

Endpoint Administration Guide for UNIX
12.6

CA Access Control

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2011 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Third-Party Notices

CONTAINS IBM(R) 32-bit Runtime Environment for AIX(TM), Java(TM) 2 Technology
Edition, Version 1.4 Modules

(c) Copyright IBM Corporation 1999, 2002

All Rights Reserved

Sample Scripts and Sample SDK Code

The Sample Scripts and Sample SDK code included with the CA Access Control product
are provided "as is", for informational purposes only. They may need to be adjusted in
specific environments and should not be used in production without testing and
validating them before deploying them on a production system.

CA Technologies does not provide support for these samples and cannot be responsible
for any errors that these scripts may cause.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA Access Control Enterprise Edition

■ CA Access Control

■ CA Single Sign-On (CA SSO)

■ CA Top Secret®

■ CA ACF2™

■ CA Audit

■ CA Network and Systems Management (CA NSM, formerly Unicenter NSM and
Unicenter TNG)

■ CA Software Delivery (formerly Unicenter Software Delivery)

■ CA Service Desk (formerly Unicenter Service Desk)

■ User Activity Reporting (formerly CA Enterprise Log Manager)

■ CA Identity Manager

Documentation Conventions

The CA Access Control documentation uses the following conventions:

Format Meaning

Mono-spaced font Code or program output

Italic Emphasis or a new term

Bold Text that you must type exactly as shown

A forward slash (/) Platform independent directory separator used to
describe UNIX and Windows paths

The documentation also uses the following special conventions when explaining
command syntax and user input (in a mono-spaced font):

Format Meaning

Italic Information that you must supply

Between square brackets ([]) Optional operands

Format Meaning

Between braces ({}) Set of mandatory operands

Choices separated by pipe (|). Separates alternative operands (choose one).

For example, the following means either a user
name or a group name:

{username|groupname}

... Indicates that the preceding item or group of items
can be repeated

Underline Default values

A backslash at end of line
preceded by a space (\)

Sometimes a command does not fit on a single line
in this guide. In these cases, a space followed by a
backslash (\) at the end of a line indicates that the
command continues on the following line.

Note: Avoid copying the backslash character and
omit the line break. These are not part of the actual
command syntax.

Example: Command Notation Conventions

The following code illustrates how command conventions are used in this guide:

ruler className [props({all|{propertyName1[,propertyName2]...})]

In this example:

■ The command name (ruler) is shown in regular mono-spaced font as it must be
typed as shown.

■ The className option is in italic as it is a placeholder for a class name (for example,
USER).

■ You can run the command without the second part enclosed in square brackets,
which signifies optional operands.

■ When using the optional parameter (props), you can choose the keyword all or,
specify one or more property names separated by a comma.

File Location Conventions

The CA Access Control documentation uses the following file location conventions:

■ ACInstallDir—The default CA Access Control installation directory.

– Windows—C:\Program Files\CA\AccessControl\

– UNIX—/opt/CA/AccessControl/

■ ACSharedDir—A default directory used by CA Access Control for UNIX.

– UNIX—/opt/CA/AccessControlShared

■ ACServerInstallDir—The default CA Access Control Enterprise Management
installation directory.

– /opt/CA/AccessControlServer

■ DistServerInstallDir—The default Distribution Server installation directory.

– /opt/CA/DistributionServer

■ JBoss_HOME—The default JBoss installation directory.

– /opt/jboss-4.2.3.GA

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Documentation Changes

No documentation changes were made for this release.

Contents 9

Contents

Chapter 1: Introduction 17

About this Guide .. 17

Who Should Use this Guide .. 17

Chapter 2: Managing Endpoints 19

What Is CA Access Control? .. 19

Why Does UNIX Need Protecting? .. 19

How Does This Work? ... 20

What Is Protected? ... 20

How Is It Protected? .. 23

Expanding Native Security... 24

Endpoint Management .. 26

Chapter 3: Managing Users and Groups 27

Users and Groups ... 27

Where Information about Accessors Is Stored .. 28

How CA Access Control Finds a User Record .. 28

Integration with the Enterprise User Stores ... 29

Guidelines for Managing Accessors in Enterprise Stores ... 29

Users and Groups that Must be Defined in the Database .. 29

Restrictions on the Use of Enterprise Users.. 29

Restrictions on the Use of Enterprise Groups ... 30

Enable or Disable the Use of Enterprise Users and Groups .. 30

Enable or Disable the Creation of XUSER Records at Enterprise User Login... 31

Enable or Disable Checking Enterprise Store before Creating XUSER Records on UNIX 32

Recycled Enterprise Store Accounts on Windows .. 32

Resolve Recycled Enterprise Accounts on Windows... 33

Database Accessors .. 34

Predefined Users ... 35

Predefined Groups .. 36

Profile Groups ... 37

How CA Access Control Uses Profile Groups to Determine User Properties .. 37

Accessor Management ... 37

Manage Users or Groups .. 38

User Management Using selang ... 41

Group Management Using selang ... 41

10 Endpoint Administration Guide for UNIX

Chapter 4: Managing Resources 43

Resources ... 43

Resource Groups ... 43

Classes .. 44

Default Record for Class .. 44

User-Defined Classes ... 49

Chapter 5: Managing Authorization 51

Access Authorities .. 51

Setting Access Authority - Examples .. 51

Access Control Lists .. 52

Conditional Access Control Lists ... 53

defaccess—The Default Access Field .. 53

How Access Authority to a Resource Is Determined .. 54

Interaction Between User and Group Access Authorities .. 55

Accumulative Group Rights (ACCGRR) .. 56

Security Levels, Categories, and Labels .. 56

Security Levels ... 56

Security Categories ... 57

Security Labels .. 57

Chapter 6: Protecting Accounts 59

Why Protect Accounts? .. 59

Safe User Substitution .. 59

Set User ID Substitution Rules... 60

How to Set Up sesu for User Substitution ... 60

Setting Up the Surrogate DO Facility .. 64

Defining SUDO Records .. 66

Preventing Password Attacks ... 68

serevu .. 68

pam_seos .. 69

Restrictions and Limitations .. 70

Checking User Inactivity ... 71

Chapter 7: Managing User Passwords 73

Password Control ... 73

Defining Password Policies ... 73

Configure Password Quality Checking .. 74

Changing Passwords .. 75

Contents 11

Password Expiration and Grace Logins .. 75

Specify the Password Interval ... 76

Set Individual User or Group Password Intervals .. 76

Grace Logins .. 77

Track Grace Logins .. 77

Chapter 8: Protecting Files and Programs 79

Restricting Access to Files and Directories ... 79

How File Protection Works ... 82

Protect Files... 82

Wildcards in FILE Resource Names ... 83

Restricting File Access ... 84

Blocking Trojan Horses with the _abspath Group .. 87

Synchronization with Native UNIX Security ... 88

Example: Synchronization ... 89

HP-UX Limitations ... 90

Sun Solaris Limitations .. 90

Monitoring Sensitive Files .. 90

Internal File Protection ... 91

Internal File Rules .. 91

Default File Rules .. 93

Protecting setuid and setgid Programs .. 94

Define setuid/setgid Programs Automatically .. 96

Conditional Access .. 96

Protecting the Login Command .. 96

Protecting Regular Programs ... 97

Kernel Modules Load and Unload Protection .. 97

Protect a Kernel Module ... 98

Enable and Disable Kernel Module Protection ... 99

Enable and Disable File Path Checking on Kernel Module Loads .. 99

Protecting Binary Files from the kill Command .. 100

Chapter 9: Controlling Login Commands 101

Controlling the Login Process ... 101

Examples: LOGINAPPL ... 101

Enable SFTP Login Interception ... 102

Controlling Generic Login Applications .. 103

Defining a Generic Login Application .. 103

Generic Login Program Interception ... 104

Defining User Authority to Use Terminals ... 104

Restricting Terminals for Root Users .. 106

12 Endpoint Administration Guide for UNIX

Recommended Restrictions .. 107

Password Checking and Login Restrictions .. 108

Logon Checks... 108

Defining Time and Day Login Rules .. 109

Disabling Concurrent Logins ... 109

Limiting Concurrent Logins for a User .. 110

Limiting Concurrent Logins Globally ... 110

Limiting Concurrent Logins Individually .. 111

Recognizing a Login Event .. 111

Chapter 10: Protecting TCP/IP Services 113

Restricting TCP/IP Services ... 113

Using the TCP Class .. 115

Streams Module for Network Interception... 116

Chapter 11: Managing Policy Models 121

The Policy Model Database .. 121

PMDB Location on Disk ... 121

Managing Local PMDBs ... 122

Managing Remote PMDBs .. 122

Architecture Dependency .. 123

Methods for Centrally Managing Policies .. 125

Automatic Rule-based Policy Updates ... 125

How Automatic Rule-based Policy Updates Work .. 125

How You Use a PMDB to Propagate Configuration Settings ... 126

How You Can Set Up a Hierarchy .. 127

UID/GID Synchronization .. 133

How the Policy Model Updates Subscribers ... 135

Dual Control .. 146

Using the seagent and sepmdd Daemons ... 150

Mainframe Password Synchronization... 151

Chapter 12: General Security Features 153

Protection of Idle Stations .. 153

Protection Modes.. 154

Set Stations to Lock when Idle .. 156

Change the Screen Lock Icon .. 156

Protecting Resources Using APIs .. 157

Protecting Against Stack Overflow: STOP .. 157

Starting and Stopping STOP .. 158

Contents 13

Defining Day and Time Access Rules for Resources ... 158

B1 Security Level Certification .. 159

Security Levels ... 159

Security Categories ... 160

Security Labels .. 162

Chapter 13: Auditing Events 165

Setting Audit Rules ... 165

Defining the Audit Events That CA Access Control Writes to the Audit Log .. 166

How User Session Logging Works .. 167

How CA Access Control Determines the Audit Mode for a User .. 168

Default Audit Modes for Users and Enterprise Users ... 171

Change to Default Audit Value for Some Users .. 171

Changing the Value of AUDIT Property for GROUP Records ... 171

Warning Mode ... 172

Put a Resource into Warning Mode .. 172

Put a Class into Warning Mode ... 174

Find Out Which Resources Are in Warning Mode... 174

Find Out Which Classes Are in Warning Mode ... 175

How to Perform System Maintenance .. 176

Audit Logs ... 176

The System Auditor ... 177

Log Routing... 179

Log Routing Configuration .. 179

Audit Log Route Encryption .. 180

Send Audit Log Records using Email ... 181

Configure SNMP Traps .. 182

Migrate User Trace Filters .. 184

Chapter 14: Scope of Administration Authority 185

Global Authorization Attributes ... 185

ADMIN Attribute ... 185

AUDITOR Attribute .. 186

OPERATOR Attribute ... 186

PWMANAGER Attribute .. 186

SERVER Attribute ... 187

IGN_HOL Attribute .. 187

Group Authorization .. 187

Parentage .. 188

Group Authorization Attributes .. 188

Ownership .. 190

14 Endpoint Administration Guide for UNIX

File Ownership .. 191

Authorization Examples ... 192

Single Group Authorization ... 192

Parent and Child Groups ... 193

Sub Administration ... 194

How to Grant Specific Administrative Privileges to Regular Users ... 194

The ADMIN Class ... 194

Environmental Considerations ... 196

Remote Administration Restrictions ... 196

UNIX Environment... 197

Windows Environment .. 197

Chapter 15: Improving Performance 199

Using Global Access Check ... 199

How Does GAC Work? ... 200

Implementing GAC .. 200

GAC Restrictions .. 201

Troubleshooting GAC .. 202

Using the Resource Cache .. 203

Tuning Recommendations .. 203

Using the Network Cache ... 204

Using the Real Path Cache .. 204

Using Fork Synchronization .. 204

Using High Priority .. 205

Bypassing the Process File System ... 205

Bypassing Real Paths .. 205

Bypassing Trusted Process Authorization .. 205

Bypass Ports for Network Activity .. 206

Reducing Audit and Trace Loads .. 207

Reducing Database Loads ... 207

Improving PMDB Updates .. 207

Improving Watchdog Performance .. 208

Improving Class Parameters ... 208

Class Activation ... 208

Class Authorization ... 208

Resolving Names .. 209

Chapter 16: Using UNIX Exits 213

UNIX Exits ... 213

User or Group Record Update Exits ... 213

How the Provided selang Exit Script Works .. 214

Contents 15

Arguments You Can Pass to selang Exits ... 215

Specify selang Exit Programs to Run ... 216

Time Out and Other Failures ... 216

selang Exit Samples ... 216

CA Access Control Kernel Loader Exits ... 217

How the Kernel Loading Exits Work .. 217

How the Kernel Unloading Exits Work .. 218

Chapter 17: Interacting with LDAP 221

Transferring User Names ... 221

S50CREATE_Ldap_u .. 221

Chapter 18: Configuring Settings 223

Configuration Settings .. 223

Change Configuration Settings ... 223

Change Audit Configuration Settings ... 224

Appendix A: NIS Configuration 225

Installation Notes ... 225

Name Resolution .. 225

Name Resolution on an NIS/DNS Client .. 226

Name Resolution on a Server: Deadlock ... 226

Name Resolution on Sun Solaris: Deadlock .. 227

Avoiding Deadlocks: The Lookaside Database ... 227

Storing Resolution Tables on Disk ... 228

Setting Up the Lookaside Database .. 228

How the Lookaside Database Works... 229

Implementing the Lookaside Database ... 229

Updating the Hosts Lookaside Table ... 230

Chapter 1: Introduction 17

Chapter 1: Introduction

This section contains the following topics:

About this Guide (see page 17)
Who Should Use this Guide (see page 17)

About this Guide

This guide describes the concepts used by CA Access Control for UNIX—a product that
provides a total security solution for open systems. The guide describes UNIX endpoint
management tasks and concepts.

This guide is also provided with CA Access Control Enterprise Edition, which offers
enterprise management and reporting capabilities, and advanced policy management
features.

To simplify terminology, we refer to the product as CA Access Control throughout this
guide.

Who Should Use this Guide

This guide was written for security and system administrators who are implementing
and maintaining a CA Access Control-protected environment.

Chapter 2: Managing Endpoints 19

Chapter 2: Managing Endpoints

CA Access Control is a software product that is an active, comprehensive security
software solution for Open Systems, tied dynamically to the operating system. Each
time a user requests a security-sensitive operation-such as opening a file, substituting a
user ID, or obtaining a network service-CA Access Control can intercept the event in real
time and evaluate its validity before passing control to the standard operating system
(OS) functions.

This section contains the following topics:

What Is CA Access Control? (see page 19)
Endpoint Management (see page 26)

What Is CA Access Control?

CA Access Control provides you with a powerful tool for managing security for your
native platforms, making it possible to implement a security policy that can be
customized entirely to an enterprise's security requirements. CA Access Control lets you
provide security for users, groups, and resources beyond what is available in native
operating systems. It lets you centrally manage security across the organization and
integrate your Windows and UNIX security policies in a heterogeneous environment.

Why Does UNIX Need Protecting?

Many operating systems have built-in access control, using one technique or another.
IBM's z/OS, a well-established and mature mainframe operating system, includes the
System Authorization Facility (SAF)—a set of calls issued by the operating system itself
to verify a user's authorization.

Access control software in an z/OS environment sets a return code for the SAF call and
z/OS grants or denies access according to the code. The decision of what return code to
set is based on the access rules and policies defined in the security database by the
security administrator.

Other operating systems, such as OS/2, provide similar techniques for access control.
The OS/2 access control module, called Security Enabling Services (SES), is based on the
same concept as z/OS SAF.

What Is CA Access Control?

20 Endpoint Administration Guide for UNIX

Unfortunately, UNIX-based operating systems were not designed this way.
Authorization decisions are made mainly for file accesses and are performed by the
operating system itself using the nine bits (rwx-rwx-rwx) in the file's inode entry. Unlike
SAF, no exit point for event interception is provided. Therefore, further security is
necessary to perform functions that are more complex than those of mainframe-type
security packages.

How Does This Work?

In addition to supplying the regular security functions-such as an access rule database,
an audit log, and administration tools-CA Access Control intercepts the operating system
events that are to be protected. Since CA Access Control has to work with many
different operating systems, it intercepts events in memory. No changes are made to
system files, and the operating system is not modified at all.

What Is Protected?

CA Access Control protects the following entities:

■ Files

Is a user authorized to access a particular file?

CA Access Control restricts a user's ability to access a file. You can give a user one or
more types of access, such as READ, WRITE, EXECUTE, DELETE, and RENAME. The
access can be specified regarding an individual file or to a set of similarly named
files.

■ Terminals

Is a user authorized to use a particular terminal?

This check is done during the login process. Individual terminals and groups of
terminals can be defined in the CA Access Control database, with access rules that
state which users, or groups of users, are allowed to use the terminal or terminal
group. Terminal protection ensures that no unauthorized terminal or station can be
used to log into the accounts of powerfully authorized users.

■ Signon time

Is a user authorized to log on at a particular time on a particular day?

Most users use their stations only on weekdays and only during work hours; the
time-of-day and day-of-week login restrictions, as well as holiday restrictions,
provide protection from hackers and from other unauthorized accessors.

What Is CA Access Control?

Chapter 2: Managing Endpoints 21

■ TCP/IP

Is another station authorized to receive TCP/IP services from the local computer? Is
another station authorized to supply TCP/IP services to the local computer? Is
another station permitted to receive services from every user of the local station?

The advantage of an open system-a system in which both the computers and the
networks are open-is also a disadvantage. Once a computer is connected to the
outside world, one can never be sure who enters the system and what damage an
alien user may do, whether intentionally or by mistake. CA Access Control includes
“firewalls” that prevent local stations and servers from providing services to
unknown stations.

■ Multiple login privileges

Is the user permitted to log in from a second terminal?

The term concurrent logins refers to a user's ability to be logged onto the system
from more than one terminal. CA Access Control can prevent a user from logging in
more than once. This prevents intruders from logging into the accounts of users
who are already logged in.

■ User-defined entities

You can define and protect both regular entities (such as TCP/IP services and
terminals) and functional entities (known as abstract objects; such as performing a
transaction and accessing a record in a database).

■ Aspects of administrator authority

CA Access Control provides the means to both delegate superuser authorities to
operators and restrict the privilege of the superuser account.

■ Substitute-user

Are users authorized to substitute their user IDs?

The UNIX setuid system call, one of the most sensitive services provided by the
operating system, is intercepted by CA Access Control to check whether the user is
authorized to perform the substitution. The substitute-user authority check
includes program pathing-users are permitted to substitute their user IDs only
through specific programs. This is especially important in controlling who can
substitute to root and thereby gain root access.

What Is CA Access Control?

22 Endpoint Administration Guide for UNIX

■ Substitute-group

Is a user authorized to issue the newgrp (substitute-group) command?

Substitute-group protection is similar to substitute-user protection.

■ Setuid and setgid programs

Can a particular setuid or setgid program be trusted? Is the user authorized to
invoke it?

The security administrator can test programs that are marked as setuid or setgid
executables to ensure that they do not contain any security loopholes that can be
used to gain unauthorized access. Programs that pass the test and are considered
safe are defined as trusted programs. The CA Access Control Self-Protection Module
(also referred to as the CA Access Control watchdog) knows which program is in
control at a particular time and checks whether the program has been modified or
moved since it was classified as trusted. If a trusted program is modified or moved,
the program is no longer considered trusted and CA Access Control does not allow it
to run.

In addition, CA Access Control protects against various deliberate and accidental threats,
including:

■ Kill attempts

CA Access Control can be used to protect critical servers and services or daemons
against kill attempts.

■ Password Attack

CA Access Control protects against various types of password attacks, enforces the
password-definition policies of your site, and detects break-in attempts.

■ Password Delinquency

CA Access Control policies delineate rules that force users to create and use
passwords of sufficient quality. To ensure that users create and use acceptable
passwords, CA Access Control can set maximum and minimum lifetimes for
passwords, restrict certain words, prohibit repetitive characters, and enforce other
restrictions. Passwords are not permitted to last too long.

■ Account Management

CA Access Control policies ensure that dormant accounts are dealt with
appropriately.

■ Domain Management

CA Access Control can implement password protection and enforce security across
NIS and non-NIS domains.

What Is CA Access Control?

Chapter 2: Managing Endpoints 23

How Is It Protected?

CA Access Control starts immediately after the operating system finishes its
initialization. CA Access Control places hooks in system services that must be protected.
In this way, control is passed to CA Access Control before the service is performed. CA
Access Control decides whether the service should be granted to the user.

For example, a user may attempt to access a resource protected by CA Access Control.
This access request generates a system call to the kernel to open the resource. CA
Access Control intercepts that system call and decides whether to grant access. If
permission is granted, CA Access Control passes control to the regular system service; if
CA Access Control denies permission, it returns the standard permission-denied error
code to the program that activated the system call, and the system call ends.

The decision is based on access rules and policies that are defined in the database. The
database describes two types of objects: accessors and resources. Accessors are users
and groups. Resources are objects to be protected, such as files and services. Each
record in the database describes an accessor or a resource.

Each object belongs to a class-a collection of objects of the same type. For example,
TERMINAL is a class containing objects that are terminals (workstations) protected by
CA Access Control.

Class Activation

CA Access Control stores information about whether a CLASS is active or inactive in the
database. When CA Access Control starts, it passes a list of active classes to
SEOS_syscall, so CA Access Control does not have to constantly intercept these classes.
The only time CA Access Control intercepts a class is when a user changes the activity
status of a class. If a class is inactive, access to the resource is not intercepted.

You can use the inactive class bypass with the following classes: FILE, HOST, TCP,
CONNECT, and PROCESS.

Accessor Elements

Each user is represented by an accessor element (ACEE)-an in-memory reflection of the
user's record in the database. CA Access Control builds the accessor element during the
login process. The accessor element is associated with the user's process. Whenever the
process requests a system service that is protected by CA Access Control, or issues an
implicit request to access a resource, CA Access Control accesses the resource's record.
It then determines whether the information in the previously created accessor
element-such as the user's security level, mode, and group-lets the user access the
resource.

What Is CA Access Control?

24 Endpoint Administration Guide for UNIX

Expanding Native Security

The following CA Access Control features expand native security.

Superuser Account Limitations

Users who administer and manage the operating systems are typically members of
predefined accounts that are automatically created during system setup, such as the
root account on UNIX systems, and the Administrator account on Windows systems.
Each of the predefined accounts exists to perform a certain set of system functions.

Users acting as root or Administrator can perform a wide range of tasks, from creating,
deleting, and modifying users to locking, reconfiguring, and shutting down servers.

One of the major security risks in these operating systems is that an unauthorized user
can gain control of these accounts. If this happens, the user can cause enormous
damage to the system.

CA Access Control lets you limit the rights granted to these accounts and to limit the
rights of users who are members of the user groups that have these accounts as
members. This reduces the vulnerability of your operating system.

CA Access Control Administrators

When you installed CA Access Control, you were asked to name one or more CA Access
Control administrators. CA Access Control administrators have the authority to modify
all or part of the rules database. You should have at least one full-authority
administrator. This administrator can modify or create access rules freely and can
designate other levels of administrators.

Once you have defined users for your system, you can assign administrative authority to
other users by assigning the ADMIN attribute to them.

Note: A user with the ADMIN attribute possesses powerful authority. Consequently, the
number of ADMIN users should be strictly limited. It is also a good policy to separate the
roles of the native superuser and ADMIN, removing the ADMIN attribute from the
superuser after you have set up one or more CA Access Control security administrators.

Because you always need at least one user with authority to manage the database, CA
Access Control does not let you delete the last user that has the ADMIN attribute.

If you expect any of the CA Access Control administrators to be administering other
hosts from this workstation, be sure that a rule in the database on that host gives them
READ and WRITE access from this workstation.

What Is CA Access Control?

Chapter 2: Managing Endpoints 25

Sub Administration

CA Access Control contains a sub administration feature. This lets administrators grant
specific privileges that enable regular users to manage specific classes. These users are
then called sub administrators.

For example, you can allow a specific user to manage users and groups only.

You can also specify a higher level of sub administration by granting access not only for
specific classes, but for specified records in these classes.

Administration Rights for Regular Users

CA Access Control lets you grant ordinary users (that is, non-administrators) the
necessary rights and privileges so that these users can perform administrative tasks
without being members of the Administrators group. The ability to delegate tasks by
granting administrative privileges in this granular way is a significant advantage of CA
Access Control.

■ A record in the SUDO class stores a command script to allow users to run the script
with borrowed permissions.

■ The data property value is the command script. This value can be modified by
adding to it optional script parameter values.

■ Each record in the SUDO class identifies a command for which a user can borrow
permissions from another user.

■ The key of the SUDO class record is the name of the SUDO record. This name is used
instead of the command name when a user executes the commands in the SUDO
record.

Program Pathing

Program pathing is an access rule associated with a file that requires that the file is
accessed only through a specific program. Program pathing greatly increases the
security of sensitive files. CA Access Control lets you use program pathing to provide
additional protection for the files in your system.

Endpoint Management

26 Endpoint Administration Guide for UNIX

B1 Security Level Certification

CA Access Control includes the following B1 “Orange Book” features: security levels,
security categories, and security labels.

■ Accessors and resources in the database can be assigned a security level. The
security level is an integer between 1 and 255. An accessor can gain access to a
resource only if the accessor has a security level equal to or greater than the
security level assigned to the resource.

■ Accessors and resources in the database can belong to one or more security
categories. An accessor can access a resource only if the accessor belongs to all of
the security categories assigned to the resource.

■ A security label is a name that associates a particular security level with a set of zero
or more security categories. Assigning a user to a security label gives the user both
the security level and any security categories associated with the security label.

Note: For more information about B1 Orange Book features, see the Implementation
Guide.

Endpoint Management

CA Access Control provides two ways to let you manage the resources in your enterprise
and control who has access to them:

■ selang—the CA Access Control command language.

The selang command language lets you make definitions in the CA Access Control
database. The selang command language is the command definition language.

Note: For more information about using selang, see the selang Reference Guide.

■ CA Access Control Endpoint Management—the endpoint administration interface.

The web-based interface lets you administer remote endpoints through a central
administration server.

Note: For more information about installing CA Access Control Endpoint
Management, see the Implementation Guide.

Chapter 3: Managing Users and Groups 27

Chapter 3: Managing Users and Groups

This section contains the following topics:

Users and Groups (see page 27)
Where Information about Accessors Is Stored (see page 28)
Guidelines for Managing Accessors in Enterprise Stores (see page 29)
Database Accessors (see page 34)
Accessor Management (see page 37)

Users and Groups

In CA Access Control, every action and access attempt is performed on behalf of a user,
who is held responsible for submitting the request. Every process in the system is
therefore associated with a certain user name. The user name identifies the user to CA
Access Control.

A user is a person who can log on, or can be the owner of a batch or daemon program.
In CA Access Control, every access attempt is performed by a user. CA Access Control
can use user information from the CA Access Control database and from enterprise user
stores. It stores user information in its database, in either a USER record or an XUSER
record.

Note: An enterprise user store is a store in the operating system that stores users or
groups, for example, /etc/passwd and /etc/groups on UNIX systems, or Active Directory
on Windows.

A group is a collection of users. A group defines common access rules for users in the
group. Groups can be nested (belong to other groups). CA Access Control can use group
information from the CA Access Control database and from the enterprise user stores.
Typically, you create groups and assign users to them, based on a role, for example,
database_administrators.

The user records are the key accessor records. The main purpose for using groups in CA
Access Control is to assign access authorities to all users in group at one time. Assigning
access authorities at one time is easier and less error prone than assigning them
separately to each user.

Where Information about Accessors Is Stored

28 Endpoint Administration Guide for UNIX

Where Information about Accessors Is Stored

The information that CA Access Control uses about users and groups is stored both in
the CA Access Control database and in the host operating system. The host operating
system information stores are called enterprise user stores, or just enterprise stores. By
default, CA Access Control is configured so that it does not use the enterprise stores.
You can, however configure CA Access Control so that if it cannot find a user or group
defined in its database, it looks for, and uses the information from, the users and the
group memberships defined in the enterprise stores.

Note: CA Access Control uses information from the enterprise stores but only writes to
them if you use selang command in the native environment.

When checking for authorization, CA Access Control always checks for accessors defined
in its own database before it checks the enterprise store: if you have an enterprise user
with the same name as a user defined in the CA Access Control database, the enterprise
user is ignored by CA Access Control.

How CA Access Control Finds a User Record

When a user logs in, CA Access Control conducts the search in the following order, until
it finds a record associated with the user:

1. CA Access Control searches for a user defined in its database.

2. CA Access Control searches its cache for an enterprise user of that name.

When the network is down, the operating system (OS) lets users log in using the OS
cached credentials. The purpose of the CA Access Control cache is to let CA Access
Control also use enterprise users' records in these cases.

3. CA Access Control uses the operating system to search the enterprise user stores
for a user of that name.

4. If CA Access Control does not find a record associated with the user in its database
or in the enterprise stores, CA Access Control assigns the user the attributes in the
_undefined USER record.

Guidelines for Managing Accessors in Enterprise Stores

Chapter 3: Managing Users and Groups 29

Integration with the Enterprise User Stores

Typically, you configure CA Access Control to use the groups and users that are defined
in the enterprise user stores.

If you do configure CA Access Control like this, by default, when an access rule that
references an enterprise user or group is created, or when a user logs in to the
operating system, CA Access Control creates a record in its database for that user or
group, if one did not exist before. These records have the class XUSER (for enterprise
users) or XGROUP (for enterprise groups). They hold the properties that CA Access
Control requires to enforce access rules. You do not need to manage them, because CA
Access Control creates them as required.

The only properties of an enterprise user or group that CA Access Control fetches from
the enterprise user stores are the names and the group membership properties.

Guidelines for Managing Accessors in Enterprise Stores

If you decide to manage your accessors in enterprise user stores, you should consider
the guidelines in the following sections.

Users and Groups that Must be Defined in the Database

CA Access Control needs some users and groups to be defined in its database, rather
than in the enterprise user stores. These include:

■ Predefined users (see page 35)

■ Predefined groups (see page 36)

■ A CA Access Control administrator

■ Profile groups

■ Logical users

Restrictions on the Use of Enterprise Users

CA Access Control imposes the following restrictions on the use of enterprise users:

■ You cannot create, or refer to, an enterprise user in CA Access Control if it has the
same name as a user defined in the database.

■ You cannot create, delete or modify an enterprise user using the selang AC
environment.

Guidelines for Managing Accessors in Enterprise Stores

30 Endpoint Administration Guide for UNIX

■ You cannot use an enterprise user as a logical user.

■ By default, you cannot create an enterprise user in CA Access Control unless the
user is already defined in the enterprise user store. However, you can enable or
disable this behavior on UNIX systems.

More information:

Enable or Disable Checking Enterprise Store before Creating XUSER Records on UNIX
(see page 32)

Restrictions on the Use of Enterprise Groups

CA Access Control imposes the following restrictions on the use of enterprise groups:

■ You cannot create or delete an enterprise group within the selang AC environment.

■ You cannot change the membership of an enterprise group within the selang AC
environment.

■ You cannot use an enterprise group as a Profile Group (see page 37).

Enable or Disable the Use of Enterprise Users and Groups

CA Access Control cannot bu default use the groups and users defined in the enterprise
user stores, but you can enable CA Access Control to do so. We recommend that you
enable this feature unless you need compatibility with previous versions of CA Access
Control.

To let CA Access Control use enterprise users and groups, set the configuration setting
osuser_enabled to yes. To disable this behavior, set the value of osuser_enabled to no.

Example: Enable the Use of Enterprise Users and Groups on Windows

The following registry setting enables the use of enterprise users and groups on
Windows:

■ Key: HKLM\SOFTWARE\ComputerAssociates\AccessControl\OS_user

■ Name: osuser_enabled

■ Type: REG_DWORD

■ Value: yes

Guidelines for Managing Accessors in Enterprise Stores

Chapter 3: Managing Users and Groups 31

Example: Enable the Use of Enterprise Users and Groups on UNIX

The following commands stop CA Access Control, enable the use of enterprise users and
groups on UNIX, and restart CA Access Control:

secons -s

seini -s OS_User.osuser_enabled yes

seload

Enable or Disable the Creation of XUSER Records at Enterprise User Login

If CA Access Control is enabled to use enterprise users, by default it creates a record (in
the XUSER class) for a user when that user logs in. Sometimes you do not want this, for
example, if thousands of users log on at the same time each day.

To prevent CA Access Control creating XUSER records when users log in, change the
value of the configuration setting create_user_in_db to 0 (zero). To re-enable this
behavior set the value to 1 (one).

Example: Disable the Automatic Creation of XUSER Records on Enterprise User Login
on Windows

The following registry setting disables the automatic creation of an enterprise user
record in CA Access Control on Windows:

■ Key: HKLM\Software\ComputerAssociates\AccessControl\OS_user

■ Name: create_user_in_db

■ Type: REG_DWORD

■ Value: 0

Example: Disable the Automatic Creation of XUSER Records on Enterprise User Login
on UNIX

The following commands stop CA Access Control, disable the automatic creation of a
XUSER record on UNIX, and restart CA Access Control:

secons -s

seini -s OS_User.create_user_in_db 0

seload

Guidelines for Managing Accessors in Enterprise Stores

32 Endpoint Administration Guide for UNIX

Enable or Disable Checking Enterprise Store before Creating XUSER Records on
UNIX

Sometimes you may want to create an enterprise user in CA Access Control when the
user is not defined in the enterprise user store. On Windows you cannot create an
enterprise user in CA Access Control unless the user exists in the Windows user store.
On UNIX, the default behavior is the opposite to Windows. However, on UNIX, you can
enable or disable this default behavior.

To disable checking (and therefore allow CA Access Control to create XUSER records
when there is no enterprise user equivalent), change the value of the configuration
setting verify_osuser to 0. To enforce checking, set the value to 1.

Example: Enable Creation of XUSER Records without Checking the Enterprise User
Store

The following set of commands stops CA Access Control, enables the creation of XUSER
records with no enterprise store equivalents, and restarts CA Access Control:

secons -s

seini -s OS_User.verify_osuser 0

seload

Recycled Enterprise Store Accounts on Windows

Recycled accounts are enterprise store users or groups that have been deleted and then
recreated (using the same name). This is likely to happen when you remove a user from
the user store (for example, when the user resigns) and then create a new account for a
new user that has the same name as the old removed user.

Recycled accounts are a security concern because you do not necessarily want new
accessors to have the same access permissions as those that were granted to the old
account with the same name. To solve this problem, CA Access Control authorization is
based on the SID. This means that when you create a new accessor, with the same name
as a deleted accessor with existing access permissions, the new accessor does not
automatically receive the old permissions of the old accessor.

Important! Recycled account accessors do not inherit the old access permissions.
However, database access rules, which mention the accessor's name (not SID), may
make it seem like these rules still apply. Use the secons -checkSID command to resolve
this.

Guidelines for Managing Accessors in Enterprise Stores

Chapter 3: Managing Users and Groups 33

Resolve Recycled Enterprise Accounts on Windows

If an enterprise account (user or group) has associated database rules is then recycled
(deleted and created with the same name), it may look like the old database rules still
apply to the new account. However, as CA Access Control authorization is based on SID,
these rules no longer apply and you need to create new rules for the new group. Before
you can create the new rules, you have to resolve recycled accounts.

To resolve recycled enterprise accounts open a command prompt and run the following
commands:

secons -checkSID -users

secons -checkSID -groups

CA Access Control works through all the enterprise user accounts it has (XUSER records)
and then all the group accounts (XGROUP records) and identifies accounts with an SID
that differs from the SID of the enterprise account. It renames these accounts in CA
Access Control using the following naming convention: SID (accountName)

You can now create the new rules for the recycled account.

Note: Recycled user accounts are resolved in this way when the user logs in or tries to
access a resource. We recommend that when you create an enterprise account, run the
secons -checkSID command as a scheduled task.

Database Accessors

34 Endpoint Administration Guide for UNIX

Example: A Recycled Group Account

Company ABCD has a group called interns in its enterprise store. The group has nine
members and they are working on productA. The administrator makes the group known
to CA Access Control and assigns it with access permissions to the files group members
need to access, as follows:

nxg interns owner(msmith)

auth file c:\products\productA\materials* xgid(interns) access(all)

auth file c:\HR\interns* xgid(interns) access(read)

When the interns complete their tenure with ABCD, the enterprise store administrator
deletes the group. Three months later, a new group of interns with six members is
created in the enterprise store, with the same name. The old rules in the CA Access
Control database still exist so it seems like the new interns group inherited the
permissions of the old group. However, these rules apply to the old interns group and
the CA Access Control administrator needs to create new rules for the new group.

To do this, the administrator has to identify and resolve the recycled interns account, as
follows:

secons -checkSID -groups interns

This renames the XGROUP resource, and any access rules references to it, to "SID
(domain\interns)". Now, the administrator can create new rules for the new interns
group that works on productB:

nxg interns owner(msmith)

auth file c:\products\productB\materials* xgid(interns) access(all)

auth file c:\HR\interns* xgid(interns) access(read)

Note: For more information on the secons utility, see the Reference Guide.

Database Accessors

Regardless of how you decide to manage your users, some accessors must be defined in
the CA Access Control database, as described in the following sections.

Database Accessors

Chapter 3: Managing Users and Groups 35

Predefined Users

CA Access Control predefines the following users, which you cannot delete:

+devcalc

(Windows) The user name under which CA Access Control runs the deviation
calculation process, devcalc.

_dms

Installed on the advanced policy management server components' databases (DMS,
DH reader, and DH writer), the _dms user is used by policyfetcher and devcalc to
communicate with the DH and DMS.

nobody

The nobody user is a user record that cannot correspond to a real user. Use this
record to create rules that do not give any user the associated permissions. For
example, you can set nobody as the owner of resources, meaning that no user will
get the permissions associated with owning that record.

+reportagent

The user name under which CA Access Control runs the Report Agent.

_seagent

_seagent is the user name under which CA Access Control runs some internal
processes, such as:

■ The PMDB process, sepmdd

■ (UNIX) The deviation calculation process, devcalc

■ The user and group record update exit processes

The _seagent user has the SERVER attribute.

_sebuildla

(UNIX) The _sebuildla user is the user name under which CA Access Control runs the
sebuildla utility to create a lookaside database for the CA Access Control daemon,
seosd.

_seoswd

(UNIX)_seoswd is the user name used to run the seoswd watchdog daemon to
monitor the file information and digital signatures of programs defined in the
database as trusted programs.

_undefined

_undefined represents all users that are undefined in CA Access Control. You can
use _undefined to include undefined users in ACLs.

Database Accessors

36 Endpoint Administration Guide for UNIX

Predefined Groups

CA Access Control comes with predefined groups. Except for the _interactive and
_network groups, you add users to these groups in the same way as you do for any
other group.

_abspath

If a user is in the _abspath group when logging in, that user must use absolute path
names to invoke programs.

_interactive

A user is a member of the _interactive group only for the purposes of an access
attempt. Users are members of the _interactive group if they are logged into the
same host as the resource they are trying to access. CA Access Control dynamically
and automatically manages the membership of the _interactive group—you cannot
change the membership.

_network

This is the complementary group to _interactive. A user is a member of the
_network group for the purposes of access only. Users are members of the
_network group if they are trying to access a resource from a different host than
the resource belongs to. CA Access Control dynamically and automatically manages
the membership of the _network group—you cannot change the membership.

_restricted

For users in the _restricted group, all files, and on Windows registry keys too, are
protected by CA Access Control. If a file or a Windows registry key does not have an
access rule explicitly defined, access permissions are covered by the _default record
for that class (FILE or REGKEY).

Note: Users in the _restricted group may not have sufficient authorization to do
their work. If you plan to add users to the _restricted group, consider using Warning
mode initially.

_surrogate

When a user uses a member of the _surrogate group as a surrogate, CA Access
Control writes a full trace in the audit trail of the surrogate's actions, tagged with
the original user's name.

Example: Adding a User to the _restricted Group Using selang

The following selang command adds the enterprise user john_smith to the _restricted
group:

joinx john_smith group(_restricted)

Accessor Management

Chapter 3: Managing Users and Groups 37

Profile Groups

A profile group is a group defined in the CA Access Control database that contains
default values for user properties. When you assign a user to a profile group, the profile
group provides those values to the user unless they have already been set for the user.

You can specify a profile group for a user when you create the user, or you can assign
the user to the profile group afterwards.

Profile groups let administrators efficiently create a standard setup with specific
permissions for any new user assigned to that group. This setup can specify such things
as the home directory of the user, the audit properties, the PMDB that defines the
access authorities, and various password rules affecting a user who is associated with a
profile group.

How CA Access Control Uses Profile Groups to Determine User Properties

The following process describes how CA Access Control uses profile groups to determine
user properties:

1. CA Access Control checks if the user's record in the USER or XUSER class has a value
for the property.

If the user's record has a value for the property, CA Access Control uses that value.

2. CA Access Control checks if the user is assigned to a profile group.

If the user is assigned to a profile group, the process continues. If the user is not
assigned to a profile group, CA Access Control assigns the default property value to
the user.

3. CA Access Control checks if the profile group has a value for that property.

If the profile group has a value for the property, CA Access Control assigns that
value to the user. If the profile group does not have a value for the property, CA
Access Control assigns the default property value to the user.

Note: If the audit property of a user or profile group is not set, the audit property of
a group can affect the audit property of a user.

More information:

How CA Access Control Determines the Audit Mode for a User (see page 168)

Accessor Management

You can create, modify, and delete database or enterprise user or group records by
using CA Access Control Endpoint Management or by using selang.

Accessor Management

38 Endpoint Administration Guide for UNIX

Manage Users or Groups

If you want to view or modify the properties of a particular accessor, or if you want to
delete an accessor, you must first find that accessor.

To manage users or groups

1. In CA Access Control Endpoint Management, do as follows:

a. Click Users.

b. Click either the Users or Groups subtab.

Depending on your selection, the Users or the Groups page appears.

2. Complete the following fields in the Search section:

User/Group Name

Defines a mask for the accessors you want to find. You can enter the full name
of the accessor you are after or you can use a mask. For example, use *admin*
to list accessors whose name contains "admin".

Use an * (asterisk) to list all accessors and a ? (question mark) to replace a
single character.

User/Group Repository

Specifies the source from which you want to fetch a list of accessors. The
source can be either:

– Internal Accounts—accessors defined in the CA Access Control database.

– Enterprise Accounts—accessors defined in specific enterprise user stores.

Accessor Management

Chapter 3: Managing Users and Groups 39

Show only AC accounts/profiles

Specifies whether to list only those accounts that have records in the CA Access
Control database as follows:

– If you chose Internal Accounts, the application lists only those accounts
that exist in the CA Access Control database (no native accounts).

– If you chose Enterprise Accounts, the application lists only those accounts
that have a CA Access Control enterprise profile (XUSER or XGROUP
records).

Click Go.

A list of accessors that exist in the repository you chose appears.

3. Do one of the following:

■ Click in the View column to view the properties of the accessor.

■ Click in the Delete column to delete the accessor.

■ Click the name of the accessor to modify the properties of the accessor.

■ Select the accessors you want to delete and click Delete.

■ Click Create User or Create Group to create a user or group record in the CA
Access Control database.

Accessor Management

40 Endpoint Administration Guide for UNIX

Example: Search for Enterprise Users in a Repository

The following graphic shows you the result of looking for all users in the ABC-DM1
enterprise user store.

Accessor Management

Chapter 3: Managing Users and Groups 41

User Management Using selang

Use the following selang commands for records of enterprise users:

■ newxusr and editxusr—define a new enterprise user record

■ chxusr and editxusr—change the CA Access Control properties of an enterprise user

■ find xuser—list enterprise users that have a CA Access Control record

■ rmxusr—delete a user

■ show xuser—display the CA Access Control properties of an enterprise user

Use the following selang commands for CA Access Control database user records:

■ newusr and editusr—define a new user record

■ chusr and editusr—change the properties of a user

■ rmusr—delete a user

■ find user—list database users

■ show user—display the properties of a user

Example: Define a User in the Database Using selang

The following selang command defines a new user in the CA Access Control database
with security level 100:

newusr internalUser level(100)

Example: Change a Property of an Enterprise User Using selang

The following selang command gives the AUDITOR property to an enterprise user Terry:

chxusr Terry auditor

Group Management Using selang

You can change any property of any group, except that you cannot change the name or
the membership of enterprise groups (from within CA Access Control).

To change group properties or to assign access rights associated with groups, you can
use CA Access Control Endpoint Management or the following selang commands:

■ join[-] and joinx[-]

Change the membership of an internal group

Use join to add internal accessors to the group. Use joinx to add enterprise groups
and users to an internal group. Use the - (minus) form of the commands to remove
accessors.

Accessor Management

42 Endpoint Administration Guide for UNIX

■ editgrp, newgrp, chgrp

Change the non-membership properties of an internal group

■ editxgrp, newxgrp, chxgrp

Change the non-membership properties of an enterprise group

■ rmgrp, rmxgrp

Remove a user group

Example: Define a Group in the Database Using selang

The following selang command defines a new group “sales” in the database. The full
name of the group is “Sales Department”:

newgrp sales name('Sales Department')

Example: Change a Property of a Group Defined in the Database Using selang

The following selang command makes CA Access Control audit all events for members of
the group AC_admins:

chgrp AC_admins audit(all)

Example: Add an Enterprise Group to an ACL Using selang

The following selang command adds the enterprise group mygroup to the ACL of the
myfile:

Authorize FILE (myfile) xgid(mygroup)

Example: Add an Enterprise User to a Group Defined in the Database Using selang

The following selang command adds the enterprise user mydomain\administrator to the
group AC_admins which is defined in the database:

joinx mydomain\administrator group(AC_admins)

Example: Add an Enterprise Group to a Group Defined in the Database Using selang

The following selang command adds the enterprise group Guests to the _restricted
group:

joinx Guests group(_restricted)

Chapter 4: Managing Resources 43

Chapter 4: Managing Resources

This section contains the following topics:

Resources (see page 43)
Classes (see page 44)

Resources

A resource is an entity that can be accessed by an accessor and protected by an access
rule, or the CA Access Control database record that corresponds to that entity. Examples
of resources are files, programs, hosts, and terminals.

The main purpose of creating resource records in CA Access Control is to define access
permissions for the resource that corresponds to the resource record. The access
permissions that are required to access a resource are specified in the resource record's
access control lists.

Resource Groups

A resource group is a resource that contains a list of other resources. A resource group is
a member of one of the following classes: CONTAINER, GFILE, GSUDO, GTERMINAL, or
GHOST.

Because a resource group is itself a resource, it has the same properties as its member
resources. Therefore the advantage of using resource groups is that it simplifies
administration. You can change the properties of all the member resources by changing
the properties of the resource group.

Note: On Windows, CA Access Control takes into account resource group ownership
when checking user authorization to a resource. This behavior was introduced in r12.0.
In earlier releases, the authorization process considered only the resource's owner.

For example, you define a FILE resource with a default access of none and no owner.
The FILE resource is a member of a GFILE resource with a named owner. In CA Access
Control r12.0 and later, the named group owner has full access to the file. In earlier
releases, nobody has access to the file.

Classes

44 Endpoint Administration Guide for UNIX

Classes

In CA Access Control, the class of a record defines the properties that the record can
have. All records in a class have the same properties, though different values for these
properties.

Examples of classes are:

■ TERMINAL class. This contains records for terminals, such as tty1, tty.

■ FILE class. This contains records for files.

■ PROGRAM class. This contains records of programs.

Each record contains values for the properties appropriate to the record class. For
example, a record in the XUSER class includes such properties as the enterprise user's
location and working hours, while a record in the HOSTNET class includes such
properties as net services and IP address data.

CA Access Control includes predefined classes. You can also define new classes, called
user-defined classes.

Default Record for Class

Most classes can include a default record (_default) specifying access types for
resources of that class that are not defined in database records of their own.

Like other resource records, the _default record can include an ACL and a defaccess
field. You can create a _default record for all classes except USER, GROUP, CATEGORY,
SECLABEL, and SEOS.

Classes

Chapter 4: Managing Resources 45

UACC Class (Deprecated)

The UACC class is no longer recommended. To specify the default values for records in a
class, use the _default record.

Some earlier versions of CA Access Control used a separate class, called UACC, for
records resembling the _default records of other classes. The UACC class is no longer
recommended, and if you use a _default record, the equivalent record in the UACC class
is not checked. In future versions, the UACC class may no longer be supported.

For example, suppose user Henderson tries to kill process store_log. CA Access Control
checks for authorization in the following order. The primary question is this: Is the
process store_log defined in the database? CA Access Control searches the database for
a record named store_log in the PROCESS class.

■ If no such record can be found, the process is not defined to CA Access Control. In
that case, CA Access Control therefore uses either the _default record of class
PROCESS, or the PROCESS record in the UACC class, to determine whether
Henderson is allowed to kill store_log.

– If user Henderson appears in the _default record's ACL, the authority specified
in it is applied.

– If Henderson does not appear in the _default record's ACL, the authority
specified in the defaccess property of the _default record is applied. This
authority is applied to all users who do not appear explicitly in the _default
ACL.

■ If process store_log is defined in the database, then the question is whether user
Henderson appears in the ACL for process store_log in the database.

– If user Henderson appears in the ACL for process store_log, the authority
specified there is applied.

– If Henderson does not appear in the ACL, CA Access Control applies the
authority specified in the default access property of the store_log resource.
This authority is called the resource's default access.

Note: If the default access (defaccess) of _default is set to NONE, or if _default is not
specified and the default of the corresponding resource in the UACC class is NONE, then
any accessor attempting to access a resource not defined in the class is denied access to
the resource.

If the default access of _default (or UACC) is set to the highest authority (ALL, or in some
cases READ or EXECUTE), then any resource that is not explicitly protected is accessible
to everyone.

Classes

46 Endpoint Administration Guide for UNIX

Predefined Classes

The predefined classes can be categorized into the following types:

Class Type Purpose

Accessor Defines objects that access resources, such as users and groups

Definition Defines objects that define security entities, such as security labels and categories

Installation Defines objects that control the behavior of CA Access Control

Resource Defines objects that are protected by access rules

The following table contains a list of all predefined classes.

Class Class Type Description

ADMIN Definition Lets you delegate administrative responsibilities to users who do not have
the ADMIN attribute. You give these users global authorization attributes
and limit their administration authority scope.

AGENT Resource Not applicable to CA Access Control

AGENT_TYPE Resource Not applicable to CA Access Control

APPL Resource Not applicable to CA Access Control

AUTHHOST Accessor Not applicable to CA Access Control

CALENDAR Resource Lets you define a Unicenter TNG calendar object for user, group, and
resource enforced time restrictions.

CATEGORY Definition Lets you define a security category.

CONNECT Resource Lets you protect outgoing connections. The records in this class define
which users can access which Internet hosts.

Before you activate the CONNECT class, be sure that the streams module
is active.

CONTAINER Resource Lets you define a group of objects from other resource classes, thus
simplifying the job of defining access rules when a rule applies to several
different classes of objects.

FILE Resource Lets you protect a file, a directory, or a file name mask.

GAPPL Resource Not applicable to CA Access Control

GAUTHHOST Definition Not applicable to CA Access Control

Classes

Chapter 4: Managing Resources 47

Class Class Type Description

GFILE Resource Each record in this class defines a group of files or directories. Grouping is
accomplished by explicitly connecting files or directories (resources of the
FILE class) to the GFILE resource in the same way users are connected to
groups.

GHOST Resource Each record in this class defines a group of hosts. Grouping is
accomplished by explicitly connecting hosts (resources of the HOST class)
to the GHOST resource in the same way users are connected to groups.

GROUP Accessor Each record in this class defines an internal group.

GSUDO Resource Each record in this class defines a group of commands that one user can
execute as if another user were executing it. The sesudo command uses
this class.

GTERMINAL Resource Each record in this class defines a group of terminals.

HNODE Definition The HNODE class contains information about the organization's CA Access
Control hosts. Each record in the class represents a node in the enterprise.

HOLIDAY Definition Each record in this class defines one or more periods when users need
extra permission to log in.

HOST Resource Each record in this class defines a host. The host is identified by either its
name or its IP address. The object contains access rules that determine
whether the local host can receive services from this host.

Before you activate the HOST class, be sure that the streams module is
active.

HOSTNET Resource Each record in this class is identified by an IP address mask and contains
access rules.

HOSTNP Resource Each record in this class defines a group of hosts, where the hosts
belonging to the group all have the same name pattern. Each HOSTNP
object's name contains a wildcard.

LOGINAPPL Definition Each record in the LOGINAPPL class defines a login application, identifies
who can use the program to log in, and controls the way the login program
is used.

MFTERMINAL Definition Each record in the MFTERMINAL class defines a Mainframe CA Access
Control administration computer.

POLICY Resource Each record in the POLICY class defines the information required to deploy
and remove a policy. It includes a link to the RULESET objects that contain
a list of the selang commands for deploying and removing the policy.

PROCESS Resource Each record in this class defines an executable file.

Classes

48 Endpoint Administration Guide for UNIX

Class Class Type Description

PROGRAM Resource Each record in this class defines a trusted program that can be used with
conditional access rules. Trusted programs are setuid/setgid programs
that are monitored by the Watchdog to ensure they are not tampered
with.

PWPOLICY Definition Each record in the PWPOLICY class defines a password policy.

RESOURCE_DESC Definition Not applicable to CA Access Control

RESPONSE_TAB Definition Not applicable to CA Access Control

RULESET Resource Each record in the RULESET class represents a set of rules which define a
policy.

SECFILE Definition Each record in this class defines a file that must not be altered.

SECLABEL Definition Each record in this class defines a security label.

SEOS Installation The one record in this class specifies your active classes and password
rules.

SPECIALPGM Installation Each record in the SPECIALPGM class registers backup, DCM, PBF and PBN
functions in Windows or xdm, backup, mail, DCM, PBF, and PBN programs
in UNIX or associates an application that needs special authorization
protection with a logical user ID. This allows you to set access permissions
according to what is being done rather than who is doing it.

SUDO Resource This class, used by the sesudo command, defines commands that one user
(such as a regular user) can execute as if another user (such as root) were
executing them.

SURROGATE Resource Each record in this class contains access rules for an accessor that define
who can use that accessor as a surrogate.

TCP Resource Each record in this class defines a TCP/IP service, for example, mail or http
or ftp.

TERMINAL Resource Each record in this class defines a terminal-a device from which a user can
log in.

UACC Resource Defines default access rules for each resource class.

USER Accessor Each record in this class defines an internal user.

USER_ATTR Definition Not applicable to CA Access Control

Classes

Chapter 4: Managing Resources 49

Class Class Type Description

USER_DIR Resource Not applicable to CA Access Control

XGROUP Resource Each record in this class defines an enterprise group to CA Access Control.

XUSER Resource Each record in this class defines an enterprise user to CA Access Control.

Note: CA Access Control database classes TCP and SURROGATE are not active by default.

If you upgrade from an earlier release where the TCP class is active but you do not have
any TCP records and have not changed the _default TCP resource, CA Access Control
deactivates the class during upgrade. The same is true for the SURROGATE class.

If you upgrade from an earlier release where the SURROGATE class is active and you
have defined SURROGATE records or have changed the value of any SURROGATE record
from its default, CA Access Control retains the SURROGATE class configuration after the
upgrade. The class remains active and kernel mode interception remains enabled.

Note: For more information about CA Access Control classes, see the selang Reference
Guide.

User-Defined Classes

CA Access Control enables you to define new classes, so that you can protect abstract
objects by creating appropriate records for them.

Example: User-Defined Class for a Database View

A site may use a database to store and display proprietary data.

You can define a user-defined class DATABASE_VIEWS, and define each database view
to be a resource member of that class. Give the resource an ACL that defines the access
authority required to create that database view. When a user attempts to create a
database view, CA Access Control checks the access authority of the user, and permits
or disallows the creation based on the ACL.

Classes

50 Endpoint Administration Guide for UNIX

Wildcards in User-defined Classes Resources

By using wildcards in the name of a resource in a user-defined class, you can create a
resource record that corresponds to multiple physical resources: any physical resource
with a name that matches the wildcard pattern is protected by the access authorities
associated with the resource record.

The wildcards you can use are:

■ * for any number of any characters

■ ? for any one character

If a physical resource name matches more than one resource record name, the longest
non-wildcard match is used for that resource.

CA Access Control does not accept the following wildcard patterns as resource names:

■ *

■ /*

■ /tmp/*

■ /etc/*

User-Defined Class—Example

Suppose that your system serves a bank and you want to protect transfers of large
amounts between accounts. You can use the following outline to set up this security.

1. Define a class to contain the records that describe transfers, called, for example,
TRANSFERS.

2. For each monetary level transfer that you might want to protect, define a record in
the TRANSFERS class.

For example, you might define records named Upto.$1K, Upto.$1M, Upto.$10M,
and Over.$10M.

Define any other resources that you need to control transfers as members of the
TRANSFERS class.

3. To give different users permission to perform different maximum transfers, grant or
deny them access to the various records in the TRANSFERS class.

4. In addition, to handle programmatic transfers, insert in the bank's money-transfer
program a call to the CA Access Control API, so that it checks the user's permission
before it allows a transfer to proceed.

Chapter 5: Managing Authorization 51

Chapter 5: Managing Authorization

This section contains the following topics:

Access Authorities (see page 51)
Setting Access Authority - Examples (see page 51)
Access Control Lists (see page 52)
How Access Authority to a Resource Is Determined (see page 54)
Interaction Between User and Group Access Authorities (see page 55)
Security Levels, Categories, and Labels (see page 56)

Access Authorities

The main purpose of CA Access Control is to assign and enforce access authorities, also
known as access rights.

An access authority always has the following components:

■ The resource that the access applies to, for example, a file, host, or terminal

■ The type of access, for example read, write, delete, log in, run

■ The accessor, which is either a user or a group

A user has the authority to access a resource in a certain way because one or more of
the following are true:

■ The user has the access authority, as granted by the resource ACL

■ The user is a member of a group that has access authority.

■ The user is running a program that has the access authority. For example the user
has the authority to run a program in the SPECIALPGM class, or to run a command
in the SUDO class.

Note: For more information about access authority by class, see the selang Reference
Guide.

Setting Access Authority - Examples

Example: Give an internal User Read Access

The following selang command adds the internal user internal_user to the ACL of
terminal tty30, to give read access to the terminal:

authorize TERMINAL tty30 access(READ) uid(internal_user)

Access Control Lists

52 Endpoint Administration Guide for UNIX

Example: Give an Enterprise User Read Access

The following selang command adds the enterprise user Terry to the ACL of terminal
tty30, to give read access to the terminal:

authorize TERMINAL tty30 access(READ) xuid(Terry)

Example: Change an Access Authority of an Enterprise User to a Resource

The following selang command sets Terry's access to terminal tty30 to none, and so
denies Terry access:

authorize TERMINAL tty30 access(NONE) xuid(Terry)

Example: Remove the Access Authority of an Enterprise User from a Resource

The following selang command removes Terry from the ACL in the terminal tty30:

authorize- TERMINAL tty30 xuid(Terry) access-

Terry now has the default access to the terminal.

Example: Give an Enterprise User Sub-administrator Access

The following selang commands set up the enterprise user Terry as a sub-administrator
with the authority to manage users and files:

authorize ADMIN USER xuid(Terry)

authorize ADMIN FILE xuid(Terry)

Access Control Lists

The access authorities to a resource are specified in an access control list. Every
resource record has at least two access control lists:

ACL

Specifies the accessors that are granted access to the resource, together with the
type of access that they are granted.

NACL

Specifies the accessors that are denied authorization to the resource, together with
the type of access that they are denied.

The access authority can also depend on the circumstances around the access, such as
whether the user is logged in locally or not.

Access Control Lists

Chapter 5: Managing Authorization 53

Conditional Access Control Lists

Conditional Access Control Lists (CACLs) provide an extension to ACLs. When an accessor
attempts to access a resource, if the resource's ACL and NACL do not define an access
authority for the user, CA Access Control examines the conditional access control lists.

The conditional access control lists specify access to resource where the access is by a
particular method, for example by using a specified program.

For example you can use a conditional access control list to define a program pathing
rule.

CA Access Control allows the following conditional access control lists:

■ Program Access Control Lists (PACLs)

■ TCP class access control lists

■ CALENDAR class access control lists

To define an entry in a conditional access control list entry, you can use the via option of
the selang authorize command.

In common with other access control lists, each entry in a conditional access control list
specifies the accessors that are granted access to the resource, together with the type
of access that they are granted. In addition, an entry in a conditional access control list
specifies the condition under which the authority is assigned. For a PACL, the condition
is the name of a program which the accessor needs to run to have the access.

Example: Using a PACL

To allow the enterprise user sysadm1 to become superuser only by running the program
secured_su, you can specify the corresponding conditional access rule using the
following selang command:

authorize SURROGATE user.root xuid(sysadm1) via(pgm(secured_su))

defaccess—The Default Access Field

The record for a resource can include a default access field, defaccess. The value of the
defaccess field specifies the access authority that is allowed to accessors who are not
covered by any of the resource access control lists.

How Access Authority to a Resource Is Determined

54 Endpoint Administration Guide for UNIX

How Access Authority to a Resource Is Determined

When an accessor attempts to access a resource, CA Access Control checks the access
authority by running through one or more checks in a pre-determined order, until it gets
a result. If any check produces an access result (deny or allow access), CA Access Control
does not check any further, but instead returns the result.

The order in which it runs through these checks is important. For each resource, CA
Access Control checks the access records in the following order by default:

1. The resource's time based restrictions

2. The resource's ownership (owners are allowed access)

3. B1 checks

4. The resource's NACL

5. The resource's ACL

6. The resource's PACL

7. The resource's defaccess field

The order of the last two checks is determined by the setting of the accpacl option. You
can disable the use of resource PACL by using the selang command setoptions setpacl-.

One access control list can contain more than one entry that affects a user. For example,
it can contain an entry that mentions a user explicitly, and also entries for each of the
groups to which the user belongs. CA Access Control checks all the possible entries at
each level before it goes to the next level. For more information about how it resolves
conflicting rules at each level, see Interaction Between User and Group Access
Authorities (see page 55).

Example: The Resultant Permission on a File

For the following table, assume that an accessor named user1 attempts to read the
resource file1.

In the following table CA Access Control is following the default setting of the accpacl
option to use the PACL.

Entry in NACL for
user1

Entry in ACL
for user1

Entry in PACL
for user1

Entry in
defaccess

Resulting
Permission

Read (Any) (Any) (Any) Read denied

(Not defined) None (Any) (Any) Read denied

(Not defined) Read (Any) (Any) Read granted

Interaction Between User and Group Access Authorities

Chapter 5: Managing Authorization 55

Entry in NACL for
user1

Entry in ACL
for user1

Entry in PACL
for user1

Entry in
defaccess

Resulting
Permission

(Not defined) (Not defined) via pgm
securereader

(Any) Read allowed
through the
securereader
program

(Not defined) (Not defined) (Not defined) Read Read granted

Where an entry is shown as (Not defined), this means that no entry for user1 exists in
that access control list.

Where an entry is shown as (Any), this means that the entry in that access control list
does not matter, because CA Access Control does not check it.

The order that CA Access Control checks is from left to right. Notice that for all rows, the
cells to the right of a cell with a defined access have the value (any). Conversely all the
cells to the left of a cell that contains a defined access have the value (not defined).

Interaction Between User and Group Access Authorities

You can explicitly grant or deny access authorities to a user, and also to groups to which
the user belongs. Sometimes these can conflict. The following example shows what
results if conflicting access authorities are assigned to the same resource when a user is
a member of two groups (Group 1 and Group 2).

It assumes that the accumulative group rights (see page 56) option is set (the default
setting).

Access Authority for
User

Access Authority
for Group 1

Access Authority for
Group 2

Resulting Access
Authority

Access denied (Any) (Any) Access denied

Access granted (Any) (Any) Access granted

(Not defined) Access granted (Not defined) Access granted

(Not defined) (Not defined) Access granted Access granted

(Not defined) Access granted Access granted Access granted

(Not defined) Access denied (Any) Access denied

(Not defined) (Any) Access denied Access denied

Security Levels, Categories, and Labels

56 Endpoint Administration Guide for UNIX

Where an entry is shown as (Not defined), this means that no entry for the user or group
is defined.

Where an entry is shown as (Any), this means that the access authority does not matter,
because CA Access Control does not check it.

Accumulative Group Rights (ACCGRR)

The accumulative group rights option (ACCGRR) affects how CA Access Control checks a
resource's ACL. If ACCGRR is enabled, CA Access Control checks the ACL for the
authorities granted from all the groups to which the user belongs. If ACCGRR is disabled,
CA Access Control checks the ACL to see if any of the applicable entries contain the
value none. If so, access is denied. Otherwise CA Access Control ignores all group entries
except the first applicable one in the access control list. By default the option is enabled.

To enable the ACCGRR option, you can use the following selang command:

setoptions accgrr

To disable the ACCGRR option, you can use the following selang command:

setoptions accgrr-

Security Levels, Categories, and Labels

Security levels and security categories provide additional ways to restrict access to a
resource, complementary to the use of access control lists.

Security labels are a means to bundle security levels and categories together, to manage
them more easily.

Security Levels

A security level is an integer between 0 and 255 that you can assign to accessors and
resources. An accessor cannot access a resource if the accessor has a security level less
than the security level assigned to the resource, even if the user is granted access
authority in the resource's access control list. If a resource has a zero security level,
security level checking is not checked for that resource.

An accessor with a security level of zero cannot access any resource that has a non-zero
security level.

Security Levels, Categories, and Labels

Chapter 5: Managing Authorization 57

Security Categories

A security category is the name of record in the CATEGORY class. You can assign a
security category to accessors and to resources. An accessor can access a resource only
if the accessor is assigned to all of the security categories assigned to the resource.

Security Labels

A security label is the name of a record in the SECLABEL class. A security label bundles
together a security level and a set of security categories. Assigning a security label to an
accessor or a resource gives the accessor or resource the combined security level and
security categories associated with the security label. A security label overrides any
specific security level and category assignments in an accessor or resource.

Example: Use of a Security Label High_Security

Assume High_Security is a security label that contains a security level 255 and the
security categories MANAGEMENT and CONFIDENTIAL.

if you assign a user user1 to the security label High_Security, user1 has a security level
of 255 and also has the security categories MANAGEMENT and CONFIDENTIAL.

Chapter 6: Protecting Accounts 59

Chapter 6: Protecting Accounts

This section contains the following topics:

Why Protect Accounts? (see page 59)
Safe User Substitution (see page 59)
Setting Up the Surrogate DO Facility (see page 64)
Defining SUDO Records (see page 66)
Preventing Password Attacks (see page 68)
Checking User Inactivity (see page 71)

Why Protect Accounts?

User accounts are often the object of password attacks. Root account protection
involves monitoring substitute user (su) requests and using the Surrogate DO (SUDO)
facility, which solves the dilemma of superuser privileges. CA Access Control provides a
two-level password protection system: serevu (revoke user daemon) and PAM
(Pluggable Authentication Module). You can also protect accounts by specifying
automatic lockouts after a period of user inactivity.

Safe User Substitution

The UNIX su command lets a user switch to another user using the target user's
password. A user who wants to switch a user ID must memorize the target user's
password, write it down, or ask the target user to use a trivial password. This violates
several password policies. Also, the su command does not record who invoked the
command so a user pretending to be the owner of an account is indistinguishable from
the actual owner.

CA Access Control includes the sesu utility, which is an enhanced version of the UNIX su
command. You can configure sesu to prompt the user for their password as a means of
authentication, rather than prompting for the target user's password. The authorization
process is based on the access rules defined in the SURROGATE class and, optionally, on
the password of the user executing the command.

Unlike permission to su, permission to sesu does not depend on knowing the target
user's password. Instead, it depends on permissions specified in the database; users
remain accountable for their actions because their login identities are remembered.

Safe User Substitution

60 Endpoint Administration Guide for UNIX

If a user is a surrogate to one of the users in the _surrogate group, CA Access Control
sends a full trace of the user's actions as the new user to the audit trail.

To protect against inadvertent use, sesu is marked in the file system so that no one can
run it. The security administrator must mark the program as executable and setuid to
root before you can use it.

Important! Before you use the sesu utility, define all users to the CA Access Control
database and set sesu prerequisites. This prevents you from opening up the entire
system to users who are not defined to CA Access Control.

Set User ID Substitution Rules

To prevent or let users substitute other users you need to set user ID substitution rules.
These rules are governed through SURROGATE class resources. To define any user
substitution rules you need to create SURROGATE records.

To set user ID substitution rules

1. In CA Access Control Endpoint Management click the Users tab, then click the
Authorization and Delegation subtab.

The Authorization and Delegation menu options appear on the left.

2. Click Users ID Substitution.

The Users ID Substitution page appears.

3. Click Create User ID Substitution.

The Create User ID Substitution page appears.

4. Complete the fields in the tabbed pages, then click Save.

Note: For more information on SURROGATE class properties, see the selang
Reference Guide.

How to Set Up sesu for User Substitution

By default, the sesu utility is marked in the file system so that no one can run it. Before
you make sesu available to your users, you must set database rules to ensure it is used
safely. You then need to lock the system's su utility so that users are forced to use the
CA Access Control sesu utility instead.

Safe User Substitution

Chapter 6: Protecting Accounts 61

To set up sesu, do the following:

1. Set basic user substitution rules (see page 61).

2. Replace the system's su utility with the CA Access Control sesu utility (see page 61).

3. Prevent users from running the system's su utility (see page 64).

Note: After you complete this setup, when CA Access Control is running the system's su
utility will not execute and users will be forced to use the secured sesu utility. When CA
Access Control is not running, the system's su utility will work.

Set Basic User Substitution Rules

Before you start using the sesu utility, you should set up some common user
substitution rules in the database. These rules prevent unknown users undesirably
substituting privileged user accounts, but permit specific users and processes to perform
necessary user substitution activities.

To set basic user substitution rules

1. Create a surrogate resource for the root user (USER.root) with the following
attributes:

■ nobody as owner

■ Default access none

■ All administrators should have full control

This prevents all users from substituting root, unless explicitly authorized. All
administrators are explicitly authorized to substitute root.

Note: You can authorize individual administrators separately or authorize all
administrators using the administrator's group.

2. Create a surrogate resource for root's group (GROUP.other) with the following
attributes:

■ nobody as owner

■ default access of none

■ All administrators should have full control

This prevents all users from substituting root's group, unless explicitly authorized.
All administrators are explicitly authorized to substitute root's group.

Note: On most UNIX systems root's group is either other or sys.

Safe User Substitution

62 Endpoint Administration Guide for UNIX

3. Change the user substitution rules for USER._default as follows:

■ nobody as owner

■ Default access none

■ Authorize root to substitute to any undefined user

■ Authorize the administrators' group to substitute to any undefined user

This prevents all users from substituting any group, unless explicitly authorized, and
authorizes root and root's group to substitute any user, unless explicitly denied.

Note: You need to specifically authorize root to permit programs such as dtlogin to
switch session ownership from root, the default X window owner (uid=0), to anyone
else. If you do not do this, login attempts will fail because CA Access Control is
blocking any user substitution activity that has not been explicitly authorized.

4. Change the group substitution rules for GROUP._default as follows:

■ nobody as owner

■ Default access none

■ Authorize root to substitute any undefined groups

■ Authorize the administrators' group to substitute to any undefined group

This prevent all users from substituting any group, unless explicitly authorized, and
authorizes root and root's group to substitute any group, unless explicitly denied.

Example: Set Basic User Substitution Rules in selang

Use the following selang commands to set basic user substitution rules in your
environment:

nr surrogate USER.root defacc(n) own(nobody)

auth surrogate USER.root gid(sys_admin_GID) acc(a)

nr surrogate GROUP.other defacc(n) own(nobody)

auth surrogate GROUP.other gid(sys_admin_GID) acc(a)

cr surrogate USER._default defacc(n) own(nobody)

cr surrogate GROUP._default defacc(n) own(nobody)

auth surrogate USER._default uid(root) acc(a)

auth surrogate GROUP._default uid(root) acc(a)

auth surrogate USER._default gid(sys_admin_GID) acc(a)

auth surrogate GROUP._default gid(sys_admin_GID) acc(a)

Safe User Substitution

Chapter 6: Protecting Accounts 63

Replace the System's su Utility with the CA Access Control sesu Utility

By default, the sesu utility is marked in the file system so that no one can run it. To let
users substitute other users by using the sesu utility, you must enable sesu and replace
the system su with this utility.

To replace the system's su utility with the CA Access Control sesu utility

Note: You need to be root or another authorized user to perform the following steps.

1. Permit users to run the sesu utility using the following command:

chmod +s /opt/CA/AccessControl//bin/sesu

2. Find out the location of the system's su utility using the following command:

which su

3. Rename the system's su utility using the following command:

mv su_dir/su su_dir/su.ORIG

where su_dir is the directory where su resides.

4. Link the sesu utility to the su command:

ln -s /opt/CA/AccessControl//bin/sesu su_dir/su

This lets users continue to use the su command, although it now runs the sesu
utility.

5. Stop CA Access Control using the following command:

secons -s

6. Modify CA Access Control configuration settings using the following commands:

seini -s sesu.SystemSu su_dir/su.ORIG

seini -s sesu.UseInvokerPassword yes

The token SystemSu is set so that sesu can call the original system su utility if CA
Access Control is not running.

The token UseInvokerPassword is set to tell CA Access Control to prompt the user
for their original password instead of root's password or another user's password.
The user needs to re-authenticate before the user substitution is permitted.

7. Reload CA Access Control using the following command:

seload

Setting Up the Surrogate DO Facility

64 Endpoint Administration Guide for UNIX

Prevent Users from Running the System's su Utility

Although the sesu utility is configured, anyone can run su.ORIG (the renamed system su
utility), as before, with root's or a user's password. To prevent this, use the PROGRAM
class to explicitly prevent su.ORIG execution when CA Access Control is running.

Note: If you used seuidpgm during CA Access Control installation and configuration, you
do not need to follow this procedure. su will not run as it has been modified (renamed
to su.ORIG).

To prevent users from running the system's su utility

1. In selang, set CA Access Control to monitor the renamed su utility, using the
following command:

nr program su_dir/su.ORIG defacc(x) own(nobody)

2. Logged in as root, change file access and modification time, using the following
command:

touch su_dir/su.ORIG

CA Access Control is watching su.ORIG and, because the file has been touched, will
prevent it from being executed.

Setting Up the Surrogate DO Facility

Operators, production personnel, and end users often need to perform tasks that only
the superuser can perform. These tasks include the following:

■ Mounting a CD-ROM

■ Using backup scripts

■ Setting up a printer

The traditional solution is to supply all these users with the superuser's password, which
compromises the security of the site. The secure alternative-keeping the password
secret-results in the system administrator being overloaded with legitimate requests
from users to perform routine tasks.

The Surrogate DO (sesudo) utility solves this dilemma. It allows users to perform actions
that are defined in the SUDO class, where each record contains a script, specifies which
users and groups can run the script, and lends them the necessary permissions for the
purpose.

For example, to define a SUDO resource that mounts a CD-ROM as if the user were root,
enter the following command:

newres SUDO MountCd data('mount /usr/dev/cdrom /cdr') targuid(root)

Setting Up the Surrogate DO Facility

Chapter 6: Protecting Accounts 65

This newres command defines MountCd as a protected action that some users may
receive root authority to perform. This example uses the targuid(root) parameter to
show that root is the ID of the target user-the user whose permissions are borrowed. In
practice, the parameter would be unnecessary for this example because root is the
default target ID for a SUDO record

Important! In the data property, use a full absolute path name. A relative path name
could accidentally execute a Trojan horse program planted in an unprotected directory.

In addition, users can be authorized to perform the MountCd action by using the
authorize command. For example, to allow the user operator1 to mount the CD-ROM,
enter the following command:

authorize SUDO MountCd uid(operator1)

You can also explicitly prevent a user from performing the protected action by using the
authorize command. For example, to prevent the user operator2 from mounting the
CD-ROM, enter the command:

authorize SUDO MountCd uid(operator2) access(None)

Executing the sesudo utility performs the protected action. For example, the user
operator1 would mount the CD-ROM using the following command:

sesudo MountCd

The sesudo utility first checks whether the user is authorized to perform the SUDO
action and then, provided the user is authorized to the resource, executes the command
script defined in the resource. In the case of our example, sesudo checks whether
operator1 is authorized to perform the MountCd action and then invokes the command
mount /usr/dev/cdrom /cdr.

If you would like sesudo to request the user's password before executing, define or
modify the SUDO record with a command that includes the PASSWORD parameter. If
you do not use that parameter, the user's ability to execute the command is based
solely on the access rules for the SUDO object.

Note: For more information about the sesudo utility and managing SUDO records
(editres command), see the Reference Guide.

Defining SUDO Records

66 Endpoint Administration Guide for UNIX

Defining SUDO Records

A record in the SUDO class stores a command script so that users can run the script with
borrowed permissions. The ability to borrow permissions is tightly controlled by the
SUDO record, as well as by the sesudo command that executes the scripts.

In a SUDO record, the comment property is used for a special purpose, and often it is
known by its alternate name: the data property.

The data property's value is the command script, with the optional addition of one or
more script parameter values that are to be prohibited or permitted. The entire data
property value must be enclosed in single quotes, and executables should be referenced
by their complete path names to prevent Trojan horses from taking their place.

This is the format for the data property:

data('cmd[;[prohibited-values][;permitted-values]]')

Because the lists of prohibited and permitted values are optional, a simple data
property value could be the following:

newres SUDO MountCd data('mount /dev/cdrom /cdr')

The simple value in the command means that the command sesudo MountCd executes
the script mount /dev/cdrom /cdr. No particular script parameter values are prohibited;
all are permitted.

Wildcards and powerful variables give you flexibility in specifying prohibited and
permitted parameters. The wildcards you can use are the standard UNIX wildcards. The
variables are these:

Variable Description

 $A Alphabetic value

 $G Existing CA Access Control group name

 $H Home path pattern of the user

 $N Numeric value

$O Executor's user name

$U Existing CA Access Control user name

$e SUDO commands with no parameters

$f Existing file name

$g Existing UNIX group name

$h Existing host name

Defining SUDO Records

Chapter 6: Protecting Accounts 67

Variable Description

$r Existing UNIX file name with UNIX read permission

$u Existing UNIX user name

$w Existing UNIX file name with UNIX write permission

$x Existing UNIX file name with UNIX exec permission

If you append a list of prohibited parameter values to the script:

■ Separate the script from the prohibited parameter values with a semicolon, but
keep them all inside the single quotes. For example, if you want to prevent the user
from using -9 but you permit the user to use all other parameters, enter the
following command:

newres SUDO scriptname data('cmd;-9')

where cmd represents your script.

Alternatively, if you do not allow any parameter values, but rather want all
parameters defaulted, define the SUDO record as follows:

newres SUDO scriptname data('cmd;*')

■ If a script parameter has more than one prohibited value, use the space character
as a separator. For example, if you want to prevent the user from using -9 and -HUP
but you permit the user to use all other parameters, enter the following command:

newres SUDO scriptname data('cmd;-9 -HUP')

■ If more than one script parameter has prohibited values, use the pipe character (|)
as a separator between sets of prohibited values. For example, if you want to
prevent the user from using -9 and -HUP for the script's first parameter and from
using any existing UNIX user name for the second parameter (see the previous list
of variables), enter the following command:

newres SUDO scriptname data('cmd;-9 -HUP | $u')

If the script has more parameters than you list, then your last set of prohibited
parameters applies to all the remaining parameters.

If you append a list of permitted parameter values to the script:

■ The sesudo utility enforces two checks: Not only must the parameter values not
match any of the corresponding prohibited values; they must also match at least
one of the corresponding permitted values.

■ Separate the list of permitted values from the list of prohibited values with a
semicolon, but keep them all inside the single quotes. Even if you have no list of
prohibited values, you still need the semicolon; otherwise what you intend to
permit is prohibited. For example, if you want to allow only the value NAME as a
parameter value for the script, enter the following command:

newres SUDO scriptname data('cmd;;NAME')

Preventing Password Attacks

68 Endpoint Administration Guide for UNIX

■ Just as in the other list:

– If a script parameter has more than one permitted value, use the space
character as a separator.

– If more than one script parameter has permitted values, use the pipe character
(|) as a separator between sets of permitted values.

For example, if you have two parameters, and the first must be numeric but must
not be a UNIX user name, and the second must be alphabetic but must not be a
UNIX group name, enter the following command:

newres SUDO scriptname data('cmd; $u | $g ; $N | $A')

If the script has more parameters than you list, then your last set of permitted
parameters applies to all the remaining parameters.

Thus, the overall format for the data property is this: first the script; then the prohibited
values, parameter by parameter; then the permitted values, parameter by parameter:

data('cmd;

 param1_prohib1 param1_prohib2 ... param1_prohibN | \

 param2_prohib1 param2_prohib2 ... param2_prohibN | \

 ...

 paramN_prohib1 paramN_prohib2 ... paramN_prohibN ; \

 param1_permit1 param1_permit2 ... param1_permitN | \

 param2_permit1 param2_permit2 ... param2_permitN |

 ...

 paramN_permit1 paramN_permit2 ... paramN_permitN')

Preventing Password Attacks

The most common type of unauthorized access is that of hackers who guess passwords.
CA Access Control provides two tools that detect and protect against password attacks:
serevu and pam_seos.

Another method of protecting against password attacks is controlling passwords used in
your environment by setting password policy rules.

serevu

The serevu daemon locks the accounts of users who performed more than a specified
number of login attempts. This prevents potential password attacks by rejecting further
attempts to enter the account; it also prevents “dictionary attacks”.

Preventing Password Attacks

Chapter 6: Protecting Accounts 69

Normally, the danger in using the user lockout utility is that it opens the system to
denial of service denial attacks. One common type of denial of service attack is an
attempt to break into the system administrator's account. After a few attempts, the
system administrator account is revoked and the system administrator can no longer log
in. If similar attacks are performed on all critical user accounts, the system may be
rendered unusable, with no way of recovering. To prevent this, the serevu daemon
provides the following two modes of operation:

■ The account is revoked for a specified period of time, after which it is automatically
restored.

■ The account is permanently revoked.

serevu never revokes root, so the system is never locked out.

Note: For more information about the serevu daemon, see the Reference Guide.

Note: Take special care regarding the root user's password to prevent successful
dictionary attacks on root.

pam_seos

pam_seos is a Pluggable Authentication Module (PAM) that CA Access Control uses for
advanced account management functions. CA Access Control calls pam_seos during the
login procedure of any login program. The module is a shared object that can be
dynamically loaded to provide the necessary functionality upon demand.

You can configure pam_seos to perform three actions:

■ Detect login failures

The Account Management Component detects any failed login attempt and logs it
to both the audit file and a special failed logins file. This module detects UNIX
failures, not cases in which CA Access Control denies access.

CA Access Control writes the failed login attempts to a special file. The serevu utility
reads this file and uses the information to determine if and when user access
should be revoked.

■ Provides debug mode

When CA Access Control denies a login, it usually does not show the reason for
denial during the login session. If the pam_seos module's debug mode is set, CA
Access Control gives a short description of the reason for login denial. For example,
“grace logins” means that the user has no remaining logins.

Preventing Password Attacks

70 Endpoint Administration Guide for UNIX

■ Checks for expired passwords and grace logins

The Password Management Component invokes the segrace utility, which checks
for a user's password expiration and the number of grace logins. If a user's
password expires, and the user has no grace logins left, segrace invokes the sepass
utility to allow the user to change the password.

Note: CA Access Control invokes segrace only when a password change is needed.

Note: To obtain failed login events from SSH, the SSH version you are using must be
compiled and configured to support PAM. If your version of SSH does not use PAM, CA
Access Control cannot detect whether a user has violated the failed login rules.

The installation program adds the relevant lines to the pam.conf configuration file, and
stores the old configuration file as /etc/pam.conf.bak.

Configuration of the pam_seos modules is performed through the seos.ini file. Set the
following tokens, located in the [pam_seos] section, according to the required
functionality:

To use the Password Expiration and Grace Logins check, set the following token in the
seos.ini file:

call_segrace = Yes

To use Login Debug Mode, set the following token in the seos.ini file:

debug_mode_for_user = Yes

To make serevu use pam_seos login failure detection, set the following token in the
seos.ini file:

serevu_use_pam_seos = Yes

Restrictions and Limitations

The protection techniques described in this section have the following restrictions and
limitations:

■ On Sun Solaris, after five failed login attempts, serevu is notified.

■ The pam_seos module is only implemented in the versions of Sun Solaris, HP-UX,
and Linux that support PAM.

Checking User Inactivity

Chapter 6: Protecting Accounts 71

Checking User Inactivity

The inactivity feature protects the system from unauthorized access through accounts
whose owners are away or no longer employed by the organization. An inactive day is a
day in which the user does not log in. You can specify the number of inactive days that
must pass before the user account is suspended and cannot log in. Once an account is
suspended, you must manually reactivate it.

Note: Password changes count as activities, in terms of inactivity checks. If a user's
password changes, that user cannot become suspended due to inactivity.

You can set the number of inactive days with the inactive property of a USER class
record or a GROUP class record. The latter affects only users that have that group as a
profile group. You can also set inactivity for all users systemwide with the INACT
property of the SEOS class.

In selang, use the following command to specify inactivity globally:

setoptions inactive (numdays)

To set the number of days for a group (which overrides the systemwide inactive setting
for that group), use the following command:

editgrp groupName inactive (numdays)

To set the number of days for a user (which overrides group and systemwide settings for
that user), use the following command:

editusr userName inactive (numdays)

To reactivate a suspended user account, use the following command:

editusr userName resume

To reactivate a suspended profile group, use the following command:

editgrp userName resume

To disable inactive login checking at the systemwide level, use the following command:

setoptions inactive-

To disable inactive login checking for a group, use the following command:

editgrp groupName inactive-

To disable inactive login checking for a user, use the following command:

editusr userName inactive-

Chapter 7: Managing User Passwords 73

Chapter 7: Managing User Passwords

This section contains the following topics:

Password Control (see page 73)
Defining Password Policies (see page 73)
Password Expiration and Grace Logins (see page 75)

Password Control

Passwords are the most popular device for authentication, but password protection has
well-known problems:

■ Trivial passwords are easy to guess.

■ Passwords that last for years and cyclic passwords are eventually broken.

■ Listeners can trap passwords that are sent in clear text over the network.

Defining Password Policies

The most important password rule is that users must not give out their passwords
explicitly or indirectly (by using trivial passwords). The only way to achieve acceptable
password security is by training and education. CA Access Control cannot replace
education, but it can enforce rules and policies that force users to use passwords of a
minimum quality. The rules that you can specify include the following:

■ The new password cannot match previous passwords.

■ The new password cannot contain the user name.

■ The new password cannot contain the password that it is replacing.

■ The new password cannot be contained by the password that it is replacing.

■ The new password cannot match the password that it is replacing, regardless of
case sensitivity.

■ The new password must have at least the minimum number of alphanumeric
characters, special characters, digits, lowercase characters, and uppercase
characters.

■ The new password must not have more repetitive characters.

■ The new password cannot be one of the restricted words in the dictionary to which
the Dictionary token in the seos.ini file points.

Defining Password Policies

74 Endpoint Administration Guide for UNIX

■ Each password must have a maximum lifetime; that is, it must expire, forcing the
user to choose a new password after a certain interval.

■ Each password must have a minimum lifetime. (By specifying a minimum lifetime,
you can prevent users from quickly and repeatedly changing passwords. By quickly
changing passwords, they could overflow the password history list and then re-use
a previous password.)

Important! Password rules only affect sepass and not native password tools. Make sure
you replace passwd with a link to sepass.

Configure Password Quality Checking

To configure password quality checking

1. In CA Access Control Endpoint Management click the Configuration tab.

The configuration menu options appear on the left.

2. Click Class Activation in the Miscellaneous section options.

The Class Activation page appears.

3. Select PASSWORD in the User Identity Control section, and click Save.

This activates password quality checking.

4. Click User Password Policy in the Policies section options.

The User Password Policy page appears.

5. Define the rules to be used for the password checks, and click Save.

The rules you define for password checks are now enforced when passwords are
changed.

6. (UNIX only) Update the new passwords by using the sepass utility.

Note: For more information about sepass utility, see the Reference Guide.

Password Expiration and Grace Logins

Chapter 7: Managing User Passwords 75

Example: Define Password Checking Rules

The following selang commands activate password quality checking and define
password rules that enforce a minimum of:

■ Six alphanumeric characters

■ Three lowercase characters

■ Two numeric characters

setoptions class+ (PASSWORD)

setoptions password(rules(alpha("6") lowercase("3") numeric("2")))

Note: For more information about the format of the setoptions command, see the
Reference Guide.

Changing Passwords

CA Access Control includes the executable ACInstallDir/bin/sepass (where ACInstallDir is
the installation directory for CA Access Control, by default /opt/CA/AccessControl/),
with which most users should change their passwords (instead of with /bin/passwd).

■ Only sepass ensures that the new password matches CA Access Control password
policies. And only sepass updates the database with the new password and the date
on which the password was changed. In addition, sepass performs the same
functions as /bin/passwd.

■ The original /bin/passwd executable should not be used unless you choose to
discard the password quality checks performed by CA Access Control. In this case,
you can continue to use the original /bin/passwd, and CA Access Control accepts
the system's password without performing any quality checks on passwords.

You can also change passwords using selang. Enter the following command to assign a
password to a user:

chusr userName password(string)

Note: If you change another user's password (as an administrator) and password
checking is enabled, the user must change the password at the next login.

Password Expiration and Grace Logins

The interval parameter sets the maximum number of days a password can be used.
When the specified number of days passes, CA Access Control informs the user that the
current password has expired. The user can then renew the password immediately, or
continue using the old password until the number of grace logins is reached. In the
latter case, the user cannot access the system and must contact the system
administrator to select a new password.

Password Expiration and Grace Logins

76 Endpoint Administration Guide for UNIX

Specify the Password Interval

At the systemwide level, you use the setoptions command to specify the interval before
the system prompts all users for a new password. If the segrace utility is part of the
user's login script or if you configure PAM to call segrace (if your native operating
system supports PAM), CA Access Control informs the users that the current password
has expired when the specified number of days is reached. The users can then
immediately renew the password, or continue using the old password until the number
of grace logins is reached. After reaching the number of grace logins, the users are
denied access to the system and must contact the system administrator to select a new
password.

To set or cancel the password interval at the systemwide level, use the following
command:

setoptions password({interval(NumDays)|interval-})

The value of NumDays must be zero or a positive integer. An interval of zero disables
password interval checking for users. Set the interval to zero if you do not want
passwords to expire. An interval of zero should only be used for users with low security
requirements.

The interval- parameter cancels the password interval setting. If the user has a profile
group with a value for this parameter, that value is used. Otherwise, the default set by
the setoptions command is used. Only use this parameter with the chusr or editusr
command.

Set Individual User or Group Password Intervals

You can also set the interval for specific users or profile groups. These settings override
the systemwide interval for those users or groups. When the specified number of days is
reached, CA Access Control informs the users that the current password has expired.
The users can then immediately renew the password, or continue using the old
password until the number of grace logins is reached. After reaching the number of
grace logins, the users are denied access to the system and must contact the system
administrator to select a new password.

To set or cancel the password interval for a user:

editusr {interval(NumDays) | interval-}

To set or cancel the password interval for a group:

editgrp password{(interval(NumDays)) | (interval-)}

Password Expiration and Grace Logins

Chapter 7: Managing User Passwords 77

The value of NumDays must be zero or a positive integer. An interval of zero disables
password interval checking. Set the interval to zero if you do not want a password to
expire. An interval of zero should only be used for users with low security requirements.

The interval- parameter cancels the password interval setting. If it is canceled and a
value for interval is set in the user record, the value in the user record is used.
Otherwise, the default set by the setoptions command is used. Use this parameter with
the setoptions, chgrp, or editgrp commands only.

Grace Logins

With password checking enabled, CA Access Control checks whether the user's
password has expired each time a user attempts to log in. After the password expires,
the user can be “graced” with the opportunity to log in a few more times, after which
the user can no longer log in.

The grace login option sets the maximum number of logins that are permitted after
password expiration before the user is suspended. The number of grace logins must be
between 0 and 255. After the number of grace logins is reached, the user is denied
access to the system and must contact the system administrator to select a new
password. If grace is set to zero, the user cannot log in. The default number of grace
logins is five.

You can use this method to force a user to change their password. Reset the user's
password and give them one grace login whence they can change their password.

Track Grace Logins

To allow the end user to keep track of grace logins after the expiration, insert a call to
the segrace utility in the user's .login, .profile, or .cshrc file. The segrace utility then
displays a message to the user stating the number of remaining grace logins. You can
also check whether a user's password has expired graphically with the segracex utility.

Note: For more information about the segrace and segracex utilities, see the Reference
Guide.

To set the systemwide default value for the number of grace logins, enter the following
command:

setoptions password(rules(grace(nLogins)))

To set or cancel grace logins for a specific user, enter the following command:

chusr userName {grace(nLogins) | grace-}

Password Expiration and Grace Logins

78 Endpoint Administration Guide for UNIX

To set or cancel grace logins for a profile group, enter the following command:

chgrp groupName {grace(nLogins) | grace-}

The value set by the chusr or chgrp command overrides the system value for the users
specified in that command.

Note: The grace property for a GROUP class and also the global grace login setting set
the number of grace logins for a user after the user's password expires. However, the
grace property in the USER class sets the password to expire immediately; the grace
logins are automatically set up (using the GROUP record or the system default) after the
user's password expires. You cannot set password expirations for a group, only for
users.

Chapter 8: Protecting Files and Programs 79

Chapter 8: Protecting Files and Programs

This section contains the following topics:

Restricting Access to Files and Directories (see page 79)
Blocking Trojan Horses with the _abspath Group (see page 87)
Synchronization with Native UNIX Security (see page 88)
Monitoring Sensitive Files (see page 90)
Internal File Protection (see page 91)
Protecting setuid and setgid Programs (see page 94)
Protecting Regular Programs (see page 97)
Kernel Modules Load and Unload Protection (see page 97)
Protecting Binary Files from the kill Command (see page 100)

Restricting Access to Files and Directories

CA Access Control leaves the UNIX system of permissions intact but adds a layer of
enhanced access control to it.

CA Access Control intercepts each of the following file access operations and verifies
that the user has authorization for the specific operation before returning control to
UNIX. The access type is in parentheses.

■ File create (create)

■ File open for read (read)

Note: If you want read privileges to control whether users can perform operations
that obtain information about the file (such as ls -l), set the STAT_intercept
configuration setting to 1. For more information, see the Reference Guide.

■ File open for write (write)

■ File execute (execute)

■ File delete (delete)

■ File rename (delete, rename)

■ Change permission bits (chmod)

■ Change owner (chown)

■ Change timestamp—for example, as a result of executing the touch command
(utime)

■ Edit native ACL—using the acledit command—for systems that support ACLs (sec)

■ Change directory (chdir)

Restricting Access to Files and Directories

80 Endpoint Administration Guide for UNIX

CA Access Control access checking differs from the native UNIX authorization in the
following ways:

■ CA Access Control bases its authorization checks on the original user ID of the user
who logged in, not on the effective user ID (euid). For example, if userA invokes the
su command to surrogate to another user, userA still only has access to those files
to which userA is permitted. Surrogating to another user does not automatically
give the original user access to the target user's files as it does in UNIX.

■ CA Access Control does not give the superuser (root) automatic access to every file
on the system. The superuser is subject to authorization checking like all other
users of the system.

■ Authorization checking is based on the CA Access Control normal and conditional
access lists, day and time restrictions, security levels, security categories, and
security labels.

■ If you do not specifically authorize a user to access a file, CA Access Control checks
whether that user belongs to any group authorized to access the file.

■ Each file access is audited trough the normal CA Access Control audit procedures.

■ When deleting a file, CA Access Control requires the user to have DELETE access
authority to the specified file, whereas UNIX requires the user to have WRITE
authority for the parent directory.

■ To rename a file, the user must have DELETE access authority to the source file and
RENAME access authority to the target file. UNIX also requires that they user have
WRITE access authority for the parent directory.

■ All users are given permanent READ access (as a minimum) to the files /etc/passwd
and/etc/group, regardless of the default setting of these files. This prevents the
possible hanging of the system.

■ The owner of a FILE object in the CA Access Control database always has full access
to the file protected by the object.

■ The chdir access type controls the chdir command specifically, and does not
execute, as UNIX does.

The following are the limits of the File Protection System:

■ With respect to users who are not members of the special _restricted group, CA
Access Control protects only those files and directories that:

– Are defined by their individual names in the database

– Match a name pattern (for example, /etc/*) that is defined in the database

For users that belong to the group _restricted, all system files are protected by CA
Access Control. For files that are not defined in the database, authorization is based
on the _default record of the FILE class.

Restricting Access to Files and Directories

Chapter 8: Protecting Files and Programs 81

■ CA Access Control maintains a table of all file names and directory names (including
patterns using wildcards) that indicate resources that need protection. The amount
of memory available for this table is limited. Normally, the maximum number of
files and directories you can define by individual names in the database is 4096, and
the maximum number of name patterns is 512.

■ Some files receive protection even if no explicit access rules exist for them. These
include the CA Access Control database files, audit logs, and configuration files.

Note: For more information, see the FILE class in the Reference Guide.

CA Access Control supports the following access types for files.

■ ALL

■ CHDIR

■ CHMOD

■ CHOWN

■ CONTROL

■ CREATE

■ DELETE

■ EXECUTE

■ NONE

■ READ

■ RENAME

■ SEC

■ UPDATE

■ UTIME

■ WRITE

The File Protection System is useful for protecting selected sets of files that contain
sensitive data. For example, you can use CA Access Control to protect the following files:

■ /etc/passwd

■ /etc/group

■ /etc/hosts

■ /etc/shadow

Restricting Access to Files and Directories

82 Endpoint Administration Guide for UNIX

You should use CA Access Control to protect databases (access should be granted only
to the server daemon) and all other sensitive files at your site.

Some files that always need access control are governed by rules even without you
specifying them.

How File Protection Works

When the seosd daemon starts, it performs the UNIX stat command for each discrete
file object defined in the database. It then builds a table in memory that contains an
entry for each file object. In addition, for each discrete file, the table contains the file's
inode and device; with this information, CA Access Control can also protect the hard
links to the files because the protection is according to device and inode. The database
does not keep information about a file's inode and device.

When creating a new file rule through CA Access Control:

■ If the file exists in UNIX, CA Access Control first performs a stat command for the
file and then adds a new entry to the file table with the file's inode and device
information.

■ If the file does not exist in UNIX, CA Access Control adds a new entry of the file's
name to the file table (without inode and device information). This entry is the
same as the entry for a generic file object. At the same time, the kernel keeps an
indication in its internal tables that this file must be checked during creation for
inode and device information. When the file is subsequently created, the kernel
intercepts its creation and informs seosd of the file's inode and device information
so that seosd can update the file's entry in the file table.

When you delete a file, CA Access Control deletes its entry in the seosd file table, but
the entry remains in the CA Access Control database in case you create it again.

Protect Files

To define a protected file in selang, enter the following command:

newres FILE filename

For example, to register a file named/tmp/binary.bkup, enter the following command:

newres FILE /tmp/binary.bkup

Note: When you define a file rule without specifying its access type, the default access
of NONE is assigned. In this case, the file's owner is the only one who can access the file.

Restricting Access to Files and Directories

Chapter 8: Protecting Files and Programs 83

Most protected files should be protected from access by the superuser. Otherwise, any
user who knows the superuser's password gains automatic access to the files. At the
same time, you can prevent all other users except the file's owner from accessing the
file.

To protect several similarly named files, use a file name pattern that includes a wildcard.
The wildcards are * (which indicates zero or more characters) and ? (which indicates any
one character, other than /).

The pattern that you specify is matched against the file's full path name so that the
pattern /tmp/x* matches files named /tmp/x1, /tmp/xxx, and even /tmp/xdir/a.

Patterns that CA Access Control does not let you specify are: /*, /tmp/*, and /etc/*.

Important! Because file name patterns are such a powerful tool, you should not
experiment freely with them.

For example, the following command defines as protected every file in the /tmp
directory that has a name starting with a, and ending with b (this would include a file
like /tmp/axyz/axyzb):

newres FILE /tmp/a*b

Wildcards in FILE Resource Names

By using wildcards in a file resource name, you can create a file record that corresponds
to multiple files: any file with a name that matches the wildcard pattern is protected by
the access authorities associated with the record.

The wildcards you can use are:

■ * for any number of any characters

■ ? for any one character

If a physical resource name matches more than one resource record name, the longest
non-wildcard match is used for that resource.

CA Access Control does not accept the following patterns in names of FILE resources:

■ *

■ /*

■ /tmp/*

■ /etc/*

Restricting Access to Files and Directories

84 Endpoint Administration Guide for UNIX

Example: Use of Wildcards in a FILE Resource

The FILE resource /usr/lpp/bin/* protects all files and sub-directories under /usr/lpp/bin
(however deeply nested).

Restricting File Access

To restrict a file from access by the superuser in selang, use a longer version of the
newres command. For example, to prevent the file /tmp/binary.bkup from being
accessed by the superuser, as well as any other user except the user myuser, you can
use the following selang command:

newres FILE /tmp/binary.bkup owner(myuser) defaccess(N)

This command does the following:

1. Defines /tmp/binary.bkup as a protected file.

2. Sets the user myuser as the owner of the file, granting myuser access to the file.

3. Sets the default access of the file to NONE, preventing any other user from
accessing the file. To permit other users access to the file, you must explicitly define
access rules for that file.

Important! If you invoke the selang command under root authority and then define FILE
records without explicitly specifying another user as their owner, root becomes the
owner of those files. As the owner, root (or any user who logs in as root) has complete
and free access to the files.

Note: You can set the token use_unix_file_owner in the seos.ini file to yes. This permits
regular UNIX users to define access rules for the files they own.

Preventing File Access

Sometimes it is convenient to define a FILE record that has no owner. To define a FILE
record that does not have an owner in selang, use the special owner “nobody.”

For example, to define the file /tmp/binary.bkup as a protected file and prevent all users
from accessing the file, enter the following selang command:

newres FILE /tmp/binary.bkup owner(nobody) defaccess(N)

This newres command ensures that even the user who defined the command, whether
root or otherwise, cannot access the file. After preventing all users from accessing a file,
you must usually grant one or more users access to that file explicitly.

Restricting Access to Files and Directories

Chapter 8: Protecting Files and Programs 85

To explicitly permit a user access to a protected file, use the authorize command. For
example, to grant the user “userJo” update access to all files in the /tmp directory
beginning with Jo, enter the selang command:

authorize FILE /tmp/Jo* uid(userJo) acc(Update)

Note: CA Access Control protects only those files defined in its database.

Restrict Users from Getting File Information

If you do not provide users with read access permissions to a file or directory, by
default, they can still use the stat function to get information about the file. For
example, a user without read access permissions to file /tmp/abc can perform the
following operation:

ls -l /tmp/abc

To prevent users who do not have read access permissions from getting file information,
set the STAT_intercept configuration setting to 1.

Note: For more information about the STAT_intercept configuration setting, see the
Reference Guide.

Viewing Default Access Authority

To view the default access of users in the _restricted group (when no matching records
are found), use the selang showres command with the _default record of the class.

For example, to view the default access that users in the _restricted group have for files
that are not in the CA Access Control database, use the showres selang command to
display the _default resource of FILE class:

showres FILE _default

Note: All other users have the access defined by specific CA Access Control database
rules.

Restricting Access to Files and Directories

86 Endpoint Administration Guide for UNIX

Using Conditional Access Control Lists

You can make access to a file conditional on the program used to access the file. To
make file access conditional in this way is called program pathing.

Note: If the program specified to access the file is a shell script, the shell script must
have #!/bin/sh as its first line.

The following code is an example, allowing any process to update the file /etc/passwd
under the control of the password change program /bin/passwd. All access attempts to
the /etc/passwd file that do not originate from /bin/passwd are blocked.

newres FILE /etc/passwd owner(nobody) defaccess(R)

authorize FILE /etc/passwd gid(users) access(U) via(pgm(/bin/passwd))

The newres command defines the file /etc/passwd to CA Access Control and allows any
user, including the file's owner, to read the file. The authorize command allows all users
to access the file when the access is made under the program /bin/passwd. Once the
password file is protected in this manner, any Trojan horse that inserts entries into the
/etc/passwd file or any update to the password file by a user of the group “users” is
blocked if the user is not using the /bin/passwd program.

Conditional access lists are also useful for controlling access to the files of a database
management system (DBMS). Usually, you should permit users to access such files only
through the programs and utilities supplied by the database vendor. Consider the
following commands:

authorize FILE /usr/dbms/xyz uid(*) via(pgm(/usr/dbms/bin/pgm1)) access(U)

authorize FILE /usr/dbms/xyz uid(*) via(pgm(/usr/dbms/bin/pgm2)) access(U)

This set of authorize commands allows all CA Access Control users to access the file xyz
of the DBMS system provided the access is made by either program pgm1 or program
pgm2, which belong to the DBMS binaries directory. Note the use of the asterisk in the
user operand. The asterisk specifies all users who are defined to CA Access Control. The
use of the asterisk is similar in concept to the default access, except that default access
also applies to users who are not defined to CA Access Control. Note that you can use
the _undefined group for users not defined in the CA Access Control database.

Blocking Trojan Horses with the _abspath Group

Chapter 8: Protecting Files and Programs 87

You can also use the Unicenter TNG calendar ACL property to permit or deny access to
specific users and groups for the current resource according to the Unicenter TNG
calendar status. There are two types of ACL properties for Unicenter TNG calendars:
regular and restrictive.

For example, the following command adds a user named george to a conditional access
control list for a regular calendar named basecalendar:

auth file file1 uid(george) calendar(basecalendar) access(rw)

And the following command removes a user named george from the Unicenter TNG
calendar:

auth- file file2 uid(george) calendar(basecalendar)

Using Negative Access Control Lists

You can deny a user or group specific access types using a Negative Access Control List
(NACL).

With the CA Access Control language (selang), use the following command to deny
access:

auth className resourceName [gid(group-name...)] \

[uid({user-name...|*})] [deniedaccess(accessvalue)]

Blocking Trojan Horses with the _abspath Group

Any relative path names in the $PATH variable, but particularly the dot (.) path name
meaning “current directory,” is a security weakness. Consider the following scenario:

■ At the top of the PATH variable for root is the current (.) directory.

■ A malicious user creates a destructive program-a Trojan horse-and stores it as
/tmp/ls.

■ In time, as the malicious user expects, root issues the ls command in the /tmp
directory. Instead of running the usual ls command, root actually runs-with full
administrative privileges-the Trojan horse that had been stored in the /tmp
directory.

To eliminate this security weakness, CA Access Control provides a user group named
_abspath. All members of the _abspath group are forbidden to use relative path names
in invoking programs.

You can add a user to the _abspath group just as you add one to any other group.
Effective at the next login, the user is forbidden to use relative path names when
accessing programs.

Synchronization with Native UNIX Security

88 Endpoint Administration Guide for UNIX

Synchronization with Native UNIX Security

Although CA Access Control permissions are more complex than native UNIX
permissions, you can synchronize your native UNIX permissions to your CA Access
Control permissions. That is, you can make the permissions coincide. However, the
synchronization is subject to some limitations:

■ Synchronization is not retroactive. Once it is in effect, it can govern all newly issued
CA Access Control authorization commands, but it does not govern pre-existing
access rules.

■ Permissions that you grant in CA Access Control can be passed to UNIX, but
permissions granted in UNIX are not passed to CA Access Control.

■ Because of limitations in its own system of permissions, UNIX may be unable to
adopt more than a simplified form of the CA Access Control permissions. Even UNIX
versions that feature access control lists (ACLs) may be unable to reflect all the
complexity of the CA Access Control ACLs.

UNIX platforms with ACLs that can be synchronized to CA Access Control are Sun Solaris,
HP-UX, and Tru64.

Without such ACLs, you can still synchronize the traditional UNIX rwx permissions to the
CA Access Control permissions, to the extent possible.

Synchronization is controlled by the combination of the authorize command's UNIX
option and the seos.ini file's SyncUnixFilePerms token:

■ By including the UNIX option, the authorize command calls for implementation in
UNIX as well as in CA Access Control. The command can even grant UNIX permission
where permission did not exist before.

(When the UNIX option is not used, selang commands have no effect on UNIX
security. Moreover, where UNIX retains a prohibition, a CA Access Control
permission is not effective. So the only way that selang can overcome a UNIX
prohibition is with the UNIX option of the authorize command.)

■ In the authorize command, the UNIX option works only when the
SyncUnixFilePerms token is appropriately set in the [seos] section of the seos.ini
file. The token has several permitted values:

– no specifies not to synchronize ACL permissions. This is the default value.

– warn specifies not to synchronize ACL permissions, but to issue a warning if the
CA Access Control and native UNIX permissions conflict.

– traditional specifies to adjust the rwx permissions for the group according to
the CA Access Control ACL (and permissions for individual users are not copied
to UNIX).

Synchronization with Native UNIX Security

Chapter 8: Protecting Files and Programs 89

– acl specifies to adjust the UNIX ACL according to the CA Access Control ACL.

– force specifies to adjust the UNIX world access attribute according to the CA
Access Control defaccess permissions.

Any change in the SyncUnixFilePerms token value takes effect only after you restart
the seosd daemon.

Example: Synchronization

The following example involves a file named /var/temp/newdata and a user named
fowler, and assumes that a record in the FILE class already represents the file.

1. Shut down the seosd daemon, so you can edit the seos.ini file:

secons -s

2. Logged in as a user with permission to edit the seos.ini file, edit the seos.ini file to
make the SyncUnixFilePerms line, in the [seos] section, look like this:

SyncUnixFilePerms = acl

Remember, acl means that the UNIX option adjusts the UNIX ACL according to the
CA Access Control ACL. The UNIX option will have this function as long as the token
remains set to acl.

3. Restart the seosd daemon:

seosd

4. Invoke selang, then issue the following selang command:

authorize FILE /var/tmp/newdata uid(fowler) access(r w) unix

The command gives fowler Read and Write access to the new data file and, by
specifying the UNIX option, it grants the corresponding native UNIX permissions.

Monitoring Sensitive Files

90 Endpoint Administration Guide for UNIX

HP-UX Limitations

The ACL of HP-UX is limited in how it can reflect the ACL of CA Access Control.

■ In HP-UX, the ACL assigns access per user and group combination. That is, the
assigned access applies to the specified user only when the user's primary group is
also specified.

CA Access Control, on the other hand, assigns access per user or per group, but not
per combination.

Accordingly, CA Access Control permissions are mapped to HP-UX user/group
combinations in which either the user or the group is set to the equivalent of “*” or
“any.”

■ HP-UX does not support ACLs on file-systems that are under control of the volume
manager (LVM). Thus, some important HP-UX machines are likely to allow ACL
synchronization only on the “root” file-system.

■ The ACL of HP-UX is limited to 16 entries. CA Access Control synchronization uses
the available entries as efficiently as possible, but 16 entries may not be enough to
reflect every CA Access Control ACL completely.

Sun Solaris Limitations

Under Sun Solaris, native UNIX ACLs are not implemented in the /tmp directory.

Monitoring Sensitive Files

The Watchdog can protect the binaries of your setuid/setgid programs, as well as any
other files you specify. The seoswd utility (the Watchdog daemon) continually checks
two issues:

■ Whether the seosd daemon is alive and responding. (If necessary, the watchdog
daemon restarts the seosd daemon.)

■ Whether a user has modified any trusted programs or files. (If so, seoswd prevents
these files from executing.)

When the seosd daemon forks, it automatically executes the seoswd program to start
the Watchdog.

Note: For more information about seoswd, see the Reference Guide.

The seos.ini file contains several tokens that control the scanning and time-out values of
the watchdog. It also contains the most up-to-date documentation on these values.

Note: For a description of the seos.ini file, see the Reference Guide.

Internal File Protection

Chapter 8: Protecting Files and Programs 91

You can use the Watchdog to perform the same background checks as those made for
the setuid and setgid programs on ordinary files, including generating audit records
when these files are altered.

For example, consider a configuration where only the security administrator is allowed
to modify the file /etc/inittab. To make CA Access Control monitor the file and generate
an alert in any case of modification, use the following command in selang:

newres SECFILE /etc/inittab

The file /etc/inittab is now constantly monitored for modifications.

Internal File Protection

During installation, CA Access Control writes rules to protect two types of internal files:

■ Internal rules—Protect configuration files, log files, and database files.

You cannot delete internal rules.

■ Default rules—Protect sensitive files such as root and server certificates that you
use to encrypt and authenticate communication.

You can delete default rules after installation.

Internal File Rules

Internal file rules protect configuration files, log files, and database files. Internal file
rules are not visible in selang and cannot be deleted.

Files that CA Access Control protects with internal file rules have the following access
rights:

■ Full access for CA Access Control internal processes

■ Read and execute (where relevant) access for all other accessors

You can write FILE rules to replace the internal file rules. If you delete these FILE rules,
CA Access Control reverts to the internal file rules.

Internal File Protection

92 Endpoint Administration Guide for UNIX

CA Access Control protects the following files with internal file rules. The second column
of the table lists the configuration setting that specifies the file location, where
applicable.

Note: Some file locations are defined internally and do not have a corresponding
configuration setting. You cannot configure the location of these files.

File Configuration Setting and
Section in seos.ini

Default File Location

All database files [seosd] dbdir ACInstallDir/seosdb

seos.ini - ACInstallDir

privpgms.ini - ACInstallDir/etc

loginpgms.ini - ACInstallDir/etc

xdmpgms.init - ACInstallDir/etc

nfsdevs.init [seosd] nfs_devices ACInstallDir/etc

osver - ACInstallDir/etc

accommon.ini - ACSharedDir

seos.audit [logmgr] audit_log ACInstallDir/log

seos.audit.bak* [logmgr] audit_back ACInstallDir/log

seos.error [logmgr] error_log ACInstallDir/log

kbl.audit [kblaudit] audit_log ACInstallDir/log

kbl.audit.bak [kblaudit] audit_back ACInstallDir/log

kbl.error [kblaudit] error_log ACInstallDir/log

Note: For more information about configuration settings, see the Reference Guide.

Internal File Protection

Chapter 8: Protecting Files and Programs 93

Default File Rules

CA Access Control creates default file rules during installation to protect sensitive files.
Default file rules are visible in selang and can be deleted.

The following table lists the sensitive files that CA Access Control protects with default
file rules, and the access rights and permitted accessors for the files.

In the table, PMDBDir is the directory in which the policy model databases (PMDBs)
reside, and pmd_name is the name of each policy model. By default, PMDBDir is located
at ACInstallDir/policies. The location of PMDBDir is defined in the _pmd_directory_
token in the pmd section of the seos.ini file.

File Default Access Permitted Accessors

ACInstallDir/data/crypto/crypto.dat None sechkey

ACInstallDir/data/crypto/def_root.pem* None sechkey

ACInstallDir/data/crypto/sub.key None sechkey

ACInstallDir/data/crypto/sub.pem None sechkey

ACInstallDir/log/policyfetcher.log Read +policyfetcher

ACInstallDir/ladb/*db.la* Read sebuildla

/etc/passwd All All

/etc/shadow All All

PMDBDir/pmd_name/hsock Read, Write, Execute, Cre,
Chown, Chmod, Utime

seagent, sepmdd

PMDBDir/pmd_name/pmd.ini Read seagent, sepmdd

PMDBDir/pmd_name/seos_* Read, Write, Execute, Cre,
Chown, Chmod, Utime

seagent, sepmdd

PMDBDir/pmd_name/socket Read, Write, Execute, Cre,
Chown, Chmod, Utime

seagent, sepmdd

Protecting setuid and setgid Programs

94 Endpoint Administration Guide for UNIX

Protecting setuid and setgid Programs

Set user ID (setuid) programs are among the most frequently used programs at a UNIX
site. A process that invokes a setuid program automatically acquires the identity of the
owner of the setuid program. If the owner of a setuid program is root, then any regular
user automatically becomes superuser by invoking the setuid program. When the setuid
program starts, the process can do anything a superuser can do, so it is extremely
important to make sure that setuid programs do exactly what they are supposed to do
and nothing else. Back doors or shells within a setuid program grant the user access to
everything on the system.

CA Access Control uses the PROGRAM class to protect setuid and setgid programs. Upon
installation, CA Access Control permits any program execution by default. After defining
trusted programs in the database, you can change the behavior of CA Access Control so
that execution of a setuid or setgid program is prohibited unless the program is defined
as a trusted program. For example, to allow /bin/ps (the process status program) to run
as a setgid program (as it is supposed to), use the following selang command:

newres PROGRAM /bin/ps defaccess(EXEC)

CA Access Control registers the program /bin/ps as a trusted program. It then calculates
and stores its CRC, inode number, size, device number, owner, group, permission bits,
last modification time, and, optionally, other digital signatures in a record in the
PROGRAM class of the database.

The Watchdog periodically checks the program's CRC, size, inode, and the rest of the
characteristics. If any of these values have changed, the Watchdog automatically asks
seosd to remove the program from the trusted programs list and deny access to it. This
ensures that no one can misuse the program by modifying or moving setuid programs.
Note that the permission in the example newres command allows all users, including
those not defined in the database, to run the /bin/ps command.

Untrusted setuid programs are possibly the most dangerous security loophole of
UNIX-based operating systems. By using trusted programs' access rules, the security
administrator can restrict the use of setuid to certain trusted programs that were tested
and checked to ensure their integrity. However, any user cannot automatically start a
trusted executable; the access rule must specify explicit users and groups that are
granted access to that setuid program. For example, the following set of selang
commands grants the execution of /bin/su only to the System Department users (group
sysdept):

newres PROGRAM /bin/su defaccess(NONE)

authorize PROGRAM /bin/su gid(sysdept) access (EXEC)

Protecting setuid and setgid Programs

Chapter 8: Protecting Files and Programs 95

Use an asterisk (*) to specify all users who are defined in the database. For example, to
permit all users who are defined to CA Access Control to perform the su command,
enter the following command:

authorize PROGRAM /bin/su uid(*) access(EXEC)

This description is also true for setgid executables.

You can use the nr and er commands to register the setuid and setgid programs in the
PROGRAM class. Important non setuid and setgid programs can be registered in the
PROGRAM class similarly. Define a FILE rule for these programs to prevent unauthorized
users from upgrading them. If you want to allow the program execution when it is
untrusted (after upgrade, the program is executed without being retrusted), set the
blockrun property to no.

■ If the blockrun property is set to yes, the program is not executed until it is
re-trusted and is not allowed to access any file that the relevant PACL would allow.
The PACL is effectively disabled until the program is re-trusted.

■ If the blockrun property is set to no, the program is executed. However, the
program cannot access any resources the relevant PACL would allow.

To set the value of the blockrun property to yes, use the following editres/newres
command:

er program /bin/p blockrun

To set the value of the blockrun property to no, use the following editres/newres
command:

er program /bin/p blockrun-

By default, for all the programs registered in the PROGRAM class, the blockrun property
is set to yes. You can change this using the SetBlockRun token in the seos.ini file. Refer
to the seos.ini file description for details.

Protecting setuid and setgid Programs

96 Endpoint Administration Guide for UNIX

Define setuid/setgid Programs Automatically

CA Access Control provides a way to define all your setuid and setgid programs
automatically. Use the utility program /bin/seuidpgm to build the set of commands to
define all the setuid programs and their permissions.

For example, to scan the entire file system for setuid and setgid programs and write the
generated selang commands to the file /tmp/pgm_script, enter the following selang
command:

seuidpgm -qln / -x /home > /tmp/pgm_script

You can edit and modify the output file generated by seuidpgm according to your needs
before submission.

Note: For more information about the seuidpgm utility, see the Reference Guide. To
learn how to give similar protection to programs that are neither setuid nor setgid
programs, see the SECFILE class in the Reference Guide.

Conditional Access

Another sophisticated permissions technique is the conditional access rule. For
example, suppose you have a very secure version of the su command called securedSU
that uses a fingerprint reader to verify the user's identity before allowing the user to
become a superuser.

One way to ensure that UserX can become superuser only under that program is to set a
conditional access rule as follows: (Before setting the rule, you must also set
defaccess(none) for USER.root.)

authorize SURROGATE USER.root uid(UserX) via(pgm(securedSU))

Protecting the Login Command

We strongly recommend that you limit the use of /bin/login to the superuser only.
Otherwise, any user who knows another user's password can log in as another user and
supply the other user's password to bypass all surrogate and terminal restrictions.

To change the /bin/login permissions in selang, use the following command:

chres LOGINAPPL /bin/login defaccess(N) owner(root)

Protecting Regular Programs

Chapter 8: Protecting Files and Programs 97

Protecting Regular Programs

CA Access Control can also protect regular programs in the same way it protects setuid
and setgid programs. To do this, set the blockrun property in the PROGRAM class to the
value you choose.

Note: For more information about possible options, see the Reference Guide.

Kernel Modules Load and Unload Protection

A kernel module is a component of the UNIX operating system that you can load to
extend the running kernel, and unload when no longer required. This adds flexibility,
letting you load functionality as required, without wasting memory resources that
would otherwise be required to cover all possible expected functionality in the base
kernel.

You can disable and enable kernel module protection in CA Access Control. If you enable
kernel module protection, CA Access Control intercepts the system calls that load and
unload a kernel module, and then checks the requested access against the associated
record in the database, which is a record of class KMODULE. When access is requested
for a kernel module record, CA Access Control, the requested access is either "load" or
"unload".

On all non-Linux systems, the name of the KMODULE record must match the name of
the kernel module file (not the full path). This is because the name of the module is the
same as the name of the file. On Linux, the name of KMODULE record needs to match
only the name of the kernel module, which, may be different from the actual file name.
Changing the file name on Linux does not change the module name which Linux uses
and the KMODULE record remains valid.

If you enable file path checking on kernel module loads and the requested access is
load, CA Access Control performs the following additional checks:

■ The filepath property in the KMODULE record holds only valid absolute file paths.

■ The files in the path name filepath have modules that match the KMODULE record
name.

■ The kernel module matches the KMODULE properties (filepath for non-Linux
systems, signature for Linux systems).

Note: CA Access Control produces a unique signature for kernel module file on
Linux systems, and inserts this as the value of the signature property in the kernel
module record. CA Access Control checks the signature on each access. You do not
need to enter the signature yourself, because CA Access Control calculates and
inserts it automatically. However you can do so using the seretrust utility.

Kernel Modules Load and Unload Protection

98 Endpoint Administration Guide for UNIX

More information:

Enable and Disable File Path Checking on Kernel Module Loads (see page 99)

Protect a Kernel Module

You can protect the loading and unloading of kernel modules, and so help protect the
operating system.

To protect a kernel module

1. Ensure you have enabled kernel module protection.

2. Create a KMODULE record in CA Access Control.

To create a kernel module, you need to define:

■ The name of the kernel module

On all non-Linux systems, the name of the KMODULE record must match the
name of the kernel module file (not the full path). This is because the name of
the module is the same as the name of the file. On Linux, the name of
KMODULE record needs to match only the name of the kernel module, which,
may be different from the actual file name.

■ The owner of the record (defaults to the user creating the module)

■ (Optional) The absolute file path to the kernel module file, or a list of file paths
if there is more than one version of the module.

Note: On HP and Solaris systems, you can define the special kernel module
_ALL_MODULES to protect the unloading of all kernel modules.

3. Define the users or groups that are authorized to load and unload the module.

Example: Protect a Kernel Module Using selang Commands

The following selang commands define and authorize a kernel module serial.o to CA
Access Control and authorizes the enterprise user kadmin to load and unload it:

newres kmodule serial.o owner(kadmin) defaccess(none) \

filepath(/lib/modules/2.2.19/serial.o:/lib/modules/2.2.20/serial.o)

authorize kmodule serial.o access(load, unload) xuid(kadmin)

Kernel Modules Load and Unload Protection

Chapter 8: Protecting Files and Programs 99

Enable and Disable Kernel Module Protection

When kernel module protection is enabled, CA Access Control checks the loading and
unloading of the kernel modules that are defined in the CA Access Control database.

By default, CA Access Control enables protection of kernel modules.

To enable or disable kernel mode protection, enable or disable the KMODULE class, for
example by using the setoptions command.

Example: Enable Kernel Mode Protection Using selang

The following selang command enables kernel mode protection:

setoptions class+(kmodule)

Example: Disable Kernel Mode Protection Using selang

The following selang command disables kernel mode protection:

setoptions class-(KMODULE)

Enable and Disable File Path Checking on Kernel Module Loads

If kernel module protection is enabled, you can also enable file path checking on kernel
module loading. When this is enabled, CA Access Control checks that the kernel module
to be loaded matches the filepath property of the KMODULE record (for non-Linux
systems), or matches the signature of the KMODULE record (for Linux systems).

To enable file path checking, in the seosd section of the configuration file seos.in, set
the special_check token to yes (the default is no).

CA Access Control does file path checking only if file path checking and kernel mode
protection are both enabled.

Example: Enable File Path Checking for Kernel Module Loads Using the seini Utility

To enable file path checking for kernel module loads, you can use the seini and secons
utilities as follows:

seini -s seosd.special_check yes

secons -rl

Protecting Binary Files from the kill Command

100 Endpoint Administration Guide for UNIX

Protecting Binary Files from the kill Command

You must protect mission-critical processes, such as database servers or application
daemons, against denial of service attacks. The native UNIX security system bases its
process protection on the process user ID. This implies that under native UNIX, root can
do anything to any process. CA Access Control adds to UNIX process protection by
defining rules based on the executable file running in the process. CA Access Control
process protection is independent of the user ID of the process. A record in the PROCESS
class must define every process that CA Access Control will protect.

For example, to protect the ASCII viewer /bin/more from being killed, follow this
procedure:

1. Start selang.

2. Enter the following selang command:

newres PROCESS /bin/more defaccess(N) owner(nobody)

This command defines /bin/more as a process to be protected from kill attempts;
therefore the default access is none (N). The owner(nobody) setting ensures that
even the user who defined this rule cannot kill the /bin/more process.

3. Exit selang.

4. Test the rules that Step 2 defined:

a. Enter the command:

/bin/more /tmp/seosd.trace

b. Assuming the file /tmp/seosd.trace is large enough to keep /bin/more from
exiting immediately, press Ctrl+Z to suspend the /bin/more process.

c. Try to kill the suspended job by entering the command:

kill %1

Your attempt should fail, with CA Access Control displaying the “Permission
denied” message.

To make an exception that permits a specific user to kill the /bin/more processes, enter
the selang command:

authorize PROCESS /bin/more uid(username)

Note: Use the same procedure to protect other binary executables on your system from
being killed.

CA Access Control protects regular kill signals (SIGTERM) and the kill signals that an
application cannot mask (SIGKILL and SIGSTOP). It passes other signals, such as SIGHUP
or SIGUSR1, to the process to determine whether to ignore or react to the kill signal.

Chapter 9: Controlling Login Commands 101

Chapter 9: Controlling Login Commands

This section contains the following topics:

Controlling the Login Process (see page 101)
Controlling Generic Login Applications (see page 103)
Defining User Authority to Use Terminals (see page 104)
Password Checking and Login Restrictions (see page 108)
Defining Time and Day Login Rules (see page 109)
Disabling Concurrent Logins (see page 109)
Limiting Concurrent Logins for a User (see page 110)
Recognizing a Login Event (see page 111)

Controlling the Login Process

CA Access Control provides two types of login protection: by terminal, and by
application. Using the TERMINAL class, you can establish which users can log in from
which terminals or hosts.

Note: For more information about the TERMINAL class, see the Reference Guide.

You can also control which user or group can log in using a certain login application
(such as telnet, ftp, and rlogin) with the LOGINAPPL class. By establishing the access
rules of the class, you define specific rules for each login application. For instance, you
can define rules that permit all users to ftp to your host, a limited number of users to
telnet to your system, and no one to rlogin to the system. Each record in the LOGINAPPL
class defines access rules for a specific login application.

Examples: LOGINAPPL

For example, to permit only an anonymous user to use the ftp application, use the
following procedure:

1. Change the ftp default access to none with the following selang command:

cr LOGINAPPL FTP defaccess(NONE) owner(nobody)

2. Permit the user anonymous to use ftp with the following selang command:

auth LOGINAPPL FTP uid(anonymous) access(X)

Controlling the Login Process

102 Endpoint Administration Guide for UNIX

To restrict users from the group named account to use only telnet:

1. Block the use of rlogin and rsh with the following selang command:

auth LOGINAPPL(RLOGIN RSH) gid(account) access(N)

2. Permit the group named account to use telnet with the following selang command:

auth LOGINAPPL TELNET gid(account) acc(X)

Note: The previous example shows RLOGIN and RSH restrictions, but other login
programs should be included as well.

Whenever you add or use a new login program, you must add a new LOGINAPPL record.

The login interception sequence always starts with setgid or setgroup events, which are
called triggers. The sequence ends with a setuid event that changes the user's identity
to the real user who logged in.

Login applications issue a variety of system calls, which CA Access Control uses to
monitor login activity. These login sequences are preset for standard login applications.
You can see them by studying the CA Access Control trace file.

Note: For more information about the LOGINAPPL class and setting a sequence, see the
selang Reference Guide.

Enable SFTP Login Interception

When a user logs in to an endpoint using SFTP, the SFTP application uses SSH to
authenticate the user. When CA Access Control intercepts the login attempt from the
SFTP application, by default it treats the login as an SSH login and uses the rules for the
SSH LOGINAPPL record to permit or deny the login attempt.

To configure CA Access Control to distinguish SFTP and SSH login attempts and to write
separate rules for SFTP and SSH logins, you must enable SFTP login interception.

Controlling Generic Login Applications

Chapter 9: Controlling Login Commands 103

To enable SFTP login interception

1. Open a command prompt window on the endpoint.

2. Enter the following selang command:

er LOGINAPPL SSH loginflags(EXECLOGIN)

This command specifies that the trigger for SSH logins is the first EXEC action that a
process performs.

3. Enter the following selang command:

er LOGINAPPL SFTP loginpath(path) defaccess(a)

loginpath(path)

Specifies the full path to the SFTP login application.

This command creates a LOGINAPPL record named SFTP, defines the path to the
SFTP login application, and specifies that all users can use SFTP to log in to the
endpoint if no additional restrictions exist.

Example: Enable SFTP Login Interception

This example enables SFTP login interception for the SFTP login application located at
/usr/libexec/openssh/sftp-server. The first selang command also specifies that CA
Access Control uses PAM login interception for SSH logins:

er LOGINAPPL SSH loginflags(EXECLOGIN, PAMLOGIN)

er LOGINAPPL SFTP loginpath(/usr/libexec/openssh/sftp-server) defaccess(a)

Note: For more information about the LOGINAPPL class, see the selang Reference Guide.

Controlling Generic Login Applications

CA Access Control can also control and protect generic login applications; this means
that you can protect groups of login applications that match a certain rule with a generic
pattern. To define a generic login application, use the LOGINAPPL class.

Defining a Generic Login Application

To define a generic login application with selang, use the same commands as setting
regular login restrictions, except for the LOGINPATH parameter, which should include a
generic path composed of a regular expression using one or more of the following
characters: [,], *, ?. For example, to define a generic telnet application, issue the
following command:

er LOGINAPPL GENERIC_TELNET loginpath(/usr/sbin/in.tel*)

Defining User Authority to Use Terminals

104 Endpoint Administration Guide for UNIX

Generic Login Program Interception

With regular login restrictions, the activated rules are obvious; if a LOGINAPPL object
that has the intercepted login program specified for the loginpath property exists in the
database, the rules for that object would apply.

However, for generic LOGINAPPL objects, CA Access Control does the following:

1. seosd searches for an exact match for the intercepted login application. (A
matching login path for the LOGINAPPL object.) If found, the rules for that object
apply.

2. If not found, the search continues for a LOGINAPPL object with a generic login path
that matches.

3. If there is more than one match, the rules for the object with the more specific
match apply.

Defining User Authority to Use Terminals

One of the most effective ways to block intruders from accessing the system is by
terminal protection, that is, the source of the login. The source can be the host or the
terminal (such as an X terminal or a console) from which the user logs in.

In today's modern architecture, a terminal is no longer the teletype machine UNIX was
developed for. On most sites, a “pseudo terminal” is allocated through the pseudo
terminal server (PTS) or by the X window manager, and the terminal's name is
meaningless symbol for the security system. CA Access Control protects what we
understand as a terminal. CA Access Control implements terminal protection during the
login stage, when CA Access Control defines a terminal in one of three ways:

■ When the user logs in from an X terminal using the XDM login window, CA Access
Control takes the IP address of the X terminal translated to host name (from
/etc/hosts, NIS, or DNS) to be the terminal used for the login request. CA Access
Control can also protect using the IP addresses if the translation to the host name
fails or if you prefer to use IP addresses.

■ When the user logs in from a dumb terminal, the TTY name identifies the terminal.

■ When the user logs in from the network (through telnet, rlogin, rsh, and so on), the
requesting IP address translated to the host name (through /etc/hosts, NIS, or DNS)
is taken to be the terminal name.

You can define login rules for a specific host by defining this host in the TERMINAL class
and adding the appropriate users and groups to the object's access list. For each login
source, you can also limit the days and hours in which login from this host or terminal is
allowed by setting the day and time restrictions for the TERMINAL object. You can also
use wildcards in the TERMINAL class to define hosts that match a pattern (host name or
IP address).

Defining User Authority to Use Terminals

Chapter 9: Controlling Login Commands 105

In most cases, highly authorized users such as the superuser or system administrators
must be restricted to terminals that are located in secure places. Intruders and hackers
who wish to enter the system as superuser are not able to do it from their own remote
stations; they have to work from one of the authorized terminals, which should be in a
secured location.

When logging in from the network, you cannot be certain that the user is indeed sitting
in front of the host console. The user could be sitting in front of any terminal attached
to that host or communicating from any other node in the network authorized to
receive services from the requesting host. Permitting a user to log in from another host
implies that we permit login to that user not only from that specific station but also
from any other terminal authorized by that station. To ensure isolation between
departments, define terminal groups and allow users of each department to work only
from the terminal group of their department.

Unlike other resources, in terminal authorizations the more the user is authorized to
access information, the lower the user's terminal authorization should be. The
superuser must be the most restricted user in terminal access to ensure that nobody
can log in as root from remote unsafe terminals.

When defining terminals, CA Access Control requires you to explicitly specify the owner
of the terminal definition. The reason is that if root, as the security administrator,
becomes the owner of the terminal by default, it makes the terminal eligible for
superuser login. In most cases, this is not wanted. To guard you from making such
mistakes that may unintentionally cause loopholes, CA Access Control makes you define
an owner when defining the terminal.

To define the terminal tty34, use the following command:

newres TERMINAL tty34 defaccess(none) owner(userA)

This command creates a record for the terminal tty34, sets its default access to NONE,
and defines userA as its owner. Note that userA, as the owner of the terminal, is
automatically allowed to enter the system through terminal tty34.

To prevent all users from logging in from the terminal tty34, specify “nobody” as the
owner:

newres TERMINAL tty34 defaccess(none) owner(nobody)

To permit a user to log in from a particular terminal, enter the following command:

authorize TERMINAL tty34 uid(USR1)

This command permits USR1 to log in from terminal tty34.

Defining User Authority to Use Terminals

106 Endpoint Administration Guide for UNIX

Permission to use a terminal can also be granted to a group. For example, the following
command permits members of the group DEPT1 to use the terminal tty34:

authorize TERMINAL tty34 gid(DEPT1)

To define a group of terminals (known as a terminal group), enter the following
command:

newres GTERMINAL TERM.DEPT1 owner(ADM1)

To add member terminals to terminal group TERM.DEPT1, enter the following
command:

chres GTERMINAL TERM.DEPT1 mem(tty34, tty35)

To authorize USR1 to use this terminal group, enter the following command:

authorize GTERMINAL TERM.DEPT1 uid(USR1)

This grants USR1 the authority to use both tty34 and tty35.

Restricting Terminals for Root Users

Another issue to consider is the default rule of the TERMINAL class. At the initial
implementation stages, the default is set to permit anything that is not defined. In the
case of a TERMINAL, this could be a shortcoming.

Consider the following situation: A site has a few hundred terminals, and you want most
users to be able to log in from any terminal, but you want root to be able to log in only
from two predefined terminals.

First we consider that setting the default of the TERMINAL class to READ enables
anyone-including root-to log in from any terminal that does not have a specific
TERMINAL record in the database. You do not want the superuser to be able to log in
from any terminal. But, we also consider that setting the default of the TERMINAL class
to NONE forces you to define each terminal in the database, which may be impractical.

Defining User Authority to Use Terminals

Chapter 9: Controlling Login Commands 107

To solve this problem, CA Access Control supports the definition of an access control list
within the _default record of the TERMINAL class. The following commands show you
how to restrict root to two terminals with minimum effort:

newres TERMINAL term1 defaccess(N) owner(root)

newres TERMINAL term2 defaccess(N) owner(root)

newres TERMINAL _default defaccess(R)

authorize TERMINAL _default uid(root) access(N)

The first two commands define term1 and term2 as terminals owned by root, so they
are eligible for superuser login. The newres TERMINAL _default and chres commands set
the default access to READ, so that any terminal not defined in the database is
accessible to anyone. The authorize command explicitly denies access of the superuser
to undefined terminals.

Note: The UACC class still exists; you can use it to specify the default access of a
resource. However, using _default records to specify the default access of a resource is
much easier.

Recommended Restrictions

You should restrict the use of the loopback terminals, local host terminals, and station
host names if the default access for the TERMINAL class is READ. Allowing users to use
these terminals permits all other users to substitute their own user IDs if they know the
target user's password. For example, consider the following scenario:

■ User U is allowed to work from terminal T.

■ Terminal T is not allowed for superuser login.

■ User U is not authorized to substitute user ID to root.

■ User U managed to get the superuser password.

■ All users are permitted to log in from terminal loopback.

User U can bypass this set of access rules by simply performing the command telnet
loopback, specifying the user ID root, and supplying the password. Now a superuser
session has started from terminal T, which is not supposed to allow superuser login. A
user can similarly bypass access rules by exploiting the local host or the station's host
name.

To restrict these three vulnerabilities, use the following definitions:

newres TERMINAL loopback defaccess(N) owner(nobody)

newres TERMINAL localhost defaccess(N) owner(nobody)

chres TERMINAL hostname defacc(N) owner(nobody)

Password Checking and Login Restrictions

108 Endpoint Administration Guide for UNIX

An alternative approach to preventing this security breach is to limit the TCP requests
for telnet, ftp, and so forth from local host.

Yet another option is to set default access for the TERMINAL group to NONE, then
specify TERMINAL and GTERMINAL rules.

Password Checking and Login Restrictions

CA Access Control does not replace the /bin/login executable. Even when CA Access
Control is running, passwords continue to be checked against /etc/passwd, the shadow
password file, or the NIS passwd map. But CA Access Control also performs additional
checks, described in the following section.

Logon Checks

After the login process passes the authentication stage, CA Access Control intercepts the
process and checks the following points:

■ Has the password expired?

If it has, the user receives a number of grace logins accompanied by warnings
before being denied access. Following access denial, the security administrator
must reassign the user's password. The number of grace logins is determined by the
user password policy, which you can specify either globally with the setoptions
command, or for a profile group with the chgrp command.

Note: For more information about the setoptions command, see the Reference
Guide.

You can use the segrace utility to view the number of grace logins left for a user, the
number of days remaining until the user's existing password expires, or the date
and time the user last logged on and from which terminal.

Note: For more information about the segrace command, see the Reference Guide.

■ Is the user logging on from an authorized terminal?

If so, login proceeds normally to the next check; if not, the user cannot log in.

■ Do the current time-of-day and day-of-week allow login (per the predefined
restrictions)?

If they do, login proceeds normally to the next check; otherwise, the user cannot
log in.

■ Was this user name unused for more than a predefined number of days?

If it was, access is denied. (The default is 90 days; use the setoptions command to
change it.)

Defining Time and Day Login Rules

Chapter 9: Controlling Login Commands 109

Defining Time and Day Login Rules

Information security is most vulnerable in times of low activity. Late hours of the night
and weekends are ideal times for breaking in, because fewer people are available to
monitor the audit records. Setting up appropriate terminal authority rules forces an
intruder to use a terminal that is in a protected location. Setting up days-of-week (DOW)
and time-of-day (TOD) access rules forces the intruder to make break-in attempts during
work hours when offices are open and active. This combination severely restricts alien
break-ins.

Limiting the days and hours in which a user can log in is done on a user-by-user basis. To
define the DOW and TOD login restrictions for a user, use the following command:

chusr USR1 restrictions(days(Mon,Tue,Wed)time(800:1700))

This command permits user USR1 to log in only between 8:00 and 17:00 on Mondays,
Tuesdays, and Wednesdays. USR1 cannot log in outside the specified time on the
specified days, or on days other than those specified.

The days parameter also accepts the values ANYDAY (allow logins on all seven days of
the week) and WEEKDAYS (allow logins Monday through Friday). The time parameter
also accepts the value ANYTIME (allow logins at any time of the day).

Note: You can apply the DOW and TOD restrictions to many resources defined in the
database. This feature is particularly useful for giving terminals and terminal groups
limited periods of usability.

Disabling Concurrent Logins

Most UNIX-based operating systems allow concurrent logins. But if a user is permitted
to log in from more than one terminal, there is a danger that while the user is logged in,
other users can log in from elsewhere and masquerade as that user.

After you log in, CA Access Control allows you to disable your own concurrent login
permission so that no one else can log in as you from another terminal. However, you
can still log in repeatedly from the particular terminal that you are using. Use the secons
command with the following switches:

secons -d- (disables concurrent login)

secons -d+ (enables concurrent login)

Limiting Concurrent Logins for a User

110 Endpoint Administration Guide for UNIX

Any user can issue the -d option. (All other options are only allowed for users with the
ADMIN or OPERATOR attribute). Users who want to disable concurrent logins can use
this command in their initial scripts. Although they are then able to open as many
windows as they want, they cannot log in from a second terminal.

Note: If you use the secons -d- command to prevent concurrent logins, you must
remember to use secons -d+ before logging out, to avoid being locked out of the
system. If you forget to reinstate concurrent logins and try to log in again, CA Access
Control allows you to log in provided no process with the same user ID is running.

Limiting Concurrent Logins for a User

CA Access Control can control the number of concurrent logins in two ways:

Administrator Level

Set a systemwide definition in the database of the number of concurrent sessions a
user can have. You can set this value globally, for a profile group, or for individual
users.

User Level

Users individually control the number of concurrent logins allowed for them. This
way, when logging in, users can block the option of more login sessions with their
names, thus protecting themselves.

Note: The number of concurrent logins is independent of the number of sessions the
user is running on a particular terminal. Multiple sessions on one terminal are
considered as a single login. The concurrent-logins limit restricts the number of
terminals a user can concurrently log in from, not the number of logins from each
terminal.

Limiting Concurrent Logins Globally

In selang, enter the following command:

setoptions maxlogins(NumLogins)

Recognizing a Login Event

Chapter 9: Controlling Login Commands 111

Limiting Concurrent Logins Individually

In selang, enter the following command:

chusr username maxlogins(NumLogins)

The concurrent logins limit set for a user overrides the systemwide limit. To prevent CA
Access Control from enforcing the concurrent logins limit for a specific user, set the
user's concurrent logins limit to zero. (Note that you cannot use selang if you set the
maximum number of concurrent logins to one.)

Recognizing a Login Event

CA Access Control does not treat all attempts to change the user ID of a process as login
events. Usually a program attempts to change its user ID with a setuid system call. The
SURROGATE class controls these events, which are not necessarily considered login
events, and do not necessarily change the user identity from the point of view of CA
Access Control.

CA Access Control always preserves the original user identity-the identity with which the
user logged in initially. Ordinary setuid system calls do not cause CA Access Control to
register a change in user identity.

For CA Access Control to recognize the identity change, it must recognize this event as a
login event. It recognizes login events using the following rules:

■ The program that attempts to change the identity is defined as a login program. All
programs in the LOGINAPPL class are login programs.

■ The program executes a series of system calls corresponding to its definition in the
LOGINAPPL class.

When you begin an administration session (in selang or CA Access Control Endpoint
Management), CA Access Control performs a dummy login event. This is not a true login;
rather, CA Access Control performs certain internal checks, which are similar to login
checks.

Note: For more information, see the SEQUENCE property for the LOGINAPPL class in the
selang Reference Guide.

At the start of an administration session, the user name is checked in the machine to be
administered. You get access to this machine for administration only if you have WRITE
access for the terminal from which you perform the session.

Recognizing a Login Event

112 Endpoint Administration Guide for UNIX

For example, if you are logged in to host Minerva and would like to administer CA
Access Control on host Artemis, two conditions are necessary:

■ A TERMINAL object called Minerva (or the relevant fully qualified name) is in the
database record for Artemis.

■ You are listed in the ACL of this object with WRITE permission.

These conditions are checked prior to any other user authority check. Note that you also
need administrative authority in the database.

Chapter 10: Protecting TCP/IP Services 113

Chapter 10: Protecting TCP/IP Services

Protecting TCP/IP services is most important for file servers that contain sensitive data.
These servers must provide certain services only to trusted stations, and not to
intruders or computers that are unknown to the host.

This section contains the following topics:

Restricting TCP/IP Services (see page 113)
Using the TCP Class (see page 115)

Restricting TCP/IP Services

In an open network, any station can request services from other computers on the
network. The TCP/IP protocol can be used to supply many services. Some of these
services, such as rlogin, rcp, rsh, ftp, telnet, and rexec, are common to all UNIX-based
operating systems. Others are provided by in-house and third-party software.

CA Access Control intercepts the accept processes of TCP/IP at the host computer and
determines whether the accept program should continue normally or be overridden. CA
Access Control bases its decision on access rules governing hosts and services that you
define. You can create TCP/IP access rules in the database to specify the computers and
networks that are allowed to receive services such as file transfers, remote login, and
remote shell from a specific computer.

The following examples show how TCP/IP access rules can be defined and set to
efficiently block unwanted outsiders. If you have not yet had time to develop a
complete database, you may want to let any station that is not defined in the database
receive any service. If so, set the HOST record in the UACC class as follows:

chres UACC HOST defaccess(READ)

A station that is to have access rules for TCP/IP services from the local host is defined in
a record in the database under the HOST class. For each of these stations, the services
allowed are listed in the record. For example, the following command sequence defines
a record for station ws5 and denies it from receiving any TCP/IP service from the local
host:

newres HOST ws5

authorize HOST ws5 service(*) access(NONE)

Restricting TCP/IP Services

114 Endpoint Administration Guide for UNIX

The following command allows ws5 to perform telnet to the local computer:

authorize HOST ws5 service(telnet)

These settings allow users to telnet to the local computer, which means that the remote
user must specify a user name and password before using the local system. To allow a
station to receive all TCP/IP services from the local computer, you can use an asterisk in
the service keyword. For example, the following command allows ws5 to invoke any
TCP/IP service from the local computer:

authorize HOST ws5 service(*)

The service can be specified in several ways, some of which involve the port number.
The port number is an identification number for a service. All services have port
numbers, and the port numbers are mapped to the services in the file /etc/services. You
can specify a service in the following ways:

■ By its name as defined in the file /etc/services

■ By its port number

■ As a range of port numbers

■ As an RPC port that is listed in the /etc/rpc system file

For example, the following command permits ws5 to receive any TCP/IP service whose
port number falls between 7045 and 7050:

authorize HOST ws5 service(7045-7050)

In many cases, it is more economical to define a group of hosts and set its permissions
once, instead of making permissions for each individual computer. CA Access Control
provides the GHOST class, where each GHOST record defines a group of hosts. To define
a GHOST record and add hosts to its member list, enter the following commands:

newres GHOST gh1 mem(ws2, ws3, ws5)

authorize GHOST gh1 service(ftp)

The newres command defines a group of hosts called gh1 that contain the members
ws2, ws3, and ws5. The authorize command allows all three stations to receive ftp (file
transfer) services.

Using the TCP Class

Chapter 10: Protecting TCP/IP Services 115

Managing host groups is easier than managing individual stations, but to supply more
flexibility, CA Access Control also supports the definition of network access rules.
Networks are defined in the HOSTNET class. For example, consider the following set of
commands:

newres HOSTNET hn1 mask(255.555.0.0) match(192.168.0.0)

authorize HOSTNET hn1 service(*) access(NONE)

authorize HOSTNET hn1 service(ftp)

■ In the first line, the newres command, defines a network called hn1. With its mask
and match values, it specifies that any computer with an IP address whose first two
qualifiers are 192.168 is considered as coming from the hn1 network.

■ The combination of the second and third lines permits any station from the hn1
network to perform ftp, but not any other service, in the host computer.

Another method CA Access Control provides for defining TCP/IP access rules is
name-pattern access rules. CA Access Control supports the definition of generic records
in the HOSTNP class (host name pattern) with wildcards.

Note: For information on how CA Access Control performs string matching, see the
selang Reference Guide.

For example, the following command sequence permits all hosts whose names start
with the characters “lin” and end with the characters “.org.com” to receive all TCP/IP
services on the local host:

newres HOSTNP lin*.org.com

authorize HOSTNP lin*.org.com service(*).

Note: Hosts that are managed by NIS must be identified by their official names that
appear in a NIS map and not by their aliases. The chart in the following section
summarizes the TCP/IP check flow.

Using the TCP Class

Alternatively, you can specify protection by service instead of by host, by using the TCP
class.

Note: For more information about the TCP class, see the Reference Guide.

Use the TCP class to control incoming and outgoing services.

For example, the following commands create a record for the ftp service, with READ
(meaning the service can be used) as default access type, but prevent hosts that match
the name pattern PUBLIC* from receiving the service.

newres TCP ftp defaccess(READ)

authorize- TCP ftp hostnp(PUBLIC*) access(N)

Using the TCP Class

116 Endpoint Administration Guide for UNIX

You can also specify that a particular user or group be only permitted to receive a
particular service. For example, to allow all users to ftp to a host called hermes, but to
specify that only members of the group called acctng can access hermes with telnet,
enter the following commands:

newres HOST hermes

newres TCP ftp owner(nobody) defaccess(read)

newres TCP telnet owner(nobody) defaccess(read)

authorize TCP ftp uid(*) host(hermes) access(write)

authorize TCP telnet gid(acctng) host(hermes) access(write)

Note: defaccess(read) disables outgoing services. defaccess(write) disables incoming
services.

If the HOST class is active (that is, if it is used as a criterion for access), then the TCP class
cannot effectively be active. You can use the command setoptions class- HOST to
deactivate the HOST class; then use the command setoptions class+ TCP (if necessary) to
activate the TCP class. Deactivating the HOST class automatically deactivates GHOST,
HOSTNET, and HOSTNP as well.

Also, if the TCP class is active, use the setoptions command class- CONNECT to
deactivate the CONNECT class.

Streams Module for Network Interception

By default, the TCP class is not active. Before you activate the TCP class, the CONNECT
class, or the HOST class, be sure that the streams module is enabled.

To load the CA Access Control streams module on Solaris, complete the following steps:

1. Stop CA Access Control. Enter the following command:

secons -s

2. Enter the following command:

SEOS_load -s

3. Start CA Access Control. Enter the following command:

seload

Note: If you attempt to activate the TCP class when the streams module is not loaded,
an error appears:

ERROR: className class cannot be activated when streams are not loaded.

Please use SEOS_load -s to load the streams.

Using the TCP Class

Chapter 10: Protecting TCP/IP Services 117

The algorithm for incoming authorizations is:

Using the TCP Class

118 Endpoint Administration Guide for UNIX

Using the TCP Class

Chapter 10: Protecting TCP/IP Services 119

The algorithm for outgoing authorizations is:

Using the TCP Class

120 Endpoint Administration Guide for UNIX

Chapter 11: Managing Policy Models 121

Chapter 11: Managing Policy Models

This section contains the following topics:

The Policy Model Database (see page 121)
Architecture Dependency (see page 123)
Methods for Centrally Managing Policies (see page 125)
Automatic Rule-based Policy Updates (see page 125)
Mainframe Password Synchronization (see page 151)

The Policy Model Database

Managing tens or hundreds of databases individually is not practical. CA Access Control
supplies the Policy Model service, a component that lets you manage many databases
from one central database. Using the Policy Model service is optional, but it greatly
simplifies administration at large sites.

The Policy Model (PMD) service uses a Policy Model database (PMDB). Like other CA
Access Control databases, the PMDB contains users, groups, protected resources, and
rules governing access to the resources. In addition, the PMDB contains a list of
subscriber databases. Each subscriber is a CA Access Control database that resides on a
separate computer, or another PMDB that resides on the same or another computer. A
PMDB that updates a subscriber is the subscriber's parent.

The PMDB is a useful tool for managing many databases that have similar authority
restrictions and access rules.

Note: For information about administrating a PMDB (sepmd utility), see the Reference
Guide. For information about managing PMDBs remotely using selang, see the selang
Reference Guide.

PMDB Location on Disk

All PMDBs reside in a common directory (one per computer). The name of the directory
is specified by the _pmd_directory_ token in the [pmd] section of the seos.ini file. The
default value of _pmd_directory_ is ACInstallDir/policies, where ACInstallDir is the
installation directory for CA Access Control (by default /opt/CA/AccessControl/).

Each PMDB occupies a subdirectory in the common directory. The name of the
subdirectory is the name of the Policy Model. The files in the subdirectory contain all
the data required to define the Policy Model including the pmd.ini file.

The Policy Model Database

122 Endpoint Administration Guide for UNIX

Managing Local PMDBs

CA Access Control offers several utilities for administrating local PMDBs:

sepmd

A PMDB administration utility that lets you:

■ Administer subscribers

■ Truncate the update file

■ Administer Dual Control

■ Manage the Policy Model log file

■ Perform other administrative tasks

sepmdadm

Creates PMDBs and configures them with the necessary settings for setting up your
hierarchy.

Note: For a comprehensive discussion of the Policy Model utilities, see the Reference
Guide.

Managing Remote PMDBs

CA Access Control also offers you a range of selang commands that you can use in the
pmd environment. These commands let you manage PMDBs remotely:

backuppmd

Backs up a PMDB.

createpmd

Creates a PMDB.

deletepmd

Deletes a PMDB.

findpmd

Displays the names of all PMDBs on the computer.

listpmd

Lists the following information about a PMDB:

■ Subscribers and their status

■ PMDB description and its status

■ Commands in the update file and their offsets

■ Contents of the error log

Architecture Dependency

Chapter 11: Managing Policy Models 123

pmd

A PMDB administration command that lets you:

■ Remove a subscriber from the list of unavailable subscribers

■ Clear the Policy Model error log

■ Lock and unlock the Policy Model

■ Start and stop the Policy Model daemon

■ Truncate the update file

■ Reload the initialization files

restorepmd

Restores a PMDB from its backup files.

subs

A PMDB subscription command that lets you:

■ Add an existing subscriber to a parent PMDB

■ Add a new subscriber to a parent PMDB

■ Assign a parent PMDB to a database (CA Access Control or another PMDB)

subspmd

Assigns a parent PMDB to the local database.

unsubs

Removes a subscriber from the PMDB.

Note: For a comprehensive discussion of selang commands you can use in the pmd
environment, see the selang Reference Guide.

Architecture Dependency

When deploying CA Access Control, you should consider the hierarchy of your
environment. At many sites, the network includes a variety of architectures. Some policy
rules, such as the list of trusted programs, are architecture-dependent. On the other
hand, most rules are independent of the system's architecture.

You can cover both kinds of rules by using a hierarchy. You can define a global database
for architecture-independent rules, and give it subscriber PMDBs that define
architecture-dependent rules.

Note: The root PMDB and all of its subscribers can reside on the same computer or on
separate computers, depending on the physical needs of your environment.

Architecture Dependency

124 Endpoint Administration Guide for UNIX

Example: A Two-tiered Deployment Hierarchy

The following UNIX example also applies to a Windows architecture with small
modifications.

In the example, the site consists of IBM AIX and Sun Solaris systems. Since the list of
trusted programs on IBM AIX differs from the one on Sun Solaris, the PMDBs need to
consider architecture dependency.

To set up a multiple-architecture PMDB, set up your PMDBs as follows:

1. Define a PMDB named whole_world, to contain the users, groups, and all other
architecture independent policies.

2. Define a PMDB named pm_aix, to contain all the IBM AIX specific rules.

3. Define the PMDB pm_sol, to contain all the Sun Solaris specific rules.

The PMDBs pm_aix and pm_solaris are subscribers of the PMDB whole_world. All
IBM AIX computers at the site are subscribers of pm_aix. All Sun Solaris computers
at the site are subscribers of pm_sol. The concept is illustrated in the following
chart.

4. When you enter platform-independent commands in whole_world, such as adding
a user or setting a SURROGATE rule, all databases at the site are automatically
updated.

5. When you add a trusted program to pm_aix, only IBM AIX computers are updated,
without affecting the Sun Solaris systems.

Methods for Centrally Managing Policies

Chapter 11: Managing Policy Models 125

Methods for Centrally Managing Policies

CA Access Control lets you manage several databases from a single computer in the
following ways:

■ Automatic rule-based policy updates—Regular rules you define in a central
database (PMDB) are automatically propagated to databases in a configured
hierarchy.

Note: Dual control (see page 146) is only available with this method and on UNIX
only. Information about dual control for automatic rule-based policy updates is
found in the Endpoint Administration Guide for UNIX. Information about automatic
rule-based policy updates can also be found in the Endpoint Administration Guide
for Windows.

■ Advanced policy management—Policies (groups of rules) you deploy are
propagated to all databases based on host or host group assignment. You can also
undeploy (remove) policies and view deployment status and deployment deviation.
You need to install and configure additional components to use this functionality.

Note: Information about advanced policy management is found in the Enterprise
Administration Guide.

Automatic Rule-based Policy Updates

Single-rule policy updates (regular selang rules) you make in a central database are
automatically propagated to the subscriber databases. By subscribing several computers
to the same database, and by subscribing one database to another, you can create a
hierarchy. You configure your environment for automatic rule-based policy updates
after installation.

Note: This method of managing policies is limited to letting you make single-rule policy
updates across your hierarchy. Other functionality is only available through
implementing advanced policy management and reporting.

How Automatic Rule-based Policy Updates Work

When you configure your environment for automatic rule-based policy updates, each
rule you define in the central database is automatically propagated to all of its
subscribers in the following way:

1. A rule is defined for any PMDB with at least one subscriber.

2. The PMDB sends the command to all subscriber databases.

Automatic Rule-based Policy Updates

126 Endpoint Administration Guide for UNIX

3. The subscriber database applies the propagated command.

a. If the subscriber database does not respond, the PMDB sends the command at
a regular interval (by default, every 30 minutes) until the subscriber database
has been updated.

Alternatively, you can update subscriber databases as soon as they become
available, by setting the pull_option token to yes in the [pmd] section of the
seos.ini file on the subscriber computer.

b. If a subscriber database is responding, but refuses to apply the command, the
PMDB places the command in the Policy Model error log (see page 140).

4. If the subscriber database is a parent to other subscribers, it then sends the
command to its subscribers.

Example: Removing a user from all computers in a hierarchy

If a user is deleted from a PMDB using the rmusr command, the same rmusr command
is sent to all the subscriber databases. In this way, a single rmusr command can remove
a user from many databases on a variety of computers.

How You Use a PMDB to Propagate Configuration Settings

When you edit a Policy Model's configuration, the new configuration values are
propagated to the Policy Model's subscribers.

The following process describes how configuration updates are propagated to a Policy
Model's subscribers:

1. You edit one or more of the Policy Model's configuration values.

2. The Policy Model writes the new configuration values to the virtual configuration
file.

Note: The virtual configuration file does not contain values for the audit.cfg file. The
Policy Model does not write any changes you make to this file to the virtual
configuration file.

3. The Policy Model sends the new configuration values to its subscribers.

4. selang commands update each subscriber with the new configuration values.

Virtual Configuration File

Each Policy Model has a virtual configuration file that contains the configuration values
for its subscribers. The virtual configuration file is located in the PMD directory, and is
named cfg_configname, where configname is the name of the Policy Model
configuration.

The virtual configuration file does not contain the configuration values held in the
audit.cfg file.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 127

How New Subscribers Are Configured

The Policy Model configures each new subscriber with the existing configuration values.
The existing configuration values are stored in the virtual configuration file.

Note: The virtual configuration file does not store configuration values from the
audit.cfg file. Any changes you make to the audit.cfg file prior to creating a new
subscriber are not propagated to the new subscriber.

The following process describes how a Policy Model configures new subscribers:

1. You create a new subscriber to the Policy Model.

2. The Policy Model reads the values in its virtual configuration file.

3. The Policy Model adds the configuration values from its virtual configuration file to
the updates.dat file. The updates.dat file also contains the access rules for the
Policy.

4. The Policy Model sends the updates.dat file to the new subscriber.

5. selang commands configure the new subscriber with the values in the updates.dat
file.

How You Can Set Up a Hierarchy

CA Access Control uses the Policy Model service to propagate rule-based policy updates
across the configured hierarchy. By subscribing several CA Access Control computers to
the same PMDB, and by subscribing one PMDB to another, you create a hierarchy.

To enable automatic rule-based policy updates, do the following:

1. Create and configure the master PMDB (see page 128).

2. (Optional) Create and configure subscriber PMDBs (see page 130).

3. Define parent PMDBs for the subscribing computers (see page 132), called
endpoints.

Note: The following sections show how you set up a PMDB hierarchy. There are other
ways of creating PMDBs and then setting their hierarchy. For a comprehensive
discussion of the Policy Model utilities, see the Reference Guide.

Automatic Rule-based Policy Updates

128 Endpoint Administration Guide for UNIX

Create and Configure the Master PMDB

To let you manage policies from a central location, you first need to create and
configure a master PMDB. To do this on a local host, you can use the sepmdadm
command.

Note: The following procedure shows the interactive form of the sepmdadm command.
For information about using the command-line parameters for all input, see the
Reference Guide.

To create and configure the master PMDB

1. In a command line, enter the following command:

sepmdadm -i

CA Access Control starts the Policy Model database administration script
(sepmdadm) and displays a menu with options for you to choose from.

2. Enter 1, to select the first option (create a master PMDB and define its subscribers).

The script is configured to ask you the relevant questions.

3. Press Enter to continue.

The script continues to ask you the first question.

Note: If CA Access Control is not running, the script issues a warning and lets you
start CA Access Control before the script is rerun.

4. Enter a name for the Policy Model you want to create.

The script registers the Policy Model name and continues.

5. Enter the name of the first subscriber computer you want to specify.

The script registers the name of the first subscriber and then asks you to enter the
name of the next subscriber.

6. Continue to enter subscriber names as necessary, then press Enter without entering
a subscriber name.

The script registers all subscriber names and continues.

Note: You still must point each subscriber computer to its parent PMDB.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 129

7. If you are running NIS, NIS+, or DNS, choose whether you want to update the
NIS/DNS tables with PMDB changes.

Updates are made to users and groups in the PMDB. The tables provide information
on users and their characteristics. If you choose yes, a UNIX user or UNIX group
updated through the Policy Model is also updated in the NIS passwd and group
files.

a. Enter y if you want to update the NIS/DNS tables.

The script now asks you for the location of the NIS passwd and group files.

a. Enter the full path of the NIS password file.

 The script registers the full path and continues.

b. Enter the full path of the NIS group file.

 The script registers the full path and continues.

b. Enter n or press Enter if you want to update the NIS/DNS tables.

The script registers your answer and continues.

8. Enter the users you want to give special attributes for the PMDB:

a. Enter CA Access Control administrator names as necessary, then press Enter
without entering an administrator's name.

Administrators are authorized to change the properties of the PMDB.

Note: At least one administrator must be defined in a PMDB (root is the
default).

b. Enter enterprise user administrator names as necessary, then press Enter
without entering an administrator's name.

c. Enter CA Access Control auditor names as necessary, then press Enter without
entering an auditor's name.

Auditors are authorized to view the PMDB's audit log files.

d. Enter enterprise user auditor names as necessary, then press Enter without
entering an auditor's name.

e. Enter CA Access Control password manager names as necessary, then press
Enter without entering a password manager's name.

f. Enter enterprise user password manager names as necessary, then press Enter
without entering a password manager's name.

Password managers are authorized to change passwords in the PMDB.

The script registers your answer and continues.

Automatic Rule-based Policy Updates

130 Endpoint Administration Guide for UNIX

9. Enter administration terminals as necessary, then press Enter without entering an
administration terminal.

The script registers all administration terminals and then reports the selections you
have made and asks you to confirm them.

10. Press Enter to confirm the selections you have made, or enter n to rerun the script
with new inputs.

If you confirm your selections, a new PMDB is created using the answers you
supplied.

More information:

Create and Configure Subscriber PMDBs (see page 130)
Define Parent PMDBs for Subscribing Computers (see page 132)

Create and Configure Subscriber PMDBs

Once you have a master PMDB configured, if you want to extend your hierarchy, you
need to create and configure subscriber PMDBs. To do this on a local host, you can use
the sepmdadm command.

Note: The following procedure shows the interactive form of the sepmdadm command.
For information about using the command-line parameters for all input, see the
Reference Guide.

To create and configure subscriber PMDBs

1. In a command line, enter the following command:

sepmdadm -i

CA Access Control starts the Policy Model database administration script
(sepmdadm) and displays a menu with options for you to choose from.

2. Enter 2, to select the second option (create a subsidiary PMDB and define its
subscribers and parent.).

The script is configured to ask you the relevant questions.

3. Press Enter to continue.

The script continues to ask you the first question.

Note: If CA Access Control is not running, the script issues a warning and lets you
start CA Access Control before the script is rerun.

4. Enter a name for the Policy Model you want to create.

The script registers the Policy Model name and continues.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 131

5. Enter the name of the first subscriber computer you want to specify.

The script registers the name of the first subscriber and then asks you to enter the
name of the next subscriber.

6. Continue to enter subscriber names as necessary, then press Enter without entering
a subscriber name.

The script registers all subscriber names and continues.

Note: You still must point each subscriber computer to its parent PMDB (see
page 132).

7. Enter the name of the parent PMDB.

The script registers the parent PMDB name and continues.

Note: sepmdadm only lets you enter one parent for each subscribing database. You
can, however, define multiple parents for each database. To do this, modify the
parent_pmd token of the pmd.ini configuration file. For more information about
using this token, see the Reference Guide.

8. If you are running NIS, NIS+, or DNS, choose whether you want to update the
NIS/DNS tables with PMDB changes.

Updates are made to users and groups in the PMDB. The tables provide information
on users and their characteristics. If you choose yes, a UNIX user or UNIX group
updated through the Policy Model is also updated in the NIS passwd and group
files.

a. Enter y if you want to update the NIS/DNS tables.

The script now asks you for the location of the NIS passwd and group files.

a. Enter the full path of the NIS password file.

 The script registers the full path and continues.

b. Enter the full path of the NIS group file.

 The script registers the full path and continues.

b. Enter n or press Enter if you want to update the NIS/DNS tables.

The script registers your answer and continues.

9. Enter the users you want to give special attributes for the PMDB:

a. Enter CA Access Control administrator names as necessary, then press Enter
without entering an administrator's name.

Administrators are authorized to change the properties of the PMDB.

Note: At least one administrator must be defined in a PMDB (root is the
default).

b. Enter enterprise administrator names as necessary, then press Enter without
entering an administrator's name.

Automatic Rule-based Policy Updates

132 Endpoint Administration Guide for UNIX

c. Enter CA Access Control auditor names as necessary, then press Enter without
entering an auditor's name.

Auditors are authorized to view the PMDB's audit log files.

d. Enter enterprise user auditor names as necessary, then press Enter without
entering an auditor's name.

e. Enter CA Access Control password manager names as necessary, then press
Enter without entering a password manager's name.

Password managers are authorized to change passwords in the PMDB.

f. Enter enterprise user password manager names as necessary, then press Enter
without entering a password manager's name.

The script registers your answer and continues.

10. Enter administration terminals as necessary, then press Enter without entering an
administration terminal.

The script registers all administration terminals and then reports the selections you
have made and asks you to confirm them.

11. Press Enter to confirm the selections you have made, or enter n to rerun the script
with new inputs.

If you confirm your selections, a new PMDB is created using the answers you
supplied.

Define Parent PMDBs for Subscribing Computers

To establish an endpoint computer as a subscriber to a PMDB, you must do more than
register the subscriber's name in the PMDB. You also need to complete a procedure at
the subscriber computer.

To define parent PMDBs for subscribing computers

1. In a command line on the subscriber computer, start sepmdadm in interactive
mode:

sepmdadm -i

CA Access Control starts the Policy Model database administration script
(sepmdadm) and displays a menu with options for you to choose from.

2. Enter 3, to select the third option (define the parent and password PMDBs of the
local host).

The script is configured to ask you the relevant questions.

3. Press Enter to continue.

The interactive script continues to ask you the first question.

Note: If CA Access Control is running, the script issues a warning and lets you stop
CA Access Control before the script is rerun.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 133

4. Enter the name of the parent PMDB.

The script registers the name of the parent PMDB name and continues.

5. Enter the name of the parent password PMDB.

The script registers the name of the parent password PMDB name and then reports
the selections you have made and asks you to confirm them.

6. Press Enter to confirm the selections you have made, or enter n to rerun the script
with new inputs.

If you confirm your selections, the subscriber computer is set up with these inputs.

Note: sepmdadm only lets you enter one parent for each subscribing database. You can,
however, define multiple parents for each database. To do this, modify the parent_pmd
token of the seos.ini configuration file. For more information about using this token, see
the Reference Guide.

UID/GID Synchronization

As an administrator, you may receive messages that refer to users by UID and to groups
by GID. You need to make sure that the UIDs and GIDs have the same meaning
everywhere.

By default, the PMDB attempts to use the same UIDs and GIDs for new users and groups
everywhere, but you can help by providing the necessary conditions from the start. Start
with identical passwd files and identical group files, making sure that the synch_uid
token in the pmd.ini file is set to yes. If your local database is a subscriber to your PMDB,
and the PMDB is the only source of new users and new groups for your subscriber
databases, then you can depend on compatibility between the UIDs and between the
GIDs of your local database, your PMDB, and your PMDB subscribers.

If you create a new user with a UID that is already in use in the PMDB or in some other
subscriber computer, the subscriber's individual update fails; but in all other subscriber
computers where no such conflict exists, the update succeeds.

An alternative to synchronizing your passwd and group files is to explicitly specify the
UID of each new user and the GID of each new group.

Automatic Rule-based Policy Updates

134 Endpoint Administration Guide for UNIX

Synchronize Users and Groups

To ensure the lists of users and groups in your various databases correspond correctly at
all times, you need an initial set of identical lists. Because the password and group files
are so important, synchronize them before they begin accumulating local user and
group information.

To synchronize users and groups

1. Copy your /etc/passwd file and /etc/group file to your Policy Model directory.

This is a one-time procedure that destroys any previous passwd and group files in
your Policy Model directory (see page 121).

Note: If you are using a shadow file and want to synchronize passwords, we
recommend using the secrepsw utility. For more information, see the Reference
Guide.

2. Copy the /etc/passwd file and /etc/group file to each subscriber computer so that
they are identical to the ones on your own computer.

3. On the computer where the PMDB resides, ensure that the synch_uid token in your
pmd.ini file is set to yes.

By default, the value of the token synch_uid is yes. If you ever want a subscriber
database to have independent default UIDs and default GIDs (that is, not
necessarily attempting to match those of the PMDB), you can set synch_uid to no.

Specify UIDs Explicitly

Another way to send an identical UID or GID to the PMDB and to all its subscribers is to
explicitly set it when you create a new user.

To specify UIDs explicitly use the userid or groupid parameter with each newusr
command.

Example: Create a new user with a specified UID

If you want to establish 1234 explicitly as the UID of new user terry_jones (and assuming
that no one else in the database has that UID yet), enter the command:

newusr terry_jones unix (userid(1234))

If the specified UID is already being used in the PMDB, then the PMDB will not itself be
updated, but the command will still propagate to the other subscriber databases.
Among the other databases, wherever the particular UID is already in use, the
subscriber's individual update will fail; but where no such conflict exists, the update
succeeds.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 135

How the Policy Model Updates Subscribers

When updating subscribers, the Policy Model performs the following actions:

1. The Policy Model tries to fully qualify subscriber names as they are added or
deleted from the Policy Model.

2. The PMDB daemon, sepmdd, attempts to update a subscriber database for the
amount of time defined by the token _QD_timeout_.

3. If the maximum time elapses and the daemon does not succeed in updating a
subscriber, it skips that particular subscriber and tries to update the remainder of
the subscribers on its list.

4. After it completes its first scan of the subscriber list, sepmdd then performs a
second scan, in which it tries to update the subscribers that it did not succeed in
updating during its first scan. During the second scan, it tries to update a subscriber
until the connect system call times out (approximately 90 seconds).

Note: The token _QD_timeout_ may be found in both the seos.ini and pmd.ini files. If
the token exists in both files, sepmdd uses the value in the pmd.ini file.

Note: Whenever a PMDB encounters an error while propagating updates to subscribers,
the sepmdd daemon creates an entry in the Policy Model error log file (see page 140).
This file, ERROR_LOG by default, is located in the PMDB directory (see page 121).

Update a Policy Model Database

Working at the computer where the PMDB resides does not automatically update the
PMDB itself. To update a PMDB, you need to specify it as your target database.

To specify a target database, use the hosts command in the selang command shell:

hosts pmd_name@pmd_host

All selang commands now update the policy model database specified. The commands
then automatically propagate to the active databases on this computer and of all
subscriber computers.

Example: Specify a target PMDB

To set the target database to policy1 on myPMD_host, use the following command:

hosts policy1@myPMD_host

If you now enter the newusr command, the new user is added to the policy1 database
as well as the active databases on this computer and of all subscriber computers.

Automatic Rule-based Policy Updates

136 Endpoint Administration Guide for UNIX

Clean Up the Update File

The sepmd utility automatically writes each update it receives in the updates.dat file. To
prevent the file from growing too large, we recommend that you delete processed
updates from the file periodically.

To clean up the update file, use the following command:

sepmd -t pmdbName auto

sepmd calculates the offset of the first update entry that has not been propagated and
deletes all the update entries before it.

Note: For more information about sepmd utility, see the Reference Guide.

Encrypt the Update File

After you create a PMDB, but before you start sepmdd, you can specify that information
saved to the updates.dat file be encrypted.

To encrypt the update file, set the UseEncryption token to yes in the [pmd] section of
the pmd.ini file.

To decrypt the updates.dat file, use the sepmd utility with the -de switch.

Note: For more information about sepmd, see the Reference Guide.

Exclude Subscribers

You can skip subscribers so that they do not receive updates from parent PMDBs.

To exclude the local host, set the token exclude_localhost to yes in the pmd.ini file.

To add additional subscribers to the excluded list, set the token exclude_file
(name-of-file).

To make a subscriber receive updates, remove the subscriber from the excluded list.

Propagate Passwords

When a user changes a password using the sepass utility, the new password is normally
sent to the computer's parent PMDB. The parent PMDB is defined in the parent_pmd or
the passwd_pmd token in the [seos] section of the seos.ini file or in both. However, if
the user changes the password with the utility sepass, you can also specify that the
user's new password should be sent to and propagated by a separate PMDB.

To send a new user's password to a separate PMDB, use the pmdb parameter with the
newusr, chusr, or editusr command.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 137

Example: Specifying a separate PMDB for password propagation

To specify that the new passwords created with sepass for the user Tony should be sent
to and propagated by a separate PMDB pw_pmdb@name1.yourorg.com, enter the
following command:

editusr tony pmdb(pw_pmdb@name1.yourorg.com)

Remove a Subscriber

If you no longer want to propagate updates to a particular subscriber, you should
remove it. Alternatively, you can exclude a subscriber from receiving updates (see
page 136).

To remove a subscriber

1. Remove the computer from the subscription list:

sepmd -u PMDB_name computer_name

The computer is removed from the Policy Model subscription list.

2. Shut down seosd on the computer that you removed from the subscription list:

secons -s

The daemon seosd is shut down.

3. Delete the value of the parent_pmd token in the [seos] section of the seos.ini file
on the computer you removed from the subscription list.

The computer will stop accepting updates from the parent PMDB.

4. Restart seosd.

The active database on the computer that you removed from the subscription list is
no longer a subscriber of the specified PMDB.

Note: Once the database is unsubscribed from the PMDB, the PMDB no longer sends
commands.

Automatic Rule-based Policy Updates

138 Endpoint Administration Guide for UNIX

Filter Updates

If you want your PMDB to update different subsets of data at different subscriber
databases, you need to define which records are sent to subscriber databases.

To filter updates

1. Configure PMDBs to serve as parents to subsets of subscribers (see page 132).

2. Modify the filter token in the pmd.ini file of the parent PMDB, to point to a filter file
you set up on the same computer.

Updates to the subscriber databases are then limited to the records that pass the
filter.

Note: When you execute a join or join- selang command in the native UNIX
environment, CA Access Control changes the command to change group (cg). To filter
join or join- commands in the native UNIX environment, use the following line in the
filter file:

MODIFY UNIX GROUP GroupName USERS NOPASS

You cannot filter join or join- commands by user name in the native UNIX environment.
This rule does not apply to join or join- commands in any other environment.

Policy Model Filter File

A filter file consists of lines, each with six fields. The fields contain information on:

■ The form of access permitted or denied.

For example, READ or MODIFY

■ The environment affected:

For example, AC or native

■ The class of the record.

For example, USER or TERMINAL

■ The objects, within the class, that the rule covers.

For example, User1, AuditGroup, or TTY1

■ The properties that the record grants or cancels.

For example, OWNER and FULL_NAME in the filter line means that any command
having those properties is filtered. You must enter each property exactly as it
appears in the Reference Guide.

■ Whether such records should be forwarded to the subscriber database or not:

PASS or NOPASS

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 139

The following rules apply to each line in the filter file:

■ You can use an asterisk (*) to denote all possible values in any field.

■ If more than one line covers the same records, the first applicable line is used.

■ Spaces separate the fields.

■ In fields with more than one value, semicolons separate the values.

■ Lines beginning with # are considered a comment line.

■ Empty lines are not allowed.

Example: Filter file

The following example describes a line from a filter file:

CREATE AC USER * FULL_NAME;OBJ_TYPE NOPASS

form of access environment class record name
(* =all)

properties treatment

In this example, if we name the file with this line TTY1_FILTER and edit the pmd.ini file
for PMDB TTY1 so that filter=/opt/CA/AccessControl//TTY1_FILTER, then PMDB TTY1
will not propagate to its subscribers any records that create new users with the
FULL_NAME and OBJ_TYPE property.

Automatic Rule-based Policy Updates

140 Endpoint Administration Guide for UNIX

Policy Model Error Log File

The Policy Model error log, which is organized chronologically, looks similar to this:

Error Text Error Category

20 Nov 03 11:56:07 (pmdb1): fargo nu u5 0 Retry

 ERROR: Login procedure failed (10068)

 ERROR: Cannot accept update from a non-parent PMDB

 (pmdb1@name.company.com) (10104)

Configuration Errors

20 Nov 03 19:53:17 (pmdb1): fargo nu u5 0 Retry

 ERROR: Connection failed (10071)

 Host is unreachable (12296)

Connection Errors

20 Nov 03 11:57:06 (pmdb1): fargo nu u5 560 Cont

 ERROR: Failed to create USER u5 (10028)

 Already exists (-9)

20 Nov 03 11:57:06 (pmdb1): fargo nu u5 1120 Cont

 ERROR: Failed to create USER u5 (10028)

 Already exists (-9)

Database Update
Errors

The Policy Model error log is in binary format; you can view it only by entering the
following command:

ACInstallDir/bin sepmd -e pmdname

Note: Do not manually delete an error log (for example, with the UNIX rm command).
To delete the log, only use the following command:

ACInstallDir/bin sepmd -c pmdname

Important! The error log in CA Access Control r5.1 and later versions has a format that is
not compatible with the format of earlier versions. sepmd cannot handle error logs from
these earlier versions. When you upgrade to a version that has this format, the old error
log is copied to ERROR_LOG.bak; a new log file is created when you start sepmdd.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 141

Example: PMDB Update Error Message

The following example shows a typical error message:

■ The top line always consists of the date, time, and subscriber. The command that
generated the error appears next, followed by the offset (in decimal format), which
indicates the location of the failed update inside the updates file. Lastly, the flag
indicates whether the PMDB retries the update automatically or continues without
it.

■ The second line shows an example of a major level message (what type of error
occurred) and its return code.

■ The third line displays an example of a minor level message (why the error
occurred), and its return code.

Example: Error Message

A command may generate and display more than one error. Also, an error may consist
of a major level message, a minor level message, or both.

The following error has only one message level:

Fri Dec 29 10:30:43 2003 CIMV_PROD:Release failed. Return code = 9241

This message occurs when sepmd pull attempts to release a subscriber that is already
available.

Automatic Rule-based Policy Updates

142 Endpoint Administration Guide for UNIX

Policy Model Backup

When you back up a PMDB, you copy the data in the Policy Model database to another
directory. This includes:

■ policy information

■ the list of the Policy Model's subscribers

■ configuration settings

■ registry entries

■ the updates.dat file

You cannot restore a PMDB from backup files that use another platform, operating
system, or version of CA Access Control. Ensure you back up the Policy Model to a host
running the same platform, operating system, and version of CA Access Control.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 143

Back Up a PMDB Using sepmd

When you back up the PMDB, you copy the data from the Policy Model database to a
specified directory. You should store the backed up PMDB files in a secure location,
preferably protected by CA Access Control access rules.

You can use the sepmd utility to back up a PMDB on a local host. You can also use selang
commands to back up a PMDB on a remote host.

Note: You can back up a PMDB recursively. A recursive backup backs up all the PMDBs
in a hierarchy to the host you specify, and modifies the PMDB subscribers so that the
subscription still works when the backup is moved to the host. You can only use a
recursive backup if the master and child PMDBs are deployed on the same host.

To back up a PMDB using sepmd

1. Lock the PMDB using the following command:

sepmd -bl pmdb_name

The PMDB is locked and cannot send commands to its subscribers.

2. Do one of the following:

■ Back up the PMDB using the following command:

sepmd -bh pmdb_name [destination_directory]

■ Back up the PMDB recursively using the following command:

sepmd -bh pmdb_name [destination_directory] [backup_host_name]

Note: If you do not specify a destination directory, the backup is saved to the
following directory:

ACInstallDir/data/policies_backup/pmdb_name

3. Unlock the PMDB using the following command:

sepmd -ul pmdb_name

The PMDB is unlocked and can send commands to its subscribers.

Automatic Rule-based Policy Updates

144 Endpoint Administration Guide for UNIX

Back Up a PMDB Using selang

When you back up the PMDB, you copy the data from the Policy Model database to a
specified directory. You should store the backed up PMDB files in a secure location,
preferably protected by CA Access Control access rules.

You can use selang commands to back up a PMDB on a local or remote host. You can
also use the sepmd utility to back up a PMDB on a local host.

Note: You can back up a PMDB recursively. A recursive backup backs up all the PMDBs
in a hierarchy to the host you specify, and modifies the PMDB subscribers so that the
subscription still works when the backup is moved to the host. You can only use a
recursive backup if the master and child PMDBs are deployed on the same host.

To back up a PMDB using selang

1. (Optional) If you are using selang to connect to the PMDB from a remote host,
connect to the PMDB host using the following command:

host pmdb_host_name

2. Move to the PMD environment using the following command:

env pmd

3. Lock the DMS using the following command:

pmd pmdb_name lock

The PMDB is locked and cannot send commands to its subscribers.

4. Back up the DMS database using the following command:

backuppmd pmdb_name [destination(destination_directory)] [hir_host(host_name)]

Note: If you do not specify a destination directory, the backup is saved to the
following directory:

ACInstallDir/data/policies_backup/pmdbName

5. Unlock the PMDB using the following command:

pmd pmdb_name unlock

The PMDB is unlocked and can send commands to its subscribers.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 145

Policy Model Restoration

When a Policy Model is restored, CA Access Control copies the backup PMDB files into
the specified directory. Everything that is in the original PMDB files is copied to the new
PMDB directory, including:

■ policy information

■ the list of the Policy Model's subscribers

■ configuration settings

■ registry entries

■ the updates.dat file

If there is an existing PMBD in the destination directory, CA Access Control deletes the
existing files before copying the restoration files into that directory.

You cannot restore a PMDB from backup files that use another platform, operating
system, or version of CA Access Control. Ensure you back up the Policy Model to a host
running the same platform, operating system, and version of CA Access Control.

Restore a PMDB

When you restore a PMDB, CA Access Control copies the data from the PMDB backup
files into the directory you specify. CA Access Control must be running on the terminal
you do the restoration on.

Note: If you back up and restore the PMDB on different terminals, the PMDB does not
automatically update the terminal resource in the restored PMDB database. You must
add the new terminal resource to the restored PMDB. To add the new terminal
resource, stop the restored PMDB, run the selang -p pmdb command, then start the
restored PMDB.

To restore a PMDB, run one of the following on the terminal that you want to restore
the PMDB on:

■ sepmd -restore utility

■ selang restore pmd command

Note: For more information about the sepmd utility, see the Reference Guide. For more
information about selang commands, see the selang Reference Guide.

Automatic Rule-based Policy Updates

146 Endpoint Administration Guide for UNIX

Dual Control

Dual Control is a way of operation that divides the process of updating the PMDB into
two stages:

■ Creating a transaction which consists of one or more commands.

The maker - any user with the ADMIN attribute - enters one or more commands
that update the PMDB. The transaction is given a unique ID number and placed in a
file, where it waits to be processed before execution.

■ Authorizing the transaction for execution.

The checker - not the same user, but any other user with the ADMIN attribute -
locks the commands in the transaction, checks the commands, and authorizes or
rejects them. If the transaction is authorized, then the commands are executed in
the PMDB. If the transaction is rejected, then the transaction is deleted and the
PMDB is not updated. The checker cannot authorize some of the commands in a
transaction and reject others; the transaction must be processed as a whole.

Note: Only the find and show commands do not need the authorization of a
checker.

Using the parameters in the sepmd utility, makers can list, retrieve and edit, or delete
unprocessed transactions; checkers can lock transactions in order to authorize or reject
them, and they can unlock transactions for processing at a later time or by a different
checker.

When the sepmdd daemon receives the start_transaction command, it sends the child
process a unique number. The child process tags any further commands with this
identifying number, and the number is added to the new transaction and kept in the
memory of the sepmdd daemon. When sepmdd receives the end_transaction
command, the authorization algorithm is invoked. The authorization algorithm checks
that none of the commands in the transaction pertain to the maker of the transaction,
and none of the objects in the commands are already locked by another transaction that
is waiting to be processed prior to execution.

You cannot use the same objects in different transactions before they are processed. If
the check passes, then the relevant objects are locked, the transaction is assigned a
unique sequential number, and the data is saved in a file. Each transaction is saved in a
different file.

Note: For more information about the sepmd utility or the sepmdd daemon, see the
Reference Guide.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 147

Activate Dual Control

Dual Control lets you divide the duty of updating PMDBs between two people: a maker
and a checker.

To activate Dual Control, set the is_maker_checker token, in the pmd.ini file and in the
[pmd] section of the seos.ini file, to yes:

is_maker_checker=yes

Note: Create the Policy Model maker before setting these token values.

Create or Edit Transactions

When Dual Control is activated, the maker needs to create transactions before these are
processed by a checker.

To create a transaction

1. Make sure the following is true:

■ You (as a maker) have the ADMIN authority.

■ None of the commands pertain to you. (You cannot enter commands that
change yourself.)

■ None of the objects in the commands are already part of another transaction
that has not been processed by a checker yet.

■ All the objects in the commands exist.

■ You are not editing an existing transaction that another maker invoked. (You
can only edit your own transactions.)

2. Connect to the maker PMDB:

hosts maker@

The hosts command connects you to the PMDB (maker). When Dual Control is
activated, the name of the PMDB is always “maker.” After you enter the hosts
command, a message reports whether the connection to the host is successful or
not.

3. Start the transaction:

start_transaction transactionName

Use start_transaction command as the first step when entering or updating a
transaction. You can describe the transaction or give it any name you want, up to
256 alphanumeric characters.

Automatic Rule-based Policy Updates

148 Endpoint Administration Guide for UNIX

4. Enter your transaction.

This is a list of commands. For example:

newusr mary owner(bob) audit(failure,loginfailure)

chres TERMINAL tty30 defaccess(read) \

 restrictions(days(weekdays)time(0800:1800))

5. End the transaction:

end_transaction

The transaction is complete; you are presented with the unique ID number assigned
to your transaction. The commands are placed in a file, where you can still access
and change them until a checker, in preparation for processing, locks them.

Note: Make sure you record the transaction ID number if you want to be able to
edit the transaction later.

To edit a transaction

■ When you enter the end_transaction command, an ID number displays. This is a
unique number that identifies the transaction. If you want to overwrite your
transaction later, then the process is the same as creating a new transaction, except
that you add to the file the transaction's ID number after the name. You can enter
to the file any changes you want to make. For example:

hosts maker@

start_transaction transactionName transactionId

You can then enter the appropriate commands to update the transaction:

chusr mary category (FINANCIAL)

end_transaction

■ View specific unprocessed transactions with the following parameters.

Make sure you are in the ACInstallDir/bin path (where ACInstallDir is the installation
directory for CA Access Control, by default /opt/CA/AccessControl/).

Command with
Parameter

Description

sepmd -m l Lists the unprocessed transactions of the user who
invoked the parameter.

sepmd -m la Lists all the transactions of all the makers that are
waiting to be processed.

sepmd -m lo Lists the transactions of all the makers except those of
the user who invoked the parameter

Each transaction in the list includes the name of the
maker, the ID number of the transaction, and a
description of the transaction, if the maker entered
one.

Automatic Rule-based Policy Updates

Chapter 11: Managing Policy Models 149

■ Retrieve a specific transaction to the standard output with the following command:

sepmd -m r transactionId

■ Delete a specific transaction with this command:

sepmd -m d transactionId

Checking and Processing Transactions

When Dual Control is activated, the checker needs process transactions created by a
maker.

To check a transaction

1. Make sure the following is true:

■ You (as the checker) have ADMIN authority.

■ Another Checker does not lock the transaction.

■ None of the commands pertain to you. (You cannot process commands that
involve yourself.)

2. Navigate to the ACInstallDir/bin path

where ACInstallDir is the installation directory for CA Access Control, by default
/opt/CA/AccessControl/

3. View the transactions that are waiting to be processed before execution:

sepmd -m la

Or, view all the transactions except the transactions that you yourself created:

sepmd -m lo

Each transaction includes the name of the maker, the ID number of the transaction,
and the name or description of the transaction.

4. Lock the transactions before processing them:

sepmd -m r transactionId

Note: A locked transaction cannot be changed.

Automatic Rule-based Policy Updates

150 Endpoint Administration Guide for UNIX

5. Process the transaction:

sepmd -m p transactionId code

code

Can be one of the following:

■ 0—The transaction is rejected.

 In this case, all the commands in the transaction are deleted and no
changes are implemented in the PMDB.

■ 1—The transaction is authorized.

 The commands in the transaction are immediately implemented in the
PMDB.

■ 2—The transaction is unlocked.

 The transaction returns to the queue of waiting transactions and can be
processed later, perhaps by a different checker.

A message appears stating which commands were successful and which failed.

Note: For more information on makers and checkers, see the sepmd utility in the
Reference Guide and the start_transaction command in the selang Reference Guide.

Using the seagent and sepmdd Daemons

The seagent daemon is responsible for accepting requests from remote computers and
applying them to PMDBs; the seagent daemon also sends requests to seosd. The
sepmdd daemon is the PMDB daemon. This section describes how these daemons work
together in the PMDB environment.

The seagent Daemon

The seagent daemon waits for connections on the seoslang and seoslang2 TCP services
(whose default values are 8890 and 8891, respectively). When a connection request
arrives, seagent forks a child process to handle the communication on the connection
and then continues waiting for new connections.

When a user enters the hosts command in selang, seagent forks a child process on the
machine that the user is connected to. The child process then receives commands from
the command language interface and passes them on to the sepmdd daemon.

Mainframe Password Synchronization

Chapter 11: Managing Policy Models 151

The sepmdd Daemon

The sepmdd daemon performs the following functions:

■ Administers the PMDB

■ Administers the subscriber databases

■ Propagates changes from the PMDB to the subscriber databases

The sepmdd daemon is automatically started by seagent when seagent has to access the
PMDB. Normally you do not need to run sepmdd explicitly.

Note: sepmdd runs under the logical user _seagent (not under root) in the AC
environment. To permit or restrict access to resources by sepmdd (for example, to
restrict access to the PMDB directory), create the relevant rules for _seagent.

Using a Shadow File

Usually, sepmdd does not use a shadow file when updating a native environment. You
can, however, set up a shadow file. To do this, set the UseShadow token in the [pmd]
section of the pmd.ini file to yes.

If the UseShadow token is set to yes, sepmdd uses a default shadow file in the same
directory as the PMDB. If you want to change the location of the shadow file, specify the
new location with the YpServerSecure token in the [pmd] section of the pmd.ini.

If you change the location of the shadow file (with the YpServerSecure), to the local
host's shadow file (for example, /etc/shadow), sepmdd sets a token, UseSystemFiles, to
yes.

Important! Do not change the UseSystemFiles token yourself. The sepmdd or seagent
daemons change it automatically.

Note: For more information about the seagent or sepmdd daemons, see the seagent
and sepmdd utilities in the Reference Guide.

Mainframe Password Synchronization

CA Access Control supports password synchronization among mainframes running CA
Top Secret, CA ACF2, or RACF security products (and CA Common Services CAICCI
package) and Windows or UNIX computers running CA Access Control. Synchronization
is accomplished using the standard CA Access Control password Policy Model method.

Any password change a mainframe user makes is propagated to all the machines in the
password Policy Model hierarchy.

Chapter 12: General Security Features 153

Chapter 12: General Security Features

This section contains the following topics:

Protection of Idle Stations (see page 153)
Protecting Resources Using APIs (see page 157)
Protecting Against Stack Overflow: STOP (see page 157)
Defining Day and Time Access Rules for Resources (see page 158)
B1 Security Level Certification (see page 159)

Protection of Idle Stations

Information is extremely vulnerable when terminals are left open and active. An
intruder who happens upon such a terminal (for example, during a lunch break) need
not try to break passwords or have complicated equipment to sniff the network lines,
since all terminals at the site are already logged in and ready for work. Although screen
savers that prompt for the password before restoring the desktop are useful, the
security administrator cannot make sure that all users are using secured screen savers.

CA Access Control provides selock, a screen-locking utility that guards all terminals and
stations by locking them whenever they are idle for more than a specified period of
time. When returning to work, the user is prompted to specify the password. If the
correct password is not specified within one minute, the terminal remains locked. The
selock utility can find the password of users who can unlock a screen even if those users
change their passwords while selock is active.

Note: For more information about the screen lock utility selock, see the Reference
Guide.

Protection of Idle Stations

154 Endpoint Administration Guide for UNIX

You should choose to use selock options that suit your requirements:

■ Less security, more convenience

Use the -timeout option to set the timeout to a large value, such as 10 minutes, and
the -lock-timeout option to set the lock timeout to an even larger value, such as 60
minutes. This prevents selock from excessively interrupting your work by switching
to the saver mode. Also, this setting locks your screen only in cases when your
terminal is left inactive for extended periods.

■ More security, less convenience

Use the -timeout option to set the timeout to a small value, such as 1 minute, and
-lock-timeout option to set the lock timeout to a small value, between 0 and 2
minutes. This always hides your work soon after you stop accessing your terminal,
and requires a password for restoring access. To ensure that selock always requires
password-entry to reactivate your terminal after the saver mode starts, use the
-lock-timeout option to set the lock timeout to zero.

■ The selock command can be part of the X startup shell, so that it starts
automatically every time the user logs in to the system. The script must be run
under the user ID, not under the root ID. The way you integrate the selock
command into the startup script depends on the specific environment of the site.

Note: For more information on startup scripts, see the documentation for your
UNIX system.

Protection Modes

selock offers three modes of operation:

Monitor Mode

The monitor mode is the initial mode of selock. In this mode, selock monitors
keyboard and mouse activity. If selock detects no keyboard or mouse activity during
the time-out period-and the transparent parameter is off-selock automatically
switches to the saver mode. No password entry is required for the transition from
the monitor mode to the saver mode.

Protection of Idle Stations

Chapter 12: General Security Features 155

Saver Mode

In the saver mode selock blanks the entire screen and displays a system icon that
shifts position. The blank screen and shifting icon provide two operational
advantages:

■ Reduced risk of screen viewing by unauthorized people

■ Reduced screen burn-in

You can manipulate the appearance and repositioning of the icon using selock
options. When selock detects any keyboard or mouse activity, it immediately
returns from the saver mode to the monitor mode, restoring the screen display to
what it was before it switched to saver mode. No password entry is required for the
transition from the monitor mode to the saver mode.

If selock remains in the saver mode for the period specified by the lock-timeout
parameter, it automatically switches to the lock mode. selock does not give any
visual indication of the transition from the saver mode to the lock mode.

Lock Mode

In lock mode with the default settings, selock continues to display a moving icon on
a black background. When selock detects any keyboard or mouse activity, a dialog
containing a prompt for the user's password appears.

When the user enters the correct password, selock switches back to monitor mode.
If the user enters an incorrect password, the password-entry dialog closes and
selock remains in the lock mode.

If you set the -transparent option to on, selock locks the screen but displays the
contents and updates the on-going processes. The background of the screen
changes to indicate that the screen is locked. When you use the lock mode, saver
mode is never invoked.

Protection of Idle Stations

156 Endpoint Administration Guide for UNIX

Set Stations to Lock when Idle

The selock utility lets you lock idle stations to prevent unauthorized access to these
stations when they are left idle.

To set stations to lock when idle

1. (Optional) Set the DISPLAY environment variable.

For the selock command to work, you must set the DISPLAY environment variable.
However, you can specify the target display directly in the selock command instead.

2. Place the selock command in the user's login script (the .login file).

Alternatively, you can place the selock command in the /etc/login or /etc/cshrc file.

Note: Two users can always unlock a locked screen. By default, these users are the
current user and root. However, you can replace root with any other user if you specify
the other user's name in the unlocking_user token, located in the [selock] section of the
seos.ini file. You can replace the current user with any other user by using the -user
option when executing selock.

Example: Idle station lockup command in a startup file

The following is a typical startup command, suitable to be placed in X startup files:

selock -display $DISPLAY -timeout 5

This command activates selock after five minutes of terminal inactivity.

We recommend that you place the following line in the global xstartup script. The
xstartup script usually resides in the directory /usr/lib/X11/xdm/Xstartup.

selock -display $DISPLAY -user $USER -timeout 3 &

This statement enforces use of the terminal locking program for all users who are using
X terminals.

Change the Screen Lock Icon

The default system icon that selock uses is the CA Access Control logo and is located in
the file ACInstallDir/data/admin/Selogo.xpm

To select an icon of your own choice, replace this file.

Note: The icon file must be in XPM version 3.3 format.

Protecting Resources Using APIs

Chapter 12: General Security Features 157

Protecting Resources Using APIs

If you have defined resources that are not part of CA Access Control (that is, in-house
resources), you can protect them by using CA Access Control APIs. Each API has two
layers:

The function library

Enables programmers to use the CA Access Control authorization engine.

The user exits

Enable the system administrator to tailor CA Access Control behavior to the
requirements of the site.

Note: For more information about CA Access Control APIs, see the SDK Guide.

Protecting Against Stack Overflow: STOP

Stack overflow enables hackers to execute arbitrary commands on remote or local
systems, many times as the root user (the superuser). They do this by exploiting bugs in
the operating system or other programs. These bugs allow users to overwrite the
program stack, changing the next command to be executed.

Stack overflow is not simply a bug; it is possible to create a block that overwrites the
return address with a meaningful address, resulting in transferred control to
unauthorized code (usually in the same block).

Stack Overflow Protection (STOP) is a feature that prevents hackers from creating and
exploiting stack overflow to break into systems.

Note: The STOP feature on Red Hat Linux and SuSE Linux is not activated when Linux
native stack randomization (ExecShield randomize) is enforced.

On Linux s390 RHEL 4, native stack randomization does not work and must be
deactivated for STOP to be active. To deactivate native stack randomization, enter the
following command:

echo 0 > /proc/sys/kernel/exec-shield-randomize

Defining Day and Time Access Rules for Resources

158 Endpoint Administration Guide for UNIX

Starting and Stopping STOP

When STOP is first installed, stack overflow protection is activated by default. To
deactivate it, you must change a token in the [seos_syscall] section of the seos.ini file
and restart CA Access Control. To do this, use the seini command as follows:

seini -s SEOS_syscall.STOP_enabled 0

You could manually change the seos.ini file instead.

To re-enable STOP, change the value of the token to 1 and restart CA Access Control.

Note: When STOP is active on Sun Solaris 7 systems, the dbx program cannot work
properly. If you need to use dbx on a system that is protected by STOP, you must first
disable STOP.

Defining Day and Time Access Rules for Resources

You can use CA Access Control to specify day-of-week and time-of-day restrictions for
resource access. This feature can be exploited for TERMINAL access, SURROGATE
requests, and user-defined resources. For example, the following rule completely
disables the terminal ws3 on weekends and outside the 08:00-19:00 time period every
day:

chres TERMINAL ws3 restrictions(days(weekdays) time(0800:1900))

No login request from that station is accepted outside these periods.

You can use CA Access Control to protect against substitution requests to highly
authorized users outside work hours. Suppose user AcctMgr is the Accounting Manager,
who is allowed to perform financial transactions, and you have restricted AcctMgr login
to work hours and weekdays only. Intruders or unauthorized personnel may try to
access the account of AcctMgr by invoking the command su AcctMgr. Use the following
command to make it impossible to substitute the user name to AcctMgr outside the
specified period:

chres SURROGATE USER.AcctMgr restrictions(days(weekdays) time(0800:1900))

The same technique can be implemented for any protected resource, including
user-defined abstract classes that are used for implementing in-house applications.

B1 Security Level Certification

Chapter 12: General Security Features 159

B1 Security Level Certification

CA Access Control includes the following B1 “Orange Book” features:

■ Security categories

■ Security labels

■ Security levels

Security Levels

When security level checking is enabled, CA Access Control performs security level
checking in addition to its other authorization checking. A security level is a positive
integer between 1 and 255 that can be assigned to users and resources. When a user
requests access to a resource that has a security level assigned to it, CA Access Control
compares the security level of the resource with the security level of the user. If the
user's security level is equal to or greater than the security level of the resource, CA
Access Control continues with other authorization checking; otherwise, the user is
denied access to the resource.

If the SECLABEL class is active, CA Access Control uses the security level associated with
the security labels of the resource and user; the security level that is explicitly set in the
resource and user records is ignored.

To protect a resource with security level checking, assign a security level to the
resource's record. The level parameter of the newres or chres command assigns a
security level to a resource.

To allow a user access to resources protected by security level checking, assign a
security level to the user's record. The level parameter of the newusr or chusr command
assigns a security level to a user.

Enabling Security Level Checking

The following setoptions command enables security level checking:

setoptions class+ (SECLEVEL)

Disabling Security Level Checking

The following setoptions command disables security level checking:

setoptions class- (SECLEVEL)

B1 Security Level Certification

160 Endpoint Administration Guide for UNIX

Security Categories

When security category checking is enabled, CA Access Control performs security
category checking in addition to its other authorization checking. When a user requests
access to a resource that has one or more security categories assigned to it, CA Access
Control compares the list of security categories in the resource record with the category
list in the user record. If every category assigned to the resource appears in the user's
category list, CA Access Control continues with other authorization checking; otherwise,
the user is denied access to the resource.

If the SECLABEL class is active, CA Access Control uses the list of security categories
associated with the security labels of the resource and user; the lists of categories in the
user and resource records are ignored.

To protect a resource by security category checking, assign one or more security
categories to the resource's record. The category parameter of the newres or chres
command assigns security categories to a resource.

To allow a user access to resources protected by security category checking, assign one
or more security categories to the user's record. The category parameter of the newusr
or chusr command assigns security categories to a user.

Enabling Security Category Checking

The following setoptions command enables security category checking:

setoptions class+ (CATEGORY)

Disabling Security Category Checking

The following setoptions command disables security category checking:

setoptions class-(CATEGORY)

B1 Security Level Certification

Chapter 12: General Security Features 161

Defining a Security Category

Define a security category by defining a resource in the CATEGORY class. The following
newres command defines a security category:

newres CATEGORY name

where name is the name of the security category.

To define the security category “Sales,” enter the following command:

newres CATEGORY Sales

To define the security categories “Sales” and “Accounts,” enter the following command:

newres CATEGORY (Sales,Accounts)

Listing Security Categories

To display a list of all the security categories that are defined in the database, use the
show command as follows:

find CATEGORY

The list of security categories displays on the screen.

Deleting a Security Category

Delete a security category by removing its record from the CATEGORY class. The
following rmres command removes a security category:

rmres CATEGORY name

where name is the name of the security category.

To remove the security category “Sales,” enter the following command:

rmres CATEGORY Sales

B1 Security Level Certification

162 Endpoint Administration Guide for UNIX

Security Labels

A security label represents an association between a particular security level and zero or
more security categories.

When security label checking is enabled, CA Access Control performs security label
checking in addition to other authorization checks. When a user requests access to a
resource that has a security label assigned to it, CA Access Control compares the list of
security categories specified in the resource record's security label with the list of
security categories specified in the user record's security label. If every category
assigned to the resource's security label appears in the user's security label, CA Access
Control continues with the security level check; otherwise, the user is denied access to
the resource. CA Access Control compares the security level specified in the resource
record's security label with the security level specified in the user record's security label.
If the security level assigned in the user's security label is equal to or greater than the
security level assigned in the resource's security label, CA Access Control continues with
other authorization checking; otherwise, the user is denied access to the resource.

When security label checking is enabled, the security categories and security level
specified in the user and resource records are ignored; only the security level and
categories specified in the security label definitions are used.

To protect a resource by security label checking, assign a security label to the resource's
record. The label parameter of the newres or chres command assigns a security label to
a resource.

To allow a user access to resources protected by security label checking, assign a
security label to the user's record. The label parameter of the newusr or chusr command
assigns security labels to a user.

Enabling Security Label Checking

The following setoptions command enables security label checking:

setoptions class+(SECLABEL)

Disabling Security Label Checking

The following setoptions command disables security label checking:

setoptions class-(SECLABEL)

B1 Security Level Certification

Chapter 12: General Security Features 163

Defining a Security Label

Define a security label by defining a resource in the SECLABEL class. The following
newres command defines a security label:

newres SECLABEL name category(securityCategories) level(securityLevel)

where:

name

Specifies the name of the security label.

securityCategories

Specifies the list of security categories. To specify more than one, separate the
security category names with a space or a comma.

securityLevel

Specifies the security level. Use an integer between 1 and 255.

To define the security label Managers to contain the security categories Sales and
Accounts and a security level of 95, enter the following command:

newres SECLABEL Manager category(Sales,Accounts) level(95)

Listing the Security Labels

To display a list of all the security labels that are defined in the database, use the show
command as follows:

find SECLABEL

The list of security labels appears on the screen.

Deleting a Security Label

A security label is deleted by removing its record from the SECLABEL class. The following
rmres command removes a security label:

rmres SECLABEL name

where name is the name of the security label.

To remove the security category “Manager” enter the following command:

rmres SECLABEL Manager

Chapter 13: Auditing Events 165

Chapter 13: Auditing Events

This section contains the following topics:

Setting Audit Rules (see page 165)
Defining the Audit Events That CA Access Control Writes to the Audit Log (see page 166)
How User Session Logging Works (see page 167)
How CA Access Control Determines the Audit Mode for a User (see page 168)
Warning Mode (see page 172)
Audit Logs (see page 176)
Log Routing (see page 179)
Migrate User Trace Filters (see page 184)

Setting Audit Rules

For security auditing, CA Access Control keeps audit records for events of access denial
or access grants according to the audit rules defined in the database.

Every accessor and resource has an AUDIT property that can be set to one or more of
the following values:

FAIL

Logs access failures by the accessor to the resource.

SUCCESS

Logs successful accesses by the accessor to the resource.

LOGINFAIL

Logs every logon failure by the accessor. (This value does not apply to resources.)

LOGINSUCCESS

Logs every successful logon by the accessor. (This value does not apply to
resources.)

ALL

Logs the same information as FAIL, SUCCESS, LOGINFAIL, and LOGINSUCCESS for
accessors or FAIL and SUCCESS for resources.

NONE

Logs nothing concerning the accessor or resource.

TRACE

Logs the same information as ALL and all system events. (This value does not apply
to resources.)

Defining the Audit Events That CA Access Control Writes to the Audit Log

166 Endpoint Administration Guide for UNIX

Whenever you create or update an accessor or resource record in the database, you can
specify the AUDIT property. You can also specify whether email notification of logged
events should be sent and to whom.

The records in the audit log accumulate according to these audit rules. The decision
whether to log an event is based on the following:

■ If the resource or accessor has AUDIT(ALL), all login events for the accessor and all
events concerning resources protected by CA Access Control are logged, regardless
of whether access failed or succeeded.

■ If access to a resource protected by CA Access Control is successful and the accessor
or resource has AUDIT(SUCCESS), the event is logged.

■ If access to a resource protected by CA Access Control fails and the accessor or
resource has AUDIT(FAIL), the event is logged.

In addition, if you set a user to be traceable, each time a trace record is written for that
user, a corresponding audit record is written to the audit log.

Defining the Audit Events That CA Access Control Writes to the
Audit Log

CA Access Control writes access success and failures to the audit log. You define which
access events CA Access Control writes to the audit log, by changing the value of the
AUDIT property for the resource or accessor that you want to audit. You can also use
this method to specify that CA Access Control logs every trace event to the audit log.

You use the AUDIT property to specify the audit events that CA Access Control writes to
the audit log. Use selang or CA Access Control Endpoint Management to set the AUDIT
property for resources and accessors as follows:

Value of AUDIT What CA Access Control Logs Applicable Objects

FAIL Access failures Users and resources

SUCCESS Access successes Users and resources

LOGINFAIL Login failures Users

LOGINSUCCESS Login successes Users

ALL Equivalent to FAIL, SUCCESS,
LOGINFAIL, LOGINSUCCESS,
INTERACTIVE

Users and resources

TRACE Equivalent to ALL plus all system
events

Users

INTERACTIVE User sessions on UNIX computers Users

How User Session Logging Works

Chapter 13: Auditing Events 167

Value of AUDIT What CA Access Control Logs Applicable Objects

NONE No logging Users and resources

Note: If the audit property of a user is not set, the AUDIT value of a group or profile
group can affect the audit mode CA Access Control uses for the user.

How User Session Logging Works

User session logging lets you trace user activities on the endpoint, replay the sessions,
and view the commands the user entered during that session.

The session logger logs input for all programs listed in the /etc/shells file. For example, if
/usr/bin/passwd is listed in /etc/shells and you use passwd to change your password,
the seaudit utility displays your changed password when you display the session logs.
We recommend that you review the /etc/shells file before you implement session
logging.

The following process explains how user session logging works:

1. Install CA Access Control with the Keyboard Logger option enabled.

Customize the CA Access Control parameters file to enable Keyboard Logger.

Note: You can enable Keyboard Logger after installation in the seos.ini file.

2. Start CA Access Control.

Verify that the Keyboard Logger daemon, KBLAudMngr, is running. Use the issec
utility to view the status of CA Access Control daemons.

3. Assign the INTERACTIVE property to the users that you want to trace to enable
session logging. For example:

■ selang:

eu user1 audit(interactive)

■ CA Access Control Endpoint Management:

Check the Interactive box in the Audit tab of the User Properties window.

CA Access Control enables session logging for the user account.

How CA Access Control Determines the Audit Mode for a User

168 Endpoint Administration Guide for UNIX

4. When a user logs into the endpoint, CA Access Control begins to record the user
session. When the user logs out of the endpoint, the session ends.

5. CA Access Control saves the recorded sessions in the kbl.audit log file. The file is
located in the following directory:

/opt/CA/AccessControl/log

6. Use the seaudit utility with the -kbl command to display the contents of the
kbl.audit log file. For example:

./seaudit -kbl -sid 65223 -rp

Note: For more information about the seaudit -kbl command, see the Reference
Guide. We recommend that you integrate the CA Access Control endpoint with CA
Enterprise Log Manager to collect user sessions from hosts in your enterprise and
generate reports. For more information about the integration with CA Enterprise
Log Manager, see the Implementation Guide.

How CA Access Control Determines the Audit Mode for a User

The audit mode for a user specifies which audit events CA Access Control sends to the
audit log for that user. The following process describes how CA Access Control
determines the audit mode for a user:

1. CA Access Control checks if the user's record in the USER or XUSER class has a value
for the AUDIT property.

If the user's record has a value for the AUDIT property, CA Access Control uses that
value as the audit mode for the user.

2. CA Access Control checks if the user is assigned to a profile group. If the user is
assigned to a profile group, CA Access Control checks if the profile group's record in
the GROUP class has a value for the AUDIT property.

If the user is assigned to a profile group and the profile group's record has a value
for the AUDIT property, CA Access Control uses that value as the audit mode for the
user.

How CA Access Control Determines the Audit Mode for a User

Chapter 13: Auditing Events 169

3. CA Access Control checks if the user is a member of a group. If the user is a group
member, CA Access Control checks if the group's record in the GROUP or XGROUP
class has a value for the AUDIT property.

If the user is group member and the group's record has a value for the AUDIT
property, CA Access Control uses that value as the audit mode for the user. If the
user is not a member of a group, or if the group's record does not have a value for
the AUDIT property, CA Access Control assigns the systemwide audit mode to the
user.

Note: The user's audit mode accumulates if a user is a member of more than one
group and the groups have different audit modes. The audit mode for the user is
the sum of all the audit modes for the groups of which they are members.

Note: If CA Access Control uses the value of a group's AUDIT property to determine the
audit mode for a user, and you change the group's audit mode while the user is logged
in, the audit mode for the logged-in user also changes. The user does not have to log off
for the change in group audit mode to take effect.

How CA Access Control Determines the Audit Mode for a User

170 Endpoint Administration Guide for UNIX

The following diagram shows how CA Access Control determines the audit mode for a
user:

Start

D oes the user have an

audit m ode?

Is the user assigned

to a profile group?

D oes the profile

group have an audit

m ode?

Accum ulate the audit

m ode from the groups of

w hich the user is a

m em ber

D o one or m ore

groups have an audit

m ode?

The audit m ode

for the user is the

user’s audit m ode

The audit m ode

for the user is the

system w ide audit

m ode

End

The audit m ode

for the user is the

profile audit m ode

Yes

N o

Yes

Yes

N o

Yes N o

N o

The audit m ode

for the user is the

accum ulated

group audit m ode

Example: Audit by Groups

User Jan is a member of Group A and Group B. Group A has an audit mode of FAIL and
Group B has an audit mode of SUCCESS. Because Jan is a member of both groups, Jan
has the accumulated audit mode of FAIL and SUCCESS.

More information:

How CA Access Control Uses Profile Groups to Determine User Properties (see page 37)

How CA Access Control Determines the Audit Mode for a User

Chapter 13: Auditing Events 171

Default Audit Modes for Users and Enterprise Users

When you create a user (USER object), CA Access Control assigns the default
AUDIT_MODE to the object. The default value of the AUDIT_MODE property is Failure,
SuccessLogin, SuccessFailure.

When you create an enterprise user (XUSER object), by default CA Access Control does
not assign a default AUDIT_MODE value to the object.

Note: (UNIX) To change the default value of the AUDIT_MODE property for USER
objects, edit the value of DefaultAudit in the [newusr] section of the lang.ini file.

Change to Default Audit Value for Some Users

Before r12.0 SP1 CR1, the default audit mode was None for the following accessors:

■ Users that do not have a defined AUDIT value in their corresponding USER class
record, and that are not associated with a profile group that has a defined AUDIT
value.

■ Any user that is not defined in the database (represented by the _undefined user
record).

Note: If you use enterprise users, CA Access Control does not consider any users as
undefined. Properties of the _undefined user are not relevant in this case.

From r12.0 SP1 CR1, the default audit mode for these accessors is Failure, LoginSuccess,
and LoginFailure. To retain earlier behavior, set the value of the AUDIT property to None
for these users.

Changing the Value of AUDIT Property for GROUP Records

If you have a GROUP record that has two functions:

■ A profile that defines an audit policy for one set of users

■ A container for a second set of users

From r12.0 SP1 CR1 onwards, the GROUP record also defines the audit policy for the
second set of users. To avoid problems that this behavior change may cause, create a
separate GROUP for the second set of users.

Warning Mode

172 Endpoint Administration Guide for UNIX

Warning Mode

Warning Mode is a property that you can apply to a resource, and an option that you
can apply to a class. If Warning mode is applied to a resource or a class and an access
violates an access rule, CA Access Control writes an audit log entry with the return code
W, but permits the access to the resource. If a class is in Warning mode, all the
resources in that class are in Warning mode.

Warning Mode only has an effect if CA Access Control is in Full Enforcement mode.

Note: Full Enforcement mode is the only mode CA Access Control for UNIX supports. CA
Access Control for Windows also supports Audit Only mode.

You can use Warning mode when you introduce or modify an access policy. If you do
this, you can examine the audit log to preview the results of your intended policy before
you put that policy into effect. You can display the audit log by using the seaudit
command.

If a class has the property warning, you can put the class into Warning mode. If a
resource group or class is in Warning mode, when an access rule is violated, CA Access
Control allows the access and writes an entry in the audit log that references the
resource (not the resource group or class).

The Warning mode settings on a resource and on a class are independent: if you put a
resource into Warning mode, it remains in Warning mode, even if it belongs to a class
and you remove Warning mode from that class.

Note: You can only put resources or classes into Warning mode if they have the
property warning; not all resources or classes have this property.

Put a Resource into Warning Mode

You put a resource into Warning mode to monitor the effects of access rules, without
needing to enforce these rules.

Note: As well as putting individual resources into Warning mode, you can put a class
into Warning mode (see page 174).

Warning Mode

Chapter 13: Auditing Events 173

To put a resource into Warning mode

1. In CA Access Control Endpoint Management edit the resource you want to put into
Warning mode.

The appropriate Modify page appears.

2. Click the Audit tab.

The Audit Modes page for the resource appears.

3. Select Warning Mode, and click Save.

The resource you modified is now in Warning mode.

Note: In Warning mode, CA Access Control always writes warning records to the audit
log when access is permitted but access rules are violated: you do not need to set the
audit property on the resource for this to happen.

Use the sereport utility (report number 6) to see all resources in Warning mode.

Example: Put a File into Warning Mode

The following selang example puts the file c:\myfile into Warning mode:

chres FIlE c:\myfile warning

Example: Clear Warning Mode from a File

The following selang example takes the file c:\myfile out of Warning mode:

chres FIlE c:\myfile warning-

Warning mode is now not active for the myfile, so CA Access Control enforces the access
rules for myfile.

Example: Put a Terminal into Warning Mode

The following selang example puts the terminal myterminal into warning mode:

chres terminal myterminal warning

CA Access Control permits access by any authorized user from the terminal myterminal,
but logs an audit record for any user that normally would be denied access from that
terminal.

Warning Mode

174 Endpoint Administration Guide for UNIX

Put a Class into Warning Mode

Rather than putting individual records into Warning mode, you can put all records in a
class into Warning mode. You might use Warning mode to monitor the effects of access
rules, without needing to enforce these rules.

To put a class into Warning mode

1. In CA Access Control Endpoint Management, do as follows:

a. Click Configuration.

b. Click Class Activation.

The Class Activation page appears.

2. Select the check box in the Warning column for the class you want to put into
Warning mode.

3. Click Save.

A confirmation message appears, letting you know that CA Access Control options
have been successfully updated.

Find Out Which Resources Are in Warning Mode

You should use Warning mode as a temporary measure when implementing CA Access
Control. Once you are comfortable that users have the required access to the resources
they require, you should turn off Warning mode and CA Access Control will start
enforcing the associated rules.

To find out which resources are in Warning mode, you can create a report that shows all
resources with Warning mode.

To create a report, enter the following command:

sereport -r 6

CA Access Control creates the report.

Note: For more information about the sereport utility, see the Reference Guide.

Warning Mode

Chapter 13: Auditing Events 175

Find Out Which Classes Are in Warning Mode

You should use Warning mode as a temporary measure when implementing CA Access
Control. Once you are comfortable that users have the required access to the resources
they require, you should turn off Warning mode and CA Access Control will start
enforcing the associated rules.

To find out which classes are in Warning mode, you can get CA Access Control to display
this data.

To display this data, enter the following selang command:

setoptions cwarnlist

CA Access Control displays a table showing the classes that are in Warning mode.

Note: For more information about setoptions, see the selang Reference Guide.

Audit Logs

176 Endpoint Administration Guide for UNIX

How to Perform System Maintenance

At certain times you may need to perform system maintenance to upgrade the system,
install a new application, and so on. During system maintenance you should set CA
Access Control rules in Warning mode. Once you are comfortable that the maintenance
did not affect user access to resources that they require, you should turn off Warning
mode and CA Access Control will start enforcing the associated rules.

To use Warning mode when you perform system maintenance, do the following:

1. Set the appropriate classes to Warning mode before you start the maintenance,
using the following selang rule:

setoptions class(NAME) flags(W)

2. Perform the maintenance.

3. Run the seretrust utility after you perform the maintenance.

The seretrust utility generates the selang commands required to retrust programs
and secure files defined in the database.

4. Run the selang command to retrust the programs defined in the database.

5. Remove the Warning mode from the classes to enable policy enforcement, using
the following selang rule:

setoptions class(NAME) flags-(W)

6. Review CA Access Control audit log files.

The audit log contains warnings for the resources that were affected by the
maintenance.

Note: For more information about the seretrust utility, see the Reference Guide.

Audit Logs

The audit records are stored in a file called the audit log. The location for the audit log is
specified in the seos.ini file. The seaudit utility or CA Access Control Endpoint
Management can be used to list recorded events in the audit log, filter events by time
restrictions or event type, and so on.

Note: For more information about seaudit, see the Reference Guide.

The audit logs are stored locally, but you can use CA Access Control to distribute the
auditing information by using the log routing facility. Consider archiving old audit logs to
tape, to allow you to scan the events later.

By default, the authorization daemon seosd creates the audit logs with root ownership,
since the seosd program is executed by the user root. For the same reason, the audit
logs are created with read/write permissions granted only to root.

Audit Logs

Chapter 13: Auditing Events 177

To enable other users to read the audit logs without having to su (substitute user) to
root, CA Access Control includes two entries in the seos.ini file that specify which group
ownership is assigned to the log files.

■ One entry is for the audit log.

Suppose the auditors at your site are all members of a group named auditforce. You
want these users to be able to browse through the local audit log files. Edit the
seos.ini file so that the audit_group token in the [logmgr] section is set to
auditforce. CA Access Control then gives the auditforce group read permission to
your local audit logs. From this point, any local audit logs created at your station
have the auditforce group as their owner.

The log routing daemons consult the same token to see who should have access
rights to the audit logs that the daemons produce and collect. Note that the audit
logs are subject to access control like any other files, and CA Access Control rules
can keep users from accessing them.

■ The other entry is for the error log, and it is used in the same way to specify group
ownership for that file.

The System Auditor

A system auditor is a user to whom the AUDITOR attribute is assigned. Users defined as
system auditors are permitted to perform auditing tasks such as changing the auditing
attribute that is assigned to users and resources.

Auditing tasks can be carried out from central locations. To collect auditing information
from the various stations on the network in a single host, the auditor can use the log
routing facility.

Audit Logs

178 Endpoint Administration Guide for UNIX

Set Up the Log Routing Facility

To set up the log routing

1. Create a log routing configuration file.

Unless you specify otherwise with the RouteFile token in the seos.ini file, CA Access
Control expects your log routing configuration file to be named
ACInstallDir/log/selogrd.cfg

where ACInstallDir is the installation directory for CA Access Control, by default
/opt/CA/AccessControl/.

You can find sample log routing configuration files in the directory
ACInstallDir/samples/selogrd.init. Alternatively, as a very simple log routing
configuration file, you can create a file consisting of the following three lines:

Rule

host destination

.

For destination, enter the name of the host that should receive the audit records.
All classes, resources, accessors, and results are logged.

Note: For more information about the syntax of the configuration file, see the
selogrd utility in the Utilities Guide.

2. Start the emitter daemon (selogrd) on all hosts that are to route auditing
information, and execute the collector daemon (selogrcd) on all hosts that are to
collect auditing information.

Note: For more information about using these daemons, see the Reference Guide.

File Notifications

Besides compiling the log, the log routing facility can also send notifications to the host's
display screen, to an email address, or to other destinations. You can base notifications
on information from your station's own audit log or from logs that the collector daemon
has brought to your station.

Log Routing

Chapter 13: Auditing Events 179

To set up such notifications, you need to use the log routing configuration file and a
selang command. For example, suppose you want to notify the user John whenever a
setuid request to user root is successfully made.

1. Issue the following selang command:

chres SURROGATE USER.root notify(John)

This chres command specifies that each time someone surrogates user to root, a
special audit log record is created, and the seosd daemon is to notify the user
named John. The daemon also creates a special kind of audit record called a
notification record.

2. Once you have specified notification for one or more resources, you can add the
following three lines to the log routing configuration file.

Rule2

notify default

.

This line causes the log routing emitter to create a mail message for the notification
audit record.

Note: For more information about the configuration file format and setting up the
log routing daemons, see the Reference Guide.

Log Routing

CA Access Control uses the log routing daemon, selogrd, to distribute selected local
audit log records to specific hosts; reformat audit log records into email messages, ASCII
files, or user windows; and transmit notification messages based on audited events.

To determine audit record routing, selogrd uses a configuration file, selogrd.cfg. This file
is a list of which audit log records to route-or not to route-and to where. For a complete
description of this file, see the Reference Guide.

Log Routing Configuration

To start selogrd or selogrcd automatically when seosd starts, set the seos.ini tokens
selogrd or selogrcd in the [daemons] sections to yes. Then when you run seload, seload
starts the daemons for you.

For example, the appropriate tokens in the [daemons] section of the soes.ini should look
as follows:

selogrd = yes

selogrcd = yes

Log Routing

180 Endpoint Administration Guide for UNIX

Since the log-routing facility uses RPC to route audit records, placing a log audit collector
behind a firewall does not allow simple blocking of UDP ports because there is no way to
know which port the portmapper assigns to the server daemon. To solve this problem,
you can use the token ServicePort to assign a predefined port to the server daemon.

If the firewall allows port 111 from outside the network (portmapper port), you should
only change the seos.ini file in the server. If the firewall does not allow communication
to portmapper in the protected network, both clients and server must agree on a
specific port.

You can ensure this by setting the same value in the ServicePort token in the seos.ini
files of both clients and the server. You can specify a number-which means that the
daemons bind to the specified port-or a service name. If you specify a service name,
both clients and the server must have the same service resolution. For example, if you
specify the service name seoslogr, then add the following to the /etc/services file of the
clients and the server:

seoslogr 2022/udp # Audit log-routing

If the clients or the server are using NIS to resolve services, you must update the NIS
services map.

Audit Log Route Encryption

You can encrypt audit log records. When you use encryption, the selogrd daemon
encrypts audit log record before sending it to the collector (selogrcd or audit log router).
The collector in turn decrypts the received records.

CA Access Control provides two encryption styles for selogrd: CA Access Control
standard encryption, and audit log encryption through adcipher. For encryption, selogrd
uses functions from shared library objects, as specified in the [selogrd] section of the
seos.ini file.

Standard encryption uses the shared library libcrypt; Audit encryption uses functions
from a file specified by the CipherName token. By default, the file name is adcipher,
which is a symbolic link to the desired shared library. The CA Access Control installation
process places four shared libraries in the CA Access Control/lib directory: lib1des,
lib3des, libIDEA, and libblowfish.

CA Access Control maintains the standard encryption key in the shared library, while the
audit encryption uses a separate file as specified by the KeyFile token (default value:
adcipher.bin).

Log Routing

Chapter 13: Auditing Events 181

Use the UseEncryption token to determine the type of encryption:

■ To use CA Access Control standard encryption, specify UseEncryption=native

■ To use audit log encryption through adcipher, specify UseEncryption=eTrust, and
enter the appropriate values for the CipherName and KeyFile tokens.

■ To disable selogrd encryption, specify UseEncryption=no.

Use the RefuseUnencrypted token to accept or deny unencrypted audit. It is used in
conjunction with the UseEncryption token and is redundant if the UseEncryption is set
to no:

■ To refuse unencrypted audit, specify RefuseUnencrypted=yes

■ To accept both encrypted and unencrypted audit, specify RefuseUnencrypted=no

Note: The selogrcd daemon uses the same tokens in the seos.ini file.

To change the encryption key, use the sechkey utility, described in this chapter.

Important! If you send records to the audit collector, be sure that both selogrd and the
collector use the same shared encryption file and encryption key.

Send Audit Log Records using Email

selogrd can send records to email targets directly. You can direct email messages
through a mailer utility (the old method), or directly to the mail exchange server using
SMTP.

To send audit log records directly to the mail exchange server, set the UseSmtpMail
token in the [selogrd] section of the seos.ini file.

You can also specify the following:

■ A time-out in case the mail server does not answer, using the SmtpTimeLimit token

■ The “From:” mail header field, using the SmtpMailFrom token

■ The mail server host address, using the SmtpMailServer token

Note: This method does not use UNIX mail utility; rather, it establishes a direct
connection with mail server, and uses SMTP protocol to send mail.

Log Routing

182 Endpoint Administration Guide for UNIX

Configure SNMP Traps

For systems that use the Internet network management protocol SNMP (Simple
Network Management Protocol), you can configure selogrd to create SNMP traps using
CA Access Control audit records.

To implement the SNMP traps, first locate the SNMP shared objects provided in the CA
Access Control libraries, and then configure selogrd correctly using these shared objects.

Note: If you want to use the SNMP extension of selogrd, and CA Access Control is not
installed in the default location (/opt/CA/AccessControl/), set an environment variable
before running selogrd. The environment variables are as follows, where ACInstallDir is
the directory where you installed CA Access Control:

■ In AIX, set LIBPATH to ACInstallDir/lib

■ In Solaris, set LD_LIBRARY_PATH to ACInstallDir/lib

■ In LINUX, set LD_LIBRARY_PATH to ACInstallDir/lib

■ In HP, set SHLIB_PATH to ACInstallDir/lib

The shared objects-usually found in the directory ACInstallDir/lib- are called snmp.xx
and libsnmp.xx, where the xx extension varies according to the platform. The possible
extensions are:

■ .o—AIX platform

■ .sl—HP platform

■ .so—All other platforms

If you want to use the SNMP extension of selogrd, and CA Access Control is not installed
in the default location, you must set the following environment variables before running
selogrd:

■ In AIX, set LIBPATH to ACInstallDir/lib

■ In Solaris, set LD_LIBRARY_PATH to ACInstallDir/lib

■ In Linux, set LD_LIBRARY_PATH to ACInstallDir/lib

■ In HP, set SHLIB_PATH to ACInstallDir/lib

where ACInstallDir is the directory where you installed CA Access Control.

To configure selogrd to use the shared objects

1. Create a file called ACInstallDir/etc/selogrd.ext.

2. Define where the SNMP shared objects are by adding a single line to the file
ACInstallDir/etc/selogrd.ext with the appropriate path for the snmp.so. (It is enough
to specify this shared object for the other to automatically be linked.) For example:

snmp /opt/CA/AccessControl//lib/snmp.so

Log Routing

Chapter 13: Auditing Events 183

3. Finally, you must configure the selogrd.cfg file to specify what type of action should
trigger SNMP traps, and which location should be notified when SNMP traps are
triggered. Configuration is very similar to that for other auditing notification, with
the delivery system specified as snmp.

For example, suppose you want to have SNMP traps activated when CA Access
Control starts and shuts down, and have notification of these SNMP traps sent to
AuditPC. You can do this by adding the following section to the selogrd.cfg
configuration file:

snmpRule

snmp AuditPC

include Class(START).

include Class(SHUTDOWN).

.

Similarly, you can activate the SNMP traps by other actions or types of access, or have
them sent to other locations.

Migrate User Trace Filters

184 Endpoint Administration Guide for UNIX

Migrate User Trace Filters

If you set a user to be traceable, each time a trace record is written for that user, a
matching audit record is written to the seos.audit file. In previous releases of CA Access
Control, these audit records were filtered by the trcfilter.init file. In CA Access Control
r12.0 SP1 and later, the audit records generated by user trace records are filtered by the
audit.cfg file, which filters all other audit records.

You must manually migrate the audit record filters from trcfilter.init to audit.cfg. If you
do not migrate the filters, the audit records generated by user traces will not be filtered.

Note: Trace records are still filtered by trcfilter.init. Do not migrate trace filters from
trcfilter.init to audit.cfg.

To migrate the user trace filter

1. In trcfilter.init, find the user trace filter that you need to migrate.

The trace_filter setting in the seosd section of the seos.ini file determines the
location of this file.

2. In audit.cfg, type the following, where usertracefilter is the user trace filter from
trcfilter.init:

TRACE;*;*;*;*;usertracefilter

3. (Optional) Repeat Steps 1-2 for each user trace filter that you need to migrate.

Example: Migrate User Trace Filter

In this example, the following user trace filter is in the trcfilter.init file:

*ExampleFilter

To migrate this user trace filter, type the following on a new line in the audit.cfg file:

TRACE;*;*;*;*;*ExampleFilter

Chapter 14: Scope of Administration Authority 185

Chapter 14: Scope of Administration
Authority

This section contains the following topics:

Global Authorization Attributes (see page 185)
Group Authorization (see page 187)
Ownership (see page 190)
Authorization Examples (see page 192)
Sub Administration (see page 194)
Environmental Considerations (see page 196)

Global Authorization Attributes

Global authorization attributes are set in the user record. Each global authorization
attribute permits the user to perform certain types of functions. This section describes
the functions and the limits of each global authorization attribute.

ADMIN Attribute

The ADMIN attribute lets a user execute almost all commands in CA Access Control.
Users who are defined in the database with the ADMIN attribute can define and update
users, groups, and resources in the database. This is the most powerful attribute in CA
Access Control, but it does have limitations:

■ If only one user in the database has the ADMIN attribute, that user cannot be
deleted, and the ADMIN attribute cannot be removed from the record.

■ Users with the ADMIN attribute but without the AUDITOR attribute cannot change
the type of auditing that is done on a user, group, or resource (audit mode). If you
have the ADMIN attribute and need to change the auditing characteristics of a user,
group, or resource, assign yourself the AUDITOR attribute.

■ Users with the ADMIN attribute cannot delete superuser (the root account on UNIX
or the Administrator account on Windows), but they can set root to be a
non-ADMIN user.

Global Authorization Attributes

186 Endpoint Administration Guide for UNIX

AUDITOR Attribute

Users with the AUDITOR attribute can monitor system usage. Explicit privileges of a user
with the AUDITOR attribute include the following:

■ Users can display information in the database.

Auditors can execute the selang commands showusr, showgrp, showres, and
showfile.

■ Users can set the audit mode for existing records.

Auditors can execute the selang commands chusr, chgrp, chres, and chfile.

OPERATOR Attribute

Users with the OPERATOR attribute have READ access to all files. With this access, they
can list everything in the database, and they can run backup jobs. To list database
records, operators use the showusr, showgrp, showres, showfile, and find commands.
The OPERATOR attribute also lets a user use the secons utility.

Note: For more information about the secons utility, see the Reference Guide.

PWMANAGER Attribute

The PWMANAGER attribute gives a regular user the authority to use the chusr or sepass
command to change the passwords of other users.

Note: To let the PWMANAGER change the ADMIN user's password, set the
cng_adminpwd option of the setoptions command. For more information, see the
selang Reference Guide.

The PWMANAGER attribute does not include authority to change the number of grace
logins, the password interval of another user, or general password rules.

The PWMANAGER's authority also includes use of the showusr and find commands.

Note: If a user has the nochngpass property set to yes, a PWMANAGER cannot change
the password for that user.

Group Authorization

Chapter 14: Scope of Administration Authority 187

SERVER Attribute

CA Access Control, like many other security models, does not permit a regular user to
ask: “Can user A access resource X?” The only question a regular user can ask is: “Can I
access resource X?” However, a process that supplies services to many users, such as a
database server service or an in-house application, should be permitted to ask for
authorization on behalf of other users.

The SERVER attribute allows a process to ask for authorization for users. Users with the
SERVER attribute set can issue the SEOSROUTE_VerifyCreate API.

Note: For more information about the server attribute and CA Access Control APIs, see
the SDK Guide.

IGN_HOL Attribute

The IGN_HOL attribute allows users to log in during any period defined in a holiday
record. Each record in the HOLIDAY class defines one or more periods when users need
extra permission to log in. With the IGN_HOL attribute, users can log in at any time,
regardless of the periods defined in holiday records.

Note: For more information about the HOLIDAY class, see the Reference Guide.

Group Authorization

It is necessary to understand the concept of parentage before discussing group
authorization attributes.

Group Authorization

188 Endpoint Administration Guide for UNIX

Parentage

The concept of subordinate and superior groups, also known as parentage, is important
when discussing group administration privileges. One group can be the
parent-superior-of one or more groups. A child or subordinate group can have only one
parent. Assigning a parent to a group is optional. Consider the following diagram:

Group 1 is the parent of the three Groups 20, 30, and 40. Group 30 is also the parent of
three groups-500, 600, and 700. Group 600 has only one parent-Group 30. Group 1 has
no parent.

Group Authorization Attributes

All records, including resource records and accessor records alike, have owners. Owning
a record means having authorization to view, edit, and remove it.

A group can own its own records. However, within a group that owns records, only
certain privileged users can manage the records. These special users have a group
authorization attribute set in their own user records. The group authorization attributes
are the following:

■ GROUP-ADMIN

■ GROUP-AUDITOR

■ GROUP-OPERATOR

■ GROUP-PWMANAGER

The join command-which only a properly authorized user can issue-sets these
attributes. The join command serves the purpose of both putting a user into a group,
and specifying the user's group authorization attribute (if any).

The privileged members of the group may or may not be authorized to manage the user
records that define the members of the group, depending on who owns those records.

Group Authorization

Chapter 14: Scope of Administration Authority 189

More information:

Ownership (see page 190)

GROUP-ADMIN Attribute

Users with a group administration authorization attribute can create a certain set of
records. In order to create a record, the group administrator has to specify the owner of
the record.

The owner of the records must be the group in which the user has a group authorization
attribute. If that group is the parent of other groups, the owner can also be from one of
the sub groups. The whole set of records is called the group scope. The authorization
examples provided illustrate the concept of group scope.

Users with the GROUP-ADMIN attribute have the following access authority for the
records within their group scope:

Access Description Commands

Read Show the properties of the record. showusr, showgrp,
showres, showfile

Create Create new records in the database. You
must specify the owner.

newusr, newgrp, newres,
newfile

Modify Change the properties of the record. chusr, chgrp, chres, chfile

Delete Remove records from the database. rmusr, rmgrp, rmres, rmfile

Connect Join a user to a group or separate a user
from a group.

join, join-

The GROUP-ADMIN attribute also has limits:

■ GROUP-ADMIN users cannot make resources inaccessible to themselves, so:

– GROUP-ADMIN users cannot assign a security level that is higher than their
own security level.

– GROUP-ADMIN users cannot assign a security category or security label that
they do not have.

■ GROUP-ADMIN users cannot delete the user superuser (the root account on UNIX
or the Administrator account on Windows) from the database.

Ownership

190 Endpoint Administration Guide for UNIX

■ Several limitations concern the global authorization attributes described in Global
Authorization Attributes in this chapter:

– A GROUP-ADMIN user cannot delete the only ADMIN user record in the
database.

– A GROUP-ADMIN user cannot remove the ADMIN attribute from the record of
the last ADMIN user in the database.

– GROUP-ADMIN users without the AUDITOR attribute cannot update the audit
mode. Only a GROUP-ADMIN user with the AUDITOR attribute can update the
audit mode.

– GROUP-ADMIN users cannot set the global authorization attributes-ADMIN,
AUDITOR, OPERATOR, PWMANAGER, and SERVER-for any user.

GROUP-AUDITOR Attribute

A user with the GROUP-AUDITOR attribute can list the properties of any record within
the group scope. The group auditor can also set the audit mode for any record within
the group scope.

GROUP-OPERATOR Attribute

A user with the GROUP-OPERATOR attribute can list the properties of any record within
the group scope.

GROUP-PWMANAGER Attribute

A user with the GROUP-PWMANAGER attribute can change the password of any user
whose record is within the group scope.

Ownership

Every record in the database-including both accessor records and resource records-has
an owner. When you add a record to the database, you can either explicitly assign its
owner by using the owner parameter or let CA Access Control assign the user who
defines the record as the owner of the record.

Accessors own a record if any of the following are true:

■ They are defined as the owner of the record.

■ They are members of a group that is defined as the owner of the record and they
have joined the group with the GROUP-ADMIN property.

■ They are owners of a resource group record that the resource is a member of.

If you remove a user or group that owns records from the database, the records no
longer have an owner.

Ownership

Chapter 14: Scope of Administration Authority 191

Users who own records have the following access authority for the records they own:

Access Description Commands

Read Show the properties of the record. showusr, showgrp,
showres, showfile

Modify Change the properties of the record. chusr, chgrp, chres, chfile

Delete Remove the record from the database. rmusr, rmgrp, rmres, rmfile

Connect Join a user to a group or separate a user
from a group.

join, join-

If you do not want a user or group to have ownership authority over a particular record,
assign the owner nobody to the record and to any resource group record that the record
is a member of.

The limits of the ownership privileges are as follows:

■ The owner of the last ADMIN user in the database cannot delete that user record.

■ Owners who do not have the AUDITOR attribute cannot update the audit mode.
Only an owner with the AUDITOR attribute can update the audit mode.

■ The owner of a superuser (the root account on UNIX or the Administrator account
on Windows) cannot delete root from the database.

■ Owners cannot set the global authorization attributes-ADMIN, AUDITOR,
OPERATOR, and PWMANAGER-for the users they own.

■ Owners cannot make resources inaccessible to themselves, so:

– Owners cannot assign a security level that is higher than their own security
level.

– Owners cannot assign a security category or security label that they do not
have.

File Ownership

CA Access Control allows the owner of a file to protect the file by defining a record in
the FILE class. The owner of the file has full authority over the record of that file, so the
owner can use the newfile, chfile, showfile, authorize, and authorize- commands with all
parameters for the record that protect the file.

On UNIX, when a user creates a file, UNIX assigns the user as the owner of the file. CA
Access Control allows UNIX file owners to define FILE records, unless this feature is
explicitly disabled. If you do not want file owners to define FILE records, make sure that
the use_unix_file_owner token in the [seos] section of the seos.ini file to no. (This is the
default setting.)

Authorization Examples

192 Endpoint Administration Guide for UNIX

Authorization Examples

Following are diagrams that illustrate the concepts of group authorization attributes,
parentage, ownership, membership, and group scope. These diagrams only contain
users and groups, but the concept of ownership also applies to resource and file
records.

Single Group Authorization

In the following diagram, four users are members of Group 1: MU1, MU2, MU3, and
MU4. Group 1 also owns three users-OU5, OU6, and OU7. The member MU4 has the
GROUP-ADMIN attribute.

The ellipse indicates the group scope of the commands executed by user MU4. It
includes all the users owned by Group 1-OU5, OU6, and OU7.

Authorization Examples

Chapter 14: Scope of Administration Authority 193

Parent and Child Groups

In the following diagram, four users are members of Group 1: MU1, MU2, MU3, and
MU4. Group 1 also owns three users-OU5, OU6, and OU7. The member MU4 has the
GROUP-ADMIN attribute set in its record.

Group 1 is also the parent of three groups-20, 30, and 40. Each of these subordinate
groups has two users who are members of the group and two users who are owned by
the group.

The four ellipses indicate the group scope of the commands executed by user MU4. It
includes all the users owned by Group 1, as well as the users owned by the groups
subordinate to Group 1. The users in the group scope of MU4 are OU5, OU6, OU7,
OU23, OU24, OU33, OU34, OU43, and OU44.

If there were groups subordinate to Groups 20, 30, or 40 that owned users, groups, or
resources, the records owned by these groups would also be in the group scope of
commands executed by user MU4.

Sub Administration

194 Endpoint Administration Guide for UNIX

Sub Administration

Security administrators (users with the ADMIN attribute) can grant specific
administrative privileges to regular users. These regular users are then called sub
administrators. Sub-administrators have privileges to manage only specified CA Access
Control classes or objects. For example, a sub administrator can be authorized to
manage only user and group objects. You can set a higher level of sub administration by
authorizing the sub admin user the administrative privileges for specific objects in a
class.

Sub administrators of users, groups and resources can use selang to perform
administrative tasks related to these resources.

How to Grant Specific Administrative Privileges to Regular Users

Because administrators—users with the ADMIN attribute—can execute almost all
actions in CA Access Control, you may want to delegate specific administrative tasks to
sub administrators. To do this, you need to grant those users with privileges to classes in
the CA Access Control database that control the specific administrative tasks the user
needs to perform as follows:

1. Identify one or more classes that control the tasks you want to delegate.

For example, CA Access Control uses the USER and GROUP classes to create
accessor resources. If you want to delegate accessor management, you then need
to use the USER and GROUP records of the ADMIN class.

2. Authorize one or more sub administrator to the applicable resource of the ADMIN
class.

For example, to let a sub administrator view and modify user records, grant the
user with read and modify access to the USER record of the ADMIN class.

The ADMIN Class

Sub administrators—users listed in the access control list (ACL) of records in the class
ADMIN—have privileges similar to users with the ADMIN attribute. However, the
privileges of users in the ACL for records in the class ADMIN are limited to the particular
class represented by the record. For example, the SURROGATE record in the ADMIN
class determines which users can administer records of the SURROGATE class.

Note: For more information about CA Access Control classes, see the Reference Guide.

Sub Administration

Chapter 14: Scope of Administration Authority 195

A user in the ACL for a particular record in class ADMIN can execute the following
commands:

Access Description Commands

Read Show the properties of the record in the
class.

showusr, showgrp,
showres, showfile, find

Create Create new database records in the class. newusr, newgrp, newres,
newfile

Modify Change properties in the class. chusr, chgrp, chres, chfile

Delete Remove existing class records from the
database.

rmusr, rmgrp, rmres,
rmfile

Connect Add users to and remove users from groups.
This access is valid only in the ACL of the
GROUP record.

join, join-

Password Control the password of all users within the
database, and their password attributes. This
access grants the same authority as the
access permitted a user with the
PWMANAGER attribute. This is valid only in
the ACL for record USER.

chusr

Users with ADMIN class privileges have the following limitations:

■ Users defined in the ACL of the USER record in class ADMIN cannot delete the last
ADMIN user in the database.

■ ADMIN class users cannot set the global authorization attributes-ADMIN, AUDITOR,
OPERATOR, and PWMANAGER-for the users they own.

■ ADMIN class users cannot necessarily update the audit mode. Only an ADMIN class
user with the AUDITOR attribute can update the audit mode.

■ ADMIN class users cannot delete superuser (the root account on UNIX or the
Administrator account on Windows), but they can set root to be NOADMIN.

■ ADMIN class users cannot make resources inaccessible to themselves, so:

– ADMIN class users cannot assign a security level to a resource that is higher
than their own security level.

– ADMIN class users cannot assign a security category or security label that they
do not have.

These limitations are part of the B1 security level certification.

Environmental Considerations

196 Endpoint Administration Guide for UNIX

Environmental Considerations

One of the factors governing whether you can update information in your database is
the position you occupy in the environment.

Remote Administration Restrictions

You may access a remote station over a network and update the database on the
remote station. To update the database on the remote station, both you and your
terminal need permission.

■ You must be explicitly defined as a user in the database of the remote station. For
whatever commands you want to execute, the appropriate attribute must be set in
your user record in the database of the remote station.

■ You must explicitly mention your local terminal's needs in a rule granting it WRITE
permission for accessing the remote station; otherwise, you cannot perform CA
Access Control administration there.

With WRITE permission through a default access field (_default), or through the
UACC class, you can enter the selang command shell at the remote station.
However, you cannot execute any selang commands or otherwise access to the
remote database. With READ permission, you can log in to the remote station but
you cannot perform CA Access Control administration there.

Here is an example of this distinction between WRITE and READ permission:

1. To specify a new terminal with READ as default access, where administrators
can log in from the terminal but cannot manipulate the database from it, issue
the following command:

newres TERMINAL tty13 defacc(read)

2. To grant user ADMIN1 permission to manipulate the database from the new
terminal (that is, grant WRITE permission as well as READ permission), issue the
following command:

authorize TERMINAL tty13 uid(ADMIN1) access(r,w)

Environmental Considerations

Chapter 14: Scope of Administration Authority 197

UNIX Environment

For managing users and groups in UNIX, users in CA Access Control with global or group
authorization attributes have the same privileges and limits for UNIX as they do for CA
Access Control.

If you use selang while the seosd daemon is not running (for example, at installation
time), you must follow these rules:

■ You must include the -l option in the selang command.

■ The user of selang must be root. (This exclusive root privilege complies with regular
UNIX restrictions.)

Windows Environment

Valid in the native Windows environment

When CA Access Control is running, if you use selang to change a resource in the native
Windows environment, the CA Access Control Agent changes the resource in the
appropriate Windows repository. You do not need any additional Windows permissions
to change the resource. This means that when users in CA Access Control with global or
group authorization attributes perform selang commands in the native Windows
environment, they have the same privileges and limits for Windows as they do for CA
Access Control.

When CA Access Control is not running, if you use selang to change a resource in the
native Windows environment, you must follow these rules:

■ You must include the -l option in the selang command

■ You must have the ADMIN attribute or sub administration privileges

■ You must have sufficient Windows permissions to change the resource

This restriction occurs because a selang process, not the CA Access Control Agent,
changes the resource in the Windows repository.

For example, user Emma wants to use the chfile selang command in the native Windows
environment to change the owner of the file C:\tmp.txt. If CA Access Control is running,
Emma requires sufficient CA Access Control permissions to change the file owner, but
does not require additional Windows permissions. If CA Access Control is not running,
Emma requires both CA Access Control and Windows permissions to change the file
owner.

Chapter 15: Improving Performance 199

Chapter 15: Improving Performance

This section contains the following topics:

Using Global Access Check (see page 199)
Using the Resource Cache (see page 203)
Using the Network Cache (see page 204)
Using the Real Path Cache (see page 204)
Using Fork Synchronization (see page 204)
Using High Priority (see page 205)
Bypassing the Process File System (see page 205)
Bypassing Real Paths (see page 205)
Bypassing Trusted Process Authorization (see page 205)
Bypass Ports for Network Activity (see page 206)
Reducing Audit and Trace Loads (see page 207)
Reducing Database Loads (see page 207)
Improving PMDB Updates (see page 207)
Improving Watchdog Performance (see page 208)
Improving Class Parameters (see page 208)
Resolving Names (see page 209)

Using Global Access Check

The Global Access Check feature (GAC) lets you access protected, frequently opened
files-whose access rules are unlikely to change-much faster than otherwise possible.

GAC allows a CA Access Control administrator to cache rules for read, write, chown,
chmod, rename, unlink, utimes, chattr, link, chdir, create, and all, so that appropriate
access to files is granted without passing control to seosd. The default is all. Execute
requests, however, are not eligible for GAC because they could pose a security loophole.

Without GAC, CA Access Control runs thorough security checks whenever a user or
program attempts to access protected files. Frequently accessed files need repeated
in-depth checks to confirm access permissions.

GAC allows an administrator for CA Access Control to take for granted that certain
frequently accessed protected files require shorter security checks. An administrator for
CA Access Control can select files suitable for a shorter check. Before CA Access Control
allows a shorter security check, the file must first undergo a full security check based on
the set rule. The rule itself consists of a generic file name and a list of accesses. Rules are
cached according to users.

Using Global Access Check

200 Endpoint Administration Guide for UNIX

Selecting certain files for a shorter check is reliable because, with the GAC feature in
place, if a change is actually made to rules regarding the protected files, the shorter
security check table is flushed, and an initial full security check is instituted.

Note: GAC restrictions mean that this feature works for every user except root.

How Does GAC Work?

CA Access Control monitors access to specified files and builds a table of permitted
accesses during execution time. These are the files you specify in advance in order to set
up GAC rules.

Whenever CA Access Control concludes that a user should be granted a certain level of
access to a certain file, it checks whether the following two additional conditions are
met:

■ The granted access is unconditional (that is, not dependent on time, day, program
from which executed, or other like conditions).

■ The file matches one of its preselected sets of file masks.

Note: File rules define permissions for access to files.

If these conditions are met, CA Access Control generates a UID-file rule-access triplet
and stores it in a table composed of such triplets. This table is examined before any
database access rule interpretation takes place. Whenever a user attempts to access a
file, this table is consulted as a filtering mechanism.

The table is best described as a do-not-call-me table because it contains a list of file
masks that, once recognized, no longer need to undergo access permission checks. It is
also described as an always-grant table because access is always granted to files
specified within its list of file masks.

Whenever a user attempts to access a file, the table is consulted. If the file matches one
of the triplets found in the table, the appropriate access is granted without passing
control to seosd. This bypasses the access rules analysis. Subsequently, all access to files
that match this pattern is granted, based on the triplet stored in the table, without
consulting the access rule database.

Whenever a new access rule is added to the database, the entire table is flushed, and
the learning process starts from the beginning.

Implementing GAC

To set up GAC, you must choose masks for sets of files that are accessed often, set up a
GAC file containing these file masks, and then start the caching process.

Using Global Access Check

Chapter 15: Improving Performance 201

Setting Up GAC Rules

Note: File rules in the database are created using the class FILE parameter and file
masks. Rules apply to all files matching the file masks. FILE access types include: all,
chdir, control, create, delete, execute, none, read, rename, sec, update, utime, write.

From the file rules defined in the database, choose the file masks that you want to
cache. Enter a list of file masks into the ACInstallDir/etc/GAC.init file (where ACInstallDir
is the installation directory for CA Access Control, by default /opt/CA/AccessControl/), in
exactly the same form as they appear in the database.

Each such mask should be specified on a separate line. For example, if the database
contains a file mask for /tmp/mydir/* and you want it to be cached, add the following
line to the ACInstallDir/etc/GAC.init file:

/tmp/mydir/*

Note: Specific file names cannot be specified in the GAC.init file. Only file masks are
used.

Starting GAC

To turn your current version of CA Access Control into a GAC compatible version,
prepare the file ACInstallDir/etc/GAC.init with the file masks that are eligible for
caching. Only file masks can be used.

An example is a file named GAC.init in ACInstallDir/etc/ with only one line:

/IBBS/REL63/*

GAC Restrictions

GAC implementation has proved to be very efficient, especially in cases where there are
hundreds of file accesses in a second, but it has the following restrictions:

■ By default, GAC rules are not applicable for the root user (usually ADMIN). To make
the rules applicable to root, set the following token in the [SEOS_syscall] section of
the seos.ini file:

GAC_root=1

The default value of the token is 0. To restore the default, set the token to 0, or
remove the token.

■ You must not include a file rule that is protected conditionally (for example with
day or time restrictions, program pathing, and so on) in the table. If you do specify
such a file rule in the GAC.init file, the day or time restrictions and other restrictions
no longer apply.

Using Global Access Check

202 Endpoint Administration Guide for UNIX

■ A file rule that has audit(ALL) or audit(success) attributes must not be included in
the GAC.init file. If such file rule is specified in the GAC.init file, audits of successful
accesses are not recorded.

■ The filtering process uses the real (current) UID (that is, the UID that is associated
with the process at the time of execution). This provides a loophole to the CA
Access Control tracking of the original UID (the one with which the user has
originally logged in) and not the current UID. (CA Access Control implements
tracking of UID usage to provide the security of more accountability.)

Let us examine an example of how someone might try to take advantage of this
loophole. User Tony is not authorized to access the file Accounts/tmp. So Tony
surrogates (through /bin/su) to user Sandra, who is authorized to access
Accounts/tmp. If Sandra has already accessed the Accounts/tmp file, the file
appears in the do-not-call-me table with her UID. Tony, using Sandra's UID, is then
permitted to access the file. This is because the kernel code does not maintain the
history of UIDs.

However, if Sandra has not previously accessed the file, the access permissions are
checked in the regular manner using seosd, and Tony is denied access to the file. To
close this loophole, the ADMIN user must protect the SURROGATE objects in the
database. For this example, the ADMIN could add the following rule to the
database:

newres SURROGATE USER.Sandra default(N) owner(nobody)

This command ensures that Tony cannot use the su command to gain Sandra's
access privileges.

■ The caching system does not have any impact if the accessor is root. The reason is
that no access is granted to root without consulting the database.

Troubleshooting GAC

You can test GAC as follows to see if it is working:

1. Enable the trace (secons -t+).

2. Access a file that corresponds to one of the file masks specified in GAC.init. The first
access should be reported in the trace.

3. Try to access the file again. The second file access should not be recorded in the
trace.

If it is, GAC is not working. Check the GAC.init to see that it contains the correct
format.

Using the Resource Cache

Chapter 15: Improving Performance 203

Using the Resource Cache

Another performance improvement tool that CA Access Control offers is resource
caching (file cache).

The cache “remembers” the previous answer to an authorization request (permit or
deny) for resources in the FILE class. The result is saved with the file name, user name,
and authorization response (access mode, program name, and result). When an
identical authorization is requested, the request is answered with the last response that
was stored in the cache memory tables. This saves time because CA Access Control does
not have to reevaluate the request; CA Access Control can return the answer
immediately. When rules are changed, the cache is automatically and immediately
synchronized.

The cache is a runtime table. An administrator can configure it in two ways:

■ Set initialization parameters in the seos.ini file.

■ Switch caching to ON or OFF and change parameters at runtime.

The security administrator can define table size, intervals between cleaning tables, and
other internal table parameters with tokens in the seos.ini file.

A user with administrative privileges can switch cache tables ON or OFF, change cache
parameters, and write cache tables to standard output.

Note: For more information about the secons utility or the [seosd] section of the
seos.ini initialization file, see the Reference Guide.

Tuning Recommendations

Use these recommendations to improve performance even more:

■ If one of the three tables (pools) has the maximum number of records and another
table does not, expand the size of the full table.

Note: The three tables are: file, user, and authorization.

If a pool has low settings, increase them to expand the pool.

■ Do not set the maximum size tokens unless you must. Larger tables take more time
when scanning for records.

Using the Network Cache

204 Endpoint Administration Guide for UNIX

Using the Network Cache

The network or IP caching feature stores accepted, incoming TCP requests, so they are
not sent to the database; instead, they are permitted automatically with the syscall
function. This feature improves performance for hosts, which launch many incoming
TCP connections.

To activate the IP caching feature, change the following tokens in the [seosd] section of
the seos.ini file and restart CA Access Control:

network_cache_timeout

Defines how often to clean the cache table. This token is important if you want to
set time limits for the accept requests.

UseNetworkCache

Set this token to yes to activate IP caching.

When caching is enabled, all accepted TCP connections are saved in the kernel table.
The records consist of a peer IP address, peer port, and local port. Every new connection
is searched in this cache. If a matching set of data for IP address, IP port, and local port
is located, the connection is immediately permitted. The time to establish connection is
reduced.

Using the Real Path Cache

File name resolution is a long process because CA Access Control uses information from
file system. The kernel of CA Access Control translates node numbers to full file names
when it intercepts appropriate events. Real path caching saves file names within an
internal table.

To enable this feature, set the token cache_enabled to 1 in the [SEOS_syscall] section of
the seos.ini file. File names are cached in the table with a data pair: inode number and
device number.

Note: For more information about the seos.ini initialization file, see the Reference
Guide.

Using Fork Synchronization

The fork synchronization token (synchronize_fork) in the [SEOS_syscall] section of the
seos.ini file manages fork event behavior when new processes are created. Lowering the
value of this token improves performance because fork events are frequent.

Note: For more information about seos.ini initialization file, see the Reference Guide.

Using High Priority

Chapter 15: Improving Performance 205

Using High Priority

CA Access Control contains an option to set a real-time priority for the seosd daemon on
some platforms. To activate this feature, set the rt_priority token in the [seosd] section
of the seos.ini file to yes. Running in real time improves system performance.

Note: For more information about the seos.ini initialization file, see the Reference
Guide.

Bypassing the Process File System

To reduce system load, you can specify whether CA Access Control should check file
access when the file belongs to a process file system (/proc).

To activate this feature, use the proc_bypass token in the [SEOS_syscall] section of the
seos.ini file. The token stores access information to be bypassed whenever CA Access
Control must access the process file system.

Note: For more information about seos.ini file tokens, see the Reference Guide.

Bypassing Real Paths

Searching for files with absolute file paths (instead of relative paths) creates heavier
system loads; bypassing this search accelerates file events.

To activate this bypass, set the bypass_realpath token to 1 in the [SEOS_syscall] section
of the seos.ini file. If you enable this token, CA Access Control does not obtain real file
names, which, for example, could be a symbolic link.

Note: For more information about seos.ini file tokens, see the Reference Guide.

Important! This feature should be used with extreme care because it impacts
security-generic rules do not work when files are accessed with a relative path.

Bypassing Trusted Process Authorization

CA Access Control allows you to define programs as trusted. CA Access Control stores
the trusted programs and their children programs in a table. All events (inbound and
outbound) related to trusted processes (and their corresponding ports) are permitted
without authorization as part of a full network bypass.

Bypass Ports for Network Activity

206 Endpoint Administration Guide for UNIX

To specify these programs, use the SPECIALPGM class:

■ To bypass file and network events for the specified program, use the property
PGMTYPE with values pbf and pbn.

■ To bypass setuid and setgid events for a specified program, use the property
PGMTYPE with the value surrogate.

■ To bypass all CA Access Control authorization checks for a specified program, use
the property PGMTYPE with the value fullbypass.

CA Access Control ignores a process that has the PGMTYPE(fullbypass) property,
and no record of any process events appears in CA Access Control audit, trace, or
debug logs.

■ To propagate bypasses to all programs that are called from the specified program,
use the property PGMTYPE with the value propagate.

Note: Security privilege propagation works with PBF, PBN, DCM, FULLBYPASS, and
SURROGATE privileges only.

Bypass Ports for Network Activity

To specify that all connection events (inbound and outbound) related to specific TCP/IP
ports can be established without CA Access Control authorization, you can define a
bypass for these ports. Bypassing these ports reduces system load and speeds event
processing. Bypassed connection events are not logged in the audit and trace files.

Note: CA Access Control lets you bypass the network connection event only; not any
subsequent events that use the network connection (for example, opening a file).

Trusted inbound connections are specified separately from outbound connections:

■ To bypass incoming connections, modify the bypass_TCPIP configuration setting in
the [seosd] section of the seos.ini file.

■ To bypass outgoing connections, modify the bypass_outgoing_TCPIP configuration
setting in the [seosd] section of the seos.ini file.

Note: For more information about the seos.ini initialization file, updating tokens, and
affecting changes, see the Reference Guide.

Example: Bypass incoming Telnet events

If you set the bypass_TCPIP configuration setting to 23 (the Telnet port), the audit and
trace files no longer log the network event when you Telnet to that workstation. Events
related to other services, such as ssh, login, and FTP, and subsequent events that use
the network connection (for example, opening a file), will still be logged.

Reducing Audit and Trace Loads

Chapter 15: Improving Performance 207

Example: Bypass outgoing FTP events

If you set the bypass_outgoing_TCPIP configuration setting to 21 (the FTP port), the
audit and trace files no longer log the network event when you FTP from that
workstation. Events related to other services, such as ssh, login, and Telnet, and
subsequent events that use the network connection (for example, opening a file), will
still be logged.

Reducing Audit and Trace Loads

CA Access Control uses a file system to keep audit data and trace data. Most processes
in the system could be blocked while CA Access Control writes to this file system. To
reduce access time to the file system, do the following:

■ Set the audit mode only for resources and accesses you need.

■ Open the trace only when you need to.

■ Store audit file, trace file, and CA Access Control database files on the fastest
available file system.

■ Store the lookaside database directory on a fast file system.

Reducing Database Loads

How you define rules to the database affects system performance:

■ Generic rules for commonly used directories produce many verifications, resulting
in a greater system load.

For example, protecting /usr/lib/* causes every action in the system to be checked
by CA Access Control. To improve performance, avoid using generic rules for
frequently used files.

■ Deep hierarchies of users and resources require system loads to obtain and check
all dependencies. To improve performance, avoid deep hierarchies in the database.

Improving PMDB Updates

Policy Models send commands to their subscribers one by one in a loop. To control the
maximum number of commands that the Policy Models sends to each subscriber during
each loop, use the updates_in_chunk token, which is described in the [pmd] section of
the appendix “The pmd.ini File.”

If you increase the value of this token, the Policy Model uses fewer cycles to send
commands. After each loop, the Policy Model checks for new requests. If the token is
set higher, the Policy Model does not check for new requests as often.

Improving Watchdog Performance

208 Endpoint Administration Guide for UNIX

For example, when you add a new subscriber to the Policy Model (using the sepmd -n
option), increase the token value because other subscribers have already received the
commands that the Policy Model is sending. The Policy Model spends less time sending
commands to the other subscribers and spends more time sending commands to the
new subscriber, shortening the time it takes to add the subscriber.

Note: Do not set this token value to more than 100.

Improving Watchdog Performance

To reduce system load, set the Watchdog daemon (seoswd) to periodically scan secured
files instead of constantly scanning. You can specify the Watchdog to scan at times
when the system is less loaded.

To activate this feature, use the IgnoreScanInterval token in the [seoswd] section of the
seos.ini file, and set additional tokens for intervals and start times.

Note: For more information about these tokens, see the seos.ini initialization file in the
Reference Guide.

Improving Class Parameters

Use the class activation and class authorization features for CA Access Control to
improve performance further.

Class Activation

CA Access Control stores information about whether a CLASS is active or inactive in the
database. When CA Access Control starts, it passes a list of active classes to
SEOS_syscall, so CA Access Control does not have to constantly intercept these classes.
The only time CA Access Control intercepts a class is when a user changes the activity
status of a class. If a class is inactive, access to the resource is not intercepted.

You can use the inactive class bypass with the following classes: FILE, HOST, TCP,
CONNECT, and PROCESS.

Class Authorization

The resource class SEOS controls the behavior of the CA Access Control authorization
system. The SEOS class has modifiable properties that specify whether a class is active.
You can disable unused classes (using the setoptions command) to reduce authorization
time.

Resolving Names

Chapter 15: Improving Performance 209

Resolving Names

Several tokens in the [seosd] section of the seos.ini file (including GroupidResolution,
HostResolution, ServiceResolution, and UseridResolution) control how CA Access
Control performs name resolution. Setting these tokens appropriately improves
performance.

Alternatively, you can create a lookaside database (instead of using system name
resolution). To improve performance, select the lookaside database option. Tokens for
this feature include the lookaside_path and use_lookaside.

Note: For more information about these tokens, see the seos.ini initialization file in the
Reference Guide.

Whenever CA Access Control must perform UID to username, GID to groupname, ipaddr
to host name, and port to service translations, it may impact CA Access Control
performance. How CA Access Control performs these translations depends on the value
of certain tokens in the seos.ini file-in particular, the under_NIS_server, use_lookaside,
GroupidResolution, HostResolution, ServiceResolution, UseridResolution, and
resolve_timeout tokens.

When native operating system mechanisms perform the resolution, the impact on
system performance is relatively small. When translating ipaddr to host name, an
external mechanism such as DNS must perform the translation. This may result in
significant degradation of system performance. This degradation occurs because, while
seosd is waiting to receive the host name, all other processes that CA Access Control has
intercepted must also wait until seosd completes its processing.

■ If you set the value of the under_NIS_server token to no, seosd allows UNIX to
translate UID, GID, IP addresses, and port numbers by taking data from the
following sources:

Type of Station Source

Stand-alone Seosd uses the following files for translations;

■ /etc/passwd for UID to user name

■ /etc/group for GID to group name

■ /etc/hosts for IP address to host name

■ /etc/services for service ports to service names

Resolving Names

210 Endpoint Administration Guide for UNIX

Type of Station Source

 NIS client The source of the information varies, depending on the
operating system and its version number. The
information is usually taken from /etc files and the NIS
server. However, in some systems, the /etc files are not
the source and the order in which translation is made is
changed during system configuration. For instance, in the
Solaris 2.x system the file /etc/nsswitch.conf determines
the translation order.

DNS client

Translation for users, groups, and services is performed
using /etc files. Host names are translated by calls to the
DNS server and, on some systems, the /etc/hosts file is
also read.

NIS and DNS clients The ipaddr to host name translation is performed by
DNS. For user, group, and service translations, the
translations are performed in the same way as NIS client
translations.

■ If you set the value of the under_NIS_server token to yes, seosd performs its own
translations. If seosd caches data for its translations, the sources of its data are as
follows:

Type of Station Source

NIS server The server machine usually behaves as both server and
client, and consults the NIS server daemon for any type
of translation. The files which contain the sources of the
NIS resolution maps are usually located in /var/yp, but
the location may vary, depending on the site
configuration, and the type and version of the operating
system.

 DNS server The source of the information used for translation
depends on the configuration of the site. DNS does not
have an option to scan its resolution database;
therefore, CA Access Control cannot use caching, and
must use a lookaside database. You must configure the
lookaside database so that the utility sebuildla uses a
host list file. For more information, see sebuildla in this
chapter.

all others Same as DNS server.

Resolving Names

Chapter 15: Improving Performance 211

In versions 2 and higher of CA Access Control, seosd can also use the tokens
GroupidResolution, HostResolution, ServiceResolution, UseridResolution, and
resolve_timeout to control the translation process. For more information on these
tokens, see the Reference Guide.

Chapter 16: Using UNIX Exits 213

Chapter 16: Using UNIX Exits

This section contains the following topics:

UNIX Exits (see page 213)
User or Group Record Update Exits (see page 213)
CA Access Control Kernel Loader Exits (see page 217)

UNIX Exits

A UNIX exit is a specified program-a shell script or an executable-that runs automatically
as a result of another defined CA Access Control activity taking place. CA Access Control
supports UNIX exits when loading or unloading the CA Access Control kernel module, or
when issuing specific selang commands. For example, you can run an initialization
process for each new user that you add.

A UNIX exit can run on one or more of the following occasions:

■ As a pre-update exit, before each selang command that updates a user or group
record

■ As a post-update exit, after each selang command that updates a user or group
record

■ As a pre-load exit, before SEOS_load loads the CA Access Control kernel

■ As a post-load exit, after SEOS_load loads the CA Access Control kernel

■ As a pre-unload exit, before SEOS_load -u unloads the CA Access Control kernel

■ As a post-unload exit, after SEOS_load -u unloads the CA Access Control kernel

User or Group Record Update Exits

UNIX exits are called whenever a selang command that updates user or group records is
executed in the UNIX environment, regardless of whether the tool is a command-line
interface (selang) or a GUI (such as CA Access Control Endpoint Management).

The term update refers to creating, modifying, or deleting a user or group record.
Querying a user or a group does not cause any UNIX exit to run. These are the
commands that can cause a UNIX exit to run:

■ newusr

■ newgrp

■ chusr

User or Group Record Update Exits

214 Endpoint Administration Guide for UNIX

■ chgrp

■ editusr

■ editgrp

■ rmusr

■ rmgrp

From the UNIX point of view, each exit processes runs as a root process, but from the
CA Access Control point of view, it runs under the agent identity _seagent.

How the Provided selang Exit Script Works

CA Access Control provides a script that you can use as a master script to call other
programs according to the nature and status of the current selang command. The exit
script that is supplied as part of CA Access Control is ACInstallDir/exits/lang_exit.sh
(where ACInstallDir is the CA Access Control installation directory.) Here is how it works:

1. CA Access Control automatically gives values to three parameters of the script.

Parameter Possible Values

CLASS USER | GROUP

ACTION CREATE | MODIFY | DELETE

STAGE PRE | POST

The parameters indicate whether CA Access Control is dealing with a user or a
group; whether the user or group is being created, deleted, or modified; and
whether the selang command is about to be executed (PRE) or has just been
executed (POST).

The script can pass the parameter values to programs that it calls.

Parameter Possible Values

EXEC_RV Receives the return value of a UNIX command that you
use to determine whether the exit command succeeded
or failed.

For PRE commands, the value is always zero. For POST
commands, you can use the value to decide whether to
run or skip an exit.

For an example of how to use this parameter, locate
ACInstallDir/samples/exits_src

User or Group Record Update Exits

Chapter 16: Using UNIX Exits 215

2. Using the CLASS and STAGE parameters, CA Access Control looks for programs in
the appropriate directory:

ACInstallDir/exits/USER_PRE/

ACInstallDir/exits/USER_POST/

ACInstallDir/exits/GROUP_PRE/

ACInstallDir/exits/GROUP_POST/

3. In the appropriate directory, CA Access Control selects all the programs that have
file names that begin with a capital S, refer to the appropriate action, and have the
following format:

Snnaction_string

Where nn is a two-digit decimal number defining the order of the program in the
execution sequence, action is one of CREATE, MODIFY, or DELETE, and string is a
descriptive string.

4. CA Access Control runs all the appropriate programs according to the numerical
order of the second and third characters of their names.

Example: UNIX Exit Script

You are going to delete a user, and the directory ACInstallDir/exits/USER_PRE/ includes
the following files:

■ S10CREATE_precustom.sh

■ S10DELETE_precustom.sh

■ S99DELETE_prermusrdir.sh

When you issue the command to delete the user, the first program is not run because
you are deleting and not creating a user. The second and then the third programs are
run in that order based on the two digits after the initial S.

Arguments You Can Pass to selang Exits

When writing exits you can take advantage of the three parameters mentioned
previously (CLASS, ACTION, and STAGE), and all the standard CA Access Control data
such as names and permissions. You can also designate extra user or group data
especially for use by the exit scripts. To store such additional data for a user or group,
define it within single quotes as the value of the user's or group's UNIX APPL property in
a newusr, chusr, newgrp, or chgrp command. For example:

chusr JONESY unix APPL('HIRED=MAY93,CLEARANCE=2')

Your exit program must be able to handle whatever is between the single quotes.

User or Group Record Update Exits

216 Endpoint Administration Guide for UNIX

Specify selang Exit Programs to Run

To tell CA Access Control which exit programs to run, modify the [lang] section of the
seos.ini file. CA Access Control provides the lang_exit.sh script for pre-user, post-user,
pre-group, and post-group exits. You can also specify no exit or create your own exit.

To specify your own selang exits set any or all of the settings in the [lang] section of
seos.ini as required.

Note: An exit is called only if its full pathname appears as the value of an exit token.

Example: Specify selang Exits

In the following example, the seos.ini file tokens are set so that the program groupcheck
runs before group operations, the program flag_exceptions runs after group operations,
the program lang_exit.sh runs after user operations, and no exit program runs before
user operations. The seos.ini file tokens are set as follows:

[lang]

pre_group_exit = /opt/CA/AccessControl//exits/groupcheck

post_group_exit = /opt/CA/AccessControl//exits/flag_exceptions

post_user_exit = /opt/CA/AccessControl//exits/lang_exit.sh

Time Out and Other Failures

Exit execution times out after 15 seconds, unless the exit_timeout variable in the
seos.ini file specifies otherwise. A nonzero return value indicates failure.

■ If a pre-update exit times out or returns a return code of greater than or equal to
16, then CA Access Control kills the exit process, displays an error message, and
aborts execution of the CA Access Control update command. Any other positive
return code does not abort the execution of the command.

■ If a post-update exit times out or returns a nonzero value, then CA Access Control
kills the exit process and displays an error message. Having already been executed,
the CA Access Control update command remains in force.

selang Exit Samples

By examining the scripts in the following directories, you can familiarize yourself with
recommended scriptwriting techniques.

ACInstallDir/samples/exits-src

ACInstallDir/samples/sample_exits

CA Access Control Kernel Loader Exits

Chapter 16: Using UNIX Exits 217

CA Access Control Kernel Loader Exits

UNIX exits are called whenever the CA Access Control kernel is being loaded or
unloaded (SEOS_load). This lets you define how you want to handle operating system
and third-party programs when loading or unloading the CA Access Control kernel. For
example, you can use kernel-unloading UNIX exits to automatically stop, and later
restart, processes that prevent CA Access Control from unloading when running
SEOS_load -u.

For some operating systems, CA Access Control comes with some kernel load exits,
kernel unload exits, or both out of the box.

Note: For more information about identifying processes that prevent CA Access Control
kernel from unloading, see the secons utility in the Reference Guide.

How the Kernel Loading Exits Work

To let you control operating system and third-party processes, CA Access Control lets
you automatically make calls to UNIX exits when loading the CA Access Control kernel
extension.

When you run SEOS_load, CA Access Control performs the following actions:

1. Looks for programs in the following directory:

ACInstallDir/exits/LOAD

2. Selects all the programs that have file names of the following format:

SEOS_load_string.always

Where string can be any descriptive strings.

3. Executes, in lexicographical order, each file it found in the directory
ACInstallDir/exits/LOAD:

SEOS_load_string.always -pre

Each file is executed with the -pre parameter so that you can write your exits to
detect the parameter and perform the actions required before the kernel is loaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit process,
displays an error message, and aborts the kernel loading.

CA Access Control Kernel Loader Exits

218 Endpoint Administration Guide for UNIX

4. Loads the kernel (SEOS_syscall).

5. Executes, in lexicographical order, each file it found in the directory
ACInstallDir/exits/LOAD:

SEOS_load_string.always -post

Each file is executed with the -post parameter so that you can write your exits to
detect the parameter and perform the actions required after the kernel is loaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit process
and displays an error message. Having already been loaded, the CA Access Control
kernel remains loaded.

How the Kernel Unloading Exits Work

To let you control operating system and third-party processes, CA Access Control lets
you automatically make calls to UNIX exits when unloading the CA Access Control kernel
extension.

When you run SEOS_load -u, CA Access Control performs the following actions:

1. Looks for programs in the following directory:

ACInstallDir/exits/LOAD

2. Selects all the programs that have file names of the following format:

SEOS_unload_string.always

Where string can be any descriptive strings.

3. Executes, in lexicographical order, each file it found in the directory
ACInstallDir/exits/LOAD:

SEOS_load_string.always -pre

Each file is executed with the -pre parameter so that you can write your exits to
detect the parameter and perform the actions required before the kernel is
unloaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit process,
displays an error message, and aborts the kernel unloading.

CA Access Control Kernel Loader Exits

Chapter 16: Using UNIX Exits 219

4. Tries to unload the kernel.

If the kernel does not unload:

a. Selects all the programs that have file names of the following format:

 SEOS_unload_string.opt

b. Executes, in lexicographical order, each file it found in the directory
ACInstallDir/exits/LOAD:

 SEOS_unload_string.opt -pre

Each file is executed with the -pre parameter so that you can write your
conditional exits to detect the parameter and perform the additional optional
actions required before the kernel is unloaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit
process, displays an error message, and aborts the kernel unloading.

c. Unloads the kernel.

d. Executes, in lexicographical order, each file it found in the directory
ACInstallDir/exits/LOAD:

 SEOS_unload_string.opt -post

Each file is executed with the -post parameter so that you can write your
conditional exits to detect the parameter and perform the additional optional
actions required before the kernel is unloaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit
process and displays an error message. Having already been unloaded, the CA
Access Control kernel remains unloaded.

5. Executes, in lexicographical order, each file it found in the directory
ACInstallDir/exits/LOAD:

SEOS_unload_string.always -post

Each file is executed with the -post parameter so that you can write your exits to
detect the parameter and perform the actions required after the kernel is loaded.

Note: If the exit returns a nonzero value, CA Access Control kills the exit process
and displays an error message. Having already been unloaded, the CA Access
Control kernel remains not loaded.

Chapter 17: Interacting with LDAP 221

Chapter 17: Interacting with LDAP

This section contains the following topics:

Transferring User Names (see page 221)
S50CREATE_Ldap_u (see page 221)

Transferring User Names

If you are using both CA Access Control and LDAP, you can transfer user names between
them using scripts of your own design; three sample scripts are provided.

Important! To set up sebuildla and the required LDAP configuration settings you must to
be familiar with LDAP and be able to execute the ldapsearch command. We recommend
that you read the man pages for ldap(1), ldapsearch(1) and the information about
setting up in the documentation for your LDAP client.

Two of the provided scripts-ldap2seos and seos2ldap-export whole sets of users from
CA Access Control to an LDAP server and imports them from an LDAP server to CA
Access Control.

A third sample script, S50CREATE_Ldap_u.sh, automatically transfers new UNIX user
names from CA Access Control to LDAP as they are created.

The sample scripts require access to a TCL shell environment; they use the Language
Client API (LCA) library extension, tcllca.so.

Note: For more information about LCA and the TCL extension, see the Language Client
API and the appendix the LCA Extension respectively in the SDK Guide.

If you do not have TCL, consult the FAQ posted monthly to comp.lang.t_c_l by Larry
Virden, which is available on the MIT web site and the Terafirm website.

You can also refer to the Sun web site for TCL news, documentation, and resources.

S50CREATE_Ldap_u

S50CREATE_Ldap_u.sh uploads new UNIX users to LDAP as they are created.

CA Access Control supplies a sample shell script to import new UNIX users automatically
to an LDAP server. The script you need can vary from the sample.

S50CREATE_Ldap_u

222 Endpoint Administration Guide for UNIX

To employ the sample shell script, assuming that you are already using the provided exit
script, do the following:

1. Copy the S50CREATE_Ldap_u.sh file to the directory ACInstallDir/exits/USER_POST.
In this directory, the script becomes a post-user exit.

2. In the seos.ini file in the [ldap], set the base_entry token to the LDAP base entry.

For example, for an organization named ServerWorld, located in Canada, the base
entry might be: o=ServerWorld, c=CA.

3. In the same section, set the host name to the host name of the LDAP server. Set the
path to the LDAP base directory. (The sample script looks for the line command
utilities in the bin directory under that directory.)

Common Names (cn) are derived from the user's full name. If the CA Access Control
database contains, for example, only the user name and surname, these will comprise
the Common Name. You are essentially locked into the Common Name, so we
recommend that you do not base it on a user name.

Each user subsequently added to UNIX with selang is automatically uploaded to the
LDAP server. If the user already exists in LDAP, an error message results.

When you add users with this script, the relevant LDAP replies and warnings, if any exist,
are collected in the /tmp/add_User2Ldap.tcl.log file. You can examine this file, using vi
or any other standard UNIX editor, to check for errors. The file is overwritten with the
new set of replies and warnings each time you add new users.

Chapter 18: Configuring Settings 223

Chapter 18: Configuring Settings

CA Access Control lets you manage CA Access Control endpoint configuration settings
remotely. To do this you can use CA Access Control Endpoint Management or the selang
config environment.

This section contains the following topics:

Configuration Settings (see page 223)
Change Configuration Settings (see page 223)
Change Audit Configuration Settings (see page 224)

Configuration Settings

CA Access Control stores endpoint and Policy Model configuration settings it uses in:

■ The Windows registry on Windows computers

■ Initialization files (.ini) on UNIX computers

Note: For information about the configuration settings you can make and what they
mean, see the Reference Guide.

Change Configuration Settings

To affect how CA Access Control and any Policy Models work, you need to make
changes to the configuration settings.

To change configuration settings

1. In CA Access Control Endpoint Management, do as follows:

a. Click Configuration.

b. Click Remote Configuration.

The Remote Configuration page appears.

2. In the Remote Configuration Sections pane on the left, expand the configuration
tree as required to reveal the section that contains the configuration setting you
want modify, then click that section.

The Section: sectionName System Tokens page appears, displaying all the
configuration settings in it.

3. Locate and edit the configuration settings as required, then click Save Tokens.

The changed configuration setting is saved.

Change Audit Configuration Settings

224 Endpoint Administration Guide for UNIX

Change Audit Configuration Settings

To affect how CA Access Control generates and stores audit records, you need to make
changes to the settings in the audit configuration files. You use selang commands to
change the settings in the audit configuration files.

To change audit configuration settings

1. (Optional) If you are using selang to connect to a remote host, connect to the host
using the following command:

host host_name

2. Move to the config environment using the following command:

env config

3. Use the editres config command to modify the configuration settings as required.

The audit configuration settings are changed.

Example: Modify Audit Configuration File

The following example adds a line to the audit configuration file:

er CONFIG audit.cfg line+("FILE;*;Administrator;*;R;P")

Appendix A: NIS Configuration 225

Appendix A: NIS Configuration

This section contains the following topics:

Installation Notes (see page 225)
Name Resolution (see page 225)
Avoiding Deadlocks: The Lookaside Database (see page 227)

Installation Notes

Note: This section supplements material covered by the installation script. This
appendix assumes you are familiar with Network Information Systems (NIS), Domain
Name Services (DNS), and UNIX name resolution concepts.

During installations of CA Access Control, you can use one of two options to resolve user
ID to user name, group ID to group name, host IP address to host name, and service port
to service name:

■ Use the system functions, which define a bypass for the net cashing daemon on
your system.

– If you use Digital DEC UNIX and it is not an NIS server, the default uses the
system functions for name resolution.

– If you use Digital DEC UNIX and it is an NIS server, the installation prompts you
to choose one of two options: use a lookaside database or use system
functions, which define a bypass for the net caching daemon.

■ Use a lookaside database, which is created by the sebuildla utility.

– If you are using CA Access Control configured to run on an NIS server, use the
lookaside database.

– The installation default uses the lookaside database on the following platforms:
HP-UX 11.0 and higher, Sun Solaris 2.6 and higher, IBM AIX 5.1L and higher, and
all supported Linux platforms.

Note: On IBM AIX platforms, you must use the lookaside database; there is no option to
use the system functions.

Name Resolution

CA Access Control intercepts requests to access system resources and decides whether
to permit or deny these requests. The decision is based on access rules and policies that
are defined in the database. The interception of requests to access system resources
takes place at the kernel level.

Name Resolution

226 Endpoint Administration Guide for UNIX

To control hosts, groups, users, and services, the kernel and the relevant system calls
use codes or numbers (that is, IP addresses, group IDs, user IDs, and service numbers)
instead of names. CA Access Control defines access rules based on names. CA Access
Control translates names into codes recognizable by the kernel. This process is called
name resolution.

On stand-alone stations, except for stations running Sun Solaris 2.5 or higher, name
resolution is completed directly through the local user, group, and host files
(/etc/passwd, /etc/group, and /etc/hosts). When CA Access Control needs to resolve a
name, it simply calls a system function that in turn reads the relevant file.

On larger networks, however, this information is seldom stored locally. When you use
NIS, DNS, or both, there are no local files that you can consult during name resolution.
The information is requested and received from a server over the network.

Name Resolution on an NIS/DNS Client

CA Access Control performs name resolution on a client-only NIS or DNS station (which
is not its own server) as follows:

1. CA Access Control generates a network request to connect to the relevant server.

2. The CA Access Control kernel extension intercepts the request.

3. The CA Access Control kernel extension permits the request because it knows that
the request was made internally by the CA Access Control process.

4. A connection to the NIS or the DNS server is established and the information
necessary for name resolution is retrieved.

5. Once the name is resolved, CA Access Control continues the process of deciding
whether to permit or deny the original access request.

A standard CA Access Control configuration is sufficient for CA Access Control to easily
handle name resolution on a client server.

Name Resolution on a Server: Deadlock

CA Access Control performs name resolution on a server that includes itself as a client as
follows:

1. CA Access Control generates a network request to connect to the relevant server.

2. The kernel extension intercepts this request.

3. The kernel extension permits the request because it knows that the request was
made internally by the CA Access Control process.

4. The NIS or DNS server (which is located on the same station) generates a request to
accept the network connection.

Avoiding Deadlocks: The Lookaside Database

Appendix A: NIS Configuration 227

5. The kernel extension intercepts this request.

6. The kernel extension knows that a CA Access Control process did not make this
request. It places this request on the queue of requests awaiting seosd decision.

7. The seosd daemon is now caught in a deadlock. It is waiting for the reply necessary
to complete name resolution, but the process that should provide this reply cannot
proceed until seosd gives it permission to accept the network connection. The first
request generates the second, and creates a deadlock.

Name Resolution on Sun Solaris: Deadlock

Name resolution on Sun Solaris entails accessing the nscd cache. The nscd is a process
that provides a cache for the most common name service requests. nscd furnishes
caching for the passwd, group, and hosts databases.

The cache is not permanent. It becomes invalid as changes are made to the passwd,
group, and hosts databases, or as the time-to-live stamp expires.

The Sun Solaris setup can create a deadlock like the one described in the previous
section. Here, the interaction between CA Access Control and the nscd process causes
the deadlock.

1. During name resolution, CA Access Control accesses the nscd cache.

2. The nscd process can decide that the cache is too old. In this case, it attempts to
refresh the information by accessing the passwd, group, and hosts databases
(locally or on a server).

3. The request to access these databases is intercepted by the kernel extension. Since
a CA Access Control process is not making the request, it is placed on a queue
awaiting seosd decision. But no such decision is possible because seosd is still
engaged in the previous request. The first request generates the second, and
creates a deadlock.

Avoiding Deadlocks: The Lookaside Database

The setting of the under_NIS_server token in the seos.ini configuration file has a default
setting of yes to avoid deadlocks. The token tells CA Access Control to use its own
internal name resolution tables instead of NIS, DNS, or the nscd cache. Unless otherwise
specified, these tables reside in memory.

CA Access Control internal name resolution is much faster than NIS name resolution and
even faster than using files; using CA Access Control internal name resolution improves
performance even in an environment where there is no danger of deadlocks.

Note: There is no cache for the internal name resolution tables in the lookaside
database. CA Access Control uses an open file handle to read data from the tables.

Avoiding Deadlocks: The Lookaside Database

228 Endpoint Administration Guide for UNIX

Storing Resolution Tables on Disk

CA Access Control name resolution tables are generated while CA Access Control is
starting up. The tables should be maintained on disk, not in memory because storage in
memory can lead to memory overload. Also, when the information is read into memory,
it is static. Because of this, CA Access Control would not know of any changes made to
user, group, or host information. The only way to update the tables in memory is to
restart CA Access Control.

To keep data current, CA Access Control provides a lookaside database that makes sure
internal name resolution tables are stored on disk.

Note: To implement the lookaside database you need to use seos.ini configuration
settings. For more information about seos.ini configuration settings, see the Reference
Guide.

Setting Up the Lookaside Database

The four tables in the lookaside database are userdb.la, groupdb.la, hostdb.la, and
servdb.la. These four tables handle user, group, host, and service name resolution
requests. The tables are located in the directory specified by the lookaside_path token
in the seos.ini file, which by default is /opt/CA/AccessControl//ladb.

Lookaside Database with Four Tables

To set up the lookaside database with the four tables, do one of the following:

■ If you are installing CA Access Control, answer yes when asked if you want to create
the lookaside database.

■ If you already installed CA Access Control:

a. In the [seosd] section of seos.ini change the following tokens to yes:

– under_NIS_server

– use_lookaside

b. Run sebuildla -a to create all four tables.

Avoiding Deadlocks: The Lookaside Database

Appendix A: NIS Configuration 229

Lookaside Database with Less Than Four Tables

You can also create one, two, or three tables. For example, if you want to use the
lookaside database to resolve hosts only, complete the following steps:

1. After you install CA Access Control, change the following tokens in the [seosd]
section of the seos.ini file:

■ Set under_NIS_server to blank.

■ Set HostResolution to ladb.

2. Run sebuildla -h to create a table of all hosts, including local and DNS hosts.

or

Run sebuildla -e to create a table of local hosts only (defined in /etc/hosts).

To create a lookaside database with other tables, use the appropriate tokens in the
seos.ini file and then run the appropriate option with sebuildla.

Note: For descriptions of these tokens, see the seos.ini initialization file in the Reference
Guide. For more information about sebuildla, see the Utilities Guide.

Important! Run sebuildla whenever you add a host.

How the Lookaside Database Works

The four tables in the lookaside database (groupdb.la, hostdb.la, servdb.la, and
userdb.la) contain resolution information for groups, hosts, services, and host names.
The tables are located in the directory specified by the lookaside_path token in the
seos.ini file, which by default is /opt/CA/AccessControl// ladb.

CA Access Control internal name resolution is much faster than NIS name resolution and
even faster than looking up th files.

Implementing the Lookaside Database

Note: The problems and solutions outlined here are for informational purposes only.
Actual settings are correct upon installation and most users need not take any action.

Here is a broad overview of how CA Access Control implements the lookaside database:

■ The relevant tokens in the seos.ini file are set.

■ The relevant symbolic links in the /opt/CA/AccessControl//exits directory are
defined.

■ The command /opt/CA/AccessControl//bin/sebuildla -a was issued to build the
lookaside database.

Avoiding Deadlocks: The Lookaside Database

230 Endpoint Administration Guide for UNIX

The sebuildla utility taps into the native resolution mechanisms such as th files and NIS
to build the lookaside database.

No security-sensitive information (such as password, location of the home directory, or
gecos) is kept in the lookaside tables. The lookaside database tables contain only a
numeric ID number and a name.

Once the lookaside database is created, update it using the sebuildla utility. You do not
need to restart CA Access Control.

Updating the Hosts Lookaside Table

You must update the hosts lookaside table. To do so, execute sebuildla -h at regular
intervals (site-specific). Use cron jobs to do this.

Every time you change the UNIX user or group databases utilizing selang, you must run
the sebuildla utility. CA Access Control provides exit scripts for this purpose, which runs
sebuildla with the appropriate parameters.

	CA Access Control Endpoint Administration Guide for UNIX
	Contents
	1: Introduction
	About this Guide
	Who Should Use this Guide

	2: Managing Endpoints
	What Is CA Access Control?
	Why Does UNIX Need Protecting?
	How Does This Work?
	What Is Protected?
	How Is It Protected?
	Class Activation
	Accessor Elements

	Expanding Native Security
	Superuser Account Limitations
	CA Access Control Administrators
	Sub Administration
	Administration Rights for Regular Users
	Program Pathing
	B1 Security Level Certification

	Endpoint Management

	3: Managing Users and Groups
	Users and Groups
	Where Information about Accessors Is Stored
	How CA Access Control Finds a User Record
	Integration with the Enterprise User Stores

	Guidelines for Managing Accessors in Enterprise Stores
	Users and Groups that Must be Defined in the Database
	Restrictions on the Use of Enterprise Users
	Restrictions on the Use of Enterprise Groups
	Enable or Disable the Use of Enterprise Users and Groups
	Enable or Disable the Creation of XUSER Records at Enterprise User Login
	Enable or Disable Checking Enterprise Store before Creating XUSER Records on UNIX
	Recycled Enterprise Store Accounts on Windows
	Resolve Recycled Enterprise Accounts on Windows

	Database Accessors
	Predefined Users
	Predefined Groups
	Profile Groups
	How CA Access Control Uses Profile Groups to Determine User Properties

	Accessor Management
	Manage Users or Groups
	User Management Using selang
	Group Management Using selang

	4: Managing Resources
	Resources
	Resource Groups

	Classes
	Default Record for Class
	UACC Class (Deprecated)
	Predefined Classes

	User-Defined Classes
	Wildcards in User-defined Classes Resources
	User-Defined Class--Example

	5: Managing Authorization
	Access Authorities
	Setting Access Authority - Examples
	Access Control Lists
	Conditional Access Control Lists
	defaccess--The Default Access Field

	How Access Authority to a Resource Is Determined
	Interaction Between User and Group Access Authorities
	Accumulative Group Rights (ACCGRR)

	Security Levels, Categories, and Labels
	Security Levels
	Security Categories
	Security Labels

	6: Protecting Accounts
	Why Protect Accounts?
	Safe User Substitution
	Set User ID Substitution Rules
	How to Set Up sesu for User Substitution
	Set Basic User Substitution Rules
	Replace the System's su Utility with the CA Access Control sesu Utility
	Prevent Users from Running the System's su Utility

	Setting Up the Surrogate DO Facility
	Defining SUDO Records
	Preventing Password Attacks
	serevu
	pam_seos
	Restrictions and Limitations

	Checking User Inactivity

	7: Managing User Passwords
	Password Control
	Defining Password Policies
	Configure Password Quality Checking
	Changing Passwords

	Password Expiration and Grace Logins
	Specify the Password Interval
	Set Individual User or Group Password Intervals
	Grace Logins
	Track Grace Logins

	8: Protecting Files and Programs
	Restricting Access to Files and Directories
	How File Protection Works
	Protect Files
	Wildcards in FILE Resource Names
	Restricting File Access
	Preventing File Access
	Restrict Users from Getting File Information
	Viewing Default Access Authority
	Using Conditional Access Control Lists
	Using Negative Access Control Lists

	Blocking Trojan Horses with the _abspath Group
	Synchronization with Native UNIX Security
	Example: Synchronization
	HP-UX Limitations
	Sun Solaris Limitations

	Monitoring Sensitive Files
	Internal File Protection
	Internal File Rules
	Default File Rules

	Protecting setuid and setgid Programs
	Define setuid/setgid Programs Automatically
	Conditional Access
	Protecting the Login Command

	Protecting Regular Programs
	Kernel Modules Load and Unload Protection
	Protect a Kernel Module
	Enable and Disable Kernel Module Protection
	Enable and Disable File Path Checking on Kernel Module Loads

	Protecting Binary Files from the kill Command

	9: Controlling Login Commands
	Controlling the Login Process
	Examples: LOGINAPPL
	Enable SFTP Login Interception

	Controlling Generic Login Applications
	Defining a Generic Login Application
	Generic Login Program Interception

	Defining User Authority to Use Terminals
	Restricting Terminals for Root Users
	Recommended Restrictions

	Password Checking and Login Restrictions
	Logon Checks

	Defining Time and Day Login Rules
	Disabling Concurrent Logins
	Limiting Concurrent Logins for a User
	Limiting Concurrent Logins Globally
	Limiting Concurrent Logins Individually

	Recognizing a Login Event

	10: Protecting TCP/IP Services
	Restricting TCP/IP Services
	Using the TCP Class
	Streams Module for Network Interception

	11: Managing Policy Models
	The Policy Model Database
	PMDB Location on Disk
	Managing Local PMDBs
	Managing Remote PMDBs

	Architecture Dependency
	Methods for Centrally Managing Policies
	Automatic Rule-based Policy Updates
	How Automatic Rule-based Policy Updates Work
	How You Use a PMDB to Propagate Configuration Settings
	Virtual Configuration File
	How New Subscribers Are Configured

	How You Can Set Up a Hierarchy
	Create and Configure the Master PMDB
	Create and Configure Subscriber PMDBs
	Define Parent PMDBs for Subscribing Computers

	UID/GID Synchronization
	Synchronize Users and Groups
	Specify UIDs Explicitly

	How the Policy Model Updates Subscribers
	Update a Policy Model Database
	Clean Up the Update File
	Encrypt the Update File
	Exclude Subscribers
	Propagate Passwords
	Remove a Subscriber
	Filter Updates
	Policy Model Filter File
	Policy Model Error Log File
	Policy Model Backup
	Back Up a PMDB Using sepmd
	Back Up a PMDB Using selang

	Policy Model Restoration
	Restore a PMDB

	Dual Control
	Activate Dual Control
	Create or Edit Transactions
	Checking and Processing Transactions

	Using the seagent and sepmdd Daemons
	The seagent Daemon
	The sepmdd Daemon
	Using a Shadow File

	Mainframe Password Synchronization

	12: General Security Features
	Protection of Idle Stations
	Protection Modes
	Set Stations to Lock when Idle
	Change the Screen Lock Icon

	Protecting Resources Using APIs
	Protecting Against Stack Overflow: STOP
	Starting and Stopping STOP

	Defining Day and Time Access Rules for Resources
	B1 Security Level Certification
	Security Levels
	Enabling Security Level Checking
	Disabling Security Level Checking

	Security Categories
	Enabling Security Category Checking
	Disabling Security Category Checking
	Defining a Security Category
	Listing Security Categories
	Deleting a Security Category

	Security Labels
	Enabling Security Label Checking
	Disabling Security Label Checking
	Defining a Security Label
	Listing the Security Labels
	Deleting a Security Label

	13: Auditing Events
	Setting Audit Rules
	Defining the Audit Events That CA Access Control Writes to the Audit Log
	How User Session Logging Works
	How CA Access Control Determines the Audit Mode for a User
	Default Audit Modes for Users and Enterprise Users
	Change to Default Audit Value for Some Users
	Changing the Value of AUDIT Property for GROUP Records

	Warning Mode
	Put a Resource into Warning Mode
	Put a Class into Warning Mode
	Find Out Which Resources Are in Warning Mode
	Find Out Which Classes Are in Warning Mode
	How to Perform System Maintenance

	Audit Logs
	The System Auditor
	Set Up the Log Routing Facility
	File Notifications

	Log Routing
	Log Routing Configuration
	Audit Log Route Encryption
	Send Audit Log Records using Email
	Configure SNMP Traps

	Migrate User Trace Filters

	14: Scope of Administration Authority
	Global Authorization Attributes
	ADMIN Attribute
	AUDITOR Attribute
	OPERATOR Attribute
	PWMANAGER Attribute
	SERVER Attribute
	IGN_HOL Attribute

	Group Authorization
	Parentage
	Group Authorization Attributes
	GROUP-ADMIN Attribute
	GROUP-AUDITOR Attribute
	GROUP-OPERATOR Attribute
	GROUP-PWMANAGER Attribute

	Ownership
	File Ownership

	Authorization Examples
	Single Group Authorization
	Parent and Child Groups

	Sub Administration
	How to Grant Specific Administrative Privileges to Regular Users
	The ADMIN Class

	Environmental Considerations
	Remote Administration Restrictions
	UNIX Environment
	Windows Environment

	15: Improving Performance
	Using Global Access Check
	How Does GAC Work?
	Implementing GAC
	Setting Up GAC Rules
	Starting GAC

	GAC Restrictions
	Troubleshooting GAC

	Using the Resource Cache
	Tuning Recommendations

	Using the Network Cache
	Using the Real Path Cache
	Using Fork Synchronization
	Using High Priority
	Bypassing the Process File System
	Bypassing Real Paths
	Bypassing Trusted Process Authorization
	Bypass Ports for Network Activity
	Reducing Audit and Trace Loads
	Reducing Database Loads
	Improving PMDB Updates
	Improving Watchdog Performance
	Improving Class Parameters
	Class Activation
	Class Authorization

	Resolving Names

	16: Using UNIX Exits
	UNIX Exits
	User or Group Record Update Exits
	How the Provided selang Exit Script Works
	Arguments You Can Pass to selang Exits
	Specify selang Exit Programs to Run
	Time Out and Other Failures
	selang Exit Samples

	CA Access Control Kernel Loader Exits
	How the Kernel Loading Exits Work
	How the Kernel Unloading Exits Work

	17: Interacting with LDAP
	Transferring User Names
	S50CREATE_Ldap_u

	18: Configuring Settings
	Configuration Settings
	Change Configuration Settings
	Change Audit Configuration Settings

	A: NIS Configuration
	Installation Notes
	Name Resolution
	Name Resolution on an NIS/DNS Client
	Name Resolution on a Server: Deadlock
	Name Resolution on Sun Solaris: Deadlock

	Avoiding Deadlocks: The Lookaside Database
	Storing Resolution Tables on Disk
	Setting Up the Lookaside Database
	Lookaside Database with Four Tables
	Lookaside Database with Less Than Four Tables

	How the Lookaside Database Works
	Implementing the Lookaside Database
	Updating the Hosts Lookaside Table

