serialize Data

252 Product Guide

Static Construction

When employing the technique of static construction, the Aion BRE programmer

constructs static instances of the Record and DatatypeFields that are necessary

to define the desired record structures and data fields at edit time. The Record's

Elements attribute is defined at this time as well.

Processing consists of invoking the accessors, SetValue() and GetValue(), on

the statically defined DatatypeField instances.

Dynamic Construction

In dynamic construction, instantiating the Record and DatatypeField classes is

performed by the Aion BRE application at runtime through the standard class

Create() method. Setting the Record's Elements attribute is accomplished by

calling the SetElements() method on the record and passing the list of pointers

to the record elements as an input argument.

As in the case of static construction, processing consists of invoking the

accessors on the DatatypeField instances.

Dynamic construction is recommended if two or more records of the same type

need to be processed simultaneously, such as in the case of comparing the

records.

MQLib to Access MQSeries

Chapter 7: Access Data 253

Serializie Data

To serialize a Record requires the declaration of a buffer of type Binary.

Example:

var personBuffer binary

The Record class offers two methods that perform serialization.

Flatten()

Uses WriteString, and WriteInteger,and more, to write the Fields

sequentially into a new Binary buffer.

Example:

personBuffer = personRecord.Flatten()

Parse()

Uses ReadString, ReadInteger,c., to read a Binary buffer into the attributes

mapped by the Fields of the Record.

Example code:

personRecord.Parse(personBuffer)

Physically writing out the buffer to an external physical medium or populating

the buffer with external data must be performed using existing Aion BRE I/O

mechanisms, for example, the Read() and Write() method of the File class in

IOLib.

MQLib to Access MQSeries

Access to IBM MQSeries is performed using its standard API (MQI). Calls to

MQSeries are accomplished using methods in the classes of the MQObject class

and its descendents. All invocations first require the instantiation of the owning

class. Individual Aion BRE methods result in discrete MQI calls, along with the

associated parameters, structures, and common constants for mapping to the

MQSeries objects. Structures that are commonly required with a particular MQI

call are automatically instantiated, using containment, when the class from

which the call occurs is instantiated.

Message queuing allows Aion BRE applications to communicate, using data

rather than calls, with any other program that also has access to MQSeries. This

includes programs written in Aion BRE, C, C++, COBOL, PL/I, and MVS

Assembler, running on appropriate platforms. On certain platforms, MQSeries

also provides synchpointing; that is, commit or rollback on logical units of work.

MQLib to Access MQSeries

254 Product Guide

MQSeries support consists of two components: MQLib, a standard Aion BRE

library, and remqnn.dll, a support .dll file containing all the exported methods of

MQLib. Aion BRE does not provide support for MQSeries installation and system

administration tasks. These must be provided by your MQSeries administrator.

For example, an Aion BRE application can put a message onto a Queue, but it

does not create a new Queue.

For information on the classes and methods in MQLib, see the “MQLib” chapter in

the CA Aion BRE online help.

Code the Queue Manager

The Aion Queue Manager object, MQQueueManager, should be dynamically

instantiated as needed, along with each Queue (Aion object MQQueue) and

Message (MQMessage), and can be reused easily. Crucial subsidiary objects are

automatically instantiated through the Aion BRE process of containment. For

instance, instantiating MQQueueManager automatically instantiates the Object

Descriptor (MQOD_ObjectDescriptor), the Begin Options (MQBO_BeginOptions),

and the Connect Options (MQCNO_ConnectOptions). Instantiating MQQueue

automatically instantiates the Get Message Options

(MQGMO_GetMessageOptions), and the Put Message Options

(MQPMO_PutMessageOptions). Instantiating MQMessage automatically

instantiates the Message Descriptor (MQMD_MessageDescriptor). In most

applications, these objects suffice.

When the less common data objects are required, such as

MQTM_TriggerMessage, users must instantiate them manually.

MQLib to Access MQSeries

Chapter 7: Access Data 255

MQLib Data Objects

MQSeries expects the various data objects to be presented in a C-type structure.

Therefore, a conversion is required in both directions between the object

construct in which Aion BRE stores, for instance, the Get Message Options, and

the structure MQSeries needs. The processes accomplishing these conversions

are known within MQLib as flatten and parse. A hierarchical Aion object is

flattened into a sequential C structure for MQSeries' consumption. A returned

structure is parsed into the Aion BRE object. The flattened version of the data

resides in an attribute of data type Binary, within the data object.

Data objects are provided with a pair of methods. For example, FlattenMQGMO

and ParseMQGMO manipulate the Get MessageOptions into and out of the

attribute flatMQGMO. Data that only passes in one direction only has the one

required method. For those which are automatic, the flatten and parse occur

automatically. For example, the MQGet method calls the FlattenMQGMO method

before getting the Message, and calls the ParseMQGMO method afterward.

Manually instantiated objects such as Trigger Message require user-written

invocations of the FlattenMQTM and ParseMQTM methods.

Chapter 8: Process XML 257

Chapter 8: Process XML

CA Aion BRE provides the native ability to read and generate XML documents

that are related to the objects, attributes and values within an Aion BRE

application. Where an XML schema is available, an Aion BRE utility using

COBSLib can automatically generate the Aion BRE object model that corresponds

to the schema, as well as the mechanisms for automatically populating that

model based on XML documents that conform to the schema.

Three components of XML are addressed by these features:

■ The Simple API for XML (SAX) represents XML data as a sequence of events

for simple high-level read-only access. CA Aion BRE provides the SAXLib

system library for this support.

■ The Document Object Model (DOM) represents XML data as a tree structured

document in storage and provides low-level read/write access to individual

data objects such as elements and attributes. CA Aion BRE provides the

DOMLib system library for this support.

■ XML schemas provide a formal description of the constraints and structure of

XML documents. This structure can be mapped to the structure of an object

model in CA Aion BRE. CA Aion BRE provides the XsdConverter utility for this

purpose.

Using these capabilities, you can:

■ Access a SAX reader and process callback methods from a SAX reader within

an Aion BRE application. The Aion BRE application interacts with the SAX

reader by means of SAXLib.

■ Use the DOM API from within an Aion BRE application to access, read, update

and/or create an XML document: The DOM API is accessed through methods

provided by DOMLib.

■ The XsdConverter utility can generate an Aion BRE library that corresponds

to an XML Schema (.xsd file). XsdConverter also provides automatic facilities

for populating instances of classes in that library from XML documents that

conform to that schema and for generating XML documents from Aion

instances.

■ Access the DomExample.App and SaxExample.App example programs.

These example programs are available to help you understand how to use

Aion BRE to process XML files.. These examples have corresponding help

files describing them named DomExample.txt and SaxExample.txt

respectively.

This chapter assumes that the reader is familiar with the structure of an XML

document and knows what XML elements and attributes are.

SAXLib - Read XML Documents

258 Product Guide

This section contains the following topics:

SAXLib - Read XML Documents (see page 258)

DOMLib - Read and Write XML Documents (see page 265)

Generate Applications Based on XML Schemas (see page 273)

Use the XsdConverter (see page 277)

Process the XML Document with the Generated Application (see page 278)

Automatic Unmarshalling and Marshalling (see page 281)

The Purchase Order Example (see page 282)

SAXLib - Read XML Documents

The SAX API only supports reading XML documents. To write an XML documents

requires the use of DOMLib.

The SAX processing model may be less familiar than DOM to programmers

because it rests on the use of callback methods.

The SAX reader reads the source XML document and sends events to the calling

application as it encounters the various aspects of the document. The methods

invoked by these events are called callback methods, for reasons that will

become obvious as you learn how SAX works. It is responsibility of the receiving

Aion BRE application to process or ignore events that it receives from the SAX

reader.

SAXLib - Read XML Documents

Chapter 8: Process XML 259

The “events” that SAX reader returns to the application are represented by the

methods of the Handler interface, which provides an interface for content related

events (the ContentHandler) and an interface for error events (the

ErrorHandler). (See also corresponding methods in the CallbackRouter class-the

relationship between the CallbackRouter and the Handlers i the following

section).

Note: that the API calls to the SAX reader are contained as external methods in

the _Task class in SAXLib. These methods are implemented by underlying C++

functions that call the Apache Xerces SAX API. There is no reason why the Aion

BRE user needs to see the methods of the _Task class.

How SAXLib Functions

The SAX reader calls the methods of the CallbackRouter. Those methods reroute

those calls to your implementation of the corresponding methods in the class

that implements the ContentHandler interface through the

CallbackRouter.InvokeHandlerMethod() class method.

The methods in the following table are provided by the ContentHander interface

from the SAX reader. The order represents the approximate order in which these

methods are invoked.

Note: The implementation of these methods must return a boolean value.

Returning False indicates that you wish to end the parsing session on the current

event by throwing an exception. The exception is thrown from the underlying

C++ code that calls the Apache Xerces API.

Method Explanation: Typical Implementation

StartDocument This event occurs at the start of parsing the document. It is

called only once by the SAX reader. The implementation

should perform any initial processing required by your

application before the actual parsing of the document

begins.

StartPrefixMappi

ng

This event occurs when the SAX parser encounters an

element that uses the xmlns attribute to declare a

namespace. This process is called prefix mapping. The

method is given the prefix and URI associated with the

prefix. The typical implementation is to store this

information for use during element processing (see the

StartElement() method).

StartElement This event signals the beginning of parsing an element in the

XML document. The input to your implementation includes

the name of the element (in various forms: URI, local name

and QName). Also, when this event occurs, it automatically

SAXLib - Read XML Documents

260 Product Guide

Method Explanation: Typical Implementation

creates an instance of the Attributes class, a pointer to which

will be passed to your method. Once you have the pointer to

the Attributes class, you can use the accessor of that class to

retrieve information related to the attributes of the element

(see Attributes Class).

Note: The Attributes instance is created even if there are no

attributes for the instance.

Characters This event occurs when the SAX parser encounters textual

data within an element. Your implementation method

receives the character string along with a specification of the

length of the string. It is the responsibility of your

implementation to parse the string.

Note: Character data may be reported over several events.

IgnorableWhites

pace

This event occurs when ignorable whitespace occurs. What

can you do with whitespace? Ignore it! There's not much to

do in this implementation, except return True.

Note: The same considerations that apply to Characters(),

for example, returning the “data” over several events, also

applies to IgnorableWhitespace().

ProcessingInstru

ction

This event occurs when the SAX parser encounters an XML

processing instruction (PI). The target and any data sent in

the PI are provided to your app. If the XML document you will

be parsing contains PIs, here is where you will provide the

specific application code to implement those instructions.

EndElement This event signals the end of parsing an element.

Implementation may involve repositioning your Aion

application for the next element in a tree that your

application is creating.

EndPrefixMappin

g

This event occurs when the SAX parser has concluded

processing an element that has required prefix mapping. If

the prefix and URI have been stored in the app, this method

should remove those settings.

EndDocument This event occurs at the finish of parsing the document. It is

called only this once by the SAX reader. The implementation

should perform any final processing required by your

application at the end of parsing the document.

Note: EndDocument() will also be called after parsing halts

due to (fatal) errors in the document.

The following methods are not supported by Xerces. Implementation of these

methods should be just: return True.

SetDocumentLoc

ator

When an event of this type occurs, an instance of the Locator

class is created and the pointer to that instance is passed as

SAXLib - Read XML Documents

Chapter 8: Process XML 261

Method Explanation: Typical Implementation

an input to your implementation of the

SetDocumentLocator().

SkippedEntity This event returns to your application any Entity reference

that has not been resolve/expanded by the XML parser. The

Apache Xerces parser never invokes this method: entity

references will always be expanded. So again, your

implementation will simply be to return True.

Attributes Class

The Attributes class provides the means of obtaining the names and values of the

XML attributes of an element. In your implementation of the StartElement()

method you will want to loop through the attributes of the element. For each

element, a single instance of the Attributes class. To loop through the attributes

of an element you begin by obtaining the number of attributes present for the

element: ptrElementAttributes.getLength(). You can then loop through the

attributes using a counter that ranges from 0 to the number of attributes as an

index to get the name (various versions), type, and value of each attribute. You

can also get the index, type and value for a particular attribute if you already

know its name.

Note: The Aion application should never call the Create() method of the

Attributes, Locator, and Exception classes. These Create() methods are for

internal use only by methods of the CallbackRouter.

Process Exceptions

Each of these methods is capable of throwing Exceptions. When an exception is

thrown by the SAX reader, an instance of the Exception class will automatically

be created and a pointer to it is passed to your implementation of the error

methods in your implementation of the ErrorHandler. The ErrorHandler provides

three methods that will be invoked via the CallbackRouter:

■ Error(): The method is invoked when the SAX parser encounters a

recoverable error. In the implementation of the method you may wish to log

the error and perhaps exit the parsing process by returning False from the

method.

Note: Recoverable errors generally pertain to validation conditions that are

violated. SAXLib currently does not provide validation capabilities.

SAXLib - Read XML Documents

262 Product Guide

■ FatalError(): Fatal errors typically relate to a document's not being

well-formed and, therefore, necessitate stopping the parsing of that

document. The implementation of this method should log and/or display the

error and gracefully exit the parsing process by, for example, returning False

from the method.

■ Warning(): Warning messages are defined in the XML 1.0 specification and

relate to the DTD. Because no provision is made by SAXLib to validate a

document in terms of its DTD, there is no need to provide special processing

for this method.

Exception processing will probably involve writing or displaying an error

message to the user. Use the accessor methods of the Exception class to obtain

information regarding the particular exception.

More Information:

How SAXLib Functions (see page 259)

Use SAXLib

The Aion application must implement two interfaces:

■ ContentHandler

The implementation of a method of the ContentHandler specifies how the

application is going to process a particular aspect of the XML document.

■ ErrorHandler

 ErrorHandler methods are for processing any error or warning messages

that are encountered by the SAX reader.

The following steps are required in constructing an application using

the SAX API:

1. Instantiate the application classes that implement the ContentHandler and

ErrorHandler.

2. Instantiate the Reader class, which is provided by SAXLib, and “register” the

instantiations of the ContentHandler and ErrorHandle with the Reader by

passing the pointers to these application instances in the Reader.Create()

method call.

Note: Creating an instance of the Reader also creates an instance of the

CallbackRouter and registers this instance with the SAX reader.l

3. Call the appropriate parsing method of the Reader (ParseFile() or

ParseString()), passing to it the appropriate parameter (for example,

complete path to the XML document) that the SAX reader is to read.

SAXLib - Read XML Documents

Chapter 8: Process XML 263

Use the SAX API

Here is a sample XML code you can use to illustrate the SAX API:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

- <bookstore>

<book author="Win Big" isbn="0-00000-000" name="Bigg Honcho" />

<book author="Hope for the Future" isbn="9-99999-99" name="Hope Moreso" />

<book author="How to Argue" isbn="6-66666-666" name="Mary Contrarie" />

. . .

<!-- Other listings of the <book> element -->

</bookstore>

Bookstore.xml has a simple structure. The root element is simply <bookstore>;

it starts with no attributes. A typical attribute might be the name of the book

store. The elements of a book store are its books. Each <book> element has

three attributes, Name, Author, and ISBN number.

The application must contain both IOLib and SAXLib.

The application also is likely to contain the following classes:

■ Book class with attributes Author, ISBN, and Name.

The application must contain the following classes.

■ An implementation of the ContentHandler

■ An implementation of the ErrorHandler.

SAXLib - Read XML Documents

264 Product Guide

1. Implement the methods of the Handlers:

Use all the methods specified by the ContentHandler and ErrorHandler on

MyContentHandler and MyErrorHandler respectively. All ContentHandler

methods must minimally return True and those of ErrorHandler would

probably return False. Returning False will automatically terminate the SAX

Session in case any of these errors occur.

Code that implements steps 1 through 3 from the Use SAXLib section that

initializes the process the communication with the SAX reader:

var pMyCH is MyContentHandler

var pMyEH is MyErrorHandler

// For automatic deletion, use “contained instances”

// for these variables.

pMyReader is &Reader

pMyReader = Reader.Create

pMyReader.Initialize(null, pMyCH, pMyEH)

var filepath is &DirectoryEntry

filepath = FindFile(FILE_NAME)

if (filepath <> null) then

pMyReader.ParseFile(FILE_NAME)

else

// Signal a file-not-found condition.

End

pMyReader.delete()

This code goes directly from calling the SAX reader to deleting the reader.

What happens between reading the file and deleting the reader? The

application should be reading the XML document and creating instances of

the Book class. How do the instances of Book get created? The answer lies in

how the callback methods work. Procedurally, the program is processing the

parsing method (synchronously), while the callback methods are being

called as the SAX reader encounters different aspects of the document it is

being read.

The creation of the Book instances must be implemented by the

StartElement() method. This method needs to (1) construct and instance of

the Book class, and (2) populate the attributes of that instance from the XML

attributes of the element being read.

DOMLib - Read and Write XML Documents

Chapter 8: Process XML 265

2. A typical implementation to StartElement(). Remember that StartElement(

) is called each time the reader encounters an new element.

Note: The first element to be read by the parser will be the <bookstore>

element, in which we are not interested.

var pBook &Book

var len is integer

// We can ignore the root element QName = "bookstore"

if QName = "book" then

pBook = Book.Create()

pBook.setName(attrbs.GetValuebyQualifiedName("name"))

pBook.setAuthor(attrbs.GetValuebyQualifiedName("author"))

pBook.setIsbn(attrbs.GetValuebyQualifiedName("isbn"))

end

return True

where attrbs is the pointer to Attributes instance for this element that is

passed to your implementation.

DOMLib - Read and Write XML Documents

The DOM model allows the entire XML document to exist in memory at one time

as a tree structure. The central concept is that of a Node: every distinct aspect of

an XML document, for example, its elements and attributes, is represented as a

Node in this tree. Thus, when you open DOMLib in Aion, you will see that the

Node class is the parent class of a hierarchy that includes Document, Element,

Attribute (the Attr class), Entity, Text, and other aspects of an XML document.

Each of these aspects is considered to a Node in a DOM tree that represents the

document.

DOMLib - Read and Write XML Documents

266 Product Guide

The class structure of DOMLib precisely corresponds to the DOM metamodel of

XML documents presented in the standard XML literature.*

Note: Attr is itself a Node, just as Element is a Node. Thus, the structure of a

DOM tree differs from the structure of an XML document. However, as you see,

this feature is not explicitly revealed by the DOM API, which preserves the

“appearance” of an XML document.

The Node class offers various operations to query a node (for example

determining how many child nodes it has), to get the “data” from a node (for

example., retrieving the name of the node), and to manipulate a node (for

example., removing a child node). These methods are inherited by each type of

particular node, for example., Document and Element. The Node class also

provides the constants for identifying the type of Node currently being read.

Note: As with SAXLib, the external functions calls to the DOM API reside in the

_Task class. There is no need to look at the _Task class.

DOMLib - Read and Write XML Documents

Chapter 8: Process XML 267

In addition to the Node class, the DOM model consists of four other classes:

■ Exception: Provides the code of an exception. Also provides the constants

for DOM errors.

■ Implementation: Every DOM document must have an Implementation.

Think of the Implementation as establishing a DOM “reader”.

■ NamedNodeMap: Provides handle to the attributes of a Node (element).

Note: This class functions similarly to the Attributes class in SAXLib. It is

created from the Node.GetAttributes() method, which retrieves the Attr

nodes of an element, and is traversed in the same manner as the Attributes

class.

■ NodeList: Provides a handle to the list of all nodes in the XML document.

The Aion BRE methods corresponding to the DOM API are distributed over the

classes that constitute the DOM model.

Initialization

To read or create an XML document (under DOM), you need to obtain a pointer

to the document. The document as a whole is called the Document node. Two

pointers must be defined:

■ ptrImplementation is &Implementation

■ ptrDocument is &Document

Note: In addition, to retrieve information from this document it is necessary to

obtain the root node (element) of the document. To do this you must define a

third pointer:

■ ptrDocumentElement is &Element

DOMLib - Read and Write XML Documents

268 Product Guide

Initialization code is typically the following:

ptrImplementation = Implementation.Create()

var filepath is &DirectoryEntry

filepath = FindFile(FILE_NAME)

if (filepath<> null) then

ptrDocument = ptrImplementation.ReadDocumentFromFile(FILE_NAME)

else

ptrDocument = ptrImplementation.CreateDocument(null,"bookstore", 0)

end

ptrDocumentElement = ptrDocument.GetDocumentElement()

PtrDocumentElement points to the root node of the document, which in this case

is the <bookstore> element.

The Else-condition creates a document with the root node of <bookstore>. This

allows execution to proceed without error if there is no document-retrievals of

books from this created document will just yield an empty list. Document

creation will be discussed in the section Create an XML Document.

Process the DOM Tree

A typical strategy for using DOMLib is to loop through a document tree, testing

each node as to type and processing the Node appropriately. The major

difference between the SAXLib implementation and the DOMLib implementation

is that, in the latter, processing of elements must occur with explicit looping

within the method. The code examples here are extensively commented for

explanatory purposes (you may want to omit the comments from your code).

The following code is DOM code that performs the functions of the code

discussed in the section Use the SAX API in this chapter.

var listBooks is list of &Book

// From the original SAXLib implementation of this method.

var pBook is &Book // Originally used in StartElement().

var length, count is integer=0

// The following objects are created corresponding to objects

// retrieved by the DOM reader from the XML document.

var MyNode is &Node

var MyBook is &Element

var myNodeList is &NodeList

myNodeList = ptrDocumentElement.GetChildNodes()

// Create the NodeList instance for looping through the document.

// Note: a NodeList is just a Handle into the DOM model.

length = myNodeList.getLength() // Retrieve the number of nodes.

Loop

breakif count = length

myNode = myNodeList.Item(count)

DOMLib - Read and Write XML Documents

Chapter 8: Process XML 269

// The Item method of NodeList allows retrieving each

// node. (See the Index() method of Attributes.

if (myNode.GetNodeType() = ELEMENT_NODE) then

// Test the type of node retrieved. Ignore it if it

// is not an Element node.

myBook = myNode.CastAsElement()

// It is necessary to cast the retrieved node as an

// Element so that the methods provided by the

// Element class can be used. Given the preceding

// node type test, this recasting is safe.

pBook = Book.Create()

pBook.setName(myBook.getAttribute("name"))

// Set the value of the Name attribute of the Aion

// object by retrieving (the value) of the name

// attribute of the XML element.

pBook.setAuthor(myBook.getAttribute("author"))

pBook.setIsbn(myBook.getAttribute("isbn"))

end

count = count + 1

end

Note: The method used to retrieve the nodes is GetChildNodes(). Remember

ptrDocumentElement points to the root element, <bookstore>. Therefore, the

first node that is retrieved by GetChildNodes() will be, in fact, the first <book>

element. However, GetChildNodes() does not return the attributes of a node, in

this case, attributes of the <bookstore> node, as child nodes, even though these

are technically children of the node just as are its subelements!! In this way the

DOM API preserves more of the structure of the XML document than it reveals of

the structure of the DOM tree itself. However, GetChildNodes() does return

Character Data nodes (comments, ordinary textual insertions, and CData

sections, as child nodes of the parent element node (along with any

subelements, of course).

XML Maintenance Using DOMLib

Unlike SAX, DOM also provides APIs for updating and even generating an XML

document. You can create methods to add and delete elements.

Add Elements to an XML Document

Following the previous example of bookstore.xml, you can use DOMLib to add

additional <book> elements to the document. Assuming input to the process as

follows:

in author is string

in isbn is string

in name is string

DOMLib - Read and Write XML Documents

270 Product Guide

Code to add a <book> element is as follows:

var myElement &Element

myElement = ptrDocument.CreateElement("book")

myElement.setAttribute("name",name)

// Where the quoted occurrence of name refers to the (name of

// the) attribute in the XML Element and the name variable refers

// the value of Aion object attribute called 'name'.

myElement.setAttribute("author",author)

myElement.setAttribute("isbn",isbn)

Include the created Element in the document by using Node's appendChild()

method to append it to the appropriate node. In this case, the <book> elements

all “hang off” the root node, <bookstore>, of the document, so you need to

append this new element directly to the document's root node:

ptrDocumentElement.appendChild(myElement)

Finally, write completed XML document back to the bookstore.xml document by

using the Document.WriteDocumentToFile() method.

ptrDocument.WriteDocumentToFile(FILE_NAME)

Delete Elements from an XML Document

To delete a <book> element from bookstore.xml, you will need to accept one of

the attributes of the <book> so that the appropriate element node can be

identified.

Example:

in name is string

DOMLib - Read and Write XML Documents

Chapter 8: Process XML 271

The implementation of this method is very similar to the implementation in

preceding Processing the DOM Tree. You need to loop through all the nodes of

the document looking for one particular node-the one with the attribute

matching the input parameter. At that point you can use the

Document.RemoveChild() method to delete that element. The code can be:

var myNodeList is &NodeList

var length, count is integer=0

var MyNode is &Node

var MyBook is &Element

myNodeList = ptrDocumentElement.GetChildNodes()

length = myNodeList.getLength()

Loop

breakif count = length

myNode = myNodeList.Item(count)

if (myNode.GetNodeType() = ELEMENT_NODE) then

myBook = myNode.CastAsElement()

if (myBook.getAttribute("name") = name) then

ptrDocumentElement.removeChild(myBook)

break

end

end

count = count + 1

end

Create an XML Document

You might want to create an XML document in order to marshal instances in your

main Aion application. For example, writing the instances and their attribute

values to an XML document. Initializing a document to be created follows the

same preceding steps, with the exception, of not reading the document from an

external file.

1. Create an instance of Implementation.

2. To create a document use the CreateDocument() method of

Implementation.

a. Pass namespace URI as the first argument.

b. Pass the desired name of root node as the second argument

c. Pass “0” (zero) or NULL as the third argument (document type).

3. Get the root element of the document, which is again accomplished by

calling the GetDocumentElement() method.

DOMLib - Read and Write XML Documents

272 Product Guide

The preceding Initialize section as coded satisfies these steps if the FILE_NAME is

not found in the current directory.

Marshalling becomes a matter of looping through the instances in the Aion

application and generating the appropriate elements. A simple strategy would be

to use the Element generation code used in the section Adding Elements to an

XML Document and accessing the value of the attribute from a given instance of

Book.

Example:

var myElement &Element

var pBook &Book

For Book, pBook

myElement = ptrDocument.CreateElement("book")

myElement.setAttribute("name",pBook.GetName())

…

ptrDocumentElement.appendChild(myElement)

end

Note: It is a good design principle for Aion classes to “know” how to marshal

themselves. Each class should contain its own marshalling method. In the

preceding code example, the loop might consist of a single line of code:

pBook.Marshal(…). (The method will need to accept a pointer to its parent

element as a parameter.)

Subelements can be created from Aion instances that are referenced (pointed to)

by the instance that represents the parent element. Create an element for the

referenced instance and append to the parent element.

Note: An alternative means provided by the DOM API for creating attributes for

an element is to use the Document.CreateAttribute() method to create an

attribute that is unattached to any element and then to use the

Element.SetAttributeNode() method to associate the attribute with an element.

Generate Applications Based on XML Schemas

Chapter 8: Process XML 273

Handle Character Data as Element Values

There are many styles in which XML documents can be written. In particular,

another style involves

■ Treating the attributes of the book element <book> (Author, ISBN, Name)

as subelements of <book>.

■ Including character data within the element, for example, <author>John Q.

Author</author>.

Handling subelements is just a matter of looping within a loop and testing for the

name of the element. Retrieving the value of an element is accomplished under

DOM by means of the GetNodeValue() method. SAX will throw a Characters()

event upon encountering the string of characters.

Generate Applications Based on XML Schemas

An XML Schema is used to define valid structure of an XML document. It declares

what structure and content are allowed in the document. Some XML parsers can

confirm that a document obeys the constraints of the Schema.

What makes a Schema useful in Aion BRE is the subset of it that defines the

structure only, not the content. Aion BRE provides a utility, XsdConverter, that

reads the Schema and uses COBSLib to generate an application file representing

the XML data in Aion classes and attributes. Also generated within these classes

are methods for loading the data from a DOM into Aion objects, and dumping the

Aion objects back out to the DOM. Control methods are generated to read an XML

file into the DOM, and write it back out. And finally, accessor methods are

provided for all attributes. This generated application can then be included, as a

library, in a user-written application, to provide an interface to an XML document

that complies with the Schema.

Generate Applications Based on XML Schemas

274 Product Guide

General Approach

The schema itself is an XML document, and consequently can be read using

SAXLib. SAXLib is preferred over DOMLib, because it sequentially reads the

entire DOM, so nothing gets overlooked. Using DOMLib would require

considerable additional logic to control the flow of access, which is automatic in

SAXLib. The cost is a little more control logic: one stack to keep track of

positioning in the Schema being read, and a second stack to keep track of

positioning in the Aion application being written. Thus each object in the Schema

is sequentially evaluated, and appropriate Aion classes and attributes are

created.

After the Schema has been completely processed, XsdConverter then evaluates

the generated classes and attributes, in order to create four types of methods:

1. CONTROL methods. These are always the same, regardless of what has been

generated from the Schema. An internal class called _Control is created,

with some DOM control attributes, and methods to Create the Control class,

Read From File Into DOM, and Write from DOM Out to File.

The specialized Create() method also instantiates the DOM Implementation

class.

To read an XML document into memory, execute the Read() method,

passing it the name of the .xml file you wish to read. This method establishes

the pointer to the Document (which is available through the GetDocument()

accessor method) and returns the pointer to the document's root element

node (see ptrDocumentElement in the preceding example.)

To save an XML document, execute the Write() method.

The _Control class also provides a specialized Delete() method that

removes the instances of Implementation, Document, and the root element

node that it has created for you behind the scenes.

2. LOAD & DUMP methods. Each class is given a method named Load, which

accesses the DOM, this time via DOMLib, obtains the appropriate data, and

populates the attributes of the class. For attributes that are pointers to other

classes, the Load method of the other class is invoked. Thus the user may

call Load on the topmost class, and the entire structure will get loaded.

Inverse methods, named Dump, are created to move the data from Aion to

the DOM.

3. CREATE & DELETE methods. A similar cascade of Create methods are

written, which allows the user to call the Create of the topmost class, and all

the following attribute pointers are traversed to instantiate all the classes

comprising the data structure. The Delete methods make sure that

subordinate classes get deleted when their superior class is deleted. Both

Create and Delete are specializations of the native classes so named.

4. ACCESSOR methods. A complete set of getter and setter methods are also

produced.

Generate Applications Based on XML Schemas

Chapter 8: Process XML 275

More Information:

Automatic Unmarshalling and Marshalling (see page 281)

Details

1. One instance of _Control is needed for each behind-the-scenes DOM, so

typically one instance will be needed per file.

2. All access to the XML document being read is through DOMLib.

3. A generated application will contain a class for each element that contains

other elements or has a datatype. The class will have attributes representing

each attribute on the element, as well as attributes containing pointers to

other classes for contained elements. Contained classes which are flat

become attributes of the containing class.

4. In an XML document both element attributes and also elements themselves

(when empty and/or with a datatype) become aion attributes. To know

where to get or put this data, attributes must be marked to indicate their

source; this is done in the attribute comment, with "[XML Attribute]" and

"[XML Element]".

Note: that this flag is only used at generation time, resulting in different

Load and Dump logic. All Aion objects have a standard comment (appended

if the previous comment is in use), specifying the source Schema and a

timestamp.

5. In general, schema objects (or portions of objects) which define data type or

structure are mapped, while those which validate are ignored. It is presumed

the schema is in fact in place and being used, and will provide the validation.

6. Schema elements may directly contain data, whereas Aion classes may not,

requiring an attribute to hold any value. When mapping such elements, an

Aion attribute named _data is added to the Aion class, to hold the value.

7. Namespaces are not supported at this time.

8. As far as possible, Aion objects are given the same name as the Schema

objects they represent. When the Schema object has no name, one is

generated from its type. Schemas allow duplicate names in places where it is

disallowed in Aion. Typically this occurs when a reference to an object is

given the same name as the object itself. Such references become pointers

to objects in Aion, the duplicate name is detected, and the name of the

pointer is made different by prefixing it with a "p". Undetected cases (there

are none currently known) will generally result in an Aion object being

created with a trailing underscore added to the name, and the code will still

work. There remains the possibility that invalid duplicate names will be

attempted such that the object is not created. This will result in generated

code that has missing pieces and does not build correctly.

Generate Applications Based on XML Schemas

276 Product Guide

9. Here is the mapping between Schema and Aion BRE objects. All Schema

objects missing from this list are ignored.

Schema Aion

Attribute Attribute

AttributeGroup "Virtual" Class1

ComplexType Class

Element Attribute or Class2

Enumeration Constant Attribute

Fixed= Class-level=TRUE

MaxOccurs= If >1 or unbounded,

Attribute type is List

Of specified type3

Name= Object name

Ref= Attribute of type

Pointer to class

Restriction.base= Attribute type

Sequence [ignored]4

SimpleType [ignored]4

Type= Attribute type1

Additional Notes

1. An AttributeGroup generates a temporary Aion class containing its

attributes. After the entire Schema has been processed, the generated

application is scanned for attributes that are pointers to such classes, which

are replaced by the attributes in the class. Then the temporary class is

deleted.

2. Schema elements with contained subelements become Aion classes.

Elements without subelements become attributes. If the Schema element

has an attribute named type set to a value of a datatype, this datatype is

translated into an Aion datatype for the Aion attribute. Otherwise the type

must indicate another class. In this case, the one Schema element results in

two Aion objects: a new class named after the type, and an attribute in the

superclass, pointing to the new class.

Use the XsdConverter

Chapter 8: Process XML 277

3. Lists represent a variable number of instances of the subordinate class. At

Create time the number is unknown, so no classes are created. If new data

is being created, the user application must instantiate such classes

manually. At Load and Dump time, instances (Aion or Schema) are

automatically created dynamically and populated by looping through the

source data. Delete also loops similarly.

4. Sequences and SimpleTypes necessarily contain further data, which

together with any container data, are sufficient for building the Aion data

structure, so these two Schema objects are ignored.

Use the XsdConverter

A Schema file, typically of filetype XSD, is the single input required to run

_xsdConverter.exe. The single output is an Aion BRE application file. To run

_xsdConverter.exe specify each name in the Open File dialogs presented:

Process the XML Document with the Generated Application

278 Product Guide

Note: the example documented here uses the po.xsd file. The example files that

are provided now are xsdTest.xsd and xsdTestLib.app.

Important! When creating new files, the file extension (.xsd or .app

respectively) must be specified.

After these two specifications are made, the application will run for a while, and

announce success with a message box like this:

Figure 1: Show Generating aion Application from XML Schema. Click OK.

The generated application file, in this example po.app, is then included, as a

library, in the user-written application that will be accessing the XML document.

The generated application should be manually restored from source first, then

the user application should be restored from source.

Process the XML Document with the Generated Application

A generated application can be edited in the Aion BRE IDE as necessary. Then

the application can be used to process XML documents.

Process the XML Document with the Generated Application

Chapter 8: Process XML 279

Read an XML Document

1. Instantiate the _Control class.

2. Invoke the Read method of this class, specifying the XML file to read. This

creates an XML DOM and populates it from the XML file, returning the

Document Element of the DOM.

3. Instantiate the Aion class which corresponds to the topmost class in the

Schema, usually corresponding to the Document. All subordinate classes will

be automatically instantiated as well.

4. Invoke the Load method of this class, specifying the Document Element

returned by Read. All subordinate classes will be automatically instantiated

as well. Access the data in any loaded class via its Get and Set methods.

Example:

myControl = _Control.Create()

myPORoot = myControl.Read("C:\Aion10\Apps\po.xml")

myPO = PurchaseOrder.Create()

myPO.Load(myPORoot)

myItems = myPO.GetpItems()

myItemList = myItems.Getpitem()

MessageBox("Item #2=" & myItemList(2).GetProductName())

More Information:

Automatic Unmarshalling and Marshalling (see page 281)

Write an XML Document

1. Instantiate the Aion class which corresponds to the topmost class in the

Schema.

2. Populate the Aion class and its subordinates with the Set methods.

3. Instantiate the _Control class. One instance can be used for both reading

and writing.

4. Invoke the Dump method of the topmost class, specifying the desired

Document name, and the _Control instance. A Document is created in the

DOM, and fully populated from the topmost class and its subordinates.

5. Invoke the Write method of this class, specifying an XML file to receive the

data.

Process the XML Document with the Generated Application

280 Product Guide

Example:

myControl = _Control.Create()

myPO = PurchaseOrder.Create()

myPO.SetorderDate(CurrentTime())

myPO.GetbillTo().SetCity("San Francisco")

myPO.GetbillTo().SetCountry("USA")

myPO.GetbillTo().Setname("Joan Smith")

myPO.GetbillTo().GetState().Set_data(CONSTANT_22)

myPO.GetbillTo().Setstreet("7 Elm Street")

myPO.GetbillTo().Setzip(94133)

myPO.Dump("PurchaseOrder", NULL, NULL, myControl)

myControl.Write("C:\Aion10\Apps\po.xml")

Update an XML Document

1. Follow the sequence for reading. See the "Read an XML Document" section.

2. Update data in Aion structure with Set methods.

3. Continue with sequence for writing at Step 4.

 Note: that output may be written to the same or a different file.

Notes:

■ Output can be written with a different Document name than specified in the

Schema. Such data cannot be read with the generated Aion BRE application,

which requires the original name.

■ The generated application can be edited in the Aion IDE as necessary.

■ A subset of the Aion BRE data structure may be created, deleted, loaded, or

dumped, by invoking that method on a subordinate class.

Automatic Unmarshalling and Marshalling

Chapter 8: Process XML 281

Automatic Unmarshalling and Marshalling

When you generated an application from an XML Schema through the

XsdConverter, mechanisms are added to the generated classes that simplify the

handling of the relationship between the XML documentation and Aion classes.

These mechanisms address:

■ Automatically populate instances in the Aion BRE application from XML

documents corresponding to the XML Schema.

■ Marshal the objects of the Aion BRE application into an XML document using

facilities provided by the generated library.

Note: A subset of the Aion data structure may be created, deleted, loaded, or

dumped, by invoking that method on a subordinate class.

The domain classes generated by XSDLib reflect the elements defined in the XML

schema where the XML attributes are attributes of the generated Aion class and

subelements are accessed via attributes of the type “pointer to…”. In addition to

the standard Set/Get accessor methods, XSD also provides each domain class

with methods to load and marshal the class.

Load() Method

The Load() method unmarshalls an element and all the subelements of that

element. You pass the method the pointer to the Element (of DOMLib) that was

created as the result of parsing the XML document.

Example:

mybookstore.Load(myBSRoot)

Besides also creating all the Book instances of Bookstore, the Load() method

automatically unmarshalls the values of attributes from the element's attributes

(using the NamedNodeMap for the element) as well as create and populate the

classes corresponding to any subelements of the element. Since the <book>

element doesn't contain any subelements, loading books from bookstore.xml,

will be a simple process. But where the main element is complex, having the

Load() method can save significant programming effort.

The Purchase Order Example

282 Product Guide

Dump() Method

The Dump() method marshals an instance of class, along with any instances of

objected that are referenced by the attributes of that instance. Invoke it on each

instance that you wish to hang an element off the root node of the document.

The Dump() method takes four parameters: the name of the document, the

pointer to the document, the pointer to the element to which the generated

elements to which the generated elements are to be appended, and a pointer to

the _Control instance.

Note: When call the Dump() method, it is necessary to pass only the name of

the document and the _Control instance pointer:

pBook.Dump(“bookstore”, NULL, NULL, p_Control)

If the Document pointer is Null, this method will create a Document whose root

element is the name passed to the method.

The Document and Element parameters (the second and third parameters) are

used by the generated code when Dump() is called on referenced instances.

The Purchase Order Example

An example has been created using the Schema presented in the www3 Schema

primer, a purchase order. The www3 XSD has been copied exactly as po.xsd.

Run XsdConverter specifying purchaseOrder.xsd as input and po.xml as output.

The user-written application is poUse.app, which includes po.app. Running it first

creates some data, which is written out to po.xml, and then immediately read

back in and confirmed. Messageboxes confirm success; po.xml may be reviewed

with a browser for additional assurance.

The Purchase Order example provides an advanced schema with several

interesting features. Purchaseorder.xsd is the reference schema adopted by the

industry. It is expected that the Aion BRE user will run XSDLib on this schema.

The xsdTestRun application file is provided to run the generated application and

purchaseOrder.xml provides some idea data that conforms to the schema.

Open and study purchaseorder.xsd. Observe that it makes use of both complex

and simple type definitions along with an attributeGroup. In addition,

purchaseorder.xsd specifies two simple types as enumerations: the shipby and

USState types.

Now, following the steps outlined in the Generate Applications Based on XML

Schemas section, generate a library (PurchaseOrderLib) with the XSDLib. Be

sure to open the generated library first in the Aion BRE IDE, and restore it if

necessary to remove error messages. Now open the xsdtestrun application in the

Aion BRE IDE and include the PurchaseOrderLib that you just generated.

The Purchase Order Example

Chapter 8: Process XML 283

Compare the class structure of generated library with the structures defined in

purchaseorder.xsd.

Notice that each element and type definition of the schema is generated as a

separate Aion BRE class, except for the XSD globally named type

PurchaseOrderType. That is because the PurchaseOrderType does not play any

role in the XML documents that are compliant with this schema. Globally defined

named type definitions are equivalent to locally defined anonymous type

definitions. XSDLib treats globally defined type definitions as locally defined

anonymous definitions.

Expand the classes in PurchaseOrderLib and study how the XsdConverter

generated the Aion BRE application from the schema. Note that except for the

preceding case mentioned, schema elements and attributes that have a complex

type are mapped to Aion BRE attributes of type pointer/list of pointer to.

The Purchase Order Example

284 Product Guide

AttributeGroups are assimilated into the element from which they are referenced

(see the attributeGroup ref in the item subelement (of Items). The generated

Dump() method for the owning classes remembers the AttributeGroup

structures and generates the appropriate AttributeGroups from the Aion BRE

class.

Enumerated types are mapped to constants in the respective class.

XSDLib generates an attribute, _data, for those types that define no other

sources of data (subelements or attributes), see for example comment, SKU,

and USState.

Import the generated .app file into xsdtestrun.app. Run xsdtestrun using the

purchaseorder.xml file.

More Information:

Generate Applications Based on XML Schemas (see page 273)

Chapter 9: Domain Interfaces and Dynamic Rules 285

Chapter 9: Domain Interfaces and

Dynamic Rules

In addition to Web-based rule management using Aion Rule Manager (described

the previous chapter), CA Aion BRE also supports business rule maintenance by

means of dynamic rules. Dynamic rules allow the business expert to maintain

Aion rules outside an Aion development environment by using the Dynamic Rule

Manager. Dynamic rules enable CA Aion BRE to process rules at runtime that are

not a compiled part of the knowledge-base executable. For more information on

maintaining dynamic rules and the Dynamic Rule Manager, see Dynamic Rule

Manager in the “Maintaining the Dynamic Rulebase” chapter in the CA Aion BRE

Rules Guide. Currently, decision tables are the only supported form of dynamic

rules.

This chapter describes Aion BRE dynamic rules, some of their uses, and the roles

and responsibilities of the two human roles in the Dynamic Rule scenario-a

domain expert and an Aion BRE application developer. When rules are stored in

an external medium, such as a database, there must be a way to link the objects

in the external medium with the structures in Aion BRE. This link is provided by

the domain interface. Therefore, we begin this chapter with a discussion of

domain interfaces and then discuss how domain interfaces support dynamic

rules.

Note: Domain interfaces have a broader use in CA Aion BRE than simply

supporting dynamic rules. Domain interfaces can also be used in constructing

static (compiled) decision tables. For more information on decision tables, see

the chapter “Decision Tables” in the CA Aion BRE Rules Guide.

This section contains the following topics:

Domain Interfaces (see page 286)

Dynamic Rules (see page 291)

External Rules: Use Dynamic Rules or Generate Static Rules with COBSLib? (see

page 295)

Styles of Rules (see page 297)

Domain Interfaces

286 Product Guide

Domain Interfaces

What is the domain interface? In general, interface is a means of exposing

functionality while hiding implementation. Besides generating interfaces such as

COM, CA Aion BRE provides another way to expose functionality that can be used

by domain experts to construct their business rules. COM interfaces are used by

components within the system environment; domain interfaces are used by

humans. Every Aion BRE application (whether a standalone application or a

library) can have (at most) one domain interface.

What does a domain interface consist of? To answer this question we must first

consider what a domain is. Intuitively, a domain is an area such as an area of

business or a type of problem that is the province of an expert. Some examples

of traditional expert system domains include automobile diagnosis and the

diagnosis of a particular disease. In the business environment, a domain might

be a functional area such as loan approval or human resources (for example,

matching employee qualifications to open positions) about which rules can be

written. Domains may be defined as broadly or narrowly as is appropriate to the

task at hand.

A domain requires a vocabulary which is used to talk about the domain. The

principal goal of having a vocabulary is to be able to write rules that govern the

domain. Thus, we can define “domain” as follows:

Domain

The domain is the name given to a vocabulary and set of rules that describe

an area of human concern, for example, a critical business process or

decision making task. The vocabulary supports the expression of rules about

this domain.

The domain interface of an Aion BRE application consists of the vocabulary that

the Aion BRE application provides for the expert to talk about the problem

domain addressed by the knowledge base. The domain interface is usually

designed jointly by the domain expert and application developer.

However, the domain expert may know little or nothing about Aion BRE or

object-oriented programming. (Here we see the principle of interfaces hiding

implementation.) The Aion BRE application developer may know little or nothing

about the domain expert's area of expertise. Although these two players may

work almost independently of one another, they need to have an established

common vocabulary between them. This vocabulary serves as a contract. Thus,

we can provide a general definition of an Aion domain interface as follows:

Domain Interfaces

Chapter 9: Domain Interfaces and Dynamic Rules 287

Domain Interface

A unique type of interface provided by Aion BRE applications that defines the

contract between the Aion BRE application developer and the domain expert

that allows the domain expert to formulate rules outside of Aion and still

have Aion understand these rules at runtime. Every Aion BRE application can

have one domain interface.

What does the domain interface look like from the perspective of the application

developer? We have said that the domain interface consists of the domain

vocabulary that links the way a domain expert talks about a domain with

structures in an Aion knowledge base. An Aion knowledge base consists of

classes and their methods and attributes. In an Aion BRE application, the

vocabulary links to methods.

A method that supports the vocabulary of a domain interface is called a domain

interface member.

Domain Interface Member

A method that can be referenced through a domain interface. A method

designated as a domain interface member represents part of the “semantics”

of the domain interface.

Domain interface members can be class methods, instance methods, or

_Interface methods. They are often Get or Set accessor methods. Such methods

are conveniently used in rules to get attribute values for conditions or to set

attribute value in actions.

The Method Editor provides a means to designate a method as a domain

interface member.

Note: Not all methods may be as designated a domain interface member.

When designating a method as a domain interface member, the application

developer gives the member a name called a domain interface label. This name

is the link to this method from the domain interface.

Domain Interfaces

288 Product Guide

Domain Interface Label

The name given to a domain interface member for purposes of forming the

domain interface (the vocabulary).

Domain interface labels and the functionality they represent must be carefully

chosen by the domain expert and the application developer to form the contract

for constructing Aion dynamic rules. Domain interface labels should be defined in

the domain expert's (business) language. These labels are used to by the domain

expert to construct dynamic rules (see Dynamic Rule Manager in the

“Maintaining the Dynamic Rulebase” chapter of the CA Aion BRE Rules Guide).

The collection of domain interface labels given to internal methods constitutes

the content of the domain interface. Thus, we can give a more specific definition

of a domain interface than the one given above as follows:

Domain Interface

The collection of domain interface labels (business vocabulary) that the Aion

BRE application makes available to the domain expert.

Both the general definition and this specific definition are equally valid. The

domain interface specifies application resources available to the domain expert;

these are the only application resources available to the domain expert.

More Information:

Dynamic Rules Task Flow (see page 293)

Create Domain Interface Members (see page 290)

Domain Interface Member Restrictions (see page 291)

Role of the Domain Interface in System Development

The preceding discussion highlighted the need for the domain expert who is

going to create and maintain dynamic rules and the Aion BRE application

developer to come to a mutual understanding (contract) regarding the

vocabulary and its semantics that will be used to construct the rules of the

domain. This section briefly describes how the process of creating the contract

(specifying the domain interface) can be integrated into the typical Aion system

development process.

Domain Interfaces

Chapter 9: Domain Interfaces and Dynamic Rules 289

Requirements Analysis

Every project requires a Requirement Analysis phase in which the relationship

between the system user and the system is precisely defined. Using dynamic

rules adds a new factor to this phase. In particular, using dynamic rules requires

defining the domain interface. The domain interface must be represented as part

of the general system interface that it is defined during this phase.

Elements specified in the domain interface are the domain interface labels that

will be assigned to methods in your Aion BRE application. Therefore, these

elements must be included in the system dictionary that should be developed

during Requirements Analysis and where the semantics of element (what the

method in the Aion BRE application will do) would be indicated.

As part of defining the domain interface, the domain itself must be defined and

delimited. A domain may be defined broadly or it may be defined narrowly and

include only a subpart of the total vocabulary necessary to describe the total

problem or business area. Aion supports decomposing a problem or business

area into separate, specific domains. Although there can be only one domain

interface per application, the domain interface may be organized into separate

and specific domains on the domain expert's side in the external medium in

which the dynamic rules are stored A single knowledge base can access several

domains, and domains may be shared among knowledge bases.

More Information:

Dynamic Rule Management (see page 303)

System Design

A system design phase usually consists of specifying the classes that will belong

to the Aion BRE application.

During system design, the elements the domain interface (the domain interface

labels) should be mapped to methods of your classes.

Note: The elements may be mapped to attributes in your specifications as long

as it is understood that accessor methods must be defined for these attributes in

the implementation.

Domain Interfaces

290 Product Guide

System Testing

In order to conduct sufficient system testing prior to system implementation, it

will be necessary to transfer the domain interface labels that have been

associated with methods in the Aion knowledge base to an external medium so

that the domain expert can construct rules outside the Aion BRE IDE. Dynamic

rules need to be tested just as do rules written with the Aion knowledge base

itself.

CA Aion BRE provides a tool that transfers domain interface labels defined in an

Aion BRE application to a physical database: the Dynamic Rulebase

Administrator. The Dynamic Rulebase Administrator should probably be used as

soon as the classes and methods required by the domain interface are coded in

the Aion BRE application.

Maintaining the Domain Interface

Obviously, as the Aion BRE knowledge base is developed and after it is deployed,

the requirements for the application's domain interface may change. Maintaining

the specification for the domain interface requires communication between the

domain expert and the Aion BRE application developer. As the domain expert

discovers new things that “must be talked about” in order to construct

appropriate rules for the domain, the application developer must provide the

proper semantics within the Aion BRE knowledge base.

Maintaining the domain interface also requires that the external rulebase be kept

in sync with the Aion BRE application. As new domain interface labels are

introduced into the Aion knowledge base or old ones deleted or modified, this

information must be transferred to the external medium. The Dynamic Rulebase

Administrator also provides convenient mechanisms to keep the rulebase and

Aion BRE application synchronized, see Dynamic Rulebase Scenarios in the

“Maintaining the Dynamic Rulebase” chapter of the CA Aion BRE Rules Guide.

Create Domain Interface Members

The Aion BRE application developer designates selected methods as belonging to

the domain interface. The application developer does this by assigning a label to

each domain interface member.

For step-by-step procedures for creating domain interface methods, see

Defining Domain Interface Methods in the CA Aion BRE online help:

Not all methods in an Aion knowledge base can be made a domain interface

member. In the following section, see Domain Interface Member Restrictions for

restrictions on selected methods for domain interface membership.

Dynamic Rules

Chapter 9: Domain Interfaces and Dynamic Rules 291

Domain Interface Member Restrictions

Domain interface members can be class methods, instance methods or

_Interface methods. The following restrictions apply to all domain interface

members:

■ Domain interface members must be public methods.

■ Domain interface members used for rule Conditions cannot have any

arguments; and must return a string, integer, real, or Boolean.

■ Domain interface members used for rule Actions can have at most one

argument, which must be either a string, integer, real, or Boolean. Any

return value is ignored.

■ If a domain interface member is specialized:

– The specialization must have the same signature as the domain interface

member.

– The specialization cannot be declared to be a domain interface member

in its own right. However, the implementation of an _Interface method

can still be declared a domain interface member in its own right with its

own label.

■ The domain interface label must be unique within a library or application file.

However, different libraries may specify the same domain interface label and

a library can include another having the same domain interface label.

Dynamic Rules

Dynamic rules are rules that are assembled and defined to the knowledge base

at runtime. They are not a compiled part of the knowledge-base executable.

Dynamic rules are not defined in Aion BRE application source code as are

non-dynamic (or static) rules. Dynamic rules are, in fact, complex objects

constructed at runtime that the inference engine can process as if they were

(static) rules. In other words, although dynamic rules are fundamentally

different from static rules, they behave in the same way as static rules at

runtime.

Dynamic Rules

292 Product Guide

CA Aion BRE provides support for two types of dynamic rules:

■ Persistent dynamic rules are rules stored in an external medium (a

database) and loaded during knowledge base execution as if it were data.

The external medium for storing persistent dynamic rules is called a

rulebase. The greatest majority of dynamic rules used in Aion and

considered in this documentation will be persistent dynamic rules.

■ Non-persistent dynamic rules are dynamic rules created during application

execution by logic internal to the knowledge base. It is expected that

non-persistent dynamic rules will be used only in advanced Aion BRE

applications. For more information of constructing non-persistent dynamic

rules, see the chapter “Constructing Non-Persistent Dynamic Rules” in the

CA Aion BRE Rules Guide.

CA Aion BRE dynamic rule capability currently supports only Decision Tables.

Decision tables provide a high-level representation of knowledge and are easily

accessible to domain experts. It should be noted that Aion IFRULEs can be

represented as decision tables and therefore are amenable to treatment as

dynamic rules.

Form more information on these items, see the “Decision Tables” chapter in the

CA Aion BRE Rules Guide.

Useages for Dynamic Rules

The application scenarios and situations in which dynamic rules are

recommended include the following:

■ Applications requiring frequent rule updates

Where subsets of rules are changing frequently due to government

regulations or ad hoc or seasonal adjustments, changes can be isolated in a

dynamic rule database and installed without rebuilding the entire Aion BRE

application.

■ Applications requiring continuous uptime

Where applications cannot be terminated for updating rules, updates can be

performed by accessing the dynamic rule databases in response to some

triggering event or user interface action.

■ Applications requiring on-site rule customization

Where an application is installed at a number of remote sites, dynamic rules

permit each site to maintain its own set of local rules that supplement the

application's static rules.

Dynamic Rules

Chapter 9: Domain Interfaces and Dynamic Rules 293

■ Applications sharing sets of rules

Where multiple applications share subsets of rules, dynamic rules permit

rules to be packaged into a shareable database.

Note: To share sets of rules, the applications must be constructed with the

same libraries that define the domain interface members used in those

rulesets.

■ Situations requiring a clean separation of roles

With dynamic rules, Aion BRE application developers and domain experts

can each work in an environment best suited to their roles. The application

developer works within the Aion development system and the domain expert

works within the dynamic rule editor (which may be customized to the

domain expert's requirements).

Because Aion BRE applications and dynamic rules are loosely connected,

each player can work nearly independently of the other.

Dynamic Rules Task Flow

This section specify how dynamic rules are supported and developed throughout

this process.

The essential points of the dynamic rule task flow are:

1. Once the domain interface has been defined in the Aion BRE application

(domain interface labels are applied to designated methods), the Dynamic

Rulebase Administrator is used to import the domain interface into the

rulebase. The Dynamic Rulebase Administrator is also used to keep the Aion

BRE application's domain interface “in sync” with the rulebase. For more

information, see Dynamic Rulebase Administrator in the “Maintaining the

Dynamic Rulebase” chapter of the CA Aion BRE Rules Guide.

2. After the rulebase has had domains created and populated with domain

interface members, the domain expert uses the Dynamic Rule Manager to

create, modify, or delete dynamic rules stored in the rulebase. For more

information, see Dynamic Rule Manager in the “Maintaining the Dynamic

Rulebase” chapter of the CA Aion BRE Rules Guide.

Dynamic Rules

294 Product Guide

3. The Dynamic Rule Manager supports editors to allow the domain expert to

view, create, and modify dynamic rules. Currently, the Dynamic Rule

Manager supports a decision table editor for dynamic decision tables; see

Dynamic Decision Table Editor in the “Maintaining the Dynamic Rulebase”

chapter of the CA Aion BRE Rules Guide.

4. Finally, the application developer imports the DynRDLib library into the Aion

BRE application. DynRDLib provides facilities to load and post dynamic rules.

For more information, see the “DynRDLib” chapter in the CA Aion BRE online

help. This phase of the dynamic rule task flow is described in Dynamic Rule

Runtime Considerations in the “Runtime Issues” chapter of the CA Aion BRE

Rules Guide.

A business process for maintaining dynamic rules is supported by the Dynamic

Rule Repository, which is accessed through the Dynamic Rule Manager.

More Information:

Role of the Domain Interface in System Development (see page 288)

Dynamic Rule Management (see page 303)

Support for Dynamic Rules: Aion BRE-Supplied Libraries

All dynamic rules (both persistent and non-persistent) interact with the

executing Aion BRE application using one or more Aion-supplied libraries:

■ DynRLib provides facilities for defining and posting dynamic rules. For more

information, see the “DynRLib” chapter in the CA Aion BRE online help.

■ DynRDLib (which includes DynRLib) provides facilities for loading dynamic

rules from the rulebase. The library specializes the Aion Query class,

permitting dynamic rule editors and Aion BRE applications to use selection

markers corresponding to columns in the database tables. DynRDlib only

allows loading rules from the rulebase and does not support updating the

rules, domains, or definitions of the domain interface members. For more

information, see the “DynRDLib” chapter in the CA Aion BRE online help.

■ DynRELib (which includes DynRDlib and DynRLib) provides facilities

updating the rulebase. It can be used to develop a custom dynamic rule

editor or to develop utilities to maintain domain or domain interface

information stored in the rulebase. For more information, see the

“DynRELib” chapter in the CA Aion BRE online help.

Note: See the Aion Examples folder for sample Aion BRE applications that

illustrate the use of the library services. It is recommended that the Aion

developer explore the methods contained in DynRLib and DynRDLib to learn the

capabilities of these libraries and to find the useful methods that they offer. The

MDDRules example illustrates advanced uses of DynRLib and DynRDLib

operations.

External Rules: Use Dynamic Rules or Generate Static Rules with COBSLib?

Chapter 9: Domain Interfaces and Dynamic Rules 295

External Rules: Use Dynamic Rules or Generate Static Rules

with COBSLib?

Persistence has come to be an industry standard term referring to the ability of

a program construct such as a class or instance to continue to exist in an external

medium after the program executable has closed down. Rule persistence is also

referred to as rule independence, and persistent rules are often called external

rules.

Domain interface technology is one way that CA Aion BRE allows rules to be

externalized outside applications. Another strategy for maintaining external

(persistent) rules uses the powerful capabilities of COBSLib. COBSLib is an Aion

library that contains the classes and methods necessary to create, browse,

modify, build, and even run an Aion BRE application. It can be considered an API

on top of the building services of Aion. For more information on COBSLib, see the

“COBSLib” chapter in the CA Aion BRE online help. A COBSLib approach to

externalizing rules allows persistent rules to be generated as static rules in an

Aion BRE application. This section compares the dynamic rule and COBSLib

approaches for externalizing rules.

How does the COBSLib approach work? With this approach, the Aion BRE

application developer writes an Aion knowledge base that includes COBSLib. This

knowledge base can use Aion's database connectivity and Query classes to

access the external rules that the domain expert has saved in a database. It can

then use COBSLib functionality to open an existing Aion BRE application and to

generate rule methods and literally write the rules for that application. The logic

in the COBSLib application is to format the database structures in which the rules

are stored into the syntax of Aion rules and insert these reformatted rules into

the appropriate rule methods in the target Aion BRE application as static rules.

The COBSLib application has the “knowledge” to perform these activities. The

target application can then be compiled, if you wish, by the COBSLib application

itself.

CA Aion BRE provides the base libraries (COBSLib, WinLib, DataLib) to enable the

Aion BRE application developer to write such a knowledge base. However, unlike

what it provides for dynamic rules, Aion does not provide the structure in which

persistent rules are stored or any external rule editors intended for

non-programmers as part of its COBSLib approach. Thus, there are both

advantages and disadvantages to using the COBSLib approach instead of the

dynamic rule approach.

There are two principal advantages of using the COBSLib approach:

■ The COBSLib approach can accommodate rules of any format.

■ The COBSLib approach does not incur any performance degradation.

External Rules: Use Dynamic Rules or Generate Static Rules with COBSLib?

296 Product Guide

Accommodation of Rules for Any Format

Currently, dynamic rules are limited to decision tables. While it is anticipated

that Aion will offer additional types of dynamic rules, dynamic rules will be

always be restricted to a subset of rule types. In the COBSLib approach, the Aion

BRE application developer can select any type of Aion rule and design a database

structure to support that type. For instance, an IFRULE database structure could

easily be distinguished from (a very similar) WHEN structure so that the Aion

COBSLib application would know what production rules (as opposed to WHEN

demons) to generate for the target application.

No Performance Degradation

When dynamic rules are posted to the inference engine they must undergo

extensive validation and interpretation. After all, the executing knowledge base

does not know whether the particular rules it loads have been tested. Perhaps

the rulebase and knowledge base are out of sync! There will be a performance

penalty for this validation. Because the COBSLib approach generates static rules,

there is no performance penalty. At runtime, COBSLib-generated static rules are

no different than rules written by the application developer.

The advantages of dynamic rules over the COBSLib approach include:

■ Immediate use of external rules.

■ Runtime loading of rules.

Immediate Use of External Rules

 Aion offers the opportunity to begin using dynamic rules immediately upon

installing Aion. Aion provides the database (rulebase) in which to store external

rules, the utility (Dynamic Rulebase Administrator) to synchronize this database

with the Aion BRE application, and basic editing capabilities for persistent

dynamic rules in the Dynamic Rule Manager. By contrast, these facilities must be

designed and developed by the Aion BRE application developer when using the

COBSLib approach. In particular, with the COBSLib approach, a data model for

storing rules must be designed, an appropriate editor must be developed, and,

most importantly, an additional Aion BRE application using COBSLib must be

written.

Styles of Rules

Chapter 9: Domain Interfaces and Dynamic Rules 297

Runtime Loading of Rules

There are many business applications that directly benefit from runtime loading

of rules. For examples of such applications, see "Usage for Dynamic Rules" in the

Dynamic Rules chapter. By contrast, the COBSLib approach still involves a

compilation step in order to put rule changes into effect. Indeed, compilation

becomes a job stream consisting of first executing the Aion COBSLib application

and then compiling the target knowledge base. The major advantage of dynamic

rules is that they do not require recompilation in order to effect rule changes.

Obviously, however, the tradeoff in achieving runtime loading of rules is the

performance penalty that the Aion knowledge base incurs when validating

dynamic rules.

Which approach is best for you depends upon the requirements of your

application:

■ Are your rules amenable to the formats provided by Aion's dynamic rule

capabilities?

■ What is the allowable interval between recognizing a rule change and

needing it implemented?

■ What are the performance requirements for the Aion BRE application itself?

Whichever approach is adopted, adequate planning and appropriate resources

are required to make any project successful.

Styles of Rules

External rules must be distinguished from internal rules that are explicitly

defined in the Aion BRE language. This distinction must be contrasted with the

very different distinction between static and dynamic rules. Static rules are those

that are compiled as part of the executable; dynamic rules are defined to the

knowledge base at runtime. The differences among these concepts yield the

following matrix of the styles of rules supported by Aion BRE.

Static Dynamic

Styles of Rules

298 Product Guide

External/

Persistent

Aion + COBSLib Persistent dynamic rules

(supported by a domain

interface to an external physical

medium)

Internal Tradition Aion Rules (IFRULEs,

Pattern Matching rules,

Demons)

Non-persistent dynamic rules

In general, internal static rules will be the most common rules used by the Aion

BRE application developer. Non-persistent dynamic rules will probably find a

place only in advanced Aion BRE applications. For uses of non-persistent

dynamic rules, see the chapter “Constructing Non-Persistent Dynamic Rules” in

the CA Aion BRE Rules Guide. Internal rules have the disadvantage, however, of

being maintainable only by an application developer who is familiar with the Aion

IDE.

External rules have the advantage of allowing maintenance outside of the Aion

IDE by the domain expert. Thus, externalizing rules is often the result of an

explicit system requirement. The section Externalizing Rules: Using Dynamic

Rules or Generating Static Rules with COBSLib? discusses the issues involved in

selecting between different strategies for externalizing rules.

Chapter 10: Use the Rule Manager Wizard 299

Chapter 10: Use the Rule Manager

Wizard

Business rules are those rules that are maintained directly by a business

domain expert. This definition complies with goals of the business rules

approach by providing the business domain expert with the means to maintain

the rules of business operations. Aion BRE provides the Aion Rule Manager for

external management of business rules. For information on the Aion Rule

Manager, see the CA Aion Rule Manager Product Guide.

CA Aion BRE provides a Rule Manager Wizard, which automatically generates the

Aion BRE code to communicate with a CA Aion Rule Manager rulebase that has

been deployed as a Web service.

This section contains the following topics:

Process Overview (see page 299)

Invoke the Rule Manager Wizard (see page 300)

Process Overview

Using the Rule Manager Wizard presumes that you have created a Rule Manager

project in the environment and also deployed it as a rulebase using the Rules

Application Server (RAS). For more information about these tasks, see the

The general procedure is as follows:

1. Create your Aion BRE application in the IDE.

2. Invoke the Rule Manager Wizard, which reads the Web service definition

language (WSDL) of the desired rulebase and generates three classes which

can be used to call the Rule Manager Web service.

3. Write the Aion BRE code to use these three classes to invoke the rules in the

rulebase.

4. Test the resulting Aion BRE application.

Invoke the Rule Manager Wizard

300 Product Guide

Invoke the Rule Manager Wizard

This procedure invokes the Rule Manager Wizard.

To invoke the Rule Manager Wizard, follow these steps:

1. Select Tools, Rule Manager Wizard...

2. The first Rule Manager Wizard dialog appears.

Enter the machine name and port of the server where the Rule Manager Web

service is running. The machine name can be localhost if the Web service is

running on the same machine as CA Aion BRE. The port number is typically 8080

unless it was changed during Portal installation.

3. Click Next.

4. A list of deployed rulebases displays.

5. Select the deployed rulebase you want.

6. Click Next.

7. A processing status dialog displays.

8. If you want to retain status messages after processing occurs, uncheck the

check box Close wizard on completion.

9. Click Finish to start Web service processing.

Invoke the Rule Manager Wizard

Chapter 10: Use the Rule Manager Wizard 301

When Web service processing is complete, you should see three new classes in

your application:

wsname _Input

wsname _Output

wsname

where wsname is the name of the Rule Manager Web service.

Example:

These classes are available for use in your CA Aion BRE application. Here is an

example of how they are used to invoke the rules in the Rule Manager Web

Service.

// Declare variables for the classes

var AionInput is & wsname_Input

var AionOutput is & wsname_Output

var rules is & wsname

// Create instances of the classes

AionInput = wsname_Input.create

AionOutput = wsname_Output.create

rules = wsname.create

// Set the input values

AionInput.setFieldName1 (value)

AionInput.setFieldName2 (value)

AionInput.setFieldName3 (value)

// Set the trace level

AionInput.setTraceLevel(0)

// Invoke the rules

rules.inferRM(AionInput,AionOutput)

// Retrieve the results

messagebox(AionOutput.getFieldNameN)

Chapter 11: Dynamic Rule Management 303

Chapter 11: Dynamic Rule Management

CA Aion BRE supports dynamic rules. Dynamic rules allow the business expert to

maintain Aion rules outside of the Aion development environment using the

Dynamic Rule Manager. For more information on maintaining dynamic rules and

the Dynamic Rule Manager, see Dynamic Rule Manager in the “Maintaining the

Dynamic Rulebase” chapter in the CA Aion BRE Rules Guide.

Note: Currently, decision tables are the only supported form of dynamic rules.

CA Aion BRE also extends the dynamic rule management functionality by

providing support for a business rule management process. A business process

for administering rule management is necessary as business users take over

responsibility for maintaining their business rules. This is especially true if it is

expected that business users will maintain actual production rules in order to

take advantage of CA Aion BRE's ability to load dynamic rules at runtime without

recompilation of the application. Although the end-user business community

must ultimately be responsible for defining the process of managing rules, the

rule management software should support essential functionality that would be

found in any such process.

Aion provides this support in two ways:

■ User access permissions can be controlled at a user / domain level.

■ The Dynamic Rule Manager is extended with access to a rule repository for

managing rule maintenance.

The rulebase that is provided with CA Aion BRE is a database for storing rules. A

rule repository should also provide rule check-out and check-in services while

maintaining prior versions of rules. To meet these objectives Aion uses a

connection to an Microsoft Source Code Control (SCC) program. With this

approach, there is no impact on the size of the dynamic rulebase itself to

maintain prior versions of rules.

The features of CA Aion BRE that support business rule management are

presented in The Business Rule Management Process.

This section contains the following topics:

Rule Repository Functionality (see page 304)

The Business Rule Management Process (see page 305)

Rule Repository Functionality

304 Product Guide

Rule Repository Functionality

CA Aion BRE implements the rule repository extension to the rulebase by saving

rule versions as text in a source code control system.

Rule Repository functionality requires software compliant with the Microsoft

Source Code Control (SCC) standard. Thus, any SCC compatible source code

repository can be used with the Aion Dynamic Rule Manager. Typical SCC

compatible repositories include:

■ Microsoft's Visual SourceSafe

■ CA Software Change Manager

Note: CA Aion BRE does not provide a source code control system.

Rules must be in the form of a text file (.txt) to be stored in the Repository. When

adding a rule to the rule repository, the Dynamic Rule Manager converts the rule

into a stream of character data and writes this data to a temporary text file. This

text file is passed into the source code control system for storage in its

repository. The opposite occurs when in rule retrieved from the repository into

the Manager.

The Dynamic Rule Manager handles the conversion and storage of rules between

the source code control system and physical rulebase invisibly to the business

user.

Note: CA Aion BRE installation creates a default directory for storing the

temporary files used in the conversion between the rule repository and the

rulebase. There should be no reason to change this default directory.

Set Up the Rule Repository

Follow installation instructions for your choice of source code control program,

and establish a network accessible common source code database as your rule

repository.

During initial set-up, the structure of the rule repository should be defined in the

source code control database. A typical structure would be to define a project of

Rule Repositories (to include all dynamic rules) and subprojects to define

separate rulebases. Each rulebase should contain project folders that reflect the

Domains within the production dynamic rulebase.

Note: While it is not a requirement, it is helpful if the names of rulebase projects

match exactly to the domain names in the rulebase.

The Business Rule Management Process

Chapter 11: Dynamic Rule Management 305

A typical structure in the rule repository might be:

+ Aion Rule Repositories

|

|-- + Sales Rulebase

| |

| |-- Product Domain

| |

| |-- Inventory Domain

|

|-- + Employee Rulebase

 |

 |-- Compensation Domain

 |

 |-- Benefits Domain

The structure within the source code control program database should reflect,

but it is no limited to, the structure of the production rulebase. For example,

structures to store test versions of rules prior to productionalizing them could be

defined.

Procedures should be defined within a company for how the dynamic rule

repository is to be used. It is important to remember that source code control

and update control of the rulebase are two different issues. Because the Aion

rulebase is a database, update control must be exercised by standard database

security measures. It may be desirable to have a single point, a Rulebase

Administrator, that controls creating rules in the production rulebase.

The rule repository may be used as a staging area from which rules composed by

business experts are moved by the Rulebase Administrator to the rulebase for

testing and productionalizing. It may be desirable to define both test and

production domains in the rulebase.

The Business Rule Management Process

This section describes features of CA Aion BRE that support a business rule

management process. Aion addresses two aspects of this process:

■ Establishing user access levels in order to allow/prohibit users to exercise

specific capabilities of the rule manager, and

■ Managing rule maintenance through check-out/check-in and other

administrative services.

The Business Rule Management Process

306 Product Guide

Establish User Access Permissions

The first step in a business rule management process is typically the

administration of who can access the dynamic rulebase and of the privileges that

these users can exercise when accessing the rulebase. In Aion BRE, the

functionality to establish user access levels is provided in the Dynamic Rulebase

Administrator.

User access permissions are defined at the user/domain level. In other words,

each user may be given specific access privileges for each domain in the

rulebase. Currently, Aion BRE provides three levels of user access: Prohibited,

Read-only, and Read-Write. For a step-by-step description of establishing user

access permissions, see Establishing User Permissions in the CA Aion BRE online

help.

User Permissions are automatically read by the Dynamic Rule Manager. The

UserID associated with the levels of permissions defined in the Administrator

must match the UserID that is defined for the rulebase connection (not the User

Name) in the Dynamic Rule Manager. For more information on defining the

rulebase connection in the Dynamic Rule Manager, see "Selecting a Rulebase

and Opening a Domain" in the CA BRE Aion Rules Guide. (Although a UserID is

not normally required for an ODBC connection to a rulebase under Microsoft

Access, a UserID would be required on the connection definition if permissions

are active in the rulebase.)

Note: The Dynamic rule Manager now provides an option to open a domain as

read-only in the Open Domain, Select Rule Domain dialog:

The Open Read-Only box is automatically checked if the user has Read-Only

access privileges.

The Business Rule Management Process

Chapter 11: Dynamic Rule Management 307

Dynamic Rule Environment Controls

The issues of rulebase update security, user level access permissions to the

Dynamic Rule Manager, and rule repository access are separate issues. The

following table summarizes the different controls that are available:

Source Maintained through Access Services

Rulebase Security Database manager and

database security rules

Ability update, change,

delete rules within the

physical rulebase.

Dynamic Rule Manager Dynamic Rule

Administrator

Ability to use facilities of

the Dynamic Rule

Manager. See following

Note.

Dynamic Rule Repository Source Code Control

System

Ability to read and write

to the source code

control database.

Note: It is possible that the Rulebase Security and Dynamic Rule Manager may

have inconsistent access permissions for the same user. For example, the

rulebase may allow a user only read access to the rulebase while the Dynamic

Rule Manager may permit the user read-write access. In these cases, the more

restrictive rule will take precedence.

Dynamic Rule Repository Functionality

The dynamic rule repository functionality is accessed through the Dynamic Rule

Manager. The Dynamic Rule Manager allows the user to access single rules in the

repository or to access all rules in the currently active domain. Parallel

functionality is provided for both single rules and all rules in a domain, with only

two exceptions.

Note: Each repository request during a session will invoke the source control

program login dialog. The Dynamic Rule Manager user should login to rule

repository. Other source code control program dialogs will be invoked as

necessary while working within the repository.

The Business Rule Management Process

308 Product Guide

Access Single Rules

To access rules on a single rule basis, select and right click on a rule name in the

domain workspace. This action brings up a pop-up menu that exposes the

available functions of the source code control system for single rules. (Options

that are not available for the highlighted rule will be grayed out.)

Selection of any menu item requires that the selected rule not be displayed in an

open Rule editor.

Access All Rules in a Domain

To access all rules from the currently active domain, right click on any area of

white space in the domain workspace. This action brings up a pop-up menu that

exposes the available functions for accessing all rules in the domain.

Note: Options to compare a rule to one in the rule repository and to get a prior

version of a rule are not available when accessing all rules in a domain. All other

options are available if appropriate rules exist on which to perform the option

(for example, CHECK IN is not available if no rules are currently checked out to

the user).

Selection of any menu item requires that all editors be closed.

Add Rules to the Repository

To add dynamic rules to the rule repository, select the Add option from either the

Single Rule or Entire Domain pop-up menu. Selecting Add from the Single Rule

menu will add the currently selected rule to the rule repository; selecting Add all

rules from the Entire Domain menu will add all rules in the current domain to the

repository. All the original copies of the rules will remain present in the rulebase.

The Business Rule Management Process

Chapter 11: Dynamic Rule Management 309

It is possible to add a rule that is currently in a project in the rule repository to

another repository project. Aion BRE will detect this situation and change the

confirmation prompts accordingly. For example, when all rules in a domain are

added to the rule repository, a preliminary prompt will confirm whether rules

already in the rule repository should be included (if there are any such rules in

the set to be added). Answer this prompt Yes only if you wish to add the rules to

a different project than they are currently in.

When a rule has been added to the rule repository, it is flagged in the Domain

Workspace with “[in SC].” A rule that is in the rule repository may be

checked-out for maintenance.

More Informaton:

Access Single Rules (see page 308)

Access All Rules in a Domain (see page 308)

Rule Check Out and Check In (see page 309)

Rule Check Out and Check In

Once a rule is added to the rule repository, it is available for check-out. Rules

available for check out are marked in the workspace with the flag “[in SC]”. To

check-out rules select Check Out from either the Single Rule or Entire Domain

pop-up menu; for more information on these pop-up menus. Selecting Check

Out from the Single Rule menu will check-out the currently selected rule;

selecting Check Out from the Entire Domain menu will check out all rules for the

current domain that are in the repository.

Note: If any rule is checked out of a domain to any user, check out of the entire

domain is not available; in this case each desired rule must be checked out

individually.

The Business Rule Management Process

310 Product Guide

The checked-out rule will overlay the current copy of the rule in the domain of

the rulebase that is currently opened in the Dynamic Rule Manager. This domain

may be in the production rulebase or in a rulebase on the local machine of the

business rule expert.

When a rule is checked-out, it is flagged in the Domain Workspace with [out SC

to userID on timestamp]. (The repository uses the connection user ID, as

specified in Settings.User ID (not User Name), to identify who owns a

checked-out rule.) No other user of the rule repository can modify the source

code of the rule in the repository except for the holder of the check-out.

Important! The issues of rulebase update privileges, user level access

privileges (to the Dynamic Rule Manager), and rule repository access are

different issues. See Dynamic Rule Environment Controls for a summary of these

issues. In particular, a rule whose source code is checked out of the rule

repository may still be changed in the rulebase. It is therefore important to have

a central control on rulebase updating, such as a rulebase administrator.

Note: Checking out rules at the domain level will check out only those in the

repository that reside in the current rulebase.

When a rule is checked-out of the repository, the following options are activated

on the rule repository pop-up menu only for the current holder of the check out

lock.

Undo Check Out

Cancels the check out lock in the rule repository. In effect, this option says

that the holder of the check-out wants to disregard any locally made changes

to the rule and retain the current version. Selecting Undo Check Out on the

Single Rule menu undoes the check out only on the currently selected rule;

selecting Undo Check Out on the Entire Domain menu undoes the check out

on all rules currently checked out by the user for the current domain. This

action restores the [in SC] status to the rule.

Check In

Replaces the rule in repository with a new copy of the rule from the rulebase

that was maintained by the holder of the lock. Selecting Check In from the

Single Rule menu replaces the currently selected rule; selecting Check In

from the Entire Domain menu replaces all rules currently checked out by the

user for the current domain. Check In restores the [in SC] status to the rule.

The Business Rule Management Process

Chapter 11: Dynamic Rule Management 311

More Information:

Business Rule Maintenance Scenarios (see page 312)

Access Single Rules (see page 308)

Access All Rules in a Domain (see page 308)

Dynamic Rule Environment Controls (see page 307)

Rule Versioning

Because the Dynamic Rule Manager accesses the API of a source code control

system, versioning is automatically provided. Versioning, or the storage and

retrieval of prior version of rules, provides the following functionality that is

helpful in supporting a rule management process:

■ Get latest version of a rule.

To get the latest version of a rule, select Get Latest from either the Single

Rule or Entire Domain pop-up menu. Selecting Get Latest from the Single

Rule menu retrieves a copy of the latest version of the selected rule;

selecting Get Latest from the Entire Domain menu retrieves all rules in the

current domain from the rule repository.

Getting the latest version of the rule replaces the copy of the rule in the

current rulebase with a copy of the latest version from the repository. The

copy is flagged to indicate current status in repository. Retrieved rules are

writable, but they cannot be checked back into the repository.

Note: Getting the latest versions of rules at the domain level will retrieve

only those rules in the repository that reside in the current rulebase. Rules

are retrieved regardless of their check-out status, which remains

unchanged.

■ Get prior version of a rule.

To retrieve a prior version of a rule, select Get Prior from the Single Rule

pop-up menu.

Note: Get Prior is not available on the Entire Domain pop-up menu.

Selecting Get Prior will invoke the Get Historical functionality offered by the

source code control system for retrieving a prior version of the currently

selected rule. The retrieved rule is flagged to indicate its current status in the

repository. The retrieved rule is writable, but it cannot be checked back into

the repository.

The Business Rule Management Process

312 Product Guide

■ Compare two versions of the same rule.

To compare the current rule in the rulebase with the latest version of that

rule contained in the repository, select Compare from the Single Rule pop-up

menu.

Note: Compare is not available on the Entire Domain pop-up menu.

This option will open the Compare window in the Dynamic Rule Manager,

which presents read-only copies of the selected rule (from the rulebase) and

of the rule from the repository.

More Information:

Access Single Rules (see page 308)

Access All Rules in a Domain (see page 308)

Summary: Effect of Rule Repository Functions on the Rule in the Current Rulebase

The following effects occur with respect to the contents of the current rulebase

for each of the rule repository functions.

Note: The current rulebase may be either the production rulebase or a local

rulebase on the business expert's PC.

Add, Check in

The local rule is flagged to indicate that it is currently in source code control

system.

Check out

The local rule is replaced with the latest version from rule repository, and is

flagged as checked out to the current user ID.

Undo

The checked out flag and user ID are removed from local rule.

Get latest, get prior

The local rule is replaced with a version from the rule repository and is

flagged to indicate its current status in the repository.

Compare

There is no effect.

Business Rule Maintenance Scenarios

This section describes several scenarios for using the dynamic rule repository

functionality in a business rule management process.

The Business Rule Management Process

Chapter 11: Dynamic Rule Management 313

Create New Rules in the Rulebase

Dynamic rules that are added to the rulebase do not automatically get added to

the rule repository. Therefore, there must be a business process for insuring that

rules are properly added to the repository. Here we assume that the business

expert is working from a local rulebase when creating a rule. The rulebase

administrator controls update to the production rulebase.

1. In the Dynamic Rule Manager, select New, Decision Table from the Rule

menu, or click the New Decison Table button.

2. Complete the definition of the rule in the local rulebase. Save the rule. (Its

status should be Inactive; it may be saved and added to the repository even

if it is invalid.)

3. Right click the rule name in the Domain Workspace. Select “Add” from the

pop-up menu.

4. Log into the source code control system (rule repository) and select the

appropriate project folder into which the rule should be added.

At this point the Rulebase Administrator could be informed that a new rule is

ready to be added to the rulebase. The Rulebase Administrator could then use

the Get Latest function to retrieve the latest version of the rule for repopulating

the production rulebase.

Change Dynamic Rules

Changing a production dynamic rule requires the rule to be checked out of the

rule repository.

1. Check out the rule to be changed to a test domain in the rulebase or to a local

rulebase.

2. Change the test/local copy of the rule and check it back into the rule

repository.

3. Inform the Rulebase Administrator that a rule is ready to be modified in the

rulebase.

4. The Rulebase Administrator gets the latest version of the rule into the

production rulebase. This action will delete the existing rule and create the

modified rule in its place.

Production of Dynamic Rules

The business rules process is likely to involve a process of testing the rules to be

added to the production rulebase. In this case, the Rulebase Administrator may

get the latest version the rule into a test domain of the rulebase. The Aion BRE

application can then be run from the test domain.

Chapter 12: Aion BRE Reports 315

Chapter 12: Aion BRE Reports

You can generate reports from within your Aion BRE applications. Report output

can be generated to a text or HTML file, it can be displayed in a window, and/or

it can be sent to a printer.

CA Aion BRE provides two libraries to assist in creating reports: IOLib and

IOWLib. These libraries contain methods and attributes to use in designing and

implementing reports.

This section contains the following topics:

About Aion BRE Reports (see page 315)

Aion--IOLib Classes (see page 317)

IOWLib Classes (see page 319)

Work with a Report Canvas (see page 319)

How You Use the Artists (see page 325)

Sample Application (see page 327)

The Sample Canvas (see page 328)

Output Options (see page 329)

About Aion BRE Reports

In CA Aion BRE, reports are created by combining a canvas and an artist.

The canvas contains the specifications for the layout and content of the report.

Different parts of an application, such as rules and methods, can write to the

canvas as appropriate during application processing.

The artist renders a specified canvas to a particular output device, such as a file,

a printer, or a window in the user interface. Different kinds of artists,

represented by different classes in Aion system libraries, know how to render

canvases to different devices. Different artists can render the same canvas to

different devices.

About Aion BRE Reports

316 Product Guide

Aion--IOLib and IOWLib

IOLib and IOWLib are actually a single class hierarchy that is divided into two

libraries:

■ IOLib contains, in its FileArtist and HTMLArtist classes, methods for

generating a report to a text file or an HTML file. It also contains the Canvas

class, as well as a number of other classes, whose methods you do not

normally need to call directly.

■ IOWLib contains, in its PrinterArtist and WindowArtist classes, methods for

generating a report to a printer or window.

The IOWLib library includes the IOLib and WinLib system libraries, so it supports

the rendering of reports to all of the possible output devices. Because of this

organization, you can include just IOLib when generating HTML or text file

reports, without incurring the overhead of including WinLib. Because IOWLib

contains IOLib, it is never necessary to explicitly include both libraries in a

custom library.

Aion--How you Create a Report

Typically, implementing a report in an Aion BRE application includes these steps:

■ Include IOWLib or IOLib in your application, depending on how you want to

output the report. This gives you access to the classes containing

report-related methods and attributes.

■ If the report will be returning data from a database, define a connection to be

associated with that database.

■ If outputting to a window:

■ Create and design the AppWindow to contain the report.

■ Choose or generate an EditWindow class to contain the report-related

methods.

Aion--IOLib Classes

Chapter 12: Aion BRE Reports 317

■ Design the physical layout of the report, and determine any static

information, headers, and footers.

■ At runtime, create a dynamic instance of the Canvas class, and call its

methods to implement the design and to add content to the report.

■ At runtime, create a dynamic instance of the appropriate Artist class or

classes, then call Artist methods to render output based on the Canvas

instance.

Aion--IOLib Classes

This section gives a general overview of the classes contained in IOLib. See the

CA Aion BRE online help for more information about the methods for these and

other Aion BRE classes.

Canvas

The methods in the Canvas class are used to specify the report layout. Use them

to specify the following information about your report:

■ Font attributes

■ Background color

■ Background image

■ Footer text and positioning

■ Header text and positioning

■ Page width and pagination

■ Table definitions (including headers and column widths)

■ List definitions (including numbered and bulleted lists)

Aion--IOLib Classes

318 Product Guide

Artist

IOLib contains the Artist base class. Both IOLib and IOWLib contain additional

classes derived from Artist that are specific to the output type and device.

Reports for text file, HTML file, printer, and window output use the classes

FileArtist, HTMLArtist, PrinterArtist, and WindowArtist, respectively.

To output the report to a specific device (file, window, or printer), you can use

the methods in each respective Artist (FileArtist, WindowArtist, and so on). Use

the methods in the derived Artist classes to perform the following actions:

■ Set attributes of the report that are specific to the device

■ Render a canvas to the predefined device

Fine Artist

The FileArtist class contains methods for report generation to plain text files; in

particular, for specifying when, how, and where file output is sent.

Use methods in FileArtist to do the following:

■ Specify which text file to render to

■ Render the supplied canvas to the specified file

HTMLArtist

The HTMLArtist class contains methods to generate files in HTML, in particular,

for specifying when, how, and where HTML file output is sent.

Use methods in HTMLArtist to do the following:

■ Specify which file to render HTML output to

■ Render the supplied canvas to the specified file

IOWLib Classes

Chapter 12: Aion BRE Reports 319

IOWLib Classes

This section gives a general overview of the classes contained in IOWLib. See the

CA Aion BRE online help for more information about the methods for these and

other Aion BRE classes.

WindowArtist

WindowArtist provides methods for rendering a canvas to a window.

Use WindowArtist methods to perform these operations on a defined canvas:

■ Specify an EditWindow to render the output to

■ Render the supplied canvas to the specified EditWindow

PrinterArtist

PrinterArtist provides methods for rendering a canvas to a printer.

Use the methods in PrinterArtist to perform these operations on a defined

canvas:

■ Specify a printer to render the output to

■ Query the user for which printer to render to

■ Render the supplied canvas to the specified printer

Work with a Report Canvas

Working with a report canvas can involve the following general steps:

■ Creating the Canvas Instance

■ Starting the Report Page

■ Defining the Overall Appearance

■ Specifying Font Attributes

■ Writing Text and Images to the Canvas

■ Adding Blank Lines

■ Specifying Tables

■ Ending the Report

Work with a Report Canvas

320 Product Guide

Create the Canvas Instance

Call the Canvas.Create() method to create a dynamic instance of Canvas. It is

useful to set a pointer to the value that the Create() method returns

Example:

pReport = Canvas.Create()

Typically, the report canvas is created in a separate method of type pointer to

Canvas.

Start the Report Page

A canvas always contains at least one page. Start the first page of the canvas

using the canvas.StartPage() method, where canvas is a pointer to a dynamic

canvas instance.

Example:

pReport.StartPage()

StartPage() takes several optional arguments. The first argument, width, is an

integer specifying the requested number of characters in each row of the report.

For devices without an inherent width, this number defaults to 80. There are

other optional arguments that are generally used only by HTMLArtist.

Define the Overall Appearance

Use the Canvas.Set* methods to optionally define any or all of the following:

■ Use canvas.SetName(string) to specify a report title. The string argument is

a quoted string. This is used as the value of FMT_NAME in headers and

footers and as the Document Name by the HTMLArtist.

Example:

pReport.SetName("Monthly Sales Report")

Work with a Report Canvas

Chapter 12: Aion BRE Reports 321

■ Use canvas.SetHeader(left-string, center-string, right-string) and/or

canvas.SetFooter(left-string, center-string, right-string) to specify the text

and alignment for the header and/or footer. The arguments are strings

specifying the header and footer text:

■ left-string specifies text to be left-aligned

■ center-string specifies text to be centered

■ right-string specifies text to be right-aligned

Any of these arguments can be NULL.

Example:

This example specifies that the header has left-aligned text including the date

and that the footer has a right-aligned page number:

pReport.SetHeader("Sales Data for " & FMT_DATE)

pReport.SetFooter(NULL, NULL, FMT_PAGE)

Note: Use the FMT_* constants in the Canvas class, such as date (FMT_DATE) or

page number (FMT_PAGE), to add automatically updated elements to the

header.

■ Use canvas.SetBackgroundColor(color) to specify a color for the report

background. The color argument can be a string containing the color name

(in quotation marks), or in hexadecimal format ("#RRGGBB").

Example:

pReport.SetBackgroundColor("cyan")

pReport.SetBackgroundColor("#00A5C6")

Note: Only WindowArtist and HTMLArtist use the SetBackgroundColor()

method. The color name strings that you can use in an HTML file depend on

the browser used to view the file. The color name strings you can legally use

with WindowArtist.SetBackgroundColor() are specified in the

WindowArtist.StartPage() method.

■ Use canvas.SetBackgroundImage(image) to specify an image file to display

in the background of an HTML report. The image argument is an image

filename, enclosed in quotation marks.

Example:

pReport.SetBackgroundImage("CompanyLogo.jpg")

Note: The SetBackgroundImage() method is only valid for canvases that

are rendered using HTMLArtist.

Work with a Report Canvas

322 Product Guide

Specify Font Attributes

Use the canvas methods FontBold(), FontNormal(), or FontFixed() to specify

whether to use a Bold, Normal, or Fixed pitch font, respectively.

Example:

pReport.FontBold()

Write Text and Images to the Canvas

■ Use canvas.Write(string) to write a specified string to the canvas and to

advance to the next paragraph. The string argument is a quoted string. For

example:

pReport.Write("The information in this report is CONFIDENTIAL.")

■ Use canvas.WriteNative(string) to add an uninterpreted string to the output.

The string argument is a quoted string.

Example:

pReport.WriteNative("This report is FOR YOUR EYES ONLY.")

Note: When rendering a canvas, all derived Artist classes except HTMLArtist

treat strings added to the canvas using Write() and WriteNative()

identically. HTMLArtist forces strings added with Write() to an HTML

paragraph format; it does not do this to strings added using WriteNative().

■ Use canvas.WriteCentered(string) to write a specified string to the canvas,

centered on the page, and then proceed to the next paragraph. The string

argument is a quoted string.

Example:

pReport.WriteCentered(format(CurrentDate) & "Report")

Work with a Report Canvas

Chapter 12: Aion BRE Reports 323

■ Use canvas.WriteList(list, ordered) to format and add each list object to the

canvas.

■ The list argument is a list of strings.

■ If the Boolean ordered argument is TRUE, this list is numbered. In

ordered is FALSE or not specified, the list is bulleted.

Note: You can use the Boolean constant FMT_NUMBERED as the ordered

argument in place of TRUE to make your code clearer.

Example:

The following example writes a numbered list with three elements to the

canvas represented by pReport:

pReport.WriteList(List("Eat breakfast", "Eat lunch", "Eat dinner"),

FMT_NUMBERED)

■ Use canvas.WriteLine() to draw a horizontal line the width of the output

device.

Example:

 pReport.WriteLine()

■ Use canvas.WriteImage(image, target) to specify an image to display in the

body of an HTML report.

– The image argument is a string containing the name of an image file.

– The optional target argument is a string specifying the URL for the

hypertext target for the image.

Example:

pReport.WriteImage("CompanyLogo.jpg", "http://www.MyCompany.com")

Note: The WriteImage() method is only valid for canvases that are rendered

using HTMLArtist.

Add Blank Lines

Use the canvas.SkipLine(lines) method to skip one or more lines before

resuming output. The lines argument is an integer, representing the number of

lines to skip.

Example:

pReport.SkipLine(3)

Work with a Report Canvas

324 Product Guide

Specify Tables

You can use the following table-related methods to specify a table in the report.

■ Use canvas.StartTable(headers, width) to begin a table definition.

■ The headers arguments is a list of strings representing the header titles,

with one string for each column. NULL is an acceptable value.

■ The width argument is a list of integers representing the column widths

(in characters).

Both argument lists should have the same number of elements.

Example:

pReport.StartTable(List("Part Number", "Unit Price", "Quantity"), List(15, 15, 10))

Use canvas.WriteRow(strings) to set text for the current row in the table. The

strings argument is a list of strings, one string for each column in the table.

Example:

pReport.WriteRow(List("AB-579433", "8.95", "25"))

pReport.WriteRow(List("AF-660324", "12.45", "15"))

Use canvas.EndTable() to end a table definition.

Example:

pReport.EndTable()

End the Report

■ Use the canvas.EndPage() method to end the canvas.

pReport.EndPage()

You can also use the EndPage() method followed by another StartPage()

method to force a page break within a canvas. You might want to do this, for

example, to force a table to begin at the top of a new page or to change the

canvas' header and/or footer. Header and footer definitions are associated

with the last call to StartPage(), so starting a new page gives you an

opportunity to call the SetHeader() and SetFooter() methods again with

new values.

■ Use the canvas.Delete() method to release the resources allocated to the

canvas.

pReport.Delete()

How You Use the Artists

Chapter 12: Aion BRE Reports 325

How You Use the Artists

The methods in the derived Artist classes are used to obtain and set

configuration information for the specified device, and then to render to that

device. The methods in the Artist classes generate the report based on the

information specified in an instance of Canvas.

To use an artist to generate a report:

1. Create a dynamic instance of the appropriate artist class.

2. Specify details about the particular output device (file, printer, or window) to

use.

3. Render a defined canvas to the output device.

Create the Artist Instance

Call the Create() method for the derived Artist class that is appropriate for the

type output that you want: FileArtist, HTMLArtist, WindowArtist, or PrinterArtist.

It is useful to set a pointer to the value that the Create() method returns

Example:

pWArtist = WindowArtist.Create()

pFArtist = FileArtist.Create()

Specify the Output Device

Each type of artist requires somewhat different configuration information to

identify the specific device to which to output a canvas. You specify the output

device by calling the appropriate method in the artist instance.

How You Use the Artists

326 Product Guide

For FileArtist and HTMLArtist

Use artist.SetFileName(filename, append) to specify a file (HTML or plain text) to

render the canvas to.

■ The filename argument is a string containing the name of a file. If the file

does not already exist, CA Aion BRE creates it before writing to it.

■ The append argument is a Boolean representing whether to append to or

overwrite the specified file. The default value is FALSE, indicating that the file

should be overwritten.

Example:

pHArtist.SetFileName("c:\Reports\SalesRpt.html")

pFArtist.SetFileName("SalesRpt.txt", TRUE)

For WindowArtist

Use artist.SetWindowHandle(window) to specify the EditWindow to render the

canvas to. The window argument is a pointer to an instance of EditWindow.

Example:

pWArtist.SetWindowHandle(AppWindow.ReportTextWin)

The EditWindow that you specify must have the multi-line style.

For PrinterArtist

If the output device is a printer, there are two options for specifying which printer

to use:

Use artist.SetPrinter(printer) to set the printer to render output to. The printer

argument is a string containing a system printer name.

Example:

pPArtist.SetPrinter("Engineering1")

Use artist.QueryPrinter() to prompt the user to select a printer.

Example:

pPArtist.QueryPrinter()

Sample Application

Chapter 12: Aion BRE Reports 327

Render a Canvas

Each derived Artist class has a Render(canvas) method for outputting the canvas

instance that the canvas input argument identifies to the specified output device.

■ The FileArtist.Render(canvas) method renders canvas to the text or HTML

file set by artist.SetFileName().

Example:

pFArtist.SetFileName("SalesRpt.txt", TRUE)

pFArtist.Render(pReport)

pHArtist.SetFileName("c:\Reports\SalesRpt.html")

pHArtist.Render(pReport)

■ The WindowArtist.Render(canvas) method renders canvas to the window set

by artist.SetWindowHandle().

Example:

pWArtist.SetWindowHandle(AppWindow.ReportTextWin)

pWArtist.Render(pReport)

■ The PrinterArtist.Render(canvas) method renders canvas to the printer set

by artist.SetPrinter() or artist.QueryPrinter().

Example:

pPArtist.QueryPrinter()

pPArtist.Render(pReport)

Sample Application

In the Aion BRE \examples directory, the Doctor application illustrates Aion

reporting functionality. This small application allows you to view a report about a

patient in several different modes, and to send the report to a printer.

The same canvas instance can be output to each of the four output types: a text

file, an HTML file, a window in the user interface, and a printer. You can view,

run, and debug the sample application to see how the reports in this application

are created and generated.

In addition to the Main entry class, the Doctor application contains two classes:

■ Patient-Contains attributes defining the patient

■ AppWindow-Defines the main application window

The Sample Canvas

328 Product Guide

The AppWindow class contains all the attributes and methods that define the

logic for the application, including:

■ pCan-Attribute holding a pointer to the current canvas instance.

■ CreateCanvas()-Method defining the canvas, that is, the body of the report.

The body of this method is included in The Sample Canvas.

Various event methods associated with buttons on the application window.

Clicking a button causes the canvas to be rendered to one of the four possible

output options, as described in Output Options.

The Sample Canvas

The CreateCanvas() method in the AppWindow class defines the canvas for the

Doctor application by creating a dynamic instance of Canvas and then calling the

Canvas methods introduced earlier in this chapter to define the canvas' layout

and contents:

var can is &Canvas

var p is &Patient

// Initialize the dummy data

p = Patient.Create()

p.Name = "Joe Phoenix"

p.Diagnosis = "This patient has a dislocated Left Pinkie-Toe. Injury was

sustained during horse-play with patients pet crocodile. Please follow

instructions for proper treatment. Prognosis death within 6 months."

p.Instructions = List("Buddy tape",

"Ice for 15 Minutes",

"Stay off feet",

"Follow up with Podiatrist, Pediatrician, Oncologist, Veterinarian, and

Paleontologist in 1 week")

// Create the canvas

can = Canvas.Create()

can.StartPage()

can.SetName("County Medical Center")

can.SetHeader(FMT_DATE,FMT_NAME)

can.SetBackgroundColor("DarkCyan")

can.SetBackgroundImage("GrayBack.jpg")

Output Options

Chapter 12: Aion BRE Reports 329

// Write text and images to the canvas

can.WriteImage("CompanyLogo.jpg","http://www.MyCompany.com")

can.FontBold()

can.WriteCentered("Medical Report for " & p.Name)

can.FontNormal()

can.WriteLine()

can.SkipLine(2)

can.Write("Diagnosis: " & p.Diagnosis)

can.SkipLine()

can.Write("Treatment Instructions: ")

can.WriteList(p.Instructions,FMT_NUMBERED)

can.SkipLine()

// Write a table to the canvas

can.Write("Referrals:")

can.StartTable(List("Doctors Name","Specialty"), List(20,20))

can.WriteRow(List("Dr. Scholl","Podiatrist"))

can.WriteRow(List("Lolly Pop","Pediatrician"))

can.WriteRow(List("Mel Anoma","Oncologist"))

can.WriteRow(List("K. Nine","Veterinarian"))

can.WriteRow(List("Dwight Bones","Paleontologist"))

can.EndTable()

can.SetFooter(NULL,"Page " & FMT_PAGE)

can.EndPage()

p.Delete()

return can

Output Options

By clicking a button on the Doctor application's main window, you can choose to

render the canvas representing the patient's report to a window, a text file, an

HTML file, or a printer. These choices are not mutually exclusive and the same

canvas can be output in different ways in a single application.

Output Options

330 Product Guide

Output the Report to a Window

Click the Report button to output the canvas to the application window's

EditWindow:

The WhenbtnReportChosen event method contains the logic for rendering output

to the EditWindow:

IF pCan = NULL

THEN

 pCan = CreateCanvas()

END

VAR wArt is &WindowArtist

pApp.EditTest.setFont("Comic Sans MS")

pApp.EditTest.setText("")

wArt = WindowArtist.Create()

wArt.SetWindowHandle(pApp.editTest)

wArt.Render(pCan)

wArt.Delete()

Output Options

Chapter 12: Aion BRE Reports 331

Output the Report to a Text File

Click the File button to output the canvas to a text file called Doctor.txt and to

display the resulting text file in the EditWindow. The resulting file looks like this

when displayed in the application window:

The WhenbtnFileChosen event method contains the logic for rendering output to

a text file:

IF pCan = NULL

THEN

 pCan = CreateCanvas()

END

VAR fArt IS &FileArtist

fArt = FileArtist.Create()

fArt.SetFileName("Doctor.txt")

fArt.Render(pCan)

fArt.Delete()

// Display Doctor.txt in the EditWindow

editTest.setFont("Courier New")

editTest.readFile("Doctor.txt")

Output Options

332 Product Guide

Output the Report to an HTML File

Click the HTML button to output the canvas to an HTML file called Doctor.html

and to display the resulting text file in the EditWindow. The resulting file looks

like this when displayed in the application window:

The WhenbtnHTMLChosen event method contains the logic for rendering output

to an HTML file:

IF pCan = NULL

THEN

 pCan = CreateCanvas()

END

VAR hArt IS &HTMLArtist

hArt = HTMLArtist.Create()

hArt.setFileName("Doctor.html")

hArt.render(pCan)

hArt.Delete()

// Display Doctor.html in the EditWindow

pApp.editTest.setFont("Courier New")

pApp.editTest.readFile("Doctor.html")

Output Options

Chapter 12: Aion BRE Reports 333

Send the Report Output to a Printer

Click the Print button to output the canvas to a printer. When the method

executes, print status messages display. The user is prompted to select one of

the available system printers to print the report to.

The WhenbtnPrintChosen event method contains the logic for rendering output

to a printer, prompting the user to specify the printer to use:

IF pCan = NULL

THEN

 pCan = CreateCanvas()

END

VAR pArt IS &PrinterArtist

pApp.editTest.SetText("Initializing...")

pArt = PrinterArtist.Create()

pArt.QueryPrinter()

pApp.editTest.SetText("Printing...")

pArt.render(pCan)

pApp.editTest.SetText("Done.")

pArt.Delete()

Chapter 13: Generate and Use C and C++ Components 335

Chapter 13: Generate and Use C and

C++ Components

This chapter discusses generating Aion BRE components that can invoke or be

invoked by applications written in C or C++.

When you create an Aion BRE application, you have these options:

■ To call a previously written C function from within the Aion BRE application.

■ To create an Aion BRE component as a server that can be called by a C or

C++ client.

Note: You can also generate and use a variety of other interfaces, including

managed C++, Java, and COM. These are documented in the corresponding

chapters of this guide.

This section contains the following topics:

Build an Aion BRE Component with an Interface Layer (see page 335)

Invoke Aion BRE Methods from C/C++ Clients (see page 336)

Invoke C Functions from Aion BRE (see page 339)

Data Type Mappings (see page 341)

Build an Aion BRE Component with an Interface Layer

To enable clients to invoke methods of an Aion BRE-generated component, it is

necessary to specify which Aion BRE classes have their public methods exposed

as an application programmer interface (API). The idea of exposing public

methods of a class or classes as an API is the fundamental principle behind Aion

BRE interface layers. The methods of a class can be exposed as a C, C++,

Managed C++. Java, or COM API. To specify which Aion BRE classes are

exposed, set the Export property for each desired class (using the Export check

box on the Class Properties page). All public instance methods in those classes

will be exposed when the application is built with the selected interface layer.

Invoke Aion BRE Methods from C/C++ Clients

336 Product Guide

To create an API for an Aion BRE component, follow this list:

■ Check the Export Class checkbox on the Properties tab of the Class Editor.

■ Specify the instance methods that you wish to expose as public for an

exported class on the Properties tab of the Method Editor.

■ Select the desired Interface Layer on the Build Directives tab of the Libraries

Property dialog. To open the Build Directive tab:

1. From within the open Aion BRE application, highlight the Libraries node

in the Project Workspace tree.

2. Right-click and choose Properties.

The Library Properties dialog displays.

This dialog is used to (optionally) specify application-specific

information, such as build details and comments.

3. Click the Build Directives tab. In the Interface Layer field, choose C or

C++ from the drop-down list.

Note: All fields on this tab are optional. The remaining fields are discussed in the

“Running and Building Applications” chapter.

You can build the application as usual by choosing the Build item from the File

menu.

More Information

Invoke Aion BRE Methods from C/C++ Clients (see page 336)

Invoke Aion BRE Methods from C/C++ Clients

To enable a C or C++ client to invoke methods of an Aion BRE (server)

component, select the C or C++ Interface Layer of the Build Directives tab of the

Library Properties Dialog.

Build the Aion BRE server by choose the Build item from the File menu. The

compiled Aion BRE application (EXE or DLL) exposes all public methods of

exported classes so that a C or C++ application can access them.

When you generate an Aion BRE application with a C or C++ interface layer, a

header (.h) file is produced. Include this .h file in your C or C++ application to be

able to use the Aion BRE methods that have been exposed. Once you include the

generated header file in your C or C++ program, you can access any of the Aion

BRE methods it references. Because the information contained in the generated

header file differs depending on whether you chose C or C++ for the Interface

Layer, the convention for using exported Aion BRE methods differs depending on

whether you are calling them from a C or C++ program.

Invoke Aion BRE Methods from C/C++ Clients

Chapter 13: Generate and Use C and C++ Components 337

More Information:

Build an Aion BRE Component with an Interface Layer (see page 335)

Use Exported Aion BRE Methods in a C Program

To invoke an Aion BRE component from a C program, include the generated

appname.h file (where appname is the name of the Aion BRE application), and

link with the generated appname.lib file. This section describes how to utilize the

methods defined in the appname.h file to invoke those methods in the Aion

server component.

Note: For special procedures for writing C components that access mainframe

Aion BRE components, see the chapter “Build and Manage Aion BRE

components” in the CA Aion BRE Mainframe User Guide.

Be sure to review the Data Type Mappings section to understand how data types

are transferred between Aion and the invoking C client. The discussion includes

special consideration on handling strings.

Invoke Aion BRE Methods from C/C++ Clients

338 Product Guide

Procedure Overview

For C, follow these general steps to use exported Aion BRE methods.

■ Create a class instance (val_inPtr) by a passing the name of the instance to

class's Create(name) method.

■ Invoke the Aion BRE methods, passing in the pointer to the class instance.

■ When finished, delete the class instance using class_delete().

At compile-time, include the .H file and link with the .LIB file.

Example:

This section demonstrates sample C code for accessing an Aion BRE application

called DogSchool, which has been compiled with a C interface layer, and which

contains the following objects:

Example:

The following statements demonstrate C code that can be written to access the

Aion BRE methods:

/* pass in the pointer to create a class instance */

val_inPtr pBeagle = Beagle_Create(“Snoopy”);

/* pass the class-instance-pointer to the methods */

Beagle Sit (pBeagle);

Beagle Stay (pBeagle, howlong);

Beagle RollOver (pBeagle, howmany, direction);

.

.

/* delete the class instance */

Beagle Delete (pBeagle)

Invoke C Functions from Aion BRE

Chapter 13: Generate and Use C and C++ Components 339

Use Exported Aion BRE Methods in a C++ Program

CA Aion BRE supports class usage in the same way as the C++ language does.

Because of this, Aion BRE classes can be accessed in C++ in the same way that

native C++ files are used.

To use exported Aion BRE methods in a C++ program

1. Include the Aion appname.h header file with your C++ application.

2. Instantiate exposedAion BRE objects using new classnm() (where classnm

is the name of the exported Aion BRE class). The handle is returned as a

pointer pClass.

Aion BRE classes can be used in the same way as traditional C++ classes. Use

new and delete functions to create and delete objects.

Example:

Beagle *pBeagle = new Beagle();

pBeagle -> Sit();

delete pBeagle;

Review the Data Type Mappings section to understand how data types are

transferred between Aion and the invoking C++ client. The discussion includes

special consideration on handling strings.

Invoke C Functions from Aion BRE

From an Aion BRE application, you can also invoke functions written in C. To

invoke an external C function from Aion, you must know the name and location

of the C library file, as well as the name and calling convention for the referenced

C procedure.

Many methods defined in the Aion BRE-supplied libraries happen to be external

methods. They are used to access low-level system functions to control the client

environment. For example, WinLib serves as an interface to the graphical user

interface functions of Windows, while DataLib provides access to the interface

functions of various database drivers.

Before accessing an external C method, it must have already been implemented

in C and linked to a DLL.

Note: Both class and instance methods can be external methods. There are no

specialization constraints. You can specialize a method to be either internal or

external.

Invoke C Functions from Aion BRE

340 Product Guide

How to Create an External Method in Aion BRE

Once the DLL containing the external C implementation is created, use the Aion

BRE Method Editor to define the new Aion BRE method. Unlike an internal

method, you must specify the following information on the Method Properties

page:

■ Check the External Style for the method. This enables the External Method

Definition section on the lower right side of the Properties dialog.

■ Provide the External Method Definition (Convention, Procedure Name, and

Library Name)

– To create an API based the standard calling convention for function

arguments, select Standard Call in the Convention drop-down list.

– To create an API based on the C calling convention (_cdecl), select C in

the Convention dropdown list. The C calling convention is the more

commonly used convention for C functions.

– In the Procedure Name field, type the exact name of the C function. For

example, PrintThis.

Note: Because the name of the function within the DLL is supplied in the

method's Procedure Name property, you can use any name for the Aion

BRE method itself.

Arguments specified as input or output arguments must agree with the

arguments specified in the external implementation in order, data type,

and size. The return value must agree in data type and size with the

return value specified in the external implementation. Use Binary for

complex types.

– In the Library Name field, enter the exact name of the library file housing

the C function. This file is usually a DLL. Specifying the filename

extension is optional.

To ensure that arguments are specified properly, you can view the prototype for

the function. Click Prototype on the External Method Definition group box. The

typical external function prototype for the C calling conventions is:

<return-datatype> _cdecl <proc-name> (<arglist>);

You have now created an Aion BRE method that takes its logic from a

pre-existing C function. At runtime, Aion dynamically loads the function from the

specified .DLL file.

Data Type Mappings

Chapter 13: Generate and Use C and C++ Components 341

Call an External Method (Runtime)

The syntax for calling an external method is the same as that for calling an

internal Aion BRE method.

When an external method is called at runtime, CA Aion BRE transfers control to

the external function, passing along the input and output arguments. If the Aion

BRE application is dynamically linked, the Aion runtime environment

automatically follows these steps to transfer control to the external function:

To call an external method:

1. On first use of the DLL containing the C function, the DLL is loaded

dynamically using LoadLibrary. The DLL location must be specified on the

system library path.

2. Using the module handle for the DLL, the entry point for the function is

resolved by name using GetProcAddr.

3. Values for input arguments and addresses for output arguments are pushed

onto the program stack. The stack is built using the specified calling

conventions for the external method.

4. Control is passed to the function.

The return value and the values of any output arguments are transferred

back to the application after the function completes execution.

Review the Data Type Mappings section to understand how data types are

transferred between Aion and C functions. The discussion includes special

consideration on handling strings.

Note: These actions do not apply for applications that are statically linked or

running interpreted.

Data Type Mappings

When writing an external method or calling a class or instance method, strictly

observe argument conventions. Improperly specified arguments lead to fatal

errors during execution. Because calls to and from an Aion BRE application are

dynamic, no type checking can be performed to verify the correctness of the

argument list or of the return value. Be very careful when defining external

methods, or when using a 3GL to interact with the running application.

Data Type Mappings

342 Product Guide

Input Arguments

Input arguments are passed by value. For example, the Aion integer is a 4-byte

quantity. When passing an input integer argument to a method, use LONG.

Preferably, use the definitions in appname.h to declare your variables. Constant

values can be passed as input arguments (for example, NULL). Be sure to cast

constant values to the appropriate data type when calling back to the running

application.

More Information:

Strings as Input Arguments (see page 345)

Output Arguments

All output arguments are passed by reference (the address of the value).

More Information:

Strings as Output Arguments (see page 346)

Return Values

Return values are passed by value. However, additional work must be done

when returning string values.

More Information:

Strings as Return Values (see page 348)

Mapping Between Aion BRE and C Data Types

The following table shows the mapping between Aion BRE data types and C data

types when defining arguments and return values for external methods and

when passing arguments to internal methods:

Aion BRE element C data type

string LPSTR

out string(n) * LPSTR, UINT

integer LONG

integer(2) * short

Data Type Mappings

Chapter 13: Generate and Use C and C++ Components 343

Aion BRE element C data type

integer(1) * signed char

real double

real(4) float

Boolean BOOL (unsigned int)

date typedef structure {short yr; WORD mon, WORD day}

time LONG (time_t)

list of <data type> void *

pointer to <class> void *

*valid only for external method argument definitions

Aion BRE Strings in C and C++

CA Aion BRE uses a different internal string format from C/C++. The internal

Aion BRE string format is defined by val_Str or str_Ptr, which are defined in

opsys.h. Unless the Aion BRE string is converted to the format of a C string, the

program will see it as different string. The opsys.h file also contains definitions

for the string manipulation functions required to convert an Aion BRE string to

and from a C string as well as other useful string manipulation functions. These

functions begin with the xs_. To use these functions, the C/C++ program must

be linked with the current version of resysRN.lib, where RN is the latest Aion BRE

release number.

The following table summarizes these functions:

Function C

Return

Type

Arguments Purpose

xs_Add VOID str_Ptr *str,

LPTSTR zs

Add a C or C++ string zs to the

end of an Aion BRE string str.

xs_Allocate val_Str val_Int imaxlen Create and return an Aion BRE

string of maximum length and

actual length equal to imaxlen.

xs_Assign VOID LPTSTR zdest,

UINT maxlen,

LPTSTR zs

Copy the source string, zs, to

destination, zdest up to

maximum length of maxlen.

xs_Compare INT LPTSTR z1,

LPTSTR z2

Compare z1 and z2 for

equality. (Case insensitive)

Returns 1 if z1 is greater than

Data Type Mappings

344 Product Guide

Function C

Return

Type

Arguments Purpose

z2, -1 if z1 is smaller than z2,

0 if both strings are equal; and

-2 if one string is NULL and the

other is not.

xs_Concat str_Ptr LPTSTR z1,

LPTSTR z2

Create and return an Aion BRE

string by concatenating strings

z1 and z2.

xs_Dispose VOID str_Ptr *str Dispose of a string.

xs_FixLength BOOL str_Ptr str Find the Aion BRE string's

C-style zero-termination

length. Re-define Aion BRE

string length based on this C

length. Returns True if

successful; false otherwise.

xs_Index LONG LPTSTR zbase,

LPTSTR ztest,

LONG lstart,

BOOL reverse

Return the position of string

ztest as substring within

zbase, starting at position

lstart. Search from the end if

reverse is true.

xs_ItoS val_Str val_Int ival Create and return an Aion BRE

string of length 1 and the first

character having ascii value

equals to ival.

xs_Length LONG LPTSTR zs Return the length of zs.

xs_Make str_Ptr LPTSTR zs Create and return a new Aion

BRE string with the value of a

C or C++ string zs.

xs_New VOID str_Ptr *str,

UINT len

Pre-allocate specified length of

storage for a new, empty Aion

BRE string

xs_NextWord val_Str LPSTR zsrc,

LPTSTR zdel,

LONG *lpos

Create and return an Aion BRE

string from a substring

extracted from zsrc, starting

at position pointed at by lpos,

and include up to the end of

the substring zdel in zsrc after

the start position. Update lpos

to point to a position in zsrc

after the end of substring zdel.

Trim spaces from the Aion BRE

Data Type Mappings

Chapter 13: Generate and Use C and C++ Components 345

Function C

Return

Type

Arguments Purpose

string.

xs_Overwrite VOID LPTSTR zdest,

LPTSTR zs,

LONG lidx

Replace a portion of a string,

zdest, with string zs beginning

in position lidx.

xs_PtoZ LPTSTR str_Ptr str Convert an Aion BRE string to

a C or C++ string. Return the

C or C++ string.

xs_Replace VOID str_Ptr *dest,

LPTSTR za

Replace content of Aion BRE

string dest with content of C or

C++ string zs.

xs_SetMaxLength VOID str_Ptr *str,

UINT len

Set the maximum length for

the storage of an Aion BRE

string. Length of the actual

content of Aion BRE string is

not changed.

xs_StoI val_Int LPTSTR zs Return the ascii value of the

first character of string zs.

xs_Substring str_Ptr LPTSTR zs,

LONG start,

LONG cnt

Create and return an Aion BRE

string by extracting a

substring of length cnt from

string zs, starting at position

start.

Strings as Input Arguments

Unlike other data types, strings are passed by reference, not by value, through

the type LPSTR.

This means that if CA Aion BRE calls an external C function, the C function could

potentially change the input string. This is not recommended as the called

function does not know the size of the allocated string. Strings that will be

changed by the caller should be defined as Output arguments in Aion BRE.

However, there are times when you may need to call C functions whose

signature you cannot change.

Data Type Mappings

346 Product Guide

Example:

The Windows API call, GetUserNameA, has a function in advapi32.dll with a

prototype as follows:

VOID __stdcall GetUserNameA (LPSTR s,LPDWORD s_max);

Where s references the string in CA Aion BRE which will hold the output, filled in

by the DLL, and s_max specifies the length of the string filled in by the DLL.

To generate the appropriate Aion BRE prototype (using the Standard Calling

convention), you must declare the string as an INPUT string and "preallocate"

the string by padding it to a sufficient width before the call. For the length

argument of type LPDWORD, use an Aion output integer.

Create an external method in Aion:

GetUserName(IN s string, OUT maxlen integer)

(with Procedure Name = “GetUserNameA” and Library Name = “advapi32.dll”).

Invoke the method as follows:

var s string

var maxlen integer

//"pre-allocate" space for the "output" string

s = format(" ",NULL,NULL,100)

GetUserName(s,maxlen)

The string s will now contain the user name and maxlen will contain the length of

s that is passed back from the external function call.

Strings as Output Arguments

String output arguments are handled differently depending upon whether Aion

BRE is calling C or being called from C/C++.

For the scenario where Aion BRE is calling C, the address to the character buffer

(LPSTR) is passed in the same way as an input string argument. However,

additionally the maximum size of the string is passed to the external program as

an argument of type unsigned int.

Data Type Mappings

Chapter 13: Generate and Use C and C++ Components 347

Example:

You might have a C function whose prototype is as follows:

VOID _cdecl getMessage (LPTSTR s, UINT smax);

where s is the output string, filled in by the DLL and returned to Aion in the

character buffer provided by Aion, and smax specifies the maximum length of

the character buffer (including the NULL termination character).

To generate the appropriate Aion BRE prototype for this function, create a

method:

getMessage(OUT s string)

Invoke the method as follows:

var s string

getMessage(s)

Note: that the string length is not explicitly specified in the Aion BRE method call,

it is added automatically for output strings and passed as an additional argument

when Aion BRE calls the external function.

Data Type Mappings

348 Product Guide

When a string output argument is specified without a size, it has a size of 1024.

However, this default size may be overridden by specifying a size in parentheses

as part of the argument.

For example, if getMessage were defined this way on the Aion BRE side:

getMessage(OUT s string(30)), the size of the string buffer would be set to 30

and the value of smax passed into the C function would be 30.

For the scenario in which Aion is being called from C or C++, an output string

needs to be defined on the C side as a pointer to a val_Str . The C program

creates a val_Str and passes the pointer to it to the Aion program, which the Aion

program then fills in with the output string.

Assume that you have an Aion BRE method defined such as: getMessage(OUT

o string)

Example:

This is an example of calling it as an Aion BRE method from C:

val_Str v1;

LPSTR s1;

xs_New(&v1,100);

aionStuff->getMessage(&v1);

s1 = xs_PtoZ(v1)

To compile and link the C program, you must include opsys.h and link with

resysRN.lib.

Strings as Return Values

Aion BRE strings are represented in C/C++ using the val_Str construct. When

returning a string to Aion from a called C/C++ function or when returning a

string to C from a called Aion BRE method, you must use one or more of the xs_

functions to do the conversion to a standard C string:

Consider this simple C function called as an external method from Aion BRE.

DllExport val_Str getValue ()

Data Type Mappings

Chapter 13: Generate and Use C and C++ Components 349

The C code should follow the following pattern.

Note: that in the C code, we require the extern "C" statement; otherwise the

C++ compiler will mangle the function prototype.

#include "opsys.h"

#include <stdio.h>

#define DllExport __declspec(dllexport)

#ifdef __cplusplus

extern "C" {

#endif

DllExport val_Str getValue ()

{

char s[100];

sprintf(s, “We are returning a value”);

return xs_Make(s);

}

#ifdef __cplusplus

}

#endif

In this case you use xs_Make() to create an Aion BRE string from a C string.

Similarly, if you want to return a C string from a called Aion BRE method, you

must use xs_PtoZ() to do the conversion as in this snippet of C code:

LPSTR s;

val_Str valStr = hello->getValue();

s = xs_PtoZ (valStr); // convert to null-terminated string

To compile and link this second example, you must include opsys.h and link with

resysRN.lib.

NULL Values

The opsys.h header file contains the definitions that map the internal Aion BRE

representations for NULL values of different data types as follows:

Data type NULL Constant

Boolean NULLBOOL

integer NULLINT

real NULLREAL

All other types NULL

Data Type Mappings

350 Product Guide

Note: Booleans are a special case for Aion BRE. In C, a Boolean is FALSE if it

equals zero, and TRUE if it contains anything else. In Aion BRE, Booleans are

assigned differently. A Boolean is FALSE if it equals 0, TRUE if it equals 1. Aion

Booleans also have null values (NULLBOOL) defined as 2. If you are using

external C or C++ components with Aion BRE applications, keep in mind that a C

Boolean equal to 3, for example, is not understood by CA Aion BRE.

Chapter 14: Generate and Use Managed C++ Components 351

Chapter 14: Generate and Use

Managed C++ Components

CA Aion BRE provides a Managed C++ interface layer as an additional service

that opens the door to the world of .NET.

The Managed C++ interface enables CA Aion BRE components to be called from

client applications written in any .NET compatible language (for example,

Managed C++, C#, and Visual Basic.NET.)

This section contains the following topics:

The Managed C++ Interface Layer (see page 351)

Create an Aion BRE Component with the Managed C++ Interface (see page 355)

Application Programming for .NET: The Basics (see page 357)

The Managed C++ Interface Layer

The Managed C++ interface layer allows programmers to deploy CA Aion BRE

components within the .NET environment. This section describes the basic

structure of the Managed C++ interface layer.

Managed Code

Managed code derives its name from its relationship to the .NET runtime

environment, called the Common Language Runtime (CLR). The CLR is

functionally comparable to the Java Virtual Machine (JVM) runtime environment.

However, unlike the JVM, which supports only the Java language but covers

multiple platforms, the CLR supports a wide range of languages that implement

a published common language standard but is currently available only on

platforms running the Windows operating system. Microsoft or third party

vendors may provide CLRs for other platforms in the future. The CLR provides

management facilities for applications running within this environment. These

facilities include such capabilities as automatic garbage collection, type safety

guarantees, security checking, and execution and just-in-time compilation.

CLR-managed languages must be capable of being represented in Microsoft's

Common Intermediate Language (CIL), which is the language that the CLR

compiles when executing applications written in managed code.

The Managed C++ Interface Layer

352 Product Guide

From the .NET perspective, there are two types of programming languages:

managed and unmanaged. All traditional languages, including traditional C++,

are unmanaged, because they cannot execute under the management facilities

of the CLR. Languages that produce managed code include Microsoft's own C#,

a very Java-like language that's been given a C-like name, and Visual Basic.NET,

a significant recasting of the popular Visual Basic language. There are also

versions of such common languages as COBOL, Eiffel, Fortran, RPG, Smalltalk,

and several version of Pascal as well as a number of less standard languages

(Oberon, Perl, Python) that are .NET compatible.

Important! It is possible for managed code to incorporate unmanaged code.

The unmanaged code must take full responsibility for managing its own

resources (for example, performing its own garbage collection). The Managed

C++ interface layer in CA Aion BRE makes use of the ability of managed code to

call unmanaged code, as will be shown in the section The Structure of Managed

C++ Interface Layer.

What is Managed C++?

Managed C++ is the Microsoft C++ language with newly added keywords and

features (called managed extensions) to support .NET programming.

Managed C++ is essentially C++ code that takes advantage of all the CLR

features. New keywords included within the Managed C++ language include

__gc, which designates that a class should be subject to the automatic garbage

collection facility of the CLR, and __nogc, which excludes a portion of the

Managed C++ code from the automatic garbage collector. Thus it is possible to

mix managed and unmanaged code in C++ programs.

Given the elegance of the C# language, it is doubtful that a programmer would

choose Managed C++ as the first choice for a programming language.

Fortunately, CA Aion BRE generates all necessary Managed C++ code to deploy

a CA Aion BRE component as a DLL that will be executable within the CLR. Once

deployed under the CLR, any .NET language will be able to access that

component.

The Managed C++ Interface Layer

Chapter 14: Generate and Use Managed C++ Components 353

Structure of the Managed C++ Interface Layer

The Managed C++ interface layer of CA Aion BRE rests upon the C++ interface

layer. However, this layer is completely hidden; it is wrapped by a layer of

generated Managed C++ code.

The structure of the Managed C++ interface layer is illustrated in the following

diagram.

Each exported CA Aion BRE class has a C++ counterpart. This C++ class is

embedded in a garbage-collected class in the Managed C++ code, and each

method is wrapped by a Managed C++ method. The Managed C++ interface

generates a .NET proxy object for each exported class in the CA Aion BRE

application. Notice that the code generation also includes data type conversion

from:

■ CA Aion BRE types to C++ (and the reverse)

■ C++ types to .NET (and the reverse)

More Information:

Generate and Use C and C++ Components (see page 335)

Data Conversions and Exception Handling (see page 371)

The Managed C++ Interface Layer

354 Product Guide

Generate the Managed C++ Interface Layer

The major processes of Managed C++ interface generation are

■ Code generation for C++ interface

■ Code generation for Managed C++

■ Compiling and linking the C++ interface code

■ Compiling the Managed C++ interface code and linking it with the C++ dll

and other required software.

Besides the C++ and Managed C++ code that is generated for each CA Aion BRE

application, the Managed C++ interface layer also requires:

■ ResysNN.dll (where “NN” represents the current version of CA Aion BRE).

■ The Net2Aion project. The Net2Aion provides base classes to implement

session safety in the .NET environment. All managed classes will derive from

AionObject as defined in this project.

The generation process is illustrated in the following diagram.

Create an Aion BRE Component with the Managed C++ Interface

Chapter 14: Generate and Use Managed C++ Components 355

The managed code, managed_c0.cpp and managed_<appname>.h, is compiled

with the Common Language Runtime and it generates the <appname>.dll .The

generated dll is a valid .NET assembly. Any .NET language can now include this

assembly and use the classes exported from Aion BRE. It is necessary to include

the net2aion project, provided by CA Aion BRE, within the .NET client application.

More Information:

Application Programming for .NET: The Basics (see page 357)

Set up the Environment

Visual Studio .NET for C++ and the Microsoft .NET Framework 2.0 should be

installed.

Create an Aion BRE Component with the Managed C++

Interface

In this section we will create a simple Aion BRE application that is called from a

Managed C++ client (see the HelloDotNetWorld .app file in the Managed C++

examples that are provided with Aion).

Code an Exported Class

We construct the classes whose public methods will define the interface of the CA

Aion BRE component.

Example of HelloDotNetWorld elements:

■ A class, for example, AionWorld.

■ An attribute, f_message. In the example, this attribute has an initial value of

“Hello DotNet world.”

■ Public get and set accessor methods.

Note: To insure correct construction of the accessor methods it is advisable

to use the Create Accessor wizard from the Create Accessor option on the

Logic menu.

Export the class by checking Export on the Properties tab of the Class editor.

Note: The Export Properties button is not relevant for the Managed C++

interface layer.

Create an Aion BRE Component with the Managed C++ Interface

356 Product Guide

Build the Aion BRE Application

To build the Aion BRE application, select the Managed C++ interface layer from

the Build Directives tab of the Properties dialog of the library. Insure that the

Executable directory on the Directories tab of the Library properties is set to

“..\exe”.

CA Aion BRE automatically copies all the necessary dlls to the executable folder

specified on Directories tab. These files are:

File Source Function

HelloDotNetWorld.dll

(AppName.dll)

Generated The compiled Aion BRE application;

deployable under the CLR

Net2Aion.*; Net2aion.dll Provided DLL containing common behavior for

Managed C++ Aion BRE objects

Log4net.* Provided .NET package for debugging a .NET

client application

resysnn.dll Provided Aion BRE runtime dlls.

When deploying the Managed C++ server application, the location of these dlls

must be in the directory of the server application or in the systems PATH.

Write and Compile the .NET Client

Now create .NET client application, for example, “MyMPCCTest.exe” in the

executable directory.

Note: The client may be written in any .NET language.

The .NET client may consist of a single class that needs to perform primarily

functions for:

■ Creating an instance of the exported Aion BRE application class (AionWorld).

■ Calling an exported method of the class.

In addition to using the appropriate .NET namespaces for the application (for

example System.Windows.Forms), your application must also use the Net2Aion

project and the project for your Aion BRE application (which is generated by the

Managed C++ interface layer).

Note: Although the Net2Aion project is coded in C# and the project of your Aion

BRE application is generated in Managed C++, the powerful feature of the .NET

environment is that it allows the use of such language integration for .NET

compatible languages.

Application Programming for .NET: The Basics

Chapter 14: Generate and Use Managed C++ Components 357

Example:

The following code segment presents a simple example in which C# code invokes

the exposed method of an Aion Managed C++ server:

using Net2Aion;

using HelloDotNetWorld;

...

private void invokeAion() {

//Aion invocation is here:

AionSession aionSession = AionSession.getInstance();

AionWorld aionWorld = new AionWorld(aionSession);

aionWorld. setMessage(“textBox1.Text”);

listBox1.Items.Insert(0, aionWorld. getMessage());

}

(Your actual code may differ from this depending on what you are doing in your

user interface, if any.)

Compile the client application with the appropriate compiler for the selected .NET

language.

More Information:

Application Programming for .NET: The Basics (see page 357)

Deploy a Managed C++ Component

Aion BRE-generated Managed C++ components cannot be deployed in the

Global Assembly Cache (GAC).

Application Programming for .NET: The Basics

The essential lesson to know about calling a CA Aion BRE server from a .NET

client is that the client must obtain a session object of type AionSession in order

to bind the CA Aion BRE objects. Every object has to be created with a reference

to an AionSession object. The AionSession object is the means by which CA Aion

BRE can guarantee thread safety in a multi-threaded environment such as .NET

provides.

AionSession is defined in the Net2Aion project through the parent AionObject

class. Three constructors will be generated for each class that is exported from

the CA Aion BRE application and exposed in the Managed C++ dll:

ExpClassA(Net2Aion::AionSession *session);

ExpClassA (String __gc *objectname, Net2Aion::AionSession *session);

ExpClassA (__int64 AionAppExp, Net2Aion::AionSession *session);

Application Programming for .NET: The Basics

358 Product Guide

These constructors help in creating the managed object in the specified

AionSession. These constructors in turn calls the protected member

CreateAionObject() in the Managed C++ dll, which creates the private Aion BRE

object (this object is represented by the m_pC pointer in the managed_c0.cpp

code, see Structure of the Managed C++ Interface Layer.

Once an AionSession object is obtained, this object is used in the constructor of

the proxy class (AionWorld).

myAionApplication. anAionWorldObject myObject = new

myAionApplication. anAionWorldObject(mySession);

In the preceding code, anAionWorldObject is an exported class from the Aion

BRE application, which is replicated as a proxy class in myAionApplication.

Once an object is created in the .NET client, the exposed methods of the CA Aion

BRE class can be called through that instance.

Example:

anAionWorlObject.setMessage(“Hello Aion world”);

where setMessage() is a public method of anAionWorldObject.

Note: References to non-exported classes in the .NET code causes compile

errors.

More Information:

Thread Management (see page 382)

Structure of the Managed C++ Interface Layer (see page 353)

Support for Output Parameters

The Managed C++ interface layer supports output arguments for the following

basic data types

■ Integer

■ Real

■ Boolean

■ String

Application Programming for .NET: The Basics

Chapter 14: Generate and Use Managed C++ Components 359

An argument of type OUT in an Aion BRE method signifies that it is both an input

and output argument. In the .NET environment such an argument can be

mapped to reference parameters, defined with keyword ref .The ref method

parameter keyword on a method parameter causes a method to refer to the

same variable that was passed into the method. Any changes made to the

parameter in the method will be reflected in that variable when control passes

back to the calling method.

Example:

Consider an Aion BRE method TestIntegerOutputArg with arguments

out out_i is integer

in in_i is integer

Where out_i is an input and output argument and in_i is an input only argument.

This method is implemented in the Managed C++ interface as:

void TestIntegerOutputArg (Int64 __gc *out_i,Int64 in_i);

The method TestIntegerOutputArg can be invoked from C# code as follows:

long output_value = 99;

long integer_input_value = 111;

anAionObject.TestIntegerOutputArg(ref output_value,integer_input_value);

Application Programming for .NET: The Basics

360 Product Guide

Support for Complex Data Types

The Managed C++ interface layer supports passing complex types between the

client and .NET components. Complex data types are types that are defined as

consisting of a collective of other complex or primitive data types. For example,

a Person may be a complex data type consisting of a number of primitive data

types of strings and integers (for Name and Age respectively) and complex data

types (such as Address, which may consist of separate strings for Street, City,

State, and more). In traditional object-oriented programming, complex data

types are supported by defining the type as a class. To support complex data

types under the Managed C++ interface layer, construct the class defining the

complex in the following manner:

■ Define public methods of class that will serve as the exported class for the

web services in terms of pointers to other classes that define your complex

data types, for example, processInfo(&InputData) : &Info, where

“InputData” is a complex data type (class) describing input to the

processInfo method and “Info” is a complex data type (class) describing the

information returned by the method.

■ Insure that the classes defining complex data types are exported.

■ Define public accessor methods on each class defining a complex data type.

The accessor methods may involve either primitive data types or further

complex data types (that is, pointers to further classes defining complex

data types).

Object Management Under .NET

This section discusses object management from the perspective of writing the

.NET client that accesses the Managed C++ component generated from a CA

Aion BRE server.

Application Programming for .NET: The Basics

Chapter 14: Generate and Use Managed C++ Components 361

For examples, when a client creates a .NET object, a C++ object is created in the

background and that in turn creates an Aion BRE object.

CA Aion BRE programmers are accustomed to using a class's delete() method to

clear instances in Aion after they are no longer needed. The CLR favors

automatic garbage collection. When the .NET object is garbage collected the

destructor of the Aion C++ wrapper object will be called.

There are situations in which it will be desirable for the .NET client program to

delete instances of its proxy classes. For example,

■ The instance of the proxy class is created and the Aion BRE object is created

behind the scenes. Responsibility for object management in this case falls

upon the .NET programmer. The .NET programmer must delete the proxy

instance, which should delete its associated object in Managed C++. C++,

and CA Aion BRE server.

■ Aion BRE internally creates an instance of an exported class (for example,

through class containment), and a bit latter the .NET application asks for all

instances of that class. Aion BRE returns handles to the generated .NET

instances and the proxy class is instantiated on the fly (lazy instantiation).

The .NET environment can make inquiries of the newly created instances of

the proxy class. The question is now, Who is responsible for the Aion BRE

created instance? Aion BRE does not know that the outside world created a

reference to the instance. The .NET application does not know if Aion BRE

would like to keep the object. In this case, it is possible for .NET client to

delete the instance without deleting the associated Aion BRE instance.

In general, the philosophy should be that the creator of the object has the

responsibility of deleting it:

Object Creator Responsibility for Object Management

Aion BRE creates object Aion BRE deletes object

.NET creates object .NET deletes object

Aion BRE proxy is created

dynamically

.NET object can be deleted; however the

associated Aion BRE object will not be deleted.

Note: The attempt to reference an instance of a proxy class for which the

associated object in Aion BRE has been deleted will result in the .NET

environment throwing an unhandled Exception with the following message:

System.NullReferenceException: Object reference not set to an

instance of an object.

Application Programming for .NET: The Basics

362 Product Guide

Data Type Conversion

The Managed C++ interface layer supports the following conversion from.NET

data types to Aion BRE data types.

Aion BRE Data Type .NET Data Type

Boolean System.Boolean

Integer System.Int64

Real System.Double

String System.String

(an instance of) <ExportedClass>* (an instance of) <ExportedClass>

Date Not Supported

Time Not Supported

List of Boolean System.Boolean[]

List of Integer System.Int64[]

List of Real System.Double[]

List of String System.String[]

List of (instances of) <ExportedClass> <ExportedClass>[] (instances in)

* Name of the exported class.

Chapter 15: Generate and Use Java Components 363

Chapter 15: Generate and Use Java

Components

CA Aion BRE provides a Java interface layer as an additional service that opens

the door to the world of Java programming (for example, XML and web-enabled

Aion BRE rule-based processing). The Java interface layer can be selected from

the Interface Layer drop-down box on the Build Directives tab of the Library

Properties dialog. The Java interface layer permits an Aion BRE compiled

knowledge base (DLL) to be called from Java.

The CA Aion BRE solution to web-enablement is web-server independent and

follows mainstream standards.

More Information:

Aion BRE Deployment on the Web (see page 376)

This section contains the following topics:

The Java Interface Layer (see page 363)

Create an Aion BRE component Using the Java Interface (see page 366)

The Basics of Java Application Programming (see page 369)

Aion BRE Deployment on the Web (see page 376)

Thread Management (see page 382)

Additional Information (see page 385)

The Java Interface Layer

The Java interface layer allows Aion BRE programmers to export classes and

their public methods for use by a Java application or servlet. This section

describes the basic structure of the Java interface layer and the way in which a

Java application must be programmed in order to call an Aion BRE component.

Note: CA Aion BRE currently supports only a Java-calling-Aion-BRE.

The Java Interface Layer

364 Product Guide

Elements in the Java Interface Layer

CA Aion BRE builds the Java interface layer from exported Aion BRE classes.

During the build process, CA Aion BRE generates the Java code for the Java

classes that correspond to the Aion BRE exported classes. These Java classes,

which are derived from an Aion-provided Java class called AionObject, act as

proxies for the Aion BRE exported classes. The Aion build process will also

generate a C-based dll that maps the proxy objects in the Java code to the

exported Aion BRE classes and converts data values between Java types and

Aion BRE types. This C-based dll uses the Native Java Interface (JNI).

Thus, the principal elements in the Java interface layer are:

■ The Aion BRE knowledge base component: <nameaionapp>.dll

■ The C/JNI library: <nameaionapp>jni.dll.

■ The Java definitions of the proxy classes: <nameaionapp>.jar

The Java Interface Layer

Chapter 15: Generate and Use Java Components 365

The following diagram depicts the structure of the Java interface layer. Aion BRE

generates the boxes designated as C code as well as the ca.aion.j2aion.* and

ca.aion.<nameaionapp>.* packages.

The <nameaionapp>jni.dll (compiled C code) directly calls the Aion C-Code (dll)

through a C-interface.

The aionsession.jar file is provided in the Aion BRE \Build\rejava folder. It

contains two standard Java packages, ca.aion.j2aion and

ca.aion.j2aion.httpsession, that provide concurrent thread-safe access to the

Aion BRE component.

Other Java utilities provided in the Aion BRE \Build\rejava folder include the

log4j package (see preceding diagram). This package contains logging facilities

that are helpful in debugging the Java client application, and it is required when

running the Java client application.

For more details on how the Java client application can be written, see Java

Application Programming: The Basics and Java Servlet Programming

Considerations.

Create an Aion BRE component Using the Java Interface

366 Product Guide

Set Up the Environment

In the File Settings dialog, the Java Home Directory should point to the Java

Development Kit (JDK).

The Java Virtual Machine (JVM) only loads native libraries from the library path.

This library path is OS-specific. For Windows, the library path is added to the

PATH environment variable.

Example:

C:\Program Files\CA\AionBRE\userlibs

Create an Aion BRE component Using the Java Interface

In this section we will create a simple Aion BRE application that is called from a

Java client (see the HelloJavaWorld .app file in the

examples/java/hellojavaworld folder provided with CA Aion BRE).

Create an Aion BRE component Using the Java Interface

Chapter 15: Generate and Use Java Components 367

Code an Exported Class

We construct the classes whose public methods will define the interface of the

Aion BRE component. The HelloJavaWorld example consists of the following

elements:

■ A class, for example, AionWorld.

Note: In order to generate valid public class names in Java, the name of

every interface class in Aion must begin with an upper case.

■ An attribute, f_message. In the example, this attribute has an initial value of

“Hello java world.”

■ Public get and set accessor methods.

Note: To insure correct construction of the accessor methods it is advisable

to use the Create Accessor wizard from the Create Accessor option on the

Logic menu.

Export the class by checking Export on the Properties tab of the Class editor.

Note: The Export Properties button is not relevant for the Java interface layer.

Build the Aion BRE Application

To build the Aion BRE application, select the Java interface layer from the Build

Directives tab of the Properties dialog of the library. If we have the “.” included

on the load library path, the java application loads the native libraries from the

current folder. When we define an Executable directory on the Directories tab of

the Library properties, CA Aion BRE copies all the required files to this folder. For

this example, set the Excutable directory to “..\exe”. We will run the java

application from this location.

Note: The Aion BRE application has to be compiled on the same type of platform

as it will be executed.

File Source Function

aionsession.jar Provided Common behavior required by the

Java client application

hellojavaworld.dll

(appname.dll)

Generated The compiled <aion? application

hellojavaworld.jar

(appname.jar)

Generated Java file containing the proxy classes

for the Aion BRE exported classes

hellojavaworldjni.dll

(appnamejni.dll)

Generated Compiled C wrapper of the Aion BRE

component; handles interface calls

between Java client and Aion server

Create an Aion BRE component Using the Java Interface

368 Product Guide

File Source Function

log4j*.jar Provided by

Apache

Java package for debugging the Java

application

rejunn.dll; relsysnn.dll;

resysnn.dll; reutilnn.dll

Provided Aion BRE runtime dlls.

When deploying the Aion BRE server, the location of these dlls must be on the

system's PATH variable.

More Information:

The Basics of Java Application Programming (see page 369)

Write and Compile the Java Client

Now create the Java application, for example, “MyJavaTest.java” in the

executable directory. The Java client may consist of a single class whose

main() method needs to perform primarily functions:

■ Creating an instance of the exported Aion BRE application class (AionWorld).

■ Calling an exported method of the class through the proper accessor

method.

Note: For readability it is recommended that the Java client application imports

the aionsession.jar and <nameaionapp>.jar files into the Java source

application:

A simple Java client application can consist of the following code:

//importing the necessary classes makes the code more readable

import ca.aion.j2aion.AionSession;

import ca.aion.hellojavaworld.AionWorld;

public class MyJavaTest {

public static void main(String[] args){

//sent a message to the default output console.

System.out.println("Starting java application");

//If the ca.aion.j2aion.Aionsession and ca.aion.hellojavaworld packages are

// are not explicitly imported, it is necessary to reference them in the

// following statements.

//Create an instance in the AionWorld class.

AionWorld anAionWorldObject = new AionWorld(AionSession.getInstance());

System.out.println(anAionWorldObject.getMessage());

}

}

The Basics of Java Application Programming

Chapter 15: Generate and Use Java Components 369

To compile the Java application, include the proper classpath in the compile:

javac -classpath .;aionsession.jar;hellojavaworld.jar MyJavaTest.java

where hellojavaworld.jar is the name of the jar file of your application

(containing the proxy classes), and MyJavaTest is the name of the Java class to

be compiled.

Note: If the Java application does not compile, ensure that the following

conditions are true in your environment:

■ javac and javah are present on the system path.

■ the .java extension is specified on the name of the Java class to be compiled.

■ appropriate Java case sensitivity is observed.

Test the Java Interface

Test the Java client through the following command prompt:

java -cp .;aionsession.jar;log4j-*.jar;hellojavaworld.jar MyJavaTest

where MyJavaTest is the name of the compiled Java class.

Note: The log4j package is required when running the Java application.

Running the HelloJavaWorld example should yield the following output written to

the DOS prompt

Starting java application

Hello java world

The Basics of Java Application Programming

By including the generated <nameaionapp>.jar file in your Java program, you

can access the exposed methods of the Aion BRE exported classes. However,

there are programming considerations that must be implemented in the Java

program to call an Aion knowledge base.

The essential lesson to know about calling an Aion server from a Java program is

that the Java application must obtain a session object of type AionSession in

order to bind the Aion BRE objects. Every Aion BRE object has to be created with

a reference to an AionSession object.

The Basics of Java Application Programming

370 Product Guide

The aionsession.jar file provides the means by which to create an AionSession

under different environments. For standalone testing the Java programmer can

create a simple AionSession object. (See the section Aion Deployment on the

Web for steps in creating an AionSession under a web.) The following Java code

is typical for how an AionSession can be created in a standalone Java application.

ca.aion.j2aion.AionSession myDefinedSession =

ca.aion.j2aion.AionSession.getInstance();

Once an AionSession object is obtained, this object is used in the constructor of

the proxy class (AionWorld).

ca.aion.hellojavaworld.AionWorld anAionWorldObject = new

ca.aion.hellojavaworld.AionWorld(myDefinedSession);

In the preceding code, AionWorld is an exported class from the Aion BRE

application, which is replicated as a proxy class in the hellojavaworld.jar file.

Once an object is created in the Java program, the exposed methods of the Aion

BRE class can be called through that instance.

Example:

anAionWorlObject.setMessage(“Hello Aion world”);

where setMessage() is a public method of anAionWorldObject.

Note: References to non-exported classes in the Java code will cause compile

errors.

More Information:

Aion BRE Deployment on the Web (see page 376)

Java Objects

The AionSession class provides the following functionality:

Type Method Explanation

AionSession getInstance() Factory method; returns a new

AionSession based on the calling

thread

AionSession getInstance(java.lang.O

bject sessionIdentifier)

Overloaded Factory method;

returns a new AionSession for a

sessionIdentifier. The method can

be used to create multi-threaded

applications by bind-ing the

The Basics of Java Application Programming

Chapter 15: Generate and Use Java Components 371

Type Method Explanation

AionSession to a thread Group. A

socket client can also serve as a

sessionIdentifer.

double getVersionNumber() Show the version number of the

AionSession package

void terminate() Terminate an AionSession and force

Aion to remove all allocated memory

for a particular session

The AionObject provides the following methods:

Type Method Explanation

void delete() Delete the AionObject from the

AionSession and, if appropriate, delete the

associated Object in Aion, see Java Object

Management.

More Information:

Java Object Management (see page 373)

Data Conversions and Exception Handling

The Java Interface Layer supports the following conversion from Aion BRE data

types to Java data types.

Aion BRE Data Type Java Data Type

Boolean boolean

Integer int

Real double

String String

(an instance of) <ExportedClass>* (an instance of) <ExportedClass>

Date Java Calendar

Time Java Calendar

List of String String[]

List of integer int[]

The Basics of Java Application Programming

372 Product Guide

Aion BRE Data Type Java Data Type

List of real double[]

List of date Calendar[]

List of time Calendar[]

List of Boolean boolean[]

List of (instances of) <ExportedClass> (instances in)<ExportedClass>[]

* Name of the exported class.

Exceptions are thrown by the Aion program during data conversion for Unknown

and Null values, or when a constant violation occurs. These exceptions are

subclasses of AionException, which is provided in the ca.aion.j2aion package.

■ When an Aion attribute is unknown, an AttributeUnknownException is

thrown.

■ When an Aion attribute is Null, an AttributeNullException is thrown.

■ When an assignment violates a constraint, an AttributeConstaintException is

thrown.

You can catch these exceptions in the Java programming with standard

exception handling:

try{

myObject.getAttribute();

} catch (AttributeUnknownException aue) {

// the Attribute is unknown in Aion.

}

The Basics of Java Application Programming

Chapter 15: Generate and Use Java Components 373

Java Object Management

Aion BRE programmers are accustomed to using a class's delete() method to

clear instances in Aion after they are no longer needed. Java favors automatic

garbage collection, and therefore does not provide a corresponding method.

However, the Java garbage collector will not remove objects outside its Java

Virtual Machine (JVM). Moreover, there are situations in which it will be desirable

for the Java program to delete instances of its proxy classes. For example,

■ The instance of the proxy class is created and the Aion BRE object is created

behind the scenes. Responsibility for object management in this case falls

upon the Java programmer. The Java programmer must delete the proxy

instance, which should delete its associated object in Aion.

■ Aion internally creates an instance of an exported class (for example,

through class containment), and a bit latter the Java application asks for all

instances of that class. Aion returns handles to the generated Java instances

and the proxy class is instantiated on the fly (lazy instantiation). The Java

environment can make inquiries of the newly created instances of the proxy

class. The question is now, Who is responsible for the Aion created instance?

Aion does not know that the outside world created a reference to the

instance. The Java application does not know if Aion would like to keep the

object. In this case, it is possible for Java to delete the instance without

deleting the associated Aion instance.

In general, the philosophy should be that the creator of the object has the

responsibility of deleting it:

Object Creator Responsibility for Object Management

Aion creates object Aion deletes object

Java creates object Java deletes object

Aion proxy is created

dynamically

Java object can be deleted; however the

associated Aion BRE object will not be deleted.

Note: The attempt to reference an instance of a proxy class for which the

associated object in Aion has been deleted will throw a NullPointerException in

Java.

The Basics of Java Application Programming

374 Product Guide

Supports Backward Chaining

A typical model for using inferencing systems is based on the traditional

paradigm of “backward chaining”: the application returns to the system user to

obtain specific information on an as-needed basis. This model helps to focus the

application in obtaining just that data that is required from the user. In

standalone Aion BRE applications, this model can be directly supported by

invoking backward chaining as an inferencing strategy and raising a query to the

user when an unknown attribute is encountered during chaining. However,

support for this model involves more complex issues when the Aion BRE

application is accessed through a client application. With other interface layers,

for example, the C interface layer, the Aion BRE application has to terminate

backward chaining, keep the state of objects' attribute values and reinitiate the

backward chain when new information is provided.

The Java interface layer allows the Aion BRE application to keep the state of the

inference engine itself when returning to the user. Thus, the backward chain can

resume for the point at which it was interrupted when processing returns from

user. However, special programming considerations must be initiated on both

the Aion and Java program sides in order to support backward chaining. This

section highlights the basic principles for this support.

Note: The basic principles for supporting backward chaining in a client/server

environment can be implemented with different techniques. The strategy

illustrated here rests on the fact that Aion will throw an

AttributeUnknownException in the calling Java client when it has failed to find a

value for the goal.

The Basics of Java Application Programming

Chapter 15: Generate and Use Java Components 375

Supporting backward chaining will typically involve the following principles:

■ The Java client must call a public method on an Aion BRE application class

that pursues the goal through backward chaining. This method must return

an indication that the goal has been achieved or that additional information

is needed by the Aion BRE application. Invoking this should be performed

within a loop that exists only when the goal has been achieved.

Note: In a Java client that employs the strategy of detecting an

AttributeUnknownException, invocation of the inferencing must be

performed within the context of a try/catch block.

Example:

Where evaluatePricingTier() is an Aion method of the Java proxy f_evaluator

that pursues and returns a goal:

for (;;) {

try {

 l_pricingTier = f_evaluator.evaluatePricingTier();

 // no more unknown exceptions. Value is known.

 break;

 } catch (AttributeUnknownException aue) {

 askUserQuestion();

 }

}

...

}

Note: The unknown attribute on the Java side is the goal of backward chain,

l_pricingTier, not the particular attribute that is discovered to be unknown on

the Aion side (see the following third principle).

■ The Aion BRE application must employ the InferBegin()/InferEnd()

construction in order to preserve the state of the inference method

throughout the process. The InferBegin() may be invoked in a

begin-processing method that merely posts the rules and which is invoked

only once by the Java client prior to its pursuing the goal in the inferencing

loop (see previous principle). The InferEnd() is called when the Aion BRE

application detects that the goal has been achieved.

■ The Aion BRE application must also have a way recording the attribute that

the inference engine discovers is unknown and for making this information

available to the Java client. The Aion BRE application must support a method

that the Java client can call to pass back to the Java client information about

the attribute to be queried (such as the format of questions and, if relevant,

constraints on the response). The Aion BRE application must finally support

another method that receives the user's response back from the Java client,

populates the appropriate object's attribute (based on the saved

attributepointer), and resumes inferencing.

Note: These requirements are typically accomplished by using the Aion

attributepointer type and other meta-programming capabilities.

Aion BRE Deployment on the Web

376 Product Guide

Aion BRE Deployment on the Web

A value of Java Interface Layer is that permits Aion BRE rule servers to be

deployed on the web and accessed by Java clients running in a multi-threaded

environment. This section will address specific issues related to web deployment.

Roles and Responsibilities

A web development project can be expected to involve several distinct

programming roles requiring much different skills: the web designer, the Aion

programmer, and the Java (servlet) programmer. For example, the web

designer need not know anything about knowledge base system construction.

Similarly, it is not expected that the Aion programmer will necessarily be an

expert on Java servlet programming. The Aion programmer just needs to publish

the interface of the Aion BRE application. It is the Java servlet programmer who

knows how to write the controller application (servlet) that invokes the Aion BRE

application.

The following table summaries the responsibilities and typical tools of the

required roles.

Role Responsibilities Tools

Java

programmer

Procedural logic, test, interacting with

the Internet, thread architecture and

session management, database

connectivity.

JDK, Swing (for GUI),

JDBC

Graphical User

Interface

designer

Presentation on the Web, usability,

documentation, training

FrontPage, Adobe,

DreamWeaver, JSP,

cognitive psychology

Knowledge

Engineer

Knowledge acquisition, analysis and

codification of business logic,

understanding inferencing,

object-oriented analysis and design.

Interviewing and

ethnographic analysis,

logic representations,

Aion

Domain

Expert

Defining vocabulary of the domain,

articulating the business logic.

Dynamic Rule

Manager

Deployment

Engineer

Manage the Web environment Weblogic or

WebSphere

Aion BRE Deployment on the Web

Chapter 15: Generate and Use Java Components 377

Note: This separation of roles is consistent with the basic philosophy of

component-based development, namely that each component should only be

required to know how to do tasks in its area of responsibility (the principle of

encapsulation of responsibility). The J2EE architecture is found upon this

principle as well; for example, JavaServerPages (JSP) were developed for

graphic user interface designers so that they did not have to know Servlet

programming to develop GUIs.

Servlet Technology

The recommended architecture for invoking an Aion server within a web

environment is known as Model 2 Model-View-Controller pattern, a form of the

classic Model-View-Controller (MVC) pattern. This model is the recommended

best practice by SUN. Simpler models are possible, for example, having a single

Servlet or Java Server Page (JSP) to handle requests and to generate the HTML

page. This model is suitable for simple applications but is not desirable for large

applications in which we would expect Aion BRE to be used.

Having Aion generate an HTML page is not recommended for both performance

reasons and design reasons. We do not recommend that a business model

contain view-specific code.

(Source:

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.ht

ml#JSPIntro4)

Aion BRE Deployment on the Web

378 Product Guide

In this model, processing is clearly divided between presentation and front

components. The latter alone handles all HTTP requests. These front

components are responsible for creating beans used by the presentation

components. One advantage of this model is that the front components provide

a single point of entry into the application, thus making the management of

application state, security, and presentation uniform and easier to maintain.

For more information about Model 2, visit:

http://java.sun.com/developer/onlineTraining/JSPIntro/

The corresponding structure for invoking an Aion BRE application is a variation

on this structure:

Aion BRE Deployment on the Web

Chapter 15: Generate and Use Java Components 379

Aion Session Initiation and Object Creation

Under this model, the Servlet (Controller) creates an AionSession using a

sessionIdentifier. For the web, an httpSession serves as just such a

sessionIdentifier. The Java programmer, when working within a J2EE

environment, can use the getInstance() method of AionHttpSession to obtain an

AionSession instance.

Example:

AionSession myDefinedSession = AionHttpSession.getInstance(httpSession)

Note: When working with a J2EE environment, the Java programmer should not

use AionSession.getInstance().

Note: A powerful feature of the Aion solution is that it can accommodate

different kinds of sessions. Aion can be bound to a socket, to a thread group, to

an http session (servlets managed by a web server as described in this section),

or to an XML SAX parser.

The Servlet must create instances of the proxy classes using this session object.

MyClass myClass = new MyClass(myDefinedSession);

As a convenience, these instances can be created by invoking the Instantiate()

method of the AionBean class. Once a proxy instance is created, the public

methods of the corresponding class in Aion are accessible to the Servlet.

More Information:

Create Aion BRE Objects for the Web (see page 380)

Aion Session Termination

The ca.aion.j2aion.httpaionsession package is written to be compliant with the

Servlet 2.2 API, which is part of the J2EE framework. If this API is available, the

AionSession is automatically terminated when the Java program ceases

execution or when there is an abnormal failure.

If this Servlet API is not available, the Java developer must explicitly call the

terminate() method on the session object regardless of whether the session

terminates normally or abnornally. When the session terminates, the final

statement must be

myDefinedSession.terminate()

Aion BRE Deployment on the Web

380 Product Guide

Java Servlet Programming Considerations

The following sections describe considerations that the Java programmer should

be aware when calling an Aion knowledge base with the web environment.

Create Aion BRE Objects for the Web

Remember that an Aion BRE object can only be created based upon an

AionSession. The ca.aion.j2aion.httpsession package provides alternative

means of creating AionSessions and proxy objects besides that provided by the

ca.aionj2aion package (see Java Application Programming: The Basics). The

mechanisms provided by this package can be used to create AionSessions under

a web environment.

The ca.aion.j2aion.httpsession package provides the AionHttpSession class.

AionHttpSession is derived from the AionSession class.

■ Invoke AionHttpSession.getInstance(javax.servlet.http.HttpSession

sessionIdentifier)

Use the AionBeans Class

The ca.aion.j2aion.httpsession package also makes available the class

AionBeans , which is used for accessing Aion BRE objects as Java beans. Beans

can be created through one of the overloaded instantiate() methods:

Type Method Explanation

AionObject instantiate(java.lang.ClassLoader cls,

AionSession aionSession,

java.lang.String className,

java.lang.String beanName

Create an aionObject as

a bean in the specified

session

AionObject instantiate(java.lang.Classloader cls,

javax.servlet.http.HttpSession

httpSession, java.lang.String

beanName

Convenient way to create

an aionSession based on

the httpSession and

instantiate an object

within that session

Creating an AionSession by using the AionBeans.instantiate() method is done in

the following code:

anAionObject = AionBeans.instantiate(null, httpSession,

AnAionSession.AionWorld.getName(), aionSessionObjectName);

Note: A Servlet has specific properties that enable it to terminate an

AionSession automatically when an httpSession is invalidated. When an

httpSession terminates, the aionSession.terminate() method will be

automatically called for cleaning up any remaining Aion instances.

Aion BRE Deployment on the Web

Chapter 15: Generate and Use Java Components 381

The AionBeans class also provides the following helper method to call Aion

accessors:

Type Method Explanation

void setProperties(java.lang.Object bean,

javax.servlet.httpServletRequest

request) throws

javax.servlet.ServletException

Maps http parameters

directly to the Aion set

accessors

This utility makes use of bean introspection to execute the accessor method on

object. Based on its the input parameter, the method determines whether the

object has an appropriate accessor method, and if so, calls the accessor to set

the value of an attribute of the object. For example, an http parameter

http://server/yourServlet?age=22 may be retrieved when a form having an

input field named “age” is submitted to a Servlet. Passing this parameter to the

setProperties() method causes the Aion method setAge(22) to be invoked if a

setAge() accessor is present on the object.

It is assumed that every property has a set accessor at the bean. If the set

accessor is missing on the bean, nothing is set. The supported types in this

helper method are:

■ Java boolean mapped to Aion boolean

■ Java int mapped to Aion integer

■ Java double mapped to Aion real

■ Java String mapped to Aion string.

Note: Because introspection introduces additional overhead, you might want to

program the set accessor directly.

For performance reasons, it is also recommended to pass a date value from a

form by three integers day_int, month_int and year_int and let Aion create the

datetype based on these parameters: myDate.setDate(day_int, month_int,

year_int), instead of creating the Java Calendar object and passing the calendar

object into Aion. Similar considerations apply to setting Time.

Complex types like addresses, for example setAddress(newAddress), must be

programmed with form helper classes.

Java Server Page (JSP) Programming

In the MVC architecture, the Servlet is responsible for creating objects and for

directing the next JSP page. Using a hidden value on a form, the JSP programmer

can specify the name of the Aion BRE object.

Thread Management

382 Product Guide

Exempt of the create_myaionworld.jsp:

<form method="POST" action="../controllerservlet">

<input name="anAionWorldName" value="myAionWorld" type="hidden">

<input type="submit" value="Create Session" name="action">

</form>

Example of the corresponding Servlet code:

AionWorld aionWorld = null;

String aionWorldName = request.getParameter("anAionWorldName");

String action = (String) request.getParameter("action");

if (action.equalsIgnoreCase("create session")) {

session = request.getSession(true);

aionWorld = (AionWorld) AionSessionBean.instantiate(null,

httpSession, AionWorld.class.getName(), aionWorldName);

session.setAttribute(aionWorldName, aionWorld);

forwardJSP(request, response, "edit_aionworld.jsp");

Other JSP pages can refer to the Aion BRE object by using the jsp:useBean

construction:

<!-- retrieve the Aion BRE object with the name handle as specified in

the hidden field on page create_myaionworld.jsp -->

<jsp:useBean id="myAionWorld" class="ca.aion.myaionapp.AionWorld"

scope="session" />

An attribute value of the Aion BRE object can be shown by:

<jsp:getProperty name="myAionWorld" property="message" />

Thread Management

Deploying an Aion server on the web raises questions about thread management

and safety. This section will draw upon the discussion in the preceding section to

present a more detailed answer to these issues (see Servlet Technology).

Note: The following discussion focuses on user-level (application) threads rather

than kernel-level (operating system) threads.

Thread Management

Chapter 15: Generate and Use Java Components 383

General Definitions

A thread is a sequence of instructions, executed within the context of a process,

that services one individual user or a particular service request. A thread allows

a program to know which user is being served as the program gets re-entered by

different users. Threads are “managed” by the environment (for example, by

MTS) or by the application (Java). There are several general approaches to

thread management.

Single-threading

The ability of a program to process a single thread for a single user at a time.

Other threads needing access to the resources of the program must wait

their turn until the executing thread has completed. For example, the

inference engine in Aion is single-threaded. It does not permit multiple users

performing different inferences over the same set of objects.

Multi-threading

The ability of a program to maintain multiple threads of control through the

same code without incurring interference of the threads with each other.

Some programming languages, such a Java, support multithreading with a

special programming mechanism called synchronization. Synchronization

allows one thread to place a lock on an object during code execution. In Java

threads are synchronized to objects that implement the Synchronize

interface. A requirement of a synchronization scheme allows a thread to

recognize its own lock if the thread has to be reentered.

Thread safety

 Preventing unwanted interaction between threads, such as accessing each

other's data.

While Aion is thread safe, the Aion language does not support multithreading.

However, this fact does not prevent Aion servers from functioning efficiently and

safely in a multi-threaded environment-see Support for Concurrency and

Session Safety.

Thread Management

384 Product Guide

Support for Concurrency and Session Safety

For deployment on the web, Aion servers must be usable with a multi-threaded

Java environment. To accomplish this, Aion supports session safety and

concurrency.

Note: CA Aion BRE's solution is to synchronize on the aionSession object.

Recall that invoking an Aion knowledge base from a Java application requires

that the Java application create a session, called an AionSession object. When

deploying an Aion knowledge base on the web, an aionSession must be created

based on an object within the environment, for example, an Http session. By

synchronizing on this object, this architecture supports safe, concurrent

execution within a multithreaded environment.

This is a standard architecture, under which it is up to the developer to determine

how the code is to be locked. By default the AionSession.getInstance() will

create an aionSession based on the current thread. If 1000 threads are created,

there will be 1000 aionSessions and these aionSessions can be called

concurrently.

(By analogy, consider the hashtable. A hashtable is an object in Java for which

only one thread can mutate the hashtable at a given time. The hashtable

operations are synchronized and are thread safe. The same holds true for Aion:

only one thread can effect an aionObject at one given time. An Aion session is

synchronized on the aionSession object.)

Because the synchronized AionSession object is a parameter in the creation of

proxy class instances, every Java method is wrapped in a synchronized code

block. This strategy disallows multiple threads from accessing the same Aion

session at the same time. Multiple Aion BRE sessions can be accessed

concurrently within a multithreading environment.

Each Aion session has its own symbol table, or set of objects that it uses. The

symbol table represents the data used within that particular server instance. The

processing logic is shared amongst the instances. Thus, a second thread could

run, using its particular symbol table, while another is executing.

Note: Creating an Aion session using an http session that already supports an

aionSession returns the same aionSession. In general creating an AionSession

based on the same sessionIdentifier will return the same aionSession. This

strategy allows a thread to reenter its own session without being prohibited by its

own lock.

Additional Information

Chapter 15: Generate and Use Java Components 385

Resource Load Issues

How is the Aion BRE application loaded at runtime and what resources does it use

in a multithreaded environment?

The Aion executable, the .dll, represents the code space. The .dll is only loaded

once per process (not per thread) by the operating system. Additional memory is

required only for each additional aionSession. This memory of course, is used to

allocate dynamic data such as symbol tables, object instances, class variables,

and constants. The aionSession acts as a separate instance of the JVM. All of the

threads simply point to the executable code space (from within their respective

symbol table). Thus, many instances can be spawned from the single instance of

the executable.

Additional Information

This section provides sources for more information about Java and Java Servlet

technology. An excellent general source of information about Java, where you

can get white papers and links to other sites that cover technical discussions and

training material, is http://www.jguru.com

The following sites address specific topics:

■ For basic information on using Java (for example, how to compile Java code),

visit:

http://java.sun.com/products/servlet/index.jsp

■ To get started with servlet technology, visit:

http://java.sun.com/products/servlet/index.html

http://developer.java.sun.com/developer/onlineTraining/Servlets/Fundam

entals/index.html

■ To learn more about the Servlet+JSP engine, Tomcat, visit:

http://jakarta.apache.org/tomcat/index.html

■ To learn more about using the log4j package to debug your Java

applications, visit:

http://jakarta.apache.org/log4j/docs/index.html

Chapter 16: Generate and Use COM Components 387

Chapter 16: Generate and Use COM

Components

This chapter discusses how you can use CA Aion BRE to generate Microsoft

Component Object Model (COM) objects, as well as access and use existing COM

objects from within CA Aion BRE. COM specifies how to build software

components that can be dynamically interchanged. COM provides the binary

standard that clients and these components (including libraries, applications,

and controls) use to interact with each other. By implementing COM, a software

product implements its services as one or more COM objects. COM objects

provide services via methods that are grouped into interfaces that can never

change. All interaction is through interface references. COM is a Model, which is

implemented as a DLL or EXE. It is language independent (and location

independent with DCOM).

OLE (Object Linking and Embedding) was the first COM system and refers to the

technology used to create compound documents. OLE is a persistent storage

mechanism that is used to physically store information about COM objects that a

client (container) application uses.

This section contains the following topics:

Automation (see page 388)

Aion BRE and COM (see page 389)

Object Generation Overview (see page 390)

Generate COM or ActiveX Objects (see page 392)

Use Aion as an Automation Client or Server (see page 394)

AutoLib Example (see page 395)

COM Interface Server Side Example (see page 397)

Automation

388 Product Guide

Automation

Software applications use Automation (formerly called OLE Automation) to

expose their services, making them programmable to scripting tools and other

applications. The IDispatch interface is used to expose these services.

Automation server

An Automation server is a COM component that implements the IDispatch

interface. An Automation server can be an in-process server (the same

process as a client and implemented as a DLL) or an out-of-process server (a

different process as a client and implemented as an EXE). Furthermore, the

server can be local (running on the same machine as the client) or remote

(running on a machine other than the client). The section Generating COM or

ActiveX Objects discusses using CA Aion BRE to generate Automation

Servers.

Automation controller

An Automation controller is a COM client that communicates with the

Automation server through the server's IDispatch interface. The section

Using Aion as an Automation Client discusses using Aion applications as

Automation Controllers.

ActiveX

ActiveX is a broad set of COM client and server technologies that can be used to

develop interactive content for applications used on the World Wide Web.

These technologies include ActiveX controls (formerly called OLE controls),

ActiveX documents, Active Scripting, and ActiveX Database Objects (ADO).

ActiveX documents enable users to view non-HTML documents, such as

Microsoft Excel or Word files, through a Web browser. Active Scripting is used to

control the integrated behavior of several ActiveX controls from the browser or

the server. ADO is used to write client applications that access and manipulate

data in a database server.

DCOM

DCOM is distributed COM.

All COM-conforming objects automatically inherit distributed properties. All COM

objects reside in local servers and provide marshaling proxies and stubs that can

be accessed remotely without having to modify the binary image.

Aion BRE and COM

Chapter 16: Generate and Use COM Components 389

MTS

The Microsoft Transaction Server environment (MTS) is a powerful runtime

environment for hosting COM components. MTS simplifies development and

deployment of server-centric COM applications, and is fully integrated with IIS

and ASP for easier internet/intranet application development. MTS provides

automatic transaction support, is scalable and secure, and is ideal for three-tier

systems.

COM+

COM+ is the latest generation of the COM standard; it combines enhancements

to COM with a new version of the Microsoft Transaction Server (MTS). It provides

many new services, and eliminates unsafe manual life-cycle management of

objects. These services are made available through a container, called the

application, for managing and executing COM and COM+ components. An

application is a group of COM and COM+ components that perform related

functions.

Aion BRE and COM

CA Aion BRE uses two Component Object Model-based technologies: Automation

and ActiveX controls. The Component Object Model provides the following:

■ The interface that a client uses to communicate with a service provider

■ An architecture that object classes use to support several interfaces

■ A memory management system to allocate and free memory between a

client and an object

■ Error checking and reporting

■ Transparent communication of objects

■ Identification and loading of DLLs

Aion BRE and COM+

Currently Aion BRE supports the following COM+ services.

■ Role-based security to administratively construct an authorization policy for

an application.

■ Transaction services.

More Information

COM+ Services: Server Side (see page 398)

Object Generation Overview

390 Product Guide

Object Generation Overview

CA Aion BRE can be used to generate lightweight COM objects (non-GUI

Automation Servers) or can be used as an Automation Client. CA Aion BRE also

can generate ActiveX controls or can be used as an ActiveX container.

Library Interface Layer Generates

ActiveX ActiveX control (OCX)

COM (In Process) In-process Automation server (DLL)

COM (Out of Process) Out-of-process Automation server (EXE)

MTS Microsoft Transaction Server (DLL)

MVS COM In-process Automation server (DLL)

Set Up the Environment

To build Aion applications with the COM interface under Visual Studio 6.0, you

must have access to Microsoft Visual Studio. The INCLUDE path in the

environment variable should specify: vsdir\VC98\atl\include, where vsdir is the

Microsoft Visual Studio installation directory (for example, C:\Program

Files\Microsoft Visual Studio). Alternatively, you can also specify this directory in

the Included Libraries Path field in the Settings dialog.

Note: This set-up is not necessary when building Aion applications with the COM

interface under Miscrosoft Visual Studio 7.0 (Microsoft Visual Studio .NET). CA

Aion BRE automatically sets the necessary paths at build time.

COM Object Generation

You can use Aion to generate a COM object that is In-Process (a DLL), or

Out-of-Process (an EXE). The COM generation process uses the Active Template

Library (ATL). Aion does not need to generate proxy-stub code because COM

provides a universal marshaller (oleaut32.dll).

Note: Aion automatically generates the IDispatch interface to support VBScript

and JavaScript.

In-Process COM objects (servers) can be contained and aggregated. Generated

COM objects support a subset of automation data types. Supported data types

are discussed later in this chapter.

You can generate COM objects for non-graphical server objects. For GUI objects,

use the ActiveX Interface Layer.

Object Generation Overview

Chapter 16: Generate and Use COM Components 391

ActiveX Object Generation

CA Aion BRE supports the generation of ActiveX controls (OCXs). Generated

ActiveX controls are In-Process (DLLs) which can support User Interface

elements. Generated ActiveX objects support a subset of automation data types.

Note: For performance reasons, especially over a network, it is advantageous to

create non-graphical rule objects as lightweight COM objects (non-GUI

automation servers) rather than as ActiveX controls.

Aion-generated ActiveX controls can be used in ActiveX containers such as Visual

Basic and Internet Explorer. ActiveX controls use Automation to perform event

firing and Get/Set methods and Properties. Without ActiveX controls, the end

user cannot respond to event firing and Get/Set ambient properties at runtime.

Aion uses the Class Properties dialog to export a class as an ActiveX control.

MTS Object Generation

Generated MTS objects are In-Process (DLLs). Aion implements MTS objects

using the Active Template Library (ATL). The generated server is a

non-aggregate server and supports the Apartment threading model (Single

Threaded Apartment or STA).

Note: If you are planning to deploy a component under MTS, you cannot use the

COM (In-Process) Interface Layer. Even though both are DLLs, in this

circumstance you must use the MTS Interface Layer.

COM+ Object Generation

COM+ supports only In-process components. Currently, there is no difference

between generating a COM object and generating a COM+ object. There is no

special interface layer for COM+. The COM In-process interface layer should be

chosen at build-time for COM+ components.

MVS COM Object Generation

Generated MVS COM objects are In-Process (DLLs) which can be used in a

client/server configuration between a mainframe and a PC. MVS COM objects are

built on the PC to generate a proxy (implemented as a COM object) that speaks

TCP/IP to a mainframe server application, and COM to the client application.

In addition to all public classes in the application, the proxy (DLL) contains an

automatically-generated class named cc_connection. This class contains

methods used to communicate to the server application at runtime.

Generate COM or ActiveX Objects

392 Product Guide

Generate COM or ActiveX Objects

When you generate Aion COM or ActiveX objects, you choose one or more Aion

classes whose methods you want to expose. This process consists of the

following steps:

■ Choose which Aion classes to export as COM or ActiveX objects.

■ Specify a COM or ActiveX Interface Layer for the application.

■ Build the application to create an EXE and/or DLL(s).

■ Register the generated object.

■ If using COM objects in a distributed system, configure DCOM and then use

it to distribute the objects.

Note: You do not need to include AutoLib or ActiveXLib to generate a COM or

ActiveX object unless you are using COM server side interface support, which

requires AutoLib. You do not need to include CompLib to generate a COM+

server. CompLib is required only for program-level access to and control of the

COM+ services provided by the library.

For step-by-step procedures for generating in-process (DLL) and out-of-process

(EXE) COM and ActiveX objects, see Generating COM or ActiveX Objects in the

CA Aion BRE online help.

Data Type Support in Automation Servers

The following table lists which Aion data types are supported and the COM type

to which they are mapped:

Aion COM Input Output Return

Array SAFEARRAY Yes No No

Boolean VARIANT_BOOL Yes Yes Yes

COMInterface IDispatch Yes Yes Yes

Date DATE Yes Yes Yes

Integer Long Yes Yes Yes

Real Double Yes Yes Yes

String BSTR Yes Yes Yes

Generate COM or ActiveX Objects

Chapter 16: Generate and Use COM Components 393

Register the COM Object

Before a client can access the built COM object, it must be registered in the

server machine's registry.

For step-by-step procedures for registering a COM object, see Registering the

COM Object in the CA Aion BRE online help.

Verify Successful Registration

For step-by-step procedures for verifying that COM object registration was

successful, see Verifying Successful Registration in the CA Aion BRE online help.

Configure DCOM

This section only applies if the COM objects are being accessed from a remote

machine.

Test the DCOM Configuration

You can use the DCOM-enabled NetClip application to test the DCOM

configuration. For more information, see:

http://www.microsoft.com/com

For step-by-step procedures for testing the DCOM configuration, see Testing the

DCOM Configuration in the CA Aion BRE online help.

Depending on which operating systems the client and server machines are

running, the testing procedure differs slightly.

Use Aion as an Automation Client or Server

394 Product Guide

COM+ Application Configuration

Configuration is an essential part of the development process for COM+

applications. How you configure an application will determine how the

components behave when running.

Applications are defined and configured through the Component Services tool.

Component Services is an administrative tool that is included in Windows

2003/XP. You can use the Component Services administrative tool to create new

COM+ applications, add components to applications, and set the attributes for an

application and its components.

Current COM generated components can be configured in a COM+ application. It

is possible to mix COM and COM+ objects in the same application.

Note: Refer to the Microsoft Windows manuals for further information about

Component Services.

Use Aion as an Automation Client or Server

When you use Aion as an Automation Client or Server, you use existing COM

interfaces to create a new COM object class in an Aion application. You can also

return and use pointers to COM interfaces in COM servers created from an Aion

knowledge base.

This process consists of the following general steps:

■ Browse through existing COM objects (including Type Libraries) to locate

interfaces.

■ Choose interfaces from which to create one or more new COM object classes.

■ Generate the Methods and Properties for each new class.

■ Use the generated methods in conjunction with Autolib methods.

Note: Aion can use any COM object, including those generated by C++, Visual

Basic, Java, and Aion (as long as IDispatch is implemented).

Include COM Objects in Aion Applications

For step-by-step procedures for making COM objects accessible to your Aion

application, see Including COM Objects in Aion Applications in the CA Aion BRE

online help.

AutoLib Example

Chapter 16: Generate and Use COM Components 395

Data Type Support in Automation Clients

The following table lists the COM data types that Aion supports and the Aion

types to which they are mapped:

COM Aion Input Output Return

BSTR String Yes Yes Yes

DATE Date Yes No No

Double Real Yes Yes Yes

IDispatch COMInterface Yes Yes Yes

Long Integer Yes Yes Yes

SAFEARRAY Array Yes No No

VARIANT* _Datatype Yes Yes Yes

VARIANT_BOOL Boolean Yes Yes Yes

*Only Boolean, Date, Integer, Real, and String are supported for the Variant

data type.

AutoLib Example

Note: The following example is provided in the Example\COM\Animals directory

on the Aion CD.

The Start() Method of client.app illustrates some of the methods used in

AutoLib. The two COM objects, Dog and Cat, are implemented as .DLLs. The Dog

object is created and called from the client app; however, the Dog object needs

to create and call a Cat object. This example illustrates the use of callbacks

between COM objects.

AutoLib Example

396 Product Guide

Start() Method in client.app

The following code is an example of the Start() method in client.app:

pDog = IDog.Create()

if(pDog <> NULL)

then MessageBox("Dog created!", "CLIENT")

else MessageBox("Cannot create Dog! ", "CLIENT")

Abort()

end

pDog->cc_CallCat(pDog.GetDispatch())

pDog->Delete()

MessageBox("Goodbye!", "CLIENT")

The Create method is used to create a new instance of the object 'Dog' on the

same machine. If the Create method creates an instance of DOG, a pointer to

the Dog object (pDog) is returned.

The Dog's object CallCat method is then called.

Implement Callbacks Between COM Servers

In this example, the Dog instance creates a Cat instance and the Cat instance

calls the Dog's Bark() method. That is, the instance of Cat created by Dog calls

back to its creator to invoke a method on its creator while it is processing a

method invoked on it from this same creator (Dog) instance. This situation is

called a “callback”.

The logic in Dog's CallCat() method, which has been invoked from the client, is

straightforward:

IN dogid is integer

pCat = IMyCat.Create()

if (pCat <> NULL)

then MessageBox("Cat created!", "DOG")

else MessageBox("Cannot create cat!", "DOG")

Abort()

end

pCat->cc_SetCallback(dogid)

pCat->Delete()

Cat's SetCallback() method employs the AttachDispatch() method, which

insures that the existing instance of Dog is used:

IN arg1 is integer // dogid from client.app

pDog = IMyDog.Create(NULL, FLAG_COM_NONE, NULL)

pDog.AttachDispatch(arg1)

pDog.cc_Bark()

COM Interface Server Side Example

Chapter 16: Generate and Use COM Components 397

COM Interface Server Side Example

The preceding example illustrates retrieving and using pointers to an instance of

a COM object on the client side, pDog = Idog.Create(). It is often necessary to

return and use pointers to COM objects on the server side. To return a pointer to

a COM object to the server side it is necessary to derive the class being created

from the COMShell class in AutoLib. The COMShell class acts as a placeholder for

COM classes that do not yet exist (at edit time). At runtime, COMShell.Create()

instantiates the COM Interface from the program ID (progid) that is passed in.

This means the COM server application needs to include Autolib.

Consider an Aion COM server application that exposes a Person interface, with a

method GetDog(), and a Dog interface. GetDog() method retrieves an instance

of a Dog COM object. (For later use in this example, we assume that the Dog

interface exposes a Bark() method.) IDog must be defined as a class that is

derived from COMShell.

Server Side

The following code is typical implementation of the GetDog() method on the

server side(in Person):

var p is &IDog

var dDog is COMInterface

p = IDog.Create(NULL,“Comisrvr.Dog.1”) // invokes COMShell.Create() with ProgID

// or ClassID to find object in registry

dDog = p.GetDispatch()

return dDog

This GetDog() method creates an instance of the Dog and returns a handle to

the Dog interface.

Client Side

On the client side, you can import the COM object from its type library. In

this case, you create an IDog object and an IPerson object. You can also

generate a cc_Bark() method for the IDog class and a cc_GetDog() method

in the IPerson class. You can then have the person create a dog instance and

call cc_bark() on that instance of dog:

The following code executes this scenario:

var pPerson is pointer to IPerson

var pDog is pointer to IDog

var iDog COMInterface

pPerson = IPerson.Create()

pDog = IDog.Create(Null, FLAG_COM_NONE)

iIDog = pPerson->cc_GetDog()

pDog->AttachDispatch(iDog)

pDog->cc_Bark()

pDog->Release()

pPerson->Release()|

COM Interface Server Side Example

398 Product Guide

COM+ Services: Server Side

Many of the services provided by COM+ can be administratively configured for

an application simply through the Component Services Administration Tool.

However, there are some tasks that may need to be done or it might be desirable

to do programmatically. COM+ provides a set of interfaces such as

ISecurityCallContext, IObjectContext, IContextState, IObjectControl. A subset

of these services is currently available to the Aion programmer through the

COMPlusObject class that is provided by the CompLib.

To use the facilities of COM+ at a programming level within an Aion server,

exported classes must be derived from the COMPlusObject.

Role-Based Security

Although an Aion generated COM+ component can be configured to use

Role-Based Security with the Component Service Administration tool,

programmers can also use ISecurityCallContext interface to determine whether

security is enabled for the current call, and check role membership to determine

whether a particular section of code is executed. The following methods of

COMPlusObject support role-based security:

■ GetCallContext

■ IsCallerRole

■ IsSecurityEnabled

■ IsUserInRole

For more information on these methods, see the “CompLib” chapter of the CA

Aion BRE online help.

Transaction Services

To use automatic transactions effectively, each transactional component should

indicate that it has completed its work. When an object instance completes its

task successfully, it should set its Consistent bit to True and its Done bit to True

by calling the SetComplete() method of the IObjectContext interface. The

following methods of COMPlusObject support transaction services:

■ GetObjectContext

■ IsInTransaction

■ SetAbort

■ SetComplete

For more information on these methods, see the “CompLib” chapter of the CA

Aion BRE online help.

Chapter 17: Deploy Aion BRE Components as Web Services 399

Chapter 17: Deploy Aion BRE

Components as Web Services

The Web services environment is a framework for supporting electronic

collaboration, including systems integration and business-to-business (B2B)

communications. Web services promote interoperability. The ability of Aion BRE

components to act as Web services simplifies the creation of collaboration points

between different business processes.

This section contains the following topics:

Program Aion BRE Components as Web Services (see page 399)

Do I Need To Install Apache Axis? (see page 401)

Code Generation for Web Service Deployment (see page 409)

Client Programming Considerations (see page 410)

Administering Aion-Based Web services (see page 411)

Additional Resources on Web Services (see page 411)

Program Aion BRE Components as Web Services

When programming an Aion BRE component whose interface you wish to publish

as a Web service, you should program to the standards and conventions of the

Java interface layer.

As in the Java Interface Layer, exception throwing is supported.

More Information:

Code an Exported Class (see page 367)

Program Aion BRE Components as Web Services

400 Product Guide

Use Complex Data Types

The Web services interface supports passing complex types between the client

and the component implementing the Web service. Complex data types are

types that are defined as consisting of a collection of other complex or primitive

data types. For example, a Person may be a complex data type consisting of a

number of primitive data types of strings and integers (for Name and Age

respectively) and complex data types (such as Address, which may consist of

separate strings for Street, City, State, and more). In traditional object-oriented

programming, complex data types are supported by defining the type as a class.

To support complex data types in a Web services interface, construct the class

defining the complex data type in the following manner:

■ Define public methods of a class that will serve as the exported class for the

Web services in terms of pointers to other classes that define your complex

data types, for example, processInfo(&InputData) : &Info, where

“InputData” is a complex data type (class) describing input to the

processInfo method and “Info” is a complex data type (class) describing the

information returned by the method.

■ Ensure that the classes defining complex data types are exported.

■ Define public accessor methods on each class defining a complex data type

according to the Java standard for each data type that is part of the complex

data type. The accessor methods may involve either primitive data types or

further complex data types (that is, pointers to further classes defining

complex data types).

Java inspection (provided by Apache Axis) constructs the definition of the

complex data type that corresponds to the class definition when generating the

WSDL.

Program Standards for Web Services

Standards must be kept in mind when programming for Web services

deployment:

■ Current Web services standards (WSDL) restrict publishing the methods of

only a single class as Web services. Users who want to export methods from

multiple classes must create a façade class that exposes the desired

methods within a single class.

■ Program to the standards of a stateless service. Do not expect the Aion BRE

component to maintain state during successive invocations of its services.

Do I Need To Install Apache Axis?

Chapter 17: Deploy Aion BRE Components as Web Services 401

■ Because Apache Axis automatically sets attributes with public accessors to

NULL when the object is first created, care must be taken to ensure that such

an attribute has an Unknown status before it is used in an interface. In

particular, this problem arises if the attribute is used in a decision table and

has a domain interface member defined for it. It is recommended that before

initiating inferencing, all goals are explicitly returned to the Unknown state:

_engine.goalMakeUnknown(->attributeName)

■ A side effect of the preceding point is that if an attribute is of constrained

type and the list of constrained values does not include the NULL value, then

Axis causes a constraint violation when setting the attribute to NULL.

Therefore, NULL must be included in all constraint lists of attributes with

public accessors.

Do I Need To Install Apache Axis?

For users intending to use Aion BRE Web services on Windows or UNIX/Linux

systems, Apache Axis must be available. This is provided when the CA Aion

version of Portal is installed. However, if CA Aion BRE was installed by itself

(without Rule Manager), the following additional steps are required:

To install Apache Axis

1. Install an Application Server that is compatible with Apache Axis 1.4 or

higher. Axis recommends Apache Tomcat (see http://tomcat.apache.org/).

2. Install Apache Axis 1.4 or higher in the Application Server webapps directory

(see the Axis Installation Guide at

http://ws.apache.org/axis/java/install.html)Configure Apache Tomcat as

follows:

Enable monitoring of Axis lib directory for class reloading as new Aion BRE

services are built and deployed. Using the Tomcat Administration console

(http://localhost:CA Portal/admin), locate the Context entry for the Axis

servlet (/axis) and set the following properties:

– Cross Context = True

– Reloadable = TrueCheck Interval = 3

For Microsoft Windows installations, add the Aion BRE \userlibs folder to the

Windows system PATH in the Tomcat startup scripts:

– Create the Tomcat environment setup script

(Tomcat_install_dir\bin\setenv.bat). This batch file is automatically

executed by the Tomcat start-up scripts on Windows systems.

– In the file bin\setenv.bat enter the following commands:

set PATH=%PATH%;<AionBRE_install_dir>\userlibsAionBRE_install_dir

This is the full directory path where CA Aion BRE is installed on the

Windows platform.

Do I Need To Install Apache Axis?

402 Product Guide

For UNIX/Linux installations, add the Aion BRE userlibs directory to the

system library path (LIBPATH, SHLIB_PATH or LD_LIBRARY_PATH)

– Create the Tomcat environment setup script

(Tomcat_install_dir/bin/setenv.sh). This shell script is automatically

executed by the Tomcat start-up scripts on UNIX/Linux systems.

– In the file bin/setenv.sh enter the following commands:

#!/bin/sh

. <AionBRE_install_dir>/aion.sh

Note: There is a period in the first position of the 2nd line.

AionBRE_install_dir is the full directory path where CA Aion BRE is

installed on the UNIX/Linux platform.

After installing Apache Axis install additional jar files required for Aion BRE web

services:

■ Copy AionBRE_install_dir\build\rejava\aionsession.jar to

Tomcat_install_dir\webapps\axis\WEB-INF\lib

■ Copy AionBRE_install_dir\build\rejava\axisaionsession.jar to

Tomcat_install_dir\webapps\axis\WEB-INF\lib

Validate the Apache Axis Setup

After installing Apache Axis 1.4 or higher in the Tomcat \webapps directory, start

Tomcat and validate the Axis configuration using the Axis Happiness Page

http://localhost:CA Portal/axis/happiness.jsp

On the Axis Happiness page, verify the following:

■ Check that all of the needed components have been found.

■ In the system properties section, locate the Java library path entry

(java.library.path) and check that the Aion BRE \userlibs directory is defined

on this path.

Do I Need To Install Apache Axis?

Chapter 17: Deploy Aion BRE Components as Web Services 403

Generate an Aion BRE Component as a Web Service

CA Aion BRE provides a wizard for creating an interface layer that interfaces with

the Axis SOAP engine and for registering that interface (exposed methods) with

the Axis servlet. Aion BRE components should be programmed following the

standards given in the section Programming Aion BRE Components as Web

Services.

To generate the Aion BRE application as a Web service, select Tools, Web Service

Wizard.

Web services allow only one class to be deployed, selected from among the

exported classes of your application. Other exported classes can be used to

support complex data types used by the methods of this Web service class. The

Web Service Wizard also allows you to select a subset of the public methods of

the Web service class for deployment as specific Web services.

The wizard generates a default name for the Web service by which the Web

service is identified to clients. The default name of the Web service is

appnameWebService.

Important! This name must not contain spaces. When a Web service client

invokes an Aion BRE Web service, the Microsoft Windows DLLs in the AionBRE

\userlibs folder become locked. If the user then modifies the Aion BRE

application, the application server must be shut down and restarted before the

updated Aion BRE application can be redeployed as a Web service.

More Information:

Use Complex Data Types (see page 400)

Deploy Aion BRE Web Service Components on Microsoft Windows

1. Build your Aion BRE application.

2. Define those public methods for the exported class that will be deployed as a

Web service.

3. Export the classes (if any) that define complex datatypes used by the Web

service methods.

4. Define public accessor methods for each complex data type class.

5. Select Tools, Web Service Wizard...

The Web Service Wizard dialog appears, showing the list of all exported

classes.

Do I Need To Install Apache Axis?

404 Product Guide

6. Select the class to be deployed as a Web service and then click Next.

The methods of the selected class are displayed.

7. Select the methods to be included in the Web service and then click Next.

The Deployment Settings dialog appears.

8. Click Finish.

For more information about Tomcat, ANT, and Axis settings, see

http://ws.apache.org.

Do I Need To Install Apache Axis?

Chapter 17: Deploy Aion BRE Components as Web Services 405

Deploy Aion BRE Web Service Components on UNIX/Linux

1. Build the Aion BRE application following the programming guidelines in the

CA Aion BRE User Guide.

2. Use the IDE Web Service Wizard to deploy the Aion BRE application on

Windows. This generates the Axis WSDD files for the Aion service.

3. Copy the Aion BRE application and generated WSDD files to the UNIX/Linux

system.

4. Use the respawn utility on UNIX/Linux system to build the Aion BRE

application libraries and Java wrapper jar files.

5. Copy the compiled Aion BRE libraries to the AionBRE_install_dir/userlibs

directory.

6. Copy the Aion BRE application .jar file to the Axis lib directory.

7. Use the generated WSDD file with the Axis AdminClient to deploy the Aion

BRE Web service: java org.apache.axis.client.AdminClient

deploy_AppName.wsdd

Prerequisite

Obtain Apache Axis 1.4 and higher from http://ws.apache.org/axis.

Prepare for WebLogic Deployment

To prepare the system for WebLogic deployment

1. Copy the Apache Axis /webapps directory to a location that WebLogic can

refer to. For example:

Axis_install_dir/webapps/axis

2. Copy the following files from the directory AionBRE_install_dir/build/rejava

to the Axis directory WEB-INF/lib:

■ aionsession.jar

■ axisaionsession.jar

Do I Need To Install Apache Axis?

406 Product Guide

3. Depending on the operating system, perform the following steps:

For Windows:

■ Edit the startup script as follows for the WebLogic

startExamplesServer.cmd file, which is found in

BEA_install_dir\weblogic81\samples\domains\examples.

■ Append the directory \axis\WEB-INF\lib to the CLASSPATH. (near the

end of the file)

■ Ensure that the system PATH includes AionBRE_install_dir\userlibs.

For UNIX/Linux:

■ Edit the startup script for WebLogic, startExamplesServer.sh, which is

found in BEA_install_dir/weblogic81/samples/domains/examples.

■ Append the directory /axis/WEB-INF/lib to the CLASSPATH.

■ Ensure that the system library path (LIBPATH, SHLIB_PATH or

LD_LIBRARY_PATH) includes AionBRE_install_dir/userlibs.

4. Start the WebLogic server by running startExamplesServer.

5. Log into the admin console for WebLogic at http://localhost:7001/console.

6. On the left, expand Deployments/Web Application Modules.

7. Choose to deploy a new Web Application Module.

8. Browse to the location of the Axis directory.

9. Enter a name for the module (axis) and deploy.

You should be able to see http://localhost:7001/axis, which is the HappyAxis

page.

10. To verify that the setup is working, click on the Axis Validate link, look for the

java.library.path setting and make sure that AionBRE_install_dir/userlibs is

included.

Prepare for WebSphere Deployment

To prepare the system for WebSphere deployment

1. Created a .war file that contains the Axis directory contents. For example:

Axis_install_dir/webapps/axis.

2. Copy the following files from the directory AionBRE_install_dir/build/rejava

to the Axis directory WEB-INF/lib:

■ aionsession.jar

■ axisaionsession.jar

Do I Need To Install Apache Axis?

Chapter 17: Deploy Aion BRE Components as Web Services 407

3. Depending on the operating system, perform the following:

For Windows:

■ Edit the startup script as follows for the WebSphere setupCmdLin.bat

file, which is found in WebSphere_install_dir\Appserver\bin.

■ Append the directory Axis_install_dir\webapps\WEB-INF\lib to the

WAS_CLASSPATH variable.

■ Make sure you have the Aion BRE \userlibs directory

(AionBRE_install_dir\userlibs) referenced in the system PATH.

■ Start the WebSphere server by starting the WebSphere Windows

service.

For UNIX/Linux:

■ Edit the startup script for WebSphere, setupCmdLin.sh which is found in

WebSphere_install_dir/appserver/bin.

■ Append the directory /axis/WEB-INF/lib to the WAS_CLASSPATH

variable.

■ Ensure that the system library path (LIBPATH, SHLIB_PATH or

LD_LIBRARY_PATH) includes AionBRE_install_dir/userlibs.

■ Start the WebSphere server by running the following:

startServer.sh server

Where server is the server instance (typically "server1").

Log into the admin console for WebSphere at

http://localhost:9090/admin.

4. On the left, expand Applications, and click Install New Application.

5. Enter the path to the .war file location. For Context Root, enter axis.

6. Proceed through the configuration screens, choosing the defaults.

7. In Step 1: AppDeployment Options, modify the following parameters:

Directory to Install Application

Specify a directory as Axis_install_dir, where you want to deploy the war

file. This directory can then be referenced in the AionBRE ant scripts for

deployment of Web service jar files. When the Axis war file is deployed it

gets expanded to Axis_install_dir/axis.ear/axis.war/WEB-INF/lib.

Do I Need To Install Apache Axis?

408 Product Guide

Application Name

Change the application name from axis_war to axis.

Enable Class Reloading

Select this option to allow Aion BRE jars to be reloaded when copied to

the Axis lib directory.

8. For the .war file to be deployed correctly, you may need to manually start the

Axis module using the admin console.

9. You should now be able to see http://localhost:9080/axis, which is the the

HappyAxis page. To verify that the setup is working, click the Axis Validate

link, look for the java.library.path setting and ensure that

AionBRE_install_dir/userlibs is included.

Deploy the Aion BRE Application

The XML files are located in the following directories:

■ AionBRE_install_dir/build/wswizard.xml

■ AionBRE_install_dir/examples/webservices/PassingObjects/build.xmlAionB

RE_install_dir/examples/webservices/PassingObjects/aion/build.xml

To prepare the XML files for deployment

1. Change port from 8080 to one of the following:

7001 for WebLogic

9080 for WebSphere

2. For the two build.xml files, changed axis.home to refer to the Axis directory.

3. For the wswizard.xml file, change axislib.dir to refer to the Axis directory.

4. Run the Ant scripts to deploy the Aion BRE application, as follows:

ant deploy-aion

5. Verify that the webservice is deployed at

http://localhost:CA Portal/axis/services.

6. Before running the client, edit the build.xml file found in:

AionBRE_install_dir/examples/webservices/PassingObjects/wsclient/java

On the Windows .NET install, modify the build.xml file found in:

AionBRE_install_dir/examples/webservices/PassingObjects/wsclient/C#

7. Change the port from 8080 to one of the following:

7001 for WebLogic

9080 for WebSphere

Code Generation for Web Service Deployment

Chapter 17: Deploy Aion BRE Components as Web Services 409

8. Change axis.home to refer to the Axis directory.

9. To build and execute the client, do one of the following:

ant run-java-client

or

ant run-C#-client

10. Verify the output from the client.

Code Generation for Web Service Deployment

The Web Service Wizard invokes the CA Aion BRE build process to generate the

component with a modified Java interface layer. The wizard then accesses

Apache Axis to register the Aion BRE component. The Aion Web services

interface employs the Java interface layer as its underlying technology.

Review the current CA Aion BRE Readme for any Known Issues regarding

support for Web services in CA Aion BRE.

More Information:

Elements in the Java Interface Layer (see page 364)

Client Programming Considerations

410 Product Guide

Client Programming Considerations

The objective of Web services technology is to enable a client written in any

language and running on any platform to call a service Provider written in any

language and running any platform. This section covers the requirements of Web

service client programming in only the broadest terms.

Building a client involves one of the following alternatives:

■ For a Java client: download the appropriate Apache tools (including

WSDL2JAVA for translating WSDL specifications of a Web services into Java

code) and SOAP libraries for inclusion into the Java program.

■ For a C or C++ client: obtain the Microsoft SOAP Toolkit 2.0.

■ For a Managed C++, VB.Net, or C# client, you must have Visual Studio .NET

installed. You need the .NET framework, .NET SDK, and Visual C# or Visual

Basic.Net development environment portions of that install. You must have

also installed CA Aion BRE, specifying Visual Studio.NET as the compiler

when you set it up. This may sound complicated, but the programming of a

Web services client under .NET is an order of magnitude easier than

programming such a client in Java.

Note: In general, Aion BRE components cannot call Web services. However, an

Aion BRE component can invoke a Rule Manager rulebase that has been

deployed as a Web service.

The CA Aion BRE example set provides several examples of Aion BRE

applications that can be deployed as Web services along with code for Java

clients that invoke these services. To compile the Java programs you will need

the proper Apache libraries. ANT scripts are provided for compiling these

programs. ANT, a utility for automating a system build process, is freely

downloadable from:

http://jakarta.apache.org/ant/index.html

To run the ANT scripts:

■ Define a system variable ANT_HOME pointing to your ANT directory.

■ Put %ANT_HOME%\bin on your system path.

You should have a system variable JAVA_HOME pointing to your Java SDK

directory.

ANT scripts may also be used to compile the Aion BRE component.

For further information on ANT, see the readme.txt file in the \examples\java

folder.

Administering Aion-Based Web services

Chapter 17: Deploy Aion BRE Components as Web Services 411

Administering Aion-Based Web services

Administration of Web services is accomplished using Apache Axis. You can

access the administrative function at this address:

http://localhost:8080/Axis

Additional Resources on Web Services

As the primary resource for Aion BRE Web services deployed under Apache Axis,

visit:

■ http://ws.apache.org/axis

For more information on Web services, visit:

■ http://www.oasis-open.org/ and http://www.w3c.org

Web services rely heavily on the eXtensible Markup Language (XML) which has

emerged as the universal language for data communication. For more

information on XML, you might begin by visiting the following sites:

■ http://www.w3c.org/xml (the W3C owns the XML standard)

■ http://www.ucc.ie/xml/#index (which provides an XML FAQ)

For more information on .NET, visit:

■ http://www.microsoft.com and follow links to .NET

For more information on IBM, visit:

■ http://www-01.ibm.com/software/solutions/soa/

■ http://alphaworks.ibm.com/webservices

or more information on Open Source Apache Foundation visit:

■ http://www.apache.org

Chapter 18: Debug Aion BRE Applications 413

Chapter 18: Debug Aion BRE

Applications

Use the Aion BRE Debugger to locate problems within your Aion BRE application.

By running an Aion BRE application in debug mode, you can view its execution

flow, the values of variables, and other troubleshooting information.

The Aion Debugger is an application that is, itself, written using Aion. When

running an Aion BRE application in Debugger mode, the application runs

normally-windows and dialog boxes display and accept user input. However,

through the Debugger you can also:

■ See the body of the currently executing method.

■ Step through the application method-by-method or line-by-line. Method

logic executes as you step through the methods.

■ Set breakpoints to strategically suspend execution. You can set breakpoints

at the start of a method, at any executable line within a method (rule

methods also), or when a specified attribute is changed.

■ View and modify the values of variables as you step through a method.

■ View the method call stack that has been traversed prior to arriving at the

current point in the execution.

■ Build components using an embedded interpreter to enable debugging of

deployed components (from client applications); see the Embedded

Component Debugging section.

You can debug any Aion BRE application whose entry class includes a Start

method. When you start the Debugger, Aion executes an interpreted version of

the application, which is run without explicit compiling.

When debugging an application, the Debugger runs the application as usual,

while also providing facilities for viewing and controlling source code and data

during execution. You can see both what is happening and how it happens.

Additional Resources on Web Services

414 Product Guide

What you see while debugging an application depends on how you step through

the application and where you set your breakpoints and watchpoints. Debugging

can include the following general steps (each step is discussed further in the

following sections of this chapter):

1. From the Aion BRE application, start the Debugger.

2. Set code breakpoints at executable lines in the code or at the start of

methods.

3. Set watchpoints to identify attributes whose values you want to monitor.

4. Set data breakpoints for specified attributes so that Debugger will stop at

any line of code that changes the attribute's value.

5. Start program execution either by running to the next breakpoint or by

stepping in, over, and out of the code line-by-line or method-by-method.

6. View (or modify) attribute values throughout execution, and watch the flow

of execution.

7. If necessary, move, remove, or add breakpoints and watchpoints, and

reexecute the application.

This section contains the following topics:

Debugger Features (see page 415)

The Debugger Window (see page 418)

Breakpoints (see page 429)

Watchpoints (see page 432)

Debugger Settings (see page 432)

Debug Aion BRE Applications (see page 433)

Debugging Rule-Based Inference (see page 436)

Shut Down the Debug Session (see page 438)

Debugger Features

Chapter 18: Debug Aion BRE Applications 415

Debugger Features

The following list summarizes the tasks you can perform with the Debugger. You

can access most of these actions from the menu, toolbar, right-click shortcut

menu, or using keyboard accelerators:

■ Navigate through method code, including knowledge methods (rules).

■ Configure and generate a trace file to selectively track the Debug session.

■ Set and clear data watchpoints.

■ Set and clear data breakpoints.

■ Dynamically change data values (including to null or unknown)

■ Set and clear method breakpoints.

■ Manually step into, over, and out of methods during execution.

■ Run or continue execution to the next breakpoint (data or code), or to the

end of the application, whichever is first.

Debugger Features

416 Product Guide

Embedded Component Debugging

Debugging of embedded, or “wrapped”, components presents special

challenges. Ideally, you want to preserve the original operating environment of

the component, that is, allow the wrapper program to be run compiled while still

providing full debugging facilities for the component. To meet this challenge,

Aion provides Build options for generating debugging information from an

embedded component.

Note: Embedded component debugging is available only for components

developed under Microsoft Windows.

Aion provides three options for building components on the File, Settings Build

tab. These options address different levels for obtaining debugging information

from built Aion BRE applications.

■ Component Tracing: Obtains a production trace from a compiled component.

A compiled trace is not as detailed as the Debugger trace (for example, data

assignments are not included). This option provides the typical compiled

trace for embedded components. To activate this option, you must also

activate the "Generate Tracing Statements". The trace is generated in the

Aion specified directory for the Build trace.

Debugger Features

Chapter 18: Debug Aion BRE Applications 417

■ Embedded Debugger: Obtains the Aion debugger trace from the component.

This option causes the Aion interpreter to be called internally when the

component executes. It is possible to generate a full trace, including data

assignments. Running a component under this option, however, means that

the component is much larger than if it were built without this option, and it

runs much slower. Aion provides a warning messages at build-time

regarding module size and performance when building under this option.

The Embedded Interpreter is subject to two restrictions:

– The application file and its \bin directory must be in same location

(subdirectory).

– Because only one interpreter can run within a Window thread, a

component built with the embedded interpreter can be run from an Aion

client (wrapper) in compiled mode but not in interpretative mode.

■ Show Debugger: Runs the Aion interactive debugger itself on the

component.

This is the most powerful feature of Embedded Component Debugging: the

ability to operate within the Aion debugger when running a built Aion

component. Selecting this option allows you to step through the debugger as

if you were running the Aion code interpretively within the Aion development

environment. The Aion debugger window appears as soon as the component

begins to execute.

This option requires that the Embedded Interpreter is turned ON, and is

subject to the same restrictions as the Embedded Interpreter.

The Debugger Window

418 Product Guide

The Debugger Window

To start debugging an application: Click the Debug button on the Aion toolbar (or

from the File menu, choose Run, Debug).

The Debugger starts, displaying the body for the Start method and the current

Trace information:

Equation 1: Shows the debugger window

The Debugger contains resizable panes separated by splitters. Each tab contains

additional panes. You can re-size the panes to see all of the Debugger fields.

The Debugger Toolbar

You can access debugger-related functions from the Debugger's menu or its

toolbar. Following is the toolbar for the Debugger:

The Debugger Window

Chapter 18: Debug Aion BRE Applications 419

For additional information on the toolbar buttons, see their corresponding

sections:

Continue execution-Run the application to the next breakpoint or if

none exist, to end of the application. See Controlling the Flow of

Execution.

Step over call to next line in this method-Execute the next line in

the current method, and if it is a method call, execute the entire

method without stepping into it. See Controlling the Flow of Execution.

Step into next executable line-Execute only the next consecutive

line in the current method and pause the Debugger. See Controlling

the Flow of Execution.

Step out of this method-Finish executing the current method or line

and return to the calling method or line. See Controlling the Flow of

Execution.

Toggle breakpoint-Set or remove a breakpoint for a line of code or a

rule name. See Breakpoints.

Toggle watchpoint-Set or remove a watchpoint for an attribute

whose value you want to monitor. See Watchpoints.

Stack List Box

The following figure shows a Stack list box:

The Stack list box displays the Call Stack, which consists of all method calls that

have not returned-in other words, a nested list of suspended methods. The

Debugger automatically updates the Stack list box and displays the current

method in the form class.method. If the method is an instance method, the

“current” instance is included in the list box as the first entry. This simplifies

accessing the attribute values for the current instance. During inferencing, the

Stack list box displays inferencing information instead of class.method.

The Debugger Window

420 Product Guide

The Method Body pane displays the code of the method currently selected in the

Stack list box. By default, the currently executing method is selected in the Stack

list box.

You can open the Stack list box to view or navigate through the list of methods

and their corresponding method bodies. When you select a different method in

the Call Stack, the Debugger displays the method's code into the Method Body

pane so you can examine the flow of the application. Doing this, however, does

not cause the position of the execution arrow to change. Regardless of which

method is displayed in the Method Body pane, actual execution continues from

the line indicated by the execution arrow on the currently executing method. The

currently executing method is the “top” method in the stack.

More Information:

Use the Call Stack (see page 435)

Arguments Pane

The Arguments pane, as shown in the following figure, displays the values for all

input, output, and local variables in the currently executing method:

You can click the plus symbol to expand an attribute, and double-click on any

item to display (or modify) the current value.

For information about changing attribute values during debugging, see Viewing

and Modifying Data Values in the CA Aion BRE online help.

The Debugger Window

Chapter 18: Debug Aion BRE Applications 421

Watched Attribute Pane

This pane displays the values of any attributes and instances for which

watchpoints or data breakpoints have been set. You specify which class and

instance attribute values you want to explicitly watch by setting data breakpoints

and watchpoints on the Data tab.

For more information about setting data breakpoints, see Breakpoints in the CA

Aion BRE online help.

More Information:

Watchpoints (see page 432)

Method Body Pane

Below the Arguments and Watched Attributes panes is the Method Body pane.

This pane contains the body of the method displayed in the Stack field. Typically,

this is the currently executing method.

A yellow arrow marks the current line of execution for the executing method or,

if you are using the Stack list box to navigate through suspended methods, the

current line of the selected suspended method. When the Debugger first starts,

the arrow points at the first line of the Start method, as shown in the following

figure:

Watch this area as you step through the code. You can set and undo breakpoints

from the Method Body pane or from the Methods tab.

To adjust the sizes of the Method, Arguments, and Watched Attribute panes,

position the mouse pointer on the border of the pane you want to resize, then left

click and drag to re-size the pane.

Note: To display methods that are not in the call stack, use the Methods tab.

The Debugger Window

422 Product Guide

Instance Counter

The Instance counter shows the current number of dynamic instances in the

application being debugged. Use the Instance counter to help detect when the

application is stranding instances.

Note: Static instances are not included in the Instance Counter.

Debugger Tab Pages

The Debugger includes five tabbed pages, each containing a different type of

information about the application being debugged:

Trace

Displays the execution history for the debug session.

Data

Lists the included libraries, their classes and instances, and provides

windows for viewing class and instance attributes and specifying watchpoints

and data breakpoints.

Methods

Lists the current application and all included libraries that are being run

interpretively, their classes, and methods within each class. Here you can set

code breakpoints and see the list of all breakpoints set.

PatternMatch

Displays the Binding and Pattern Matching values for executed IFMATCH

rules (forward-chaining only).

Decision Table

Displays a graphical view of an active Decision Table.

The Debugger Window

Chapter 18: Debug Aion BRE Applications 423

Trace Page

The Trace page displays the execution trace of the debugged application:

You can use the Debugger Settings dialog to configure what displays on the

Trace page (see Debugger Settings). The default information displayed, a subset

of what Aion writes to the Aion trace (.trc) file, includes a list of all libraries

referenced by the application and whether they are opened in interpreted or

compiled mode. Optionally, the Trace page can list each method as it executes,

the value assignments that occur during method execution, and database

communications.

■ Trace output can also include the following inference information:

■ Begin/end of INFER block

■ Rules posted, pended, failed, and fired

■ Rule premise evaluated

■ Rule actions started and completed

■ TM retraction and confirmation

■ Begin/end Backwardchain

■ Begin/end ForwardChain

■ Bound instances for the start of a pattern match rule action

Use the Trace page's Find field to search the body of the Trace window for a

specific word, letter, or number.

The Debugger Window

424 Product Guide

Data Page

You use the Data page to display classes and instances, their attributes and

associated values, and to set data watchpoints and data breakpoints for

attributes so you can track their values as the application executes.

Initially, the Data page displays a Data tree consisting of an alphabetical list of

the application's libraries. You can expand the tree to see a library's class by

clicking the + symbol next to a library. Click the + symbol next to a class to see

its instances.

The Debugger Window

Chapter 18: Debug Aion BRE Applications 425

When you highlight a class in the Data tree, the lower-right pane displays the

affiliated class attributes. Attributes are added to the list as they are initialized,

and their values can change as the program runs.

When you highlight an instance in the Data tree, the pane displays affiliated

instance attributes.

The top-right pane displays all data breakpoints that you set.

Note: The Data page does not show constants.

When you set a data watchpoint for an attribute, Aion adds the attribute to the

Watched Attribute pane (in the top-right corner of the Debugger main window).

You can watch the attribute's value change as you step through your application.

When you set a Data Breakpoint on an attribute, Aion adds the attribute to both

the Data Breakpoints pane (top-right pane of the Data page) and the Watched

Attribute pane. .

While stepping through the application, you can dynamically change attribute

values. Double-click on the attribute displayed on the Data page or, if it is a

watched attribute, from the Watched Attribute pane, and change the value in the

pop-up window.

More Information:

Set and Remove Watchpoints (see page 432)

Set and Remove Data Breakpoints (see page 430)

View and Modify Data Values (see page 434)

The Debugger Window

426 Product Guide

Methods Page

Use the Methods page to set and clear code breakpoints in the application, to see

which breakpoints have been set, and to display the code for any method in the

application.

A breakpoint is indicated by a red dot in a method's body. It specifies that

execution will stop prior to executing this line.

More Information:

Breakpoints (see page 429)

Set and Remove Code Breakpoints (see page 431)

The Debugger Window

Chapter 18: Debug Aion BRE Applications 427

PatternMatch Page

The PatternMatch page displays bindings and instances for IFMATCH

pattern-matching rules that the Debugger encounters during execution. Values

display only during forward chaining.

When the Debugger encounters an IFMATCH condition, this page lists the rule

name, the number of eligible bindings (excluding the current bind), the pattern

match instances, as well as the binding ordering strategy (LeastRecent or

MostRecent).

Note: This page does not display the current binding on which a rule is currently

executing. The current binding displays in the Method Body pane during the

WHERE clause evaluation and the execution of the rule action.

More Information:

Debugging Rule-Based Inference (see page 436)

The Debugger Window

428 Product Guide

Decision Table Page

During debug mode, when a Decision Table becomes active (posted, evaluated,

or executed), the Decision Table rule displays in the Method Body pane, while at

the same time the Decision Table page presents a graphical view of the active

Decision Table.

The Decision Table rule displays in the Debugger's Method Body pane in a format

different from method code. The display format consists of separate rows for

each Condition, followed by a blank line, and then separate rows for each Action.

This is also how the Decision Table displays in the Methods tab when setting

breakpoints.

For all condition and action rows:

■ Column one contains the condition or action name. Its title area includes the

rule name.

■ Column two contains the implementation.

■ For conditions, the test values display in column three.

You can resize the columns by dragging the column title separators.

Breakpoints

Chapter 18: Debug Aion BRE Applications 429

In addition, you can:

■ Step into rows (conditions and actions) of a Decision Table (F11).

Stepping into a condition or action steps into the method's implementation.

■ Step over rows (conditions and actions) in a Decision Table (F10).

As you step over the conditions of a decision table, several things happen:

– The current row to be evaluated is indicated in the Method Body pane

with a right arrow.

– The current row to be executed is highlighted in the graphical view on

the Decision Table page.

– In the Arguments pane, evaluated conditions are assigned an

internally-created variable named _condition_n (where n is a variable

beginning at 1). The result of each evaluated condition is stored in the

defined variables.

– Evaluated conditions with matching test values cause the appropriate

cell in the Decision Table page to be highlighted. The highlighting

persists for the duration of the Decision Table evaluation.

Breakpoints

Breakpoints let you strategically suspend execution of an application running in

debug mode. You can assign a breakpoint to a method, to any executable line

within a method, or you can set data breakpoints for specified attributes so that

Debugger will stop at any line of code that changes the attributes value.

When the application encounters a breakpoint, the Debugger comes to the

foreground and the method containing the breakpoint displays. From this point,

the Debugger lets you step through method logic, line by line if necessary,

analyzing the effects each step has on the application.

There are two basic types of breakpoints: data and code.

Data Breakpoints

Data Breakpoints are marked attributes that indicate a point at which the

Debugger should stop before allowing the runtime system to continue to

execute. The Debugger will stop prior to any line of code about to execute if that

line of code changes the marked attribute's value.

One data breakpoint could potentially cause the Debugger to stop at many

different places during execution.

Breakpoints

430 Product Guide

Code Breakpoints

Code Breakpoints are marked lines of code that indicate a point at which the

Debugger should stop before allowing the runtime system to continue to

execute. Code breakpoints consist of two sub-types: method and rule.

■ Method breakpoints mark lines of code at which the Debugger should stop

before proceeding with execution. This can be any executable line of code in

your interpretive application.

■ Rule breakpoints are set on rule names. They cause the Debugger to stop

when Aion initially posts one of these rules to the inference engine and again

when the engine evaluates the rule's premise.

Set and Remove Data Breakpoints

For step-by-step procedures for setting and removing data breakpoints, see

Setting and Removing Data Breakpoints in the CA Aion BREonline help.

Breakpoints

Chapter 18: Debug Aion BRE Applications 431

Set and Remove Code Breakpoints

You can set an unlimited number of code breakpoints for an application. Though

code breakpoints persist from session to session, they apply only during debug

sessions.

You can assign a breakpoint at the beginning of a method, at an executable line

within a method body, or on a rule name.

You cannot set breakpoints in or step into compiled libraries (such as the primary

libraries included with Aion BRE).

If you set a code breakpoint on a non-executable line (such as a comment, blank

line, or local variable definition), the Debugger will not stop at that breakpoint

during execution, unless the non-executable line is the first line of a method.

Active Method and Rule Breakpoints Pane

Every code breakpoint you set displays in the Active Method and Rule

Breakpoints pane (in the upper-right area of the Methods tab).

Breakpoints display either in the form n class.method where n is the line-number

in method, or in the form rule name in method.

Watchpoints

432 Product Guide

Set Breakpoints from the Methods Tab

You can set code breakpoints from either the Methods tab or in the Debugger's

Method Body pane.

See Setting Breakpoints from the Methods Tab in the CA Aion BRE online help for

step-by-step procedures relating to the following topics:

■ Setting breakpoints at the beginning of a method

■ Setting a breakpoint at an executable line within the method body

■ Setting a breakpoint on a rule name

■ Removing a code breakpoint

Watchpoints

A watchpoint lets you specify an attribute whose value you want to monitor.

When you set a watchpoint, during execution the value for the corresponding

attribute displays in the Watchpoint pane above the Method Body pane.

Note: You can set watchpoints only for instance or class attributes. You cannot

set watchpoints for local variables, input arguments, or output arguments. These

are already visible in the Arguments pane.

Set and Remove Watchpoints

For step-by-step procedures for setting and removing data watchpoints, see

Setting and Removing Data Watchpoints in the CA Aion BRE online help.

Debugger Settings

Use the Debugger's Settings dialog to customize how information displays for the

Debugger. Modifications to the Split Style, Show Tool Tips and Show Status Bar

settings take effect when you restart the Debugger. All other modifications to the

Settings dialog take effect upon close of the dialog. Aion saves the settings from

session to session.

Configure Debugger Settings

For step-by-step procedures for changing the debugger's settings, see

Configuring Debugger Settings in the CA Aion BRE online help.

Debug Aion BRE Applications

Chapter 18: Debug Aion BRE Applications 433

Debug Aion BRE Applications

This section describes the basic steps in the debugging process.

To start the Aion Debugger, from the Aion BRE application window, click the

Debug button. Aion BRE opens the Debugger, starts the application in debug

mode, pausing execution at the first line of the Start method body.

Set Breakpoints and Watchpoints

See Breakpoints for a description of breakpoints. See Watchpoints for a

description of watchpoints.

For step-by-step procedures for setting and removing data breakpoints and

watchpoints, see the following topics in the CA Aion BRE online help:

■ Setting and Removing Data Breakpoints

■ Setting and Removing Watchpoints

Control the Flow of Execution

The Debugger can execute from breakpoint to breakpoint, line-by-line, or

method-to-method. Depending on how you want to view the code, you can use

one or more of these options. At each stopping point in the execution, you

choose whether you want to continue execution to the next breakpoint or step

through the code.

To run to the next breakpoint, do one of the following:

■ Click the Continue execution toolbar button.

Or

■ Press F5.

Or

■ From the Run menu, choose Go.

If no breakpoints are set beyond the current line of execution, the Debugger runs

to the end of the application.

To control the flow of execution, do one of the following:

■ Use the buttons for Step In, Step Out, and Step Over.

Or

■ Use the corresponding options on the Debugger Run menu or the shortcut

keys indicated next to each menu option.

Debug Aion BRE Applications

434 Product Guide

Step In

When you choose Step In, the following occurs:

■ The next consecutive line in the method is executed.

■ If the line calls a method, it becomes the current method and displays in the

Method Body pane window.

■ The yellow arrow is positioned at the first line of that method.

Step Out

When you choose Step Out, the Debugger exits the current method or line, and

returns to the calling method or line.

Step Over

If you choose Step Over, the Debugger executes the next line in the current

method. If the line is a method call, the entire method is executed without being

stepped into.

Note: If the current method contains a breakpoint, Aion cannot complete

execution of the entire method when Step Over is chosen. Execution suspends at

the breakpoint line, and the current method displays in the Debugger's Method

Body pane.

View and Modify Data Values

You can view and modify the values for arguments, local variables and attributes

whenever the application suspends execution. The Debugger displays method

arguments and local variables in the Arguments pane. Class and Instance

attributes display in the Data tab.

For step-by-step procedures for modifying a value for a method argument, local

variable, or attribute, see Viewing and Modifying Data Values in the CA Aion BRE

online help.

Debug Aion BRE Applications

Chapter 18: Debug Aion BRE Applications 435

Use the Call Stack

The call stack-a list of all method calls that have not returned-displays in the

Stack list box at the top of the Debugger window:

When one method calls another method, the calling method execution is

suspended until the called method finishes executing. Consequently, nested

methods form a chain of active methods-methods whose execution has started

but not yet finished. Aion places the names of nested methods on the call stack.

Using the Stack list box on the Debugger window, you can view the call stack to:

■ Examine the chain of methods that brought the application to its current

stopping point or breakpoint.

■ View the body of any method in the chain so you can investigate individual

method lines that might have affected the current state of the application-for

example, other methods that might have been called or variables that might

have been set.

The Call Stack is structured as follows:

Debugging Rule-Based Inference

436 Product Guide

■ Methods in the chain are organized from most recently called (at the top of

the list) to least recently called.

■ The method at the bottom of the list is always the Start method of the entry

class.

■ If a method is an instance method, the current instance is included in the call

stack as the first entry. This simplifies accessing the attribute values for the

current instance.

■ The number at the end of each entry specifies the following:

– For the most recently called method, the current line (the next line to be

executed in the method).

– For all other methods, the last line executed (the line that called the next

higher method listed on the call stack).

– For Decision Tables, this line number currently has no significance.

To view a method in the call stack

■ Click a line in the Stack list box's drop-down list.

Or

■ From the Debugger View menu, choose Execution, Previous stack frame, or

Next stack frame.

The Debugger displays any arguments and local variables in the upper-left pane,

and the method text displays in the lower Method Body pane. As you select

different methods in the Call Stack, Aion displays their code in the Debugger

panes.

Note: Simply changing which method displays in the panes of the Debugger

window does not change which method is “current” (the method containing the

next line to be executed). Regardless of which method is displayed in the Method

Body pane, execution will continue from the yellow arrow in the top-most

method listed in the stack.

Debugging Rule-Based Inference

During rule-based reasoning, the Debugger displays information related to the

actions of the inference engine as it processes rules.

Note: For background information on inference engine processing and

rule-based reasoning, see the CA Aion BRE Rules Guide and CA Aion BRE Rules

online help.

Debugging Rule-Based Inference

Chapter 18: Debug Aion BRE Applications 437

Backward Chaining

During backward chaining, the Debugger's Method Body pane displays

information about the backward chaining goal stack and about the rules that the

inference engine has tried to apply.

For step-by-step procedures for following a backward chaining process in the

Debugger, see Backward Chaining in the CA Aion BRE online help.

Forward Chaining

When forward chaining with pattern-matching (IFMATCH) rules, you can display

current bindings and the rule-instance bindings for rules in the Debugger as they

execute.

For step-by-step procedures for following a forward chaining process in the

Debugger, see Forward Chaining in the CA Aion BRE online help.

Special Considerations for Decision Tables

As previously described in the topic, Decision Table Tab in the Debugger Tab

Pages section, when you step into a Decision Table at rule-post, evaluation, or

execution time in debug mode, the Decision Table tab displays a graphical view

of a Decision Table:

Shut Down the Debug Session

438 Product Guide

Conditions for Debugging a Decision Table

As you step over the conditions of a decision table (F10), several things happen:

■ The current row to be evaluated is indicated in the Method Body pane with a

right arrow.

If F10 does not advance the current row arrow, it may be because the engine

is actually operating on some portion of the implementation, however the

current line number in the Stack window should change.

■ The current row to be executed is highlighted on the graphical view on the

Decision Table tab.

■ In the Arguments pane, conditions that are evaluated are assigned an

internally created variable named _condition_n (where n is a variable

beginning at 1). The result of each evaluated condition is stored in the

defined variables.

■ Evaluated conditions with matching test values cause the appropriate cell in

the decision table tab to be highlighted. The highlight persists for the

duration of the decision table evaluation.

Actions for Debugging a Decision Table

If Aion cannot determine enough information from the conditions to proceed to

execute the actions, the Decision Table is pended. When a Decision Table is

pended, the last match value will not be shown in the graphical display before the

Debugger returns to the Rule List.

If the inferencing process later resets the Decision Table to ready status and

re-entered it, none of the previous cell statuses will be shown. The rule will be

completely re-evaluated.

Shut Down the Debug Session

To close the Debugger

■ Choose Stop Debugging from the Run menu

Or

■ Click the X symbol in the upper-right corner of the debug window.

When you close the Debug Window, CA Aion BRE retains all set code breakpoints

for use in future debugging sessions.

Chapter 19: Run and Build Applications 439

Chapter 19: Run and Build Applications

This chapter describes how to build a compiled version of an Aion BRE application

for deployment in a production environment.

Before an Aion BRE application can be run stand-alone, it must first be built. The

build process entails compiling and linking the Aion BRE application using the

Microsoft Visual C/C++ compiler. Before building, you can optionally specify

additional build directives from within Aion.

This section contains the following topics:

Run Aion BRE Applications (see page 439)

Prepare to Build Aion BRE Applications (see page 441)

Build the Application (see page 443)

Use Interface Layers (see page 444)

Deploy the Application (see page 446)

Run Aion BRE Applications

You can run an Aion BRE application in one of two ways:

■ Using the Aion interpreted mode (no compiling necessary)

■ As a stand-alone executable (must be compiled)

Run Aion BRE Applications Interpretively

The Aion BRE interpreter is primarily used for executing an application during its

development. If you run a non-compiled Aion BRE application from within Aion,

the application is automatically executed in Interpreted mode. Interpreted

execution speeds up application development because no compile or link steps

are required between editing sessions, and because extensive facilities for

runtime tracing and graphical debugging are provided.

Run Stand-Alone Applications

Stand-alone applications run considerably faster than applications running in

interpretive mode. Typically, an application is built when the development phase

is complete, and the stand-alone executable is ready for deployment into a

production environment (although it can be built at any time during development

as well). Stand-alone applications require the executable files produced for the

application and any included libraries.

Run Aion BRE Applications

440 Product Guide

Compile Applications

To build a stand-alone executable file, you must compile and link your Aion BRE

application using the Microsoft Visual C/C++ compiler (version 6.0 or higher).

The location of the compiler is the only required compiler-specific configuration

information.

Building Applications

The Build process creates a dynamic link library (DLL) that contains a compiled

version of all objects defined within the application library. If the application

library is designed to be an executable (for example, if the Entry class includes

the Start method), the build process also produces an executable file (EXE) that

contains the necessary code for initializing the Aion runtime environment.

During the build process, Aion BRE generates code for each method body,

invokes the specified compiler to compile the generated code, and then invokes

the linker to produce the executable library file.

Filenames

By default, Aion generates filenames of the form appname.dll and

_appname.exe (where appname is the name of your application).

For example, if your application is called PUZZLE.APP, building the application

produces a DLL named PUZZLE.DLL which contains a compiled version of all the

methods defined in the application. An executable file would be named

_PUZZLE.EXE.

Note: You can use the Library Properties dialog to assign a custom name to the

.EXE and .DLL files.

More Information:

Prepare to Build Aion BRE Applications (see page 441)

Included Libraries

Any custom libraries that are included by the application library must also be

built. However, building them separately is not required if your Build settings are

set up appropriately. If you want an application's included libraries to be built

automatically at build time, make sure you check the Auto flag on the Build tab

of the Settings dialog (choose Settings from the File menu). When this global flag

is checked, if a non-built or out-of-date library is included in the application at

build-time, the Aion recursive build feature will automatically build the included

library as well. See To specify build settings in the Configuring Build Settings

section in the CA Aion BRE online help for detailed instructions.

Prepare to Build Aion BRE Applications

Chapter 19: Run and Build Applications 441

By default, all Aion BRE applications include at least one (and usually more) of

the Aion BRE system libraries (such as SYSLib, or WINLib). All Aion BRE system

libraries have been pre-built, and so do not require explicit building. Once a

library has been built into a DLL, it does not need to be rebuilt unless the library

itself is modified, or any library that it includes is modified.

Note: You cannot use the Aion BRE build process to create .DLL files for external

methods. You can compile and link external methods only with your C compiler.

Prepare to Build Aion BRE Applications

Before building an application, check the items on the following list:

■ Verify that the Build Settings are correct.

Build Settings reflect general information needed for building any Aion BRE

application.

■ Specify any library-specific build directives.

Library-specific build directives are optional for an application.

Configure Build Settings

Before building an application, use the Build Settings dialog to provide Aion with

system-related build information. Aion BRE uses global Build Settings. Once they

are set, they apply to all Aion BRE applications; however, the settings can be

modified at any time, from any application.

Note: Typically, after you specify the build settings, they will not need to be

modified.

For step-by-step procedures for specifying build settings, see Configuring Build

Settings in the CA Aion BRE online help.

Directories Tab

For step-by-step procedures for specifying system locations for accessed and

generated files, see Directories Tab in the CA Aion BRE online help.

Run Tab

For step-by-step procedures for choosing options for running the built

application, see Run Tab in the CA Aion BRE online help.

Prepare to Build Aion BRE Applications

442 Product Guide

Build Tab

For step-by-step procedures for choosing which steps to include in the build, see

Build Tab in the CA Aion BRE online help.

Configure Library Properties

For each application, you can use the Library Properties dialog to specify build

directives and customize path information. Settings in the Library Properties

dialog apply only to the application from which the dialog was invoked.

Invoke the Library Properties Dialog

For step-by-step procedures for invoking the library properties dialog, see

Invoking the Library Properties Dialog in the CA Aion BRE online help.

Specify the Executable Directory

During the build process for an application, Aion generates a DLL for the

application and, optionally, an EXE file. By default, these files are created in the

appname.bin subdirectory of the application directory.

Once the link step completes successfully, the build process copies any files

required for stand-alone execution into the executable directory specified here.

During the build, each copied file is reported in the Build status pane.

Note: If an executable directory is not specified for the application, the

executable files are not copied.

Build the Application

Chapter 19: Run and Build Applications 443

In addition to generating the DLL and EXE files for the application library, Aion

also copies the DLL for each included library, and searches the application for

references to external DLLs (in the “Library” property of an external method). As

a result, a directory is created that contains all DLLs required for successful

execution of the built executables.

Aion will find all references to external DLLs when searching the Library property

of external methods. Some of the external DLLs may not be called by the specific

logic of the application and are therefore not needed by the application.

You can remove the unneeded DLLs, reducing the number of DLLs delivered with

the built application, and therefore reducing the size, and increasing the

performance, of the application.

Note: Some of the DLLs and EXEs copied by Aion BRE may be Windows System

Libraries. These Libraries should be available on the User's system and therefore

do not need to be copied over.

Note: Since some methods can be invoked dynamically, there is no way for the

Aion build process to reliably determine which external DLLs may not be used by

the application.

Build Directives

You can use the Build Directives page to specify an Interface Layer or filenames

for the generated files.

For step-by-step procedures for specifying an interface layer or filenames for the

generated files, see Build Directives in the CA Aion BRE online help.

Build the Application

Once you have specified Library Properties and any desired Build Directives, you

are ready to build the application.

For step-by-step procedures for building the application, see Building the

Application in the CA Aion BRE online help.

Stop the Build

At any time during the build, you can stop building by choosing Stop Build from

the Aion File menu. This menu option is only enabled when a build is in progress.

Note: If a build is canceled, the state of the intermediate files cannot be

guaranteed; therefore, for the next build you may want to use the auto or clean

options (specified in the Settings dialog-choose Settings from the File menu).

Use Interface Layers

444 Product Guide

Use Interface Layers

As object technology continues to mature, more software applications are being

built by combining different object types. For example, an application might be

written in Visual Basic, but use a DLL written in C to perform certain logical

operations, and may invoke an ActiveX control for a specific user interaction. You

can write Aion BRE applications that use objects packaged using a variety of

interfaces (for example, C or ActiveX).

In addition, Aion BRE applications or libraries can be generated using different

interface layers, which enables the Aion BRE application or library to be used or

embedded in some other application. Interface layers are used when generating

Aion BRE applications for use in other applications. When you specify an

Interface Layer, Aion generates additional code to essentially “wrap” the

application's method logic so that it conforms to the appropriate calling

conventions.

Use Interface Layers

Chapter 19: Run and Build Applications 445

Select an Interface Layer

If you do not explicitly specify an interface layer, the resulting DLL is only usable

by other Aion libraries or applications. Information about the COM Interface

Layer is located in the chapter on the COM component. Aion BRE applications can

be built and deployed in a number of object formats, including:

■ Aion BRE DLL (the default)

■ C DLL

■ C++ DLL

■ Managed C++ DLL (.NET assembly; only deployable in .NET environment)

■ Java

■ COM DLL (in-process)

■ COM EXE (out-of-process)

■ Microsoft Transaction Server

■ ActiveX control

■ MVS COM Client

■ CICS COBOL

■ CICS C

■ CICS PL/I

■ IMS COBOL

■ IMS C

■ IMS PL/I

■ MVS COBOL

■ MVS PL/I

■ TCP/IP Deployment

For step-by-step procedures for specifying an interface layer, see Selecting an

Interface Layer in the CA Aion BRE online help.

Deploy the Application

446 Product Guide

Deploy the Application

This section describes the files you will need to install the compiled Aion BRE

application.

After building the application, the resulting executable file is relatively small

(since most of the code is stored in the .DLL files that will ship with the

application). The proportions are analogous to the difference between the

physical size of a card catalog and the library of books. The application needs the

following files:

■ The executable file (.EXE)

■ .DLL files (including one for each library included in the application)

■ Any .DLL files containing the implementation of external methods

More Information:

Specify the Executable Directory (see page 442)

Appendix A: CA Aion Business Rules Expert with UML Modeling Software 447

Appendix A: CA Aion Business Rules

Expert with UML Modeling Software

This appendix explains how to use CA Aion BRE with UML modeling software,

which allows you to transfer and share models between two products. To do this,

both CA Aion BRE and a UML modeling tool must be installed, but they do not

have to run simultaneously.

UML integration enables you to:

■ Use a UML modeling program to specify your application classes.

■ Bring UML models into the CA Aion BRE development environment in order

to generate code.

■ Document Aion BRE applications using the diagramming facilities of UML

modeling software.

Integration with UML modeling software is based on the XML Metadata

Interchange (XMI) standard. The XMI standard describes the construction of an

XML document for model metadata interchange between tools. A UML model can

be exported to an XMI file, which then can be imported into CA Aion BRE.

Similarly, an Aion BRE application can be exported as an XMI file and then

imported into UML modeling software.

Note: For information about using UML modeling software, consult the

documentation provided with your modeling product.

Currently, CA Aion BRE supports integration with only CA's UML modeling tool,

CA Component Modeler (formerly known as Paradigm Plus). This appendix

describes integration with CA Component Modeler 4.1 and greater. Some details

may differ for Paradigm Plus 4.0.

Object Types

The following equivalent terms are used for objects in CA Aion BRE and UML:

Aion BRE Object UML Object

Class Class

Method Operation

Transferred Properties

448 Product Guide

Aion BRE Object UML Object

Attribute (All datatypes except Pointer) Attribute

Attributes of type Pointer to... (Note 1) Association ends (Note 1)

Note 1: See further explanation in the section Associations, Association Ends,

and Pointers.

Transferred Properties

When you transport UML models between UML modeling software and CA Aion

BRE, only certain object properties are transferred with the model:

Object Type Exported/Imported Properties

Class/Interfaces Name

Comments (Note 1)

Parent Class

Method/Operation Name

Input/Output arguments (Note 2)

Return Type (Note 2)

Comments (Note 1)

Scope (Public/Private/Protected)

Class Method

Attribute Name

Comments (Note 1)

Type (Note 3)

Scope

Class Attribute (static attribute in UML)

Constant Attribute

Initial Value

Note 1: See the information for your particular UML modeling tool. If you use CA

Component Modeler, comments are transferred using the Description tab of the

Properties window.

Note 2: Method parameters and return values of type Pointer to a class in CA

Aion BRE become references to the class in UML.

Note 3: Attributes of a type defined by a class in UML become class containment

in CA Aion BRE.

Associations, Association Ends, and Pointers

Appendix A: CA Aion Business Rules Expert with UML Modeling Software 449

Associations, Association Ends, and Pointers

Functionality of a UML model is not expressed merely through class

generalizations; in fact, generalizations have little to do with functionality. The

principal expression of functionality in a UML model is contained in how classes

are related to one another and refer to each other. The principal type of

relationship between classes is the association. Associations represent

reciprocal attributes between two classes.

Associations in UML

UML does not accommodate a data type of Pointer-to that allows attributes of a

class to refer to instances of another class. Instead, UML provides associations.

An association is a link between two (or more) classes that involves connections

among their instances. Consider two classes: Person and Company. To capture

the relationship of employment between persons and companies in UML, we

represent an association between the classes by drawing a line between them:

We then typically label the ends of these associations (where the association line

touches the class) with role names and multiplicities (to show how many

instances of the one class can participate in the association with an instance of

the other class). The completed relationship may be modeled in UML as:

Associations, Association Ends, and Pointers

450 Product Guide

According to the previous model, a Person performs the role of employee in this

association and can have only one Company as employer (or be unemployed).

Companies, however, may have many Persons (“*”) as their employees.

Correctly modeling this relationship in UML requires careful consideration of

which association end gets which role name and multiplicity. In UML, a role is

defined as the “face” that a class in an association presents to the class at the

opposite end of the association. Thus, the employer role is the face (interface)

that a Company presents to Persons in this association. Similarly, employee is

the face that Persons present to Companies. Roles go with the class performing

that role in the association. Multiplicities follow the role, for example, there is

zero or one employer in an Association with each Person instance, and there are

zero to many employees for each Company instance.

In programming, it is often convenient to use a Pointer to instances of one class

without a reciprocal attribute in that other class. This situation is called a directed

association in UML. It is represented by a directed arrow toward the class being

referred to. The association end on the pointing class is designated as

non-navigable.

Association Classes

UML also supports the concept of an association class. While related to

associations, association classes provide a way of conceptualizing the

association itself as a class. Association classes are most closely aligned with

_Associations in CA Aion BRE. It is necessary to observe a strict separation

between associations and association classes. Unless otherwise explicitly

mentioned, association classes are considered as part of the current discussion.

Map Association Ends to Pointers

It is important to put the role with the correct association end in order to have

the association correctly recreated within CA Aion BRE. The role names become

the names of attributes in the classes participating in the association. These are

attributes of the type Pointer to the class at the other end of the association.

However, because a role is only a “face”, and it is the class at the other end of the

association that “sees” this face, the role name becomes an attribute of the class

at the opposite end of the association. Roles cross to the other end when they

become attributes in implementation classes. Thus, the preceding association

between Person and Company would be represented by classes and Pointer

attributes in CA Aion BRE as:

Import and Export UML Models

Appendix A: CA Aion Business Rules Expert with UML Modeling Software 451

(This crossover occurs when implementing a UML association in any

object-oriented language. The only difference between CA Aion BRE and some

other object-oriented languages is that not all object-oriented languages use

explicit pointer data types for such references.)

If rolenames had not specified, CA Aion BRE would have generated default

names of the form:

pCompany is &Company

pEmployee is list of &Person

Note: While the “employee” role (singular) is correct given the semantics of

UML, it is more desirable to use “employees” for the name of the attribute in CA

Aion BRE. It may be considered a matter of preference in UML to use

“employees” for the rolename rather than “employee”.

CA Aion BRE maps the multiplicities specified in the UML into either single value

attributes of type Pointer-to or to a list of pointers. Multiplicities of zero or one

(for example, 1, 0..1, or 0,1) are mapped to single value attributes whose value

may include NULL. All other multiplicities whose high end is greater than 1 are

mapped to lists. This mapping implies that constrained multiplicities, such as

0..3, will not be explicitly preserved as such in CA Aion BRE. A multiplicity of 0..3

will be a list of pointers of unrestricted membership (cardinality).

Except for the case of Class Containment, all multiplicities, when mapped into CA

Aion BRE or exported from CA Aion BRE, will assume the possibility of zero

cardinality. That is, all multiplicities will be treated in CA Aion BRE as either 0..1

(single value attribute) or 0..* (for lists).

Note: Class Containment may be specified in the UML by using the name of the

contained class as the datatype of an attribute. This is only a temporary solution

for representing class containment in UML; although the syntax matches CA Aion

BRE's syntax for class containment, the semantics of the UML expression does

not match the semantics of class containment in CA Aion BRE. For the

appropriate UML representation of class containment, see the section Class

Containment in the chapter “Aion Objects Overview”.

Import and Export UML Models

UML models can be imported into CA Aion BRE. CA Aion BRE can also produce

UML models that can be imported into a UML modeling tool.

Import and Export UML Models

452 Product Guide

Import UML Models

For step-by-step-procedures for importing UML models, see Importing a UML

Model in the CA Aion BRE online help.

For information about which properties are preserved on import, see Transferred

Properties.

For information on importing UML models that have been exported from CA Aion

BRE into a UML modeling tool, see the documentation for your UML modeling tool

(for example, CA Component Modeler).

More Information:

Transferred Properties (see page 448)

CA Component Modeler (see page 454)

Merge UML Models with Aion Applications

During the Aion application development process, it is frequently necessary to go

back and reconsider the model of the application in the modeling tool. This

process typically leads to making incremental changes in the UML model that are

to be fed back into, or merged, with the existing Aion application.

To make incremental model changes to the Aion application, you can export the

Aion application and re-import it into your UML modeling tool (for example, A CA

Component Modeler). Since you are exporting the entire Aion application, which

has probably grown since its initial design and importation into Aion, you should

replace the original model with the one generated by CA Aion BRE. Make the

required changes to the model, then export the new model and import it into

your Aion application.

Import and Export UML Models

Appendix A: CA Aion Business Rules Expert with UML Modeling Software 453

By expanding the class trees in the Import dialog, the programmer can now

select those classes to import that have changed.

Note: Once a class is selected, all of its subclasses are automatically selected for

importation.

CA Aion BRE matches imported classes and existing classes in the Aion

application file based on name and parentage. The following rules apply:

■ If the name and parentage of imported class exactly matches the name and

parentage of an existing class, CA Aion BRE copies the methods and

attributes of the imported class into the existing class.

Note: Currently, CA Aion BRE does not attempt to make any judgments on

whether an imported method or attribute is the same or different than an

existing one. If a matching method or attribute name already exists within

the class, CA Aion BRE will copy the imported method or attribute into the

class and append the name with an underscore, “_”. The method signature

or attribute type is not considered in this match. It is left to the programmer

to decide what to do about the matching methods and attributes that result

from a class merger. In most cases, the appropriate action is simply to delete

the method or attribute with the underscore.

Note: Merging methods and attributes in this fashion does not provide a

distinction between existing methods and attributes that have been deleted

from the model in the modeling tool but have not yet been deleted in the

Aion application and new methods and attributes that were added to the

model in the modeling tool. Distinguishing these in the merged class is left to

the programmer.

■ If an imported class matches in name to an existing class but the parentage

does not match, the importation of that class (and any subclasses) will be

failed by the CA Aion BRE importer. If a failed class is truly to be imported, it

is necessary for the programmer to make proper adjustments in the existing

Aion application, such as deleting or renaming the existing class, and

reimporting the class. If an existing class or hierarchy is to be included under

a new parent and existing methods should be kept for the sake of retaining

their implementations, first cut and paste the existing class or hierarchy to

the new parent before importing it.

CA Component Modeler

454 Product Guide

Export to UML Models

You can export CA Aion BRE libraries as UML models that can be used by CA

Component Modeler.

Note: Only certain properties are exported. For information, see Transferred

Properties.

For step-by-step-procedures for exporting Aion libraries to UML models, see

Exporting to a UML Model in the CA Aion BRE online help.

For information on exporting UML models from a UML modeling tool, see the

documentation for your UML modeling tool (for example, CA Component

Modeler).

CA Component Modeler

If one of the methodologies supported by CA Component Modeler is used, the

level of ImplementationModel should be used to model an Aion application,

because CA Aion BREis an implementation language. CA Aion BRE models should

be created as packages contained within an implementation model. A package

should be thought of as mapping to a library in the CA Aion BRE implementation.

Important! When exporting a model from CAComponent Modeler for use with

CA Aion BRE, you should not select the XMI 1.1 Compatibility option in the export

wizard. Accept the default XMI produced by CA Component Modeler.

Libraries exported from CA Aion BRE can be imported into either models or

packages in CA Component Modeler.

It is highly recommended that libraries be imported into packages. Observe the

following guidelines as standard procedure for using CA Component Modeler

import facilities:

■ In general, the import options of Import and Generalize will not be helpful

when working the CA Aion BRE libraries.

■ When importing a CA Aion BRE library as a model or package, use the import

options of Merge or Replace. Using the import option of Containment may

not provide all the functionality you wish.

Note: Importing the CA Aion BRE model will rename the UML model or package

with the name of the Aion application.

CA Component Modeler

Appendix A: CA Aion Business Rules Expert with UML Modeling Software 455

It is typical that an Aion application should use other Aion applications as

included libraries. There are several approaches to modeling the library structure

of an Aion application with packages in CA Component Modeler. The simplest is

package containment. Two packages are required, one contained under the

other.

Note: When importing CA Aion BRE libraries into CA Component Modeler, these

packages must be created before the import.

The containing package represents the included library of the Aion application.

The contained package is the Aion application.

You can create inheritance relationships between classes in the containing

package and those in containing package. This type of relationship is preserved

when the contained package is exported from CA Component Modeler and will be

recognized when it is imported by CA Aion BRE. If the Aion application includes

the appropriate library corresponding to the containing package, a similar

inheritance relationship will be automatically established in CA Aion BRE.

Note: CA Component Modeler supports a hierarchy of included libraries

(contained containing packages); however, this hierarchy can only be a single

hierarchy. That is, the Aion application can include at most one library. To

represent Aion library inclusions in which an Aion app includes more than one

library requires CA Component Modeler's more sophisticated package

management facilities, such a publication or the package permission

relationship.

Data Type Mapping

CA Component Modeler supports dynamic creation of data types. It is suggested

that you use data type names that correspond to the data types in CA Aion BRE

when you specify the data type of an attribute or specify the signature of a

method.

You may define data types of type list of string or array of integer.

Note: Maintain consistent capitalization when dynamically specifying data

types. CA Component Modeler is case sensitive, so that “integer” and “Integer”

are treated as two different data types.

The following section describes how to construct elements in your UML model

that correspond to specific structures in CA Aion BRE.

Standards

456 Product Guide

Modeling _Interfaces

CA Aion BRE provides _Interfaces in order to define pure abstract interfaces for

classes. It is possible to model _Interfaces directly in a UML model in CA

Component Modeler. To create an abstract interface, select the Interface icon

from the palette (the Interface icon looks like a lollipop that has fallen on its side)

and drag it onto your class model. In CA Component Modeler, Interfaces are

treated exactly like _Interfaces in CA Aion BRE, in that the UML Interface allows

you to specify only method signatures.

To relate the interface to a class that implements the interface, it is necessary to

draw a realization abstraction relationship between the class and the interface.

Select the Abstraction relationship from the palette and draw the relationship

from the class to the interface. Choose the “Realization” stereotype from the

pop-up menu that results when you connect the relationship to the target (the

interface). You should see the relationship as a dashed line with a generalization

arrowhead and a stereotype of <<realize>>. The CA Aion BRE importer uses this

information to populate the Implements list for the class.

Note: Make sure that you use the realization abstraction relationship between

the class and the interface. Any other relationship will be ignored by the CA Aion

BRE importer.

As in CA Aion BRE, you should specify the methods defined on the Interface as

members of the implementing class as well. Failure to do this will create Invalids

in Aion when the class and its interface are imported into CA Aion BRE.

Standards

The following standards should be observed when using CA Aion BRE with a UML

modeling tool:

■ Always provide unique association end names (role names) for the navigable

ends of an association in a UML model. These names are used as the names

of the instance pointer attributes in CA Aion BRE and must be unique within

an Aion application. This standard applies as well to directed associations;

the navigable end must have a name.

■ Avoid using UML aggregation (the open diamond) and composition (the

black diamond). These structures do not translate into any constructs within

CA Aion BRE.

Standards

Appendix A: CA Aion Business Rules Expert with UML Modeling Software 457

■ Use only multiplicities of 0,1 (zero to one) and 0..* (zero to many) on

association ends. These are supported in CA Aion BRE.

■ In CA Aion BRE, avoid using class-level attributes that define an association

(that is, a class attribute of type Pointer-to an instance of some class). Such

constructs are not supported in UML; role names cannot be defined as static.

■ Do not use spaces in names in UML models that are intended to be imported

into CA Aion BRE

■ Use consistent capitalization for data types throughout a CA Aion BRE

application. Differently capitalized data types in CA Aion BRE yield distinct

data types in CA Component Modeler.

Appendix B: Aion--Acknowledgements 459

Appendix B: Aion--Acknowledgements

This appendix provides acknowledgements for CA and third-party software used

with CA Process Manager.

Apache Software License, Version 2.0

460 Product Guide

Apache Software License, Version 2.0

Portions of this product include software developed by the Apache Software

Foundation (http://www.apache.org/). The Apache software is distributed in

accordance with the following license agreement.

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction, and

distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by the copyright

owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all other entities that

control, are controlled by, or are under common control with that entity. For the

purposes of this definition, "control" means (i) the power, direct or indirect, to

cause the direction or management of such entity, whether by contract or

otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding

shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity exercising permissions

granted by this License.

 "Source" form shall mean the preferred form for making modifications, including

but not limited to software source code, documentation source, and

configuration files.

 "Object" form shall mean any form resulting from mechanical transformation or

translation of a Source form, including but not limited to compiled object code,

generated documentation, and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or Object form,

made available under the License, as indicated by a copyright notice that is

included in or attached to the work (an example is provided in the Appendix

below).

http://www.apache.org/
http://www.apache.org/

Apache Software License, Version 2.0

Appendix B: Aion--Acknowledgements 461

 "Derivative Works" shall mean any work, whether in Source or Object form, that

is based on (or derived from) the Work and for which the editorial revisions,

annotations, elaborations, or other modifications represent, as a whole, an

original work of authorship. For the purposes of this License, Derivative Works

shall not include works that remain separable from, or merely link (or bind by

name) to the interfaces of, the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including the original version

of the Work and any modifications or additions to that Work or Derivative Works

thereof, that is intentionally submitted to Licensor for inclusion in the Work by

the copyright owner or by an individual or Legal Entity authorized to submit on

behalf of the copyright owner. For the purposes of this definition, "submitted"

means any form of electronic, verbal, or written communication sent to the

Licensor or its representatives, including but not limited to communication on

electronic mailing lists, source code control systems, and issue tracking systems

that are managed by, or on behalf of, the Licensor for the purpose of discussing

and improving the Work, but excluding communication that is conspicuously

marked or otherwise designated in writing by the copyright owner as "Not a

Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of

whom a Contribution has been received by Licensor and subsequently

incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this

License, each Contributor hereby grants to You a perpetual, worldwide,

non-exclusive, no-charge, royalty-free, irrevocable copyright license to

reproduce, prepare Derivative Works of, publicly display, publicly perform,

sublicense, and distribute the Work and such Derivative Works in Source or

Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License,

each Contributor hereby grants to You a perpetual, worldwide, non-exclusive,

no-charge, royalty-free, irrevocable (except as stated in this section) patent

license to make, have made, use, offer to sell, sell, import, and otherwise

transfer the Work, where such license applies only to those patent claims

licensable by such Contributor that are necessarily infringed by their

Contribution(s) alone or by combination of their Contribution(s) with the Work to

which such Contribution(s) was submitted. If You institute patent litigation

against any entity (including a cross-claim or counterclaim in a lawsuit) alleging

that the Work or a Contribution incorporated within the Work constitutes direct

or contributory patent infringement, then any patent licenses granted to You

under this License for that Work shall terminate as of the date such litigation is

filed.

4. Redistribution. You may reproduce and distribute copies of the Work or

Derivative Works thereof in any medium, with or without modifications, and in

Source or Object form, provided that You meet the following conditions:

Apache Software License, Version 2.0

462 Product Guide

 (a) You must give any other recipients of the Work or Derivative Works a copy

of this License; and

 (b) You must cause any modified files to carry prominent notices stating that

You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works that You

distribute, all copyright, patent, trademark, and attribution notices from the

Source form of the Work, excluding those notices that do not pertain to any part

of the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its distribution, then any

Derivative Works that You distribute must include a readable copy of the

attribution notices contained within such NOTICE file, excluding those notices

that do not pertain to any part of the Derivative Works, in at least one of the

following places: within a NOTICE text file distributed as part of the Derivative

Works; within the Source form or documentation, if provided along with the

Derivative Works; or, within a display generated by the Derivative Works, if and

wherever such third-party notices normally appear. The contents of the NOTICE

file are for informational purposes only and do not modify the License. You may

add Your own attribution notices within Derivative Works that You distribute,

alongside or as an addendum to the NOTICE text from the Work, provided that

such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may

provide additional or different license terms and conditions for use, reproduction,

or distribution of Your modifications, or for any such Derivative Works as a

whole, provided Your use, reproduction, and distribution of the Work otherwise

complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any

Contribution intentionally submitted for inclusion in the Work by You to the

Licensor shall be under the terms and conditions of this License, without any

additional terms or conditions. Notwithstanding the above, nothing herein shall

supersede or modify the terms of any separate license agreement you may have

executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,

trademarks, service marks, or product names of the Licensor, except as required

for reasonable and customary use in describing the origin of the Work and

reproducing the content of the NOTICE file.

Apache Software License, Version 2.0

Appendix B: Aion--Acknowledgements 463

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in

writing, Licensor provides the Work (and each Contributor provides its

Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS

OF ANY KIND, either express or implied, including, without limitation, any

warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or

FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for

determining the appropriateness of using or redistributing the Work and assume

any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort

(including negligence), contract, or otherwise, unless required by applicable law

(such as deliberate and grossly negligent acts) or agreed to in writing, shall any

Contributor be liable to You for damages, including any direct, indirect, special,

incidental, or consequential damages of any character arising as a result of this

License or out of the use or inability to use the Work (including but not limited to

damages for loss of goodwill, work stoppage, computer failure or malfunction, or

any and all other commercial damages or losses), even if such Contributor has

been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or

Derivative Works thereof, You may choose to offer, and charge a fee for,

acceptance of support, warranty, indemnity, or other liability obligations and/or

rights consistent with this License. However, in accepting such obligations, You

may act only on Your own behalf and on Your sole responsibility, not on behalf of

any other Contributor, and only if You agree to indemnify, defend, and hold each

Contributor harmless for any liability incurred by, or claims asserted against,

such Contributor by reason of your accepting any such warranty or additional

liability.

Apache Software License, Version 1.1

464 Product Guide

Apache Software License, Version 1.1

This product includes software developed by the Apache Software Foundation

(http://www.apache.org/). The Apache software is distributed in accordance

with the following license agreement.

The Apache Software License, Version 1.1

Apache Ant 1.5.3

Copyright (C) 2000-2003 The Apache Software Foundation. All rights reserved.

Apache Axis 1.1

Copyright (c) 2002 The Apache Software Foundation. All rights reserved.

Apache Cactus 1.5

Copyright (c) 2001-2003 The Apache Software Foundation. All rights reserved.

Apache Jakarta-Oro 2.0

Copyright (c) 2000-2002 The Apache Software Foundation. All rights reserved.

Apache Log4j 1.2.8

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

Apache Tomcat 4.1.29

Copyright (c) 1999, 2000 The Apache Software Foundation. All rights reserved.

Apache Xalan C++ 1.6

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

Apache Xalan Java 2.5.2

Copyright (c) 1999-2003 The Apache Software Foundation. All rights reserved.

Apache Xerces C++ 2.3

Copyright (c) 1999-2001 The Apache Software Foundation. All rights reserved.

Apache Xerces Java 2.6

Copyright (C) 1999-2003 The Apache Software Foundation. All rights reserved.

http://www.apache.org/
http://www.apache.org/

Apache Software License, Version 1.1

Appendix B: Aion--Acknowledgements 465

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

The end-user documentation included with the redistribution, if any, must

include the following acknowledgment: "This product includes software

developed by the Apache Software Foundation (http://www.apache.org/)."

Alternately, this acknowledgment may appear in the software itself, if and

wherever such third-party acknowledgments normally appear.

The names "Ant", “Axis”, “Cactus”, “The Jakarta Project”, “Jakarta-Oro”, “log4j”,

“Tomcat”, “Xalan”, “Xerces”, “Apache” and "Apache Software Foundation" must

not be used to endorse or promote products derived from this software without

prior written permission. For written permission, please contact

apache@apache.org.

Products derived from this software may not be called "Apache" or

“Jakarta-Oro”, nor may "Apache" or “Jakarta-Oro” appear in their name, without

prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED “AS IS'' AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR

ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Apache Ant, Axis, Cactus, Jakarta-Oro, Log4J and Tomcat consist of voluntary

contributions made by many individuals on behalf of the Apache Software

Foundation. For more information on the Apache Software Foundation, please

see <http://www.apache.org/>.

Portions of Apache Jakarta-Oro are based upon software originally written by

Daniel F. Savarese. We appreciate his contributions.

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

Apache Software License, Version 1.1

466 Product Guide

Apache Xalan C++ and Xalan Java consist of voluntary contributions made by

many individuals on behalf of the Apache Software Foundation and were

originally based on software copyright (c) 1999, Lotus Development

Corporation, http://www.lotus.com. For more information on the Apache

Software Foundation, please see <http://www.apache.org/>.

Apache Xerces C++ and Xerces Java consist of voluntary contributions made by

many individuals on behalf of the Apache Software Foundation and were

originally based on software copyright (c) 1999, International Business

Machines, Inc., http://www.ibm.com. For more information on the Apache

Software Foundation, please see <http://wwww.apache.org/>.

http://www.lotus.com/
http://www.apache.org/
http://www.ibm.com/
http://www.apache.org/
http://www.apache.org/

BusinessObjects Software License

Appendix B: Aion--Acknowledgements 467

BusinessObjects Software License

Terms and Conditions for the Use of

Business Objects Software Limited - BusinessObjects Enterprise XI Release 2

BUSINESS OBJECTS LICENSE AGREEMENT

IMPORTANT-READ CAREFULLY: THIS IS A LEGAL AGREEMENT BETWEEN YOU

AND BUSINESS OBJECTS FOR THE BUSINESS OBJECTS SOFTWARE PRODUCT

ACCOMPANYING THIS AGREEMENT, WHICH MAY INCLUDE COMPUTER

SOFTWARE, ASSOCIATED MEDIA, PRINTED MATERIALS AND ONLINE OR

ELECTRONIC DOCUMENTATION (?SOFTWARE?). BEFORE CONTINUING WITH

THE INSTALLATION OF THE SOFTWARE, YOU MUST READ, ACKNOWLEDGE AND

ACCEPT THE TERMS AND CONDITIONS OF THE SOFTWARE LICENSE

AGREEMENT THAT FOLLOWS (?AGREEMENT?). IF YOU DO NOT ACCEPT THE

TERMS AND CONDITIONS OF THE AGREEMENT, YOU MAY RETURN, WITHIN

THIRTY (30) DAYS OF PURCHASE, THE SOFTWARE TO THE PLACE YOU

OBTAINED IT FOR A FULL REFUND.

1. GRANT OF LICENSE. Business Objects grants you a nonexclusive and limited

license to use the Software products and functionalities for which you have paid

the applicable fees solely for your internal business purposes and in accordance

with the terms and conditions of this Agreement. The Software is licensed, not

sold, to you. If you acquired this product as a special offer or as a promotional

license included with another Business Objects product, additional restrictions

apply as set forth in section 3.9 below. If you acquired this product bundled or

in combination with a third party product, you may only use the Software with

the third party product as described in section 3.6 (?Restricted License?) below.

This license does not apply to any other software program provided with the

Software, including promotional software, which is governed by the online

software license agreement included with that software.

?Business Objects? is the Business Objects company from whom you are

purchasing the Software or related services, either directly or indirectly through

a reseller.

2. INSTALLATION AND USE. You may install and use the Software only in the

configuration and for the number of licenses acquired by you. You may also

install non-production copies of the Software as is reasonably necessary for

disaster recovery, emergency restart and backup, including, but not limited to

making copies for such purposes for use at one or more disaster recovery sites.

In order to exercise your rights to the Software under this License Agreement

you must activate your copy of the Software in the manner described during the

launch sequence. Business Objects may control the number and type of licenses

and the use of the Software by key codes.

3. LICENSE TYPES AND DEFINITIONS.

BusinessObjects Software License

468 Product Guide

3.1. Named User License (?NUL?). When the Software is licensed on a Named

User basis, each individual Named User must be specifically identified as the sole

holder of a NUL. The sharing of the NUL by more than one individual is expressly

prohibited. In addition, NUL(s) may not be transferred from one individual to

another unless the original end user no longer requires, and is no longer

permitted, access to the Software. NUL(s) are assigned to a single Deployment

and may not be shared among different Deployments.

3.2. Concurrent Access License (?CAL?). When the Software is licensed on a

Concurrent Access basis, the aggregate number of end users accessing the

Software at any one time may not exceed the number of CALs you have

obtained. CAL(s) are assigned to a particular Deployment, and may not be

shared among different Deployments. When using Concurrent Access licenses,

you may not utilize a program or system to cache or queue report requests.

3.3. Processor License. When the Software is licensed on a Processor basis, the

aggregate number of central processing units (?Processors?) running any

Software components(s) (except the Web Connector, SDK, Report Publishing

Wizard and report viewers) may not exceed the number of Processors licensed.

A multi-core chip Processor with N processor cores shall be counted as N

Processors.

3.4. Server License (Data integration products only). When the Software is

licensed on a Server basis, the Software may be loaded onto a single computer

with up to four Processors.

3.5. LPAR License (DB2 Information Integrator only). A LPAR license permits

use of the Software with a single data source on a single logical partition as

implemented by IBM.

3.6. Restricted License. If you acquired the Software bundled or otherwise

provided in combination with or for use with a third party product (?OEM

Application?), you have acquired a Restricted License. You may use each

licensed copy of the Software only in conjunction with the OEM Application with

which it was provided. Accessing data that is not specifically created or

processed by the OEM Application is in violation of this license. If the OEM

Application requires the use of a data mart or data warehouse, the Software may

be used with the data mart or data warehouse only to access data created or

processed by the OEM Application. Restricted Licenses may not be combined

with unrestricted licenses in the same Deployment.

3.7. Development License. If you receive a Development License, you may use

the number and type of licenses acquired only to develop or test Deployments. A

Development License cannot be used in or transferred to a production

environment.

BusinessObjects Software License

Appendix B: Aion--Acknowledgements 469

3.8. Update License. If you received the Software as an update to a previously

licensed product, your license to use the Software is limited to the aggregate

number of licenses you have acquired for the previous product. If you choose to

use the Software and the previous product simultaneously, the aggregate

number of licenses used to access the Software and the previous product may

not exceed the aggregate number of licenses you acquired for the previous

product.

3.9. Promotional License. If you received the Software as a special offer or

promotional license (?Promotional License?), you may only use the Promotional

Licenses with a new Deployment. Promotional Licenses may not be added to or

used with an existing Deployment or Project.

3.10. Evaluation/Not for Resale License. An Evaluation or Not For Resale license

may be used only for the number and type of licenses specified and for the period

specified on the Software packaging, ordering or shipping documentation. If the

ordering or shipping documentation specifies a particular project, the Software

may be used only with that project. An Evaluation License may only be used for

evaluation purposes and may not be used for production purposes.

Notwithstanding any other provision of this Agreement, Software provided under

an Evaluation or Not for Resale licenses is provided ?AS-IS? without warranty of

any kind, express or implied. An Evaluation License or Not for Resale License

may be terminated by Business Objects upon written notice at any time.

3.11. Definitions. ?Deployment? means a single installation of no more than one

of the following Software modules: Repository, Security Domain, Central

Management Server (?CMS?) or CMS Cluster. ?Project? means one or more

Deployments (a) providing the same or substantially similar reports; (b) utilizing

the same or a substantially similar custom application interface; or (c) used with

applications consisting of related modules or components.

4. PRODUCT SPECIFIC USE RIGHTS.

4.1. Performance Management Application Modules/Solutions. The software

components, tools and utilities supplied with a Performance Management

Application Module/Solution may only be used with the product with which they

were provided.

4.2. BusinessObjects Enterprise. You may not combine licenses for different

editions of BusinessObjects Enterprise in a single Deployment (for example,

Premium licenses may not be combined with Professional licenses in the same

Deployment). You may use BusinessObjects Enterprise Professional to publish

and distribute only one of Business Objects' proprietary report format types

(Crystal Reports, OLAP Intelligence/Crystal Analysis, Web Intelligence/Desktop

Intelligence). Web Intelligence and Desktop Intelligence are deemed a single

proprietary report format for this purpose. If you wish to publish and distribute

more than one report format type, you must acquire BusinessObjects Enterprise

Premium.

BusinessObjects Software License

470 Product Guide

4.3. BusinessObjects Enterprise Professional and Crystal Enterprise Professional

Options. BusinessObjects Enterprise Professional Options are licensed as

add-ons to a Deployment. Options include Crystal Reports Explorer, Auditing,

Publishing, Live Office, Integration Kits for third party applications and other

products designated as BusinessObjects Enterprise Options. The number and

type of Option licenses must match the number and type of BusinessObjects

Enterprise licenses in the Deployment in which the Options are used.

4.4. Web Intelligence Interactive Viewing. Keycodes to Web Intelligence

Interactive Viewing unlock all features of the full Web Intelligence product.

However, Web Intelligence Interactive Viewing is a limited license and may not

be utilized to edit or create documents.

4.5. BusinessObjects Rapid Marts. When licensing BusinessObjects Rapid Marts,

a license for BusinessObjects Data Integrator must also be obtained. If

BusinessObjects Rapid Marts are licensed with BusinessObjects Data Integrator,

an individual BusinessObjects Rapid Marts license must be obtained for each

BusinessObjects Data Integrator license. Copying one BusinessObjects Rapid

Marts license and then deploying it to other instances is prohibited. In addition

to the foregoing, you must license certain applicable application interfaces.

4.6. BusinessObjects Data Integrator. If you desire to deploy a Server License to

access enterprise data sources such as packaged applications, mainframes, or

technology infrastructure products (?Enterprise Data Sources?), you must

obtain individual BusinessObjects Data Integrator Interface licenses.

4.7. BusinessObjects Data Integrator Interfaces. When licensing the

BusinessObjects Data Integrator Interfaces, licenses for BusinessObjects Data

Integrator must also be obtained. An individual interface license must be

acquired for each BusinessObjects Data Integrator license. If multiple instances

of an Application, Technology, or Mainframe type are accessed by the

BusinessObjects Data Integrator Interface, then one interface license must be

acquired for each instance. If multiple instances of a Database type are accessed

by the BusinessObjects Data Integrator Interface, then only one interface license

must be acquired for that Database type. Unlike other Interfaces, Database

interfaces are charged per database type and not per instance.

BusinessObjects Software License

Appendix B: Aion--Acknowledgements 471

4.8. BusinessObjects Knowledge Accelerator. BusinessObjects Knowledge

Accelerator may be used to meet your employee training needs for the number

of employees identified to Business Objects (?Employees?) and may not be used

by or on behalf of any third party. You shall purchase additional licenses equal to

the number of additional or new Employees to be trained. Any customization

tools included with the BusinessObjects Knowledge Accelerator Product (RWD

Info Pak Simulator, Publisher and Web Architect) shall be used only for modifying

or customizing the content developed by BusinessObjects Knowledge

Accelerator Product, and only by the number of instructional designers and

administrators specified in the sales order. You shall not modify, reverse

engineer, or distribute for commercial or non-commercial use of such tools, or

use such tools to develop other content, including content related to other

Business Objects products. A Named User License of Knowledge Accelerator

may not be transferred to another individual unless the original Named User is no

longer employed by You.

4.9. BusinessObjects Publisher. BusinessObjects Publisher may be licensed on

a: 1) Processor basis, or 2) Named User basis, where each recipient of a report

generated by BusinessObjects Publisher must have a Named User license.

5. OWNERSHIP. Business Objects and/or its suppliers retain all right, title and

interest in and to the Software and all copies at all times, regardless of the form

or media in or on which the original or other copies may subsequently exist. You

neither own nor hereby acquire any claim or right of ownership to the Software

or to any related patents, copyrights, trademarks or other intellectual property.

You agree to retain the Software, the terms of this Agreement as well as any

Software benchmark or similar tests (whether performed by you, Business

Objects or any third party) in confidence and prevent them from unauthorized

disclosure or use except with Business Objects' prior written consent. Business

Objects and/or its suppliers reserve all rights not expressly granted to you.

Business Objects' suppliers are the intended third party beneficiaries of this

License Agreement and have the express right to rely upon and directly enforce

the terms set forth herein.

6. COPYRIGHT. The Software is copyrighted by Business Objects and/or its

suppliers and is protected by United States copyright and patent laws and

international treaty provisions. You may not copy the Software except: (a) to

provide a non-production backup copy; or (b) to install the Software components

licensed by you, as set forth in Sections 2, on to computers as part of executing

the Software. Solely with respect to the documentation included with the

Software, you may make a reasonable number of copies (either in hardcopy or

electronic form), provided that such copies shall be used only by licensed end

users in conjunction with their use of the Software and are not republished or

distributed to any third party. You must reproduce and include all copyright

notices, trademarks or other proprietary legends of Business Objects and its

suppliers on any copy of the Software or documentation made by you. Any and

all other copies of the Software made by you are in violation of this Agreement.

BusinessObjects Software License

472 Product Guide

7. RESTRICTIONS. Except as expressly permitted by this License Agreement or

by applicable law you may not: (a) lease, loan, resell, assign, sublicense, or

otherwise distribute the Software or any of the rights granted by this License

Agreement without the express written permission of Business Objects; (b) use

the Software to provide or operate Application Service Provider (ASP), service

bureau, marketing, training, outsourcing services, or consulting services, or any

other commercial service related to the Software or to develop training

materials; (c) modify (even for purposes of error correction), adapt, or translate

the Software or create derivative works therefrom except as necessary to

configure the Software using the menus, options and tools provided for such

purposes and contained in the Software; (d) in any way reverse engineer,

disassemble or decompile the Software or the .RPT report file format (including

reverse compiling to ensure interoperability) or any portion thereof except to the

extent and for the express purposes authorized by applicable law

notwithstanding this limitation; (e) use the Software to develop a product which

is competitive with any Business Objects product offerings; (f) use the Software

to develop a product that converts the report file (.RPT) format to an alternative

report file format used by any general-purpose report writing, data analysis or

report delivery product that is not the property of Business Objects; (g) use

unauthorized keycode(s) or distribute keycode(s); (h) disclose any Software

benchmark results to any third party without Business Objects' prior written

approval, (i) permit third party access to, or use of the Software except as

expressly permitted herein, and (j) distribute or publish keycode(s). If you wish

to exercise any right to reverse engineer to ensure interoperability in accordance

with applicable law, you shall first provide written notice to Business Objects and

permit Business Objects, at its discretion, to make an offer to provide

information and assistance reasonably required to ensure Software

interoperability with your other products for a fee to be mutually agreed upon (if

any).

8. LIMITED WARRANTY AND REMEDY.

(a) Business Objects warrants to you that: (i) for a period of thirty (30) days

from delivery of the Software, the Software will substantially conform to the

functional description set forth in the standard documentation accompanying the

Software; and (ii) for a period of thirty (30) days from delivery the physical

media (e.g., CD-ROM), such physical media will be free from defects in materials

and workmanship. Any implied warranties on the Software and media are limited

to thirty (30) days from delivery, to the extent such warranties cannot be

disclaimed under Section 8(c) below. The above warranties specifically exclude

defects resulting from accident, abuse, unauthorized repair, modifications, or

enhancements, or misapplication. Business Objects does not warrant that the

Software will operate uninterrupted or error free. Delivery of additional copies of,

or revisions or upgrades to, the Software, including releases provided under

Support Services, shall not restart or otherwise affect the warranty period.

BusinessObjects Software License

Appendix B: Aion--Acknowledgements 473

(b) Your exclusive remedy for breach of the above-stated limited warranty shall

be, at Business Objects' option, either: (i) correction or replacement of the

Software with product(s) which conform to the above-stated limited warranty;

or (ii) return of the price paid for the Software and termination of this License

Agreement with respect to those copies not in compliance. Such remedy shall be

provided to you by Business Objects only if you give Business Objects written

notice of any breach of the above-stated limited warranty, within thirty (30) days

of delivery of the Software.

(c) EXCEPT FOR EXPRESS WARRANTIES STATED IN THIS SECTION 8, BUSINESS

OBJECTS AND ITS SUPPLIERS DISCLAIM ALL OTHER WARRANTIES, INCLUDING

WITHOUT LIMITATION, ANY IMPLIED WARRANTY (I) OF MERCHANTABILITY, (II)

OF FITNESS FOR A PARTICULAR PURPOSE, (III) OF NON-INFRINGEMENT OF

THIRD PARTY RIGHTS, OR (IV) AGAINST HIDDEN DEFECTS. Some

states/jurisdictions do not allow the exclusion of implied warranties, so the

above exclusion may not apply to you, and you may have other legal rights that

vary from state to state or by jurisdiction. YOU ACKNOWLEDGE THAT IN

ENTERING INTO THIS AGREEMENT, YOU HAVE RELIED UPON YOUR OWN

EXPERIENCE, SKILL AND JUDGEMENT TO EVALUATE THE SOFTWARE AND THAT

YOU HAVE SATISFIED YOURSELF AS TO THE SUITABILITY OF THE SOFTWARE

TO MEET YOUR REQUIREMENTS.

9. LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW, in no event will BUSINESS OBJECTS or its DISTRIBUTORS,

SUPPLIERS or aFFILIATES be liable TO you OR ANY THIRD PARTY FOR ANY

INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES,

INCLUDING WITHOUT LIMITATION, ANY LOST PROFITS OR REVENUES, LOSS

OR INACCURANCY OF ANY DATA, OR COST OF SUBSTITUTE GOODS,

REGARDLESS OF THE THEORY OF LIABILITY (INCLUDING NEGLIGENCE) AND

EVEN IF BUSINESS OBJECTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES. BUSINESS OBJECTS AND ITS SUPPLIERS' AGGREGATE LIABILITY

TO YOU FOR ACTUAL DIRECT DAMAGES FOR ANY CAUSE WHATSOEVER SHALL

BE LIMITED TO THE SOFTWARE LICENSE FEES PAID BY YOU FOR THE

SOFTWARE OR THE FEES PAID BY YOU FOR THE SERVICE DIRECTLY CAUSING

THE DAMAGES. THESE LIMITATIONS WILL APPLY NOTWITHSTANDING ANY

FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY. THE FOREGOING

ALLOCATION OF RISK IS REFLECTED IN THE FEES CHARGED UNDER THIS

LICENSE AGREEMENT. Some states/jurisdictions do not allow the limitation or

exclusion of liability IN CERTAIN CIRCUMSTANCES INCLUDED IN THIS SECTION,

so the above limitation may not apply to you ONLY IN SUCH CIRCUMSTANCES.

10. SUPPORT SERVICES. If you purchased Support Services, Business Objects

will provide to you product support services for the Software in accordance with

Business Objects then current Support Services terms and conditions. If you

purchase Support Services for the Software, you must purchase Support

Services for all authorized copies of said Software in your possession.

BusinessObjects Software License

474 Product Guide

11. TERMINATION. This Agreement is effective until terminated. You may

terminate this License Agreement at any time by providing Business Objects with

written notice, provided that you have complied with the return and/or

destruction policy set forth below. However, you shall receive a refund of your

license fee only if this Agreement is terminated in compliance with Section 8

hereof. If you ordered an Evaluation License for the Software that is time

disabled, this Agreement will automatically terminate after the Evaluation

Period, and you agree not to avoid, or attempt to avoid, any applicable time

limitation. This Agreement may be terminated by Business Objects if: (i) you fail

to pay the license fees and other charges set forth at the time of your order; or

(ii) you fail to comply with any of the terms and conditions set forth in this

Agreement and do not remedy such failure within thirty (30) days after receiving

notice thereof. Termination shall not relieve you from your obligation to pay fees

that remain unpaid and shall not limit Business Objects from pursuing other

available remedies. Upon termination by Business Objects of this Agreement,

Business Objects will have no obligation to refund to you any fees paid by you

and you agree to waive in perpetuity and unconditionally any and all claims for

refunds. Upon any termination of this Agreement, you agree to: (i) immediately

cease all use of the Software, including the use and distribution of any Custom

Applications incorporating the Software; and (ii) either return the Software to

Business Objects or destroy same, and certify to Business Objects, in writing,

that all copies and partial copies thereof have been returned or completely

destroyed and are no longer being used. Sections 5, 6, 8(c), 9, 11, 12, 13, 14,

15, 17 and 18 shall survive any termination of this Agreement.

12. AUDIT. During the term of this Agreement and for two (2) year after

termination or expiration, Business Objects may audit, upon reasonable notice

to you and at Business Objects' expense, your books and records to determine

your compliance with this Agreement. In the event any such audit reveals that

you have underpaid Business Objects by an amount greater than five percent

(5%) of the amounts due Business Objects in the period being audited, or that

you have knowingly breached any material obligation hereunder, then, in

addition to such other remedies as Business Objects may have, you shall pay or

reimburse to Business Objects the cost of the audit.

BusinessObjects Software License

Appendix B: Aion--Acknowledgements 475

13. GENERAL. If any provision of this Agreement is ruled invalid, such invalidity

shall not affect the validity of the remaining portions of this Agreement. This

Agreement constitutes the entire agreement between you and Business Objects,

and supersedes any prior agreement, whether written or oral, relating to the

subject matter of this Agreement. This Agreement may not be modified except

by an instrument in writing duly signed by an authorized representative of each

of the parties. If you are acquiring the Software on behalf of an entity, you

represent and warrant that you have the legal capacity to bind such entity to this

Agreement. All terms of any purchase order or other ordering document

submitted by you shall be superseded by this Agreement. In the event you and

Business Objects have executed a mutually agreed upon a separately executed

software license and related services agreement (?MSLA?) and acquired the

Software pursuant to such MSLA, the terms of the MSLA may govern your use of

the Software and the terms of this Agreement shall be superseded by the MSLA.

The product name for the Software is a trademark or registered trademark of

Business Objects. Should you have questions concerning this License

Agreement, please contact your local Business Objects sales office or authorized

reseller, or write to: Business Objects, Attn: Contracts Department, 3030

Orchard Parkway, San Jose, CA 95134.

14. U.S. GOVERNMENT RESTRICTED RIGHTS. The Software is a "commercial

item," as that term is defined at 48 C.F.R. 2.101 (Oct. 1995), consisting of

"commercial computer software" and "commercial computer software

documentation," as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).

Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4

(June 1995) (or an equivalent provision, e.g., in supplements of various U.S.

government agencies, as applicable), all U.S. Government users acquire the

Software with only those rights set forth herein. Manufacturer is Business

Objects, 3030 Orchard Parkway, San Jose, CA 95134.

15. EXPORT CONTROLS. You acknowledge that the Software is of U.S. origin.

You agree to comply with all applicable international and national laws that apply

to the Software, including the U.S. Export Administration Regulations, as well as

end-user, end-use and destination restrictions issued by U.S. and other

governments.

16. ORDER TERMS. Purchase orders conforming to Business Objects purchase

order requirements may be accepted from qualified companies. All pre-printed

terms of any purchase order not approved in writing by Business Obejcts shall

have no effect. Payment terms are net-30 days from date of invoice. FOB

Business Objects facility. Business Objects specifically disclaims price

guarantees of any kind. You are responsible for payment of all applicable sales,

use, consumption, VAT, GST, and other taxes and all applicable export and

import fees, custom duties and similar charges, excluding taxes based on

Business Objects net income.

BusinessObjects Software License

476 Product Guide

17. GOVERNING LAW. Except as otherwise preempted by United States federal

law, this Agreement is governed by the laws of the State of California, United

States, without reference to conflict of laws provisions or the United Nations

1980 Convention on Contracts for the International Sale of Goods and any

amendments thereto.

18. COUNTRY UNIQUE TERMS.

If you purchased the Software in any territory specified below (the ?Local

Territory?), this section sets forth specific provisions as well as exceptions to the

above terms and condition. To the extent any provision applicable to the Local

Territory (the ?Local Provision?) set forth below is in conflict with any other term

or condition in this agreement, the Local Provision will supersede such other

term or condition with respect to any licenses purchased in the Local Territory.

AUSTRALIA:

a) Limited Warranty and Remedy (Section 8): The following is added:

The warranties specified in this Section are in addition to any rights You may

have under the Trade Practices Act 1974 or other legislation and are only limited

to the extent permitted by the applicable legislation.

b) Limitation of Liability (Section 9): The following is added:

To the extent permitted by law, where Business Objects is in breach of a

condition or warranty implied by the Trade Practices Act 1974 or the equivalent

State or Territory legislation which cannot be excluded, Business Objects'

liability is limited, at Business Objects' sole election: (i) in case of the Software:

(a) (i) to repair or replace the goods, or the supply of equivalent goods, or (ii)

payment of the cost of such repair or replacement or of acquiring equivalent

goods; and (ii) in case of Support Services: (x) re-supply of the Support

Services; or (y) the cost of having the services supplied again. In calculating

Business Objects' aggregate liability under this Agreement, the amounts paid or

the value of any goods or services replaced, repaired, or supplied by Business

Objects pursuant to this paragraph shall be included.

c) Governing Law (Section 17): The following replaces the terms of this section

in its entirety:

This Agreement is governed by the laws of the State or Territory in which you

acquired the Software, without reference to conflict of laws provisions or the

United Nations 1980 Convention on Contracts for the International Sale of Goods

and any amendments thereto.

BELGIUM AND FRANCE:

a) Limitation of Liability (Section 9): The following replaces the terms of this

section in its entirety:

BusinessObjects Software License

Appendix B: Aion--Acknowledgements 477

Except as otherwise provided by mandatory law:

1. Business Objects' liability for any damages and losses that may arise as a

result of the performance of its obligations in connection with this Agreement is

limited to the compensation of only those damages and losses proved and

actually arising as an immediate and direct consequence of the non-fulfillment of

such obligations (if Business Objects is at fault), for a maximum amount equal to

the charges You paid for the Software that has caused the damages. This

limitation shall not apply to damages for bodily injuries (including death) and

damages to real property and tangible personal property for which Business

Objects is legally liable.

2. UNDER NO CIRCUMSTANCES IS BUSINESS OBJECTS, OR ANY OF ITS

SOFTWARE DEVELOPERS, LIABLE FOR ANY OF THE FOLLOWING, EVEN IF

INFORMED OF THEIR POSSIBILITY: 1) LOSS OF, OR DAMAGE TO, DATA; 2)

INCIDENTAL OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; 3) LOST PROFITS, EVEN IF THEY ARISE AS AN

IMMEDIATE CONSEQUENCE OF THE EVENT THAT GENERATED THE DAMAGES;

OR 4) LOSS OF BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

3. The limitation and exclusion of liability herein agreed applies not only to the

activities performed by Business Objects but also to the activities performed by

its suppliers and Software developers, and represents the maximum amount for

which Business Objects as well as its suppliers and Software developers, are

collectively responsible. This limitation shall not apply to damages for bodily

injuries (including death) and damages to real property and tangible personal

property for which Business Objects is legally liable.

b) Governing Law (Section 17): The following replaces the terms of this section

in its entirety:

This Agreement is governed by the laws of country in which you acquired the

Software, without reference to conflict of laws provisions or the United Nations

1980 Convention on Contracts for the International Sale of Goods and any

amendments thereto.

GERMANY AND AUSTRIA:

a) Warranty (Section 8): The following replaces the terms of this section in its

entirety:

BusinessObjects Software License

478 Product Guide

Business Objects warrants that the Software provides the functionalities set

forth in the associated documentation (?Documented Functionalities?) for the

Limited Warranty Period following receipt of the Software when used on the

recommended hardware configuration. Limited Warranty Period means one year

if you are a business user and two years if you are not a business user.

Non-substantial variation from the Documented Functionalities does not

establish any warranty rights. THIS LIMITED WARRANTY DOES NOT APPLY TO

SOFTWARE PROVIDED TO YOU FREE OF CHARGE (FOR EXAMPLE, UPDATES,

PRE-RELEASE, EVALUATION, OR NFR) OR SOFTWARE THAT HAS BEEN ALTERED

BY YOU, TO THE EXTENT SUCH ALTERATION CAUSED A DEFECT. To make a

warranty claim, you must return, at Business Objects expense, the Software and

proof of purchase to the company from whom you obtained it. If the

functionalities of the Software vary substantially from the agreed upon

functionalities, Business Objects is entitled, by way of re-performance and at is

own discretion, to repair or replace the Software. If that fails, you are entitled to

a reduction of the purchase price or to cancel the purchase agreement.

b) Limitation of Liability (Section 9): the following paragraph is added to this

Section:

The limitations and exclusions specified in this Section will not apply to damages

caused by Business Objects' intentional or by gross negligence. In addition,

Business Objects shall be responsible up to the amount of the typically

foreseeable damages from any damage which has been caused by Business

Objects or its agents due to the slightly negligent breach of a material

contractual duty. This limitation of liability shall apply to all damage claims,

irrespective of the legal basis there of and in particular, to any pre-contractual or

auxiliary contractual claims. This limitation of liability shall not, however, apply

to any mandatory statutory liability under the product liability act nor to any

damage which is caused due to the breach of an express warranty to the extent

the express warranty was intended to protect you from the specific damage

incurred. This clause shall not be intended to limit liability where the extent of

liability is provided by mandatory law.

c) Governing Law (Section 17): The following replaces the terms of this section

in its entirety:

This Agreement is governed by the laws of country in which you acquired the

Software, without reference to conflict of laws provisions or the United Nations

1980 Convention on Contracts for the International Sale of Goods and any

amendments thereto.

ITALY:

a) Limitation of Liability (Section 9): the following replaces the terms of this

section in its entirety:

BusinessObjects Software License

Appendix B: Aion--Acknowledgements 479

Apart from damages arising out of gross negligence or willful misconduct for

which Business Objects may not limit its liability, Business Objects' liability for

direct and indirect damages related to the original or further defects of the

Software, or related to the use or the nonuse of the Software or related to any

case whatsoever for breach of the Agreement, shall be limited to the fees paid by

you to Business Objects for the Software or for the part of the Software upon

which the damages were based.

b) Governing Law (Section 17): The following replaces the terms of this section

in its entirety:

This Agreement is governed by the laws of country in which you acquired the

Software, without reference to conflict of laws provisions or the United Nations

1980 Convention on Contracts for the International Sale of Goods and any

amendments thereto.

UNITED KINGDOM:

c) Governing Law (Section 17): The following replaces the terms of this section

in its entirety:

This Agreement is governed by the laws of England and Wales, without reference

to conflict of laws provisions or the United Nations 1980 Convention on Contracts

for the International Sale of Goods and any amendments thereto.

Notwithstanding any other provision in this Agreement, nothing in this

Agreement shall create or confer (whether expressly or by implication) any

rights or other benefits whether pursuant to the Contracts Rights of Third

Parties) Act 1999 or otherwise in favour of any person not a party hereto.

Please indicate below whether you accept, or do not accept, the terms and

conditions of this software license agreement.

CA Trusted Open Source License

480 Product Guide

CA Trusted Open Source License

CA Trusted Open Source License, Version 1.0

PLEASE READ THIS DOCUMENT CAREFULLY AND IN ITS ENTIRETY. THE

ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS

COMPUTER ASSOCIATES TRUSTED OPEN SOURCE LICENSE ("LICENSE"). ANY

USE, REPRODUCTION, MODIFICATION OR DISTRIBUTION OF THE PROGRAM

CONSTITUTES THE RECIPIENT'S ACCEPTANCE OF THIS LICENSE.

License Background

CA International, Inc. ("CA") believes in open source. We believe that the open

source development approach can take appropriate software programs to

unprecedented levels of quality, growth, and innovation. To demonstrate our

continuing commitment to open source, we are releasing the Program (as

defined below) under this License.

This License is intended to permit contributors and recipients of the Program to

use the Program, including its source code, freely and without many of the

concerns of some other open source licenses. Although we expect the

underlying Program, and Contributions (as defined below) made to such

Program, to remain open, this License is designed to permit you to maintain your

own software programs free of this License unless you choose to do so. Thus,

only your Contributions to the Program must be distributed under the terms of

this License.

The provisions that follow set forth the terms and conditions under which you

may use the Program.

1. DEFINITIONS

1.1 "Contribution" means (a) in the case of CA, the Original Program; and (b) in

the case of each Contributor (including CA), changes and additions to the

Program, where such changes and/or additions to the Program originate from

and are distributed by that particular Contributor to unaffiliated third parties. A

Contribution "originates" from a Contributor if it was added to the Program by

such Contributor itself or anyone acting on such Contributor's behalf.

Contributions do not include additions to the Program which: (x) are separate

modules of software distributed in conjunction with the Program under their own

license agreement, and (y) are not derivative works of the Program.

1.2 "Contributor" means CA and any other person or entity that distributes the

Program.

1.3 "Contributor Version" means as to a Contributor, that version of the Program

that includes the Contributor's Contribution but not any Contributions made to

the Program thereafter.

CA Trusted Open Source License

Appendix B: Aion--Acknowledgements 481

1.4 "Larger Work" means a work that combines the Program or portions thereof

with code not governed by the terms of this License.

1.5 "Licensed Patents" mean patents licensable by a Contributor that are

infringed by the use or sale of its Contribution alone or when combined with the

Program.

1.6 "Original Program" means the original version of the software to which this

License is attached and as released by CA, including source code, object code

and documentation, if any.

1.7 "Program" means the Original Program and Contributions.

1.8 "Recipient" means anyone who modifies, copies, uses or distributes the

Program.

2. GRANT OF RIGHTS

2.1 Subject to the terms of this License, each Contributor hereby grants

Recipient an irrevocable, non-exclusive, worldwide, royalty-free license to

reproduce, prepare derivative works of, publicly display, publicly perform,

distribute and sublicense the Contribution of such Contributor, if any, and such

derivative works, in source code and object code form. For the avoidance of

doubt, the license provided in this Section 2.1 shall not include a license to any

Licensed Patents of a Contributor.

2.2 Subject to the terms of this License, each Contributor hereby grants

Recipient an irrevocable, non-exclusive, worldwide, royalty-free license to the

Licensed Patents to the extent necessary to make, use, sell, offer to sell and

import the Contribution of such Contributor, if any, in source code and object

code form. The license granted in this Section 2.2 shall apply to the combination

of the Contribution and the Program if, at the time the Contribution is added by

the Contributor, such addition of the Contribution causes the Licensed Patents to

be infringed by such combination. Notwithstanding the foregoing, no license is

granted under this Section 2.2: (a) for any code or works that do not include the

Contributor Version, as it exists and is used in accordance with the terms hereof;

(b) for infringements caused by: (i) third party modifications of the Contributor

Version; or (ii) the combination of Contributions made by each such Contributor

with other software (except as part of the Contributor Version) or other devices;

or (c) with respect to Licensed Patents infringed by the Program in the absence

of Contributions made by that Contributor.

CA Trusted Open Source License

482 Product Guide

2.3 Recipient understands that although each Contributor grants the licenses to

its Contributions set forth herein, except as provided in Section 2.4, no

assurances are provided by any Contributor that the Program does not infringe

the patent or other intellectual property rights of any other person or entity.

Each Contributor disclaims any liability to Recipient for claims brought by any

other person or entity based on infringement of intellectual property rights or

otherwise. As a condition to exercising the rights and licenses granted

hereunder, each Recipient hereby assumes sole responsibility to secure any

other intellectual property rights needed, if any.

2.4 Each Contributor represents and warrants that it has all right, title and

interest in the copyrights in its Contributions, and has the right to grant the

copyright licenses set forth in this License.

3. DISTRIBUTION REQUIREMENTS

3.1 A Contributor may choose to distribute the Program in object code form

under its own license agreement, provided that:

a. it complies with the terms and conditions of this License; and

b. its license agreement:

i. effectively disclaims on behalf of all Contributors all warranties and conditions,

express and implied, including warranties or conditions of title and

non-infringement, and implied warranties or conditions of merchantability and

fitness for a particular purpose, to the maximum extent permitted by applicable

law;

ii. effectively excludes on behalf of all Contributors all liability for damages,

including direct, indirect, special, incidental and consequential damages, such as

lost profits, to the maximum extent permitted by applicable law;

iii. states that any provisions which are inconsistent with this License are

offered by that Contributor alone and not by any other party; and

iv. states that source code for the Program is available from such Contributor at

the cost of distribution, and informs licensees how to obtain it in a reasonable

manner.

3.2 When the Program is made available in source code form:

a. it must be made available under this License; and

b. a copy of this License must be included with each copy of the Program.

CA Trusted Open Source License

Appendix B: Aion--Acknowledgements 483

3.3 If the Program is distributed in object code form, then a prominent notice

must be included in the code itself as well as in any related documentation,

stating that the source code for the Program is available from the Contributor

with information on how and where to obtain the source code.

3.4 This License is intended to facilitate the commercial distribution of the

Program by any Contributor. However, Contributors may only charge Recipients

a one-time, upfront fee for the distribution of the Program. Contributors may not

charge Recipients any recurring charge, license fee, or any ongoing royalty for

the Recipient's exercise of its rights under this License to the Program.

Contributors shall make the source code for the Contributor Version they

distribute available at a cost, if any, equal to the cost to the Contributor to

physically copy and distribute the work.

3.5 A Contributor may create a Larger Work by combining the Program with

other software code not governed by the terms of this License, and distribute the

Larger Work as a single product. In such a case, the Contributor must make sure

that the requirements of this License are fulfilled for the Program. Any

Contributor who includes the Program in a commercial product offering,

including as part of a Larger Work, may subject itself, but not any other

Contributor, to additional contractual commitments, including, but not limited

to, performance warranties and non-infringement representations on such

Contributor's behalf. No Contributor may create any additional liability for other

Contributors. Therefore, if a Contributor includes the Program in a commercial

product offering, such Contributor ("Commercial Contributor") hereby agrees to

defend and indemnify every other Contributor ("Indemnified Contributor") who

made Contributions to the Program distributed by the Commercial Contributor

against any losses, damages and costs (collectively "Losses") arising from

claims, lawsuits and other legal actions brought by a third party against the

Indemnified Contributor to the extent caused by the acts or omissions, including

any additional contractual commitments, of such Commercial Contributor in

connection with its distribution of the Program. The obligations in this section do

not apply to any claims or Losses relating to any actual or alleged intellectual

property infringement.

3.6 If Contributor has knowledge that a license under a third party's intellectual

property rights is required to exercise the rights granted by such Contributor

under Sections 2.1 or 2.2, Contributor must (a) include a text file with the

Program source code distribution titled "../IP_ISSUES", and (b) notify CA in

writing at Computer Associates International, Inc., One Computer Associates

Plaza, Islandia, New York 11749, Attn: Open Source Group or by email at

opensource@ca.com, both describing the claim and the party making the claim

in sufficient detail that a Recipient and CA will know whom to contact with regard

to such matter. If Contributor obtains such knowledge after the Contribution is

made available, Contributor shall also promptly modify the IP_ISSUES file in all

copies Contributor makes available thereafter and shall take other steps (such as

notifying appropriate mailing lists or newsgroups) reasonably calculated to

inform those who received the Program that such new knowledge has been

obtained.

CA Trusted Open Source License

484 Product Guide

 3.7 Recipient shall not remove, obscure, or modify any CA or other Contributor

copyright or patent proprietary notices appearing in the Program, whether in the

source code, object code or in any documentation. In addition to the obligations

set forth in Section 4, each Contributor must identify itself as the originator of its

Contribution, if any, in a manner that reasonably allows subsequent Recipients

to identify the originator of the Contribution.

4. CONTRIBUTION RESTRICTIONS

4.1 Each Contributor must cause the Program to which the Contributor provides

a Contribution to contain a file documenting the changes the Contributor made

to create its version of the Program and the date of any change. Each

Contributor must also include a prominent statement that the Contribution is

derived, directly or indirectly, from the Program distributed by a prior

Contributor, including the name of the prior Contributor from which such

Contribution was derived, in (a) the Program source code, and (b) in any notice

in an executable version or related documentation in which the Contributor

describes the origin or ownership of the Program.

5. NO WARRANTY

5.1 EXCEPT AS EXPRESSLY SET FORTH IN THIS LICENSE, THE PROGRAM IS

PROVIDED "AS IS" AND IN ITS PRESENT STATE AND CONDITION. NO

WARRANTY, REPRESENTATION, CONDITION, UNDERTAKING OR TERM,

EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, AS TO THE CONDITION,

QUALITY, DURABILITY, PERFORMANCE, NON-INFRINGEMENT,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE OR USE OF THE

PROGRAM IS GIVEN OR ASSUMED BY ANY CONTRIBUTOR AND ALL SUCH

WARRANTIES, REPRESENTATIONS, CONDITIONS, UNDERTAKINGS AND TERMS

ARE HEREBY EXCLUDED TO THE FULLEST EXTENT PERMITTED BY LAW.

5.2 Each Recipient is solely responsible for determining the appropriateness of

using and distributing the Program and assumes all risks associated with its

exercise of rights under this License, including but not limited to the risks and

costs of program errors, compliance with applicable laws, damage to or loss of

data, programs or equipment, and unavailability or interruption of operations.

5.3 Each Recipient acknowledges that the Program is not intended for use in the

operation of nuclear facilities, aircraft navigation, communication systems, or air

traffic control machines in which case the failure of the Program could lead to

death, personal injury, or severe physical or environmental damage.

6. DISCLAIMER OF LIABILITY

CA Trusted Open Source License

Appendix B: Aion--Acknowledgements 485

6.1 EXCEPT AS EXPRESSLY SET FORTH IN THIS LICENSE, AND TO THE EXTENT

PERMITTED BY LAW, NO CONTRIBUTOR SHALL HAVE ANY LIABILITY FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE

EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

7. TRADEMARKS AND BRANDING

7.1 This License does not grant any Recipient or any third party any rights to use

the trademarks or trade names now or subsequently posted at

http://www.ca.com/catrdmrk.htm, or any other trademarks, service marks,

logos or trade names belonging to CA (collectively "CA Marks") or to any

trademark, service mark, logo or trade name belonging to any Contributor.

Recipient agrees not to use any CA Marks in or as part of the name of products

derived from the Original Program or to endorse or promote products derived

from the Original Program.

7.2 Subject to Section 7.1, Recipients may distribute the Program under

trademarks, logos, and product names belonging to the Recipient provided that

all copyright and other attribution notices remain in the Program.

8. PATENT LITIGATION

8.1 If Recipient institutes patent litigation against any person or entity (including

a cross-claim or counterclaim in a lawsuit) alleging that the Program itself

(excluding combinations of the Program with other software or hardware)

infringes such Recipient's patent(s), then such Recipient's rights granted under

Section 2.2 shall terminate as of the date such litigation is filed.

9. OWNERSHIP

9.1 Subject to the licenses granted under this License in Sections 2.1 and 2.2

above, each Contributor retains all rights, title and interest in and to any

Contributions made by such Contributor. CA retains all rights, title and interest in

and to the Original Program and any Contributions made by or on behalf of CA

("CA Contributions"), and such CA Contributions will not be automatically subject

to this License. CA may, at its sole discretion, choose to license such CA

Contributions under this License, or on different terms from those contained in

this License or may choose not to license them at all.

10. TERMINATION

CA Trusted Open Source License

486 Product Guide

10.1 All of Recipient's rights under this License shall terminate if it fails to

comply with any of the material terms or conditions of this License and does not

cure such failure in a reasonable period of time after becoming aware of such

noncompliance. If Recipient's rights under this License terminate, Recipient

agrees to cease use and distribution of the Program as soon as reasonably

practicable. However, Recipient's obligations under this License and any licenses

granted by Recipient as a Contributor relating to the Program shall continue and

survive termination.

11. GENERAL

11.1 If any provision of this License is invalid or unenforceable under applicable

law, it shall not affect the validity or enforceability of the remainder of the terms

of this License, and without further action by the parties hereto, such provision

shall be reformed to the minimum extent necessary to make such provision valid

and enforceable.

11.2 CA may publish new versions (including revisions) of this License from

time to time. Each new version of the License will be given a distinguishing

version number. The Program (including Contributions) may always be

distributed subject to the version of the License under which it was received. In

addition, after a new version of the License is published, Contributor may elect to

distribute the Program (including its Contributions) under the new version. No

one other than CA has the right to modify this License.

11.3 If it is impossible for Recipient to comply with any of the terms of this

License with respect to some or all of the Program due to statute, judicial order,

or regulation, then Recipient must: (a) comply with the terms of this License to

the maximum extent possible; and (b) describe the limitations and the code they

affect. Such description must be included in the IP_ISSUES file described in

Section 3.6 and must be included with all distributions of the Program source

code. Except to the extent prohibited by statute or regulation, such description

must be sufficiently detailed for a Recipient of ordinary skill to be able to

understand it.

11.4 This License is governed by the laws of the State of New York. No

Recipient will bring a legal action under this License more than one year after the

cause of action arose. Each Recipient waives its rights to a jury trial in any

resulting litigation. Any litigation or other dispute resolution between a Recipient

and CA relating to this License shall take place in the State of New York, and

Recipient and CA hereby consent to the personal jurisdiction of, and venue in,

the state and federal courts within that district with respect to this License. The

application of the United Nations Convention on Contracts for the International

Sale of Goods is expressly excluded.

CA Trusted Open Source License

Appendix B: Aion--Acknowledgements 487

11.5 Where Recipient is located in the province of Quebec, Canada, the

following clause applies: The parties hereby confirm that they have requested

that this License and all related documents be drafted in English. Les parties

contractantes confirment qu'elles ont exig?ue le pr?nt contrat et tous les

documents associ?soient redig?en anglais.

11.6 The Program is subject to all export and import laws, restrictions and

regulations of the country in which Recipient receives the Program. Recipient is

solely responsible for complying with and ensuring that Recipient does not

export, re-export, or import the Program in violation of such laws, restrictions or

regulations, or without any necessary licenses and authorizations.

11.7 This License constitutes the entire agreement between the parties with

respect to the subject matter hereof.

HP Java 2 Runtime Environment 1.4.2

488 Product Guide

HP Java 2 Runtime Environment 1.4.2

Terms and Conditions for the Use of HP-UX Runtime Environment for the Java™

2 Platform, Version 1.4

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by HP contained

within the Product. Notwithstanding anything contained in the CA End User

License Agreement, solely with respect to such open source, these terms are not

superseded by any written agreement between CA and Licensee:

HP-UX Runtime Environment for the Java™ 2 Platform (the “Software”) is owned

and copyrighted by HP or its third party suppliers. This license confers no title or

ownership in the Software and is not a sale of any rights in the Software. HP's

third party suppliers may protect their rights in the event of any violation of

these license terms.

Licensee acknowledges that HP may terminate this license for the Software upon

notice for failure to comply with any of these license terms. Upon termination,

Licensee must immediately destroy the Software, together with all copies,

adaptations and merged portions in any form.

By accepting this license agreement, Licensee confirms that it is not located in

(or a national resident of) any country under U.S. economic embargo, not

identified on any U.S. Department of Commerce Denied Persons List, Entity List

or Treasury Department Designated Nationals exclusion list, and not directly or

indirectly involved in the development or production of nuclear, chemical,

biological weapons or in missile technology programs as specified in the U.S.

Export Administration Regulations.

Licensee acknowledges that the Software is not designed or intended for use in

on-line control of aircraft, air traffic, aircraft navigation, or aircraft

communications; or in the design, construction, operation or maintenance of any

nuclear facility. HP disclaims any express or implied warranty of fitness for such

uses.

HP does not warrant that the operation of the Software will be uninterrupted or

error free. If HP is unable, within a reasonable time, to repair or replace the

Software to a condition warranted, Licensee will be entitled to a refund of the

purchase price paid by Licensee to HP, which Licensee acknowledges is $0, upon

prompt return of the Software. HP's warranty does not apply to defects resulting

from: a) improper or inadequate maintenance of calibration; b) software,

interfacing, parts or supplies not supplied by HP; c) unauthorized modification or

misuse; d) operation outside of the published environmental specifications for

the Software; e) improper site preparation or maintenance, or f) the presence of

code from HP suppliers embedded in or bundled with the Software.

HP Java 2 Runtime Environment 1.4.2

Appendix B: Aion--Acknowledgements 489

TO THE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE

EXCLUSIVE AND NO OTHER WARRANTY OR CONDITION, WHETHER WRITTEN

OR ORAL, IS EXPRESSED OR IMPLIED AND HP SPECIFICALLY DISCLAIMS ANY

IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY

QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE. Some countries, states,

or provinces do not allow limitations on the duration of an implied warranty, so

the above limitation or exclusion may not apply to Licensee. This warranty gives

Licensee specific legal rights and Licensee might also have other rights that vary

from country to country, state to state, or province to province. The foregoing

shall not affect any warranties provided in any other applicable agreement

between Licensee and CA.

TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY

STATEMENT ARE LICENSEE'S SOLE AND EXCLUSIVE REMEDIES. EXCEPT AS

INDICATED ABOVE, IN NO EVENT WILL HP OR ITS SUPPLIERS BE LIABLE FOR

LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL

(INCLUDING LOST PROFIT OR DATA), OR OTHER DAMAGE, WHETHER BASED IN

CONTRACT, TORT, OR OTHERWISE. Some countries, states, or provinces do not

allow the exclusion or limitation of incidental or consequential damages, so the

above limitation may not apply to Licensee.

HP-UX Runtime Environment for the Java 2 Platform, Version 1.4

490 Product Guide

HP-UX Runtime Environment for the Java 2 Platform, Version

1.4

Terms and Conditions for the Use of HP-UX Runtime Environment for the

Java(TM) 2 Platform, Version 1.4

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by HP contained

within the Product. Notwithstanding anything contained in the CA End User

License Agreement ("EULA"), solely with respect to such open source, these

terms are not superseded by any written agreement between CA and Licensee:

HP-UX Runtime Environment for the Java(TM) 2 Platform (the "Software") is

owned and copyrighted by HP or its third party suppliers. This license confers no

title or ownership in the Software and is not a sale of any rights in the Software.

HP's third party suppliers may protect their rights in the event of any violation of

these license terms.

HP may terminate this license for the Software upon notice for failure to comply

with any of these license terms. Upon termination, Licensee must immediately

destroy the Software, together with all copies, adaptations and merged portions

in any form.

By accepting this license agreement, Licensee confirms that it is not located in

(or a national resident of) any country under U.S. economic embargo, not

identified on any U.S. Department of Commerce Denied Persons List, Entity List

or Treasury Department Designated Nationals exclusion list, and not directly or

indirectly involved in the development or production of nuclear, chemical,

biological weapons or in missile technology programs as specified in the U.S.

Export Administration Regulations.

Licensee acknowledges that the Software is not designed or intended for use in

on-line control of aircraft, air traffic, aircraft navigation, or aircraft

communications; or in the design, construction, operation or maintenance of any

nuclear facility. HP disclaims any express or implied warranty of fitness for such

uses.

HP does not warrant that the operation of the Software will be uninterrupted or

error free. If HP is unable, within a reasonable time, to repair or replace the

Software to a condition warranted, Licensee will be entitled to a refund of the

purchase price paid by Licensee to HP, which Licensee acknowledges is $0, upon

prompt return of the Software. HP's warranty does not apply to defects resulting

from: a) improper or inadequate maintenance of calibration; b) software,

interfacing, parts or supplies not supplied by HP; c) unauthorized modification or

misuse; d) operating outside of the published environmental specifications for

the Software; or e) improper site preparation or maintenance.

HP-UX Runtime Environment for the Java 2 Platform, Version 1.4

Appendix B: Aion--Acknowledgements 491

TO THE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE

EXCLUSIVE AND NO OTHER WARRANTY OR CONDITION, WHETHER WRITTEN

OR ORAL, IS EXPRESSED OR IMPLIED AND HP SPECIFICALLY DISCLAIMS ANY

IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY

QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE. Some countries, states,

or provinces do not allow limitations on the duration of an implied warranty, so

the above limitation or exclusion may not apply to Licensee. This warranty gives

Licensee specific legal rights and Licensee might also have other rights that vary

from country to country, state to state, or province to province. The foregoing

shall not affect any warranties provided in the EULA or any other applicable

agreement between Licensee and CA.

TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY

STATEMENT ARE LICENSEE'S SOLE AND EXCLUSIVE REMEDIES. EXCEPT AS

INDICATED ABOVE, IN NO EVENT WILL HP OR ITS SUPPLIERS BE LIABLE FOR

LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL

(INCLUDING LOST PROFIT OR DATA), OR OTHER DAMAGE, WHETHER BASED IN

CONTRACT, TORT, OR OTHERWISE. Some countries, states, or provinces do not

allow the exclusion of limitation of incidental or consequential damages, so the

above limitation may not apply to Licensee.

IBM 32-bit Runtime Environment for AIX, Java 2 Technology Edition, Version 1.4

492 Product Guide

IBM 32-bit Runtime Environment for AIX, Java 2 Technology

Edition, Version 1.4

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by International

Business Machines Corporation contained within the Product. Notwithstanding

anything contained in the CA End User License Agreement, solely with respect to

such open source, these terms are not superseded by any written agreement

between CA and Licensee:

The IBM® 32-bit Runtime Environment for AIX™, Java™ 2 Technology Edition,

Version 1.4 (the "Program") is owned by International Business Machines

Corporation or one of its subsidiaries (IBM) or an IBM supplier, and is

copyrighted and licensed, not sold.

No Warranty

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE EXCLUDED,

IBM MAKES NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,

INCLUDING WITHOUT LIMITATION, THE WARRANTY OF NON-INFRINGEMENT

AND THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE, REGARDING THE PROGRAM OR TECHNICAL SUPPORT,

IF ANY. IBM MAKES NO WARRANTY REGARDING THE CAPABILITY OF THE

PROGRAM TO CORRECTLY PROCESS, PROVIDE AND/OR RECEIVE DATE DATA

WITHIN AND BETWEEN THE 20TH AND 21ST CENTURIES. This does not affect

any warranties contained in any other applicable agreement between Licensee

and CA.

The exclusion also applies to any of IBM's subcontractors, suppliers, or program

developers (collectively called "Suppliers").

Limitation of Liability

NEITHER IBM NOR ITS SUPPLIERS WILL BE LIABLE FOR ANY DIRECT OR

INDIRECT DAMAGES, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST

SAVINGS, OR ANY INCIDENTAL, SPECIAL, OR OTHER ECONOMIC

CONSEQUENTIAL DAMAGES, EVEN IF IBM IS INFORMED OF THEIR

POSSIBILITY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR

LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE

EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

General

Licensee acknowledges that IBM may terminate Licensee's license if Licensee

fails to comply with the terms of this agreement. If IBM does so, Licensee must

immediately destroy the Program and all copies Licensee made of it.

IBM 32-bit Runtime Environment for AIX, Java 2 Technology Edition, Version 1.4

Appendix B: Aion--Acknowledgements 493

With respect to any claim by or against IBM relating to the Program, neither

Licensee nor IBM will bring a legal action more than two years after the cause of

action arose unless otherwise provided by local law without the possibility of

contractual waiver or limitation.

The laws of the country in which Licensee acquires the Program govern this

agreement, except 1) in Australia, the laws of the State or Territory in which the

transaction is performed govern this agreement; 2) in Albania, Armenia,

Belarus, Bosnia/Herzegovina, Bulgaria, Croatia, Czech Republic, Georgia,

Hungary, Kazakhstan, Kirghizia, Former Yugoslav Republic of Macedonia

(FYROM), Moldova, Poland, Romania, Russia, Slovak Republic, Slovenia,

Ukraine, and Federal Republic of Yugoslavia, the laws of Austria govern this

agreement; 3) in the United Kingdom, all disputes relating to this agreement will

be governed by English Law and will be submitted to the exclusive jurisdiction of

the English courts; 4) in Canada, the laws in the Province of Ontario govern this

agreement; and 5) in the United States and Puerto Rico, and People's Republic of

China, the laws of the State of New York govern this agreement.

Part 2 - Country-unique Terms

AUSTRALIA:

No Warranty:

The following paragraph is added to this Section:

Although IBM specifies that there are no warranties, Licensee may have certain

rights under the Trade Practices Act 1974 or other legislation and are only limited

to the extent permitted by the applicable legislation.

Limitation of Liability:

The following paragraph is added to this Section:

Where IBM is in breach of a condition or warranty implied by the Trade Practices

Act 1974, IBM's liability is limited to the repair or replacement of the goods, or

the supply of equivalent goods. Where that condition or warranty relates to right

to sell, quiet possession or clear title, or the goods are of a kind ordinarily

acquired for personal, domestic or household use or consumption, then none of

the limitations in this paragraph apply.

GERMANY:

No Warranty:

The following paragraphs are added to this Section:

The minimum warranty period for Programs is six months.

IBM 32-bit Runtime Environment for AIX, Java 2 Technology Edition, Version 1.4

494 Product Guide

In case a Program is delivered without Specifications, IBM will only warrant that

the Program information correctly describes the Program and that the Program

can be used according to the Program information. Licensee has to check the

usability according to the Program information within the "money-back

guaranty" period.

Limitation of Liability:

The following paragraph is added to this Section:

The limitations and exclusions specified in the agreement will not apply to

damages caused by IBM with fraud or gross negligence, and for express

warranty.

INDIA:

General:

The following replaces the second paragraph of this Section:

If no suit or other legal action is brought, within two years after the cause of

action arose, in respect of any claim that either party may have against the

other, the rights of the concerned party in respect of such claim will be forfeited

and the other party will stand released from its obligations in respect of such

claim.

IRELAND:

No Warranty:

The following paragraph is added to this Section:

Except as expressly provided in these terms and conditions, all statutory

conditions, including all warranties implied, but without prejudice to the

generality of the foregoing, all warranties implied by the Sale of Goods Act 1893

or the Sale of Goods and Supply of Services Act 1980 are hereby excluded.

ITALY:

Limitation of Liability:

This Section is replaced by the following:

Unless otherwise provided by mandatory law, IBM is not liable for any damages

which might arise.

NEW ZEALAND:

No Warranty:

IBM 32-bit Runtime Environment for AIX, Java 2 Technology Edition, Version 1.4

Appendix B: Aion--Acknowledgements 495

The following paragraph is added to this Section:

Although IBM specifies that there are no warranties, Licensee may have certain

rights under the Consumer Guarantees Act 1993 or other legislation, which

cannot be excluded or limited. The Consumer Guarantees Act 1993 will not apply

in respect of any goods or services which IBM provides, if Licensee requires the

goods and services for the purposes of a business as defined in that Act.

Limitation of Liability:

The following paragraph is added to this Section:

Where Programs are not acquired for the purposes of a business as defined in the

Consumer Guarantees Act 1993, the limitations in this Section are subject to the

limitations in that Act.

PEOPLE'S REPUBLIC OF CHINA:

Charges:

The following paragraph is added as a new Section:

All banking charges incurred in the People's Republic of China will be borne by

Licensee and those incurred outside the People's Republic of China will be borne

by IBM.

UNITED KINGDOM:

Limitation of Liability:

The following paragraph is added to this Section at the end of the first

paragraph:

The limitation of liability will not apply to any breach of IBM's obligations implied

by Section 12 of the Sales of Goods Act 1979 or Section 2 of the Supply of Goods

and Services Act 1982.

IBM Java 2 Runtime Environment 1.3.1

496 Product Guide

IBM Java 2 Runtime Environment 1.3.1

Acknowledgment:

CONTAINS IBM Runtime Environment for AIX®, Java™ 2 Technology Edition

Runtime Modules

© Copyright IBM Corporation 1999, 2000

All Rights Reserved

Terms and Conditions for the Use of IBM Runtime Environment for AIX®, Java™

2 Technology Edition, Version 1.3.0

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by International

Business Machines Corporation contained within the Product. Notwithstanding

anything contained in the CA End User License Agreement, solely with respect to

such open source, these terms are not superseded by any written agreement

between CA and Licensee:

The IBM Runtime Environment for AIX (R), Java (TM) 2 Technology Edition,

Version 1.3.0 (the “Program”) is owned by International Business Machines

Corporation or one of its subsidiaries (IBM) or an IBM supplier, and is

copyrighted and licensed, not sold.

No Warranty

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE EXCLUDED,

IBM MAKES NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,

INCLUDING WITHOUT LIMITATION, THE WARRANTY OF NON-INFRINGEMENT

AND THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE, REGARDING THE PROGRAM OR TECHNICAL SUPPORT,

IF ANY. IBM MAKES NO WARRANTY REGARDING THE CAPABILITY OF THE

PROGRAM TO CORRECTLY PROCESS, PROVIDE AND/OR RECEIVE DATE DATA

WITHIN AND BETWEEN THE 20TH AND 21ST CENTURIES. This does not affect

any warranties contained in any other applicable agreement between Licensee

and CA.

The exclusion also applies to any of IBM's subcontractors, suppliers, or program

developers (collectively called "Suppliers").

Limitation of Liability

IBM Java 2 Runtime Environment 1.3.1

Appendix B: Aion--Acknowledgements 497

NEITHER IBM NOR ITS SUPPLIERS WILL BE LIABLE FOR ANY DIRECT OR

INDIRECT DAMAGES, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST

SAVINGS, OR ANY INCIDENTAL, SPECIAL, OR OTHER ECONOMIC

CONSEQUENTIAL DAMAGES, EVEN IF IBM IS INFORMED OF THEIR

POSSIBILITY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR

LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE

EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

General

Licensee recognizes IBM's and Sun's ownership and title to their respective

trademarks and of any goodwill attaching thereto, including goodwill resulting

from use. Licensee will not use or attempt to register any trademark, which is

confusingly similar to such IBM or Sun trademarks.

Licensee acknowledges that IBM may terminate Licensee's license if Licensee

fails to comply with the terms of this agreement. If IBM does so, Licensee must

immediately destroy the Program and all copies Licensee made of it.

With respect to any claim by or against IBM relating to the Program, neither

Licensee nor IBM will bring a legal action more than two years after the cause of

action arose unless otherwise provided by local law without the possibility of

contractual waiver or limitation.

The laws of the country in which Licensee acquires the Program govern this

agreement, except 1) in Australia, the laws of the State or Territory in which the

transaction is performed govern this agreement; 2) in Albania, Armenia,

Belarus, Bosnia/Herzegovina, Bulgaria, Croatia, Czech Republic, Georgia,

Hungary, Kazakhstan, Kirghizia, Former Yugoslav Republic of Macedonia

(FYROM), Moldova, Poland, Romania, Russia, Slovak Republic, Slovenia,

Ukraine, and Federal Republic of Yugoslavia, the laws of Austria govern this

agreement; 3) in the United Kingdom, all disputes relating to this agreement will

be governed by English Law and will be submitted to the exclusive jurisdiction of

the English courts; 4) in Canada, the laws in the Province of Ontario govern this

agreement; and 5) in the United States and Puerto Rico, and People's Republic of

China, the laws of the State of New York govern this agreement.

Country-unique Terms

AUSTRALIA:

No Warranty:

The following paragraph is added to this Section:

Although IBM specifies that there are no warranties, Licensee may have certain

rights under the Trade Practices Act 1974 or other legislation and are only limited

to the extent permitted by the applicable legislation.

IBM Java 2 Runtime Environment 1.3.1

498 Product Guide

Limitation of Liability:

The following paragraph is added to this Section:

Where IBM is in breach of a condition or warranty implied by the Trade Practices

Act 1974, IBM's liability is limited to the repair or replacement of the goods, or

the supply of equivalent goods. Where that condition or warranty relates to right

to sell, quiet possession or clear title, or the goods are of a kind ordinarily

acquired for personal, domestic or household use or consumption, then none of

the limitations in this paragraph apply.

GERMANY:

No Warranty:

The following paragraphs are added to this Section:

The minimum warranty period for Programs is six months.

In case a Program is delivered without Specifications, IBM will only warrant that

the Program information correctly describes the Program and that the Program

can be used according to the Program information. Licensee has to check the

usability according to the Program information within the "money-back

guaranty" period.

Limitation of Liability:

The following paragraph is added to this Section:

The limitations and exclusions specified in the agreement will not apply to

damages caused by IBM with fraud or gross negligence, and for express

warranty.

INDIA:

General:

The following replaces the third paragraph of this Section:

If no suit or other legal action is brought, within two years after the cause of

action arose, in respect of any claim that either party may have against the

other, the rights of the concerned party in respect of such claim will be forfeited

and the other party will stand released from its obligations in respect of such

claim.

IRELAND:

No Warranty:

IBM Java 2 Runtime Environment 1.3.1

Appendix B: Aion--Acknowledgements 499

The following paragraph is added to this Section:

Except as expressly provided in these terms and conditions, all statutory

conditions, including all warranties implied, but without prejudice to the

generality of the foregoing, all warranties implied by the Sale of Goods Act 1893

or the Sale of Goods and Supply of Services Act 1980 are hereby excluded.

ITALY:

Limitation of Liability:

This Section is replaced by the following:

Unless otherwise provided by mandatory law, IBM is not liable for any damages

which might arise.

NEW ZEALAND:

No Warranty:

The following paragraph is added to this Section:

Although IBM specifies that there are no warranties, Licensee may have certain

rights under the Consumer Guarantees Act 1993 or other legislation which

cannot be excluded or limited. The Consumer Guarantees Act 1993 will not apply

in respect of any goods or services which IBM provides, if Licensee requires the

goods and services for the purposes of a business as defined in that Act.

Limitation of Liability:

The following paragraph is added to this Section:

Where Programs are not acquired for the purposes of a business as defined in the

Consumer Guarantees Act 1993, the limitations in this Section are subject to the

limitations in that Act.

PEOPLE'S REPUBLIC OF CHINA:

Charges:

The following paragraph is added as a new Section:

All banking charges incurred in the People's Republic of China will be borne by

Licensee and those incurred outside the People's Republic of China will be borne

by IBM.

UNITED KINGDOM:

Limitation of Liability:

IBM Java 2 Runtime Environment 1.3.1

500 Product Guide

The following paragraph is added to this Section at the end of the first

paragraph:

The limitation of liability will not apply to any breach of IBM's obligations implied

by Section 12 of the Sale of Goods Act 1979 or Section 2 of the Supply of Goods

and Services Act 1982.

IBM zSeries Developer Kit for Linux, Java 2 Technology Edition

Appendix B: Aion--Acknowledgements 501

IBM zSeries Developer Kit for Linux, Java 2 Technology Edition

Terms and Conditions for the Use of IBM® zSeries Developer Kit for Linux®,

Java™ 2 Technology Edition

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by International

Business Machines Corporation contained within the Product. Notwithstanding

anything contained in the CA End User License Agreement, solely with respect to

such open source, these terms are not superseded by any written agreement

between CA and Licensee:

The IBM(R) zSeries Developer Kit for Linux(R), Java(TM) 2 Technology Edition

(the "Program") is owned by International Business Machines Corporation or one

of its subsidiaries (IBM) or an IBM supplier, and is copyrighted and licensed, not

sold.

No Warranty

Licensee acknowledges that the Program is provided 'AS IS'.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE EXCLUDED,

IBM MAKES NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,

INCLUDING WITHOUT LIMITATION, THE WARRANTY OF NON-INFRINGEMENT

AND THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE, REGARDING THE PROGRAM OR TECHNICAL SUPPORT,

IF ANY. IBM MAKES NO WARRANTY REGARDING THE CAPABILITY OF THE

PROGRAM TO CORRECTLY PROCESS, PROVIDE AND/OR RECEIVE DATE DATA

WITHIN AND BETWEEN THE 20TH AND 21ST CENTURIES. This does not affect

any warranties contained in any other applicable agreement between Licensee

and CA.

The exclusion also applies to any of IBM's subcontractors, suppliers, or program

developers (collectively called "Suppliers").

Limitation of Liability

NEITHER IBM NOR ITS SUPPLIERS WILL BE LIABLE FOR ANY DIRECT OR

INDIRECT DAMAGES, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST

SAVINGS, OR ANY INCIDENTAL, SPECIAL, OR OTHER ECONOMIC

CONSEQUENTIAL DAMAGES, EVEN IF IBM IS INFORMED OF THEIR

POSSIBILITY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR

LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE

EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

General

THIS PROGRAM HAS BEEN PROVIDED TO LICENSEE AT NO CHARGE.

IBM zSeries Developer Kit for Linux, Java 2 Technology Edition

502 Product Guide

Licensee recognizes IBM's and Sun's ownership and title to their respective

trademarks and of any goodwill attaching thereto, including goodwill resulting

from use. Licensee will not use or attempt to register any trademark, which is

confusingly similar to such IBM or Sun trademarks.

Licensee acknowledges that IBM may terminate Licensee's license if Licensee

fails to comply with these terms and conditions. If IBM does so, Licensee must

immediately destroy the Program and all copies Licensee made of it.

With respect to any claim by or against IBM relating to the Program, neither

Licensee nor IBM will bring a legal action more than two years after the cause of

action arose unless otherwise provided by local law without the possibility of

contractual waiver or limitation.

The laws of the country in which Licensee acquires the Program govern this

agreement, except 1) in Australia, the laws of the State or Territory in which the

transaction is performed govern this agreement; 2) in Albania, Armenia,

Belarus, Bosnia/Herzegovina, Bulgaria, Croatia, Czech Republic, Georgia,

Hungary, Kazakhstan, Kirghizia, Former Yugoslav Republic of Macedonia

(FYROM), Moldova, Poland, Romania, Russia, Slovak Republic, Slovenia,

Ukraine, and Federal Republic of Yugoslavia, the laws of Austria govern this

agreement; 3) in the United Kingdom, all disputes relating to this agreement will

be governed by English Law and will be submitted to the exclusive jurisdiction of

the English courts; 4) in Canada, the laws in the Province of Ontario govern this

agreement; and 5) in the United States and Puerto Rico, and People's Republic of

China, the laws of the State of New York govern this agreement.

Country-unique Terms

AUSTRALIA:

No Warranty:

The following paragraph is added to this Section:

Although IBM specifies that there are no warranties, Licensee may have certain

rights under the Trade Practices Act 1974 or other legislation and are only limited

to the extent permitted by the applicable legislation.

Limitation of Liability:

The following paragraph is added to this Section:

Where IBM is in breach of a condition or warranty implied by the Trade Practices

Act 1974, IBM's liability is limited to the repair or replacement of the goods, or

the supply of equivalent goods. Where that condition or warranty relates to right

to sell, quiet possession or clear title, or the goods are of a kind ordinarily

acquired for personal, domestic or household use or consumption, then none of

the limitations in this paragraph apply.

IBM zSeries Developer Kit for Linux, Java 2 Technology Edition

Appendix B: Aion--Acknowledgements 503

GERMANY:

No Warranty:

The following paragraphs are added to this Section:

The minimum warranty period for Programs is six months.

In case a Program is delivered without Specifications, IBM will only warrant that

the Program information correctly describes the Program and that the Program

can be used according to the Program information. Licensee has to check the

usability according to the Program information within the "money-back

guaranty" period.

Limitation of Liability:

The following paragraph is added to this Section:

The limitations and exclusions specified in the agreement will not apply to

damages caused by IBM with fraud or gross negligence, and for express

warranty.

INDIA:

General:

The following replaces the fourth paragraph of this Section:

If no suit or other legal action is brought, within two years after the cause of

action arose, in respect of any claim that either party may have against the

other, the rights of the concerned party in respect of such claim will be forfeited

and the other party will stand released from its obligations in respect of such

claim.

IRELAND:

No Warranty:

The following paragraph is added to this Section:

Except as expressly provided in these terms and conditions, all statutory

conditions, including all warranties implied, but without prejudice to the

generality of the foregoing, all warranties implied by the Sale of Goods Act 1893

or the Sale of Goods and Supply of Services Act 1980 are hereby excluded.

ITALY:

Limitation of Liability:

IBM zSeries Developer Kit for Linux, Java 2 Technology Edition

504 Product Guide

This Section is replaced by the following:

Unless otherwise provided by mandatory law, IBM is not liable for any damages

which might arise.

NEW ZEALAND:

No Warranty:

The following paragraph is added to this Section:

Although IBM specifies that there are no warranties, Licensee may have certain

rights under the Consumer Guarantees Act 1993 or other legislation which

cannot be excluded or limited. The Consumer Guarantees Act 1993 will not apply

in respect of any goods or services which IBM provides, if Licensee requires the

goods and services for the purposes of a business as defined in that Act.

Limitation of Liability:

The following paragraph is added to this Section:

Where Programs are not acquired for the purposes of a business as defined in the

Consumer Guarantees Act 1993, the limitations in this Section are subject to the

limitations in that Act.

PEOPLE'S REPUBLIC OF CHINA:

Charges:

The following paragraph is added as a new Section:

All banking charges incurred in the People's Republic of China will be borne by

Licensee and those incurred outside the People's Republic of China will be borne

by IBM.

UNITED KINGDOM:

Limitation of Liability:

The following paragraph is added to this Section at the end of the first

paragraph:

The limitation of liability will not apply to any breach of IBM's obligations implied

by Section 12 of the Sales of Goods Act 1979 or Section 2 of the Supply of Goods

and Services Act 1982.

ICU License

Appendix B: Aion--Acknowledgements 505

ICU License

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2003 International Business Machines Corporation and

others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of

this software and associated documentation files (the"Software"), to deal in the

Software without restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, provided that the

above copyright notice(s) and this permission notice appear in all copies of the

Software and that both the above copyright notice(s) and this permission notice

appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR

ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR

ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR

PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER

TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTIONWITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be

used in advertising or otherwise to promote the sale, use or other dealings in this

Software without prior written authorization of the copyright holder.

ImageMagick Studio

506 Product Guide

ImageMagick Studio

Copyright© 2003 ImageMagick Studio LLC, a non-profit organization dedicated

to making software imaging solutions freely available.

Permission is hereby granted, free of charge, to any person obtaining a copy of

this software and associated documentation files ("ImageMagick"), to deal in

ImageMagick without restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of

ImageMagick, and to permit persons to whom the ImageMagick is furnished to

do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of ImageMagick.

The software is provided as is, without warranty of any kind, express or implied,

including, but not limited to the warranties of merchantability, fitness for a

particular purpose and noninfringement. In no event shall ImageMagick Studio

LLC be liable for any claim, damages or other liability, whether in an action of

contract, tort or otherwise, arising from, out of or in connection with

ImageMagick or the use or other dealings in ImageMagick.

Except as contained in this notice, the name of the ImageMagick Studio LLC shall

not be used in advertising or otherwise to promote the sale, use or other dealings

in ImageMagick without prior written authorization from the ImageMagick Studio

LLC.

Full Text of Copyright Notices

Copyright© 2002 ImageMagick Studio, a non-profit organization dedicated to

making software imaging solutions freely available.

Permission is hereby granted, free of charge, to any person obtaining a copy of

this software and associated documentation files ("ImageMagick"), to deal in

ImageMagick without restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of

ImageMagick, and to permit persons to whom the ImageMagick is furnished to

do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of ImageMagick.

The software is provided "as is", without warranty of any kind, express or

implied, including but not limited to the warranties of merchantability, fitness for

a particular purpose and noninfringement. In no event shall ImageMagick Studio

be liable for any claim, damages or other liability, whether in an action of

contract, tort or otherwise, arising from, out of or in connection with

ImageMagick or the use or other dealings in ImageMagick.

ImageMagick Studio

Appendix B: Aion--Acknowledgements 507

Except as contained in this notice, the name of the ImageMagick Studio shall not

be used in advertising or otherwise to promote the sale, use or other dealings in

ImageMagick without prior written authorization from the ImageMagick Studio.

Java 2 Runtime Environment (J2RE), Standard Edition, Version 1.4.x

508 Product Guide

Java 2 Runtime Environment (J2RE), Standard Edition, Version

1.4.x

Terms and Conditions for the Use of Java™ 2 Runtime Environment (J2RE),

Standard Edition, Version 1.4.x

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by Sun

Microsystems, Inc. contained within the Product. Notwithstanding anything

contained in the CA End User License Agreement (“EULA”), solely with respect to

such open source, these terms are not superseded by any written agreement

between CA and Licensee:

Title to Java™ 2 Runtime Environment (J2RE), Standard Edition, Version 1.4.x

(the “Software”) and all associated intellectual property rights are retained by

Sun Microsystems, Inc. (“Sun”) and/or its licensors. Licensee acknowledges that

the Software is not designed or intended for use in the design, construction,

operation or maintenance of any nuclear facility. Sun disclaims any express or

implied warranty of fitness for such uses. No right, title or interest in or to any

trademark, service mark, logo or trade name of Sun or its licensors is granted

under this agreement.

The Software is provided "AS IS". As to any claim made by Licensee against Sun

respecting the Software, Licensee's exclusive remedy and Sun's entire liability

under this limited warranty will be at Sun's option to replace the Software media

or refund the fee paid for the Software which Licensee acknowledges is $0. The

foregoing shall not affect any warranties provided in the EULA or any other

applicable agreement between Licensee and CA.

UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR IMPLIED

CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE OR NON-INFRINGEMENT ARE DISCLAIMED, EXCEPT TO

THE EXTENT THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS

LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR

SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,

HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT

OF OR RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN IF

SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In no event

will Sun's liability exceed the amount paid by Licensee to Sun for the Software

under this agreement which Licensee acknowledges is $0. The foregoing

limitations will apply even if the above stated warranty fails of its essential

purpose.

Java 2 Runtime Environment (J2RE), Standard Edition, Version 1.4.x

Appendix B: Aion--Acknowledgements 509

Sun may terminate Licensee's right to use the Software if Licensee fails to

comply with any provision of this agreement. Upon such termination, Licensee

must destroy all copies of the Software.

Notwithstanding anything to the contrary contained in any agreement between

Licensee and CA, any action in which Sun is a party will be governed by California

law and controlling U.S. federal law. No choice of law rules of any jurisdiction will

apply.

Licensee acknowledges that the Software may automatically download, install,

and execute applets, applications, software extensions, and updated versions of

the Software from Sun ("Software Updates"), which may require Licensee to

accept updated terms and conditions for installation. If additional terms and

conditions are not presented on installation, the Software Updates will be

considered part of the Software and subject to the terms and conditions of the

agreement.

Licensee acknowledges that, by Licensee's use of the Software and/or by

requesting services that require use of the Software, the Software may

automatically download, install, and execute software applications from sources

other than Sun ("Other Software"). Sun makes no representations of a

relationship of any kind to licensors of Other Software. TO THE EXTENT NOT

PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE

FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT,

CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED

REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO

THE USE OF OR INABILITY TO USE OTHER SOFTWARE, EVEN IF SUN HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Licensee acknowledges and agrees as between Licensee and Sun that Sun owns

the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET trademarks and all SUN,

SOLARIS, JAVA, JINI, FORTE, and iPLANET-related trademarks, service marks,

logos and other brand designations ("Sun Marks"), and Licensee agrees to

comply with the Sun Trademark and Logo Usage Requirements currently located

at http://www.sun.com/policies/trademarks. Any use Licensee makes of the Sun

Marks inures to Sun's benefit.

Licensee acknowledges that Sun may terminate this agreement immediately

should the Software become, or in Sun's opinion be likely to become, the subject

of a claim of infringement of any intellectual property right.

For inquiries please contact: Sun Microsystems, Inc., 4150 Network Circle, Santa

Clara, California 95054, U.S.A. (LFI#119611/Form ID#011801)

Java Naming and Directory Interface (JNDI), Version 1.2.1

510 Product Guide

Java Naming and Directory Interface (JNDI), Version 1.2.1

Terms and Conditions for the Use of Java Naming and Directory Interface™

(JNDI), Version 1.2.1 and any of the following:

DNS Service Provider Version 1.2

LDAP Service Provider Version 1.2.4

NIS Service Provider Version 1.2.1

RMI Registry Service Provider Version 1.2.1

FS Context Service Provider Version 1.2 beta 3 release

COS Naming Service Provider Version 1.2.1

DSML v1 Service Provider Version 1.2

JNDI/LDAP Booster Pack Version 1.0

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by Sun

Microsystems, Inc. contained within the Product. Notwithstanding anything

contained in the CA End User License Agreement, solely with respect to such

open source, these terms are not superseded by any written agreement between

CA and Licensee:

Title to Java Naming and Directory Interface™ (JNDI), Version 1.2.1 and the

above named Service Providers (collectively the "Software") and all associated

intellectual property rights is retained by Sun Microsystems, Inc. ("Sun") and/or

its licensors. Licensee acknowledges that the Software is not designed, licensed

or intended for use in the design, construction, operation or maintenance of any

nuclear facility. Sun disclaims any express or implied warranty of fitness for such

uses. No right, title or interest in or to any trademark, service mark, logo or trade

name of Sun or its licensors is granted under this agreement.

The Software is provided "AS IS". As to any claim made by Licensee against Sun

respecting the Software, Licensee's exclusive remedy and Sun's entire liability

under this limited warranty will be at Sun's option to replace the Software media

or refund the fee paid by Licensee to Sun for the Software which Licensee

acknowledges is $0. The foregoing shall not affect any warranties provided in

any other applicable agreement between Licensee and CA.

UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR IMPLIED

CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE OR NON-INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT

THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Java Naming and Directory Interface (JNDI), Version 1.2.1

Appendix B: Aion--Acknowledgements 511

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS

LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR

SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,

HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT

OF OR RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN IF

SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The

foregoing limitations will apply even if the above stated warranty fails of its

essential purpose.

Sun may terminate Licensee's right to use the Software if Licensee fails to

comply with any provision of this agreement. Upon termination, Licensee must

destroy all copies of the Software.

Notwithstanding anything to the contrary contained in any agreement between

Licensee and CA, any action related to this agreement in which Sun is a party will

be governed by California law and controlling U.S. federal law. No choice of law

rules of any jurisdiction will apply.

Licensee acknowledges and agrees as between Licensee and Sun that Sun owns

the SUN, SOLARIS, JAVA, JINI, FORTE, STAROFFICE, STARPORTAL and iPLANET

trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, STAROFFICE,

STARPORTAL and iPLANET-related trademarks, service marks, logos and other

brand designations ("Sun Marks"), and Licensee agrees to comply with the Sun

Trademark and Logo Usage Requirements currently located at

http://www.sun.com/policies/trademarks. Any use Licensee makes of the Sun

Marks inures to Sun's benefit.

License acknowledges that Sun may terminate this agreement immediately

should the Software become, or in Sun's opinion be likely to become, the subject

of a claim of infringement of any intellectual property right.

For inquiries please contact: Sun Microsystems, Inc., 4150 Network Circle, Santa

Clara, California 95054, U.S.A

(LFI#107226/Form ID#011801)

Java XML Pack Summer '02 Bundle

512 Product Guide

Java XML Pack Summer '02 Bundle

Terms and Conditions for the Use of JAVA™ XML PACK SUMMER '02 BUNDLE

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by Sun

Microsystems, Inc. contained within the Product. Notwithstanding anything

contained in the CA End User License Agreement, solely with respect to such

open source, these terms are not superseded by any written agreement between

CA and Licensee:

Title to Java™ XML Pack Summer '02 Bundle (the "Software") and all associated

intellectual property rights is retained by Sun Microsystems, Inc. ("Sun") and/or

its licensors. Licensee acknowledges that the Software is not designed or

intended for use in the design, construction, operation or maintenance of any

nuclear facility. Sun disclaims any express or implied warranty of fitness for such

uses. No right, title or interest in or to any trademark, service mark, logo or trade

name of Sun or its licensors is granted under this agreement.

The Software is provided "AS IS". As to any claim made by Licensee against Sun

respecting the Software, Licensee's exclusive remedy and Sun's entire liability

under this limited warranty will be at Sun's option to replace the Software media

or refund the fee paid by Licensee to Sun for the Software which Licensee

acknowledges is $0. The foregoing shall not affect any warranties provided in

any other applicable agreement between Licensee and CA.

UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR IMPLIED

CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE OR NON-INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT

THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS

LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR

SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,

HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT

OF OR RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN IF

SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The

foregoing limitations will apply even if the above stated warranty fails of its

essential purpose.

Sun may terminate Licensee's right to use the Software if Licensee fails to

comply with any provision of this agreement. Upon termination, Licensee must

destroy all copies of the Software.

Notwithstanding anything to the contrary contained in any agreement between

Licensee and CA, any action related to this agreement in which Sun is a party will

be governed by California law and controlling U.S. federal law. No choice of law

rules of any jurisdiction will apply.

Java XML Pack Summer '02 Bundle

Appendix B: Aion--Acknowledgements 513

Licensee acknowledges and agrees as between Licensee and Sun that Sun owns

the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET trademarks and all SUN,

SOLARIS, JAVA, JINI, FORTE, and iPLANET-related trademarks, service marks,

logos and other brand designations ("Sun Marks"), and Licensee agrees to

comply with the Sun Trademark and Logo Usage Requirements currently located

at http://www.sun.com/policies/trademarks. Any use you make of the Sun

Marks inures to Sun's benefit.

Licensee acknowledges that Sun may terminate this agreement immediately

should the Software become, or in Sun's opinion be likely to become, the subject

of a claim of infringement of any intellectual property right.

For inquiries please contact: Sun Microsystems, Inc., 901 San Antonio Road,

Palo Alto, California 94303

(LFI#113314/Form ID#011801)

JavaBeans Activation Framework, Version 1.0.2

514 Product Guide

JavaBeans Activation Framework, Version 1.0.2

Terms and Conditions for the Use of JavaBeans™ Activation Framework, Version

1.0.2

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by Sun

Microsystems, Inc. contained within the Product. Notwithstanding anything

contained in the CA End User License Agreement, solely with respect to such

open source, these terms are not superseded by any written agreement between

CA and Licensee:

Title to JavaBeans™ Activation Framework, Version 1.0.2 (the "Software") and

all associated intellectual property rights are retained by Sun Microsystems, Inc.

("Sun") and/or its licensors. Licensee acknowledges that the Software is not

designed, licensed or intended for use in the design, construction, operation or

maintenance of any nuclear facility. Sun disclaims any express or implied

warranty of fitness for such uses. No right, title or interest in or to any

trademark, service mark, logo or trade name of Sun or its licensors is granted

under this agreement.

The Software is provided "AS IS". As to any claim made by Licensee against Sun

respecting the Software, Licensee's exclusive remedy and Sun's entire liability

under this limited warranty will be at Sun's option to replace the Software media

or refund the fee paid by Licensee to Sun for the Software which Licensee

acknowledges is $0. The foregoing shall not affect any warranties provided in

any other applicable agreement between Licensee and CA.

UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR IMPLIED

CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE OR NON-INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT

THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS

LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR

SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,

HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT

OF OR RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN IF

SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The

foregoing limitations will apply even if the above stated warranty fails of its

essential purpose.

Sun may terminate Licensee's right to use the Software if Licensee fails to

comply with any provision of this agreement. Upon termination, Licensee must

destroy all copies of the Software.

JavaBeans Activation Framework, Version 1.0.2

Appendix B: Aion--Acknowledgements 515

Notwithstanding anything to the contrary contained in any agreement between

Licensee and CA, any action related to this agreement in which Sun is a party will

be governed by California law and controlling U.S. federal law. No choice of law

rules of any jurisdiction will apply.

Licensee acknowledges that Sun is under no obligation to support the Software

or to provide Licensee with updates or error corrections. Licensee acknowledges

that the Software may have defects or deficiencies, which cannot or will not be

corrected by Sun.

Licensee acknowledges and agrees as between Licensee and Sun that Sun owns

the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET trademarks and all SUN,

SOLARIS, JAVA, JINI, FORTE, and iPLANET-related trademarks, service marks,

logos and other brand designations ("Sun Marks"), and Licensee agrees to

comply with the Sun Trademark and Logo Usage Requirements currently located

at http://www.sun.com/policies/trademarks. Any use Licensee makes of the Sun

Marks inures to Sun's benefit.

Licensee acknowledges that Sun may terminate this agreement immediately

should the Software become, or in Sun's opinion be likely to become, the subject

of a claim of infringement of any intellectual property right.

For inquiries please contact: Sun Microsystems, Inc., 901 San Antonio Road,

Palo Alto, California 94303

(LFI#115020/Form ID#011801)

JavaMail, Version 1.3

516 Product Guide

JavaMail, Version 1.3

Terms and Conditions for the Use of JavaMail™, Version 1.3

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by Sun

Microsystems, Inc. contained within the Product. Notwithstanding anything

contained in the CA End User License Agreement, solely with respect to such

open source, these terms are not superseded by any written agreement between

CA and Licensee:

Title to JavaMail™, Version 1.3 (the "Software") and all associated intellectual

property rights is retained by Sun Microsystems, Inc. ("Sun") and/or its

licensors. Licensee acknowledges that the Software is not designed, licensed or

intended for use in the design, construction, operation or maintenance of any

nuclear facility. Sun disclaims any express or implied warranty of fitness for such

uses. No right, title or interest in or to any trademark, service mark, logo or trade

name of Sun or its licensors is granted under this agreement.

The Software is provided "AS IS". As to any claim made by Licensee against Sun

respecting the Software, Licensee's exclusive remedy and Sun's entire liability

under this limited warranty will be at Sun's option to replace the Software media

or refund the fee paid by Licensee to Sun for the Software which Licensee

acknowledges is $0. The foregoing shall not affect any warranties provided in

any other applicable agreement between Licensee and CA.

UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR IMPLIED

CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE OR NON-INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT

THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS

LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR

SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,

HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT

OF OR RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN IF

SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The

foregoing limitations will apply even if the above stated warranty fails of its

essential purpose.

Sun may terminate Licensee's right to use the Software if License fails to comply

with any provision of this agreement. Upon termination, Licensee must destroy

all copies of the Software.

Notwithstanding anything to the contrary contained in any agreement between

Licensee and CA, any action related to this agreement in which Sun is a party will

be governed by California law and controlling U.S. federal law. No choice of law

rules of any jurisdiction will apply.

JavaMail, Version 1.3

Appendix B: Aion--Acknowledgements 517

Licensee acknowledges and agrees as between Licensee and Sun that Sun owns

the SUN, SOLARIS, JAVA, JINI, FORTE, STAROFFICE, STARPORTAL and iPLANET

trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, STAROFFICE,

STARPORTAL and iPLANET-related trademarks, service marks, logos and other

brand designations ("Sun Marks"), and Licensee agrees to comply with the Sun

Trademark and Logo Usage Requirements currently located at

http://www.sun.com/policies/trademarks. Any use Licensee makes of the Sun

Marks inures to Sun's benefit.

Licensee acknowledges that Sun may terminate this agreement immediately

should the Software become, or in Sun's opinion be likely to become, the subject

of a claim of infringement of any intellectual property right.

For inquiries please contact: Sun Microsystems, Inc., 4150 Network Circle, Santa

Clara, California 95054, U.S.A

(LFI#114176/Form ID#011801)

Sun Microsystems, Inc. Java 2 Runtime Environment 1.4.2

518 Product Guide

Sun Microsystems, Inc. Java 2 Runtime Environment 1.4.2

Terms and Conditions for the Use of Java™ 2 Runtime Environment (J2RE),

Standard Edition, Version 1.4.2_X

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by Sun

Microsystems, Inc. contained within the Product. Notwithstanding anything

contained in the CA End User License Agreement, solely with respect to such

open source, these terms are not superseded by any written agreement between

CA and Licensee:

"Software" means Java™ 2 Runtime Environment (J2RE), Standard Edition,

Version 1.4.2_X and any user manuals, programming guides and other

documentation provided to Licensee.

Title to Software and all associated intellectual property rights are retained by

Sun Microsystems, Inc. ("Sun") and/or its licensors. Licensee acknowledges that

Software is not designed or intended for use in the design, construction,

operation or maintenance of any nuclear facility. Sun disclaims any express or

implied warranty of fitness for such uses. No right, title or interest in or to any

trademark, service mark, logo or trade name of Sun or its licensors is granted

under this agreement.

The Software is provided "AS IS". As to any claim made by Licensee against Sun

respecting Software, Licensee's exclusive remedy and Sun's entire liability under

this limited warranty will be at Sun's option to replace Software media or refund

the fee paid for Software by Licensee to Sun which Licensee acknowledges is $0.

UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR IMPLIED

CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE OR NON-INFRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT

THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. The foregoing

limitations shall not affect any warranties provided in any other applicable

agreement between Licensee and CA.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS

LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR

SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,

HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT

OF OR RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The foregoing

limitations will apply even if the above stated warranty fails of its essential

purpose.

Sun Microsystems, Inc. Java 2 Runtime Environment 1.4.2

Appendix B: Aion--Acknowledgements 519

Licensee acknowledges that at Licensee's request or consent optional features of

the Software may download, install, and execute applets, applications, software

extensions, and updated versions of the Software from Sun ("Software

Updates"), which may require Licensee to accept updated terms and conditions

for installation. If additional terms and conditions are not presented on

installation, the Software Updates will be considered part of the Software and

subject to the terms and conditions of this agreement.

Licensee acknowledges that, by Licensee's use of optional features of the

Software and/or by requesting services that require use of the optional features

of the Software, the Software may automatically download, install, and execute

software applications from sources other than Sun ("Other Software"). Sun

makes no representations of a relationship of any kind to licensors of Other

Software. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN

OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR

FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE

DAMAGES, HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY,

ARISING OUT OF OR RELATED TO THE USE OF OR INABILITY TO USE OTHER

SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES. Some states do not allow the exclusion of incidental or consequential

damages, so some of the terms above may not be applicable to Licensee.

Licensee acknowledges that Sun may terminate Licensee's use of the Software

without notice if Licensee fails to comply with any provision of this agreement.

Licensee acknowledges that Sun may terminate this agreement immediately

should the Software become, or in Sun's opinion be likely to become, the

subject of a claim of infringement of any intellectual property right. Upon

termination, Licensee must destroy all copies of Software.

Licensee acknowledges and agrees as between Licensee and Sun that Sun owns

the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET trademarks and all SUN,

SOLARIS, JAVA, JINI, FORTE, and iPLANET-related trademarks, service marks,

logos and other brand designations ("Sun Marks"), and Licensee agrees to

comply with the Sun Trademark and Logo Usage Requirements currently located

at http://www.sun.com/policies/trademarks. Any use Licensee makes of the

Sun Marks inures to Sun's benefit.

Notwithstanding anything to the contrary contained in any agreement between

Licensee and CA, any action related to this agreement in which Sun is a party will

be governed by California law and controlling U.S. federal law. No choice of law

rules of any jurisdiction will apply.

Licensee acknowledges that additional copyright notices and license terms

applicable to portions of the Software are set forth in the

THIRDPARTYLICENSEREADME.txt file.

For inquiries please contact: Sun Microsystems, Inc., 4150 Network Circle, Santa

Clara, California 95054, U.S.A.

Sun Microsystems, Inc. Java 2 Runtime Environment 1.4.2

520 Product Guide

(LFI#135002/Form ID#011801)

JUnit 3.8.1

Appendix B: Aion--Acknowledgements 521

JUnit 3.8.1

This product includes junit 3.8.1 from (www.junit.org)

JUnit is a regression testing framework written by Erich Gamma and Kent Beck.

It is used by the developer who implements unit tests in Java. JUnit is Open

Source Software, released under the IBM's Common Public License Version 1.0

and hosted on SourceForge.

Common Public License Version 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS

COMMON PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR

DISTRIBUTION OF THE PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF

THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:

a) in the case of the initial Contributor, the initial code and documentation

distributed under this Agreement, and

b) in the case of each subsequent Contributor:

i) changes to the Program, and

ii) additions to the Program;

where such changes and/or additions to the Program originate from and are

distributed by that particular Contributor. A Contribution 'originates' from a

Contributor if it was added to the Program by such Contributor itself or anyone

acting on such Contributor's behalf. Contributions do not include additions to the

Program which: (i) are separate modules of software distributed in conjunction

with the Program under their own license agreement, and (ii) are not derivative

works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are

necessarily infringed by the use or sale of its Contribution alone or when

combined with the Program.

"Program" means the Contributions distributed in accordance with this

Agreement.

"Recipient" means anyone who receives the Program under this Agreement,

including all Contributors.

JUnit 3.8.1

522 Product Guide

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each Contributor hereby grants

Recipient a non-exclusive, worldwide, royalty-free copyright license to

reproduce, prepare derivative works of, publicly display, publicly perform,

distribute and sublicense the Contribution of such Contributor, if any, and such

derivative works, in source code and object code form.

b) Subject to the terms of this Agreement, each Contributor hereby grants

Recipient a non-exclusive, worldwide, royalty-free patent license under Licensed

Patents to make, use, sell, offer to sell, import and otherwise transfer the

Contribution of such Contributor, if any, in source code and object code form.

This patent license shall apply to the combination of the Contribution and the

Program if, at the time the Contribution is added by the Contributor, such

addition of the Contribution causes such combination to be covered by the

Licensed Patents. The patent license shall not apply to any other combinations

which include the Contribution. No hardware per se is licensed hereunder.

c) Recipient understands that although each Contributor grants the licenses to

its Contributions set forth herein, no assurances are provided by any Contributor

that the Program does not infringe the patent or other intellectual property rights

of any other entity. Each Contributor disclaims any liability to Recipient for claims

brought by any other entity based on infringement of intellectual property rights

or otherwise. As a condition to exercising the rights and licenses granted

hereunder, each Recipient hereby assumes sole responsibility to secure any

other intellectual property rights needed, if any. For example, if a third party

patent license is required to allow Recipient to distribute the Program, it is

Recipient's responsibility to acquire that license before distributing the Program.

d) Each Contributor represents that to its knowledge it has sufficient copyright

rights in its Contribution, if any, to grant the copyright license set forth in this

Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its

own license agreement, provided that:

a) it complies with the terms and conditions of this Agreement; and

b) its license agreement:

i) effectively disclaims on behalf of all Contributors all warranties and conditions,

express and implied, including warranties or conditions of title and

non-infringement, and implied warranties or conditions of merchantability and

fitness for a particular purpose;

JUnit 3.8.1

Appendix B: Aion--Acknowledgements 523

ii) effectively excludes on behalf of all Contributors all liability for damages,

including direct, indirect, special, incidental and consequential damages, such as

lost profits;

iii) states that any provisions which differ from this Agreement are offered by

that Contributor alone and not by any other party; and iv) states that source

code for the Program is available from such Contributor, and informs licensees

how to obtain it in a reasonable manner on or through a medium customarily

used for software exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and

b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the

Program. Each Contributor must identify itself as the originator of its

Contribution, if any, in a manner that reasonably allows subsequent Recipients

to identify the originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

JUnit 3.8.1

524 Product Guide

Commercial distributors of software may accept certain responsibilities with

respect to end users, business partners and the like. While this license is

intended to facilitate the commercial use of the Program, the Contributor who

includes the Program in a commercial product offering should do so in a manner

which does not create potential liability for other Contributors. Therefore, if a

Contributor includes the Program in a commercial product offering, such

Contributor ("Commercial Contributor") hereby agrees to defend and indemnify

every other Contributor ("Indemnified Contributor") against any losses,

damages and costs (collectively "Losses") arising from claims, lawsuits and other

legal actions brought by a third party against the Indemnified Contributor to the

extent caused by the acts or omissions of such Commercial Contributor in

connection with its distribution of the Program in a commercial product offering.

The obligations in this section do not apply to any claims or Losses relating to any

actual or alleged intellectual property infringement. In order to qualify, an

Indemnified Contributor must: a) promptly notify the Commercial Contributor in

writing of such claim, and b) allow the Commercial Contributor to control, and

cooperate with the Commercial Contributor in, the defense and any related

settlement negotiations. The Indemnified Contributor may participate in any

such claim at its own expense. For example, a Contributor might include the

Program in a commercial product offering, Product X. That Contributor is then a

Commercial Contributor. If that Commercial Contributor then makes

performance claims, or offers warranties related to Product X, those

performance claims and warranties are such Commercial Contributor's

responsibility alone. Under this section, the Commercial Contributor would have

to defend claims against the other Contributors related to those performance

claims and warranties, and if a court requires any other Contributor to pay any

damages as a result, the Commercial Contributor must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS

PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION,

ANY WARRANTIES OR CONDITIONS OF TITLE, NONINFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is

solely responsible for determining the appropriateness of using and distributing

the Program and assumes all risks associated with its exercise of rights under

this Agreement, including but not limited to the risks and costs of program

errors, compliance with applicable laws, damage to or loss of data, programs or

equipment, and unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

JUnit 3.8.1

Appendix B: Aion--Acknowledgements 525

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT

NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY

RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable

law, it shall not affect the validity or enforceability of the remainder of the terms

of this Agreement, and without further action by the parties hereto, such

provision shall be reformed to the minimum extent necessary to make such

provision valid and enforceable. If Recipient institutes patent litigation against a

Contributor with respect to a patent applicable to software (including a

cross-claim or counterclaim in a lawsuit), then any patent licenses granted by

that Contributor to such Recipient under this Agreement shall terminate as of the

date such litigation is filed. In addition, if Recipient institutes patent litigation

against any entity (including a cross-claim or counterclaim in a lawsuit) alleging

that the Program itself (excluding combinations of the Program with other

software or hardware) infringes such Recipient's patent(s), then such Recipient's

rights granted under Section 2(b) shall terminate as of the date such litigation is

filed. All Recipient's rights under this Agreement shall terminate if it fails to

comply with any of the material terms or conditions of this Agreement and does

not cure such failure in a reasonable period of time after becoming aware of such

noncompliance. If all Recipient's rights under this Agreement terminate,

Recipient agrees to cease use and distribution of the Program as soon as

reasonably practicable. However, Recipient's obligations under this Agreement

and any licenses granted by Recipient relating to the Program shall continue and

survive.

JUnit 3.8.1

526 Product Guide

Everyone is permitted to copy and distribute copies of this Agreement, but in

order to avoid inconsistency the Agreement is copyrighted and may only be

modified in the following manner. The Agreement Steward reserves the right to

publish new versions (including revisions) of this Agreement from time to time.

No one other than the Agreement Steward has the right to modify this

Agreement. IBM is the initial Agreement Steward. IBM may assign the

responsibility to serve as the Agreement Steward to a suitable separate entity.

Each new version of the Agreement will be given a distinguishing version

number. The Program (including Contributions) may always be distributed

subject to the version of the Agreement under which it was received. In addition,

after a new version of the Agreement is published, Contributor may elect to

distribute the Program (including its Contributions) under the new version.

Except as expressly stated in Sections 2(a) and 2(b) above, Recipient receives

no rights or licenses to the intellectual property of any Contributor under this

Agreement, whether expressly, by implication, estoppel or otherwise. All rights

in the Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the

intellectual property laws of the United States of America. No party to this

Agreement will bring a legal action under this Agreement more than one year

after the cause of action arose. Each party waives its rights to a jury trial in any

resulting litigation.

OpenSSL 0.9.7c

Appendix B: Aion--Acknowledgements 527

OpenSSL 0.9.7c

This product includes OpenSSL 0.9.7c (http://www.openssl.org/)

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the

OpenSSL License and the original SSLeay license apply to the toolkit. See below

for the actual license texts. Actually both licenses are BSD-style Open Source

licenses. In case of any license issues related to OpenSSL please contact

openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must

display the following acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the

OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

endorse or promote products derived from this software without prior written

permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may

"OpenSSL" appear in their names without prior written permission of the

OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following

acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the

OpenSSL Toolkit (http://www.openssl.org/)"

OpenSSL 0.9.7c

528 Product Guide

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT `"AS IS'' AND ANY

EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young

(eay@cryptsoft.com). This product includes software written by Tim Hudson

(tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.

This package is an SSL implementation written by Eric Young

(eay@cryptsoft.com). The implementation was written so as to conform with

Netscapes SSL.

This library is free for commercial and non-commercial use as long as the

following conditions are aheared to. The following conditions apply to all code

found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the

SSL code. The SSL documentation included with this distribution is covered by

the same copyright terms except that the holder is Tim Hudson

(tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code

are not to be removed.

If this package is used in a product, Eric Young should be given attribution as the

author of the parts of the library used.

This can be in the form of a textual message at program startup or in

documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

OpenSSL 0.9.7c

Appendix B: Aion--Acknowledgements 529

3. All advertising materials mentioning features or use of this software must

display the following acknowledgement:

"This product includes cryptographic software written by Eric Young

(eay@cryptsoft.com)"

The word 'cryptographic' can be left out if the routines from the library being

used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the

apps directory (application code) you must include an acknowledgement:

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ̀ "AS IS'' AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or

derivative of this code cannot be changed. i.e. this code cannot simply be copied

and put under another distribution licence [including the GNU Public Licence.]

Sun Microsystems, Inc. JIMI SDK, Version 2.0

530 Product Guide

Sun Microsystems, Inc. JIMI SDK, Version 2.0

Terms and Conditions for the Use of JIMI SDK, Version 2.0

Licensee agrees that the following terms (in addition to the applicable provisions

above) shall apply with respect to any open source provided by Sun

Microsystems, Inc. contained within the Product. Notwithstanding anything

contained in the CA End User License Agreement (“EULA”), solely with respect to

such open source, these terms are not superseded by any written agreement

between CA and Licensee:

Title to JIMI SDK, Version 2.0 (the “Software”) and all associated intellectual

property rights are retained by Sun Microsystems, Inc. (“Sun”) and/or its

licensors.

The Software is provided "AS IS". As to any claim made by Licensee against Sun

respecting the Software, licensee's exclusive remedy and Sun's entire liability

under this limited warranty will be at Sun's option to replace the Software media

or refund the fee paid for the Software which Licensee acknowledges is $0. The

foregoing shall not affect any warranties provided in the EULA or any other

applicable agreement between Licensee and CA.

UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR IMPLIED

CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT

THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. LICENSEE

ACKNOWLEDGES THAT THE SOFTWARE IS NOT DESIGNED OR INTENDED FOR

USE IN THE DESIGN, CONSTRUCTION, OPERATION, OR MAINTENANCE OF ANY

NUCLEAR FACILITY. SUN DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF

FITNESS FOR SUCH USES.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS

LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR

SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,

HOWEVER CAUSED REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT

OF OR RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE, EVEN IF

SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In no event

will Sun's liability to Licensee exceed the amount paid by Licensee to Sun for the

Software under this agreement which Licensee acknowledges is $0. The

foregoing limitations will apply even if the above stated warranty fails of its

essential purpose.

Sun may terminate Licensee's right to use the Software if Licensee fails to

comply with any provision of this agreement. Upon such termination, Licensee

must destroy all copies of the Software.

Sun Microsystems, Inc. JIMI SDK, Version 2.0

Appendix B: Aion--Acknowledgements 531

Notwithstanding anything to the contrary contained in any agreement between

Licensee and CA, any action in which Sun is a party will be governed by California

law and controlling U.S. federal law. No choice of law rules of any jurisdiction will

apply.

For inquiries please contact: Sun Microsystems, Inc. 901 San Antonio Road, Palo

Alto, California 94303.

Is a condition precedent to each license grant in this agreement, Licensee agrees

to indemnify, hold harmless, and defend Sun and its licensors from and against

any and all claims, lawsuits, liabilities, demands and expenses (including

attorneys' fees), that arise or result from the use or distribution of the Software

or the Product, including without limitation, those brought by Unisys

Corporation, its successors and assigns, with respect to U.S. Patent Number

4,558,302 and all foreign counterparts thereto which Unisys Corporation may

now have or acquire in the future (the "LZW Patents") relating to Licensee's

making, using, selling, licensing, importing, offering to sell, or otherwise

transferring the GIF encoding and/or decoding feature of the Software or the

Product. This agreement does not grant any rights to Licensee with respect to

the LZW Patents.

Licensee acknowledges that this agreement does not authorize Licensee to use

any Sun name, trademark or logo. Licensee acknowledges and agrees as

between Licensee and Sun that Sun owns the Java trademark and all

Java-related trademarks, logos and icons including the Coffee Cup and Duke

("Java Marks") and Licensee agrees to comply with the Java Trademark

Guidelines at http://java.sun.com/trademarks.html.

TPSR P05273_11

532 Product Guide

TPSR P05273_11

Details of the TPSR P05273_1

1. TPSR Information

--

TPSR ID: P05273_1

Project 360 ID: P05273

Project Name: INF-eHealth/Voice Integration Phase 1 PES - Dev (Sub)

Created By: rosjo12

PGC Approver: MOTLU01

TPSR Status: Approved

License Text: COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1996 - 2008, Daniel Stenberg, <daniel@haxx.se>.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose

with or without fee is hereby granted, provided that the above copyright

TPSR P05273_11

Appendix B: Aion--Acknowledgements 533

notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD

PARTY RIGHTS. IN

NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT

OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE

OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not

be used in advertising or otherwise to promote the sale, use or other dealings

in this Software without prior written authorization of the copyright holder.

License URL: http://curl.haxx.se/docs/copyright.html

Copyright Text:

 /***

 * _ _ ____ _

 * Project ___| | | | _ \| |

 * / __| | | | |_) | |

 * | (__| |_| | _ <| |___

TPSR P05273_11

534 Product Guide

 * ___|___/|_| ______|

 *

 * Copyright (C) 1998 - 2007, Daniel Stenberg, <daniel@haxx.se>, et al.

 *

 * This software is licensed as described in the file COPYING, which

 * you should have received as part of this distribution. The terms

 * are also available at http://curl.haxx.se/docs/copyright.html.

 *

 * You may opt to use, copy, modify, merge, publish, distribute and/or sell

 * copies of the Software, and permit persons to whom the Software is

 * furnished to do so, under the terms of the COPYING file.

 *

 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY

 * KIND, either express or implied.

 *

**

*************/

Original Licensee: CA

Intended Usage: This library will be used to collect all data from

cisco callmanager versions 3.3 - 6.1, which uses a HTTP/HTTPS soap based api

for applications that wish to collect performance data.

Modifications Required: P05273

TPSR P05273_11

Appendix B: Aion--Acknowledgements 535

Distribution Type: P05273

Localization: P05273

Platforms: Solaris 2.10 , Windows 2003 32-bit,

Creation Date: 2008-12-03

Modification Date: 2008-12-08

2. Component Information

--

Component: libcurl 7.19.2

Vendor: Daniel Stenberg

Description: Free and easy-to-use client-side URL transfer library.

Libcurl is a library for transfering data with URL syntax, supporting FTP, FTPS,

HTTP, HTTPS, TFTP, GOPHER, TELNET, DICT, FILE and LDAP. The tool and library

offer a myriad of powerful features and full protocol control.

TPSR P05273_11

536 Product Guide

Features: Provides all HTTP/HTTPS functionality to collect data

from Cisco CallManager 3.3 - 6.1. Recompiled with CA etpki version 3.0.0 (as

used by eHealth 6.1) to be fips compliant. Also provides ipv6 support for cisco

data collection. This version also fixes a memory leak when ssl (https) is used

that existed in version 7.18.2

Cost: 0

URL: http://curl.haxx.se/libcurl/,

http://sourceforge.net/projects/curl/

Recommendation: Allowed

CA Version ID: 1

3. Administrator Comments

--

TAC Admin PMF: albda04

TAC Remarks: None

TAC Action Date: 2008-12-08

TPSR P05273_11

Appendix B: Aion--Acknowledgements 537

4. Legal Comments

--

Legal PMF: macgl03

Legal Remarks: Approved by WLD on 12/7/08 subject to the

following:

1. Permission to use, copy, modify, and distribute this software is permitted,

provided that the copyright notice, disclaimer and permission notice set forth in

the License Text section of this TPSR appears in all copies.

2. The name of the copyright holder may not be used to endorse or promote

products derived from this software without specific prior written permission.

Legal Action Date: 2008-12-07

Installation Requirements: None

Copyright Requirements: None

Documentation Requirements: The entire ?License Text? section must be

reproduced in an Acknowledgments section in the CA product user

documentation in accordance with the Tech Pub guidelines. Please precede the

text of the license agreement with: "This product includes libcurl 7.19.2, the use

of which is governed by the following terms:"

Werken digital SAXPath 1.0

538 Product Guide

Werken digital SAXPath 1.0

This product includes software developed by the SAXPath Project

(http://www.saxpath.org/). The SAXPath software is distributed in accordance

with the following license agreement.

Full Text of the License Agreement:

$Id: LICENSE,v 1.1 2002/04/26 17:43:56 jstrachan Exp $

Copyright (C) 2000-2002 werken digital. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions, and the disclaimer that follows these conditions in the

documentation and/or other materials provided with the distribution.

3. The name "SAXPath" must not be used to endorse or promote products

derived from this software without prior written permission. For written

permission, please contact license@saxpath.org.

4. Products derived from this software may not be called "SAXPath", nor may

"SAXPath" appear in their name, without prior written permission from the

SAXPath Project Management (pm@saxpath.org).

In addition, we request (but do not require) that you include in the end-user

documentation provided with the redistribution and/or in the software itself an

acknowledgement equivalent to the following: "This product includes software

developed by the SAXPath Project (http://www.saxpath.org/)."

Alternatively, the acknowledgment may be graphical using the logos available at

http://www.saxpath.org/.

Werken digital SAXPath 1.0

Appendix B: Aion--Acknowledgements 539

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE SAXPath AUTHORS OR THE PROJECT

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on

behalf of the SAXPath Project and was originally created by bob mcwhirter

<bob@werken.com> and James Strachan <jstrachan@apache.org>. For more

information on the SAXPath Project, please see <http://www.saxpath.org/>.

Werken Company Jaxen 1.0

540 Product Guide

Werken Company Jaxen 1.0

This product includes software developed by The Werken Company

(http://www.jaxen.werken.com/). The Jaxen software is distributed in

accordance with the following license agreement.

Full Text of the License Agreement:

$Id: LICENSE.txt,v 1.3 2003/06/29 18:22:02 ssanders Exp $

Copyright 2003 (C) The Werken Company. All Rights Reserved.

Redistribution and use of this software and associated documentation

("Software"), with or without modification, are permitted provided that the

following conditions are met:

1. Redistributions of source code must retain copyright statements and notices.

Redistributions must also contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

3. The name "jaxen" must not be used to endorse or promote products derived

from this Software without prior written permission of The Werken Company. For

written permission, please contact bob@werken.com.

4. Products derived from this Software may not be called "jaxen" nor may

"jaxen" appear in their names without prior written permission of The Werken

Company. "jaxen" is a registered trademark of The Werken Company.

5. Due credit should be given to The Werken Company.

(http://jaxen.werken.com/).

THIS SOFTWARE IS PROVIDED BY THE WERKEN COMPANY AND CONTRIBUTORS

``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE WERKEN COMPANY OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Full Text of Copyright Notices:

Werken Company Jaxen 1.0

Appendix B: Aion--Acknowledgements 541

Copyright© 2000-2002 bob mcwhirter & James Strachan.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions, and the disclaimer that follows these conditions in the

documentation and/or other materials provided with the distribution.

3. The name "Jaxen" must not be used to endorse or promote products derived

from this software without prior written permission. For written permission,

please contact license@jaxen.org.

4. Products derived from this software may not be called "Jaxen", nor may

"Jaxen" appear in their name, without prior written permission from the Jaxen

Project Management (pm@jaxen.org).

In addition, we request (but do not require) that you include in the end-user

documentation provided with the redistribution and/or in the software itself an

acknowledgement equivalent to the following: "This product includes software

developed by the Jaxen Project (http://www.jaxen.org/)."

Alternatively, the acknowledgment may be graphical using the logos available at

http://www.jaxen.org/

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE Jaxen AUTHORS OR THE PROJECT

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on

behalf of the Jaxen Project and was originally created by bob mcwhirter

<bob@werken.com> and James Strachan <jstrachan@apache.org>. For more

information on the Jaxen Project, please see <http://www.jaxen.org/>.

Werken Company Jaxen 1.0

542 Product Guide

Index 543

Index

.

.NET • 351

programming • 357

A

access types • 61

ActiveX controls

defined • 159

add

markers • 235

Aion BRE language • 22

Aion terms • 62

aionsession.jar file • 369

Apache Axis • 401

validation • 402

application libraries • 44

applications • 43

backing up • 81

build • 443

creating • 79

deploy • 446

develop application for non-windows • 84

edit from remote source • 84

open • 80

read-only • 81

restore open • 83

restoring • 82

saving • 81

search across • 137

standalone • 45

view • 91

Association Editor • 104

associations

edit • 104

Attribute Editor • 105

attributes • 47, 63

Watched Attribute pane • 420

watchpoints

set and remove • 432

automatic

data loading • 238

automation

using Aion as a client • 394

B

back up applications • 81

backward chaining

debugging • 437

breakpoints • 429

remove • 431

set • 433

business rules • 299

C

C and C++ components • 335

data types • 341

C/C++ terms • 62

change management • 130

functions • 130

changes

management • 130

Class Editor • 106

class relationships

inheritance hierarchy • 49

class relationships,containment • 52

classes • 47, 63

attributes • 63

constants • 69

editing • 106

methods • 67

clear

watchpoints • 432

client

use Aion as automation • 394

client-server applications • 21

COM

objects

generation • 392, 394

COM components

data types • 395

complex data types • 400

component-based development • 21

components

as Web services • 399

C and C++ • 335

Managed C++ • 351

concurrent development • 129

connections

544 Product Guide

defining for databases • 222

Console-Mode Installation • 31

constants • 69

containment) • 52

control groups

work with control groups • 156

controls

ActiveX • 159

add to windows • 151

create • 154

editing • 155

logic • 182

order • 176

properties • 161

splitter windows • 160

conventions

menu • 171

toolbar • 175

Custom Installation • 29

D

data

automatic

loading mode • 238

commit modes • 244

load

from a database • 237

manual

commit mode • 245

load mode • 239

data objects

MQLib • 255

Data Test facility • 236, 237

data types

C and C++ • 341

COM components • 395

complex • 400

Managed C++ • 362

database support • 23

database terms • 62

databases

define a connection • 222

handling errors • 248

saving modifications • 244

DCOM

test configuration • 394

Debugger

instance counter • 421

Method Body pane • 421

set watchpoints • 432

setting code breakpoints • 431

settings • 432

Watched Attribute pane • 420

debugging

embedded • 416

how to • 433

rule-based inferencing • 436

Decision Table Editor • 106

deployment • 399

as Web services • 399

WebLogic • 405

WebSphere • 406

derived classes • 49

development

concurrent • 129

development environment

customizing • 89

dialog boxes

applications

using in • 146

edit • 149

logic • 179

properties • 150

dialogs

create at runtime • 208

domain

defined • 286

domain interface

defined • 289

domain interface (DI) members

defined • 286

Dynamic Rule Manager • 293

Dynamic Rulebase Administrator • 293

dynamic rules • 291

Aion BRE-supplied libraries • 294

domain • 286

domain interface • 286, 289

domain interface members • 286

DynRDLib • 293, 294

DynRELib • 294

DynRLib • 294

examples • 294

rulebase • 293

uses • 292

dynamic versus static • 70

DynRDLib • 293, 294

DynRELib • 294

DynRLib • 294

Index 545

E

editors

Association • 104

Attribute • 105

Class • 106

Decision Table • 106

descriptions of • 102

Instance • 107

Menu • 107

Method • 107

Query • 109

Rule • 108

standard

procedures • 103

standard tab pages • 103

Stored Procedure • 110

Tool • 111

use editors • 102

Window • 111

embedded debugging • 416

Entry Class property • 45

Explorer

set explorer workspace options • 100

use explore • 99

exported classes

coding • 355

F

focus

keyboard • 156

forward chaining

debugging • 437

G

graphical user interface(GUI) • 22

Graphical-Mode Installation • 32

graphics

add to windows • 175

layering • 176

logic • 185

properties • 177

grouping radio buttons • 156

GUI

add controls • 151

add menus • 163

adding toolbars • 171

create dialog boxes • 146

creating windows • 146

implement logic • 178

H

has-a relationship • 52

hierarchy

class • 49

how to debug • 433

I

icons

table • 92

IDE

icons • 92

included libraries • 44, 123

inference

debugging • 436

inheritance • 49

queries • 223

Install on Linux/UNIX server • 31

Install on Microsoft Windows • 26

Installation • 25

Installation Prerequisites • 25

instance counter

Debugger • 421

Instance Editor • 107

instances • 47

dynamic versus static • 70

interface layers • 21

C and C++ • 335

Java • 363

Managed C++ • 351

use interface layer • 444

interfaces • 72

is-a relationships • 49

J

jar files

aionsession • 369

Java components • 363

K

keyboard focus

ordering • 156

L

layering graphics • 176

libraries • 44

benefits of • 45

546 Product Guide

boundaries of • 46

for dynamic rules • 294

included • 123

properties • 442

load

data from a database • 237

manual • 239

logic

application • 178

control • 182

dialog box • 179

graphic • 185

implement • 178

menu • 183

toolbar • 185

window • 179

M

Main class • 45

Managed C++ components • 351

data types • 362

managed code • 351

manual commit mode • 245

markers

add • 235

use markers with query and classes • 227

MDI windows

defined • 148

MDI windows, • 148

members

of class • 47

Menu Editor • 107

menu items

add to menu titles • 165

menu titles

add menu items • 165

attach to windows • 166

create • 164

menus

add to windows • 163

conventions • 171

logic • 183

pop-up • 166

properties • 167

messages • 47

Method Body pane • 421

Method Editor • 22, 107

Method Editor Options • 108

method language • 22

methods • 47, 67

accessor • 286

application-defined • 223

create • 190

editing • 107

WhenFetched() method • 241

WhenUpdated() method • 246

modes

automatic commit • 245

manual commit • 245

MQLib • 253

data objects • 255

MQSeries • 253

N

new method • 190

O

object communication • 21

interface layers • 21

object orientation • 20

inheritance • 49

overview • 47

polymorphism • 50

terminology • 47

object orientation,containment • 52

objects • 47

COM

generate • 392

copy • 117

delete • 118

icons representing • 92

pasting • 117

properties of GUI • 141

search for • 136

open applications

restore • 83

options

Method Editor • 108

order

graphics • 176

Output Window • 93

P

panes

Debugger

Method Body • 421

Watched Attribute • 420

parser utility • 232

Index 547

SQL • 232

Paster utility

SQL • 232

pattern matching

debugging • 437

polymorphism • 50

pop-up menus • 166

private access type • 61

Project Workspace • 96

properties

dialog box • 150

graphics • 177

GUI objects • 141

menu • 167

toolbar • 173

window • 150

properties, • 161

protected access type • 61

public access type • 61

Q

queries

create • 224

define • 222

inheritance • 223

modify • 227

reuse • 223

stored procedures • 233

queries, • 223

Query Editor • 109

Queue Manager • 254

R

radio buttons

grouping • 156

Rapid Application Development (RAD) • 23

read-only applications • 81

remote source

develop applications for non-windows • 84

editing applications from • 84

removing

watchpoints • 432

resources

create • 177

reuse queries • 223

Rule Editor • 102, 108

Rule Manager Wizard • 299

rules

business rules • 299

decision table • 291

inferencing, • 19

static • 291

S

safeguards, source control • 127

saving

database modifications • 244

SDI windows • 148

set

breakpoints • 433

watchpoints • 432

settings

Debugger • 432

Setup • 25

Silent Installation • 40

single class hierarchy • 43

source control • 126

program options • 128

safeguards • 127

source files

restore applications from • 82

specialization • 49

splitter windows • 160

SQL

Paster utility • 232

write • 231

SQL Paster utility • 232

Start method • 45

static versus dynamic • 70

Stored Procedure Editor • 110

stored procedures • 110

create • 233

define • 232

editor • 233

queries • 233

subclasses • 49

T

tab controls

tab controls • 158

tab pages • 94

Output Window • 94

standard in editors • 103

terminology • 47

access types • 61

comparison • 62

test

DCOM configuration • 394

548 Product Guide

text

replacing • 136

searching for • 136

Tool Editor • 111

toolbars • 119

add to windows • 171

adding tools • 173

attach to windows • 173

conventions • 175

create • 171

customize • 122

editing • 111

logic • 185

properties • 173

tools

add to toolbars • 173

U

UML models • 447

Unified Modeling Language (UML) • 52, 447

Uninstall • 25

Uninstall on Microsoft Windows • 30

use

commit modes • 244

inheritance to reuse queries • 223

interface layers • 444

utilities

change management • 130

V

visual editors • 22

W

Watched Attribute pane • 420

watchpoints • 432

Web services • 399

deployment • 399

programming • 399

standards • 400

WebLogic deployment • 405

WebSphere deployment • 406

WhenFetched() method • 241

WhenUpdated() method • 246

Window Editor • 111

windows

add controls • 151

add graphics • 175

add menus • 163

add toolbars • 171

applications

using in • 146

attach menu titles • 166

attach toolbars • 173

editing • 149

logic • 179

manipulate in IDE • 91

MDI • 148

Output Window • 93

Project Workspace • 96

properties • 150

SDI • 148

windows, • 148

writing

SQL • 231

X

XML Metadata Interchange (XMI) • 447

	CA Aion Business Rules Expert Product Guide
	Contents
	1: Introduction
	Rules and Inferencing
	Full Object Orientation
	Component-Based Development
	Multiple Application Architectures
	Graphical User Interface Builder
	Visual Editors and the Method Editor
	Aion BRE Language
	Database Support
	Rapid Application Development

	2: Installation and Setup and Uninstall
	Installation Prerequisites
	Install on Microsoft Windows
	Custom Installation

	Uninstall on Microsoft Windows
	Install on Linux/UNIX server
	Console-Mode Installation
	Graphical-Mode Installation

	Uninstall Linux/UNIX server
	Silent Installation

	3: Overview of CA Aion BRE Objects
	Applications
	Libraries Are Functional Units
	Included Libraries
	Stand-Alone Aion BRE Applications
	Benefits of Included Libraries
	Library Boundaries
	Edit Libraries Across a Boundary
	Create Instances Across a Boundary
	Subclass Across a Boundary

	Object Orientation
	Basic Object-Oriented Terms
	Apply the Object-Oriented Paradigm
	Apply to Business Data
	Apply to Code

	Inheritance
	Polymorphism
	Call Methods of the Same Class
	Pass an Instance as an Argument

	Associations
	Association Classes

	Class Containment
	Attribute Level Class Containment
	Class Containment for Local Variables
	Rules for Assigning Values

	Attached Objects
	Aion _Object Event Methods

	Constraints
	Structure of Constrained Data Types

	Access Types
	Accessor Methods

	Comparing Terms

	Anatomy of a Class
	Attributes
	Attribute Data Types
	User-Defined Data Types
	Class Attributes

	Methods
	Pass Arguments To Methods
	Local Variables
	Class Methods
	External Methods
	Disabled Methods

	Constants

	Dynamic versus Static Instances
	Static Instances
	Dynamic Instances

	Implement Interfaces
	Develop Interfaces
	Associate Interfaces to Classes
	Associate Interfaces to Class Instances and Generic Methods
	Implicit Typecasting
	Cast Instance Pointers to Interface Pointers
	Cast Interface Pointers to Class Instance Pointers
	Cast Between Interface Pointers

	Associated SysLib Methods
	Inference Considerations

	4: How You Create and Edit Applications
	Create Applications
	.APP and .BIN Files
	Set Mainframe Line Length
	Open Applications

	Save Applications
	Read-Only Applications

	Back Up Applications
	Restore Applications
	Restore Closed Applications
	Open Before Restoring

	Restore Open Applications

	Develop Applications for Non-Windows Platforms
	The Command Line
	Customize the Development Environment
	Directories Tab Page

	View Applications
	Manipulate Windows
	Enlarge the Main Frame Work Area

	Object Icons
	Menu Bar

	Fonts

	The Output Window
	Output Window Tab Pages
	Display Headers
	Open Editors
	Invalids
	History
	Results
	Build

	The Project Workspace
	View Inheritance and Ownership Information
	Project Workspace Tab Pages
	Open Editors
	Libraries
	Classes
	Rules
	Domain Interface
	Exports

	The Explorer
	Set Explorer/Workspace Options
	Specialize Through the Explorer
	Discover Where an Object Resides
	View Options for the Explorer

	The Rule Analyzer
	Editors
	Standard Tab Pages
	Standard Procedures
	Association Editor
	Attribute Editor
	Class Editor
	Members Tab Page

	Decision Table Editor
	Instance Editor
	Menu Editor
	Method Editor
	Implementation Tab Page
	Customize the Method Editor

	Rule Editor
	Properties Tab Page
	Rules Tab Page

	Query Editor
	Stored Procedure Editor
	Tool Editor
	Window Editor

	Create a Constrained Attribute
	Specify a Constraint
	Attribute Declarations Using Constrained Data Types
	Constraints Restrictions

	Operation of Constraints
	Edit-Time Considerations
	Runtime Considerations
	Runtime Behavior

	Copy and Paste Objects
	Delete Objects
	Edit Toolbars
	Supplied Toolbars
	Data Create Toolbar
	Decision Table Toolbar
	Edit Toolbar
	Flow Control Toolbar
	Layout Toolbar
	Menu Create Toolbar
	Method Editor Toolbar
	Object Create Toolbar
	Other Create Toolbar
	Query Editor Toolbar
	Standard Toolbar
	Window Create Toolbar
	Window Editor Toolbar

	Customize Toolbars
	Work with Included Libraries
	Include and Remove Libraries
	Included Library Editor Fields
	Open Applications That Have Included Libraries
	Libraries Included with Aion BRE

	Work with Source Control
	Set Source Control Safeguards
	Source Control Menu Options
	Enable Concurrent Development

	Change Management
	Change Management Functions
	Set the Baseline
	View Changes
	Changed Components Field
	Changed Component Information Field
	Save Changes to a File
	Apply Change File
	Manual Repairs

	Produce Reports for an Application
	Printed Report Contents
	CA Aion BRE Documentation

	Search for Objects by Name
	Search for Objects by Multiple Criteria
	Replace Text
	Search Across Applications

	5: Create a Graphical User Interface
	How You Create a GUI
	Step 1-Define data requirements.
	Step 2-Construct the application's main frame window.
	Step 3-Create dialog boxes.
	Step 4-Add logic.

	Work with Object Properties
	Open and Use Properties Dialog Boxes
	GUI Properties versus Container Properties
	Common Object Properties
	Choose Fonts
	Choose Colors
	Scope of Color Change

	Work with Windows and Dialog Boxes
	Subclass Supplied Classes
	StandardWindow Class
	DialogBox Class
	AutoDialogBox Class

	Multiple Document Interface
	Create Windows and Dialog Boxes
	Edit Windows and Dialog Boxes
	Standard Window and Dialog Box Properties
	Common Properties
	Style Properties
	Initial State
	Window Type

	Add Controls to Windows
	Controls Supplied by CA Aion BRE
	Create Controls
	Edit Controls
	Label Controls
	Static Text
	Add Mnemonics to Labels

	Order Keyboard Focus
	Work with Control Groups
	Create Control Groups
	Attach Control Groups

	Radio Buttons
	Tab Controls
	Add ActiveX Controls to Your GUI
	Merge ActiveX and Application Menu Bars
	ActiveX Control Properties Dialog Box

	Insert OLE Objects into an Application
	Force Update Modifications from an OLE Object

	Splitter Windows
	Display a Standard Window in a Pane

	Control Properties
	Common Properties
	Auto Validation
	Define the Format of User Input

	Add Menus to Windows
	Create Menu Titles
	Menu Editor Display

	Add Menu Items to Menu Titles
	Attach Menu Titles to Windows
	Create Submenus

	Pop-Up Menus
	Response Invoked by a Right-Click

	Menu Properties
	Common Properties
	Menu Title Properties
	Persistent Groups

	Menu Item Properties
	Create Mnemonics and Shortcut Keys

	Menu Conventions

	Add Toolbars to Windows
	Create Toolbars
	Tool Editor Display

	Addi Tool Items to Toolbars
	Attach Toolbars to Windows
	Toolbar Properties
	Tool Item Properties

	Toolbar Conventions

	Add Graphics to Windows
	Layered Graphics
	The Order Controls
	Create Resources
	Graphics Properties

	Implement Logic to Run Your GUI
	Window and Dialog Box Logic
	OpenApp, Open, and OpenModal
	Remarks

	Control Logic
	Respond to Multiple Events
	Define Events for Controls

	Menu Logic
	Typical Menu Logic

	Toolbar Logic
	Graphic Logic
	Bitmap Response to User Events
	Dragging and Dropping Graphics
	Create a Methods for Graphics

	Conclusion

	6: Write Logic
	Write Application Logic
	Sample Applications

	About Methods
	Library Methods
	Event-Triggered Methods
	External Methods

	Method Editor
	Open an Existing Method in the Editor

	Create a New Method
	Specify a Method's Properties
	Specify the Method's Implementation
	Write the Method Body
	Edit and Format Features
	Lookup Feature

	Parse and Save a Method
	Parse the Logic
	Save the Application and the Editor

	How You Program Aion BRE
	Arguments in Method Calls
	Attribute Data Types
	Local Variables
	Return Values
	Call an Instance Methods
	Static Instances
	Dynamic Instances
	Current Instance

	Call a Class Methods
	Associations
	Attribute and Class Pointers

	Specialize a Method
	Unspecialize a Specialized Method

	Write Logic for Windows and Dialogs
	Create and Open the Application Window
	Create Dialogs at Runtime
	The DialogBox Class
	Set Initial Values for Controls
	Use Dialogs to Get User Input
	Report Status Using a Modeless Dialog

	Process Data
	Iterate Instances of a Query
	Use Markers to Control Data Selection

	Define Other Objects
	Attribute Editor
	Attributes
	Class Attributes
	Constants

	Accessor Methods
	Instance Values Dialog

	Use the Language Paster

	7: Access Data
	Data and Aion BRE Classes
	Data Manipulation
	Update the Database
	Basic Steps in Working with Data
	Define a Database Connection
	Invoke a Query or Stored Procedure
	Write the SQL Statement (Query Editor)
	Create the SELECT List
	Test the Query

	Write Data-Loading Logic
	Write Logic to Update the Database
	Transaction Management

	Define a Database Connection
	Define a Query
	Use Inheritance to Reuse Queries
	Concurrency Control
	Create a Query
	Query Editor
	Open the Query Editor
	View Table Data
	Include Columns
	Change Field Attributes
	Write the SELECT Statement
	Test the Query

	Field Attributes
	Calculated Fields

	Use Markers with Query Classes
	Mapped and Unmapped Markers

	Change the Properties of a Query
	Dynamic versus Static SQL
	Dynamic SQL
	Static SQL
	Pre-compilation
	Binding
	Compilation and Linking

	Build Queries Using Static SQL
	System Configuration Requirements
	Start RESPAWN
	RESPAWN Static SQL Build Process

	Write SQL Statements
	SQL Paster Utility

	Define a Stored Procedure
	Queries and Stored Procedures
	Create Stored Procedures
	The Stored Procedure Editor
	Catalog Information Pane
	Locating Stored Procedures in the Application

	Define the Result Set

	Add Markers to Stored Procedures
	Writing the EXECUTE Statement
	Test the Stored Procedure

	Data Test Facility
	Select Statement Field
	Markers List
	Result Set Field

	Load Data from a Database
	Load Data
	Cursor Management
	Manual Load Mode
	Database Cursor Processing
	Manual Loading Examples
	Manual Cursor-Processing Examples

	WhenFetched()
	Enable WhenFetched()
	Use WhenFetched()

	Save Modifications to the Database
	Data-Update Mechanisms
	Update Data with Automatic and Manual Commit Modes
	Automatic Commit Mode
	Manual Commit Mode
	Enable Manual Commit

	WhenUpdated()
	Multiple Table Queries and Outer Joins
	When to Use WhenUpdated()

	Database Errors
	Define Records and Serialize Data
	Construct Records
	Field Attributes
	Work with DatatypeFields

	Record Elements
	Static Construction
	Dynamic Construction

	Serializie Data

	MQLib to Access MQSeries
	Code the Queue Manager
	MQLib Data Objects

	8: Process XML
	SAXLib - Read XML Documents
	How SAXLib Functions
	Attributes Class
	Process Exceptions
	Use SAXLib
	Use the SAX API

	DOMLib - Read and Write XML Documents
	Initialization
	Process the DOM Tree
	XML Maintenance Using DOMLib
	Add Elements to an XML Document
	Delete Elements from an XML Document
	Create an XML Document
	Handle Character Data as Element Values

	Generate Applications Based on XML Schemas
	General Approach
	Details
	Additional Notes

	Use the XsdConverter
	Process the XML Document with the Generated Application
	Read an XML Document
	Write an XML Document
	Update an XML Document

	Automatic Unmarshalling and Marshalling
	Load() Method
	Dump() Method

	The Purchase Order Example

	9: Domain Interfaces and Dynamic Rules
	Domain Interfaces
	Role of the Domain Interface in System Development
	Requirements Analysis
	System Design
	System Testing
	Maintaining the Domain Interface

	Create Domain Interface Members
	Domain Interface Member Restrictions

	Dynamic Rules
	Useages for Dynamic Rules
	Dynamic Rules Task Flow
	Support for Dynamic Rules: Aion BRE-Supplied Libraries

	External Rules: Use Dynamic Rules or Generate Static Rules with COBSLib?
	Accommodation of Rules for Any Format
	No Performance Degradation
	Immediate Use of External Rules
	Runtime Loading of Rules

	Styles of Rules

	10: Use the Rule Manager Wizard
	Process Overview
	Invoke the Rule Manager Wizard

	11: Dynamic Rule Management
	Rule Repository Functionality
	Set Up the Rule Repository

	The Business Rule Management Process
	Establish User Access Permissions
	Dynamic Rule Environment Controls

	Dynamic Rule Repository Functionality
	Access Single Rules
	Access All Rules in a Domain
	Add Rules to the Repository
	Rule Check Out and Check In
	Rule Versioning
	Summary: Effect of Rule Repository Functions on the Rule in the Current Rulebase

	Business Rule Maintenance Scenarios
	Create New Rules in the Rulebase
	Change Dynamic Rules
	Production of Dynamic Rules

	12: Aion BRE Reports
	About Aion BRE Reports
	Aion--IOLib and IOWLib
	Aion--How you Create a Report

	Aion--IOLib Classes
	Canvas
	Artist
	Fine Artist
	HTMLArtist

	IOWLib Classes
	WindowArtist
	PrinterArtist

	Work with a Report Canvas
	Create the Canvas Instance
	Start the Report Page
	Define the Overall Appearance
	Specify Font Attributes
	Write Text and Images to the Canvas
	Add Blank Lines
	Specify Tables
	End the Report

	How You Use the Artists
	Create the Artist Instance
	Specify the Output Device
	For FileArtist and HTMLArtist
	For WindowArtist
	For PrinterArtist

	Render a Canvas

	Sample Application
	The Sample Canvas
	Output Options
	Output the Report to a Window
	Output the Report to a Text File
	Output the Report to an HTML File
	Send the Report Output to a Printer

	13: Generate and Use C and C++ Components
	Build an Aion BRE Component with an Interface Layer
	Invoke Aion BRE Methods from C/C++ Clients
	Use Exported Aion BRE Methods in a C Program
	Procedure Overview

	Use Exported Aion BRE Methods in a C++ Program

	Invoke C Functions from Aion BRE
	How to Create an External Method in Aion BRE
	Call an External Method (Runtime)

	Data Type Mappings
	Input Arguments
	Output Arguments
	Return Values
	Mapping Between Aion BRE and C Data Types
	Aion BRE Strings in C and C++
	Strings as Input Arguments
	Strings as Output Arguments
	Strings as Return Values

	NULL Values

	14: Generate and Use Managed C++ Components
	The Managed C++ Interface Layer
	Managed Code
	What is Managed C++?

	Structure of the Managed C++ Interface Layer
	Generate the Managed C++ Interface Layer

	Set up the Environment

	Create an Aion BRE Component with the Managed C++ Interface
	Code an Exported Class
	Build the Aion BRE Application
	Write and Compile the .NET Client
	Deploy a Managed C++ Component

	Application Programming for .NET: The Basics
	Support for Output Parameters
	Support for Complex Data Types
	Object Management Under .NET
	Data Type Conversion

	15: Generate and Use Java Components
	The Java Interface Layer
	Elements in the Java Interface Layer
	Set Up the Environment

	Create an Aion BRE component Using the Java Interface
	Code an Exported Class
	Build the Aion BRE Application
	Write and Compile the Java Client
	Test the Java Interface

	The Basics of Java Application Programming
	Java Objects
	Data Conversions and Exception Handling
	Java Object Management
	Supports Backward Chaining

	Aion BRE Deployment on the Web
	Roles and Responsibilities
	Servlet Technology
	Aion Session Initiation and Object Creation
	Aion Session Termination

	Java Servlet Programming Considerations
	Create Aion BRE Objects for the Web
	Use the AionBeans Class
	Java Server Page (JSP) Programming

	Thread Management
	General Definitions
	Support for Concurrency and Session Safety
	Resource Load Issues

	Additional Information

	16: Generate and Use COM Components
	Automation
	ActiveX
	DCOM
	MTS
	COM+

	Aion BRE and COM
	Aion BRE and COM+

	Object Generation Overview
	Set Up the Environment
	COM Object Generation
	ActiveX Object Generation
	MTS Object Generation
	COM+ Object Generation
	MVS COM Object Generation

	Generate COM or ActiveX Objects
	Data Type Support in Automation Servers
	Register the COM Object
	Verify Successful Registration

	Configure DCOM
	Test the DCOM Configuration
	COM+ Application Configuration

	Use Aion as an Automation Client or Server
	Include COM Objects in Aion Applications
	Data Type Support in Automation Clients

	AutoLib Example
	Start() Method in client.app
	Implement Callbacks Between COM Servers

	COM Interface Server Side Example
	COM+ Services: Server Side
	Role-Based Security
	Transaction Services

	17: Deploy Aion BRE Components as Web Services
	Program Aion BRE Components as Web Services
	Use Complex Data Types
	Program Standards for Web Services

	Do I Need To Install Apache Axis?
	Validate the Apache Axis Setup
	Generate an Aion BRE Component as a Web Service
	Deploy Aion BRE Web Service Components on Microsoft Windows
	Deploy Aion BRE Web Service Components on UNIX/Linux
	Prerequisite
	Prepare for WebLogic Deployment
	Prepare for WebSphere Deployment
	Deploy the Aion BRE Application

	Code Generation for Web Service Deployment
	Client Programming Considerations
	Administering Aion-Based Web services
	Additional Resources on Web Services

	18: Debug Aion BRE Applications
	Debugger Features
	Embedded Component Debugging

	The Debugger Window
	The Debugger Toolbar
	Stack List Box
	Arguments Pane
	Watched Attribute Pane
	Method Body Pane
	Instance Counter
	Debugger Tab Pages
	Trace Page
	Data Page
	Methods Page
	PatternMatch Page
	Decision Table Page

	Breakpoints
	Data Breakpoints
	Code Breakpoints
	Set and Remove Data Breakpoints
	Set and Remove Code Breakpoints
	Active Method and Rule Breakpoints Pane
	Set Breakpoints from the Methods Tab

	Watchpoints
	Set and Remove Watchpoints

	Debugger Settings
	Configure Debugger Settings

	Debug Aion BRE Applications
	Set Breakpoints and Watchpoints
	Control the Flow of Execution
	Step In
	Step Out
	Step Over

	View and Modify Data Values
	Use the Call Stack

	Debugging Rule-Based Inference
	Backward Chaining
	Forward Chaining
	Special Considerations for Decision Tables
	Conditions for Debugging a Decision Table
	Actions for Debugging a Decision Table

	Shut Down the Debug Session

	19: Run and Build Applications
	Run Aion BRE Applications
	Run Aion BRE Applications Interpretively
	Run Stand-Alone Applications
	Compile Applications
	Building Applications
	Filenames
	Included Libraries

	Prepare to Build Aion BRE Applications
	Configure Build Settings
	Directories Tab
	Run Tab
	Build Tab

	Configure Library Properties
	Invoke the Library Properties Dialog
	Specify the Executable Directory
	Build Directives

	Build the Application
	Stop the Build

	Use Interface Layers
	Select an Interface Layer

	Deploy the Application

	A: CA Aion Business Rules Expert with UML Modeling Software
	Object Types
	Transferred Properties
	Associations, Association Ends, and Pointers
	Associations in UML
	Association Classes
	Map Association Ends to Pointers

	Import and Export UML Models
	Import UML Models
	Merge UML Models with Aion Applications
	Export to UML Models

	CA Component Modeler
	Data Type Mapping
	Modeling _Interfaces

	Standards

	B: Aion--Acknowledgements
	Apache Software License, Version 2.0
	Apache Software License, Version 1.1
	BusinessObjects Software License
	CA Trusted Open Source License
	HP Java 2 Runtime Environment 1.4.2
	HP-UX Runtime Environment for the Java 2 Platform, Version 1.4
	IBM 32-bit Runtime Environment for AIX, Java 2 Technology Edition, Version 1.4
	IBM Java 2 Runtime Environment 1.3.1
	IBM zSeries Developer Kit for Linux, Java 2 Technology Edition
	ICU License
	ImageMagick Studio
	Java 2 Runtime Environment (J2RE), Standard Edition, Version 1.4.x
	Java Naming and Directory Interface (JNDI), Version 1.2.1
	Java XML Pack Summer '02 Bundle
	JavaBeans Activation Framework, Version 1.0.2
	JavaMail, Version 1.3
	Sun Microsystems, Inc. Java 2 Runtime Environment 1.4.2
	JUnit 3.8.1
	OpenSSL 0.9.7c
	Sun Microsystems, Inc. JIMI SDK, Version 2.0
	TPSR P05273_11
	Werken digital SAXPath 1.0
	Werken Company Jaxen 1.0

	Index

