CA 2E

Standards Guide
Release 8.6.00

This documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as
the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2011 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following:

Online and telephone contact information for technical assistance and customer
services

Information about user communities and forums
Product and documentation downloads
CA Support policies and guidelines

Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

If you would like to provide feedback about CA Technologies product documentation,
complete our short customer survey, which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents

Chapter 1: Overview 13
PUIPOSE e e e e e e e e e e e e e e e e aeees 13
[T 2=Te I [l o] o g o =1 d o] o WU ORI 13
[T g LT 0o 1= PR 13
GENEIAI IBIVI GUIES ...ttt ettt ettt et sttt st sa e st e st et sabeesabeesabeesabeesabeesabeesabeesabeesaseesabeesaseesabeesnseenane 14
(0101 1Y7=T0) o] o 1 PSP PPPPP 14
Terms Used in THiS IMANUALuiiiiiiiiieeiee ettt sttt sttt s sbe e st e s beesbe e s bt e sabeesabaesabeesbbeenbaesnsaesnsens 15
Introduction to iSeries Programming and Documentation Standards...........cccceeicieeeeiiiececiiee et 16
IMPOITANCE OF STANAIUS ..euviiiiieiieietet ettt ettt eae e bt e bttt et e satesaeesheesbeenbe e bt eatesaeesbeabeenbeenbens 16
ISEIIES STANTAITS ...e ettt ettt ettt e sa e e e sa et e s a b e e bt e e sb b e e bt e e sbt e e bt e e bbe e bt e e bte e bt e e beeebeeeneeenees 17
[o] FoiT oY=y =T aTo F=1 o KR 19
Chapter 2: Naming Conventions 21
NQMING CONVENTIONS ..teiiiiiiieiiieteeee e eeseter e e e e s s e et e e s s ettt e eeeeessesaaetaaeeeeeeasasstaseeeessasanssanaeeeesssansssranesessssnsssreneeanssnsns 21
NATUFAI LANGUAEE «..vveeeeeiiieeeeitee ettt ettt e ettt e e et e e e e et e e e eetbeeeeaaeeeeasbaeeeasbsseeessaaeeaabaseeanssseesassaaaesstasaeanstasesnssaseesntenanans 21
(0] oT[=Tet £SO SURSUPPR 22
Object-Oriented APPIrOACHii it e ettt e bt e s bt e st e e st e e s bt e s beeebeesabeesbeesabeesneenane 23
PIanning @ Naming CONVENTIONcciiiiiieieiie et et eeeete e et e e et e e s st e e e eaeeeeessteeeessseeesnsaaeessseeeaansseeesnnsneeesnseeenans 24
OS/400 ENtity aNd ODJECE TYPES .oouveeeiieeiieeieeeiteeeteeesteeeteeeeteeebeesteesabeesbeesbesebaesatessseesabassseesataseseesntessnseesnns 25
Constraints 0N the UNIQUENESS OFf NAMES........ccoiiii ettt ettt e e ee e e et e e e e st e e e e ebae e e eaaeeeesabaeeeensbeeessneeas 28
Constraints 0N NamiNg CONVENTIONSciiiiiiiiiiiiiee ittt e s se e s e ssr e e e s eara e e e sbae e s sanreeesennreessnnneas 29
OS/800 ...ttt ettt ettt e ettt e e teeateebeeae et e eteeabe e be e teeabe et eaaeahaeabeebeebeeteereeeteeabe e te e beeabeeraestaesreenres 29
L4 T 1 | P T PP P TP PPRPPPTOPRR 29
(60210 1 OO PO PRRUPPPPRRUPPRINE 29
L1 PRSPPI 30
N T =l D)1 a1 ot o o L PSS 31
NUMDET OF DISTINCLIONS ...eiiviiiiieiie ettt e st e sh e e bt e e s bt e e ae e e sabe e bt e e sbteebeeestesbeesssesnneas 32
(0] o) [=Tot =Tt 1 [o] o T8 \VF= Y5 01 1oV SRS 34
RECOMMENAALIONS 1..eteiiieiiiieerie ettt et e s bt e st te e sate e bt e e sbte e bt e e sbteebaeebteenbaeebeeenbaesnsaesnbaeessesnsens 35
(07901 8 Yo 0 1] o T 0o o1 VZ=T o) A o o RS 35
[T T 28 C T | N 36
NamMIiNg CONVENTION VariatiON ...occiiiiieiiiiiceiiteee et e e e e s st e e e s s sebbaaeeeeeessessbntaeeeeessnsssnnaneeesssnsans 37
[0T g o] [Tt 4SS 37
Lo g o] o 4o - £ PP PPPPPPTON 39
(o] g ST T=] (o PRSP 40
[LR @ T o I o =T T 2 o 1 1 PR 40

Contents 5

1YL aT=T 00 To T 1ok UUURPRRUPRRRRt 41

CA 2E IMINEMIONIC SYSTEIM .ttt ettt ettt se e e st e e st e e sse e e e s amr e e e s e ne e e e sanae e e e s re e e s nnneeesanaeeseanreeesannne 41
FOrmMUIate NEW IMINEIMONICS.....utiieiiiiiie ettt e ettt e eett e st e e ettt e e e seee e e staeeeesateeesasseeeesnsaeesansseesensseeeeanseeesansseessnnsenns 41
CA 2E @Nd IMINEIMONICS touveeiueieeieeiiteeieessttesteessteesabeessbeesabeesabeesabeesssaesabaesabaesabeesabaesabeesabeesabeesseesasaesnseesnsessnseesane 42
(07.W 1 S \ Yoo 1 o T- A @ g \VZ=T oY d o] o [= Col= o £ o] o SRR 42
Advantages of CA 2E NamMiNg CONVENTION.....cccuiiiieiiieiiieeie ettt sttt sttt si et sab e st e e sabeesneeessbeesneeesmneenaneens 43
Enforcing A Naming CONVENTIONccciiiiiieiiie e ecieee et e et e e e st e e e ettt e e eatee e e sataeeeeseeeesnseaeesssaeesansteeesnssnaeesnseeanans 44
Chapter 3: IBM i General Design Standards 45
[Ty =4 T AV, =N oo Yo L3S 46
Contents 0f @ SPECITICATION ...uiiiiiie et e e e s e e e et e e e s ate e e e ttaeesensseeesnnaeeeensseeesnnnes 47
[Ty =40 T o o L3S 47
Design Standards for USEr INTEITACES......ccccuiii ittt eete e e e et e e e e stt e e e eeabaeaesabaeeeensbaeeeensaaeesabaeaans 48
[Y=o LU LTS 49
a1 e=T = ol o] E] Yo oy PR 50
BT a1 (oY il T T o1 V=S 51
1Y/ oYe =12 1=T o - VT | PRSPPI 51
EXPIOring @and BacCKiNg QULviiiiiiiiccee ettt e ettt e e e et e e e e s tte e e s abae e e sabaeeeestaeeeansaeeesataeaeanssaeesnsaeas 52
RECAIl VErsUS RECOGNTTIONeiuiiiiiiiiiiieie ettt ettt et e s et e bt s bt e e b e e sbbe e bt e e bbesbeeennnesanees 53
[\ oYY (ol =a- T o I ot o 1Tl o= 1 o [P 54
CoNtEXEUAL INTOIMATIONii ittt st s e st e st e sabe e sbeesabeesbeesabaesnbaesabeesseenane 55
] 311 0] =T I3 A =T 4 USRS 55
iSeries User Interface Implementation COMPONENTES........oiiiiiiiiiiiiiie et e 56
Design Standards fOr DIiSPlay FIlES.........eu ittt ettt b e e be e s be e e sbeesbe e eneesnees 56
(o o u o 1ol 21V LY/ 1o [T o= 56
(010N Yo =TI o] 4o oY) g T=T o] £ USRS 57
iSeries Panel Layout STANAANASeii it ee e e et e e e e st e e e e atee e e eataeeeetbeeeeensaeeesabeeeeesbeeesnneeas 58
USING COMMANG KBYS.....eiiiiiiiiieiiteeieerte ettt ettt et e sh e et e s ab e e bt e e s bt e e bt e e s bt e e bt e e sbee e beeesbee e neeenteebeeenneesnnees 61
{81 Y= Y=Y LTt T o I 0o 11 [y o o T3S 63
R0 o 1T 1T 7= SR 64
BasiC Panel Display StyleSs ON iSEIIES.....cuuuiiiiiiee ettt cctee ettt e e et e st e e e e stte e e s etaeeesataeeeestaeeeassaeeesataeeeesreeesnsneas 64
CommON Panel DIiSPIay VarianTscccuuiiiiiiieeeciiee et e ectee et e eectt e e e eettee e e s abeeeeesbeeeessaaeeastaeeeesseseesseaeeasreeasanses 65
Design Standards fOr PriNTEI FIlESeiiiiiiieeeeiteee ettt ettt ettt et e be e e s be e e bt e e sbeesbeeesneesnees 68
Standard REPOrt DESIZN LAYOULcceiuiiiiiiiee i ciee et ctee e et e e ettt e et ee e e sate e e e e steeesensseeesnsseeeanseeesnnsaeeesnsenanans 68
[N [o) L= o ol 20T oTo T B 1= 1Y 1 -1 o NSO PT PO PRPROPRPRPRPRN 69
(DI =g] =T g Lo o T e £ foT 1Y, =T o T LSS 71
Y T o T B TeT Fod oW oY a1 [o [T = (o] o PRSPPI 71
GroUPING ITEMS ON IMBNUS ...oeiiiiiiieiiiiie ettt et e e sae e e e s s b e e e s e b e e e s s bae e e s s ree e s nnneessnaeessanreeesannne 71
F Y oY o T=E T [T =i 1Y, 1= o T F PSR 72
ATTANGING IMIBNUS...cciiiiiiiiccc e e e e e e et e e et e e e e et e e et e e et e e e e e e et et et eeeeee et eeeeeaatetetetesetaseeeraranens 73
TOOIS TOr CrEatiNG IMIBNUS ...eee e eeiiie e ettt ettt e ettt e e e ettt e e e e te e e e etaeeeestbeeeeesbeeeeassaaeasbesaeanseeseassaeeeasteeeeanssesessneens 74

6 Standards Guide

DesigN STANAArds fOr HEIP TOXE....uuiiiiiiiie ettt eet e e e ettt e e e ettt e e eetteeeesbeeeeesteeeesesssaeeeataeaeasbeeeaassaeaesteeaans 75

Help Text Design CoNSIAEIAtIONSccc.eiiiiiiieeiiieeee ettt ettt ettt ettt s e e sae e e s aee e bt e e sbee e st e esstesbeeeneeenneas 75
DESINING HEIP TOXE..vteeuteeiiiieetee ettt ettt e h et e s a b e e bt e e s bt e e bt e e sbt e e bt e e bee e bt e e sbee e seeesbeebeeeneenaneas 76
Lo LTI L= o T I PSS 77
COMMANG HEIP TOXE.ciiiieeiiee ettt e sttt e e ettt e e et e e e e s baeeeetbeeeeaasaaeessbaeaeanssseesnsssaeastaeesanssaeesssaaeanssesananses 77
IMIENU HEIP TOXE ettt ettt ettt e bt a et e b e e e bt e e bt e e bt e e sbe e e bt e e bbe e bt e e bbe e bt e ebnesbeeennnesanees 77
SAICI INUEXES ..ttt ettt e b e ettt e s bt e e bt e e s bt e e bt e e bbeesateesab e e aeeesabeesaeeesateesseeesateenneeesareenareens 78
Design Standards fOr COMMEANDSuiiiieiiir e ecieee et e st e e e e e e et e e e eeatee e e sateeeesneeeesanseeeessseeeeassesesnssnaeesnsenanans 78
ATV o 1Y W Iy I oY ' s F=1 o 3 SRS 79
N a 1T a Y= @] 01V7=T o o] o - TRPRPPRN 80
DESIGN STANAAITS. ..ceutieieeeite ettt ettt ettt e s bt e ea et e s bt e e bt e e sb b e e bt e e s be e e bt e e bee e be e e abbe e bt e e nbeeebeeennneenees 82
Required Parameters for COMMAaNDS.........ciicuiiiieiieeiiiieeeerieeeeete e e sttee e e st e e seaee e e s taeesssseeesanseeeesnseeeeassseeesnnseens 90
Design Standards for Database FilScccuuiii ittt e et e e et e e s aae e e e sata e e e esraeesnnaaeesnsaeeans 90
(D T<TY =40 W oY= 1 S 90
The Database Of ISEIIES ...iiuiiiiii ittt ettt et e s e st e e et e s bt e e be e s beeeabeeebaeebeeebaeebeseseeenbeesnssesnsens 91
Considerations for Database File DESIZN........ccoiuiiiiiiiiieniie ettt sttt e bt s e sbeesab e sneenane 95
DI I =Yg Lo o e £ fo] gl ol o = =1 o -SSR 102
(D T<TY =40 W o Y- PSPPSRt 103
[o4 =T 0 (T Y/ o LTSRN 103
(0 gToTo 1 o=y =T e ET oo l d doT={ =T oL TSP PPN 104
Organizing Programs iNtO MOTUIES.cocueiiiiiiieie ettt sttt e s b e s b e sae e e sabeesaee e 105
(e Td o a I\ oTo [V T T2 o o I P SRSNt 107
L o] gl 2{=Tol0 1V 7=T oY TSP OO PR P TRORPRPRPRPRPON 108
EPTOTr HANAIINE ottt e e ettt e e et e e e e e tbe e e e eatbeeeeeasaeaeaabesaeessseesassesaensteeeeanssesesssaaeaasreeenanses 109
RECOIT LOCKINE ...ttt ettt ettt ettt ettt et ettt sttt e b e e bt s bt e ettt e bt e e bt e s bbeebee e sbbeeseeessbeeneeesnteennneesnbeennneens 110
SUDTIIE PrOCESSING . eeeeitieiiteeite ettt ettt e be e e bt e s bt e e bt e e s bt e e bt e e bbesbe e e beeebeeebbeebeeenaeenneas 111
Journaling for AUdit Trail PUIMPOSESuiiiieiii e ciieeecee e tee et e et e e et e e s eaeae e s sataeeessteeeesnnneeesnsaeeeassenennnnns 111
Design Standards for InternatioNalizationccocuiie i see e e e e e e e sab e e e et e e e err e e e enraeas 115
GENEIAI PIINCIPIES «eeieiiiiee ettt ettt e e ettt e e e ettt e e e etae e e e tbeeeeeasaeeesabasaeesseseeassaeeesabssaeastaeesansaaeeasaeaaans 115
1YY = T] = 1 oo PSPPSRt 116
Considerations for MRI (teXt) TransIation.........ccceecieeiiieiiiiecieescee et eerte e steeereesreesbeesreesseesateessseesnseesnneens 120
USING SYSTEIM VAIUEBS ...eeiieetiee ettt st e et s ettt e e et e e e eaete e e saee e e e s teeeeanseeeesaseeeeastaeesansseeesnnseaeannseeennnnns 125
ATV T = = o o Tl W =T Y - 1 o o TSR 127
(Lo F=ToT={ =Y o] g (A1 U] o] e o] SO OO OO T SRR ST UPRRRPPRRRROt 128
Chapter 4: General Coding Standards 135
COTING PrINCIPIES .ttt e et e e e ettt e e e tte e e e etteeeestbeeeeeabaeeeeabaseaessbesesassaaaeaasseaaassssessssaeeantaeasanssaaeasraeas 135
STAaNAArd SOUICE FIlE NGMESviiiiiieeeeciee ettt ettt e e sttt e e st e e e sttt e e e sabeeeesasteeesssaeeeesbaeeennseeeesssaeesnnseeesnnnne 136
SOUICE File MM NGMES ...coiuiiiiiiieiieete ettt ettt st e e bt e e sa e e bt e s bt e s bt e s bbesbeesbbeenbeesnneeenneas 136
Standards for Text Descriptions @and TILIEScueeiiiiiiieeiiie e e re e e et e e e ar e e e ennaeas 136
Common Source File CodiNg STANAIASc..eeiiiiieeeeiee et ctee e e et e e e tae e e stb e e e esabee e e aaaeeesabaeesesbaeeenreeas 138

Contents 7

StAaNAArd BANNEIS iN SOUICEcooieiiieeeeeeeeeeeeeeeeeeeeeeeeee ettt eaeeans 138

COPYFiNt NOTICE IN SOUITE ...eiitiiiiieitie ettt sttt s e st e st e st e esa bt e sase e s st e e saseesateesnseesabeesnneens 138
MaintenNaNCe COMMIENTS TN SOUICEciiiiiiiiiiiieet ettt ee e e e e sttt e e e e s s eete e e e e e e ssbbteeeeesssasabssaaaeeessassnntaaeeesssnnans 139
FOrmMatting SOUICE COUEuviiiiiiieeeiiie e ceee ettt et e et e e et e e e ettt e e e sateeeesateeeeasseeeessseseastaeeeassseeesnssaeeansseeennnens 140
DDS Coding STaNdards fOr FIlSciiiiiieieiiie ettt r e e et e e e et e e e sbb e e e e tteeeeebaeeesasseaeeastaeasenseeeessranas 141
HLL Coding Standards fOr PrOGramsS.......couieiieiiiieeiee ettt ettt ettt et sbe e e sbt e e be e e sbb e e st e e smreesaeeesmneesnneens 141
PrOZIam LAY OUTL.....eeeeiiiiiiiiiiieiiete ittt st s sttt st st s s st s st s st s s s s s s snssnbnnnnnnnnn 142
(@foTo 1 gY a8 o T g YT 1= USRS 149
Chapter 5: Coding Standards for Database Files 151
Data Dictionary/Field REFErENCE FIleccueicuiiiieieiie ettt ettt tee et e et e s veeetre e sabe e taeesabeeesaeesaseessseesaraensneens 152
Standard for Field REfErENCE FIlESocuiiiiiiieiiieieee ettt et s sbe e s sbaeeba e s saaeeaees 152
Physical and LOGICal Database FilES........cccccuiiiiiiiiie ittt e ettt e et e e e st e e e e eate e e eebaeeesasaaaeessbaeasensseseessaeas 155
Database File Coding Standards: File LEVEccoiiiiiiiiiiiit ettt 155
FOIMI@t LEVEI ...ttt et sttt et s b e e bt s bt e e bt e e bt e e bt e e sbb e e st e e st eesaeeessbeenneeesnneennneens 155
1= Lo I Y=Y OO U R PP SUPUTOPPTIN 156
FAN - 1Y PP PP PUPPPPPUPPPPPPPPPRt 157
Coding Standards fOr DISPIay FIlEScccuiii ettt e et e et e e e et e e e e tae e e stbeeeetbaeeessaeeesntaeeeanssaeesssaeas 157
Related DESIGN UTIlITIES ...coeveiiiieiiie ittt ettt sab e e bt e s bt e e bt e e sabeesneeesmneennneens 157
Coding StaNdards fOr PriNter FIlES.......cuuiiiiciiee ettt e et e e e tee e e st e e e e ate e e ssaaeeesnsaeesnnsseeesnreeas 164
Related DESIGN ULHITIES .ooceriee ettt et e e et e e e et e e e st e e e e tte e e ssseeeentaeeeansteeesnnsaeeensseeennnens 165
(CTo e 1=T o | N @o T K 1o [T = Ao o LSRR 165
Coding Standards fOr HLL PrOZIramS.......ceuueeiieeriieiiiteeieeeteesitee st e st e st e st e st e sabeesaseesabeessseesateesaseesateesaseesareesnneens 169
GENEIAI PrINCIPIES ettt ettt et s bt e st e sa bt e et e e sab e e s ab e e sa b e e easeesabeesabeesateennneesabeennneens 169
(@foTe [1aT-ay = 1o Lo oo [o] g O o =4 1 4 L3S 169
Field NAmMES iN CL PrOZIamS.......uiececiiieeccieee e ciee e e ettt e e ettee e e s teeeeeatte s e seaaeeaesataeesassseeesssaseasstasesansseeesssaasanssseennnsns 171
Coding Standards fOr RPG Il PrOGIamMSc..uiiiiiiieeeeiieececiieeeeeiteeeeetteeestaeeeeetbeeeeeaaaeaeeasbeeaessaeesassseeesstaeesasseseassaeas 173
Program Layout
RPG Il Coding Structures and Program LOZICccccuuiiieciieeiiiieeeeiieeeseteesestteessneeeesneeesesstaeessnnseessnnnnessssseeesnnnns 175
FOrmat Names iN RPG 11ooiiiiieeeiiie ettt ettt e e et e e s e e e sne e e e nr e e sennneeesanneeesanreeesannne 180
RPG T FIEIA NGMIES «..veieeieeiet et etee ettt st ste e st sbe e bt e e be e e beeebae s sbeeebaeesbeeebeeesbbeenbaeessbeesbeeensteensseesstaensneens 180
RPG I SUbrouting and Label NAMES........eiiiuiiiiiiiiiieiiieciie et et eies ettt s e staeestae e seteesaaeesateesaaeessseessseesssaasaneens 182
RPG HI Parameter and KEY LISEScooiuieiiiiiiieiie ittt ettt et sat e e st e e sae e e sabeesae e e saneesaneens 184
RPG HI StaNdard INICATOIS ...c...eieieiiiieeiee ettt ettt ettt ettt e e bt e sa b e e sate e s bbeesaeeessteessseesateesaneens 186
TechNiQUES iN RPG Il PrOZIamMS ...cuuiieeeiiieeeeiiee e ettt e e sitteeeetteeestaeeesateeeeesssaeesnasaeeesasseeaanssasesassseeessseesanssenennnnes 187
Coding Structures and Program LOZICccuiiiiciiieeeiiiececitee e citee e ettt e e e etae e e s taeeeetteeeeasaeeesateeeesssaesenssaeeesssanaaans 189
Coding Standards fOr COBOL PrOZIramSc...ueeeiiiieeeeitieeeeitteeeeeiteeeeetteeestaeeeeatreeeeessaesesssesaeassssesassseeesntasesanssesesnsseeas 190
LaNGUAEE STANTAITS ...eoeieiiii ettt ettt e b e e bt s bt e e bt e bt e e b et e s bt e e bt e e s hb e e bt e e ehbeennreesnbeennneens 190
[e T=4 =10 ¢ T -1V T UL OSSOSO PRPTRPRPRPRPRPRPOON 191
Naming STtandards iN COBOL.......cciiuiiiiciiiee et e et etee e e st e e e ette e e seaaeeeesateeesesateeessseaeentaeeeanssesesssaesensseeeannsns 198
HanNdliNg Dates iN COBOLccciuieeeeiiieeeciiee e ettt e eeeive e e eetteeeeetveeeeetbeeeeeaseeaesabesaeessseeeassesaeasteseeanssesessssaeeasrseenanses 202

8 Standards Guide

Coding StaNdards FOr PL/L PrOZIAmScccveeeeueeeireeeiteeeteeeereeereeeteesteeeseesseessseessessseesaseesseessesssessseessseessessseens 203

PrOGram LaYOUT.....ccoiiiiiiiiiiiei et e e et e e e s st e e e e s et e e e e r e e e e s e s an 204
COPY BOOKS...ciueieeitte ettt ettt et sttt s bt e st e s a bt e s bt e s a bt e s bt e e a bt e et e e sat e e e a bt e ea bt e e a bt e e a bt e eabeesabeenareennreeenneens 209
PL/1 Coding Structures and Program LOZIC........ccueeiiiiiiueeiieieiieeetteesteeeteeesveeeteeestseessaeesaseessseessseessseesssesssseesssesssneens 211
Ny =T le = ge I o Tol=Te (U T PSPPI 213
NAMING STANAIASttt et e b e e be e e bt e s bb e e bt e e s bt e e bt e e sbbeesbeeesnbeennbeesnbeennneens 216
PL/1 Procedure @and Label NGMESoooiceeieeiieeee ettt ettt e et e e s et e e s eteeesesaseeesesaeessataeesasaneeesessaessareeesaens 217
CommMANd COAING CONVENTIONSuiieieiiiieccieee ettt e eette e e stee e et teeeeeteee e s baeeeessteeesassaeeesssaeeaasseeesnsssesessseeesanssesssnnsees 219
Layout of Command Definition SOUICEcciciiie ittt ee e e stte e e et e e e eaeae e e sanaaeeesntneeennnns 219
(O e 1 LT LT o Tol Y D - [USSR 221
Command processing Programs (CPP)cccui i iiereeeete ettt sttt sttt et st esbe e bt et e e besabesatesbeesbeenbeentesanenne 222
Command Validity Checking PrOZramsciiiiiieieiiieicciee e citee e see e eere e st e s s saee e e ssaaae e s sabaeeesssteeessnseasesnsnnenans 223
PrompPt OVEITIAE PrOGIaMS vieeeeiieeeccitee e ciitee e ettt eestteeeestteeeesereeesasseeeessteeeeasseaeessseseastaeeeanssesesssaesassseeesnnsns 224
CodiNg StANAArds fOr IMESSAZESuveeeevieieeiieeeeiieeeeettee e s tee e e rtteeeestreeesataeeeastaeesassaeeesssaesaassesesssseeasnsaeesansseeesnnsees 226
[o] 0 a] o1 1Y LY T LTSRN 226
EXECUTION IMIESSAEES ...ttt e e st e s a e e e sba e e e s aab e e e s eba e e e sbaeessanreeesannne 228
StaNdards fOr DEfiNING IMESSAZES......ucuiecuiiiiciiieeeiieeeestee e eeteeessteeeesateeessaaeeeesateeeeasseeessaeeeenstaeeeanseeeessseeesnssenennnnes 232
MoNitoring fOr GENEriC MESSAEE GIrOUPS....cccurieeeitieieeiteeeeiteeeeeireeeseseeeesteeesasseeesassessassssessasssesesssseesessseesnnses 233
Message Handling by INteractive PrOZIams........cocuii i i ciiee ettt e e ite e e eette e e e sate e e e eabe e e eataeessntaeesannns 235
Message Handling by BatCh PrOSramiS.........cccuuieiiiiiiiieiiie ettt eeie e eetee e e sttt e e e e tre e e setteeeesataeeeeasaeeesassaaessareeesannes 237
Coding Standards fOr HEIP TEXE....ueiiiiiieeiee ettt ettt e s e st e st e sab e e e abe e sareesaeeesaneesnneens 238
GENEIAl CONSIARIATIONS ... ettt ettt e s bt e st esa bt e s bt e sa bt e saseesabeesaseesnbeesnseesabeananeens 239
Help TexXt MOAUIAIIZAtION......ccc e e e e et e e e et e e e e s e e e e eteeeesnseeeastaeeeansseeesnssneeasssneesnnens 240
GeNeral CoOAING TECANIGUESccueeieeeiee ettt et e e e et e e e e e bt e e e s ta e e e e ateeeeeasaeaesabseaeaasbeseeansaesessaeaans 242
Coding Help Text fOr COMMEANGSccveiiiieiiieeiie ettt ettt e et e st e st e sa b e e s bt e sabeesabeesabeesnneesateesnneens 245
Coding Help TeXt fOr PANEIS ...c...eiiiieiiiieieeeee ettt sttt st e s e st e st e e st esaseesabeesaneesaneesnneens 246
CodiNg HElP TEXE FOr IMIEBNUS .cc.eeieeeeiiee e etee et e et e et e e s ee e e et e e e s aaae e e sasaeeeesteeesnsaeeesasseaeansseeesanseesesnsnnenans 247
DESIZNING SEAICH INAEXES....eiiiiieeeeeiiee ettt ettt e e e e st e e e et e e e s eatee e e st teeeeestseeesssaseastaseeanssesesssaeeansseeennnsns 247
Chapter 6: Work Management Standards 249
L[gl d e T [U] o1 [o IO PSPPI 249
(CT=Ta1=T o | o Lol o] L= USSR 249
Shipped Work Management ODJECESuuiiiiiiiee ittt ettt e e st e e e sbte e e saaeeeessbaeeesnsaeeesnseeesnnsenesnnnee 250
Work Management ObJects iN QGPLccccuiiiiiiiiieiieeie ettt et sae e s sbe e e sbteesbe e s saeeeneas 251
OS/400 ShipPEU AULNOFITIES . ecuviiereieeieerieeiteeteete st ese e e eteseesee s eesseesseesseeseesseesseeseessesssesssesssesseesseeseensensenns 251
Naming Work Management ObJECES....cccuiiriiriieiiieeiee it eiee ettt site et e st e e sbae e sbteesbaeesbteesbaeessteesaseesssaesaeeens 251
Lo o3 DTt ol T o] 3PSO PPRRPPNS 253
QUUEBUESeveteetee it e it ete et e et e e teeete e be et e eabeetaeasaesbe e beeseeaseaaseeseaeseenseeabeeabeeabesesesseesbeeseenseeaseeaseessentsenbeenteensesasessaesreesns 253
PNt FIlE DIr@CLION . et iteeetie ettt ettt ettt st e et e s bt e ettt e b b e e bt e s bt e e beeesateeseeesabeebteesnteensseesatesnnneens 254
Y o 1Te LU LT Y= o T A @ 111U SR 255
User Profile and SECUIitY STANAArAS........ccccuiiiiiiiiee ettt e ettt e e et e e e et e e e e e tbe e e eetaeeesatsaeeesstaeesensseeeesreeas 255

Contents 9

(8L =T ad o 1= RPN 256

IMPIEMENTALION Of SECUITY ...eiiutiiiiie ettt ettt e b et e sat e e bt e e sabe e bee e sareesaeeesaneennneens 262
OPEIatioNAl RIGNTS .eo.ueiiiiiiiiie ettt sttt sa e s bt e sab e e sab e e sa bt e saseesa b e e saseesateennseesareennneens 263
Generic IMplementation Of SECUILYcccciii i e s e e e e e e e e st e e e saree e eenseeeesanaeeans 263

USING LIDIAIIES .o iteee ettt ettt ettt ettt e ettt e e e sttt e e e e bt e e e eettaeeesabaeeaassteeaaaasaseesasasaaanssaessansasessnsssaeastasasanssesesssaeas 267
Organizing a DevelopmeNnt ENVIFONMENTcoiiiiiiiiiierite ettt sttt st e s e st esab e e sebeesaneesmneesaneens 268
Operational FIOW for ObJECtS @Nd SOUICEccuviiiieciiieicciieeecitee e eree ettt e st e e e sete e e e aae e s sbaeeessteeesenneaeesnsanenans 269
N ETaa 1o @01V Yo d o] oI o] ol Kl o T =T 1= P URSNt 270
USE OFf LIDIATIES cuveeiiiiiiee ettt ettt ettt e bt e e be e e bt e e be e e bt e e bte e sbbeesbaeessbeebaeessteenaseesntaenaeeens 272

AV 5] o] W @e T3 1 o) PP PP RTRP 275
OBJECE VEBISIONS ...ttt ettt st s bt s bt e s a bt e st e e sa bt e s ab e e sab e e e abeesa b e e easeesabeeeabeesmbeesnbeesnbeannneens 276
UpWard ComMPatibDilityceeeeee et e e st e e e st e e e et e e sate e e esnteeeennteeeenaeeeennreeeeannes 276
AV e o o T N [U T3 Y 1T S O PP U PP PPR 277
Version INStAllation PrOCEAUIEScoiiiiriiiiieerie ettt ettt et s sbe e e saae s be e s baeebeessbaeebaesseesnsees 277

Backup and Recovery

Data Security......cccceeviveeinnnen.
Recovering from Non-CatastrophiC FailUre.........oc.ueiieiiie ettt e e e e e eeaees 280
Recovering from CatastrophiC FAilUre.........ooevie it e e et e e e eere e e s naae e s rareeeennns 281
BaACKING-UD oiiiiiii et ettt et et e ettt e e ettt e e e eetbae e e s abaeeeeattee e e asaaeeaabaeaaattaeeaaabaaeeabaeaeastaeeaabaaeeatbreeaantaeeeatteeeanaraaas 282
0Organizing ObjJectSs FOr BACKUDuiiiiiiiie ettt e e e ete e e e s be e e e e tte e e e asaeeesabbeaeesseeeeensaaaesasanaans 283
Backing Up Live APPliCation SYSEEIMS ...c...ei ittt ettt s ire e e e sabeesaee e sareesneeens 283
Backing Up DevelopmMENT SYSTEIMS.......cciciiieiiiieeecier e ecite e e see e e ettt e st e s e se e e esaeeeessaeeeessteeeesnsteeessseessnsseeennens 283
(2 1ol (T o I/ <] Vo o PSSOt 284
Chapter 7: Standards for Testing 287
TYPES OF TESTING ...uveieiiiiiee ettt e et e e et e e e st e e e e e tte e e s ataee e ataeeeasssaee e ssaeeesssseaeasssesesnssseseaasaaeeanssesesnssaeeesnsseanans 287
[o4 =T o T =T T =R 287
S A =T 0 T =T o o = TP TP PSPPI 288
LI A =Tl oL 1o [0 =3 S SSN 289
Chapter 8: Documentation Standards 297
CONSIARIALIONS «..veiieieeiee ettt ettt e st e st e e s a b e e st e e sab e e sabeesabeesaseesabeesabeesabeesabeesabeesaseesateesaseesnseesnneens 298
DOCUMENTING COMMEANGS.....iiiiiiieeeiiie e ettt e ctt e e e ettt e e e rteeeesteeeeetaeeeseasaeeesstesesanssseessssseasstaseeasseeesssaessssseeesnnsns 301
1Y LT V<=1 TSP PTRORPRTPRPRPRN 302
Standards For Preparing Text DOCUMENTAtION.........ciiiii i eesebrer e e e e e e s b re e e e e e e s eabanees 302
Chapter 9: Naming Convention Examples 309
EXQMIPIES ettt e ect e ettt e e ettt e e et ateeeeebaeeeetbeeeaatbaaeeataeaaaattaeeaabaaaeaataeaeeattaeeeaabaeaeaatataeeantaeeeasteeeaaaraeas 309

10 Standards Guide

Chapter 10: EJB Option Runtime Example 313

NOUNS, AdJECHIVES, AN VEIDS....eoiiii et e e e e e sttt e e e e e e e eesabateeeeeeeeesasataeeaeeseeannssaeeeaaeeanans 313
Appendix A: Programming and Coding Examples 317
Field Reference File EXAMPIEooiuiiiiiie ettt ettt ettt h e bt e bt et e et e s atesheesbeesbe e bt eateeaeesbeenbeenbeentenn 317
Primary Reference Fields: "TYPE FIELDS"oooo i iiiiecieeeecieeesier e setee s e stee e s s ate e e snae e e esnteeeesnsneessnnaneeennseeesnnnns 318
Yoo g Ve - TV A=Y (=T €= g Yol = Lo R 318
Database File DDS EXAMPIE.....ccciiiieiiiieececiiee ettt e ettt e ee e e e e teeeesbaeeeestteeeeeabaeeessaeaaestaeeeanssssesasssaeastasasanssesesssanas 321
SAMPIE PhYSICAI FIlE DDS......eeiiiiieeiet ettt ettt ettt ettt et sb e e e bt e sbe e s ebe e s bt e s bt e e bbeebeeesbaeeneeennesanees 321
SAMPIE LOZICAI FilE DDS....cceieiieeiiieee ettt e eetee sttt e e ettt e e e e ate e e s eae e e e s s teeeeeaseeeessaeaeesseeeeansseeesnsseeeessseeesansseeesnsnnans 322
DiSPlay File DDS EXAMPIE c.cuueiiiiiiieeiiiieeeeitiee e seite e e st e e s ettt e e sataee e sttt eeesteeesaaseaeesnsaeaeessseeeeansseeesnsseeeanssanesansseeesnnsees 322
Printer File DDS EXAMIPIE.....uiiii i cciiee et ett e ettt e e ettt e e e aa e e s st e e e ebteeeseasaeeesasaaaaasstaeeaanssaeesnssaaeastaeesanseeeesnnseens 326
CL Program SOUICE EXAMPIE......cciuiiieeeiiie ettt ettt e ettt e ettt e e e st e e e e ata e e e staeeeetteee e abaseesabaeeeenssseesassaaeeanbaeasanssaeeanssaeas 329
RPG I Program SOUICE EXAMPIE......ciiiiiiiieiiee ittt et sbe e e sat e e se e e s bt e s sbee e smneesaeeesmneennneens 331
COBOL ‘85 Program EXAMPIEccccuuiieieiiiieciiees ettt e ettt e e stteeesseteeeseaseeessataeesesteeesasseeeesssaeeaassseeesnssseeesssaeesanssesesnssees 341
(0foT] 00 F=1aTo BT T oIl =37 [4] o [SR 372
CommaNnd Diagram EXAMIPIEccouiiii ittt ettt e e et e e e tr e e e st e e e e bt e e e s ntaeeesntaeeeestaee e nsaaeeantaeeearraeeanraeas 373
YEDTLIBLST (EAit LIDrary LISt) ..eecueesueerieerieeiieesieesieesieeesiteesieeesieeestesestaessteeesaaessaasesasesnseesnsseensessnsessnsessnsessnses 373
General Rules for Preparing Command DiagramsS........cueeuiriirueenieenieeieeieste sttt e sieeste ettt esaeesbeesbeebeeabesaeesaaesaeesees 374
1T o1 1P URTPSSNt 375
[T Y[C=T g D T=TY ol g oY d o o LRSS 376
UIIM HEIP TEXE EXAMIPIE ..ottt ettt e ettt e ettt e e e e tb e e e e tbeeeeeabaeeestasaeeastaseeenssssesasssaeeasbaeesanssaaeasraeas 377
CommMANd HElP (“WHICIMH’) ettt e ettt e e et e e e st e e e e abe e e e abaeaesabaeaeesbeeesansaeeesasaeaans 378
Panel HelP (“WIHTPNN"Y ettt sttt ettt et st e s he e s bt e be et e saeesae e bt enbeenbeentesatesaeenaes 381
YT [l T Yo L= VLYol o T Yol PP 383
Hypertext Definitions (“WHIENN)oo e et e et e e e sate e e e sete e e snaeeeesnteeesennes 386
Appendix B: Printer Form Sizes 389
Printer FOrm Standard OPtioNScciciieeieciee e ccieee ettt e et e e eetee e e str e e e ettt e e e e ataeeesasaesaessaeeeansaseesnssaaeanssaeeeanssesessreens 389
Index 391

Contents 11

Chapter 1: Overview

This section contains the following topics:

Purpose (see page 13)
Related Information (see page 13)

Conventions (see page 14)
Terms Used in This Manual (see page 15)
Introduction to iSeries Programming and Documentation Standards (see page 16)

Purpose

This manual describes CA 2E design, documentation, and programming standards for
IBM iSeries. It also details techniques and tools to support and facilitate the use of the
standards, including CA 2E Toolkit and CA 2E products.

This manual covers both expected minimum standards and good practice in applying
programming standards for iSeries. Where possible, the reason for the use of a standard
is given as well as the standard itself. This manual does not advocate adopting any
particular standard. It emphasizes the need for standards and their usefulness and
provides considerations for choosing standards appropriate to IBM iSeries. In many
cases, the rationale for the suggested standards rests on software engineering
principles.

Related Information

Information that is available from either IBM manuals or CA 2E product guides is not
repeated in this manual.

iSeries Guides
Documentation you may want to refer to in the context of using this manual is listed
below. Relevant iSeries guides include the following:
m |BM iSeries Programming: Control Language Programmer’s Guide (SC21-8077-0).

m |[BM iSeries Programming: Control Language Reference Volume 1 (SC21-9775-0),
Volume 2 (SC21-9776-0), Volume 3 (SC21-9777-0), Volume 4 (SC21-9778-0), and
Volume 5 (5C21-9779-0).

m |BM iSeries Programming: Data Description Specifications (SC21-9620-0).

Chapter 1: Overview 13

Conventions

m |BM iSeries Guide to Programming Application and Help Displays (SC41-0011)
m |BM iSeries Defining Compatible Displays using DDS specifications (GC21-8136-0).
m |BM iSeries National Language Support Planning Guide (GC41-9877-00)

Regarding performance considerations for iSeries, refer to the following:

m RPG lll Reference Manual

General IBM Guides

IBM guides that contain general information include the following:

m |BM National Language Information and Design Guide Volume 1 (SE09-8001-00) and
Volume 2 (SE09-8002-00).

m |IBM National Language Support Planning Guide (GC41-9877)

Conventions

This manual uses the following conventions:

m Data entry text appears in caps for emphasis; however, you can enter the data in
lower case.

m All terms (commands, access paths, files, and fields) refer to CA 2E unless otherwise
indicated, such as 0S/400 Save Library (SAVLIB) command.

m The first reference to features that have abbreviated names includes both the full
and abbreviated name; for example, the Edit File (EDTFIL) function or National
Language Support (NLS). Subsequently, only the abbreviated name identifies the
feature.

14 Standards Guide

Terms Used in This Manual

Terms Used in This Manual

Descriptions of the acronyms used in this module are defined here in this chapter. In the
text, both the full name and acronym are given the first time the term is used.

Thereafter, only the acronym, value, or term is used.
ADT Abstract Data Type

API Application Program Interface

CPP Command Processing Program

CUA Common User Access

DBCS Double Byte Character System

FRF Field Reference File

IGC Ideographic Support

LTR Left to Right

MRI Machine Readable Information

NLS National Language Support

NPT Non-programmable Terminal

PDM Programming Development Manager

PASA Program using Automatic Storage Allocation
RTL Right to Left

SAA System Application Software

SDA Screen Design Aid

SBCS Single Byte Character Set

Chapter 1: Overview 15

Introduction to iSeries Programming and Documentation Standards

Introduction to iSeries Programming and Documentation

Standards

The IBM midrange has grown to provide new and more powerful hardware (iSeries);
additional High Level languages (HLL) such as PL/1, COBOL/400, C/400, REXX, FORTRAN;
additional iSeries capabilities such as SQL/400, UIM Help, and Knowledge Tool/400; the
system programming APls; and new IBM tools such as Programming Development
Manager (PDM) are also offered. Equally significant is the widespread adoption of
software design and implementation tools, such as CA 2E products.

Although there is now more technology to cover, there are also some welcome
developments that simplify the task. Both the industry in general and, IBM in particular,
now give greater attention to common standards; for example, IBM’s System
Application Architecture (SAA). IBM’s Common User Access (CUA) standard for user
interface design has been rapidly and universally adopted within the IBM world. The
need for and value of software tools is becoming better understood. Other helpful
developments include the widespread understanding and adoption of object-oriented
techniques and the realization that objects are of use not just in full object-oriented
programming environments but also in a more limited role for design.

Importance of Standards

It is essential that you make an intelligent use of standards in order to take full
advantage of the IBM midrange architecture. The 0S/400 has many standards, both
explicit and implicit, with which you need to conform in order to provide applications
that are robust, maintainable, and easy to use.

Standards can be viewed as actual productivity tools. By adopting good standards, you
can simplify both your design and development.

Standards reduce the amount of work you need to do to produce a given result. Those
aspects of a specification that are covered by your normal standards can be removed
from the picture, leaving only the essentials specific to the problem in hand to be
solved. This can significantly reduce the amount time needed to communicate between
people at all stages of the development process: design, programming, testing, and user
training.

Standards can also improve the quality of your software. Good standards should
embody established techniques for approaching commonly encountered development
problems.

The inherent capabilities of IBM iSeries can be complemented by providing additional
productivity tools that build upon 0S/400. This manual provides you with indications of
where such aids can be useful.

16 Standards Guide

Introduction to iSeries Programming and Documentation Standards

iSeries Standards

IBM’s midrange architecture provides many features and productivity aids that make
using the computer easier for both the developer and the end user: the computer can
assist with its own use.

The fourth generation features of iSeries related to the use of standards include:

Single level object addressing

Correct use of libraries

Use of effective naming conventions

Use of verb-object syntax for commands and programs
- Use of an object-oriented design approach
Consistent user interface

- User interface design standards

- Object-oriented design

- Use of commands

- Use of messages

- Use of help text

Integral relational database

- Normalized file design

- Set of data modeling

- Performance conscious design

- File independence

- Database design and coding standards

Development aids

Online development techniques

Use of design tools

Testing techniques

- Naming conventions

Automatic documentation techniques
Advanced architecture

- Lessons for modularization

- Use of messages

- Work management standards

- Shipped system concepts

Chapter 1: Overview 17

Introduction to iSeries Programming and Documentation Standards

m High-level languages
- Coding standards
- Lessons for modularization
- Use of APIs
m [ntegral security
- Correct use of user profiles
- Correct use of object authorities
The CA 2E standards consolidate the collective practical experience of many people who
have used the midrange architecture for application development. There are obvious

limits as to how far practical experience can be reduced to succinct principles; as a
consequence, the level of discussion in this manual varies from general to specific.

18 Standards Guide

Introduction to iSeries Programming and Documentation Standards

Enforcing Standards

Developing a standard is relatively easy; however, persuading people to follow it can be
more difficult. You can implement standards by either applying standards to yours and
others’ work, or by getting software to apply the standards for you.

To implement standards through people:

Develop sensible standards that you can explain and justify.

Educate staff in the reason for using standards. Ensure that they realize that
standards help make their work understandable to each other.

Provide a clear statement of what the standards are and give examples.

Monitor that the standards are followed. Quality control can be assisted by the use
of development tools such as the CA 2E Toolkit utilities that will cross-reference and
summarize systems to a level at which inspections can be made.

Conduct periodic code reviews to check conformance and to identify new
standards.

When adopting a new HLL or other tool, allocate time to identify and establish
appropriate standards for its use.

To implement standards automatically:

Use code generation tools such as the CA 2E application generator wherever
possible.

Use change management and object manipulation tools to manage objects where
necessary.

Develop copybooks of standard code and use them whenever possible.

Develop an online reference library.

Chapter 1: Overview 19

Chapter 2: Naming Conventions

A naming convention is a systematic method for allocating names to things. This chapter
describes the CA 2E recommended method for establishing your naming conventions.

This section contains the following topics:

Naming Conventions (see page 21)

Natural Language (see page 21)

Objects (see page 22)

Object-Oriented Approach (see page 23)

Planning a Naming Convention (see page 24)
Constraints on the Unigueness of Names (see page 28)
Constraints on Naming Conventions (see page 29)
Mnemonics (see page 41)

Advantages of CA 2E Naming Convention (see page 43)
Enforcing A Naming Convention (see page 44)

Naming Conventions

Naming conventions assume a particular importance on iSeries for a number of reasons.
The Single Level Object Addressing of the 0S/400 architecture means that the
fundamental software entities exist within a flat hierarchy of only two levels%library and
object. While this has many benefits, it also means that name conflicts are more likely,
and that the context in which an object is found does not necessarily give information
about its purpose or nature.

The maximum lengths allowed for the names of most types of 0S/400 entities are
relatively short; ten characters is standard. This means that where there are large
populations of an entity, you need to plan to avoid conflicts.

One of the fundamental strengths of the OS/400 is its consistent user interface. In some
cases, this requires that objects be named to conform with 0S/400’s implicit rules for
naming objects that are visible to an end user.

Natural Landuage

You do not use names to only provide unique identifiers; you also use names to classify
the identified objects in order to recognize them. This is the basis of an 0S/400 naming
convention.

Chapter 2: Naming Conventions 21

Objects

Objects

The 0S/400 operating system is object-based; this means the fundamental software
entities on the iSeries can be understood and manipulated as objects existing within a
uniform, simple conceptual framework. All 0S/400 objects have certain common
properties; for example, a name, a creation date, an owner; and can be subjected to
certain common methods, such as saving, moving, and deleting.

Objects ensure better integrity and better modularization. The 0S/400 objects also
provide a simple intuitive way of understanding system software. The statements of
0S/400’s CL command language have highly uniform verb/object syntax; for example
Create Data area (CRTDTAARA), Delete data area (DLTDTAARA), Display data area
(DSPDTAARA). You may consider this as being similar to the imperative tense used for
simple English commands such as "Read this" or "Stop that." The distinction between
objects and the methods that operate on them corresponds to the noun/verb
distinction found in natural languages.

By adopting a consistent syntax in its commands and other interfaces, 0S/400 is able to
harness our innate capabilities to generalize rules and formulate new instances so that
you can successfully use new software or cope with new situations.

As an illustration of what can be achieved with useful names, consider the following
three lists of names that show three different sets of unique names for the same set of
objects:

List1 List 2 List 3

ABC0001 PGMO0001 DSPCUS

ABC0002 PGMO0002 DSPCUSDTL

ABC0201 FILOOO1 CUSDTA

ABC0210 FILOO10 ORDHDR

ABC0220 FILO020 ORDDTA

In the first list, the names are meaningless. You must already know about object
ABC0001 to know what it is and its capabilities. Although you might be able to make use
of rules like "objects with a range of 001 to 100 are programs" to glean additional
information, the rules are as arbitrary as the names. In the second list, you can tell the
type of the object from the name (PGM or FIL), but little else. In the third list, you can

make an educated guess as to what each of object is, provided that you are aware of
normal 0S/400 conventions.

22 Standards Guide

Object-Oriented Approach

In doing so, you are employing naturalistic mechanisms: the use of a limited vocabulary
of "words" which always have a similar meaning, (DSP-Display, DTA-Data), and the use
of a simple syntax. The essence of the syntax is to use a simple imperative verb word
(DSP) followed by an object word (CUS) to indicate a procedural verb object (DSPCUS),
as opposed to an adjective (CUS) and a noun (DTA) to indicate a passive noun object
(CUSDTA). A third point to note is that the OS/400 convention for systematically deriving
mnemonics from significant consonants is naturalistic as consonants are generally more
easily remembered.

Object-Oriented Approach

There is no reason why an object-oriented design approach should be limited to the
entities of the 05/400 shipped system. You can introduce your own entities and design
applications in terms of operations performed upon them. For instance, if you decide
that ‘Customers’ and ‘Orders’ are design entities, you could provide the following
functions:

m DSPCUS: Display customers

m DSPORD: Display orders

m CHGCUS: Change customer details

m DSPCUSORD: Display customer’s orders.

Note: An object-based approach gives you underlying rationale for a naming convention
on 0S/400.

Not all of your design objects will necessarily result in a separate 0S/400 object, but the
same object-oriented design principles can still be used when naming sub-entities such
as fields and members. Because of the strictures of some of the 0S/400 HLLs such as
RPG Ill, you may need to use additional compression rules; for example, reducing the
standard three-letter mnemonics to two.

Chapter 2: Naming Conventions 23

Planning a Naming Convention

Planning a Naming Convention

A naming convention for iSeries should do the following:

m be applicable to entities at all levels. 0S/400 entities include all 0S/400 object
types, files, formats, fields, and members

m be rule-based. It should be possible to generate a new name or to analyze an old
one by a rule, rather than by referring to a table or central log. The rules should be
based on relevant categories of distinction; for instance, properties of the entities
being named that are important in distinguishing them from other entities of the
same type. You may want to distinguish between database files by both the file
type (physical/logical) and the nature of the file’s contents (transient/permanent);
you will want to distinguish between programs by their function.

m encode as much useful information as possible within the names it generates about
the role of the entity, and its relation to other entities. Similarly, it should not
contain irrelevant information.

®m be easy to remember. Simplicity, consistency, and adherence to natural language
principles will facilitate this.

m use the same name for an entity wherever it is used. For example, it should not be
necessary to explicitly rename fields to overcome the limitations of a particular HLL,
such as with RPG III.

m be as compatible as possible with other standards, notably those inherent in the
0S/400 shipped system. For example, no object name should begin with the letter
‘Q’, which is reserved for IBM-supplied objects.

There are three separate interfaces in the 0S/400 architecture with which you should
be consistent:

m The Control Language
m The DDS Database description language

m The System displays and printouts

The CL command language interface in particular suggests certain naming practices; for
example, use 0S/400 mnemonics such as DSP for display wherever possible.

Follow an object-action system. Name objects that perform a function (commands and
programs) according to the action they perform upon an object or entity; use the form
‘verb + object’. For objects that have actions performed upon them (as files, data areas,
message queues), base their names on the significant entity that they represent; use the
form ‘object’ or ‘adjective + object’. For example, Display Active Jobs (DSPACTJOB), Date
format system value (QDATFMT), Batch subsystem (QBATCH).

24 Standards Guide

Planning a Naming Convention

Allow the names generated by the convention to lend themselves to generic
manipulation. This means adopting names that give useful generic names for
manipulation by CL commands. Also, ensure that names are tractable by the scan
functions of source editor utilities such as SEU and object manipulation tools such as
IBM’s Programming Development Manager (PDM). A generic name, indicated by an
asterisk at the last position, encompasses the names of all entities, which begin with the
same character string. For example, AB* implies all entities whose names begin with the
letters AB.

Because of the limitations of the CL generic name, it is almost impossible to come up
with a naming convention that completely satisfies this requirement. If you include
indications of both an object’s type and its function in a name, one must be given
precedence. Since sometimes you may want to manipulate objects by type, yet at other
times by functional group, there inevitably can be a conflict. The floating generic name
(*XXX*) capabilities of PDM can be used for generic manipulation on lower order parts
of the name, provided you have adopted a convention that ensures related objects have
at least some related component to their names.

The following example gives two different schemes for naming programs and files.

0S/400 Object Types

Group Object Type Description Number of Seen by end
Entities user

CFG *ALRTBL- Alert table Few No

SEC *AUTL- Authorization list Several Yes

CFG *CFGL

0S/400 Entity and Object Types

The following table shows all of the 0S/400 entities (both OS/400 objects and
component elements) that need to be named. The table also indicates whether each
entity is common or scarce, and whether an end user might need to refer to the entity
by name, both of which may affect how the item needs to be named.

Group Object type Attr Description Number of Seen by
entities end user

APP *FILE DSPF File - display Many No

APP *FILE MXDF File - display mixed Many No

APP *FILE CMNF File - Many No

communications

Chapter 2: Naming Conventions 25

Planning a Naming Convention

APP *FILE BSCF File - Many No
communications
APP *FILE DFUEXC File - display DFU Many No
APP *FILE TAPF File - tape Many No
APP *FLR! Folder Many No
APP-P *FNTRSC- Font Few Yes
resource
APP-P *FORMDF- Form Many Yes
definition
APP *GSS Graphics symbol set Few No
APP *|GCDCT! Ideographic Few Yes
dictionary
WKM *JOBD Job description Several No
WKM *JOBQ Job queue Few Yes
APP *JRN Journal One No
APP *JRNRCV! Journal receivers Many No
APP *LIB Library Several Yes
CFG *LIND Line description Few Yes
APP *MENU Menu Many Yes
CFG *MODD Mode description Dew No
APP *MSGF Message file One No
WKM *MSGQ Message queue Several No (2)
CFG *NWID Network Interface Few No
descr
WKM *0OUTQ Output queue Few Yes
APP-P *OVL Overlay Few No
APP-P *PAGDFN- Page Few No
definition
APP-P *PAGSEG- Page Few No
segment
WKM *PDG G Print descriptor Few No
APP *PGM C Program - C Many No
APP *PGM CLP Program - CLP Many No
APP *PGM CBL Program - Cobol Many No

26 Standards Guide

Planning a Naming Convention

APP *PGM DFU Program - DFU Many No
APP *PGM FTN Program - Fortran Many No
APP *PGM PLI Program - PL/1 Many No
APP *PGM RPG Program - RPG llI Many No
APP *PGM QRY Program - Query Many Yes
APP *PNLGRP! Panel group Many Yes
CFG *PRDAVL- Product availability Few -
CFG *PRDDFN- Product definition Few -
APP *QMFORM- Print image Few No
APP *QMOQRY Query Manager Few No
Query
APP *QRYDFN! Query definition Many No
CFG *RCT - RC table Few -
APP *SAVF! Save file Few No
CFG *SBSD Subsystem Few Yes
description
APP *SCHIDX! Search index Several No
APP *SPADCT! Spelling aid One Yes
dictionary
CFG *SSND Session description Few No
APP *TBL Table Few No
APP *USRIDX- User index Many Yes (3)
SEC *USRPRF! User profile Several Yes
APP *USRQ- User queue Many No (3)
APP *USRSPC- User space Many Yes (3)
Other Entities
Group Object Type Attr Description Number of Seen by end
entities user
*FILE MEMBER - Member 1;Many No (1)
*FILE FORMAT - Format 1;Many No(1)
FORMAT FIELD - Field Many No(1)
PGM FIELD - Field in HLL Many No
program

Chapter 2: Naming Conventions 27

Constraints on the Unigueness of Names

MEMBER MENU - CA 2E menu Many Yes
JOB INT Interactive Several
job
JOoB BCH Batch job Many
RDR Spool reader Few
WTR Spool writer Several

*MSGF MSGID -

Message Many
description

No

*PNLGR HLPGRP -

Help group Many

No

®m [tems, such as database files and fields, are seen by end users if they are permitted
to crate query reports.

m Job, reader, and writer names should be the same as the device descriptions.

Constraints on the Uniqueness of Names

The 0S/400 system entities fall into a hierarchy that dictates the level at which names
must be unique. Library names must be unique within the system, object names unique
by type within library, format names unique within file, and field names unique within

format.

The hierarchy of the common 0S/400 entities is displayed in the following diagram:

QSYS

LIBRARY
OBJECT
I

| FOLDER |

DOCUMENT

I
[Frocav |

FILE [DATA AREA| [MSG FILE |

| MEMBER | | FORMAT | |MESSAGE ID]

MENU

| [PNLGRP |

HELP GRP

| FIELD |

28 Standards Guide

Constraints on Naming Conventions

Constraints on Naming Conventions

0S/400

RPG III

CoBOL

Each programming language has specific naming characteristics you need to be aware of
which are described in the following section.

0S/400 simple names may have a maximum of ten alphabetic characters: the first
character must be alphabetic or a special character such as ‘@’, ‘S’, or ‘#. Embedded
blanks are not allowed. This restriction applies to object names, member names, format
names, and field names in CL, command source, and DDS. The names of 0S/400 objects,
folder, and document names may also contain an embedded period; for example
‘FRED.DOC'.

The user profile names used in networks should be eight characters or less, as some
other architectures only support eight-character names.

RPG lll field names may have a maximum of six characters.

File names in RPG Il Calculation specifications may have a maximum of eight characters.
This is also true in File specifications, although a database override can be used to
associate this eight-character name with an actual file possessing a longer name.

A program call statement is executed more efficiently in RPG Il if the name of the
program being called can be coded as a literal. This requires that program names are
restricted to eight characters maximum.

Within an RPG Il program, field names are global: they cannot be local to a particular
subroutine, nor may they be qualified by the name of the file or format with which they
are associated. This means they need to be unique within the program. In order to avoid
having to rename fields, and also to be able to relate fields to formats, you may want to
provide an indication of the format in the field name.

Characters other than the letters of the alphabet, digits, and the hyphen, for example &,
#, @), are not allowed.

Chapter 2: Naming Conventions 29

Constraints on Naming Conventions

UIM

*#and ‘@’ are not allowed in label names.

Several psychological factors are also relevant. Human short-term memory has difficulty
retaining more than seven (plus or minus two) "chunks" of information. This is
significant if unfamiliar names have to be remembered for short periods of time; for
instance, when noting down the name of a program that has crashed, or when looking
up a code value for an input display.

Remembering an arbitrary code such as ‘X1274ZF is more difficult than remembering a
meaningful one of equivalent length which can be "chunked" into a lower number of
known components. For example, although ‘UDSPCUS’ is also seven letters long, to
someone familiar with 0S/400 naming conventions it can be remembered as only three
elements (U + DSP + CUS).

Where a name is made up of subcodes, the number of possible ambiguous
interpretations is greatly reduced if the subcodes always have the same starting
positions and lengths. For instance, knowing that a name (CUSCDE) is made up of two
mnemonics, each three characters long, you stand a fair chance of guessing what it
represents:

CUS + CDE = Customer code

If, on the other hand, it could also be made of any other combination of abbreviations,
guessing is more difficult:

m C+US+ CDE = Carolina USA code?

m CU+ S+ CDE = Customer salary code?

m CUS-C+DE = Customer complaints department?

m CU +SCD + E = Custom security code entry?

The most efficient (giving maximum recognizability for minimal size) form of mnemonic
is three characters long, as in most CL mnemonics.

Consonants are generally more significant for distinguishing names than vowels. The
information content of a consonant (which distinguishes between from around twenty
other letters) is greater than that of a vowel (which distinguishes from about five other
vowels).

For example:

Contrast: .a. .oe. .. .a.?

with: wh.td..s th.s s.y?

It is easier to carry out pattern matching on items that are strictly comparable. A column
of names is easier to scan if the names are aligned as shown in the following example.

30 Standards Guide

Constraints on Naming Conventions

| : SLCUDAP : CUSTPHY |
| : SLCUDALO : CUSTLGLORD |
| : SLDSCUR : DISPC |
| : SLDSCUC@ : DSCUSTCTRL |
| : SLDSCUC1 : CUSTCTRLUP |
| : SLEDCURT ~ : CUEDITR |
| : SLEDCUC@ : CUEDITRCTRL |

Program types: RPG CL PLI CBL BAS PAS (Ml)
File types: PHY LGL DDM DSP MXD BSC CMN PRT DKT TAP CRD SAV

The structure of 0S/400 sets basic restrictions on the uniqueness of names: to what
extent should you apply further restrictions? Should program names be unique not just
within an application, but across all applications held on the machine? Different versions
of the same program, however, may have the same name but be in different libraries.

You usually want uniqueness at an object level for application objects, as it enables an
object to be identified simply by its name. At a lower level it is only useful in database
entities, files, formats, or fields, which may be common to many different applications.

It is also useful if message identifiers are unique, because once a message has been
sent, there is generally no indication of the message file from which it was obtained.

The 0S/400 object hierarchy also has a bearing on the significance of names for making
distinctions, both as to the nature of the distinction, and as to the number of
distinctions.

Nature of Distinctions

The name of an item should only contain information useful in distinguishing it from
similar items. There is little point, for instance, in adding ‘LIB’ to the end of names of
libraries to indicate that they are libraries, because there are no other objects on the
same level whose type needs to be distinguished: every single library name would have
LIB on the end of it. On the other hand, it is useful to include an indication of an object’s
attribute in its name in order to distinguish it from other objects of the same type but
different attribute; for instance two similar programs of different types UXCHDTR (RPG)
UXCHDTC (CLP).

Chapter 2: Naming Conventions 31

Constraints on Naming Conventions

Number of Distinctions

Application Objects

When formulating a naming convention, the most critical factor to be considered is the
number of items of a given type that need to be named; in other words, how many
distinctions need to be made between similar items. The following table gives
approximate figures for population sizes in a typical application system.

Entity Number of items
Libraries 1-10
Menus 10- 100
Commands 10- 100
Programs 100 - 1000
Device files 100 - 1000
Device formats 300 - 3000
Device fields 3000 - 30000
Message files 1-2

DBF files 10- 100
DBF formats 50 - 200
DBF fields 200 - 1000
Panel groups 30-300
UIM Help groups 300 - 3000
Data areas 10- 100
Data queues 0-10
Dictionaries 0-20
Folders 10- 500
Documents 50 - 1000
Receivers 0-10
Save files 0-30
Virtual disks 0-30

32 Standards Guide

Constraints on Naming Conventions

Work Management Objects

Entity Number of items
User profiles 10- 250
Control units 1-5
Lines 0-20
Devices 20-50
Sessions 0-10
Subsystems 5-20
Classes 5-20
Job descriptions 5-50
Job queues 5-20
Output queues 5-50

Note: The largest populations are for device formats and fields: usually it isn’t
worthwhile to give them unique names.

Chapter 2: Naming Conventions 33

Constraints on Naming Conventions

Object-action Naming

Under an object-action approach to naming, in line with an object-oriented approach to
design, distinguish between:

m those items that implement a process; for example programs or commands.
(Actions)

m those items that are operated upon by a process; for example, database files or
data areas. (Objects)

This distinction can be seen in 05/400. Things upon which you operate (QPRINT,
QBATCH, QINTER), are named differently from the things you use to perform the
operation, which are named after the operation itself; for instance DSP (DSPSBS,
DSPOUTAQ), or CRT (CRTSBSD, CRTOUTQ).

Name all objects needed to implement a process after the process (programs and device
files); and all objects that are operated on by processes (subjects of actions) by what
they represent.

This allows you to identify all the objects needed to run a given command or a HLL
program, apart from application-wide objects, which is assumed to be generally needed.

Why not name programs and device files the same name as the command that invokes
them, since 0S/400 object names only need to be unique within object type? For
example:

(UDSPCUS) —— [*PGM
*CMD (UDSPCUS)|— | *DSPF (UDSPCUS)

This is unviable, as the relationship between the object types is often not one-to-one. A
single command may cause many programs to be invoked or a single program may be
called by several commands. It is, however, a useful approach to take when naming
work management objects, which are related on a one-to-one basis. For example, job
description QBATCH may submit jobs to job queue QBATCH that attaches to subsystem
QBATCH that has a default class of QBATCH. In such a case, using common names for
related objects of different types indicates any horizontal linkage across the 05/400
entity hierarchy.

34 Standards Guide

Constraints on Naming Conventions

Recommendations

m Use a variation of 0S/400 and convention for those object types that are scarce, or
that are referred to directly by the end user.

- Use 0S/400 type mnemonics to name such objects and use a single letter prefix to
identify the application.

- Use the form verb/noun for action-based names.
- Use the form noun or adj/noun for subject based names.
- Use work management objects (QPRINT and QPGMR) as shipped.
m Use a separate systematic convention, outlined below, for entities that occur in

large numbers and which are normally referred to only by technical personnel.

IBM has adopted a similar approach for the system software of iSeries, as may be seen
from the names of the objects in the system library, QSYS, or other shipped libraries
such as QGPL, QRPG, QIDU. Internal objects, such as programs, are named, using
systematic prefixes.

CA 2E Naming Convention

The CA 2E naming conventions are described in this section.

Chapter 2: Naming Conventions 35

Constraints on Naming Conventions

For RPG III

CA 2E uses a systematic naming convention for application systems whose main
language is RPG lIl. Overall, the naming convention’s aim is to encode appropriate
information about entity type, attribute, and application into the names of objects and
object components as shown in the following schematic example.

Application identifier

Functional group

—*— |dentifying mnemonics
Object type

——— Object subtype

*

Objects: S M MM O X ‘

Formats: F IVIIVI IVIM 1]

Fields: I NN NN

—— Identifying
‘ ‘ mnemonics

Format identifier
Format type

The convention is explained in more detail for each entity level: object, format, and
field, in the following sections. Refer to the appendix, "Naming Convention Examples,"
in this guide for more examples.

Because of the severe length restrictions imposed upon names by RPG Ill, and to a lesser
extent by 0S/400, CA 2E has adopted a positional coding structure; information is
encoded by position as well as value.

Always use two-character mnemonics, rather than the usual three-character
mnemonics of CL. This is so the same mnemonic system can be used at all levels (for
example, in RPG Il field names as well as format and object names) .

For example:

| Y M DS MN R |
3 ‘ —*— RPG Il program .
| * * Display Menus :
| * Menu subsystem !
| * Advantage 2E utility I

__

36 Standards Guide

Constraints on Naming Conventions

Naming Convention Variation

For Objects

A possible variation on the preceding illustration is to put the object type code into the
second position, rather than the seventh. This gives a greater emphasis on object type,
rather than functional group as a distinguishing attribute. For example, ‘Y R M DS MN’.

When naming 0S/400 objects, the components are as follows:

m Application identifier (S AMMMMOX): S Identifies the user system.Only one letter is
used since there will be relatively few application systems, and the objects that
compose the systems are in any case likely to be separated into different libraries.
For example:
| = Inventory management system

Q is reserved for IBM objects
is reserved for IBM S36 environment objects
Y is reserved for Advantage 2E objects

m Application Functional group (S A MMMMOX): A identifies the functional subsystem
of the application.This letter is used to group all objects belonging to a significant
functional group within an application. It is possible that there is only one functional
group if it is a small application. For example:

T - Transaction entry subsystemO - Order entry subsystemA - Accounts subsystem
U is reserved for user general purpose functions.

® Mnemonic (SA MMMM OX): MMMM is a mnemonic, normally made up of two
elements (MM + MM), chosen according to the rules described below. For example:
SLBT = Select batch.CUDA = Customer dataDSCU = Display customers

m Type (SAMMMM O X): O, a single letter indicating both the 0S/400 object type and
the attribute. It can be any one of the following:

Object Type Attribute

A Data area or physical file defining a data area

B BASIC program or display file used by BASIC program

C CLP program or display file used by CL program

J C program or display file used by C program

D DFU program or display file used by DFU program

Chapter 2: Naming Conventions 37

Constraints on Naming Conventions

Object Type Attribute

H Panel group

S Printer file used in common

K COBOL program or display file used by COBOL program

I PL/1 Program or display file used by PL/1 program

L Logical file

M DDM file

P Physical file

Q Query program

R RPG IIl program or display file used by RPG program
T Tape file

m Subtype (SAMMMMO X): X is an optional suffix, whose nature depends upon the
object type.

As program suffixes, the following have special meanings:

@ Command processing program for
commands.

Command validity checking program.

1-9 Suffix for suite of programs

compromising a single functional unit.

As file suffices, the following have special meanings:

Display file

$ Printer file

1-Z Logical Data Base file view

0 Primary logical view: unique access path

For example, Display Customers display file: LUDSCUR#; Display Customers command
processing program: LUDSCUC@.

38 Standards Guide

Constraints on Naming Conventions

For Formats

When used to name 0S/400 database and device file formats, the components of the
naming convention are:

m Format type (F MMMMPP): F identifies the format type:

@ Database format
Display format
$ Printer format

For example, customer database file format: @CUDAXC, displays customers display file
format: @DSCU##.

m Format mnemonic (F MMMM PP): MMMM is a mnemonic constructed according to
the rules described in the next section.

m Format identifier (FMMMM ll): Il is a unique two-character format ID.

The format identifier for a physical file format should be unique to that file throughout
the application, and preferably, the system.

The following values are reserved:

$n Printer device files

#n Display device files

@@ Field reference file primary fields
$$ Field reference file secondary fields
Pn RPG Il program parameters

Wn RPG Il program work fields

Device files should use a format identifier of #n for display devices and $n for printer
devices. The identifier #Q is reserved for message subfiles. The format identifier need
not be shown on the actual format names of device files, since you may want to use
names that emphasize the role of the formats within a standard program type. Such
formats will be few in number and should be named using the 05/400 naming
principles, but the names should still begin with a character to indicate the format type.
For example:

#SFLCTL - Subfile control | | #PAGHDR - Page Headers
#SFLRCD - Subfile record
#PROMP - Prompt #DTLLIN - Detail line
#CONFIRM - Confirm overlay

Give the format identifiers of database files letter combinations that do not usually
occur in English; for instance JX, QP, ZW, as it is then easier to scan for a field with SEU’s
scan facilities and be certain of a unique match.

Chapter 2: Naming Conventions 39

Constraints on Naming Conventions

For Fields

When naming 0S/400 database and device file fields, the components are:

m Format identifier (Il NNNN): Il is a unique two-character format identifier, as
described previously.

m Field mnemonic (PP NNNN): NNNN is a mnemonic that identifies the field

HLLs Other Than RPG III

If your application system is developed in a language other than RPG lll, such as COBOL,
Cor PL/1, and there is no requirement to support RPG Il programs, use a systematic
naming convention that provides more meaningful names. This mainly amounts to
being able to use three-character mnemonics as shown in the following example:

* Application identifier
* Functional group
" * Identifying
mnemonics
* Object type
*—Object subtype
Objects: S A MMM MMM O X
Il
Formats: F MMM MMM
Fields: MMM MMM MMM
—*—* |dentifying

mnemonics

* - Forfnat tyFe

m Database format and field names may be up to ten characters long.
m Field names may be qualified by the format of the file from which they come. This

means there is no need to include a format identifier as part of the field name.

The explanations of subcodes are the same as for the RPG Ill systematic convention
given earlier.

Note: It is still useful to indicate the file type (database, display, printer) on the format.
A common variation is to place the object type in either second position or last.

40 Standards Guide

Mnemonics

Mnemonics

A mnemonic is a symbolic abbreviation designed to be as memorable as possible; for
instance DSP for Display, CHG for change.

An efficient mnemonic should be as short as possible, but also as clear as possible. The
mnemonic system used for CL command names, in which mnemonics are generally
three characters long and composed of the phonetically significant consonants, is a
good compromise between the conflicting goals of brevity and recognizability.

CA 2E Mnemonic System

Due to the space limitations of RPG Ill, the CA 2E convention uses a standard mnemonic
of only two letters, rather than the three characters of CL mnemonics.

Mnemonics should be made up of two-character components from a strictly limited
vocabulary, for example, DT for date, CD for code, and TX for text. The same set of
mnemonics should be used at all levels, for example, for objects, source members,
format names, and fields.

Mnemonics will generally be used in pairs. Wherever possible, combine mnemonics as
‘verb+object’ or ‘adjective+noun’. For example, use DSRP for Display Report and MNCD
for Menu Code.

A limited vocabulary of mnemonics should be used. This should be documented in the
field dictionary for a system.

Certain mnemonics are reserved; for instance CD for code and TX for text. See the
appendix, "EJB Option Runtime Example," in this guide, for a list of reserved mnemonics.

Formulate New Mnemonics

When creating new mnemonics:
m Use a standard abbreviation if one exists, such as Co. or No.

m Use the first letter in each syllable or of each compound word, for example MV for
MoVe, SF for SubFile.

® Make mnemonics unique and clear.

m Use approximate synonyms to keep the number of mnemonics down. For instance,
maintain, change, alter, and amend can all be described as change or CH.

m Think of the CA 2E two-character mnemonic as an abbreviation of the
three-character 0S/400 mnemonic. Try to keep a one-to-one correspondence
between two-and three-character mnemonics; for instance DS - DSP, CH - CHG, DA -
DTA.

Chapter 2: Naming Conventions 41

Mnemonics

CA 2E and Mnemonics

The CA 2Eapplication generator has a facility to generate entity names automatically if
the CA 2E YALCVNM model value has a value of *YES. Mnemonics are generated as
follows:

m The first mnemonic is generated arbitrarily to be unique within entity type.
m The second mnemonic is derived from the entity types:

- Field data types (DTE - DT, CDE - CD, TXT -TX).

- File types (REF - RF, CPT - CP).

- Standard function types (EDTFIL - EF, DSPFIL - DF).

CA 2E Naming Convention Exceptions
The following 0S/400 objects are exceptions to the CA 2E systematic naming
convention:
m Objects that may be referred to directly and frequently by the non-technical user:

- User profiles: User profile names should reflect the user’s role. If there are
many users, a common prefix to indicate department and/or location may be
useful. Reserve the prefix ‘Q’ for IBM profiles.

- Libraries: Library names should indicate the nature of the objects in the library.
Reserve the prefix ‘Q" IBM libraries (QSYS, QRPG, QRPLOBJ).

42 Standards Guide

Advantages of CA 2E Naming Convention

Advantades of CA 2E Naming Convention

Using the CA 2E naming convention has several advantages:

You can easily identify entities at any level:

- Names are made up from a restricted vocabulary of components, making it
relatively easy to learn and remember.

- Strict use is made of positional information, so that a name can be clearly broken
down into its components.

- Both object type and attribute are encoded in object names. This helps you to
identify objects simply from their names.

- On lists, objects are arranged by functional group. Anomalies can be spotted.
- Fields can be related to formats, and formats related to files.

- Field names are uniquely qualified by format, so inadvertent file updates do
not take place. Declaring an external file for use in an RPG Ill program automatically
declares all the fields in the file to be available in the program. If more than one file
contains a field of the same name, this can lead to undesirable effects in a program
that accesses both of those files. For example, if you chain to a reference file while
binding a transaction file record, and if both files contain a field of the same name,
the field on the transaction file could be unintentionally updated with the field from
the reference file. (Where field mapping is desired, fields can always be explicitly
renamed.)

You can easily manipulate objects and source such as:
- Easy copying and inclusion from existing source.

- Easy manipulation of groups of entities by 0S/400 and CA 2E 400 Toolkit utility
commands. Since many commands work on "generic" names, this is of considerable
practical significance.

You can benefit from greater productivity such as:
- You can create or analyze names with ease.

- You can include existing programs, source, and sections of source in new
systems with greater ease.

- Programmers can understand unfamiliar code faster.

Chapter 2: Naming Conventions 43

Enforcing A Naming Convention

Enforcing A Naming Convention

The following techniques encourage the use of a naming convention:

m Define all database fields in a field reference file. Designate one person who is well
versed in your standards to be responsible for issuing field names in a field
reference file.

®m Provide a standardized skeleton source as a basis to start coding.
m Use tools such as CA 2E to generate names automatically, according to rules.

m Consider providing an exit program for the programmer’s menu using the EXITPGM
keyword on the 0S/400 Display Programmer menu (DSPPGMMNU) command. This
will check that the names given to source and object members satisfy your naming
convention.

The following techniques ensure that appropriate names have been used; use the
0S/400 Display library (DSPLIB) and Display object description (DSPOBJD) commands to
obtain summary lists of object names.

Use the following CA 2E Toolkit documentation commands to check format and field
names:

m Document program references (YDOCPGMREF) with LSTBYFMT(*YES).

m Document field references (YDOCFLDREF).

m Document file summary (YDOCF).

m Document program summary (YDOCPGM).

44 Standards Guide

Chapter 3: IBM i General Design Standards

This chapter describes the principles of a good design method and what information is
needed to start designing. It also provides suggestions for appropriate tools to use.

This section contains the following topics:

Design Methods (see page 46)
Design Standards for User Interfaces (see page 48)

Design Standards for Display Files (see page 56)

Design Standards for Printer Files (see page 68)

Design Standards for Menus (see page 71)

Design Standards for Help Text (see page 75)

Design Standards for Commands (see page 78)

Design Standards for Database Files (see page 90)
Design Standards for Programs (see page 102)

Design Standards for Internationalization (see page 115)

Chapter 3: IBM i General Design Standards 45

Design Methods

Design Methods

When you start to design your system, apply the following basic principles:

Use

Use

Use

Use the computer as much as possible:
- Many aspects of the design process can be done automatically.
- You can use the computer to index and organize the design.

- You can repeatedly modify the design with minimum effort.

You can use any existing designs.

- You can easily document the design.

The results of the design can be carried through to implementation without
re-keying.

- You can improve the quality.
- Use CASE tools, generators, and word processors wherever possible.

Present designs to the end user and reach agreement before programming starts.
This is because:

- You must understand what the user wants; the only way you can verify user
requirements is to restate your interpretation for verification.

- lItis cost effective to incorporate changes before programming has begun.

prototyping and modeling tools wherever possible:

Use standards to reduce the complexity of the design problem. Omit features of
appearance or performance from the specification that are covered by standards.
This allows you to:

- use existing design work
- achieve more consistent user interface

- improve quality

design and generator tools that enforce standards:

Ensure that all systems have a consistent user interface—consistent internally
within the application, with SAA CVA standards, and with the OS/400 system
interfaces that will be common to all applications. This:

- reduces the amount of work required to specify a system

- simplifies the process of learning how to use the system

automatic layout tools:

Recognize that the design process is both iterative and experimental. It will require
several passes to try out solutions, explore connections, and allow for user
feedback.

46 Standards Guide

Design Methods

Use prototyping and modeling tools:

m Design in as modular a manner as possible so that you can develop and test each
part of the system separately, and so that you can repeatedly use commonly
required functions.

m Use a systematic method for those processes that cannot be entirely
computer-based, such as testing. The computer can be used to organize the
systematic method.

Contents of a Specification

Design Tools

A significant part of an application system should be implicitly defined by the 0S/400
standards, the CA 2E standards, and standards followed by your tools. To specify a
system for user approval, you will need the following:

m Adescription of the data model, in particular the database files and what they
represent. This may include entity relation, dataflow, and other diagrams.

m Adescription of the user interfaces, in particular the layouts of menus, displays,
reports, and a description of the parameters of commands.

m Notes on the processing specific to the application, including calculation, long
algorithms, and recovery considerations.

You should have tools to design your database, menus, panels, and reports; for
example, the CA 2E application generator and/or the CA 2E Toolkit utility design aids.

The CA 2E Toolkit utility design aids include interactive aids for specifying panel and
report layouts, and for creating menus.

The CA 2E application generator includes interactive aids for data modeling, automatic
panel and report painting, and for specifying processing.

For more information on using the CA 2E Toolkit utilities, refer to the Toolkit Reference
Guide. For more information on an overview of the CA 2E Toolkit utilities, refer to the
Toolkit Concepts Guide.

Designs Prepared with Printed with Presented with
Menu designs YWRKMNU YDOCMNU YGO

Panel designs YWRKPNL YDOCPNL YDSPPN

Y1 YEDTMDL-edtscr YDOCMDLFU

Y2 N

Chapter 3: IBM i General Design Standards 47

Design Standards for User Interfaces

Rpt designs YWRKRPT/EDTR YDOCRPT n/a

Y1 PT YDOCMDLFU

Y2 YEDTMDL-edtrpt N

File layouts STRSEU/EDTSCR YDOCF n/a

Y1 YEDTMDL-edtrpt YDOCMDLRE

Y2 L

Processing EDTDOC PRTDOC n/a

Y1 YEDTMDL-edtact YDOCFUN*

Y2

Designs Prepared with Printed with Presented with
Text EDTDOC EDTDOC YDSPHLP
Y1 YEDTMDL-edtact YDOCMDL*

Y2

Diagrams YWRKRPT/YEDTR YDOCRPT n/a

Y1 PT CA 2E GUI CA 2E GUI

Y2

The CA 2E Toolkit panel design and menu utilities provide an interactive simulation of
the system from the specification designs.

For more information, refer to the Prototyping section in the Toolkit Concepts Guide.

Design Standards for User Interfaces

There are some general principles for designing user interfaces that you should be
familiar with.

User interface is a general term used to describe those aspects of a computer system
which are visible to the user, and with which the user interacts when using the system.
To describe it, you need to consider both the static components, such as keyboard
layouts, panel and report designs, and the dynamic components, such as how programs
should respond to the user's actions.

IBM’s Common User Access (CUA) sets out detailed rules for the appearance and
behavior of user interfaces both for programmable and non-programmable terminals
(NPT). The following sections summarize some of the design principles behind CUA, as
well as some specific rules for applying the principles to NPTs on iSeries.

48 Standards Guide

Design Standards for User Interfaces

Ease of Use

To make your system easy to learn, consider the following:

Make the interfaces consistent. If your interfaces are consistent, then having
learned to understand one interface, the user can understand related interfaces
with little effort.

Choose objects that are intuitive to the user. This requires that you base the design
on conceptual entities, which are familiar to the user.

Choose operations on the objects that are intuitive. For example, use create,
change, delete, and work with. Use simple standard metaphors wherever possible.

Follow object-action principles. Generally, the user should choose an object, and
then an action.

Allow backing out. It should be possible for the user to explore the system without
serious consequences.

Provide feedback to reassure the user at every step.

Provide online help and search indices.

To make your system efficient to use, consider the following:
Use as simple of a design as possible.

Avoid the need for the user to recall information.

Avoid modes.

Provide basic and expert paths.

Make the most common path the default path.

Provide the system ready set up for use.

Only provide additional facilities on a demand basis.

Chapter 3: IBM i General Design Standards 49

Design Standards for User Interfaces

Interface Consistency

IBM’s SAA divides consistency into three levels:

Physical—The actual layout of physical elements such as keyboards must be
consistent. On the IBM midrange, physical consistency is for the most part taken
care of by the hardware.

Syntactic—The use of interface elements must be consistent. For example, the
presentation language (e.g. panel layout), the action language (e.g. F3=Exit) and CL
syntax all need to be consistent. The SAA standards lay down rules for many aspects
of interface consistency. The 0S/400 Guide to Programming Application and Help
Displays spells out how you should interpret these for the iSeries.

Semantic—The meaning of the interface elements and their interactions must be
consistent. For instance, Exit should always take you back from a panel, without
further update.

Note: Software productivity tools can play an important part in the successful

impl

ementation of consistent interface standards by suggesting, supplying, and even

requiring, standardized design defaults.

Aspects of a User Interface

The

CUA elements of IBM’s SAA includes standards for the following aspects of interface

behavior. You should strive for consistency with these:

panel management
activity management
keyboard layout and usage
panel (display) interaction
selection action

messages and prompts
color and emphasis

help

national language support

terminology for end users

50 Standards Guide

Design Standards for User Interfaces

Transfer of Learning

Modal Behavior

We have an innate ability to generalize from related cases—we use it to learn language.
You apply this skill when using computer interfaces as well. For example, if you know
there is a Delete Program command to delete programs, and you want to delete a new
object type, say a ‘glob’, you will expect a Delete Glob command to remove it.

Try to choose operations that have intuitive metaphors. Most operations can be
presented in terms of a relatively small number of primitive operations, for example,
creating, changing, deleting, moving, merging, and splitting, which are intuitive to a
user.

Users often need to switch between tasks. You should try to avoid constraining what a
user can do next at any point. In particular, avoid ‘modes’. A program exhibits modal
behavior if it restricts the user to a limited range of responses determined by what has
taken place previously. A mode requires the user to carry out particular actions in steps
to exit from the mode. Although it is almost impossible to avoid modes on the iSeries
because of the hierarchical call-invocation model, you should still try to minimize their
effect. Use flat hierarchies, enable the command line, and allow backing out.

Chapter 3: IBM i General Design Standards 51

Design Standards for User Interfaces

Exploring and Backing Out

The easiest way to learn how a system works is to take the options and see what
happens: exploring is a far more natural learning mechanism than abstract
conceptualizing, (for example, reading the instructions first). To allow the user to
explore safely:

®m Provide a ‘backing out’ capability to allow the user to retreat out of functions
without affecting data.

m Stress the points of no return; for instance, by a confirm prompt or an exit menu.

In general, all update processing should take place immediately after the point of
confirmation. There should not be intermediate displays from which the only exit route
is one that requires further updating of the database, as this constitutes modal
behavior. The commitment control facilities of 05/400 can be useful when designing to

allow backing out, as multiple updates can be grouped to take place on an all or nothing
basis. For example:

Bad - Good -

FIRST FIRST
—F DISPLAY

F3-

|
UPDATE PART 1

—F SECOND
SECOND DISPLAY
DISPLAY

N — | CONFIRM
CONFIRM DISPLAY
DISPLAY
UPDATE 1 & 2

UPDATE PART 2

52 Standards Guide

Design Standards for User Interfaces

Recall Versus Recognition

It is easier to recognize information than to recall it. For example, even though you may
not necessarily be able to recall a name on demand, you can still recognize the name
among related names. Wherever there is a choice of values to be entered, you should
provide inquiry functions to display a list of the available options. The CL command
prompter provides an example of a program that includes an inquiry facility. Typically,

F4 is used to provide an inquiry capability.

The following is an illustration of Inquiry Facilities:

EDIT EMPLOYEES

Employee *

F4
Jobcode *_
F4 Sex. . . *
] F4
DISPLAY DISPLAY JOB DISPLAY SEXES
EMPLOYEES TYPES Type selection
Type selection Type selection 1=Select
1=Select 1=Select Sex Description
Name No Job Description M Male
1Ecob N 0501 PGM Programmer 1 F Female
Lodge JP 0010 ANA Analyst
Knowles M 0102 CNS Consultant
Wilson P 0112 1 MNG Manager

Chapter 3: IBM i General Design Standards 53

Design Standards for User Interfaces

Novice and Expert Paths

The requirements of a frequent end user who uses a system are significantly different
from those of a first-time end user or of an occasional end user. The expert will retain
much more knowledge about how to use the system and will want highly efficient paths
through normal tasks. The new end user will require more support. Therefore, you need
to try to design systems to have both a ‘fast path’ and a ‘slow path’. The slow path,
typically involving menus and inquiry facilities, should allow the end user to make use of
inquiry facilities to reassure himself that he is doing the right thing. The fast path system
should allow for as fast of a transition as possible, both through and between
transactions.

The layered prompting of 0S/400 provides a good example of this. For example, the
0S/400 Copy file command (CPYF) can be called from a menu or entered directly. In
either case, the command prompter can be used to guide the user into entering the
appropriate values.

The following is an example of a Command Processing Program:

Menu
1.
? 2. Copy file
ENTER
Copy file
From file. . —
To file. .. —
From member. *FIRST
To member.. *FIRST
‘ Create file: *NO
F04
CPYF

Enter parms

Layered interface should be intelligent—any choices made should guide what is
subsequently shown on more detailed displays.

54 Standards Guide

Design Standards for User Interfaces

Contextual Information

Shipped Systems

It is difficult to keep your attention focused for long periods of time. When using a
complex system, end users may lose track of where they are, especially if they suffer
interruptions. You should provide information to remind users where they are and what
they are doing.

This should be standardized and in the same place (for example, titles and instruction
areas on a panel) so that it can be ignored unless needed. The most useful information
to establish a context for is generally information about any immediately related
entities; for instance, the customer for whom an order is raised or the department to
which an employee belongs. The presence of such information makes it possible for the
user to establish what he is doing at a glance—especially when returning after an
interruption. Connections between panels should follow the structure of the data so as
to facilitate this.

Most people do not learn by studying abstract principles. Rather, they build up their
knowledge gradually. The idea of a shipped system can be used to make learning to use
a system easier. A shipped system provides a workable environment and sensible
defaults for control values, so that a new user can immediately do useful work. 0S/400
themselves provide good examples of this—the shipped system contains subsystems
and output queues, which are ready for immediate use, but which may be subsequently
modified if desired.

Chapter 3: IBM i General Design Standards 55

Design Standards for Display Files

iSeries User Interface

Implementation Components

User interfaces for the native iSeries are made up of the following components:

Commands—The 0S/400 Command Language (CL) provides a user interface that is
rigorously consistent, both in appearance and in behavior. It is worth using the CL
command definition language wherever possible. When defining commands, you
should adhere strictly to the CL conventions. Some of these are discussed in the
sections on designing and coding commands, later in this guide. However,
commands are not suitable for all occasions; displays are also needed.

Display files—Display files are used to define the panels the user sees. They should
be specified as external files using DDS. When defining display files, it is important
to use a consistent layout, give standard weightings to the display field attributes,
and handle error reporting in a consistent manner. On iSeries, control features of
the programs driving the display, such as command key usage, cursor movement,
and prompting for confirmation, should also be standardized to follow the SAA CUA
guidelines.

Note: For more information, refer to IBM's Defining iSeries (AS/400) Compatible
Displays Using DDS Specifications.

Help text—Help text is written using UIM help. Examples of how to do this are
given in the IBM publication, The Guide to Programming Application Panel and Help
Displays.

Print files—Print files should be specified as external files using DDS. The important
considerations are to use a consistent layout and to provide reference information
to indicate how, when, and by whom the report was produced.

Design Standards for Display Files

Design standards for display files are described in this section. This section also provides
general points for panel design. Detailed rules for panel design are given in the iSeries
(AS/400) Guide to Programming Panels and Help Displays.

For the IBM Midrange

It is important that all panels in an application system are designed to the same

stan
and

dards. This makes panels much easier to understand, user education much simpler,
improves appearance.

On iSeries, the standards set out by the IBM SAA Common User Interface should be
followed. These are described in the Guide to Programming Application and Help
Displays and are exemplified by the 0S/400 system displays.

56 Standards Guide

Design Standards for Display Files

CUA Panel Components

You should regard panels as being composed, not of the low level elements with which
you define them (literal characters, fields, indicators), but rather of higher-level logical
components such as a title, a command key explanation line, a subfile selector, and
various fields, each with an accompanying piece of text. This makes it possible to
establish equivalence, and hence consistency, between different panel types and even
different types of workstation; for example, between intelligent workstation products
and dumb terminals.

The generalized SAA CUA standard for panel layout for both NPT and IWS panels is as
follows:

CUA Panel Layout:

Border

S Title Bar N |M

Action Bar (2)

Panel body (3)
v

Scroll Bar

Function Key Area

Border

Key:(1) On non-IWS, there is no border area.
(2) On non-IWS, the action bar corresponds to selection values.
(3) On non-IWS, the vertical Scroll Bar is implemented via +.
(S) = On IWS, this area displays the System Menu.
(M) = On IWS, this area is to maximize control.
(N) = On IWS, this area is to minimize control.
The panel body is made up of instruction areas, explaining how to use the panel or data

and fields. Each field may have a label and if appropriate, an explanation of the
allowed values.

Chapter 3: IBM i General Design Standards 57

Design Standards for Display Files

iSeries Panel Layout Standards

The CUA panel layout standard can be interpreted either strictly, leaving off all ancillary
data such as date, time, or operator identification, or more leniently, keeping the CUA
components in the standard places, while adding in the extra information.

The following shows the standard display features for iSeries Basic:

Top instruction
& Option text. Data. Titl

B 000000000000000000000000 0000000000000000000000000
B 000000000000000000000000 0000000000000000000000000

= your wish is my command

F3=Exit F5=Reload F6=Add F12=Previous
Have a nice day

Messages. Command key explanations.

Option selection values.

58 Standards Guide

Design Standards for Display Files

The following shows the standard display features for iSeries Extended:

Panel name.
Company name. User. Job.
Subfile
selection text. Data. Title. Date. Time.
|
|
QSECOFR WRKSTN1
B 0000000000000000000000 00000000000000000000000
B 0000000000000000000000 00000000000000000000000

your wish is my command

Have a nice day

Messages. Command key explanations.

Option selection values.

Notes On Panel Design

Panel titles should use phrases of the form VERB/OBJECT whenever possible; for
instance, Edit Customer, Add Order, Deplete Stock.

Use a standard layout for the panel header and footer areas (lines 1, 2 and 23). The CA
2E Toolkit Edit Panel Design (YEDTPNL) command and the CA 2E Edit Screen facility can
automatically provide a standard default layout.

Use a standard flow of information and a standard layout for similar types of panel.

Place dot leaders to connect field text with fields. On iSeries, these should be double
spaced and only end in a colon if the field is protected. Leave as much space as possible
to allow for expansion in translation. Align fields by using a standard text length. For
example:

Customer code BBBB Number, 0-999

,,,

Chapter 3: IBM i General Design Standards 59

Design Standards for Display Files

For input fields, provide right-hand side text to explain the allowed values. This should
have the form, "general domain, valuen=explanation". Indicate if a selection is available.
Place the default value first as shown in the following image:

Customer code . . Il Number, 0-999

Order date. BBBBBB Date, DDMMYY

Available B Y=Yes, N = No
N 2=Female

3=Nor known

User profile. . .. BBBBBBBBBB Name, *NONE,F4

Gender B 1=Male,]
for list !

File name 1IN Name, F4 for list
! Library name . . Il Name, *LIBL, *CURLIB ‘

The overall aim is to give a greater emphasis to input-capable fields than to output-only
fields, and the greatest emphasis to input-capable fields for which an error has been
detected, as shown in the following example:

Constant Input Output
| Customer code . . 1l I Number, 9999 :
: Name 00000000000 00O0OO00O i

60 Standards Guide

Design Standards for Display Files

If the panel relates to other output, for example, a printed report, try and design so that
the layouts are the same or very similar. This gives the user the effect of "what you see
is what you get."

Place text giving a summary definition of command key meanings at the bottom of the
display (line 23, or lines 22 and 23). Precede each key explanation with Fn=.
Double-space the key explanations without punctuation. If there are more command
key explanations than will fit on the available space, use F24 to display the extra values.

For example:

f======================z===============z==z=======z====z===z==zz==

! F3=Exit F5=Refresh F6=Messages F8=Display jobs .
; F24=More keys ;

You may also use F11 to condition the introduction of extra detail fields.

Validation error messages should be displayed on line 24 of the display (usually as a
one-line message subfile).

Using Command Keys

Use command keys to provide a quick means of invoking commonly required functions.
If you are designing a system for workstation types other than the standard models,
check that the command keys are available.

Brief explanations of the functions of each command key should be provided on line 23
of each display. Command keys should be referred to in a standard format: for the
iSeries as "Fn=text". Command keys should be listed in ascending order. For example:

The following standard meanings for command keys should be adhered to wherever
possible:

Standard Command Key Meanings:

SAA Meaning Required SAA iSeries
Help Y FO1 FO1
Help Help

Chapter 3: IBM i General Design Standards 61

Design Standards for Display Files

Extended Help FO2 FO2
Help index F11 F11
Help on keyboard FO9

Help table of F23

contents

Display keys F13 F24
SAA Meaning Required SAA iSeries
Exit function Y FO3 FO3
Previous display Y F12 F12
Exit application Y F15

Refresh FO5 FO5
Retrieve command FO9 FO9
Prompt FO4 FO4
Switch forward Fo6

Switch back, IGCCNV F18

Backward FO7 Pgup
Forward FO8 Pgdn
Left F19 F19
Right F20 F20
Switch to action bar F10

Command line F21

Ideographic support F18

62 Standards Guide

Design Standards for Display Files

Using Selection Columns

The subfile capabilities of 0S/400 make it especially easy to provide programs that
display a list of data items to the user, one or more of which may be selected for further
processing. This selection facility should be standardized.

When specifying selection options, you should consider several things. If there is a
selection option column, include a summary definition of the selection values, on the
line above the subfile column headings. Precede each explanation with n=.
Double-space the explanations without punctuation. If there are more key explanations
than will fit on the available space, use F24 to display the extra values. Also, include a
line above the definition line, containing the prompt text, which is usually Type options,
press Enter.

For example:

Type options, press Enter.
2=Change 4=Delete

Standard meanings should be assigned to the values used to make such selections. One
of the two following systems of standard meanings should be adhered to wherever
possible:

Standard Meanings for Selection Values

Meaning Numeric system Alpha system
Select 1 X
Change 2 E
Copy, Hold 3 C
Delete 4 D
Display details 5 z
Print, Release 6 P
Rename 7 R
Display attributes 8 z
Work with entries 12 z
Change text 13 z

Note: There are some inconsistencies in the way that line selection values are used on
iSeries. Where possible, use the values used by the nearest equivalent system
command.

Chapter 3: IBM i General Design Standards 63

Design Standards for Display Files

Subfile Design

Subfiles normally should be used wherever there is a repeating data structure,
especially if the number of repeating groups is likely to exceed a full page. Remember
the following when designing for subfile use:

m Although up to twelve subfiles can be active at a time, try to program to use only
one (apart from a message subfile) as this simplifies programming—and the user
interface.

m On subfiles, any column for selection values should be on the left hand side of the
display.

m Positioning and subsetting values should be shown at the top.

Basic Panel Display Styles On iSeries

The CUA standard prescribes a limited number of types of basic panel design for
non-programmable terminals, and each one is appropriate for a particular purpose.

® Entry
m List
. Menu
m Help

You should base all your panel designs on these SAA CUA Types. In certain cases, SAA
panel types can be combined to make a composite panel.

The following is an illustration of Panel Display Styles:

Entry: List: Entry + List:
(“Subfile”)

Title Title Title

Type changes Type options Type changes

Field A: BBB Fid Field Field Field A: BBB

Field B : BBBBBBBB X Y 4 Field B : BBBBBBBB
B OOOO0000 9999
B 00000000 9999 Xy Z

B 00000000 9999 | | B 00000000 9999
B B 00000000 9999
BB 00000000 9999
F3=Exit, etc BB 00000000 9999

F3=Exit, etc

,,, FO=Bxit

Examples:

08/400 DSPJOBD

2E DSPFIL i 2E DSPTRN
EDTRCD

64 Standards Guide

Design Standards for Display Files

Common Panel Display Variants

Single Object

In practice on iSeries, the fundamental CUA panel types are commonly used in a number
of specific variants:

Single object

- ADDOBI: Entry panel, allowing the identifier and data for a single item to be
added.

- DSPOBIJ: Entry panel, showing data for a single item.
- CHGOBIJ: Entry panel, allowing data for a single item to be changed.
Repeated item

- WRKOBI: List panel, showing repeated items of a given type. Allows items to be
added (F6), changed (Opt=2), or deleted (Opt=4). There will usually be a positioning
field on top.

- WRKOBIJTOP: List panel, showing repeated items. Allows items to be added
(Opt=1), changed (Opt=2) or deleted (Opt=4).

- SLTOBIJ: List panel, showing repeated items, allowing one to be selected.
- RNMOBI: List panel, showing identifiers of items to be renamed.
Menus

- CMDMNU: Menu panel showing commands and related menus.

- TSKMNU: Menu panel showing simple tasks.

ADDOBIJ (Add object). Used to add details for a new object. The details may run over
several pages, with the rollup keys being used to scroll between them. The following
example illustrates an Add Object panel.

Add Object
Type changes, press Enter
Key field 1 . . BBBB Values
Attribute 1 . . BBBB Values
Attribute 2 . . BBBB Values

More

F3=Exit F12=Cancel

Chapter 3: IBM i General Design Standards 65

Design Standards for Display Files

DSPOBIJ (Display object). Used to display details for a given item. The details may run
over several pages, with the rollup keys being used to scroll between them. The
following example illustrates a Display Object panel.

Display Object
Key field 1 . : OO00O

Attribute 1 . : OO0O
Attribute 2 . : OO0O
More

Press Enter to continue
F3=Exit F 12=Cancel

CHGOBIJ (Change object). Used to changed details for a given existing item. The details
may run over several pages, with the rollup keys being used to scroll between them. The
following example illustrates a Change Object panel.

Change Object
Key field 1 .. OOOO
Type changes, press Enter
Attribute 1 .. BBBB Values
Attribute 2 .. BBBB Values
More

F3=Exit F12=Cancel

WRKOBJ (Work with). Used to work with items of a given type. Usually Change (Opt=2,
shows a CHGOBJ) and Delete (Opt=4) are allowed as options. F6 can be used to add
(shows an ADDOBIJ for the item type). Rename (Opt=7, Shows the RNMOBIJ panel) may
also be enabled. The following example illustrates a Work with panel.

Work with
Position to .. BBBB Values
Type option, press Enter
2=Change, 4=Delete, 12=Details
Opt Name Text
B 000 0000000000000 00000
B 000 0000000000000 00000
More. .

F3=Exit F6=Add F12=Cancel

66 Standards Guide

Design Standards for Display Files

WRKOBJTOP (Work with Object, top entry allowed). Allows you to work with items of a
given type. New items may be added using an entry line at the top of the column (using
Opt=1). Change (Opt=2, shows a CHGOBJ) and Delete (Opt=4) are allowed as options.
Rename (Opt=7) will usually be enabled. The following example illustrates a Work with
Top panel.

Work with Top
Position to . . BBBB Values
Type options or changes
1 =Create, 2=Change, 4=Delete
Opt Name Text
BBB
000 00000000O0O0O000000O
000 00000000000 0000000

|0 |03 |

More
F3=Exit F12=Cancel

SLTOBIJ (Select Object). Provides a selection display, allowing you to select an item from
a list of allowed values. Always called from another pane— usually when F4 is pressed.
Select (Opt=1) is the only allowed option. The following example illustrates a Select
Object panel.

Select XXXX

Positionto .. BBBB Values

Select one of the following

RNMOBIJ (Rename object display). Used to rename the identifier of given existing items.
Invoked by taking rename (Opt=7) from a Work with display. The following example
illustrates a Rename Object display.

Rename Object

Container 1 . : 0000
To rename, type New name.
Old object New Object

000000000 BBBBBBBBBB
000000000 BBBBBBBBBB
More

F3=Exit F12=Cancel

Chapter 3: IBM i General Design Standards 67

Design Standards for Printer Files

Design Standards for Printer Files

This section describes design standards for print files. Reports, like panels, should be
designed to be consistent and easy to follow. Since they will be used independently of

the machine, reports should always include an indication of where and when they were
produced, as well as for whom.

Standard Report Design Layout

The following is a sample standard report design layout:

Job

Company name Report name
Title User
Program Profile Date
Time Page
name name
YYPRDMP Universal S ro op: FRED WRK1 12/13/92

10:10:10 Page 1

DEMONSTRATION REPORT

Report Contents

Description . . : 0000000
Column Column
heading heading
(e]e] 0000

Report Contents
* NO DATA **

If field text and field appear on the
same line

place a colon after text.
If there is no data, print message to say

68 Standards Guide

Design Standards for Printer Files

Notes on Report Design

Remember the following points when designing reports:

m |f areport relates to a panel, for example if it provides a hard copy listing of a
particular panel, then its layout should resemble as closely as possible the panel
from which the information is derived.

m Use a standard flow of information and a standard layout for similar types of
reports.

m Design reports to minimize the amount of manual attention required from an
operator to change paper, align forms, etc. For instance, try to use standard forms,
and if a different form is required, avoid a change to the left paper feed tractor to
align the paper.

m Group related fields together. For instance, place Customer code with Customer
name and Customer commencement date.

m Provide explanations of code values alongside the code, essential for a user
unfamiliar with the system (for example, the equivalent of a slow path).

m Where descriptive text and field are on the same line, use a dot trailer and place a
colon between the text and the field that it describes. Leave adequate space for
translation. For example:

Customer code .. 0OOOO Customer DOB . .9/99/99

m Design to minimize the number of print lines and carriage returns, but avoid "two
up" reports if possible, as they require extra programming. For example:

Library Library name Library Library name

1.0000000 0O0000000000000000 2.000000000 0000000000000 0000000
3.0000000 O0OOOOOOO0OO0OCO00O 4.000000000 OOOOOOOOOOOOOCOO0O000
5.0000000 0O00O00OO0O00O0OCO00O 6.000000000 0OOOOOOOOOOOOOCO00000

Chapter 3: IBM i General Design Standards 69

Design Standards for Printer Files

®m Include the program name on reports in order to facilitate error correction.
m Number all report pages.

m Place the company name on all reports—the name should be retrieved from a data
area.

®m [ndicate the program of software release level on the report heading.

m [fareportis based on particular selection criteria, print the criteria at the top of the
report, so that it is clear how the information on the report was derived, as shown
in the following:

i Selection criteria Data i
3 SLSKLVR STOCK LEVEL REPORT Page 1 ;
i Selection |
i Company 00001 Widget company 3
| Division . .. *ALL All divisions !
| Products ... *ALL All products i
i SLSKLVR STOCK LEVEL REPORT Page 2 |
! Division Product Units Price !
| 00001 Yellow sprockets 5.0 12.50 !
! Green grommets 100.0 8.00 3
i 00002 Yellow sprockets 6.0 4.50 |
! etc !

If the items on shown on a report correspond to command parameters, show the
keywords such as:

Keywords
} WDSPF Display [file Page 1 i
| WDSPF input parameters i
} File FILE BLEARG }
! Library LIBRARY QGPL |
i File type FILEATR *PHY 3
i Detail . ._.... FULL |

It may be useful to show the name of the main file and library used to produce the
report—the name of the library in particular can be useful during testing. If it is a
multi-member file, the member name may also be useful. The names can be obtained
from the file information data structure.

For example:
! File YPCUDAP |
i Library APPTST 3

70 Standards Guide

Design Standards for Menus

Design Standards for Menus

This section describes design standards for menus, including approaches to consider
before you start, and suggests tools to help you create menus.

Menu Design Considerations

A large application system will allow the user to perform many different functions. The
user must choose from a large number of options. It is important to use the computer to
organize and arrange the objects of the application system so that they are easy to find
and to understand. Menus provide a convenient means of doing so.

Every task in a proposed system should be allocated to a menu as part of the design
process. Housekeeping and system administration functions should be included—you
may need to create extra menus to accommodate such functions. An object-based
design approach can be used to determine which menus are appropriate. Menus to
manipulate each object type should be provided, as well as menus for similar operations
across different object types.

Grouping Items On Menus

The allocation of tasks to menus has several purposes:

m Helps define user roles.

m Highlights when task initiation is to take place.

m Provides a checklist for the implementation of the design.

m Enables an interactive presentation of the system design to be made to the user.

m Provides a syntax free route for users who are not familiar with command
languages.

m Provides a framework for documentation and for training.

Note: Even tasks that are not normally menu-driven may be grouped into a menu, for
one or more of the above reasons.

Chapter 3: IBM i General Design Standards 71

Design Standards for Menus

Appearance of Menus

Your application menus should follow the 0S/400 user interface standards for menus, as
seen on the 0S/400 system displays.

0S/400 has two variants of menu:

m Task menus. These menus show the tasks relating to a single subject; for example
configuration. A command line is optional.

m Command group menus. These menus show groups of commands or menus with a
common verb (for example, DSP or WRK) or a common subject (for example, OBJ).
Standard subheadings are used and the command or menu name is shown on the
right. A command line is common.

Task menu with command line is displayed in the following example:

NAME Title
System: SYNUK1
Select one of the following:

1. Option 1
2. Option 2
3. Option 3
Bottom

Selection or command
== >

F3=Exit F4=Prompt F9=Retrieve F12=Cancel
F13=User support F16=System Main menu

A task menu with no command line is shown as follows:

NAME Title
System: SYNUK1
Select one of the following:

1. Option 1
2. Option 2
3. Option 3
Bottom
Selection or command

F3=Exit F12=Cancel
F16=Main menu

72 Standards Guide

Design Standards for Menus

Arranging Menus

A command group menu is shown as follows:

Command or Menu

NAME Title
Commands
1. Command 1
YXXXXXXX
2. Command 2
YXXXXXXX
3. Command 3
YXXXXXXX
Related command menus
4. Menu 1
YXXXXXXX
5. Menu 2
Y OOOKKXXX

In some cases, it will be more appropriate to group tasks into menus by function, such
as Order Entry, and in others by when they are invoked, such as Month End Processing.

You should provide several different menu arrangements of the functions so that users
may use alternative search paths to find ways to a function. For example:

m All commands in alphabetical order

m Commands by functional group, such as End of year commands or Order entry tasks
m Commands by subject, such as configuration commands

m Commands by verb, such as all commands beginning with DSP)

m Commands by object, such as all commands for manipulating folders

The disadvantage of using menus is that if there are a large number of functions in the
application system, it may take several steps to find your way to the appropriate menu.

It is therefore desirable to provide a command line on menus that will be used by
experienced users.

The 0S/400 and the CA 2E system menus provide examples of alternate menu
arrangements.

Menus should not contain additional input-capable fields apart from the option input or
command line.

Chapter 3: IBM i General Design Standards 73

Design Standards for Menus

Order of options

Menu Names

On command group menus, options should be arranged in alphabetical order by
command.

On task menus, options should be placed on menus in the order in which they are likely
to be used. In particular, place options to manipulate an entity in a sequence that
follows the life cycle of the entity. For example, of the following two possible
arrangements, the second is better than the first:

Customer menu Customer menu
Select one of the following: Select one of the following:
1. Delete Customer 1. Create new Customer
2. Print Customer 2. Rename Customer
3. Rename Customer 3. Print Customer
4. Print Orders for Customer 4. Print Customer s Orders
5. Create new Customer 5. Delete Customer
Option no: 1 Option no: 1

Menu names are likely to be used by the end user, so they should be designed to be as
meaningful as possible. You need to ensure however, that the names do not coincide
with those of 0S/400 system menus, so we recommend that you use a single-level
prefix.

Names for command group menus should have the form: application prefix + CMD +
mnemonic; for example, YCMDDSP for a menu of all display (DSP) commands.

Names for task menus should be single nouns, preceded by an application prefix; for
example, YDOCUMENT, YDEVICE. Longer terms can be abbreviated using 0S/400 style
mnemonics; for example STKLVL: stock levels, ORDENT: Order entry.

Tools for Creating Menus

Menus can be created with the CA 2E Toolkit Work with Menu (YWRKMNU) utility. The
menu utilities provide a standard layout.

The Toolkit menu display program can provide a number of commonly required
facilities. For example, it can provide a confirm prompt to check that the user really
wishes to take an option, it can display Help text associated with an option, and can
submit a request to run in batch rather than interactively.

74 Standards Guide

Design Standards for Help Text

Design Standards for Help Text

This section describes design standards for Help text and includes a brief discussion of
reasons for providing Help text. It details Help Text standards for panels, commands,
and menus. Information on search indexes is also provided.

Help Text Design Considerations

It is important to provide Help text for all panels, menus, and commands of an
application in order to make the applications easy to use.

Because Help text is generally used mostly by new or inexperienced users, it is
important that it is itself easy to use.

Use a standardized structure that can be related to the panel that it explains. Follow the
0S/400 standards.

Use simple language. Avoid jargon, and explain what the panel and its fields are for,
rather than how the program internals work. Make sure that terminology on panels
matches with that in the Help text.

Follow UIS standards for the use of emphasis.

Use boldface type for headings and allowed values. Use underline for default values and
for hypertext links (automatic) extended headings. UIM will do this automatically if you
use the correct tags. Do not make an excessive use of emphasis, as it is distracting to the
reader.

Chapter 3: IBM i General Design Standards 75

Design Standards for Help Text

Designing Help Text

Help text should be created and edited, using the UIM help manager. As well as being
consistent with 0S/400 System panels, UIM allows windowing, hypertext links, a layered
interface, search indexes, and is also fast.

0S/400 UIS conventions for Help text should be followed. These are specified in the
0S/400 Guide to Programming Application and Help Displays. As well as overall rules,
there are specific additional conventions for commands, menus, and interactive panels.

Help text should have different entry points—panel level, area level and field level. It
should be possible to navigate between different entries regardless of entry point. The

UIM help manager will provide this function automatically.

A sample Help Text Panel Connection is shown as follows:

HELP F02

Panel Panel introduction (””””””””””””””” !
Help text ' Full listing !

field. A 3 :
field. B 3 1. Intro ;
1 2.0pts !

Field | 3

i . 3.Data ‘
field. C ‘ ‘
Help text ; Field A ... ‘

| Field B.. .. :

| FieldC . .. :

Command ‘ . ‘ :

F3=Exit key text | Funckeys |
HELP text o :

76 Standards Guide

Design Standards for Help Text

Panel Help Text

All interactive programs should have operating instructions that should be displayed
when the HELP key is pressed. The help text should follow the UIS standards used on
system panels and should contain:

1. Function: A synopsis of the purpose the program; for example, what the program
does for the user, or for the application system. This may contain hypertext links to
related objects.

2. Option values: A brief description of any line selection functions (for example,
4=Delete).

3. Field descriptions: A description of all data items, including all allowed values and
any input validation rules.

4. Notes and examples: Any special notes or additional comments that may be useful
to the user.

5. Function keys: A short description of any command key functions (for example,
F3=Exit).

Command Help Text

Menu Help Text

Help text should be provided for each command. The help text should follow the UIS
standards used on system panels and should contain:

1. Function: A synopsis of the purpose the command; for example, what the program
does for the user, or for the application system. This may contain hypertext links to
related objects.

2. Parameter descriptions: each parameter should be described, along with any
allowed values.

Help text should be provided for each menu. The Help text should follow the UIS
standards used on system menus and should contain:

1. Function: A summary of the subject covered by the menu.

2. How to use the menu: A standard paragraph on how to use a menu should be
provided

3. Option descriptions: Each option should be described, under a heading, giving the
option number. The introduction help group for the option object can be used. For
example, if the option is a command, use the overview help text for the command.

4. Function keys: A short description of any command key functions (for example,
F3=Exit).

Chapter 3: IBM i General Design Standards 77

Design Standards for Commands

Search Indexes

Help panels assist users who already know how and why to start a command or
program. Search indexes provide users with a way of finding out how to do something in
the first place. You should provide a search index for your application, which should
include

m Entries for each command and each menu

m "How" entries for commonly required operations

m "What" entries for fundamental concepts—the objects and entities on the system
m 0S/400 standard root keywords, for example How, What, Novice

m Entries for common synonyms, for example, "create, make, build"

m Anentry on how to use the search index itself. You can reference the help group of
the system menu

Design Standards for Commands

This section describes standards for designing CL commands. It lists reasons for using
commands, and details standards to use when specifying names, parameter key words,
values, and prompt text for commands.

78 Standards Guide

Design Standards for Commands

Why Use Commands?

Most user application systems will be menu driven. However, you should consider
providing commands to invoke the main programs in a system, for example those
programs that are called as menu options. There are several reasons for this:

Using commands can simplify and standardize design, and also reduce the amount
of HLL programming required. The command definition language should be
regarded as a specialized HLL in its own right that is specially suited to both
validating input data and translating external values into internal values.

Commands have a great capacity for enhancement and modification. Additional
parameters can be added to commands without affecting the existing usage of the
command either by programs or menus.

An expert user often finds it more efficient to use commands because it requires
fewer transactions with the computer to achieve a desired result. This is especially
important in a remote environment, where it might be tedious to have to follow a
many-level menu tree to reach a particular menu option, and also for the
experienced user.

Commands are a good ‘hook’ on which to hang system documentation. In terms of
the system architecture, each command is the entry point to a function, and all the
salient points about the use of that function may be summarized at the command
level. Help panel groups can be used to provide full help.

The CL command syntax notation is available as a concise and rigorous notation for
documenting commands. Apart from brevity, the command syntax notation has the
following advantages:

m [tis unambiguous.
m [tis complete. It shows all permitted values for parameters.

m |t provides visible defaulting. The actual options used are always explicitly
stated.

Commands are a "consistent user interface", with which most users of iSeries will
already be familiar.

Commands have an intuitive "verb-object syntax" that is easy to learn. It is
interesting to observe that two thirds of the 400 or more OS/400 commands are
constructed using a common vocabulary of just ten verbs. As a result, a user need
remember very little to be able to invoke a wide range of functions.

Commands allow for both "fast" and "slow" user paths:

m A positional facility, and the provision of default values, gives expert users an
efficient interface.

m Sophisticated prompting and syntax checking functions support the novice
user—commands are error tolerant, and usually give meaningful diagnostics.

m Help text, prompt overrides, Prompt control, and dynamic choice text can
provide further guidance.

Chapter 3: IBM i General Design Standards 79

Design Standards for Commands

m Commands, being the entry points to using the particular functions, are convenient

objects on which to implement security, for example to grant or revoke object
authorities.

m Commands can be used to set the product library, for example to find the
appropriate National languages version.

Note: The standards that should be applied to the design of commands are described
below.

Naming Conventions

The chapter on naming conventions gives a suggested convention for
commands—commands are relatively scarce and the end user may possibly see their
names. Names should be meaningful and consistent with the conventions used in CL.
The following is a summary of the convention:

Command: S MMM MMM MMM

I ——*—- Noun, noun/adjective mnemonics
* Verb mnemonic

System prefix

*

For example:
§ YDSPHLP - ‘Display Help text’
! YEDTOBJLST - ‘Edit object list’
i LDSPSHP - ‘Display shops’

80 Standards Guide

Design Standards for Commands

Note the following points when naming commands:

m Names should not conflict with any existing 0S/400 commands, nor with any
commands that IBM may introduce into 0S/400 at a future date. For this reason, a
prefix letter should be used.

m Use a "verb-object syntax": the command name should consist of VERB+NOUN or
VERB+ADJ+NOUN, for instance, CRTOBJ, RTVCLSRC, YCPYMNU. There should always
be a verb.

m Use existing CL mnemonics wherever possible, both for verbs (for example, CRT,
DSP, CPY) and for objects (for example, PGM, OBJ, DTAARA). A complete list of
keywords can be found in the appendix of the Control Language Reference Manual
for both machines.

m Follow the distinctions made by 0S/400 in its use of pairs of antonymous
mnemonics, for example:

Antonym — Antonym Description

CRT — DLT To create/delete an entity
ADD — RMV To add/remove data within an entity
STR — END To start/end a function

STR — TRM To start terminate a process
SND — RCV To send/receive data

HLD — RLS To hold/release a function
SAV — RST To save/restore a function
OPN — CLO To open/close a function
ALC — DLC To allocate/de-allocate

GRT — RVK To grant/revoke a function
CHG — RTV To set/retrieve an attribute

m Preserve the distinction made in 0S/400 between verbs that operate on objects
and verbs that operate on the contents of objects:

Object Internal
CRT ADD
DLT RMV
CHG EDT
DUP CPY

Chapter 3: IBM i General Design Standards 81

Design Standards for Commands

Design Standards

Choosing Parameters

m Preserve the distinction made in 0S/400 between working interactively on a list of
entities (WRK verb) and working interactively on an individual entity (EDT or STR
verb).

m Follow the distinction made in 0S/400 between operating on an object and
operating on the description of an object; for instance, DSPSBS versus DSPSBSD.

Command syntax diagrams should be prepared for each command at the design stage.
The diagrams should use the 0S/400 standards.

For more information on conventions, refer to the 0S/400 Control Language Reference
Guide. For an example of conventions, refer to the appendix, "Programming and Coding
Examples," in this guide.

Command parameters should be ‘orthogonal’—each parameter should represent the
values of only one variable. For example, rather than have four values for a parameter
OUTPUT (values: *PRT, *DSP *PRTDTL, DSPDTL), you should have two separate
parameters, OUTPUT (values: *, *LIST) and DETAIL (values: *PRT, *DSP). This allows
future values to be added.

Keep the number of parameters to a minimum.

Do not place parameters specifying work management attributes (for instance job
priority, switch settings, output queue) on commands, unless the command is
specifically concerned with the initialization of a job or jobs; for example, a special
version of the SBMJOB command. This is because it is generally preferable to control
work management values through the job. Where it is useful to have an override on a
particular command, you should make the default value to be that of the job (*JOB).

82 Standards Guide

Design Standards for Commands

Order of Command Parameters
Use existing 0S/400 syntax order whenever possible. For example, — LIB/FILE MBR
JOBNBR/USER/JOB

Place the parameters that are needed to identify the object or entity operated on by the
command before any other parameters. For example, - EDTSRC FILE(X) OPTION(3).

Place the parameters that are most likely to be changed before the parameters that are
unlikely to be changed; optimize for frequency of use. On iSeries, you should use the
PMTCTL(*PMTCTL) keyword to hide ancillary parameters from the initial prompt
displays—such additional parameters will automatically appear after the main
parameters, if displayed by pressing F10. For example:

CRTPF FILE(QGPL/X) AUT(*USE)
Place any required, for example, mandatory (MIN(0)) parameters, before any
non-required parameters. Do not use the reordering facility of the command definition

language to place required parameters after non-required parameters.

If either TEXT or OUTPUT parameters are present, they should normally be placed after
all other parameters.

Command Parameter Keywords

Use existing CL keywords, such as FILE, OUTPUT, or TEXT whenever possible, not FL, FIL,
OUTPT, TXT.

For more information on all of the CL keywords, refer to Appendix F of the iSeries
(AS/400) Control Language Guide.

Keywords should be in the singular; for example FILE, not FILES.
If an entity type occurs more than once as a command parameter, distinguish between

instances by an appropriate prefix on the keyword; for example, FROMFILE, TOFILE,
FROMLIB, TOLIB. If it is creating a copy, you should use NEWxxx; for example, NEWOBJ.

Chapter 3: IBM i General Design Standards 83

Design Standards for Commands

Command Parameter Values

Supply default values for command parameters whenever possible. Default to the most
commonly required value. For example:

CPYSRCF TOMBR(*FROMMBR) MBROPT(*REPLACE)

If a parameter is optional, rather than allowing it to take a blank value, use a special
value of *ALL or *NONE to specify what the meaning of the default value is—that is to
say use ‘visible defaulting’.

Special values for command parameters should always begin with an asterisk, for
instance *ALL, *LIST, *NONE, *YES, *NO. A special value indicates a function or default
action. Explicit values should not begin with an asterisk, for instance the default name of
a file that is to be used, such as QTXTSRC.

If a special value other than *ALL is used for the first element of a qualified name
representing a library/object reference, then it should be a single value. For example,

REFOBJ(*PGM), not PGM(*LIBL/*PGM).

Specify the most important values first so that they appear first in the CHOICE text that
appears on the right-hand side of iSeries commands. Specify the default value first.

Do not use *N as a special value, as it is reserved as the Null value for the CL command
parser.

Where two values are opposites appearing in a list, use *NO as a prefix for the antonym.
For example, *SRC/*NOSRC, *SECLVL/ *NOSECLVL.

Where a special value relates to another parameter, it should be derived from the
keyword for the based-on parameter, for example:

FILE(file-name) MBR(*FILE)

JOBD(job-description-name) OUTQ(*JOBD)

If the values allowed for a parameter are conditional on the value entered for another
parameter, you should use the CL ‘Dependent Definition’ (DEP) statement to
cross-check the values. On iSeries, you can use the PMTCTL keyword to direct the

prompting of the second parameter.

If it is necessary to supply a default name for a library in which to create objects, the
special value *CURLIB should be used. For example, UCRTPF FILE(*CURLIB/X)

Use existing 0S/400 special values where possible. For example:

Standard Values - Validation:

84 Standards Guide

Design Standards for Commands

*ALL - All values

*NONE - No value

*BLANK - Blank

*SAME - Use existing value

*NOCHK - No check

*NOMAX - No limit on number of

*RQD instances

*VARY - Required

- Vary length

*ENABL

ED - Enabled

*DISABL - Disabled

ED

- Yes

* - No

*;ICE)S - No check

“PARTIA - Yes

L - Under control

* - Delay

*231?:{(- To take immediate effect

D - After IPL

“DLY - At IPL

*IMMED

*AFTIPL

*IPL

Standard Values - Defaults:

*CLS - Use value for class
*CURREN - Current values
T - Current value, especially job
* - Use value from invoking job
*JOB - Use job description value
* JOBD - Use value from group profile
*GRPPRF - Use oultfile
*OUTFILE - Direct output to printer
*PRINT (AS/400)
*SRCMBR - Use source member text
TXT - Use system value
*SYSVAL - Use system reply list
*SYSRPY
L
*USRCLS
*USRPRF
*WRKSTN

Chapter 3: IBM i General Design Standards 85

Design Standards for Commands

Standard Values - Libraries:

*CRTDFT - Use default creation library
*ALLUSR - All user values

*CURLIB - Current library

*LIBL - Current job’s library list
*SYSLIBL - System part of library list
*USRLIBL - User library list

Standard Values - Authorities:

*LIBCRTAUT - Use library create authorization
*CHANGE - Change authority
*ALL - All authorities

*USE - Use authority
*EXCLUDE - Exclude authority
*AUTL - Use authorization list
*READ - Read authority
*OBJEXIST - Object existence
*OBIJMGT - Object management
*OBJOPR - Object operation
*ADD - Add authority

*DLT - Delete authority
*READ - Read authority

*UPD - Update authority
*ALLOBJ - All objects

*JOBCTL - Job control

*SPLCTL - Spool control
*SAVSYS - System save

*PGMR - Programmer
*SECADM - Security administration
*SECOFR - Security officer
*SYSOPR - System operator
*USER - User

*SERVICE - Service

*SECADM - Security administration

86 Standards Guide

Design Standards for Commands

Standard Values - User Classes:

*PGMR - Programmer

*SECDA - Security administration
M - Security officer
*SECOF - System operator

R - User

*SYSOP

R

*USER

Standard Values - Assistance Levels:

*BASIC - Basic
*INTERMED - Intermediate
*ADVANCE - Advanced

D

Standard Values - Message Delivery:

*NOTIFY - Notify
*BREAK - Break

*HOLD - Hold

*DFT - Use the default

Standard Values - Relational Operators:

*GE - Greater than or equal to
*GT - Greater than

*LE - Less than or equal to
LT - Greater than

*EQ - Equal to

*NL - Not less than

*NE - Not equal to

*NG - Not greater than

*CT - Containing

Chapter 3: IBM i General Design Standards 87

Design Standards for Commands

Standard Values - Data Types:

Standard Values - Database:

Standard Values - Locks:

*ALPHA - Alphanumeric
*CHAR - Character
*NAME - Simple name
*BIN2 - Binary

*BIN4 - Binary

*CMD - Command

*DEC - Decimal

*DATE - Date

*DTS - Date & time stamp
*HEX - Hexadecimal
*LGL - logical

*NAME - System name
*NULL - Null

*QTDCH - Quoted character
AR - System space pointer
*SSP - System pointer
*SYP - System name
*SNAME - Time

*TIME - variable name
<%-4>*<

%-5>VA

RNAME

*ARRIV - Arrival sequence
AL - keyed sequence
*KEYED - Ascending
*ASCEN - Descending
D - relative record number
*DESCE - Key before
ND - Key before equal
*RRN - Key after
*KEYB - Key after equal
- Input
*KEYBE - Output
*KEYA - Update
*KEYAE - Delete
*INP - Delete
*ouT
*UPD
*DLT
*UNSP
*SHRRD - Shared read
*SHRNU - Shared no update
P - Shared update
*SHRUP - Exclusive read
D - Exclusive
*EXCLR
D
*EXCL

88 Standards Guide

Design Standards for Commands

Standard Values - Compiler Options:

*SOURCE - Source

*NOSOURC - No source

E - Generate

*GEN - Don’t generate

*NOGEN - Second level

*SECLVL - No second level

*NOSECLVL - Cross reference

*XREF - No cross reference

*NOXREF - SQL naming

*SQL convention

*SYS - System naming
convention

Command Parameter Text

Prompt text for iSeries command titles should be in lower case but with initial letters
capitalized.

Prompt text for iSeries command parameters should use lower case and not end with a
colon (the compiler will automatically add trailing dots). The initial letter should be
capitalized.

The prompts for objects should not have the word ‘name’ appended. For example, it
would appear as ‘Program’, not ‘Program name’.

For iSeries command parameter prompts, allowed values should be shown in the
CHOICE text. The 0S/400 command compiler will add them automatically in the order in
which they are coded. You should place the default value first in the source so that it
appears first.

If a parameter is returned to the calling program (in other words RTNVAL(*YES) is
specified for it), include the keyword and the length of the variable in the prompt text.

Prompt text should normally be stored in an external message file, to enable easy
translation.

Chapter 3: IBM i General Design Standards 89

Design Standards for Database Files

Required Parameters for Commands

Commands that are to be run in batch should not have optional parameters that will
invoke functions requiring interactive intervention; if a command can be used in batch,
it should be usable in all circumstances.

Note: An example of where this rule is violated can be found in the CA 2E Toolkit Build
object list (YBLDOBJLST) command. It is possible to use the YBLDOBJLST command in
batch, but if a value of FILTER(*YES) is specified, it will crash when it attempts to prompt
for filtering values.

If RTNVAL(*YES) is specified for a command parameter, MIN(1) should also be specified.
If the command is for use in CL programs and is to have a value returned to it, it should
be compulsory. If MIN(1) is not specified, execution of the command may result in the
Command Processing Program (CPP) attempting to return a value to a non existent
parameter (there is no way of detecting a null pointer in a HLL CPP).

Design Standards for Database Files

A good database design is crucial for the success of any application system. To achieve
such a design, you should be aware of what database facilities are available on iSeries
and use design techniques that help you take advantage of the facilities.

This section provides some guidelines for designing databases for iSeries, including
recommendations for data modeling and normalization.

Design Goals

Your goal is to design databases that are:

m Comprehensive: Every item of information that is relevant to the organization
should be recorded (provided that it is cost effective to do so).

m Non-redundant: Every item of information should appear only once. This not only
saves resources, but also ensures that the data is concurrent; that the computer
does not hold two conflicting versions of what should be the same item of data.

m Consistent: There should be no mutually incompatible representations of
information, nor conflicting rules about what can be done with the data, so that
system data integrity can be preserved. Data modeling can assist you to achieve this
aim.

m Efficient: The access times to retrieve or process data should meet the business
requirements. Some consideration of the processes that will operate upon the
database is necessary to check that this aim is satisfied.

90 Standards Guide

Design Standards for Database Files

The Database of iSeries

The database of iSeries is based upon relational database principles. Relational
databases are built on a body of formal mathematical work on the optimal way of

structuring data. An understanding of the principles of the relational theory is vital for
good database design.

Chapter 3: IBM i General Design Standards 91

Design Standards for Database Files

The iSeries Database as a Relational Database

In essence, the database of iSeries is relational—data is kept in ‘flat’ tables and may be
assembled into logical views. It has facilities for building access paths to assemble,
order, and select data. The database has built-in facilities for recovery (via journaling
and commit control), security, integrity, and concurrency control. It falls short however,
of the full theoretical implementation of a relational database in a number of ways.

For instance:
m The relational terminology of tables, columns, and rows is not used.

® A metamodel is not available to describe the database handler’s own facilities with
the same mechanisms as the database that it produces.

Much of the system information may, however, be materialized into an accessible
format using the OUTFILE parameter on the various 0S/400 display commands. From
V2R1, there are also APIs to retrieve some of the information. The SQL/400 interface to
the database has SQL catalog facilities that may be queried, using SQL.

®m The join facilities of the 0S/400 database are limited—they are read only, and
limited to an equi-join. If fields from the secondary join file are used as keys (for
instance with the 0S/400 Open query file (OPNQRYF)) command, then true
concurrency is not maintained.

®m |nthe native interface, there are only limited facilities for manipulating sets of data
within the database, and these are not presented explicitly in terms of the
operations of the relational calculus (Union, Intersection, Subtraction, Addition,
Select, Project, and Join) acting upon sets.

Selection can be specified in DDS (but is early binding).

A join can be specified in DDS (but is early binding). Fields from the secondary join file
may not be used as key fields. The HLL read equal statement (for instance RPG Il
‘READE’,) gives what is in essence access to a set of data.

Set level operations are of significance in that they provide a greater level of economy in
specifying programs—in relational languages such as SQL, a single statement may often
serve to specify what would be in most HLL’s be a ‘Do loop’ containing many lines of
code.

The OPNQRYF command allows for dynamic joins and selections.

SQL/400 provides join specifications and a number of set level operations.

m There is not a full capability for field level security. It is possible however, to build
logical views containing only a subset of the fields in the file and to restrict
authority differently to different views.

m There are only limited capabilities for specifying rules for preserving the integrity of
the database. Any further rules have to be incorporated explicitly in HLL code. For
instance:

92 Standards Guide

Design Standards for Database Files

Data Modeling

m to test that foreign keys (that is, non-key fields on a file which are themselves
the keys of other files) match prime key values

m to test that instances of referenced keys cannot be deleted if they are used in
dependent relations ("referential integrity")

m There is not proper support for a null value. This is significant because in a truly
relational database, primary keys must not be null ("Entity integrity must be
preserved").

m |n device file DDS, a blank value cannot be distinguished from a null value.

® Many features of the database are "early binding"—facilities such as selection and
key order are built into a compiled object. Although this gives a better
performance, it also limits the flexibility of the database.

m Relations are implicit—from the presence of fields on files—rather than explicit.

Overall, the database of iSeries can be characterized as relational, but ‘early
binding’—information about how to use the database information is incorporated at
compile time rather than execution time.

The fact that iSeries has reasonably-sophisticated databases does not guarantee that
you will automatically achieve a sophisticated and reasonable database design. To
achieve the design goals given above, you will need to discover the correct structure of
your data, in particular to examine it for all forms of redundancy. To do this, the
techniques of data modeling may be used. Data modeling provides a formal method for
transforming business goals into a database design as follows:

Business — Business mode — Data model — s Database design

CA 2E includes a data modeling tool that enables you to design a database, and then
implement it.

Note: A full discussion of how to turn a business model into a data model, or a data
model into a database design, is beyond the scope of these standards. There are,
however, various points about the database of iSeries that analysts new to the machine
may find useful, and also a few guidelines that programmers new to analysis may find
helpful.

For more information on data modeling, refer to Defining a Data Model.

Chapter 3: IBM i General Design Standards 93

Design Standards for Database Files

Useful Questions to Ask

Normalization

The following are usually critical questions to decide when data modeling is important:
m |s this item a file or a field? (for example, a thing or a property of a thing?)

m How is this item identified on the computer? What is the prime key of the database
file that represents the item? In particular:

m Isitunique?

m Isitindependent? (for example, the only key), or only unique within something
else, (for example, subject to a superordinate key)?

m Canit be changed? (in which case, it is probably not a key, or should not be
used as a key).

Every file should be regarded as having at least one set of unique keys. For reference or
master files (for instance a ‘Customer’ file, a ‘Product’ file), the unique key will usually
be obvious. For transaction detail files (for example, Invoice details) it may not be
strictly necessary to have a unique transaction key. It may be sufficient to have the
records kept in arrival sequence, within major keys (for example, Invoice number).
However, if you do this, it is more difficult to access a detail line by itself.

Normalization is a process that can be applied to data relations to ensure that they are
structured in ‘normal form’. It can be shown that relations in normal form will satisfy
certain basic criteria, such as non-redundancy, which are desirable when representing
data on a computer.

There are in fact several different normal forms, each representing a stage of increasing
rigor. Each successive stage encompasses the previous stage, thus ‘Third normal form’
includes ‘Second normal form’, which in turn, includes ‘First normal form’.

94 Standards Guide

Design Standards for Database Files

The steps of normalization can be outlined in a non-technical language by using the
term ‘field’ rather than the more correct attribute as follows:

m To be in first normal form, every field must represent an atomic set of values. A
field should not, for example, contain both customer code and customer type
(either concatenated or as alternatives).

m To bein second normal form, every non-key field in the table (for example, record)
must depend on the prime key. For example, properties of customer type should be
on a separate customer type entity, and not be repeated on every customer
instance.

®m To be in third normal form, every non-key field must be:

m mutually independent of the other non-key fields (it can, for instance, be
updated independently of the other non-key fields)

m fully dependent upon the prime key

Considerations for Database File Design

Even if you do not have a data modeling tool, it is beneficial to use data modeling
techniques, and in particular, to design in terms of a logical schema that represents the
overall structure of your organization’s data. The logical schema can then be translated
into a physical schema that gives an efficient implementation.

On the first design pass, ignore interrogation requirements. An accurate business data
model will normally permit sensible interrogation. When the essential model is
established, test it against interrogation requirements. In particular, you may wish to
introduce redundancy in order to achieve faster access. Where redundancy is
introduced, only one occurrence of the redundant fields should be regarded as
definitive, and it should be made clear which occurrence this is. For instance, in order to
provide rapid response for telephone ordering, you might provide a current outstanding
credit total for a customer as a summary field, although it is theoretically possible to
build the figure up from outstanding invoices and orders.

m You will usually find that the user has a very good intuitive feel for the data that he
handles. Ask for a critique of a non-technical presentation of your data model.

m Never allow programming to proceed until you are entirely satisfied with your data
model. The accuracy of the data model in its relation to the business is by far the
most important feature of a design.

Chapter 3: IBM i General Design Standards 95

Design Standards for Database Files

Design Tips for 0S/400 Databases

Design strictly in terms of externally defined files; field offsets must not be conditional.
Do not specify that a field is to represent one data item in some circumstances and a
totally different data item in other circumstances. Instead, introduce a separate field.

Avoid repeating groups of items within a record. For instance, ‘Order quantity 1’, ‘Order
quantity 2’ ‘Order quantity 3’. In a database of fixed length records like that of iSeries,
unnormalized data of any repeating group imposes a limitation on the number of groups
allowed. It also requires more complicated programming.

Do not concern yourself with design detail, in particular, field attributes such as lengths,
edit codes, and allowed values, until you have established what the contents of your
data model should be. Then, create a field reference file (FRF) entry for each field
description, and refer every occurrence of the field to the FRF entry. For example, the
FRF will contain a definition for Customer number, to which Customer numbers in the
Sales order, Sales ledger, and Sales analysis files will refer. Every different type of date
should have its own FRF entry: Date of birth, Expiry date, Order date. One of them may
one day need to be changed to a different format. Define total and accumulator fields as
having the base field length + n digits.

On your later design passes, consider interrogation requirements, especially if a rapid
response is required. IBM gives a performance guideline of not more than 25 database
accesses per transaction. The ‘Join’ operation may be used to lessen the need to
introduce redundancy to achieve performance.

96 Standards Guide

Design Standards for Database Files

General Points for Field Usage

Place key fields before other fields in the file. Place major keys (for example, keys fields
which are also the keys of other files) before minor keys.

Place other fields on the file in the order in which they generally appear on input and
output displays. This makes the use of software tools that create device file layouts
directly from the database file (such as Query) easier.

Even if all the values for a code will be numeric, define the code field as being character
rather than numeric. It will then be possible to introduce character codes at a later date
if the numeric code values have all been employed. It will be also easier to program an
enquiry function to display the allowed values for the field because a ‘?’ may be entered
directly into the code field—0S/400 does not permit the entry of a ‘?” into numeric
fields.

Avoid the use of zoned numeric fields. The native storage format for numeric fields on
iSeries is packed, so it is more efficient to pack numeric fields.

Packed fields should be defined with an odd number of digits, even if this makes the
field a digit larger than is actually required. This is because:

m even-length packed fields are less efficient than odd-length fields

® no additional storage is required

m jtis not possible in RPG Ill to define a packed field of even length within a data

structure

Note: Blank or zero values should not generally be allowed for prime keys, since they
represent a null value. If they are required, try to assign some other value to represent a
null value. For instance -99999’ for a numeric field, “*NONE’ for an alphanumeric field.

Chapter 3: IBM i General Design Standards 97

Design Standards for Database Files

Catedories of Database File

Reference Data Files

In designing application systems, it is often useful to differentiate between different
types of files on the basis of the type and latency of data the files hold. Different design
considerations apply to each of the five categories of files discussed:

m Reference data: master files and tables
®m Transaction data

m Transaction summary data

m Archive files

m Work files

Note: Frequency of use and of turnover, which is the primary consideration in
categorizing files in the above scheme, is also the main criterion for selecting a backup
strategy for saving data to an offline medium.

Note: Avoid designing files that have a ‘mixed’ function.

Reference data files contain system reference tables and codes, for example, a
customer file, VAT code file, or address file. The files are relatively small; their contents
are relatively constant over time (they are "non-volatile"), and many programs usually
refer to the files in the system.

Do not mix reference and transaction summary data in the same file. The two types of
data have different activity levels. Except when actually being maintained, usage of
reference files should be "read only".

Where the applicability of a reference file record is time dependent, for example, for a
currency or a price rate, cancellation of a record should be recorded via an "active
date", or an "inactive date", not by a marker. Users will rarely cancel a record at the
precise time at which it becomes inactive. Consider an "active date" to permit items to
be entered in advance of their availability for processing.

Consider, where appropriate, providing an indication that the code defined by a record
has been referenced by a transaction. This helps to preserve the referential integrity of
the database: arecord in use may not be deleted. Users may however create
"provisional" records that are subsequently never referenced, and may be purged.

98 Standards Guide

Design Standards for Database Files

Transaction Data Files

Transaction files contain the main system data. They are generally large, and have a high
turnover. They may well require frequent archiving.

Certain reference data will attach to each transaction. Consider whether the historic or
the current view, or both, is relevant in subsequent interrogation. For example, does the
sales manager need sales reported by the customer’s representative at the time of the
sale, or by the customer’s current representative? In the former case, the
representative must attach to the transaction; in the latter case, it should not.

Consider the latency of the data. A sales invoice record is current only so long as it is
outstanding, however, the same data may be required for sales analysis over a much
wider time span. The same data thus services two different information needs.

Transaction Summary Files

Archive Files

Transaction summary files contain summaries of the transaction files.

Introduce summary files to provide summary totals of transactions for rapid
interrogation, for example customer’s aged debt, and stock levels. They impose an
overhead on processing, and may restrict interrogation possibilities if no supporting
detail is maintained.

Introduce summary files only when space or response considerations mitigate against
maintaining and interrogating open item transaction files.

Try to design summary files so that they can be rebuilt from the transaction files in the
event of an error or a crash.

Archive files are used to hold obsolete data, usually from the transaction files, but
sometimes from the reference files as well.

Archive files may be introduced to contain transactions no longer current. Before
introducing such files, investigate the user’s requirement carefully. It is attractive in
principle to have two years’ sales history on line, but is there a valid business need?

Wherever possible, archive files should use the same format as current transaction files.
Interrogation programs may then use either.

Chapter 3: IBM i General Design Standards 99

Design Standards for Database Files

Work Files

Work files are used to facilitate processing.

Decide whether the work file will be required just for the job in hand (for example, for a
print program), or whether it must exist from job to job (for example, a batch entry
work file). In the first case, it will probably be best to create a copy of the file in QTEMP,
while in the latter case, it would be better to use a work member within a permanent
file.

Consider the recovery and cleanup implications. Can the work file be thrown away or
not?

Work files can be useful for reducing the number of database accesses required to
interrogate the database, especially where data is to be selected on one access key but
ordered on another. The method is not so much to use them as sort files, but rather to
provide project and/or join operations that simplify programming. Records can be
extracted from the database using the most efficient existing logical view (the 0S/400
Copy file (CPYF) command is often sufficient to make the extraction). A logical file may
then be built upon the extracted data, and the data presented, using a simple report
program.

100 Standards Guide

Design Standards for Database Files

Access Paths

The following apply when defining access paths:

m Break up fields to the smallest component that will be required when creating keys
to access the data. Data fields may be required as components in several ways:

m for select and omit usage on access paths
m for key specification
m for program usage (though fields may be redefined in programs through the

use of data-structures)

For example, if you have a stock code field made up of three parts, prefix/stem/suffix
(ZXXXYYYY), and you know that you will require the enquiries of all items with a given
prefix, or suffix range, define the field as three parts.

m Do not add unnecessary key fields to the logical view, as the number of key fields
determines the size of the logical view.

m Numeric sub-fields that are to be concatenated back into a single key field (for
example, possibly YY, MM, DD), should be defined as zoned.

m Dates should always be in YYMMDD order, so as to give easy historical access.
Note: An alternate collating sequence or a field level translation table is needed to put

lower case alpha characters into true alphabetical order. IBM supplies a table to make
the translation: QSYSTRNTBL.

A ALTSEQ(QSYS/QSYSTRNTBL:
)

A R @CUDAJJ PFILE(SLCUDAPY)

A JJCUT X20 COLHDG(‘Customer’ ‘Text)

Chapter 3: IBM i General Design Standards 101

Design Standards for Programs

Access Path Performance Considerations

An excessive number of access paths can have a serious impact on performance. Note
the following points:

m Access paths that are required only for occasional batch jobs (for example, for
reports), should be specified with delayed access path rebuild. A value of
MAINT(*REBLD) on the 0OS/400 ‘Create file’ commands (CRTPF or CRTLF).

m Keep the number of immediate maintenance access paths on a given physical file
within reason, for example, minimize the number of operational indices.

m |falarge number (IBM cites a value of more than 10 percent) of databases add are
taking place in a batch procedure, it is quicker to remove all non-essential access
paths and add them back afterwards.

®m An access path determines:
m The order that records are presented
m The criteria that are to be applied to select or omit records

m Which fields from the records are to be included. A particular use of this is to
restrict access to particular fields on a database file

For a given file, the number of useful ways of selecting or omitting the data is usually far
greater than the number of useful ways of ordering the data. For this reason, it is often
a good idea to leave the selection to the programs that read the file, or to use a
‘dynamic’ access path—rather than building it into the access path permanently (‘static’
selection). This is particularly true when the ‘cardinality’ of each key set (for example,
number of records with the same key, or partial key, that have to be read), is small.

m 0S/400 will automatically share the access paths of files which have the same keys.
If you are specifying select or omit criteria using the database facilities, consider
using ‘dynamic’ rather than ‘static’ selection, so as to allow sharing of access paths.

Design Standards for Programs

Program design needs to be considered both generally, covering issues such as
modularization, structured design, encapsulation, and interface principles, and
specifically, looking at issues such as code structure, choice of HLL, syntax, naming
conventions, and the use of data types.

102 Standards Guide

Design Standards for Programs

Design Goals

Program Types

You should try to design your programs so that they satisfy the following overall design
goals.

Programs should be:

m Correct: Above all, programs should do what they are meant to do. The simpler and
clearer both the design and specification are, the more likely this goal is to be
achieved. The use of standard program types can help simplify the specification of
the design and reduce the likelihood of errors in the logic. More formally, programs
should generally follow structured principles, for example, be made up of
constructs which can be transparently replaced with prime structures.

®m Transparent: Programs should be as readable and as understandable as possible.
This requires that you structure programs sensibly, avoid tricky programming,
document properly, and use helpful names, notations, and standard techniques.

m Modular: Programs should be as modular as possible, so that changes to any one
part have a minimal effect on other parts. You should also design to be independent
of any system specific facilities.

m Robust: Programs should handle any routine errors sensibly without crashing. If a
serious error occurs, they should preserve the integrity of the database and
collapse in a tidy manner; for example, not leave objects allocated or locked.

m Efficient: Programs should perform their function in a way that uses as little
machine resource as possible.

Just as there are types of buildings, the instances of which, although individually
different, are within type all fundamentally similar by the very nature of the purpose
they are intended to fulfill, so are there program types, whose structure is dictated by
the underlying structure of the data on which they operate.

An effective use of program type can vastly increase productivity. If programs are
written to be as data independent as possible, then writing a program of an existing
type to work on a new file is mainly a matter of changing the names of the references to
the external database. Changing names is a much less error prone process than
changing logic.

Such an approach is carried to its logical conclusion in CA 2E, which has a number of
standard program types. Each program type is available to operate on any file in the
database—nominating a file and a function type is sufficient to specify an entire
program.

You should try to design your application using standard types, in as ‘pure’ or
unmodified of a form as possible.

Chapter 3: IBM i General Design Standards 103

Design Standards for Programs

Choosing Standard Programs

The data structures upon which standard programs on iSeries are most commonly based
are either those of iSeries database from which the programs obtain data, or of the CUA
panel types which the programs use to present the data to the user. In many cases, both
are relevant. In the commonly required cases, the data structure is either a record, a

repeating group of records, or a combination of the two.

The following table shows this:

CUA Program Type No. of Fmts 0S/400 example CA 2E example
Single record display 1 DSPDTAARA DSPRCD
Entry

Multi-record display n DSPOBID DSPFIL
List

Multi-record display n DSPOUTQ SELRCD
with selection,

List

Single record 1 DFU single record EDTRCD
update

Entry

Mulit-record 1+n DSPSYSSTS EDTTRN
(header + details)

Single record report 1 DSPDTAARA PRTFIL
Multi-record report n DSPFD generic PRTFIL

- With level breaks
and/or totals

104 Standards Guide

Design Standards for Programs

Organizing Programs into Modules

Organizing the functions of your application system allows you to:

®m insulate against change

m allow independent development and testing

m simplify the design

m make the system more robust

Modularization should serve to hide most of the internals of the module. The interface

to each module should explicitly reference all the information required to use the
module, and be the only way of invoking the module.

Modules should be chosen according to a number of criteria. Each module should be
concerned with one fundamental task and should not carry out functions that are
similar to or overlap with any other module—it should be ‘orthogonal’. Each module
should have strong internal cohesion and weak coupling with other modules.

Coupling and Cohesion

Coupling

In deciding how to modularize a system, pay attention to the concepts of coupling and
cohesion—only combine related functions into a module, minimize the interfaces
between modules; and do not pass complicated directives from one module to another.

Coupling is a measure of the interdependence of two modules. The closer two
procedures are coupled, the harder it is to design, test and rely on them as separate
modules. We can identify a continuum of degrees of coupling, ranging from the strong
to the weak. Generally speaking, the weaker the coupling, the better.

Chapter 3: IBM i General Design Standards 105

Design Standards for Programs

Degrees of Coupling

The following displays an example of degrees of coupling:

STRONG

jaV)

. Accessing another module’s code.

o

. Branching to a place other than the module’s
entry point.

. Accessing another module’s private data directly.

o O

. Shared or global data.

. A procedural call with a switch as a parameter.

(]

(e.g. passing an operation code)

A procedural call with pure data parameters.

g. Passing a serial data stream for another module
to
process.

WEAK

Cohesion

Cohesion is a measure of why particular components are grouped together in a module.
There is a continuum of increasing validity.

Degrees of Coupling

The following is another example of degrees of coupling:

WEAK

a. Coincidence.
b. Logic - components share some common logic.

. Temporal (e.g. at program initialization).

O

d. Communicational: components share some
common data.

e. Sequential: components need to be invoked
serially.

f. Functional: components are interdependent.

STRONG

106 Standards Guide

Design Standards for Programs

Program Modularization

The following practical rules can be applied to the modularization of programs:

® Do not combine unrelated or weakly related functions onto the same panels. For
example, one panel, one task is easier to understand, program, and maintain.

m Place commonly required functions into standard type subprograms; for example
code validation, enquiry functions. This allows faster, less error-prone coding.

m Both capability checking (whether a user is allowed to carry out a task) and entity
manipulation (for example, the creation and deletion of records representing
entities) are generally best modularized into standard functions.

®m Provide a single entry and exit point.

®m Do not place repeatedly required subroutines in programs using automatic storage
allocation (PASA), for example, CL programs. The repeated re-initiation overhead is
very high. Instead, use programs written in a language employing static storage
allocation (PSSA), for example, RPG lIl, and do not close down the program when
exiting from the programs.

m Alternatively, it may be more efficient to place a sub-function that is to be
repeatedly called into a subroutine (once per record read when reading a large dbf).

®m |tis more important to have well structured, clearly written programs that are easy
to understand and to maintain, than to have programs optimized to the last byte
and call. ("It is easier to make a working program fast than a fast program work").

m Do not attempt too much in one program. A rule of thumb for RPG IIl programs is
that programs start becoming unwieldy at 1,200 lines, are quite large enough at
1,500, and are getting unmanageable at 1,700 lines. At 2,000 lines, they are epic.
(Ideally RPG Il programs should be less than 700 lines).

Remember that RPG Il and COBOL programs cannot be called recursively; for example,
twice in the same invocation stack for a job. This puts limitations on how programs can
be linked together. For example, if a maintenance program ca CAll an inquiry program,
and the inquiry program ca CAll the maintenance program, the situation might arise
whereby a recursive call is attempted.

Note: You may achieve a logical or design modularization which may be implemented in
a redundant manner; for instance by the use of /COPY or %INCLUDE members in HLLs,
or by the use of CA 2E internal functions.

The interface between any two programs can be regarded as a database format; it may
be implemented as such, using externally-described data structures in order to allow for
change.

Chapter 3: IBM i General Design Standards 107

Design Standards for Programs

Error Recovery

When designing an application, you should consider what would happen when an error
occurs, both normally (data validation error), and abnormally (system crash).

The following are some principles that can be applied when designing for error
recovery. Refer to the section on ‘System Recovery’ for a general discussion of recovery
considerations.

In the event of a crash, programs should always collapse to a safe point that is one
where no special corrective intervention will be required to synchronize the database.
Commit control can be used to ensure that this happens, even on transactions involving
many updates to the database.

Decide what the recovery unit will be should a crash occur. A critical consideration is
usually whether the whole file can be regarded as recoverable as a single unit or not;
this is normally equivalent to considering whether many users will be using the file at
the same time.

If the file may be regarded as a single recovery unit; for example, during its use for
update by a batch process, the whole file may be restored from a backup copy, taken at
the start of the process.

If the whole file cannot be restored, say because of locks likely to be held by other users,
(for instance as when one of several interactive programs using a file fails), the recovery
unit cannot be the whole file. Journaling can be used to select a recovery unit within a
file—recovery units can range from the whole job down to an individual access to the
database. Commit control can be used to group individual database accesses into
functionally useful recovery units (for example, a whole batch of transactions).

Make programs restartable. Programs should be written so that when they are rerun
after a crash, they pick up where they left off, and resume processing.

You should be able to reassure yourself that a system is synchronized after a
crash—provide inquiry programs and integrity checkers.

108 Standards Guide

Design Standards for Programs

Error Handling

Good error handling design should serve to contain the damage from errors. Errors
should be brought to the operator’s attention, but the system should retain its integrity,
and, if possible, continue.

In general, you should aim for defense in depth. Assume things will go wrong at every
level.

The default error handling features of 0S/400 provide an excellent framework for error
handling, and can be used as the norm. The only design decision required is as to when,
if ever, you should override the handling with your own processing.

Errors fall into three general classes:

m Application generated (for example, "record not found"), since you create the
messages you are handling them by definition.

m System generated, because of pathological errors (for example, decimal data errors,
errors due to missing programs or files). Do not attempt to handle pathological
errors. Let the message handling capabilities of 0S/400 force a request for the
operator’s attention.

m System generated because of routine errors (for instance, due to record locks). You
will probably want to handle such errors explicitly so that automatic recovery can
take place and processing can continue.

One of the main differences between the design requirements of batch and interactive
programs lies in the error handling.

For interactive programs, error handling is relatively straightforward. An error message
can be issued, suggesting one or more options, and the program can wait for immediate
guidance. Where a partial update has taken place, it is possible to indicate what has and
what has not been implemented.

For batch programs, error handling is more complicated. You must allow for errors of
varying levels of severity, ranging from terminal errors, which require immediate and
complete abortion of the process, to warning errors, which require the program to take
default action in order to be able to continue unattended. In any case, the operator
needs to be alerted as to the potential problems. You should also consider whether, if a
fatal error occurs, subsequent jobs should be allowed to continue.

0S/400 error handling imposes a certain overhead. You should code so that exception
handling is invoked on the least used path. For example, say that you are
adding/updating records on a file. If the record will not normally already exist on file,
you should attempt to add the record, and monitor for an exception, in which case, you
will chain and update the record, rather than vice versa.

Chapter 3: IBM i General Design Standards 109

Design Standards for Programs

Record Locking

Always make allowance for the possibility of records being inaccessible due to locks by
another job. In RPG Ill, this should normally consist of testing the result indicator (col
56-57) on file access operations. The appropriate action to take will depend upon the
context.

For single record updates in interactive programs, it will normally be sufficient to
abandon the update and report a ‘record in use’ error message.

For multiple record updates in interactive programs, and all batch updates, you will
either need to rollback and report a ‘record in use’ error message, or carry out whatever
partial update is still feasible. In the latter case, you must be able to report back what
has, and what has not, been updated.

Note that file design may be used to reduce multiple record updates to what are
effectively single record updates. Potential lock situations can usually be designed out of
an application. For instance, if an invoice maintenance program requires a lock on the
invoice header before it will allow editing of invoice details, it will probably not be
necessary to check for locks on the invoice detail records.

There are two basic strategies that can be adopted with regard to the locking of data
records:

m Pre-allocation: A record that is to be updated is locked before the data to update
the record is processed. The lock is held until the update is completed. This method
allows for simple programming and may be appropriate for interactive programs,
when the files that are being updated are not required for update by other
processes at the same time.

m Rollback: A record that is to be updated is locked only for the instant of update. This
generally removes problems of contention. However, it requires an extra database
read, and if the update is being done on the basis of existing record values, it will
usually require programming to check that a record has not been altered by
another process between the initial access and the actual update. If such an update
has taken place, it will be necessary to report the error, and it may be necessary to
execute a rollback to undo any associated updates that have already been
completed on the premise that a record could be updated (for example, update of a
batch header before update batch records).

110 Standards Guide

Design Standards for Programs

Subfile Processing

Subfiles should not load more records than they need, as to do so is slow and consumes
storage. Use program controlled roll up. Each consecutive page of the subfile should
only be loaded when the ROLLUP key is pressed (this requires allocation of an indicator
to the subfile rollup key). An exception to this rule may occur when control totals for the
subfile contents need to be calculated or checked, so all the records must be read in any
case.

For more information, refer to the section, Design Standards for Display Files.

The following technique can be used to give a fast performance when processing an
input-capable subfile loaded from database records, which requires subsequent update
back to the database:

1. To load the subfile, use an input-only logical view of the database file to read the
records in the desired order, a subfile page full at a time.

2. Store the relative record numbers of the database records as hidden fields on each
subfile record.

3. Use relative record processing with a second, arrival-sequence access path on the
database file to update the changed records from the subfile to the database.

Journaling for Audit Trail Purposes

The journal will contain a record of every update made to every file being journaled.
This record is an ideal source for any sort of audit trail report, for instance file
maintenance reports. Such reports can be run retrospectively for any span of time,
provided that the journal receivers are on-line. Any of the selection criteria of the
0S/400 Display Journal (DSPJRN) command, such as user or job name, starting dates or
ending dates, can be used to specify which entries or range of entries are to be listed.

Program
Work PF
Update or put
Maintenance:
report
PF

Receiver

Chapter 3: IBM i General Design Standards 111

Design Standards for Programs

The Journal as a Debug Aid

Choice of Landuage

The journal can be used to trace the cause of anomalies in the database. Most notably,
the updates made to the database by a particular program can be examined in detail, or
the program responsible for a particular update can be discovered.

In which HLL language should you implement your application? Obviously there are
some functions that are best coded in a particular HLL because of the facilities available
in that particular language.

Choice of language is important because it will affect:

m Productivity: This will depend upon the ease of use and the power of the language,
and the familiarity of the developer with the language.

m Reliability: The ease of use of a language will affect the quality and correctness of
the implementation.

®m Functionality: only certain functions are available in each language.

112 Standards Guide

Design Standards for Programs

Criteria for Choosing an HLL

Apart from the availability of staff with the appropriate language skills, there are several
criteria for assessing an HLL:

m Expressiveness: The extent to which the language makes obvious the intention of
the programmer is important both when writing and when maintaining programs.
This will be affected by factors such as the data structures available, the syntax and
layout facilities, and the ability to use qualified names and other name restrictions.
The simplicity, conciseness, consistency and rigor of the language all contribute to
its understandability, and hence its expressiveness.

For example, RPG, because of its fixed format and limited data types, is particularly
poor.

m Completeness: The extent to which all objects and operations of interest can be
described. The more sophisticated the capabilities of a language, such as the ability
to support recursion, complex data structures, pointers, multi-dimensional arrays,
or floating point arithmetic data types, the more complete it is likely to be.

Again, RPG is weak. Basic C lacks straightforward database field manipulation types.

m Generality: Some languages are better at specialized functions. Languages may
support functions in a number of areas: I/0, mathematical functions, string
handling, access to the Operating System, and data types.

RPG is good at database access but poor at string handling. CL is good at Operating
System functions and string handling, has excellent access to system facilities, but has
very limited database capabilities. Only C and PL/1 support pointer types, and so are the
only viable languages for system programming.

m Openness: The ability to connect to other languages. This will be affected by the call
mechanisms and parameter passing capabilities of the language, and the basic data
types supported. Other factors such as character set dependencies and exception
handling will also be relevant (such factors often tend to be machine dependent
and so to have implications for portability).

Most of the iSeries languages have broadly equivalent call mechanisms, although PL/1
supports more complex features. System C provides the capability to access certain low
level functions that are not available to other languages.

m Extensibility: The extent to which new objects and/or operations can be added to
the language. This has important implications for systems programming type
applications. The capability to use macros or copy facilities, Abstract Data Types
(ADTs), and external calls can all be relevant.

The CL command definition language is a strong mechanism for extending CL. Once
again, RPG lll is weak and PL/1, with internally described procedures and functions, is
fairly strong. The C standard libraries and precompiler make it the most extensible of
the iSeries languages.

m Efficiency: How fast do programs using the compiler run.

Chapter 3: IBM i General Design Standards 113

Design Standards for Programs

RPG is strong; COBOL and PL/1 are almost as good. C is at present particularly weak
because of the additional overhead of the runtime environment. REXX, an alternative to
C, is interpreted and so also quite slow.

iSeries High Level Languades

CL—CL is the best 0S5/400 language for simple access to system facilities, such as
authority checking and message handling. CL cannot handle database updates or
complex display file handling. It has poor control structures (no subroutines, no DO
WHILE construct) and limited data types—binary is not supported. It can be used
recursively and has good string handling.

CMD—The CL command definition language is specially designed for defining call
interfaces and can be used to reduce the complexity of any validation required.

RPG III—RPG lll is compact, efficiently implemented, and good for batch processing and
display file handling because it has good 1/0 facilities. It has poor structural capabilities.
It is difficult to write well modularized RPG Ill programs because there is no ‘privacy’; all
variables are global, and subroutine variables are not explicit. The variable naming
capabilities are very restrictive. The fixed format reduces expressiveness. Recursion is
not allowed and the data structures (for example, arrays) supported are limited.

COBOL—COBOL ‘85 has more modern control structures than COBOL ‘74, but there are
still some significant shortcomings on the iSeries implementation. It is free format and
therefore, quite expressive. It has reasonable 1/0 facilities. It is not extendable and has
poor exception handling. There is no recursion, no ADTs, and limited typing.

PL/1—Of the iSeries languages, PL/1 has the widest range of cated capabilities. It allows
a block structure, recursion, and is rich in its data types. It has good 1/0, including some
special features, good string handling, and good expressiveness. It is also extendable
through functions and has good exception handling—though access to system data is
not always as good as RPG IIl. It has limited typing and is complex.

C—Of the iSeries languages, C has the most powerful low-level capabilities. System/C
can be used to access system function not available in other languages. Like PL/1, it
allows a block structure, recursion, and is rich in its data types. It tends to be cryptic. It is
also extendable through functions and has good exception handling.

114 Standards Guide

Design Standards for Internationalization

Design Standards for Internationalization

General Principles

This section describes some of the considerations for designing systems to run on other
national language versions of 0S/400.

For more information on guidelines for using national language versions, refer to the
IBM National Language Information and Design Guide, Volume 1.

For information on specific advice for iSeries efer to the iSeries (AS/400) National
Language Support Planning Guide, Volume 2.

The design aims for multinational support are to implement systems as follows:

m Different national language versions of the same system can be built without
requiring programming changes.

m Different national language versions of the same system can coexist on the same
machine with a minimum of redundancy among the application objects.

To achieve this, all Machine Readable Information (MRI) information seen by the user,
for example, text for panels, report headings, menus, and Help text, must be held
externally to the applications so that it can be translated into other national languages
and the translations can be retained through subsequent upgrades to the software. In
addition, you should parameterize and retrieve all factors that may vary between
countries, such as date display format and currency symbol, at execution.

Ideally, you should be able to use just one set of HLL source, in conjunction with
different sets of national language-specific text objects, to build different national
language versions of the software.

IBM uses the term enabled to describe an application product that has been designed
with translation in mind, even though it may not initially be translated. An enabled
product (for example, 0S/400) can then be implemented in any particular language
easily, usually without a coding change. An application that is not enabled will require a
retrofit in order to obtain a national language version.

Chapter 3: IBM i General Design Standards 115

Design Standards for Internationalization

MRI Translation

Translation Levels

Physical

You can attempt two different degrees of translation:

®m Translate End User Text: Only the text visible to the end user is translated— device
file output, messages, and Help text. This is the normal requirement. If, however,
the user will be using interrogation tools such as Query, you should also translate
the field text on database files.

m Total translation: You translate all the descriptive text for entities along with source
comments and system documentation. It is seldom commercially attractive to do
this.

There are three levels at which you need to consider the implications of a national
language—the physical, the syntactic and the semantic.

At the Physical level are the purely mechanical factors needed to support specific
languages—different character sets, multilingual keyboards, and storage codes.
Generally, iSeries applications are insulated from direct consideration of these factors
by the capabilities of the hardware and the operating system. For instance, device
configuration takes care of the keyboard mapping, and various extended character sets
are available for the different national alphabets.

It may simplify design if the restrictions of different keyboards are taken into account.
For instance, avoid the use of characters which are present in English but which are not
common to all character sets (‘ ‘, @, #), because on some keyboards, they can only be
keyed as hexadecimal values. There are also considerations to be taken into account if
you need to input or display data input in one character set at a device that uses
another national character set, and if you collate extended character sets.

For more information, see the discussion of the CHRID and ALTSEQ keywords in the
0S/400 manuals.

116 Standards Guide

Design Standards for Internationalization

Syntactic

Semantic

At the Syntactic level, you have all the cosmetic aspects of an application that require
conversion for a different NLS version. This includes the main task of
translation—providing appropriate versions of text literals in the target NLS. Text can be
classified as syntactic rather than semantic as it is not ‘meaningful’. From the point of
view of application design, a literal is simply a label, albeit one which must follow the
rules for its given language.

On iSeries, there are a number of specific software facilities that make the translation of
text easier, such as externally-described messages. It addition to the mechanisms to
facilitate text translation, there is also operating system support for variable properties
such as currency symbols, decimal point characters, and date formats. You should
design your applications to use these facilities wherever appropriate. You should also
design to parameterize those cosmetic aspects not covered by the standard
mechanisms. For instance, the values a user enters to indicate ‘Yes’ or ‘No’ tend to be
language dependent. One of the many reasons for following the SAA CUA standards for
application user interfaces is that the standards are to some extent language
independent; for instance, they advocate the use of numbers to select items (4=
Delete), and have been devised with the possibility of a translation requirement in mind.

At the Semantic level, you have those aspects of application design that contain cultural
or linguistic dependency which varies by language; you must either parameterize these,
or compartmentalize them into replaceable language-specific modules.

An example might be a module to write out a check—you have a check-writing program
that spells out any amount in grammatical English, for example "Two million three
hundred and forty five dollars and six cents". The rules for stringing numbers together
are different in different languages, so to translate this into German, for example, will
take more than a word-for-word translation of the words used.

Any form of string processing tends to have cultural assumptions in it; for instance,
extracting a zip code from an address line (and zip codes themselves). Implicit
assumptions are also often made in the use of different units of measurement and
conversion factors, currencies in particular—not just in the symbols, but also in the
precision of the units. For example, useful amounts of lira and yen have too many zeros
for a 15-digit RPG lll numeric field, and they may need to be stored in a truncated
format. Calculations dependent on human law rather than natural law, for instance tax,
are also highly specific to particular countries. Certain applications tend to be so culture
specific, for example payroll tax or accounting rules, that it is almost impossible to
"internationalize" them without coding entirely separate modules.

There are also national differences in the rounding method used; in the convention for
showing a negative amount (-, ‘CR’), and in the symbol used for a percentage (‘%" or
‘pct’).

Chapter 3: IBM i General Design Standards 117

Design Standards for Internationalization

National Landguade Groups

National languages can be classified into three main groups according to the type of
representation needed to store the characters on a computer.

Single Byte Character Set (SBCS):

These are languages that can be represented with a simple, single byte character set
(SBCS). For example, the letter ‘A’ can be stored as hex ‘C1’; ‘B’ can be stored as hex
‘C2’. The group can be subdivided into those languages which use a Latin alphabet or an
extension of it (for example, English, French, German, Italian, Swedish) and those
languages which use a non-Latin character set (for example, Greek, Russian, Thai) but
which still use a small alphabet in a straightforward way. In both cases, characters are
always processed Left to Right (LTR) and there are no significant differences from
English in how characters are processed in general. When you translate into these
languages, you need only the alternative character sets that the hardware provides.

Bi-directional SBCS languages:

These are languages which can also be represented with a simple SBCS but for which the
general direction of text is right to left, for example, Hebrew or Arabic. Numbers and
Latin character phrases are still written from left to right in such languages, so rather
than being simply Right to Left, the languages are bidirectional. Designing for
bidirectional languages introduces some additional considerations that will be discussed
later. Incidentally, many of the Arabic languages have a further complication
still—different forms of the letter are used according to the relative position of the
letter in a word. As a concept, this is just like the use of ‘f’ for ‘s’ in certain circumstances
in old-fashioned English usage.

Ideographic languages:

Japanese, Chinese, and Korean require a Double Byte Character System (DBCS)
implementation. DBCS languages introduce extra problems from the point of view of
application design, and require a special version of the hardware and the operating
system. Special considerations are discussed later on.

User Interface Design:

When designing displays and designs, you should leave as much space as possible to
allow for translated versions of text, which may be longer than the English versions.

m Place one field per line whenever possible.

For example, do not do the following:

118 Standards Guide

Design Standards for Internationalization

Display Customers 01/04/92 10:10:10
Cust code. . BBBB Name: OO000000000000000000000000O000000
Start date . 99/99/99 Customer status: OO0O00

F3= Quit without update

But rather:

01/04/92 10:10:10

Display Customers

Type changes, press Enter

Customer code BBBB Code, F4 for list

Customer name : 000000000000000000000000000000000
Startdate. 99/99/99 Date, YY/MM/DD

Customer status : 00000

F3=Exit

®m Pad out column heading literals to take up all the available space.

For example, do not do the following:

‘Customer code’ ‘Price’
BBBBBBBBBBBBBEEEBEBBBBEEEEBEBBBBB 9999999999
But rather:
‘Customer code ' ‘Price
BBEBBEBBBEEBEBBEEBBEBBBEEBBEBBBBBBEB 9999999999
But rather:-

m Pad out panel and report titles with blanks up to a standard length.

For example, do not do the following:

‘ Display Customers

But rather:

‘ Display Customers *

Chapter 3: IBM i General Design Standards 119

Design Standards for Internationalization

m Place the base language version of the literal in the source as a TEXT.

Considerations for MRI (text) Translation

The fundamental principle for handling MRl is that all text literals should be isolated
from the HLL code for the application, whether for a program (RPG I, CL, COBOL, PL/1,
C) or a device file (DSPF, PRTF) or a command (CMD). Some specific programming
requirements are given later on. There are several sorts of text that may need
translating:

m Command prompt text: Although externally defined messages are supported by the
PROMPT keyword of the CL command definition language, the 0S/400 command
compiler compiles command text into command objects at compile time—it is
"early binding". You will need separate sets of commands for each national
language, which you will probably want as the commands are used to set the
product library.

An example of an early binding text:

USR0001= Kundenname Lang 3 ||
\
USR0001= Nom de Client Lang 2 \
\
USR0001= Customer Lang 1 \
name PROMPT | Lang 3 Kundenname
MSGF ‘
} Lang 2
USR0001| CMD | Lang 1 Nom de client
SOURCE |— CRTDSPF ——Mm } CMD
(PROMPT) ‘ OBJECT | Customer name
\

120 Standards Guide

Design Standards for Internationalization

m Device file constant text. The DDS MSGCON and MSGID keywords allow the use of
external message descriptions. In effect, MSGCOn is early binding; MSGID is late
binding. MSGID is preferred for panels as it gives greater flexibility, but is not
supported for print device files. (You may emulate MSGID for print files by defining
fields and using a CL program with the 0S/400 Retrieve message description
(RTVMSGD) command—or the V2R2 0S/400 QMHRTVM API—to retrieve the text
within the program).

An example of an early binding device text - PRTF MSGCON:

|
|
USR0001= Kundenname Lang 3 |
USR0001= Nom de Client Lang 2 :
|
USR0001= Customer Lang 1 !
name PROMPT | Lang 3
MSGF |
| Lang 2 Kundenname
|
USR0001| PRTF DDS : Lang 1 Nom de client
SOURCE CRTDSPF | PRTF
(MSGCON) |~ | OBJECT| Customer name
|
|
An example of a late binding device text - DSPF MSGID:
USR0001= Kundenname Lang 3
USR0001= Nom de Client Lang 2
USR0001= Customer Lang 1
name PROMPT
MSGF
USR0001| DSPF DDS Lang 1
SOURCE |— CRTDSPF DSPF
(MSGCON) OBJECT | Customer name

Chapter 3: IBM i General Design Standards 121

Design Standards for Internationalization

m Execution message text. This text will vary at runtime, and so should be "late
binding". All such messages should be placed in a message file and retrieved as
required by a standard CL message-sending program, or from V2R2, an 0S/400

message handling APl QMHSNDPM.

Late binding text with explicit message sending:

m Text in database file fields. Certain text items will probably be held in the form
of database field values in database files, for instance code descriptions. If such
items need translation, conversion utilities will be needed to retain translations

through version upgrades.

Late binding text - database fields such as the following:

Lang 3
Lang 2
USR0001= Customer
name
Lang 1
DBF
\
\
\

USRO0001| DSPF DDS | Lang 1
SOURCE |— CRTDSPF ———+—— DSPF
(MSGCON) \ OBJECT | Customer name

\

m Help text. UIM Help text is compiled. Separate source is required for each national
language. You should use message descriptions with the text for headings and
standard terms to ensure consistency and fast translation.

An example of an early binding device text - UIM help text:

Lang 3
Lang 2
Lang 1
PROMPT Lang 3
Lang 3 MSGF
Lang 2 Lang 2

Lang 1 Lang 1
PNL — CRTDSPF —— PNLGRP
SOURCE OBJECT

122 Standards Guide

Design Standards for Internationalization

Since help text is created automatically for programs generated with the CA 2E
application generator, translating the application model and skeleton help text and
regenerating is sufficient to translate end-user help text.

m Menu text. On iSeries, menus are normally display files and can be treated as
normal device files for the purposes of translation.

Chapter 3: IBM i General Design Standards 123

Design Standards for Internationalization

Necessary Multilingual Objects

For each national language in a multilingual application, you should have:

A message file containing prompt text used for compiling device files and
commands

A message file containing execution messages
A set of device display files, accompanied by the appropriate prompt message file
A set of device printer files, compiled with the appropriate prompt message file

A set of command definition objects, also compiled with the appropriate prompt
message file

A set of Help panel group objects compiled with the appropriate prompt message
file

A set of menu objects
A set of database files containing any translated code descriptions

A set of alternate collating tables, if necessary

Note: It may be useful to collect the commands necessary to create each message file
into a CL program.

The following is a diagram of Use of Multi-lingual Objects:

Early binding | Late binding
| MSGID
Lang 3 :
Lang 2 :
|
Lang 1 | Lang 3
PMT MSGF |
| Lang 2
MSGCON,&MSG
PRTF,CMD PROMPT | Lang 1
PNL === CRTxxxF, CRTCMD===>| PRTF/CMD
SOURCE | PNLGRP Lang 3
| | I
p— | Lang 2
PGM,DSPF |
SOURCE ====CRTxxxPGM===5====> | PGM,DSPF Lang 1
| OBJECTS |«—— | DBF
RCD |
|
| QMHSNDPM,
: QMHRTVM,
| Lang 3 User tools
: Lang 2
|
|
| ang 1
| XC MSGF
|

124 Standards Guide

Design Standards for Internationalization

Using System Values

0S/400 has several system values available, which can be used to help with
internationalization. Store date fields on file in YMD format and convert them to local
display format at execution, using the 0S/400 QDATFMT and the QDATSEP system
values.

For more information on date handling, see the chapter, "General Coding Standards."

You should normally use the system edit codes to edit monetary amounts so that the
currency symbol shown is that specified by the 05/400 QCURSYM system value. If you
carry out your own editing (for instance, to cater for variable decimal place fields), then
you should retrieve the currency symbol from the QCURSYM system value.

Use the system edit codes to edit numeric fields so that the decimal point symbol shown
is that specified by the 0S/400 QDECFMT system value. If you carry out your own
editing (for instance, to cater for variable decimal place fields), you should retrieve the
decimal point symbol from the QDECFMT system value.

Use the QIGC system value to condition any special processing required if ideographic
support is present. Equally, it can be used to condition special processing only available
if ideographic support is not present. For example, there is no support for the DUP key
on ideographic workstations.

Use non-alphabetic characters such as @, S, #, carefully, since they are not readily
available in some multi-national character sets.

Note: For more information, refer to the information on the QCHRID 0S/400 system
value for further details.

Collating sequences in different alphabets may be slightly different especially for
characters that are not found in the standard English alphabet. This may be significant in
inquiry programs that show items in name order. If necessary, alternate collating tables
should be used—this will require different sets of logical files in each language version.

Another system-supplied mechanism that can be useful is the translation table. This is a
256-byte table that can be used to control character mapping and usage in various
circumstances, for instance in collating sequences, mapping of characters at devices, or
translation within a program. Table objects are created from simple source members
using the 0S/400 Create Table (CRTTBL) command.

Tables can be especially effective when used in conjunction with the system supplied
QDCXLATE program, which can be used to translate any character string, using a
specified table.

Do not use compile time arrays to hold messages. If for performance reasons you need
to hold messages in core storage (for example, because you send them many thousands
of times in the course of a typical run), then you should load the messages from an
external source at the beginning of the run.

Chapter 3: IBM i General Design Standards 125

Design Standards for Internationalization

Don’t build up text strings in programs—the syntax rules will be different in different
languages. Don’t use text strings as substitution variables in messages for the same
reason.

If you have programs that override a display from a system-supplied device file and then
process the subsequent output, you should be aware that the output may have a
different layout in different language versions of 0S/400. You can get around this in one
of two ways—either write your program so that it looks for the keywords rather than
fixed positions, or ship a copy of the English language file, renamed, and override to
that, instead.

There are considerable variations in the standard paper sizes used in different countries.
Never hard code the forms length or overflow attributes of a printer file in RPG Il
programs. Instead, use the values stored as the print file attributes. If necessary, these
can be retrieved at runtime from a file information data structure.

To avoid coding text in programs, text can be stored in as messages in a message file
and retrieved using the 0S/400 Retrieve message (RTVMSG) command. For instance, if
you have a CL program that creates an object, it should retrieve the text to be given to
the object from a message file:

RTVMSG MSGID(USX0033) MSGF(QUSRMSG) MSGDTA(&MSGDTA) +
MSG(&MSG)

CRTDTAARA DTAARA(CMPTXT) TYPE(*CHAR) LEN(50) TEXT(&MSG)

Make use of existing OS/400 messages whenever possible; that way, translation is done
for you by IBM. Specifically, use the technique of trapping and resending system and
other application’s diagnostic and escape messages, rather than originating your own.
For example:

/*H: 1. Check for existence and authorisation
CHKOBJ OBJ(FORTKNOX) OBJTYPE(*FILE) AUT(*READ)
MONMSG CPF0000 EXEC(DO)
RCVMSG MSGTYPE(*EXCP) MSGDTA(&MSGDTA) MSGID(&MSGID) +
MSGF(&MSGF) MSGFLIB(&MSGFLIB)
SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&MSGF) +
MSGTYPE(*ESCAPE) MSGDTA(&MSGDTA)

ENDDO

126 Standards Guide

Design Standards for Internationalization

Writing Text for Translation

Remember that translators are principally linguists—they may not necessarily be that
familiar with either computer concepts, or with the concepts of your application
domain. Usually, they will not be native English speakers. For those reasons, it is
important that all text is worded as simply and as clearly as possible. There are a few
stylistic principles you can follow in order to make your MRI clearer and therefore
reduce the chances of a mis-translation.

For example:

Messages and other displayed phrases should be complete phrases and not be
constructed from individual words or other phrases. Consider the following
example. You have four different states to report: Terminal operational, Terminal
offline, Control unit operational, and Control unit offline. One way of doing this
would be to hold four short phrases (Terminal, Control unit, Operational, Offline)
and to permutate them as required to build up messages. However, in French, this
would not work because operational is declined (for example, takes a different
suffix) according to gender—and control units are feminine. Thus, you need
separate messages for Terminal operational and Unit de control operationelle.

Avoid abbreviations. For example, do not use Cust nm for customer name.
Abbreviations generally do not appear in a dictionary and are hard for a non-native
speaker to decipher. Avoid telegraphic style as it is hard to understand.

Avoid compound phrases. It can be very difficult to tell when the adjective stops
and the verb starts, especially for a non-native speaker. For example, does Record
error mean an error has occurred on a record (for example, adjective+verb) or does
it mean Log the error somewhere? (for example, verb+noun). Likewise, would
Program definition mean a definition of a program or definition by a program? It is
better to be as explicit as possible even if it takes slightly more space.

Avoid negative questions. It is often not clear what the answer means or even what
the question is; for example, ‘Do you not want to delete QSYS?’

Avoid slang, jargon, idiom and humor. It may be hard for the translator to find the
terms in a dictionary, and the humor may be culture-specific.

Chapter 3: IBM i General Design Standards 127

Design Standards for Internationalization

Ideographic Support

Using Upper Case

Some special considerations apply to the design of applications with ideographic
support, such as is needed for Japanese versions.

For more information refer to the iSeries (AS/400) DDS Reference Guide.

It may be useful to know that the Japanese language has two separate phonetic
alphabets, the Katakana and the Hiragana, as well as a system of ideographic characters,
the Kanji. The Katakana alphabet is used for foreign loan words, such as computer
terms. Thus, XX (obu-je-to) is object, YY (jo-bu) is job, etc. Hiragana is used for Japanese
words; it is possible to spell out every Kanji character in a Hiragana equivalent.

The Katakana phonetic alphabet is handled on a computer in much the same way as is a
language such as Greek—it is merely a different mapping of codes to graphic symbols.
The Kanji ideograms, however, require additional facilities for implementation because
there are so many of them. We can summarize further considerations under the
following headings:

® Using upper case

m Double Byte Character Support

m Using ideographic shifts

m Providing ideographic conversion (IGCCNV)

®m Avoiding ideographic restrictions

Ideographic character (IGC) support requires a special version of 0S/400 and special
workstations. Ideographic workstations support upper case English characters, but not
lower case ones. Any lower case characters may appear as semi-random garbage. This
means that if you want to run your application on an ideographic workstation, even just
in English, you should translate all characters in an application to upper case.

The system program QDCXLATE can be used in conjunction with the system-supplied
translation tables (QSYSTRNTBL for the basic set, QCASE256 for the extended character
set) to convert characters to their upper case equivalents. There are some CA 2E utilities
to assist with this, in particular a tool to convert a database file data to upper case. The
tool examines the database file object definition to find out which fields are
alphanumeric. It also reads through the file, converting all such fields in all records to
upper case (QCASE256 can be used). The same utility can be used to convert source
members.

Files containing ideographic data that needs to be created or modified should have
IGCDTA(*YES) specified for them.

128 Standards Guide

Design Standards for Internationalization

DBCS Support

DBCS is used to represent ideographic characters. It is necessary to indicate when DBCS
coding is being used in a string. This is done using two special characters—‘Shift in’ (Hex
OE) and ‘Shift out’ (Hex OF). Characters lying between these are interpreted as being
double byte.

For example, normally a string of the four hexadecimal codes 93, FA, 96, and 7B would
code for four separate characters |, v, o, and #, respectively. Enclosed within the shift
characters, they would be treated as two ideographic characters:

Non-ideographic: 93 A596 7B
| v o #

Ideographic: OE 93 A5 96 7B OF
]
Shift in | Shift out
1st character 2nd character

An implication for your application design is that space must be left on device files for
the shift characters (one byte each), which must always be used in pairs. Furthermore,
not only do DBCS characters take more space to store, but they are also physically larger
on display; twice the size. However, since each character represents a whole word,
fewer of them are needed.

When printing ideographic characters mixed with alphanumeric characters, you may

want to ensure that the characters are of a uniform size, otherwise the mixture of large
ideograms and small letters can look very untidy. There are some special facilities to do
this, in particular the DDS (IGCANKCNV) keyword ideographic alphanumeric conversion.

Be careful of string manipulation. If you have any procedures which take an arbitrary
string and process it, for instance to double up the apostrophes or look for a blank, a
comma, or other punctuation mark, you should make sure that they ignore characters
lying between the shift in and shift out characters. A code that normally represents a
punctuation character may occur as part of a double byte character representing
something else. For instance, 7D normally represents an apostrophe (‘), but lying within
a DBCS string (for example, ‘OE 45 7D OF’) it is part of a different code (the DBCS for the
Kanji character for ‘Beauty’). You must also take care when truncating or substringing a
DBCS character string. If you simply chop the end off, you may lose one of the shift
characters.

Although you may use DBCS characters within message text, you may not directly add
the message descriptions from the command entry program. The commands to add or
change the message text should be placed in a CL member and compiled into a
program. SEU provides support for IGC characters.

Data areas containing ideographic data cannot be displayed using the 0S/400 Display
Data area (DSPDTAARA) command.

Chapter 3: IBM i General Design Standards 129

Design Standards for Internationalization

Ideogdraphic Shifts

Ideographic support provides additional keyboard shift types in DDS. Just as in
non-ideographic DDS, you must specify (for example) whether lower case characters
may be entered into an alphanumeric field, so in ideographic DDS, you must specify
whether ideographic characters can be entered. On IGC machines, three possible
additional keyboard shifts are allowed: ‘)’ (ideographic characters only), ‘E’ (either
alphanumeric or ideographic characters) and ‘O’ (both alphanumeric and ideographic
characters are allowed). Fields with an ‘E’ or ‘)’ shift must have an even length.

It is not possible to edit or compile DDS with IGC shifts (E, J, O) or IGC keywords (for
example, IGCCNV) on a non-IGC machine. However, a special keyboard shift is available
on non-IGC machines - ‘W’ - which is equivalent to the ‘O’ shift, i.e. it specifies that on
an IGC machine, both alphanumeric and Kanji input will be allowed for the field. Certain
DDS keywords cannot be used in conjunction with ideographic fields, notably COLOR
and LOWER.

On non-IGC machines, you should use the ‘W’ shift for fields for which ideographic
characters will be allowed if the application is run on an IGC machine.

The DUP key is not available for IGC shift fields or on Japanese keyboards.

Ideographic Conversion

The Japanese version of 0S/400 has a special feature called ideographic conversion,
which is used to assist with input from a keyboard. If ideographic conversion is enabled,
then when keying input into an ideographic field, the user may press a command key to
obtain a special input-capable field at the foot of the panel. The user may then type into
this field Katakana phonetic characters to spell out a word. The system will convert the
word into a list of possible DBCS characters. Typically, there will be only a few
candidates, one of which can be selected.

Make this facility available on your displays by using the IGCCNV DDS file level keyword.
The command key used to produce the input-capable field should be F18 on iSeries.

130 Standards Guide

Design Standards for Internationalization

Coding IGC Source

To avoid maintaining separate sets of source on non-IGC and IGC machines, the
additional IGC information should be coded as comments. The technique should be used
for:

m Those DDS keywords which are only valid on an IGC machine

m Those IGC shifts which are only valid on IGC machines

m Those DDS keywords which are not valid with IGC fields

For example, the following DDS source would compile on a non-IGC machine, but is

marked up so that simply by flagging and unflagging the comments, it would be
appropriate for an IGC machine.

! J A* 18 IGCCNV i
i E: A FLDNAM B 15 2 :
3 J: A* FLDNAM BJ 15 2 |
| E: A LOWER !
i J A 18 IGCCNV i
! E: A FLDNAM B 15 2 !
3 J: A* FLDNAM BJ 15 2 |
3 E A LOWER !

,,,

Bi-directional Languagde Support

Those languages which are read generally right to left, such as Hebrew, present some
special problems that make it difficult to make one set of source and one set of program
objects suffice for all languages.

Chapter 3: IBM i General Design Standards 131

Design Standards for Internationalization

Right to Left Panel Layout

Use the DDS CHECK(RL) keyword to make the cursor move right to left within a field. It
also defaults the keyboard shift to the alternative (for example, Hebrew) alphabet.
Literals should appear on the right of the fields that they describe. For a full conversion,
you should reverse the whole display layout and the overall cursor movement should be
right to left and top to bottom—the DDS file level keyword CHECK(RLTB) specifies this.
You will also need to position the cursor explicitly at the top right hand field of the panel

when you first display it.

A display which appears such as the following in English:

Customer code:

Type options, press enter
1= Select

Cursor
Movement

Customer Customer name
code
00001 MOSHE_DAYAN

=

Should appear as follows in a bi-directional language:

: edoc remotsuC

retne sserp ,snoitpo epyT Cursor

tceleS=1 Movement

eman remotsuC remotsuC
edoc

NAYAD EHSOM 00001

|—

Reversing the fields like this requires an alternative set of DDS source and recompiling
all programs which use the revised display files.

132 Standards Guide

Design Standards for Internationalization

Collating Right to Left (RTL) Fields

Bi-directional languages also raise some special considerations for ordering data.
Consider what happens when you create a logical view, using an alphanumeric field as
one of the key fields—records are collated using the characters in the field in a left to
right order. For bi-directional language words, this is back to front. It would be as if we
ordered the English list shown on the left below in the order shown on the right:

123456 654321

FRANK ADIERF
FRED DIERF
FRIEDA KNARF
FRIED DERF

There are three different techniques you can use to overcome this:

1. Hold asecond copy of the field on the record with the characters reversed
(requiring a modification to the database and all programs that change the field’s
values).

2. Always reverse the field on input or output. It is then stored in reverse, but
displayed or printed in proper RTL order. This requires modification to all programs
that use fields. If you use this method, you should introduce a RTL ‘data type’ and a
standard routine to carry out the reversal.

Store the field in proper RTL order, and use the DDS substring (SST) keyword to reverse
the order in the logical file.

Chapter 3: IBM i General Design Standards 133

Chapter 4: General Coding Standards

This chapter describes coding standards applicable to all source types.

This section contains the following topics:

Coding Principles (see page 135)
Standard Source File Names (see page 136)

Common Source File Coding Standards (see page 138)

DDS Coding Standards for Files (see page 141)

HLL Coding Standards for Programs (see page 141)

Coding Principles

Source code should contain all the information necessary to re-create the object.
This should include information about compile time overrides and object attributes.

Source code should be edited and viewed interactively as much as possible. Source
listings should only actually be printed in special circumstances. Use the browsing
and scanning facilities of the iSeries to examine source and compilation listings.
Adopt layout conventions that facilitate this approach.

Use the machine to find syntax errors and basic mistakes. The editors and compilers
of the iSeries give excellent diagnostics, and can be used to find low-level syntax
errors.

Take an incremental approach to development. 0S/400 provides an interactive
development environment. Rather than writing and testing programs as entirely
separate steps, you can program from top, down. Write the main control structure
of a program first, compile and test it, and then add the detailed coding, such as
field validation.

Strictly regulate source versions. One version of the source should be regarded as
definitive. If changes are required, additional versions of the source should be
copied to a separate development library and only be transferred back, together
with the changed object, in a carefully controlled manner. For more information,
refer to the section, Operating Environment Standards, in this guide.

Contain documentation within the source so that it is updated along with the code,
and available when looking at the code. The documentation may be extracted and
summarized using the CA 2E Toolkit Document Program (YDOCPGM) command.

The CA 2E Toolkit Compile pre-processor utility provides several useful functions
common to all source types, including compiler overrides. See the Toolkit Concepts
Guide for further details.

Chapter 4: General Coding Standards 135

Standard Source File Names

Standard Source File Names

0S/400 standard shipped system names for source files for each type of source
(QCLSRC, QRPGSRC, QTXTSRC, QDDSSRC, QCMDSRC, QCBLSRC, QPLISRC, QPNLSRC,
QCSRC) should be used since they are the default values on all the CL and CA 2E Toolkit
commands that use source files; for example, the 0S/400 Create physical file (CRTPF)
command or the CA 2E Toolkit Create Object (YCRTOBJ) command.

Keep in mind:
m PL/1 copybook members should be kept in a QPLICPY file.
m Cstandard members should be kept in a file H.

You can use the CA 2E Toolkit create source physical files (YCRTSRCPF) command to
create a set all of these files in a specified library, including descriptive text.

Source File Member Names

The name of each source file member should always be the same as the corresponding
compiled object name. Thus, if a program’s name is FRED, the source for the program
should be in a member called FRED. This makes it easy to find source and check to
ensure the source has a matching object. If the object is a copy of another object, for
instance, a work file that is a duplicate of a permanent database file, create a dummy
source member with the appropriate name that contains the instructions for creating
the duplicate object from the original object.

i /*T: YOBJLST standard object list outfile i
: /*Y. CRTDUPOBJ OBJ(QPDSPOBJD) LIB(QSYS) OBJTYPE(*FILE) i
: /*Y. TOLIB(*CURLIB) NEWOBJ(YOBJLST) !

,,,

Standards for Text Descriptions and Titles

To allow for the automatic documentation and indexing of application systems, create
and maintain all fields, formats, file members, and objects with descriptive text. Use the
TEXT parameter on the commands to define or create the respective entities. The
descriptive text of source members should be the same as the title line in the source.
The descriptive text of objects should be the same as the source member text. The text
for commands should be the same as that of the prompt text specified for the command
(for example, as on the PROMPT keyword on the CMD statement).

The CA 2E Toolkit Compile pre-processor will update member and object text
automatically from ‘Title’ source directives (T*) entered as comments in the source. For
more information, see the Toolkit Concepts Guide.

136 Standards Guide

Standard Source File Names

Title Lines for Database Files

The text for database files should provide information about the access path. An index
of the available access paths can then be effectively obtained directly from a listing of
the object descriptions (using the 0S/400 Display object description (DSPOBJD) or
Display library (DSPLIB) commands), from a listing of the names of source members
(made with the 0S/400 Display file descriptions (DSPFD) command with an option of
TYPE (*MBRLIST), or using the select facilities of SEU (EDTSRC/STRSEU)).

Standard text lines for database files:

i CL I*T: YDSPRPT Display report Command processing :
i program */ '
i RPG T*: YDSPRPT Display reports :
f DDS T*: YDSPRPT Display report display file .

; T *PP: ‘Filename’ (0|MM MM..|MM) (MM="x’)

! _ Information about selection
! Information about key order
i 0 = Unique, *NONE = none

3 Descriptive text

; Format id.

Title Lines for Execution Objects

The text for execution objects, for example, programs and device files, should contain
the object name of the command by which the objects are invoked, if any.

Examples of text lines for execution objects:

T™ YQ: Menufile (0| MNCD)
Menu file : format id is YQ, key order is
MNCD, UNIQUE key.

; ™ ZX: Batch file (‘NONE) |

Chapter 4: General Coding Standards 137

Common Source File Coding Standards

Common Source File Coding Standards

The common coding standards for source files are described below.

Standard Banners in Source

The standard banner MUST be used in all source types. The purpose of the banner is to
indicate the author and original development date of the source, and the system to
which it belongs. The banner, which should be entered as comment lines flagged as
Header (*H) source directives, can be automatically extracted by the CA 2E Toolkit
Document Program (YDOCPGM) command to form part of the system documentation.

Standard banner for fixed format types (RPG Ill, DDS, COBOL):

H/TITLE Calculate age of Methelusah. :

H* SYSTEM : THE WIDGET COMPANY. Sprocket stock system. :
H* PROGRAMMER . Aloysius Nebuchednezzar O’Ther :
H* DATE-WRITTEN © 01/04/85

H* (C) COPYRIGHT 1985 WIDGET Cb LTD. :

i [*T: Calculate set of sets not members of a set. */ !
! /*H: SYSTEM . THE WIDGET COMPANY. Sprocket stock system */ |
i /*H: PROGRAMMER : Ambrose Nero O'Veer */ 1
| /*H: DATE-WRITTEN : 01/04/84 */ i
! /*H: (C) COPYRIGHT 1984 WIDGET CO LTD. */ !

*T: Command help text for Widget commands

*H: SYSTEM : THE WIDGET COMPANY. Sprocket stock system
*H: DATE-WRITTEN : 01/04/84

*H: PROGRAMMER : Ambrose Nero O'Veer !
*H: (C) COPYRIGHT 1984 WIDGET CO LTD.

Copyright Notice in Source

All source should contain a copyright notice in the banner with the form (C) COPYRIGHT
20xx ‘Company name’.

138 Standards Guide

Common Source File Coding Standards

Copyright Notice in Objects

You can use the following techniques to ensure that a copyright notice is present in the

binary code of an object:

m Device files: Use a constant conditioned never to be displayed.

,,

®m RPG lll programs: Use a compile time array:

E @CPYR 1. 30 1 COPYRIGHT
“*@CPYR
COPYRIGHT 1987 Widgets Ltd.

m COBOL programs: Use a compile time array:

: * Copyright
i 77 COPYRIGHT PIC X(26)
| VALUE (‘COPYRIGHT 1987 Widgets Ltd’)

m CL programs: Use a dummy command that is never executed:

ENDPGM: RETURN

ENDPGM

Maintenance Comments in Source

COPYRIGHT: YCOPYRIGHT COPYRIGHT(‘Fred’) WIDGETS(*YES) DATE(1987)

If source is modified after the initial development, ‘maintenance’ source directives (M*)
should be added as comment lines to explain the reason for the change. Each comment

line should give the date of the change, who made it, and a brief description of the

purpose of the change.

Example of maintenance comment statements:

/*M: 84/01/04 FRED Add function to display totals if FO5 pressed */
/*M: 85/05/85 BASIL Correct bug in VAT calculation. */
/*M: 85/05/85 FRED Correct bug in BASILs correction. */

Chapter 4: General Coding Standards

139

Common Source File Coding Standards

Formatting Source Code

On modern computers, most source is edited at a workstation display. This means that
source should be formatted to be as readable as possible when viewed through the
small (24 x 80) window of a workstation.

When you are formatting source code:
® Do not use an excessive number of blank lines

m Keep within 79 columns per line (71 for CLP, PL/1 and CMD source), so that there is
no need to window to read source

m Do not leave obsolete source lines ‘commented out’; delete them. Where you must
leave an obsolete source line, use several asterisks to help highlight the fact that it
is a comment line: it is easy to fail to notice that an executable source line has been
made into a comment. For example, it is easy not to notice that the Z-ADD
statement in the following line has been commented out:

C* CALCULATE VALUE

IR 7.ADD*ZERO @QT.QT
C 5 MULT YYDVQT @QT,QT
C DIV YYDVPC @QT,QT

The following would be slightly better:

C DIVYYDVPC @QT,QT

3 c* Z-ADD*ZERO @QT,QT |
3 C 5 MULT YYDVQT @QT.QT i

m Use section divider comments to mark off sections of source (see below).

Section Dividers in Source
To emphasize the logical subsections of code when viewing code at a workstation, it is
helpful to have dividing lines across the source. The same three-level system should by
used in all source types. Examples are given in the appendix, "Programming and Coding

Examples," in this guide.

Standard for section dividers of code:

FrAEEHFEFEEEE* Major section boundary
=========== |ntermediate boundary
................. Minor Boundary

140 Standards Guide

DDS Coding Standards for Files

DDS Coding Standards for Files

The following general standards apply to coding DDS for all file types (PF, LF, DSPF,
PRTF):

m Afield reference file should be used, with all database field definitions based on it.

m |f specified, the DDS REFFLD keyword should be on the same line as the field name:

m Where possible, both formats and fields should be coded in order of
usage/appearance. For instance: (1) key format, (2) detail format, (3) confirm
prompt.

The text specified for the DDS COLHDG keyword should be in lower case, as it is the
origin of the field text seen on most documentation, and should furthermore be broken
up into component words, if possible.

HLL Coding Standards for Programs

Program coding standards are designed not only to make programs as readable as
possible at a workstation, but also to achieve a high degree of consistency in the way in
which programs are structured and the style in which they are laid out. This makes it
much easier for different programmers to examine and maintain each other's work. It
also makes it easier to copy sections of code from one place to another.

There are a number of general principles to which HLL code should adhere, regardless of
the HLL used. Good code should be:

m (Clear: It should be obvious from the code what the code does.

m Consistent: Use the same standard techniques throughout.

® Modular: Function should be isolated into self-contained units that can be reused.
Each module should have a well-defined interface.

m Structured: Each module should be systematically built up from regular constructs.
m Robust: You should avoid coding in limits (for instance array size). You should

anticipate possible errors and code for a graceful collapse.

The following general standards apply to coding source for all program types, such as
RPG Ill, CL, PL/I, and CBL.

Chapter 4: General Coding Standards 141

HLL Coding Standards for Programs

Program Layout

Program layout should be standardized. In order to reduce the time programmers need
to spend looking for information, place the same type of information in the same
relative location within the source. For instance, entry parameter definitions should be
at the beginning, and general error handling at the end. The following is a generalized
order for an HLL program:

Title
Banner

Global declarations, Entry parameters

1

2

3

4. Mainline
5. Subroutines
6

Standard subroutines

Programs should be self-documenting. All programs should contain a synopsis of
function as Header (H*) source directives entered as comment lines at the beginning of
the program. There should be comments through the program, making the overall
structure clear. The synopsis should be sufficient to establish the purpose of the
program. The synopsis will be extracted by the CA 2E Toolkit documentation utilities.
For example:

i SYNOPSIS: Displays customers in name order. New :
! customers may be added by pressing F09, 1
f which invokes a separate program. 1

142 Standards Guide

HLL Coding Standards for Programs

For more information, see the Toolkit Concepts Guide.

It is particularly important to document the relationships between data structures. You
normally need to understand the structures used in a program in order to understand
the program. When a structure is itself an element of another structure, provide
diagrams to illustrate the relationships, for example, in PL/1 source.

The following is an example of a pointer-structure diagram:

1. OBJs may have one or more OBJENT's
OBJENTSs are a doubly linked list
1.1 Each OBJENT may have one ore more OBJENTENT
OBJENTENTS are simple stack

0oBJ
DTA_ptr OBJ_DTA
FST_mnuopt_ptr
LST_mnuopt_ptr

o owow

OBJENT
PRV_ptr !
NXT_ptr |
DTA_ptr OBJENT_DTA :
LST_mnuoptpar_ptr

OBJENTENT
PRV_ptr
DTA_ptr OBJENTENT_DTA

Chapter 4: General Coding Standards 143

HLL Coding Standards for Programs

Document programs with summary comments so that it is possible to determine what is
being achieved, without going into detailed code. For example:

* Calculate VAT

i C Z-ADD*ZERO @QT,QT |
! c @V1X LOKUP@VTY 60 1
i C 60 @v1 MULT YYDVQT @QT.QT |
! * Calculate net price |
i C EXSR BBCANT !

The overall effect should be such that reading the comments should give an overview of
the program: structured English or pseudocode conventions may be useful.

1. FOR EACH CUSTOMER i
1.1 READ ORDER FILE IN ORDER SEQUENCE
1.2 FOR EACH ORDER FOUND
1.2.1 ACCUMULATE ORDER QUANTITY1.2.2 PRINT ORDER DETAILS
1.2 PRINT TOTALS FOR CUSTOMER

Code and document your programs so that they can be read top to bottom. For
instance, consider the following two ways of coding the same control structure:

| * Process each item in entry list |
i LOOP: IF (&COUNT *GT 10) THEN(GOTO NEXT) If all processed */ i
i &COUNT = (&COUNT + 1) i
! do ... !
! GOTO LOOP !
3 NEXT: 3

* Process each item in entry list
LOOP: &COUNT = (&COUNT + 1)

IF (&COUNT *LE 10) THEN(GOTO LOOP) if any remain */

i do ... i

144 Standards Guide

HLL Coding Standards for Programs

The second way of coding the structure should be easier to follow because the test
condition is at the beginning. This is especially true if there is a significant amount of
intervening code within the loop.

Always write documentation at the time of development. This is not only to ensure the
documentation is written, but also because writing the documentation as you go along
should serve to clarify your thinking and make it easier for you to program.

Documentation should always be concise and relevant. Too much documentation is
almost as useless as too little. Avoid repeating what is already evident from the context,
and try to make comments add meaning, rather than just repeating the obvious.

Document call interfaces carefully. The parameters, including allowed values for a
program, should be documented so that the program can be used with reading the
internal documentation.

If a program is called from many different places, its entry parameters should be
documented within the program source by means of a dummy call. The correct code
needed to invoke the program can then be included in the source of a calling program
by means of the "browse-copy" facilities of SEU.

The following is an example of coding dummy ENTRY call: RPG program "Dummy" call:

,,,

* DISPLAY HELP TEXT

[i XALL ‘XDDSHPR' Display Help |

; H**** WWMBNM PARM $$MBVN 10 I: Member name |

3 H*** \WWELNM PARM $$FLVN 10 I: File 3

: R PARM $SLBVN 10 B: Library |

3 s PARM WWRTVM $$RTVM 7 O: RETURN MSG |
How used: | = tnput

O = Output only
B = Input and output

Chapter 4: General Coding Standards 145

HLL Coding Standards for Programs

Specify the names of called programs with literals. This will give better documentation.

For example,
CALL PGM(‘XXUSX’)
and not:

CALL PGM(&PGM)

If a program name must be a variable, consider placing dummy statements with all the
possible values coded as literals. The dummy statements will cause the correct program
linkages to appear in the output of the CA 2E Toolkit Document program (YDOCPGM)
and Document execution references (YDOCEXCREF) commands.

The following is an example of coding dummy call statements.

In RPG lII:

* CALL PRINT PROGRAM

i c 0 CALL ‘'YDPRFLR’

i G 02 CALL ‘'YDPRFMR'

i c* 03 CALL 'YDPRFDR'

i c CALL $$PGNM

E Cc PARM $$MBVN 10

Print file

Print format
Print field

Print program
I: Member name

/*H: Call print program

/¥ CALL PGM(YDPRFLR) Print file */

Print format */
/* CALL PGM(YDPRFDR) Print field */
/* CALL PGM($PGM) PARM(&MBR)

: (
i /* CALL PGM(YDPRFMR)
: (
| (

In CL:

146 Standards Guide

HLL Coding Standards for Programs

Note: Keep subroutines small (two to three pages at most). Avoid heavy nesting (four or
five layers at most). This can be done by introducing routines, and/or using CASE
constructs rather than nested IF THEN ELSES. Use spaces to make code readable.

For example, not:

i IF ((&TIME *GT &OPENING) & (&THIRST = ‘GREAT’) & (&MONEY *NE + :
i ‘NONE’) CALL PBBYDRK (&GLASS &DRINK &SIZE &NUMBER &MONEY + !
i &LOCATION &RTNCDE) i

But rather:

! IF ((&TIME *GT &OPENING) + ‘
| & (&THIRST = ‘GREAT’) + !
! & (&MONEY *NE ‘NONE’)) + |
! THEN + |
! CALL PBBYDRK (&GLASS &DRINK &SIZE &NUMBER &MONEY + ;
! &LOCATION &RTNCDE) 3

,,,

Use parentheses to make clustering obvious. For example, ‘A=(B+1)*2’ is preferable to
‘A=B+1 * 2’

Avoid tests on negative conditions. Double negatives are harder to follow.

Company Name— The company name used on system reports, display panels, and
other places should be picked up from a data structure. The data structure should be
called YYCOTXA, and have 30 characters. This allows for easy changing in the event of

legal changes, takeovers, etc.

RPG Il code to include company data area:

3 C *NAMVAR DEFN YYCOTXA 40 > !
! C IN + *NAMVAR !

Chapter 4: General Coding Standards 147

HLL Coding Standards for Programs

Date Handling—A lack of standardization in the format in which dates are displayed to
users (YMD, DMY, MDY) is a common source of confusion, especially in multinational
application systems. When you are programming to handle dates, meet the following
objectives:

1. Ensure the format in which dates are displayed is consistent throughout the system
2. Ensure the format can be changed without reprogramming.

3. Ensure that the database’s normal access path facilities can be used to retrieve
records containing date fields in historical order.

IS@SKDA E DSLSSKDAP
*JX . Stock file. (0 Stock id fields)

ok ok ok ok ok ok Rk k kR Rk kR Kk k Rk k kR k ok Rk ok kR ok ok ok k ok Rk ok ok ok Rk kK kR K

C *ENTRY PLIST *
C PARM $@SKDA B:STK REC

ok ok ok ok ok ok Rk k ok ok K ok k ok k kR ok ok k ok k ok Rk ok kR ok ok ok k ok ok ok k ok ok ok KK Kk K

It should be noted that there is an 0S/400 system value (QDATFMT) that specifies the
display format for dates. Recourse to this value should be made when handling dates for
display or for entry.

Given the above considerations, the following standards should be adopted to ensure
that dates are correctly handled:

m All dates should be stored on file in YMD format. In particular, the format
CYYMMDD is recommended, where C = zero for 20th century and one for the 21st
century. This may be held in packed format (P7.0) (or as YY + MM + DD if read equal
on year or month is required). Note that IBM use the convention (where C is not
specified) that when YY has a value between 40 and 99, the year is between 1940
and 1999, while for YY between 00 and 39, the year is between 2000 and 2039.

m File dates should be converted to display format by a call to the System API
QWCCVTDT. This can be used to convert from YMD format to the format specified
by QDATFMT.

m Display dates should be converted to file dates also by the QWCCVTDT API.

m Where UPDATE is referenced in an RPG Ill program, care should be taken to ensure
it will always be in the correct format, regardless of system date format (for
example put a Y on the RPG Il header specification to force it to YMD).

Program Interfaces—Do not pass long lists of parameters between programs; instead,
pass them as a single parameter. Break up the single parameter into individual fields,

using an externally defined data structure in the calling and receiving programs. This is
more efficient in execution (each parameter requires 512 bytes) and easier to change.

148 Standards Guide

HLL Coding Standards for Programs

Coding for iSeries

If you have a requirement to maintain versions of the same application on iSeries, you
should code to accommodate this requirement.

For this you will need to:

m Avoid using machine specific features (for example native iSeries CL syntax)

m Parameterize or develop automatic conversion techniques for those aspects of the
application which should be different on each machine (for example, command key
usage)

In general, it is easy to code DDS, RPG Il and command source to be compatible on
either machine, even in native mode. CL is more problematic. Most of the
considerations are given in the IBM ‘Migration Manual’. The following specific tips may
be useful.

DDS—Do not qualify names that appear in DDS, for instance with the DDS REF, PRINT, or
MSGCON keywords. Do not even use *LIBL as the qualifier value.

Be consistent in your use of the following panel components:

m Command keys (for example, use FO3 for Exit on iSeries)

m Command key explanations (for example, ‘F3=Exit F5=Refresh’ on iSeries)

m Field leader characters (for example, ‘Customer . . :" on iSeries)

RPG lll—There are no significant constraints on coding RPG Il so that it can be run on

either machine. If you need to execute request strings dynamically, use QCAEXEC (which
is present on both machines) rather than QCMDEXC, the iSeries native program.

Commands—Because of the slight differences between the 0S/400 and CPF versions of
CL, it is not always possible to design commands that are 100% compatible with both
0S/400 and CPF.

For commands where such differences occur, you should:

m Design a common command processing program

m Create an alternative version of the command, following iSeries conventions
Coding CL—You may use the presence or absence of the data area Q5728551 in QSYS to

determine whether or not you are on iSeries (it only exists on iSeries). The result can be
used to condition subsequent processing.

Chapter 4: General Coding Standards 149

Chapter 5: Coding Standards for Database
Files

This chapter describes coding standards for database files. It details standards for coding
both field reference files and physical and logical files.

Note: Each application system should have a single field reference file, containing
definitions for all the fields in all the database files.

For more information on examples of the standards, refer to the appendix,
"Programming and Coding Examples".

This section contains the following topics:

Data Dictionary/Field Reference File (see page 152)
Physical and Logical Database Files (see page 155)
Coding Standards for Display Files (see page 157)
Coding Standards for Printer Files (see page 164)
Coding Standards for HLL Programs (see page 169)
Coding Standards for CL Programs (see page 169)
Coding Standards for RPG Ill Programs (see page 173)
Coding Standards for COBOL Programs (see page 190)
Coding Standards for PL/1 Programs (see page 203)
PL/1 Coding Structures and Program Logic (see page 211)
Command Coding Conventions (see page 219)

Coding Standards for Messages (see page 226)
Standards for Defining Messages (see page 232)
Coding Standards for Help Text (see page 238)

Chapter 5: Coding Standards for Database Files 151

Data Dictionary/Field Reference File

Data Dictionary/Field Reference File

A data dictionary is a centralized repository of field and data definitions. It is intended
to:

m Facilitate documentation—all definitions are in only one place
® Minimize coding—definitions need to be coded only once

m Facilitate change—definitions need be changed in only one place

The function of the data dictionary may be achieved effectively on the IBM i by having a
special physical file containing no data. Such a file is generally known as a field reference
file.

CA 2E can automatically generate a field reference file. However, since each CA 2E
model is effectively a data dictionary, you will probably only wish to have CA 2E
generate a field reference file if the generated applications will be running on a machine
that does not have CA 2E installed. CA 2E has a model value YFRFVNM, which controls
whether the code generated by CA 2E for files refers to a field reference file or not.

Standard for Field Reference Files

The following standard applies to field reference files:

m |f you are using the CA 2E systematic convention, always call the file ssFDRFP,
where ss is the System prefix and contains a single format called @FDRFSS.

m The file should be structured into two parts: primary fields and secondary fields.
Refer to the appendix, "Programming and Coding Examples," for examples.

152 Standards Guide

Data Dictionary/Field Reference File

Referring to the Field Reference File in DDS
Files of all types, device and database, should reference the field reference file directly,
not via another file. Logical files are an exception to this rule: they always reference a
physical file. This means that you can resolve all inquiries about a field by looking
directly in one place. It also simplifies the order in which you need to recompile objects.

The following example illustrates the use of field reference files.

CA 2E Standard Method:

LF REFFLD
Field
REFFL reference
file
DSPF
REFFL REFFL REFFL

From the point of view of expressing design dependencies, the second method is
preferable. The first method is the recommended CA 2E standard for purely pragmatic
reasons.

Structuring the Field Reference File

A standard method should be used for organizing the field reference file for a
hand-coded application. The method provides a central dictionary of all fields with as
little effort as possible. The method suggests that you divide the field reference file into
two sections: a short primary section containing definitions of field types (standard
domains), followed by a larger secondary section, which constitutes the main field
dictionary. Both sections should be in alphabetical order to facilitate inquiries and
maintenance.

Chapter 5: Coding Standards for Database Files 153

Data Dictionary/Field Reference File

Primary Reference Fields

The primary reference field section should contain definitions for standard data types
used in the system; for example, dates, names, indicators, and standard amount sizes.

Primary fields should not be referenced, except by secondary fields in the field
reference file; for example, system files should not refer to them directly.

,,,

boA @@DTDS 6 0 COLHDG('Date * * DD/MM/YY’)
LA EDTWRD(/ / 0*)

The format identifier used for all primary fields should be ‘@ @’.

Include a field for each of the dimensions used for system quantities; for example,
pounds sterling, tonnes weight, meters, and square meters.

Secondary Reference Fields

The secondary field section should contain definitions of all fields in the system
database files.

When the field is of a standard type, for example, already defined as a primary field, the
field should be defined by reference to its primary field—that is to say using
REFFLD(*SRC). In such cases, only the column headings need to be redefined.

,,,

3 A $$BTDT R REFFLD(@@DTDS)
! A COLHDG(Date of' ‘Birth’ + |
3 A “(YYMMDDY) !

154 Standards Guide

Physical and Logical Database Files

Fields should only be defined with reference to a type field when there is a genuine
dependence. A simple test of this is to ask the question: If | were to change the
definition of the based-on field, would | want the definition of the dependent field to
change as well?

When appropriate (for example, for total fields) use relative lengths (+-)n to increase or
decrease field lengths with respect to the based-on field.

Each field should be fully defined with edit codes/words, text, ranges, values, display
attributes, etc. Use the DDS COLHDG keyword rather than the TEXT keyword as it
provides neater documentation.

Note: It is important that definitions are as full as possible, as they constitute the central
reference information for the whole database.

The format identifier for all secondary reference fields should be ‘S’. (This may be
controlled in CA 2E generated databases by the YFRFPFX model value.)

Fields should be in alphabetical order within the section. They should be indexed by
mnemonic. This provides a self-updating list of the mnemonics that have been used.

Physical and Logical Database Files

This section describes coding standards for database files. See the appendix,
"Programming and Coding Examples", for examples.

Database File Coding Standards: File Level

Format Level

Use level checking on files in order to detect errors arising from changes to the database
definition—for example, specify LVLCHK(*YES) on the OS/400 CRTPF and CRTLF
commands.

Create files that will continue to grow with SIZE(*NOMAX). Use the CA 2E Toolkit
Compile preprocessor to do this automatically every time you recompile.

The names of formats in logical files should be the same as for the format in the
underlying physical file, with the number of the particular logical view appended, if
necessary.

Chapter 5: Coding Standards for Database Files 155

Physical and Logical Database Files

Field Level

All fields should be defined by reference to the field reference file.

Field names should be issued according to the CA 2E Systematic naming convention
cited at the beginning of this manual.

Use the DDS COLHDG keyword to define the descriptions for all fields. Make use of
lower case. The descriptions you place on the field will be used in many places; for
example, DFUs, queries, and documentation, so it is worth making them as "cosmetic"
as possible.

Pack all numeric fields. The IBM midrange HLLs handle packed numeric fields more
efficiently than zoned numeric fields. Note, however, that you cannot use the sub string
function on packed numeric fields.

Make fields that hold text descriptions an even length, and specify a W shift. This
ensures they can be used for ideographic translations without the truncation of
ideographic shifts.

,,,

A TEXT 50 REFSHIFT(W)
A COLHDG(TEXT)

Include, as the last part of the COLHDG information, the abbreviation, in brackets, for
the dimension of the field (for example, the units in which the field is held) or, if it has
restricted values, the permitted values. For example:

i COLHDG('Order’ value' ($)’)
i COLHDG('Stock’ quantity’ ‘(QT)") i
COLHDG(' Discontinued’ ‘flag’ ‘(Y/N)")
i COLHDG('Member’ ‘Name’ ‘(VN)’)

The following are standard abbreviations for units:

Abr - Unit Abr - Unit Abr - Unit
YYMMDD - Date $ - Value VN - Valid name
YY - Year QT - Quantity VM - Valid msg
WW - Week # - Number

MM - Month KG - Kilograms

Day - DD M - Meters

156 Standards Guide

Coding Standards for Display Files

Arrays

DDS does not provide support for arrays (for instance an OCCURS facility) because the
relational model upon which it is based does not allow arrays. Even if you group fields
into arrays within HLL programs, you should still always define each element as a
discrete database field, otherwise it cannot be changed with DFU, or listed with Query.
In other words, do not define an array as a single field in the database and redefine it in
a program.

Array fields should be given numbered names, for example PRO1, PR02, PR0O3. In the
field dictionary, the definition of all elements should be based on that of the first
element by using the DDS REFFLD keyword.

! A $$TLO1 6 0 EDTCDE(3) |
i A COLHDG('January’ ‘Total’) !
! A $3TLO2 R REFFLD($$TLO1) i
} A COLHDG(‘February’ ‘Total’) |
! A $$TLO3 R REFFLD($$TLO1) |
i A COLHDG(‘March’ ‘Total') !
i A $$TLO4 R REFFLD($$TLO1) |
} A COLHDG('April’ ‘“Total') ‘

Coding Standards for Display Files

This topic describes standards for coding the DDS for display files. For more information,
refer to the section, Design Standards for Display Files, in the chapter, "IBM i General
Design Standards".

Related Design Utilities

You can generate standardized DDS for panels directly from a CA 2E Toolkit utility panel
design by using the CA 2E Toolkit 0S/400 Create DDS from Panel Designs (YCRTPNLDDS)
command.CA 2E generates standardized DDS for display files automatically.

SDA and RLU can be used to adjust designs.

Chapter 5: Coding Standards for Database Files 157

Coding Standards for Display Files

File Level

This example shows the standard layout for all sources:

1. Header block.
1.1 Title (T*: source directives).
1.2 Compile overrides (Z*: source directives), if any.
1.3 Standard banner (H*: and M*: source
directives).
2. Main body.
2.1 Formats in order of use.
2.2 Exception formats (e.g. Confirm prompt).
2.3 Program message subfile.

m Use the DDS CHGINPDFT keyword as a file level standard to set the display default
attributes.

If several formats are to be displayed at a workstation at the same time by overlaying,
use a value of DFRWRT(*YES) when creating the display file with the 0S/400 Create
display file (CRTDSPF) command. This prevents there being a flash as the separate
formats are overlaid, and is also more efficient.

m Use a value of RSTDSP(*YES) on the CRTDSPF command so that if a subprogram is
called (for instance the Help display), the panel is restored on return.

The CA 2E Toolkit Compile pre-processor can supply the necessary compiler overrides
automatically:

The PRINT key should be allocated on all panels: it should normally be assigned to a
print file called YPRTKEYS. This allows you to separate out print key output, which is
usually wanted locally and immediately, from other system print output.

Use the DDS INDTXT keyword to document special indicators. You should also specify
text for each command key and each DDS SETOF statement.

,,,

A CAO03(03 ‘Exit program’)
A SETOF(31 ‘Invalid code’)
A INDTXT(89 ‘ADD mode’)

,,,

158 Standards Guide

Coding Standards for Display Files

Note: Wherever possible, use indicators in a standard manner; for example, 30 for
HOME and 31-70 for field indicators. Do not use the alphabetic indicators (KA-KG).

For more information on standard indicator usage, refer to the section, "Coding
Standards for HLL Programs".

The alternative roll keys should be enabled so that scrolling can be done on
workstations with roll keys.

A ALTPAGEDWN(CFQT)
A ALTPAGEDUP(CFO08)

,,,

Enable the HELP key so that UIM help operates. You should also enable ALTHELP.
Declare a search index—use the system one if you do not have one for your application.

———

A HELP :
A ALTHELP
A HLPSCHIDX(QSCHIDX)

Sub file sizes can be kept to a minimum by sizing them to be self- extending; for
example, SFLSIZ = SFLPAG + 1.

A subfile should stay positioned to the page last displayed by the user, unless a
validation error occurs, in which case it should be positioned to the first page containing
an error.

Make use of SFLNXTCHG with READC facility to reduce the number of records that must
be re-read to validate a subfile.

Chapter 5: Coding Standards for Database Files 159

Coding Standards for Display Files

Format Level

The following standards apply to coding Display file DDS at a format level:

m Use the DDS BLINK keyword as a record level standard—this makes the cursor more
visible.

m Use the DDS KEEP keyword on the last panel displayed by the program—this
prevents blank panels appearing between programs.

m Make FO3 a command action key (CAO3, rather than a command function key
(CF03). This saves the user from having to enter values into fields to satisfy DDS
validation checks, as specified by the VALUES and CHECK keywords, when ‘backing
out’.

For example, with the following code, the user would have to enter a value of ‘Z’ or ‘X’
into field ##XX, even if he wished to merely press FO3 to exit:

! A CFO03(03 ‘Exit program’) .
3 A #1XX 1 B 6 3VALUES('X' 'Z) !

m As a corollary, make the other command keys command function keys (CFnn). This
ensures that the user has to enter fields to meet DDS validation checks when
proceeding normally.

m Use the standard subfile names to relate subfile control records with their subfile
records. Use related names for the two additional formats needed to show function
key explanations and to show a ‘No items found message’.

Record:Control Description

#SFLRCD1: #SFLCTL1 First sub file

#SFLRCDn: #SFLCTLn Nth sub file

H#CMDTXTn: Nth command key text
#NODATAN: Nth no data format
#MSGRCD : #MSGCTL program Q message sub file.

Note: For, these values are provided from the Device data table.

160 Standards Guide

Coding Standards for Display Files

Help Text
The following standards apply to coding Display file DDS help specifications at a format
level:
m Use the DDS HLPARA with *NONE to provide an overall default area.

m Use the following names for the labels of help groups:

| * HELP TEXT |
! A HLPTITLE(Select screen’) i
| A H HLPARA(*NONE) 3
! A HLPPNLGRP(‘ZSFCTZ1/PNL/ALL ‘
| A YYEDSCH) 3

m Use the format name plus the following special names for standard elements.

Standard help group names:

fmt/PNL/ALL Catch all
fmt/PNL/TOPINS Options
fmt/PNL/BOTINS Command keys

Otherwise, use the format and field name as the label of help groups. Replace any illegal
characters (for example #), with a ‘Z’.

* HELP TEXT

A HLPTITLE(Select screen’)

A H HLPARA(*NONE)

A HLPPNLGRP('ZSFCTZ1/PNL/ALL
A YYEDSCH)

* Header fields

A H HLPARA(03 02 03 80)

A HLPPNLGRP('ZSFCTZ1/Z1SFSL) |
A YYEDSCH) |
A H HLPARA(03 02 03 80)
A HLPPNLGRP('ZSFCTZ1/TOPINS’)
A YYEDSCH) ‘
* Subfile columns

A H HLPARA(10 03 19 06)

A HLPPNLGRP('ZSFCTZ1/Z1SFSL)

A YYEDSCH)

A H HLPARA(10 04 19 14) i
A HLPPNLGRP(’ZSFCTZ1/Z1SCVN') |
A YYEDSCH) |

,,,

Field Level

The following standards apply to coding Display file DDS at a field level:
m Define fields by reference to the field dictionary, using the DDS REFFLD keyword.

! A REF(YYFDRFP)
3 A #1CUCD R B &6 3REFFLD($$CUCD) |

,,,

Chapter 5: Coding Standards for Database Files 161

Coding Standards for Display Files

m Use relative positioning for device file field positioning; for example, ‘+n’, rather
than absolute positioning (row n, column m).

m Use DDS field editing and validation where possible. This is more efficient than
program editing.

777

A DATE EDTCDE(Y)
A TIME EDTWRD(: : °)

A #I1CUCD R B +1REFFLD($$CUCD) CHECK(M10)
A #1CUNM R B +2REFFLD($$CUNM) CHECK(VN)

A #ICUSS R B +2REFFLD($$CUSS) CHECK(AB)
A VALUES('X' *Y’)

Make fields that hold text descriptions an even length, and specify a W shift. This
ensures they can be used for ideographic translations without truncation of ideographic
shifts.

Display File Coding Using MSGID
We recommend that you use MSGID for all your text literals. The following particular

standards apply:

m Always make MSGID and MSGCON fields an even length. This ensures there will not
be truncation of ideographic shifts.

m Hard code the last colon or dot, if you are using MSGID or MSGCON for your literals.
This allows you to reuse messages, and ensure that translators do not introduce
errors.

Note: If you are using MSGID for your literals, use the message description as the field
name. The field name does not appear in your program. You may need to append a

letter to ensure that field names are unique.

For the panel title, column headings and other text elements, which occur on most
panels, use standard names to identify them.

Standard Text Element Field Names

The following are standard field names for text elements. (Ten characters are used so
that they do not clash with RPG program names).

PNLTTLMSID Panel title
OPINNMSID Top instruction
COLHDNnMSID Column headings
NODATAMSID No data
BOTTOMMSID “Bottom”
MOREMSID “More”
BOTINNMSID Bottom instruction

162 Standards Guide

Coding Standards for Display Files

Allow padding space for translation. Make instruction and column heading lines the full
length of the line.

Use the same message descriptions for help text headings as you use for field prompts.
Display File Coding - Field Emphasis Standards

The use of emphasis (underline, high intensity, and color) should correspond to

standard meanings. For the IBM i, the display at tributes should follow the

recommendations of SAA CUA.

The preferred standards are as follows:

Standard Field Display Attributes

IBM i (CUA)
Field type HI uL PC RI CLR
Title Y WHT
Top BLU
instruction
Label GRN
Data - Input Y Y WHT
capable:
Error
Data - Input Y GRN
capable
Data - GRN
Output only
RHS text GRN
Column Y WHT
heading

Chapter 5: Coding Standards for Database Files 163

Coding Standards for Printer Files

Note: Both standards place maximum emphasis on error fields and minimum emphasis
on the least important fields; for example, constants.

Do not use blink (DSPATR(BL)), as it is more annoying to the user than helpful.

Fields that are in error should be highlighted in reverse image DSPATR(RI). The cursor
should be positioned at the first field in assigned to each input capable field.

Wherever possible, reset error indicators from the panel using the DDS SETOF(xx)
keyword.

All panel text and column headings should normally use both upper and lower case.
Field labels that appear on the same line as the field they describe should have a trailer
and end with a colon.

Display File Coding Standards - Field Editing

The following standards apply to field editing:

m Suppress signs on numeric fields where they are irrelevant; for example, on
numeric codes, by means of the appropriate edit code or edit word.

m Edit dates, using the DDS edit word facility EDTWRD(‘/ / 0’). This ensures that
input capable fields, which are dates, are blank when zero.

m Edit time fields with EDTWRD(‘: : 0’). This ensures that input-capable fields, which
represent times, are blank when zero.

m Suppress leading zeroes when displaying amounts—but print zero balances, since
columns stand out better if they do not contain holes. For example:

m The DDS PUTRETAIN keyword will normally be used with input-only fields, so
the operator may see the last field value entered.

m Right adjust with blank fill for numeric input fields; the DDS keyword
CHECK(RB) should be used.

If a list of allowed values is specified for an input-capable field using the DDS VALUES
keyword, set the MDT tag when first displaying the field, so as to ensure that the field is
checked (DDS validation is only applied if a field is changed).

Coding Standards for Printer Files

This section describes standards for coding print files. Standards for file, format, and
field levels are described below.

An example of source for a printer file is given in the appendix, "Programming and
Coding Examples."

164 Standards Guide

Coding Standards for Printer Files

Related Design Utilities

Standardized DDS for reports may be generated straight from an Toolkit utility report
design by using the Toolkit Create DDS from a Report Design (YCRTRPTDDS) command.

creates standardized print file DDS automatically.

General Considerations
Certain general considerations apply to the coding of printer files.

Externally described print files should normally be used in preference to
program-described files, because:

m They are easier to code and change.
m They may be standardized to a greater degree.

m They provide support for translation into other national languages (for example, by
use of the MSGCON keyword).

The only circumstances under which it might be worth considering using a
program-described print file are if:

m there are a large number of arrays to be output

m complex overflow processing is required and the RPG cycle is being used

Sometimes, a program need only create a report in particular circumstances. For
example, a file maintenance program might need to produce a report only if a change to
the database was made. In such cases, you should make the opening of the print file
explicit (use the RPG Il OPEN operation code), so that unnecessary empty spool files are
not created.

FORDERS$ OF E PRINTER ucC
*$%: Printer file.
* if print requested, open order file

c $$OPFL IFNE 'Y’

Cc OPEN ORDERS$
c MOVE Y’ $$OPFL
Cc END

c WRITE$ORDHDR

Chapter 5: Coding Standards for Database Files 165

Coding Standards for Printer Files

File Level

This example shows the standard layout for all source.

1. Header block.
1.1 Title (T*: source directives).
1.2 Compile overrides (Z*: source directives), if
any.
1.3 Standard banner (H*: and M*: source
directives).
2. Main body.
2.1 Page header formats.
2.2 Formats in order of use.
2.3 Exception formats (e.g. *NO DATA*).
2.4 End of report format.

The following standards apply to coding printer file DDS at a file level:

m |f areport will normally be printed on a special forms type, include a ‘line up’
triangle to help the operator.

m [fareportis produced at all by a program, it must have headings—even if there is
no data (print “** NO DATA **‘in such a case).

m Printed reports should end by printing “** END OF REPORT **’ as the last line in the
report. This enables the user to be confident of having all the pages of a report.

The following are the default printer file names:

QSYSPRT System prints, and system print key.
QPRINT Program described reports.
QPJOBLOG Job logs.

YPRTKEYS Print key: a different file is used from

QSYSPRT, so that print key output (which
is usually required locally) can easily be
redirected to a local printer.

Note: Printer files should normally be created with scheduling defaults of
SCHEDULE(*FILEEND) and HOLD(*YES). This means that they must be explicitly released
on demand.

166 Standards Guide

Coding Standards for Printer Files

Format Level

The following standards apply to coding Printer file DDS at a format level:

m Use space before (SPACEB) in preference to space after (SPACEA), so that spacing
only occurs if a format is actually printed.

m Use the standard names for device formats when possible. They are as follows:

Standard Names Device Formats
ZRPTHDR Report headings.
ZPAGTOP Page top.

ZPAGHDR Page headings.
ZDTLHDRN Item headings.
ZDTLRCDn Item detail line.
ZDTLTTLn Item totals.

ZFINTTL Grand totals.
ZENDRPT ‘End of data’ format.

For , these values are provided from the Device data table.

Use the same indicator to detect overflow in all printer file programs.
Field Level

The following standards apply to coding Printer file DDS at a field level:

m Define fields by reference to the field dictionary using the DDS REFFLD keyword:

777

m Where printer file field names need to be different from the names of database or
display device fields from which they are derived, use a ‘S for the first character,
instead of the system prefix.

m |solate text literals into message file descriptions.
m Use relative positioning for device file field positioning, that is, “+n’ rather than

absolute positioning: this makes changing code easier.

DATE EDTCDE(Y)
TIME EDTWRD(' : : %)

#1CUCD R B +1REFFLD($$CUCD) CHECK(M10)
#1CUNM R B +2REFFLD($$CUNM) CHECK(VN)
#1CUSS R B +2REFFLD($$CUSS) CHECK(AB)

VALUES('X' 'Y’)

Chapter 5: Coding Standards for Database Files 167

Coding Standards for Printer Files

Device File Coding - Use of MSGCON

Use MSGCON for all text literals. The following particular standards apply:

m Always make MSGCON fields an even length. This ensures there will not be
truncation of ideographic shifts.

m [fyou are using MSGCON for your literals, hard code the last colon of field labels.
This allows you to reuse messages, and ensure that translators do not introduce
errors.

e
'

I * Output only field

: A USR0001 32 4 MSGID(USR0001 QUSRPMT) !
| A +1') i
: A ##CONM R o + 3REFFLD(3$CONM) :
! A TEXT'Country’) i

m Allow padding space for translation. Make instruction and column heading lines the
full length of the line.

Printer File Coding Standards - Field Editing

The following standards apply to field editing:

m Suppress signs on numeric fields where they are irrelevant, for example, on numeric
codes, by means of the appropriate edit code or edit word.

m Edit dates using the DDS edit word facility, thus: EDTWRD(‘/ / 0’). This ensures
that input-capable fields that are dates, are blank when zero.

m Edit time fields with EDTWRD(: : 0’). This ensures that input capable fields, which
represent times, are blank when zero.

m Suppress leading zeroes when displaying amounts—but print zero balances, since
columns stand out better if they do not contain holes. For example,

Not 12 But rather | 1.2 0.0 |
| 45 | 00 45|
| | .00 00|
14001 50 14000 500 |

168 Standards Guide

Coding Standards for HLL Programs

Coding Standards for HLL Programs

This section describes coding standards for HLL programs, including CL, RPG Ill, COBOL,
and PL/1.

The program coding standards should not only make programs as readable as possible
at a workstation, but also achieve a high degree of consistency in the way in which
programs are structured and the style in which they are laid out. This makes it much
easier for different programmers to examine and maintain each other's work. It also
makes it easier to copy sections of code from one place to another.

General Principles

There are a number of general principles to use when coding, regardless of the HLL
used. Good code should be:

Clear—It should be obvious from the code what the code does.
Consistent—The same standard techniques should be used everywhere.

Modular—Function should be isolated into self-contained units, which can be
reused. Each module should have a well-defined interface.

Structured—Each module should be systematically built up from regular constructs.

Robust—Avoid coding in limits (for instance array size). Anticipate possible errors
and code for a graceful collapse.

Coding Standards for CL Programs

All programs should follow the standard layout. For example:

1. PGM statement, with any parameters.
2. Header block.
2.1 Title (T*: source directives).
2.2 Compile overrides (Z*: source directives), if
any.
2.3 Standard banner (H*: and M*: source
directives).
3. Parameter declarations (DCL statements), if
any.
4. Main body.
4.1 Parameter processing.
4.2 Authorisation and object existence checks.
4.3 Main processing.
5. Error handling.

Chapter 5: Coding Standards for Database Files 169

Coding Standards for CL Programs

Indent the program source to follow the logical structure of structured program
constructs, such as IF, ELSE, and DO. For example:

| IF CND(&FREDDY = *FAT) + :
| THEN(DO) |
! CHKOBJ OBJ(FATCAT) OBJTYPE(*PGM) :
| MONMSG MSGID(CPF9801 EXEC(DO) !
! CALL PGM(CRTCAT) PARM(&FREDDY) !
: RETURN |
i ENDDO :

All programs should use ‘H*:* source directives to document the main processing stages.
These will then automatically appear in the summary documentation and provide a
program synopsis.

For more information on documentation and the CA 2E Toolkit utilities Document
Program (YDOCPGM) command, refer to the Toolkit Concepts Guide.

Declare entry parameters before all other parameters, and in the order that they appear
in the PGM statement. Include a text description of the variable against each DCL
statement. Where a field is a data structure, show declarations of sub-fields, indented,
below that of the major field. If the parameter is an aggregate data structure, for
instance a list parameter passed by a command, document the structure as part of the
comment:

/* Input parameters */

DCL VAR(&FL) TYPE(*CHAR) LEN(20) /* File. library (10 + 10)*/
DCL VAR(&FILE) TYPE(*CHAR) LEN(10) /* File name */
DCL VAR(&FLIB) TYPE(*CHAR) LEN(10) /* Library name */
DCL VAR(&MBR) TYPE(*CHAR) LEN(10) /* Member name */

DCL VAR(&MBROPT) TYPE(*CHAR) LEN(8) /* “ADD/ *REPLACE */
DCL VAR(X&CVTOPTS) TYPE(*CHAR) LEN(18) /* (2B+(2x8)) Convert opt */
DCL VAR&CVTOPTN) TYPE(*DEC) LEN(5 0)/* No of elements */
DCL VAR(XCVTOPTX) TYPE(*CHAR) LEN(8) /* Single element */

/* Work parameters */
DCL VAR(&MSGID) TYPE(*CHAR) LEN(7) /* Message identifier */

MONMSG MSGID(CPF0000) EXEC(GOTO ERROR)

170 Standards Guide

Coding Standards for CL Programs

Place general error handling at the end of the program. The standard error handling
should trap and resend any exception message.

This can be done as follows:

3 DCL &MSGID *CHAR 7 /* Message identifier */
3DCL &MSGF *CHAR 10 /* Message file */
'DCL &MSGFLIB *CHAR 10 /* Message file library */

MONMSG (CPF0000 YYYO0000) EXEC(GOTO ERROR)

/*H: 99. ERROR HANDLING */
ERROR: RCVMSG MSGTYPE(*EXCP) MSGDTA(&MSGDTA) MSGID(&MSGID) +
MSGF(&MSGF) SNDMSGFLIB(&MSGFLIB)

V2R2 of 0S/400 has new message APIs that allow you to handle messages more
efficiently. You should use them once they are available. The following code carries out
the same standard exception handling as shown above.

IDCL 8KEYVAR ‘CHAR4 /< MESSAGEKEY ¥ |
!DCL &ERRCDE *CHAR 4 X'00000000"
MONMSG (CPF0000 YYY0000) EXEC(GOTO ERROR)

/*H: 99. ERROR HANDLING */

ERROR: RCVMSG MSGTYPE(*EXCP) RMV(*NO) KEYVAR(&KEYVAR)
CALL QMHRSNEM (&KEYVAR &ERRCDE) /* RESEND */
MONMSG CPF0000
GOTO ENDPGM

Field Names in CL Programs
Variable names should be meaningful. Variables used in commands should be named
after the relevant keyword with ‘&’ appended to the beginning; for example
SRCFILE(&SRCFILE). Use 0S/400 standard abbreviations where possible.

For more information, refer to the 0S/400 Programmer’s Guide.

Parameters passed between programs should, where possible, have the same name in
the calling and the called programs.

Calling program CL:

3 CALL PGM(UXCVTXC) PARM(&FILE &MBR)

Chapter 5: Coding Standards for Database Files 171

Coding Standards for CL Programs

Called program CL:

/-*‘ -I‘r;put parameters ¥ 7
DCL VAR(&FILE) TYPE(*CHAR) LEN(10) /* File name */
DCL VAR(&MBR) TYPE(*CHAR) LEN(10) /* Membername */

Parameters passed to command processing programs should, where possible, have the
same name as the parameter keyword—as specified by the PARM statements in the
command source.

Command source:

| PARM KWD(MBR) TYPE(*NAME) PROMPT(‘Membername:’)
: DFT(*FILE) SPCVAL(*FILE)

Called program CL:

/* Input parameters */ 3

DCL VAR(&MBR) TYPE(*CHAR) LEN(10) /* Member name */

Use three-character mnemonics to build CL program labels; for example, ‘ENDPGM?’,
‘SNDERR:’".

Where a parameter is a data structure passed from a command, for example, a qualified
name, use a short name for the parameter and give the sub fields full names.

Command source:

PARM KWD(JOBD) TYPE(JL) PROMPT(‘Job description:) + 3
SNGVAL((*JOB)) |

HJL: QUAL TYPE(*NAME) DFT(QBATCH) /*OBJ*/

(*USRLIBL) (*ALLUSR)) PROMPT('Library’)

1 QUAL TYPE(*NAME) DFT(*LIBL) SPCVAL((*LIBL) +

Called program CL:

PGM PARM(&JL)
/* Input parameters */
DCL VAR(&JL) TYPE(*CHAR) LEN(20) /* Jobd.library
(10+10)
DCL VAR(&JOBD) TYPE(*CHAR) LEN(10) /* Jobd
description */
DCL VAR(&JOBDLIB) TYPE(*CHAR) LEN(10) /* Library name
*
CHGVAR &JOBD (%SST 110 &JL)
CHGVAR &JOBDLIB (%SST 11 10 &JL)

172 Standards Guide

Coding Standards for RPG III Programs

Coding Standards for RPG III Programs

Program Layout

This section describes coding standards for RPG Il programs. For more information,
refer to the appendix, "Programming and Coding Examples".

These guidelines focus on designing programs that are easy to follow. The discussion is
grouped under the following headings:

Program layout—Basic conventions for documentation and spacing.

Coding structures—For historical reasons RPG Il permits you to code many
different ways (for instance with or without the cycle, using indicators or IF
statements). Some of the ways should be avoided.

Naming standards—Conventions for naming variables, formats, fields, arrays, and
indicators in a consistent manner.

Techniques—Date handling, job information, file information, and calculation
checks.

All programs should follow the standard layout. Use continuous lines to break the
program up into its logical sections. Three characters are assigned standard meanings:

kkk ok k ok kkkk KKk Kok okk kK kKoK Kk ok k Majorsectionboundary

a. Change of specification type.

b. Start of Main line C specs.
c. End of Main line C specs.

d. Between blocks of subroutines

zz=z=z=z=z====z=z========== [Minor section boundary
a. Start of subroutine.
b. End of subroutine.

c. Start of main line section.

............................... Subsection boundary

a. Section within subroutine.

Chapter 5: Coding Standards for Database Files 173

Coding Standards for RPG III Programs

Structured programming constructs should not cross subsection boundaries; that is, the
following should not occur:

Subroutines must be preceded by one or two lines of text to indicate their function. This
should follow the BEGSR statement. Use SR in columns seven and eight of the BEGSR
and ENDSR statements for greater readability, for example:

m Different specification types should be separated by ‘/EJECT statements.
Subroutines should also be separated by /EJECT’ or ‘/SPACE 3’ statements.

Each file must be followed by a comment statement, which states its contents. For
logical files, the access path will preferably be indicated. (Text should be the title line for
the file). The comment should be after rather than before the statement, as that gives a
better effect on compilation listings:

FYDSCDAL1IF E K DISK !
3 * SA: SCREEN FILE (0| SCSQ | SCVN) |

Each input record/data structure should be followed by a comment statement to
indicate such things as its function and contents. For example:

IPGMDS ESDSY2PGDSP
* Program data structure.

IJBDTTM DS

| 1 60##JDT
| 1 20##JYY
| 3 40##JMN

| * Job date/time. !

Code files in order of frequency of use—input primary or display files should appear
first. Place ancillary files last.

174 Standards Guide

Coding Standards for RPG III Programs

RPG III Coding Structures and Program Logic

Use of GOTO

Except where there is a good reason for using the RPG cycle, programs should be fully
procedural. Procedural programs are generally easier to follow, as well as to debug. In
addition, if you are using the RPG cycle, the input primary file of an RPG Ill program,
which updates the file, is allocated to the program with an exclusive update lock. This is
not recommended as it can prevent other users from accessing records on the file.

Structured programming operations should be used wherever possible; for example use
IF rather than COMP. This is because they are easier to follow than COMP statements
and indicator comparisons, and therefore are less likely to contain coding errors. The
corresponding END and ELSE statements should indicate the matching operation in the
comment column (positions 61-79). The CA 2E Toolkit Tidy RPG Ill Source (YTDYRPGSRC)
command can be used to document structured constructs automatically.

Avoid explicit branching altogether, that is, the use of the RPG IIl GOTO, CAB, and TAG
operations. If you do use explicit branching, restrict it so that you only employ
structured programming constructs, NEXT and PREVIOUS; that is, branch only to the
beginning or end of the current loop, never to an arbitrary point. The only legitimate use
of the GOTO or CAB statements should be to achieve an ‘ITERATE’ or a ‘QUIT’.

ITERATE DOW
GOTO

END

QUIT

Only use a GOTO statement to branch to a point within the same subroutine. Never use
a GOTO statement to branch from a subroutine to a point in the mainline code.

Use CAS operations in preference to nested IF/ELSE operations; they are easier to
follow:

Do this Not this
A CASEQB X1VLRC A IFEQB
A CASEQ C X2VLRC .
A CASEQD X3VLRC ELSE
END A IFEQC
ELSE
A IFEQD
END

Chapter 5: Coding Standards for Database Files 175

Coding Standards for RPG III Programs

Avoid nesting structured programming operations too deeply—for instance more than
three or four levels of nesting in a given subroutine level. If more are needed, use
another subroutine.

Keep the amount of code within structured programming constructs as short as
possible. RPG Ill comment lines may be indented to follow the logical programming
constructs:

* Read all records from DBF file

§ c “INLR DOWEQ0’ j
i READ QLIDOBJD LR 1
§ * For each record found:- i
§ C NLR DO ;
i * Do something i

Programs should be as structured as possible. A program is not ‘structured’ just because
it only uses structured operation codes. A structured program is one that is modularized
in an efficient way, and built up out of the structured programming
constructs—SEQUENCE, CONDITION (CASE) or ITERATION, and structured combinations
thereof. The constructs might even be implemented logically (for instance with GOTOs
and TAGs used in a structured manner) rather than with specific HLL structured
operation codes.

Avoid testing compound negative conditions when possible because they are harder to
understand.

* CALL SUBPROGRAM, END IF CKO1

CALL ‘XXXX' LR i
LR RETRN

,,,

F3 (IBM i) should result in the user exiting completely from a program. Where a program
calls several levels of subprogram, each subprogram may need to test for the exit
condition.

Calling Program Exit Conditioning Logic:

* CALL SUBPROGRAM, END IF CKO1

CALL ‘XXXX' LR i
LR RETRN

,,,

176 Standards Guide

Coding Standards for RPG III Programs

Called Program Exit Conditioning Logic:

* PROGRAM XXXX, IF CK01 end

01 SETON LR EXIT |
RETRN

The RPG Il statements used to code the reading of a group of records from a file should
be highly standardized.

A standard loop should be used because:

1. It stresses the device independence of the data. The file name, which is all that
differs between different instances of the loop, appears at the beginning of the
code.

2. It serves as a standard construct that other programmers can instantly recognize as
signifying the retrieval of a set of records. Although RPG Ill only has operation codes
that will process one record at a time (for example, READ/READE), there is very
often a requirement to process a whole set of records from a file (for example, all
order records for a given customer). The loop construct emphasizes the set nature
of your processing, which is generally easier to understand.

There are two ways of coding such a loop:

m Using two READs and a single DOW loop.

* Read all records from file
* Position on file & read first record

C SETLLfilename XX
C READ filename XX
* ... No records found processing

*

* For each record found:-
C * INxx DOWEQ'0’
* ... Record found processing

* Read next record

C READ filename XX
C * INxx IFEQ ‘1’
* ... Last record processing
C END Fl xx= 0
C END WOD *xx= ‘0’

Chapter 5: Coding Standards for Database Files 177

Coding Standards for RPG III Programs

m Using one READ:

* Read all records from file
* Position on file

C SETLLfilename XX
* ... No records found processing

*

C * INXx DOWEQ'0’
* Read next record
C READ filename
* For each record found:-
C * INxx IFEQ ‘0’
* . Record found processing
C ELSE
* ... Last record processing
C END
C END

XX

XFI *xx =0’
Fl xx= ‘0
WOD *xx = ‘0

Which standard loop is preferable? The second method is probably slightly more
efficient because it requires only one READ statement (each READ statement requires a
large number of Ml instructions to execute). However, the first loop is ‘less tricky’, and
therefore, preferable. Here are two examples of using the loop:

Standard Loop Reading a Database File:

* Read all batches
* Position on batch and read first record
C KBTDA1 SETLL@BTDAZX
C $$BTCD READE@BTDAZX
* For each record found:-
C *IN87 DOWEQ' 0O’
* If stock is current, accumulate quantity

87
87

Standard Loop Reading a Sub file:

C ZXBTSS CASEQQ BAUPRC UPDATE REC
* Otherwise, delete record
C CAS BADLRC DELETE REC
C END SAC ZXBTSS=Q
* Read next record
C $$BTCD READE@BTDAZX 87
C END WOD *87 =0’
Note: If appropriate, the SETLL and initial READE may be combined as a CHAIN.
* Read changed subfile records
C READC#SFRC#1 88
* For each record found:-
C *IN88 DOWEQ'0’
*1f‘Z, display item
C ##SLSS CASEQZ BAUPRC DISPLAY REC
*If P, print item
C ##SLSS CAS P BBPRRC PRINT REC
C END SAC ##SLSS=Z
C READC#SFRC#1 88
C END WOD *88 =0’

178 Standards Guide

Coding Standards for RPG III Programs

Use the RPG IIl EXFMT operation code in preference to a separate WRITE and READ
statements for display files because it is more efficient.

Standard RPG III Subroutines

System-wide subroutines should have names beginning with the letter ‘Z’. You may use
the RPG Il /COPY statement to include the subroutines if you wish. The following are
two common examples:

Message Sending Subroutine—This subroutine calls an CA 2E Toolkit utility subprogram
to send a message to the calling program’s message queue. From V2R1 of 0S/400 the
QMHSNDPM API can be used instead.

*IF FIRST MESSAGE IN CYCLE, SEND

C N99 CALL 'YYSNMSC’ :
| C PARM ##PGVN 10 Message q. i
! C PARM “*SAME’ ##PGRL 5 REL queue |
| C PARM MSGID 7 Message id. i
3 C PARM MSGF 10 Message file |
i C PARM MSGDTA 132 Message data |
f C PARM *INFO’ MSGTYP 7 Message type 1
i * Clear all fields for default mechanism next time. !
| C MOVEL*BLANK MSGID Message Id.
C MOVEL*BLANK MSGF Message file. |
C MOVEL*BLANK MSGDTA Message data. |

Message Executing Subroutine—This subroutine calls a CA 2E Toolkit utility subprogram
to retrieve a request string stored in a message file, and executes it.

C CALL YYRTMSC’ Retrieve MSG
(e} PARM MSGID 7 I:Message id
C PARM MSGF 10 I:Message fl
C PARM MSGDTA132 I:Msg data

C PARM MSG 132 O:Msg Text
C PARM MSGLEN 50 O:Msg Length

* EXECUTE

C CALL ‘QCMDEXC’ 99

C PARM MSG 132

C PARM MSGLEN $$RQLN 155

Chapter 5: Coding Standards for Database Files 179

Coding Standards for RPG III Programs

Format Names in RPG III

Where a format has to be renamed, for example, because it appears twice in a program,
it should be renamed to a name of the form @MMMMx, where @ MMMM was the
original format name, and x is the suffix of the logical file that is being renamed. Field
names can likewise be renamed from yyMMMM to yxMMMM.

,,

FYMMNDALOIF E K DISK

F @MNDAYJ KRENAME@MNDAYJO
*YJ: Menu file. (OMNCD)

FYMMNDAL1IF E K DISK

F @MNDAYJ KRENAME@MNDAYJ1
*YJ: Menu file. (MNNM)

File access operations, such as READ, CHAIN, and READ, should use the format name,
rather than the file name.

* Update batch record

$$BTCD CHAIN@BTDAZX 91
UPDATEBTDAZX 99
END FI*91="0

' C :
| C *IN91 IFEQ ‘0’ 3
i C !
| C !

RPG III Field Names

Program field names should follow the rules laid out in the naming convention.

The names of fields should, wherever possible, be the same as those in the file from
which they are obtained. This helps to standardize the naming of fields, and also makes
clearer the mapping of fields between files. If necessary, a different prefix can be used
to indicate that the field is a work field or a device field: for example, JJCUCD could give
P1CUCD, #1CUCD, and WWCUCD.

Work field: 1l MM MM

Fome®eeaas Mnemonic

¥ mmmmmm————— Format identifier

Note: Format identifier: ‘I’ is either the format identifier from a database or a device
file or work prefix.

‘Wx’ is reserved for internal RPG Il work fields.
‘Pn’ is reserved for passed parameters.

180 Standards Guide

Coding Standards for RPG III Programs

Note: Mnemonic: MMMM is a mnemonic constructed according to the rules given in
the chapter on naming conventions.

| C MOVE SASKQT L1SKQT Accumulate
} cL1 ADD L1SKQT L2SKQT Accumulate
| CLR Z-ADDL2SKQT LRSKQT Accumulate

For the names of fields which act as accumulators, use an appropriate prefix + the
mnemonic of the field being accumulated. This helps to make mapping a field from
format to format, clear.

There are some exceptions to the above rules:

®m Arrays—The names of arrays should begin with the character ‘@’, and otherwise
consists of one, two or three letters, for example @X, @LN, @PRC. This leaves
space for an index.

m Array indices—The names of array indices should, if possible, relate to the names of
the arrays they index. For example, they should contain the same letters and be
prefixed by a ‘S’ instead of an ‘@’. They should also be short, since indexed
occurrences of arrays must fit into RPG Il calculation specification fields. For
example, SX might be the name of the index for array @X, giving @X,$X as an
occurrence, SLN for array @LN, giving @LN,SLN.

m Standard fields—Fields that serve the same common role in many different
programs may use a single three-character mnemonic to indicate that they are
standard fields; for instance, xxRTN - the return code.CA 2E uses this technique.

m Parameter fields—Fields that are parameters passed to other types of programs
may, in order to keep the field names the same in both programs, take the field
name as it appears in the other program. For instance, in the following example,
‘MSGID’ and ‘MSGDTA'’ is a field name that does not conform to the normal RPG
naming convention. However, it is the name used in the CL message-sending
program that is being called.

Chapter 5: Coding Standards for Database Files 181

Coding Standards for RPG III Programs

RPG III Subroutine and Label Names

Given that RPG Ill source code is edited on-line using a small (24 x 80) panel, it is
important to make an effective use of subroutine and label names. The subroutine and
label naming conventions for RPG Ill described below are intended to do two things:

1. Help distinguish between the major and minor sections of the code.
2. Indicate whether you need to scroll forwards or backwards to find a section of
code.

Subroutine names and label names should take the following forms:

Hierarchy prefix—‘XX’ is a hierarchy level prefix, which is the same for all labels in a
given subroutine, and is:

Start XX MM MM BEGSR
End XX EXIT ENDSR
R Mnemonic

.............. Hierarchical prefix

Subroutine mnemonic—MMMM is a mnemonic describing the subroutine:

‘AA’ for the main stem.
‘BA-BZ’ for second level routines.
‘CA-CZ’ for third level routines.

“iA-iZ’ for nth level routines.

*"UA-UZ’ for utility routines (not hierarchical).

‘ZA-22’ for standard routines, e.g. ZASNMS
(message).

182 Standards Guide

Coding Standards for RPG III Programs

The following are reserved standard subroutine mnemonics:

DLRC - Delete record.
EXFM - Display format.
INIT - Initialization.
1Z#1 - Initialize subfile #1.
PRKY - Process key fields.
PR - Process panel.
UPRC - Update record.
VLKY -Validate key fields.
VLDA -Validate data fields.
LDSF -Load subfile.
PMCF - Prompt confirm.
CKRL - Check relations.
EXPG - Exit program.

ZA SNMS - Send message.
MVpp - Set up record for format pp.

EXIT - End subroutine label.

Label Naming Convention
m Hierarchy prefix— ‘XX’ is a hierarchy level prefix, as described above.

= Label number—of the form ‘010’, see example below.

TAG label : XX nnn

B Sequence number

Lol P Hierarchical prefix

Chapter 5: Coding Standards for Database Files 183

Coding Standards for RPG III Programs

The following diagram illustrates the use of different subroutine and label prefixes at

different levels.

Example of Use of Labels and Subroutine Names:

! Main stem Level 2

Level 3

; AADTO TAG

: EXSR BASBRT BEGSR

3 BAO10 TAG ‘
; EXSR CCSBRT BEGSR
3 : ccolo TAG
: CCEXIT ENDSR |
3 BBO20 TAG ;
: BAEXIT ENDSR 3
3 : BBEXIT !
; AA020 TAG 3
‘ AAEXIT ENDSR ;

RPG III Parameter and Key Lists

The names of parameter lists should relate to the program they call. The names of key

lists should generally relate to the file with which they are associated.

The following naming convention should be used for key lists and parameter lists:

m List type: ‘P’ for a PLIST, ‘K’ for a KLIST.

® Mnemonic (MMMM):

Parameter List: ‘P MM MM Q
Key list 'K MM MM Q
*— - - -- Optional
suffix
M Mnemonic
e me e e e - List type

184 Standards Guide

Coding Standards for RPG III Programs

m For a PLIST, the mnemonic of the program being called
m For a KLIST, the mnemonic of the format being read

m Suffix (Q): A suffix used to distinguish between lists for the same format/program.

In standard programs, it may however, be more appropriate to name key lists after the
role they perform; for example KRST, KPOS.

Note: *ENTRY PLIST statements should be placed at the beginning of the calculation
specifications. Other PLIST, KLIST and DEFN statements should be placed at a point just
before their first use. This facilitates the copying of code from one program to another.

* IF ACTIVE CUSTOMER

3 c ##CUSS COMP ‘A’ 94 3
| C o4 Z-ADD1 ##CUCN !
3 coe CAS CDACCU ACTIVE i
: c END SAC 94 !

The *ENTRY PLIST should be labeled to indicate each field’s contents, and whether it is
an input or output parameter, or both.

Chapter 5: Coding Standards for Database Files 185

Coding Standards for RPG III Programs

RPG III Standard Indicators

The RPG lll indicators (such as, 01-99) should be used as little as possible, as they are
difficult to reconcile with structured programming. The number of indicators available is
in any case fixed, so it is best to reserve their use for the places where you are obliged
to use them. Ideally, indicators should only be used to:

m Communicate with external files
m Handle errors on database files
Note: Avoid using numeric indicators to condition code execution. Where branching is

conditional on a test, it is clearer to repeat the test, rather than use an intermediate
indicator.

Where you need to use a logical indicator, for example, because a test is too
complicated to repeat easily, it is often better to define your own variable and give it a
meaningful name, rather than use one of the RPG Il numeric indicators.

KA-KG : Should not be used for command keys,
as they cannot be set on, nor documented
with the DDS INDTXT keyword.
01-24 : Command keys and/or command
function keys
25-29 : Function keys

26 : Print

27 : Roll up
28 : Roll down
30 : Home

31-79 : Device file fields/field errors
79-31 : Field conditioning indicators

80-84 : Device and/or subfile control

R 80 7 SLFCLR T [)
3 81 : SFLDSP (51) !
! 82 : SFLEND (55) |
! 83 : INVITE |
: 84 . SFLNXTCHG (56) }
3 86 : PUTOVR 3

90-99 : Volatile work indicators (60-69)
90 : Record does not exist
91 : Record locked
92 : Subfile record not found

95 : Level 1 nested read loop (66)
96 : Level 2 nested read loop (67)
97 : Level 3 nested read loop (68)

98 : Error on subfile line
99 : Global error

186 Standards Guide

Coding Standards for RPG III Programs

Try to give the same meaning to indicator usage throughout a system. This makes it
easier to understand programs. Use specific indicators for functions that are common to
many programs, such as command keys, and use a different range of indicators for
functions that are specific to a particular program, or part of a program. Indicator usage
should follow the following convention:

777

c 1 DO 80 $X 30
c @X$X CABEQ@ UAEXIT 6

Note: The usage of certain indicators has been revised since the previous edition of
these standards. The old values are shown in brackets.

Using standard indicators in device files should be documented in the device files using
the DDS INDTXT, SETOF, CAnn or CFnn keywords; it should not need to be repeated in
the RPG Il program source.

Document the use of non-volatile indicators (for example, those which have a global
scope rather than a local use). For example, ‘*IN87 = Company is insolvent’.

* OPEN FILE IF NOT ALREADY OPEN 3
OPFLSS IFNE 'Y’ !

Cc

Cc OPEN YYMNFLP

Cc MOVE 'Y’ OPFLSS 1 !
Cc END FI OPFLSS |

Where an indicator is returned/required by a subroutine, document its meaning at the
beginning of the subroutine.

Techniques in RPG III Programs
Handling Dates in RPG III

IPGMDS SDS

*PROGRAM DS
| *PROGRAM ##PGVN
| 81 90 ##PGLB
| 244 253 ##JBVN
| 254 263 ##USVN
| 264 2690##JBNO

Chapter 5: Coding Standards for Database Files 187

Coding Standards for RPG III Programs

All dates should always be converted to YYMMDD or CYYMMDD format before being
output to a database file.

Remember that dates obtained from use of the RPG Ill TIME operation are in the format
specified by the 0S/400 QDATFMT system parameter, while the format of the RPG Il
UDATE field depends upon the H specification of each individual RPG Ill program.

The program header specification should have a Y in column 39, to ensure that UDATE is
present in YYMMDD format, regardless of system date format.

RPG III Job Name/Operator ID

The user profile name and job name should appear on panels and reports.

Use the program status data structure, defined with an ‘S’ in column 18, to retrieve
information about the operator, for example, user profile name, job name, and job
number. Never ‘hard code’ the user profile name or program name as a literal.

An externally described file may define the program data structure:

‘ IINFDS# DS !
3 I B 370 3710##CSLC :
| - CURSORLOC: LN/CL, HX||HX |
| I B 378 3790##SFLN |
| * SUBFILE LINE. !

Uses of the File Information Data Structure

Because it is so easy under 0S/400 to redirect a file, either by use of the library list, or
by an explicit override, confusion can arise as to which file was actually used for a report
or display. Consider including the file and library name on the report or display—the
names can be obtained from the file information data structure.

777

188 Standards Guide

Coding Standards for RPG III Programs

The file information data structure can also be used to obtain the current line number,
so that subfiles can be re-displayed, while still positioned at the same place.

An externally described file may also define the file data structure.

,,,

FLSSKDAP IF E K DISK KINFDS INFDS i
IINFDS DS i

| * FILE USED INF DS

| 1 83 92 ##FLNM

| *File name

! | 93 102 ##LBNM
*File library name

| 129 138 ##MBNM
*File member name

| B 156 1590##FLRC
*No of records in file

Calculation Checks
Always test that a divisor is not equal to zero before dividing with it.

Example of Testing Divisor Value:

m |f a calculation result field for a report or display overflows, fill it with *HIVAL, such
as 999s.

m Unless specifically told not to, always half-adjust when adding together two fields of
different precision levels.

Coding Structures and Program Logic

Use structured programming operations where possible. For example, use IF/END-IF
rather than GO/LABEL.

Make use of the THEN and CONTINUE noise words to emphasize the structure. For
COBOL ‘85, use an inline PERFORM statement if more than one statement lies within
the THEN group, and use explicit scope terminators (such as END-IF and END-PERFORM)
on all multi-statement constructs.

ITERATE PERFORM UNTIL

ks GO *
QUIT
END-PERFORM

Chapter 5: Coding Standards for Database Files 189

Coding Standards for COBOL Programs

Avoid explicit branching (the use of the COBOL GO operation) as much as possible.
Where you do use explicit branching, try to do so in a structured way, and to build up
structured programming constructs, NEXT and PREVIOUS. In other words, branch only to
the beginning or end of the current loop, never to an arbitrary point. The only legitimate
use of the GO statements should be to achieve an ‘ITERATE’ or a ‘QUIT’.

Coding Standards for COBOL Programs

The majority of the guidelines given in this section are concerned with making the
COBOL code easy to follow and understand, and the intent clear. The section is grouped
under the following headings:

®m Program layout—Basic conventions for documentation and spacing.
m Coding techniques—Preferred methods for using structured coding techniques.

m Naming standards—Conventions for naming variables (formats, fields, arrays,
indicators) in a consistent manner.

m Techniques—Date handling, job name/operator ID, calculation checks.
All examples presented use COBOL ‘85 syntax, unless otherwise stated.

Note: For more information on the standards for COBOL programs, refer to the
appendix, "Programming and Coding Examples."

Landuade Standards

Do not use COBOL language features identified as obsolete in the ANSI standard, as
these elements will be deleted in the next edition of the standard.

On the IBM i, use COBOL ‘85 in preference to COBOL ‘74.

Numeric variables should be declared as signed, odd-length, COMPUTATIONAL (packed
decimal). This gives a more efficient implementation.

190 Standards Guide

Coding Standards for COBOL Programs

Program Layout

All programs should follow the standard layout (see example).

Although not all sections are mandatory, incorporating them into a default program
skeleton together with additional standard sections (such as exit program and display
messages), provides a basis from which to continue coding.

1. Compiler overrides (PROCESS statements)
2. IDENTIFICATION DIVISION
2.1 Title /TITLE statement
2.2 Compile overrides (Z*: source directives), if any
2.3 Standard banner (H*: and M*: source directives)
3. ENVIRONMENT DIVISION
3.1 Configuration section
3.2 Special names section
3.3 I/O section
3.4 1/O control
4. DATA DIVISION
4.1 File section
4.2 Working storage section
4.3 Linkage section
5. PROCEDURE DIVISION
5.1 Mainline section
5.2 Standard sections
5.2.1 ZASNMS - Send messages
5.2.2 ZYEXPG - Exit program
5.2.3 ZZINIT - Initialization

Use continuous lines of comments to break the program up into its logical sections. Use
the following convention:

Gk ok ok kk ok ko ok ok ok k ok k ok k k k ok k Kk Majorsectionboundary
a. New division.

b. Mainline section.

=S============== Minor section boundary
a. Start of subroutine.

b. End of subroutine.

........................... Subsection boundary

a. Code group within section.

Chapter 5: Coding Standards for Database Files 191

Coding Standards for COBOL Programs

Examples of dividers:

Gk ok ko Rk k ok ok ok ok ok ok ok k ok ok k k kK Kk kR Kk Rk Kok ok ok ok k ok ok Kk Kk Kk ok ok ok oKk kKK KK KK

MAINLINE SECTION.

EXIT.

ok ok ko Rk k ok ok ok k ok ok ok k k ok ok ok ok ok Kk kR K kK Kk ok ok ok ok ok kR Kk Kok ok ok oKk ok kK KKk K

/EJECT

UAEXIT.
EXIT.
/EJECT

Note: Structured programming constructs should not cross-subsection boundaries. For
example, the following should not occur:

i * Retrieve user data

| CALL ‘Y2RTJBR’ USING

i JOB-CONTEXT

3 END-CALL

| LR EEEL LR R 3
! MOVE A TO B |
! ZZEXIT. 3
: EXIT. !
! JEJECT |

Subroutines (in other words COBOL SECTIONS, must be preceded by one or two lines of
text to indicate their function. This should follow the SECTION statement.

UAEXIT.
EXIT.
/EJECT

192 Standards Guide

Coding Standards for COBOL Programs

Code should be indented to indicate the structure. For example:

IF (C-IO-ERR) THEN
PERFORM

END-PERFORM
IF (C-NO-RECORD) THEN
END-IF

| ELSE
3 END-IF

Note: Different sections should be separated by the ‘/ ‘ compiler directive in the
continuation area, which directs the printer to advance to a new page. To identify this
line further, a standard comment should follow this, for example ‘EJECT’".

SPECIAL-NAMES. OPEN-FEEDBACK IS OPEN-FEEDBACK-AREA,
I-O-FEEDBACK IS |-O-FEEDBACK-AREA.
/EJECT
INPUT-OUTPUT SECTION.

FILE-CONTROL.

! I-O-CONTROL.
3 JEJECT

| DATA DIVISION.
3 FILE SECTION.

EJECT
WORKING-STORAGE SECTION.
JEJECT

Gk ok k ko k ok ok k ok ok ok Kk KRk Kok K K Kk kK ok Rk k ok ok ok ok ok ok ok ok okKk KK KKK KKK K K

LINKAGE SECTION.

Place each phrase of a file declaration on a new line. A comment statement, giving its
full text name, must follow each file declaration statement:

3 SELECT JQCUREL1

} ASSIGN TO DATABASE-JQCURELA1
| ORGANIZATION IS INDEXED

} ACCESS MODE IS DYNAMIC

| RECORD KEY IS EXTERNALLY-DESCRIBED-KEY

} FILE STATUS IS FILE-STATUS.

i * RTV: Customer data Retrieval index

: CALL 'Y2CLMSC’ USING
; ZAPGM

! ZAPGRL

3 END-CALL

Chapter 5: Coding Standards for Database Files 193

Coding Standards for COBOL Programs

A comment statement to indicate its function, contents, etc should precede each input
record/data structure:

i * Job context. |
1 01 JOB-CONTEXT. i
i COPY DDS-ALL-FORMATS OF Y2PGDSPK. i
) * Job date/time. |
| 03 IJBDTTM. |
| 05 ZzJDT PIC 9(6). !
! 05 ZzZJDTE REDEFINES ZZJDT.
| 07 zZJYY PIC 9(2). |
; 07 ZZJMM PIC 9(2). :
| 07 ZZJDD PIC 9(2). |
} 05 ZzzZJTM PIC 9(6). |
| 05 Zz JTME REDEFINES ZZJTM. |
; 07 ZZJHH PIC 9(2). |
| 07 ZZJNN PICT9(2). |
; 07 ZZJSS PIC 9(2). |

Code files in order of frequency of use. Generally, this will correspond to placing the
most important file first. For interactive programs, this will be the display file. For batch
programs, this will be the main file being processed. Place ancillary files last.

194 Standards Guide

Coding Standards for COBOL Programs

New Topic

Use structured programming operations where possible. For example, use IF/END-IF
rather than GO/LABEL.

Make use of the THEN and CONTINUE noise words to emphasize the structure. For
COBOL ‘85, use an inline PERFORM statement if more than one statement lies within
the THEN group, and use explicit scope terminators (such as END-IF and END-PERFORM)
on all multi-statement constructs.

ITERATE PERFORM UNTIL

#: GO *
QUIT
END-PERFORM

Avoid explicit branching (the use of the COBOL GO operation) as much as possible.
Where you do use explicit branching, try to do so in a structured way, and to build up
structured programming constructs, NEXT and PREVIOUS. In other words, branch only to
the beginning or end of the current loop, never to an arbitrary point. The only legitimate
use of the GO statements should be to achieve an ‘ITERATE’ or a ‘QUIT’.

Chapter 5: Coding Standards for Database Files 195

Coding Standards for COBOL Programs

Use of GO

Only use a GO statement to branch to a point within the same subroutine. Never use a
GO statement to branch from a subroutine to a point in the mainline code. Although this
can be accomplished using COBOL, it should be regarded as being contrary to the basic
tenets of structured programming.

Avoid nesting structured programming operations too deeply. For example, more than
three or four levels of nesting in a given section level. If more are needed, use another
section.

Programs should be as structured as possible. A program is not ‘structured’ just because
it only uses structured operation codes. A structured program is one that is modularized
in an efficient way and built up out of the structured programming
constructs—SEQUENCE, CONDITION (CASE) or ITERATION, and structured combinations
thereof. The constructs might even be implemented logically (for instance, with GO
statements used in a structured manner) rather than with specific HLL structured
operation codes.

The COBOL statements used to code the reading of a group of records from a file should
be highly standardized.

A standard loop should be used because:

m |t stresses the ‘device independence’ of the data. The file name, which is all that
differs between different instances of the loop, appears at the beginning of the
code.

m [t serves as a standard construct that other programmers can instantly recognize as
signifying the retrieval of a set of records. Although COBOL only has operation
codes that will process one record at a time (such as READ), there is very often a
requirement to process a whole set of records from a file (for example, all order
records for a given customer). The loop construct emphasizes the ‘set’ nature of
your processing, which is generally easier to understand.

READ loop - COBOL ‘85:

196 Standards Guide

Coding Standards for COBOL Programs

i * Position on file & read first record
' SET C-INDICATOR-OFF(xx) TO TRUE
} MOVE LOW-VALUES TO fmtname OF filename-R
} START filename

| KEY NOT EXTERNALLY-DESCRIBED-KEY
! FORMAT IS ‘ fmtname *
! END-START

i * 10 error processing

; READ filename NEXT

: FORMAT IS * fmtname *
END-READ

3 * No records found processing
i * For each record found:-

; PERFORM UNTIL(C-EOF)
: * Record found processing

1 *

; * Read next record

! READ filename NEXT

i FORMAT IS ‘fmtname’
' END-READ

} IF (C-EOF) THEN

i * Last record processing

; END-IF

: END-PERFORM

Standard COBOL Subroutines

System-wide standard subroutines should have names beginning with the letter ‘Z’. You
may use the COBOL COPY statement to include the subroutines if you wish. Standard
subroutines for the following functions are given below:

m Message Sending Subroutine—This subroutine calls a CA 2E Toolkit program to
send a message to the calling program’s message queue.

V2R2 of 0S/400 has a message sending APl QMHSNDPM you should use instead.

= Message Executing Subroutine—This subroutine calls a standard subprogram to
retrieve a request string stored in a message file and execute it. The program used
to execute the string is the 0S/400 QCMDEXC program.

; * Execute message ‘Display output queue’ 3
E MOVE ‘USR0033’ TO ZAMSID 1
! CALL Y2EXMCC USING :
: WORTN :
! * Message id |
; ZAMSID ;
: * Message file 3
: ZAMSGF 1
! * Message data :
; ZAMSDA :
! END-CALL |
' MOVE SPACES TO ZAMSGF i
. MOVE SPACES TO ZAMSDA !
i * Error on program call will terminate run unit :
IF (WORTN NOT = SPACES) THEN !
! * Error detected during execution. 3
1 SET C-INDICATOR-ON(99) TO TRUE i
! END-IF i

Chapter 5: Coding Standards for Database Files 197

Coding Standards for COBOL Programs

Naming Standards in COBOL

Where a format has to be renamed (such as when it appears twice in a program), it
should be renamed to a name of the form ZMMMMXx, where ZMMMM was the original
format name, and x is the suffix of the logical file that is being renamed. Field names can
likewise be renamed from yyMMMM to yxMMMM.

COBOL Field Naming Convention

Wherever possible, the names of fields should be the same as those in the externally
described file from which they are obtained. This helps to standardize the naming of
fields, and also makes the mapping of fields between files, clearer. If necessary, use a
different prefix to indicate that the field is a work field or a device field. For example,
JJCUCD could give P1CUCD, Z1CUCD, and WWCUCD.

Work field :] MM MM

* * Mnemonic
Format identifier

Format identifier—’Il’ is either the format identifier from a database or a device file, or
else a work prefix.

‘Wx’ is reserved for internal COBOL work fields.
‘Pn’ is reserved for passed parameters.

Mnemonic—MMMM is a mnemonic constructed according to the rules given in the
chapter about naming conventions. Note that MMMM is not restricted to four
characters in COBOL, but can be extended up to the limit of the operating system to give
more meaningful names.

For the names of fields which act as accumulators, use an appropriate prefix + the
mnemonic of the field being accumulated. This helps to make the mapping of a field
from format to format, clear. For example:

198 Standards Guide

Coding Standards for COBOL Programs

Special cases:

Program control variables. Fields which do not appear in any externally described
file should be given meaningful names prefixed by a ‘C-’; for example,
C-CHANGE-MODE. Use a hyphen between words.

Arrays. Indicate that a variable is an array by a suffix ‘-A’; for example XF-A.

Array indices. The names of array indices should, if possible, relate to the names of
the arrays they index; they should contain the same letters without the suffix. For
example, XF might be the name of the index for array XF-A, giving XF-A(XF) as an
occurrence.

Standard fields. Fields that serve the same common role in many different
programs may use a single three-character mnemonic to indicate that they are
standard fields; for instance, xxRTN - the return code. The CA 2E application
generator uses this technique.

Parameter fields. Fields that are parameters passed to other types of programs
may, in order to keep the field names the same in both programs, take the field
name as it appears in the other program.

For instance:

COBOL Subroutine and Label Names

Given that COBOL source code is edited online using a small (24 x 80 or 24 x 132) panel,
it is important to make an effective use of subroutine and label names. The subroutine
and label naming conventions for COBOL described below are intended to:

Help distinguish between the major and minor sections of the code

Indicate whether you need to scroll forwards or backwards to find a section of code
R

Relate labels to section names

Subroutine names and label names should take the following forms:

Start : XX MM MM SECTION
End : XX ‘EXIT’ EXIT

Mnemonic
Hierarchical prefix

Chapter 5: Coding Standards for Database Files 199

Coding Standards for COBOL Programs

Subroutine Naming Convention

m Hierarchy prefix—‘XX’ is a hierarchy level prefix, which is the same for all labels in a
given subroutine:

‘AA’ for the main stem.
‘BA-BZ’ for second level routines.
‘CA-CZ’ for third level routines.

‘iA-iZ’ for ith level routines.
‘UA-UZ’ for utility routines (not hierarchical).

‘ZA-ZZ’ for standard routines, e.g. ZASNMS,
message.

®m Subroutine mnemonic—MMMM is a mnemonic describing the subroutine. The
following are reserved standard subroutine mnemonics:

CRRC Create record.
CHRC Change record.
DLRC Delete record.
EXFM Display format.
INIT Initialization.
IZSF Initialize subfile.
1ZZ1 Initialize subfile fields
PRKY Process key fields.
PRSF Process subfile record.
UPRC Update record.
VLKY Validate key fields.
VLDA Validate data fields.
VLRC Validate subfile record
LDSF Load subfile.
PMCF Prompt confirm.
CKRL Check relations.
EXPG Exit program.

ZA SNMS Send message.
MVpp Set up record for format pp.
EXIT End subroutine label.

200 Standards Guide

Coding Standards for COBOL Programs

Labels should be named to stress the construct type according to the following
convention.

Note: This section primarily applies to COBOL ‘74, which lacks consistency in its ability to
handle the most commonly used structured constructs. It is recommended that

pseudo-constructs, with structured GOs, be used instead.

Label naming convention:

Xxz-9999-type(-END) (CASE
(SELECT/SELECT-END
(IF/IF-END
—— Construct type (UNTIL/UNTIL-END

(WHILE/WHILE-END
- Sequence number
Hierarchical prefix

m Hierarchy prefix— ‘XX’ is a hierarchy level prefix, as described above. (In,CA 2E a
suffix of Y or U is added to indicate whether the construct is part of the fixed
program logic or user-defined; for example BBY-, XXU-).

®m Label number—A four-digit integer to make the label unique.
m Construct type—A keyword indicating the structured programming construct the
label represents.

COBOL Parameter and Key Lists

The following naming convention should be used for naming data structures that
represent key lists in order to make the association between the data structure and the
file that it reads, clear:

m List type: ‘K’ for a KLIST.
® Mnemonic (MMMM): the mnemonic of the format being read.
m Suffix (Q): A suffix used to distinguish between lists for the same format/program.

For example, if the format name was ZABAFQQ, the key list would be KABAF.

In standard programs, it may be more appropriate to name key lists after the role they
perform; for example, KRST and KPOS when using restrictor and positioner keys.

Chapter 5: Coding Standards for Database Files 201

Coding Standards for COBOL Programs

COBOL Standard Indicators

Use the FILE-STATUS indicators to communicate with files. For each FILE-STATUS value,
declare a Level 88 item with a meaningful name. For example, declare level 88 items for
use in testing indicators, for example:

m Use the SET statement to turn indicators on or off, for example:

m The DDS indicators (01-99, etc.) should be used as little as possible, as they are
difficult to reconcile with structured programming. The number of indicators
available to program with is in any case fixed, so it is best to reserve their use
for the places where you are obliged to use them. Ideally, indicators should
only be used to:

— communicate with external files

— handle errors on database files

One method you can use to do this is to declare those most commonly used indicators
individually, with those remaining being manipulated, using the above method.

Thus, try to give the same meaning to indicator usage throughout a system. This makes
it easier to understand programs. Use specific indicators for functions that are common
to many programs, such as function keys, and use a different range of indicators for
functions that are specific to a particular program, or part of a program.

Usage of standard indicators in device files should be documented in the device files
using the DDS INDTXT, SETOF, CAnn or CFnn keywords. It should not need to be
repeated in the COBOL program source.

Comment the use of non-volatile indicators—those which have a gl isl scope rather than
a local use; for example ‘IND(87) = Company is insolvent’.

Handling Dates in COBOL

All dates should always be converted to YYMMDD or CYYMMDD format before being
output to a database file.

For more information about data handling, refer to the chapter, "General Coding
Standards."

Note: All Dates should always be converted to YYMMDD or CYYMMDD format before
being output to a database file.

202 Standards Guide

Coding Standards for PL/1 Programs

COBOL Job Name/Operator ID

Calculation Checks

The user profile name and job name should appear on panels and reports. You should
never ‘hard code’ the user profile name as a literal—always get it from the data
structure.

Since this information is readily available from the PGMDS of an RPG Ill program, one
technique is to call a standard RPG Ill subprogram to obtain information about the
operator—user profile name, job name, job number.

You should place the program name in a variable. This facilitates renaming or copying
the program.

The program data structure may be defined using an externally described file. This helps
to standardize its use.

When carrying out calculations, always test that a divisor is not zero before dividing with
it.

Example of testing divisor value:

m [f a calculation result field for a report or display overflows, fill it with 999s.

m Unless specifically told not to, always half-adjust when adding together two fields of
different precision levels.

Coding Standards for PL/1 Programs

These guidelines are concerned with making programs easy to follow. The section is
grouped under the following headings:

Program layout—Basic conventions for documentation and spacing.
m Coding structures—Recommended standard procedures.

m Naming standards—Conventions for naming variables, formats, fields, procedures,
and label names in a consistent manner.

m Techniques—Date handling, job information, calculation checks.

Chapter 5: Coding Standards for Database Files 203

Coding Standards for PL/1 Programs

Program Layout

All programs should follow the standard layout:

1. PROCEDURE statement
2. Header section
2.1 I*T: Title statement */
2.2 Compile overrides (Z*: source directives), ifany
2.3 DCL statement for PGMID variable
2.4 Standard banner (H*: and M*: source directives)
3. Main body - as required by block structure
3.1 Declarations & Copybook statements
3.1.1 Input parameter declarations
3.1.2 Output parameter declarations
3.1.3 File declarations
3.1.4 External procedure declarations
3.1.5 Built in function declarations
3.2 Main processing
3.3 Standard copybooks
3.3.3 ZZINITIALIZE - Initialization

Place the program name in a variable at the beginning of the program. This variable
should have the same name for every program, for example, @PGMID. Use this variable
wherever the program name is needed (for example, on message sending). This makes it
easy to rename the program, or to copy code.

Use only one PL/1 statement per line. Use continuous lines to break the program up into
its logical sections.

; Yappdtad1i: PROCEDURE ($appcde,$alwsel); 1
| /*T: YEDTMDL Select Application area */ |
i /*Z: CRTPLIPGM GENOPT(*OPTIMIZE) */ i
i DCL @pgmid CHAR(10) STATIC INIT(‘YAPPDTAD1I’); /* THIS PGM */ : 1

Three characters are assigned standard meanings:

Major section boundary

ok Kk ok Kk kk ok ok ok ok kK Rk kR %

a. Between blocks of procedures

Minor section boundary

a. Start of procedure

b. Start of main line section

Subsection boundary

a. Section within procedure

204 Standards Guide

Coding Standards for PL/1 Programs

Structured programming constructs should not cross-subsection boundaries; that is, the
following should not occur:

3 IF (IND(01) = *1") :
; THEN DO; 3
3 /* Exit processing */ |
! CALL Yappdtad1i (#sflcti1i.appcde,'Y’); :

The END statement of a procedure should include the procedure name as a label. For
example:

Procedures should be separated by ‘%PAGE’ directives.

Procedures should be prefaced by one or two lines of text to indicate their function. This
should follow the PROCEDURE statement.

3 %PAGE; |
: YY_Calc_iq: PROCEDURE; |
' [f==============z===z=z===z==z=z===z=z==z=z===== % |
i /* Calculate AS/400’s 1Q using HALs algorithm o
! f===========s=s=s=s===s=================z ¥ |
' ww_sysiq = 99999; |
! END YY_Calcig; 3

Chapter 5: Coding Standards for Database Files 205

Coding Standards for PL/1 Programs

Use the following convention to emphasize the logic:
m PL/1 Keywords: Uppercase (such as PROCEDURE)
m Variable names (including file names): lowercase (such as ‘fred’)

m Procedure names: Lowercase, beginning with a capital letter (such as ‘Feedfred’)

Indent code to reflect the structured programming constructs. The standard indentation
is three characters per level.

! /* Application area / ‘

1 IF (#sficti1_i.appcde =") i

; THEN DO; 1

| IF (SUBSTR(#sflctl1_i.appcde,1,1) = ‘7") |

‘ THEN DO;

i CALL Yappdtad1_i (#sflctiti.appcde,’Y’); i
END; 1

| IF (#sf Icti1_i.appcde =) 1

; THEN DO; 1

1 @appdta_key.appcde = #sflctl1_i.appcde; i

| yappdta00l_rtncde = 'Y’;

i READ FILE(yappdta00l) INTO(@appdta) KEY(@appdta_key)

! OPTIONS(RECORD(‘@appdta’));

i IF (yappdtaO0l_rtncde = ‘N’)

1 THEN DO;

| CALL ZM_Sndpgmmsg ('Y2V0140’, ADDR(#sflctl1_i.appcde));

; RETURN;

3 END;

#sflctl1_o.appnme = @appdta.appnme;END; /* FI */
! END; /* FI */

| END; /* FI. ¥/

END; /* FI ¥

ELSE DO; 3

Declaration of Variables
Modularize variable declarations. At the main procedure level, only declare those
variables that are true global variables. Declare other variables within the appropriate

block: do not give variables a wider scope than is necessary.

It is generally preferable not to factorize variable declarations, as it makes it harder to
scan for the existence of a particular variable declaration.

Not:

DCL (a,b,c) CHAR(15);

206 Standards Guide

Coding Standards for PL/1 Programs

But rather:
DCL a CHAR(15); /* Apple */
DCL b CHAR(15); /* Banana */
DCL ¢ CHAR(15); /* Clove */

Include explanations of variables as comments on the DCL statement.

DCL $gross_pay DEC(
DCL S$income_tax DEC(

2); I* I, Gross weekly pay */
2); I* O; Income tax payable */

©o O

For structured variables, use level numbers, such as 1, 5, 10, and 15. This allows for
subsequent insertion of new levels.

| DCL 1 Person_record, [* Personnel data record */ :
i 05 Name, /* Employee name */ l
! 10 First_name CHAR(15), /* Employee first name */ 1
i 10 Last_name CHAR(15), /* Employee surname */ j
! 05 Date_of_birth DEC(8), /* Employee dob (CCYYMMDD) */ |
| 05 Number DEC(5), /* Employee number */ 1
i 05 Job_title CHAR(20); [* Job title */ :

DCL $PARM DEC(7,0); /* Global variable */ |
A_Process: PROCEDURE; }
DCL A_pgm CHAR(10); /* Variable used in A_Process */ 1

Chapter 5: Coding Standards for Database Files 207

Coding Standards for PL/1 Programs

Each file declaration should be preceded by a comment naming the contents of the file.
For logical files, the access path will preferably be indicated. Declare the file and its
related control data structures, such as record, key, and return code, together. This
facilitates the copying of code.

So e o e e e e e e e e e e e e e e e —
*/

/* Application details file - by file */

DCL yappfilo0l FILE RECORD INPUT SEQUENTIAL KEYED

ENV(INDEXED DESCRIBED); :

DCL 1 @appfil, |
%INCLUDE yappfil00l(@appfil, RECORD); :

DCL 1 @appfilKEY, !
%INCLUDE yappfil00OI(@appfil, KEY); :

DCL yappfilOOL_RTNCDE CHAR; !
ON ENDFILE(yappfilOOL) yappfilOOirtncde = ‘N’; :

ON KEY (yappfilOOL) yappfil0Olrtncde = ‘N’; |

It is essential to have the same file usage throughout all programs that will form a single
run unit. If file usages conflict, an execution time error is almost inevitable. For example,
not as follows:

__

A:PROC;
DCL yappfil00l FILE RECORD INPUT SEQL
ENV(INDEXED DESCRIBED),

B:PROC;
DCL yappfil00l FILE RECORD UPDATE DIRECT
ENV(INDEXED DESCRIBED);

208 Standards Guide

Coding Standards for PL/1 Programs

Copy Books

Use standard copy book members to declare standard structures. Standard structures
for which there should be copy books include:

m Indicators
m Open feedback areas
m File information feedback

m Sub file control variables

areas

The following examples illustrate copy books for these structures.

Copy Book for Indicators:

: COPYBOOK : Indicator definitions

. SYSTEM : SPROCKETS & WIDGETS

: PROGRAMMER: PW

: COPYRIGHT 1989 WIDGETS LTD

DCL 1 indicators, /* Device file indicators

; %INCLUDE QPLICPY (opnfdb); /* Open feedback area

T ‘
| %

' /*H*: COPYBOOK : Open feedback area

§ i*H:/SYSTEM : SPROCKETS & WIDGETS

/fH: PROGRAMMER T PW

i {“{H: COPYRIGHT 1989 WIDGETS LTD

i [;CL 1 opnfdb, /* Open feedback area

3 */ 05 odptyp CHAR(2), /* ODP type

§ */ 05 fil CHAR(10), /* File name

; ! 05 lib CHAR(10), /* Library name

i */ 05 fillo1 CHAR(22), /* not used

§ *j 05 maxrcdlen BIN(15) UNALIGNED, /* Maximum record length

Chapter 5: Coding Standards for Database Files

209

Coding Standards for PL/1 Programs

Copy Book for /O Feedback Area Variables - Display File

10 sflredtop BIN(15) UNALIGNED;

/* SFLRCD after ROLL ke */

%INCLUDE QPLICPY (iofdbdbf); /*1/0 feedback - DBF !
o e e %
/*H: COPYBOOK : /O feedback area - Database file *
/*H: SYSTEM : SPROCKETS & WIDGETS *
/*H: PROGRAMMER : PW *
/*H: COPYRIGHT 1989 WIDGETS LTD */
DCL 1 iofdbdbf, /* 1/0 feedback - DBF !
05 fillo1 CHAR(20), /* not used !
05 fmtvnm CHAR(10), /* Record format name */
05 fill02 CHAR(12), /* not used *
05 rcdlen BIN(31) UNALIGNED, /* Record length *
05 fillo3 CHAR(98), /* not used *
/* Database file feedback area * /
05 fillo4 CHAR(19) /* not used */
05 ditind CHAR(1), /* Deleted X'10" not X'00" */
05 nbrkeyfld BIN(15) UNALIGNED, /* No. of key fields !
05 fillo5 CHAR(4), /* not used *
05 keylen BIN(15) UNALIGNED /* No. of key fields *
05 mbrnbr BIN(15) UNALIGNED, /* Data mbr no *
05 rednbr BIN(31) UNALIGNED, /* Rel red no in data mbr */
05 key CHAR(120); /* Key value(variable) *
P ... %
3 %INCLUDE QPLICPY (iofdb_dspf); /* 1/0 feedback - DSPF *
! A i e *
3 /*H: COPYBOOK : 1/0 feedback area - Display file *I
! [*H: SYSTEM : SPROCKETS & WIDGETS *!
3 /*"H: PROGRAMMER: PW *
! /*H: COPYRIGHT 1989 WIDGETS LTD *
} DCL 1 iofdb_dspf, 1*1/0 feedback area *I
! 05 offset BIN(15) UNALIGNED, /* Offset !
3 05 fill01 CHAR(142), /* not used *
! 05 devdep_iofdb_dspf,
3 10 fillo2 CHAR(2), /* not used */
| 10 aid BIT(8) ALIGNED, /* AID byte */
3 10 rowcol BIN(15) UNALIGNED, /* Display rowcol */
3 10 fillo3 CHAR(6), /* not used */

I %
Copy Book for I/O Feedback Area Variables - Print File
%INCLUDE QPLICPY (iofd_bprtf); /* 1/0 feedback - PRTF *
P e i %
/*H: COPYBOOK : 1/0 feedback area - Print file *
/*H: SYSTEM : SPROCKETS & WIDGETS *
/*H: PROGRAMMER: PW *
/*H: COPYRIGHT 1989 WIDGETS LTD */
DCL 1 iofdb_prtf, /* 1/0O feedback area */
05 offset BIN(15) UNALIGNED, /* Offset *
05 fillo1 CHAR(142), /* not used */

05 devdep_iofdb_prtf,
10 linnbr BIN(15) UNALIGNED,
10 pagnbr BIN(15) UNALIGNED;

/* Current line number *
/* Current page number */

210

Standards Guide

PL/1 Coding Structures and Program Logic

Copy Book for Subfile Control Variables

} %INCLUDE QPLICPY (sflctl); /* Subfile control variables */
; o e e e wo
i /*H: COPYBOOK . Subfile control variables VA
! /*H: SYSTEM : SPROCKETS & WIDGETS o
3 /*H: PROGRAMMER : PW oo
| /*H: COPYRIGHT 1989 WIDGETS LTD oo
3 DCL /* Screen control fields */ :
| sflrcdchar CHAR(4), /* SFLRCD from read modified o
} sflpag DEC (4), /* SFL page A
' sflrcd DEC (4), /* SFL record no WA
: sflrcdmax DEC (4); /* Max SFL record no */ i
! A e e o

PL/1 Coding Structures and Program Logic

Keep programs small and manageable—500-1000 lines is the maximum length
recommended.

Structured programming operations should be used where possible. For example, use IF
rather than GOTO. The corresponding END and ELSE statements should indicate the
matching operations by means of comments.

' DO WHILE (z); ;
: IF (x) :
: THEN DO;]
! SELECT; :
; WHEN (a) i
! DO; i
: END; ‘
: WHEN (b) }
' DO; 3
: END; |
: OTHERWISE ;
1 DO; ;
! END; :
; END; /* SAC */ 1
! END; /* FI %/ :
: END; /* WOD */ i

Chapter 5: Coding Standards for Database Files 211

PL/1 Coding Structures and Program Logic

Use SELECT structures in preference to nested IF/ELSE statements— they are easier to
follow:

Do this Not this
SELECT; IF (a)
WHEN (a) . . . THEN
WHEN (b) . . . ELSE DO;
WHEN (c) . .. IF (b)
END; THEN
ELSE DO;
IF (c)
THEN
END;
END;

Note: Avoid nesting structured programming operations too deeply, such as more than
four or five levels of nesting in a given procedure level. If more are needed, use another
procedure.

Programs should be as structured as possible. A program is not ‘structured’ just because
it only uses structured operation codes. A structured program is one that is modularized
in an efficient way, and built up out of the structured programming constructs -
SEQUENCE, SELECTION (CASE) or ITERATION, and structured combinations thereof. The
constructs might even be implemented logically (for instance with GOTOs and labels
used in a structured manner) rather than with specific HLL structured operation codes.

Avoid testing compound negative conditions when possible—they are harder to
understand, for example, not:

IF(A&B)| (A&B) | (A&B))

212 Standards Guide

PL/1 Coding Structures and Program Logic

The PL/1 statements used to code the reading of a group of records from a file should
be highly standardized. A standard loop:

m stresses the ‘device independence’ of the data. The file name, which is all that
differs between different instances of the loop, appears at the beginning of the
code.

m serves as a standard construct that other programmers can instantly recognize as
signifying the retrieval of a set of records. Although PL/1 only has operation codes
that will process one record at a time, there is very often a requirement to process
a whole set of records from a file, such as all order records for a given customer.
The loop construct emphasizes the ‘set’ nature of your processing, which is
generally easier to understand.

/* Read all records from file */

/* Position on file & read first record */

@fmt_keykeyfld = . . .

file_rtncde = Y’;

READ FILE(file) INTO(@fmt) KEY(@fmt_key)
OPTIONS(RECORD(‘@fmt’));

IF (file_rtncde = ‘N’)

THEN DO;

No records found processing

DO WHILE (file_rtncde = Y’);

/* For each record found . .. */

Record found processing

/* Read next record */

READ FILE(file) INTO(@fmt)
OPTIONS(RECORD(@fmt));

END;

3 END;
: End of file processing

Standard Procedures

Use standard copy book members to declare standard procedures. Standard procedures
for which there should be copy books include:

® Message sending

m String handling

System-wide procedures should have names beginning with the letter ‘Z’.

Chapter 5: Coding Standards for Database Files 213

PL/1 Coding Structures and Program Logic

Messagde Sending Procedure

This procedure calls a subprogram to send a message to the calling program’s message
queue.

/’{H: COPYBOOK : Send program message

/}H: SYSTEM : SPROCKETS & WIDGETS

ﬁfH: PROGRAMMER : PW

/fH: COPYRIGHT 1989 WIDGETS LTD

Z/MSndpgmmsg: PROCEDURE(zm_msgid,zm_msgdta,zm_msgtype,
zm_topgmg,zm_relq);

*/
/* Send message to specified program message queue.
*
/f========z==z=z==z==z=z==z==z=z==z=====z==z======-=
I
DCL zm_msgid CHAR(7), / * Message id
*/
zm_msgdta CHAR(132), /* Message data
*/
zm_msgtype CHAR(7), /* Message type (*DIAG, *ESCAPE etc)
*/
zm_topgmq CHAR(10), /* Named program
*/
zm_relq CHAR(5); /* Relative program queue
*/

DCL Ysndmsgric ENTRY (CHAR(10),CHAR(5),CHAR(7),CHAR(132),CHAR(7))

214 Standards Guide

PL/1 Coding Structures and Program Logic

Return string length:

/*H: COPYBOOK : Return string length
/*H: SYSTEM : SPROCKETS & WIDGETS
/*H: PROGRAMMER: PW

/*H: COPYRIGHT 1989 WIDGETS LTD

ZL_Chrlen: PROCEDURE (zl_chr) RETURNS(DEC(5));
f=========z=z=z=z=z====z=z=z=z=================
*

/* Determine length of character string ignoring trailing blanks */

*

DCL zl_chr CHAR(*);

DCL zl_ptr PTR,
zl_x (2048) CHAR BASED(zl_ptr),
z|_len DEC(5);

z|_ptr = ADDR(zl_chr);

DO zI_len = LENGTH(zl_chr) TO 1 BY -1;
IF (zI_x(zl_len) = ")
THEN DO;
RETURN (zl_len);
END;

/*H: COPYBOOK : Convert Char to char varying
/fH: SYSTEM : SPROCKETS & WIDGETS
;*H: PROGRAMMER : PW

/‘H:/COPYRIGHT 1989 WIDGETS LTD
Z/VChrvry' PROCEDURE (zv_chr) RETURNS(CHAR (256) VARYING);

R

/* Convert CHAR to CHAR VARYING dropping trailing blanks.

% !

*
DCL zv_chr CHAR(*);

DCL zv_ptr PTR,

zv_x (256) CHAR BASED(zv_ptr),
zv_len DEC(3,0);

IF (zv_chr =)
THEN RETURN ();

zv_ptr = ADDR(zv_chr);
DO zv_len = LENGTH(zvchr) TO 1 BY -1;
IF (zv_x(zv_len) =)

| %

Chapter 5: Coding Standards for Database Files 215

PL/1 Coding Structures and

Program Logic

Naming Standards

PL/1 Field Names

For display file formats, use ‘I’ as a suffix to indicate an input format, and ‘O’ as a suffix
to indicate an output format, because the contents of the two formats may be different.

E DCL 1 #sflctl_1i, /* SFL control input fields */ !
E %INCLUDE yreldtae 1#(#sflctl1,INPUT); |
H DCL 1 #sfictl1_o, /* SFL control output fields */ :

' %INCLUDE yreldtae 1#(#sflcti1,OUTPUT);

Program field names should follow the rules laid out in the naming convention.

The names of fields should, wherever possible, be the same as those in the file from
which they are obtained. This helps to standardize the field naming, and also makes the
mapping of fields between files clearer. Any reference to a field should normally be
qualified by the name of the structure to which it belongs, wherever possible (for
example, if not subject to the restrictions of other HLLs).

Otherwise, build up externally defined names from three-character 0OS/400-style
mnemonics:

ALWDLT FIL CUSCDE
Use suffixes to indicate the data type as appropriate:
VNM CHR PTR

Name control variables based on files and data structures by the based-on structure
name and a suffix:

| DCL yreldtaO1l FILE RECORD INPUT SEQL KEYED :
! ENV(INDEXED DESCRIBED); |
‘ DCL 1 @reldta, i
f %INCLUDE yreldtaO1l(@reldta,RECORD); |
3 DCL yreldtaO1l_rtncde CHAR; ;
| DCL jobdtaptr PTR EXTERNAL; :
! DCL 1 jobdta BASED(jobdta_ptr), /* Job details */ |
1 %INCLUDE yjobdtaptp(@jobdta, RECORD); :

For the names of fields that act as accumulators, use an appropriate prefix or suffix
appended to the name of the field being accumulated. This helps to make the mapping
of a field from format to format, clear. For example:

i stkqty_tot1 = stkqty_tot1+ stkqty " Accumulate */ 3
P stkqty_tot2 = stkatytot2 + stkqty_tot " *Accumulate */ |
L stkqty_tot3 = stkaty_tot3 + stkqty_tot2 [**Accumulate */ |

216 Standards Guide

PL/1 Coding Structures and Program Logic

Arrays—It may be useful to give the names of arrays a suffix *_ARR’, such as
‘stkqty_arr’.

Array indices—The names of array indices should, if possible, relate to the names of
the arrays they index. They should contain the same letters, such as ‘stkqty_idx’.

Parameter fields—Fields which are parameters passed to the current program
should be prefixed by a ‘$’, for example:

PL/1 Procedure and Label Names

Given that PL/1 source code is edited online using a small (24 x 80 or 24 x 132) panel, it
is important to make an effective use of procedure and label names. The procedure and
label naming conventions for PL/1 described below are intended to:

Help distinguish between the major and minor sections of the code

Indicate whether you need to scroll forward or backward to find a section of code

Procedure Naming Convention

Procedure names and label names should consist of meaningful mnemonics, connected
by an underscore, and prefixed by a label group to indicate the relative hierarchy:

High-level procedures should have a single-letter prefix, such as ‘A_’, ‘B_".
2nd level procedures should have a two-letter prefix, such as ‘AB_’, ‘AC_’, ‘BA_".
3rd level subroutines should have a three letter prefix, such as ‘ABA_’, ‘BBC_".

General-purpose procedures should have a two-letter prefix: ‘Z’ label, such as
‘ZH_.

Chapter 5: Coding Standards for Database Files 217

PL/1 Coding Structures and Program Logic

PL/1 Standard Indicators

The indicators, such as 01-99, should be used as little as possible, as they are difficult to
reconcile with structured programming. The number of indicators available is fixed, so it
is best to reserve their use for the places where you have to use them. Ideally, indicators
should only be used to communicate with external files.

Try to give the same meaning to indicator usage throughout a system and across all
HLLs. This makes it easier to understand programs. Use specific indicators for functions
that are common to many programs, such as command keys, and use a different range
of indicators for functions, which are specific to a particular program, or part of a
program. Indicator usage should adhere to the following convention:

KA-KG

01-24
25-29
25
26
27
28
30

31-79
79-31

80-84
80
81
82
83
84
86
88

90-99
920
91
92
95

Should not be used for command keys,

as they cannot be set on, nor documented
with the DDS INDTXT keyword.

Command keys and/or command function keys
Function keys

Help

Print

Roll up

Roll down

Home

Device file fields/field errors
Field conditioning indicators

Device and/or subfile control
SLFCLR

SFLDSP

SFLEND

INVITE

SFLNXTCHG

PUTOVR

Print file opeen

Volatile work indicators
Record does not exist
Record locked

Subfile record not found
Level 1 nested read loop

Usage of standard indicators in device files should be documented in the device files
using the DDS INDTXT, SETOF, CAnn or CFnn keywords—it should not need to be

repeated in the PL/1 program source.

218 Standards Guide

Command Coding Conventions

Command Coding Conventions

This section discusses standards for coding user-defined commands, defining

commands, and details standards for command processing, validity checking, and
prompt override programs.

For more information, refer to the appendix, "Programming and Coding Examples."

Layout of Command Definition Source

All command definition source should follow the standard layout.

1. CMD statement.
2. Header block.
2.1 Title *T: source directive.
2.2 Compile overrides (Z*: source directives), if
any.
2.3 Standard banner (H*: and M*: source
directives).
3. Main body.
3.1 Required parameters.
3.2 Other parameters.
3.2.1 PMTCTL statements.
4. Dependency checks (DEP statements).

Chapter 5: Coding Standards for Database Files 219

Command Coding Conventions

Order of Parameters

When ordering parameters within commands, place the parameters that identify the
object being operated on, first. For example, on a ‘Create Library List Object’ command,
place the identifier of the library list first. Often, this will be a key parameter
(KEYPARM(*YES)).

Always place required parameters before the other parameters. Do not use numeric
reordering of prompting if the parameter has a value other than MIN(0), as allowed for
the PROMPT keyword on command definition statements. Doing so gives undesirable
results when using the command prompter with positionally specified parameters.

Place the parameters, whose values are most likely to be changed by the user, before
the other parameters.

Use the MAXPOS keyword on the 0S/400 Create Command (CRTCMD) command if you
know or suspect that it will be necessary to add additional parameters at a later date,
and that the new parameters will need to be inserted in a position before one of the
existing parameters. In any case, specify MAXPOS for all commands with a lot of
parameters.

Place any ‘Element definition’ (ELEM) and ‘Qualifier definition’ (QUAL) statements to
define command parameters that are lists, immediately after the first PARM statement
they describe. This facilitates the copying of code from one member to another. For IBM
i commands, PMTCTL statements should also be placed adjacent to the PARM
statement they control.

/*H: 1. Help file name and library */
PARM KWD(FILE) TYPE(FL) PROMPT(YYF1001) FILE(*IN) +
PMTCTL(FLPMT)
FL: QUAL TYPE(*NAME) DFT(QTXTSRC) SPCVAL((*DTAARA)) /* File */
QUAL TYPE(*NAME) PROMPT(YYLO001) /* Library */ +
DFT(*LIBL) SPCVAL((*LIBL))
FLPMT: PMTCTL CTL(OBJTYPE) COND(*EQ *FILE)

220 Standards Guide

Command Coding Conventions

Compiler Overrides

Use the CA 2E Toolkit Compile preprocessor to include any compile time overrides for
the OS/400 Create Command (CRTCMD) command in the source.

For more information, refer to the Toolkit Concepts Guide.

The compile time overrides should include:

m The name of the command processing program (CPP) (keyword PGM)
m The name of any validity checking program (keyword VLDCKR)

m Any mode or environment restrictions (keywords MODE and ALLOW)

®m The names of any prompt or execution message files (keywords MSGF and
PMTFILE)

m The name of any prompt override program (keyword PMTOVRPGM)
m The name of any help panel group. (keywords HLPPNLGRP and HLPID)

If there is a requirement to translate the application into other national languages, then
prompt text should be obtained from predefined messages in a message file:

/*Z: CRTCMD PGM(YDCROBC@) ALLOW(*INTERACT *IPGM *EXEC) */
I*Z: VLDCKR(YDCROBC@) PMTFILE(YCMDPMT) MAXPOS(5) */

Cross-reference Data

If the parameter specifies an object whose usage should be cross-referenced, such as a
file, program or data area, specify the object usage on the command definition
statements PARM and ELEM, using the FILE, PGM or DTAARA keywords. This will ensure
that the output of the 0S/400 Display Program References (DSPPGMREF) command is
correct. For example:

/*H: 1. Data area name. *
PARM KWD(DTAARA) TYPE(*NAME) DTAARA(*YES) PROMPT(YYDO0001)
/*H: 2. Program name. *
PARM KWD(PGM) TYPE(*GENERIC) PGM(*YES) PROMPT(YYP0001)
/*H: 3. Qualified file name. *
PARM KWD(FILE) TYPE(FL) PROMPT(YYF1001) FILE(*IN)
FL: QUAL TYPE(*NAME) DFT(QTXTSRC) /* File */
QUAL TYPE(*NAME) PROMPT(YYLO0001) /* Library */ +
DFT(*LIBL) SPCVAL((*LIBL))

Chapter 5: Coding Standards for Database Files 221

Command Coding Conventions

Command processing programs (CPP)

A command-processing program is the program to which a command hands control
once it has validated the entry parameters. Command processing programs are normal
CL or other HLL programs to which some extra considerations should be applied.

You should ensure that your CPPs handle processing and messages in a manner that is
consistent with standard CL command usage. In particular:

Processing to check for the presence of all required objects and the authorization to
use those objects should be carried out before any processing which changes any
data or objects starts. This helps to ensure that the command runs cleanly: either it
functions completely, or not at all. The CL Check Object (CHKOBJ) command is a
relatively fast operation.

If errors occur in a command-processing program, the errors should be
retransmitted to the invoking program. An escape message should be sent,
preceded by diagnostic messages if appropriate. This will help the user to diagnose
the cause of the fault. Refer to the chapter on CL programming for an example.

Command-processing programs should send a completion message, containing
substitution data if relevant; for example, "Object FRED deleted". The substitution
data should be as specific as possible.

Command processing programs should remove irrelevant messages from the log, in
other words from the program message queue of the receiving program. This can
be achieved using the 0S/400 Receive message (RCVMSG) command.

For example:

CHKOBJ OBJ(QTEMP/WORK) OBJTYPE(*FILE)
MONMSG MSGID(CPF9801) EXEC(DO) /* Create if not found */
RCVMSG MSGTYPE(*EXCP) RMVMSG(*YES) /* Suppress msg

CRTPF FILE(QTEMP/WORK) RCDLEN(80)
ENDDO

Command processing programs that process generic lists of items should be structured
so that:

A diagnostic or a completion message is sent to the CPP for each item processed;
for example "Object &1 already exists - ignored".

An overall completion message is sent to the program that invokes the command;
for example "&1 objects successfully processed, &2 errors".

Note: It is particularly important to do this so that the user can determine which items
the command has actually processed.

222 Standards Guide

Command Coding Conventions

Command Validity Checking Programs

A validity-checking program is a user-defined subprogram, which can be associated with
a user-defined command. The validity checker will be called by the final stage of
execution of the 0S/400 command prompter, before it hands over control to the
CPP—it can be used to carry out any user-defined validation of the command
parameters.

If used at all, validity checking programs should only carry out limited validation; for
instance, any cross-checking of parameters that cannot be achieved with the CL
‘Dependency definition” (DEP) command definition statement. This should only be
necessary when checking the components of lists and qualified names.

Validity checkers should not check for the existence of objects or other entities, nor
should they be used to invoke selection functions. This is because the validity checker is
invoked whenever the 0S/400 command prompter or syntax checker is invoked for the
command, even if the command is not executed.

Validity checking programs should resend diagnostics, using the standard 0S/400
message - CPD0006 in QCPFMSG.

If validity checking fails, the errors should be retransmitted to the invoking program
(which is always the command prompter) as diagnostics; and an escape message

(CPF0002) should be sent to return control.

Example of code to resend a diagnostic to the prompter:

/*H: 99. ERROR HANDLING */

ERROR: RCVMSG MSGTYPE(*EXCP) MSG(&MSG)
SNDMSG: SNDPGM MSG MSGID(CPD0006) MSGF(QCPFMSG)
MSGDTA('0000’+

&MSG) MSGTYPE(*DIAG)

SNDPGM MSG MSGID(CPF0002) MSGF(QCPFMSG)
MSGTYPE(*ESCAPE)

Chapter 5: Coding Standards for Database Files 223

Command Coding Conventions

Prompt Override Programs

Prompt override programs (POP) should be provided for those commands that allow the
changing of the attributes of existing objects, in particular for ‘CHG’ commands. The
object to be changed should be used as the keyword object. If a ‘retrieve’ (RTV)
command exists for the object type, it should be used to obtain the object details.

The example shows a fragment of prompt override program for a command,
YCHGLIBLST. The prompt override program retrieves the details for any existing library

list and uses them to override the existing values.

Example of a prompt override program - CMD source:

CMD PROMPT(YLLO001)

/*T: Change library list object. */

/*Z: CRTCMD PGM(YYCHLLC@) PMTFILE(Y1MSG) MSGF(Y1MSG) */
1*Z: HLPPNLGRP(Y1CMDHLP) HLPID(*CMD) */

1*Z: MAXPOS(2) PMTOVRPGM(Y1CHLLC) */

PR KR R KR KR Kk KKK KK KR R K KK KR KKK KR KK KKK KK KR KK KKK KK KK KR
PR R R KR KR Kk KK R KK KRR K KK KR K KK KR KK KKK KK KR KK KKK KK kK KA
/*H: P. Library list. */
PARM KWD(LIBLST) TYPE(LL) KEYPARM(*YES) +
PROMPT(KLL0001) MIN(1)
LL: QUAL TYPE(*NAME)
QUAL TYPE(*NAME) DFT(*CURLIB) SPCVAL(+
(*CURLIB)) PROMPT(KLB0001)

/*H: P. Current library. */
PARM KWD(CURLIB) TYPE(*NAME) DFT(*SAME) +
SPCVAL((*SAME) (*CURRENT) (*CRTDFT) (*USRPRF)) +
PROMPT(KLBO0005)

224 Standards Guide

Command Coding Conventions

Example of a prompt override program - CL source:

PGM (&CL &LL &CMDSTR)
/T

JEOK KK KRk K Kk Kk Kk kK K K kR K Kk K K K K K R K K K kR K K K K K K K Rk K Kk

/* Entry parameters */

DCL &CL *CHAR 20
DCL &CMD *CHAR 10
DCL &CMDLIB *CHAR 10

DCL &LL *CHAR 20
DCL &LIBLST *CHAR 10
DCL &LIBLSTLIB *CHAR 10

DCL &CMDSTR *CHAR 512
DCL &CMDLEN *CHAR 2
DCL &X *DEC 5 (511)
DCL &CMDRQS *CHAR 510

YCHGLIBLST Change library list POP. */
/*Z: CRTCLPGM LOG(*NO) ALWRTVSRC(*NO) */

JEOR KK R R kK Kk K K Kk kK K Kk kK Kk K K K R K K K K K R R Kk K K K K K R kK K k)

/* command name */
/* command library */

/* list name */
/* list library */

/* command || library */

/* library list/library */

/* Command string */
/* str length B */

/* work index */

/* string */

/* Work variables */
DCL &CURLIB *CHAR 10 /* library list current library */
@PROGRAM CODE = /*H: 0. Global monitor for errors */
MONMSG (CPF0000 YYY0000) EXEC(GOTO ERROR)

/*H: 1. Process parameters */
CHGVAR &LIBLST (%SST(&LL 1 10))
CHGVAR &LIBLSTLIB (%SST(&LL 11 10))

/*H: 2. Get existing values */
YRTVLIBLST LIBLST(&LIBLSTLIB/&LIBLST)
CURLIB(&CURLIB)

/*H: 3. Add LIBLST parms to string */
/*H: 3.1 CURLIB*/
CHGVAR &CMDRQS (‘CURLIB(‘&CURLIB’)")

/*H: 4. Add LIBLST parms to string */

LOOP: CHGVAR &X (&X - 1) /* COUNT LENGTH OF STRING */
IF (%SST(&CMDRQS &X 1) =* ‘) GOTO LOOP
YCVTDECBN2 DEC(&X) BIN(&CMDLEN)
CHGVAR &CMDSTR (&CMDLEN&CMDRQS)

ENDPGM: RETURN

standard error handling

Note: If a command string contains text parameters, the POP must double up any
apostrophes in the text or else they will cause errors.

Note: Help groups should be provided for all commands.

Chapter 5: Coding Standards for Database Files 225

Coding Standards for Messages

Coding Standards for Messages

This section describes design and coding standards for messages. It explains how
messages are used and provides standards for defining and sending messages.

The midrange architecture has fast, sophisticated message handling facilities you can
use to send and receive messages in your own HLL programs. Messages can be used
both as an invocation/return control mechanism and to handle text. This section mainly
considers the latter.

0S/400 message descriptions provide a program - independent mechanism for storing
natural language text fragments, thus making it possible to translate a system without
changing the non-text objects in a system. When you build an application, you can use
0S/400 messages in two different ways:

m As prompt messages: The text prompts used on commands, menus, panels, and
reports, can all be isolated from the device file and command source and stored as
external message definitions. Prompt messages normally only require first level
text. (You may use the second level text for notes for translators).

m As execution messages: Execution messages are sent and received at execution.
They both provide a control mechanism to determine the subsequent processing
and can be used to provide the user with a natural language explanation of what
has taken place or has gone wrong. They may have substitution variables and
second level text.

Prompt Messades

Prompt messages are used to enable translation of the text into other National
Languages and also to ensure consistency in the use of a given term. In particular you
will want to ensure that the prompt used in panels and in help text corresponds exactly.

226 Standards Guide

Coding Standards for Messages

Prompt Types

There are a number of different types of text element that make up UIS conformant
panels. You should ensure that each type follows the correct UIS standards for its type.
See the sections on design and coding for each object type for further information on
the rules.

The following is a summary of the different types of prompt commonly found in an
application:

m Commands

Command titles. Capitalized.

Command parameter prompts. First letter capitalized.

® Panel elements

Panel titles. Capitalized, centered.

Panel top instructions. There are a number of standard formulations, for
example, ‘Type choices, press Enter’. Set up standard definitions and reuse
them where possible.

Panel options. This should follow UIS layout standards (for example 4=Delete).
Do not attempt to reuse messages but instead, provide a separate message for
each display. Use a single message for the whole line—this makes it easier for
translators to abbreviate.

Panel column headings. Again, do not attempt to reuse messages but instead
provide a separate message for each display. Use a single message for the
whole line—this makes it easier for translators to abbreviate.

Field labels. Use an initial capital and pad any trailing blanks with periods. Do
not use a 2’ Hard code it in the DDS.

Field right hand side text. Capitalized, punctuated by commas.

There are a number of frequently occurring items (for example "Name, F4 for list"),
which should be set up centrally and reused when possible.

m Function key instructions. This should follow UIS layout standards (for example,
F3=Exit). Do not attempt to reuse messages but instead, provide a separate
message for each display. Use a single message for the whole line.

= Help text

m Panel titles. Use the panel title with "- Help" appended. (Use the UIM &msg
facility to define ("Help") as a reusable message.

m Extended headings. Use the field labels prompts for the headings that appear in
extended help display (UIM “:XH3’ tag).

m Panel options. Use standard messages for each function key label ("Delete",

"Change", "Rename", etc.).

Chapter 5: Coding Standards for Database Files 227

Coding Standards for Messages

m Field value names. Use lower case with hyphens, for example, library-name.
Use apostrophes to indicate a quoted string for example ‘text-description’.

m Function keys. Use standard messages for each function key label ("Home",
"Print", "Exit", etc.).

Execution Messages

The midrange architecture has fast, sophisticated message handling facilities you may
use to send and receive messages in your own HLL programs. You should take care to
use messages in a manner consistent with the way 0S/400 uses messages.

Messages should be used by programs to provide a constant dialogue, so that for each
step that a user takes an error, a diagnostic or a completion message is given.

All program messages should be externally defined, and retrieved at run time from the
system application message file. Using external messages gives you:

m Easy translation into other national languages
m Substitution variables within messages

m Second level Help text

m Standardization of messages

m Easy correction of messages
Note: The 0OS/400 message severity conventions should be followed.
For more information, refer to the AS/400 CL Programmers Guide.

As far as possible, make use of existing 0S/400 messages—doing so reduces the amount
of work you have to do, both in specification and to translate message text into other
national languages. Programs should trap and resend the messages they receive.

/*H: 1. Check for existence and authorisation */

CHKOBJ OBJ(FORTKNOX) OBJTYPE(*FILE) AUT(*READ) ;

MONMSG CPF0000 EXEC(DO) 1
RCVMSG MSGTYPE(*EXCP) MSGDTA(&MSGDTA) MSGID(&MSGID) :

; MSGF(&MSGF) MSGFLIB(&MSGFLIB)
; SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&MSGF) +
; MSGTYPE(*ESCAPE) MSGDTA(&MSGDTA)

If you need the diagnostic messages to appear as well on the calling programs queue,
you can use the V2R2 QMHMOVPM API.

DCL &ERRCDE *CHAR 4 X’00000000’
DCL &PGMSTK *CHAR 4 X’00000001’

CALL QMHMOVPM (* * "“ESCAPE *DIAG *INFO *COMP * +
&NBRTYP * &PGMSTK &ERRCDE)

228 Standards Guide

Coding Standards for Messages

Message substitution variables should be used where helpful—they can be particularly
useful in conjunction with input capable subfiles, as the variables can be used to
distinguish which line in the subfile is in error. For example, on a subfile panel that
shows many products, ‘Product code &1 not found’ (where &1 is the missing product)
will be more useful than just ‘Product code not found’.

Add message:

ADDMSGD MSGID(USR0004) MSGF(QUSRMSG) +
MSG(‘Product &1 not found’) FMT((*CHAR 6)) SEV(10)

Use in program:

3 SNDPGMMSG MSGID(USR0004) MSGF(QUSRMSG) MSGDTA(&PRODUCT) + |
| MSGTYPE(DIAG\ !

Chapter 5: Coding Standards for Database Files 229

Coding Standards for Messages

Destination for Messades

The following general points should be observed about the destination of execution
messages:

m Escape messages should be resent to the invoking program. This will cause them to
‘cascade’ back, unless a particular program in the invocation stack monitors for
them explicitly. 0S/400 V2R2 provides message handling APIs that make this easy
to do from HLL's other than CL. Using the APIs, you may wish to pass an invocation
number as a parameter to indicate where the message should be sent.

m A final completion message should be sent to the invoking program. It will then
appear in the job log.

m Status messages are, by definition, sent to the external message queue.

m Other message types—diagnostic or informational—should normally be left on the
program queue to which they were sent. They will then be available if the second
level messages are displayed (for instance, by pressing F10 from the 0S/400
‘Command entry’ display (QCMD) on the IBM i).

For example, suppose a command calls a command-processing program, which in turn
calls several subprograms.

Diagram of Destinations for Messages:

ESCAPE ESCAPE ESCAPE ESCAPE ESCAPE
Command . PGMA PGMB PGMC PGMD
ComP INFO INFO INFO INFO
DIAG DIAG DIAG DIAG
COMP COMP COMP COMP
STATUS STATUS STATUS STATUS

If the program is a request-processing program, you should ensure that a copy of the
request is placed in the log so that the retrieve (F9) facility of other programs can be
used to retrieve it.

Functions which process a number of items should return a count of the number of
objects successfully processed as their completion message. For example:

&1 Objects moved: &2 added, &3 replaced. &4 not moved.
Long running jobs should send status messages to report the job’s progress. For

instance, ‘Records being copied to file QTXTSRC’, ‘Work space is being loaded’, ‘Entire
system is being backed up’. This can be done as follows:

230 Standards Guide

Coding Standards for Messages

| SNDPGMMSG MSGID(USR0001) MSGF(QUSRMSG) MSGDTA(&FILE&FLIB) + |
3 TOPGMQ(*EXT) MSGTYPE(*STATUS) !

Retrieving Messades

Messages can also be used to store information required by HLL programs, such as file
overrides, and program call request strings. Message substitution variables can be used
to substitute program variables into the request messages before execution.

This technique provides great flexibility in implementation since the content of the
retrieved message may be changed at any time using the 0S/400 Change Message
Description (CHGMSGD) command. The drawback, apart from a slight performance
overhead, is that the system is less transparent to understand, and the called function
cannot be cross-referenced automatically.

| /*H: 1. Execute DSPOBJAUT for supplied value */
} RTVMSG MSGID(USR0034) MSGDTA(&MSGDTA) MSG(&MSG) +

| MSGLEN(&MSGLEN)

i CALL QCMDEXC (&MSG &MSGLEN)

The V2R1 APl QMHRTVM can be used to retrieve message text directly into an HLL.

Chapter 5: Coding Standards for Database Files 231

Standards for Defining Messades

Standards for Defining Messages

Use separate message files for:

m Execution messages: All messages which are sent by an application at run time as
*INFO, *COMP, *ESCAPE *STATUS or *NOTIFY. Message text that is retrieved for

use in programs should also be placed in this file.

® Prompt messages: Messages needed for panel, menu and command prompts.

If the default user message file ‘QUSRMSG’ is not used, then the execution and prompt
message files should be called xmmmMSG, and xyyyPMT respectively, where x is the

system prefix, and ‘mmm’ the application mnemonic.

Message identifiers should follow this convention:

m Message prefix (MMm) is the same for all messages in the application system. The

following are reserved values:

Message identifier :

MMm nnnn

*, M ge humber

Message prefix

QSYS |QCPFMSG CPx,CAE ,KBD,MCH,QWM,QW
X
QSYS |QCBLMSGE |CBE, CBX
QSYS |[QFTOMSGE |FTE, FTX
QSYS | QCUBMSG CUB, CUX
QSYS |QRMMSGE RME, RMX
QSYS |QPLIMSGE PLI, PEX
QSYS |QRPGMSGE |RPG
QSYS |QSQLMSG SQL
QSYS |QXXEMSG PSE
Y1SY |YYYMSG YYY, Y1x
Y28Y |Y2MSG Y2x

The following additional convention may be used for the third letter of the message
prefix, to indicate the message type. This makes it easier to identify messages for which

you may monitor.

m is ‘E’ for escape or notify or status messages
‘C’ for completion messages
‘D’ for diagnostic messages
I' for information messages
‘R’ for request messages
‘X for retrieved messages

232 Standards Guide

Standards for Defining Messades

Message number (nnnn) is a number issued sequentially. IBM i messages numbers may
include the letters A-F.

CA 2E provides a facility for the automatic issuing of message identifiers—a prefix may
be set using the YMSGPFX model value.

Monitoring for Generic Message Groups

To facilitate monitoring for user-defined exception messages, you should:

m Use only one prefix for all the escape and notify messages in a system. For example,
if all escape messages begin with the letters ‘USE’, then it is possible to monitor for
messages globally.

m Avoid using message identifiers that end in zeroes for escape, notify, and status
messages.

m Use prefixes to allow for generic monitoring, for example, prefixes, which have
similar numeric groups. For example:

A systematic use of message prefixes also facilitates documentation. For instance, if all
escape messages begin with ‘USE’, then it is possible to list just escape messages, using
the MSGID(*RANGE) facility of the 0S/400 ‘Display message description’ command
(DSPMSGD). For example:

DSPMSGD MSGID(*RANGE) MSGF(QUSRMSG) RANGE(USEO000 USE9999)

You may use dummy messages to provide section headings within the message file.

Message Severity

Follow the OS/400 conventions for message severities.

Message severity Message type
30+ Escape
10-20 Diagnostic
00 Info/completion
Wording of Messade Text
;""’"””"i ””””””””” MSGID---- ‘SE‘\/‘T‘EX"I'""””"””"””"’3r ”””” !
) “Cguse Lo 'r:gtee;fwoéc%i g&ﬁdgm%% %ﬁﬁ§&§§e§

Relcovery . Check 89%51\%%@9&1%5‘ halteglycests-
Either (i) Retry with %%QB; &fgoduct &1 outor stock.
' or, (i) Ask your perlém Qﬁﬁc@r%@%@&é‘érﬁ&’%@ded
‘ person onto t 400 853 ES
X/REDTAPE/lrb%*?Qj%e QdetisieP s e arabiopRda)
or, (iii) Kill the persHSBR4%nroP Kivstaner &4 gldasy eX'StS

- body using- the-'Edit corpse’-option on your menu,,,,,,,,,,_l

Chapter 5: Coding Standards for Database Files 233

Standards for Defining Messades

First Level

Second Level

The first level text of a message should give a concise statement of what is wrong or
what has happened. A substitution variable can be used to relate the message to a
particular entered value. For example:

"Invalid person code &1 entered"

On IBM i, messages should be given in the form "A in B"; for example, "Object &1 not
found in library &2".

The second level text of error messages (escape, diagnostic, or notify) should give a
more detailed explanation of the cause of the error, suggest possible methods of
recovery, and if appropriate, any additional sources of information. The key words
‘Cause’, and ‘Recovery’ should be used to indicate the start of the respective sections.
Messages should be formatted using the &N and &B facilities to indent or start text on a
new line.

Editing Existing Messages

0S/400 includes a command that enables you to edit the text and other attributes of an
existing message. See the IBM i Change Message Description (CHGMSGD). The 0OS/400
Merge Message File (MRGMSGF) command can be used to carry out a limited copying of
messages. There is also a CA 2E Toolkit command to copy a message description, Copy
Message Description (YCPYMSGD).

234 Standards Guide

Standards for Defining Messades

Messade Handling by Interactive Programs

HLL interactive programs should use messages to provide notification of an error;
completion or a warning in response to each user request.

Messages should normally be placed on a program message queue sub file—CL
programs may send messages directly, other HLL languages should use a standard CL

message sending program or the V2R2 QMHSNDPM API.

The standard message handling technique can be illustrated as follows:

Message
file
MSGID RTYMSG
. HLL MSGDTA
Display Program oL
Program
Y2SNMSC
Program
message
queue SNDPGMMSG

Chapter 5: Coding Standards for Database Files 235

Standards for Defining Messades

Thus, when an interactive HLL program needs to display a message at execution, it calls

a message sender program, passing a message identifier and any necessary message
data. The message sender sends the message back to the calling program’s message

queue. Since the calling program has a message subfile based upon the message queue,

the message will automatically be displayed.

Since HLL programs cannot send messages to their own message queues, the above

technique requires the use of standard CL subprograms to:

m send the messages. The program will need to be called once for each message that

is to be sent.

m clear old messages. Before validating the input, any old messages will need to be
cleared from the queue—the message-clearing program will need to be called once

every time the display file is read.

The standard CA 2E message-sending program is as follows:

Source for the CA 2E Message Sender Program:

PGM (&TOPGMQ &PGMQREL)

/*T: Clear specified program message queue. */

/*Z: CRTCLPGM LOG(*NO) */

/*H: SYSTEM . 2E - SHIPPED PROGRAM.

*

/*H: PROGRAMMER : PWILSON

*

/*H: DATE 1 01/01/84

*

/*H: COPYRIGHT (C) 1984 Your Company Ltd..
*

/*H: SYNOPSIS: Clears a specified program message queue.

I
/*H: INTERFACE DETAILS

A
/*H: * SEND A MESSAGE TO PGM QUEUE

*/
/*H: C XALL Y2CLMSC’ CLR MSG:
/*H: C PARM ##PGNM 10 I:PGM Q:
/*H: C PARM ##PGRL 5 I*
[*H *SAME *EXT *PRV default is *SAME

Note: For V2R2 onwards, you should use the QMIHSNDPM API.

The standard CA 2E message-clearing program is as follows:

Source for the CA 2E Message Clearing Program:

A SETOF(31 ‘##CUCD Error’)

Customer code:’
##CUCD R B +2REFFLD($$CUCD)

DSPATR(UL HI)

DSPATR(RI PC)

236

Standards Guide

Standards for Defining Messades

From V2R2 onwards, you should use the QMIHRMVPM API instead.

If multiple validation errors are detected, only the error message for the first field in
error on the panel should be output, but all fields in error should be highlighted in
reverse image. This is because sending an error message incurs a certain overhead; and
in any case, an initial error often has a knock on effect on subsequent fields.

PGM (&TOPGMQ &PGMQREL)

/*T: Clear specified program message queue. */

/*Z: CRTCLPGM LOG(*NO) */

/*H: SYSTEM : 2E - SHIPPED PROGRAM.

*

/*H: PROGRAMMER : PWILSON

¥/

/*H: DATE : 01/01/84

*

/*H: COPYRIGHT (C) 1984 Your Company Ltd..
*/

/*H: SYNOPSIS: Clears a specified program message queue.
*/
/*H: INTERFACE DETAILS
*
= *
/*H: * SEND A MESSAGE TO PGM QUEUE
*/

/"H: C XALL Y2CLMSC’ CLR MSG:
/'H: C PARM ##PGNM 10 I:PGM Q:
/'H: C PARM ##PGRL 5 I*

[H: > *SAME *EXT *PRV default is *SAME

3 /*H: 2.4 Send message to specified queue /

! IF (&TOPGMQ = *EXT) +

3 SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&MSGF) +

! MSGDTA(&MSGDTA) MSGTYPE(&MSGTYPE) +
3 TOPGMQ(*EXT) MSGTYPE(&MSGTYPE)

! ELSE +

| SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&MSGF) +

i MSGDTA(&MSGDTA) MSGTYPE(&MSGTYPE) +
3 TOPGMQ(&PGMREL &TOPGMQ)

! ENDPGM

Associate an error indicator with each input capable field on the display. If an error is
detected, this indicator should be set on and an error message sent.

Messade Handling by Batch Programs

Batch jobs should use messages both to record errors and to log processing stages.

Batch jobs in which a termination level error occurs should send an escape
message—this causes 0S/400 to give an indication of abnormal job termination.

Remove non-consequential messages from the logs of batch jobs. For instance, if you
need to check that an object exists, but can create the object if it does not, you can
remove the Object not found message. The exception message will be the most recent
message on the program’s message queue.

Chapter 5: Coding Standards for Database Files 237

Coding Standards for Help Text

Using the Message Handling API

CHKOBJ OBJ(QTEMO/YTEMP) OBJTYPE(*FILE)]
MONMSG MSGID(CPF9801) EXEC(DO) |
RCVMSG MSGTYPE(*ESCAPE) 3
CRTDUPOBJ OBJ(YTEMP) FROMLIB(*CURLIB) OBJTYPE(*FILE) + !

TOLIB(QTEMP) |

V2R2 of 0S/400 includes new message handling APIs for sending, receiving, and
retrieving messages directly from HLL programs (previously, CL had to be used for most
operations). You should use the APIs in preference to CL subprograms not only for
performance reasons, but because the APIs allow you to identify the destination
program message queues by a relative invocation number. This makes it possible to
send messages without knowledge of the program name of the destination message
queue. (CL only allows you to identify the program previous to the current or a named
program, so cannot it cope with recursion). Such a facility is important when writing
reusable code routines.

For example, consider the following case of a standard subprogram D, called at the
bottom of a program invocation stack A, B, A (the second call is recursive). If program D
needs to send a message back to the program that calls the topmost invocation of
program A, it can do so by using a relative invocation stack number. With CL this cannot
be done.

Sending programs by relative invocation:

1 +1 +1 + 1
PGM A PGM B PGM A PGM D QMHSNDPM
3 2 1 0
QMHSNDPM call

Coding Standards for Help Text

This section describes coding standards for Help text. Discussion includes general
considerations and coding help for the commands, menus, panels, and search index.

238 Standards Guide

Coding Standards for Help Text

General Considerations

When writing help text, keeping the following points in mind:
m Comply with UIS design standards for emphasis and layout.

m Achieve reusability. Structure your help groups and panel groups carefully, and
make use of standard text fragments.

® Minimize the work required to translate help text. Modularize your help groups and
use message descriptions.

For more information, refer to the 0S/400 Guide to Programming Application and Help
Displays.

Chapter 5: Coding Standards for Database Files 239

Coding Standards for Help Text

Help Text Modularization

You will want to structure your help text modules both to achieve maximum reuse of
existing help groups and to minimize the effect of any possible changes. However, avoid
over-complex interdependencies that make it difficult to build or debug a system. For
database field dictionaries, a controlled ‘one-way’ system of reference is recommended.
The following are some recommendations for structuring your help text:

m Place common text definitions in one or two standard modules and all other
modules reference them. Place standard text fragments in one module, including
any references to 0S/400 help groups.

m Place standard definitions of application entities and concepts in a single dictionary
panel group. This makes it easy to reference definitions by hypertext links and from
the search index.

m Place help text for related panels in a separate panel group.

m Place help text for related commands in a separate panel group. For example, help
text for the commands to create, change, delete, and edit a given object might all
be placed in the same panel group.

m Restrict the use of UIM index (:ISCH) tags to a few source members so as to simplify
the building and rebuilding of search indexes.

Help Dependencies - Panel Group Cross-References:

.) Standard
IMHEL CMD panels IMHEL CMD txt (035/4
XxymmCMH XySYCMH) €x
LINK
LINK hypertext
xSCHI definitions
ADDSCHIDX xymmENH
‘LINK
Standard 08/4
DSP panels
‘IMHEL DSP txt 00tex
xymmPNH xySYPNH t

:IMHEL

Under the above scheme, a search index can be built simply as follows:
m CRTPNLGRP PNLGRP(xSCHIDX)
m CRTPNLGRP PNLGRP(xxmmENH)
m CRTSCHIDX SCHIDX(xSCHIDX)
m ADDSCHIDXE SCHIDX(XSCHIDX) PNLGRP(XSCHIDX)
m ADDSCHIDXE SCHIDX(xSCHIDX) PNLGRP(xxmmENH)

240 Standards Guide

Coding Standards for Help Text

Layout of Command Definition Source

All UIM panel source should follow the standard layout. Place help groups in the order
in which they appear in panels and commands. Place reusable text fragments at the
end.

1. PNLGRP statement.
2. Header block.
2.1 Title *T: source directive.
2.2 Compile overrides (Z*: source directives), if
any.
2.3 Standard banner (H*: and M*: source
directives).
3. Import declarations
3.1 Default declaration.
3.2 Specific declarations.
4. Command help groups
4.1 CMD/ALL Help group
4.2 CMD Overview help group
4.3 CMD/parm Parameter help groups
5. Menu help groups
5.1 MNU Overview help group
5.2 MNU/opt Option help groups
5.3 MNU/CMDKEY Command key help groups
6. Panel help groups
6.1 PNL/INTRO Overview help groups
6.2 PNL/TOPINS Top instruction help groups
6.3 PNL/field panel header field help groups
6.4 PNL/COLHDG Top instruction help groups
6.5 PNL/field panel header field help groups
6.6 PNL/BOTINS Bottom instruction help groups
6.7 PNL/ICMDKEY Command key help groups
7. Standard help groups

Use comment lines to make the start of each help group clear.

3 ‘HELP name= ‘WCHGLIBLST". ;

Chapter 5: Coding Standards for Database Files 241

Coding Standards for Help Text

General Coding Techniques

Use the following general rules for coding UIM help:

m Use uppercase for UIM tags so that they stand out. Use lower case for labels, but
use uppercase for the labels of standard text fragments.

m Provide :XH3 entries so that there are headings in the extended help listing—that is,
when F2 is pressed.

:HELP NAME="wchgliblst/text’.
&MSG(WTX0001). (TEXT) &MSG(uis1005).
:XH3(WTX0001). (TEXT)

m Use external message descriptions to ensure consistency between panel and
command prompts and the headings and labels shown in the help text. For
example, the following command and command parameter definitions use a
number of message definitions.

Example of Use of &MSG/MSGID - Messages:

MSGID Msg text

UiS0021 = Command
UIS1005 = Help

WLLO0101 = Change library list
WLL0301 = library list
WTX0001 = Text

WTX0201 = text-description

The message definitions are used for the command prompts.

Example of Use of &MSG/MSGID - Command Source:

CMD PROMPT(WLL0101)
/*T: Change library list command */
/*H: 1. Help file name and library */
PARM KWD(TEXT) TYPE(*CHAR) PROMPT(WTX0001) LEN(50) :

,,

242 Standards Guide

Coding Standards for Help Text

The command prompt message definition is used for the command overview help text
definition.

Example of Use of &MSG - Command Summary, UIM Source:

‘HELP NAME=wchgliblst .
&MSG(WI10101). &MSG(uis1005).

contents of
:LINK PERFORM ='DSPHELP liblst wsyhppnh’.
&MSG(WI10301):ELINK.

:P.The &MSG(WI10101). (wchgliblst) &MSG(uis0021). changes the }
:EHELP. 1

Note: The command parameter prompt message definition is used for the parameter
help text definition.

Example of Use of &MSG - Parameter Definition:

‘HELP NAME='wchgliblst/text’.
&MSG(WTX0001). (TEXT) &MSG(uis1005).
:XH3(WTX0001). (TEXT)

:P.Specifies a text description of the new
&MSG(WII0301) .

:PARML.

:PT. :PK DEF. *DF TTXT:EPK.

:PD.Default text is to be provided.

PT. :PK/&MSG(Wtx0201)’ :EPK.

:PD.Up to fifty characters of free format text, enclosed in apostrophes.
:EPARML.

:EHELP.

Extended headings should have the form:

* For commands

description (CMDNME) - Help

For example:

* For command parameters

‘Keyword description (KEYWORD) - Help’

Chapter 5: Coding Standards for Database Files 243

Coding Standards for Help Text

For example:

Make use of 0S/400 system help group modules where possible. References to system
modules should be placed in the standard definition panel group member so they can
be changed, if necessary.

Example of Use of Import - Parameter Definition:

(IMPORT PNLGRP=ghclmst1 NAME="dspobjd/output’.
(IMPORT PNLGRP=ghclmst1 NAME="dspobjd/outfile’. :
:IMPORT PNLGRP=ghclmst1 NAME="dspobjd/outmbr’.

Keep your own standard definitions in a ‘dictionary’ and reuse them wherever possible.
This ensures consistency and reduces the work required to translate a system. The
dictionary should be the default import declaration. Avoid excessive use of hypertext
tags at it makes the help text hard to read. A list of ‘related topics’ after the introductory
text is the most concise.

:PNLGRP SUBMSGF=WPMTMSG'.
. *T: Library list Object - command help

ok ok ok k ok ok ok ok ok ok ok Kok Kok K Kk Kk kK ok ok ok ok ok kok ok ok KKk K

| * Dictionary i
! !IMPORT PNLGRP=wssycmh NAME="*". |
‘HELP NAME="wchgliblst/liblst’.
IMHELP NAME="llo/liblst".
! :P.Specifies the name and |
&MSG(wIb0301). of the
! &MSG(wll0301). that is to be changed 1

. * Required parameter
{IMHELP name="wssycmh/STDTXT/REQVAL.

. * Qualified library name, *LIBL, *CURLIB
{IMHELP name="wdsycmh/STDPARMVAL/LIB’.
‘EHELP.

244 Standards Guide

Coding Standards for Help Text

Coding Help Text for Commands

For each command, provide a help group, which gathers together all the parameters of
the command. This help group can be referenced by a search index and hypertext links.

i :HELP name="wchgliblst/ALL". ;
! (IMHELP name=wchgliblst. |
3 (IMHELP name="wchgliblst/liblst’. :
! (IMHELP name="wchgliblst/libl’. i
! (IMHELP name="wchgliblst/aut’. ;
! (IMHELP name="wchgliblst/text’. i
| :EHELP. !

Provide an introductory section for each command, beginning with the command’s
name; for example, "The Change Library List (WCHGLIBLST) command "

:HELP NAME=‘wchgliblst’.

&MSG(WII0101). &MSG(uis1005).

:PThe &MSG(WII10101). (wchgliblst)
&MSG(uis0021). changes the contents of an existing
&MSG(WII0301).

:EHELP.

For each parameter, state the keyword and prompt, and list the allowed values. The
default value should be shown first, (for example, *NONE), then other special values,
(for example, *ALL), then the domain name (for example library-name, member-name,
‘text’).

:HELP NAME=*‘wchgliblst/text’.

&MSG(WTX0001). (TEXT) &MSG(uis1005). <== Title
:XH3(WTX0001). (TEXT) <== Extended heading
P. <== Description

Specifies a text description of the new
&MSG(WII0301). &PERIOD

:PARML.

:PT..PK DEF. *DFTTXT:EPK. <== Default value :
:PD.Default text is to be provided.

PT..PK/&MSG(Wtx0201).:EPK. <== Domain value :
:PD.Up to fifty characters of free format text, enclosed in apostrophes.
:EPARML.

Chapter 5: Coding Standards for Database Files 245

Coding Standards for Help Text

Coding Help Text for Panels

Provide an introductory section for each panel, beginning with the panel’s name, for
example, ‘The Display Library List (wchgliblst) panel’. This will be used as the default text
for the panel. The name of this help group should have the form ‘Format
name/PNL/INTRO’.

‘HELP NAME="#sflctl1/PNL/INTRO’. <== Overview for

| &MSG(WII2101). &MSG(uis1005). whole panel i
3 :xh3 The &MSG(WII2101). (DSPLIBLST) &MSG(uis0023). <== Extended 1
| heading ;
! :P.The &MSG(WII2101). (DSPLIBLST) &MSG(uis0023). |
3 shows the contents of a specified library list. :
; . * Press enter instructions ;
! IMHELP NAME="wssypnh/STDTXT/ENTERRTN'. <== Standard i
! ‘EHELP. fragment ;

For each input capable field, state the prompt and list the allowed values. The default
value should be shown first, (for example, *NONE), then other special values, (for
example, *ALL). The name of the help group should have the form ‘Format/field name’.

‘HELP NAME="%#sflctl1/##lItx’.

&MSG(WTX0001). &MSG(uis1005). <== Title
XH3(WTX0001). <== Extended heading
P

Specifies a text description of the new
&MSG(WII0301).
:EHELP.

<== Description 1

If there is a selection column with options, provide a list of all allowed values. This
should have a name of the form ‘format/PNL/TOPINS'.

‘HELP NAME="#sflctl1/PNL/TOPINS’. :
&MSG(uis1002). &MSG(uis1005). :
:xh3(uis1002). <== Options 3
. * 2=Change |
‘PARML. |
‘PT.2=&MSG(uis3034). |
:PD.Change the object s ;
. * 4=Delete |
‘EPARML. 3
JIMHELP NAME="wssucmh/STD/OPT/DELETE". |
‘EHELP. |

246 Standards Guide

Coding Standards for Help Text

Provide explanations of the function keys. This should have the form
‘format/PNL/CMDINS’. In most cases, you will be able to reuse standard definitions.

1 ‘HELP NAME="#sflct|1/PNL/CMDINS’. 3
i &MSG(uis1001). &MSG(uis1005). !
! :xh3(uis1001). <== Function keys |
; IMHELP NAME="wssypnh/STD/F/F1HELP". :
! IMHELP NAME="wssypnh/STD/F/F3EXIT/END’. |
: IMHELP NAME="wssypnh/STD/F/F12PREV'. |
! IMHELP NAME="wssypnh/STD/F/ENTER'. |
| IMHELP NAME="wssypnh/STD/F/HELP’. i
! IMHELP NAME="wssypnh/STD/F/HOME". |
; IMHELP NAME="wssypnh/STD/F/PRINT". !

Coding Help Text for Menus

Provide an introductory section for each menu, beginning with the menu’s name; for
example "The Library List command menu’. This will be used as the default text for the
menu. The name of this help group should be the same as the menu name.

Reference standard Help group explaining how to use the menu.

Reference standard Help group for the menu function keys.

Designing Search Indexes

Help panels assist users who already know how and why to start a command or
program. Search indexes provide users with a way of finding out how to do something in
the first place. You should provide a help index for your application.

Provide search index entries for the keywords that a user may use. Provide
m entries for each command and each menu

m "how" entries for commonly required operations

m "what" entries for fundamental concepts

m 0S/400 standard root keywords, for example How, What, Novice

: :HELP NAME="WHENHPH/WENT/LIBLST". 3
! &MSG(wll0001). &MSG(uis1005). |
} :ISCH roots="LIBLST novice what’. <== Index entry i
! &MSG(wll0001). |
| :xh3(wll0001). !

Chapter 5: Coding Standards for Database Files 247

Coding Standards for Help Text

m entries for common synonyms; for example create, make, and build

® an entry on how to use the search index itself

‘HELP NAME="changelibrarylistobject’.
:ISCH roots="change LIBLST liblst how command wchgliblst’. :

IMHELP NAME="wchgliblst/ALL.
:EHELP.

Do not distribute UIM :ISCH tags throughout the source of your panel groups. Restrict

them to the source of the search index itself, and to the member or members

containing standard entity definitions and hypertext tags. This means that you can
recreate the search index without having to remove or add back all the other panel

groups as entries.

The search index itself will need to contain help groups with outward references to any
commands it needs to reference. Use dummy names with underscores for these help

groups.

‘HELP NAME="about_index_search_opr’.
ISCH ROOTS="about index search help’.
About index search

JIMHELP NAME="about_index_search’.

&MSG(WII5002). (WCHGLIBLST) &MSG(uis1002). (&MSG(uis1003).) :

248 Standards Guide

Chapter 6: Work Manadgement Standards

This chapter describes work management standards.

This section contains the following topics:

Introduction (see page 249)

Shipped Work Management Objects (see page 250)
Job Descriptions (see page 253)

Queues (see page 253)

Print File Direction (see page 254)

User Profile and Security Standards (see page 255)
Implementation of Security (see page 262)

Using Libraries (see page 267)

Version Control (see page 275)

Backup and Recovery (see page 279)

Backing-Up (see page 282)

Introduction

0S/400 Work Management allows you to control submitting, queuing and executing
jobs, and spooling their output. Most of the aspects of jobs that you want to control,
such as job priority, job queue, and output queue, are parameterized, and may be
changed interactively. The CA 2E Toolkit utilities extend the flexibility of Work
Management by allowing stored library lists, menus, and additional user profile
parameters.

General Principles

As general principles:
m Make use of shipped objects. They provide a good starting point.
m Record modifications to the shipped system in programs.

m Avoid coding Work Management parameters in programs. Doing so removes
flexibility.

Chapter 6: Work Management Standards 249

Shipped Work Management Objects

Shipped Work Management Objects

0S/400 is shipped with a default set of Work Management objects (for example,
QBATCH, QPRINT, QINTER). If you are a new user, use these to start and then modify
them over time. The commands to make the modifications should be stored in a CL
program or a spool reader so that they can be reapplied at any time. This is necessary in
particular for the changes that are ‘undone’ by reinstalling new releases of the
operating system; for instance, overrides to print files in QSYS.

Such a program should includes changes to 0S/400 system values made with the
0S/400 Change System value (CHGSYSVAL) command, although such changes are
preserved when a new release of the operating system is installed. These include:

m System date format (QDATFMT, QDATSEP), decimal symbol (QDECFMT), and
currency symbol (QCURSYM)

m System part of library list (QSYSLIBL), which should normally include QSYS,
QUSRSYS, QHLPSYS

m System user library list (QUSRLIBL), which should normally include QTEMP, QGPL,
and the CA 2E Toolkit utility library

®m Tuning parameters like Base pool size (QBASPOOL) and activity level (QBASACTLVL)
m Job accounting level (QACGLVL), if job accounting is being used
m Default print identification text (QPRTTXT).

m Changes to print file attributes

All files in the system library QSYS and other utility libraries should be given the default
forms size for your installation. For example:

CHGPRTF FILE(QSYS/*ALL) PAGESIZE(88 132) LPI(8) +

CPI(15) OVRFLW(80) RPLUNPRT(*YES)
The files used for compilation listings should be held (set to HOLD(*YES)), so that listings
can be examined online, using the browse scan facility of the OS/400 Start SEU (STRSEU)
command. They should not normally need printing:
CHGPRTF FILE(QPDDSSRC) SCHEDULE(*FILEEND) HOLD(*YES)

CHGPRTF FILE(QSYSPRT) SCHEDULE(*FILEEND) HOLD(*YES)

Job logs and program dumps should be directed to a separate queue. They can then be
found easily, but will not normally be printed.

For example:

CRTOUTQ OUTQ(QGPL/YQJOBLOG) DSPDTA(*YES) +

250 Standards Guide

Shipped Work Management Objects

TEXT(Job logs & dump output’)
CHGPRTF FILE(QSYS/QPJOBLOG) OUTQ(YQJOBLOG) HOLD(*YES)
CHGPRTF FILE(QSYS/QPPGMDMP) OUTQ(YQJOBLOG) HOLD(*YES)
CHGPRTF FILE(QSYS/QPSRVDMP) OUTQ(YQJOBLOG) HOLD(*YES)

CHGPRTF FILE(QSYS/QPDSPJOB) OUTQ(YQJOBLOG) HOLD(*YES)

Work Management Objects in QGPL

You might also wish to include in your program changes to subsystems which you have
made—for instance to have auto-start entries, routing entries, and additional job
gueues, and changes to job descriptions, job queues, output queues and classes.

0S/400 Shipped Authorities

In particular, you might wish to revoke public rights to use certain commands, or to add
objects to any of the libraries in the system library list.

Note: If you have specified that certain messages are to be logged in the system log, you
should record this fact.

Naming Work Management Objects

Work management objects should generally be given meaningful names. Associated
objects of different types can have the same name; for instance QBATCH for a related
job description, job queue, class and subsystem, or you might create a user subsystem
UBATCH, with associated job queue UBATCH, class UBATCH, and job description
UBATCH.

Chapter 6: Work Management Standards 251

Shipped Work Management Objects

Preserving Work Management Flexibility

As a matter of principle, avoid hard coding the work management parameters in your
own programs, as this makes it hard to alter them without reprogramming.

For instance, if you needed to produce two copies of a report in a program you could
either:

m Code an Override print file (OVRPRTF) statement with COPIES(2)

m Change the print file attributes with the 0S/400 Change Print file (CHGPRTF)
command

Note: The latter solution is preferable, as it does not require a programming change to
revise the number of copies produced. (It does require that there be a separate print file
for the report.) Alternatively, you could make the number of copies a run time
parameter when executing the report. For example, use the 0S/400 Override print file
(OVRPRTF) command with COPIES(&COPIES) specified.

Likewise, if you have a program that submits a job, do not hard code the job attributes
(such as the job priority) on the ‘submit job’ statement. Instead, create a job description
that has the desired attributes, and submit the job using the job description. The job
attributes for new jobs may then be changed at any time, simply by altering the job
description.

Another technique that can be used is to store a command that may need to be
changed as a message on a message file, and to retrieve it at execution time for
execution with the 0S/400 execution program QCMDEXC. The message description can
then be modified at any time using the 0S/400 Change message description (CHGMSGD)
command. This technique is used to implement the CA 2E EXCMSG function.

252 Standards Guide

Job Descriptions

Job Descriptions

Queues

Job descriptions provide a convenient mechanism for controlling the execution
attributes of a submitted job, including the job queue to be used, and the execution
priority.

Job descriptions for starting batch jobs should normally be created:

m With a logging level of LOG(4 00 *NOLIST). This is the default on IBM i. This ensures
a maximum logging level if an error occurs, but suppresses the log if the job
completes normally.

m To use an automatic reply list, for example, with INQMSGRPY(*YES). This ensures
that if the job crashes, subsequent jobs in the queue are not held up. If subsequent
jobs depend upon the successful completion of the first job, then the application
design should take this into account, either by a check for successful completion of
the preceding step, or by use of an exception message program to cancel the
subsequent jobs.

Note: For job description names, the names QBATCH and QPGMR should be used where
possible, and object identification controlled by library list.

Job and Print Queue Names—The default Work Management names QPRINT, QBATCH
and QPGMR should be used where possible, and object identification controlled by
library list. Consider introducing a different output queue for each forms type used.

Message Queues—Display device message queues (created automatically by 0S/400)
will be given the same name as the associated device. 0S/400 will also automatically
create a message queue for each user profile. Other message queue names should
describe their role. For example, ‘'NGHTERRMSG’ - error messages from the overnight
batch run.

Message queues can be particularly useful for providing log functions. For each
application system, consider introducing three message queues (xxxSYSOPR,
xxxHSTLOG, and xxxCHGLOG), each with a particular role:

m An exception message queue to contain information about errors and exceptions.
This is analogous to the 0S/400 QSYSOPR message queue.

m Alog message queue to contain audit information recording important processing
stages; for example, end of period processing.

m An object change log message queue. The CA 2E Toolkit Move object (YMOVOBJ)
and Move object & source (YMOVOBJSRC) commands may be used to send
messages automatically to this log to record object changes when objects are
moved into the live system.

Chapter 6: Work Management Standards 253

Print File Direction

Print File Direction

There are several levels at which the location of printed spooled output may be
controlled under 0S/400. For convenience, the levels are summarized below. Note that
0S/400 has a number of additional capabilities, in particular the PRTDEV parameter.

Printing is affected by starting a writer to print from an output queue. Since a given
printer can only be attached to one output queue at a time, the location at which a
spool file is printed is therefore effectively controlled by the output queue to which the
spool file is attached. This is determined by the following:

The print file attribute—Print files have an attribute (OUTQ) that specifies a default
output queue to be used when the file is used, and which can be changed using the
0S/400 Change print file (CHGPRTF) command. The attribute either explicitly names a
particular queue, or has a value of *JOB, which causes the output queue to be defaulted
at the time of printing to the output queue for the job that has created the spooled
output. On AS/40,0 a value of *DEV may be used—it specifies that the printer device
associated with the job should be used. The output queue used for a particular spool file
may be temporarily overridden for part or the entire job, using the 0S/400 Override
print file (OVRPRTF) command.

The output queue for the job—The output queue for a job is set by the job description
used to start the job. It may be overridden by the Submit job (SBMJOB) command used
to start the job, or from within the job using the Change job (CHGJOB) command.

The output queue for the user profile—A default output queue can be specified for
each user profile. The output queue for a job is set by the job description used to start
the job. It may be overridden by the 0S/400 ‘Submit job’ (SBMJOB) command used to
start the job, or from within the job using the 0S/400 Change job (CHGJOB) command.
This is summarized in the following diagram.

Levels of Print File Redirection - IBM i:

Level ouTtQ PRTDEV How set/changed

Print file *JOB *JOB CRTPRTF, CHGPRTF, OVRPRTF
Job *USRPRF *USRPRF SBMJOB, CHGJOB, OVRPRTF
User profile *DEV SYSVAL CRTUSRPRF, CHGUSRPRF
System value - *S8YSVAL -CRTUSRPRF, CHGUSRPRF

Different levels of control are appropriate for different operational requirements. The
four most common requirements for printing spooled output are:

m To print it at a printer associated with a workstation, for example, the nearest
location (for instance, print key output, or on-demand reports)

254 Standards Guide

User Profile and Security Standards

m To print it at a printer associated with a user, regardless of where the user is (for
instance, confidential, or on-demand reports)

m To print it always at the system printer (as in the case of large reports), or at a
particular printer (as in the case of reports on special forms, or with special font
requirements)

m To not print it at all (for example job logs, compilation listings)

The recommended standard is to use the defaulting mechanisms whenever possible so
that print output can be redirected generically. In particular, you should set the print file
output queue of print files to OUTQ(*JOB), so that all print output for a workstation can
then be redirected simply by using the CHGJOB command. OUTQ(*JOB) is particularly
suitable for meeting the first and second requirements above. The third and fourth
requirements above can best be achieved using the 0S/400 Change print file (CHGPRTF)
command.

Scheduling Print Output

If a batch job produces several different reports and you wish them all to be printed
together, you should use the SCHEDULE(*JOBEND) parameter to ensure this happens.

User Profile and Security Standards

The following section discusses information relevant to user profiles and security.

Chapter 6: Work Management Standards 255

User Profile and Security Standards

User Profiles

0S/400 user profiles allow you to achieve a precise modulation of who can do what on
the machine. The standards described below apply to the use of user profiles.

A user profile should be set up for each user—even if the user will have the same initial
menu as other users. It is important that 0S/400 user profiles are used because:

m The authorization checking for user profiles has a microcode level implementation
that is very secure. User profiles are therefore the most secure way of controlling
what a user is allowed to do.

m |ndividual OS/400 user profiles are a necessity for the correct use of many 0S/400
functions, including authorization, audit trails, and accounting. It is important that
use can be resolved down to as fine of a level as possible, for example, the
individual user. In other words, a user profile not only controls what a user may do,
but it is also used to trace what the user has done.

m The use of individual user profiles permits personal addressing by electronic mail
and message sending software. This is likely to be of increasing significance as your
systems grow and you start to network them. For this reason, you should take care
to name profiles in a systematic way.

Classes of User Profiles

The above approach requires at least one profile per user. Additional profiles can be
used to aggregate users into groups, and therefore to simplify the granting of
authorizations: we may classify profiles into two main classes:

Personal profiles—Each personal profile represents an individual user, either an end
user or a developer. These profiles are the profiles to which individual users sign on.

Some special personal profiles representing standard roles are shipped in the
system—for instance ‘QSYSOPR’ (System operator), ‘QSECOFR’ (Security officer). If the
duties of a shipped profile are the responsibility of a single user, then they can be used
as shipped. If more than one person carries out the duties sub-profiles should be
introduced to maintain accountability.

Impersonal profiles—impersonal profiles represent groupings. Users never actually sign
on to them. Group profiles are normally impersonal profiles.

Some impersonal profiles represent products rather than operational groups; for
example QSYS, YSYS. These profiles are granted the necessary rights for programs to
adopt to carry out the functions of the product.

256 Standards Guide

User Profile and Security Standards

Group Profiles

There are many reasons to use group profiles:

It is easy to give new group members the necessary authorizations. Rights required
by all members of the group can be given just once to the group. New members
automatically have the required rights.

It is easy to add or change authorizations for all the members. Alterations to the
rights required by all members of the group can be made just once for the group.
All members then automatically have the new rights.

Common resources can be shared. For example, a project team working on the
same objects can all manage the objects.

It makes the operational associations and responsibilities clear. The 0S/400
cross-referencing tools can be used to document departmental associations.

Chapter 6: Work Management Standards 257

User Profile and Security Standards

Naming Convention for User Profiles

The user profile name will appear on reports, dumps, and logs. For this reason, it is
helpful for both operations and problem shooting if, as well as uniquely identifying the
individual user, it can indicate what the user’s role is, i.e. some operational grouping.
For end users the most significant grouping tends to be by department, or for
developers by the project on which they are working. A two-part convention is
therefore recommended for user profile names:

PPPP MMMM

*——— User initials or
identifier
¥ Department/Project prefix

Prefix—Prefix one to four characters long indicating a department or project (see the
section, End-user Profiles and Development profiles in this chapter).

Each prefix will generally correspond to a group profile.
The prefix ‘Q’ should be reserved for IBM shipped files, for example, QSYS, QPGMR.

A three-character mnemonic created according to the normal CL conventions is
preferable; for example, ‘ACC - Accounts’, ‘SLS -Sales’. However, this is not always
practical if there are a large number of profiles or if it is useful to encode additional
information in the prefix.

Identifier—One to six character unique identifiers of users.

m |deally, such an identifier should be short, simple, extendable, and unique. Initials
are more likely to succeed than names or surnames.

m A nullidentifier is used on group profiles (for example, blank).

m |dentifiers representing roles, for instance the group security officer, can be named
using standard three character CL mnemonics.

Examples:

m ACC\-—Accounts department

m ACC_ES—Accounts - Ernest Saunders

m ACC_RC—Accounts - R.Calvi

m ACC_IB—Accounts - lvan Boesky

m ACCUSRPRF—Accounts - Profile to copy for new users

m ACCSECOFR—Accounts - Security officer/administrator

m YBOTHER—Panacea product

258 Standards Guide

User Profile and Security Standards

User Profile Names for Networks

End User Profiles

If you run multi-machine networks, it is helpful if you can give the same profile the same
name across all machines (IBM midrange). To this end, the following considerations
should be kept in mind:

m User profile names that are to be used in networks should not be more than eight
characters long.

m Certain characters (for instance underscore ‘_’) may not be used in user profile
names on some other architectures machines with which you wish to communicate.

There should be a separate profile for each end user. It is good practice to set up a
group profile for each department and make each end user profile belong to a group
profile. General authorizations can then be granted to the group profile. The group
profile may also own the application objects.

The group profile should be created with PASSWORD(*NONE) so that no one can
actually sign on to it. A common prefix should be assigned to the group profile.

Individual profiles within the department should be indicated by initials or some other
unique identifier.

On occasion, an end user may need to have access to another department’s applications
through a separate profile. This profile should be created with a different prefix for the
department, but the same identifier. For example:

m ACC_IB Accounts - lvan Boesky

m STK_IB Stock control - Ivan Boesky

For each group profile, it is worth considering having two special individual profiles:

m A ‘template’ profile that can be copied to create a new user profile. This profile
should have a password of *NONE.

®m An administrator/security officer profile with rights to enroll new users within the
department.

Chapter 6: Work Management Standards 259

User Profile and Security Standards

Development Profiles

Development and live objects should be owned by different profiles:

m A group profile should be set up for each project. All objects for a system should
belong to this profile while under development.

m Each developer working on a project should have his own sub-profile.

Objects created by developer sub-profiles will be owned by the group profile. To do this,
specify OWNER(*GRPPRF) on the 0S/400 Create User Profile (CRTUSRPRF) command.
This makes it possible for all developers on a given project to change any object
belonging to the project.

Developers should not have update rights to live objects. This is so as to prevent
inadvertent updates of a live object or source member. There may also be
confidentiality reasons as well. To achieve this, you will need to have a separate profile
to own the ‘live’ objects, described below. It will normally be appropriate for developers
to have read rights to live objects and source so that they may provide support.

A CL source member, which can be run through a spool reader or program reader,
should be kept, that contains the object authorizations necessary to make a system
work; for instance, the file existence rights required for work files so that members can
be created. Use should also be made of the CA 2E Toolkit compile preprocessor utility,
to code compile time overrides in the source; for instance AUT(*ALL) where
appropriate.

This practice allows:
m Transfer between machines

m Recreation of the system from source

260 Standards Guide

User Profile and Security Standards

Shipment or Owning Profiles

Live objects should not generally belong to either an end user profile or the
development profiles, but rather, should be owned by a separate shipment profile. The
profile may only be used by an administrator who is responsible for taking tested
objects from the developers and implementing them into a live system. The shipment
profile is not used either for development, or to run the application.

If security is a particular concern—for instance in a financial environment—then objects
should be recompiled by the administrator as part of the implementation process. The
CA 2E Toolkit Create Object (YCRTOBJ) command may be of use when recompiling many
objects. The CA 2E Toolkit Change Object Ownership (YCHGOBJOWN) command may be
of use when changing the authorizations of many objects.

It should not be necessary to be signed on as QSECOFR to install or to administer an
application. If you are preparing a product for general shipment, you should ensure that
the installation procedure does not require QSECOFR rights to run— many sites will not
allow programs to be run under QSECOFR. You should, therefore, design an installation
procedure with detailed steps.

Before installing, ensure that prior to saving and shipping, all objects are owned by the
shipment profile. For example, you would enter the following command for the profile
UDFTOWN.

YCHGOBJOWN OBJ(USHP/*ALL) OBJTYPE(*ALL) NEWOWN(UDFTOWN)

To install:
1. Sign on as QSECOFR.
2. Create the administrative, for example, owning profile.

CRTUSRPRF USRPRF(UDFTOWN) PASSWORD(*NONE) + TEXT(‘Widget System
Owner profile’)

3. Manually grant it any essential rights, for example:
GRTOBJAUT OBJ(QSYS/CHGDTAARA) OBJTYPE(*CMD) SRPRF(UDFTOWN)

4. Sign on to a profile with restore rights and restore the objects. The objects will,
therefore, be given to the shipment profile UDFTOWN.

Chapter 6: Work Management Standards 261

Implementation of Security

Security Officer Profile

You should try to use QSECOFR as little as possible. It should only be necessary to use it
to administer profiles and to resolve authorization problems.

The security officer should regularly change the QSECOFR password. In order to ensure
that it is always possible to obtain access to the machine as a security officer, you can
use the following technique:

1. Create a special subprofile of QSECOFR, for example USECOFR.

CRTUSRPRF USRPRF(USECOFR) PASSWORD(NEVERMORE) INLPGM(QCL) +
GRPPRF(QSECOFR)

Record the password to this profile in a secure place, for instance, in a safe at the
bank. Do not use the profile except in emergencies.

2. Inthe event of an emergency, (for example, loss or unavailability of QSECOFR), the
profile can be used to determine the QSECOFR profile, or to reset the password.

Implementation of Security

In a live system you will need to decide:

m Who owns the data objects, such as database files, data areas, and data queues

m Who owns the execution objects, such as programs, device files, and message files
m Who may use which objects

m Who has rights to control jobs and to examine spooled print output

262 Standards Guide

Implementation of Security

Operational Rights

The process of specifying authorizations can be extremely time consuming because of
all of the many distinctions that can be made. In practice, the default rights that 0S/400
gives to new objects give sensible results in most cases. It is usually sufficient to
consider changing the default 0S/400 operational authorization rights for only two sets
of objects:

m Commands and entry-level programs—Granting or revoking operation rights to the
entry point to a function (usually a command) prevents unauthorized users from
invoking a function.

m Database files—By granting or revoking data operational rights, you can protect
data, even if the entry-level protection is circumvented.

The operational rights to all other objects can be left in the public domain (the default).

A significant percentage of IBM i authority problems are caused by users not having the
authorization to use certain 0S/400 Create commands. The commands commonly
required to create temporary work objects are:

m Add Physical File Member (ADDPFM)
m Create Data Area (CRTDTAARA)

m Create Physical File (CRTPF)

m Create Duplicate Object (CRTDUPOBIJ)

Note: In the shipped system, the commands do not have public operational
authorization. Consider granting public rights to the commands.

On IBM i, you can create an authorization list and attach it to each command. By adding
a user profile name to the authorization list, that user profile is immediately authorized
to all the commands. Alternatively, the programs that invoke the commands can borrow
the rights of the program owner, rather than the user. This is achieved by specifying
USRPRF(*OWNER) when creating the program.

Generic Implementation of Security

As a general principle, you should implement security at a generic level, that is, by
choosing appropriate groupings of profiles and controlling rights at a library/profile
level. Avoid implementing security at too detailed of a level.

Do not attempt to authorize every user explicitly to every object. Either authorize the
group profile to the library containing the object, or add the group profile to an
authorization list attached to the object (IBM i only).

Chapter 6: Work Management Standards 263

Implementation of Security

Management and Existence Rights

Object ownership should be retained by the project group profile. The project
development sub-profiles should have management and existence rights. This can be
achieved automatically if the profiles are created with the correct attributes
(OWNER(*GRPPRF)).

Users do not normally require existence or management rights. Two exceptions are:
m Text files: Users will need management rights in order to add or remove members.

m Work files: Users will need management rights in order to add or remove work
members.

Checking Authorization

Avoid explicit references to particular profile names in code, because it is then not
possible to add new users without a code change.

For example, the following would be bad practice:

! RTVJOBA USER(&USER) 1
| IF (&USER *NE 'FRED’) + |
3 SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGTYPE(*ESCAPE) !
3 MSGDTA('Only FRED is allowed to run this command’) 3

Instead, you should introduce an ‘authority holding’ object, such a data area, to which
you may grant rights to one or many users at any time without modifying the code. You
may then test the user’s authorization to the object:

i CHKOBJ OBJ(URUNAUT) OBJTYPE(*DTAARA) AUT(*OBJOPR) ‘
| MONMSG CPF9800 EXEC(+ 1
f SNDPGMMSG MSGID(USR9001) MSGF(QUSRMSG) MSGTYPE(*ESCAPE))+ !
3 /* Not authorized to application */ 3

264 Standards Guide

Implementation of Security

Security Exposure

Most of the likely points of security exposure are covered in the chapter on security in
the IBM i (AS/400) CL Programmer’s Guide.

Standards can be adopted to protect from potential exposure on the following points:

m Old passwords. Passwords should be changed regularly. The password change date
can be used to monitor this. Use the 0S/400 QPWDEXPITV command to enforce
regular changing of passwords.

m Password validation. Validate new passwords:

m to belong enough to prevent systematic code breaking, that is, at least eight
characters

m to have non-obvious values, that is, neither user profile names or other
common values; for example FRED, IBM, ME are all obvious values

m Allowed Signons. Set the 0S/400 system value that controls the number of allowed
signon attempts, QMAXSIGN to a low value, for example, three.

m Sign on levels. You should use two-level password security. On IBM i, QSECURITY
should be set to 30 or 40 rather than single-level password security. This makes it
impossible for users to inadvertently discover each other's passwords.

m Workstations left signed on. Use the 0S/400 QINACTITV system value to force a
time out after a specified number of seconds.

m Programs that adopt rights. A particular potential exposure is presented by
programs which, although they themselves are secure, adopt owner rights created
with USRPRF(*OWNER)) and call other programs. Infiltrators may attempt to
replace the called objects with their own "Trojan horses" that will have the adopted
rights of the calling program. Programming knowledge is needed to do this. If
security is a paramount consideration, you should do the following:

m Make sure that debug capability is removed from programs that call the
0S/400 QCMDEXC program.

m Create adopting programs with LOG(*NO) and ALWRTVSRC(*NO). This makes it
harder to determine the exit points for inserting "Trojan horses". On IBM i, you
can delete the observability of such programs using the 0S/400 Change
Program (CHGPGM) command. This makes dump analysis impossible.

m Secure the library containing the called program by revoking object
management rights to it. Also, either qualify the program call statements by
including a library name for the called program, or place programs called by the
adopted program in the system part of the library list and revoke object rights
to the OS/400 Change System Library List (CHGSYSLIBL) command. You should
probably do this in any case.

m Restrict the adoption of rights to the minimum duration. That is, place the
statements for which rights must be adopted in a small, separate subprogram.

m Override any files that are used with SECURE(*YES).

Chapter 6: Work Management Standards 265

Implementation of Security

Note: Avoid creating programs that adopt the rights of profiles with QSECOFR rights.

Audit Trails

Input and media. Make sure that you apply adequate security measures to your
offline backup media (tapes and diskettes) and to printout.

Use of PRTTXT. Use the PRTTXT keyword to ensure that all printouts have
originating text on it, for example ‘IBM RESTRICTED'.

When security is particularly important, it is a good idea to design applications with an
audit trail, so that all potentially sensitive actions are recorded automatically. There are
some particular techniques useful for creating audit trails:

Use QHST. Specify that a particular message is to be copied to the log by specifying
LOG(*YES) on the 0S/400 Create Message Description (CRTMSGD) command. This
causes a copy of the message to be placed on the QHST message queue.

Use a journal. Use a journal for an audit trail. Copies of sensitive requests can be
written to the journal as user-defined entries. Individual journal entries cannot be
deleted. You should secure the journal and its receiver:

CRTJRNRCV JRNRCV(TRAIL) PUBAUT(*NONE)

Initial Programs and Menus

The following principles should be applied when setting up user environments:

User systems should be menu driven, with Help text available for each interactive
option.

Wherever possible, the CA 2E Toolkit Go to Menu (YGO) command should be used
to provide menus. In this way, menus can be easily changed or updated. In addition,
advanced functions can be provided in all menus, such as Help text, direct menu
calling, and command request entry.

The CA 2E Toolkit User Access system should be used where possible to gain entry
to the menu program. This requires that user profiles are created or changed with
the CA 2E Toolkit Create User Profile (YCRTUSRPRF) command.

The CA 2E Toolkit Initial Program (YINLPGM) command should be used as the initial
program for user profiles to:

m Set the library list using a CA 2E Toolkit stored list
m Set the message queue to break

m Display an initial menu

For more information on the YINLPGM command, refer to the Toolkit Concepts Guide.

266 Standards Guide

Using Libraries

Using Libraries

The following principles should be applied for the use of libraries under 0S/400 and the
organization of a development environment on IBM i:

For a given application, separate the live data files, the application objects, and the
source files into different libraries. The national language dependent objects, such
as commands and panel groups, may also need to be separated from the other
application objects.

For each application, use a separate set of libraries; very large libraries are
inefficient to use.

Avoid having cross-library dependencies; for instance logical files based on physical
files in different libraries, or journal receivers attached to journals in another
library.

Keep development separate from the live systems. Separate user profiles, using
object ownership and authorization to enforce this.

Note: For more information on security standards, refer to the section, User Profile
and Security Standards, in this guide.

Make the live and the test environments as similar as possible.

Establish libraries to be able to determine an object’s type, and its development
status (new, under test, live), by which library it is in.

Use software tools for the routine housekeeping tasks involved in implementing
new objects.

Avoid explicit references to library names in code.

Avoid qualified references to libraries. Do not hard code references to library names
as it means that the library list cannot be used to find objects.

Chapter 6: Work Management Standards 267

Using Libraries

Ordanizing a Development Environment

Development Phases

It is very important that you organize your development environment and your working
methods systematically. Doing so can:

Significantly improve your productivity because:
m Less time needs spent coordinating and cross-checking
m Conflicting changes are avoided

m Additional personnel can assist with object management and librarian
functions

improve your product quality because:
m Version and level errors can be reduced.
m Component fixes can be handled efficiently.

Make it possible for more developers to work on the same project because the
dependencies are clearer.

Generally, you can distinguish between two different phases of development, each with
different requirements:

Initial development, such as feasibility studies, prototyping, early development. This
tends to be both rapid and tentative. It is usually not appropriate to apply a strict
version control at this stage, as it may not yet be possible to make relevant
decisions such as the exact number and names of objects, and the dependencies
are not apparent. Such development should be contained within development
libraries. Version control and component tracking need only be introduced once the
system is stable.

Maintenance development. Once a version of an application is in use, it is of critical
importance that all modifications are carefully regulated. Full version control needs
to be applied.

268 Standards Guide

Using Libraries

Operational Flow for Objects and Source

The following diagram shows a system for using libraries for development:

Check out

*

Import
>>>

NEW CHECK

*

Exc
objs

Live

System SYS

Check out

Development library(ies)
for objects and source

DEV

Promote to test

Test library
TST
Promote to live
¥ T Data
Src objs DTA2
DTA1

Test

SRC DTA DTANnn data
libraries

Archive library
* OLD

Note: The contents of each of the libraries shown in the diagram are explained below.

Strict rules should be applied to how source and objects may be moved between

libraries:

m Objects, together with their source, should only be moved along the routes shown

by arrows.

m [f an existing object needs to be changed, its source should be copied up to the
development library, after checking that there is no outstanding version already
undergoing amendment, and recompiled there.

®m |t may be appropriate to have more than one development library. You must
coordinate the libraries to ensure that no component is undergoing modification in

more than one library at a time.

Chapter 6: Work Management Standards 269

Using Libraries

Configuration Management

You should adopt working procedures, if necessary supported by a software tool, to
follow a protocol such as the one above. Use rigorous methods to perform the following
tasks:

m |dentify component dependencies. That is, decide which components must be
changed along with other components.

m Monitor component usage. That is, identify whether a component is already
undergoing modification.

®m Check out components into the development environment and record that they are
in use.

m Progress components through testing.
m Move modified components back into the live production environment.
m Keep an audit trail of all such modifications.
CA 2E Toolkit Generic Move Utilities
The CA 2E Toolkit Move Object and Source (YMOVOBJSRC) command can be used to
move objects and source from the development to the live libraries. It will also carry out

functions, such as preserving authorities, archiving previous versions, separating source
and objects, and creating a log of movements made.

Naming Convention for Libraries

Adopt a naming convention that distinguishes between the different library roles
described above. For example:

XXXSYS Contains application objects that run the system; for
example, programs, display files, print files, message
files, Help text, and output queues.

xxxSYSII| Contains versions for language lll of objects needed to
run the system; for example, message files, panel
groups, printer files, commands, menus.

XXxDTA Contains objects containing data for a system; for
example, physical files and data areas, journals,
receivers and logical files. Job descriptions, with the
appropriate initial library list, should also be in this

library.
xxxDTAnn Test pack copies of DATA library: TYPE(*TEST).
XXXSRC Contains source for xxxEXC, xxxDTA, and objects that

are needed only to create the system, not to run it.

270 Standards Guide

Using Libraries

xxxOLD Contains previous versions and source.

XxxDEV Contains source and objects under development.
Library TYPE(*TEST). If you use a multi-library method,
then you will need a more elaborate system (the CA 2E
application generator uses two libraries—xxxMDL and
xxXGEN, instead of a single xxxDEV library).

XxXxNEW Exchange library for receiving shipments.

System identifier— xxx - Identifies the application system normally will be either two or
three characters long, but may be longer.

Test pack suffix—nn - Suffix used to distinguish different sets of test data.
Library Types

Live production libraries should be of type *PROD. Development libraries should be of
type *TEST: they may then be safely used in conjunction with live data under debug if
UPDPROD(*NO) is specified when using the 0S/400 Start Debug (STRDBG) command.
The above convention gives the following benefits:

m Complete segregation of the live and test data

m Atest environment that is as close to the live environment as possible

m Separate backup regimes for data, application objects, and source

m Control of implementation of changes, retention of the penultimate version,
preservation of existing authorities

m Control of conflicts due to changes made off-site or on a parallel machine
m Different data test packs

m Eventual archiving of source

m Use of software tools to implement new versions

The following are examples of the library lists required to use the system described
above.

Library List for a Programmer:

! QTEMP - Session scratch library. !
! xxDEV - Development library: source + objects. i
; xxTST - Test library 3
! xxSYSII - NL versions of application execution objects i
i xxSYS - Application execution objects 3
] xxDTAyy - Test versions of application data objects i
! QGPL - General purpose library. 3
‘ Y1SY - 400 Toolkit utilities. i
! Y2SY - 2E utilities. 3

Chapter 6: Work Management Standards 271

Using Libraries

Use of Libraries

Library List for a Tester:

xxDTAyy
xxSYSIlI
xxSYS

! QGPL

| Y1SY

Session scratch library.

System test library.

Test data files & data areas.

NL versions of application objects
Application execution objects
General purpose library.

400 Toolkit utilities.

i QTEMP

| xxDTA

3 xxSYSlI
} QGPL

1 Y18Y

Session scratch library.

Application data: files, data areas & queues.
NL versions of application objects

General purpose library.

400 Toolkit utilities.

Whenever objects, especially programs or files, are referred to by name in programs,

the names should never be qualified names.

For instance:

! use CALL PGM(X)

not: CALL PGM(QGPL/X)

use OVRDBF FILE(A) TOFILE(B) not: OVRDBF FILE(A) TOFILE(QGPL/B)

1 use CRTCMD CMD(X) PGM(A) not: CRTCMD CMD(X) PGM(QGPL/A)

If this rule is not obeyed, the library list cannot be used to find objects. It will require a
programming change to use a different set of data, or a different version of a program.

Apart from losing one of the most powerful capabilities of 0S/400, it will be very
difficult to establish a test environment that is as close as possible to the live

environment.

Where you need to specify a library, for example on a create command, use the current

library *CURLIB as a default.

The CA 2E Toolkit utilities include library list manipulation facilities that can help avoid

the explicit coding of library names.

For more information on user access aids, refer to the CA 2E Toolkit Concepts Guide. For

the Toolkit IBM i Change Library List (YCHGLIBL) and Change Job Description Library List

(YCHGJOBD) commands, refer to the Toolkit Reference Guide.

272 Standards Guide

Using Libraries

Using Explicit References to Libraries

Avoid having explicit references to library names in programs and elsewhere, as this
means that libraries cannot be renamed without a programming change.

Use the PRDLIB facility on menus and commands to set the library list to include any
necessary application execution objects, such as programs and device files. Only set the
PRDLIB on the live version of objects.

Use the CURLIB facility to set the library needed to find application data objects, such as
database files and data areas.

If it is necessary to refer to a library name explicitly, you should retrieve the library
name. The best technique is to retrieve the library containing a named object, for
example using the OS/400 Retrieve Object Description (RTVOBJD) command:

Chapter 6: Work Management Standards 273

Using Libraries

Using QTEMP

If a job needs to create temporary work objects in order to execute, for example,
message queues, data areas, or files, the objects should be created in the job’s scratch
library, QTEMP. This will ensure that:

m The work objects will automatically be cleared up when the job terminates, even if
the job crashes

m The work objects will not conflict with the work objects of other similar jobs

Work objects should be duplicated into QTEMP by use of the 0S/400 Create Duplicate
Object (CRTDUPOBJ) command, working on a model object kept in the system execution
object library. Note that the CRTDUPOBJ command requires that the name of the library
containing the model object be specified—the name of the originating library should not
be ‘hard coded’ as a literal, but retrieved, as above.

It may not be desirable to give the user rights to use the CRTDUPOBJ command, in
which case a special ‘duplication program’ may be created with USER(*OWNER), which
will adopt the rights of a user profile that has the necessary authorities.

You should allow for the possibility of the work object already existing in QTEMP. You do
not need to delete the work object explicitly when you finish.

The following code would create a work file UUWKFLP in QTEMP from a model library,
by calling a program UUCRDPC, which in turn, calls a program UULBNMR.

| /*H: 2. Create workfile if it does not already exist */

i CHKOBJ OBJ(QTEMP/UUWKFLP) OBJTYPE(*FILE) /* already exists?*/
| MONMSG MSGID(CPF9801) EXEC(+

f CALL PGM(UUCRDPC) PARM(UUWKFLP *FILE QTEMP))

| CLRPFM FILE(QTEMP/UUWKEFLP)

! OVRDBF FILE(UUWKFLP) TOFILE(QTEMP/UUWKFLP)

RTVOBJD OBJ(WFIL) OBJTYPE(*FILE) RTNLIB(&PRDLIB)
CRTDUPOBJ 0OBJ(&0BJ) FROMLIB(&PRDLIB) OBJTYPE(&OBJTYPE) +
TOLIB(&TOLIB)
RMVMSG CLEAR(*ALL)
ENDPGM

i PGM PARM(&OBJ &OBJTYPE &TOLIB) |
| /*T: UUCRDPC Create work file in QTEMP from PPEXC model file. o
; /*Z: CRTCLPGM LOG(*NO) USRPRF(*OWNER) oo
| /*H: SYSTEM : Risk and Sanity monitoring system */ i
f /*H: PROGRAMMER : G. Byron o
i [*H: DATE : 19/08/84 ! :
i /*H: (C) COPYRIGHT 1987 Universal Sprocket Corporation A
1 /* Entry variables */ 1
; DCL &0BJ *CHAR 10 /* MODEL OBJECT NAME */ |
| DCL &OBJTYPE *CHAR 8 /* MODEL OBJECT TYPE */ !
} DCL &TOLIB *CHAR 10 /* TARGET LIBRARY * |
| DCL &PRDLIB *CHAR 10 /* FROM LIBRARY * ;
! I . 6

274 Standards Guide

Version Control

Using QGPL

The general-purpose library QGPL should be used for user-defined or modified work
management objects, such as output queues, job queues, subsystems, and for other
objects that may be common to all user applications on the machine. It should not
contain application objects.

Version Control

Objects and source should only be moved between libraries in a strictly controlled
manner, so that if there are successive changes outstanding, they are implemented
serially.

Every source line has a change date on it. When copying source to the development
library in order to make changes, take care not to reset the source change dates; that is,
do not copy a member by adding a new member and using the SEU browse/copy
function to include the old version.

A problem occurs if the programming for an application takes place on two different
machines at the same time. If different changes are made to the same program on both
machines concurrently, transferring either version of the program to the other machine
may wipe out the other set of changes.

The problem can only be avoided completely by having a one-way flow of material, or
by abstaining from changing programs on both machines at the same time. Using
development libraries can help control the problem of concurrent updates as only a
small number of objects need examining for potentially conflicting versions.

1. Frequent exchange of development libraries should be made to ensure that
everyone is using the latest version of the source.

2. Aformal ‘import’ process should be used. The development libraries should be
compared before merging to ensure that concurrent changes have not been
attempted. If they have, any discrepancies will need to be resolved manually. The
CA 2E Toolkit lists utilities that can be of use when comparing objects and source
members.

Chapter 6: Work Management Standards 275

Version Control

Object Versions

If you need to distribute new versions of the software developed on one machine
around a number of ancillary sites, you should use a formal method of version control.
The main goals of a formal change control system are to:

m Provide full upward compatibility

®m Avoid errors arising from version conflicts after an upgrade

m Preserve existing user data in the distributed sites

m Inform the users of any changes

The level checking mechanism of 0S/400 provides some version control facilities. This
will ensure that file and program levels are compatible. Level checking should always be

used to provide a basic protection mechanism. For example, LVLCHK(*NO) should not
be specified on 0S/400 create file commands.

Upward Compatibility

A prime objective of version control is ‘upward compatibility’. New versions of
applications must always support existing versions or provide a simple conversion route
to the new version. Apart from the routine format level considerations, particular
considerations apply to different object types:

m Command parameters: Existing command parameter keywords and their default
values should not be changed. New keywords may be added (after all existing
parameters, or past the limit for positional specification as indicated by the
MAXPOS keyword). New values for existing parameters may also be added.

® Program parameters: Existing program parameter interfaces should only be
changed if:

m All references to the called program have also been changed.

m The change is to add new parameters to the end of the parameter list and the
parameter use is optional. For example:

— Escape messages. The escape messages sent by a program or command in
a given set of circumstances should not be changed, nor should the
message identifiers of such message be changed (unless all existing
programs that call the sending program are also modified).

- Database files. If new versions of database files are provided, conversion
routines for restoring existing data to the new files should be supplied.

276 Standards Guide

Version Control

Version Numbers

Version control should be based on a version numbers included in a data area or
database file in the shipped software library. This number should be incremented for
each functional change—note that a single change may affect a number of different
objects. Therefore, documentation of any changes can be related to the fix level.

A check for prerequisite versions can be made, either manually or automatically, in
order to prevent installing successive releases in the wrong order. Operating system
version levels can be checked by retrieving the relevant data area for:

m TheIBMiV1R1, Q5728SS1 in library QSYS
® TheIBMiV2R1, Q5738SS1 in library QSYS

Version Installation Procedures

The installation process should be as simple and as automatic as possible. Often, it will
be sufficient merely to use the 0S/400 Restore Object (RSTOBJ) and Restore library
(RSTLIB) commands—whether this is the case will depend upon the nature of the
objects being shipped.

Execution objects, for example, items that do not contain data, such as programs, device
files and message files, may generally be restored on top of the existing versions. (N.B.
device files cannot be in use while this is done.)

Data objects, for example, items that contain data, such as database files and data
areas, cannot generally be restored directly without losing the user’s existing data. They
must, therefore, either be installed under a different name and be renamed after data
conversion, or be installed to a different library and moved after data conversion.

It may also be necessary to rebuild any logical views that are based upon physical files
that have been changed. In either case, a conversion program will need to be run to
copy and or convert data from the existing files. It should be possible to run any data
conversion procedures in one of two ways:

m On alternative data sets in different libraries
m On old data sets restored from diskette or tape. Conversion procedures should, if

possible, be cumulative.

Note: To ensure upward compatibility, new software versions should include any
necessary conversion programs.

Chapter 6: Work Management Standards 277

Version Control

0S/400 Installation Procedures

The following is the change mechanism used for IBM’s own products such as RPG llI

(QRPG):

1. All changed objects are given a name based on a serial number for shipment.

2. The numbered objects are restored on site with the 0S/400 Load PTF (LODPTF)
command, which checks that no fixes have been omitted. The LODPTF command
also restores a log of changes, which includes information about dependencies.

3. The restored objects are installed by a separate command—the 0S/400 Apply PTF
(APYPTF) command, which renames or deletes the existing version and replaces it
with the serially numbered object. This allows any required data conversion to be
run at the same time.

4. Complete new releases of programs are installed by a special command—the

0S/400 Load Licensed Program (LODLICPGM) command, which can run conversion
programs after restoring the new objects if necessary.

278 Standards Guide

Backup and Recovery

Backup and Recovery

Note: For more information on the available facilities, refer to the IBM i (AS/400) CL
Programmers Guide.

All approaches to securing data represent a compromise. The perfectly secure system
would spend all of its time backing up, and no time doing anything. The final decision as
to how much data a system can afford to lose is a question of judgment and cost
effectiveness.

In discussing backup and recovery, it is useful to distinguish between two different types
of computer failure:

m Catastrophic failure (for example fire or a disk head crash), where the online
storage medium is likely to be physically damaged. Catastrophic failure is likely to
be rare, and to involve a considerable delay while new hardware is obtained. The
main concern for recovery is avoiding excessive loss of data. Recovery from
catastrophic failure will invariably involve restoring from offline copies. It is
essential to keep off site copies of software to guard against catastrophic failure.

m Non-catastrophic failure (for example a power cut or a program crash), where the
hardware is undamaged, but data may be lost or unsynchronized. Partial failure
may be fairly frequent. Recovery is concerned with minimizing data loss and with
providing a means of rapidly resuming processing at a safe point with the minimum
of expert intervention. Recovery will not usually require restoring from offline
copies.

Different recovery strategies are appropriate to each type of failure:

Type Cause Frequency Protection
Measure
OBJECT LOSS Human error or Often On-line backup
program error journaling
SYSTEM LOSS Hardware failure, Seldom Off-line backup
power cut
SITE LOSS Act of God,: flood, Rare Off-site backup
fire, earthquake,
etc.

In planning for the above, you should take into account both the relative probabilities
and the cost of failure ("Risk = Probability x Cost of failure"), and choose a cost-effective
plan. This means understanding what is the largest acceptable unit of loss: is it one day,
one hour, or one transaction?

The speed of recovery required will also be relevant—for a really speedy recovery you
should journal access paths as well as data.

Chapter 6: Work Management Standards 279

Backup and Recovery

Data Security

It is not just data loss that you need to be concerned about, but rather, the wider
concept of data security. The two goals of data security are:

m Lose as little data as possible.
m Keep the database synchronized. Transactions requiring the update of multiple

database files should function on an "all or nothing" basis.

0S/400 includes an integral system of transaction logging journaling that can help you
to attain both of these targets.

Recovering from Non-Catastrophic Failure

If an interactive program crashes due to a non-catastrophic failure, it should always
rollback to a safe point. The overall aim should be for an operator to be able to simply
restart whichever procedure was being used at the time of failure. No explicit recovery
procedures should need to be undertaken. This goal is essential to avoid having to
provide continued low-level support for a system.

Automatic recovery is relatively easy to arrange for transactions that involve the update
of a single database file record, as the update will have either succeeded or failed. A
more difficult problem is presented when a single logical transaction requires the
update of several database file records on one or more files. Briefly, there are several
possible approaches:

1. Design the database update processes so that whether or not the update is deemed
to occur depends on a single transaction. For example, add a status flag to a control
or header record and update this last. Transactions that have an incorrect status
flag are ignored.

2. For batch procedures only, the entire database could be saved before running the
procedure, so that the start position can be restored in the event of a failure.
Backup could be online; either to a save file or using the OS/400 Copy File (CPYF)
command.

3. Use the journaling and commit control facilities of 0S/400 to synchronize the
transactions automatically.

280 Standards Guide

Backup and Recovery

Recovering from Catastrophic Failure

Complete recovery can be made from a catastrophic failure by restoring the last full
save, plus—if journaling is being used—all journal receivers saved since the last full
save. The updates contained in the journal receivers must then be reapplied using the
0S/400 Apply Journal Change (APYJRNCHG) command.

If some of your applications are more essential for the continued operation of your
organization than others, consider separating critical and non-critical systems into
separate libraries so that the critical systems can be restored ahead of the others.

Chapter 6: Work Management Standards 281

Backing-Up

Backing-Up

How often something needs backing up depends upon how often it changes. Broadly
speaking, IBM i objects can be grouped into four levels of volatility:

m Very low volatility. QSYS (the 0S/400 system library), and other shipped program
product libraries such as QIDU, QRPG, QTXT, QOFC.

Most of the IBM-supplied program product libraries do not change once installed except
for new releases or PTFs, and therefore, can be backed up once and for all. They should
be resaved when PTFS are installed. Library QSYS does however, contain some data that
may change fairly frequently, such as authority and user profile information. This should
be saved at regular intervals using the 0S/400 Save System (SAVSYS) command. Device
configurations and modifications to system values may also change quite frequently.
Since saving QSYS is a tedious process (especially when saved to diskette) and requires a
dedicated machine, it is generally easier to save a record of the changes made to QSYS
rather than QSYS itself. Such changes should be kept in a CL program or spool reader.
Recovery then consists of restoring the last save of QSYS and rerunning the programs to
modify it.

m Low volatility. QGPL (user work management objects) and live application execution
objects.

Live application execution objects (programs, device files, message files, etc.) do not
change unless a modification is made to the system. Therefore, they only need backing
up when a new version of the software is implemented.

m High volatility. Live application data objects and development application execution
objects.

Live application data objects (database files, data areas, data queues) probably change
every day, as do the objects in development libraries. Therefore, they should be backed
up regularly.

m Very high volatility. Journal receivers.

If journaling is used, then the data in the journal receivers of live applications will
probably change the whole time—from moment to moment, as data is entered and
processed. In high volume or data critical applications, journals should be saved
throughout the day or even be transferred continuously to a backup machine or
machines.

282 Standards Guide

Backing-Up

Ordanizing Objects for Backup

To implement an efficient backup regime, organize your objects so that they are easy to
manage from the point of view of saving and restoring. To do this:

m Organize objects into libraries according to their volatility and functional
relatedness. For example, place all volatile data objects (files and data areas) for an
application together in the same library.

m Place dependent objects in the same library. This simplifies the restore process.
Place logical files in the same library as the based-on physical files. Place journal
receivers in the same library as the journal to which they attach.

= Use a naming convention for objects so that they can be identified and manipulated
by type, if necessary.

Backing Up Live Application Systems

One of the goals of the library usage standards discussed is to separate objects into
libraries by role. This helps to minimize the amount of backing up that has to be done.

Execution objects and source for live application systems should be kept in separate
libraries that need be backed up only when a change is made to them.

The strategy adopted for backing up live application data objects, in particular, the
choice of whether journaling, Save Change Objects (SAVCHGOBIJ) or Save
Objects/Libraries (SAVOBJ) is used, will depend on the following considerations:

m Volume and volatility. Journaling incurs a performance overhead that may become
critical on large volumes.

®m Transaction complexity. Simple transactions may not need journaling.

m Batch/Interactive job mix. Journaling is less suitable for high volume batch
applications.

Backing Up Development Systems

Because an application under development is subject to widespread change, the entire
application should be saved regularly. If a catastrophic failure occurs, not more than one
day’s development work should be lost. Backing development objects prevents loss of
work through hardware failure and provides a measure of security against human error;
for instance, the inadvertent deletion of source, objects or data.

Backing up programming changes should be done daily. This will normally involve saving
the development library or libraries.

Ancillary libraries, for example, test data or development tools, may only require an
occasional backup.

Chapter 6: Work Management Standards 283

Backing-Up

Backup Methods

It is worth developing a simple system to manage and support your backups.

For each backup unit (library or generic library name, object or generic object name), it
should be possible to specify a save frequency (such as hourly, daily, weekly, monthly), a
save method (SAVOBJ, SAVCHGOBJ, or SAVLIB), and whether the save is offline or online
(save to save file).

The system should guide the operator in loading the appropriate media and should
record which libraries have actually been saved on which days, and to which media.

New libraries should be added to the system automatically or semi-automatically.
Renaming or deleting libraries should be ensured.

284 Standards Guide

Backing-Up

Using Media

Rotate the media versions. This both provides better protection, but also spreads the
mechanical wear of the media more evenly.

A cycle of at least two week’s versions should be used for offline media copies:

- Day 1 save to Set A- Day 2 save to Set B- Day 3 save to Set C-- Day 15 save to Set A-
Day 16 save to Set B

When making saves, set the expiry date on the media (EXPDATE parameter on CL Save
commands (SAVLIB, SAVOBJ, SAVCHGOBJ, SAVSAVFDTA)) to be the expected date of
reuse. This will cause an exception message to be sent to the operator if he tries to use
the media earlier than the scheduled date.

Media (diskettes or tape) should always be clearly labeled. The label should include:

The library or objects saved

A description of the library

The date and time

The method of saving (SAVOBJ, SAVLIB)
The machine (IBM i) and 0S/400 level

The media sequence number; for instance "1 of 3", "2 of 3"

A catalog (obtained by using the 0S/400 Display Tape (DSPTAP) command with
OUTPUT(*LIST)) may usefully be stored with the media.

[llustration of Media Label Contents:

,,

i Owner:WIDGET Volid Ww1 AS/400 V2R1

Contents: SAVLIB FRED
Fred’s test programs !
26/07/84 361 Objs. !

Chapter 6: Work Management Standards 285

Chapter 7: Standards for Testing

This chapter describes practical guidelines for informal testing techniques. It is
important to make use of software tools to organize and assist with the testing process.
Some indication of possible tools is given in this chapter.

This section contains the following topics:

Types of Testing (see page 287)

Types of Testing

Program Testing

Implementation testing can be divided into two stages:
® Program testing
m System testing

In addition, there is the requirement to report and correct bugs on systems that have
been implemented.

Program testing is done by the programmer or developer. The developer is responsible
for ensuring that the tested program satisfies the following criteria:

m Performs all the functions described in the program specification

m Handles all non-pathological error conditions without crashing

Meets the coding and user interface standards

Is fully documented, including operating instructions

The usual unit for program testing is a single menu option—this will often correspond to
a command.

Chapter 7: Standards for Testing 287

Types of Testing

Black Box and White Box Testing

System Testing

Test Sheets

Most testing methodologies distinguish between black box and white box approaches to
testing.

Black box testing assumes no knowledge of the internal mechanism of a program but
merely considers the inputs and outputs.

White box testing uses knowledge of a component’s internal working to focus upon
critical paths. White box testing can be used to simplify the test procedures and to also
ensure testing covers conditions arising from any limitations of the implementation, for
example, array maxima.

Generally speaking, white box testing is most effective at a program stage; black box
testing is more appropriate at a system stage.

System testing is done by a second party, usually either the analyst or a tester. The
objectives of system testing are as follows:

m To check that programs have been properly tested
m To check that links between different parts of the system work

m To check that the system design works, that is, to execute all of the programs in the
system, with realistic data, in a realistic order

m To check that each program has the correct effect upon the data it handles, that is,
that the database is updated correctly and that all calculations are correct

m To test for arising conditions due to interaction between different programs, or
different invocations of the same program, including record locking and deadly
embraces

m To test for arising conditions due to large volumes of data, including level breaks,
page overflow, and exceeded commit maxima

Progress should be monitored by means of test sheets. A test sheet is a standard form,
one per program (or rather function), which will circulate between developer and tester
until the program has been accepted. It includes a checklist of standard points to test,
plus space for comments and errors. Preferably, this will be online.

288 Standards Guide

Types of Testing

Test Techniques

To test a whole system successfully, you will need to "divide and conquer"; that is, split

the system into modules that can be tested independently. Do not try to test the whole

until the parts are working.

Overall, it is important to recognize:

m Agiven test will nearly always need to be repeated many times

m Agiven test will be needed not only for initial development, but also later on to
retest components after maintenance changes

It is therefore worthwhile, prior to testing, to spend time both formally designing test

plans and preparing any tools that will assist with the process. For example:

®m Programs to set up or generate test data

m Test harnesses and ‘scaffold’ programs to run individual programs that are normally
run as part of a larger process

®m Programs to reset initial test conditions
®m Programs to document test data, for example, Queries

®m Programs to evaluate test results

PC Tools Useful for Testing

There are several PC-based testing tools. They allow you to carry out regression testing.
This is the rerunning of a test case or battery of test cases after a change has been
made, in order to verify that no inadvertent side effects have been introduced.

The CA 2E Toolkit utilities include a number of tools that may be useful. When testing to
display or change data in database files or data areas, use the following CA 2E Toolkit
commands:

m Work with Files (YWRKF) command

m Edit LDA (YEDTLDA) command

m Edit GDA (YEDTGDA) command

m Edit Data Area (YEDTDTAARA) command

To enter debug for predefined sessions, or at any point, use the following CA 2E Toolkit
commands:

m Start Debug (YSTRDBG) command

m Set Break Program (YSETBRKPGM) command

To reset initial test conditions, use the CA 2E Toolkit Copy Files (YCPYF) command.

Chapter 7: Standards for Testing 289

Types of Testing

Using Test Plans

For programs that change the database or carry out calculations in a nontrivial way, test
plans of predicted results should be prepared. Test plans should combine as many test
conditions as possible in as small of a volume of data as possible.

Using Test Data Packs

Test packs of data (for example, files and data areas) each corresponding to a set of test
conditions, should be kept so that tests can be rerun.

Prepare a test pack of the data representing the initial state prior to running the test.
Ideally, a test pack is a self-contained library of files and data areas, or a set of physical
files.

Take a ‘snapshot’ of the test pack as it is prior to running the test. This may be done in
two ways:

Devise test plan
Set initial| conditions
Execute test
(Recompile if necessary)
Evaluate results
No
OK? Correct errors
Yes
Stop

m Using the 0S/400 save commands (SAVLIB, SAVOBJ, SAVCHGOBJ). The saves may be
made on-line to a save file.

m Using the CA 2E Toolkit Copy Files (YCPYF) utility. The Copy file utility saves a list of
database files.

Run the test and examine the output data. If an error is found, correct it, restore from
the ‘snapshot’, and rerun the test. You may restore the snapshot either by using the
0S/400 restore commands (RSTLIB, RSTOBJ) to restore from your save file, or using the
CA 2E Toolkit YCPYF command to restore from your set of physical files.

290 Standards Guide

Types of Testing

Manipulating Test Data
®m You should have tools for examining and altering test data.

®m You should have a means of looking at any database file that you are likely to
change. The CA 2E Toolkit Work with Files (YWRKF) command can be useful in this
respect.

m The 0S/400 interactive debug facility can be used to check calculation values during
program execution.

m You should have a means of listing the data from the main database files before and
after each test is run.

The Test Cycle—When testing, you will be going through an iterative cycle of testing and
error correction.

For each iteration, there will be an overhead involved in recompiling objects from
corrected source and in resetting the test data to the initial conditions. It is, therefore,
important to adopt a working method that corrects as many errors as possible during a
given iteration. In other words, you should not necessarily stop at the first error you
detect and attempt to correct and reiterate it, but rather, continue in order to detect
and correct as many other errors as possible.

There are several techniques you can use to resume a test run, despite the occurrence
of errors:

m Use the 0S/400 interactive debug facilities to correct any program variables that
are preventing the completion of a test.

m Use the CA 2E Toolkit Work with Files (YWRKF) command to correct any database
fields that are preventing the completion of a test.

m Use the CA 2E Toolkit edit data area commands (YEDTDTAARA, YEDTLDA, YEDTGDA,
and YCHGDTAARA) to correct any data areas that are preventing the completion of
a test.

Error Reporting—In a live system, locating the cause of a bug is often more difficult than
actually fixing the bug. This is partly because the sort of bugs that elude system testing
tend to be obscure, and may only occur under certain combinations of conditions, but
also because they are often reported by the end user, who quite naturally may not be
adept at providing the information that helps to characterize a bug. It is important,
therefore, to have an error reporting procedure that helps to capture as much
information about bugs as possible. The user should be trained in basic recording
techniques. Automatic techniques may also be used.

For any reasonably sized system, it is desirable to have a computer-based error
reporting and problem determination system:

m Torecord the occurrence of an error in a standard format

m To monitor the progress of fixes for the error

m To allow the cross-referencing of related errors

Chapter 7: Standards for Testing 291

Types of Testing

m As a database for a system support personnel (a ‘Helpline’ or ‘Hotline’ function)

iSeries has a number of facilities that can be used to assist with problem resolution. For
example, the Question and Answer database may be used as a basis for a computerized
problem reporting system.

Problem Reporting Data— Careful consideration should be given to the standard
information recorded for each problem, and the classifications under which they are
filed.

Some items that are generally important are:

®m Application or product name

m Product version number and fix level

m Operating system version number and PTF level

m Program or object name

m Command or menu option name

m User name, date, and time
Include circumstantial information, such as what the user was doing at the time.

Problem Reporting Procedure—Standard practice should include the following:
m Take a program dump if an escape message appears.

m Preserve the job log until the problem is resolved. A print of the log may be
obtained either by pressing the PRINT key while displaying the second level
messages, or by taking the 0S/400 Sign Off command (SIGNOFF) with
LOGOFF(*LIST).

m Print any associated displays using the PRINT key.

If you are operating on more than one machine, the Operating System version levels,
including Program Temporary Fix (PTF) levels, should be recorded. The 0S/400 Display
Program Temporary Fix (DSPPTF) command can be used to examine the applied fixes.

Trapping Error Information Automatically—Apart from its normal job of logging
facilities, OS/400 has three particular features that may be used to trap error
information automatically:

m System reply lists. A default reply to exception messages can be specified for a job
using the INQMSGRPY parameter on the OS/400 Submit job (SBMJOB) or Change
job (CHGJOB) commands.

292 Standards Guide

Types of Testing

Break message programs. An exception-handling program can be specified for
particular messages using the DFTPGM parameter on the 0S/400 Add Message
Description (ADDMSGD) and Change Message Description (CHGMSGD) commands.
Apart from dumping, the default program could carry out additional processing,
such as notifying an operator. This facility can be used in conjunction with a system
reply list so that the message-handling program is only invoked for certain jobs.

RPG IIl ¥*PSSR Subroutines. Exception handling subroutines can be coded in RPG IlI
source to achieve a similar effect to break message programs.

Chapter 7: Standards for Testing 293

Types of Testing

Sample Test Sheet

TEST SHEET - COMMAND:

Command Diagram: Developer:

Documentation: Checked by:
Check date:
Help Text:

Parameters:

Errors:

Notes:

294 Standards Guide

Types of Testing

Chapter 7: Standards for Testing 295

Chapter 8: Documentation Standards

This chapter describes the CA 2E standards for documenting application systems.

For more information on general design standards and documenting a system
specification, refer to the section, General, in the chapter, "iSeries General Design
Standards."

The chapter details documentation principles. It provides information on
documentation that is computer generated, manually generated, and function oriented.
It discusses Help text and provides standards for preparing text.

This section contains the following topics:

Considerations (see page 298)

Chapter 8: Documentation Standards 297

Considerations

Considerations

m Prescriptive and Descriptive Documentation—It is useful to distinguish between
prescriptive and descriptive documentation.

Prescriptive documentation is needed before a system exists, in order to specify what it
will be like. It may include computer-based definitions such as prototypes or data
models. Prescriptive documentation includes high-level system definition
documentation, such as a requirements specification or a component architecture
overview.

Descriptive documentation is needed after a system exists to record what it does. There
is considerable scope for producing most descriptive documentation automatically from
the objects and source that comprise an application. The CA 2E Toolkit application
documentation utilities mostly produce descriptive documentation, which is detailed
here.

m Documentation Principles—The following principles should be followed in
preparing documentation:

m Use design and implementation tools that provide integrated documentation
facilities.

m Use computer-based word processing and/or DTP facilities to prepare
additional text documentation.

m Asfar as possible, make use of the computer in collating and ordering
documentation.

m Ensure all objects and documentation have descriptive titles so as to facilitate
the automatic preparation of indices and cross-references.

m Use standards to reduce the amount of documentation. Too much
documentation can be as bad as too little documentation.

m Use computer-based tools that can create documentation from existing
systems.

m Each program should have a functional synopsis that can be extracted to
provide a summary of its function. "Meaning" will still have to be provided by
human intervention.

m Provide diagrams wherever possible.

298 Standards Guide

Considerations

Once a system is implemented, the majority of documentation will probably only be
required to cope with change, either to the system or of personnel. Take a facultative
approach to the actual production of your documentation\-\-— that is to say it should
only actually be created when required, but the capability to produce it on demand
should be built into the system. Software tools to produce facultative documentation
should include scanning, cross-referencing, and list handling facilities. Ideally, it should
be possible to produce different views of the documentation to meet different types of
users’ needs, for instance, analyst, tester, and programmer. The computer should
regenerate all but the highest level of documentation automatically. This means that it
will automatically stay up-to-date if changes are made.

The following diagram shows the organization of system documentation as a pyramid of
levels: the commands used to print the documentation at each level are shown in bold
type in brackets. It should be possible to produce all of the documentation up to the
dotted line automatically.

Overview Flowcharts YDOCRPT
Overviews, PRTDOC
Human
generated
Entry points Command diagrams PRTDOC
Cross-references and indices
Cross- Computer
reference File/program YDOCPGMREF generated
and search Program/program YDOCEXCREF
Menus YDOCMNU YDOCMNUREF
Commands LSTCMDUSG
Authorization/users YDOCAUT
File/field YDOCFLDREF
File/file DSPDBR
Indices DSPLIB DSPFD
Scan YSCNSRC
YDOCMDLREL/YDOCMDLFUN/YDOCMDLF
File Program
Summary description description
YDOCF YDOCPGM
YDOCMDLACP/YDOCMDLF YDOCMDLFUN
Help Source Output from Output from
Detail text listings DSPOBJD DSPLIB YDOCLIBLST
DSPFD DSPFFD YDOCUSRPRF
SPDBR DSPLIBL YDOCPNL
YDSPHLP YDOCSRC DSPPGMREF YDOCRPT
PRTDOC DSPUSRPRF YDOCOBJLST
YDSPMNU EDTSRC DSPCMD DSPPGM YDOCMBRLST
YGO DSPMSGF
YDOCMDLMSG

Chapter 8: Documentation Standards 299

Considerations

Computer-Generated Documentation—The following documentation can be
generated for all application systems, using the CA 2E Toolkit documentation
utilities:

File layouts: The CA 2E Toolkit Document File (YDOCF) command will generate
file documentation from compiled files, and will include information about
fields, access paths, and dependent files.

Menus: The CA 2E Toolkit Document Menu (YDOCMNU) command will
generate documentation for CA 2E Toolkit menus.

Program summaries: The CA 2E Toolkit Document Program (YDOCPGM) utility
will generate program documentation, including information about
parameters, required objects, and subprograms called. In order for the utility to
generate full documentation, ‘H*’ source directive lines must be used in the
source as comments.

Source listings: The CA 2E Toolkit Document Source (YDOCSRC) utility will
provide compact source listings.

Search listings: The CA 2E Toolkit Scan Source (YSCNSRC) utility will provide
listings of occurrences of given search strings in source.

Cross-references: A variety of cross-references can be created using CA 2E
Toolkit commands; for example, program/file, menu/program.

Manually Generated Documentation—The following documentation should be
prepared for all application systems:

Program Synopses: The comment section at the beginning of the source of
every program should contain a statement of the purpose of the program and a
summary of the functions carried out by the program.

Command diagrams: A standard command diagram should be provided for
each command. Use a word processor to enter and to print command
diagrams.

Message text: Message text, including second level text, should be prepared
using the 0S/400 Add Message Description (ADDMSGD) and Change Message
Description (CHGMSGD) commands.

Help text: Operator instructions should be prepared for each interactive
program. Use UIM help to provide help text. CA 2E will generate Help text
automatically.

Summary flowcharts: Flowcharts and other diagram types indicating the main
flow of information through the system should be prepared. The CA 2E Toolkit
Work with Report (YWRKRPT) can be used to create simple diagrams up to 198
characters wide.

Technical overviews: Overviews should be written to describe the techniques
used in the system, and to explain any special subjects; for example, backup,
recovery, and end-of-period procedures.

300 Standards Guide

Considerations

m Command Based Documentation—A number of reasons were given earlier in this
manual for arranging system design around user-defined CL commands, each
command being the entry point to an application function. Not least among the
reasons given was that CL commands provide a natural framework for arranging the
operational documentation for the application, as well as a notation for doing so.
The framework has a flat structure that enables the user to look up the operational
details for invoking any task directly without having to locate it through a menu
hierarchy.

Documenting Commands

If commands are used to document a system, they should be documented in two
separate ways:

1. With command diagrams for all commands, arranged in alphabetical order of
command name. Each diagram should contain the following sections:

m Function: A synopsis of the purpose of the command.
m Diagram: A command diagram prepared according to the 0S/400 conventions.

m Parameters: A description of each parameter specifying the allowed values,
including any defaults and special values.

m Notes: Notes about any special considerations for using the command, and
information about any prerequisite or subsequent processing steps.

m Example: An instance of using the command.

2. With a Concepts Guide that discusses each area of the application system and
names the individual commands that are relevant to that area. The concepts
section provides an alternative access path for understanding the purpose of
individual commands in terms of the whole application system.

For more information on an example of documenting commands, refer to the appendix,
"Programming and Coding Examples," in this guide.

For good models, refer to the 0S/400 CL Reference Guide (command diagrams) and the
0S/400 Programmer’s Guide (concepts).

Chapter 8: Documentation Standards 301

Considerations

Messades

0S/400 messages provide a highly flexible way of providing context-sensitive
documentation. Messages should be regarded as an integral part of the application
system documentation.

The first level text of diagnostic messages should state what the problem is. The second
level text should contain an explanation of the cause of the problem and possible
solutions.

For more information on message layout conventions, refer to the section Coding
Standards for Messages in the chapter "Coding Standards for Database Files" chapter in
this guide.

The CA 2E Document Model Messages (YDOCMDLMSG) command provides a means of
producing a message manual for your application.

Standards For Preparing Text Documentation

Preparing Text

Use word processing and/or desktop publishing tools to write the additional text
needed to support an application. Ideally, you should have capabilities to do the
following:

m [ntegrate manually written text with computer generated documentation in
composite documents.

m Capture screen prints and report listings as text illustrations.

m [ntegrate documentation version control with program version control.

302 Standards Guide

Considerations

Structuring Documentation

When preparing documentation:

m Provide prefaces to give an indication of what is to come: at each level, structure
your documentation into an introduction followed by more sections of more
detailed information.

m Provide indexes and a table of contents. At the beginning of each section, indicate
the sections that follow. For online help text, provide a search index.

m Be consistent in the use of titles, names, and indentation. As in the case of any
other interface, it is consistency that gives a professional appearance.

®m Leave "white space".

m Provide diagrams where appropriate. The CA 2E Toolkit Convert Print Key
(YCVTPRT) command can be used to convert print key output to text source.

m Provide examples to illustrate what you are describing.

m Provide summaries to reinforce the most important points.

*T . Master document
HO The order entry system
sk 5
HELP TEXT MANUAL
for the
ORDER ENTRY SYSTEM

Universal Sprocket
and Widget Co

LONDINIUM MCMLXXXVII
tc
H1 Introduction
im (HLP_INTRO QTXTSRC CUSDOQOC)
H1 The programs
H2 How to edit a customer
im (EDTCUSDIAG QTXTSRC CUSDOC)
im (XXCUEFR QTXTSRC CUSEXC)
H2 How to edit a product
im (EDTPRDDIAG QTXTSRC CUSDOC)
im (XXPREFR QTXTSRC CUSEXC)
H2 How to enter an order
im (EDTORDDIAG QTXTSRC CUSDOC)
im (XXORETR QTXTSRC CUSEXC)
H1 Appendix C
im (TRNTYP QTXTSRC CUSDOC)

Chapter 8: Documentation Standards 303

Considerations

Using Sub-documents

Break large documents into a number of smaller documents and create a master
document to control their printing. This gives you greater flexibility as follows:

It is quicker to load, edit, and replace a small document.

The same sub-documents may be assembled in a number of different ways for
different purposes.

It is easier to find text within a small document.

The following points should be observed when writing specifications, program
descriptions, and operator instructions.

Split a complicated series of instructions into a series of numbered ‘cookbook’
steps. For example:

Not: "Adding a new client and his address is a multi-step process in which first the
client is added using the new client display (unless the client was already a supplier,
in which case you use the conversion display); and then add the address using the
address display, although in the latter case the final step is not necessary."

But rather: "To add a new client:
1. Decide if the client is already a supplier.
2. Iftheclientis not already a supplier:

— Add the client using the new client display.

— Add the client’s address using the address display.
3. Iftheclientis already a supplier:

— Add the client using the conversion display."
Use an active voice. For example:
Not: "To display messages, the user should press F6."
But rather: "Press F6 to display your messages."
Write in terms of what the user is trying to achieve. For example:

Not: "This program performs a database add via a validator subprogram to the
customer header and detail files."

But rather: "This program lets you add new customers to the system".

Work forwards in time. A simple narrative is usually more straightforward. For
example:

Not: "Before you can do this, you must first add a record, before you add a record
you must yourself be enrolled as a user, before which you must decide who has
enrollment rights."

But rather: "To be able to do this you must first decide who has enrollment rights,
secondly get him to enroll you, and thirdly, add a record."

304 Standards Guide

Considerations

Avoid jargon. It is legitimate to use a small vocabulary of specialist terms that a
computer user may reasonably be expected to know, such as workstation, cursor,
and command key, but any other terms should be explained.

Not: "The workstation terminal Help command function key provides WYSIWYG
context-sensitive Help text by making a call command request to invoke the
interactive on-line Help facility, which has self-extending scroll-through sub file and
vectored entry. The Help display program is invoked as an interrupt using a
put-override technique so that existing modified input field values are not overlaid
by a subsequent put/get."

But rather: "When you press the HELP key the instructions for the current panel
will be displayed. If there is more than one page of instructions, they may be
displayed by pressing the ROLL key. Any data that you have already entered will still
be there when you return from the Help Text display.

Place new terms in italics when they are introduced so as to emphasize that they
are jargon words: The sub file, a special type of repeating data structure that can
be used on displays, is a jolly clever idea."

Where specialist terms are introduced, use the same term consistently. Elegant
variation is not required in computer manuals.

Be as specific as possible; use concrete terms rather than abstract ones. For
example:

Not: "Various utilities may be used to manipulate text".

But rather: "Both the Edit source and the Edit text command may be used to create
or change Help text".

Avoid compound phrases; they tend to be very ambiguous. For example:
Not: "RECORD ERROR"

But rather: Either, "A error has occurred on processing a record", or "Please log the
occurrence of an error in the appropriate place".

Do not repeat what is already apparent from the context, nor that which could be
more efficiently described centrally (such as instructions on how to use a
workstation, how to display second level message text).

Provide examples and instances to illustrate the points you make.
Counter-instances may also be useful. For example:

Not:
But rather: For example: - "* Not: "

Provide frequent sub-headings and captions to break up the text. Captions enable
readers to "hone in" on the information that they are looking for —and to skip that
which they are not.

Ask yourself, “What are the questions which would be crossing the mind of
someone reading this?’

Chapter 8: Documentation Standards 305

Considerations

Terminology
It is important that a consistent terminology be used throughout a system. For instance,

decide whether you have screens, panels, displays, or videos, workstations, VDUs, or
terminals. The terminology laid down in IBM’s SAA should be used whenever possible.

Presentation Conventions
The appearance of documentation is greatly improved if consistent standards are used
for punctuation, emphasis, and examples. The CA 2E internal standards are to use the
following presentation conventions.

Control Language Commands in Text
Give references to commands, both 0S/400 and user-defined, in the following format:
YDSPMNU MENU(FRED) FILE(FREDMENU) +

ALWCMDENT(*NO)

For example:

SYSTEM Command descriptive text (MNEMONIC).

When quoting examples of CL code in text, always specify the parameter keywords in
full, indicate a continuation with a ‘+’ sign, and use bold type for the entire command,
For example, LVCHK(*NO), MAXMBRS(*NOMAX), SFLEND, MSGID.

“the OS/400 Go to Menu (GO) command”
“the CL Change Data Area (CHGDTAARA) command”

References to parameter keywords should be in upper case and bold type; for example,
LVLCHK(*NO), MAXMBRS(*NOMAX), SFLEND, and MSGID.

“the 400 Toolkit AS/400 Go to Menu (YGO) command”
“the 400 Toolkit Display Report (YDSPRPT) command”

Use uppercase when referring to the name of an 05/400 object, whether shipped or
user-defined; for instance QGPL, QTXT, QPRINT, QBATCH, YINLPGM, YDSPHLP.

306 Standards Guide

Considerations

System Entities in Text
]
n

Refer to iSeries and OS/400 in upper case with a slash.
Give references to CA 2E relations in initial capital letters in bold type.

Give references to CA 2E object attributes in uppercase, for example DTE, STS, and
RTV.

Give references to entities in initial capital letters, for example, Horse.

Displays and command keys in text

On iSeries, give references to displays in lower case and quotes, to be consistent
with the display title on the panel.

References to command keys should be in upper case and bold type, for example,
HELP, ROLLUP, ENTER, F3.

In text, spell out numbers under ten; for instance, nine turtle doves not 9
turtledoves; 13 characters not thirteen characters.

Note that special conventions apply to the following diagram types:

Command diagrams
Chapter facing pages
CA 2E relation syntax diagrams

CA 2E relation examples

Headings should not have a period as punctuation.

Chapter 8: Documentation Standards 307

Considerations

Punctuation

m The abbreviations e.g. and i.e. should be avoided. If you do use them for
parenthetical information, use periods between the letters. Do not write them as ie
and eg. Terms such as for example and that is are preferred.

m When the word not is being used as a contrast, use boldface type. For instance:
Not: not like this.
But rather: not like this.

m Use a colon to indicate the start of a list of items.

m When a list consists of partial sentences or points, each on a different line, do not
begin with a capital letter or end with a full stop, for instance:

— command diagrams
— chapter facing pages
— CA 2E relation syntax diagrams
Where points are numbered, enter numbering as 1. and 2. with the numbers followed

by a period. This applies to sub-points as well, which should be designated by letters a.,
b., and c. Avoid roman numerals, as they do not align properly.

308 Standards Guide

Chapter 9: Naming Convention Examples

Examples

This appendix contains examples intended to illustrate the standard naming convention.

This section contains the following topics:

Examples (see page 309)

System letter:
m O: Omega workshops stock control system

m Y:CA2E

Functional letter:
= M: Menu

m O: Order entry subsystem

Mnemonic:
= MB: member
m DS:display

= MN: menu

SF: subfile

CD: code

Chapter 9: Naming Convention Examples 309

Examples

Objects:

YMMNDAP: Physical file

YMMNDAL1: Logical file view 1 on YMMNDAP
<%-2>YMMNDAL2: Logical file view 2 on YMMNDAP
YYCONMA: Data area

YMDSMNC: Main CL program for function M
YMDSMNC#: Display file used by YMDSMNC
YMDSMNCL1: Subsidiary CL program called by YMDSMNC
YMDSMNC2: Subsidiary CL program called by YMDSMNC
YMDSMNR: RPG program

YMDSMNR#: Display file used by YMDSMNR

YDSPMNU: Command

YMDSMNC@: Command processing program for YDSPMNU
YMDSMNC#: Validity checker for YDSPMNU command
YMMNCMH: Panel group used by menu commands
YMMNPNH: Panel group used by menu panels
YMMNENP: Menu hypertext help groups

YYSYCMP: Standard command help groups

YYSYPNP: Standard panel help groups

YSCHIDX: Search index

YMSGF: User message file

YMENU: Menu task menu

YCMDMNU: Menu of menu commands

YDSPCMD: Menu of display commands

YYFDRFP: Field reference file

310 Standards Guide

Examples

Formats:

@ @MNDAYQ: DBF format for YMMNDAP
H#MNCD##: Panel format for an RPG program
H#MNDAM###: Panel format for an RPG program
#SFRC#1: Subfile record identifier

#SFRC#2: Subfile record identifier

#SFCT#1: Subfile Control record for #SFRC#1
#SFCTH#2: Subfile Control record for #SFRC#2
SHDNG: Print file Heading record

SMNDA: Print file Detail line

Fields:

&SRCFILE: CLP Variable name used in a command
&#H#HMNCD: CLP Variable name from a display File
YQMNCD: Field from dbf format @ MNDAYQ
H##MNCD: Field from dspf format #MNCD##
WWMNCD: RPG work field based on YOQMNCD
SSMNCD: RPG Entry Parameter Field

@@NM: RPG ARRAY name

NM: RPG Array index

W1: RPG alphabetic Work field 1 chars

KMNDA1: KLIST KEY for format YMNDAL1

Help panel groups:

YDSPMNU/ALL: YDSPMNU Command group
YDSPMNU: YDSPMNU Command overview
YDSPMNU/MENU: YDSPMNU Command parameter
ZSFCTZ1/PNL/INTRO: #SFCT#1 overview
ZSFCTZ1/PNL/TOPINS: #SFCT#1 top instruction
ZSFCTZ1/ZZMNCD: #SFCT#1/##MNCD field text

ZSFCTZ1/PNL/CMDINS: #SFCT#1 command keys

Chapter 9: Naming Convention Examples 311

Chapter 10: EJB Option Runtime Example

This appendix contains mnemonics and naming convention for certain words.

This section contains the following topics:

Nouns, Adjectives, and Verbs (see page 313)

Nouns, Adjectives, and Verbs

Strictly reserved: Nouns and Adjectives

Noun/Adjective Mnemonic Naming Convention
Library LIB LB
File F FL
Member MBR MB
Program PGM PG
System SYS SY
Data DTA DA
Valid system name i.e. 10 VN
character

Valid message i.e. 7,xxx9999 VM
Day, daily DAT DD
Month, monthly MM
Year, yearly YY
Date DTE DT
Code CDE CcD
Number NBR NO
Time TME ™

Recommended Verbs

Verb (M-2) Mnemonic Naming Convention
Add ADD AD
Allocate ALC AL

Chapter 10: EJB Option Runtime Example 313

Nouns, Adjectives, and Verbs

Analyse ANZ AZ
Answer ANS AW
Apply APP AP
Ask ASK AK
Build BLD BL
Call CALL CA
Cancel CN CN
Change CHG CH
Check CHK CK
Close/clear CLO/CLR CL
Compare CMP CM
Convert CVT Ccv
Copy CPY CP
Create/credit CRT CR
Deallocate DLC DA
Delay DLY\ DY
Delete DLT DL
Display DSP DS
Do DO DO
Document/declare DOC/DCL DC
Dump DMP DM
Duplicate DUP DP
Edit EDT ED
Eject EJC EJ
Encipher ENC

End END EN
Execute EXC EX
Flag FLG FG
Format FMT FM
Generate GEN GN
Go GO GO

314 Standards Guide

Nouns, Adjectives, and Verbs

Grant GRT GR
Hold HLD HD
Initialize INZ 1z
Load LOD LD
Merge MRG MG
Monitor MON MN
Move MOV MV
Open OPN OoP
Override OVR ov
Print PRT PR
Position POS Ps
Reclaim/receive RCL/RCV RC
Release, RLS RLS RL
Remove RMV RM
Rename RNM RN
Reorganize RGZ RZ
Replace RPL RP
Reroute RRT RR
Restore/resume RST/RSM RS
Retrieve/return RTV/RTN RT
Revoke RVK RV
Run RUN RU
Save SAV SV
Select SEL SL
Send SND SN
Start/set STR/SET ST
Submit SBM SB
Trace TRC ST
Transfer TFR TF
Update UPD upP
Vary VRY VR

Chapter 10: EJB Option Runtime Example 315

Nouns, Adjectives, and Verbs

Verify VFY VF
Wait WAI WT
Work WRK WK

Recommended Nouns and Adjectives

Noun/adjective Mnemonic Naming Convention
Authorization AUT AU
Batch BT
Database file list DL
History HS
Job JOB JB
Job description JOBD ID
Journal JRN JR
Library list LIBL LL
Member list ML
Object oL
Program PGM PG
Panel PNL PN
Password PWD PW
Shop SH
Source SRC SR

Recommended Nouns and Adjectives

Noun/adjective Mnemonic Naming Convention
Space SPCC SP
Stock SK
Transaction TRN TR

316 Standards Guide

Appendix A: Programming and Coding
Examples

This appendix describes some helpful programming and coding examples for CA 2E.

Field Reference File Example

T* $$: Field reference file.
Z* CRTPF MBR(*NONE) SIZE(1 @ 0) LVLCHK(*NO)

*

H* SYSTEM : Widget processing system
H* PROGRAMMER : D.P. Thought
H* DATE 1 24/04/84

H* (C) COPYRIGHT 1987 Universal Sprocket Co
*

M* *NONE

A R @FDRF$$ TEXT(‘Data Dictionary’)

Appendix A: Programming and Coding Examples 317

Field Reference File Example

Primary Reference Fields: "TYPE FIELDS"

A $$ 1 COLHDG(“Mnemonic’)

*

I* CD - Code

A $$CD R REFFLD ($$)COLHDG(‘Code’)
A @acD 1 COLHDG(‘Code”)

A ©@QCDMN 10 COLHDG(‘Menu name’ ‘(VN) ")
A CHECK(VN)

A @aCbwM 7 COLHDG(‘Message id’‘(VM)")
X* fXXX9999'

A @aCDVN 10 COLHDG(‘System name’ VN)')
A CHECK(VN)

I* DT - Dates

A $$DT R REFFLD($$) COLHDG(‘Date’)

A @aDTDS 6 0 COLHDG(‘Date’ ‘DD/MM/YY')
A EDTWRD(* / / 07)

*

A @@DTDD 2 0 COLHDG(‘Day’)

A EDTCDE(Z)

A @aDTFL 6 0 COLHDG(‘Date’ ‘YY/MM/DD’)

A EDTWRD(* / / 07)

A @@DTMM 2 0 COLHDG(‘Month’ ‘MM")

A EDTCDE(Z)

A @aDTYY 2 0 COLHDG(‘Year’ ‘YY')

A EDTCDE(Z)

*

X* SS - Status indicators/flags

A $$SS R REFFLD($$) COLHDG(‘Status'
+ 'flag')

A @aSSDA 1 COLHDG(‘Data’ ‘+‘ sensitivity')
A RANGE(‘0" ‘9")

*

I* TX - Text

A $$TX R REFFLD($$) COLHDG(‘Text')

A @QTXSY 50 COLHDG(‘System text')
A REFSHIFT (W)

*

Secondary Reference Fields

318 Standards Guide

Field Reference File Example

I* AU - Authority

A $SAU R REFFLD($$) COLHDG(+

A ‘Authority’)

A $SAUVN R REFFLD(@@CDVN)

A COLHDG(‘Authority’ ‘type’ +

A ‘pgm (VN)’)

*

I* CO - Company.

A $3CO R REFFLD($$) COLHDG(‘Company’)
A SSCOTX 40 COLHDG(‘Company text’)

*

I* DA - Data sensitivity flag

A SSDA R REFFLD($S) COLHDG(‘Data’)
A SSDASS R REFFLD(@ @SSDA)

A COLHDG(‘Data sensitivity’ +
A ‘flag’ +

A ‘(“1-9”,”1"”=high)’)

X* 1 = high, 9 = low

F

I* DT - Date

A SSDT R REFFLD($S) COLHDG(‘Date’)
A $SDTDS R REFFLD(@@DTDS)

A COLHDG(Display ‘ ‘date’ +
A ‘(DDMMYY)")

A $SDTFL R REFFLD(@@DTFL)
A COLHDG(‘File * ‘date’ +

A ‘(YYMMDD)')

A SSDTYY R REFFLD(@ @DTYY)

A COLHDG(‘Year’ ‘(YY))

|*

* FD - Field

A $SFD R REFFLD($$) COLHDG(‘Field’)
A SSFDDP 2 0 COLHDG(‘Decimal’ ‘places’)

A $SFDLN 5 0 COLHDG(Field’ ‘length’)

A SSFDRF 10 COLHDG(‘Referenced’ ‘field’)
A $SFDTP 1 COLHDG(‘Field’ ‘type’)
A SSFDVN 10 COLHDG(‘Field’ ‘name’)
*

I* FL - File

A SSFL R REFFLD(SS) COLHDG(‘File’)

A SSFLVN R REFFLD(@@CDVN)

A COLHDG(File’ ‘name’ ‘(VN)’)

%

I*JB - Job

A SSJB R REFFLD(SS) COLHDG(‘Job’)
A $SJBVN R REFFLD(@@CDVN)

Appendix A: Programming and Coding Examples 319

Field Reference File Example

A

A SSJBDT R S
A

A

A $SIBNO

A SSIBTM R
A

A

A

A SSJBUS R

A

P

I* JD - Job description
A SSID R
A

A SSJIDVN R

A

A

A SSJDLB R

A

A

*

I * JR-Journal

A SSIR R
A SSJRCD

A

X*

X*

X*

X*

X*

A SSIRNM 8
A SSIRLG

A

A SSIRSQ

A

A SSIRTT

A

%

COLHDG("Job’ ‘code’ ‘(VN)’)
REFFLD(@ @DTDS)

COLHDG(‘Job’ ‘date’)
EDTWRD(“ / /)

6S0 COLHDG(Job’ ‘number’ ‘(#)’)

S REFFLD(@@TMHS)
COLHDG("Job time” +
‘(HHMMSS)’)
EDTWRD(" : : ‘)
REFFLD(@ @CDVN)
COLHDG(‘Job’ ‘user’ ‘(VNY)’)

REFFLD($S) COLHDG(‘Job +
description’)
REFFLD(@@CDVN)
COLHDG(“Job’ ‘description’ +
‘(VN)’)
REFFLD(@@CDVN)
COLHDG("Job’ ‘description” +
‘library (VN)’)

REFFLD($S) COLHDG(‘Journal’)
1 COLHDG(“Journal’ ‘entry’ +
‘code’)

J =journal level info
F =file levelinfo
R =record level info
C =commit level info
U = user generated info
COLHDG(“Journal tp’ ‘name’)

550 COLHDG(‘Journal’ ‘entry’ +

‘length (#)")

10S 0 COLHDG("Journal entry’ +

‘sequence’ ‘number (#)")
COLHDG(‘Journal’ ‘entry’
‘type’)

See 0S/400 manuals

320 Standards Guide

Database File DDS Example

Database File DDS Example

Sample Physical File DDS

T YQ : Birth details (*NONE)

zZ* CRTPF MAXMBRS (*NOMAX) SIZE(*NOMAX)
*

H* SYSTEM : Widget processing system
H* PROGRAMMER : E. Codd

H* DATE 1 07/07/87

H* (C) COPYRIGHT 1987 Universal Sprocket Co
M* 12/12/89 HF Name at birth

A REF (YYFDRFP)
A R @USDAYQ TEXT(‘YQ: Birth details)
*

* Gender code

A YQSXCD R REFFLD ($$SXCD)

* Birth date

A YQBTDT R REFFLD ($$BTDT)

* Effective date

A YQEFDT R REFFLD ($$EFDT)

* Name at birth

A YQBTNM R REFFLD ($$BTNM)

Appendix A: Programming and Coding Examples 321

Display File DDS Example

Sample Logical File DDS

T* YQ: Birth details (0| BTDT|SEX).

Z* CRTLF

%

H* SYSTEM : Widget processing system
H* PROGRAMMER : Alfred E Neuman

H* DATE :07/07/87

H* (C) COPYRIGHT 1987 Universal Sprocket Co

A UNIQUE
*===============================
A R @USDAYQ PFILE(YMUSDAP)

A TEXT(‘YQ; Birth details+ (0| BTDT|SX)’)

A

*

* Birth date

A K YQBTDT
* Gender code

A K YQSXCD

Display File DDS Example

322 Standards Guide

Display File DDS Example

/*T: YEDTSCR - Screen selection display.

/*Z: CRTDSPF DFRWRT(*YES) RSTDSP(*YES)

F

H* SYSTEM : Universal Sprocket Company

H* PROGRAMMIER : P Wilson

H* DATE :16/06/84

H* (C) Copyright 1987 Universal Sprocket Company

REF(YYFDRFP)
HELP
ALTHELP
ALTPAGEDWN
ALTPAGEUP
CA03(03 ‘Exit’)
CF12(12 ‘Exit’)
PRINT(LPRTKEY)
HLPSCHIDX(WSCHIDX)

* Subfile of code & name details.
R #SFRC#1 SFL
84 SFLNXTCHG
#1SFSL 1 B 10 3VALUES(‘P’ ‘E’ ‘C’''R)
CHECK(AB)
#1SCSQR B +2REFFLD($$SCSQ)
CHANGE(46 ‘Prt Seq Changed’)
DSPATR(RI PC)
DSPATR(UL HI)
#1SCTL 50W B +2LOWER
CHANGE(47 ‘Title

* > > P> >

w
-

Por>>>>>>> >
=2
w
[y

changed’)

A 32 DSPATR(RI PC)

A N32 DSPATR(UL HI)

A SASCVN R +2REFFLD($$SCVN)
DSPATR(HI)

SASCSQ R H REFFLD($$5CSQ)

P

A

A*

A R #SFCT#1 TEXT(‘Screen selection’)
A BLINK OVERLAY

A SFLCTL(#SFRC#1)

A SFLPAG(09) SFLSIZ(11)

A INDTXT(80Clear subfile)
A INDTXT(81 ‘Display SFL Red’)

A INDTXT(82 ‘Condition SLFEND)

A 80 SFLCLR
A N8O SFLDSPCTL

Appendix A: Programming and Coding Examples 323

Display File DDS Example

A N80 81

A N80 8182
e
A N82

A

* SETOFS...........
A

A

A
e
* HELP TEXT

A

A H

A

A

K o o e e e e e e oo
* Header fields

A H

A

A

A H

A

A

A H

A

A
e
* Subfile columns

A H

A

A

A H

A

A

A H
A

A

K o e o e e e e e oo
A #1SFRN 3 OH
e,
A

A PNLTTL 050
A ##USVN R
A

P

* Positioning value
A USR0020

SFLDSP
SFLEND
ROLLUP(27 ‘ROLL UP’)
HOME(30 ‘HOME key.’)
SETOF(99 ‘Error - general’)
SETOF(31 ‘Error on #1SCSQ’)
SETOF(32 ‘Error on #1SCTL’)

HLPTITLE(‘Select screen’)
HLPARA(*NONE)
HLPPNLGRP(‘ZSFCTZ1/PNL/INTRO
YYEDSCH)

HLPARA(03 02 03 80)
HLPPNLGRP(‘ZSFCTZ1/Z1SFSL’)
YYEDSCH)
HLPARA(05 02 05 80)
HLPPNLGRP(‘ZSFCTZ1/SASCVN’)
YYEDSCH)
HLPARA(07 02 08 80)
HLPPNLGRP(‘ZSFCTZ1/SASCSQ’)
YYEDSCH)

HLPARA(10 03 19 06)
HLPPNLGRP(‘ZSFCTZ1/Z1SFSL’)
YYEDSCH)
HLPARA(10 04 19 14)
HLPPNLGRP(‘ZSFCTZ1/Z1SCVN’)
YYEDSCH)
HLPARA(10 15 19 80)
HLPPNLGRP(‘ZSFCTZ1/Z15CSQ’)
YYEDSCH)

01 2 ‘YSELPNL COLOR(BLU)

112 DSPATR(HI)
162 REFFL(SSUSVN)DSPATR(HI)
+1DATE EDTCDE(Y)DSPATR(HI)

30 3 3MSGID(USR0020 USRPMT)

324 Standards Guide

Display File DDS Example

* +1"/

A #HSCUN R B +3REFFLD($$SCVN)

A CHANGE(41 ‘Seln screen’)

A UIS0005 20 +3MSGID(UIS0003 USRPMT)
* Subsetting value

A USR0022 30 4 3MSGID(USR0022 USRPMT)
* +1")

A #SBVN R B +3REFFLD($$5CSQ)

A CHANGE(40 ‘Start seq’)

A uUls0010 20 +3MSGID(UIS0003 USRPMT)
%

RS RE R RLEE

Top instruction

A PNLTX1MSID 078 6 2MSGID(UISO008 USRPMT)
A TEXT(‘TYPE OPTION,PRESS E’)
A COLOR(BLU)
A PNLTX2MSID 078 7 2MSGID(WUT2110 USRPMT)
A TEXT(‘1=Select’)
A COLOR(BLU)
%
* Column Headings
A COLHDIMSID 078 9 2MSGID(WUT2111 USRPMT)
A DSPATR(HI)
¥ e ———=-——====
A R HCMTXH##1
A TEXT(‘Command key line’)
A OVERLAY
A HLPTITLE(‘Function keys’)
P
* Command key explanations
A H HLPARA(22 01 23 80)
A HLPPNLGRP(‘ZCMTXZ1/BOTINS')
A YYEDSCH)
e
A 83N88 MOREMSID 10 28 70MSGID(UIS0016 USRPMT)
A TEXT(‘more’)
A DSPATR(HI)
A 8388 BOTTOMMSID 10 22 70MSGID(UIS0017 USRPMT)
A TEXT(‘BOTTOM’)
A DSPATR(HI)
A CMDTX1MSI 078 23 2MSGID(WLL2191 WPMTMSG)
A TEXT(‘F3=Exit’)
A COLOR(BLU)
K oo e e e e e e = = = = = = — —
A R #NODA##1 TEXT(‘NO DATA’)
A OVERLAY
A NODATAMSI 078 13 2MSGID(WUT2131 wPMTMSG)

* Error messages subfile.

Appendix A: Programming and Coding Examples 325

Printer File DDS Example

A R #SFRCHQ SFL

A SFLMSGRCD(24)

A MSGKEY SFLMSGKEY

A H#HPGVN SFLPGMQ
K o o e e e e e e e e e e = = = = = = = = = = — —
* Error messages subfile Control

A R #SFCT#Q TEXT(‘Program messages’)
A SFLCTL(#SFRC#Q)

A SFLPAG(1) SFLSIZ(15)

A OVERLAY

A SFLINZ SFLDSP SFLDSPCTL

A ##PGVN SFLPGMQ

Printer File DDS Example

326 Standards Guide

Printer File DDS Example

/*T: YDOCF Document file.

/*Z: CRTPRTF FORMSIZE(88 132) OVRFLW(80) LPI(8) CPI(15)
/*2: SCHEDULE(*FILEEND) HOLD(*YES)

*

H* SYSTEM : Widget processing system
H* PROGRAMMER :T. Codd
H* DATE :7/20/84

H* (C) COPYRIGHT 1987 Universal Sprocket Company

*

A R SFLHD TEXT(‘File headings.”)
A SKIPB(3) SPACEA(2)

A YYCOTX R 1REFFLD($$COTX)

A 42MSGCON(040 WFL4101 UPMTMSG)
A TEXT(‘Document file’)

A UNDERLINE

A ##USVN R 80REFFLD(SSUSVN)

A ##BVN R +1REFFLD($SJBVN)

A +1DATE EDTCDE(Y)

A +1TIME EDTWRD(‘0: :)
A 42MSGCON(040 UIS0010 UPMTMSG)

A TEXT(‘Page’)

A +1PAGNBR EDTCDE(Z)
A SPACEA(2)

*

*

A 1MSGCON(032 UIS0010 UPMTMSG)
A TEXT(‘File’)

A +1"

A ATFLNM 10 +3

*

*

A 1MSGCON(030 UIS0010 UPMTMSG)
A TEXT(‘Library’)

A +17

A ATFLLB 10 +5

A 1MSGCON(032 UIS0010 UPMTMSG)
A TEXT(‘Text’)

A +1'

A ATFLTX 50 +3SPACEA(1)

Appendix A: Programming and Coding Examples 327

Printer File DDS Example

TEXT(‘Type’)
+1"
40 +3’*PHY’
41 36"*LGL’
42 36’*DDSPF’
36’*PRTF
44 36"*TAPF’

TEXT(‘Created’)
+1l:l
SSFCDT 6 0 +3EDTWRD(‘ / /0)
SSFCTM 6 0 +1EDTWRD(O: : ‘)

Column headings

>>>>> x> PPP> >
S
w

* *

R $FDDA TEXT(‘Field details.’)
SPACEA(1)
INDTXT(91 ‘DETAIL(*FULL)’)
1)
WHFDNM 10 2
12|’
WHFLDT 1 15
17'|’
$$DCLN 31 20EDTCDE(4)
25|
WHFDDB 50 26EDTCDE(2)
32|
91 WHFDTX 50 33
91 83|’

R SENDA TEXT(‘End of data.’)
SPACEA(1)
INDTXT(91 ‘DETAIL(*FULL)’)

s Tr>rr>>>>P>Pr>>>>> >

* > > >

TEXT(‘ENDOF REPORT’)

x > >

328 Standards Guide

1MSGCON(032 UIS0011 UPMTMSG)

1MSGCON(032 UIS0012 UPMTMSG)

1MSGCON(070 UIS0055 UPMTMSG)

CL Program Source Example

CL Program Source Example

Appendix A: Programming and Coding Examples 329

CL Program Source Example

PGM PARM(&FL &MBR)
/*T: YDSPHLP Display Help Text - CPP /
/*Z: CRTCLPGM LOG(*NO)

/*H: SYSTEM : Widget processing system
/*H: PROGRAMMER : G.Henry
/*H: DATE :24/04/84

/*H: (C) COPYRIGHT 1984,92 The Widget corporation
/*M:01/04/92 R.Fess Change to V2R2 Message Handling
/* Entry variables */
DCL &FL *CHAR 20 /* MENU FILE/LIB */
DCL &FILE *CHAR 10 /* MENU FILE NAME */
DCL &FLIB *CHAR 10 /* LIBRARY NAME */
DCL &MBR *CHAR 10 /* MENU FILE/MBR */
/* Work variables */
DCL &KEYVAR *CHAR 4 /* MESSAGE KEY */
DCL &ERRCDE *CHAR 4 X’00000000’
/*H: 0. Global monitor for errors. */
MONMSG MSGID(CPF0O000 YYY0000) EXEC(GOTO ERROR)
/*****************************/
/*H: 1. Process input parameters . */
CHGVAR &FILE %SUBSTRING(&FL 1 10)
CHGVAR &FLIB %SUBSTRING(&FL 11 10)

/*H: 1.1 Check library & file exist. */
IF (%SST(&FLIB 1 1) *NE “*’)CHKOBJ QSYS/&FLIB *LIB
CHKOBJ OBJ(&FLIB/&FILE) OBJTYPE(*FILE) MBR(&MBR) +
AUT(*USE)

/*H: 2. Call RPG program to Display help text */
CALL YDDSHPR (&MBR &FILE &FLIB &MSGID)
=====::::::::::::::::::::::
/ /
/*H: 3. Send completion message. */
SNDPGMMSG MSGID(&MSGID) MSGF(YMSG)+
MSGDTA(&FILE| | &FLIB| | &MBR) +
MSGTYPE(*COMP)

ENDPGM: RCLRSC
RMVMSG CLEAR(*ALL) /* Remove irrelevant messages */
RETURN
/****************************/
/*H: 99. ERROR HANDLING */
ERROR: RCVMSG MSGTYPE(*EXCP)RMV(*NO) KEYVAR(&KEYVAR)
CALL QMHRSNEM(&KEYVAR &ERRCDE)/*RESEND */
MONMSG CPFO000
GOTO ENDPGM
YCOPYRIGHT COPYRIGHT(‘G.Henry’) WIDGETCORP(WIDGETCORP) +
DATE(240484)
ENDPGM

330 Standards Guide

RPG III Program Source Example

RPG III Program Source Example

Appendix A: Programming and Coding Examples 331

RPG III Program Source Example

H/TITLE YEDTSCR - Screen name selection.

H* SYSTEM : Universal Sprocket Co

H* PROGRAMMER : A Turing

H* DATE :16/06/87

H* (C) Copyright 1989 Universal Sprocket Company
%

M* 20/07/04 PW Add copy screen option
M* 20/07/92 MS Revise Help handling to use UIM

*

H* SYNOPSIS : Display the titles of screens from within the

H* current DBF member
H* Permit selection of a single line, or exit.
H*

H* 1. RECEIVE ENTRY PARAMETERS :

H* 1.1 (0) SCREEN NAME.

H* 1.2 (O) MSGID OF RETURN MESSAGE.

H*

H* 2. LOAD AND DISPLAY FIRST PAGE OF SCREEN TITLES.
H* 3. PROCESS INPUT:

H* 3.1 IF START OPTION CHANGED RE-POSITION THE FILE AND
H* CONTINUE FROM 2.

H* 3.2 PROCESS COMMAND KEYS (EXIT, ROLLUP)

H* CMD5 = PROMPT INCLUDE SCREEN.

H* 3.3 PROCESS LINE ENTRIES.

H* 3.3.1 IF ‘X', RETURN WITH SELECTED SCREEN NAME.
H* ALSO1,2,3

H* 3.3.2 IF ‘C’, PROMPT COPY SCREEN.

H* 3.3.3 IF ‘R’, PROMPT RENAME SCREEN.

H* 3.3.4 IF‘D’, DELETE SCREEN.

H* 3.3.5 IF ‘P’, PRINT SCREEN.

H* 3.3.6 IF ‘¥, DISPLAY SCREEN.

JEJECT
FYDSCSSR#CF E WORKSTN
F #1RR KSFILE #SFRC#1

* #t: Display file.

P

FYDSCDAL1IF E K DISK

F @SCDASA KRENAME@SCDASAI
* SA: SCREEN FILE (0|SCSQ|SCVN)

*

FYDSCDAP UF E K DISK

F @SCDASA KRENAME@SCDASAU
* SA: SCREEN FILE (0]SCSQ|SCVN)

*

JEJECT

E @OP 161 @RM 7 OPT/RQS MSGID
JEJECT

332 Standards Guide

RPG III Program Source Example

IPGMDS SDS
* PGM DS
I* PROGRAM ##PGVN
I 81 90 ##PGLB
I 244 253 ##JBVN
I 254 263 ##USVN
I 264 2690##JBNO
JEJECT
IWMMSDA DS 50
* MESSAGE SUBSTITUTION DATA
1 20 WMFL
1 10 WMFLVN

21 30 WMMBVN
31 40 WMSCVN

I
I
I 11 20 WMLBV
I
I
I P 41 432WMSCSQ

JEJECT

* ok kR kK ok k ok ok ok ok k ok ok ok ok k ok k ok ok K ok k ok k ok ok K ok K

C *ENTRY PLIST * ENTRY LIST

*E XALL ‘YSSCNSR’

C PARM SSSCVN 10 O:SEL SCREEN
C PARM SSFLVN 10 I:SCREEN FILE
C PARM SSLBVN 10 I:SCREEN LIB

C PARM SSMBVN 10 [:SCREEN MBR
C PARM H#1XX O:TITLE OPTN

C PARM SRTCD 1 O:RETURN CODE
* Y:EXIT PROC

* ok k ok kK ok k ok k ok ok k ok k ok ok K ok k ok ok K ok k ok k K k K ok

* INITIALISE

C EXSR ZZINIT

*

* INITIALISE SF & LOAD A PAGE

C SETON 82*
C EXSR BAIZSF *ROLLUP/DOWN
C N81 SETOF 82
TN *

* DISPLAY RECORDS UNTIL EXIT PRESSED

C DO *HIVAL

* DISPLAY SCREEN

C EXSR CAEXFM

*

* PROCESS RESPONSE FROM SCREEN

* CAO1: CANCEL & EXIT

c 01 CAS KAEXKY CAS
* CFO5: COPY SCREEN

C 05 CAS EGINSC

* SCREEN NAME ENTERED

cC 4 CAS DASCVN

Appendix A: Programming and Coding Examples 333

RPG III Program Source Example

* SCREEN START NAME ENTERED

C 40 CAS BAIZSF

* CK27: ROLLUP ON CURRENT POSITION

Cc 27 CAS BBLDSF

* OTHERWISE READ CHANGED SFL RECORDS FOR SELECTION.
C 81 CAS EARDSF

C END SAC : KAEXKY

*

C END OD *HIVAL

% %k %k ok %k ok k ok %k ok ok ok %k k ok ko k ko k k k k %k k ok k k k *k k k k

JEJECT
CSR BAIZSF BEGSR

* CLEAR SUBFILE

C SETON 80

C WRITEH#SFCT#1

C SETOF 80

* RESET NO OF RECS IN SUBFILE & CURRENT POSITION
C Z-ADD*ZERO #1RR 50 81 SETOF 81
C Z-ADD*ZERO #1RRMX 50 SETOF 81
* *

* POSITION FILE

C ##NXSQ SETLL@SCDASAI 81 *

c 81 MOVE *BLANK SASCVN

* LOAD PAGE.

C EXSR BBLDSF

*

CSR BAEXIT ENDSR
JEJECT
CSR BBLDSF BEGSR

* START AT PREVIOUS LAST RECORD

C Z-ADD#1RRMX #1RR

C SETOF 67*
TN *

* READ UP TO A SF PAGE AT A TIME

C 1 DO #1PGSZ DO

C READ @SCDASAI 81 CODE ORDER
* FOR EACH RECORD READ :

CN81 DO DO

* CANCEL ROLLUP AS SUCCESSFULLY ACTIONED.

334 Standards Guide

RPG III Program Source Example

c SETOF 27*
* OUTPUT TO SUBFILE
C MOVE *BLANK #1XX
C Z-ADDSASCSQ ##5CSQ
C MOVELSASCDA ##SCTL
C ADD 1 #1RR 81 81=DSPSFLREC
C SETON 67
C WRITE#SFRC#1
C END OD: *N81
*
C N&1 END OD 1 - #1PGSZ
K *
* DISPLAY ERROR MESSAGE IF NO RECORDS FOUND,
C 81 #1RR IFEQ *ZERO IF
C MOVE ‘YYY7104’ MSGID NO RECORDS
C EXSR ZASNMS
C ELSE XFI#1RR=0
* DISPLAY MESSAGE IF ROLL UP & NO MORE TO ROLL-UP
Cc 27 SETON 55
C END FI#1RR=0
*
K e *
SAVE POSITION SO LOAD CAN CONTINUE AT END POINT
C 67 DO
C #1RRMX ADD 1 #1SFRN *
C Z-ADD#1RR #1RRMX
C END 0D 67

CSR BBEXIT ENDSR
JEJECT
CSR CAEXFM BEGSR

C DO *HIVAL

* DISPLAY MESSAGES & COMMAND KEY LINE

C WRITE#SFCT#Q MESSAGES
* DISPLAY SCREEN.

c EXFMTH#SFCT#1 SFLCTL

*

* CLEAR MESSAGES PROM PROGRAM MESSAGE QUEUE

C EXSR ZBCLMS
*======================:========
JEJECT

CSR DASCVN BEGSR

Appendix A: Programming and Coding Examples 335

RPG III Program Source Example

* SPECIFIED SCREEN NAME ENTERD.

C ##SCVN CABEQ*BLANK DAEXIT

C MOVE ##SCVN SASCVN

C MOVE ‘X H#1XX

* EXIT PROGRAM WITH SELECTED SCREEN NAME.

C EXSR EBSLLN

¥ o m - —-———-—————-————=—=——=—=====-=
CSR DAEXIT ENDSR

JEJECT

CSR EARDSF BEGSR

* SET NO CHANGE TO SFL ORDER.

C MOVE ‘N’ WWRLSF 1
*

C DO *HIVAL DO
C READCH#SFRC#1 70

C N70 DO DO
* CHANGED LINE DATA

C 46

COR 47 EXSR EDCHLN
* ENTER/UPDATE SCREEN (EXIT PROGRAM)

c #1XX CASEQ’X" EBSLLN CAS

C #1XX CASEQ'1" EBSLLN

C #1XX CASEQ’2" EBSLLN

C #1XX CASEQ’3’ EBSLLN

C #1XX CASNE’‘ ECPROP

C END SAC #1XX =X

C WWRLSF IFEQ, ‘N’

* CLEAR SELECTION LINE UNLESS SFL RE-LOAD PENDING.
c MOVE “* #1XX

C UPDAT#SFRC#1

C END FI WWRLSF="N’
C END OD N70

C N70 END OD *HIVAL
*

* RE-LOAD SFL IF ORDER CHANGED.

c WWRLSF IFEQ ‘Y’ IF

* COPY COMP MESSAGES TO *PRV

C EXSR ZECMMS

* REDISLAY SUBFILE (DUE TO CHANGED CONTENTS).

C Z-ADD*ZERO HANXSQ

C EXSR BAIZSF * RELOAD

C END FI WWRFSF="Y’

336 Standards Guide

RPG III Program Source Example

*===============================
CSR EAEXIT ENDSR

JEJECT

CSR EBSLLN BEGSR

o e e e e e e e e — e — = = = = = — —

* EXIT WITH SELECTED SCREEN

C MOVE SASCVN ~ $SSCVN

C SETON LR*

C RETRN

¥ ——----———-—-—-—————=———=—=—=—==—=======
CSR EBEXIT ENDSR

JEJECT

CSR ECPROP BEGSR

¥ - =—======

* SFL RELOAD NECESSARY.

C H#1XX IFNE ‘P’ IF

C MOVE ‘Y" WWRLSF

C END FI #1XX =P

*

C Z-ADD1 OP 30

C #IXX LOKUP@OP,0OP 60*
C MOVE @RM,0P MSGID

* EXECUTE OPTION.

C EXSR FAEXOP
s
CSR ECEXIT ENDSR

JEJECT

CSR EDCHLN BEGSR

¥ e == === =

e e e e e ettt - _ - - — — — —
C KSCDAP KLIST

C KFLD SASCVN

C KFLD WKSCTP 1

C KFLD SASCSQ

C MOVE ‘1 WKSCTP

C KSCDAP CHAIN@SCDASAU 60

C Z-ADD##SCSQ SASCSQ

C MOVEL##SCTL SASCDA

C UPDAT@SCDASAU

C 46 MOVE Y’ WWRLSF

o e e e e ettt m e e - m = = = — — —

Appendix A: Programming and Coding Examples 337

RPG III Program Source Example

CSR EDEXIT ENDSR
JEJECT
CSR EGINSC BEGSR

* YCPYSCR COMMAND STRING MESSAGE.
* THIS STRING CONTAINS COMMAND PROMPTING INFO.

C MOVE ‘YSD0015’ MSGID

C MOVE *BLANK SASCVN
* EXECUTE OPTION.

C EXSR FAEXOP

C N60 DO DO
* COPY COMP MESSAGES TO *PRV

C EXSR ZECMMS

* REDISLAY SUBFILE (DUE TO CHANGED CONTENTS).

C MOVE *ZERO HHANXSQ

C EXSR BAIZSF * RELOAD
C END OD N60

¥ o m - —————————-——————————=—=—====+=
CSR EGEXIT ENDSR

JEJECT

CSR FAEXOP BEGSR

* RETRIEVE COMMAND STRING.

C MOVE SASCVN WMSCVN

C Z-ADD##SCSQ WMSCSQ

C EXSR ZCRTMS

* EXEC COMMAND.

c CALL ‘QCMDEXC’ 60 *

A D* MSG MSGLEN

C PARM MSG [: RQST STR
C PARM MSGLEN W15N5 155 |: RQST LEN
e e e e e e ettt _ - - — — — —

CSR FAEXIT ENDSR

JEJECT

CSR KAEXKY BEGSR

* COMMAND CANCELLED (ESCAPE MESSAGE)

C MOVE Y’ SRTCD
C SETON LR
C RETRN

338 Standards Guide

RPG III Program Source Example

K o e e e e e e e e = = — = — —

CSR KAEXIT ENDSR

JEJECT

CSR ZASNMS BEGSR

K o e e e e e e e e e = = = = = = = = = = —

* SEND MESSAGE TO PROGRAM Q

K o e e e e e e = = = — —

C N99 CALL ‘YYPGMSC' Send message
C PARM ##PGVN 10 I:PGM QUEUE
C PARM “*SAME’ ##PGRL 5 I:'REL QUEUE
C PARM MSGID 7 I: MSG ID.
C PARM MSGDTA132 [|:MSGDATA.
C PARM “*INFO ‘* MSGTYP 7 |:MSGTYPE.

C SETON 99

%

¥ o - -—-—————-——-m————————====

CSR ZAEXIT ENDSR

JEJECT

CSR ZBCLMS BEGSR

K o e e e e e e = = = = o = = = = = = — —

*===============================

C CALL ‘YYCLMSC’ Clear message
C SETOF 99

P

*=============================:=

CSR ZBEXIT ENDSR

JEJECT

CSR ZCRTMS BEGSR
*===============================

* RETRIEVE MESSAGE.
*===============================

C CALL ‘YYRTMSC' RTVM MESSAGE

C PARM MSGID 7 |:MESSAGEID.
C PARM WMMSDA MSGDTA 50 I:MSG DATA
C PARM MSG 132 O:MSG TEXT

C PARM MSGLEN 50 0O:MSG LENGTH
*===============================

CSR ZCEXIT ENDSR

JEJECT

CSR ZECMMS BEGSR
*=============================:=

* COPY COMP MESSAGES TO *PRV CPP.
*======================:=====:==

C CALL ‘YYCMMSC’

C PARM ‘YDSCEDC@’W10X 10 I: PGM Q NAME

Appendix A: Programming and Coding Examples 339

RPG III Program Source Example

CSR ZEEXIT ENDSR
JEJECT
CSR ZZINIT BEGSR

C MOVE *BLANK SRTCD
SRS *

* SETUP MESSAGE SUBSTITUTION DATA.

C

C MOVE $SLBVN WMLBVN

C MOVE $SMBVN WMMBVN

* *

* GET COMPANY NAME.

C *NAMVAR DEFN YYCOTXA YYCOTX

C IN *NAMVAR
TN *

* SUBFILE PAGE SIZE

C Z-ADD15 #1PGSZ 30 I

* SUBFILE INITIAL RECORD AT
c Z-ADD1 #1SFRN SFL POSN
c Z-ADD*ZERO #1RRMX MAX RECNO
* *
C MOVE *BLANK SASCVN

CSR ZZEXIT ENDSR

** @OP,@RM OPTION/REQUEST MESSAGE ID.
?YSD0011

CYsDo010

RYSD0016

DYSDO0007

PYSDO035

GYSD0024

340 Standards Guide

COBOL ‘85 Program Example

COBOL ‘85 Program Example

Appendix A: Programming and Coding Examples 341

COBOL ‘85 Program Example

PROCESS APOST.
IDENTIFICATION DIVISION.
H/TITLE Edit customer file Edit file
Z* CRTCBLPGM
*
H* SYNOPSIS :
H* - Maintain database file using subfile display
H* - Existing records may be updated or deleted,
H* - Key changes are not allowed
H* - Program operates in two modes: *CHANGE and *ADD
H* - Multiple new records may be added by changing to add mode
H* Generated by : COOL:2E Version: 8644
H* Function type : Edit file Version: 0.1

*

H* Company : Universal Sprocket Company Ltd.

H* System : Universal Sprocket Company Ltd.
H* User name : P.Djikastra
H* Date :10/09/87

H* (C) Copyright 1987 Universal Sprocket Company Ltd.

PROGRAM-ID. UUB7EFK.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. IBM-AS400.
SPECIAL-NAMES. OPEN-FEEDBACK IS OPEN-FEEDBACK-AREA,
I-O-FEEDBACK IS I-O-FEEDBACK-AREA.
JEJECT
INPUT-OUTPUT SECTION.
FILE-CONTROL.
*
SELECT UUB7EFK
ASSIGN TO WORKSTATION-UUB7EFK-SI
ORGANIZATION IS TRANSACTION
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS ZZRR
FILE STATUS IS FILE-STATUS, MAJOR-MINOR-CODE.
* DSP: Edit customer file Edit file
*
SELECT UUAIREL1
ASSIGN TO DATABASE-UUAIREL1
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EXTERNALLY-DESCRIBED-KEY

FILE STATUS IS FILE-STATUS.
* RTV: customer file Retrieval index

342 Standards Guide

COBOL ‘85 Program Example

SELECT UUAIRELO
ASSIGN TO DATABASE-UUAIRELO
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EXTERNALLY-DESCRIBED-KEY
FILE STATUS IS FILE-STATUS.
* UPD: customer file Update index
*

I-O-CONTROL.
*
JEJECT
DATA DIVISION.
FILE SECTION.
*
FD UUB7EFK
LABEL RECORDS ARE STANDARD.
01 UUB7EFK-F.
COPY DDS-ALL-FORMATS OF UUB7EFK.
*
FD UUAIREL1
LABEL RECORDS ARE STANDARD.
01 UUAIREL1-R.
COPY DDS-ALL-FORMATS OF UUAIREL1.
*
FD UUAIRELO
LABEL RECORDS ARE STANDARD.
01 UUAIRELO-R.
COPY DDS-ALL-FORMATS OF UUAIRELO.
JEJECT
WORKING-STORAGE SECTION.
* Job context
01 JOB-CONTEXT.
COPY DDS-ALL-FORMATS OF Y2PGDSPK.
* Job date/time
03 [JBDTTM.
05 ZZIDT PIC S9(6).
05 ZZJDTE REDEFINES ZZJDT.
07 ZZJYY PIC S9(2).
07 ZZJMM PIC S9(2).
07 ZzZJDD PIC S9(2).
05 ZZJTM PIC S9(6).
05 ZZJTME REDEFINES ZZJTM.
07 ZZJHH PIC S9(2).
07 ZZINN PIC S9(2).
07 ZZJSS PIC S9(2).
03 ZZFQL PIC X(10).
03 ZZFLB PIC X(10).
03 ZZFFL PIC X(10).

Appendix A: Programming and Coding Examples 343

COBOL ‘85 Program Example

03 ZZFMB PIC X(10).
01 ZZTIME.
03 ZZHNS PIC S9(6).
03 ZZHH PIC S9(2).
*
77 C-IND-OFF PIC 1(1) VALUE B'0".
77 C-IND-ON PIC 1(1) VALUE B'1".

*

*

01 FILE-STATUS PIC X(2).
88 C-10-OK VALUE ‘00’.
88 C-EOF VALUE ‘10'.
88 C-NO-MOD-SFLRCDS VALUE ‘12",
88 C-IO-ERR VALUE 21’ 24’ ‘30’ 34’ ‘90’ ‘91’ ‘92’
‘94’ ‘95’ ‘9A” ‘9H’ ‘91’ ‘9K’ ‘9M’” ‘9N’ ‘9P’.
88 C-NO-RECORD VALUE ‘23'.
88 C-RECORD-LOCKED VALUE ‘9D’.
01 UNTIL-CONDITION PIC 1(1).
88 CONDITION-FALSE VALUE B’0’".
88 CONDITION-TRUE VALUE B'1".
01 FOREVER PIC 1(1) VALUE B’1".
88 C-FOREVER VALUE B'1".
01 WORTN PIC X(7).
01 Y1DBRC.
COPY DDS-ALL-FORMATS OF UUAIRELO.
Current/previous master file format fields for change
control
%
01 WORSF PIC X(1).
01 ZZRRMX PIC S9(5) COMP-3.
* customer code
01 WZAICD PIC X(6).
01 KPOS.
* customer code
03 AIAICD PIC X(6).
01 KPOS-TMP.
* customer code
03 AIAICD PIC X(6).
Define Full Externally Described Keylist
01 KPOS-EXT.
* customer code
03 AIAICD PIC X(6).
01 WKINDO-A.
03 WKINDO PIC 1(1) OCCURS 3.
01 WKIND1-A.
03 WKIND1 PIC 1(1) OCCURS 3.
01 ZZRROK PIC S9(5) COMP-3.
01 CAIN89 PIC 1(1).
01 CAIN81 PIC 1(1).

*

344 Standards Guide

COBOL ‘85 Program Example

01 ZAPGM PIC X(10).
01 ZAPGRL PIC X(5).
01 ZAFSMS PIC X(1).
01 WKIPIN PIC X(1).
01 WODCF PIC X(1).
01 WONLR PIC X(1).
01 WN30-A.
03 WN30 PIC 1(1) OCCURS 30.
01 IND-COUNT PIC $9(5) COMP-3.
01 ZADFMF PIC X(10).
01 DATA-AREA-NAME PIC X(10).
01 ZZSFPG PIC S9(3).
01 WOPMD PIC X(3).
88 C-ADD-MODE VALUE ‘ADD’.
88 C-CHANGE-MODE VALUE ‘CHG'.
88 C-SELECT-MODE VALUE ‘SEL’.
01 ZAMSID PIC X(7).
01 ZAMSGF PIC X(10).
01 ZAMSDA PIC X(132).
01 ZAMSTP PIC X(7).
01 ZZRR PIC 9(5) COMP-3.
01 UUB7EFK-1-O-DSPF.
COPY DDS-ALL-FORMATS OF Y2IDSPFIO.
* Subfile I/O feedback area
*
01 MAJOR-MINOR-CODE.
COPY DDS-ALL-FORMATS OF Y2IMAJMIN.
Display major/minor code for timeouts
%
01 UUAIREL1-OPEN.
COPY DDS-ALL-FORMATS OF Y2IOPEN.
* Open feedback area
*
01 UUAIRELO-OPEN.
COPY DDS-ALL-FORMATS OF Y2IOPEN.
* Open feedback area
%
01 UUB7EFK-WS-0.
03 ZSFLRCD-WS-O.
COPY DDS-ZSFLRCD-O OF UUB7EFK.
06 FILLER PIC X.
03 ZSFLCTL-WS-O.
COPY DDS-ZSFLCTL-O OF UUB7EFK.
06 FILLER PIC X.
03 ZCMDTXT1-WS-0.
COPY DDS-ZCMDTXT1-O OF UUB7EFK.
06 FILLER PIC X.
03 ZMSGCTL-WS-O.
COPY DDS-ZMSGCTL-O OF UUB7EFK.

Appendix A: Programming and Coding Examples 345

COBOL ‘85 Program Example

06 FILLER PIC X.
03 ZCONFIRM-WS-O.
COPY DDS-ZCONFIRM-O OF UUB7EFK.
06 FILLER PIC X.
01 UUB7EFK-WS-I.
03 ZSFLRCD-WS-I.
COPY DDS-ZSFLRCD-I OF UUB7EFK.
06 FILLER PIC X.
03 ZSFLCTL-WS-I.
COPY DDS-ZSFLCTL-I OF UUB7EFK.
06 FILLER PIC X.
03 ZCMDTXT1-WS-I.
COPY DDS-ZCMDTXT1-I OF UUB7EFK.
06 FILLER PIC X.
03 ZMSGCTL-WS-I.
COPY DDS-ZMSGCTL-I OF UUB7EFK.
06 FILLER PIC X.
03 ZCONFIRM-WS-I.
COPY DDS-ZCONFIRM-I OF UUB7EFK.
06 FILLER PIC X.
01 WOOPN PIC X(1).
* Indicators
01 INDICS.
03 IND PIC 1(1) OCCURS 990INDICATOR 1.
88 C-INDICATOR-ON VALUE B’1’.
88 C-INDICATOR-OFF VALUE B’0’.

JEJECT
K3k sk k k k k 5k sk ok ok sk sk sk k k k %k k %k %k sk 3k 3k sk sk k k k %k
LINKAGE SECTION.
* Return code
01 PORTN PIC X(7).
kk k %k %k %k %k %k %k kk k %k %k %k %k %k %k sk sk k k k k %k *k *k %k %k 3k k
PROCEDURE DIVISION USING
PORTN.
k3k sk k k k k %k k %k %k sk sk sk k k k %k k %k k k sk sk sk k k kk k k
MAINLINE SECTION.
* Initialise
PERFORM ZZINIT

*

Initialisation
MOVE ZZPGM OF JOB-CONTEXT TO ZZPGM OF ZMSGCTL-WS-0O
* Main loop
PERFORM UNTIL NOT (C-FOREVER)

* Initialise and load subfile page

PERFORM BAIZSF

MOVE ‘N’ TO WORSF
* Display screen until reload requested:

346 Standards Guide

COBOL ‘85 Program Example

PERFORM UNTIL NOT (WORSF = ‘N’)
Display screen
PERFORM CAEXFM
Process response:

* EVALUATE

Cancel & exit program

IF (C-INDICATOR-ON(03)) THEN

PERFORM ZXEXPG

* HOME: Request subfile reload

ELSE IF (C-INDICATOR-ON(30)) THEN
PERFORM FBRQRL

Display next sfl page

ELSE IF (C-INDICATOR-ON(27)) THEN
PERFORM BBLDSF

ELSE

Process screen input
PERFORM DAPRZZ

END-IF END-IF END-IF
END-PERFORM

END-PERFORM

MAINLINE-EXIT.
EXIT.

kk %k ok ok ok %k ok ok ok %k ok ok ok ok k %k ko k k %k k k k *k k *k k k k

JEJECT
BAIZSF SECTION.

* Clear subfile
SET C-INDICATOR-ON(80) TO TRUE
WRITE UUB7EFK-F FROM ZSFLCTL-WS-O
FORMAT IS “ZSFLCTL’ INDICATORS ARE INDICS
END-WRITE
* Reset count of no of records in SFL
MOVE ZERO TO ZZRRMX
SET C-INDICATOR-OFF(81) TO TRUE
* If CHANGE mode, then position file:
IF (NOT C-ADD-MODE) THEN
customer code
MOVE Z2AICD OF ZSFLCTL-WS-0O TO WZAICD

* Setup key
MOVE Z2AICD OF ZSFLCTL-WS-O TO AIAICD OF KPOS
* Initialise Full Externally Described Keylist

Appendix A: Programming and Coding Examples 347

COBOL ‘85 Program Example

*

customer code
MOVE LOW-VALUES TO AIAICD OF KPOS-EXT
MOVE CORRESPONDING
KPOS-EXT TO
FAIREA4 OF UUAIREL1-R
MOVE CORRESPONDING
KPOSTO
FAIREA4 OF UUAIREL1-R
START UUAIREL1 KEY NOT EXTERNALLY-DESCRIBED-KEY
FORMAT IS ‘FAIREA4’
END-START

IF (C-10-ERR) THEN

STOP RUN
END-IF
IF (C-EOF) THEN
SET C-INDICATOR-ON(82) TO TRUE
ELSE
SET C-INDICATOR-OFF(82) TO TRUE
SET C-INDICATOR-OFF(91) TO TRUE
READ UUAIREL1 NEXT
FORMAT IS ‘FAIREA4’
END-READ
IF (C-EOF) THEN
SET C-INDICATOR-ON(82) TO TRUE
ELSE
IF (C-10-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
END-IF
END-IF
IF (C-10-OK) THEN
MOVE CORRESPONDING
FAIREA4 OF UUAIREL1 TO
FAIREA3 OF Y1DBRC
END-IF
END-IF
ELSE
SET C-INDICATOR-OFF(82) TO TRUE
END-IF
Load subfile page
PERFORM BBLDSF
If no records found, display error message
IF (C-INDICATOR-ON(82) AND
ZZRR = ZERO) THEN
Send message “*No data to display’
Message ID

348 Standards Guide

COBOL ‘85 Program Example

MOVE ‘Y2U0008’ TO ZAMSID
Message file.
MOVE ‘Y2USRMSG’ TO ZAMSGF
PERFORM ZASNMS

END-IF

*

BAEXIT.
EXIT.
JEJECT

BBLDSF SECTION.

SET C-INDICATOR-OFF(84) TO TRUE
* No SFLNXTCHG
* Re-establish fields in read-ahead record

IF (C-INDICATOR-ON(27)) THEN
IF (C-INDICATOR-OFF(82) AND
NOT C-ADD-MODE) THEN
SET C-INDICATOR-OFF(90) TO TRUE
READ UUAIREL1 PRIOR
FORMAT IS ‘FAIREA4’
END-READ
IF (C-EOF) THEN
SET C-INDICATOR-ON(90) TO TRUE
ELSE
IF (C-10-ERR) THEN
STOP RUN
END-IF
END-IF
SET C-INDICATOR-OFF(90) TO TRUE
READ UUAIREL1 NEXT
FORMAT IS ‘FAIREA4’
END-READ
IF (C-EOF) THEN
SET C-INDICATOR-ON(90) TO TRUE
ELSE
IF (C-10-ERR) THEN
STOP RUN
END-IF
END-IF
MOVE CORRESPONDING
FAIREA4 OF UUAIREL1 TO
FAIREA3 OF Y1DBRC
END-IF

Appendix A: Programming and Coding Examples 349

COBOL ‘85 Program Example

END-IF

Setof record error indicators

MOVE ALL B’0’ TO WKIND1-A

MOVE ALL B’1’ TO WKIND1-A

Start at previous highest SFL record reached
MOVE ZZRRMX TO ZZRR

MOVE ZERO TO ZZRROK

Load next page of SFL:

PERFORM UNTIL NOT (C-INDICATOR-OFF(82) AND

ZZRROK ZZSFPG)

MOVE WKINDO(1) TO IND(32)
MOVE WKINDO(2) TO IND(33)
MOVE WKINDO(3) TO IND(34)
SET C-INDICATOR-OFF(87) TO TRUE
Clear SFL fields
PERFORM MAIZZ1
If change mode, load SFL fields
IF (NOT C-ADD-MODE) THEN

PERFORM MBFLZ1
END-IF
Output to subfile

ADD 1 TO ZZRR
IF (ZZRR ZERO) THEN
SET C-INDICATOR-ON(81) TO TRUE
ELSE
SET C-INDICATOR-OFF(81) TO TRUE
END-IF
ADD 1 TO ZZRROK
Set screen conditioning indicators
PERFORM GADSA1
WRITE SUBFILE UUB7EFK-F FROM ZSFLRCD-WS-O
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END-WRITE
IF (NOT C-ADD-MODE) THEN
SET C-INDICATOR-OFF(82) TO TRUE
READ UUAIREL1 NEXT
FORMAT IS ‘FAIREA4’
END-READ
IF (C-EOF) THEN
SET C-INDICATOR-ON(82) TO TRUE
ELSE
IF (C-10-ERR) THEN
STOP RUN
END-IF
END-IF
MOVE CORRESPONDING

350 Standards Guide

COBOL ‘85 Program Example

FAIREA4 OF UUAIREL1 TO
FAIREA3 OF Y1DBRC
END-IF
END-PERFORM
* Save highest SFL rec, so load can continue at end point
IF (ZZRR ZZRRMX) THEN
ADD 1, ZZRRMX GIVING ZZSFRC OF ZSFLCTL-WS-0
MOVE ZZRR TO ZZRRMX
END-IF

BBEXIT.
EXIT.
JEJECT

CAEXFM SECTION.

Set screen conditioning indicators
PERFORM GBDSA2

Update screen time
ACCEPT ZZTIME FROM TIME

MOVE ZZHNS TO ZZTME OF ZSFLCTL-WS-0
PUTOVR unless conditioned fields change
SET C-INDICATOR-ON(86) TO TRUE

IF (IND(89) NOT = CAIN89 OR
IND(81) NOT = CAIN81) THEN
SET C-INDICATOR-OFF(86) TO TRUE
END-IF
MOVE IND(89) TO CAIN89
MOVE IND(81) TO CAIN81
WRITE UUB7EFK-F FROM ZMSGCTL-WS-O
FORMAT IS ZMSGCTL’ INDICATORS ARE INDICS
END-WRITE
WRITE UUB7EFK-F FROM ZCMDTXT1-WS-O
FORMAT IS ZCMDTXT1’ INDICATORS ARE INDICS
END-WRITE
WRITE UUB7EFK-F FROM ZSFLCTL-WS-O
FORMAT IS ‘ZSFLCTL’ INDICATORS ARE INDICS
END-WRITE
READ UUB7EFK INTO ZSFLCTL-WS-I
FORMAT IS ‘ZSFLCTL’ INDICATORS ARE INDICS
END-READ
MOVE CORRESPONDING
ZSFLCTL-I OF ZSFLCTL-WS-ITO

Appendix A: Programming and Coding Examples 351

COBOL ‘85 Program Example

ZSFLCTL-O OF ZSFLCTL-WS-0O
* Update job time
ACCEPT ZZTIME FROM TIME
MOVE ZZHNS TO ZZJTM
Clear messages from program message queue
MOVE ZZPGM OF JOB-CONTEXT TO ZAPGM
MOVE “*SAME’ TO ZAPGRL
CALL ‘Y2CLMSC’ USING
ZAPGM
ZAPGRL
END-CALL
* Reset first message only flag
MOVE ‘Y’ TO ZAFSMS
SET C-INDICATOR-OFF(99) TO TRUE

CAEXIT.
EXIT.
JEJECT

DAPRZZ SECTION.

* Maintain subfile position where possible
ACCEPT UUB7EFK-I-O-DSPF FROM |-O-FEEDBACK-AREA
FOR UUB7EFK
IF (ZZSFRC OF UUB7EFK-I-O-DSPF ZERO) THEN
MOVE ZZSFRC OF UUB7EFK-I-O-DSPF TO ZZSFRC OF
ZSFLCTL-WS-0O
END-IF
IF (NOT C-ADD-MODE) THEN

* Change of position specified?
* EVALUATE
* customer code
IF (WZAICD NOT = Z2AICD OF ZSFLCTL-WS-0) THEN
PERFORM FBRQRL
ELSE
CONTINUE
END-IF
END-IF
* Quit if reload requested
IF (WORSF = ‘Y’) THEN
GO DAEXIT
END-IF
IF (C-INDICATOR-ON(81)) THEN
* No data entered as yet

352 Standards Guide

COBOL ‘85 Program Example

MOVE ‘N’ TO WKIPIN
Confirm/update is not defered
MOVE ‘N’ TO WODCF
Process subfile records
PERFORM DBPRSF
If error, exit:
IF (C-INDICATOR-ON(99)) THEN
GO DAEXIT
END-IF
Defer confirm/update requested:
IF (WODCF = “Y’) THEN
GO DAEXIT
END-IF
If data entered
IF (WKIPIN = “Y’) THEN
Prompt for confirm
PERFORM DHPRCF
Exit if not confirmed
IF (C-INDICATOR-ON(99)) THEN
GO DAEXIT
END-IF
Update DBF from subfile
PERFORM EAPRSF
If error during update, exit:
IF (C-INDICATOR-ON(99)) THEN
GO DAEXIT
END-IF
END-IF
END-IF
=====Process function keys=====
Switch between *ADD/*CHANGE modes
IF (C-INDICATOR-ON(09)) THEN
PERFORM FACHMD
END-IF

DAEXIT.

EXIT.

JEJECT

DBPRSF SECTION.

READ SUBFILE UUB7EFK NEXT MODIFIED INTO ZSFLRCD-WS-I
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END-READ

Appendix A: Programming and Coding Examples 353

COBOL ‘85 Program Example

IF (C-NO-MOD-SFLRCDS) THEN
SET C-INDICATOR-ON(92) TO TRUE
ELSE
SET C-INDICATOR-OFF(92) TO TRUE
MOVE CORRESPONDING
ZSFLRCD-I OF ZSFLRCD-WS-I TO
ZSFLRCD-O OF ZSFLRCD-WS-O
END-IF
PERFORM UNTIL NOT (C-INDICATOR-OFF(92))
PERFORM DCPRSR
SET C-INDICATOR-OFF(87) TO TRUE

* Set screen conditioning indicators

PERFORM GADSA1
REWRITE SUBFILE UUB7EFK-F FROM ZSFLRCD-WS-O
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END-REWRITE
READ SUBFILE UUB7EFK NEXT MODIFIED INTO ZSFLRCD-WS-I
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END-READ
MOVE CORRESPONDING
ZSFLRCD-I OF ZSFLRCD-WS-I TO
ZSFLRCD-O OF ZSFLRCD-WS-O
IF (C-NO-MOD-SFLRCDS) THEN
SET C-INDICATOR-ON(92) TO TRUE
ELSE
SET C-INDICATOR-OFF(92) TO TRUE
END-IF
END-PERFORM

DBEXIT.
EXIT.

JEJECT

DCPRSR SECTION.

* Setoff error indicators

MOVE WKINDO(1) TO IND(32)
MOVE WKINDO(2) TO IND(33)
MOVE WKINDO(3) TO IND(34)

* SFLRCD error

SET C-INDICATOR-OFF(98) TO TRUE

* NO SFLNXTCHG

SET C-INDICATOR-OFF(84) TO TRUE
IF (C-ADD-MODE) THEN

* Check for null record

354 Standards Guide

COBOL ‘85 Program Example

PERFORM DDNLRC
IF (WONLR = “Y’) THEN
GO DCEXIT
END-IF
* If not null record, continue
END-IF
* Data entered
MOVE ‘Y’ TO WKIPIN
* 84 SFLNXTCHG
SET C-INDICATOR-ON(84) TO TRUE
* |f delete request, bypass validation
* Validate subfile record
PERFORM DEV1RC
* If SFLRCD invalid, note the fact
IF (C-INDICATOR-ON(98) AND
C-INDICATOR-OFF(99)) THEN
MOVE ZZRR TO ZZSFRC OF ZSFLCTL-WS-O
IF (ZZSFRC OF ZSFLCTL-WS-O ZERO) THEN
SET C-INDICATOR-ON(99) TO TRUE
ELSE
SET C-INDICATOR-OFF(99) TO TRUE
END-IF

DCEXIT.
EXIT.
JEJECT

DDNLRC SECTION.

MOVE ‘N’ TO WONLR
* customer code
IF (Z1AICD OF ZSFLRCD-WS-O NOT = SPACES) THEN
GO DDEXIT
END-IF
* customer name
IF (Z1APTX OF ZSFLRCD-WS-O NOT = SPACES) THEN
GO DDEXIT
END-IF
MOVE ‘Y’ TO WONLR

DDEXIT.

EXIT.

Appendix A: Programming and Coding Examples 355

COBOL ‘85 Program Example

JEJECT
DEV1RC SECTION.

* customer code required
IF (Z1AICD OF ZSFLRCD-WS-O = SPACES) THEN
SET C-INDICATOR-ON(98) TO TRUE
SET C-INDICATOR-ON(33) TO TRUE
Send message ‘*Value required’
* Message ID
MOVE ‘Y2U0001’ TO ZAMSID
* Message file.
MOVE ‘Y2USRMSG’ TO ZAMSGF
PERFORM ZASNMS
END-IF
* customer name required
IF (Z1APTX OF ZSFLRCD-WS-0 = SPACES) THEN
SET C-INDICATOR-ON(98) TO TRUE
SET C-INDICATOR-ON(34) TO TRUE
Send message ‘*Value required’
* Message ID
MOVE ‘Y2U0001’ TO ZAMSID
* Message file.
MOVE ‘Y2USRMSG’ TO ZAMSGF
PERFORM ZASNMS
END-IF

*

DEEXIT.
EXIT.
JEJECT

DHPRCF SECTION.

* Set screen conditioning indicators
PERFORM GBDSA2
* Update screen time
ACCEPT ZZTIME FROM TIME
MOVE ZZHNS TO ZZTME OF ZSFLCTL-WS-0
* Force PUTOVR
SET C-INDICATOR-ON(86) TO TRUE
WRITE UUB7EFK-F FROM ZMSGCTL-WS-O
FORMAT IS “ZMSGCTL’ INDICATORS ARE INDICS
END-WRITE
WRITE UUB7EFK-F FROM ZCMDTXT1-WS-O
FORMAT IS ZCMDTXT1’ INDICATORS ARE INDICS

356 Standards Guide

COBOL ‘85 Program Example

END-WRITE
WRITE UUB7EFK-F FROM ZSFLCTL-WS-O

FORMAT IS “ZSFLCTL’ INDICATORS ARE INDICS
END-WRITE
MOVE SPACES TO ZZCFCD OF UUB7EFK-WS-O
MOVE ‘N’ TO ZZCFCD OF UUB7EFK-WS-O
* Save CMD keys
MOVE INDICS TO WN30-A
WRITE UUB7EFK-F FROM ZCONFIRM-WS-0O
FORMAT IS “ZCONFIRM’ INDICATORS ARE INDICS
END-WRITE
READ UUB7EFK INTO ZCONFIRM-WS-I
FORMAT IS “ZCONFIRM’ INDICATORS ARE INDICS
END-READ
MOVE CORRESPONDING
ZCONFIRM OF ZCONFIRM-WS-I TO
ZCONFIRM OF ZCONFIRM-WS-O
* Restore CMD keys
MOVE 1 TO IND-COUNT
SET CONDITION-FALSE TO TRUE
PERFORM UNTIL (CONDITION-TRUE)
MOVE WN30(IND-COUNT) TO IND(IND-COUNT)
ADD 1 TO IND-COUNT
IF (IND-COUNT 30)
SET CONDITION-TRUE TO TRUE
END-IF
END-PERFORM
* Update job time
ACCEPT ZZTIME FROM TIME
MOVE ZZHNS TO ZZJTM OF JOB-CONTEXT
IF (ZZCFCD OF UUB7EFK-WS-O NOT = ‘Y’) THEN
SET C-INDICATOR-ON(99) TO TRUE
ELSE
SET C-INDICATOR-OFF(99) TO TRUE
END-IF

DHEXIT.
EXIT.
JEJECT
EAPRSF SECTION.

* Initialise subfile reload flag
IF (C-ADD-MODE) THEN
MOVE ‘Y’ TO WORSF

Appendix A: Programming and Coding Examples 357

COBOL ‘85 Program Example

ELSE
MOVE ‘N’ TO WORSF
END-IF
* Process all modified subfile records
READ SUBFILE UUB7EFK NEXT MODIFIED INTO ZSFLRCD-WS-I
FORMAT IS “ZSFLRCD’ INDICATORS ARE INDICS

END-READ
IF (C-NO-MOD-SFLRCDS) THEN
SET C-INDICATOR-ON(92) TO TRUE
ELSE
SET C-INDICATOR-OFF(92) TO TRUE
MOVE CORRESPONDING
ZSFLRCD-I OF ZSFLRCD-WS-I TO
ZSFLRCD-O OF ZSFLRCD-WS-0O
END-IF
PERFORM UNTIL NOT (C-INDICATOR-OFF(92))
* Process modified subfile record
PERFORM EBPRSR
MOVE SPACES TO Z1SEL OF ZSFLRCD-WS-O
* Set screen conditioning indicators
PERFORM GADSA1
REWRITE SUBFILE UUB7EFK-F FROM ZSFLRCD-WS-0O
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END-REWRITE
READ SUBFILE UUB7EFK NEXT MODIFIED INTO ZSFLRCD-WS-I
FORMAT IS ‘ZSFLRCD’ INDICATORS ARE INDICS
END-READ
MOVE CORRESPONDING
ZSFLRCD-I OF ZSFLRCD-WS-I TO
ZSFLRCD-O OF ZSFLRCD-WS-0O
IF (C-NO-MOD-SFLRCDS) THEN
SET C-INDICATOR-ON(92) TO TRUE
ELSE
SET C-INDICATOR-OFF(92) TO TRUE
END-IF
END-PERFORM
* If any errors, cancel reload
IF (C-INDICATOR-ON(99)) THEN
MOVE ‘N’ TO WORSF
END-IF

EAEXIT.
EXIT.
JEJECT
EBPRSR SECTION.

358 Standards Guide

COBOL ‘85 Program Example

*

Process modified subfile record

Set off error indicators
Clear errors
MOVE WKINDO(1) TO IND(32)
MOVE WKINDO(2) TO IND(33)
MOVE WKINDO(3) TO IND(34)
SET C-INDICATOR-OFF(98) TO TRUE
IF (C-ADD-MODE) THEN

Process add request

IF (Z1SEL OF ZSFLRCD-WS-O NOT = ‘D’) THEN
PERFORM DDNLRC
IF (WONLR NOT = “Y’) THEN

PERFORM ECADRQ

END-IF

END-IF

ELSE
IF (Z1SEL OF ZSFLRCD-WS-O = ‘D’) THEN

* Process delete request

PERFORM EDDLRQ
ELSE

* Process change request

PERFORM EECHRQ
END-IF
END-IF

* If error occurred on update, note the fact

IF (C-INDICATOR-ON(98) AND
C-INDICATOR-OFF(99)) THEN
MOVE ZZRR TO ZZSFRC OF ZSFLCTL-WS-O

* Error on update

IF (ZZSFRC OF ZSFLCTL-WS-O ZERO) THEN
SET C-INDICATOR-ON(99) TO TRUE
ELSE
SET C-INDICATOR-OFF(99) TO TRUE
END-IF
ELSE
CONTINUE
END-IF

EBEXIT.
EXIT.
JEJECT
ECADRQ SECTION.

Appendix A: Programming and Coding Examples 359

COBOL ‘85 Program Example

USER: Create DBF record

Create object - customer file *

* ¥ ¥ ¥

PERFORM SACRRC
IF (WORTN NOT = SPACES) THEN
* Write error detected
* Screen errors
MOVE WKIND1(1) TO IND(32)
MOVE WKIND1(2) TO IND(33)
MOVE WKIND1(3) TO IND(34)
* Format error
SET C-INDICATOR-ON(98) TO TRUE
* Enable entry

SET C-INDICATOR-OFF(87) TO TRUE
* SFLNXTCHG
SET C-INDICATOR-ON(84) TO TRUE
ELSE
* DBF Write successful
* Disable entry
SET C-INDICATOR-ON(87) TO TRUE
* No SFLNXTCHG
SET C-INDICATOR-OFF(84) TO TRUE
END-IF

ECEXIT.
EXIT.
JEJECT
EDDLRQ SECTION.

USER: Delete DBF record
Delete object - customer file *

PERFORM SBDLRC
IF (WORTN NOT = SPACES) THEN
* Delete unsuccessful
* Screen errors
MOVE WKIND1(1) TO IND(32)
MOVE WKIND1(2) TO IND(33)
MOVE WKIND1(3) TO IND(34)
* Format Error
SET C-INDICATOR-ON(98) TO TRUE
* Enable entry

360 Standards Guide

COBOL ‘85 Program Example

SET C-INDICATOR-OFF(87) TO TRUE
* SFLNXTCHG
SET C-INDICATOR-ON(84) TO TRUE
* If record altered, reset subfile record
IF (WORTN = ‘Y2U0007’) THEN
PERFORM MBFLZ1
END-IF
ELSE
* DBF Delete successful
Blank out record and protect from entry
PERFORM MAIZZ1
* Disable entry
SET C-INDICATOR-ON(87) TO TRUE
* No SFLNXTCHG
SET C-INDICATOR-OFF(84) TO TRUE
* Reload subfile
MOVE ‘Y’ TO WORSF
END-IF

*

EDEXIT.
EXIT.
JEJECT
EECHRQ SECTION.

* USER: Change DBF record

*

* Change object - customer file *
%

PERFORM SCCHRC
IF (WORTN NOT = SPACES) THEN
* DBF Update error detected
* Screen errors
MOVE WKIND1(1) TO IND(32)
MOVE WKIND1(2) TO IND(33)
MOVE WKIND1(3) TO IND(34)
* Format Error
SET C-INDICATOR-ON(98) TO TRUE
* Enable entry
SET C-INDICATOR-OFF(87) TO TRUE
* SFLNXTCHG
SET C-INDICATOR-ON(84) TO TRUE
* Reset subfile record if changed record
IF (WORTN = ‘Y2U0007’) THEN
MOVE CORRESPONDING

Appendix A: Programming and Coding Examples 361

COBOL ‘85 Program Example

FAIREA3 OF UUAIRELO TO

FAIREA4
PERFORM MBFLZ1
END-IF
ELSE
* DBF Update successful
*

Enable entry
SET C-INDICATOR-OFF(87) TO TRUE
* No SFLNXTCHG

SET C-INDICATOR-OFF(84) TO TRUE
END-IF

EEEXIT.
EXIT.
JEJECT
FACHMD SECTION.

IF (NOT C-ADD-MODE) THEN
SET C-ADD-MODE TO TRUE

ELSE

SET C-CHANGE-MODE TO TRUE
END-IF
PERFORM FBRQRL

FAEXIT.
EXIT.
JEJECT
FBRQRL SECTION.

FBEXIT.
EXIT.
JEJECT
GADSA1 SECTION.

IF (C-ADD-MODE) THEN
SET C-INDICATOR-ON(89) TO TRUE

362 Standards Guide

COBOL ‘85 Program Example

ELSE
SET C-INDICATOR-OFF(89) TO TRUE
END-IF
* Protect keys if change mode or updated record
IF (C-INDICATOR-ON(89) AND
C-INDICATOR-OFF(87)) THEN
SET C-INDICATOR-OFF(88) TO TRUE
ELSE
SET C-INDICATOR-ON(88) TO TRUE
END-IF

GAEXIT.
EXIT.
JEJECT
GBDSA2 SECTION.

IF (C-ADD-MODE) THEN

SET C-INDICATOR-ON(89) TO TRUE
ELSE

SET C-INDICATOR-OFF(89) TO TRUE
END-IF

GBEXIT.
EXIT.
JEJECT
MAIZZ1 SECTION.

MOVE SPACES TO Z1DBRC OF UUB7EFK-WS-O
MOVE SPACES TO Z1SEL OF ZSFLRCD-WS-O
MOVE SPACES TO Z1AICD OF ZSFLRCD-WS-O
MOVE SPACES TO Z1APTX OF ZSFLRCD-WS-O

MAEXIT.
EXIT.
JEJECT
MBFLZ1 SECTION.

* customer code

Appendix A: Programming and Coding Examples 363

COBOL ‘85 Program Example

MOVE AIAICD OF FAIREA4 TO Z1AICD OF ZSFLRCD-WS-O
customer name

MOVE AIAPTX OF FAIREA4 TO Z1APTX OF ZSFLRCD-WS-O
Hold current record image for change detection

MOVE Y1DBRC TO Z1DBRC OF ZSFLRCD-WS-0O

MBEXIT.
EXIT.
JEJECT

MEIZZ2 SECTION.

MEEXIT.
EXIT.
JEJECT
SACRRC SECTION.

MOVE SPACES TO WORTN
* Move all fields to FAIREA3
customer code
MOVE Z1AICD OF ZSFLRCD-WS-O TO AIAICD OF UUAIRELO-R
customer name
MOVE Z1APTX OF ZSFLRCD-WS-O TO AIAPTX OF UUAIRELO-R

Check for duplicate primary key
START UUAIRELO KEY = EXTERNALLY-DESCRIBED-KEY
FORMAT IS ‘FAIREA3’
END-START
IF (NOT C-NO-RECORD) THEN
SET C-INDICATOR-ON(90) TO TRUE
MOVE ‘USR0028’ TO WORTN
Send message ‘customer file EX’
Message ID
MOVE ‘USR0028’ TO ZAMSID
PERFORM ZASNMS
GO SAEXIT
ELSE
SET C-INDICATOR-OFF(90) TO TRUE
END-IF

364 Standards Guide

COBOL ‘85 Program Example

WRITE UUAIRELO-R END-WRITE
IF (C-10-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
* Write error detected
MOVE ‘Y2U0004’ TO WORTN
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
* DBF Write successful
* Update saved record image
MOVE CORRESPONDING
FAIREA3 OF UUAIRELO TO
FAIREA3 OF Y1IDBRC
END-IF

SAEXIT.
EXIT.
JEJECT
SBDLRC SECTION.

MOVE SPACES TO WORTN
* Move key fields to FAIREA3
* customer code
MOVE Z1AICD OF ZSFLRCD-WS-O TO AIAICD OF UUAIRELO-R

READ UUAIRELO END-READ
IF (C-NO-RECORD) THEN

SET C-INDICATOR-ON(90) TO TRUE
ELSE

SET C-INDICATOR-OFF(90) TO TRUE
END-IF

IF (C-10-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
END-IF
IF (C-10-OK) THEN
MOVE CORRESPONDING
FAIREA3 OF UUAIRELO TO
FAIREA3 OF Y1DBRC
END-IF

Appendix A: Programming and Coding Examples 365

COBOL ‘85 Program Example

*

*

IF (C-INDICATOR-ON(90)) THEN
Record already deleted
MOVE ‘Y2U0009’ TO WORTN
Send message ‘*Record no longer on file’
Message ID
MOVE ‘Y2U0009’ TO ZAMSID
Message file.
MOVE ‘Y2USRMSG’ TO ZAMSGF
PERFORM ZASNMS
GO SBEXIT

ELSE
CONTINUE

END-IF

IF (C-INDICATOR-ON(91)) THEN
Record locked
MOVE ‘Y2U0004’ TO WORTN
GO SBEXIT

ELSE
CONTINUE

END-IF

Check for changed record
IF (Z1DBRC OF ZSFLRCD-WS-0O NOT = Y1DBRC) THEN
MOVE ‘Y2U0007’ TO WORTN
Send message ‘*Update not accepted’
Message ID
MOVE ‘Y2U0007’ TO ZAMSID
Message file.
MOVE ‘Y2USRMSG’ TO ZAMSGF
PERFORM ZASNMS
Use SETLL to release record lock

START UUAIRELO KEY = EXTERNALLY-DESCRIBED-KEY

FORMAT IS ‘FAIREA3’
END-START
IF (C-NO-RECORD) THEN
SET C-INDICATOR-ON(90) TO TRUE
ELSE
SET C-INDICATOR-OFF(90) TO TRUE
IF (C-10-ERR) THEN

SET C-INDICATOR-ON(91) TO TRUE
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
END-IF
END-IF
GO SBEXIT
ELSE

366 Standards Guide

COBOL ‘85 Program Example

CONTINUE
END-IF
DELETE UUAIRELO END-DELETE
IF (C-l0-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
* Delete error detected
MOVE ‘Y2U0004’ TO WORTN
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
END-IF

SBEXIT.
EXIT.
JEJECT

SCCHRC SECTION.

MOVE SPACES TO WORTN
* Move key fields to FAIREA3
* customer code
MOVE Z1AICD OF ZSFLRCD-WS-0 TO AIAICD OF UUAIRELO-R

READ UUAIRELO END-READ
IF (C-NO-RECORD) THEN
SET C-INDICATOR-ON(90) TO TRUE
Record not found
MOVE ‘Y2U0009’ TO WORTN
* Send message “*Record no longer on file’
* Message ID
MOVE ‘Y2U0009’ TO ZAMSID
* Message file.
MOVE ‘Y2USRMSG’ TO ZAMSGF
PERFORM ZASNMS
GO SCEXIT
ELSE
SET C-INDICATOR-OFF(90) TO TRUE
IF (C-10-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
* Record locked
MOVE ‘Y2U0004’ TO WORTN
GO SCEXIT

*

ELSE
SET C-INDICATOR-OFF(91) TO TRUE

Appendix A: Programming and Coding Examples 367

COBOL ‘85 Program Example

IF (C-10-OK) THEN
MOVE CORRESPONDING
FAIREA3 OF UUAIRELO TO
FAIREA3 OF Y1DBRC
END-IF
END-IF
END-IF

*

Check for changed record
IF (Z1DBRC OF ZSFLRCD-WS-0O NOT = Y1DBRC) THEN
MOVE ‘Y2U0007’ TO WORTN
* Send message ‘*Update not accepted’
* Message ID
MOVE ‘Y2U0007’ TO ZAMSID
* Message file.
MOVE ‘Y2USRMSG’ TO ZAMSGF
PERFORM ZASNMS
* Use SETLL to release record lock
START UUAIRELO KEY = EXTERNALLY-DESCRIBED-KEY
FORMAT IS ‘FAIREA3’
END-START
IF (C-NO-RECORD) THEN
SET C-INDICATOR-ON(90) TO TRUE
ELSE
SET C-INDICATOR-OFF(90) TO TRUE
IF (C-IO-ERR) THEN
SET C-INDICATOR-ON(91) TO TRUE
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
END-IF
END-IF
GO SCEXIT
END-IF
* Move Non-key fields to FAIREA3
* customer name
MOVE Z1APTX OF ZSFLRCD-WS-0O TO AIAPTX OF UUAIRELO-R

REWRITE UUAIRELO-R END-REWRITE
IF (NOT C-10-OK) THEN
SET C-INDICATOR-ON(91) TO TRUE
* Change error detected
MOVE ‘Y2U0004’ TO WORTN
ELSE
SET C-INDICATOR-OFF(91) TO TRUE
* DBF Change successful
* Update saved record image
MOVE CORRESPONDING
FAIREA3 OF UUAIRELO TO
FAIREA3 OF Y1DBRC

368 Standards Guide

COBOL ‘85 Program Example

MOVE Y1DBRC TO Z1DBRC OF ZSFLRCD-WS-O
END-IF

SCEXIT.
EXIT.
JEJECT
ZASNMS SECTION.

* Send if message is first *DIAG or not *DIAG
IF (ZAMSTP NOT = SPACES OR
ZAFSMS NOT = ‘N’) THEN
IF (ZAMSTP = SPACES) THEN
Signal first error message sent
MOVE ‘N’ TO ZAFSMS
END-IF
IF (ZAPGM = SPACES) THEN
MOVE ZZPGM OF JOB-CONTEXT TO ZAPGM
END-IF
* If no message file specified use default
IF (ZAMSGF = SPACES) THEN
MOVE ZADFMF TO ZAMSGF
END-IF
CALL ‘Y2SNMGC’ USING
* Program queue
ZAPGM
* Relative queue
ZAPGRL
* Message id
ZAMSID
* Message file
ZAMSGF
* Message data
ZAMSDA
* Message type
ZAMSTP
END-CALL
END-IF
Clear all fields for default mechanism next time
* Program queue
MOVE SPACES TO ZAPGM
* Relative queue
MOVE SPACES TO ZAPGRL
* Message id
MOVE SPACES TO ZAMSID

Appendix A: Programming and Coding Examples 369

COBOL ‘85 Program Example

* Message file

MOVE SPACES TO ZAMSGF
* Message data

MOVE SPACES TO ZAMSDA

* Message type
MOVE SPACES TO ZAMSTP

ZAEXIT.
EXIT.
JEJECT
ZXEXPG SECTION.

MOVE SPACES TO PORTN
PERFORM ZYEXPG

ZXEXIT.
EXIT.
JEJECT

ZYEXPG SECTION.

CLOSE UUB7EFK
CLOSE UUAIREL1
CLOSE UUAIRELO
* Reset entry parameters as appropriate
PERFORM ZZEXPM.
* Exit program

ZYEXPG-EXIT.
GOBACK

ZYEXIT.
EXIT.
JEJECT
ZZEXPM SECTION.

CONTINUE

370 Standards Guide

COBOL ‘85 Program Example

ZZPEXT.
EXIT.
JEJECT
ZZINIT SECTION.

MOVE SPACES TO PORTN

MOVE SPACES TO WORTN
MOVE ALL B’0’ TO INDICS
* Setup job date/time
ACCEPT ZZJDT FROM DATE
ACCEPT ZZTIME FROM TIME
MOVE ZZHNS TO ZZJTM OF JOB-CONTEXT
* Retrieve job attributes
CALL ‘Y2RTJBR’ USING
JOB-CONTEXT
END-CALL
MOVE ‘UUB7EFK’ TO ZZPGM OF JOB-CONTEXT
* OBTAIN DEFAULT MESSAGE FILE.
MOVE ‘Y2MGFLA’ TO DATA-AREA-NAME
CALL ‘Y2RTDAC’ USING
DATA-AREA-NAME
ZADFMF
END-CALL
* Signal first *DIAG message outstanding
MOVE ‘Y’ TO ZAFSMS
* Open files
OPEN I-O UUB7EFK
OPEN INPUT UUAIREL1
ACCEPT UUAIREL1-OPEN FROM OPEN-FEEDBACK-AREA FOR UUAIREL1
* Move main file information to JOB context
MOVE CORRESPONDING OPENFA OF UUAIREL1-OPEN TO JOB-CONTEXT
CALL ‘Y2QLNMR’ USING
ZZFFL OF JOB-CONTEXT
ZZFLB OF JOB-CONTEXT
ZZFQL OF JOB-CONTEXT
END-CALL
OPEN I-O UUAIRELO
ACCEPT UUAIRELO-OPEN FROM OPEN-FEEDBACK-AREA FOR UUAIRELO
MOVE ‘Y TO WOOPN

MOVE ‘UUB7EFK’ TO ZZPGM OF ZSFLCTL-WS-O
MOVE 12 TO ZZSFPG
* SFLRCDNBR

Appendix A: Programming and Coding Examples 371

Command Source Example

MOVE 1 TO ZZSFRC OF ZSFLCTL-WS-O
* MAXRECNO
MOVE ZERO TO ZZRRMX
* If member empty, set to *ADD mode, else to *CHANGE mode
IF (ZZNROP OF UUAIREL1-OPEN = ZERO) THEN
SET C-ADD-MODE TO TRUE
ELSE
SET C-CHANGE-MODE TO TRUE
END-IF
* Initialise subfile control

PERFORM MEIZZ2

ZZEXIT.
EXIT.

Command Source Example

CMD PROMPT(YYY0052)
/*T: Display Help Text. */
/*Z: CRTCMD PGM(YDDSHPC@)ALLOW(*INTERACT *IPGM *EXEC)*/
/*Z: PMTFILE(YYYYPMT) */
/f=========================== %/
/*H: SYSTEM : Widget Processing System
/*H: PROGRAMMER : J. Sloan
/*H: DATE 1 24/04/85
/*H: (C) COPYRIGHT 1985 WIDGET CORPORATION
/f=========================== %/

/*H: P. Help file name and library */
PARM KWD(FILE) TYPE(FL)
PROMPT (YYF1001) FILE (*IN)MIN(1) + SNGVAL((*PRV))
FL: QUAL TYPE(*NAME) DFT(QTXTSRC) /* File */
QUAL TYPE(*NAME) PROMPT(YYLOOO1) /* Library */ +
DFT(*LIBL) SPCVAL((*LIBL))

[e e e e e e e e e */
/*H: P. Help member name */
PARM KWD(MBR) TYPE(*NAME) PROMPT(YYF1051) +
DFT(*FILE) SPCVAL(*FILE)
[e e e e e e e e e */
/*H: P. Label */

PARM KwD (MBR) TYPE(*CHAR) LEN(30) PROMPT(YYL101l) +
DFT(*NONE) PMTCTL(*PMTRQS)

372 Standards Guide

Command Diagram Example

Command Diagram Example

The example below shows the layout of a typical command diagram.

YEDTLIBLST (Edit Library List)

Function

Parameters

Calls an interactive program to edit or change a library list.
m The edited list may be stored away permanently as a CA 2E Toolkit library list.

® [t may also be used to change the current job’s library list.

Command diagram, prepared, using 0S/400 conventions:

Optional
>*JOB
>*LIBL/ -*SELECT
YEDTLIBLST LIBLST ~ |-*CURLIB/
- -library-name/ -*USER
-library-list-name
Job: | Pgm: |

400 Toolkit Modules: *USR *PGMR

LIBLST—Qualified name of library list which is to be edited:
m *JOB: currentjob’s library list
m *USER: library list has same name as user

m *SELECT: display list of existing lists

Appendix A: Programming and Coding Examples 373

General Rules for Preparing Command Diagrams

Notes

Example

1. Calls an interactive display to edit a library list. Press the HELP key while using the
program for instructions.

2. Library lists are stored in file YLIBLST in the library specified by the LIBLST
parameter.

It is recommended that you have only one library list file per installation. However,
additional files can be created as follows:

CRTDUPOBJ OBJ(YLIBLST) FROMLIB(pgmlib) OBJTYPE(*FILE) TOLIB(library-name)

m To edit the current job’s library list:

YEDTLIBLST
m To edit a library list named BORGES:-

YEDTLIBLST LIBLST(BORGES)

General Rules for Preparing Command Diagrams

The following rules apply to the layout of the diagram:

®m Begin the syntax base line with the command name in upper case:-

YEDTLIBLST

m Start each continuation syntax base line with >—" and end it with ‘—>.
m Show all parameter keywords in upper case on the syntax base line.
m Do not split parameter descriptions over two lines, if this can be avoided.

m List the parameters in the order in which they appear in the code for the command.
Note that on IBM i, the order in which the parameters appear on the panel may be
altered by use of the PMTCTL keyword.

374 Standards Guide

General Rules for Preparing Command Diagrams

Example

If additional information about a parameter is required, enter a number enclosed in
brackets against the parameter, and explain it at the bottom of the diagram.

Use >’ before a parameter value to indicate that it is the default value.
Use ‘-|” and ‘|-’ to indicate a fork in a syntax base or branch line.

Use ‘——'to indicate the termination of the syntax base line (for example, no “*’ or
), and continue the line to the edge of the diagram:

>*REPLACE-
>—LSTOPT-

-*ALL

For qualified object names, place ‘/’ after an element name to indicate qualification.

Place a box containing a ‘P’, after the last permitted positional parameter:

YCRTUSRPRF—USRPRF user-profile-name >

Place a box containing a ‘K’, after the last permitted keyword parameter.

Draw a line across the diagram to indicate the last required parameter. Place the
word ‘Required’ above this line on the right-hand side. Place ‘Optional’ below this
line. If all parameters are optional, place ‘Optional’ in the top left hand corner of
the box.

Required

Optional

To indicate variables, use lower case and connect compound nouns with hyphens,
for example, ‘library-list-name’. Values should be of a data type, rather than a
specific name, for example ‘date’ rather than ‘order- date’.

For parameters that have a choice of values, place each value on a different branch
line. If more than one value can be specified, indicate this with an arrow below, and
state the maximum number of allowed values. For example:

*ALL
> OBJTYPE—

>
—-object-type——
A

-23-maximum—

Appendix A: Programming and Coding Examples 375

Parameter Descriptions

m State the environments in which the command may be used (interactive or batch)
in a box at the bottom right-hand corner of the command diagram. List the modules
of the product for which the command is applicable, underneath the command
diagram. For example:

Job: | Pgm: |

400 Toolkit Modules: *USR *PGMR

Parameter Descriptions

The following rules apply to the description of command parameters, which should
appear below the diagram.

m The command parameters should be described individually in the same order as
they are listed in the command diagram. The parameter keyword should be in bold
type.

m Parameter descriptions should begin with a statement of the type of value
expected, for example, ‘Qualified name’, ‘Generic qualified name’, ‘Message
identifier’, ‘Text description’, or ‘Compound list made up of the following three
elements’.

m Each special value should be described. The actual special value should be shown
(for example, “*NONE’), followed by the text description.

m The default special value should be shown first, and underlined.

m For multi-part parameters which have a single value as well, show the single value
on a separate branch line from that containing the multi-part parameter values
(which may branch again to show a list of values):

>*SYSVAL

>—-LIBLST- - *LIBL/——— -*USER

- >

-library-name/- -library-list-name-

376 Standards Guide

UIM Help Text Example

The following rule applies to the notes on using the command:

m Notes should explain additional specific information that is required to use the
command or understand its actions. Information pertaining to particular
parameters should normally appear in the parameter description, not in the notes.

The following rule applies to the examples of using the command which should appear
at the end:

m Examples should cite at least one instance of using the command. Give a typical
example or examples.

YEDTLIBLST LIBLST(BORGES)

UIM Help Text Example

This section contains sample source for UIM help text. There are separate examples for
Command help, Panel help, Search index, and Hypertext definitions.

Appendix A: Programming and Coding Examples 377

UIM Help Text Example

Command Help (‘wlllcmH’)
PNLGRP SUBMSGF='"WPMTMSG' .
. *T: Library list Object - command help

. *H: SYSTEM : Widget Processing System
. *H: PROGRAMMER : J. Sloan
. *H: DATE 1 24/04/92
. *H: (C) COPYRIGHT 1992 WIDGET CORPORATION
IMPORT PNLGRP=wssycmh NAME='*", <==Standard definitions
:IMPORT PNLGRP=ghckmstl NAME='dspobjd/output’.
:IMPORT PNLGRP=ghckmstl NAME='dspobjd/outfile’.
:IMPORT PNLGRP=ghckmstl NAME='dspobjd/outmbr’

k ok 3k 3k ok ok k X

. * Primary help text for the commands
.*****************************

:HELP NAME='wchgliblst/ALL’. <== Help group to
:IMHELP NAME=wchgliblst. gather all parameters
:IMHELP NAME='wchgliblst/liblst’ together
:IMHELP NAME='wchgliblst/libl’.
:IMHELP NAME='wchgliblst/text’.
:EHELP.

. * C. Change library list command overview

:HELP NAME='wchgliblst’. <== Command overview
&MSG(WL15002) . &MSG(uislees).
:P.The &MSG(W115002). (WCHGLIBLST) &MSG(uis0021).
changes the contents of an existing
:LINK PERFORM ='DSPHELP wlllenh/went/liblst wlllenh’.
&MSG(WL10301) . :ELINK.
:EHELP.

:HELP NAME='wchgliblst/liblst’. <== Parameter
descriptions
:IMHELP NAME='liblst/liblst’.
:P.Specifies the name and
&MSG(Wb0301) . of the
&MSG(W110301). that is to be changed

378 Standards Guide

UIM Help Text Example

:IMHELP NAME='whsyhph/STDTXT/REQVAL’. <== Standard text

fragments

:IMHELP NAME='whsyhph/STDPARMVAL/LIB’.

:EHELP.

:HELP NAME="wchgliblst/LIBL’.
:IMHELP NAME='1iblst/LIBL".

:PARML.
:PT.:PK DEF.

<== Parameter values

*SAME : EPK.
:PD.Do not change the

&MSG(W1b0015) . stored in the

&MSG(W110301) .

:EPARML.

:IMHELP NAME='1liblst/LIBL/LIB’.

:EHELP.

:HELP NAME="wchgliblst/TEXT'.

&MSG(WTX0001) .

(TEXT) &MSG(uis1005).

:XH3 (WTX0001) . (TEXT)
:P.Specifies a text description of the new

&MSG(WL10301).
:PARML.

:PT.:PK DEF. *DFTTXT:EPK.
:PD.Default text is to be provided.
:PT. :PK. "&MSG(Wtx0201) . " : EPK.
:PD.Up to fifty characters of free format text, enclosed in

apostrophes.
:EPARML.

:EHELP.

k ok ok ok ok ok ok ok ok >k 3k ok ok k 3k >k Xk k %k %k X %)k %k % X) 3k Xk

. * Reused groups LIBLST
.*****************************

:P.Specifies the name and

&MSG(W1b0301) .
&MSG(W110301) .
&MSG(W1b0315) .

&MSG (WLb0305)

of the
containing the
to use to provide the

. and the

Appendix A: Programming and Coding Examples 379

UIM Help Text Example

&MSG(W1b0316) . of the submitted
&MSG(Wjb0301) .

:IMHELP NAME='whsyhph/STDTXT/POSVAL’. <== Standard text
fragment

:PARML.
:PT.:PK DEF. *NONE:EPK.
:PD.No
&MSG(WL10301). is to be used.
:EPARML.
:IMHELP NAME='1liblst/1liblstVAL/JOB'.
:PARML.
:PT. :PK(Wlb0201) . :EPK.
:PD.Name of
&MSG(W1b0301) . containing the
&MSG(W110301) .
:EPARML.
:IMHELP NAME='whsyhph/STDPARMVAL/LIB’ .
:EHELP.

:HELP NAME='1liblst/liblstval/job’.

:PARML.
:PT.:PK. *JOB:EPK.
:PD.The
S&MSG(W110301)., name is the same as the
&MSG (Wjb0305) .
:EPARML.
:EHELP.

:HELP NAME='1liblst/libl’.
&MSG(WLBOOO6) . (LIBL) &MSG(uisl005).
:XH3(WLBOOO6) . (LIBL)
:P.Specifies the libraries to be included in the
&MSG(W110301).
: IMHELP NAME='whsyhph/STDTXT/PLUS" .
:EHELP.

380 Standards Guide

UIM Help Text Example

Panel Help (‘wlllpnh’)
PNLGRP SUBMSGF='WPMTMSG" .
. *T: Library lists - panel help

L ¥ == ===========================-=-=

. *H: SYSTEM : Widget Processing System
. *H: PROGRAMMER : J. Sloan
. *H: DATE 1 24/04/85

. *H: (C) COPYRIGHT 1985 WIDGET CORPORATION

IMPORT PNLGRP=WhSYHPH NAME='*". <== Standard definitions

k) sk ok ok ok ok ok ok ok ok ok ok ok ok >k ok ok ok >k 3k 3k % %k %k 3k *x %)k X

. * Primary help text for the panels
_*****************************

:HELP NAME="zsflctl1/PNL/INTRO'. <==0verview for whole &MSG(W112101)
&MSG(uis1005). panel

:ISCH roots='relationship change panel wdspliblst’.
<== SCHIDX entry
:xh3 The &MSG(WL112101). (DSPLIBLST) &MSG(uis0023).
<== Extended heading
:P.The &MSG(W112101). (DSPLIBLST) &MSG(uis0023).
shows the contents of a specified
:LINK PERFORM ='DSPHELP wlllenh/went/liblst wlllenh’.
&MSG(WL10301) . :ELINK.
:IMHELP NAME='whsyhph/STDTXT/ENTERRTN’. <== Standard
:EHELP. fragment

:HELP NAME='zsflct11/PNL/BOTINS’.
:IMHELP NAME='"whsyhph/STDTXT/ENTERRTN" .
:EHELP.

:HELP NAME='zsflctl1/PNL/CMDINS’.
&MSG(uis1001). &MSG(uislees).
:xh3(uis1001). Function keys
:IMHELP NAME='whsyhph/STD/F/F1HELP’.
:IMHELP NAME='whsyhph/STD/F/F3EXIT/END’.

Appendix A: Programming and Coding Examples 381

UIM Help Text Example

:IMHELP NAME='whsyhph/STD/F/F12PREV" .
: IMHELP NAME='whsyhph/STD/F/ENTER’ .
: IMHELP NAME='whsyhph/STD/F/HELP" .
: IMHELP NAME='whsyhph/STD/F/HOME" .
: IMHELP NAME='whsyhph/STD/F/PRINT" .
:EHELP.

:HELP NAME='zsflctl/zzllvn'. Help text for panel
&MSG(Wlb00O1) . &MSG(uislees). fields
:xh3(Wlb00O1) .

:P.The name of a
&MSG(W1b0301) . in the list.
:EHELP.

‘HELP NAME='zsflctle/zztxvn’.
&MSG(Wtx0001) . &MSG(uisl005) .
:xh3 (Wtx0001) .
:P.The user text, if any, used to briefly describe the
&MSG(WL10301) .
:EHELP.

EPNLGRP.

382 Standards Guide

UIM Help Text Example

Search Index (‘wschidx’)
PNLGRP SUBMSGF='"WPMTMSG' .
. *T: Library list Object - command help

. *H: SYSTEM : Widget Processing System

. *H: PROGRAMMER : J. Sloan
. *H: DATE 1 24/04/92

. *H: (C) COPYRIGHT 1992 WIDGET CORPORATION

IMPORT PNLGRP=WHSYHPH NAME='*". <== Standard definitions

:IMPORT PNLGRP='wlllcmH’ NAME='wcrtliblst/ALL’. <== Commands
:IMPORT PNLGRP='WlllcmH’ NAME='wchgliblst/ALL’.

:IMPORT PNLGRP='WlllcmH’ NAME='wdspliblst/ALL’.

:IMPORT PNLGRP='WlllcmH’ NAME='wchglibl/ALL’.

:IMPORT PNLGRP="wlllpnH’ NAME='Zsflctl1/PNL/INTRO’.

:ISCHSYN ROOT="about’.about

:ISCHSYN ROOT='change’.change changes changing
:ISCHSYN ROOT='change’.CHG

:ISCHSYN ROOT='command’.command commands commanding
: ISCHSYN ROOT='command’.CL CMD

:ISCHSYN ROOT='create’.create creates creating CRT
:ISCHSYN ROOT='data’.library libraries

:ISCHSYN ROOT='display’.display displays displaying
:ISCHSYN ROOT='help’.help assist

:ISCHSYN ROOT="how’ .how

:ISCHSYN ROOT="job’.job

:ISCHSYN ROOT='jobd’.description

:ISCHSYN ROOT='index’.index indexed indexing
:ISCHSYN ROOT='index’.content contents

:ISCHSYN ROOT='index’.list lists

:ISCHSYN ROOT='index’.register registers

:ISCHSYN ROOT='index’.table tables

:ISCHSYN ROOT='index’.list lists

:ISCHSYN ROOT='index’.IDX

:ISCHSYN ROOT='1liblst’.liblst

:ISCHSYN ROOT='1liblst’.library libraries

:ISCHSYN ROOT='1liblst’.list lists

:ISCHSYN ROOT='library’.library libraries

:ISCHSYN ROOT='library’.LIB

:ISCHSYN ROOT='list’'.list lists

:ISCHSYN ROOT='1list’.column columns

:ISCHSYN ROOT='1list’.database databases

:ISCHSYN ROOT='list’.directory directories

Appendix A: Programming and Coding Examples 383

UIM Help Text Example

:ISCHSYN ROOT='1list’.field fields
:ISCHSYN ROOT='list’.file files

:ISCHSYN ROOT='list’.item items

:ISCHSYN ROOT='list’.directory directories
:ISCHSYN ROOT='1list’.library libraries
:ISCHSYN ROOT='1list’.log logs logging
:ISCHSYN ROOT='1list’.record records
:ISCHSYN ROOT='1list’.table tables
:ISCHSYN ROOT='1list’.series

:ISCHSYN ROOT='LIBLST’.LIBLST

:ISCHSYN ROOT='LIBLST’.library

:ISCHSYN ROOT='LIBLST’.list

:ISCHSYN ROOT='LIBLST’.object

:ISCHSYN ROOT='LIBLST'.library libraries
:ISCHSYN ROOT='LIBLST’.list lists
:ISCHSYN ROOT='objtyp’.LIBLST

:ISCHSYN ROOT='search’.search searches searching
:ISCHSYN ROOT='search’.searching searched
:ISCHSYN ROOT='search’.SCH

:ISCHSYN ROOT='search’.find finding FND
:ISCHSYN ROOT='search’.seek seeking
:ISCHSYN ROOT='search’.quest question
:ISCHSYN R0OOT='search’.hunt hunting
:ISCHSYN ROOT='search’.get getting
:ISCHSYN ROOT='search’.locate locating
:ISCHSYN ROOT='search’.look looking
:ISCHSYN ROOT='search’.retrieve retrieving RTV
:ISCHSYN ROOT='search’.review reviewing
:ISCHSYN ROOT='submit’.submit submits SBM
:ISCHSYN ROOT='topic’.topic topics
:ISCHSYN ROOT='topic’.category categories
:ISCHSYN ROOT='what’.what

:ISCHSYN ROOT='wCHGLIBL'.wCHGLIBL
:ISCHSYN ROOT='wchgliblst’.wchgliblst
:ISCHSYN ROOT='wCRTLIBLST’.wCRTLIBLST
:ISCHSYN ROOT='wdspLIBLST’.wdspLIBLST
:HELP NAME='about index search opr’

:ISCH ROOTS="about index search help’.
About index search

:IMHELP NAME='about index search’.

:EHELP.

k ok ok ok ok ok ok ok ok ok ok ok ok >k ok %k ok >k 3k %k Xk %k >k 3k % X)k %k %k X

. * References to command help groups
_*****************************

:HELP NAME='change library list’.

384 Standards Guide

UIM Help Text Example

:ISCH roots='change job liblst LIBLST how command wchglibl’.
&MSG(WL15011) . (WCHGLIBL) &MSG(uis1002). (&MSG(uis1003).)
:IMHELP NAME='wchglibl/ALL’.

:EHELP.

:HELP NAME='change library list object’.

:ISCH roots='change LIBLST liblst how command wchgliblst’.
&MSG(WL15002) . (WCHGLIBLST) &MSG(uisl1002). (&MSG(uislee3).)
:IMHELP NAME='wchgliblst/ALL’.

:EHELP.

:HELP NAME='create library list object’.

:ISCH roots='create LIBLST liblst how command wcrtliblst’.
&MSG(WL156001) . (WCRTLIBLST) &MSG(uisl002). (&MSG(uisl0e3).)
:IMHELP NAME='wcrtliblst/ALL’.

:EHELP.

:HELP NAME='display library list object’.

:ISCH roots='display LIBLST liblst how command wdspliblst’.
&MSG(WL15004) . (WDSPLIBLST) &MSG(uisl1002). (&MSG(uislee3).)
:IMHELP NAME='wdspliblst/ALL’.

:EHELP.

:EPNLGRP.

Appendix A: Programming and Coding Examples 385

UIM Help Text Example

Hypertext Definitions (‘wlllenh’)
PNLGRP SUBMSGF="WPMTMSG' .
. *T: Standard hypertext definitions

. *H: SYSTEM : Widget Processing System

. *H: PROGRAMMER : J. Sloan
. *H: DATE 1 24/04/92

. *H: (C) COPYRIGHT 1992 WIDGET CORPORATION

IMPORT PNLGRP=wssypnh NAME='*", <==Standard definitions

:HELP NAME='wlllenH/WENT/LIBLST’.
&MSG(wll0e001). &MSG(uislees).
:ISCH roots='LIBLST novice what'. <==Index entry
&MSG(wll0001) .
:xh3(wlle001).

:P.A &MSG(wll0301). (LIBLST)
is a type of
:LINK perform='DSPHELP wlllenh/WENT/spcobj’. <==cross refe
&MSG(wSP0301) .
:ELINK.
containing a list of libraries. It may also contain the
name of a
&MSG(wlb0305) . and the name of a
&MSG(wJD0301) .
These stored values can be used to set the
&MSG(wlb0315). of a
&MSG(wjb0301). or
&MSG(wjde301) . &period.
The names of
&MSG(wlle301).s
must be unique within a given
&MSG(wlb0301) . &period.

:imhelp name='whsyhph/STDTXT/RELTOPIC’'. <== List of
related topics
:ul COMPACT.
:1i.:LINK PERFORM ='DSPHELP wlllenh/went/liblst/HOW’.
How to create or change a &MSG(wll10301).:ELINK.
:1i.:LINK PERFORM ='DSPHELP wlsyenh/went/liblst/use’.
Using a &MSG(wll10301).:ELINK.
:1i.:LINK PERFORM ='DSPHELP wlllenh/went/liblst/xmp’.
Example of using a &MSG(wl10301).:ELINK.
reul.
:ehelp.

386 Standards Guide

UIM Help Text Example

:EPNLGRP.

Appendix A: Programming and Coding Examples 387

Appendix B: Printer Form Sizes

This appendix contains the printer form standard options.

Printer Form Standard Options

Standard Print Forms Specifications

Print Forms Standard A4 Short A4 Long
Options

CMP UNCMP CMP UNCMP CMP UNCMP CMP
1st print line - - - - 3 3 3
Last print line 80 60 64 64 64 60 62
Length of 88 66 70 66 72 64 64
form (lines)
Lines perinch 8 6 8 6 8 6 8
(4689)
Line spacing 1 1 1 1 1 1 1
(123)
Formstype *STD *STD A4 A4 AlL4 AlL4 A5
Add. left 0 0 6 6 9 6 9
margin space
Char. per 15 10 15 10 15 10 15

inch (10 15)

Appendix B: Printer Form Sizes 389

Index

B

backup and recovery ¢ 280, 281

C

catastrophic failure » 281

CL program source ¢ 329
CL programs e 169
CL programs e 171

COBOL '85 program e 341

COBOL programs ¢ 190
COBOL programs ¢ 198
coding principles ¢ 135
coding standards ¢ 149

coding standards ¢ 138, 141

coding standards ¢ 149
coding standards ¢ 151
coding standards ¢ 157
coding standards ¢ 164
coding standards ¢ 169
coding standards ¢ 169
coding standards ¢ 173
coding standards ¢ 190
coding standards » 203
coding standards ¢ 226
coding standards ¢ 238

coding structure and logic » 211

command coding ¢ 219
command diagram ¢ 373
command keys ¢ 61

command processing programs e 222

command source ¢ 372
commands ¢ 78
considerations e 298
constraints 29

copy books ¢ 209
copyrights e 138

D

data dictionary ¢ 152
database ¢ 91
database file DDS » 321
database files ® 90, 151
database files ® 155
DDS » 141

defining messages ¢ 232
design methods ¢ 46

design standards ¢ 46

design standards ¢ 46

design standards * 48

design standards ¢ 56

design standards ¢ 68

design standards ¢ 71

design standards ¢ 75

design standards ¢ 78

design standards ¢ 90

design standards ¢ 102

design standards ¢ 115

display file DDS » 322

display files ® 56, 157
documentation ¢ 297, 298, 301, 302
documenting commands ¢ 301

E

ELB option runtime ¢ 313

examples ¢ 309, 313, 317, 321, 322, 326, 329, 331,

341,372,373
F

field names » 171
field reference file ® 317
field reference file ® 152

G

General IBM Manuals ¢ 14

H

help text » 75, 238

help text for commands e 245
help text for menus ¢ 247
help text for panels » 246

HLL programs e 141, 169

HLL programs e 169

I

ideographic support e 128
internationalization ¢ 115
internationalization ¢ 116
Introduction ¢ 13

Index 391

iSeries » 46, 149
iSeries » 16, 24
iSeries ® 46

iSeries 91

iSeries ® 149

iSeries Manuals ¢ 13

J
job descriptions ¢ 253
L

language support ¢ 127
libraries ¢ 270

M

menus ¢ 71
messages ® 226
mnemonics ¢ 41

MRI translation ¢ 116

N

naming convention * 309
naming conventions e 24, 270
naming conventions e 29
naming conventions ¢ 35
naming standards ¢ 198
non-catastrophic failure » 280

0

objects » 22
0S/400 » 22, 125

P

PL/1 programs e 203
PL/1 programs e 211
PL/1 programs e 217
print file direction ¢ 254
printer file DDS * 326
printer files » 68, 164
printer files » 164

procedure and label names ¢ 217
programming and documentation standards ¢ 16

programs e 102

Q

queues ® 253

R

recommendations ¢ 35
related information » 13, 14
RPG Il program source ¢ 331
RPG Il programs ¢ 173
RPG Il programs ¢ 173

S

search indexes ¢ 78, 247
security implementation ¢ 262
selection columns ¢ 63

source file names ¢ 136
source files » 138

standards ¢ 297

system values 125

T

testing standards ¢ 287
text standards ¢ 302

U

user interfaces » 48

user profile and security standards ¢ 255

vV

version control ¢ 275

w

work management standards ¢ 249

392 Standards Guide

	CA 2E Standards Guide
	Contents
	1: Overview
	Purpose
	Related Information
	iSeries Guides
	General IBM Guides

	Conventions
	Terms Used in This Manual
	Introduction to iSeries Programming and Documentation Standards
	Importance of Standards
	iSeries Standards
	Enforcing Standards

	2: Naming Conventions
	Naming Conventions
	Natural Language
	Objects
	Object-Oriented Approach
	Planning a Naming Convention
	OS/400 Entity and Object Types

	Constraints on the Uniqueness of Names
	Constraints on Naming Conventions
	OS/400
	RPG III
	COBOL
	UIM
	Nature of Distinctions
	Number of Distinctions
	Application Objects
	Work Management Objects

	Object-action Naming
	Recommendations
	CA 2E Naming Convention
	For RPG III
	Naming Convention Variation
	For Objects
	For Formats
	For Fields
	HLLs Other Than RPG III

	Mnemonics
	CA 2E Mnemonic System
	Formulate New Mnemonics
	CA 2E and Mnemonics
	CA 2E Naming Convention Exceptions

	Advantages of CA 2E Naming Convention
	Enforcing A Naming Convention

	3: IBM i General Design Standards
	Design Methods
	Contents of a Specification
	Design Tools

	Design Standards for User Interfaces
	Ease of Use
	Interface Consistency
	Aspects of a User Interface

	Transfer of Learning
	Modal Behavior
	Exploring and Backing Out
	Recall Versus Recognition
	Novice and Expert Paths
	Contextual Information
	Shipped Systems
	iSeries User Interface Implementation Components

	Design Standards for Display Files
	For the IBM Midrange
	CUA Panel Components
	iSeries Panel Layout Standards
	Notes On Panel Design

	Using Command Keys
	Using Selection Columns
	Standard Meanings for Selection Values

	Subfile Design
	Basic Panel Display Styles On iSeries
	Common Panel Display Variants
	Single Object

	Design Standards for Printer Files
	Standard Report Design Layout
	Notes on Report Design

	Design Standards for Menus
	Menu Design Considerations
	Grouping Items On Menus
	Appearance of Menus
	Arranging Menus
	Order of options
	Menu Names

	Tools for Creating Menus

	Design Standards for Help Text
	Help Text Design Considerations
	Designing Help Text
	Panel Help Text
	Command Help Text
	Menu Help Text
	Search Indexes

	Design Standards for Commands
	Why Use Commands?
	Naming Conventions
	Design Standards
	Choosing Parameters
	Order of Command Parameters
	Command Parameter Keywords
	Command Parameter Values
	Command Parameter Text

	Required Parameters for Commands

	Design Standards for Database Files
	Design Goals
	The Database of iSeries
	The iSeries Database as a Relational Database
	Data Modeling
	Useful Questions to Ask

	Normalization

	Considerations for Database File Design
	Design Tips for OS/400 Databases
	General Points for Field Usage
	Categories of Database File
	Reference Data Files
	Transaction Data Files
	Transaction Summary Files
	Archive Files
	Work Files
	Access Paths
	Access Path Performance Considerations

	Design Standards for Programs
	Design Goals
	Program Types
	Choosing Standard Programs
	Organizing Programs into Modules
	Coupling and Cohesion
	Coupling
	Degrees of Coupling
	Cohesion
	Degrees of Coupling

	Program Modularization
	Error Recovery
	Error Handling
	Record Locking
	Subfile Processing
	Journaling for Audit Trail Purposes
	The Journal as a Debug Aid
	Choice of Language
	Criteria for Choosing an HLL
	iSeries High Level Languages

	Design Standards for Internationalization
	General Principles
	MRI Translation
	Translation Levels
	Physical
	Syntactic
	Semantic
	National Language Groups

	Considerations for MRI (text) Translation
	Necessary Multilingual Objects

	Using System Values
	Writing Text for Translation
	Ideographic Support
	Using Upper Case
	DBCS Support
	Ideographic Shifts
	Ideographic Conversion
	Coding IGC Source
	Bi-directional Language Support
	Right to Left Panel Layout
	Collating Right to Left (RTL) Fields

	4: General Coding Standards
	Coding Principles
	Standard Source File Names
	Source File Member Names
	Standards for Text Descriptions and Titles
	Title Lines for Database Files
	Title Lines for Execution Objects

	Common Source File Coding Standards
	Standard Banners in Source
	Copyright Notice in Source
	Copyright Notice in Objects

	Maintenance Comments in Source
	Formatting Source Code
	Section Dividers in Source

	DDS Coding Standards for Files
	HLL Coding Standards for Programs
	Program Layout
	Coding for iSeries

	5: Coding Standards for Database Files
	Data Dictionary/Field Reference File
	Standard for Field Reference Files
	Referring to the Field Reference File in DDS
	Structuring the Field Reference File
	Primary Reference Fields
	Secondary Reference Fields

	Physical and Logical Database Files
	Database File Coding Standards: File Level
	Format Level
	Field Level
	Arrays

	Coding Standards for Display Files
	Related Design Utilities
	File Level
	Format Level
	Help Text
	Field Level
	Display File Coding Using MSGID
	Standard Text Element Field Names
	Display File Coding - Field Emphasis Standards
	Display File Coding Standards - Field Editing

	Coding Standards for Printer Files
	Related Design Utilities
	General Considerations
	File Level
	Format Level
	Field Level
	Device File Coding - Use of MSGCON
	Printer File Coding Standards - Field Editing

	Coding Standards for HLL Programs
	General Principles

	Coding Standards for CL Programs
	Field Names in CL Programs

	Coding Standards for RPG III Programs
	Program Layout
	RPG III Coding Structures and Program Logic
	Use of GOTO
	Standard RPG III Subroutines

	Format Names in RPG III
	RPG III Field Names
	RPG III Subroutine and Label Names
	Label Naming Convention

	RPG III Parameter and Key Lists
	RPG III Standard Indicators
	Techniques in RPG III Programs
	Handling Dates in RPG III
	RPG III Job Name/Operator ID
	Uses of the File Information Data Structure
	Calculation Checks

	Coding Structures and Program Logic

	Coding Standards for COBOL Programs
	Language Standards
	Program Layout
	New Topic
	Use of GO

	Standard COBOL Subroutines

	Naming Standards in COBOL
	COBOL Field Naming Convention
	COBOL Subroutine and Label Names
	Subroutine Naming Convention

	COBOL Parameter and Key Lists
	COBOL Standard Indicators

	Handling Dates in COBOL
	COBOL Job Name/Operator ID
	Calculation Checks

	Coding Standards for PL/1 Programs
	Program Layout
	Declaration of Variables

	Copy Books

	PL/1 Coding Structures and Program Logic
	Standard Procedures
	Message Sending Procedure

	Naming Standards
	PL/1 Field Names

	PL/1 Procedure and Label Names
	Procedure Naming Convention
	PL/1 Standard Indicators

	Command Coding Conventions
	Layout of Command Definition Source
	Order of Parameters
	Compiler Overrides

	Cross-reference Data
	Command processing programs (CPP)
	Command Validity Checking Programs
	Prompt Override Programs

	Coding Standards for Messages
	Prompt Messages
	Prompt Types

	Execution Messages
	Destination for Messages
	Retrieving Messages

	Standards for Defining Messages
	Monitoring for Generic Message Groups
	Message Severity
	Wording of Message Text
	First Level
	Second Level

	Editing Existing Messages

	Message Handling by Interactive Programs
	Message Handling by Batch Programs
	Using the Message Handling API

	Coding Standards for Help Text
	General Considerations
	Help Text Modularization
	Layout of Command Definition Source

	General Coding Techniques
	Coding Help Text for Commands
	Coding Help Text for Panels
	Coding Help Text for Menus
	Designing Search Indexes

	6: Work Management Standards
	Introduction
	General Principles

	Shipped Work Management Objects
	Work Management Objects in QGPL
	OS/400 Shipped Authorities
	Naming Work Management Objects
	Preserving Work Management Flexibility

	Job Descriptions
	Queues
	Print File Direction
	Scheduling Print Output

	User Profile and Security Standards
	User Profiles
	Classes of User Profiles
	Group Profiles
	Naming Convention for User Profiles
	User Profile Names for Networks
	End User Profiles
	Development Profiles
	Shipment or Owning Profiles
	Security Officer Profile

	Implementation of Security
	Operational Rights
	Generic Implementation of Security
	Management and Existence Rights
	Checking Authorization
	Security Exposure
	Audit Trails
	Initial Programs and Menus

	Using Libraries
	Organizing a Development Environment
	Development Phases

	Operational Flow for Objects and Source
	Configuration Management
	CA 2E Toolkit Generic Move Utilities

	Naming Convention for Libraries
	Library Types

	Use of Libraries
	Using Explicit References to Libraries
	Using QTEMP
	Using QGPL

	Version Control
	Object Versions
	Upward Compatibility
	Version Numbers
	Version Installation Procedures
	OS/400 Installation Procedures

	Backup and Recovery
	Data Security
	Recovering from Non-Catastrophic Failure
	Recovering from Catastrophic Failure

	Backing-Up
	Organizing Objects for Backup
	Backing Up Live Application Systems
	Backing Up Development Systems
	Backup Methods
	Using Media

	7: Standards for Testing
	Types of Testing
	Program Testing
	Black Box and White Box Testing

	System Testing
	Test Sheets

	Test Techniques
	PC Tools Useful for Testing
	Using Test Plans
	Using Test Data Packs
	Manipulating Test Data
	Sample Test Sheet

	8: Documentation Standards
	Considerations
	Documenting Commands
	Messages
	Standards For Preparing Text Documentation
	Preparing Text
	Structuring Documentation
	Using Sub-documents
	Terminology
	Presentation Conventions
	Control Language Commands in Text
	System Entities in Text
	Displays and command keys in text
	Punctuation

	9: Naming Convention Examples
	Examples

	10: EJB Option Runtime Example
	Nouns, Adjectives, and Verbs

	A: Programming and Coding Examples
	Field Reference File Example
	Primary Reference Fields: "TYPE FIELDS"
	Secondary Reference Fields

	Database File DDS Example
	Sample Physical File DDS
	Sample Logical File DDS

	Display File DDS Example
	Printer File DDS Example
	CL Program Source Example
	RPG III Program Source Example
	COBOL ‘85 Program Example
	Command Source Example
	Command Diagram Example
	YEDTLIBLST (Edit Library List)
	Function
	Parameters
	Notes
	Example

	General Rules for Preparing Command Diagrams
	Example

	Parameter Descriptions
	UIM Help Text Example
	Command Help (‘wlllcmH’)
	Panel Help (‘wlllpnh’)
	Search Index (‘wschidx’)
	Hypertext Definitions (‘wlllenh’)

	B: Printer Form Sizes
	Printer Form Standard Options

	Index

