

Developer Overview

r11

CA Aion® Business Rules Expert

This documentation and any related computer software help programs (hereinafter referred to as the

"Documentation") are for your informational purposes only and are subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,

without the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may

not be used or disclosed by you except as may be permitted in a separate confidentiality agreement between you and

CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation,

you may print a reasonable number of copies of the Documentation for internal use by you and your employees in

connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable license for such

software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify

in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT

WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER

OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,

INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR

LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and

is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with "Restricted Rights." Use, duplication or disclosure by the United States Government is subject to the

restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section

252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2010 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein

belong to their respective companies.

CA Product References

This document references the following CA products:

■ CA Aion® Business Rules Expert (CA Aion BRE)

Contact CA

Contact Technical Support

For your convenience, CA provides one site where you can access the

information you need for your Home Office, Small Business, and Enterprise CA

products. At http://ca.com/support, you can access the following:

■ Online and telephone contact information for technical assistance and

customer services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA product documentation, you can

send a message to techpubs@ca.com.

If you would like to provide feedback about CA product documentation, complete

our short customer survey, which is also available on the CA Support website,

found at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introduction to CA Aion BRE 9

CA Aion BRE Architecture .. 9

Business Client User and Developer Roles .. 10

Chapter 2: Basic Rule Programming Techniques 13

Create and Maintain Static Rules .. 13

Rules and Rule Methods ... 14

Open the Method Editor ... 14

Open the Rule Editor .. 15

The Decision Table Editor ... 18

Use the Decision Table Editor .. 18

Benefits of Decision Tables .. 21

Post Rules .. 21

View an Inference Block ... 22

Call Inference Methods .. 23

The Rule Analyzer .. 24

Analyze Rule Processing... 25

Chapter 3: Access to Essential Databases 29

The DataLib System Library ... 29

Specify a Data Source .. 29

Test the Data Connection ... 31

Create a Query Class ... 32

Execute the Discount Application in the Aion IDE ... 34

Execute the Discount Application in the Aion IDE ... 37

Chapter 4: Develop an Aion BRE Knowledge Base 39

The Purchase Checker System ... 39

System Specification .. 39

Requirements .. 39

Design Assumptions .. 40

Build the Purchase Checker System .. 40

Create the Application ... 41

Connect to the Database .. 42

Create a Query Class .. 43

Map the Query Class to the Database .. 45

6 Developer Overview

Test the Database Connection ... 45

View the Database in the Aion Debugger ... 47

Create Attributes to Store Credit Limit and Approval .. 49

Create a Method to Calculate Credit Limit .. 50

Create a Decision Table ... 52

Post the Decision Table .. 57

Call the Decision Table .. 58

Test the Decision Table .. 60

Rules to Approve Purchases ... 62

Write the Approval Rule ... 62

Write the Disapproval Rule .. 64

Post the Rules .. 65

Call and Test the Rules .. 66

Report the Approval/Disapproval Decision .. 67

Generate Message Text ... 67

Display a Message Box .. 68

Remove an Unused Library (Optional) .. 69

Chapter 5: Build and Deploy Applications and Components 71

Build a CA Aion Application under Windows ... 71

Specify Component Interfaces ... 72

Choose the Type of Component to Build .. 73

Build the Component .. 73

Develop Applications for UNIX Deployment ... 74

Develop Applications Overview .. 74

Build Applications with AionBuilder ... 75

Build Applications with Command Line Utilities .. 77

The Respawn Utility ... 77

The Reexec Utility .. 78

Compilation Hints and Suggestions .. 79

Appendix A: The Aion BRE Inference Engine and Rules 81

Basic Inferencing Techniques .. 81

Rule Structure .. 82

Example ... 82

Forward Chaining ... 82

Example ... 83

Backward Chaining ... 83

Example ... 84

Aion BRE Rule Types and Syntax .. 84

Contents 7

Appendix B: The Aion BRE Debugger 87

The Debugger Button ... 87

The Debugger Window .. 87

Open the Debugger Window ... 89

The Debugger Toolbar .. 89

Step through Methods ... 89

Set Breakpoints and Watchpoints .. 90

Index 91

Chapter 1: Introduction to CA Aion BRE 9

Chapter 1: Introduction to CA Aion BRE

CA Aion Business Rules Expert (CA Aion BRE) can help you develop complex

business applications that drive critical functions, and adapt them for a changing

marketplace.

CA Aion BRE Architecture

CA Aion BRE is an application construction tool that brings business intelligence

to business clients. CA Aion BRE provides an integrated development

environment, the CA Aion Integrated Development Environment (Aion IDE),

which addresses the needs of the IT developer and allows the business clients to

maintain the business rules of an Aion application. For more information, see the

section Business Client User and Developer Roles.

At the core of CA Aion BRE is support for the principles of object-oriented

programming. This product supports common object-oriented concepts such as

classes, inheritance, and polymorphism. CA Aion BRE extends traditional object

orientation with sophisticated mechanisms that are not found in most

commercially available object-oriented programming languages.

Behind the CA Aion BRE object orientation lie database connectivity and the

product's powerful Aion BRE inference engine. CA Aion BRE provides native

connectivity to most popular database management and to a number of common

PC database management systems through ODBC. The CA Aion BRE inference

engine supports a broad spectrum of business rule types to meet business needs

for inferencing, including decision tables, simple IF/THEN rules, powerful rules

that operate over sets of business objects, and trigger rules (called daemon

rules). Rules for an Aion application may be either compiled into the application

or, in the case of decision table rules, loaded dynamically at runtime.

Business Client User and Developer Roles

10 Developer Overview

A CA Aion BRE application can be related to the outside world in many ways. CA

Aion BRE's own graphical user interface (GUI) tools can be used to create a user

interface to the application. The application can also be deployed as a standalone

application without a user front-end. That is, it can be deployed as a “batch”

program. In addition, CA Aion BRE provides mechanisms to create component

interfaces to common languages, interfacing standards, and messaging services

on the market today, including Java, COM/MTS, C/C++, web services, IBM's

Websphere MQ Series, and others.

With CA Aion BRE, you can request that your application be developed with a

specific component interface, and CA Aion BRE will do all the work to generate

that interface layer. CA Aion BRE applications can be deployed under a wide

variety of operating systems, including Windows, UNIX, Linux, OS/390, and

z/OS.

More Information:

Rules and inferencing, see the CA Aion BRE Rules Guide.

CA Aion BRE Obects, see the "Overview of CA Aion BRE Objects" in the CA Aion

BRE Product Guide

Business Client User and Developer Roles

Developing a business intelligence application with CA Aion BRE is a joint effort

between the business client and the (IT) developer. CA Aion BRE supports

several models to structure this joint effort. The classic model is depicted in the

following diagram.

Developer

Installation

Developer and

Business User

System Analysis

Business User

Verify Rule

Operation

Developer

Implement the

System

Developer

Code Application

and Rules

According to this model, the developer and business user meet to discuss the

business problem and to decide on the rules that solve the problem and how

these rules should function in the system. From this discussion, the developer

codes the application and rules. The business user verifies the operation of the

system to ensure that the rules function as planned. Once rules are approved,

the developer implements the system.

This classic model has two well-known drawbacks:

■ It requires the developer to become an expert in the business problem.

■ Business rule changes require the IT developer to recode and recompile.

Business Client User and Developer Roles

Chapter 1: Introduction to CA Aion BRE 11

CA Aion BRE also lets business clients create and maintain (manage) the

business rules without requiring the developer to become a business rules

expert. Under these models, the IT developer codes only a skeletal Aion

application that defines the business objects and performs procedural chores.

Coding the business rules shifts to the business client.

The Dynamic Rule Manager allows business clients to create and maintain

business rules using a purely business-oriented vocabulary. The business rules

reside in a rule base that exists outside of the CA Aion application. Because

dynamic rules do not require recompilation of the Aion application, dynamic rules

are especially useful for applications that run continuously and require frequent

rule changes.

Chapter 2: Basic Rule Programming Techniques 13

Chapter 2: Basic Rule Programming

Techniques

Static rules allow programmers to express the business knowledge needed to

complete a task, because this knowledge is coded in declarative statements. This

chapter describes how to build and maintain these rules using various methods,

and looks at using static rules to take advantage of the Aion BRE inference

engine. The Rule Editor and the Decision Table Editor are introduced to assist in

this task.

Create and Maintain Static Rules

In traditional procedural programming, application developers must specify the

exact flow from one statement to the next. Developers use complex looping

instructions, conditional statements, and algorithms.

CA Aion BRE lets developers separate control logic from business knowledge,

which is coded into a declarative rules set. Because the rules are simpler and

easier to maintain, CA Aion BRE allows for productivity gains over traditional

procedural programming.

The Aion BRE inference engine processes rules that are relevant to solving the

immediate business problem. When you execute an Aion application, the

inference engine follows an algorithm set that automatically decides which rules

to use and when.

You can create two types of rules: static and dynamic. Static rules are

hard-coded in an Aion application, and dynamic rules are often stored in a

database (rulebase) and loaded when an application runs.

Note: This chapter provides details about static rules only. For more information

on dynamic rules, see the CA Aion BRE Rules Guide.

Rules and Rule Methods

14 Developer Overview

Rules and Rule Methods

CA Aion BRE provides several ways to represent rules, including basic IF-THEN

statements, called IFRULEs, and decision tables as well as pattern matching

rules, called IFMATCH rules, and demons (WHEN and WHENMATCH rules). The

Aion BRE inference engine processes these rules using either forward or

backward chaining. In the Discount application, for example, IFRULEs and

decision tables are executed to determine pricing discounts for an order. Based

on submitted information, the Aion BRE inference engine follows a chain of rules

until it reaches a conclusion.

Note: For information about the types of rules supported in CA Aion BRE and the

forward and backward chaining algorithms on the Aion BRE inference engine, see

Basic Inferencing Techniques in the appendix “The Aion BRE Inference Engine

and Rules.”

When you want to create a new static or dynamic rule, use an Assistant to step

you through the necessary screens. Choose Tools, Assistants, Rule Assistant or

Dynamic Rule Assistant.

Methods that include rules are called rule methods, and can be used in the same

way as procedure-based methods. You can call rule methods from other objects,

and inherit and specialize rule methods. This allows CA Aion BRE to handle large,

complex applications. Developers can utilize the classification and

modularization capabilities that objects provide and extend that with the ability

of rules to capture complex, dynamic, and knowledge-intensive logic.

CA Aion BRE provides two editors for creating and modifying IFRULEs: the Rule

Editor and the Method Editor. You have already been introduced to the Method

Editor. Now you will see how to use it to maintain rules. This section also

introduces the special Rule Editor that provides a structured environment for

creating and maintaining rules.

Open the Method Editor

Open BRE IDE from start menu and open discount.app from examples\Discount

folder.

The Method Editor uses English-like syntax for the rules and allows developers to

enter the rule text directly.

To open the Method Editor

1. In the Project Workplace, go to the Rules page and expand the

DiscountOrderItem class.

Rules and Rule Methods

Chapter 2: Basic Rule Programming Techniques 15

2. Double-click the rule method named RulesAboutQuantityDiscount.

The Method Editor appears showing the rules contained in the

RulesAboutQuantityDiscount method.

3. Close the Method Editor.

If you are prompted to save the changes, click No.

Note: For more information about the syntax used to define rules in the Method

Editor, see Basic Inferencing Techniques in the appendix “The Aion BRE

Inference Engine and Rules.”

Open the Rule Editor

The Rule Editor provides a structured environment for creating and editing rules.

The Rule Editor presents the appropriate text boxes corresponding to the

structural parts of the different types of rules that CA Aion BRE provides. In the

Rule Editor, you can also browse the rules in the entire rule method as well as set

the properties of the rule method.

Note: When you want to create a new static or dynamic rule, use an Assistant to

step you through the necessary screens. Choose Tools, Assistants, Rule

Assistant, or Dynamic Rule Assistant.

Rules and Rule Methods

16 Developer Overview

To use the Rule Editor

1. In the Project Workspace, click the Rules tab.

2. Expand DiscountOrderItem to show the rule methods of this class.

3. Expand the RulesAboutPreferredCustomer rule method to show the

individual rules in the method.

Rules and Rule Methods

Chapter 2: Basic Rule Programming Techniques 17

4. Right-click the R05 Preferred Customer in good standing gets a 10%

discount rule.

A pop-up menu appears.

5. Choose Open.

The Rule Editor appears showing the selected rule.

6. Close the Rule Editor.

7. If you are prompted to save changes, click No.

Note: This rule is an IFRULE. A different structure is presented when defining or

displaying an IFMATCH rule.

The Decision Table Editor

18 Developer Overview

The Decision Table Editor

Besides allowing you to code rules at the individual rule level, CA Aion BRE also

allows you to express knowledge in the form of decision tables. Decision tables

let you visualize a complete set of rules at one time. The inherent structure of a

decision table prevents certain types of logical errors from going undetected,

such as inconsistencies between rules within a rule set and incomplete reasoning

paths.

Note: When you want to create a new decision table, use an Assistant to step

you through the necessary screens. For static decision tables choose Tools,

Assistants, Rule Assistant; for dynamic decision tables choose Tools, Assistants,

Dynamic Rule Assistant.

Use the Decision Table Editor

The Decision Table Editor provides a visual structure for creating and modifying

decision tables.

To open the Decision Table Editor

1. Expand the DiscountOrderItem on the Rules page as you did when accessing

the Rule Editor.

2. Double-click the SeasonalDiscountTab rule method.

Note: You can easily identify a decision table by the decision table rule

icon .

The decision table appears in the Decision Table Editor.

The default display of a decision table is called the landscape view. You will

now change to portrait view.

The Decision Table Editor

Chapter 2: Basic Rule Programming Techniques 19

3. In the Decision Editor, right-click in an empty space.

A pop-up menu appears:

4. Choose Toggle Layout.

The decision table appears in portrait view.

The top left column headings of the table shows the conditions (IF) and the

cells beneath the conditions show all possible values for those conditions. In

this example, the conditions are Which Season? and Item for Preferred

Customer? The top right column heading of the table shows the actions

(THEN). This table has one action, The Seasonal Discount =.

The Decision Table Editor

20 Developer Overview

Study the SeasonalDiscountTab decision table and notice the following:

■ Each action will execute based on a combination of conditions.

■ When no actions are specified for a certain combination of conditions, a

highlighted cell represents the possible logic error graphically.

Note: To change information for actions, click the cell in the

corresponding action column and enter the appropriate value.

■ The first condition is the domain interface member, Which Season?.

Remember, domain interface members are labels that represent

methods. The inference engine uses the Which Season? label to

reference and execute the Season() method. This method returns the

season, which the inference engine compares to the values in the

decision table. When the inference engine finds a value in the table that

matches the value returned for Which Season?, the inference engine

knows where in the table to continue processing.

■ The action in this decision table, The Seasonal Discount =, is also a

domain interface member. Find it on the Domain Interface tab and

double-click it. The Method Editor appears, and its Properties page

shows that the method SetSeasonalDiscount() is associated with The

Seasonal Discount=. The input argument for SetSpecialDiscount() is the

discount for the item. That input argument is specified in the cells

beneath the action in the decision table.

5. Click on the Conditions/Actions tab.

You create and add or delete conditions and actions for a decision table on

the Conditions/Actions page. You will use this page later in the section Build

an Application, when you create your own decision table.

6. Click on one of the Conditions or Actions shown in the left-hand panels (in

the following screen, we have clicked the Which Season? Condition).

7. Close the Decision Table Editor.

More Information:

CA Aion BRE Product Guide.

Post Rules

Chapter 2: Basic Rule Programming Techniques 21

Benefits of Decision Tables

Using a decision table instead of a set of rules can offer the following benefits:

■ Decision tables help ensure completeness and consistency, and make

redundancy easier to avoid.

■ Ensuring completeness means that all possible combinations of values are

covered. The Decision Table Editor automatically displays all the possible

combinations and shows any combinations for which no action is defined.

■ Ensuring consistency means that you do not inadvertently define a condition

more than once with different or incompatible actions. The inherent

structure of a decision table prevents these kinds of errors from being

committed.

■ Avoiding redundancy means that you do not inadvertently define a condition

more than once with the same action. The inherent structure of a decision

table prevents these kinds of errors from being committed.

■ CA Aion BRE decision tables include a runtime algorithm that ignores

conditions that do not contribute to determining a specific action.

■ Many business experts prefer to see decision processes represented as

decision tables rather than as rules. Decision tables provide a simple view of

the full picture, which may not be as easy to understand from a list of

discrete rules.

Post Rules

To use the rules in an Aion application, you must post those rules. Posting rules

makes them available to the inference engine, which fires the rules according to

the data that is being processed in the application.

Posting rules in CA Aion BRE focuses on rule methods. Recall that a rule method

contains a list of rules or a single decision table. It consists of declarative code

(rules) rather than procedural code (operations). A rule method is invoked the

same way as a procedural method. The principal difference is that when a rule

method executes, it only posts rules to the inference engine rather than

executing code that effects some change in the state of the application.

A second difference between rule methods and procedural methods is that a rule

method can be invoked only from within an inference block. Inference blocks are

special structures within procedural methods that begin with INFER and end with

END. These commands define the scope of an inference engine. Between INFER

and END is a list of one or more rules and a ForwardChain or BackwardChain

command.

Note: For more information about rule methods and posting rules, as well as

inference blocks and invoking inferencing, see the CA Aion BRE Rules Guide.

Post Rules

22 Developer Overview

Inference blocks can also contain procedural code. Procedural methods that

contain an inference block are called inference methods. Inference methods can

contain multiple inference blocks as well as other code. An Aion application

usually has several inference methods so that each method can handle a specific

processing task and invoke only those rules that are appropriate to that task.

View an Inference Block

To view an inference block in the Discount application

1. On the Libraries page of the Project Workspace, expand the

DiscountOrderItem class.

2. Double-click the ResolveDiscount() method.

The Method Editor displays the following code:

In the previous graphic, the INFER…END block of code; this defines this method

as an inference method. The inference block calls six rule methods, each

containing several rules related to a certain aspect of the Discount application.

The ForwardChain command tells the inference engine to process the rules that

have been posted to it in a forward chaining manner.

Note: For more information on forward chaining, see Basic Inferencing

Techniques in the appendix “The Aion BRE Inference Engine and Rules.”

Call Inference Methods

Chapter 2: Basic Rule Programming Techniques 23

Besides the rule methods, the inference block calls the SetExplanation() method.

This call needs to be inside the inference block because the explanation

displayed to users of the Discount application is based on the rule processing,

which is retained only with the scope of the inference block.

Note: If you are not sure which methods in an application are inference

methods, you can locate them by using the Aion Find feature. From the Edit

menu, choose Find, and in the dialog that appears, search for the string “INFER”

and select “Method” as the type of object to search. For more information about

Find, click the Help button on the Find dialog.

Call Inference Methods

In Discount, three methods contain inference blocks:

■ ResolveDiscount()

■ DetermineAccountStatus()

■ CheckForSpecialDiscount()

The users of Discount application invoke the inference method,

DetermineAccountStatus(), when customer is selected from the customer drop

down list. The users invoke the inference methods CheckForSpecialDiscount()

and ResolveDiscount() when they click Resolve Discounts.

The Rule Analyzer

24 Developer Overview

To display a method that calls two of the inference methods in Discount

1. In the Project Workspace, select the Library tab.

2. Expand the AppWindow class then double-click the

WhenpbDiscountsChosen() method.

WhenpbDiscountsChosen() calls the CheckForSpecialDiscount() inference

method first, and then calls ResolveDiscount() in a loop for each item

entered into the application. This simple control strategy for calling inference

methods checks for a special discount and then applies the discount.

3. Close all the editors.

If you see the prompt to save changes, click No.

The Rule Analyzer

CA Aion BRE provides a Rule Analyzer to help debug the chain of logic created in

rule-based processing. The Rule Analyzer does this by showing the relationships

between rules and attributes in a tree list format. You can choose to analyze in a

forward or backward mode.

Use the forward mode to see which rules will fire when you assign a value to an

attribute, and what attributes will receive values as a result of the rules firing.

Use the backward mode to determine which rules can assign values to an

attribute, and which attributes are needed for a rule to fire.

Analyze Rule Processing

Chapter 2: Basic Rule Programming Techniques 25

Analyze Rule Processing

To open the Rule Analyzer

1. On the Rules page of the Project Workspace, expand the class

DiscountOrderItem.

2. Expand the rule method RulesAboutTotalDiscount().

3. Right-click the rule named R100 Total Discount is sum of all discounts.

Choose Analyze from the popup menu.

The Rule Analyzer appears in forward mode, which is the default. The mode

is listed in the title bar. The left pane shows the attributes needed to resolve

the rule, and the right pane contains the Rule Editor.

Analyze Rule Processing

26 Developer Overview

Note: The right pane of the Rule Analyzer contains the appropriate editor for

the object chosen in the left pane. In this example, the Rule Editor is

displayed because a rule was chosen. If an attribute were chosen, the

attribute editor would appear.

4. Right-click in the left pane.

A pop-up menu appears.

5. Choose Forward Mode to clear the check mark.

You have now switched to backward mode.

6. Expand the rule R100 Total Discount is sum of all discounts.

Analyze Rule Processing

Chapter 2: Basic Rule Programming Techniques 27

The attributes DiscountPercent, QuantityDiscount,

PreferredCustomerDiscount, and OptionalDiscount are listed below the rule,

indicating that these attributes are needed to determine the Total Discount.

7. Expand PreferredCustomerDiscount.

The Rule Analyzer displays the rules that determine a value for this attribute.

8. Close the Rule Analyzer.

Do not save changes.

Chapter 3: Access to Essential Databases 29

Chapter 3: Access to Essential

Databases

Typically, the information for CA Aion BRE applications is permanently stored in

an external file or database. This data can be maintained and accessed by other

applications, if necessary, and loaded into CA Aion BRE when needed to solve a

particular problem.

This chapter provides information about using databases with CA Aion BRE. In

this chapter, you see how a connection to a database is defined in an Aion

application, and how to execute the application from the Aion IDE.

The DataLib System Library

CA Aion BRE simplifies the task of defining the connection to databases. The

DataLib library provides the necessary classes for defining this connectivity.

Through this connectivity, you can retrieve table definitions at edit time, test

SQL statements, and retrieve and update the data stored in a database at

runtime. DataLib must be included in any application for which database

connectivity is required; it is automatically included whenever you create a new

application.

DataLib contains the base classes Connection, Query, and Stored Procedure, as

well as the methods necessary for retrieving and updating a database. An

application must establish a connection before it can retrieve and update data.

To do this, the application uses an instance of the DataLib Connection class. Each

different database connection requires its own instance of Connection. In the

Discount application, the connection instance is named ConnDiscount.

Specify a Data Source

Before you can run the Discount application, you must define an ODBC data

source, using the ODBC Data Source Administrator. A data source specifies the

type of database and the location of the database file.

Note: The CA Aion BRE setup creates the DiscountDB data source.

Specify a Data Source

30 Developer Overview

To specify a data source

1. From the Windows Control Panel, launch the Windows ODBC Data Source

Administrator.

2. Click Add.

The Create New Data Source dialog appears.Select Microsoft Access Driver

{*.mdb} and click Finish.

The ODBC Microsoft Access Setup dialog appears.

Test the Data Connection

Chapter 3: Access to Essential Databases 31

3. In the Data Source Name field, enter DiscountDB.

4. In the Description field, enter Discount application database.

5. Click Select.

The Select Database dialog appears.

6. Navigate to the directory AionBRE Installation

Directory\examples\Discount\.

7. Select the Discount.mdb database file and click OK.

ODBC creates the DiscountDB data source, which appears on the User DSN

page of the ODBC Data Source Administrator dialog.

8. Click OK.

Test the Data Connection

To verify that CA Aion BRE is connecting to the data source

1. Open BRE IDE from start menu and open discount.app from Examples.

2. Choose Tools, Assistants, Database Assistant.

The Database Assistant dialog appears.

3. Choose the Connection option.

4. Select ConnDiscount and click Next.

The Connection Properties dialog appears

Create a Query Class

32 Developer Overview

The connection defines how the Discount application accesses the Microsoft

Access database.

ConnDiscount uses the ODBC data source that you created named

DiscountDB.

5. Click Test to test the connection.

A confirmation dialog appears.

6. Do one of the following:

■ If the connection is successful, continue with step 6.

■ If the connection is unsuccessful, repeat the “Specify a Data Source”

procedure, then test the connection again.

7. Click OK to close the confirmation dialog.

8. Click OK.

Create a Query Class

After a connection is successfully established, you can use the Query Editor to

define a query class and perform the following tasks:

■ Browse through database tables and the columns within those tables

■ Define filed attributes for the table columns

■ Change the SELECT statement of the query

Create a Query Class

Chapter 3: Access to Essential Databases 33

To use the Query Editor

1. In the Project Workspace, select the Classes tab.

2. Expand Menus and Tools.

3. Expand Queries and Stored Procedures.

4. Under Queries and Stored Procedures, double-click the query class

Customer.

CA Aion BRE connects to the Discount database through the DiscountDB data

source, and the Query Editor appears.

Execute the Discount Application in the Aion IDE

34 Developer Overview

5. In the left pane, right-click the Customer table.

A pop-up menu appears.

6. Choose Open.

CA Aion BRE sends a default query to the database, and retrieves up to the

first 50 records in the table.

7. Click Close to close the Data Test dialog.

8. Close the Query Editor.

If you are prompted to save the changes, click No.

Execute the Discount Application in the Aion IDE

CA Aion BRE provides you with two ways to execute an application - you can

compile the application into an executable, or you can run the application in

interpreted mode. Interpreted mode is ideal for iterative development because

you can make incremental changes to the code and then test the application by

executing it quickly or repeatedly without taking the time to compile it. Compiled

execution is typically used to provide high performance execution of the

application in a production environment. You will learn to compile the application

in the chapter Build and Deploy Applications and Components (see page 71).

Execute the Discount Application in the Aion IDE

Chapter 3: Access to Essential Databases 35

To run the Discount application in interpreted mode

1. Choose File, Run, and then Run.

After a few seconds, the database connection is established and the Discount

application window appears. The application name is Redwood Auto Supply

Pricing Application.

2. From the Customer drop-down menu, select Wally's Auto Parts.

The Preferred Customer check box automatically selects and the Acct Status

becomes Good. These status items are dynamically calculated by rules that

evaluate the customer history in the database.

3. From the Product drop-down menu, select Power Steering Fluid.

4. In the Quantity field, enter 11 then click to add this item to the order

list.

The item Power Steering Fluid appears in the order list.

5. From the Product drop-down menu, select Intake Manifold then click

to add this item (with the same order quantity as the Power Steering Fluid)

to the order list.

6. The item Intake Manifold appears in the order list.

Execute the Discount Application in the Aion IDE

36 Developer Overview

7. Click the Resolve Discounts button.

The application calculates the various discounts that apply and displays the

total discount for each product.

8. Select an item in the order.

The Discount Explanation area lists the rules executed for each line item,

thus providing a justification for the total discount.

Play with the application, changing its various inputs. What happens if you toggle

the Preferred Customer box so that it is unchecked but leave the season set to

Autumn? In particular, why is there no more SeasonalDiscount recognized?

(Look back at the SeasonalDiscountTab rule method, the one that consists of a

decision table. What is the meaning of the highlighted empty cell?)

For an extra challenge, see if you can fix this problem and rerun the application

so that a season discount is effect for a non-preferred customer in Autumn?

More Information:

Build and Deploy Applications and Components (see page 71)

Execute the Discount Application in the Aion IDE

Chapter 3: Access to Essential Databases 37

Execute the Discount Application in the Aion IDE

To run the Discount application in interpreted mode

1. Choose File, Run, and then Run.

After a few seconds, the database connection is established and the Discount

application window appears. The application name is Redwood Auto Supply

Pricing Application.

2. From the Customer drop-down menu, select Wally's Auto Parts.

The Preferred Customer check box automatically selects and the Acct Status

becomes Good. These status items are dynamically calculated by rules that

evaluate the customer history in the database.

3. From the Product drop-down menu, select Power Steering Fluid.

4. In the Quantity field, enter 11 then click to add this item to the order

list.

The item Power Steering Fluid appears in the order list.

5. From the Product drop-down menu, select Intake Manifold then click

to add this item (with the same order quantity as the Power Steering Fluid)

to the order list.

6. The item Intake Manifold appears in the order list.

Execute the Discount Application in the Aion IDE

38 Developer Overview

7. Click the Resolve Discounts button.

The application calculates the various discounts that apply and displays the

total discount for each product.

8. Select an item in the order.

The Discount Explanation area lists the rules executed for each line item,

thus providing a justification for the total discount.

Play with the application, changing its various inputs. What happens if you toggle

the Preferred Customer box so that it is unchecked but leave the season set to

Autumn? In particular, why is there no more SeasonalDiscount recognized?

(Look back at the SeasonalDiscountTab rule method, the one that consists of a

decision table. What is the meaning of the highlighted empty cell?)

For an extra challenge, see if you can fix this problem and rerun the application

so that a season discount is effect for a non-preferred customer in Autumn?

Chapter 4: Develop an Aion BRE Knowledge Base 39

Chapter 4: Develop an Aion BRE

Knowledge Base

This chapter demonstrates the logistics of building a simple Aion BRE knowledge

base. In this chapter, use the material you have learned so far to construct a

simple Aion application.

The Purchase Checker System

The following tours concentrate on database connectivity (loading and

processing data from a database) and on using the inferencing capabilities of CA

Aion BRE.

System Specification

A client asks you to develop a system that checks customer purchases to

determine if the total price falls within the allowed credit limit for the customers.

This system will run against a set of customers in a database, so the system will

have to read customer records, process those records against rules for accepting

purchases, and report the results. The name of the system is the Purchase

Checker System.

Requirements

The system should approve a customer purchase if the total credit amount is less

than or equal to a stipulated credit limit that is based on marital status and

annual income. Otherwise, the purchase is not approved. You are given the

following rules for determining the allowable credit limit:

■ For customers with annual income less than or equal to $20,000, a single

person has a credit limit of $500 and a married person has a credit limit of

$400.

■ For customers with annual incomes greater than $20,000 but less than or

equal to $55,000, a single person has a credit limit of $1,200 and a married

person has a credit limit of $1,000.

■ For customers with annual incomes greater than $55,000, a single person

has a credit limit of $5,000 and a married person has a credit limit of $4,000.

The customer credit limit is to be included in a summary evaluation report.

Build the Purchase Checker System

40 Developer Overview

Design Assumptions

You believe that the application will make an elegant, object-oriented knowledge

base. Your thoughts for designing it are as follows:

■ You realize that the allowable credit limit rules are ideal for a decision table.

Your client is receptive to the idea of representing these rules as a decision

table.

■ You envision a Customer class with data derived from the database and

supplemented with methods that make it an intelligent object. The Customer

class will have methods that evaluate the credit worthiness of each customer

and report the result of this evaluation.

■ You also envision a Purchase Checker Agent, an abstract class that “knows”

how to invoke the methods of the Customer class to evaluate a particular

customer. This Agent class controls the problem-solving strategy of the

knowledge base.

Build the Purchase Checker System

CA Aion BRE provides many ways to code a system design. Some approaches are

bottom-up-they start with the basic elements of the design and work upward to

the more general elements. Other approaches are top-down-they start with the

general functionality and work down to the basic elements.

Because the Purchase Checker System relies heavily on database connectivity,

you will begin with a bottom-up approach.

Note: In developing a knowledge base, you would normally test functionality

frequently, as soon as a small unit of work is coded. A bottom-up approach does

not allow rapid testing. Therefore, as soon as you have sufficient functionality

coded to test, you will switch to the top-down method.

To begin creating your Purchase Checker application, you will initialize it and

then make a connection to the database. You will then create a query class to

view the instances in the database, map that query class to the database, and

test the database connection. Finally, the database will be viewed in the Aion

Debugger.

Note: A completed version of this version is available in AionBRE Installation

Directory\examples\purcheck\purcheck.app.

Build the Purchase Checker System

Chapter 4: Develop an Aion BRE Knowledge Base 41

Create the Application

To create a knowledge base

1. Choose Tools, Assistants, Application Assistant.

The Application Assistant dialog appears.

2. Click Next.

The New Application dialog appears.

3. Click the Create New Folder icon and create a parent directory for your

new knowledge base called myApps.

Build the Purchase Checker System

42 Developer Overview

4. In the File name field, enter a name for the CA Aion application; for example,

enter MyPurcheck.

5. Click Create.

In the Project Workspace, default libraries and classes appear.

6. In the Application Assistant dialog, select the Standalone Executable option

and click Next.

7. Accept the default system libraries by clicking Next.

8. Select the Database option and click Done.

The Database Assistant dialog appears.

Connect to the Database

The database for this tutorial is provided in AionBRE Installation

Directory\examples\purcheck\Customer.dbf. The following procedure shows

how to make a connection to that database and test the connection. To connect

to the database, use the Database Assistant to help you set up the connection.

Build the Purchase Checker System

Chapter 4: Develop an Aion BRE Knowledge Base 43

To connect to the database

1. If the Database Assistant dialog is open from the previous tour segment,

continue with the next step. If the Database Assistant is not open, choose

Tools, Assistants, Database Assistant.

2. Select the Connection option and <New>. Click Next.

The Connection Properties dialog appears.

3. In the Name field, enter Cust_Connection.

4. From the Database drop-down menu, choose Aion Examples.

5. To test the connection, click Test.

A message appears confirming that the connection was successful.

6. Click OK to close the message box.

7. Click OK to close the Connection Properties dialog.

8. On the Database Assistant dialog, click Done.

Create a Query Class

A query class allows you to view the data in a database. The following procedure

shows how to create a query class that lets you see the Customer database that

is provided for this tour. To create a query class, use the Database Assistant.

Build the Purchase Checker System

44 Developer Overview

To create a query class

1. Choose Tools, Assistants, Database Assistant.

The Database Assistant dialog appears.

2. Select the Query option and click Next.

The New Query dialog appears.

Equation 1: Show sceen to create a new query class

The Inherit from field contains Query and the Connection field contains

Cust_Connection.

3. In the Name field, enter Customer as the name of the class and click OK.

The Query Editor opens in the Main window. The left pane lists all the sample

databases in the directory AionBRE Installation

Directory\examples\purcheck. For the purposes of this tour, you will use the

Customer table.

4. On the Database Assistant dialog, click Done.

5. Expand the Customer table to view its columns (fields).

Build the Purchase Checker System

Chapter 4: Develop an Aion BRE Knowledge Base 45

Map the Query Class to the Database

To map the Customer query class to the Customer table

1. In the left pane of the Query Editor, right-click CUSTOMER (TABLE).

A pop-up menu appears.

2. Choose Use Column.

The top right-hand pane fills with column information. The Customer table

columns are now mapped to the public attributes of the Customer Query

class.

You may want to change the abbreviated, capitalized names of these

attributes.

3. In the top right-hand panel, double-click NAME.

The Properties dialog appears.

4. Change NAME to Name and click OK. Repeat steps 3 and 4 to change

MARITAL to MaritalStatus, INCOME to Income, and PURCHTL to

PurchaseTotal.

5. Click the Save icon on the toolbar.

6. Click Query Editor Save "check mark icon" to save the changes and close the

Query Editor.

Test the Database Connection

Now that you have coded a small part of the application, it is time to test what

you have done. In this section, you switch to a top-down approach and enter

code to start the application.

Build the Purchase Checker System

46 Developer Overview

To write code to test the database connection

1. On the Libraries page of the Project Workspace, expand Classes.

2. Expand the Main class.

3. Double-click the Start() method.

The Method Editor appears in the Main window and shows the code in the

Start() method.

The Start() method is the first method to execute in every Aion application.

This method provides code to create an application window. Because you are

not going to use an application window in this example, you must change the

code.

Build the Purchase Checker System

Chapter 4: Develop an Aion BRE Knowledge Base 47

4. To edit the code, follow these steps:

a. Delete the comment line and the first two lines of code that create and

open the application window, but leave the return statement. The return

statement is required to be the last line of code of the Start() method.

b. As the first line to be executed, enter the following code, which loads the

database:

 Customer.Load

c. Ensure that your code appears as shown in the following graphic:

5. On the toolbar, click the Save icon.

6. Save Method Editor changes by clicking "check mark icon" to save the

changes and close the Method Editor.

View the Database in the Aion Debugger

To ensure that the Customer query class loads the Customer database correctly,

run the Aion Debugger.

Note: For more information about the Aion Debugger, see the appendix “The

Aion BRE Debugger” and the CA Aion BRE Product Guide.

Build the Purchase Checker System

48 Developer Overview

To run and use the Aion Debugger

1. Click the debugger icon .

The Aion Debugger window appears.

2. On the toolbar, click the Step Over button .

The Customer.Load() method loads the instances from the Customer

database.

3. In the right-hand pane, click the Data tab.Expand the MyPurcheck library,

and then expand the Customer class.

Notice that five instances were loaded from the database.

4. Click an instance, for example Customer_00001.

The instance value attributes appear in the lower right-hand pane.

5. Press F5 to close the Aion Debugger.

Create Attributes to Store Credit Limit and Approval

Chapter 4: Develop an Aion BRE Knowledge Base 49

Create Attributes to Store Credit Limit and Approval

Now you return to the bottom-up approach and create two attributes in the

Customer class:

■ CreditLimit, which, as determined by the rules, holds the credit limit for the

customers

■ Approval, which holds the final purchase approval determination

To create new attributes

1. In the Project Workspace, select the Customer class.

2. On the toolbar, click the Attribute icon .

The New Attribute dialog appears.

3. In the Name field, enter CreditLimit.

4. From the Owning Class drop-down menu, choose Customer, and click OK.

The Attribute Editor appears.

5. In the Attribute Editor, for Access Type, choose the Protected option.

6. From the Type drop-down menu, choose real.

7. Remove NULL from the Initial Value field. This attribute is used in

inferencing.

8. Close the Attribute Editor.

9. Repeat steps 1 through 8 to define the Approval attribute with a Type of

boolean.

10. Save Changes in Current Editor dialog appears, reply Yes.

Create a Method to Calculate Credit Limit

50 Developer Overview

Create a Method to Calculate Credit Limit

Because the application will set credit limits for purchases, you must create a

SetCreditLimit() method, which a decision table (that you will also create) uses.

You designate the SetCreditLimit() method as a domain interface method. Get

and Set accessor methods, like this one, are often used as domain interface

members.

Note: You can also create accessor methods (Get and Set) automatically.

Highlight the attribute for which accessors are to be created and select Create

Accessors from the Logic menu. (It is usually sufficient to accept the defaults

that appear on the Create Accessors dialog.)

To create the SetCreditLimit() method

1. Select the Customer query class and click the Method icon on the toolbar.

The New Method dialog appears.

2. Complete the following fields, and click OK:

Name

Enter SetCreditLimit.

Owning Class

Choose Customer from the drop-down menu.

Create a Method to Calculate Credit Limit

Chapter 4: Develop an Aion BRE Knowledge Base 51

3. Select the Implementation tab.

4. To define an input argument called CreditAmt with a type of Real, in the top

pane, enter the following code:

in CreditAmt is Real

5. Ensure that your code appears as shown in the screen below:

6. Select the Properties tab.

7. Complete the fields:

Access Type

Select the Public option.

Style

Select the DI Member check box.

8. Select the Domain Interface Member Definition tab.

Create a Decision Table

52 Developer Overview

9. Complete the following fields:

Type

Select the Action option.

Label

Enter Allowable credit is =.

Description

Enter Sets the credit amount or total purchase value that is authorized

for a customer.

10. Click the "check mark icon" on the Method editor panel to save the changes,

and close the Method Editor.

Create a Decision Table

You will now define your first rule, which is a decision table for setting the

CreditLimit attribute.

After you complete your decision table, it appears as shown below:

Create a Decision Table

Chapter 4: Develop an Aion BRE Knowledge Base 53

To create a decision table

1. Select the Customer query class.

2. Choose Logic, New, Decision Table.

The New Decision Table dialog appears.

3. Complete the fields:

Name

Enter CreditLimitDT.

Owning Class

From the drop-down menu, choose Customer.

4. Click OK.

The Decision Table Editor appears.

5. Select the Conditions/Actions tab.

You now define the first condition.

6. Right-click in the Condition/Type/Library pane.

A pop-up menu appears.

Create a Decision Table

54 Developer Overview

7. Choose New, Specify Condition.

The right-hand pane fills with empty fields.

8. Complete the fields:

Name

Enter Marital Status.

Test Values

Enter "S", click Enter, and enter "M". Quotation marks are required.

Implementation

Enter MaritalStatus, which associates the new condition with the

existing MaritalStatus public attribute.Repeat steps 6-8, completing the

fields as follows:

Name

Enter Annual Income.

Test Values

Enter:

<=20000

>20000..<=55000

>55000

Implementation

Enter Income.

Next you need to define an action.

Create a Decision Table

Chapter 4: Develop an Aion BRE Knowledge Base 55

9. Right-click in the Action/Type/Library pane.

A pop-up menu appears. Because you want to pass the credit limit to the

interface as an input argument, the action is domain.

10. Choose New, Domain Action.

11. From the Name drop-down menu, choose Allowable credit is =.

12. Select the Table tab.

The decision table, with the specified conditions, appears.

Note: If the decision table is not automatically created, right-click on the

empty page and, from the pop-up menu, choose Refresh or Auto Refresh.

Because the decision table will be easier to work with in portrait format,

toggle the layout.

Create a Decision Table

56 Developer Overview

13. Right-click anywhere outside of the table.

A pop-up menu appears.

14. Choose Toggle Layout.

The decision table updates in portrait layout.

15. For the Allowable credit is = cells, enter the following values: 500, 1200,

5000, 400, 1000, 4000.

16. Ensure that your table appears as shown below:

Create a Decision Table

Chapter 4: Develop an Aion BRE Knowledge Base 57

17. Click the Save Icon "Check Mark" on the Decision Table Editor, and close the

Decision Table Editor.

Your new decision table is a static decision table. You might have chosen instead

to create a dynamic decision table, which could be defined and stored in a

rulebase outside CA Aion BRE. However, in order for CreditLimitDT to be a

dynamic decision table, you must define accessor methods (Get methods) in the

application for the MaritalStatus and Income attributes. You would designate the

accessor methods as domain interface members, as you did for SetCreditLimit().

You would export the domain interface members to a rulebase.

For more information on dynamic rules, see the CA Aion BRE Rules Guide.

Post the Decision Table

You now define an inference method to post and execute your new decision

table. This inference method is invoked by the Purchase Checker Agent class

(which you will create also). You know from the design that this class will contain

the control strategy of the application.

Create a Decision Table

58 Developer Overview

To post the decision table

1. Select the Customer query class.

2. Choose Logic, New, Method.

The New Method dialog appears.

3. Complete the fields:

Name

Enter DeterminePurchaseLimit.

Owning Class

From the drop-down menu, choose Customer.

4. Click OK.

The Method Editor Appears.

5. Select the Properties tab.

6. For the Access Type, select the Public option.

7. Select the Implementation tab.In the lower pane, enter the following code:

INFER

CreditLimitDT //posts the decision table

ForwardChain //invokes inferencing to

 //execute the decision table

END

The implementation for this method is an inference block that posts the

decision table and invokes forward chaining. Either backward chaining or

forward chaining is appropriate for this application. In general, the default

should be forward chaining.

8. Click the Save Icon "check Mark" on the Method Editor, and close the Method

Editor.

Call the Decision Table

In this section, you create a class and a method within that class. The method

contains a loop that calls the CreditLimitDT decision table for each instance in the

Customer database.

Create a Decision Table

Chapter 4: Develop an Aion BRE Knowledge Base 59

To call the decision table

1. On the toolbar, click the Class icon.

The New Class dialog appears.

2. Complete the fields:

Name

Enter PurchaseCheckAgent.

Base Class

From the drop-down menu, choose _System.

3. Click OK.

The Class Editor appears.

4. Choose Logic, New, Method.

The New Method dialog appears.

5. Complete the fields:

Name

Enter CheckCustomer.

Owning Class

From the drop-down menu, choose PurchaseCheckAgent.

6. Click OK.

7. Select the Properties tab.Ensure that the fields appear as follows:

Style

Class Method (which it should be automatically because you chose

_System as the base class)

Access Type

Public

Note: The Access Type must be Public because the Main.Start() method

calls it.

Create a Decision Table

60 Developer Overview

8. Select the Implementation tab.In the lower pane, enter the following code:

Var pCust is pointer to Customer

For Customer, pCust

PCust.DeterminePurchaseLimit()

End

This code creates a loop that calls the DeterminePurchaseLimit() method for

each instance loaded from the Customer database.

9. Click the save Icon "check mark" in the Method Editor pane, and then the

Class Editor and on the toolbar.

Test the Decision Table

You should check the new functionality by going back to the top-down approach.

In this section, you add a statement to the Start() method, which you edited

earlier in Test the Database Connection in the chapter “Access to Essential

Databases.”

To test the decision table

1. Expand the Main class, then double-click the Start() method.

The Method Editor appears.

2. Select the Implementation tab.In the lower pane, modify the code as

follows:

Customer.Load()

CheckCustomer()

return(0)

This code invokes the CheckCustomer() method, which is a public class

method and is therefore globally accessible.

3. Close the Method Editor and save the application by clicking Yes.

Create a Decision Table

Chapter 4: Develop an Aion BRE Knowledge Base 61

4. Click the Debug button.

The Aion Debugger dialog appears.Click the Step Over button.

This button executes the Customer.Load() method, which loads instances

from the Customer database. Notice that the yellow arrow in the lower left

pane points to the next method in Start(), which is CheckCustomer().

You will now view and execute the code in the CheckCustomer() method.

5. Click the Step Into button.

6. Click Step Into several times to execute each line in the CheckCustomer()

method and in the method with the inference block,

DeterminePurchaseLimit().

7. Before the CreditLimitDT method is executed, select the Decision Table tab.

Rules to Approve Purchases

62 Developer Overview

The Decision Table page is blank until a decision table is posted to the

inference engine or a decision table is actually being executed by the

inference engine. When the inference engine is executing the decision table,

the Decision Table page shows the execution of each instance through the

decision table itself.

8. After the loop in CheckCustomer() has completed, check the Customer

instances to see the credit limit assigned to each one.

9. Press F5 to close the Aion Debugger.

Rules to Approve Purchases

Now you must write the final rules for approving a purchase based on the credit

limit that was just assigned to the customer. Two new rules are needed: a rule

for purchase approval and a rule for purchase disapproval. After writing these

rules, you will test them in the debugger.

Write the Approval Rule

The rule for approval is simple: if the total purchase is less than or equal to the

credit limit, the purchase is approved. One way to write this rule is to use the

Rule Editor.

To write the approval rule

1. Select the Customer query class.

2. Choose Logic, New, Rule Method.

The New Rule Method dialog appears.

3. Complete the fields:

Name

Enter ApprovalRule.

Owning Class

Choose Customer from the drop-down menu and click OK.

The Rule Editor appears. By default, rule methods have a Protected Access

Type.

Rules to Approve Purchases

Chapter 4: Develop an Aion BRE Knowledge Base 63

4. Select the Rules tab.

5. In the left pane, right-click.

A pop-up menu appears

6. Choose New, If Rule.

The new If Rule fields display in the right pane.

7. Complete the fields:

Rule Name

Enter Approve Customer Purchase.

If…

Enter PurchaseTotal <= CreditLimit.

Then…

Enter Approval = TRUE.

8. Click Save Icon "check mark" on the Rule Editor.

9. Click the Save icon on the toolbar, and then close the Rule Editor.

Rules to Approve Purchases

64 Developer Overview

Write the Disapproval Rule

The rule for disapproval is a “default” rule; that is, if ApprovalRule does not fire,

the Approval attribute is set to FALSE. To express this in CA Aion BRE, write a

rule that tests whether the Approval attribute is still Unknown after the Approval

rule has been processed. CA Aion BRE provides a method for testing whether an

attribute is unknown: IsUnknown(), which takes a pointer to an attribute as an

input argument.

In this section, you create the disapproval rule using the Method Editor rather

than the Rule Editor. Rule methods are just standard methods except that they

contain declarative code.

To create the disapproval rule

1. Select the Customer query class.

2. Choose Logic, New, Method.

The New Method dialog appears.

3. For the Name field, enter DisapprovalRule, and click OK.

4. In the Method Editor, select the Implementation tab.In the lower pane, enter

the following code:

RULE “Disapprove Customer Purchase”

PRIORITY -5

IFRULE IsUnknown(->Approval)

THEN Approval = FALSE

END

Note: To ensure that this rule is the last rule that the inference engine

considers, you have specified a negative priority. You will see another way to

ensure that this rule is considered last when you write the inference method

to post the two approval rules.

5. Select the Properties tab.

6. For the Access Type, select the Public option.

7. Click the save icon "Check mark" on the Method Editor

8. Click the Save icon on the toolbar, and close the Method Editor.

Rules to Approve Purchases

Chapter 4: Develop an Aion BRE Knowledge Base 65

Post the Rules

Having written rule methods, you must now write the inference method that

invokes them.

To post the rules

1. Select the Customer query class.

2. Choose Logic, New, Method.

The new method dialog appears.

3. For the Name field, enter DetermineApproval and click OK.

4. Select the Implementation tab. In the lower pane, enter the following code:

INFER

ApprovalRule()

DisapprovalRule()

backwardchain(->Approval)

END

Note: The rule methods order in the INFER block is important. Unless the

rule order is explicitly overridden by rule priorities, the inference engine

considers the rules in the order the rules are posted.

Post DisapprovalRule after ApprovalRule.

5. Select the Properties tab.

6. For the Access Type, select the Public option.

7. Save the changes by clicking "check mark" on the Method Editor.

8. Click the Save icon on the toolbar, and close the Method Editor.

Rules to Approve Purchases

66 Developer Overview

Call and Test the Rules

To approve or disapprove purchases, you must invoke the new

DetermineApproval() method from the CheckCustomer() method in the

PurchaseCheckAgent class.

To call and test the rules

1. Expand the PurchaseCheckAgent class and double-click on the

CheckCustomer() method.

2. The Method Editor appears.

3. After the line pCust.DeterminePurchaseLimit(), add the following line of

code:

pCust.DetermineApproval()

4. Save the application by click "check mark" icon on the Method Editor.

5. Click the Debug button.

The Aion Debugger dialog appears.

6. Click the Step Into button several times to verify the new rules.

Report the Approval/Disapproval Decision

Chapter 4: Develop an Aion BRE Knowledge Base 67

Report the Approval/Disapproval Decision

Only one requirement of the system remains. You must report the credit limit

and approval decision for each customer. To do this, simply use the Aion

MessageBox() method to display a message after each customer is processed.

Note: Do not use the MessageBox() method in a production system. Instead,

generate reports. For information about creating reports with CA Aion BRE, see

the CA Aion BRE Product Guide.

The input arguments of the MessageBox() method consist of a message

formatted as single string and a title for the message box. These arguments are

sufficient to create a message box with an OK button. For more information

about the MessageBox() method, see the CA Aion BRE online help.

To report the credit limit and approval or disapproval of customer purchases, you

must create a method that generates the message, and then invoke the new

method.

Generate Message Text

In this procedure, you create a method that returns a string and formats the

message.

To generate message text

1. Select the Customer query class.

2. Choose Logic, New, Method.

The New Method dialog appears.

Report the Approval/Disapproval Decision

68 Developer Overview

3. For the Name field, enter SummarizeEvaluation and click OK.

4. Go to the Properties page, set the type to String, and make it Public.

5. Select the Implementation tab.

6. Enter code to create the message.

Here is an example:

var Desc is String

Desc = “For Customer: “ &Name &CHAR_LF

Desc = Desc &” Marital Status: “ &MaritalStatus

&” Income: $”

&format(Income) &CHAR_LF

Desc = Desc &” Purchase of $” &format(PurchaseTotal)

&CHAR_LF

Desc = Desc &” Assigned Limit of $” &format(CreditLimit)

&CHAR_LF

Desc = Desc &” Approved: “ &format(Approval)

return Desc

Display a Message Box

Invoke the MessageBox() method using the following code:

Messagebox(SummarizeEvaluation(), “Summary Customer Evaluation”)

Where should you put this code? One alternative is to call it after the INFER block

in DetermineApproval(). But, with future enhancements to the system, you

cannot be sure that DetermineApproval() will always be the last method called

for evaluating purchases. A better alternative is to make the code the third step

in the loop in CheckCustomer().

To invoke the message box from CheckCustomer(), you must answer the

following questions. If you need help, look at the completed tutorial in

installation_directory\examples\purcheck\purcheck.app.

■ What must be true of the SummarizeEvaluation() method for it to be invoked

from the PurchaseCheckAgent class?

■ How must the previous MessageBox statement be changed so that

SummarizeEvaluation() can be invoked from PurchaseCheckAgent?

After you have answered these questions and finished your coding, your

application is complete and ready to run by choosing File, Run, Run. If the

application does not run correctly, check the application with the debugger.

If you want to decrease the size of the application, go on to the next section. You

can choose to stop here, however, because the next procedure is optional.

Remove an Unused Library (Optional)

Chapter 4: Develop an Aion BRE Knowledge Base 69

Remove an Unused Library (Optional)

CA Aion BRE includes three default libraries in every application: SysLib, DataLib,

and WinLib. SysLib is required by every application; DataLib is required for

applications involving database connectivity, so it applies to MyPurcheck; and

WinLib is required for constructing a Windows GUI interface, which MyPurcheck

does not have. Therefore, to reduce the size of the application file, you may want

to remove WinLib. This step is optional.

Note: You cannot remove a library if the knowledge base has changes that are

not saved.

To remove an unused library

1. Save your application.

2. Choose File, Edit Library Includes.

The Included Library Editor appears.

3. Select the WinLib library, and click Remove.

4. Click Restore, which restores the application without the library.

5. Click Save.

You have now completed the tour of the CA Aion BRE and you have constructed

a CA Aion application using the Aion IDE. While you can run the application in the

Aion IDE, this does not mean that your clients can access your work. You have to

build the application as an executable, either as a standalone program or as a

dynamic link library (DLL) that can be called by another program. CA Aion BRE

allows a broad range of options for deploying a CA Aion application into a

Windows, UNIX, or mainframe environment.

Chapter 5: Build and Deploy Applications and Components 71

Chapter 5: Build and Deploy

Applications and Components

This chapter provides instructions to build applications for the Windows and

UNIX platforms. Deployment on the mainframe requires CA Aion BRE for z/OS

and OS/390.

Note: For more information about building a CA Aion application for the

mainframe environment, see the CA Aion BRE Mainframe User Guide.

CA Aion BRE provides facilities for building standalone applications or

components from within the Aion IDE on the Windows platform. Additionally, CA

Aion BRE for UNIX provides special facilities for building standalone applications

and components that will run within a UNIX environment. This chapter includes

a tour of building Aion applications on both the Windows and UNIX platforms.

A component is a deployable (compiled) software module that communicates

with other modules through a well-defined interface. Components are often

designed to interoperate as part of a multi-tiered application.

When you build a component from an Aion application, CA Aion BRE creates a

dynamic link library (DLL) with the same name as your application file. If you

build a standalone application, CA Aion BRE generates an EXE file containing the

necessary code for starting the runtime environment. The EXE has the same

name as your application file, prefaced by an underscore.

Build a CA Aion Application under Windows

CA Aion BRE can generate components (DLL files) that support interface layers

for a variety of standards, including C, C++, Java, ActiveX, COM (DCOM), and

Microsoft Transaction Server.

Building an application, involves these general steps:

■ Specify the component interfaces

■ Choose the type of component to build

■ Build the component

More Information:

CA Aion BRE Product Guide.

Build a CA Aion Application under Windows

72 Developer Overview

Specify Component Interfaces

Use the Class Editor and the Method Editor to specify the classes and methods to

be externally available as interfaces of the component.

To specify component interfaces

1. In the Class Editor, select the Properties tab.

2. Select the Export check box.

3. In the Method Editor, select the Properties tab.

4. Specify the methods of the classes to be exported by selecting the Public

option.

Build a CA Aion Application under Windows

Chapter 5: Build and Deploy Applications and Components 73

Choose the Type of Component to Build

To specify the build properties:

1. In the Project Workspace, select the Libraries tab.

2. Right-click Classes.

A pop-up menu appears.

3. Choose Properties.

The Library Properties dialog appears.

4. Select the Build Directives tab.

5. From the Interface Layer drop-down menu, choose the component type to

generate.

Build the Component

If you have a compiler installed, you can build the application.

To build the application, follow these steps:

1. Choose File, Build.

2. To see the build results, examine the Output window (at the bottom of the

window).

Note: By default, the files required to run your application are in the

appname\bin subdirectory of your application directory.

Build a CA Aion Application under Windows

74 Developer Overview

Develop Applications for UNIX Deployment

You must use the Windows-based CA Aion IDE to develop applications for the

UNIX platform. Using the Remote Save and Restore features, the CA Aion IDE

lets you transfer application files between the Windows platform and any UNIX

platform.

More Information:

CA Aion BRE Product Guide.

Develop Applications Overview

To develop applications for UNIX:

1. Write and debug the application using the Aion IDE.

2. From the Aion IDE, transfer the application to the UNIX platform using the

Remote Save feature.

3. To restore and build the application under UNIX, use either the AionBuilder

or the command-line utility. These features are discussed in the sections that

follow.

4. Review the output to ensure that the compilation was successful.

Note: Before transferring an application file developed under Windows to UNIX,

ensure that the interface layer specified for the application is compatible with an

interface layer supported under UNIX. CA Aion BRE supports C/C++ and Java

interface layers under UNIX. Restoring an application with an invalid interface

layer causes an error message. It is not possible to fix this problem on the UNIX

platform. You must correct the problem under Windows and transfer the

application again.

CA Aion BRE for UNIX provides two options for building applications: the

AionBuilder and the command-line utilities respawn and reexec.

Build Applications with AionBuilder

Chapter 5: Build and Deploy Applications and Components 75

Build Applications with AionBuilder

CA Aion BRE provides the AionBuilder for debugging and compiling applications

on UNIX platforms. The AionBuilder offers the options on the File menu of the

Aion IDE. You can restore applications, run them interpretively, and, most

importantly, build them. The Settings option on the File menu is similar to the

Settings option on the File menu of the Aion IDE, giving you access to Directory,

Run, and Build settings. The AionBuilder is a Java program that is invoked by

running the RunBuilder script.

To launch the AionBuilder

1. From the command line, enter runbuilder.

2. Choose File, Settings.

A dialog appears with functionality similar to the Settings dialog in the Aion

IDE.

There’re 3 buttons “Directories”, “Run” and “Build” and let you to set each

option

Note: For more information about configuring your build, see the CA Aion

BRE Product Guide.

Build Applications with AionBuilder

76 Developer Overview

3. Choose File, Restore from Source (or Open).

An application opens with the list of included libraries.

Note: AionBuilder requires application files to have a lowercase “.app”

extension. Do not capitalize the extension to “.APP”. When a newer version

of an included library is present and the application needs to be restored to

reflect those changes.

4. Choose File, Build

An application is built, the output will be displayed and let you know if the build

is successful.

Build Applications with Command Line Utilities

Chapter 5: Build and Deploy Applications and Components 77

Note: The build process is recursive when the Build option is set to Auto.

Only the libraries that need to be rebuilt are built. When the Auto option is

cleared, the AionBuilder builds only the main application.

5. Choose File, Run.

The application runs.

Note: The new process created, the running result is in the terminal, which

launches AionBuilder.

Build Applications with Command Line Utilities

You can compile and run applications on any UNIX platform using utilities

invoked from the command line. The respawn utility lets you build applications,

and the reexec utility lets you run them interpretively.

The Respawn Utility

The Respawn utility lets you run build-related functions of the Aion IDE (such as

restore, generate code, build, and link) from the UNIX command line. You can

build an Aion application by executing the following command:

respawn filename.app

Build Applications with Command Line Utilities

78 Developer Overview

The Respawn options include:

Restore

Restores the Aion application from the .app dataset. The default is FALSE.

Note: restore is incompatible with any of the other options, and if it is

specified, the file will be restored and any other options ignored.

Gen

Generates only C-code. The default is TRUE.

Comp

Generates and compiles C-code. The default is TRUE.

Link

Links the application objects. The default is TRUE.

Trace

Generates trace statements. The default is FALSE.

The executable directory is determined by the value of the #LibExeDir parameter

in the application file. This directory is normally set at edit time in the Aion IDE

(from the Library Properties, Directories tab), in the AionBuilder, or manually

edited in the file. The executable is placed in the directory specified by

#LibExeDir, for example, the /exe directory.

Note: Respawn requires application files to have a lowercase “.app” extension.

Do not capitalize the extension to “.APP.” If you do, you will receive an error

message.

The Reexec Utility

The Reexec Utility runs the application interpretively from the command line:

reexec filename

Note: Command-line arguments used within the Aion application can also be

added to the end of the reexec statement.

Compilation Hints and Suggestions

Chapter 5: Build and Deploy Applications and Components 79

Compilation Hints and Suggestions

This section provides hints and suggestions for ensuring successful compilation

of Aion applications under UNIX.

File Transfer

Make sure that filenames under UNIX match the name of the Aion application

exactly as stated in the second line of the .app file. When using FTP, make

sure that the name of the file preserves the case (mixed case mode) coming

from the Windows platform.

Compiling Wrapper Programs

For C++ programs that use an Aion component via a C/C++ wrapper,

compile the C/C++ wrapper program using the -DUNIX compile switch. This

parameter must be capitalized.

Cross-platform Data Access

When using IOLIB for cross-platform applications, remember that case is

important for filenames (File and DirectoryEntry classes).

Appendix A: The Aion BRE Inference Engine and Rules 81

Appendix A: The Aion BRE Inference

Engine and Rules

This chapter describes the CA Aion BRE inference engine and rules.

The Aion BRE inference engine is a set of algorithms for determining the order in

which a set of non-procedural, declarative statements are to be executed. The

inference engine processes rules to infer new knowledge from knowledge that is

already known.

Rules do not need to be entered or stored in any particular order. If an

application includes all the rules and other knowledge needed to solve a

problem, and if the rules are written correctly, the inference engine will execute

the appropriate rules when it needs them. If necessary, rules can be ordered so

that more important rules are considered first.

Basic Inferencing Techniques

The two main rule-based inferencing techniques are forward chaining and

backward chaining. The basic form of a rule in CA Aion BRE is an IF-THEN

statement that can be executed either forward or backward. This appendix

presents the following information:

■ Structure of an IF-THEN statement

■ Explanation of forward chaining and backward chaining

■ Types of rules and their syntax

More Information:

CA Aion BRE Rules Guide.

Rule Structure

82 Developer Overview

Rule Structure

A basic type of rule in CA Aion BRE is the IFRULE, which is an IF-THEN

statement:

IF condition THEN action

■ The IF clause, or condition (sometimes also called premise), is used to

examine attribute values in one or more instances or classes.

■ The THEN clause, or action, invokes methods or otherwise causes data in the

instances to change.

Note: The IF-THEN examples do not reflect the actual rule syntax in CA Aion

BRE . The examples are simplified statements that make it easier to illustrate

forward and backward chaining.

Example

The following is an example of an IF-THEN statement:

IF:

Client has income > $40,000 AND

Client is < 50 years old AND

Client is willing to take a risk,

THEN:

Add 500 shares of Phelye, Buy, & Knife stock to Client's retirement

investment portfolio.

Forward chaining and backward chaining rules in CA Aion BRE have the same

general structure, with IF conditions and THEN actions.

Forward Chaining

Inferencing using forward chaining has the following characteristics:

■ It is data-driven.

■ The inference engine enters rules through the IF clause (condition).

■ The inference engine continues until it infers all possible knowledge.

■ Forward chaining is typically used for scheduling and design (configuration)

problems. Also, with WHEN and WHENMATCH rules (demons), which are

shown later in this appendix, forward chaining is used in exception handling

and applications requiring real-time monitoring.

Backward Chaining

Appendix A: The Aion BRE Inference Engine and Rules 83

Example

The following simple example shows a typical sequence of forward chaining

events:

IF

A driver is assigned AND

A forklift operator is assigned AND

A foreman is assigned

THEN

All workers have been assigned to the work shift.

IF

All workers have been assigned to the work shift AND

The day is Saturday AND

Funds have been allocated for overtime

THEN

Work can begin.

Following is an explanation:

1. The first rule executes when its IF clause (condition) becomes true.

2. The data from the THEN clause (action) makes part of the condition of the

second rule true.

3. If the other parts of the condition are also true, the second rule fires.

Backward Chaining

Inferencing using backward chaining has the following characteristics:

■ It is goal-directed.

■ The inference engine enters rules through the THEN clause (action).

■ Subgoals are automatically set and resolved (if possible). Resolving a goal

means finding or deriving a value for the goal, so that it evaluates to

something other than unknown.

■ Backward chaining is typically used for diagnostic and classification

purposes.

■ In backward chaining, the inference engine starts with a processing goal and

works backward through the rules to determine values that can resolve the

goal.

Aion BRE Rule Types and Syntax

84 Developer Overview

Example

The following simple example shows a typical sequence of backward chaining

events. It is the same as the example for forward chaining, but it goes from

bottom to top.

IF

A driver is assigned AND

A forklift operator is assigned AND

A foreman is assigned,

THEN

All workers have been assigned to the work shift.

IF

All workers have been assigned to the work shift AND

The day is Saturday AND

Funds have been allocated for overtime,

THEN

Work can begin.

Here is an explanation:

1. A goal (can work begin?) is posed to the inference engine. If it cannot find a

resolution already in the knowledge base, it looks for a rule with a matching

action.

2. If the condition of a rule that the inference engine is testing is true, the rule

applies (it is “fired”), and the action (THEN) is executed thereby establishing

a value for the goal.

3. If the condition of a rule that the inference engine is testing also contains

unknown attributes, these attributes are posed to the inference engine as

new goals (subgoals), and the inference engine will then pursue these

subgoals in order to determine whether the rule applies.

Aion BRE Rule Types and Syntax

In CA Aion BRE , rules are IF-THEN statements and variants of those, such as

IFMATCH and WHEN rules. The following table shows the types of rules and their

syntax:

Type of Rule Example Description

IFRULE IFRULE theValue = IFRULEs set the values on instance

Aion BRE Rule Types and Syntax

Appendix A: The Aion BRE Inference Engine and Rules 85

Type of Rule Example Description

“High”

and (theRisk = “High”

or theRisk = Med”)

THEN

theConcern = :High”

END

attributes or class attributes

according to the instance or class

to which they are bound when

they are posted.

IFRULEs can be executed with

either forward or backward

chaining.

IFMATCH IFMATCH aTask,

aResource

WHERE

aTask.Requirement =

aResource.Ability

THEN

aTask.Assign(aResourc

e)

END

IFMATCH rules are used to

manage sets of instances. An

example is joining instances based

on criteria for matching instances

of two different classes (the

WHERE clause). The action of the

rule is invoked for the matching

instances. IFMATCH rules are also

known as pattern matching rules.

IFMATCH rules can be executed

only with forward chaining.

WHEN WHEN theValue =

“High”

THEN

theConcern = “High”

END

WHEN rules are called demons.

They monitor the state of the

instance or class to which they are

bound when they are posted.

Demons fire whenever their

premise becomes true, no matter

what else is going on in the

system.

Demons are executed with

forward chaining.

WHENMATCH WHENMATCH aTask

WHERE Available = True

THEN

aTask.ScheduleTask()

END

WHENMATCH demons monitor the

states of instances in a set by

using pattern matching. In the

example, when the Available

attribute of an instance of Task is

set to True, the ScheduleTask ()

method is executed for that

instance.

WHENMATCH demons are

executed with forward chaining.
 CA Aion BRE

Aion BRE Rule Types and Syntax

86 Developer Overview

As stated in the previous table, rules (especially IFRULEs and WHEN demons) are

bound to the instance to which they are posted. Posting is the process by which

the programmer tells the inference engine which rules to consider at a specific

time:

■ In CA Aion BRE , rules are organized into methods known as rule methods. A

rule method looks like a regular method except that it contains declarative

code (rules) in the syntax shown in the previous table rather than in

procedural code.

■ When a rule method is executed, the rules in that method are “posted”

(although no inferencing is invoked yet).

■ When posted, all rules are bound to the instance or class that “owns” the rule

method that contains the rules. That is, each rule knows the meaning of

current (in C++, this), or currentclass. This binding is particularly important

in the case of IFRULEs and WHEN demons; all attributes in those rules

automatically refer to the current instance or class of those rules. Thus, the

same rule, when posted from different instances, sets the value of the same

attribute in different individuals.

■ Rules bound to objects constitutes one of the critical contributions of CA Aion

BRE to object-oriented programming: the notion of rule-based behavior of

individuals. Individuals encapsulate the rules of their behavior.

■ In CA Aion BRE, the ability of the programmer to choose which rules

(behavior) of an instance or class to post is known as dynamic inferencing.

Dynamic inferencing promotes inferencing efficiency because the

programmer can control whether to post rules from one method and not

another. For example, rules for evaluating medical reports for males may be

kept in one rule method and rules for evaluating medical reports for females

may be kept in another. The programmer can write code (as simple IF

statement) to test whether the current patient is a male or a female and post

only the rules of the relevant rule method.

Appendix B: The Aion BRE Debugger 87

Appendix B: The Aion BRE Debugger

This chapter will help to find and eliminate any CA Aion application problems by

using the Aion BRE Debugger tool. When you use debug mode, the application

runs as usual: data is loaded, windows appear, and values are calculated.

However, you can monitor the flow of execution, method-by-method or

line-by-line. You also can see the values of variables.

For more information about the Aion BRE Debugger, see the CA Aion BRE Product

Guide.

The Debugger Button

The Debugger button is located on the Aion IDE toolbar.

To open the Debugger window, click the Debugger button.

The Debugger Window

The Debugger Window

88 Developer Overview

The features of the Debugger Window include:

Stack List Box

This listbox displays the Call Stack, which is a list of all method calls that you

have not returned (in other words, suspended methods). By default, the

currently executing method is displayed as class, method. The code for this

method is shown in the Method Body Pane. During inferencing, the Stack List

Box displays inferencing information instead of class, method.

Arguments Pane

This pane displays the values for all input, output, and local variables in the

currently executing method. To expand an attribute, click the plus icon. To

display or modify the current value, double-click it.

Watched Attribute Pane

This pane displays the values of any attributes and instances for which

watchpoints or data breakpoints have been set. For information about

setting watchpoints, see Set Breakpoints and Watchpoints in the appendix

“The Aion BRE Debugger.” For information about setting data breakpoints,

see the CA Aion BRE online help.

Debugger Tab Pages

These pages show various types of information about the application being

debugged.

Methods

Lists the current application and all included libraries that are being run

interpretively. It shows the classes in those libraries and the methods within

each class. Here, you can set code breakpoints and see the list of all

breakpoints.

PatternMatch

Shows the internal processing of patternmatching rules (IFMATCH and

WHENMATCH). Values appear during forward chaining only.

Decision Table

Displays a graphical view of an active decision table. (The decision rule

appears in the Method Body Pane).

Method Body Pane

This pane contains code of the current method. (The method name is listed

in the Stack List Box). The yellow arrow indicates the next statement to be

executed; a red flag signifies a code breakpoint.

Instance Counter

This area on the Status Bar shows the current number of dynamic instances

in the application. Static instances are not included.

The Debugger Toolbar

Appendix B: The Aion BRE Debugger 89

Find in Trace Text

This box appears on the Trace page only. This Find feature lets you search

for a word, letter, or number on the Trace page.

Open the Debugger Window

To open the Debugger window, click the Debugger button. The Debugger

window appears.

The Debugger Toolbar

The toolbar buttons on the Aion BRE Debugger let you step through methods and

set code breakpoints and data watchpoints.

Step through Methods

The toolbar buttons let you proceed through the debugging process:

 Continue Execution

Proceeds to the next breakpoint in the application (same as F5).

 Step Over

Executes the next statement in the method but does not display internal

logic (same as F10).

 Step Into

Executes the next statement in the method and displays internal logic (same

as F11).

 Step Out

Jumps out of the current method and returns to the calling method (same as

Shift F11).

The Debugger Toolbar

90 Developer Overview

Set Breakpoints and Watchpoints

The other buttons on the toolbar let you set breakpoints on methods and

watchpoints on attributes:

 Toggle Breakpoint

A breakpoint suspends the execution of a method. You can put a breakpoint

on any line of code in a method.

To add a breakpoint

1. Select the Methods tab in the Debugger, and expand the library and class

that contain the method in which you want to put a breakpoint.

2. Select the method. Its code appears in the lower right pane of the Method

page.

3. Click the line to receive the breakpoint, and then click the Toggle Breakpoint

button (same as F9).

Note: You can toggle a breakpoint on and off by double-clicking the line or by

clicking Toggle Breakpoint.

 Toggle Watchpoint

A watchpoint lets you monitor the values for an attribute. All attributes with

watchpoints appear in the Watched Attribute pane at the top middle of the

Debugger.

To add a Watchpoint

1. Click the Data tab, and expand the library that contains the attribute you

want to watch.

2. To place a watchpoint on a class attribute (), click the name of the class.

Its class attributes appear in the lower right pane.

To place a watchpoint on an instance attribute (), expand a class to

display its instances. Click the instance whose attribute you want to watch.

The instance attributes appear in the lower right pane.

3. Do one of the following:

■ Select the name of the attribute you want to watch, and then click Toggle

Watchpoint on the toolbar.

■ Right-click the name of the attribute.

From the pop-up menu, choose Toggle Watchpoint.

■ Choose Actions, Attribute, Toggle Watchpoint.

Index 91

Index

A

actions

change information for • 18

create • 18

delete • 18

display • 18

Aion Debugger dialog • 60, 66

Application Assistant dialog • 41

APPWindow class, expand the • 23

assign values to attributes • 24

assistants

use of • 15

attribute

assign a value to an • 24

attributes, create • 49

B

backward chaining

explanation of • 81

use of • 83

BackwardChain command • 21

business client user role • 10

C

CA Aion BRE

archectecture • 9

deploy as a batch program • 9

description of • 9

graphical user interface (GUI) tools • 9

calculate credit limit, create method to • 50

change information for actions • 18

CheckCustomer() method • 60

CheckForSpecialDiscount() method • 23

commands

BackwardChain • 21

ForwardChain • 21, 22

conditions

create • 18

delete • 18

Conditions/Actions tab • 18

Confirmation dialog • 31

Connection Properties dialog • 31, 42

create

and maintain static rules • 13

attributes to store credit limit and approval •

49

conditions and actions for decision tables •

18

decision table • 52

knowledge base • 41

method to calculate credit limit • 50

Create Accessors dialog • 50

Create New Data Source dialog • 29

Customer.Load() method • 60

D

data sources

specify • 29

test • 31

Data Test dialog • 32

Database Assistant dialog • 31, 41

decision table

call a • 58

create a • 52

execute • 60

post a • 57

test a • 60

Decision Table Editor

open the • 18

use of • 18

Decision Table Editor dialog • 52

decision tables

benefits of • 21

create • 18

definition of • 18

delete conditions and actions for • 18

sample • 18

declarative code (rules) • 21

demons • 82, 84

DetermineAccountStatus() method • 23

develop

applications for UNIX deployment • 74

business intelligence application • 10

knowledge base • 40

dialogs

Aion Debugger • 60, 66

Application Assistant • 41

Confirmation • 31

Connection Properties • 31, 42

Create Accessors • 50

92 Developer Overview

Create New Data Source • 29

Data Test • 32

Database Assistant • 31, 41

Decision Table Editor • 52

Find • 22

Library Properties • 73

New Application • 41

New Attribute • 49

New Decision Table • 52

New Method • 50, 58

New Query • 43

New Rule Method • 62

ODBC Data Source Administrator • 29

ODBC Microsoft Access Setup • 29

Properties • 45

Select Database • 29

Settings • 75

DiscountOrderItem class, expand the • 25

domain interface

members

definition of • 18

dynamic

inferencing, definition of • 84

rules

definition of • 13

use of • 10

E

END procedural methods • 21

execute the decision table • 60

F

Find dialog • 22

find feature, use of • 22

forward

chaining

example of • 83

execute demons with • 84

execute MATCH rules with • 84

explanation of • 81

use of • 82

mode, use of • 24

ForwardChain command • 21, 22

I

IF

clause or condition • 82

condition, example of • 82

conditions • 18

IFMATCH rule • 15

IFRULEs, definition of • 14

IF-THEN statements

description of • 14

example of • 82

execute • 81

list of • 84

structure of • 82

INFER procedural methods • 21

inference

blocks

definition of • 21

methods that contain • 23

multiple • 21

view • 22

engine

definition of • 81

enter rules • 82, 83

pose goals and attributes to the • 84

processing rules • 13

methods, definition of • 21

input argument, location of an • 18

invoke inferencing • 21

IT developer role • 10

K

knowledge base, develop a • 40

L

libraries page • 22

Library Properties dialog • 73

list of

IF-THEN statements • 84

operating systems • 9

rule types and syntax • 84

rules • 21

M

Method Editor

open the • 14

methods

CheckCustomer() • 60

CheckForSpecialDiscount() • 23

Customer.Load() • 60

DetermineAccountStatus() • 23

ResolveDiscount() • 23

RulesAboutTotalDiscount() • 25

Season() • 18

SetExplanation() • 22

Index 93

SetSeasonalDiscount() • 18

WhenpbDiscountsChosen() • 23

N

New Application dialog • 41

New Attribute dialog • 49

New Decision Table dialog • 52

new goals, pose • 84

New Method dialog • 50, 58

New Query dialog • 43

New Rule Method dialog • 62

O

ODBC Data Source Administrator dialog • 29

ODBC data source, defining an • 29

ODBC Microsoft Access Setup dialog • 29

open

Decision Table Editor • 18

the Method Editor • 14

the Rule Analyzer • 25

operating systems, list of • 9

P

pattern matching rules See also IFMATCH rules

• 84

premise See also IF clause or condition • 82

procedural code (operations) • 21

Properties dialog • 45

R

remove a library from a knowledge base • 69

ResolveDiscount() method • 23

rule

analyzer, the • 24

editor

access the • 18

close the • 15

display the • 15

modify IFRULEs with the • 14

open the • 15

sample of the • 25

use of • 15

methods

and procedural methods, differences between •

21

definition of • 14, 84

programming techniques • 13

types and syntax, list of • 84

rules

Aion BRE inference engine • 81

and rule methods • 14

and their syntax, types of • 81

apply (fired) • 84

IFMATCH • 15, 84

IFRULE • 14, 84

IFRULEs • 84

meaning of current or currentclass • 84

posting • 21

WHEN • 82, 84

WHENMATCH • 82, 84

Rules tab, access the • 15

RulesAboutPreferredCustomer rule method • 15

RulesAboutTotalDiscount() method • 25

runtime algorithms • 21

S

Season() method • 18

Select Database dialog • 29

SetExplanation() method • 22

SetSeasonalDiscount() method • 18

Settings dialog • 75

static rules

create and maintain • 13

definition of • 13

subgoals, pose • 84

switch between forward and backward mode •

25

T

THEN

action, example of • 82

actions • 18

clause or action • 82, 83

U

use

backward chaining • 83

databases with CA Aion BRE • 29

forward chaining • 82

FTP • 79

pattern matching • 84

the Aion BRE Debugger tool • 87

the AionBuilder • 75

the -DUNIX compile switch • 79

the Method Editor • 64

the ODBC Data Source Administrator • 29

the Remote Save and Restore features • 74

use the forward mode • 24

94 Developer Overview

V

view

inference blocks • 22

W

WHEN rules • 82

WHENMATCH rules (demons) • 82

WhenpbDiscountsChosen() method • 23

	CA Aion Business Rules Expert Developer Overview
	Contents
	1: Introduction to CA Aion BRE
	CA Aion BRE Architecture
	Business Client User and Developer Roles

	2: Basic Rule Programming Techniques
	Create and Maintain Static Rules
	Rules and Rule Methods
	Open the Method Editor
	Open the Rule Editor

	The Decision Table Editor
	Use the Decision Table Editor
	Benefits of Decision Tables

	Post Rules
	View an Inference Block

	Call Inference Methods
	The Rule Analyzer
	Analyze Rule Processing

	3: Access to Essential Databases
	The DataLib System Library
	Specify a Data Source
	Test the Data Connection
	Create a Query Class
	Execute the Discount Application in the Aion IDE
	Execute the Discount Application in the Aion IDE

	4: Develop an Aion BRE Knowledge Base
	The Purchase Checker System
	System Specification
	Requirements
	Design Assumptions

	Build the Purchase Checker System
	Create the Application
	Connect to the Database
	Create a Query Class
	Map the Query Class to the Database
	Test the Database Connection
	View the Database in the Aion Debugger

	Create Attributes to Store Credit Limit and Approval
	Create a Method to Calculate Credit Limit
	Create a Decision Table
	Post the Decision Table
	Call the Decision Table
	Test the Decision Table

	Rules to Approve Purchases
	Write the Approval Rule
	Write the Disapproval Rule
	Post the Rules
	Call and Test the Rules

	Report the Approval/Disapproval Decision
	Generate Message Text
	Display a Message Box

	Remove an Unused Library (Optional)

	5: Build and Deploy Applications and Components
	Build a CA Aion Application under Windows
	Specify Component Interfaces
	Choose the Type of Component to Build
	Build the Component
	Develop Applications for UNIX Deployment
	Develop Applications Overview

	Build Applications with AionBuilder
	Build Applications with Command Line Utilities
	The Respawn Utility
	The Reexec Utility

	Compilation Hints and Suggestions

	A: The Aion BRE Inference Engine and Rules
	Basic Inferencing Techniques
	Rule Structure
	Example

	Forward Chaining
	Example

	Backward Chaining
	Example

	Aion BRE Rule Types and Syntax

	B: The Aion BRE Debugger
	The Debugger Button
	The Debugger Window
	Open the Debugger Window

	The Debugger Toolbar
	Step through Methods
	Set Breakpoints and Watchpoints

	Index

