CA 2E

Generating and Implementing Applications
Release 8.6.00

G

technologies

This documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as
the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2011 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following:

Online and telephone contact information for technical assistance and customer
services

Information about user communities and forums
Product and documentation downloads
CA Support policies and guidelines

Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

If you would like to provide feedback about CA Technologies product documentation,
complete our short customer survey, which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents

Chapter 1: Managing Model Objects 15
Components of CA 2E Change ManagemMENTuuvieiuiieieiiieeeeiree e stteeeete e e seere e e sateeeesateeesessaeeesnseeeassaeesansseeesnseens 15
Overview of CA 2E Change Control FACilitiescccuiiieiiee ettt et e et eetae e e vtee e e sareeeeeanns 16
Change Management of CA 2E Environments With CIM........cc.coiiiiiiiiiiieniereese ettt s s 17
Summary of CA 2E Change Management FEAtUIEScccuiiiiuieeeeiiee e ccies e stee s et e seaee e e sete e e e sate e e seaaaeeesnaeeenns 17
1Y/ 1o [@ o [T ox £ SP 19
0] o) oJo g d=Te M1V FoTe [y M@ o =Tt fl 1Y/ oYy SRS 19
Naming and Identifying Model ODJECESccuiiieeiiiie et tee e et e e e e etbe e e eeabeeeesabaeaeesreeesnreeas 20
MOdEl ODJECE DESCIIPTION «...eiieieiiieeiiee ettt et e sb e bt e s bt e e bt e e s bt e e bt e e sbbe s bt e ebnesbeeesnnesanees 21
1Y T o [@ o [Tt f X1 USRS 22
VANl 0] o] T=Tet K1Y, ot L= I @] o= I SRS 24
YT o] o £ PSP PU P UPRPPPPTN 24
Naming and ActiVating SESSION LISTSc.uuiiiiiiieeeeiiiie e cciee ettt e st e e e e st e e eete e e e etaeeeetbeeeseabaeeesataeaeensraeesnseeas 24
USING SESSION LISTS.ciuiiiiiiiiiiiiiit ettt s e s e bt e s e e e s s b e e e s s sb e e s snbe e e s sabe e e s e nreeesnaneas 25
AdMINISTEING YOUT IMIOUEI ...ttt e et e st e e et e e st e e e e sabteeeesteeesenseeeesnseeeeensseeesnnseeeesnsenanans 25
Using Session Lists with Model List COMMANGS.......cccccuiiieiiiieceieeeciie et eeere e sre e e e ere e e eenee e e e sataeeeesreeesnnneas 25
XML .ttt ettt e et e e e ettt e e e e ba e e e e etaeeeetbeeeeabaeeeabteaeaatteeeaabaaeeataeeeattaeeeabaeeeataeaeatraeeaaaraeas 26
Referencing Model Object Lists in COMMANTSooiiiiiieieiiiecceiiee et e st e e tte e e etr e e e eare e e e eabaeeesabaeaeesreeesnnaeas 26
How Model ObjJect Lists are STOrEdeiiiiiiiiiiieiieeste ettt ettt et et et sbee s ne e e srbesbeeesneeenees 27
(1Y oo [T @ o [=Tot dl I 1y AN U o Vo o Y 27
F Y L0 o) =T K X1 SR 27
MOAE] ODJECE DESCIIPTION ...eeiiitiieeeiiie ettt ettt e ettt e e ettt e e ettt e e eetaeeeetaeeeestbeeeeessaeeeeasaeeeessasaeassaeaeaasseaeansseeesnnseeas 28
Model List Commands and the Model Object DeSCriptioncooueeieiiiieiniierieee e 29
Basic Model Object INfOrMationcoiiiiiiiiie et ettt e be e s sneeenees 30
Date and Time INFOrMatioNcoiiiiiiiiiece ettt et e ettt at e s bt e e bt e e bt e s sbeesbeessneesaneas 31
(0 o= Ta T oY o] o 4 F=Y o o TP USSR 31
Component Change Processing INfOrmMationcccueiiiiiii oottt e et e e e e are e e eaaee e eeabeeeeeanes 32
GENEration INFOIMATION ..iii i e s e e st e e e st e e e s btee e ssaaeeeessteeessnsaeesssseessnntenesnanne 32
Check OUL INFOrMEAtIONiiiiiiciii ettt sttt e st e st e s bt e st e e sbeesabeesbeesabeesaseesabeesseenane 33
Commands to Manipulate Model OBJECt LiStS.......uuiiiiiieieiiiie et e e e e s e e e et e e e snre e e snnneas 33
Change Control Facilities COMMEANGS.......cuiiiiiiiie et ee e st e e e st e e e e tae e e saaeeeesstaeesensseeessseesenssesannnnes 34
Model ObJect List COMMEANGScocciiiiiiiiee et ettt e et e e e et e e e eteeeeestbeeeeessaeeesataeeeeassasaeassaeeesataeeeesseeesanseeas 34
Model Object List ENtry COMME@NAS.....cc..eiiiiiiiiiiieiieerte ettt ettt ettt e e sate e be e e sbeessne e s sneesbeeesneesanees 35
Model Object Description COMMANGASccciiiiieeiiirecieeeeeriee e eeee e e see e e e ste e e ssaeeeeesasaeeseseeeesenseaeessseeeeassesesnnsnes 36
JOD LISt COMMEANGS. ...eiiuiiiiiieiiie ittt ettt et e st s e e s be e s bt e s be e s beesabeesbeeeabeesbaesabeessbaeenbaesnseeenbesssaeenbeesnseesnsens 36
MOdel Profile COMMANGSiiiiiiiiiiiieeiie ettt ettt sb e e s bt e e s bt e e s aee e bte e baeesbeeebaeensbesbaeesaesnsens 37
VEISTION COMIMANTS ..eetiiiiiieeiiee ettt ettt eette e e sttt e e sttt e s eabae e s s bbeeesabeeesaabaeeeaabbeeseasbeeesaasbeessabbeesesbeeesansaeessabanannns 37

Contents 5

Using Change Control Facilities CoOmMMAaNAS........cciiiiiiiiiieee ettt e e e ettt e e e e e e e e aare e e e e e s eeanataeeeeeeeeans 37

[T [0] o] I PP T TP P TP PPPPPTOPPRP 38
[T [0] o] L1 TSRO PO U PP PPPTOPPP 39
[T] 11T S 40
WOrking With MOl ODJECT LISTSeiiieiiiieciiiee et eete ettt e e et e e e et e e e e tte e e e abaeaesabaeeeenbbeeesassaeeesabaeeeanssaeesnseeas 41
Editing @ MOAE] OBJECE LISt ..eeuveeiiiiiiiiiiieiie ettt ettt et e st bbe et e e sbbe s be e e sbeesbeeesnnesneas 42
(@1 goF 1o T 1Y FoTe 1Y @] o) =Tt fl L PSRRI 43
[=e T T=g 1V, oY 1= I @ o T =T ol I SRS 44
o [1Y, FoTo L=l @] o T 1=l S ol - 1= I 45
Selecting Another Model ODJECT LISTccccuieiiiiiie e ceeee ettt eetee e e st e e e e stte e e eeataeeesabbeeeearaeeenssaeaesasaeaanns 46
SUDFIIE SEIECE OPLIONS ..ottt ettt e s bt e et e s bt e bt e e s et e e sate e sabeesneeesmbeesneeesmneenneeens 46
User-defined SUbfile SEIECT OPLIONSc..vuiiiiiiiieeeee e e e e e e e eae e e e e snbe e e eesreeesnneeas 46
(071N 1 U] o]] LI =] =Tt @ [LSRR 47
LW oo 4 (oY T =PSRRI 51
(6o 0010 o = Ta Vo I LT o 1= TSP SRPPRSRN 54
Merging Entries With COMMANGS........coiuiiiiiiiiieie ettt et sbe e st e s sbaesbe e e snneeneas 54
[N g 1oAY T = @oT 0 o T o F= Yo o PR 56
Using Special Command Line Values to Retrieve COmMMaNdS.........ccccveeeeiiieeiiieieeeciieeeeireeeseeeeeesenreeeeereeesnnnens 57
FUITSCIEEN IMOME ..ttt ettt ettt sttt e e s e e e sate e s et e e saaeesb b e e beeesseeeaeeesaeenbeeebeeensaesnsaeenbeeeseeenseas 59
Grouping and NaVIGation AIGScccciiiiiiiiiee e et eree e st e e eetre e e seabeeeesbeeaeeasaseesassaaassstasesassseesasssaessssesananses 59
Subsetting @ MOdel OBJECE LIStcccuuiiiiiiiiiiiieeee ettt st e e st sat et e sateesaee e smneesaeeens 60
(oI N Te T Y [aT = 1Y foTe 1o @] o =T ot fl L SR 61
[DITy o] VA @1 e LT o] 1V, FoTo 1= 0 o =T o S 62
Filtering @ Named Model ODJECE LiST........ueiiiiiiieeeiiie ettt e e et e et e e e ett e e e eabee e eeabaeeesateeeeensreeesanneeas 63
EdIting MOEI OBJECESeiiiiiiieeieeet ettt ettt e bt e s bt e e bt e e sbte e ne e e bbeebeeesneeennees 65
ViIEWING MOTEI OBJEEESeeieiiiiieeit ettt ettt ettt e st e sab e sae e e sab e e at e e sabeesseeesabeesneeesnteennneens 66
Viewing a Model ObjJect's Edit PANEIcc.uuiiiiiiie ettt e et e s eere e e stre e e e at e e e enane e e snnaeeens 66
Viewing @ Model ObJeCt DESCIIPTION.......iiiciiee i ciie ettt ettt e st e e ettt e e esre e e e sbr e e e estteeeseasaeeesasseeeassesesnssaeeesnsanaaans 66
Creating MOTEl ODjJECTE LISTS ...eiiiiuiiieeiiii e et e e ettt e eecite e e et e e e et eeeetteeeeeabeeeesabeeeeeassseeeassaaaeastaeesenssaseeasssaesasreeenanses 67
Adding Entries to @ Named Model OBJECt LiStcoiuiiiiiiiiiiieeiiiesieerieese ettt 67
Adding Entries to the Current Model OBJECT LiSt.....cc.uiiiieiiie et e e e ene e e seae e 68
Adding Entries to an Alternate Model OBJECT LiStuiiiceiiiiiiie et ree e e e e e e e ane e e saae e 68
Deleting a Model Object or @ Model LiSt ENTIYoiiiiiiieieiiee et eeee e s tre e et e e e ente e e e sata e e eeeree e ennneas 69
Selecting JOD LISt COMMANTSccviiiieiiiee ettt ettt e e et e e e et e e e eeataeeesbaeeeessbeeeseasaeeesassaeeesseeesnssaeaesnsanaaans 70
COPYING MOUEI OBJECESeiiueieiiiiitieetee ettt ettt st e sttt s bt e sttt s bt e sab e e s bt e sabeesaneesabeesaneesabeesneenane 70
Creating Copies Of FUNCLIONS aNd IMIESSAZESuuuiciuriieecireeeeitieeeeiteeessteesessteeeesnseeeesssseeeesstaeesasseeesasseesesssenessnnes 71
Copying Entries Between Model ODJECE LSScccciiiiiiiiieeciiiie et eiee sttt e e tte e e eaee e e tae e s saee s ssaeeeessraeeenanns 71
Performing User-defined Actions on Model LiSt ENTIIES........ueeeccuieeiiiiieeeeiieeecciiee e eiree e eeieee e e savre e e eree e enneeas 71
Copying Model Objects BEIWEEN MOUEIS...........oiiciiiieeiiee ettt e et e e ettt e e e et e e e e e aaee e etbeeeesabeeeeeanes 72
USING SUDSTITULION Variables c....ooeiiiiiiiieeee ettt ettt s bee e b e e sbeeeneas 73
Defining and Editing User-defined OPLiONScccciiiiiciieiciee et e s e e e e e enee e e e snte e e e e ere e e snneeas 74
(Yol VL u T Y= Y oo = I @ o] =Tt ol I 1 PSS 75

6 Generating and Implementing Applications

Model Object AUt INFOIMATIONccciiii e ettt e ettt e e e e te e e e e ett e e e eeaaaeeeeabeeeeesbeeeeessaeeesnteeaanns 79

Tracking Changes t0 MOl OBjJECES.uuiiiiiiieriii ettt et s be e e sbee e be e s sneeenees 80
Determining the ChanGe TYPE ..co.uii ittt ettt ettt sa e e bt e s at e e bt e e s bt e e bt e e sbee e bt e essbeebeeenneeenneas 81
[LaaToX= Lot f N a T 1Y LSRN 82
[[a] A oY [UT o1 o] o [PPSR 83
Model Object Cross Reference FaCilities.coiuiiriiiiiiiiieiieee et e 83
Understanding Model OBJECT USAZESuuiiiiiiiiiieiiieeiiee e ettt e ettt e st e e e st e e seaaee e e snaaeessnseessenseeeesnseeeeansseessnnseens 84
Understanding Model ObJect REfEIENCES........uiiieciii ettt e st e e et e e s eaee e e e sabeeeeesreeesnneeas 85
INTEractive IMPACt ANAIYSIS ..eeieiieeeeiiii e e e e s e e et e e e e asae e e sataeeeensteeesnsaeeesntseeeansreeesnsnens 86
USING the LEVEI NUMIDEToiieeeeeee ettt ettt e e et e e e et e e e e st e e e e abaeeeeabaeeeensbaeeeesbaeeesataeaeansbeeesnseeas 87
Using the Gen ODbjs and TOtal COUNTSoiiiiiiiiiiieiiiete ettt et sbe e et sbeessbe e e snnesneas 87
Using the Object and Type Positioner SPecifiCations.........ccuiiiieiir i e 87
Using the Include Inactive Code SPeCIfiCationciccciiiieiiii et e et e e e e e sanee s 87
Using the Exclude System Objects and Current Objects Only SPeCifi........cccceeeiieriiciieeeciie e, 89
UsSIiNg the SCOPE SPECITICATIONeeiiiiiii et e e e e st e e e e e e e e e eatbe e e e tbeeeeeabaeeesabaeaeensreeesnseeas 89
USINg the SCOPE SPECITICAtION ...eiuiiiiiiiieee ettt e sbe e st sbee s b e e sbneenees 90
(U Yo LI S UL =T Y o T=Tol 1 or- [o R 91
Using the Reason SPECITICAtION ...ccccuiii e e e e e e ere e e st re e e e et e e e sensaeeesataeeeessreeesnnneas 92
Working With Usages INTEIACIVEIYeii ettt e st e e et e e e e eata e e e sabbeeeeabaeeensaaaesasanaens 93
XML .ttt ettt e et e e et e e e e ta e e e e a—eeeeatteeeea—aeaeabtaaeaatteeeaabaaeeataeeeaattaeeaabaeeeataeeeasraeeaaaraeas 94
Working with References INtEractivVelyoo.ue oo 98
1T o1 98
Accessing Model Object Cross Reference FaCilitiesccccueiieiieeciiiee et 100
Working with Model Object Cross References in BatChcccooooiiiiieiii e 101
Simulating Changes to MOEl ODJECLSc.uiiiuiiiiiiiiieeite ettt ettt e seee e b e saeeenees 102
ComMPONENt ChaNEE PrOCESSINGeertiiiitieiiieeiee ettt et e st si e st e st e s bt e st e e s bt e sabeesaseesabeesaseesabeesaseesabeesnneens 104
Understanding Component Change ProCESSING.......uiivcuieeiiiieeeeiieeeecteeeestteeesseeeesereeesesateeeessneeessnnessssseeesnnens 105
([aa]oF Yot dlo o IR =0 L@] o] [Tt £] PSPPSRt 106
EXQMIPIES . ettt ettt e e et e e e et e e e e tae e e e etbaeeeebeeeeatbeeeaaaaaaaeabaeeeattaeeaatbeaaeantaeeeasteeeaaaraeeeaareeeaantes 107
VIEWING the RESUILS ...ttt ettt ettt e b e e bt e b e e s bt e e beesbe e e beeebeeesbbeebeeeneesaneas 107
101 = LA LT 1o - V- SR 107
Setting the YCMPCHG Model Value and the Model Profil.........ceuuiieieciiiiceee et eee e 108
Component Change Processing MOEl ValUEcc..uviiiiiii ettt tae e s tre e e e sere e e e eaaa e e e saraeeeens 108
IMOEI PrOfilE SEUELINGS . eeicuriieiiiiee ettt ettt e ettt e ettt e e e ettt e e e etbe e e eeabaeeesabeeeeesbeeesasseaaeastaseeansseeesssaaeeasreeenanses 108
Using These Settings to Administer YOUr MOdel......ccc.cooiiiiiiiiiiiiiieee et 109
Performance CoNSIAEIAtIONS.cccuiiiiiirii ettt ettt st sae e e sat e e bt e e sb b e e sbteessbeesbeeessteesaseesaseesaneens 110
Methods of Running Component Change ProCESSING.......ccccuvieeiciiiieiiieeeeiteeeeete e e seiree e e steeeesere e e snaeeessaraeesenens 111
Running Component Change Processing in BatChcooiviiiiiiiii ettt taee e e e e e 112
Component Change ProCeSSING SCENMAIIO......ccicuiiiieiiieeeciieeecteeeeeteeeeeiteeeeeiteeeeestbeeeeesaeeestseaeeasteeeeasseeesasanaans 113
Private Change t0 ACCESS Pathooiiiiiiiiie ettt ettt et e esareesaee e 114
(0] o] [(ol @ o = gVl o Yol ol Ty - | o PSR 115
1Y T o [IS <ol U1 | YA SRS 117

Contents 7

(1Y Lo Yo LS ad o] {1 (=TSP 118

Changing @ IMOTE] Profilcoouiiiiieeiei ettt sttt ettt e st e s e e s et e saseesateesaneesaseesnneens 119
HOW MOdEl Profiles @re SEOIrEA ...cccuiiiiciiee ettt et e e sttt e e st e e s e e e e sateeeenanteessnaeeesnnseeesnnnns 120
(1YY a T Todl o= |V, FoTo F= B o o} = PSSOt 121
MaNagiNg MOAE] PrOfilEsc.ueie et e e e e e e st e e e e tte e e stteeeesabaeeeesbeeesassaeeeasteeenanses 121
Working with Versions of FUNCLIONS aNd IMESSAZES.....cccuueiruiiiiiiiiiiieiieeiee ettt ettt 121
UNAErstanding VEISIONSuiiiiiieeieiieieccite e sttt e e sttt e e s ettee e e seteeesassteeessaseeeessteeeeasseeeesaseeeeanssaeesasteessssnesansseeennnens 122
UNAErstanding VEISIONS .. .uuiiiiiieeeeiiieeecite e sttt e e ettt e e s etteeeesateeeesssteeeesaseeeesstaeeeasseeeesaseeeeessteeesansteessssnesansseeennens 122
A REASON NOT 0 USE VEISIONS. ..ceueiiieiiiiiieeiiite sttt e ettt e ettt e sttt e e st e e s sbt e e sbeeeeenbeeesesbeessanseeesanreeesansseeesnnnens 123
WOTKING WIth VEBISIONSveiieiee ettt et e ettt e e e st e e e e e bt e e e e tbeeeesabaeeeesbeeeesbeaaesstasasansreeesssnens 124
VIEWING @ VEISION GrOUP ..ciiiueiiiiiiiieiiiiieeiitte st e sttt st e e st e s st e e s eba e s sbae e s e asb e e e s ba e e s sbbeeesanbeeesennaeeesnnneas 125
(01 g=)i o = IV A= 1 5 [o] o PP PPP PR 126
MAKING @ VEISION CUITENT ...eeiiiiiieeeiiiieeccieee e sttt e e ettt sestteeeestteeeeastseeessasaeeassteeeeasssseesasseseastaeesasssesesssaesasssseennnsns 128
[T o1 1SSt 129
L6101 { o] o KLU PUPPP PP 131
[\ o] g Eol B g =T o) AV A=T £ [o] o TSP P U P PP PO PP PPPTTRTON 131
Other Uses fOr REAITECTION ...coc.viiiiieeiiieeee ettt sttt e st e st e sabe e s et e e sabeesabeesnneesabeesnneens 132
[0 L=V =T ¢ T 1= PP PUPRN 132
Testing an EXEEINAl FUNCLIONci ettt e ettt e e e e st e e e et e e e e abaeeesabaeeeensbeeesessaeeessseaeensteeenanses 133
Testing Messages and INterNal FUNCHIONSiiiiiiii ettt e et e e e e stte e e e abe e e sbaeeeesareeeeannes 133
COMPANING VEISIONS ..ttt e et e s e et s b e e e e s b et e s e br e e et b b e e s s baeesebreeesannaeessaraeesans 134
DEIETING VEISIONS .eeiieieieetieeeeteeee e eetee e e st e e e sttt e e sateeeesabaeeeaasseeesaseaeasteeesasseeeesseeeeasteeesansteeesssneeansseeenanens 134
Chapter 2: Generation and Implementation: An Introduction 135
What Happens During Generation and Compilation?.........c.eeiiiiiiiieiiii et see e e e snae e e e e e eanes 136
[LaaTo11=Ta 0= o1 =1 1o o FO S 138
=Yg (o) g aa T [Tol s 0o Ty o 1=T =Y o o OSSPSR 138
Batch or Interactive SOUICE GENEIATION?.....c..uiii ittt eeee e e e s e e e s e e e e ste e e esnteessnaeeesnsseeesnnnns 138
Generate Several ObJEcts At @ TIME......iicc i ree e e e e et e e s neae e e snteeeeesteeesanneesesnsaeenans 139
Separate Source and ObJECt LIDrarieso iii it e e et re e e e e e ennee s 139
Message ID Generation for National LANGUAEES........cccuiiiiiiiieeeieeeecieee st e e tre e e stte e e e satae e e sasaee s saraeeessseeesennns 139
SUPPIESSING HEIP TOXE ... eiiiieiiei ettt e et e ettt e e e ettt e e ettt e e e e abeeeeesbeeeetsesaeasbaseeasbeeeesbaeeeastasesansseeesasseens 139
Suppressing CommENtS iN SOUMCE COU@......iiiuiiiiiiiiiieite ettt ettt ettt sbee s be e e bee s b e e sbeeebeeesneeenees 140
(1Y T o [T 2= To T == oY | 4 Uo] o WS PSRN 140
Deleting COMPIIE LISTINGSvviiiiieeeeciee et ettt e et e e e st e e e et e e e e eatee e e ateeeeestteeessaeaeestaseeanssesesssaeeensseeennnens 140
Chapter 3: Preparing for Generation and Compilation 141
Verifying Your GENeration LIDrary SETUPcccueii ittt s e e et e e e e tte e e saae e e e s tteeeeensaeeesansaeeesseeesnnnns 142
DefiNiNG SOUICE FIlE NAMESeveeeeitie ettt e et e e e et e e e et eeeesabeeeeetbeeesasbeeeeastaseeansteeeessaaesasreeesannes 143
Changing Other System Parameters and Model ValUEScc.uiiieiiii ittt ettt et e 143
Changing Text in Standard SOUMCE BANNENc.coiiiiiiieriieeiee ettt ettt et st e st e sae e e seteesaneesateesaneens 144

8 Generating and Implementing Applications

(TN A Lo T o W DT] - 1V £ TSP UUPTRN 145

Changing MeESSAgE FIlE NAMES........eiiiiiiiieetie ettt ettt et e et e st e st e sa bt e st e e sa bt e saseesabeesaeeesareesnneens 145
Reviewing and Changing CoOMPiIler OVEITIAEScecueiiruieriieiiieeiee ettt ettt ettt et et e sae e ae e e sare e aee e sareesaeeens 146
FOI FUNCEIONS. .ttt ettt sttt e e sttt e e et b e e e s aab e e e sanbeeeseabbeeesanbeeeenbeeesannteeesananeesnnseeesannee 146
o] Yo o T - Y o [OOSR 147
Viewing and Changing ShipPed SOUICEuiiiiiiiieie ettt ettt et sb e e bbe s b e s sbte s b e e snneeneas 147
User-modifiable Shipped PrOZIramsc..uiiiiiiieiiii ettt e st e s et e e e s ate e e saae e e e sataeeessteeesnneeesnnseeesnnens 147
EXECULION SUPPOIT PrOZIamS. . cccciiiiiiiieetiieiiiiieee e s e ereit et e e e e s seiter et e e e e s sssbatteeeessssssssaaeeesssasssssaaaeesssnsssssneeesssnsnns 148
Managing Your WOrK ENVIFONMENT.......uiiieciieiciteeeciteeeeteeeeeeee e e stteeeetteeesaeaeeesasaeeaestaeeeansseeesnsssesastaeesanssesesnnsens 149
JOD QUEBUE ENTIIES tuuvieiiiiiieeiiee st st ste e st e st e st e s bt e s e e s bee s beesabeesabeesabeesabeessbeesabeesaseesabeesnseesabaesnseesasessnsaesnne 150
ROUTING ENTIIES . ettt e st e e s be e e e sba e e e s ab e e e s eaba e e s snaeessanbeeesannns 151
Verifying Your Work ENVIFONMENT SELUDvuiiiiiiieiccieie et stee sttt e et e st e e et e e seaee e e snteeeesnteeessnnseeesnnnnens 154
Moving Toolkit Data ObjJects frOmM YLSYcciiiie ettt e e e e e e re e e snte e e esate e e e eanteeesanaaeeessseeesnnnns 157
Sending Generations and Compilations to Separate QUEUEScceerreeireriierierieneeneeee et 157
UNAErstanding JOD LISTS ...eeeiiiiiiiiiieeiiiiee ettt et e ettt e e et e e e e etteeeesbaeeeestteeeseabaeeessaeaaastaeeaansassesasssaeastasasanssasesnsranns 158
SAMPIE JOD LIST SEIIES ..ottt ettt ettt e s bt e et e e bt e e bt e s abe s bt e e beeebeeeabaesbeeennesaneas 159
BAtCh GENEIAtION ..ottt ettt e be e e sbe e s bt e e bt e e s bt e e bt e e s hteesae e e snbeenateesareenaeeens 160
INTEIrACTIVE GENEIATION .eiiieeiie ettt e s e e et e e sttt e s bt e e e sabe e e seabeeeesanaeeeenbeeesannteeesansneesnnreeesannne 161
Job Descriptions for Batch Generation and Compilation...........ccueiiiiie i 162
LU Y= L] o 1 £ SRS 162
USING MOre Than ONe JOD LiSt....ccueiiiiiiiiiiiieeiee ettt ettt et e it e bb e e sae e e sateesnee e smneeeneeens 163
o [=0 o o TN £ PSRNt 163
L2 UT1 o [T g Y o o T I PSSRt 164
ManNaging MUIIPIE JOD LISTS.....uuiieiiiiiiecciiee ettt e eece e ectee e e et e e e et e e e ettt e e esabeeeeetbeeesasseeaeasteseeansbesesssaaeeasreeeeanses 164
ChECKING JOD LISTS....ceutieiiieiiieetee ettt ettt et st e st esab e st e e sa b e e sabeesabeesabeesateesnseesareennneens 165
REOIGANIZING JOD LISTS «..ueeieiiiiiiieiiee ettt ettt et sbe e s bt e e bt e e shb e e sae e e s bb e e st e e subeesnneesnneenneeens 165
HLL Implementation CONSIAEIatioNSccuuiiiciiie e eeciee et et e e e e e eere e e saae e e e s e e e esseeeessnseeeenssaeesenseeeesnnneens 165
Features in RPG NOT iN COBOL........ ittt e e e sttt e e e st e e e e e e s nnereeeeeeseennnreeeeesesannns 165
N[O T g =T g (ol e T T U= ATl o T Y[V - PPN 166
Exception Monitoring on Program Callscooiiiiiiiiiiie ettt sieeesaee e 166
(@ FoTY=To Lo XY T 2 oY= - o PN 166
CHGOBJ t0 AILEI KEY VAIUBS ...eeeeeeeeeiiee e ctee ettt tee ettt e ettt e e ettt e e e etae e e s aa e e e esteeesnsaeeesnsseaeansseeesanseaeeansanenans 167
[g o] gl 2 Ue TV} [o TSP PSP PPPPPUPTRNN 167
HEAAE SPECITICATION ...viiieeeeiee et e e e e et e e e et e e e e eat e e e esabeeeeetbeeessseeaeastaeeeansseseessaaeeasteeenanses 167
Converting a Model from ONne HLL t0 ANOLNENc.uiiiiiiiiieeee ettt s 168
USEr SOUICE CONSIAEIATIONS .eeuviiiiiiiiiieeiee ettt ettt ettt et e e e sae e e bt e e sbee e bt e e sa b e esaeeessbeesbeeessbeenseeesaseesnneens 168
User Source in Same HLL as Calling FUNCLIONccuuiiiiiiiee ettt tte e st e e et e e e snae e e saaaeeesntaeeennns 168
Compatible Names BEEWEEN HLLSccocciiiiiiiieeecciee e cctee st e ettt e e e etae e e sta e e e etreeesasaeeesasseaesssaesenssaeeesnsananans 168
Converting fromM RPG t0 COBOLccccuiiiieiiee ettt ettt e ettt e e ettt e e e ettae e e s taeeeesabeseeeasaeaesabseaeaasteseeanseaeessanaans 169
Converting from COBOL t0 RPGcoiiiiiiieiiieiiee ettt sttt ettt et e st st e st e sa bt e s bt e sab e e s st e sabeesnneesabeesnneens 171

Contents 9

Chapter 4: Generating and Compiling Your Application 173

Requesting SOUrce GENEIAtION ...cccci i
Working from the Display SErvICES IMEBNU........cccuuiiiiiiiiececiee ettt e ste ettt et e e e s e e e s sate e e eeabeeeessteeeesnraeesnneens
Using YBLDJOBLST t0 SUDMIL JODS ...oviiiiiiieeiciiee ettt e e et e e tte e e st e e e e sate e e eeneteeesanaaeeenntneesnnnns
ConVerting CONAITION ValUES.........oi ittt e e e e e et e e e s ba e e e e tte e e e abaeeeeabaeaeesbeeeeassaeaesasaeaans
Generating Your Field RefEreNCe FIle.....o.ii ittt ettt st st st sbe e b et st

Enabling EXECUtION ENVIFONMENTS....cciiiiiiiiiii ittt ettt et e sat e e ae e e sbb e e be e e saseesaeeesmneesnneens
Field Condition Values for STatus FIeldSouiiiiiiiiiiiiieee ettt
Converting Field CONAITIoN VAIUEScoccviii ettt e e e st e e e e rate e e e aea e e s satseaessteeeseneeaeesnnaeeaans
Converting Condition Values in a Multi-model ENVIFONMENTc.uiiiiiiiii ettt eevee e e
CoNVErtiNg MOTEI IMIESSAGES.......eiiiieriiiiieeetee ettt sttt sa e st e st e s bt e sab e e s b e e s st e e eaneesabeesaeeesabeeenneens

RV L= AT = £] SRS
FINnding Errors Before GENEIatioNcuieiiiiiie ittt e s et e e st e e s aae e e e snteeeesaateeesnnaneesnsseeeennnns
(Lo Lo [T Yo o g oY E AN A (T G CT=T a [T 1 4 (o o WSSOt
INteractive GENEIratioN ErTOIS e ittt et e e e e e sttt e e e e e s anereeeee e e e e annreeeeeeesannns
Finding Errors After COMPIIATIoNcc.eiiuiiiiiieiieeee ettt sttt et st sae et e b et e et e satesaeenaes
From the Display SEIrVICES IMBNU.........ciiicuiiieiiiieeecieeeeciee e e site e e ete e e s eaeeessataeeessteeessaeeeessteeesasteesssseeesnsseeesnnens
(D11 o] 1V o o[@0 4o o 11 (=T T] o =PSRNt
L0 1Y = To] o I o =PSRNt
ReSetting JOD LOG SEVEITLY LEVENuvieeiiee ettt ettt e e e et e e e ett e e e e st e e e eeaate e e eataaaeesateeesannes
Accessing an INtEractive JOD LOG......uiiiuiiiiiiiiei ettt e ne e e
Working With the OULPUL QUEUEcoouiiiiieiteeeee ettt ettt et sbe e e be e e bee s sbeeebeeesaeeenees
(D L=] o TUT= g0 Yo LRSSt

Generating and CompPiling AftEr CRanEESooiicviii ettt et e et e e et e e e et e e e esabee e s asaeeesabaeeeesteeessraeas
IMPACT ANGIYSIS «.eveeeieiiie ettt ettt e et e e e et e e e ettt e e eeuteeeeetbeeeeessbeeeaaassaaeaateseeasssseesassesaeastaseeasbeeesssaaeeasresenanses
What to Generate/Compile When You Change @ Model OBjJECtcccuveeieieienerienieneeeeeeeeie e
Changes Requiring Generation/ComPilationc.ccveieeirieieeieeiee it et eereeee e e eteeeteeebeebeeresaeesaeesseenseenreennens
Finding Where CA 2E ODbjJECES @re USEAcciciiieeeiiiieeieee ettt ettt sete e e et e e e e tae e e stteeeesataeeesnsaeeesansaeeensseeesnnnns
IMOEI OBJECE USAEES ..veiienetiieeeiiee ettt ettt e ettt e e ettt e e ettt e e e ettt e e eetbeeeeeasaeaesabaseeessseesassaaaeastaeeeansteeeessaaesasreeenanses
MOdEl ODJECE REFEIENCES.co ittt ettt e sat e e sbt e e s bt e e sae e e ssteesaeeesaneesnneens
Finding Unreferenced Model OBJECES.......cocuiiiiiiiiieiii ettt et saee e
TOOIKit CONVEIt COMMANGS......iiiiiiiiiieieeiiee ettt ste st e st e st e st e e st e s bt e sabeesbeesabeesaseesabeesaseesabeesnseesabeesseenane
MUIti-ProgrammeEr ENVIFONMENTSuieiciieeiiiieeeeiieeeeciteee e st e e eetteeeesaaeeeesasesesesseeesasssseasssesesassesessssessasssseennsns
Retaining Data When You Recreate PhySiCal FileS.........uoiiuiiiieiiii ettt e e et

Chapter 5: Implementing Your Application 1

(079 S Koo] | 1Y 1T T F OSSPSR
Creating and MaintainiNg IMENUS.........ciiiiiiiieriee ettt sttt s et e sab e st e st e e sabe e sabeesateesateesaseesareesaneens
(D11 o] 1 VZ a2 o 10 Tl 1V 1= o PSRN
Y[U o @o] (o] 1V =Y o T E SR

(07 11T =4 T ad o= = s KPS

10 Generating and Implementing Applications

EXECULION ENVIFONIMENTS «.oeeiiiiiiiiieeeeiiiiie e eeeeeere e e e ettt e e e e e e eeaaa e e eeeeeeassa e seessesataaanseeesssstannsesessssssnnnnsesessesssnnnnsens 202

Duplicating Shipped Application OBJECESciiuiiiiiirii ettt seeesaee e 202
DUPlicating EXECULION OBJECES ...ccuveiiiiiiieiiiie ettt ettt e sat e e st e e s be e e sae e e sateesaeeesareesneeens 202
LIS 41 = PR PURTN 203
BEIOIE YOU BOEIN..eiiiiiiiii ettt ettt e ettt e e ettt e e et e e e e et eeeeetbe e e eeasaaeesabaeeeantbaeeesbeaeeasteeeeasbeeeassaaeaanteeeeanses 203
LTIV o T o o T =) PSSP 204
1Y 101V T =@] o [Tt £ S 205
CA 2E CIM OVEIVIBW..cutiiieiiiteeesittee e ettt e sttt e s sttt e s e bt e e s seeeesaaneeeseasreeesansaeesaaseeesanr e e e s nnneesanreeeseanreeesannneesannanenns 205
Toolkit GENEriC MOVE COMMEANDS......tiiiiiriieiieeriee ettt st sre e st e sibe e s bt e sabeesbeesabeesbeesabeesbeesabeesseesasaesnseesane 206
011V 2 1= [T =D AR SRRSO 206
UIIM PAN@I GrOUPS ...ttt ettt ettt ettt ettt ettt ettt et b et bt e s bt e sbee s bt e e ebbeebee e sbbeease e e abbeebeeesnbeensbeesnbeennneens 206
Documenting Your Generated APPlICATIONiiiceier i e e s e e e s e e et e et e e e snree s 208
Chapter 6: National Landguage Support 209
Understanding NLS IMplementationcoccueiiiiier ettt stee e ettt e eeaee e e sae e e e st e e eseaee s sanaeeeennsaeesnnseeeesnnseeas 210
Translating @ GENErated IMOE!ueeieiiiiece et e et e e e st e e e e et e e e esasaeeesasaeeeensseeesansaeeesnnreaaans 210
ChooSiNg IMPIEMENTALION LEVEI ...eecniiiiieiiee ettt e et e e e st e e e e tte e e e abae e e sbaeaeesbaeeeensaaaesasaeaans 211
Placing Language-Specific ObJeCts iN LIDrariEs......c..eiiciiee ettt ee e et e e et eeeare e e eaaeeeesataeeeenees 211
Changing @ MOl LANGUAEEeeeuieiiiiiiieiite ettt ettt ettt sa e et e st e st e esab e e s abeesab e e saseesateesnseesaneesnneens 212
Translating User-Modified Data.........cecciiieieciie s eetee st e st e e et e e s eeae e e s e e e e ate e e seanteeesnsaeeeensseeesnnnns 213
(CT=Y oY= o= T =g o 1= o T = SRS 213
Managing Multi-LangUage ENVIFONMENTSccuiiiiiiiieeeiieeceeiie e e eite e e ettt e e eetteeestaeeeesateeeeesaseessssaeesstaeaeassesesnssenas 214
OVEIVIBW ..eteteieeeiiette et ettt et e e ettt e e e e e s b bt e e e e e e s aaaa b e eeeees s assbeaeeeessesassbeaeeeessaaasbaeeeeeeseansbaaaeeessssanssnaeeeeens 214
National Language Database FileScc.eiiuiiiiiiiiieiii ettt ettt et e saneesaee e 214
National Language SUPPOIt File (Y2ZNLSPP)....cccueiiiieeitiiecieeeieeerteeette e stveeetee e stteestaeesateessaeessseessseessseessseesssaennneens 215
Message Mapping File (Y2ZIMISIVIPP) ... ettt e ettt e e e tte e e tte e e e tte e e e atte e e sttaeeesntaeeesnsaaeesnnaaeeansseeesnnsns 215
EXit Program (YPRCMSGRIR)ueiiiiiiieeiiee ettt ette e e ettt e e e et e e e e tt e e e e s abeeeeeatbaeessseeaesstaseeansseeeesseaeeasrseenanses 216
FAY Y o Y A BT U] o] oYU 1 =TSP 216
BAADIMS SUBDFOULING ..ottt ettt sttt ettt et at e e b e s bt e e bt e e bt e e bt e e sabeesaeeesbbeessteessteennseesasaesnneens 216
L0 Yo =T o A o =4 =Y o PSRN 217
Double Byte Character Set (DBCS) APPlCAtiONS.vviiieiiiieceitee et e sttt eere e e stre e e e e e e e tae e e srbaeeesataeesenssaeesanraeas 218
Creating APPIICATIONSviieeiiee ettt e et e e e et e e e e tb e e e e ebaeeestaeeeeasbeeeeessaeaeaabseaeensbeeeeansaaeearaeaans 218
SBCS Machine to Create @ DBCS APPlCAtioN ...coc.eiiiiiiiiiiiieeiee ettt e 219
DBCS Machine to Create an SBCS APPliCAtionuiieeceiiii ittt e e e e e s e e snae e e e snteeeennees 219
2o T =Tt o g =Y W I [= {UF= V= SR 220
Chapter 7: Distributed Relational Database Architecture 221
WAL IS DRDA?teeiieeiiie ettt ettt ettt stteestee s iee e ste e e bt e e sae e e beeesbeesabaeesbeeeabaeeabeesabeeenbeeebeeeabaeensbeeabeeebbeenbaeeseesnbaesnseesnsens 221
REMOLE UNIT OF WOTK 1eietiiiiii ettt sttt et e ate et e e s ateesbae e sa b e e ssaa e st e esseeessteensseesssaananeens 222
(D1 T dg o T =Y MU L Vi e} Y.V o PSS 222
DiSTrDULEA REQUEST ...ttt et ettt e bt e e b et e sbb e e ae e e s bb e e bt e e sabeesnneesnbeesnneens 223

Contents 11

CA 2E Implementation Of DRDAccouiiie et eeee e e ettt e e e ettt e e e ettt e e e etaeeeeetbeeeeessaeeestseeaeassesesassaeeeantaeaeasseeeenraeas 223

SHIPPEA DEFAUILS ...ttt ettt he e sb et e s bt e e bt e e s bt e e bt e e aee e bt e e bt e e beeebbeebeeeneeenees 224
StEePS tO IMPIEMENT DRDA......ci ittt ettt ettt ettt be e s bt e s bt e e bt e e sbe e e bt e e beeebe e e beeebeeeseesbeeeneesnnees 225
Development Environments for DRDA N CA 2Eoooouiieeiciieeeeiee e eeteee et e e e e te e e snteesesataeeesneaeeesnnaeeesnseeesnnens 226
USING SNIPPEA DRDA VAIUEScccuitieeeciiee ettt ettt ettt e e et e e e e tee e e s taeeeesateeaeeasaaeessssaaestaeaaansassessssaeaastasasanssseessranas 226
DRDA IMOOEI VAIUESeeieiiee ittt ettt et s it e e sttt e e st te e e sttt e e s s beeeesabeeeesabbaeeeabaeesnssteessasaneesnnseeesnnsns 227
(DT] o TU <o I o - P URSNt 228
[0 o o] I @] o} o] o[- PP PPPPPTRN 228
Accessing Multiple Systems with the Same File Nameoooouiiieeiiiie e eee et 229
FUNCEIONS WL SUBFIIES «..eeiiiiiiee ettt s e e saa e e b e e e saaeessteesaeeesaseasaneens 230
DRDA CONEIOI FIEIAS ...veieeeiee ettt ettt e e st e e st e e s be e e ssabeeeesabteeeeabaeesnssteessasaaeesnnseeesnnsns 231
e (=T T oA [0 =Y 4 1 Y PSSt 231
CoOMMANAS FOF DRDA.....co ittt ettt ettt sbe e st e st e e sabe e st e e s abeesabeesabeesabeesaseesabeesabeesabeesaseesabeesabeesateesaseesataananeens 232
YCVTDSTFIL: Convert Distributed Files to Configurationcccceecuiieieciei s eeee e 232
YWRKDSTFIL: Work with DiStribDULE FIES ..cccvvvieiiiiiiieeiie ettt ettt et siae e e e sbaeesae e s saaeenneas 233
Working with Configuration Table Entries for Tablesccooiiiiiiinieiiieeee e 234
RDB NGMIE .ttt et e e e s et et e e s s b r et et e s e s r et et e e e s r et et e e e s nr et e e e s e s ans 234
S 1=Lo PR PP PP PP PPPPPP PP PPPPPPPPPRt 235
(6o} | 1=T ot 4o o IH USSR 235
Working with Configuration Table ENtries for VIEWSueiiiiiiiecciiee ettt etee e et 235
Appendix A: CA 2E Objects Required for Compilation and Execution 237
REQUITEA CA 2 ODJECES . .veiieteetieiiieeiee ettt et e ettt e bttt e e bt e s bt e s bt e e s beeebe e e sbeeebeeesabe e seeesbeeebeeesnteesneeesnneennneens 237
Required Objects for RPG COMPIlatioNnc.eiiuiiiiiiiiiiiiieeet ettt ettt saneesaee e 237
Required Objects for COBOL COMPIlation........ueeiicuiiiieiiiee e e eeies e scee s et e et e e s e e e satee e esaere e e snaeeessnteeeennnns 238
[0<To (01T g=Yo @) oY [=Tot €30 o gl b (=TolU) u o o TSSOt 238
TOOIKIT REQUITEA ODJECESviiiieiieeectiee ettt ettt e e ettt e e ettt e e e et e e e e tbeeeeeataeeesabaeeeeasteseeassaeesaassseeesteeeeansaeeesnsseaans 239
Appendix B: Troubleshooting 241
SOUICE GENEIATION EFTOIS ... ettt ettt e et e e e sttt e e e e e e b be et e eeeeeansbebeeeeeeeaannbebeeeeeeesannnneee 241
Display File and Program in Error (FERROR)cc.eiiuiiriieiiiiiirtesieesteete ettt sttt et st ettt ebesetesaaesaeenaes 241
Action Diagram Un-determined ACHION.uviiicuiiee ettt s e e e e e s aee e e e nte e e e sataeeeennreeesnnnneas 241
(0o a1 4=y a N\ o 7 f o TE T3 o H O PSSRSO 242
Appendix C: CA2E--Change Control Facilities Reference Tables 243
(07: W2 |V, oo [T N o J =T ot fl 1Y Yol 4T 4o s FOS OO USSR 243
CA 2E--Definitions of Model Object Description FIeldS.........ccovcueeiiiiiiieniieesiieeiee et e e e e saeesveesne e 245
CA2E--Default Change Types for Component Change ProCeSSINGcccuireeiiiieeeiieeeciieeeesiteeeeeteeeestaeeeeeareeeeeareeas 250
(0719] S Yo ol A o= T o I Y PSP 250
CAZ2E--ATAYS-ARR e s e s s s e s s s e s e s e s e s s s s s e e e s e s e s e s e s e s e s e s e s e s e s e e e sasaaaaasaaaaanaanaaaaaaanaananaannn 252

12 Generating and Implementing Applications

(07N 1 e e g Ve [4 o1 s TR 1 V1 5 L 253

(07N e o oY o | USRS 253
(07N e 1= [L I SRR 254
CA 2E--FUNCEIONS = FUN ..ottt sttt e s et e st e saa e sen e e sae e e saneesane e 255
(07 N e VL T T= L 1Y R R 256
CA 2E--Component Change Processing Propagation Table..........ccoiiiiriiiiiiiiiiiieeeeeeeee e 257
Index 259

Contents 13

Chapter 1: Manading Model Objects

This chapter describes the change control facilities provided by CA® 2E for managing
changes to your model.

This section contains the following topics:

Components of CA 2E Change Management (see page 15)

Model Objects (see page 19)
Model Object Lists (see page 22)

All Objects List (see page 27)
Commands to Manipulate Model Object Lists (see page 33)

Working with Model Object Lists (see page 41)

Editing Model Object Lists (see page 44)

Model Object Audit Information (see page 79)

Impact Analysis (see page 82)
Model Security (see page 117)
Model Profile (see page 118)

Working with Versions of Functions and Messages (see page 121)

Components of CA 2E Change Management

The primary components of CA 2E Change Management are:

Configuration Management:
- Controlling access to the CA 2E model and its component objects

- Setting up environments to facilitate the integrity of production, development,
and test models

- Controlling access to Change Control processes
Impact Analysis:

- Determining the impact of a proposed or actual change to the design objects in
a CA 2E model

- Ensuring the integrity of a set of changes by inclusion of dependent objects
Change Control:
- Tracking changes to objects in your CA 2E model

- Administering changes to, and relationships between, objects within and across
CA 2E models

Chapter 1: Managing Model Objects 15

Components of CA 2E Change Management

Overview of CA 2E Changde Control Facilities
CA 2E change control facilities are a set of features and functions supplied with CA 2E
for managing CA 2E design objects. They include:

m Capability of building lists of CA 2E design objects, known as model object lists, for
auditing and input to specialized model list commands.

- Impact analysis:

— Component change processing

m Model cross references
m Support for versioning of functions and messages.
m Redirection of functions and messages.

m Copying model objects between models.

Centrally recorded model object information .

You can use these change control facilities:
m Astools to work with and manage your CA 2E design objects.
® To manually control changes to your design model.

m With CA 2E Change Management (CM) Option to provide an integrated, automated
change management solution.

16 Generating and Implementing Applications

Components of CA 2E Change Management

Change Management of CA 2E Environments with CM

CM is fully-integrated with CA 2E and offers a total solution for automated change
management in your CA 2E environment. CM manages changes for:

m CA 2E design objects such as, access paths, functions, and fields. These are also
known as model objects.

® Implementation objects such as, generated source and compiled objects. These are
also known as traditional or 3GL objects.

CM has extensive capabilities for controlling your entire operation including the

following:

m Check out and promotion of CA 2E design objects using model object lists

m Automated control of versions for functions and messages

m Automated archiving and roll-back of functions and messages

m Authority to model object lists

m Control of access to CA 2E

® panels

m Authority to access, view, or edit model object types

For more information on using CM to manage changes in your CA 2E environment, see
the CA 2E Change Management User Guide.

Summary of CA 2E Chande Management Features

The following table summarizes CA 2E change management features. For each feature,
the table shows whether the feature is provided as part of CA 2E's change control
facilities or by CM and where to find more information about the feature.

Feature CA 2E Change CM Change Where
Control Facility Management Documented

Work with Model Yes Yes This chapter,

Objects Utility Working with Model
Object Lists section

Model User Profile Yes Yes This chapter, Model
Profile section

impact Analysis Yes Yes This chapter, Model

Utilities Object Audit

Information section

Chapter 1: Managing Model Objects 17

Components of CA 2E Change Management

Feature CA 2E Change CM Change Where
Control Facility Management Documented

Model Object
Change Tracking

Model Object List Yes Yes This chapter, Model
Processing Object Lists section
Redirect Function Yes Yes This chapter,
References Working with
Versions of

Functions and
Messages section,
Making a Version
Current section

Versions of Yes Yes This chapter,
Functions and Working with
Messages Versions of

Functions and
Messages section

Session List Yes Yes This chapter, Model
Object Lists section,
Session Lists section

Global Browse-only Yes Yes Administrator Guide
Access to Model

Copying Model Yes Yes This chapter, Editing

Objects Between Model Object Lists

Models section, Copying
Model Objects
section,

Admin-istrator
Guide, and the

Command
Reference
Check Out No Yes CM User Guide
Automated Version No Yes CM User Guide
Control
Access Control No Yes CM User Guide
Automated Rollback No Yes CM User Guide
of Functions and
Messages

18 Generating and Implementing Applications

Model Objects

Feature CA 2E Change CM Change Where
Control Facility Management Documented

Automated No Yes CM User Guide

Concurrent

Development

Authority to Model No Yes CM User Guide

Object Lists

Promotion No Yes CM User Guide

Capabilities

Analysis of Context No Yes CM User Guide

of Change and

Rollback

Model Objects

Model object is another term for a CA 2E design object such as an access path, a

function, or a field.

Supported Model Object Types

Following are the types of model objects that are supported in your model.

Model Object Object Type
Access Path ACP
Application Area APP

Array ARR
Condition CND

File FIL

Field FLD
Function FUN
Message MSG

Chapter 1: Managing Model Objects 19

Model Objects

Some model objects, such as external functions and access paths, have corresponding
implementation objects, namely, generated source and the compiled object. Model
objects having implementation objects are sometimes referred to as generatable
objects.

Naming and Identifying Model Objects

Within a model, a model object is identified by either of the following:

m Object Surrogate Number—A 7-digit number assigned automatically by when the
object is created. For example:

OBJSGT(1100897)

Note that it is generally more efficient to use the surrogate number when possible.
You can obtain it using the Retrieve Model Object (YRTVMDLOBJ) command.

® Model Object Name—Consists of the owner, name, and type you assign when
creating a model object.

The following table shows the components of the model object name for each of
the supported model object types.

Model Object Model Object Owner Object Name Object Type
Object Name

Access Path name' path name' *ACP
Application Area *NONE area code' *APP

Array *ARRAYS name' *ARR
Condition 'field name' 'condition name' *CND

File *NONE name' *FIL

Field *NONE name' *FLD
Function name' name' *FUN
Message *MESSAGES name' *MSG

For example, the following shows the model object name for the Display Product
Details function that is owned by the Product file:

OBJNAM(Product 'Display Product Details' *FUN)

20 Generating and Implementing Applications

Model Objects

Model Object Description

CA 2E maintains an object description for each model object. Each description contains
information such as the object's name and type, the surrogate number, the date and
time the object was last changed, and various change management flags.

The object descriptions for all model objects are centrally maintained in the All Objects
list, also known as the *ALLOBI list. Each time an object is changed, regenerated, or
imported, CA 2E automatically updates the model object's description in the All Objects
list to reflect the change.

For more information on the *ALLOBI list and model object descriptions, see the All
Objects Model Object List section, in this chapter.

Chapter 1: Managing Model Objects 21

Model Object Lists

Model Object Lists

Model object lists provide a method of grouping CA 2E model objects. A model object
list is a named set of references (or pointers) to model objects within a model. Each
reference within a model object list is called a list entry.

Each list entry contains information about a model object at the time the list entry was
created. In other words, a model object list provides an historic snapshot of a model or a
group of model objects. Each list entry contains the following:

m Model object surrogate number

m Model object name consisting of the owner, name, and type of the object
m Date and time the model object was created

m Date and time the model object was last changed

Note: Since model object lists provide an historic record, a model object list can contain
list entries that see objects that have been deleted from the model.

Each model list entry also contains a flag selection value that you can set and use for
filtering on model object list commands. For example, you can process only model list
entries flagged as selected or just those flagged as in error.

For more information:

® On model object list commands and the flag selection value, see the Commands to
Manipulate Model Object Lists section in this chapter, and the CA 2E Command
Reference Guide.

m On commands to create, change, and delete model list entries, see the Commands
to Manipulate Model Object Lists section in this chapter.

The following diagram illustrates the model object list and its relation to the CA 2E
model.

22 Generating and Implementing Applications

Model Object Lists

CA 2E Model List P List @ ListB
FILE MSG E FILE

CND C CNDC FLD G
ACF D FUMN A FUMN A
FILE FLD G

FILG

FUMN A

k

ACP D FUM A

All Objects List ("ALLOBJ)

MSG

FILE

— CHNDC

APP F

ACP D

CNDC MSG E
APP F

FLD G

MWodel Object Lists

As shown in the diagram, model object lists can include model objects of different
object types. You can use a model object list to group related objects into a set in the
same way application areas let you group files. This enables you to manipulate or
process a set of model objects with a single command or to easily process a series of
tasks required as a result of a change to your model.

For example, suppose you need to change the length of a key field such as Customer
number. The following list suggests a way to use model object lists to simplify the
change process and ensure that all necessary tasks are done:

1. Use impact analysis to automatically build a list of all model objects affected by the
change.

2. Use the list of affected model objects as a guide to making the necessary related
changes to the identified objects.

3. Convert the list of affected model objects to a job list and submit the list for
generation and compilation.

4. Use the same list as a release or PTF and promote it through test and QA to the end
user sites.

Note: With CM, this promotion can occur automatically; for example, to multiple
remote locations.

These steps are explained in more detail throughout this chapter.

Chapter 1: Managing Model Objects 23

Model Object Lists

All Objects Model Object List

As shown in the diagram at the beginning of this section, every model contains a special
All Objects model object list, or All Objects list for short. The primary purpose of the All
Objects list is to provide a central location for model object information and to record
change data; for example, date, time, and the user profile of the developer who made a
change.

The All Objects list contains a dynamic reference for each supported model object in the
model; in other words, whenever a model object is updated, its model object
description, or detail, is also updated. When referring to the All Objects list in
commands, it has the special name *ALLOBJ.

For more information on the All Objects list, see the All Objects List section in this
chapter.

Session Lists

A session list is a model object list to which all objects you change, add, or delete during
a session can be logged. Note that logging changes to a session list is optional.

The session list persists across your model sessions; in other words, the session list is
cumulative until you clear it. This lets you keep track of changed objects between model
sessions. As a result, you will probably want to clear your session list periodically so that
it contains only recently changed objects. You can clear your session list using option 9
on the Work with Model Lists panel.

Naming and Activating Session Lists

You assign a name to your session list in the following ways:

m Specify a session list name when entering your model using the Edit Model
(YEDTMDL) command. The default name is the one stored on the model profile.

m Specify a session list name on the model profile using the Edit Model Profile
(YEDTMDLPRF) command. The default name is the name of your i OS User Profile.
Note that this change does not take affect until the next time the model is loaded.

You activate automatic logging of changes to the session list by setting the Log changed
objects option in your model profile to Y (Yes).

For more information on the model profile, see the Model Profile section in this
chapter.

24 Generating and Implementing Applications

Model Object Lists

Using Session Lists

The following are suggestions for ways to use session lists to manage your model.

Administering Your Model

Following are examples of ways you could use session lists to manage your model.

m Assign the same default session list to all developers working on the same change
to the model. The shared session list will contain a record of each model object
changed by any member of the development team assigned to the project.

m Set up a separate session list for each development project. When you enter the
model, specify the session list assigned to the project on which you plan to work.

Using Session Lists with Model List Commands

You can use model list commands to process the model objects contained on your
session list. You can use the Edit Model Profile (YEDTMDLPRF) command to set your
default model object list for commands (*MDLPRF) to be the same as your session list.

Chapter 1: Managing Model Objects 25

Model Object Lists

Example

Suppose you need to regenerate all external functions that use model objects contained
in the session list. You can produce a list of these functions by using the Display Model
Usages (YDSPMDLUSG) command. The following command creates a model object list
(list-name) consisting of all model objects that use any object contained on your default
model list (*MDLPRF), up to and including the first external function:

YDSPMDLUSG MDLLST (*MDLPRF)+
OUTPUT (*MDLLST)+
OUTMDLLST (list-name)+
SCOPE (*EXTFUN)

You can then convert the resulting output list to a job list for generation and
compilation using the Convert Model List (YCVTMDLLST) command.

The following are more examples of ways you can use session lists with model list
commands:

®m Produce a printed record of changes to your model for a specific development
project by using the session list for the project as input to the Document Model
Object List (YDOCMDLLST) command.

m Flag selected entries on the session list to copy using the Filter Model Object List
(YFLTMDLLST) command or Edit Model Object List for copy (YEDTCPYLST) panel.
Then promote the change to a target model by using the session list as input to the
Copy Model Objects (YCPYMDLOBJ) command.

m Delete a session list related to a completed development project by using the
Delete Model Object List (YDLTMDLLST) command.

m Create an empty session list by using the Index Model Object List (YINXMDLLST)

command.

For more information on model list commands, see the Commands to Manipulate
Model Object Lists section in this chapter, and the CA 2E Command Reference Guide.

Referencing Model Object Lists in Commands

You specify model object lists on commands using qualified names. For example, you
would specify the named model object list, LISTA in MYMDL, as MDLLST(MYMDL/LISTA).
You would specify the All Objects list as MDLLST(MYMDL/*ALLOBJ).

26 Generating and Implementing Applications

All Objects List

How Model Object Lists are Stored

Each model object list name must be unique within a model. Model object lists are
actually stored as members in the following physical files within the model library.

m YMDLOBJRFP—Consists of a single member containing all supported objects in the
model. This is the All Objects list.

m YMDLLSTRFP—Consists of multiple members, each of which contains a named
model object list.

Model Object List Authority

Users of the model need to have a minimum of i OS *CHANGE and *OBJMGT authority
to the YMDLLSTREFP file. This is the default authority for user, *PUBLIC.

Although you cannot assign authority on individual model object lists, you can prevent
users of the model from deleting or adding lists by removing *OBJMGT authority on the
YMDLLSTRFP file.

Note: List level authority is provided by CM.

All Objects List

Every model contains a special All Objects model object list. The All Objects list provides
a central place for model object information and contains a dynamic model object
description for each supported model object in the model. When referring to this list in
commands, it has the special name *ALLOBJ.

The primary purpose of the All Objects list is to record information related to changes to
model objects; for example, the date, time, and name of the developer who made the
change. As you create, delete, update, and generate model objects, the All Objects list is
also updated to reflect these changes. The All Objects list also contains information for
impact analysis, versions of functions and messages, and CM.

The All Objects list differs from a named model object list in a number of important
ways. The following table summarizes these differences:

All Objects List (*ALLOBJ) Named Model Object Lists

Consists of a dynamic object description Consists of static (unchanging) references

for each model object in the model. to all, or a subset of, model objects in the
model. These references are known as list
entries.

Chapter 1: Managing Model Objects 27

All Objects List

All Objects List (*ALLOBJ)

Named Model Object Lists

A model object's description is updated
automatically each time the object is
changed, imported, regenerated.

A model object's list entry does not
change when the model object changes. It
provides a persistent historic record of the
object at the time the list entry was
created.

Actions to the All Objects list see the
actual model objects; you add entries only
by creating new model objects.

Actions to named lists affect only the
model object list entries and not the
actual model objects.

Does not contain model object
descriptions for deleted model objects
and displays only the current version of
functions and messages.

Can contain references to deleted model
objects and non-current versions of
functions and messages.

You cannot update the All Objects list or
model objects using model list commands.

You can update named model object lists
and model list entries using model list
commands.

Model Object Description

Each object in your model contains an object description in the All Objects list. Each
description contains detailed information about the model object, such as the object's
name and type, the surrogate number, the date and time the object was last changed,
and various change management flags.CA 2E maintains the model object descriptions
and automatically updates an object's description each time the object is changed,

regenerated, or imported.

To view a model object's description, use either selection option 8 on the Edit Model
Object List panel or the Display Model Object Description (YDSPMDLOD) command.

The following two commands let you retrieve and change information within a model

object description:

m Retrieve Object Description (YRTVMDLOBJ) command

m Change Model Object Description (YCHGMDLOBJ) command

28 Generating and Implementing Applications

All Objects List

Model List Commands and the Model Object Description

You can use model object description fields in combination with model list commands.
This provides a powerful tool for creating utilities to filter and analyze your model.
Examples appear throughout this chapter. Some of the fields most suited to this
purpose are:

Object Type

Object attribute

Various dates and times
Impact processed indicator
Action required indicator
Change type

Group surrogate

Current version indicator

The remainder of this section groups the model object description fields by function and
provides suggestions for using them.

For more information:

On model list commands, see the CA 2E Command Reference Guide.

On definitions of each model object description field, see the appendix titled
"Change Control Facilities Reference Tables" in this guide.

Chapter 1: Managing Model Objects 29

All Objects List

Basic Model Object Information

When you create a model object,CA 2E records the following information in the model
object description:

m Model object surrogate
m Object name
m Object type and attribute
® Copy hame
m Creation date and time
m Model object surrogate of the owning object
m Object name of the owning object
® Function type
If the model object is a version of an existing function or message,CA 2E also records the
following information:
®m Group surrogate number
m Current object indicator
® Version type
The basic information maintained for each model object uniquely identifies the model
object in the following two ways:
m Model object surrogate
m Model object name consisting of three fields:
m Name of owner of object
m Object name

m Object type
Use either of these to identify a model object on the model object list commands.

For more information on these model object identifiers, see the Model Objects section
in this chapter.

30 Generating and Implementing Applications

All Objects List

Date and Time Information
CA 2E maintains the following dates and times for each model object as audit stamps for
various processes:
m Creation date and time
m Date and time the model object was last changed
m Component change processed date and time
m Generation date and time
® |mport date and time
m Check out date and time (applies only to CM)
You can use these date fields in Command Language programs to create lists of model

objects requiring specific actions; for example, editing, generation, or copying to
another model.

Changde Information

When you change a model object, the date, time, and user are logged. In other
words,CA 2E automatically updates the following fields in the model object's
description:

m Change date and time

m Change user

= Change type

®m |mpact processed indicator

m Component change processed date and time

CA 2E uses the Change type during component change processing to identify other

objects in the model affected by the change. The Component change processed date
and time are set to the date and time the change occurred.

Press F11 from the Edit Model Object List panel to view this information for any model
object list.
For more information:

m On Change type and changing model objects, see the Model Object Audit
Information section in this chapter.

m On component change processing, see the Impact Analysis section in this chapter.

Chapter 1: Managing Model Objects 31

All Objects List

Component Chandge Processing Information

Component change processing ensures the integrity of your model whenever you
change a model object. It does this by identifying which other model objects are
affected and the type of change required for the affected objects.CA2E sets and
maintains the following fields in the model object description as part of component
change processing:

m Action required indicator

® |mpact processed indicator

m Component change processed date and time
m Change type

Press F11 from the Edit Model Object List panel to view this information for any model
object list.

You can check the Impact processed indicator to determine whether to run the Apply
Component Changes (YAPYCMPCHG) command.

The Action required indicator identifies whether a model object that uses a changed
object needs to be edited (EDT) or regenerated (GEN). You can use model list commands
to examine and filter objects in your model based on the setting of this indicator.

For more information on component change processing, see the Impact Analysis section
in this chapter.

Generation Information
When a model object is successfully generated,CA 2E automatically updates the
following fields in the model object's description:
® Generation date
® Generation time

Press F11 from the Edit Model Object List panel to view this information for any model
object list.

32 Generating and Implementing Applications

Commands to Manipulate Model Object Lists

Check Out Information

Commands to

If you are using CM, CA 2E automatically updates the following fields in the model
object description whenever you check out a model object for a change:

m Check out date and time
m Check out user

m Check out status

m Check out list

Press F11 from the Edit Model Object List panel to view this information for any model
object list.

For more information on check out using CM, see the CA 2E Change Management User
Guide.

Manipulate Model Object Lists

The model list commands are similar both in style and function to the CA 2E Toolkit
object list commands. You can use them to manage your model objects or as API
(Application Program Interface) building blocks to automate the manipulation of model
objects. See the end of this section for examples.

Chapter 1: Managing Model Objects 33

Commands to Manipulate Model Object Lists

Change Control Facilities Commands
This section lists the change control facilities commands. They are grouped according to
the entity on which the command operates; namely:
m Model object lists
m Model object list entries
m Model object description
= Job lists
m Model profile
m Versions of functions and messages
Some commands use model object lists for input, output, or both. A model object list

you specify as input must exist before you execute the command; if you specify a model
object list as output,CA 2E automatically creates it if it does not already exist.

The model profile contains the name of a default model object list name to be used for
commands. This list is often referred to as the default list. Whenever you specify the
value *MDLPRF for a model object list on a command,CA 2E automatically uses the
model object list specified on your model profile.

For more information:

®m On the change control facilities commands, see the CA 2E Command Reference
Guide.

m On model profiles, see the Model Profile section in this chapter.

Model Object List Commands

Following are change control facilities commands that operate on named model object

lists:

Facility Command Description

Create YBLDMDLLST Build a Model Object List
YINXMDLLST Index a Model Object List

Edit YEDTMDLLST Edit Model Object List
YEDTCPYLST Edit Model List for Copy

Display YDSPMDLLST Display a Model Object

List
Object Dependencies YDSPMDLUSG Display Model Usages

34 Generating and Implementing Applications

Commands to Manipulate Model Object Lists

Facility Command Description
YDSPMDLREF Display Model References
Clear YCLRMDLLST Clear a Model Object List
Delete YDLTMDLLST Delete a Model Object List
Filter YFLTMDLLST Filter a Model Object List
Check and Refresh YCHKMDLLST Check Model Object List
Copy YCPYMDLLST Copy a Model Object List
YCPYMDLOBI Copy Model Objects
YSETCPYNME Set Model Object Copy
Name
Print YDOCMDLLST Document a Model Object
List
Execute YEXCMDLLST Execute a Model Object
List
Compare YOPRMDLLST Operate on Two Model
Object Lists
Convert YCVTMDLLST Convert a Model Object
List to a Job List
Work with YWRKMDLLST Work with Model Object

Lists

Model Object List Entry Commands

Following are change control facilities commands that operate on list entries in named

model object lists:

Facility Command Description

Create YADDMDLLE Add a Model Object List
Entry

Change YCHGMDLLE Change Model List Entry

Delete YDLTMDLLE Delete a Model Object List

Entry

Chapter 1: Managing Model Objects 35

Commands to Manipulate Model Object Lists

Model Object Description Commands

Following are change control facilities commands that operate on the contents of an
object's model object description in the All Objects list (*ALLOBJ):

Facility Command Description

Change YCHGMDLOD Change Model Object Description
YCHGMDLOB) Change Model Object

Retrieve YRTVMDLOB) Retrieve Model Object Description

Display YDSPMDLOD Display Model Object Description

Impact analysis YAPYCMPCHG Apply Component Changes

For more information on a model object description, see the All Objects List section in
this chapter and the appendix titled "Change Control Facilities Reference Tables" in this

guide.

Job List Commands

Following are change control facilities commands that operate on job lists and job list

entries:
Facility Command Description
Create YBLDJOBLST Build Job List
YCRTJOBLE Create Job List Entry
Display YDSPJOBLST Display a Job List
Convert YCVTMDLLST Convert Model List to Job
List
YCVTIOBLST Convert a Job List to Toolkit
Object List
Check and Refresh YCHKIYSBMMDLCRTOBLE Check Job List Entries

Submit

Submit Create Request
from Model

36 Generating and Implementing Applications

Commands to Manipulate Model Object Lists

For more information on job lists, see chapter titled "Preparing for Generation and
Compilation" in this guide.

Model Profile Commands

Following are change control facilities commands that operate on the model profile:

Facility Command Description

Change YCHGMDLPRF Change Model Profile
Details

Edit YEDTMDLPRF Edit Model Profile

Retrieve YRTVMDLPRF Retrieve Model Profile
Details

For more information on model profiles, see the Model Profile section in this chapter.

Version Commands

Following are change control facilities commands that operate on versions of functions
and messages:

Facility Command Description

Create YCRTMDLVSN Create Model Version
YCRTOBIJVSN Create Model Version

Delete YDLTMDLVSN Delete a Model Version

Compare YCMPMDLOBJ Compare Model Versions

Redirect YRDRMDLOB) Redirect Model Object

Select YSLTVSN Select Model Object

Version

For more information on versions, see the Working with Versions of Functions and the
Messages sections in this chapter.

Using Change Control Facilities Commands

You can use model list commands for generic manipulation of model objects, to process
model objects in batch, and to create your own utilities.

Chapter 1: Managing Model Objects 37

Commands to Manipulate Model Object Lists

Example 1

You can use the following set of commands to compare model objects within a model at
two different times; for example, before and after a development project:

1. Use the Build Model List (YBLDMDLLST) command to create a list of all objects in
the model by specifying the All Objects list (*ALLOBJ) as input and a named model
object list as output.

YBLDMDLLST OBJNAM(*ALLOBJ)+
MDLLST(/ist-name1)

The output list contains information about each object that existed in the model at
the time you ran this command; namely, each list entry contains the Create date
and time and the Change date and time of the corresponding model object.

At some later stage in the development cycle you can build another list of all model
objects and compare the new list with the original list as shown in the following
steps.

1. Build a new list of all objects in the model, specifying another model object list as
output.

YBLDMDLLST OBJNAM(*ALLOBJ)+
MDLLST(/ist-name2)

1. Compare this list with the original list and create a third model object list containing
the differences between the two input model object lists.

YOPRMDLLST MDLLSTA(list-name1)+
LSTOPR(*DIFF) MDLLISTB(list-name2)+
TOMDLLST(/ist-name3)+
OPRTYPE(*OBJSGT)

38 Generating and Implementing Applications

Commands to Manipulate Model Object Lists

Example 2

You can use the following set of commands to compare model objects between two
models:

1. Use the Build Model List (YBLDMDLLST) command to create a list of all objects in a
model by specifying the All Objects list (*ALLOBJ) as input and a named model
object list as output.

YBLDMDLLST OBJNAM(*ALLOBJ)+
MDLLST(/ist-name1)

1. Build another model object list for the second model; e.g., NEWMDL.

YBLDMDLLST OBJNAM(*ALLOBJ)+
MDLLST(NEWMDL/list-name2)

1. Copy the model object list just created to the original model and ensure that the
surrogate number of each list entry matches that of the corresponding model
object in the original model.

YCPYMDLLST+
FRMMDLLST(NEWMDL/list-name2)+
TOMDLLST(OLDMDL/list-name2)+
TOUPDOPT(*RFSSGT)

1. Filter out any errors. This creates a list of model objects that exist in the new model
but do not exist in the original model.

YFLTMDLLST FLAGVAL(*ERROR)+
MDLLST(NEWMDL/list-name2)+
OUTLST(/ist-fail)

1. Now compare the two lists in the target model and save the differences in another
model object list.

YOPRMDLLST MDLLSTA(list-name1)+
LISTOPR(*DIFF) MDLLSTB(/ist-name2)+
TOMDLLST(/ist-diffs)+
OPRTYPE(*OBISGT)

1. Print the output lists for a permanent hard copy record of the differences between

the two models.

YDOCMDLLST MDDLST(NEWMDL/list-fail)
YDOCMDLLST MDLLST(OLDMDL/list-diffs)

Chapter 1: Managing Model Objects 39

Commands to Manipulate Model Object Lists

Example 3

You can use the following series of commands to form part of a nightly process to
prepare a model for the following day:

1.

Optionally run the Synchronize Model (YSNCMDL) command to ensure that the
model is synchronized.

Run the Apply Component Changes (YAPYCMPCHG) command to ensure that the
impact of any changes to model objects are reflected throughout the model.

Run the Filter Model Object List (YFLTMDLLST) command over the All Objects list
(*ALLOBYJ) to select model objects having the Required action indicator set to *EDT.
Specify EDTLST as the output model list for programmers to edit the following day
using YEDTMDLLST.

Run the Filter Model Object List (YFLTMDLLST) command over the All Objects list
(*ALLOBIJ) to select model objects having the Required action indicator set to *GEN.
Specify GENLST as the output model list.

Run the Convert Model Object List (YCVTMDLLST) command over the GENLST
model list to prepare a job list to generate objects that require generation as a
result of a change to a component object.

Run the Submit Model Create Requests (YSBMMDLCRT) commands. Specify the job
list created in the previous step to generate and compile changed objects.

Run the Document Model Object List (YDOCMDLLST) command to document the
EDTLST and GENLST model lists for administrative purposes.

40 Generating and Implementing Applications

Working with Model Object Lists

Working with Model Object Lists

The Work with Model Lists interactive panel lets you manage the model object lists in
your model. It also provides access to the model object list editing utility (Edit Model
Object List panel).

You access the Work with Model Lists panel in either of the following ways:

m Select the Work with Model Lists (YWRKMDLLST) option on the Display Services
Menu.

m Enter YWRKMDLLST on a command line.

The following panel displays:

Work with Model Lists

Model . | MYMDL
List = . <{-Position

Type options, press Enter.
2=Edit 3=Copy 4=Remove 5=Display
8=List details 9=Clear list 10=Execute list 13=Change description

Opt List name List description
Aocoounts Payable

AR Accounts Receivable

COMMANDS Default model list for commands

EDITKEY Model objects needing edit - Course code change
EDTLST Model objects needing edit to fix PRZ9S

FUNCTIONS Changed functions for AP change
GENERATE Model objects to generate - Course code change

GL General Ledger
JAR List JAR in MYMDL created by user JAR.
PR3049 Changed model objects for PR3049
Hore. ..
F3=Exit F5=Refresh F6=Build F9=Command line F11=Alt view

F12=Cancel F1B8=Create empty list F21=Print list FZ23=More options

Chapter 1: Managing Model Objects 41

Working with Model Object Lists

The Work with Model Lists panel displays all the model object lists currently defined in
your model library. Press F11 to display the date the list was created and the time and
date it was last changed.

From the Work with Model Lists panel, for any model object list shown, you can:

m View a description of the list

m View list entries

m Editalist

m Create a new model list

®m Execute a list

m Clear entries from a list

m Remove a list

m Copy a list

m Change the description of a list

Editing a Model Object List

The Work with Model Lists panel provides a shell for the Edit Model Object List panel.
To edit one of the model object lists displayed, type subfile select option 2 against the
list and press Enter. You can return to the Work with Model Lists panel at any time
during your editing session to select another list or to perform other model object list
management tasks.

For more information on the Edit Model Object List panel, see the Editing Model Object
Lists section in this chapter.

42 Generating and Implementing Applications

Working with Model Object Lists

Creating a Model Object List

You can also use the Work with Model Lists panel to build a new model object list.

1.
2.

Press F6 to prompt the Build Model Object List (YBLDMDLLST) command.

Specify the model objects to include in the new list using the selection options
provided. By default, all objects in the model are included.

For example, you can select all model objects of a specified object type, a specific
model object, or all model objects having the same Object owner. You can also
display a selection list of all objects in the model by entering *SELECT for the Object
owner option and pressing Enter.

Enter the name of the new model object list for the Model object list option.
Press Enter.

To edit the new list enter subfile select option 2 against it on the Work with Model
Lists panel as you did for an existing list.

Note: To create an empty model object list, press F18 from the Work with Model Lists
panel to prompt the Index a Model Object List (YINXMDLLST) command. Type the name
of the new list for the Model object list parameter and press Enter to accept the
defaults and create the new list.

For more information on the YINXMDLLST command, see the Command Reference
Guide.

Chapter 1: Managing Model Objects 43

Editing Model Object Lists

Editing Model Object Lists

The Edit Model Object List (YEDTMDLLST) panel is an interactive utility for working with
model object lists, including the All Objects list (*ALLOBJ), and model object list entries.
This utility has a PDM-like interface and has the following main features:

m Multiple views of current model object list (you can cycle through these by pressing
F11.):

m Object identification—Object name, type, attribute, and owner

m Implementation details—Implementation name, date and time of last
generation, and if applicable, the function or message type

m Component change information—Date, time, and action required

m Audit information—Change date, user, and type, and the impact processed
indicator

m Check out information—Checked out date, model object list name, user, and
status

Note: This alternate view contains data only if the Change Control (YCHGCTL)
model value contains a valid library name. The data is set by CM.

m Choice of displaying model object list entries sorted by:
m Object name within object type
m Object name within object type within owner
m Implementation name within object type
® Command line
®m Function key to repeat a subfile select option
m Select model objects for processing by a command specified on the command line
m Access to model profile
m Options to work with model objects
m Capability of switching between model object lists, including the All Objects list
m View of detailed description of any model object
m Options and function keys for impact analysis (usages and references)
m Use of user-defined options
This panel serves as an alternate entry point into your model. You can perform most
functions available from the Edit Database Relations panel other than editing relations
and creating model objects. You can temporarily transfer to the Edit Database Relations
panel from the Edit Model Object List panel by entering YEDTMDL or Y2 on the

command line. When you finish your editing, press F3 to return to the Edit Model Object
List panel.

44 Generating and Implementing Applications

Editing Model Object Lists

Edit Model Object List Panel

You can use the Edit Model Object List panel to operate on both named model object
lists and the All Objects list (*ALLOBJ); however, some functions can be used only for
named model object lists.

You can access the Edit Model Object List panel in the following ways:

m Enter YEDTMDLLST from a command line. You can prompt the command or accept
the defaults.

m Use selection option 2 from the Work with Model Lists (YWRKMDLLST) panel.
m Select the Work with Model Lists or Edit model list options on the Display Services

Menu.

The following is an example of the Edit Model Object List display for the All Objects list:

Edit Model Object List

Model . : SYMDL

List . . . ®ALLOBJ #All objects list for model SYMOL.
Type options, press Enter.
1=Select 2=Edit 3=Copy 4=Delete entry
S5=Display B=Details 9=Deselect 18=Act ion diagram
11=Add to alternate list 13=Parameters 14=GEN batch
Opt Dbject Type Atr Owner
L Customer FIL REF
_ Customer EX MSG ERR *Messages
_ Customer NF MSG ERR #*Messages
. Customer address FLD TXT
_ Customer Allow Credit FLD 5TS
— Customer city FLD TXT
_ Customer code FLD COE

Hore...
Parameters or command

F3=Exit F4=Prompt F5=Refresh F6=Build F?=Position to
FB8=Reverse retrieve F9=Retrieve F23=More options F24=More keys

For more information on the Edit Model Object List panel, see the Working with Model
Object Lists section in this chapter.

Many of the subfile select options and function keys shown on this panel are also
available on the following interactive panels:

m Display Model Usages

m Display Model References

m Display Model List

m Work with Versions

m Edit Model List for Copy (YEDTCPYLST)

Chapter 1: Managing Model Objects 45

Editing Model Object Lists

Selecting Another Model Object List

You can select another model object list in the following ways:

m Enter the name of the model object list for the List option in the header and press
Enter.

m Enter one of the following special values for the List option in the header:
m *ALLOBIJ to edit the All objects list.
m *SSNLST to edit your session list
m *MDLLST to edit the default model list for commands

m Display the Select Model Object List panel by entering *SELECT or *S for the List
option in the header, or press F4 with the cursor positioned on the List option.

This panel lists all named model object lists in your model. Enter * for the List
option to also list special lists such as, *SSNLST. Type 1 in the subfile selector to
select a model object list and press Enter.

m [f you accessed the Edit Model Object List panel using the Work with Model Lists
panel, you can press F3 or F12 to return to that panel, select another model list
using option 2, and press Enter.

Note: If you have specified subsetting criteria for a model object list, the subsetting is
retained when you select another list.

For more information on subsetting a model object list, see the Grouping and
Navigation Aids section in this chapter.

Subfile Select Options

You can enter a one- or two-character option for the subfile selection field to perform a
large variety of actions on the selected model object or model list entry. Some values
are restricted according to certain object types; others are appropriate only when
editing a named model object list and not when editing the All Objects list (*ALLOBJ).

User-defined Subfile Select Options

You can define your own subfile select options associated with a command string. User
options must be alphabetic; numeric options are reserved for use by CA 2E .

For more information on defining your own subfile select options, see the Performing
User-Defined Tasks on Model List Entries later section in this chapter.

46 Generating and Implementing Applications

Editing Model Object Lists

CA 2E Subfile Select Options

The following table lists the options supplied by CA 2E.

Note: Some of these options operate on the actual model objects and others operate on
entries of a named model object list. Be sure to note this distinction when reading the
following descriptions and when using the subfile select options.

Option Action Meaning Where Documented
1 Select Tag the entry in the current list CA 2E Command
for selective processing by list Reference Guide

commands in conjunction with
flag value selection (FLAGVAL).
Sets the list entry's Object Select

flag.
2 Edit Edit the selected model object. This section, Editing
The CA 2E panel displayed Model Objects

depends on the type of the
model object selected.Edit the
selected model object. The panel
displayed depends on the type of
the model object selected.

3 Copy Create a copy of the selected This section, Copying
model object. This applies only to Model Objects
model objects of type FUN and

MSG.
4 Delete list Delete the model list entry from This section, Deleting a
entry the current model object list. A Model Object or a

confirmation panel is displayed. = Model List Entry

5 Display Display model object. This section, Viewing
Model Objects
8 Details Display the model object This section, Viewing
description for the selected Model Objects and the
model object and optionally YDSPMDLOD command

change the model object's Copy section in the CA 2E
name. The information displayed Command Reference
depends on the type of the Guide

model object.

9 Deselect Removes the list entry's Object CA 2E Command
Select flag (FLAGVAL). This is the Reference Guide
opposite of Select.

Chapter 1: Managing Model Objects 47

Editing Model Object Lists

Option Action Meaning Where Documented

10 Action Invoke the Action Diagram Editor Building Applications
Diagram for the selected function. This

applies only to model objects of
type FUN.

11 Add to Add the list entry to another This section, Adding
alternate list model object list; the default is Objects to a Model

the list specified in your model Object List, and CA 2E
profile. Invokes the YADDMDLLE = Command Reference
command; you can specify Guide
another list on the command line.

13 Parameters Edit parameters for the selected Building Applications
model object. Displays the Edit
Function Parameters panel.
Applies only to functions,
messages, conditions, or arrays.

14 Generate Generate the access path or Command Reference
source in external function in batch mode. Guide
batch Invokes the YCRTJOBLE command

to add the object to the job list.
You can specify parameters on
the command line; e.g., JOBLST.
15 Generate Generate the source for an CA 2E Command
source access path or external function Reference Guide
interactively interactively. Invokes the
YCRTJOBLE command to add the
object to the job list. You can
specify parameters on the
command line; e.g., JOBLST.
16 Y2CALL Call the selected function's This chapter, Working
implementation object using the with Versions of
Y2CALL command. Y2CALL Functions and
determines the parameters Messages section and
required by an external function CA 2E Command
directly from details contained in Reference Guide
the model. You can provide
values for all input-capable fields
and you can reuse these values
for subsequent calls.

17 Device design Invoke the device design editor Building Applications

for the selected model object.
Applies only to model objects of
type FUN.

48 Generating and Implementing Applications

Editing Model Object Lists

Option Action Meaning Where Documented
18 Device Invoke the structure design Building Applications
structure editor for the selected print
function. Applies only to model
objects of type FUN and attribute
PRTFIL or PRTOBJ.
19 Work with Work with versions within the This chapter, Working
versions model for the selected model with Versions of
object. Applies only to model Functions section and
objects of type FUN and MSG. the Messages section
and CM User Guide
20 Access path Display the Display File Access Building Applications
Paths panel for the selected and Building Access
model object. Applies only to Paths
model objects of type FUN.
21 Narrative for Display the Edit Narrative Text Administrator Guide
object panel for the selected model
object.
22 Narrative for Display the Edit Narrative Text Administrator Guide
owning object panel for the model object that
owns the selected model object.
23 Start SEU Start SEU for the selected model —
object. Available for model
objects of type ACP and FUN
only.
24 Delete model Delete the model object from the This section, Deleting a
object model. This applies only to the Model Object or a
following object types: ACP, ARR, Model List Entry
APP, CND, FUN, MSG; you cannot
delete a FIL or FLD in this way.
25 Document Invokes the YDOCMDLFUN Building Applications
function command for the selected model and the CA 2E
object. Applies only to model Command Reference
objects of type FUN. Guide
26 Redirect Make the selected version active This chapter, Working
(current) in the model. Applies with Versions of
only to model objects of type Functions and
FUN and MSG. Messages section and
the CM User Guide
28 Check out Check out the model object for CM User Guide

change. Available only with CM.

Chapter 1: Managing Model Objects 49

Editing Model Object Lists

Option Action Meaning Where Documented

30 Open function Open all functions selected with Building Applications
option 30 and then Display the
Open Functions panel. Applies
only to model objects of type

FUN.

31 Locks for Display locks currently set for the Administrator Guide

object selected model object.

32 Locks for Display locks currently set for the Administrator Guide

object owner owner of the selected model
object.

33 Refresh entry Refresh the model object list This section, Viewing
entry from its model object Model Objects
description in the All Objects list
(*ALLOBYJ).

34 Compare Invoke the Compare Model CA 2E Command

objects Objects (YCMPMDLOBIJ) Reference Guide

command. Applies only to model
objects of type FUN and MSG.

38 Check action Scans for error in the selected Building Applications
diagram function, and if errors are found,
loads the action diagram at the
first error.
81 References for Display all references within the This chapter, Model
object model for the model object. Object Cross

References section

82 References for Display all references within the This chapter, Model
owning object model for the owner of the Object Cross
model object. References section
91 Usages for Display all usages within the This chapter, Model
object model for the model object. Object Cross

References section

92 Usages for Display all usages within the This chapter, Model
owning object model for the owner of the Object Cross
model object. References section
/ Merge object Process the selected object with This section, Command
with the command on the command Line
command line. Serves as a temporary

user-defined option.

50 Generating and Implementing Applications

Editing Model Object Lists

Function Keys

The following table lists the function keys available on the Edit Model List panel. Note
that some options are not available for the All Objects list (*ALLOBJ).

Function Key Action Meaning Where Documented

F1 Help Display additional —
information about the
display or option selected.

F3 Exit — —

F4 Prompt Prompt a command line This section, Command
or option. Line

F5 Refresh Updates the panel with -
current information.

F6 Build list Add selected model This section, Adding
objects from *ALLOBJto Entries to a Named
the model object list Model Object List
being edited. Applies only
to named model object
lists.

F7 Position to Lets you position the This section,
display to a specified Positioning a Model
model object type, name, Object List
owner, and/or
implementation name.

F8 Reverse retrieve After use of F9, retrieve This section, Command

of previous previous commands in Line
commands reverse order.
F9 Retrieve previous Retrieve the most recent This section, Command

command

command you entered
from the command line.
Press repeatedly to cycle
through all commands
you entered during the
current session. i OS
standard.

Line

Chapter 1: Managing Model Objects 51

Editing Model Object Lists

Function Key Action Meaning Where Documented

F10 Execute list Perform a specified action This section, Executing
on each entry in a model a Model Object List,
object list. This invokes and the CA 2E
the YEXCMDLLST Command Reference
command and you can Guide
specify parameters on the
command line. Applies
only to named model

object lists.

F11 Alternate view Display the following This section, Viewing
alternate views in Model Objects
sequence:

1. Basic Information

2. Implementation
Information

3. Component Change
Information

4. Change Information

5. Check out Information

F12 Cancel Return to previous menu —
or panel.
F13 Repeat Repeat the last selection Examples appear

option specified beginning within this section
with the last selected

model object to the end

of the model object list.

Press F5 to undo the

repeat.
F14 Filter Filter the displayed model This section, Filtering a
object list. Invokes the Named Model Object

YFLTMDLLST command. List
You can specify an output

list for the results;

otherwise, the displayed

list is changed based on

the filter. For named

model object lists only.

52 Generating and Implementing Applications

Editing Model Object Lists

Function Key Action

Meaning

Where Documented

F15 Check list

Check model object list
entries for existence,
checked out, and lock
information, and remove
checked entries. Invokes
the YCHKMDLLST
command; you can specify
parameters on the
command line. Applies
only to named model
object lists. For example,
use this to refresh list
entries with detail from
*ALLOB..

CA 2E Command
Reference Guide

F17 Subset

Display only a specified
subset of a model object
list based on criteria you
specify. Similar to
subsetting capability of
PDM.

This section, Subsetting
a Model Object List

F18 Change model

profile

Update settings in a
specified model profile.
Invokes YEDTMDLPRF
command.

This chapter, Model
Profile section, and CA
2E Command
Reference

F19 Job list
commands

Displays a menu of job list
commands to aid in
creating and submitting
job lists.

This section, Selecting
Job List Commands

F20 Usages

Displays the Display
Model Usages
(YDSPMDLUSG) panel.
Applies only to named
model object lists.

This chapter, Impact
Analysis section

F21 Print

Invokes the Document
Model List (YDOCMDLLST)
command; you can specify
parameters on the
command line. Applies
only to named model
object lists.

Command Reference
Guide

Chapter 1: Managing Model Objects 53

Editing Model Object Lists

Function Key Action

Meaning

Where Documented

F22 References

Displays the Display
Model References
(YDSPMDLREF) panel.
Applies only to named
model object lists.

This chapter, Impact
Analysis section

F23 More options

Display more subfile
select options.

F24 More keys

Display more function
keys.

Command Line

You can use the command line on the Edit Model Object List panel in the following

ways:

m Enter or prompt, Toolkit, or i OS commands

m Override the parameters and/or the command invoked by a subfile selection option

m Execute a command that operates on a selected model object

m Enter special command line values to retrieve previously executed commands

Merging Entries with Commands

Many subfile selection options are executed using commands. You can use the
command line to override any of the parameters or the command itself. To do so, enter
the override details on the command line before you press Enter or F4.

54 Generating and Implementing Applications

Editing Model Object Lists

Example 1

Following is an example of overriding command parameters on the command line. Note
that when you override a parameter value you need to specify both the parameter
keyword and the parameter override value.

Suppose the functions contained in the MYMDLLST model object list have generated
successfully and just require compilation. Create a job list entry for each model object
using selection option 14, which invokes the YCRTJOBLE command.

1. Enter 14 for the first model object entry.

2. Press F13 to repeat the option for all list entries. Note the message at the bottom of
the panel that states that option 14 was repeated to the end of the list.

Note: You can press F5 to undo the repeat action.

Type the CRTOPT(*COMPILE) parameter on the command line as shown to indicate
compilation only.

Edit Model Object List

Model . : SYMOL
List . . . MYMOLLST List MYMODLLST in SYMDL created by user JAR.
Type options, press Enter.
1=Select 2=Edit 3=Copy 4=Delete entry
5=Display B=Details 9=Deselect 16=Action diagram
11=pAdd to alternate list 13=Parameters 14=GEN batch
Opt Object Type Atr Owner
14 Edit Branch FUN RPG Branch
14 Edit Customer FUN RPG Customer
14 Edit Vendor FUN RPG Vendor
14 Select Branch FUN RPG Branch
14 Select Order FUN RPG Order

Botton
Parameters or command
===)> CRTOPT(»COMPILEIN
F3=Exit F4=Prompt FS5=Refresh F6=Build F?=Position to
F8=Reverse retrieve F9%=Retrieve FZ3=More options FZ4=More keys
Option 14 was repeated to the end of the list.

3. Press Enter.

Press F19 to display a list of job list commands and to submit the job list for compilation
in batch.

Chapter 1: Managing Model Objects 55

Editing Model Object Lists

Example 2

This example uses the "/" selection option to merge model list entries with a command
not associated with a subfile selection option. This option serves as a temporary
user-defined selection option.

Suppose you want to view the model object descriptions for the owners of one or more
model objects. To do so you will use the Display Model Object Description
(YDSPMDLOD) command.

1. Enter"/" against each model object whose owner's model object description you
wish to view. To select all model objects to the end of the list, type "/" on the first
model object you want to select and press F13 as in the first example.

Type YDSPMDLOD OBISGT(@YW) on the command line. Note that @YW is a
substitution variable that specifies the surrogate number of the owner for each of
the selected model objects.

For more information on substitution variables, see the Performing User-Defined
Actions on Model List Entries section in this chapter.

Edit Model Object List

Model . : SYMDL
List . . . MYMDLLST List MYMOLLST in SYMOL created by user JAR.
Type options, press Enter.
1=Select 2=Edit 3=Copy 4=Delete entry
S=Display B=Det ails 9=Deselect 10=Action diagram
11=Add to alternate list 13=Parameters 14=GEN batch
Opt Objecl Type Alr Owner
I Edit Branch FUN RPG Branch
_ Edit Customer FUN RPG Customer
_ Edit Yendor FUN RPG Vendor
s Select Branch FUN RPG Branch
_ Select Order FUN RPG Order

Bottom
Parameters or command
===)> YDSPMDLOD OBJSGT{@yW)N
F3=Exit F4=Prompt F5=Refresh F6=Build F?=Position to
F8=Reverse Ttetrieve F%P=Retrieve F23=More options F24=More kevs

2. Press Enter.

The model object description for the owners of the selected model objects will be
displayed one at a time. In this example, the model object description for the Customer
file and the Branch file are displayed.

Retrieving Commands

All commands executed in the current job, whether executed from a CA 2E or an i OS
panel, are placed in a common command sequence. The F9 and F8 function keys let you
step backward and forward through this command sequence.

56 Generating and Implementing Applications

Editing Model Object Lists

Using Special Command Line Values to Retrieve Commands

A set of special values that you enter on the command line lets you search for
commands containing specified characters and control the contents of the command
sequence. You can enter these values in upper or lower case letters and in most cases
the space between the special command line value and the following text is optional.

The following table lists the special command line values and their functions:

Special Values Abbreviations Function

*SCANF [n] string *SF or >> Starting from the first command in the
command sequence, retrieve the first
command containing the specified
string. Specify n to retrieve the nth
matching command.

*SCANL [n] string *SL or << Starting from the last command in the
command sequence, retrieve the first
command containing the specified
string. Specify n to retrieve the nth
matching command.

*FIRST [n] string *For> Starting from the first command in the
command sequence, retrieve the first
command beginning with the specified
string. Specify n to retrieve the nth
matching command.

*LAST [n] string *Lor< Starting from the last command in the
command sequence, retrieve the first
command beginning with the specified
string. Specify n to retrieve the nth
matching command.

—command n/a Execute the specified command, but do
not add it to the command sequence.

+ command n/a Add the specified command to the
command sequence, but do not execute
it.

*CLEAR n/a Clear the commands at this invocation

of the command line.

When you specify a search string, do not include "*" at the end of the string. You can
however specify a '?' as a wild character in any position. To repeat the last search you
entered, specify '*' instead of a search string. You can repeat the search in either
chronological or reverse chronological order. These concepts are all shown in the
following examples.

Chapter 1: Managing Model Objects 57

Editing Model Object Lists

Examples

1. To retrieve the first previous command that begins with the characters 'wrk', type
the following on the command line and press Enter.

*LAST WRK
Note that *last wrk, *L wrk, and < wrk all give the same result.

You can repeat the last search you entered by specifying '*' instead of the search
string. To retrieve the next previous command beginning with 'wrk', type the
following on the command line and press Enter.

*FIRST *

1. To retrieve the third command from the beginning of the command sequence
containing the characters 'uuae’, type the following on the command line and press
Enter.

>> 3 uuae

Note that *scanf 3 uuae, *SF 3 uuae, and >>3UUAE all give the same result.

To retrieve the next command containing 'uuae’, in other words to repeat the
search, type the following on the command line and press Enter. Note that in this
case the first matching command, not the third, is retrieved.

>> *

You can also use the '*' to repeat the search in reverse chronological order as
follows. To retrieve the first previous command containing 'uuae' type the following
on the command line and press Enter.

<< ¥

1. You can use one or more '?' to specify a wild character in the search string. To find
the first previous command containing 'uu' followed by any two characters followed
by 'srr', type the following on the command line and press Enter.

<<uu??srr
1. To retrieve the first previous command containing the numbers '397', type the
following on the command line and press Enter.

<< 1397

Note that you need to include the '1' to indicate the first occurrence. This is needed
to distinguish between the optional numeric value and the numeric search string.

Typing <<1397 gives the same result.

1. To execute a command but not place it in the command sequence, type the
following on the command line and press Enter. This is useful to prevent commands
you will not need again from cluttering the command sequence.

58 Generating and Implementing Applications

Editing Model Object Lists

— dspmsg
Note that —dspmsg gives the same result.

1. To place a command in the command sequence but not execute it, type the
following on the command line and press Enter. This is useful to prepare
complicated or partially complete commands that you can retrieve later.

+cpyf fromfile(myfile) tofile(yourfile)

Full Screen Mode

If you are authorized to change your model profile, you can display the Edit Model
Object List panel in full screen mode. In full screen mode the selection options and
function keys are not displayed, leaving more room for displaying model objects.

To activate full screen mode, first press F18 from the Edit Model Object List panel to
display the Edit Model Profile panel. Set the Full screen mode option to Y and press
Enter. To return to regular mode, press F18 again and reset the Full screen mode option
to N.

For more information on model profiles, see Model Profile section in this chapter.

Grouping and Navidgation Aids
The Edit Model Object List panel provides a variety of tools to help you work with the
objects in your model. These include the capability to:
m Subset a model object list.
m Position a model object list.
m Filter a model object list.

m Transfer control to various CA 2E editing panels.

The following sections describe these in more detail.

Chapter 1: Managing Model Objects 59

Editing Model Object Lists

Subsetting a Model Object List

To display a subset of the model objects in the current list, press F17 from the Edit
Model Object List panel. The Subset Model Objects panel displays:

Subset Model Objecis
Type choices, press Enter.
Object BELL #ALL. name, ®gener icx
Twpe *#FLNY =ALL, #ACF, =sAPP, #ARE, =CHD,
sFIL, wFLO, sFLUH, =MSE

Function Swpe *PLL {F4 For list) ¥ALL, nane, ®generick
Attribute *ELL #ALL, name
Owmer *#FLL sALL, name, ®generic*
Implementation name . #ELL ®ALL, name, ®gener ic#*
Create date:

From date OO0 Date

To dake FEPOHR [ate
Chanoz date:

From date C-Do-ma ODate

To datke kel) Date
Omit system objects . *YES WYES, #N0
Change type *FLL wALL, wOE]J, wGEH, wP\T, »PUB
Selection status . . . ¥ELL BALL, wSELECTED
Fe=Refresh Fl2=Cancel

Notes:

m |f you are editing *ALLOBJ, you can also specify whether to display non-current
versions of functions and messages.

m |f you select another model object list, any subsetting you specified is also applied
to the new model list.

Example

To display only Edit File functions on the Edit Model Object List panel type *FUN for the
Type option and type EDTFIL for the Function type option. Press Enter twice. Note that
the original model object list is not changed by this operation.

60 Generating and Implementing Applications

Editing Model Object Lists

Positioning a Model Object List

Example

You can position the model list displayed to a specific object type, owner name, object
name, or implementation name. Press F7 from the Edit Model Object List panel to

display the positioner window.

_ist .

Edil Model Object List

“acel pESItlnnbythmttWE

FB=Hewerse tetrtieuvs F?=Retrigwe

¢ [hgrct dype |
Twaz opti ¢ Oojcot namc CLUET= :
i1=Balact : Qoject owrer rzme :
S=Tisnlayw H
11=fcd to i “ll=Alternate wilew FlZ=Cancel i
_ Custouc- FIL RE-
_ Custoue- IR H3E ERT #H=ssages
_ Lustoie- 4F RSR FRY #H=sssges
_ Custove~ address FLOD THT
_ Cusluwe - ALluw Crecil FLO 3T3
_ Custoie- eity FLO T=ET
. Custoie- code FLO coz

fore. ..

Farspatars ar semesnd
=-——n
F2=Exit Fd4=Frcmpt F5=Refras- Fia=Build Fr=Pasiticn Lo

F23=Farz option= FEd=Mlore kaps

Use the F11 key to toggle among the four positioning options. To position the model
object list, enter values in the appropriate positioner window and press Enter. Note that
you can specify partial names for all options except the Type option.

To position the model object list to the model object whose Implementation name is
UUACSRR, press F11 until the ‘Position by Implementation name’ window displays, type

UUACSRR.

Position by Implementation name

Implementation name

Fili=Alternate view

uuacsrrRE

F12=Cancel

Chapter 1: Managing Model Objects 61

Editing Model Object Lists

Press Enter.

You can use this, for example, to solve a problem in program applications where you
only know the implementation name of the program in which an error occurred. You
would then use impact analysis to identify all programs called by the program in error.

Note: In this case, the Edit Model Object List panel redisplays with the alternate view
showing implementation information rather than object type, attribute, and owner. You
can switch to other views by pressing F11.

Display Order of Model Objects

CA 2E displays model objects using one of the following key sequences depending on
the values you enter in the positioner window.

1. Implementation name —The model objects are listed by implementation name,
beginning with the implementation name you entered.

2. Owner name/type/object name—The model objects are listed by owner, for each
owner by type, and for each type by object name, beginning with the model object
that matches the values you entered.

3. Type/object name—The model objects are listed by type, and for each type by
object name, beginning with the model object that matches the values you entered.

4. Object name/type—The model objects are listed by object name, and for each
object name by type, beginning with the model object that matches the values you
entered.

The following table shows how the display order will be keyed depending on the values
you enter in the positioner window. A message displays at the bottom of the panel
when the key sequence changes.

Values Entered in Positioner Window Display is Keyed by

All fields blank Object name and Type (the default)
Implementation name Implementation name; see 1 above.
Owner name Owner, Type, Object name; see 2 above.
Owner name and Type Type and Object name; see 3 above.
Owner name, Type, and Object name Type and Object name; see 3 above.
Type Type and Object name; see 3 above.
Type and Object name Type and Object name; see 3 above.
Object name Object name and Type; see 4 above.

62 Generating and Implementing Applications

Editing Model Object Lists

Filtering a Named Model Object List

The filtering panels available from the Edit Model Object List panel provide a powerful
tool for selecting, omitting, and testing various criteria for objects in your model.

Note: The displayed model object list will be changed based on the filter unless you
specify an output model object list. If you do not specify an output list, model object list
entries not selected by the filter are by default deleted from the displayed list.

To apply the filtering tools to the current model object list, press F14. The Filter Model
Object List panel displays. Press F10 to display the additional parameters.

Filter Model Object List (YFLTHDLLST)

Type choices, press Enter.

Filter BSELECT #SELECT, #0MIT
Model object list > MYMOLLST Mame, #*MDLPRF, =*ALLOBJ..
Library name > SYMDL Name. =*MDLLIB
Output model object list #NOME Hame, #*NONE, *MDLPRF, =USER
Model object name: _
Object owner--%generic KANY

Object name--*generic
Object type

e *ALL, *ACP, *APP, *ARR..
+ for more values _
Model list date selection:

Date type ¥ANY *ANY, *CHG, =*CRT
Date operator e _ #LT, =®GT, *EQ, =NE
Date Date, *QDATE

Time Time, #ANY

Hore.. .
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Chapter 1: Managing Model Objects 63

Editing Model Object Lists

This is the first of three screens of filtering options. You can also change the input model
object list and specify an output model object list on this screen. Scroll down for
additional filtering options.

The following panel displays:

Filter Model Object List (YFLTHOLLSTI

Twoe choices. Jress Enter.
Model object date s=lect_ov;

Oazc twpe . . . N = [k &AHY, ®CHG, =CRT. sGEH...

Oaza aperetor e e e *LT, =3T, =E0, =HE

Oaze PR Date, HADATE

Tive Time. ®AMY
Change uzsr .. ilih Hame, =AY, =CURRENT
Acticn reguired o e e o mNY <AHY, wAlL, =+0HC, =CCH, =C0T
Current ohjcat . o e e =Y whHY, wYEE, =k0
Swstem abjects . e e e sHMY whAHY, ®YLG, =0
Chance type . . PR MY EAMY, WPLBLIL, HRIVAIE
Impact progessed MY EAMY. #YLS, =0
Promelawin Lype | e e . mHY efHY, »Al0, =CHE, =3EM
Version tepe | . P MY Ay, «DCY, *FRD, =ARC
Version upnd1r:n1ucd Flag .o =NY &AHY, ®YLS, =k0
Chackout user . . T Y Hame, ®AHY, =CURREMT, =MHORE
Chzckout List . PR wMY Hame, #AHyY, ®LUEELERT, #HURE

Hore...

F3-Exil Fd4-Frumpl FE-Ru=f resd FiZ2-Canu=l Fi2—Huw Lo wuse Lhis displas,
MM=Fare kews

Scroll down to the third filtering screen:

Filter Hodel Object List (YFLTHDLLST)

Type choices, press Enter.

Checkout status ENY Character value, *¥ANY
Copy objest *ANY #ANY, *SELECTED, #*NONE
Copy required *ANY #ANY, =SELECTED, #*NONE
Copy status *ANY *ANY, *NEUW
General attribute . . . *ANY *ANY, *0BJOLT, =*GENFUN. .
+ for more values
Object attribute *ANY Character value, #ANY
+ for more ualues
Flag selection *ANY #ANY, *SELECTED. *ERROR

Additional PaTameters

Output or update flag value . . *SAME wSAME, *NONE, =SELECTED
Output or update copy flag . . . *SAME #*SAME, *NONE, #*SELECTED

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

For more information:
m Onthe YFLTMDLLST command, see the CA 2E Command Reference Guide.

®m On the filtering options, see the All Objects List section in this chapter and the
appendix titled "Change Control Facilities Reference Tables" in this guide.

64 Generating and Implementing Applications

Editing Model Object Lists

Editing Model Objects

Each of the following options on the Edit Model Object List panel access a CA 2E editing
panel appropriate to the selected model object:

m Edit (option 2)—A general editing option that you can use for any model object
type. The specific CA 2E panel invoked depends on the object type of the selected
model object as shown in the following table:

Object Type CA 2E Panel

ACP Edit Access Path Details

APP Edit Application Areas

ARR Edit Array Details

CND Edit List Condition for LST

Edit Field Condition Details for VAL

FIL Edit File Details

FLD Edit Field Details

FUN Edit Function Details

MSG Edit Message Function Details

m Action Diagram (option 10)—Calls the Edit Action Diagram panel for model objects
of type FUN.

m Parameters (option 13)—Calls the Edit Function Parameters panel for model
objects of type FUN.

m Device Design (option 17)—Calls the device design editor for model objects of type
FUN.

m Device Structure (option 18)—Calls the structure design editor for PRTFIL/PRTOB)J
functions.

m Access Path (option 20)—Calls the Display file access paths panel for model objects
of type FUN.

m Narrative/object (option 21)—Calls the Edit Narrative Text panel for any model
object type.

m Narrative/owner (option 22)—Calls the Edit Narrative Text panel for the owner of
the selected object.

m Open Functions (option 30)—Calls the Open Functions panel for model objects of

type FUN.

Chapter 1: Managing Model Objects 65

Editing Model Object Lists

Viewing Model Objects

For any model object you can view both its edit panel in display-only mode and its
model object description. This section explains both.

Viewing a Model Object's Edit Panel

From the Edit Model Object List panel, enter 5 to view the edit panel for a selected
model object. This option is a general display option that you can use for any model
object type. The specific CA 2E panel displayed depends on the object type of the
selected model object. The panel displayed is the same as the panel displayed for edit
option 2 but in view-only mode.

For more information on the panel displayed for each model object type, see the Editing
Model Objects section in this chapter.

Viewing a Model Object Description

From the Edit Model Object List panel, enter 8 to display a model object's description
from the All Objects list. You can also use the Display Model Object Description
(YDSPMDLOD) command. The following panel displays:

Display Hodel Object Model : SYMDL
Object . . kEdit Customer UOwner . . . Customer
Type . . . FUN Attribute . . . RPG Surrogate . 1188115
Copy name . Edit Customer
Create date . 07-09-97 Version type . DEV
Create time . 13:21:38 Current object . ¥
Change date . B8-12/97 Change type . . . PUB Impact processed N
Change time . 15:12:43 Change user . . . JAR
Comp chg date. 88-12-97 HAotion recuired . GEN
Comp chg time, 15:12:43
Checkout date Checkout status List .
Checkout time Checkout user . Promotion
Import date Import model
Import time . Import status . .
Generate date B87-22-97 Function type . . EDTFIL
Generate time 11:12:28
Source Type Text
TUAJEFR RPG Edit Customer Edit file
UURJEFRD DSP Edit Customer Edit file
UURJEFRH HLP Edit Customer Edit file

Bot tom

F5=Refresh F12=Cancel

66 Generating and Implementing Applications

Editing Model Object Lists

A standard set of information is displayed for each type of model object. Additional
information displayed varies according to the type of model object.

Note: If the information for a model object list entry does not match the model object
description for the corresponding model object,CA 2E sets the Object select field for the
list entry to 8 on the Edit Model Object List panel. You can use subfile select option 33 to
refresh the model object list entry.

For more information:

® On the model object description, see the appendix titled "Change Control Facilities
Reference Tables" in this guide.

m On model object list entries, see the Model Object Lists section in this chapter.

Creating Model Object Lists

Model object lists can be created in the following ways:

m Explicitly. For example:
m Enter the name of a new list in the header of the Edit Model Object List panel.
m Press F6 on the Work with Model Lists panel.

m Use the CREATE parameter on the Edit Model Object List (YEDTMDLLST)
command.

In each case CA 2E automatically creates a new list with no entries.

m Automatically within a session. For example, you can specify a default session list or
model list for commands in your model profile.

m Implicitly using model object list commands. For example, specify a non-existing
output list on commands such as, YFLTMDLLST or YDSPMDLREF.

For more information on creating a model object list using the Work with Model List
panel, see the Working with Model Object Lists section in this chapter.

Adding Entries to a Named Model Object List

This section explains how to add entries to the current model object list and how to add
entries from the current model object list to an alternate model object list. In addition

to these two methods, many model object list commands let you add entries to input or
output model object lists; for example, the YDSPMDLUSG and YDSPMDLREF commands.

Chapter 1: Managing Model Objects 67

Editing Model Object Lists

Adding Entries to the Current Model Object List

Press F6 from the Edit Model Object List panel to select and add model objects from the
All Objects list (*ALLOBJ) to the named model object list on which you are currently
working. This function key is not available for *ALLOBJ.

CA 2E displays the Select Model Object panel, listing all model objects from the All
Objects (*ALLOBIJ) list. You add model objects by entering selection option 1 for all
model objects to be added and pressing Enter. The panel continues to display so you
can continue selecting objects. Function keys are provided for positioning and
subsetting the list.

Adding Entries to an Alternate Model Object List

Example

Use selection option 11 from the Edit Model Object List panel to add selected model
objects from the current model object list to an alternate model list. The default output
list is the model object list specified in your model profile. This option invokes the Add a
Model Object List Entry (YADDMDLLE) command. You can either prompt the command
by pressing F4 or you can specify another model object list on the command line.

Suppose you want to add model list entries from model list MYMDLLST to model list
CUSTOBI. Enter option 11 for each model object you want added to the CUSTOBI list. In
this example, enter 11 for the Customer file and press F13 to repeat the option to the
end of the list. You can either press F4 to prompt the command, or you can enter the
MDLLST(CUSTOBJ) parameter on the command line to specify the target list as shown:

Edit Hodel Object List

Model . : SYMDL
List . . . MYMOLLST List MYMDLLST in SYMOL created by user JAR.
Type options, press Enter.
1=Select 2=Edit 3=Copy 4=Delete entry
5=Display 8=Details 9=Deselect 10=Action diagram
11=Add to alternate list 13=Parameters 14=GEN batch
Opt Object Type Attt ODwner
11 Customer FIL REF
11 Customer EX MSG ERR *Messages
11 Customer NF MSG ERR *Messages
11 Customer address FLD THT
11 Customer code FLD CDE
11 Customer name FLD TXT
11 Customers by name ACP RSQ Customer

Mote. ..
Parameters or command
===} MOLLST(¢CUSTOBJ)H
F3=Exit F4=Prompt F5=Refresh F6=Build F7=Position fto
FB=Reverse retrieve F9=Retrieve F23=More options F24=More keys
Option 11 was repeated to the end of the list.

Press Enter. The selected objects are added to the CUSTOBJ model object list.

68 Generating and Implementing Applications

Editing Model Object Lists

Deleting a Model Object or a Model List Entry

The Edit Model Object List panel provides two deletion options:
m Option 24—Deletes the actual model object from the model

m Option 4—Deletes a model object list entry from the currently displayed named
model object list.

CA 2E displays a confirm panel for each model list entry that you selected for deletion.

If an entry on a named model object list refers to a model object that has been deleted
from the model,CA 2E sets the Object select field for the list entry to X on the Edit
Model Object List panel to indicate that the corresponding model object no longer
exists. (The Object select field is between the Subfile selector and the Object field.)

Note: You cannot delete files (FIL) or fields (FLD) using option 24.

You cannot delete a model object if it is used by other objects in the model. Use the
impact analysis tools on the Edit Model Object List panel to determine the usages for
the model object to be deleted. For example, enter selection option 91 for the model
object you want to delete;CA 2E displays a list of the model objects that use it, including
an indication of the way in which it is used.

For more information on impact analysis tools and model object usages, see the Impact
Analysis section in this chapter.

Chapter 1: Managing Model Objects 69

Editing Model Object Lists

Selecting Job List Commands

The Edit Model Object List panel provides a menu of job list commands as an aid to
preparing and submitting your model object lists for generation and creation. Press F19
to display the Job List Commands Menu window:

Edit Hodel Object List

Job List Commands Menu
Select one of the following:

YSBMMOLCRT Submit model create requests
YBLDJOBLST Build a job list

YOSPJOBLST Display a job list
YCVYTMOLLST Convert a model list
YCVYTJOBLST Convert a job list

YCHKJOBLE Check job list entries
YCRTJOBLE Create a job list entry

SO N e

Selection or command

F3=Exit F4=Prompt FB=Rev retrieve F9%=Retrieve Fl12=Cancel

xit F4=Prompt FS5=Refresh F6=Build F7?=Position to
everse retrieve F9=Retrieve F23=More options F24=More keys

Mo
oo n
I n
A M v

Enter the appropriate menu option on the command line to prompt the selected
command. Many of the parameter defaults for the job list commands are set in your
model profile.

Copying Model Objects

This section discusses change control facilities for creating copies of functions and
messages and copying model objects between model object lists and between models.

70 Generating and Implementing Applications

Editing Model Object Lists

Creating Copies of Functions and Messades

A copy of a function or message can be either an entirely separate model object or a
version.

m Selection option 3 on the Edit Model Object List panel lets you copy functions (FUN)
and messages (MSG). This creates a new and independent model object. You will be
prompted to enter the following information for the new model object.

m For MSG, you can change the object name and type. The following values for
type are interchangeable: INF, ERR, STS, CMP. When copying a RTV or EXC
message the type cannot be changed.

m For FUN, you can change the object name, access path, and file. For certain
functions, you can also change the function type by pressing F8.

Note: If you change access path, file, or function type, you will probably need to
edit the function options, device design, and action diagram to obtain a working
function.

m Another way to create a copy of a function or message is to create a version using
the Create Object Version command (YCRTOBJVSN). All the versions of a function or
message form a version group.CA 2E automatically keeps track of the members of a
version group.

For more information on versions, see the Working with Versions of Functions and
Messages section in this chapter.

Copying Entries Between Model Object Lists

Use the Copy Model Object List (YCPYMDLLST) command to copy list entries from one
model object list to another. The input and output model object lists may be in different
models. If the output model object list exists before the copy, you can either replace the
model object list or add the copied objects to it. In addition, the copied list entries can
be refreshed in the output model object list. You may selectively copy using the flag
selection (FLAGVAL) parameter.

Performing User-defined Actions on Model List Entries

This section describes how to:
m Use substitution variables.
m Define user-defined subfile select options associated with a command string.

m Execute a model object list in order to perform an action on each entry of the
model list.

Chapter 1: Managing Model Objects 71

Editing Model Object Lists

Copying Model Objects Between Models

Use the Copy Model Object (YCPYMDLOBJ) command to copy model objects between
models. This command requires an input model object list of the model objects you
want to copy. This can be an existing model object list (for example, your session list) or
you can create one using one of the model object list commands, such as the Build a
Model Object List (YBLDMDLLST) command.

In addition, you need to explicitly select the model objects to be copied from the input
model object list. Use one of the following to select model objects:

m Use the Edit Model Object List for Copy panel, which you invoke using the Edit Copy
List (YEDTCPYLST) command. This panel has many of the same options and function
keys as the Edit Model Object List panel.

Type 1 against the model objects you want to select for copying. To select all list
entries, type 1 for the first model object displayed, press F13 to repeat the selection
for all list entries, and press Enter. An '*' will appear in the Copy Select field of each
selected model object.

Use option 9 to deselect a selected model object. Option 7 lets you rename a model
list entry for the purpose of copying to avoid conflicts with objects with the same
owner/name/type in the target model.

Use the edited model object list as input to the YCPYMDLOBJ command.

m Set the OUTCPYOBJ parameter to *SELECTED on one of the following commands:
m Build a Model Object List (YBLDMDLLST)
m Add a Model Object List Entry (YADDMDLLE)
m Filter a Model Object List (YFLTMDLLST)

m Set the CPYOBJ parameter to *SELECTED on the Change a Model Object List Entry
(YCHGMDLLE)

Note: To prepare a list for copying, you should use only the model object list commands;
for example, YBLDMDLLST, and/or the YEDTCPYLST command. The Build Copy List
(YBLDCPYLST) command is available only for backward compatibility with previous
releases of and should not be used.

Selected model objects will contain a "*" in the Copy Select field on the Edit Model
Object List for Copy panel. After you run the YCPYMDLOBJ command, any implicitly
selected model objects will contain a "!" in the Copy Select field. To view the implicitly
selected objects before copying, run the YCPYMDLOBJ command in *PREPASS mode.

For more information on the YCPYMDLOBIJ process, see the Administrator Guide.

72 Generating and Implementing Applications

Editing Model Object Lists

Using Substitution Variables

The following substitution variables let you symbolically pass various list entry attributes
to the command or user-option that is to operate on the model object list. You can use
these substitution variables with the Execute a Model Object List (YEXCMDLLST)
command, on the Edit Model Object List panel Command line, and with user-defined
options.

The prefix for the substitution variables may be either '&' or '@". If you are using PDM to
maintain your user option list, you need to use '@' as the prefix. You can also specify an
alternate character in the Toolkit data area, YPEXCHA.

Substitution Variable Corresponding Model Object Attribute
&YN Object name

&Y@ Object surrogate

&YT Object type

&YA Object attribute

&Y0 Object owner name

&YW Object owner surrogate

&YY Object owner type

&YR Object group surrogate

&YM Model list name

&YI Object implementation name
&YP Object promotion type

&YS Object SEU type

&YU User name

&YL Model library name

&YG Change type

&YF Function type

&YZ Assimilated file

Note: If you are unable to enter '@' into the command parameter (for example, if it is
numeric), you can either use the RQSDTA parameter on the YEXCMDLLST command and
enter the command as a string, or you can specify RQSDTA(*USROPT) and specify a PDM
user-defined option.

Enclose the &YN, &YO substitution variables in quotes since they can result in text
containing blanks.

Chapter 1: Managing Model Objects 73

Editing Model Object Lists

Defining and Editing User-defined Options

You can define your own subfile select options associated with a command string.
User-defined options must be alphabetic; numeric options are reserved for use by CA
2E. You can use these options on the Edit Model Object List panel and you can specify
them as the action to be performed on the Execute a Model Object List (YEXCMDLLST)
command.

A user-defined option consists of one or two characters to be associated with a
command string. This command string may contain embedded substitution variables
that see attributes of the model object list entry. The variables supported are the same
as those listed above for the Execute Model Object List (YEXCMDLLST) command.

User-defined options are contained in the User-Defined Options (QAUOOPT) file that is
shipped with Toolkit. The default names for the user option library, file, and member
are contained in your model profile and can be changed. Use PDM to create and edit
user-defined options in the file/member specified in the model profile.

Note: You should copy the User-Defined Options file to a user library (for example, your
model library) in order to preserve user-defined options when installing a new release

of Toolkit.

The following table lists examples of user-defined options:

Option Command

YC CHGCURLIB @YL

oD YDSPMDLOD OBJSGT(@Y®@)

YS DSPSPLF FILE(@YI) JOB(@VY!1)

JL DSPJOBLOG

SL SBMJOB ??CMD(SAVLIB LIB(&N))
WS WRKSBMJOB

DF YDOCMDLFUN MDLFILE('@YQ')

MDLFUN('@YN')

Note: You can use the / option on the Edit Model Object List panel as a temporary
user-defined selection option.

For more information on the / selection option, see the Command Line section in this
chapter.

74 Generating and Implementing Applications

Editing Model Object Lists

Executing a Model Object List

Press F10 from the Edit Model Object List panel to prompt the Execute a Model Object
List (YEXCMDLLST) command. This command causes a specified action to be performed
on each entry of the model object list. The action can either be a command or a
user-defined option.

Note: F10 is not available for the *ALLOBI list.

The substitution variables listed at the beginning of this section let you symbolically see
attributes of the model list entries and pass them to the command or user-option that is
to operate on the model object list.

For more information on the YEXCMDLLST command and its parameters, see the CA 2E
Command Reference Guide.

Chapter 1: Managing Model Objects 75

Editing Model Object Lists

Example

The following is a control language program showing a method of using model list
commands, substitution variables, and the YEXCMDLLST command. Note that this is for
illustration only and CA does not warrant usability or functionality of the program.

76 Generating and Implementing Applications

Editing Model Object Lists

PGM &MDLLST

I"T: Archive compile listings from given model list *
*Z. CRTCLPGM *
"H: Archive spooled files from compiles of madel objects *
{"H: referenced on named model object list *
"W: Note: the model library is assumed to be in the library list. *
"W: This CL source is supplied solely to illustrate use of *
/"W: some model object list commands. ca *
W doas notwarrant usability or functionality of the program. “f
[Feemm --- *f
*M: MAINTENANCE *
F*M: NONE *f
L e LR *f

DCL VAR(&MDLLST) TYPE(*CHAR) LEN(10) /* Model list */
DCL VAR(AMSGID) TYPE(*CHAR) LEN(7)

DCL VAR(&MSGDTA) TYPE(*CHAR) LEN(50)

DCL VAR(&MSGF) TYPE(*CHAR) LEN(10)

DCL VAR(AMSGFLIB) TYPE(*CHAR) LEN(10)

L — “
MONMSG (CPFO000 Y2EQOQD Y2V0000) EXEC(GOTO ERROR)
e *
"H: 1. Remove invalid list entries (no matching objects) and refresh %/
*H: the information on the list. Preserve the original list *f
I*H: by output to ancther list. Do not output entries for which y
"H: there is no malching model abject, *f

YCHKMDLLST MDLLST(&MDLLST) CHKTYPE('BYSGT) +
UPDLST(*RFSALL *RMVERR) OUTLST({YARCSPLFO1)

MONMSG MSGID(Y2E0328) [* Madel Object not found */

I"H: 2. Filter the list to remove objects which do not have *
"H: associated implementalion objects. *
YFLTMDLLET FILTER(*SELECT) +
MDLLST(YARCSPLFO1) GENATR(*GENOBJ)

Chapter 1: Managing Model Objects 77

Editing Model Object Lists

"H: 3. Archive the spooled files to file COMPILES in library M
*H: ARCHIVES. Remove entries for which the CPYSPLF 5
f*H: completed successiully, We assume errors were due to +f
*H: non-existent spool files. i
"H: Mote: the @Y substitution variable specifies to M
"H: subsltitute with the name of the Implementation object. "

YEXCMDLLST CMD(CPYSPLF FILE(@Y!)+
TOFILE(ARCHIVES/COMPILES) +
JOB(@Y!) TOMBR(@YIY) } MDLLST{YARCSFLFO1) +
ERRLVL{"NOMAX) UPDLST("RMVOK)

[*H: 4. Make a job list out of the remaining entries which did not 5
*H: have spooled files. *f
YCOVTMDLLST FEMMDLLST(&MDLLST) +
JOBLST(YARCSPLFO1) CETOPT(*"COMPILE)

*H: 5. Submit the job list for recompile. {Re-run this program *
H: when complete). &
YSBEMMDOLCRT JOBLST(YARCSPLFO1) GENLIB{*GEMLIE) +
SRCLIB(*GEMLIB)} JOBD{*MDLVAL) CRTJOBD{*JOED)

%)y

ENDPGM:

RETURN
e e e B B e B e e B e e
[*H: 99. ERROR HANDLING o
ERROR: RCVMSG MSGTYPE(*EXCP) MSGDTA(&MSGDTA)+
MSGID(&MSGID) MSGF(&MSGF) MSGFLIB(&MSGFLIB)
MONMSG MSGID(CPF0000)
SNDPGMMSG MSGID{&MSGID)
MSGF(&MSGFLIB/&MSGF) +
MSGDTA(&MSGDTA) MSGTYPE({*ESCAPE)
MONMSG MSGID(CPF0000)
GOTO CMDLBL(ENDPGM)
ENDPGM

emmmmmmmen ¥

78 Generating and Implementing Applications

Model Object Audit Information

Model Object Audit Information

CA 2E automatically maintains the following audit stamps in the All Objects list for each
model object:

m Creation date and time

m Change date and time

m Component change processing date and time
m Generation date and time

®m |mport date and time

m Check out date and time

For more information about the meaning of these audit stamps, see the appendix
“Change Control Facilities Reference Tables.”

Chapter 1: Managing Model Objects 79

Model Object Audit Information

Tracking Chandes to Model Objects

Whenever you change a model object,CA 2E updates the following information in the

model object's description in the All Model Objects list:

m Date and time the object was changed

m User profile of the developer making the change

m Type of change

®m |mpact processed indicator

To view change information, press F11 on the Edit Model Object List panel until the
change information as shown in the following panel displays:

Eft

F8=Reverse retrieve

Model . : SYMDL
List . . . MYMDLLST

Type options, press Enter.
1=Select 2=Fdit
5=Display 8=Details
11=Add to altermate list

3=Copy
9=Deselect
13=Parameters

Edit Hodel Dbject List

List MYMOLLST in SYMOL created by user JAR.

4=Delete entry
18=fction diagram
14=GEN batch

F9=Retrieve

F23=More options

--------- Changed---------- Impact
Object Date User Type Processed
Customer 08-15-97 RMG 0BJ *NO
Customer EX KED *NO
Customer NF KED *NO
Customer address KED *MO
Customer code KED *¥NO
Customer name a?-89-97 KED PUB #*NO
Customers by name B8-14-97 JAR PUB #NO
Hore. ..
Parameters or command
F3=Exit F4=Prompt F5=Refresh F6=Build F?=Position to

F24=More keys

Notes:

For a named model object list, the Change date is the date the list entry was
created and may not reflect the model object's current status. You can use F15
to update the model object list to contain current information from the All
Objects list; this invokes the Check a Model Object List (YCHKMDLLST)

command.

A model object is not considered to be changed in the following circumstances:

m The object is accessed as if to edit but no changes are actually made.

m The object has been copied from another model and has not been changed since
copying.

80 Generating and Implementing Applications

Model Object Audit Information

Determining the Change Type

The change type describes the way in which a change to a model object affects other
objects that use the changed object. Its purpose is to retain the integrity or functionality
of both model objects and implementation objects. It is used primarily during
component change processing, a process that ensures that the effect of a change is
distributed throughout the model.

CA 2E determines the change type using a shipped table that assigns a change type to
each position on a CA 2E panel where you can possibly change a model object.

For more information:
® On component change processing, see the Impact Analysis section in this chapter.

m On the shipped table of change types, see the appendix titled "Change Control
Facilities Reference Tables" in this guide.

Following is a list of change types and their definitions. Only private and public changes
invoke component change processing.

m Object Only (*OBJONLY)—A change that affects only the model object and does
not require regeneration. The change has no effect on model objects that use the
changed object.

= Generation Required (*GEN)—A change that affects only the model object and
requires that the changed object be regenerated to effect the change in its
implementation object. This change type is used only for access paths and external
functions. The change has no effect on model objects that use the changed object.

m Private (*PRIVATE)—A change to an object that requires regeneration of the
external functions and access paths that use it to effect the change in the
implementation objects.

For example, if you change a file on the Edit Database Relations panel, you need to
regenerate all external functions and access paths that use the file. Or, if you
change the action diagram of an internal function, you need to regenerate all
external functions that call it.

m Public (*PUBLIC)—A change to a model object that changes its interface with the
model objects that use it. This change also requires the following additional
processing:

1. Model objects that use it may need to be edited.
2. External functions and access paths that use it need to be regenerated.

For example, if you change the parameters of an internal function, you need to edit
all functions that call the changed function and then regenerate all external
functions that contain it.

The four change type values just presented were listed in order of increasing
significance:

Chapter 1: Managing Model Objects 81

Impact Analysis

Object Only
Generation Required

Private

Sl

Public

In other words, if you make multiple changes to an object, a higher-numbered change
overrides a lower-numbered change, and not vice versa. For example, a public change
overrides a private change, but a generation required change does not.

Impact Analysis

CA 2E's impact analysis facilities let you determine the impact of a proposed or actual
change to model objects in a CA 2E model and ensure the integrity of a set of changes
by identifying and including dependent objects. CA 2E impact analysis facilities include:

m Automatic update of audit stamps for various processes including creation, change,
copy, and generation.

m Commands and processes to identify model objects that will be affected by a
change, including a distinction between changes that:

- Also affect using objects and require editing.

- Areinternal to the object and require regeneration of using external functions
and access paths.

m Support for where-used and referenced objects.

m Expansion across model object types; for example:

m Field, to File, to Access Path, to Function.

m Recursive and multiple-level expansion.

m Filters and controls.

m Full integration with other CA 2E edit and generation facilities.

m Qutput either to a custom display or to model object lists.

82 Generating and Implementing Applications

Impact Analysis

Introduction

This discussion of CA 2E's impact analysis tools are divided into the following sections:

m Model Object Cross References—Discusses commands and interactive panels you
can use to determine usages and references for any model object.

m Simulating Changes to Model Objects—Shows how to simulate a change to a
model object to determine the impact of the change on other model objects.

m Component Change Processing—Discusses component change processing, an
automated impact analysis tool that determines how a change to a model object
affects other objects in the model and also records whether the affected objects
need to be edited or regenerated.

Model Object Cross Reference Facilities

Model object cross reference facilities consist of a set of commands and interactive
panels you can use to determine usages and references for any model object.

The process of determining either usages or references for a model object is known as
expansion. Using model cross references facilities, you can expand usages or references
for a model object across model object types to any depth.

Chapter 1: Managing Model Objects 83

Impact Analysis

Understanding Model Object Usages

The usages for a model object are all the model objects that use it (or all model objects
it is used by). In other words, usages for a given model object are the model objects that
require it in order to be complete and are external to the model object. A model
object's usages are sometimes referred to as using objects. The following diagram
shows the possible usages for each CA 2E model object type:

FLD FIL

y MSG

4

FUN ARR

CND

m Database fields (FLD) can be used by database files (FIL) or functions (FUN). In turn,
files can be used by access paths (ACP) and application areas (APP).

¥

For example:

m Access paths (ACP) can be used by messages (MSG), arrays (ARR), functions (FUN),
and other access paths (ACP).

Note: There is no direct relationship between fields (FLD) and access paths (ACP). In
other words, a change to a field does not directly affect the access paths that use it.

For more information on the note and the possible ways a given model object type can
be used by other model objects types, see the CA 2E Command Reference Guide.

84 Generating and Implementing Applications

Impact Analysis

Understanding Model Object References

The references for a model object are the model objects that are referenced by the
object, or that the original model object refers to internally. In other words, references
are the model objects the referring model object requires in order to be complete or to

exist. The following diagram shows the possible references for model object types.
Note that application areas (APP) have no references.

CND

A
APP
FLD FIL
— 1

A

| MSG
> ACP

—| FUN

L

For example:
m Database fields (FLD) can reference conditions (CND) or other fields (FLD).

m Functions (FUN) can reference messages (MSG), arrays (ARR), other functions

(FUN), fields (FLD), and access paths (ACP).

For a table of ways a model object can reference other model objects, see the
Command Reference Guide.

Chapter 1: Managing Model Objects 85

Impact Analysis

Interactive Impact Analysis

The model object cross reference facilities provide the following two interactive panels:
m Display Model Usages

m Display Model References

Both interactive panels provide a variety of controls and filters including recursion,
scope, selection, and positioning to help you analyze your model and determine the
impact of proposed changes.

Following is the header for the Display Model Usages panel showing the fields for
controlling the expansion of usages. One way to display this is to use option 91 from the
Edit Model Object List panel. The header for the Display Model References panel is
similar.

Display Model Usages

Ouwner Curren

Bottom
iand line F12

rint list

12/002

Note: Some of the following screenshots in this section do not show the Include Inactive
Code field.

The following discusses each of the controls and filters provided on this panel. Note that
the Object and Type fields are positioners; all other fields are record selectors. Also, all
values, including your changes, are carried forward each time you invoke this panel.

86 Generating and Implementing Applications

Impact Analysis

Using the Level Number

The Level number in the upper-right of the screen shows the number of panels
displayed to get to the current panel. In other words, it is the number of times you have
invoked the Display Model Usages and/or the Display Model References panel. You can
press F15 at any level to return to Level 001.

Using the Gen Objs and Total Counts

The Total specification in the upper-left of the screen shows the total number of model
objects displayed; the Gen objs specification shows the number of access paths and
external functions (model objects that require generation) included in the total. These
counts include all model objects expanded, including those you explicitly exclude from
the resulting display or report using selection options on this panel.

Using the Object and Type Positioner Specifications

Use the Object and Type specifications to position the objects displayed to a specified
model object, model object type, or both. These appear only when Reason is *FIRST or
*ENTRY. In this case, the model objects are displayed sorted by object name and type.

Note: *ENTRY is a special Reason code reserved for use by CA 2E.

Using the Include Inactive Code Specification

This field allows you to control the identification or suppression of objects that have
been commented out (deactivated) in an Action Diagram.

Include inactive code: *YES

When Include inactive code is set to *YES, the usage and reference expansion generally
behaves as it does at previous releases.

An additional field Wrn (Warning) in the subfile record indicates, with an '*' in the
second character of the field, when the corresponding Action Diagram call is deactivated
(commented out). Additionally, any object that appears in the usage/reference report
only by virtue of deactivated code is also marked with an '*'.

Note: The first character of the field Wrn (Warning) in the subfile record is currently
unused.

Chapter 1: Managing Model Objects 87

Impact Analysis

Include inactive code: *NO

When Include inactive code is set to *NO, the usage and reference expansion will
consider the deactivated (commented out) status of action diagram calls. This has 2
major effects:

1. Any deactivated action diagram calls within the reference/usage expansion of a
target object will be ignored.

2. No objects will be included by virtue of the deactivated call to the object. In other
words, the commented out function is not expanded.

3. No objects will be included by virtue of the deactivated call to the object. In other
words, the commented out function is not expanded.

Include inactive code: *IGN

When Include inactive code is set to *IGN, the usage and reference expansion behaves
exactly as it does at previous releases, and there is no differentiation between active
code and deactivated (commented out) code —i.e. all code is treated as active, even if it
is commented out.

The additional field Wrn (Warning) in the subfile record is not relevant when this option
is used.

Examples
The two examples in this section depict the new impact analysis for objects containing

deactivated (commented out) code. Consider the following scenario:

®m Function_A calls Function_B.
Function_A also calls Function_C.
Function_B calls Function_C.

m Function_B's call to Function_C is deactivated (commented out)
m Function Cis analyzed for usages.

Example 1—Include Inactive Code = *YES

*Scope . . *NOMAX Reason . . *ALL*

Opt Object Typ Atr Owner Lvl Reason WRN
Function C FUN RPG 17009615 000 *OBJECT
Function B FUN RPG 17009615 001 *ACTION
Function A FUN RPG 17009615 002 *ACTION
Function A FUN RPG 17009615 001 *ACTION

Note: Function_B's record has a '*' in character 2 of the WRN field, to indicate that
the action diagram call to Function_C has been deactivated (commented out).
Hence the Function_A (LVL 002) which calls Function_B) is also marked with a '*' in
the WRN field. However the Function_A (LVL 001) which calls Function_C directly) is
not marked with a '*' in the WRN field.

88 Generating and Implementing Applications

Impact Analysis

Example 2—Include Inactive Code = *NO

*Scope . . *NOMAX Reason . . *ALL*

Opt Object Typ Atr Owner Lvl Reason Wrn
Function C FUN RPG 17009615 000 *0BJECT
Function A FUN RPG 17009615 001 *ACTION

Note: Because Function_B's call to Function_C is deactivated (commented out)*
Function_B is not included in the usages report and not expanded, therefore
Function_A (LVL 002) is also not included.

Example 3-Include Inactive Code = *IGN

*Scope .. *NOMAX Reason . . *ALL*

Opt Object Typ Atr Owner Lvl Reason WRN
Function_C FUN RPG 17009615 000 *OBJECT
Function_B FUN RPG 17009615 001 *ACTION
Function_A FUN RPG 17009615 002 *ACTION
Function_A FUN RPG 17009615 001 *ACTION

Note: These are the same results that you would see with 8.1 SP2. They also look
the same as with Include Inactive Code=*YES but the WRN field is not used, since
there is no differentiation between active and deactivated code.

Using the Exclude System Objects and Current Objects Only Specifi

Using the Scope Specification

The Scope specification lets you limit or control the number of levels or depth of the
expansion; in other words, it indicates when the expansion process is to stop. The
default is *NEXT when you access the panel using subfile selection options; the default
is *NOMAX if you use a command to access the panel.

The more you can limit the expansion, the faster the process and the easier to interpret
the results. Specifying Scope is especially useful when expanding low-level model
objects or model objects that are used frequently by other model objects; for example,
conditions (CND), fields (FLD), files (FIL), and access paths (ACP). It is not as critical to
limit expansions for functions (FUN) and messages (MSG).

Following are the possible values for Scope:

Value Meaning
*NOMAX No limit on the expansion. The maximum level is 999.
*NEXT Expand only to the next level. This allows you to step through

the expansion one level at a time.

*GENFUN Expand objects up to and including the first external function.
Applies only to usages.

Chapter 1: Managing Model Objects 89

Impact Analysis

Value Meaning

*GENOB) Expand objects up to and including the first object requiring
generation; for example, an external function or access path.
Applies only to usages.

*EXTFUN Expand objects up to and including the first external function
after the first level. For references, this value is intended for
use only with functions. It is a combination of Scope and Filter
since only functions are included.

*INTFUN Expand objects up to and including the first internal function
after the first level. For references, this value is intended for
use only with functions. It is a combination of Scope and Filter
since only functions are included.

Object type Expand objects until an object of the specified type is
encountered. For example, *ACP, *FUN. Use this only when
appropriate for the object type you are investigating. Applies
only to usages.

Using the Scope Specification

The Scope specification lets you limit or control the number of levels or depth of the
expansion; in other words, it indicates when the expansion process is to stop. The
default is *NEXT when you access the panel using subfile selection options; the default
is *NOMAX if you use a command to access the panel.

The more you can limit the expansion, the faster the process and the easier to interpret
the results. Specifying Scope is especially useful when expanding low-level model
objects or model objects that are used frequently by other model objects; for example,
conditions (CND), fields (FLD), files (FIL), and access paths (ACP). It is not as critical to
limit expansions for functions (FUN) and messages (MSG).

Following are the possible values for Scope:

Value Meaning
*NOMAX No limit on the expansion. The maximum level is 999.
*NEXT Expand only to the next level. This allows you to step through

the expansion one level at a time.

*GENFUN Expand objects up to and including the first external function.
Applies only to usages.

90 Generating and Implementing Applications

Impact Analysis

Value

Meaning

*GENOBJ

Expand objects up to and including the first object requiring
generation; for example, an external function or access path.
Applies only to usages.

*EXTFUN

Expand objects up to and including the first external function
after the first level. For references, this value is intended for
use only with functions. It is a combination of Scope and Filter
since only functions are included.

*INTFUN

Expand objects up to and including the first internal function
after the first level. For references, this value is intended for
use only with functions. It is a combination of Scope and Filter
since only functions are included.

Object type

Expand objects until an object of the specified type is
encountered. For example, *ACP, *FUN. Use this only when
appropriate for the object type you are investigating. Applies
only to usages.

Using the Filter Specification

The Filter specification lets you limit the type of model objects displayed; it does not
affect which objects are included in the expansion. You can specify this before beginning
the expansion or afterward to help you analyze the results of the expansion.

Following are the possible values for Filter:

Value

Meaning

*ANY

Select all types of model objects; no filtering is done.
This is the default.

*DBFFUN

Select only database functions.

*ERR

Select only error usages; i.e., usages by deleted objects.

*EXTFUN

Select only external functions.

*GENFUN

Select only generatable functions.

*GENOBIJ

Select only generatable objects; for example, access
paths and external functions.

*INTFUN

Select only internal functions.

Object type

Select only model objects of the specified type; for
example, *ACP, *FUN.

Chapter 1: Managing Model Objects 91

Impact Analysis

Using the Reason Specification

Using the Reason code you can display just those model objects that were included on
the display for a specified reason. The Reason code indicates the way in which the
displayed object is used by, or referenced by, the expanded model object. For example,
if you expand usages for a field (FLD), a reason of *FILENT for a file (FIL) indicates that
the field is an entry attribute of the file.

Each time you change the Reason field, usages or references are expanded again for the
original model object.

Following are the possible values for Reason:

Value Meaning

*FIRST Select just the first using or referenced object. In this case, the
model objects are sorted and displayed by object name and
type. This is the default.

*ALL Include all usages or references and display the Reason code
for each. In this case the model objects are displayed in the
order in which they are encountered by the expansion process.
As a result, the level numbers shown reflect the relationships
between the listed objects. On the corresponding printed
report the levels are shown indented to highlight the
relationships more clearly.

Reason code Select just those model objects that use or reference the
original model object in the way indicated by the value
specified. Two examples follow this table.

Following are two examples of specific Reason codes:

m Suppose you have expanded usages for a field. Enter *ACTION in the Reason field to
display just those functions where the field is used in an action diagram action.

m Suppose you have expanded references for a function. Enter *BASED in the Reason

field to display the access path on which the function is based.

For more information on the Reason specification and a list of all Reason values, see the
CA 2E Command Reference Guide.

92 Generating and Implementing Applications

Impact Analysis

Working with Usages Interactively

You can work with usages interactively from the Edit Model Object List panel in the
following ways:

m Use option 91 to expand usages for a selected model object. The Display Model
Usages panel displays showing usages for the selected model object. Note that the
Scope field is set to *NEXT.

Note: This is the recommended method to work with usages interactively.

m Press F20 to prompt the Display Model Usages (YDSPMDLUSG) command for the
named model object list you are editing. In this case usages are not expanded for
the model list entries before the Display Model Usages panel displays. Instead, the
list is converted as explained in step 1 of the following example. Note that the
Scope field is set to *NOMAX.

Chapter 1: Managing Model Objects 93

Impact Analysis

Example

This example demonstrates the Display Model Usage utility and the use of the Scope
specification. The concepts shown also apply to references.

1.

From the Edit Model List panel press F20 to display usages. The Display Model
Usages command is prompted from which you can specify whether the output is to
be displayed (*), printed (*PRINT), or copied to a model object list (*MDLLST).

Note: Although this is not the recommended method to work with usages
interactively, it is included in this example to explain the converted list displayed on
the first panel. Starting at step 2, this example shows both methods of working with
usages.

If you choose to display usages, begins by displaying the contents of the list you
specified, updated to reflect the current state of each model object from *ALLOBIJ.
This is indicated by *ENTRY in the Reason column for each model object. The name
of the originating model object list is shown in the Converted List field in the
upper-left of the screen. Note that the original list is not changed by this process.

Gen objs : 17 Display Hodel Usages Model . : SYMDL
Total . : 41 Level . : 001
Converted list . . : JAR
Exclude system objs . *YES

Scope . . *NOMAX Filter . . *ANY Current objects only . *YES
Object . . Type . . ___ Reason . . *ENTRY
2=Edit 3=Copy 4=Delete object 5=Display 8=Details 10=Action diagram
13=Parms 14=GEN batch 15=BEN interactive 16=Y2CALL
Opt Object Typ At Owner Lvl Reason

Customer FIL REF 080 *ENTRY
__ Employee FIL REF 0OE *EMTRY
__ Order FIL REF 008 =*=ENTRY
__ Order Detail FIL CPT 006 *ENTRY
__ Product FIL REF DOB *ENTRY
__ Compute discount FUN RPG Product 00E =*=ENTRY
__ Currency ext -> int FUN USR *Field attribute types 00E *ENTRY
__ Currency int -> ext FUN USR *tield attribute types BOE *ENTRY
_ Edit a Customer FUN RPG Customer POE =ENTRY

More. ..

F3=Exit F5=Refresh F9?=Command line F12=Previous F15=Top level
F16=Build model list F2i=Print list F22=File locks F23=More options

94 Generating and Implementing Applications

Impact Analysis

The converted list of model objects displayed differs from the contents of the
original model object list in the following ways:

By default, only model objects that are currently active in the model are
displayed. Non-current versions are not displayed. See the Working with
Versions of Functions and Messages section in this chapter for more
information on the current version.

Details from the All Objects list are displayed for each model object; for
example, if the name of the actual model object differs from that of the model
object list entry, the model object name is displayed. In other words, the
display reflects the current state of the model.

Model objects that appear on the model object list, but have been deleted
from the model, are not displayed. Any list entries that see the deleted objects
are ignored.

Note: Your model object list is not changed by this operation.

You can now use the selection options on any of the model objects displayed. To
see additional options, press F23.

To display all usages for the internal function, Retrieve Customer, type selection
option 91 against Employee and press Enter. The following panel displays:

Gen objs 26 Display Model Usages Model . : SYMOL
Total . : 28 Level . : 002
Object . : Employee
Type . . : FIL Attribute . . : REF Exclude system objs . #YES
Scope . . *NOMAX Filter . . ®»ANY Current objects only . =*YES
Object . . Type . . ___ Reason . . #FIRST
2=Edit 3=Copy 4=Delete object 5=0Display B=Details 1B=Action diagram
13=Parms 14=GEN batch 15=GEN interactive 16=Y2CALL
Opt Object Typ Atr Owner Lvl Reason
Employee FIL REF 00B *0BJECT
__ DOrder FIL REF 081 *REFFIL
__ DOrder Detail FIL CPT 082 *REFFIL
__ Change Employee FUN DBF Employee 082 *FUNPAR
__ Change Order FUN DBF Order DB2 =REFACP
__ Change Order Detail FUN DEF Order Detail PE3 *REFACP
__ Create Employee FUN DBF Employee 082 *FUNPAR
__ Create Order FUN DBF Order Dp2 *REFACP
_ Create Order Detail FUN DBF Order Detail PR3 *REFACP
Hote...
F3=Exit Fo=Refresh F9=Command line Fl12=Previous F15=Top level
F16=Build model list F21=Prinmt list F22=File locks F23=More options

Chapter 1: Managing Model Objects 95

Impact Analysis

Note the values displayed in the Lvl and Reason columns for each object and how
they relate to the diagram that follows. Lvl 000 indicates the object whose usages
are shown. This object is used by the Lvl 001 objects, which in turn are used by the
Lvl 002 objects. The Lvl 000 object is included so you can edit the originating object
as well as the using objects.

When a model object is used by many other model objects, it is not always easy to
determine the usage structure when Scope is set to *NOMAX, which displays all
levels of usages. Instead, you can set Scope to *NEXT to step through the usage
expansion one level and one model object at a time.

Press F15 to return to the Level 001 panel. Change the Scope option to *NEXT and
press Enter. Next, enter 91 for Employee and press Enter.

The following panel displays.

Note: From here on the process shown in this example is the same for both
methods of working interactively with usages; namely, whether you pressed F20 or
typed selection option 91 against a model object.

Ben abjs 4 Display Hodel Usages Model . : 34MOL

Teta. . 8 Level . @ 222

Object . ¢ Emploves

Tepe . .+ FIL Atbribuie . . : E- Exolude swstien chis . =¢E8

Scopa . . SHEHRT Filter . . =AY Current objec:s enlw . =YES

Object . . Tepe . . Reason . . ¥ 1HST

2=Ecit Iopp d=lelete cbject S=Display Z=Oetails 10=Nckizn diagran

153=Farns 14=GEH batch 15=GEH intersctive 16=Y22AL

Opl Object Typ Ablr Owrer Lvl Reasan
Employes FIL B=F e =0B ECT

_ Order FIL B=F 0L =REFFIL

_ Physical fila ACP P4 Employes O0@- =3A5ED

__ Retriswal index ACF RTYW Employee BE- =3A5E0

__ RED by Evplopes -ane ACP RSO Employes 00- =3AEED

_ Updai= Lredex ACP UPD Emplowes go0. =3RSED

Hotiom
Fi=kxit toaHelresh FY-Dommard _inz F1Z-Prewicus Fib= op lewel
[16=0u-ld madel list [2L=Print l-=t [22=lile locks [20=M>r= opt ions

96 Generating and Implementing Applications

Impact Analysis

This panel shows only the Lvl 001 model objects that use the Employee file.

4. Enter 91 for the Order file to expand usages to the next level for just that model
object. The following panel displays:

Gen cbjs !] Display Hodel Usages Model . @ SYMDL
Total | ! T Level . : QB2
Object . ¢ Order
Twpe . . ¢ FIL Attribute . . : EEF Exolude swstem cbjs . BYES
Scope . . AMDM Filter . . ®ANY Current cbjects only . BYES
Ob ject Twpe . . ___ Reason sF1RS
2=Edit 3=Copy 4=Delete object S=Display B=Details LO=Action diagram
13=Parrs 14=GEN batch L5=GEN interactive Le=Y2CALL
Opt Object Tep Att Owner Lvl Reason
i Oreer FIL REF 000 =00JECT
__ [Order Detail FIL CPT nol =REFFTL
_ Hew Orders Only ACP RTV Order 001 =BASED
__ DOrder and Details ACP SPH Order Q0L =BASED
__ Physical file ACP PHY Order G0L =BASED
_ Retrieval index ACP RTY Order B0L =BASED
__ Upcate index AGP UPD Order 0oL =BASED

Bol lom
F3=Exit FS=Refresh FP=Command line Fl2sPrevious F15=Top level
Fle=Build model list F2I=Print list F22=File locks Fi3=Hore options

5. To expand usages for ‘RSQ by Employee name’ access path instead, press F12 to
return to panel Level 002 and enter 91 against that object. The following panel
displays, indicating that the ‘RSQ by Employee name’ access path is used only by
the ‘Display Employees by Name’ function.

Gen objs : 2 Display Model Usages Model . : SYMDL
Total 2 Level . ! 003
Object . : RSG by Employee name Owner . : Employee
Type . . ¢+ ACP Attribute . . : RSQ Exclude system objs . *YES
Scope . . AMNEX Filter . . *AMY Curtent objects only . #*YES
Object . . Type . . ___ Reason . . *FIRST
2=Edit 3=Copy 4=Delete object 5=Display 8=Details 1B=Action diagram
13=Parms 14=GEN batch 15=GEN interactive 16=Y2CALL
Opt Object Typ AtT Owner Lvl Reason
Display Emplovees by Name FUN RPG Emplovee 001 =*BASED
RSQ by Emplovee name ACF RSO Emplovee 008 ®0BJECT
Bottom
F3=Exit F5=Refresh F%=Command line F12=Previous F15=Top level
F16=Build model list F2i=Print list F22=File locks F23=More options

Chapter 1: Managing Model Objects 97

Impact Analysis

Working with References Interactively

You can work with model object references interactively from the Edit Model Object List

panel in the following ways:

m Type 81 against a model object to expand its references. The Display Model

References panel displays references for the selected model object. The Scope field

is set to *NEXT.

Note: This is the recommended method to work with references interactively.

m Press F22 to prompt the Display Model References (YDSPMDLREF) command for the
named model object list you are editing. In this case references are not expanded
for the model list entries before the Display Model References panel displays.
Instead, the list is redisplayed with all model objects updated based on information
in the All Objects list. The Scope field is set to *NOMAX.

For more information on the panel displayed as a result of using F22, see the Working

with Usages Interactively section in this chapter.

Example

You can use the Display Model References panel to solve problems in program

applications. Suppose you only know the implementation name of the program in which

an error occurred.

Use the Edit Model Object List panel over the All Objects list (*ALLOBJ). Press F7 to
display the positioning windows. Press F11 until the Position by Implementation

name window displays:

Parameters or command

status
status
status

Edit Model Object List
Model H Position by Implementation name
List .
i Implementation name . UUHJEEE!__

Type opti
1=Select :
S=Display :
11=Add to : F1ll=Alternate view F1l2=Cancel
Opt 1
_ Edit Customer FUN RPG Customer
_ Edit Employee FUN RPG Employee
_ Employee FIL REF
_ Existing CND VAL Customer
o Former CND VAL Customer
_ New CND VAL Customer
_ Order FIL REF

Hore. ..

F3=Exit F4=Prompt F5=Refresh F&e=Build
F8=Reverse tetrieve F%=Retrieve FZ3=More

options

F?=Position to
F24=More keys

98 Generating and Implementing Applications

Impact Analysis

Enter the implementation name to position the All Objects list (*ALLOBJ) to the
function in which the error occurred. Enter selection option 81 for the function to
display references for that function. The following panel displays:

Gen objs 2 Display Hodel References Model . : SYMDL
Total . ¢ 46 Level . : 0B1
Object . : Edit Customer Owner . ! Customer
Type . . ¢+ FUN pttribute . . @ RPG Exclude swstem objs . #YES
Scope . . #NEXT Filter . . ®ANY Current objects only . #YES
Object . . Type . . __ Reason . . *FIRST
2=Edit 3=Copy 4=Delete object 5=Display 8=Details 1B0=Action diagram
13=Parms 14=GEN batch 15=GEN interactive 16=Y2CALL
Opt Object Typ Atr Dwner Lvl Reason
Customer FIL REF 0B1 *REFFIL
__ Change Customer FUN DBF Customer 0ol =DFTDBF
__ Create Customer FUN DBF Customer 0Bl *DFTDBF
__ Delete Customer FUN DBF Customer 0ol *DFTDBF
__ Edit Customer FUN RPG Customer 000 *0BJECT
_ Retrieval index ACP RTV Customesr 0o1 xBASED
__ Customer address FLD TRT 001 *FUNPDT
__ Customer city FLD TWRT 001 =DEVENT
__ Customer code FLD CDE 001 =FUNPDT
Hore. ..
F3=Exit Fb5=Refresh F9=Command line F12=Previous F15=Top level
F16=Build model list F21=Print list F22=File locks F23=More options

1. Onthe Display Model References panel:

a. Type *EXTFUN for the Scope option to limit the expansion to include only
referenced functions down to and including the first external function call.

b. Type *ACTION for the Reason option to include only action diagram references.
c. PressEnter.

The expanded references are all the functions that comprise the program in which
the error occurred. This is a useful starting place for the developers whose task it is
to fix the problem.

2. Press F16 to build a model object list containing a list of the functions displayed on
your screen. Assign a name to the list that will be meaningful to the development
staff.

3. To produce a printed copy of the list use one of the following methods:

m Press F21 to produce a report that indents the reference levels in order to
highlight the relationships among the functions more clearly.

m Press F9 for a command line and enter the following command to produce a
keyed report.
YDOCMDLLST MDLLST(list-name)

The development staff can use either the online model object list or the printed
copy as an aid to solving the problem.

Chapter 1: Managing Model Objects 99

Impact Analysis

Accessing Model Object Cross Reference Facilities

Following is a list of ways you can access model object usages and model object
references facilities:

From the Edit Model Object List panel or the Edit Model List for Copy (YEDTCPYLST)
panel, use the following options to display usages or references for any model
object displayed:

m 81=References by Object
m 82=References by Owner
m 91=Usages by Object
m 92=Usages by Owner

Use the following function keys from the Edit Model List (YEDTMDLLST) panel to
display usages or references for a named model object list.

m F20=Usages
m F22=References

You will be prompted to enter the type of output you want: display, print, or to
another model object list.

Use the Display Model Object Usages (YDSPMDLUSG) or the Display Model Object
References (YDSPMDLREF) command to display, print, or expand usages or
references for a named model object list. You can use these commands
interactively or in batch. If using the command interactively, you can then use
options 81, 82, 91, and 92.

Use option U on various panels; such as, Edit File Details and Edit Function Details
to display usages for a model object. This displays the Display Model Usages panel
from which you can use options 81, 82, 91, and 92.

100 Generating and Implementing Applications

Impact Analysis

Working with Model Object Cross References in Batch

Following are examples of using the Display Model Usages (YDSPMDLUSG) and the
Display Model References (YDSPMDLREF) commands in batch:

m To add all usages for all objects in model object list WRKLST (in library MYMDL) to
model object list OUTLST, including usages up to and including the first external
function, use:

YDSPMDLUSG MDDLST(MYMDL/WRKLST) +
SCOPE(*EXTFUN) OUTPUT(*MDLLST) +
OUTMDLLST(OUTLST) OUTLSTUPD(*ADD)

m To print a list of access paths and external functions that are referenced by model

objects existing on model object list MYLIST, use:

YDSPMDLREF MDLLST(*MDLLIB/MYLIST)+
OUTPUT(*PRINT) FILTER(*GENOB))

Chapter 1: Managing Model Objects 101

Impact Analysis

Simulating Changes to Model Objects

Simulating a change to a model object lets you see how a proposed change impacts
other objects in the model before you actually make the change. Simulation identifies
which other model objects need to be edited or generated as a result of the proposed
change and is an important tool for planning model changes.

When you change a model object, the only objects that can be affected by the change
are those that use the changed object. As a result, a major part of simulating a change
consists of expanding usages for the object to be changed.

Note: The process described here is the same as that used during component change
processing when you actually change a model object. However, instead of just
displaying the results of the change, component change processing updates the All
Objects list for the model objects affected by the change to indicate the additional
processing needed.

For more information on component change processing, see the Component Change
Processing section in this chapter.

To simulate a change to a model object, follow these steps.

1. Determine whether the proposed change is a private or public change to the model
object.

a. A private change implies that access paths and external functions using the
changed object be regenerated in order to implement the change in the
application system objects.

b. A public change implies that first level objects using the changed object may
need to be edited and that access paths and external functions using the
changed object need to be edited and/or regenerated.

The type of change depends on which attributes of a model object are changed and
is derived internally by CA 2E.

For more information:

m On all possible changes and the associated change type for each, see the
appendix titled "Change Control Facilities Reference Tables" in this guide.

m On change type, see the Model Object Audit Information section in this
chapter.

2. To simulate a private change, enter option 94 for the object you want to change on
either the Display Model Usages panel or the Display Model References panel.

In this case,CA 2E expands usages for the object to be changed up to the first
external function in each sequence of usages. Suppose the object to be changed is
the Change Order Detail function.

The following panel displays:

102 Generating and Implementing Applications

Impact Analysis

Gen objs ! 2 Display Hodel Usages Model 1 SYMDOL
Total H 2 Level 1 002
Object . : Change Order Detail Owner . : Order Detail

Type . . : FUN Attribute . . : DBF Exclude system objs . %YES
Scope . . *GEMFUN Filter . . =ANY Current objects only = *YES

2=Edit 3=Copy 4=Delete object 5=Display 8=Details 10=Action diagram

13=Parms 14=GEN batch 15=GEN interactive 16=Y2CALL
Opt Object Typ Atr Owner Lvl Chg Action
B_ Enter Order Details FUN RPG Order Detail 201 PVT GEN
Order entry clerk FUM RPG Order g01 PVT GEN
Bottom
F3=Exit F5=Refresh F9%=Command line F12=Previous F15=Top level
F1l6=Build model list F21=Print list F22=File locks F23=More options

Warning: Simulation of a *PVYT change to object 'Change Order Detail'.

Note that only those objects that need to be generated to implement the proposed
change are displayed, not all usages. GEN in the Action column indicates that the
model object will need to be regenerated when you make the proposed change.

To simulate a public change, enter option 95 for the object you want to change on
either the Display Model Usages panel or the Display Model References panel.

As for a private change,CA 2E expands usages for the object to be changed up to
the first external function in each sequence of usages. In addition, it identifies
objects that need to be edited as a result of the proposed change. Suppose the
object to be changed is the Change Order Detail function.

The following panel displays:

Gen objs 2 Display Hodel Usages Model . : SYMOL

Total . 2 Level . : 6082

Objeoct . : Change Order Detail Owner . ¢ Order Detail

Type . . FUN Attribute . . : DBF Exclude system objs . #YES

Scope . . *BENFUN Filter . . xANY Current objects only . #*YES

2=Edit 3=Copy 4=Delete object 5=Display 8=Details 10=Action diagram

13=Parms 14=GEN batch 15=GEN interactive 16=Y2CALL

Opt Object Typ Atr Owner Lvl Chg Action

I_ Enter Order Details FUN RPG Order Detail Bal PVT EDT
Order entry clerk FUN RPG Order 6a1 PVYT EDT

Bot tom

F3=Exit F5=Refresh F9=Command line Fl2=Previous F15=Top level

F16=Build model list F21=Print list F22=File locks F23=Hore opticns

Warning: Simulation of a *PUB change to object 'Change Order Detail'.

Chapter 1: Managing Model Objects 103

Impact Analysis

Note that only those objects that need to be edited or generated to implement the
proposed change are displayed, not all usages. EDT and GEN in the Action column
indicate that the corresponding model object needs to be either edited or
regenerated when you make the proposed change.

3. Press F16 to build a model object list containing a list of the model objects impacted
by your proposed change. A window displays where you specify a model object list
name and whether to replace or add entries if the model list you specify already
exists. If the model list does not exist,CA 2E automatically creates it.

Note: The entries of a model object list always reflect the current state of model objects
at the time the list is created unless you refresh them. As a result, the Action required
field for entries of the new list will reflect the results of a previous run of component
change processing and not the results of the simulation. To get a permanent record of
the simulation, press F21 to print the results.

Component Change Processing

Component change processing is an automated impact analysis tool that determines
how a change to a model object affects other objects in the model and records whether
the affected objects need to be edited or regenerated. Objects that use the changed
object are referred to as using objects; the changed object is considered to be a
component of its using objects.

Component change processing is optional and can be run interactively, by request, or in
batch. You control it using the model profile and the Component Change Processing
(YCMPCHG) model value.

The simulation options available on the Display Model Usages and Display Model
References panels simulate the actions of component change processing. You can
experiment with these options to become familiar with the process.

104 Generating and Implementing Applications

Impact Analysis

Understanding Component Change Processing

When you change a model object, CA 2E records the type of the change in the All
Objects list for the model object. Since the only model objects that can be affected by
the change are those that use the changed object, a major part of component change
processing consists of expanding usages for the changed object.

If the change was a public or private change, CA 2E expands usages for the changed
object, identifies the using objects affected by the change, and updates the detail for
the affected using objects in the All Objects list to indicate whether they need to be
edited or regenerated.

Specifically, CA 2E determines the impact of a change on other model objects according
to the following criteria:

m Object type of the changed object

m Change type of the changed object

m Object type of the using object

m Level of usage at which the using object was encountered.

For more information on change type, see the Model Object Audit Information section
in this chapter.

Chapter 1: Managing Model Objects 105

Impact Analysis

Impact on the All Objects List

Following is the information CA 2E sets and maintains in the All Objects list as part of
component change processing:

Impact processed indicator—Set for the changed object and indicates whether
component change processing has been run for the last change to the object. In
other words, it indicates whether the change is reflected on using objects.

Component change processed date and time —This has two possible meanings:
- — For achanged object, this is the same as its change date and time.

- — For an object that uses a changed object, this is the date and time
component change processing was run for the change.

Action required indicator—This indicates whether the using object needs to be
edited (EDT) or regenerated (GEN). Note that:

- - For GEN, if the using object is an access path or external function, CA
2E automatically resets this indicator to blank when the object is
successfully regenerated.

- — For EDT, if the object is an access path or external function, CA 2E
automatically resets this indicator to GEN when you edit it. For all other
model objects, CA 2E resets this indicator to blank when you edit the
object.

After you perform the necessary editing, CA 2E performs component change processing
again to ensure that the new change is reflected in regenerated and any newly created
using objects. As a result, it is recommended that you edit the model object at level 001
first and then proceed upward to edit model objects at continually higher usage levels.
This prevents a model object from being flagged EDT more than once. At the end of the
process, all objects that require regeneration will be flagged GEN.

Change type—CA 2E does not reset a model object's Change type as a result of
running component change processing for the change. It is not reset until you
change the model object again. As a result, the Change type always reflects the
most recent change to the model object.

You can use the information recorded by component change processing to build model
object lists and to create utilities to automate the required additional processing and to
help you administer your model.

106 Generating and Implementing Applications

Impact Analysis

Examples

Since component change processing can run interactively as you make changes or can
be postponed, you can check the Impact processed indicator to determine whether you
need to run the Apply Component Changes (YAPYCMPCHG) command.

You can use the Filter Model Object List (YFLTMDLLST) command over the All Objects list
(*ALLOB)), specifying an output list, to build a model object list of just those objects that
require editing. You can then give the list to the programming staff to make the required
changes.

Similarly, you can build a list of the objects that need to be regenerated, convert the list
to a job list using the Convert Model List to Job List (YCVTMDLLST) command, and use
the result as input to the Submit Model Create Requests (YSBMMDLCRT) command.

For more information and an example of a Command Language program that uses
component change processing, see the Running Component Change Processing in Batch
section in this chapter.

Viewing the Results

You can view the results of component change processing or check what additional
processing is required using the Edit Model Object List panel over the All Objects list
(*ALLOB)).

m Press F11 to display alternate views. For each model object you can view the
Component change date and time, the Required action indicator (GEN or EDT), and
the Impact processed indicator.

m Enter option 8 for any model object to view its current detail on the All Objects list.

Simulating a Change

You can also use the simulation options (94 and 95) on the Display Model References
and Display Model Usages panels to view the results of component change processing.
These options let you see the impact of a proposed private or public change on other
objects in the model before you actually make the change. The resulting display
identifies which other model objects need to be edited or generated as a result of the
proposed change.

For more information on simulating component change processing, see the Impact
Analysis section and the Simulating Changes to Model Objects section, both in this
chapter.

Chapter 1: Managing Model Objects 107

Impact Analysis

Setting the YCMPCHG Model Value and the Model Profile

Component change processing is controlled by a combination of details stored on the
model profile for the individual developer and the Component Change Processing
(YCMPCHG) model value.

Component Change Processing Model Value

The processing of component changes is primarily controlled by the Component Change
Processing (YCMPCHG) model value. It can have one of the following values:

m *UNLIMITED —This value lets all developers control the setting of the Component
change processing option in their model profile.

m *LIMITED—This value indicates that only developers with *DSNR authority can
change the Component change processing option in their model profile.

m *GEN—This value causes component change processing to be invoked
automatically during each YGENSRC job submitted for a given model. It ensures that
changes are kept up-to-date without incurring the overhead associated with
running component change processing interactively. This value also gives *LIMITED
capability to change the model profile option.

m *NONE—This value turns off automatic component change processing, both
interactive and as a result of YGENSRC jobs. This value also gives *LIMITED
capability to change the model profile option.

= Note: To run component change processing in this case you need to use the Apply
Component Changes (YAPYCMPCHG) command.

Model Profile Settings

The Component change processing option on the model profile controls whether
component change processing runs interactively and automatically as you make
changes. Its value has no effect if the YCMPCHG model value is set to *NONE. The
possible values are:

m Y—This value turns interactive component change processing on. Using objects are
flagged when a model object is changed.

m N—This value turns interactive component change processing off. Using objects are
not flagged when a model object is changed. You can use the YAPYCMPCHG
command later to apply component changes throughout the model.

For more information on the model profile in general, see the Model Profile section in
this chapter.

108 Generating and Implementing Applications

Impact Analysis

Using These Settings to Administer Your Model

Because component change processing requires expansion of usages, it can be costly in
processing time. This is especially true when designers (*DSNR) use it interactively. An
administrator can use the YCMPCHG model value and the model profile as follows to
prevent certain developers from running component change processing interactively,
and as a result, minimize interactive overhead:

m Setthe YCMPCHG model value to *LIMITED.
m For *DSNRs, set the model profile option to N; for *PGMRs, setitto Y.

Note: If you do not run component change processing interactively, be sure to run the
Apply Component Changes (YAPYCMPCHG) command regularly; for example, overnight
in batch. This keeps the model changes to be processed down to a manageable level.

When a model object is changed and component change processing is not performed
immediately, CA 2E sets the Impact processed indicator to N to indicate this. You can
check this indicator to decide when to run the YAPYCMPCHG command by filtering the
All Objects list (*ALLOBJ) to determine which and how many objects require processing.

Chapter 1: Managing Model Objects 109

Impact Analysis

Performance Considerations

The amount of overhead incurred by running component change processing
interactively generally depends on:

m The size and complexity of the model.

m The type of editing to be done.

For example, a *DSNR working in a large model negatively affects the system when
running component change processing interactively. On the other hand, a *PGMR
making changes in a relatively isolated area of the model could effectively use
interactive component change processing to quickly identify model objects affected by
his changes. Both types of users can use the simulation options to gauge the effect of
changes.

Experience will show the impact of running component change processing interactively;
however, following are a few suggestions for estimating the likely effect. The amount of
interactive overhead depends on:

m The type of the model object you are editing. Changes to low level model objects
such as, conditions, fields, and files increase interactive overhead because the
expansion process includes more objects.

m The significance of the object in the model. For example, an important internal
function that is used by many other internal functions may cause a large number of
objects to be expanded and as a result increase interactive overhead.

m The frequency with which you apply component changes. Running component
change processing frequently minimizes the amount of work required each time it
is run.

110 Generating and Implementing Applications

Impact Analysis

Methods of Running Component Changde Processing

Following is a list of the ways you can run component change processing.

Interactively and automatically as you make changes. This occurs when the
YCMPCHG model value is set to a value other than *NONE, and the Component
change processing option on the model profile is set to Y.

Using the Apply Component Changes (YAPYCMPCHG) command. If you do not run
component change processing interactively, it is useful to run this command in
batch to ensure that the effects of changes have been distributed throughout the
model.

The YAPYCMPCHG command requires *PGMR capability. By default you can run this
command only within an interactive or batch program to prevent excessive use of
interactive resources. You can change this default using the Change Command
(CHGCMD) command.

By request, using the simulation options on either of the following commands:
m Display Model Usages (YDSPMDLUSG)
m Display Model References (YDSPMDLREF)

This is useful for seeing how a proposed change will affect other model objects.
Results are only displayed; the All Objects list for the model objects affected by the
change is not updated.

Using the Submit Model Creates (YSBMMDLCRT) command or interactive
generation. This occurs automatically if the YCMPCHG model value is set to *GEN.

Chapter 1: Managing Model Objects 111

Impact Analysis

Running Component Changde Processing in Batch

You can use the following series of commands to form part of a nightly process to
prepare a model for the following day. You can also use these commands interactively
to generate lists and process the required changes.

1.
2.

YSNCMDL—Optionally included to ensure that the model is synchronized.

YAPYCMPCHG—Ensures all changes to model objects are reflected on the objects
that use the changed objects.

YFLTMDLLST—Run this over the All Objects list (*ALLOBJ), select model objects
having the Required action indicator set to *EDT, and output to the EDTLST model
list for programmers to edit the following day using YEDTMDLLST.

YFLTMDLLST—Run this over the All Objects list (*ALLOBJ), select model objects
having the Required action indicator set to *GEN, and output to the GENLST model
list.

YCVTMDLLST—Run this over the GENLST model object list to prepare a job list to
generate objects that require generation as a result of a change to a component
object.

YSBMMDLCRT—Specify the job list created in the previous step to generate and
compile changed objects.

YDOCMDLLST—Use to document the EDTLST and GENLST model object lists for
administrative purposes.

For more information on model list commands, see the Commands to Manipulate
Model Object Lists section in this chapter, and the Command Reference Guide.

112 Generating and Implementing Applications

Impact Analysis

Component Chandge Processing Scenario

1. Suppose we have the scenario shown in the following diagram. This example shows

the details of component change processing that take place as a result of both a

private and a public change to an access path.

EXCINTFUNZ

DSPFIL

2.
PMTRCO EXCEXTF LN
EDTFIL [EXCEXTF UNZ
RTWOB
ACCESS
PATH PATH

2]

EXCINTFUNS

The arrows indicate the usage sequence for the functions that use the access path. The numbers in the small boxes
indicate the usage level of each object relative to the access path at level 0.

The following section shows the difference between a private and public change to Access Path.

Chapter 1: Managing Model Objects 113

Impact Analysis

Private Changde to Access Path

Suppose you intend to change the source member name for Access Path using the Edit
Access Path Details panel. CA 2E considers this to be a private change to Access Path. As
a result, CA 2E:

1. Expands all usages of Access Path until the first external function on any given
sequence of usages is encountered. These are shown with darker borders and the

word GEN.
2 3 4
PMTRCD EXCEXTFUN1 EXCINTFUNZ
ry Y ry
GEN GEN GEN
1 2 3
EDTFIL EXCEXTFUNZ DSPFIL

RTVOBJ EXCINTFUN4

¥

ACCESS E

PATH

Note: That all usage levels beyond the first external function are ignored; in this
case, PMTRCD, EXCEXTFUN 1, and EXCINTFUN 3 are not included in the expansion.

2. Sets the Required Action Indicator for the affected external functions to GEN in the
All Objects lists.

114 Generating and Implementing Applications

Impact Analysis

Public Change to Access Path

Suppose you intend to add or remove a relation for Access Path using the Edit Access
Path Relations panel.CA 2E considers this to be a public change. As a result CA 2E :

1.

Expands usages of Access Path until the first external function on any given
sequence of usages is encountered as it did for the private change. However, for a
public change the level at which each using object occurs is significant.

Sets the Required action indicator to EDT in the All Objects list for all using objects
that occur at level 1 to indicate that they require editing as a result of the change.
Specifically:

m Public change to Access Path is a private change to EDTFIL and it needs to be
edited (Required Action=EDT).

m Public change to Access Path is a public change to RTVOBJ, because it is used
for a parameter definition, and it needs to be edited (Required Action=EDT).

These are shown in the diagram by the letters EDT and the small box containing a 1.

2 3 4
PMTRCD EXCEXTFUN1 EXCINTFUM3
. .
EOT ECT GEN
1 2 3
EDTFIL EXCEXTFUNZ DEPFIL
EDT EDT
1 2
RTWOBJ EXCINTFUM4

ACCESS IE‘

PATH

Chapter 1: Managing Model Objects 115

Impact Analysis

Checks the model objects at level 2. The result depends on the way in which the
level 1 object uses Access Path. In this example the RTVOBIJ function uses Access
Path as the based on access path and for parameter definition. Specifically:

m Public change to RTVOBIJ is a private change to EXCEXTFUN 2; it needs to be
edited to accommodate the change to RTVOBIJ's parameters (Required Action =
EDT).

m Public change to RTVOBIJ is a private change to EXCINTFUN 4 and it needs to be
edited (Required Action = EDT).

These are shown in the diagram by the letters EDT and the small box containing a 2.

Repeats the process for the model objects at level 3. The private change to
EXCINTFUN 4 is a private change to the external DSPFIL function and it needs to be
generated (Required Action = GEN).

Repeats this process for each usage level until an external function is encountered.

When you perform the required actions (EDT or GEN), CA 2E automatically resets the
Required action indicator as follows:

For GEN, when an access path or external function is successfully regenerated,CA
2E automatically resets it to blank.

For EDT, if the object is an access path or external function, after editing it is reset
to GEN. For all other model objects, it is set to blank.

After you perform the necessary editing, component change processing is invoked again
to ensure that the change is reflected in regenerated and newly created using objects.
As a result, it is recommended that you edit the model object at level 1 first and then
proceed upward to edit model objects at continually higher usage levels. This prevents a
model object from being flagged EDT more than once. At the end of the process, all
objects that require regeneration will be flagged GEN.

For more information on how CA 2E distributes the impact of a change throughout the
model, see the appendix titled "Change Control Facilities Reference Tables" in this
guide.

116 Generating and Implementing Applications

Model Security

Model Security

CA 2E lets you access a model as one of three user types: designer, programmer, or
user. Your user type determines the limitations placed on you when you access and edit
the model.

m Adesigner (*DSNR) can change any aspect of the model, both data relationships
and functional specifications. If the Open Access (YOPNACC) model value is set to
*YES, multiple designers and programmers can use the model at the same time;
otherwise, only one designer can use the model.

m A programmer (*PGMR) can change functional specifications, but cannot change
database files or fields. Multiple programmers can use the model at the same time.
However, a programmer cannot use the model at the same time as a designer if the
Open Access (YOPNACC) model value is set to *NO.

m Auser (*USER) can only view the model and cannot change it. However, a *USER
can edit model object lists.

In addition, certain designers have additional locking authority (*DSLK). This authority
lets the designer change the Open Access (OPNACC) model value and place permanent,
exclusive locks on functions and access paths that can only be removed by a designer.

You can view the authority you have to a model by accessing the CA 2E product menu
and specifying the model; namely:

YSTRY2 model-name
A message at the bottom of the screen shows your authority level.

Note: A designer or programmer can access the model in view only mode by setting the
View only option to Y in the model profile.

For more information on user authority and the YOPNACC model value, see the
Administrator Guide.

Chapter 1: Managing Model Objects 117

Model Profile

Model Profile

The model profile lets you define defaults for various processes and file specifications
for an interactive session. For example, the model profile contains defaults for the
following:

Log changes mode

View-only mode

Full screen mode for the Edit Model Object List panel
Component change processing

Name of session list

Name of user option library and file

Default model object list name for commands

Generation and creation library

There is a model profile for each user for each model. When a new user is granted
access to a model, CA 2E automatically creates a model profile for the user. The defaults
for a session are taken from the model profile.

118 Generating and Implementing Applications

Model Profile

Chanding a Model Profile

You can change the model profile in the following ways if you are authorized to do so:
®m Press F18 from the Edit Model Object list panel.

m Use the Edit Model Profile (YEDTMDLPRF) command.

m Use the Change Model Profile (YCHGMDLPRF) command.

Suppose you pressed F18 or used the YEDTMDLPRF command. The following panel

displays:
Edit Model Profile

Model profile . . . ! JAR

Model 1 SYMDL
Session list I Name, #*MDLVAL
Log changed objects hd Y=Yes, N=No
Component change processing . N Y=Yes, N=No
Viewonly N Y=Yes, N=No
Model list for commands . . . JAR Name, #*USER
User option file LAUDDPT Mame, QAUOORPT

Library name w181 MName, *LIBL
User option member @AuUooP Name, #FILE
Edit model list full screen . N Y=Yes, N=No
Notepad Function:

Function file name XNONE

Function name . e
Action diagram full screen . H Y=Yes, N=No

More. ..
F3=Exit F5=Refresh Fl2=Cancel

Chapter 1: Managing Model Objects 119

Model Profile

These default settings establish the basic working environment for your interactive
session. You can reset these to modify your environment for the current session; for
example, to use full screen mode on the Edit Model Object List panel or to access the
model in view only mode.

Scroll down to view the second screen of the Edit Model Profile panel containing the
Submit Model Create Default Values.

Edit Hodel Profile

Model profile . . . : JAR
Model : SYMOL

Submit model create default walues:

Job list NAR Name, #=USER

Library name *MDLLIB Name, #*MDLLIB, %*CURLIB
Generation library *¥GENLIB Mame, *GEMLIB, »*CURLIB
Source library ®GENLIB Mame, #%GEMLIB, *CURLIB
Job description MOLVAL Name. =*MDLVAL

Library name *MDLLIB Name, *LIBL, =MDLLIB, *CURLIB
Create job descriptiol P #®JOBD Name, *NONE, #*JOBD

Library name MName, ®LIBL, *MDLLIB
Submit generate optiol o #B1 S #RLS, =HLD

Mare. ..
F3=Exit F5=Refresh F12=Cancel

These values establish the default generation and creation environment for the current
session and are used to preload job list commands; for example, the Submit Model
Create (YSBMMDLCRT) command. In addition to changing values on this screen, you can
modify the default values when you invoke the command by specifying other parameter
values on the interactive command prompt or on the batch command.

The third screen of the Edit Model Profile panel contains the Submit compilation option
and the name of the GUI folder for CA 2E Thin Client.

How Model Profiles are Stored

A default model profile is shipped with the null model, Y2SYMDL, in the YSYS record of
file YMDLPRFRFP. When you create a new model, this default model profile is
automatically copied to the YSYS record of file YMDLPRFRFP in the new model library.
You can edit either of these model profiles to create a default model profile tailored to
your environment.

120 Generating and Implementing Applications

Working with Versions of Functions and Messages

Manadging Model Profiles

Managing Model Profiles

Following are suggestions for ways you can use model profiles to manage your model.

As already mentioned, you can create a default model profile suitable for your
environment by editing the model profile in the null model or by editing the model
profile associated with a particular model.

m To change the model profile defaults for new models, edit the default model
profile in the null model. Note that this will be overwritten when you receive a
new version of CA 2E.

m To change the model profile defaults for new users of a model, edit the default
model profile in the model library.

You can tailor model profile settings for particular developers or groups of
developers using the Edit Model Profile (YEDTMDLPRF) command. Some examples
are:

m Assign developers to different session lists based on the project to which they
are assigned.

m Restrict certain developers to view only mode.

m Turn component change processing off for all designers (*DSNR) to avoid
interactive overhead.

m Set a different generation and creation environment for each ongoing project.

You can use the Retrieve Model Profile Details (YRTVMDLPRF) command to retrieve
model profile settings for a specified user profile. As with other change control
facilities commands, you can use this within control language programs to build
utilities and model object lists to help manage your model.

Working with Versions of Functions and Messagdes

A version is a model object that is a copy of either a function (FUN) or a message (MSG)
in the same model. A function or message can have an unlimited number of versions.
Three benefits of using versions are:

You can test changes on a version of a function or message without interfering with
the functionality of the existing model object.

When you finish testing a new version of a function or message and make it active
in the model, the original model object remains unchanged and can easily be made
active again if needed.

Only the currently active version of a function or message is displayed on CA 2E
editing panels. As a result, the panels are not cluttered with inactive versions.

Chapter 1: Managing Model Objects 121

Working with Versions of Functions and Messages

Understanding Versions

Understanding Versions

Versions of the same model object form a version group. Each version in a version group
is a unique model object; the term version is used to identify them as being related.

In any group of versions, one and only one of the model objects in the group may be
current. The current version is the version that is active in the model; it is the model
object that is used by other objects in the model and is the model object that appears
on CA 2E editing panels.

If you use CM, each version also has one of the following version types. If you do not use
CM, all versions have version type DEV.

m DEV—Development
m PRD—Production

m ARC—Archive

All versions in a group have the same Copy name. This value is used to initialize the Copy
name stored on the model list that the Copy Model Objects (YCPYMDLOBJ) command
uses to copy objects between models. Initially the Copy name for a version group is the
same as the name of the original model object. You can change the Copy name for all
versions in a group using the Change Model Object Description (YCHGMDLOD)
command on any one of the versions. New versions will automatically be given the same
Copy name as the other members of the group.

For more information:

m On version types, see the CA 2E Change Management User Guide.

m Onthe YCPYMDLOBJ and YCHGMDLOD commands, see the Command Reference
Guide.

The following diagram illustrates basic concepts relating to versions. The original object
in this diagram is the Edit Customer function; it has three versions. These four functions
comprise the version group for Edit Customer.

122 Generating and Implementing Applications

Working with Versions of Functions and Messages

Edit Customer

I Edit Customer WSHN2
[Original model object

‘1Source: Edit Customer

| Object surragate: 1100242
:i[Imp. name: UUABEFR
i1l Copy name: Edit Customer

:j0bject surrogate: 1100800
yimp. name: UUATEFR
:Copy name: Edit Customer

:| Edit Customer 1100480 Edit Customer WSN2

Source: Edit Customer Source: Edit Customer VSN2
: i1 Object surrogate: 1100438
:[Object surrogate: 1100457 2] Imp. name: UUBAEFR
[Imp. name: UUAJEFR 1] Copy name: Edit Customer
Copy name: Edit Customer

Note the following concepts shown by this diagram:

® When you create a version you can assign a name to the version or you can let CA
2E automatically generate it.

m Edit Customer 1100460 is an example of a version name that was automatically
generated by CA 2E.

m Edit Customer VSN3 is an example of a version name that was assigned by the
developer.

m The two versions, Edit Customer 1100460 and Edit Customer VSN2, were created
directly from the Edit Customer function; Edit Customer VSN3 was created as a
version of Edit Customer VSN2.

m All versions in the group have the same Copy name, in this case Edit Customer. If
you change the Copy name for any version in a group using the YCHGMDLOD
command, the Copy name is automatically updated for all versions in the group.

m Each version, including the original function, is a distinct model object and
therefore has a unique:

m Object surrogate number.
m Object name; e.g., Edit Customer, Edit Customer VSN2, Edit Customer 1100460.
m Implementation name.

m Edit Customer VSN3 is labeled as CURRENT and is the version displayed on CA 2E
editing panels.

A Reason Not to Use Versions

When you make a version of a function current in the model,CA 2E globally changes all
the model objects that referenced the original function to reference the version instead.
If not all of the referencing model objects need the changed functionality, you should
create a new function rather than a version. After updating and testing the new
function, you would then need to update references to the new function manually.

Chapter 1: Managing Model Objects 123

Working with Versions of Functions and Messages

Working with Versions

From the Edit Model Object List panel, enter 19 in the subfile selector to work with
versions for the selected function or message. The following panel displays:

Work with Versions
Type options, press Enter.
2=bEdit 3=Create version 4=Delete object 5=Display B=Details
18=Action diagram 12=Resolve conflicts 13=Parameters
Version Implementation

Opt Object Type Name Status
| B Edit Branch Version 4 Development KDAWEFR
o Edit Branch 1101479 Development KDAVEFR
_ Edit Branch 1101472 Development KDAUEFR

#% Edit Branch Development UUAUEFR Current

Bottom

F3=Exit FS=Refresh Fl1=Alt view F12=Cancel F23=More options

All versions in the version group are displayed in reverse chronological order; the most

recently created version appears at the top of the list of entries. The current version is
highlighted and has an asterisk to the right of the Subfile selector and a Status of
Current.

This panel supports a wide range of subfile selection options and provides alternate
views for each version. The options with similar selection values perform the same

function as those on the Edit Model Object List panel. For example, from this panel you

can:

m Create aversion

m Edit a version

m Make a version current

m View detail for a selected version
m Perform impact analysis

m Generate a version

m Delete a version

For more information on the subfile select options, see the Editing Model Object Lists

section in this chapter.

124 Generating and Implementing Applications

Working with Versions of Functions and Messages

Viewing a Version Group

The following views are available from the Work with Versions panel. Press F11 to
display the views sequentially.

Object Data—This view shows various object information including, model object
name, implementation name, version type, and status for each version. The current
version is highlighted and has an asterisk to the right of the Subfile selector and a
Status of Current.

Creation Data—This view shows the date and time each version was created.

Change Data—This view shows the date, time, and user name for the last change to
each version.

Check Out Data—This view shows the check out date, list, user, and status for each
version. This view applies only if you use CM.

Chapter 1: Managing Model Objects 125

Working with Versions of Functions and Messages

Creating a Version

You can create a new version of a function or message by using the:
m Work with Version panel

m Create Model Version (YCRTMDLVSN) command from within a control language
program

m Create Object Version (YCRTOBJVSN) command outside control language programs

The new version will be a copy of the original function or message, but will have a
different object name, object surrogate number, and implementation name. The object
name for the version must be unique within the owning file; the implementation name
must be unique within 3GL object type in the model. The new version is given the Copy
name used by the version group to which it belongs.

To create a version from the Work with Versions panel:

Enter selection option 3 for the version you want to use as the source for the new
version. You can select any version listed; it does not need to be the current
version. The following panel displays:

Create Model Version (YCRTHDLVSH)
Type choices, press Enter.

From model object name:

Object owner » Branch Character walue...
Object name » 'Edit Branch'
Object type > %N *FUN, =MSG

To model object mame EGENERATE

Make model object curremt . . . *NO *ND, *YES

Botton
F3=Exit F4=Prompt FS5=Refresh F12=Cancel F13=How to use this display
F24=More keys

126 Generating and Implementing Applications

Working with Versions of Functions and Messages

1. Determine the To model object name. You can either let CA 2E generate a new
name for the new version, or you can override this default.

The name CA 2E generates is the original name suffixed by a 7-digit number; the
original name is truncated if the new name is longer than 25-characters. For
example,

m Edit Branch 1459353
m Edit Customer Addr1541577

Note: You can define your own naming convention for automatic name generation
using the exit program YOBJNAMRI1C.

2. Determine currency. You can make the new version current by specifying *YES for
the Make model object current option. The default is not to make the new version
current so you can edit and test the new version before you make it current.

If you do not make the version current at this time, you can do so later using option
26 on the Work with Versions panel or by using the Redirect Model Objects
(YRDRMDLOBJ) command.

3. Determine whether to transfer the object name. You can request that CA 2E
exchange the name of the original function or message with the name of the new
version by entering *YES for the Transfer object name option. As a result, the name
assigned to the original object will be the name indicated by the To model object
name option. The default is not to exchange the names.

4. Press Enter to create the new version and return to the Work with Versions panel.

CA 2E adds the new version to your session list and creates a model object description
for the new version. The Copy name assigned to the new version will be the Copy name
currently being used for the group to which the new version belongs.

You can view the model object description for a non-current version using selection
option 8 on the Edit Model Object List panel when editing your session list or any named
model object list containing the version. By default only current versions are displayed
when you edit the All Objects list (*ALLOBJ). To display non-current versions, press F17
and set the Current objects only option on the Subset Model Objects panel to *YES.

Chapter 1: Managing Model Objects 127

Working with Versions of Functions and Messages

Making a Version Current

The current version in a version group is the one used by other model objects in the
model. The current version has the following characteristics:

Only one version can be current at a time
Only the current member of a group appears on CA 2E editing panels
You can select only current versions from selection panels

You can only reference a current version, for example, in an action diagram
construct

A version group need not have a current version. In that case, the only impact is that the
function or message will not be visible on CA 2E editing panels. Since a non-current
version can appear as an entry of a model object list, you can still view, edit, and work
with the versions in the group.

When you make a version current, CA 2E:

Identifies the model objects that directly use (see) the existing current object. These
are the level 001 using objects discussed in the Impact Analysis section.

Changes all references for the identified using objects to see the new current
version.

Exchanges the implementation names of the existing current version and the new
current version. This is the message identifier for a message (MSG) and the source
member name for an external function (FUN).

Optionally exchanges the model object names of the existing and new current
versions.

This process is also referred to as redirection because it redirects all model objects that
see the existing current version to see the new current version.

128 Generating and Implementing Applications

Working with Versions of Functions and Messages

Example

Suppose Internal Function A2, a version of Internal Function A, has been edited and
tested and you want to make it current. This diagram shows the other objects in the
model that see Internal Function A. Note that no model objects see Internal Function

A2.

Print Custamer Edit Customer Edit Customer
Address
¥
Change
Customer
¥
» Internal Internal
Function & Furction A2
CURRENT

When you make Internal Function A2 current, all model objects that had referred to
Internal Function A are changed to use Internal Function A2. This is shown in the
following diagram. Note that other model objects no longer see Internal Function A.

Print Customer Edit Customer Edit Custormner
Address
¥
Change
Customer *
k4
» Internal Internal
Function A2 Function A
CURRENT

Chapter 1: Managing Model Objects 129

Working with Versions of Functions and Messages

If you find errors in Internal Function A2 you can make Internal Function A current again
using the same process.

To make a version current:

From the Work with Versions panel enter 26 for the version you want to make
current or execute the Redirect Model Object (YRDRMDLOBJ) command from the
command line. The following panel displays:

Redirect Model Object (YRDRHMDLOBJ)
Type choices, press Enter.

From model object name:

Object owner > ¥CURRENT Character walue. ..
Object mame Character value
Object type *FUN, =MSG
To model object name:
Object owner > 'Branch' Character value, *TOOBJSGT
Object name > 'Edit Branch Version 4'
Object type ¥ '"sFUN' *FRMOBJNAM, *FUN, *MSG
Transfer model object name . . . BvEs #ND, *YES
Change type *PUBLIC *NONE, *PUBLIC, *PRIVATE..

Bottom
F3=Exit F4=Prompt FS=Refresh F12=Cancel F13=How to use this display
F24=More kevs

1. Indicate how CA 2E is to handle the object names of the two versions. By default,CA
2E exchanges the name of the original current version and the name of the new
current version.

Be sure to document the exchange of model object names since this could be
confusing to others. Also, note that model object list entries that see these versions
are not automatically updated to reflect the exchange of names. You can refresh
the affected model object lists by pressing F15 from the Edit Model Object List
panel to invoke the Check Model Object List (YCHKMDLLST) command.

You can change the default if you set the Transfer object name option to *NO.

2. Indicate whether redirection is to be considered a significant change to the model.
By default, considers redirection to be a public change. If you set the Change type
option to *PUBLIC or *PRIVATE, updates component change processing data in the
All Objects list for the new current version. If you specify *NONE, component
change processing is not performed.

For more information:
m On Change type, see the Model Object Audit Information section in this chapter.

m On component change processing, see the Impact Analysis section in this chapter.

130 Generating and Implementing Applications

Working with Versions of Functions and Messages

Cautions

When you make a version current, all objects that use the previously-current version are
affected. Use this feature with care to prevent unexpected results. The following are
some points to consider:

Non-current Versions

You can determine the impact of making a new version current in advance using CA
2E's impact analysis tools to view the level 001 usages for the existing current
version. For example, use selection option 95 on the Display Model Usages panel to
simulate a public change.

If some of the using objects require the original functionality (in other words, if they
need to continue using the existing current version), you cannot introduce your
changes by making the new version current. Instead:

a. Copy the new version to create a new model object, not a version.

b. Edit the action diagrams of the using objects that require the new functionality
to see the new copy.

To implement and test an internal function or message it must be used by an
external function. In other words, it must be made current. Before you make it
current, be sure to advise other developers so that your changes to the internal
object are not inadvertently incorporated into a change to an application program.

The versions within a version group that are not current:

Can be included as entries on a model object list.

Can be edited like any other model object.

Are subject to the same locking restrictions as other model objects.
Can be documented, copied and deleted.

Have unique implementation names and can be generated and called (external
functions only).

For more information on calling non-current versions of external functions, see the
Testing an External Function section in this chapter.

Chapter 1: Managing Model Objects 131

Working with Versions of Functions and Messages

Other Uses for Redirection

In addition to redirecting usages within a version group to make a version current, you
can use the Redirect Model Objects (YRDRMDLOBJ) command in the following ways:

Redirect the usages of functions and messages that are not versions if they are both
of the same type. For example, you can redirect usages from a DSPFIL function to
an EDTFIL function, but you cannot redirect from a function (FUN) to a message
(MSG).

Redirect usages to a version in another version group. In this case, both versions
must be the current version in its own version group.

The "from" object remains current after the transfer and the implementation name
is not transferred. This ensures that there is a current member in the "from" group.

For more information on the Redirect Model Objects (YRDRMDLOBJ) command, see the
Command Reference Guide.

Using Versions

Following is the basic process for using a version of a function or message.

1
2
3
4.
5
6

Create a version.

Edit the version.

For an external function, generate the source and create the program object.
Test the version. See the sections following this list for more information.
When you are satisfied with your changes, make the version current.

If errors occur, make the previous version current again.

132 Generating and Implementing Applications

Working with Versions of Functions and Messages

Testing an External Function

To test a non-current generatable version, first generate the source and create the
program object. Since the version is not current, the program object will not have the
correct name and cannot be called by other program objects. To test the program
object, use one of the following methods:

Use the Call a Program (Y2CALL) command. This command determines the
parameters required by an external function directly from details contained in the
model. You can provide values for all input-capable fields and you can reuse these
values for subsequent calls. This command is especially useful when the parameter
interface is complex or if it has changed. You can also retrieve and display output
parameters when the called program terminates.

You can also invoke the Y2CALL command using option 16 on the Edit Model Object
List, the Display Model Usages, and Display Model References panels.

If the program interface is the same as for the current version, you can rename the
program object in a separate test library, add the test library to your library list, and
test the new functionality.

For more information on the Call a Program (Y2CALL) command, see the Command
Reference Guide.

Testing Messades and Internal Functions

To implement and test an internal function or message, it must be used by an external
function. However, only current versions are used by other model objects. Making a
version current before testing it can cause unexpected results. To test an internal
function or message, follow these steps:

1.

Make a copy of the version using the Copy option on the Edit Model Object List
panel. This creates a separate function (FUN) or message (MSG).

Use CA 2E's impact analysis tools to identify the external functions that use the
existing current version of the internal model object.

Create a version of one (or more) of the using external functions.

Change the action diagram of the version of the using external functions to see the
new copy of the internal model object.

Test the changes using the Call a Program (Y2CALL) command to execute the
version of the using external function. You can also invoke the Y2CALL command
using option 16 on the Edit Model Object List, the Display Model Usages, and
Display Model References panels.

When you are satisfied with your changes, make the version of the internal function
or message current. Also, delete the copy of the internal function or message and
the version of the external function.

Chapter 1: Managing Model Objects 133

Working with Versions of Functions and Messages

Comparing Versions

Deleting Versions

Use the Compare Model Objects (YCMPMDLOBJ) command to compare two versions;
for example, to identify changes in one version in order to retrofit them to another
version. You can use this command to compare functions, messages, or files (FIL). You
can invoke this command from a command line or by using selection option 34 on the
Edit Model Object List panel.

For more information on the Compare Model Objects (YCMPMDLOBJ) command, see
the CA 2E Command Reference Gide.

You delete versions using option 4 on the Work with Versions panel or the Delete Model
Version (YDLTMDLVSN) command. Since a version is a separate model object, you can
delete it as you would any other model object; in other words, if it is not used by other
model objects. As a result, you can always delete a non-current version since by
definition it is not used by other model objects.

Note: If you try to delete a current version that is not used by other model objects,CA 2E
instead makes the version non-current. You can then repeat the delete operation to
delete the now non-current version.

134 Generating and Implementing Applications

Chapter 2: Generation and Implementation:
An Introduction

This chapter gives you an overall understanding of how the CA 2E generation and

compilation process works and what you need to do to set up your application for end
users.

Note: The information in this manual is for RPG- and COBOL-generated applications.

This section contains the following topics:

What Happens During Generation and Compilation? (see page 136)

Implementation (see page 138)
Performance Considerations (see page 138)

Chapter 2: Generation and Implementation: An Introduction 135

What Happens During Generation and Compilation?

What Happens During Generation and Compilation?

The CA 2E generators allow you to generate CA 2E designs in the HLL you choose:
COBOL, RPG, or both.

You can generate source for a CA 2E access path or function interactively or in batch
(see the Performance Considerations section in this chapter). The CA 2E generators:

® Produce source from the design that you defined in your CA 2E design model.

m Maintain linkages between files, fields, functions, panels, and reports.

m Preserve the integrity of CA 2E database objects.

The type of source generated depends on the object type for which you issue a request
for generation. The object types include:

m Access path—Produces DDS or SQL for the access path

® Function—Produces:

m HLL program source for external functions, which can include embedded SQL
data manipulation language (DML) statements.

m Device file DDS for device functions.

m Help text for interactive functions (TM or UIM).
m Field reference file—If used, produces DDS for the field reference file
When you submit a request for generation/compilation, the CA 2E generator
automatically does the following:

m The member names to be generated are placed in a job list.CA 2E maintains the list
during generation and compilation. You can review the list for the status of each
item throughout the process, as well as edit the list.

m Source is produced and placed in the appropriate source file in the generation
library, according to the object type and HLL that you have chosen. You can name
these source files on the Edit Generation Types panel.

You can override the library for source generation on the Submit Model Create
(YSBMMDLCRT) command or by changing the model profile of the user submitting
the request.

m The generated source is compiled from the source file according to the object type
or HLL that you have chosen.

The following diagram summarizes this process:

136 Generating and Implementing Applications

What Happens During Generation and Compilation?

Access Paths Functions
» Physical files » Device designs
= Logical files * Programs
= Help
Jar14 Joar14

Submit Create Requests from
Model (YSEMMOLCRT) Job List

(Display Services Menu option ar
from the Jab List menu of
YEDTMDLLST)

Subrmit to hatch

b 4

Generate Source
(YGEMSRC)

¥

Compile Source
M job per successfully
generated object)

Chapter 2: Generation and Implementation: An Introduction 137

Implementation

Implementation

Once you have generated, compiled, and tested your functions and access paths, you
are ready to set up your application and move it into production. Implementation is the
process of setting up your application for end users. Your tasks might include the
following:

m Using CA 2E Toolkit menu facilities, create menus for end user access to your
application.

®m To run your application in an environment without the CA 2E product libraries,
duplicate necessary CA 2E shipped objects into the library for execution objects.
Use the Duplicate Application Objects (YDUPAPPOBJ) command or the Create
Generation Objects(YCRTGENOBJ) command.

m Set up test standards and verify that your application works as designed.

m Using Toolkit move commands (and compile commands, as needed) transfer source
files, generated application objects, and/or data objects from your development
library to the execution library.

You can manage many of these operations using Change Management (CM).

For more information:

m On CA 2E commands, see the Command Reference Guide.

m On Toolkit menus, see the Toolkit Concepts Guide.

m On Toolkit move commands, see the Toolkit Reference Guide.

m On CM, see the Change Management User Guide.

Performance Considerations

This section offers tips on efficient generation and compilation.

Batch or Interactive Source Generation?

You have the option to generate source interactively or in batch. Generating in batch
allows you to generate many source members together and to have less impact on
others using the system. It also permits you to continue to work in your model on other
tasks while the generation job is active. Generating interactively is an intensive process
that may negatively impact other interactive users.

138 Generating and Implementing Applications

Performance Considerations

Generate Several Objects at a Time

Because there is some overhead in starting any generation job, it is better to submit
several access paths and/or functions to generate at one time.

Separate Source and Object Libraries

By default, generated source and compiled objects are contained in the library specified
by the GENLIB parameter on the Submit Model Create (YSBMMDLCRT) command. You
can use the SRCLIB parameter on this command to specify a separate source library. The
source library specifies the library into which source is to be generated or that contains
the source for a create object request.

If the GENLIB and SRCLIB parameters specify the default value, *MDLPRF, you can also
control the specification of the source and object libraries by changing the model profile
of the user submitting the request.

Messade ID Generation for National Languages

The model value YPMTGEN determines whether constants on devices are generated as
messages. You can use the Change Model Value (YCHGMDLVAL) command to change
the YPMTGEN model value. If you set YPMTGEN to *MSGID, the generator generates
message file descriptions for literal constants. Because generating these descriptions
takes time, you may want to block the process during development by setting YPMTGEN
to *OFF.

When you finish the development and system test phases, your application is ready for
final testing. Then set YPMTGEN to *MSGID if you are externalizing the device text
constants for National Language Support (NLS). You must then generate and compile
your functions.

Suppressing Help Text

By suppressing help text generation until after all of your modifications to a function are
complete, you save generation time. To turn off help generation for the model, set the
YGENHLP model value to *NO using the YCHGMDLVAL command. You can also override
this model value at the function level using the Generate help function option.

When ready to generate help text for a specific function, you can set the help text
function option to Y (*YES) or O (*ONLY) for that function, then generate/compile.
m *YES—Generates and compiles help and other function components.

m *ONLY—Generates and compiles only the UIM help text for the function. Use the
*ONLY option only when all development on the compiled function is complete.

Chapter 2: Generation and Implementation: An Introduction 139

Performance Considerations

Suppressing Comments in Source Code

The time required to generate a function can be significantly improved if comments are
not required for the generated source code. The YGENCMT model value lets you specify
whether or not comments are placed in the resulting generated source code.

The possible values for the YGENCMT model value are:

m *ALL—AIll comments are generated into the source for a function
m *HDR—Only header comments are generated

m *NO—No comments are generated

m *STD—The same as *ALL

Model Reordanization

By running the Reorganize Model (YRGZMDL) command, you can reduce the amount of
storage needed for the model library by removing old data. Use the RGZOPT(*MDL)
option on this command. Running the YRGZMDL command regularly for a model and job
lists, based on how often they change, is a good strategy.

Deleting Compile Listings

All compilations result in listings. You may want to keep a listing if errors occurred. You
can delete unwanted spool files from the output queue. The Toolkit compile
pre-processor also provides an option to cancel any spool file listings except the latest.

Note: For more information on using the Toolkit compile pre-processor, see the Toolkit
Concepts Guide.

140 Generating and Implementing Applications

Chapter 3: Preparing for Generation and
Compilation

Before creating your application, you may want to review and change aspects of the
environment in which your generation and compilation jobs will run. Included in this
chapter are guidelines for which model and environment settings to verify before
generating and compiling, and how to set up and use your job list.

This section contains the following topics:

Verifying Your Generation Library Setup (see page 142)

Changing Other System Parameters and Model Values (see page 143)
Reviewing and Changing Compiler Overrides (see page 146)

Viewing and Changing Shipped Source (see page 147)

Managing Your Work Environment (see page 149)

Understanding Job Lists (see page 158)

Using Job Lists (see page 162)
HLL Implementation Considerations (see page 165)

Chapter 3: Preparing for Generation and Compilation 141

Verifying Your Generation Library Setup

Verifying Your Generation Library Setup

CA 2E generates source into source files in the generation library (GENLIB) specified by
the YGENLIB model value on the Create Model Library (YCRTMDLLIB) command. In
general, your GENLIB contains:

Source files

Message files

Data areas (for example, date format)

CA 2E-shipped objects (for example, values list display)
Journal and journal receiver

The objects you created

You can create additional generation libraries using the Create Generation Objects
(YCRTGENOBJ) command.

If you change the model value YGENLIB using the YCHGMDLVAL command, you
must update the YMPHLBA data area in the new library. This data area contains the
name of the library into which Help text is generated. This value is usually the name
of the Generation library.

CA 2E also creates an SQL collection in the SQL library (SQLLIB), if specified by the
SQLLIB parameter on the YCRTMDLLIB command.

The SQL library can be created at the same time as the model. If it was not, you can set
up an SQL library using the Create SQL Library (YCRTSQLLIB) command. This command
also updates the YSQLLIB model value with the SQL library name.

For more information:

On specifying SQL, see the Administrator Guide.

on applications that access distributed data, see the chapter titled “Distributed
Relational Database Architecture” in this guide.

142 Generating and Implementing Applications

Changing Other System Parameters and Model Values

Defining Source File Names

For your GENLIB, you can define the names of source files at Edit Generation Types. In
the shipped product, the names default to i OS default names for each source type. The
defaults are:

m DDS-QDDSSRC

m RPG-QRPGSRC

m COBOL'74 - QCBLSRC

m COBOL'85 - QLBLSRC

m SQL DDL - QSQLSRC

m CLP-QCLSRC

m Text Management Help text - QTXTSRC

= UIM Help text - QPNLSRC

m For CA 2E Thin Client:
m Application Definition Format (ADF) - YADFSRC
m Screen Definition Format (SDF) - YSDFSRC
m SDF Instruction Format (SIF) - YSIFSRC
m Windows Help (RTF) - YRTFSRC

Chanding Other System Parameters and Model Values

This section covers the standard source banner and execution displays.

Other implementation options include switching from DDS to SQL and from standard
CUA header/footers to windows and action bars (CUA Entry to CUA Text Subset).

For more information:

m On parameters and model values specific to access paths, see Building Access Paths.

®m On parameters and model values specific to functions, see Building Applications.

Chapter 3: Preparing for Generation and Compilation 143

Changing Other System Parameters and Model Values

Changing Text in Standard Source Banner

All CA 2E-generated source contains a standard banner, along with a title line and
compiler override line. These lines include the information needed for the CA 2E Toolkit
compile pre-processor to compile objects. The banner consists of:

m Generated by—The version data

m Type—Such as Edit File or Retrieval Index

m Company name—From the YCMPTXT model value

m System—From the YMDLTXT model value

m User name—The user profile name

m Date—Includes the job date and time

m Copyright—From the YCMPTXT model value

CA 2E retrieves the text for the standard banner in all source types from the messages

file Y2MSG. If you want different text in the banner, you can change the message text
for these messages using the i OS Work Message Description (WRKMSGD) command.

For more information on WRKMSGD, see the Application System/400 Programming:
Control Language Reference.

The following table lists the messages used in the standard source banner. These
messages are stored in Y2ALCMSG in the language dependent object (LDO) library,

Y2SYVENG.
MSGID Message Text Shipped Values Variable
Y2F8463 'Generated by :&1 Version: &2' CA generator and
version identifier
Y2F8464 'Function type :&1 Version: &2' YCMPTXT
Y2F8465 ‘Company &1 YMDLTXT
Y2F8466 'System &1 Job user
Y2F8467 'User name &1 Job date/time
Y2F8468 '‘Date :&1’ Time: &2' YCMPTXT
Y2F8469 'Copyright: &1’

Note: You will need to re-apply any changes to the banner after each CA 2E product

upgrade.

144 Generating and Implementing Applications

Changing Other System Parameters and Model Values

Execution Displays

CA 2E provides the following model values for changing certain execution data, using
the YCHGMDLVAL command:

m YDATFMT—Date display format. If YDATGEN is MDY, YMD, or DMY, YDATFMT is
ignored. If YDATGEN is VRY, CA 2E checks the value of YDATFMT to determine
which to use.

m YCMPTXT—Company text on displays.
m Y2MGFLA—Message file name.

m For more information on YCHGMDLVAL, see the CA 2E Command Reference Guide.

Note: Always use the YCHGMDLVAL command to change model values, rather than
using the i OS Change Data Area (CHGDTAARA) command. Changing model values
involves more than changing data areas.

Changing Messade File Names

When creating a model,CA 2E automatically creates a message file to contain the
descriptions that implement execution message functions. The message file resides in
your GENLIB as specified by the YGENLIB model value. You can change the message file
name that was set at model creation by the MSGVNM parameter on the YCRTMDLLIB
command. To change the default message file name, use the YMSGVNM model value
with the YCHGMDLVAL command.

Chapter 3: Preparing for Generation and Compilation 145

Reviewing and Changing Compiler Overrides

Reviewing and Changing Compiler Overrides

You may want to change program and device file properties by specifying compiler
overrides.CA 2E stores the values you specify in the source as Z* comments.CA 2E
automatically applies the overrides during compilation, using the Toolkit compile
pre-processor.

For example, the SEU source listing for an Edit Customer program might include these
lines:

10 H/TITLE Edit Customer Edit file
20 H Y

30 Z*¥ CRTRPGPGM

40 Z* USRPRF(*OWNER)

60 H* SYNOPSIS:
70 H* -Maintain database file using subfile display

160 H* Company : Your Company

170 H* System : Your System
180 H* User name :YOU
190 H* Date :07/16/96 Time : 14:32:17

200 H* Copyright : Your Copyright

The Toolkit compile pre-processor offers many options, such as invoking CL commands
and storing compiler directives in source.

For more information on the pre-processor, see the Toolkit Concepts Guide.

For Functions

The compiler overrides you select depend on the object type but might include:

m Printer device files—Using the i OS Create Print File (CRTPRTF) command to specify
form characteristics and spool file scheduling, such as OUTQ(MYOUTQ)

m Display device files—Using the i OS Create Display File (CRTDSPF) command,
parameter WAITRCD (workstation timeout)

m RPG programs—Using the i OS Create RPG/400 Program (CRTRPGPGM) command,
with parameter USRPRF set to *OWNER to adopt authority

m COBOL programs—Using the i OS Create COBOL Program (CRTCBLPGM) command,
with parameter USRPRF set to *OWNER to adopt authority

146 Generating and Implementing Applications

Viewing and Changing Shipped Source

For Access Paths

Some overrides you can specify for access paths are:

m Physical files, using the i OS Create Physical File (CRTPF) command with such
parameters as:

m MAXMBRS—Maximum number of members the physical file can hold
m SIZE—Initial number of records in each member of the file

m Logical files, using the i OS Create Logical File (CRTLF) command with such
parameters as:

m MAXMBRS—Maximum number of members the logical file can hold

m DTAMBRS—The physical files and members containing data associated with
the logical file

Note: Do not override values that are already specified by access path details, such as
MAINT and TEXT. You can review these values on the Access Path Details panel.

For more information on IBM i commands, see IBM’s Application System/400
Programming: Control Language Reference.

Viewing and Changing Shipped Source

CA 2E shipped source files, stored in files in the Y2SYSRC library, include user-modifiable
programs and execution support programs that you can tailor to your needs. You can
replace any of these shipped programs with your own.

Important! Make sure you copy the source before changing it.

User-modifiable Shipped Programs

A set of shipped CL programs controls name allocation. Each program names an object
type. For example, the program YALCPHYR1C names physical files.

Note: You can change the allocation character that each object type uses from the Edit
Generation Types panel.

For more information on name allocation and auto-naming, see the Administrator Guide

Chapter 3: Preparing for Generation and Compilation 147

Viewing and Chanding Shipped Source

Execution Support Programs

The following table shows the shipped programs that support execution time

processing:

File

Program

Description

Details

QRPGSRC

Y2VLLSR

Values list display

Y2VLLWR

Values list display
for windows

YVLSPX + VLLSR. The
DDS for the display
is shipped in
QDDSSRC in
member Y2VLLSR#.
The messages
describing the
display details are in
the message file
Y2USRPMT.

QRPGSRC

Y2PSSRR

RPG error handling
(*PSSR)

See the Error
Routine and
Features in RPG not
in COBOL sections in
this chapter.

QRPGSRC

Y2CLMSG

CLRMSG

Clear messages
from a program
message queue.

QRPGSRC

Y2SNMGC

SNDxxxMSG

Error, status,
information, and
completion
messages.

QCLSRC

Y2EXMCC

EXCMSG

Execute a message.

QRPGSRC

Y2RVMGC

RTVMSG

Retrieve a message.

QCLSRC

Y2BGCMC

Commitment
control

If not already active,
start commitment
control.

Note: The message handling routines are shipped as RPG programs using i OS Message
Application Programming Interfaces (APIs). These replace the original CLP routines. The
names have been left with a C extension for compatibility with old applications.

148 Generating and Implementing Applications

Managing Your Work Environment

Manading Your Work Environment

This section covers settings for your work environment. Based on IBM i facilities, the
information here is tailored for users.

CA 2E is designed to make use of some of the IBM i subsystem facilities. For successful
generation and implementation, an understanding of these IBM i facilities is important.
The following information will give you an understanding of how to create and change
the subsystem description for use with CA 2E.

Note: All jobs on the IBM i run in a subsystem. You may want to define a subsystem to
run similar kinds of jobs, such as interactive or batch.

For more information on IBM i subsystem facilities, see IBM's Application System/400
Programming: Work Management Guide.

You can display the subsystem definition with either the i OS Display Subsystem
Description (DSPSBSD) or Work with Subsystem Description (WRKSBSD)
commands.When you run the DSPSBSD command, the following panel displays:

Display Subsystem Description
SYSTEN: ZEIV1
Subsystem description: QBATCH Library: QSYS
Status: INACTIVE

Select one of the following:

Operational attributes

Pool definitions

Autostart job entries

Work station name entries
Work station type entries
Job queus entries

Routing entries
Communications entries
Remote location name entries
Prestart job entries

VO~ U & Wl -

[y

Mote. ..
Selection ot command

F3=Exit F4=Prompt F9=Retrieve F12=Cancel

To focus on the job queue and routing entry descriptions, let us use, as an example, the
QBATCH subsystem for batch jobs. YSBMMDLCRT uses QBATCH by default. You can
change this default and create a different subsystem of CA 2E-related activity.

Chapter 3: Preparing for Generation and Compilation 149

Managing Your Work Environment

Job Queue Entries

Option 6, Job queue entries, on the Display Subsystem Description panel displays every
job queue that QBATCH uses. When you choose option 6, the Display Job Queue Entries
panel displays:

Display Job Queue Entries
SUSTEm: 2ETW 1

Subsystem description: @BATCH Status: ACTIVE
Seq Job Max --=-=---- Max by PrioTity-----=—=---
Nbr Queue Library fctive 1 2 3 4 5 6 ¢ 8 9
10 QBATCH QGPL 1 % % ®x x %k K K 0w
15 Doc aGPL 1]] W] * * # * *
20 QBATCHZ2 QGPL 1 % ® K K Kk K K K K
25 0SIGEVOKE QGPL *NOMAX % % ow w % K K ®

Bottom
Press Enter to continue.

F3=Exit Fi12=Cancel

Take note of these two fields:

m Seq Nbr (sequence number)—Defines the order in which QBATCH selects the job
gueues that can start jobs.

m Max Active (maximum active)—Defines how many jobs from the corresponding
Job Queue you can run at the same time. Ensure that this value is 1 for the job
queue (JOBQ) you specify in each model's job description (JOBD).

150 Generating and Implementing Applications

Managing Your Work Environment

Routing Entries

Option 7, Routing entries, on the Display Subsystem Description panel defines how CA
2E is to start a job in QBATCH. When you choose option 7, the Display Routing Entries
panel displays:

Display Routing Entries
Sustem: ZETWI
Subsystem description: QBATCH Status: ACTIVE
Type options, press Enter.
S=Display details
Start

Dit Seq Hbr Progran Library Compare Value Pos
| | 300 acrp asys 'QS36EVOKE" 1

700 acL asys 'QCMD38" 1
_ 1111 YBRTPRC ALsY 'ACRTOVR' 1
- 2222 YBRTPRC P1SY 'PCRTOVR' 1
_ 3333 YBRTPRC sisy 'SCRTOVR' 1
_ 4444 YBRTPRC Yisy 'YCRTOVR' 1
_ 5555 YBRTPRC 218y 'ZCRTOVR' 1
_ 6666 YBRTPRC BisY 'BCRTOVR' 1
_ 7779 YBRTPRC MiB646 'TCRTOVR' 1
_ 277? YBRTPRC M1B657 'GCRTOVR! 1
- 9999 acmp asys *ANY

Bottonm

F3=Exit F9=Display all detailed descriptions F12=Cancel

Chapter 3: Preparing for Generation and Compilation 151

Managing Your Work Environment

CA 2E compares the routing data from the job description to each Compare Value in the
list as follows:

m [f there is a match,CA 2E calls the associated program.

m [f thereis not a match,CA 2E uses the last routing entry with the value *ANY. In this
example, the job has a routing entry of YCRTOVR, which matches sequence number
4444 and calls the program YBRTPRC.

Initially, the generation job, YGENSRC, uses the Class assigned to the routing entry of
YCRTOVR. The program YBRTPRC is associated with the routing entry of YCRTOVR;
program YBRTPRC is the pre-processor for YGENSRC. The last step in pre-processing
assigns new routing data and issues the i OS Reroute Job (RRTJOB) command. This
command reroutes the job, depending on the YCRTENV model value setting. If model
value YCRTENV is set to QCMD (IBM i mode), routing data is set to QCMDB.

The subsystem compares the new routing data with the Compare Values in the routing

entries list.

= |f a match is made on QCMD38, job control passes to the QCL program.

m |f a match is made on QCMDB or *ANY, job control passes to the QCMD program.

If you want to change the run priority of YGENSRC, modify the Class associated with

each of the following routing entries.

m Compare Value YCRTOVR

m Compare Value QCMD and/or QCMD38, depending on your model creation
environment (YCRTENV)

To determine the Class, look at the details for the routing entry associated with
YCRTOVR. On the Display Routing Entries panel, enter 5 beside the routing entry. This
Display Routing Entry Detail panel displays (for this example, the Class is QBATCH).

Display Routing Entty Detail

Press Enter to continue.

F3=Exit F12=Cancel

SWECEm: 2EDW1

Subsystem description: QBATCH Status: ACTIVE
Routing entty sequence number . . . 4444
Program YBRTPRC

Library L Y18Y
Class e e GBATCH

Libraryo QGPL
Maximum active Touting steps #NOMAX
Pool identifier 1
Compare value 'YCRTOVR'
Compare start position 1

F14=Display previous entry

152 Generating and Implementing Applications

Managing Your Work Environment

Let us return to the Display Routing Entries and enter 5 beside the routing entry
associated with *ANY. The Display Routing Entry Detail panel displays, with Class
QBATCH.

Display Routing Entry Detail
Swvsten: 2EDW]

Subsystem description: QGBATCH Status: ACTIVE
Routing entry sequence number 9999
Program Qacrp
Library asys
Class« . . . QBATCH
Library QGPL
Maximum active routing steps : *NOMAX
Pool identifier 1
Compare value« .« . . *ANY

Compare start position

Press Enter to continue.

F3=Exit F12=Cancel Fl4=Display previous entry

The run priority defines the job priority (1 through 99). A value of 1 for the run priority
gives a job the highest priority in competing for machine resource with other jobs.

To display the Run priority of each program, you can invoke the Display Class
Information panel from an i OS command line by entering:

DSPCLS Class

where Class is the value shown on the Display Routing Entry Detail panel for that routing
entry.

Chapter 3: Preparing for Generation and Compilation 153

Managing Your Work Environment

Verifying Your Work Environment Setup

To successfully generate and compile your application, verify how your work
environment is set up.

Two types of subsystem configuration are possible on the IBM i: QBASE and QCTL. QCTL
is recommended for the controlling subsystem.
Before you can verify the settings in your work environment, you need to identify:

m The value of your controlling subsystem; from an i 0S command line, type
DSPSYSVAL QCTLSBSD and press Enter.

m The model job queue from the model job description. Enter DSPJOBD QBATCH (or
your job description name), and record the job queue attached to this JOBD.
The steps below cover both configurations:

m [f your controlling subsystem is QBASE and the job queue name in your model job
description is QBATCH, follow all the steps.

m If your controlling subsystem is QCTL, or if you are using a job queue other than

QBATCH, begin with step 7.

Note: To perform the following steps, sign on as QSECOFR or as a user profile that
belongs to the same group profile as QSECOFR.

To manage your work environment:

Steps 1-6 apply only to QBASE subsystem or non-QBATCH job description.
1. Verify that the job queue entry QGPL/QBATCH exists:
a. Onthe command line, type WRKSBSD QBATCH. Press Enter.

b. To display the subsystem description, enter 5 at the Work with Subsystem
Description panel.

c. Verify that QBATCH exists in QGPL at the Display Job Queue Entries panel.

2. If needed, create job queue entry QBATCH2, in library QGPL, for subsystem
QBATCH. At a command line, type the following command string and press Enter.

CRTDUPOBJ OBJ(QBATCH) FROMLIB(QGPL) +
OBJTYPE(*JOBQ) NEWOBJ(QBATCH2)

Note: QBASE has a job queue named QBATCH. If your job queue is also named
QBATCH (the default), the submitted job will go to the QBATCH job queue in
QBASE.

3. Stop subsystem QBATCH. Type the following command string and press Enter:
ENDSBS QBATCH

4. Add job queue entry QBATCH2 to subsystem QBATCH. Type the following command
string and press Enter:

154 Generating and Implementing Applications

Managing Your Work Environment

ADDJOBQE SBSD(QBATCH) +
JOBQ(QGPL/QBATCH2)

5. Restart subsystem QBATCH. Type the following command string and press Enter:
STRSBS QBATCH

Now that you have reviewed and changed your subsystem, complete steps 6-9 to
make sure it works correctly in CA 2E.

6. In every model, change the job description to use the job queue name QBATCH2.
For each model, type the following command string and press Enter:

CHGJOBD JOBD(model-library-name/QBATCH+
or your-job-description-name) +
JOBQ(QGPL/QBATCH2)

Note: You should check any job descriptions explicitly referenced in the model
profiles for the model. You can edit the model profile for a user using the Change
Model Profile (YCHGMDLPRF) command or by pressing F18 from the Edit Model
Object List panel.

For more information on compiling right after generation, see the Sending
Generations and Compilations to Separate Queues section in this chapter.

7. In every model, do the following:

a. Verify that the job description library list is correct for the model. Type one of
the following command strings, as appropriate, and press Enter to access the
Display Job Description panel:

DSPJOBD JOBD(QGPL/QBATCH)

DSPJOBD JOBD(model-library-name +
You should check the library list for the model using the Edit Library List (YEDTLIBLST)
command. You can determine the model's library list using one of the following:

m The Display Model Value (YDSPMDLVAL) command to display the YLIBLST model
value.

m The Library list options on the Designer (*DSNR) Menu. Enter:

YGO DSNR *Y2
to display this menu.

Suggested list:
m QTEMP (must be at top of library list)
m Generation library
m Library for SQL collection (optional)
m Model library
= QGPL

Chapter 3: Preparing for Generation and Compilation 155

Managing Your Work Environment

m National Language Support libraries (Y1SYVxxx and Y2SYVxxx) (optional)
m CA 2E product (Y2SY)
m Toolkit product (Y1SY)

a. Verify that the routing data value in the model job description is YCRTOVR. To
verify the value, locate it on the Display Job Description panel. If needed, you
can enter the following command string to change the routing data value:

CHGJOBD +

JOBD(model-library-name/QBATCH) +

RTGDTA('YCRTOVR') You should check any job descriptions explicitly referenced in the
model profiles for the model.

Note: YCRTOVR must be in capital letters.

1. Verify that the routing entries are correct in the subsystem to which you will submit
the CA 2E jobs. The subsystem must contain a routing entry with a value of
YCRTOVR to match the routing entry in the job description the model uses. Perform
the following to verify routing entries:

a. Type WRKSBSD QBATCH (or your subsystem name) and press Enter to access
the Work with Subsystem Descriptions panel.

b. To display the subsystem description, at Work with Subsystem Descriptions
type 5 and press Enter. The Display Subsystem Description panel displays.

c. Todisplay routing entries, at the Display Subsystem Description panel select
option 7. Your subsystem should contain the following routing entries.

Sequence Program Library Compare Value Start
Number Position
1111 YBRTPRC Y1SY 'YCRTOVR' 1

9999 QCMD QsyYs *ANY

2. 2.lIf needed, change or add routing entries using either the i OS command, Change
Routing Entry (CHGRTGE) or Add Routing Entry (ADDRTGE), as appropriate. Be sure
to terminate the subsystem before adding a routing entry.

156 Generating and Implementing Applications

Managing Your Work Environment

Moving Toolkit Data Objects from Y1SY

Some of the Toolkit commands use database files or data areas to store user data, such
as library lists, user profile extension attributes, and design defaults. Unless you
specified a separate data object library when you installed the product, these data
objects reside in library Y1SY. You can choose to put them in another library.

To move data objects from the existing Toolkit library Y1SY to another library, type the
following command string:

YMOVY1DTA FROMLIB(YSY) TOLIB(NEWLIB)

For more information on the Move Product Data Objects (YMOVY1DTA) command, see
the Toolkit Reference Guide.

Sending Generations and Compilations to Separate Queues

If you set up jobs so that generations and compilations go to the same queue, all
generations must complete before any compilation can begin. If you want a job to
compile immediately after it generates, you can send compilations to a different queue
than generations. The queue must contain the Toolkit compile pre-processor.

To set up and use a separate queue for compilation:

1. Copy the job description in your model into your generation library.

2. Change the job queue of the job description in the generation library to the one you
want to use for compilation.

3. When you execute the YSBMMDLCRT command, change CRTJOBD to the job
description that you set up for compilation.

Note: You can execute the YSBMMDLCRT command from an IBM i command line,
by selecting option one on the Display Services Menu, or by pressing F19 from the
Edit Model Object List panel to display the Job List Commands Menu.

Chapter 3: Preparing for Generation and Compilation 157

Understanding Job Lists

Understanding Job Lists

When you request generation,CA 2E places the names of members to be generated on
a job list. The same job list controls generation and compilation. You can review this job
list during generation to monitor the process and edit the job list.CA 2E assigns a status
to each member on the list. If errors occur,CA 2E flags the specific members in error.
Once source is generated for the members,CA 2E automatically submits a request to
compile the generated source. A sample of this process follows the brief descriptions
below.

Upon receiving your generation request,CA 2E places the members on a job list with a
stage flag. The stage flag indicates the next processing step to be performed on the
members. This initial flag is based on whether your request is batch or interactive.

m GEN—Batch source generation and creation is requested. When batch source
generation is completed, the GEN flag changes to CRT.

m CRT—Interactive source generation is completed and batch creation is requested.

The processing sequence for batch or interactive mode depends on the value of
parameter SBMCRTOPT on the YSBMMDLCRT command.

m *GENOK—Default. Submits generated source for compilation only after the source
is successfully generated.

m *IMMED—Submits source members for compilation with the job that generates
source.

After you submit a request, you initiate processing by executing the YSBMMDLCRT
command. Once source has been successfully generated,CA 2E changes the stage flag to
CRT and submits the source for compilation.

Note: Submission of your request may be deferred until the source generation for
related members is complete. If so, a member temporarily may be displayed as CRT
*GENSRC.

CA 2E removes from the pending list the members that successfully generate and
compile. If members fail to compile, an error message is displayed. You can access
source for the members and the compile listings from the job list to identify the
problems.

CA 2E assigns each member in the job list one of the following statuses which changes
throughout generation:

m *SBM—Indicates a job has been submitted to control batch generation and/or
submission of compilation.

m *GENSRC—Shows that source generation for a member is in progress.

m *JOBQ—Shows that generated source for a member has successfully been
submitted for compilation;CA 2E deletes existing versions of i OS objects in the
generation library.

158 Generating and Implementing Applications

Understanding Job Lists

m *ACTIVE—Indicates that the member is being compiled.

m *ERROR—Flags an error at any time during generation and compilation.

Note: If you specify CRTJOBD(*NONE) on the YSBMMDLCRT command to indicate that
compilation is not required, the process stops after generation.

Sample Job List Series

When you request batch generation, the stage flag (Act) is set to GEN.

? Member Type Act Status Text
UUAAREP PF GEN Tax Physical file
UUABREP PF GEN ltem Physical file
UUACREP PF GEN Vendor Physical file

After submission,CA 2E assigns a status to each job on the job list. Inmediately after
submission, the status is *SBM.

? Member Type Act Status Text
UUAAREP PF GEN *SBM Tax Physical file
UUABREP PF GEN *SBM [tem Physical file

UUACREP PF GEN *SBM Vendor Physical file

As CA 2E generates source for a job, the job's status is *GENSRC.

? Member Type Act Status Text
UUAAREP PF GEN *GENSRC Tax Physical file
UUABREP PF GEN *SBM Item Physical file
UUACREP PF GEN *SBM Vendor Physical file

When CA finishes generating the job and submits it for compilation, the activity changes
to CRT and the status changes to *JOBQ.

? Member Type Act Status Text
UUAAREP PF CRT *JOBQ Tax Physical file
UUABREP PF GEN *GENSRC Item Physical file
UUACREP PF GEN *SBM Vendor Physical file

When compilation is in progress, the status changes to *ACTIVE.

? Member Type Act Status Text
UUAAREP PF CRT *ACTIVE Tax Physical file
UUABREP PF CRT *JOBQ ltem Physical file

UUACREP PF CRT *JOBQ Vendor Physical file

Chapter 3: Preparing for Generation and Compilation 159

Understanding Job Lists

When the job is successfully compiled,CA 2E drops it from the top of the job list.

?

Member Type Act Status Text
UUABREP PF CRT *ACTIVE Item Physical file
UUACREP PF CRT *JOBQ Vendor Physical file

If an error occurs during generation, the status changes from *GENSRC to *ERROR.

?

Text
Customer

Status
*ERROR

Member
UUAFRELO LF

Type Act
GEN

Update index

Batch Generation

The following diagram shows the batch generation stages for both *GENOK and
*IMMED. Notice that members have a GEN stage flag during generation, which changes
to CRT once generation, is successful.CA 2E automatically submits members for
compilation that have a CRT stage flag.

Submit Genearate Submit Compile
GEMSRC source compile source in
to batch in batch to batch batch
GEHN GEM CRT CRT

SEM —= *GENSRC —= *JOBQ — *ACTIVE —=remaove

*GEMOK armor arror
Batch
Fequest
— *BEN GEM CRT
*ERROR *ERROR
4
arror
*|MED
GEN GEH CRT CRT
*I0BG *GEMSRC *JOBG | ACTIVE remmie
Submit Generate Release Compile
GENSRC+ onivoe compile source in
compiles batch
to batch

160 Generating and Implementing Applications

Understanding Job Lists

Interactive Generation

The following diagram shows the stages for interactive generation for both *GENOK and

*IMMED.
Submit
job ta Submit
submit compile
compiles to batch
GEM ___, ERT
! tSEM *I0BO
*GEENOK
Generate
ELIT
interactively
Intaractive
Request

—-|—‘ERT

errar

*MMED
GEM

*ERROR

1 CRT

*10B0Q
Submit
compile
to batch

Compile
source in
batch
CRT
*AEIIVE

—* [emowe

arrar

CRT
*ERROR

afrar

CRT
*ACTIVE
Compile
saurce in
batch

— [2MOove

For more information on batch versus interactive generation see the chapter titled
"Generation and Implementation: An Introduction" in this guide.

Chapter 3: Preparing for Generation and Compilation 161

Using Jab Lists

Job Descriptions for Batch Generation and Compilation

A job description describes the environment in which a job runs. Parameter JOBD on the

YSBMMDLCRT command specifies what job description name CA 2E will use when you

submit the job to batch. The value *MDLVAL retrieves the job description name from

model value YCRTJBD, usually the QBATCH job description.

Each model has a unique JOBD containing:

®m Job queue, which can be any valid IBM i JOBQ

m Routing data, which must be set to YCRTOVR

m Other job attributes, such as the Initial library list and Message logging (Level,
Severity, and Text)

You can specify separate job descriptions for generation and compilation, using the
JOBD (generation) and CRTJOBD (compilation) parameters on the YSBMMDLCRT
command. Both job descriptions default to the YCRTIJBD model value.

For compilation, the initial library list of the job description should contain the name of
the generation library, specified by model value YGENLIB, and any other libraries

containing objects required for compilation, such as the HLL compilers.

Use the Toolkit Edit Library List (YEDTLIBLST) command to maintain both the library list
of your model and the associated job description.

Note: Your interactive library list is not used.

Using Job Lists

This section helps you set up and use the job list for generating and compiling your
application.

For more information on CA 2E commands covered in this section, see the CA 2E
Command Reference Guide.

162 Generating and Implementing Applications

Using Job Lists

Using More Than One Job List

Editing Job Lists

It is good practice for each programmer or designer using a model to have a job list. You
can specify a job list name using the JOBLST parameter on these commands:

m Edit Model (YEDTMDL) command. JOBLST names the list into which CA 2E places
requests.

m Submit Model Create (YSBMMDLCRT) command. JOBLST names the list from which
CA 2E takes requests.

The value *USER for JOBLST specifies a list with the same name as the user profile of the
job invoking the command.

You can edit a job list from the Submit Model Generations & Creates panel. For
example, you may want to put a hold on certain members, then release them later.

Note: You can also edit a member's source from Submit Model Generations & Creates
by entering E (STRSEU) by the member.
You can access the Submit Model Generations & Creates panel in the following ways:

m From the Display Services Menu, choose the option Submit model create request
(YSBMMDLCRT)

m Execute the YSBMMDLCRT command from an i OS command line, setting the EDIT
parameter to *YES

m From the Edit Model Object List panel, press F19 and select the YSBMMDLCRT
option from the Job List Commands Menu

Chapter 3: Preparing for Generation and Compilation 163

Using Jab Lists

Building Job Lists

Using the Build Job List (YBLDJOBLST) command, you can create a generic list of objects
in a model and use the list to submit regenerations and/or recompilations. You can
execute the YBLDJOBLST command from the Display Services Menu. Select the Job list
menu option, and then select the Build Job List for Model option.

You can select a job list by specifying:

m Application area

m Generic name of CA 2E files that have the dependent access paths and/or functions
to be included

m Generic name of access paths to be included

m Type(s) of access paths to be included

m Generic name of functions to be included

You can specify whether the activity status of the access path and function entries in the

list will be *GEN (require generation and compilation) or *CRT (require compilation
only). The parameters of the YBLDJOBLST command are:

m ACPACT—Access path activity flag

m FUNACT—Function activity flag

Alternatively, you can use the Convert a Model Object List (YCVTMDLLST) command to
convert an existing model object list into a job list. You can execute this command from
the Edit Model Object List panel by pressing F19 and selecting the YCVTMDLLST option
from the Job List Commands Menu.

For more information:

m On model objects lists, see the chapter titled "Managing Model Objects" in this
guide

m Onthe YCVTMDLLST command, see the CA 2E Command Reference Guide.

Managing Multiple Job Lists

When you request generation/compilation from within a model,CA 2E adds entries
automatically to a default job list. Specify the job list using the Edit Model (YEDTMDL)
command. This is the same command you use to enter the model; it defaults to *User. If
you create multiple job lists, make sure the default job list you are using is the one you
want.

164 Generating and Implementing Applications

HLL Implementation Considerations

Checking Job Lists

Using the Check Job List Entry (YCHKJOBLE) command, you can check the entries in an
existing job list to see if source members and/or objects with the same names already
exist in a library. You can use this command to sort your job list and drop objects that
already exist.

You can execute the YCHKJOBLE command in the following ways:

m Display Services Menu. Select the Job List Menu option and then select the Check
Job List for Model option.

m Edit Model Object List panel. Press F19 and select the YCHKJOBLE option.

Parameter UPDLST on the YCHKJOBLE command specifies one of the following actions
to take if the object or source does not exist:

m *RMVOK—Removes the member from the job list if the object and/or source
already exists.

m *RMVERR—Removes the member from the job list if the object and/or source does
not exist.

Reorganizing Job Lists

As job lists are used, they accumulate old data that you should remove periodically. Use
the Reorganize Model (YRGZMDL) command with the RGZOPT(*JOBLST) option.

HLL Implementation Considerations

When converting from one programming language to another, you will need to consider
the differences between the languages and the impact on your user source.

Features in RPG Not in COBOL

This section covers differences between RPG and COBOL implementation.

Chapter 3: Preparing for Generation and Compilation 165

HLL Implementation Considerations

Numeric Parameter Passing

In calling a program and passing numeric parameters to that program, RPG programs
first move the parameters to packed variables. RPG programs receive any numeric
parameters as packed, and then move them to the associated fields. This ensures that
the interface for numeric parameter passing is always packed numeric.

COBOL programs pass numeric parameters using the same definition as the field. If the
definition is signed numeric (unpacked), COBOL programs pass the parameter in that
way. Similarly, COBOL programs receive numeric parameters according to their
definition in the model as packed or signed.

When a COBOL program calls an RPG program with numeric parameter passing, a
parameter mismatch error occurs if the COBOL program defines one of the parameters
as signed numeric (unpacked).

Exception Monitoring on Program Calls

For RPG implementation, you can monitor a CALL statement to detect exceptions, such
as when a called program cannot be found. If an RPG program calls an uncompiled
program, an error occurs but processing continues.

For COBOL,CA 2E generates code in the calling function to ensure that the run unit does
not terminate.

Closedown Program

For RPG, Closedown Program settings have these results:

m Y—Causes RPG to generate a Set on Last Record indicator (LR). This indicator closes
all files and ensures a full initialization on the next call.

m N—Drops the LR indicator and issues a RETRN. The return allows for a faster
subsequent call.

For COBOL, Closedown Program settings have these results:

m Y—Issues explicit CLOSE operations to each file.

® N—Drops CLOSE operations.

166 Generating and Implementing Applications

HLL Implementation Considerations

CHGOBIJ to Alter Key Values

Error Routine

If you have a model originally implemented in RPG that you want to generate in COBOL,
review use of the Change Object (CHGOBIJ) function type, described here, and proceed
to the steps for converting from RPG to COBOL in this chapter.

A CHGOBI function implemented in RPG can include code to update key values.
However, an equivalent COBOL implementation cannot, since the COBOL REWRITE
statement does not allow key value changes.

If you need to change the value of one or more keys using a COBOL program, do not use
a CHGOBI function. Instead, when you define the function that specifies the COBOL
function, use separate Delete Object (DLTOBJ) and Create Object (CRTOBJ) functions.

If necessary, you can use an Execute Internal Function (EXTINTFUN) function to provide
a dummy CHGOBI function.

.—'Change Object'
| DLTOBJ
| CRTOBJ

For example, a function that changes the value of a key field in the database has
different implementations:

m For RPG implementation, the program could consist of an RTVOBJ function that
calls a simple CHGOBI for each record read.

m For COBOL implementation, the program must consist of separate DLTOBJ and
CRTOBIJ functions.

For more information on how to change key values using a COBOL program, see Building
Applications.

For RPG implementation, if you request an error routine, CA 2E generates a *PSSR
routine.CA 2E generates any database files in the resulting program, treating each file as
user-controlled and specifying a *PSSR routine. The initialization routine includes
explicit file opens.

COBOL has no *PSSR routine.

Header Specification

The CA 2E generator obtains an RPG header specification from the model value
YRPGHDR.CA 2E uses this header to generate source for RPG programs.

Chapter 3: Preparing for Generation and Compilation 167

HLL Implementation Considerations

Converting a Model from One HLL to Another

This section gives you some general guidelines for changing HLLs and addresses RPG to
COBOL conversions.

User Source Considerations

In changing from one HLL to another, ensure that your user source is in the same HLL as
the function that calls it and that the naming convention you use is compatible between
HLLs.

Note: If you ever plan on changing the HLL, specify *RPGCBL for model value YHLLVNM.

User Source in Same HLL as Calling Function

An Execute User Source (EXCUSRSRC) function must be the same HLL source type as the
function that calls it. For example, the EXCUSRSRC included in a COBOL function must
also be COBOL. If you are converting an RPG application to COBOL, you must convert
the EXCUSRSRC functions to COBOL.

Note: If the EXCUSRSRC you are converting accesses a data area, be aware that COBOL

has no equivalent to the IN and OUT statements in RPG, since COBOL does not support
direct access to data areas.

Compatible Names Between HLLs
If you change from one HLL to another, verify that the naming convention you use is
compatible for both HLLs. There is not necessarily a one-to-one correspondence

between HLLs. For example, COBOL does not accept special characters, and RPG does.

For more information on naming, see the Administrator Guide.

168 Generating and Implementing Applications

HLL Implementation Considerations

Converting from RPG to COBOL

To convert a model to COBOL:

1. If you plan to create more files, fields, or functions, use the YCHGMDLVAL
command to change the following model values.

m Generation Type for new functions, using the command string:

YCHGMDLVAL MDLVAL(YHLLGEN) +
VALUE(*CBL)

m HLL(s) naming convention for new names, using command string:

YCHGMDLVAL MDLVAL(YHLLVNM) +
VALUE(*RPGCBL)

Note: If you think you might ever create objects in both RPG and COBOL, set the model
value YHLLVNM to *RPGCBL.

If your model was initially created with the naming convention set to *RPGCBL, skip
steps 2, 3, and 4.

1. Replace the generation type data in your model library with the COBOL generation
types. To replace the data, enter:

CPYF +
FROMFILE(2E-NL-library/YGENTYPPDP) +
TOFILE(your-model/YGENTYPRFP) +
FROMMBR(CBL) TOMBR(*FIRST) +
MBROPT(*REPLACE)

To find out the National Language library (2E-NL-library) name, enter:

DSPDTAARA +
DTAARA(2E-product-library/YLNGxxxSYA)

1. Replace the device format data in your model with COBOL formats. To replace the
data, enter:

CPYF +
FROMFILE(2E-NL-library/YDEVFMTPDP) +
TOFILE(your-model/YDEVFMTRFP) +
FROMMBR(CBL) TOMBR(*FIRST) +
MBROPT(*REPLACE)

1. For existing functions and files, run the Convert Model Names (YCVTMDLVNM)
command before regenerating them in COBOL. This command changes existing
names to valid COBOL names and creates a report of old names and corresponding
new names. To rename function and file names, enter:

YCVTMDLVNM MDLLIB(your-model-library)

Chapter 3: Preparing for Generation and Compilation 169

HLL Implementation Considerations

1. Addthe COBOL library, Y2SYCBL, to your model and model job description library
lists. Be sure to exit and save the changes and update the batch job description. To
add the library, enter:

YEDTLIBLST LIBLST(your-model-library/*JOB)

1. Delete previously submitted items from the job list for Submit Create Requests
from Model (YSBMMDLCRT). You cannot change the source type of a function
already on the list.

For more information on deleting items from job lists, see the Using Job Lists
section in this chapter.

2. Change the source type of existing functions to CBL. Enter the model and change
the source type. Use either of the following methods to display the Edit Function
Details panel:

m Go to the Display Services Menu and select the Display all functions option.
Zoom into each named object on the list.

m On the Edit Model Object List panel specify option 2 for each function on the
All Objects list (*ALLOBJ).

Note: The model value YHLLCBL determines whether you generate COBOL/74 or
COBOL/85.

3. Generate and compile as follows:

m [f the access path format names begin with @, the RPG default, generate and
compile all access paths as well as functions. This changes the RPG @ prefix to
a COBOL prefix.

m If you have created a set of access paths with COBOL compatible names,
generate and compile only the functions.
For more information:
m Onimplementation names, see the Administrator Guide.
m On CA 2E commands, see the Command Reference Guide.

m Onrecompiling physical files, see the chapter titled "Generating and Compiling Your
Application" in this guide.

m On editing the All Objects list, see the chapter titled "Managing Model Objects" in
this guide.

170 Generating and Implementing Applications

HLL Implementation Considerations

Converting from COBOL to RPG

This section covers converting a model you have implemented in COBOL to RPG
implementation.
To convert a model to RPG:

1. If you plan to create files, fields, or functions, use the YCHGMDLVAL command to
change the following model values:

m Generation Type for new functions, using the command string:

YCHGMDLVAL MDLVAL(YHLLGEN) +
VALUE(*RPG)

m HLL(s) naming convention for new names, using the command string:
YCHGMDLVAL MDLVAL(YHLLVNM) +
VALUE(*RPGCBL)
Note: If you think you might ever create objects in both RPG and COBOL, set model
value YHLLVNM to *RPGCBL.

1. Delete previously submitted items from the job list for Submit Create Requests
from Model (YSBMMDLCRT). You cannot change the source type of a function
already on the list.

2. Enter the model and change the source type of existing functions to RPG.
a. Go to the Display Services Menu and select the option Display all functions.
b. Zoom into each named object on the list.

3. Generate and compile the functions.

For more information:
m On deleting items from job lists, see the Using Job Lists section in this chapter.
m Onimplementation names, see the Administrator Guide.

m On CA 2E commands, see the Command Reference Guide.

Chapter 3: Preparing for Generation and Compilation 171

Chapter 4: Generating and Compiling Your
Application

You must generate and compile the source members for your access paths and
functions before you can test your application programs. This chapter covers generating
the source for the DDS database files or SQL tables and views, RPG or COBOL programs,
DDS display files or printer files, and Help text. It explains how to compile the generated
source into objects that will implement the access paths and functions for your
application programs. This chapter also covers common errors and
regeneration/recompilation.

This section contains the following topics:

Requesting Source Generation (see page 173)

Enabling Execution Environments (see page 179)
Verifying Results (see page 182)

Generating and Compiling After Changes (see page 187)

Requesting Source Generation

You can request batch or interactive source generation for access paths and
functions.CA 2E automatically keeps a job list of the members to be generated and
compiled in batch or to be generated interactively and not yet compiled.

Note: If you want to generate and compile in another HLL, you must change the
function's attribute before you generate the function.
For more information:

m On setting up job lists, refer to the chapter titled "Preparing for Generation and
Compilation" in this guide.

m On whether to generate in batch or interactive mode, refer to the chapter titled
"Generation and Implementation: An Introduction" in this guide.

m On changing the HLL, refer to the chapter titled "Preparing for Generation and
Compilation" in this guide.

Chapter 4: Generating and Compiling Your Application 173

Requesting Source Generation

Working from the Display Services Menu

The steps below give you one way to generate specific source members, starting from
the Display Services Menu:

1.

From the Display Services Menu, display all access paths or functions; if you wish to
generate:

m Access paths, choose the option Display all access paths. The Display All Access
Paths panel displays.

m Functions, choose the option Display functions. The Display All Functions panel
displays.

Note: For functions, ignore items with **N/A under the GEN name column. They
are internal functions and will not generate. You can filter these items out of your
display by typing *EXT in the Type column, so that only external functions will
display.

Request generation:
m For batch, type J beside each item you want to generate, then press Enter.

m Forinteractive, type G beside each item you want to generate, then press
Enter.

Exit to the Display Services Menu. Press F3 (Exit).

Submit generations and compilations of all the source members you selected. On
the Display Services Menu, you can do this in two ways:

m Select the Submit model create request (YSBMMDLCRT) option. Press Enter to
display the source members you selected or press F4 to change parameter
defaults before displaying the list.

m Select the Job list menu option to display the Job List Commands Menu. Select
the YSBMMDLCRT option.

A job list of the source members you have requested for generation and
compilation appears on the Submit Model Generations & Creates panel.

Review the list before confirming, make any changes desired, and press Enter. If the
list contains items you do not want, you can drop (D) or hold (H) them. The
following panel shows a sample list:

174 Generating and Implementing Applications

Requesting Source Generation

SUBMIT MODEL GEMERATIONS & CREATES. SYAMDL
¢ SYGEN

GENLIB

Member
UUADREP
UUADRELO
UUADREL1
UUADREL2
KDADELRD
UUAISRRD
UUAJEFRD
UUAKDFRD
UUASDFRD
KDADELRH
UUAISRRH
UUAJEFRH
UUAKDFRH

| .-

SEL: G-Rqs GEN. C-Rqs CRT. E-STRSEU. D-Drop. JOB(1-DSP, 4-HLD. 6-RLS, ?-CHL)
F3=Exit FS5=Reload Fé=MHsgs F8=Submitted jobs F9=Command line ENTER-Subnit

Type Act Status Text

PF

DSPF
DSPF
DSPF
DSPF
DSPF
PNL
PHL
PHL
PHL

GEM
GEN
GEN
GEN
GEN
GEN
GEH
GEN
GEN
GEN
GEN
GEN
GEN

Custoner Physical file
Customer Update index
Customer Retrieval index
Custoner Custoners by name
Sample EDTRCD Edit recordil screen)
Select Customer Select record

Edit Customer Edit file

Display Customers by Hame Display file

Work With Customers Display file

Sample EDTRCD Edit record(l screen)
Select Customer Select record

Edit Customer Edit file

Display Customers by Name Display file +

Chapter 4: Generating and Compiling Your Application 175

Requesting Source Generation

To drop or hold items:

m If you hold any part of a function, such as a program, a device, or help, you
must hold all the parts.

m If you drop any part of a function, also drop the function itself. Generation will
fail for a function that uses a device if you do not generate the function and
device together.

After you press Enter on the Submit Model Generations & Creates panel, the panel
re-displays with the confirm prompt set to Y for confirmation.

5. Confirm the list. Press Enter.

CA 2E submits the generation/compilation jobs. Messages display at the bottom of
the panel to let you know what work is under way, such as:

m "Job YGENSRC being prepared." YGENSRC is the generation job.
m "Existing objects are being deleted."
m "Joblist successfully processed."

6. You can review the list or exit the panel for the status of members as follows:
m Refresh for the most current status by pressing F5.
m If you want to exit, press F3. This takes you to the Display Services Menu.
m TogototheiOS Work with Submitted Jobs (WRKSBMJOB) panel from the

Display Services Menu, press F8.

Important! CA 2E orders generation of physical files, logical files, and functions
automatically. If you disturb the order by moving dependent items among queues or
deleting entries, the job may fail. The logical files must be built over physical files.
Therefore, the physical files must be created first.

Each member on the job list initially has a *SBM (submitted) status. As CA 2E generates
a member, the status changes to *GENSRC (source member being generated), *ACTIVE,
or *JOBQ (source submitted for compilation). A source member no longer appears on
the list when its compilation is completed unless the compilation fails and the status
changes to *ERROR. For errors, you must resubmit both the display file and RPG or
COBOL members.

For more information:

m On generating access paths, refer to Building Access Paths.

m On generating functions, refer to the chapter titled "Generating and Compiling" in
Building Applications.

176 Generating and Implementing Applications

Requesting Source Generation

Using YBLDJOBLST to Submit Jobs

Another way to submit functions and access paths for generation/compilation is to use
the Build Job List (YBLDJOBLST) command before running the YSBMMDLCRT command.

For more information on the YBLDJOBLST command, refer to the CA 2E Command
Reference Guide.

Converting Condition Values

If you have not generated from this model before, or if you have changed or added
condition values for status fields since the last generation, you must run the Convert
Condition Values (YCVTCNDVAL) command to update the condition values list file. This
command moves the values you defined against status fields from the model library to
the generation library.

To convert condition values:
1. Choose the option Convert model data menu from the Display Services Menu.
2. Choose the option Convert condition values to database file from the resulting

menu

Note: The condition values file should not be in use when running the YCVTCNDVAL
command.

For more information:

m On steps for converting condition values, refer to the Enabling Execution
Environments section in this chapter.

®m On converting condition values for multi-language support, refer to the Changing a
Model Language section in the "National Language Support" chapter in this guide.

Generating Your Field Reference File

CA 2E provides the option of using a field reference file, applicable only to DDS, when
generating source for an access path and a display file. Because the internal files in CA
2E act as a field reference file, there is not really any need for this external field
reference file for CA 2E-generated applications. However, it can be useful when a
non-CA 2E application uses CA 2E-defined fields.

If the model uses a field reference file, the DDS for files are generated to use field
referencing from this central definition of fields rather than specifying full field
definitions in the source.

Chapter 4: Generating and Compiling Your Application 177

Requesting Source Generation

Before you can generate a field reference file:

m Verify that model value YFRFVNM specifies a name. You must have a field reference
file specified for your model. If model value YFRFVNM is *NONE, you cannot
generate this file. You can change this setting from *NONE to generate the field
reference file and change it back to *NONE provided you do not generate any other
files in the interim. Changing model value YFRFVNM has no effect on the model. To
change the value of YFRFVNM, use the YCHGMDLVAL command.

m The field reference file must be in a library on the library list.

To generate DDS source for a field reference file, from Display Fields, choose one the
following:

m For batch generation, press F21.

® Forinteractive generation, press F9.

Note: If you are adding a field reference file to an existing model, you must generate its
source before submitting functions for generation/compilation.

Two other model values are available for generating a field reference file.

m YFRFTXT—Specifies which file text to use to describe the field reference file.

®m YFRFPFX—Specifies which prefix to give fields in the field reference file.

For more information on model values and the YCHGMDLVAL command, refer to the CA
2E Command Reference Guide.

178 Generating and Implementing Applications

Enabling Execution Environments

Enabling Execution Environments

CA 2E provides the option of using a field reference file, applicable only to DDS, when
generating source for an access path and a display file. Because the internal files in CA
2E act as a field reference file, there is not really any need for this external field
reference file for CA 2E-generated applications. However, it can be useful when a
non-CA 2E application uses CA 2E-defined fields.

If the model uses a field reference file, the DDS for files are generated to use field
referencing from this central definition of fields rather than specifying full field
definitions in the source.

Before you can generate a field reference file:

m Verify that model value YFRFVNM specifies a name. You must have a field reference
file specified for your model. If model value YFRFVNM is *NONE, you cannot
generate this file. You can change this setting from *NONE to generate the field
reference file and change it back to *NONE provided you do not generate any other
files in the interim. Changing model value YFRFVNM has no effect on the model. To
change the value of YFRFVNM, use the YCHGMDLVAL command.

m The field reference file must be in a library on the library list.

To generate DDS source for a field reference file, from Display Fields, choose one
the following:

m For batch generation, press F21.
®m Forinteractive generation, press F9.

Note: If you are adding a field reference file to an existing model, you must
generate its source before submitting functions for generation/compilation.

Two other model values are available for generating a field reference file.
m YFRFTXT—Specifies which file text to use to describe the field reference file.
m YFRFPFX—Specifies which prefix to give fields in the field reference file.

For more information on model values and the YCHGMDLVAL command, refer to the CA
2E Command Reference Guide

Chapter 4: Generating and Compiling Your Application 179

Enabling Execution Environments

Field Condition Values for Status Fields

Field condition values are values end users can enter in input-capable status fields on a
panel. To make condition values available to users of your application when they
request prompting, you must convert them from the model library where you define
them to the generation library where they will be used. The conversion process creates
a database file in the library you specify and, if needed, a display file and display
program for showing the values on the file. When users prompt a status field that has a
check condition,CA 2E displays a list of allowed values.

Note: You can change the names of the display file, display program, and condition
values file using the model value YVLSPFX.
For more information

m On converting condition values, see the YCVTCNDVAL section of the Command
Reference Guide.

® On model value YVLSPFX, see the YCHGMDLVAL section of the Command Reference
Guide.

Converting Field Condition Values

To convert condition values:

1. Make sure the file that contains your condition values, xxVLLSP (where xx is the
value list prefix), is not in use.

2. Invoke the YCVTCNDVAL command from the Display Services Menu or enter it on an
i OS command line as follows:
YCVTCNDVAL MDLLIB(model-library) +
GENLIB(generation-library)

Note: Be sure to use the appropriate library list containing the generation library
into which you want to convert your condition values; that is, use the appropriate
model library list.

1. Press Enter to execute the YCVTCNDVAL command.

CA 2E converts the values to a database file. If you invoked the command from the
Display Services Menu, CA 2E returns to that menu. The following message displays:

Condition values from model model name converted to library library name

180 Generating and Implementing Applications

Enabling Execution Environments

Converting Condition Values in a Multi-model Environment

There are two ways to convert condition values in a multi-model environment with a
common generation library:

®m Assign unique prefixes to the condition values list file in each model by using the
YCHGMDLVAL command for model value YVLSPFX. When you convert the
conditions,CA 2E creates separate condition files and condition display programs for
each model.

m |f you want to create only one condition file and display program in the common
generation library, put all conditions into a common model before conversion. To
create a common model, use the Copy Model Object (YCPYMDLOBJ) command.

For more information on multi-model environments, refer to the chapter titled "Setting
Up a Multi-Modeling Environment" in the Administrator Guide

Converting Model Messagdes

You can recreate all the message descriptions from a model in a single step using the
Convert Model Messages (YCVTMDLMSG) command.

There is generally no need to run this command because changes to message functions
in the model are automatically applied to the associated message file in the generation
library.

Two reasons you might use this command are:

m To merge the message files for two applications

m To create messages in a separate library

Note: If you want to use the CA 2E shipped default messages, such as *No value

selected, in an environment that does not include the CA 2E product libraries, use the
Duplicate Application Objects (YDUPAPPOBJ) command.

CA 2E-shipped default messages reside in the message file, Y2USRMSG. User-generated
run time messages reside in the file specified by the Message File Name (YMSGVNM)
model value. The YCVTMDLMSG command creates both message files automatically if
necessary.

For more information on CA 2E commands, refer to the CA 2E Command Reference
Guide.

Chapter 4: Generating and Compiling Your Application 181

Verifying Results

Verifying Results

CA 2E sends completion messages for successfully generated source. If errors occur, CA
2E:

m Places a comment line in the generated source with E in column 6

m Flags the item on the job list with *ERROR
For compilation errors, you can look at the spooled file.

The following sections cover finding errors for action diagrams, generation, and
compilation. You can display a full explanation of the error using the i OS Display
Message Description (DSPMSGD) command. This command looks up the message
description of the message in the message file Y2MSG. For example, you might get the
following message:

coumns . . . @ 171 Edit MYGEN/QDDSSRC
SEU==> APPLSPN
0084.00 *A. L.t

0085.00 A* Key fields
0086.00 E*Y2V0124 - No keys specified for format 'Account History'
0087.00 Afs===========-==—=====—=—=—==-=—=—===

You would look up message Y2V0124 by typing in the following command string and
pressing Enter:

DSPMSGD RANGE (Y2V0124) MSGF(Y2MSG)

For more information on common errors and recommended actions, refer to the
appendix "Troubleshooting.”

182 Generating and Implementing Applications

Verifying Results

Finding Errors Before Generation

You can find errors in the action diagram that would cause generation errors by using
the Action Diagram Services panel.

The action diagram editor finds errors such as:
® Missing parameters

m |nvalid context

m |nvalid domains

m Undefined conditions

m Undefined actions

Note: On the display of errors, you can press F7 to scroll to the next error, and type 3 for
the ‘Occurrences to process’ option to scroll to the prior error.

The action diagram editor only finds syntax errors in the current action diagram. It does
not find any errors present in embedded internal functions, unless you zoom into those
functions first. The action diagram editor does find errors in hidden structures within
the same action diagram.

To position to a function or message within an action diagram having a specified source
member name or message identifier, respectively, type the implementation name in the
‘Scan for implementation name’ option.

For more information on the Action Diagram Services panel, refer to the Using Action
Diagram Services section of the "Modifying Action Diagrams" chapter of Building
Applications.

Error analysis capability is also available outside the action diagram as follows:

m The new Check Function Action Diagram (YCHKFUNACT) command processes a list
of model objects and produces a listing of functions that contain errors. For
functions containing errors, the Option parameter specifies whether to print a
report (*PRINT) or load the action diagram of the first function containing an error
(*EDIT). The action diagram is positioned at the first block that contains an error.

m Subfile option 38 on the YEDTMDLLST panel scans for errors in the selected
function. If any errors are found, the action diagram is loaded and positioned to the
first error.

Chapter 4: Generating and Compiling Your Application 183

Verifying Results

Finding Errors After Generation

To find errors that occurred during either batch or interactive generation:

1. Access the Source Entry Utility (SEU). On the Submit Model Generation & Creates
panel, place E in front of the program object in error.

2. Enter an'E* Y2'search string. On the SEU positioner line, type 'E* Y2' and press F16.
The editor goes to the line beginning with E* (message ID) on which the error is
located in the compiled source. Press F16 again to continue the search.

3. Look for the prior user point in error. User points are identified by the USER
comment line. You can use F16 (find) and the string USER to locate the incomplete
action diagram statement(s) that caused the error(s).

4. Exit SEU and return to the function's action diagram to make the needed

corrections.

For more information on the SEU editor, refer to IBM's Application System/400
Application Development Tools: Source Entry Utility User's Guide and Reference.

Interactive Generation Errors

If you need more information, you can look for interactive generation errors as follows:

1. To look at the generation source file, YGENSRCRFP, in QTEMP, use the Toolkit Work
with Database File Data (YWRKF) command. Enter:

YWRKF FILE(QTEMP/YGENSRCRFP)

1. Scroll through the file to display the point in the action diagram where generation
stopped.

2. Return to the action diagram to make the needed corrections.

For more information:
m On the YWRKF command, refer to the CA 2E Toolkit Reference Guide.

m On action diagram editing, refer to the chapter titled "Modifying Action Diagrams"
in Building Applications.
Finding Errors After Compilation

To find compilation errors, display the compiled listing and job log, using one of the
following approaches.

184 Generating and Implementing Applications

Verifying Results

From the Display Services Menu

To access the job log from the Display Services Menu:

1.
2.

Press F8 (Display submitted jobs).

On the Work with Submitted Jobs panel, type 8 (Spooled files) next to the job, and
press Enter. The job will have the same name as the associated source member.

On the Work with Job Spooled Files panel, type 5 (Display) next to both the compile
listing and job log. Press Enter.

On the job log, scan for errors of severity 30 or above. This may show you what the
problem is. If not, go to the compile listing.

On the display of the compile listing, type B (bottom) in the Control field at the top
of the screen. Press Enter.

Note the message ID for the error message.

Use F16 (find) for that ID (without the *) to locate the action diagram statement in
error.

Display the Compile Listing

Using Job Logs

To browse the compile listing using SEU:

1.

Access SEU. On the Submit Model Generation & Creates panel, place E next to the
program object in error. Press Enter.

Select copy/browse mode. Press F15 (Browse options).
Display the compile listing. Select Option 2 (Spool file) and press Enter.
The compile listing displays at the bottom of the split panel.

Find each error. Enter *ERR on the find line at the bottom of the panel and press
F16 (Find/Repeat find).

Press Help on the message displayed at the bottom of the SEU display.

You can then revisit the action diagram to correct the error(s).

For more information on using SEU, refer to IBM's Application System/400 Application
Development Tools: Source Entry Utility User's Guide and Reference.

For your initial review of the job log, look for:

What the library list entries are when the problem occurs.

The error message ID and its text

Chapter 4: Generating and Compiling Your Application 185

Verifying Results

Resetting Job Log Severity Level

You can set the logging level for interactive and batch jobs as follows:

®m For an interactive job, if the logging level is not low enough to isolate the problem,
change the level and resubmit the job. To lower the job log severity level from an i
0OS command line, execute the i OS Change Job (CHGJOB) command. Suggested
parameters are:

CHGJOB LOG(4 00 *SECLVL) LOGCLPGM(*YES)

m For a batch job, you can change the logging level for the job description (JOBD)
using the i OS Change Job Description (CHGJOBD) command. Suggested parameters
are:

CHGJOBD +
JOBD(library-name/job-description- name) +
LOG(4 00 *SECLVL) LOGCLPGM(*YES)

For more information on the CHGJOB command, refer to IBM's Application/System 400
Programming: Control Language Reference.

Accessing an Interactive Job Log

If necessary, you can access an interactive job log. From an i OS command line, type one
of the following and press Enter:

DSPJOBLOG
SIGNOFF LOG(*LIST)

For more information on the DSPJOBLOG command, refer to IBM's Application/System
400 Programming: Control Language Reference.

Working with the Output Queue

Use the i OS Work with Output Queue (WRKOUTQ) command to access the output
qgueue for the spool files. This queue is the OUTQ on your JOBD:

1. Type the following and press Enter:
WRKOUTQ OUTQ(library name/output queue)

2. Find the job (name of the program) and use option 5 (Display) to display the spool
file.

For more information on the WRKOUTQ command, refer to IBM's Application
System/400 Programming: Control Language Reference.

186 Generating and Implementing Applications

Generating and Compiling After Changes

Debug Aids

The Toolkit provides utilities to streamline debugging. These utilities are a set of
commands that allow you to change the data on a database file directly, set up debug
sessions from directives stored in program source, and take synchronized snapshots of
the contents of a list of files. These commands include:

m Work with Database File Data (YWRKF)

m Start Debug and Add Auto Breakpoints (YSTRDBG)
m Copy Files (YCPYF)

m Set Break Program (YSETBRKPGM)

m Display a Program Message Queue (YDSPPGMQ)

The CA 2E documentation utilities are also useful in debugging. You can use them to
identify implementation objects impacted by changes you make as a result of
debugging.

Note: If you use the i OS debug facilities, ensure that you end debug before entering the
model.
For more information:

m On how to use the debug commands, refer to the chapter titled "Debug Aids" in the
CA 2E Toolkit Concepts Guide.

m On parameters for the debug commands, refer to the CA 2E Toolkit Reference
Guide.

m Onusing CA 2E documentation utilities, refer to the Documenting Your Generated
Application section of the "Implementing Your Application" chapter of this guide.

Generating and Compiling After Changes

This section describes considerations for regeneration and recompilation, and the
facilities provided by CA 2E for your assistance.

Chapter 4: Generating and Compiling Your Application 187

Generating and Compiling After Changes

Impact Analysis

You can use CA 2E's impact analysis tools to determine the impact of a proposed or
actual change to a model object and to ensure that all dependent objects are edited,
regenerated, and compiled. These tools include:

m Automatic update of date and time for various processes, including creation,
change, copy (for example, import from another model), and generation, for each
model object.

m Commands and processes to identify dependent model objects. These include:
m Multi-level model object usages
m Multi-level model object references
m Simulation of a proposed change
m Component change processing

m Distinction between changes that require editing of using objects and changes that
are internal and require regeneration of using external functions and access paths.

m Full integration with CA 2E edit and generation facilities.

For more information on CA 2E impact analysis tools, refer to the Impact Analysis
section of the chapter titled "Managing Model Objects" in this guide.

The remainder of this section provides a general overview of the idea of dependencies
between model objects.

What to Generate/Compile When You Change a Model Object

If you change a model object after generation and compilation, you must generate and
compile the dependent access paths and functions. What needs to be compiled depends
on what you change.

For more information on how changes to a model object affect other types of model
objects, refer to the Impact Analysis section of the "Managing Model Objects" chapter in
this guide; the appendix titled "Change Control Facilities Reference Tables" in this guide;
and the YDSPMDLUSG and YDSPMDLREF sections of the CA 2E Command Reference
Guide.

188 Generating and Implementing Applications

Generating and Compiling After Changes

Chandes Requiring Generation/Compilation

Following is an overview of dependent model objects that require generation and
compilation as a result of changing various model object types:

If You Changed

You Must Generate and Compile

Function options

The function

Device design

The function

Action diagram

The function

Note: For a non-generated (internal)
function, all functions referencing that
function must be generated/compiled.

Function message

If parameters in a message are changed, all
functions using the message. If no
parameters have changed, no generation
or compilation is needed.

Function parameters

The function and any other functions that
use it.

Note: If you changed or added parameters,
you must first revisit each reference to the
function in the action diagram, supplying
the new parameters. Use Find Error within
an action diagram to find where the new
parameters are missing.

Access paths

All functions using the access path and all
associated access paths.

Note: Use function references (F next to an
access path).

Condition value

All functions referencing the condition
value.

Notes:

If the condition value is used in select/omit
logic on an access path, generate/compile
that access path.

If only the condition value is changed, you
do not need to generate/compile the
function(s) using the access path.

If you change the values list prefix, you
must generate/compile all programs that
call the values list display program

Chapter 4: Generating and Compiling Your Application 189

Generating and Compiling After Changes

If You Changed

You Must Generate and Compile

YDATGEN

model value

Compile all functions.

Note: Set YDATGEN to VRY (display/enter
date in MDY), then you can make changes
at execution time.

Relation

If the relation is changed:

All access paths and all functions using
those access paths.

All access paths that include the changed
relation as a foreign key. For example, if
the key of a referred to file changes, the
files that refer to the relation are affected.
This, in turn, triggers function changes.

All files, all access paths, and all functions
using those files.

If the relation is added or deleted, all files
using the relation, all access paths, and all
functions using those files.

190 Generating and Implementing Applications

Generating and Compiling After Changes

The only time you do not need to regenerate access paths and functions following a
change to afile (FIL) is if the access path does not include the changed relation.

The following table shows some examples of changes to files that determine whether
you need to generate and compile functions.

FLD1 3.0 FLD1 3.0
FLD2 FLD2
FLD1 3.0 FLD1 3.0
FLD2 FLD2
FLD1 3.0 FLD1 3.0
FLD2 2.0 FLD2
FLD1 3.0 FLD1 3.0
FLD2 FLD2

FLD3
FLD1 3.0 FLD1 3.0
FLD2 FLD2
FLD3

Chapter 4: Generating and Compiling Your Application 191

Generating and Compiling After Changes

Finding Where CA 2E Objects are Used

The CA 2E usage and reference facilities and several Toolkit convert commands help you
identify which objects are used by the object you are looking at, and which objects you
need to compile with this one.

192 Generating and Implementing Applications

Generating and Compiling After Changes

Model Object Usages

The CA 2E Where Used facilities within your CA 2E model tell you where a model object
is used. You can work with model usages as follows:

m From the Edit Model Object List panel, enter option 91 for a specific model object
or press F20 to display the Display Model Usages panel for the model object list you
are editing.

m Enter the Display Model Usages (YDSPMDLUSG) command at a command line.
m Enter U against an object where this option is available to display level 1 usages.
In each case, the Display Model Usages panel displays. This panel provides a variety of

controls and filters including recursion, scope, and positioning to aid you in analyzing
the effect of an actual or proposed change.

When you request usages for a model object,CA 2E displays a list of model objects that
use it. Following are examples of model usages according to model object type:

m Physical (PHY) access path type—All references to the access path by other
non-physical (built over or joined to) access paths

m Other access path types—Physical access path(s) to which the access path refers
m Function—All functions that reference the function
m Field—Files, functions, and other fields that refer to the field

m Condition—In an access path to specify selection criteria, in an action diagram, for a
field to control the validation and default values

m File—Owning file and application area
m Array—All functions based on the array or using it for parameter definition

For more information on model usages by model object type, refer to the YDSPMDLUSG
section of the CA 2E Command Reference Guide.

From the Display Model Usages panel you can request generation/compilation of any of
the listed items. You can also edit details such as access path attributes for access paths
or action diagrams for functions.

For example, to find out which access paths are dependent on the physical file access
path of a specific file in a database:

1. From Edit File Details for the file, enter U against the PHY access path. The Display
Model Usages panel displays, listing:

m Access paths built directly over the specified file
m Any access path with file-to-file relations to the specified file that result in a
join

2. Find where the listed access paths are used. Enter 91 against each access path.

Chapter 4: Generating and Compiling Your Application 193

Generating and Compiling After Changes

3. Find the functions that use an access path. Enter F against each access path. The
Display Model Usages panel displays.

Model Object References

You can also display a list of the model objects a model object refers to from the Display
Model Usages panel or Edit Model Object List panel using option 81 or by entering the
Display Model References (YDSPMDLREF) command at a command line.

For more information on usages and references, refer to the Impact Analysis section of
the "Managing Model Objects" chapter in this guide.

Finding Unreferenced Model Objects

The Document Unreferenced Objects (YDOCURF) command produces a model object list
of model objects that are unreferenced in a specified model. The OBJTYP parameter

specifies up to six special values that select the object types to be analyzed by the
command.

Note: A model object that is identified by the YDOCURF command as unreferenced
within a model may be referenced from outside the model by menus, messages, user
defined programs, and so on.

For more information on the YDOCURF command, see the Command Reference.

Toolkit Convert Commands

Two Toolkit commands, Convert Database Relations (YCVTDBR) and Convert Program
References (YCVTPGMREF), allow you to list items you want to compile as follows:

m YCVTDBR—Lists files dependent on physical file(s). You can compile any of the
listed files using the Toolkit Create Object (YCRTOBJ) command.

m YCVTPGMREF—Lists programs that reference a file or format. To compile, first you
convert specified items using the Toolkit Convert Object List (YCVTOBIJLST). You
then run the YCRTOBJ command. The YCVTOBILST command creates the member
list used by the YCRTOBJ command.

For more information on the parameters for these commands, refer to the CA 2E Toolkit
Reference Guide.

194 Generating and Implementing Applications

Generating and Compiling After Changes

Multi-Programmer Environments

To be able to compile objects that another programmer or designer created, you must
be authorized to those objects. One way to achieve this is to use an appropriate group
profile.

For more information on setting up authority, refer to the Signing on with the Correct
User Profile section of the "Creating and Managing Your Model" chapter of the
Administrator Guide and the Locking Objects and the Open Access sections of the "Using
Your Model" chapter of the Administrator Guide.

Retaining Data When You Recreate Physical Files

You can compile a physical file that contains data without losing the data.CA 2E provides
model values to name the libraries.

m YOLDLIB—Name of the library into which you want old physical files archived.
®m YCPYLIB—Name of the library from which you want physical file data copied during

the generation process.

Note: Usually, these two model values are the same because you store data in a library
and then copy the data back from the same library.

To compile, retaining the data in a physical file:

1. Before you compile the physical file, designate library names for model values,
YOLDLIB and YCPYLIB, using the YCHGMDLVAL command. Type the following
command strings, pressing Enter to execute each one:

a. YCHGMDLVAL MDLVAL(YOLDLIB) +
VAL(old-library-name)

b. YCHGMDLVAL MDLVAL(YCPYLIB) +
VAL(copy-library-name)

2. When you execute the YSBMMDLCRT, specify the libraries for OLDLIB and CPYLIB
parameters.CA 2E will use your library names as defaults. The respective values are:

m *OLDLIB—Library name from YOLDLIB.
m *CPYLIB—Library name from YCPYLIB.

Note: When you execute the YSBMMDLCRT command from the Display Services Menu,
the default for both *OLDLIB and *CPYLIB is *NONE.

Chapter 4: Generating and Compiling Your Application 195

Chapter 5: Implementing Your Application

Once your application is compiled, you can set it up for end users. This chapter offers
guidelines for implementation.

This section contains the following topics:

CA 2E Toolkit Menus (see page 197)
Calling a Program (see page 201)
Execution Environments (see page 202)
Testing (see page 203)

Moving Objects (see page 205)

UIM Help Text (see page 206)
Documenting Your Generated Application (see page 208)

CA 2E Toolkit Menus

You can create menus for end user access to your application with Toolkit menu
facilities. When you create menus or make changes, additions, and copies, the menus
are ready to use immediately; no compilation is needed.

This topic offers some step-by-step guidelines.

For more information on menu facilities, refer to the Menus section of the "User Access
Aids" chapter of the CA 2E Toolkit Concepts Guide.

Chapter 5: Implementing Your Application 197

CA 2E Toolkit Menus

Creating and Maintaining Menus

To create or change a Toolkit menu, perform the following:

1. From any command line, enter:

YGO *Y1.
The Toolkit Utilities Main Menu displays.

1. From the Toolkit Utilities Main Menu, enter the Design Aids option.
The Toolkit Design Aids menu displays.

2. From the Toolkit Design Aids menu, enter the Menu Commands option.
The Toolkit Menu Commands menu appears.

3. From the Toolkit Menu Commands menu, enter the YWRKMNU Work with Menus
option.

The Work with Menus panel displays.
4. From the Work with Menus panel:
a. Inthe Menu name field, enter the name of your menu.

b. Inthe Library name field, verify that the library is the name of your generation
library (GENLIB).

c. Press Enter. The Work with Menu Details panel displays.

5. Toinsert lines on your menu, from the Work with Menu Details panel enter the
Insert Mode option.

While in this mode, Toolkit inserts a blank line each time you press Enter.
6. Enter the information you want:
m Prefix—A word or two that categorizes options (optional).

m Opt—The character or number the user enters to select the menu. N in this
field automatically numbers the options.

m Description—Title as you want it to display on the menu.
7. Press Enter twice to end insert mode.
8. Type Z (Details) against each menu option you have defined.
The Work with Menu Options panel displays for the first option.

9. From the Work with Menu Options panel, change any defaults as needed. You can
invoke the command prompter by pressing F4 (Prompt), typing Z (Details) against
any option, and pressing Enter.

Notes:
m For Option type choices:

— PGM allows use of ? (question mark) for the name of a program.

198 Generating and Implementing Applications

CA 2E Toolkit Menus

— CMD requires that you enter an IBM i command in the Option to be
executed field.

m Inthe Library field, entering *MDL enables the menu to list all functions in the
model. From here, you can select one. This automatically sets the parameter
list for the function.

m Inthe Option to be executed field, if you enter a function,CA 2E automatically
adds a return code parameter.

10. Exit and save:

a. From Work with Menu Options, press F3 (Exit) twice. The Work with Menu
Details panel displays, followed by the Exit Work with Menu panel.

b. From Exit Work with Menu, enter the option Exit and replace menu.

The Toolkit Menu Commands menu displays.

Displaying Your Menu

To display the menu you have just created, perform the following:

1. From the Toolkit Menu Commands menu, key in the option YGO Go to Menu, and
press F4 (Prompt).

The Go to Menu (YGO) panel displays.
2. From Go to Menu (YGO):
a. Inthe Menu name field, enter the name of the menu.
b. Inthe Library name field, enter your GENLIB name.
3. On the display of your menu, you can:
m Execute compiled programs.
m Edit the menu by typing *M (the Work with Menu Details panel displays.)

Note: To be able to execute Toolkit menu options, you must be authorized to the
program or command that the option calls.

For more information on setting up user profiles and passwords for Toolkit menu access,
refer to the User Profiles section of the User Access Aids chapter of the CA 2E Toolkit
Concepts Guide.

Chapter 5: Implementing Your Application 199

CA 2E Toolkit Menus

Setting Up Color Menus

You can specify color menus from Go to Menu (YGO):
1. Onacommand entry line, type:

YGO

and press F4 (Prompt). The Go to Menu (YGO) panel displays.
2. For User options, select *EXTENDED, then press Enter.

200 Generating and Implementing Applications

Calling a Program

Calling a Program

You can execute a compiled program using:
m Toolkit menus.

m The CA 2E Call a Program (Y2CALL) command. This command determines the
parameters required by an external function directly from details contained in the
model. You can provide values for all input-capable fields and you can re-use these
values for subsequent calls.

m This command is useful especially when the parameter interface is complex or if it
has changed.

m The ‘Call function’ option on the Action Diagram Services panel.

m TheiOS CALL command:

CALL program "'
where:
m Program—Is the name of the source member for the function's program.
m ''(single quoted space)—Is a required dummy parameter that represents the

standard return code parameter.

Note: Other parameters may be required. How these are passed depends on how they
are defined in the function.

For more information:

m On modifying function parameters, refer to Building Applications.

m On calling functions from the Action Diagram Services panel, see the Using Action
Diagram Services section of the "Modifying Action Diagrams" chapter in Building
Applications.

m Onthe Y2CALL command, refer to the Working with Versions of Functions and
Messages in the "Managing Model Objects" chapter in this guide, and the
Command Reference Guide.

To find the name of the program you want to execute, use one of the following
methods:

m For the CALL and Y2CALL commands, go to the Display Services Menu and use the
option, Display all functions. Note the source member name of the program you
plan to execute.

m From the Toolkit Work with Menu Options panel, enter the following values:

Option Value

Option type PGM

Chapter 5: Implementing Your Application 201

Execution Environments

Option to be executed ?

Library *MDL

A selection list of functions displays. Note the source member name (DDS name) of
the function you want to execute.

Note: All CA 2E generated external functions have at least one parameter, a return
code. In the following logic, checking is being done to show the program ended
normally:

—AACASE
| - PGM.*RETURN CODE is *NORMAL
| - *OTHERWISE
| error handling
|__ENDCASE

Execution Environments

This section gives guidelines for preparing your application for execution.

Duplicating Shipped Application Objects

You can run your application independently of the CA 2E product libraries. To run your
application without the product libraries in your library list or to distribute your
application to another system, copy shipped application objects into the library for
execution objects.CA 2E provides the Duplicate Application Objects (YDUPAPPOB))
command for this purpose. The YDUPAPPOBJ command also provides options to copy
the called programs needed to support action bars, help, and Toolkit menus.

Duplicating Execution Objects

To duplicate generated execution time objects into a non- CA 2E environment, use the
Create Generation Objects (YCRTGENOBJ) command. You can optionally invoke the
YDUPAPPOBJ command from the YCRTGENOBJ command.

For more information
m On CA 2E commands, see the Command Reference Guide.

m Onthe list of objects required to run the menu and help utilities, refer to the
appendix titled " CA 2E Objects Required for Compilation and Execution" in this
guide.

202 Generating and Implementing Applications

Testing

Testing

Before You Begin

As CA 2E provides the structure for your application, your testing can focus on any logic
you have added to action diagrams and the relations between functions. In developing
your test plan, be sure to include:

m Test data with known input and output.

m Steps for regression testing.

Before testing, verify:

m That the application's message file, or a copy of it, is present in a library in the
application's library list.

m That all required CA 2E execution modules are present. This is automatically true if
you are testing in the same environment in which you developed the application.

For more information, refer to the Execution Environments section in this chapter.

Chapter 5: Implementing Your Application 203

Testing

What to Test

Critical details to test in your application:

Do function calls work?

m Can every function be called?

m Can every function that is supposed to call another function do so?

Note: You can set up a menu, using Toolkit menu facilities, to test function calls.

Do all the function keys work? If a function key is enabled but does not show on the
panel, or does not work and does show on the panel, go to the device design and
select the command to refresh the function keys from the action diagram.

m Ensure the YCUAPMT model value is set to *YES or *CALC.
m Does the F4=Prompt work for fields in which values should be checked?

m If F4 does not work, the check values entry for the field may specify the default
*NONE. Set the value to *ALL values or an appropriate LST condition.

m If F4 works but you do not get the right list of values, run the Convert Condition
Values (YCVTCNDVAL) command.

m If F4in a key field does not give you a Select Record (SELRCD), the SELRCD
probably did not exist when you generated the function. You can create the
SELRCD and regenerate the application that needs it.

Are before/after image errors occurring? The file definitions in the model may differ
from the compiled versions of the file. Regenerate the files and the functions built
over those files.

Are level checks occurring? Files may have been changed but the functions were
not regenerated and compiled successfully.

Is no data being returned for a Retrieve Object (RTVOBJ) function? You may need to
code a *MOVE ALL built-in function from a Database File 1 (DB1) into a Parameter
(PAR) context.

Is an error occurring although the program continues? The program is not properly
checking for and handling a return code.

For more information:

On the SELRCD and RTVOBI functions, refer to Building Applications.
On YCVTCNDVAL, see the Command Reference Guide.

204 Generating and Implementing Applications

Moving Objects

Moving Objects

To carry out testing in a different library than development, move lists of new versions
of programs and their source into the test environment. There are two approaches for
moving objects with CA 2E facilities.

m Change Management (CM)

m Toolkit generic move commands

Note: Before moving objects and source members, be sure to convert condition values.

CA 2€E CM Overview

CM, an automated change management system for the IBM i, includes features that
control access and modifications to CA 2E model objects, source code, and executable
objects. CM automates and tracks the flow of source and objects between
development, test, and production libraries. You define the libraries, including the rules
by which you want CM to govern them. CM also implements your IBM i and model
object security.

CM's automatic Check Out of model objects that you intend to change protects against
conflict with the work of other developers.

The CM Check In feature supports moving objects. This feature includes the following
processes:

m Create Request—Determines the source and objects for migration, maintaining
integrity between CA 2E design objects and source-based objects.

m Precompile—Promotes the model objects.
m Compile Request—Generates and compiles the requested source-based objects.

Note: Compile Request is an optional process. You can move objects using CM that
were compiled with CA 2E.

m Move Request—Moves successfully compiled objects to the target library, including
the related logical files for physical files.

m Distribute Request—Distributes programming changes to a remote or local target
library.

For more information on CM, refer to the Change Management User Guide.

Chapter 5: Implementing Your Application 205

UIM Help Text

Toolkit Generic Move Commands

UIM Help Text

UIM Panel Groups

Move commands have generic versions in Toolkit, which move the source for objects.
These generic commands also allow you to log the movement of objects and source, to
archive previous versions of source/objects, and to preserve object authorities. You can
move all objects or selectively move only new or existing objects.

Note: Toolkit protects your data by requiring an archive library when you move physical
files.

The generic move commands include:

m YMOVM—Move Members. Use to move a list of source members, including
archiving if specified.

m YMOVOBJ—Move Objects. Use to move a list of objects, including preserving
authorizations if specified.

m YMOVOBIJSRC—Move Objects and Source. Use to move a list of objects and
corresponding source members, including preserving authorizations if specified.

For more information:
m Onusing the generic commands, refer to the CA 2E Toolkit Reference Guide.

m On an overview of generic moving, refer to the Generic Processing section of the
"Programmer Aids" chapter of the CA 2E Toolkit Concepts Guide.

The native i OS User Interface Manager (UIM) provides support for defining and running
panels, dialogs, and online help information. UIM is a tag-based language related to
other tag languages, such as the 0S/2 Information Presentation Facility (IPF) and ANSII
Standard Generalized Markup Language (SGML).

CA 2E generation optionally supports UIM help. CA 2E creates the help text with control
codes (tags) into a source member to be compiled into an object. This object is called a
panel group (*PNLGRP). Each panel group contains help panels called help modules. If
you generate UIM help, you must install the panel group, with the display and function,
for production.

Before generating and compiling UIM help text for the first time, you must execute the
YCVTCNDVAL command. This process will update the Y2USRMSG message file with the
UIM message IDs that are used in the generated source.

206 Generating and Implementing Applications

UIM Help Text

Note: Because UIM is a tag-based language, do not start a line of narrative text with a
period (.). The compiler will assume it is part of a tag and the compile will fail with error
CPD5B41 - Control word is missing.

The help modules are referenced in the DDS display file source, using the HLPPNLGRP
keyword. These are associated with specific areas on the panel using the HLPARA
keyword.

When end users request help:

m i OS automatically selects and displays the appropriate help module, dependent on
the cursor location.

m i OS support allows for automatic selection of an appropriate window size, shape,
and location for the help, and automatically reformats the help text to fit.

m End users can access all help modules enabled for a format, either at the record or
file level.

m Additional facilities are available, such as printing help text and accessing help for
help.

Additional UIM tags are available for your use, including:

m Hypertext links to other panel groups by selection of specific fields on a panel

m |ndexed lookup by word or synonym

m Display attributes, headings, and column and list numbering

m |Import of modules from other panel groups at execution time

For more information on tailoring your help using additional UIM tags, refer to IBM's
Application System/400 Guide to Programming Displays.

Note: If you have Text Management (TM) help text that you have modified outside of
CA 2E, you can convert it to UIM help text by using the Convert Help Text to UIM Panel
(YCVTTMUIM) command. You can then use the resulting panel group with existing
functions without the need to generate again.

For more information on the YCVTTMUIM command, refer to the CA 2E Command
Reference Guide.

Chapter 5: Implementing Your Application 207

Documenting Your Generated Application

Documenting Your Generated Application

To generate technical documentation, the Document Model Functions (YDOCMDLFUN)
command uses the operational text (or functional text if no operational text is available)
from your model.

® Function text—Creates an introduction to the function.
m Device design text—Creates an introduction to the panel.
m Field text—Creates a description of each field on the panel.

m Condition text—Creates a description of each allowed value for a field.
Note: The Edit Object Text panel initially shows functional text.

Two types of text are allowed for each CA 2E object:

m Functional text that the designer enters to describe the object's purpose; this text
may include restrictions and notes on design decisions.

m Operational text that the developer enters to describe functions, panels, fields, and

conditions for end users.

CA 2E includes commands to produce hard copy documentation of your model,
including dependencies between objects. You can invoke these commands from the
Display Services Menu or call them directly.

You can add functional or operational text using the Edit Object Text panel. For access:

m Type N (narrative text) next to the item you want to document. The Edit Narrative
Text (Functional) panel displays.

m Press F20 (operational text) to go to the Edit Narrative Text (Operational) panel.CA
2E incorporates the text you enter on this panel into the help text for the generated
function.

For more information

m On documenting your model:

m For fields, refer to the chapter titled "Documenting Your Data Model" in the
Defining a Data Model Guide.

m For access paths, refer to the chapter titled "Documenting Access Paths" in the
Building Access Paths Guide.

m For functions, refer to the chapter titled "Documenting Functions" in Building
Applications.

On Toolkit documentation commands, refer to the CA 2E Toolkit Reference Guide under
commands that begin with the letters YDOC.

208 Generating and Implementing Applications

Chapter 6: National Lanquagde Support

CAZ2E offers you more than one way to generate applications in different national
languages:

= |f your whole application is to appear in one language, do the following:
m Obtain the appropriate national language module from CA.
m Translate your model.

m Design each panel in the target language (refer to the Changing a Model
Language section in this chapter).

m [f your application is to appear in more than one language, such as an application
for an international bank with clerks in different countries who access a central
database, you will want to show different translated versions of each function.

This chapter describes how to generate in other national languages.

This section contains the following topics:

Understanding NLS Implementation (see page 210)
Translating a Generated Model (see page 210)

Managing Multi-Language Environments (see page 214)
Double Byte Character Set (DBCS) Applications (see page 218)
Bi-directional Languages (see page 220)

Chapter 6: National Language Support 209

Understanding NLS Implementation

Understanding NLS Implementation

CAZ2E provides NLS support that allows applications generated by CA 2E to be language
independent. This is done by removing hard-coded constants from panels and reports
and placing them in message files. These message files can then be translated into
several languages with the appropriate language resolved at execution time. This allows
a single set of generated programs and panels to support multiple languages at
execution time.

You can implement advanced NLS for a model, function, or field using external message
identifiers. Using external messages, you can change from one national language to
another, using the same set of application objects. Implementation of *MSGID at the
field level would override implementation at the function level, as would function-level
implementation override model-level implementation.

When you specify externalized screen constants for a model, function, or field,CA 2E
converts screen text literals into messages (MSGID DDS keywords). There can be up to
five messages for a literal, depending on the definitions: three for column headings, one
for right-hand text, and one for left-hand text.CA 2E puts the messages in the message
file specified by model value YPMTMSF at generation time. The generated application
retrieves the messages from the message file at execution time.

Note: The default message file is xxPMTMSG in the generation library (GENLIB), where
xx is the model object prefix defined by YCRTMDLLIB.

In order to facilitate maintenance of multi-language environments,CA 2E provides an
exit program that automatically creates translated copies of prompt messages for each
supported national language when you copy an NL-enabled device function.

For more information:

m On the exit program, see the Managing Multi-Language Environments section in
this chapter.

m On device design, refer to the National Language Design Considerations section of
the "Modifying Device Designs" chapter of Building Applications.

Translating a Generated Model

This section addresses tasks you need to do before generating your application in
another national language. Once you have completed these tasks, refer to the chapter,
"Generating and Compiling Your Application" in this guide as necessary.

210 Generating and Implementing Applications

Translating a Generated Model

Choosing Implementation Level

You choose the level at which to externalize constants before generating your
application. Each level allows specific controls as follows:

m Model level—Full application control of the generating options. Set model value
YPMTGEN to *MSGID using the YCHGMDLVAL command.

®m Function level—Control of the function. On the Edit Function Options panel in the
Screen Text Constants field, enter M (MSGID).

= Field level—Flexibility for each constant on a panel or report. At Edit Screen Entry
Details in the Screen Text field, enter M (MSGID).

The message ID allocation is a single character prefix followed by six generated
characters (xYYYYYY). You can modify the single character prefix from Edit Generation
Types.

Note: If you do not have the national language library for your generated language, you
will need to translate the message file Y2USRMSG in your translated objects library after
YCVTCNDVAL execution, CA 2E-generated help text, and any user-defined help.

Placing Language-Specific Objects in Libraries
After generating your application in the desired language, place the language-specific
objects in separate libraries as follows:

m All application objects, such as programs, display files, and printer files, should go in
one library

m Externalized, translated objects, such as messages, menus, and help text files,
should go in several language-specific libraries

To change the language of an application from one language to another, change the
library list to refer to the library that contains the language-specific objects.

Chapter 6: National Language Support 211

Translating a Generated Model

Changing a Model Language

Using the CA 2E command Apply Translation to Model (YAPYTRNMDL), you can convert
the default model language-specific objects from one language to another. This includes
such objects as confirm prompts, function keys, shipped files, and conditions.

Note: Remember, once you convert a model to another national language using
YAPYTRNMDL, the default model language is also changed. All subsequent generation
will be in the new language.

YAPYTRNMDL does not convert user-modified data. If you use the same model for more
than one language, you will need to maintain a set of the following files for each
language:

m Condition values

® User messages

® Prompt messages (externalized message IDs)
m Help text

m Panel literals
You can change to another language by following the steps below.

To change the language of your created model:

1. Restore the language libraries Y1SYVnnn and Y2SYVnnn from the product tape,
where nnn is the language-specific code.

2. If the following libraries exist on your machine, add both language libraries above
them on the model job description library list.

m Y1SYand Y2SY
m YISYVENG and Y2SYVENG

3. Verify that the data area YLNGnnnSYA in library Y2SY exists and contains the name
of the national language library Y2SYVnnn. If not, create the data area as follows:

CRTDUPOBJ FROMLIB(YLNGENGSYA) +
FROMLIB(Y2SY) OBJTYPE(*DTAARA) +
TOLIB(*SAME) NEWOBJ(YLNGNnnSYA)

4. Change the value of the data area YLNGnnnSYA in Y2SY to Y2SYVnnn as follows:

CHGDTAARA DTAARA(Y2SY/YLNGnnnSYA) +
VALUE(Y2SYVnnn)

5. To convert default model language objects, run the YAPYTRNMDL command as
follows:

YAPYTRNMDL MDLLIB(model-library) +
LNG(*nnn)

6. Enter the model to verify that the translation was successful.

212 Generating and Implementing Applications

Translating a Generated Model

7. Execute YCVTCNDVAL.

Note: The YAPYTRNMDL command does not change panel literals defined by Edit
Database Relations or Edit Functions such as field names and panel titles. However, you
can externalize these to messages for translation.

For more information on the YAPYTRNMDL command, refer to the CA 2E Command
Reference Guide.

Translating User-Modified Data

To translate user-modified data:
m For database files, use one of the following:
m Toolkit Work with Database File Data (YWRKF) command
m IBMifile editing utilities
®m For user messages, you can use IBM i message editing utilities.
m For Help text, use the Source Entry Utility (SEU)

m For condition names, you can use the YWRKF command on Y2VLLSP, created by the
YCVTCNDVAL command. Translate only the user-defined condition names. You can
drop all the fields on the file field, using the YWRKF command, except Condition
text and External value. Translate the contents of these two fields to get titles and
condition names in the desired language.

Generating Help Text

To generate default Help text in another language, place the product libraries for the
language higher in the library list than the language from which it was originally
generated.

Before generating, be sure to save the original Help text file.
The field names in the generated Help are the ones named in your model's database
relations. You can edit the field names in the generated Help to match the column

headings of screen fields.

Remember, you will need to translate any operational or functional text you have
added.

Chapter 6: National Language Support 213

Managing Multi-Language Environments

Managing Multi-Landuade Environments

In order to facilitate maintenance of multi-language environments,CA 2E provides an
exit program that automatically creates translated copies of prompt messages for each
supported national language when you copy an NL-enabled device function. The exit
program works whether the copy is within a model or between models using the Copy
Model Objects (YCPYMDLOBJ) command.

Overview

An NL-enabled function is a device function in which screen or report literals are
generated as external prompt messages, which can then be translated into other
national languages. Prompt messages are stored in a prompt message file named by the
YPMTMSF model value. The prompt message file for each national language is stored in
a separate library. Which national language messages are retrieved at execution time
depends on which library is highest on the library list.

To implement the exit program, the following objects are supplied in Y2SYSRC:

m Source for the exit program (YPRCMSGR1R).

m Database files consisting of two physical files with a logical file over each.

When these objects are compiled and the program object for YPRCMSGR1R exists in the

library list, the exit program is called automatically whenever an NL-enabled function is
copied.

National Language Database Files
The following physical files (Y2ZNLSPP and Y2MSMPP) and their corresponding logical

files (Y2ZNLSPP and Y2MSMPP) are supplied in Y2SYSRC. You need to compile them
before you can compile the exit program.

214 Generating and Implementing Applications

Managing Multi-Language Environments

National Languagde Support File (Y2NLSPP)

This file contains the following details about each national language supported by your
application:

®m language code

m Description

m Library that contains the national language prompt message file

Before using the exit program, add a record to this file for each national language you
support. For example:

m Use the Toolkit Work with Database File Data (YWRKF) command to add records.

m Retrieve the Y2NLSPP file into your model using the Retrieve Physical Files into
Model (YRTVPFMDL) command and design a maintenance program for the file in
your model.

Message Mapping File (Y2MSMPP)

This file contains mapping details for each prompt message involved in the copy of an
NL-enabled function. In addition to the base language code for the model, it contains
the following details for each prompt message:

Existing Message New Message

Message Id Message Id

Function surrogate Function surrogate
Message file name Message file name
Model name Model name
Generation library name Generation library name

Note: You do not need the Message Mapping File if all national language message files
are located on the same computer. See the Using the Exit Program section in this
chapter for more information.

Chapter 6: National Language Support 215

Managing Multi-Language Environments

Exit Program (YPRCMSGR1R)

When the program object for YPRCMSGR1R exists in the library list, it is called
automatically whenever an NL-enabled function is copied within a model or copied to
another model using the YCPYMDLOBJ command. Before calling the exit program, the
copy function allocates new prompt message ids for any prompt messages defined in
the source function. The new message is a copy of the original prompt message in the
base language for the model.

The YPRCMSGR1R exit program is written in RPG and is comprised of two separate
subroutines. You can modify or add code to the exit program to customize it for your
use or comment out either subroutine to suit special requirements. See the program
source for details on its entry parameters.

Note: If you change the source, save it in a library other than Y2SYSRC.

AAPRMM Subroutine

The AAPRMM subroutine writes a record to the Message Mapping File for each prompt
message when copying an NL-enabled function. You can use this to log data for
processing later; for example, if your NL prompt message files are located on different
computers.

BAADMS Subroutine

For each new prompt message created during copy of an NL-enabled function, the
BAADMS subroutine creates a translated prompt message in each NL prompt message
file. In other words, BAADMS iterates through the NL support file and creates a
duplicate of each new base-language message, already translated into the
corresponding national language, and stores it in the NL prompt message file. As a
result, the new function is immediately prepared for use in multiple national language
environments.

To create a new prompt message in the NL prompt message file, BAADMS internally
calls a copy program (YCPYMSGR3I) that:

1. Uses the message id of the original base-language message to retrieve the message
details (the translated message) of its counterpart in the NL prompt message file. If
this message id does not exist in the NL prompt message file, a new message will
not be created.

2. Creates a new prompt message in the NL prompt message file that consists of the
message id allocated for the new base-language message and the retrieved
translated message.

216 Generating and Implementing Applications

Managing Multi-Language Environments

Using the Exit Program

The following are suggestions for using the exit program:

Before you use the exit program, you need to:

m Compile the physical files, the associated logical files, and the exit program.
m Save the compiled objects in a library in your library list.

m Add arecord to the NL Support File for each supported national language.

You need to generate the NL-enabled function before copying it in order to create
the prompt messages.

Each national language prompt message file needs to be stored in a separate
library, since each message file has the name specified by the YPMTMSF model
value.

Before copying an NL-enabled function, ensure that the NL prompt message files
are synchronized; in other words, ensure that the message ids in the base-language
prompt message file also exist in each NL prompt message file.

You do not need the Message Mapping File if all NL prompt message files are
located on the same computer. In that case, you can comment out the call to the
AAPRMM subroutine and the new messages will be created immediately using the
BAADMS subroutine.

If your national language message files are located on different computers or if you
wish to defer the copying of the messages for performance reasons, use the
following process:

a. Comment out the call to the BAADMS subroutine so only the AAPRMM
subroutine is called. AAPRMM adds records to the Message Mapping file
(Y2MSMPP) but does not copy the prompt messages to the NL prompt message
files.

b. Write a program similar to the BAADMS subroutine that reads records from the
Y2MSMPP file and calls the YCPYMSGR3I program for each record read.

c. Add Y2MSMPP, Y2MSMPLO, and the new program object to the library list on
the target computer.

d. Runthe new program on the target computer to copy the prompt messages to
the correct prompt message files.

Following are two suggestions for using the exit program with the YCPYMDLOB)
command. Experiment to determine the best method for your needs.

- Place the Y2NLSPP and Y2MSMPP files and the associated logical files in the
library list for the source model.

- Create a prompt message file name for the target model using the YPMTMSF
model value. This name can differ from that specified for the source model.
Store the NL prompt message files for the target model in the same libraries as
used for the source model.

Chapter 6: National Language Support 217

Double Byte Character Set (DBCS) Applications

For more information on the exit program and the two physical files, see comments in
the exit program source.

Double Byte Character Set (DBCS) Applications

Languages containing characters that are ideographic such as Japanese, Chinese, and
Korean are called double byte character set (DBCS) languages. A DBCS character is
minimally four bytes long, two bytes for the character plus two shift-control characters.
Each DBCS character, or string of DBCS characters, must be delimited by shift control
characters. The i OS DBCS operating system has special system defaults to standardize
handling of DBCS data.

Creating Applications

You can create applications for both single byte character set (SBCS) and DBCS from the
same model or from separate models that you maintain in parallel. For either approach,
in creating a DBCS application,CA 2E provides the model value YIGCCNV for Ideographic
Character (IGC) support in DDS.

If model value YIGCCNV is 1 and the display includes an input-capable, IGC-type field, CA
2E:

m Generates an IGCCNV keyword in the DDS assigned to the function key specified by
the *IGCCNV function key condition.

m |Implements special processing for IGC-based languages, such as string handling and
compile overrides.

Note: Model value YIGCCNV is automatically set to 1 when an IGC language is loaded.

218 Generating and Implementing Applications

Double Byte Character Set (DBCS) Applications

SBCS Machine to Create a DBCS Application

If your model is to be single byte, model value YIGCCNV is set to 0, the default condition;
however, you may want to create an application for both single and double byte use. An
SBCS system cannot create source, device files, or database files with IGCDTA
parameters. This approach requires:

Recreating these files on a DBCS machine with a parallel model.

Ensuring that all device constants and input-capable fields to contain ideographic
data are no less than four bytes long, the minimum requirement for a DBCS
character.

Ensuring that all text fields have the IGC field attribute which cannot be compiled
on an SBCS machine.

Externalization of messages is also recommended.

Changing any data in lowercase English to upper case, using the following Toolkit
commands:

m YRTVMSGF—Retrieve Message File
m YTRNPF—Translate Physical File Data
m YTRNSRCF—Translate Source File Data

Porting the model to a DBCS machine for compilation and execution.

Note: If you use the YCPYMDLOBJ command to copy from the source to another model,
convert text fields needing the IGC attribute.

DBCS Machine to Create an SBCS Application

By setting model value YIGCCNV to 1 in the source model, you define your model as
DBCS. If you do this, you can generate an application that is both SBCS- and
DBCS-enabled on the same machine. You can attach both DBCS and SBCS workstations
to this machine, with English lower case installed as a secondary operating system.

With an English upper case DBCS operating system:

System defaults are set to create all source, device files, and database files with
ideographic character (IGC) enabling, assuming that you specified database fields
with DBCS data types.

The system value QIGC is set to 1, meaning the system expects to process IGC data.
You cannot change this value.

You can restore source and database files created with the IGCDTA parameter on
an SBCS machine. However, you cannot restore source or database files containing
ideographic data.

Chapter 6: National Language Support 219

Bi-directional Languades

Bi-directional Lanquades

Bi-directional languages are languages from the Middle East, such as Arabic, in which
text is read from right to left and numbers are read from left to right.CA 2E allows you
to specify right-to-left cursor positioning for input-capable text fields.

This is done by setting the Field Exit option to R for the field details on device designs.

220 Generating and Implementing Applications

Chapter 7: Distributed Relational Database
Architecture

This chapter introduces the Distributed Relational Database Architecture (DRDA) and
covers DRDA support in CA 2E.

This section contains the following topics:

What Is DRDA? (see page 221)

CA 2E Implementation of DRDA (see page 223)
Using Shipped DRDA Values (see page 226)
Commands for DRDA (see page 232)

What Is DRDA?

DRDA is IBM's SAA architecture that provides access to data distributed across various
systems and platforms. DRDA provides the user, via a high-level programming language,
access to relational databases on different systems and platforms and the files that
reside on the systems. DRDA is implemented using SQL/400 and the SQL CONNECT
statement. Used with embedded or interactive SQL, the CONNECT statement defines
the relational database (machine) to be accessed.

Note: While DRDA is implemented using SQL statements, these statements can also
operate on DDS access paths, with the exception of Span access paths. To use DRDA
with a DDS file only requires that the function be set to generate SQL. This permits most
functions to use DDS access, while only those that require DRDA functionality will be
generated as SQL COBOL or SQL RPG.

DRDA support at the Remote Unit of Work (RUOW) level is available with i OS Version 2
Release. This phase of IBM support allows for connecting an application requester (the
system executing the program) to an application server (the system where data is being
accessed).

As supported in CA 2E, DRDA allows the user to specify that a file is distributed and
allows CA 2E functions to access the distributed data. DRDA has the constraints applied
to the DRDA level of RUOW implemented under i OS Version 2 Release 1.1. The
application accesses data on a single machine at a time. At present, support for DRDA is
provided for DB2 and i OS platforms.

RUOW restrictions and constraints should be reduced as IBM releases the two higher
levels of DRDA, Distributed Unit of Work (DUOW) (i OS Version 3 Release 1) and
Distributed Request (DR).

Chapter 7: Distributed Relational Database Architecture 221

What Is DRDA?

Remote Unit of Work

For Remote Unit of Work:

®m Within a single unit of work, users or applications can read and update one system
at a time using multiple SQL statements.

m There is one Relational Database Management System (RDBMS) per unit of work.
m There is one unit of work manager or recovery unit.

m The application controls the commit/rollback of data.

At the RUOW level, distribution of processing is limited to a Logical Unit of Work
(LUOW) between two systems, the application requester or master, and the application
server or slave.

Only one LUOW can be active for each job, restricting the application requester to
making contact with one system at a time. However, within the program it is possible
for the application requester to contact several different application servers. The
program controls commit and rollback, and you must make provisions for them at the
program level.

Note: Since the RUOW applies at the job level (routing step), any changes of RDBs
within any program will change the RDB of the whole job stack.

Distributed Unit of Work

For Distributed Unit of Work:

m Within a single unit of work, users or applications can read and update data on
multiple systems. Each SQL statement can access one system.

m There are several RDBMS's per unit of work.

m There is one RDBMS per request.

m There are several unit of work managers.

Distributed Unit of Work (DUOW) permits the same capability and functionality as
RUOW, but allows the system connections to take place on an implicit basis. In other

words, the SQL CONNECT statement is not required. The program still controls commit
and rollback, and you must still make provisions for them at the program level.

222 Generating and Implementing Applications

CA 2E Implementation of DRDA

Distributed Request

For Distributed Request:

m This level of DRDA has the highest degree of transparency. Users or applications
can, within a single unit of work, read and update data on multiple systems. Each
SQL statement can access multiple systems.

m Multiple requests per unit of work are allowed.

m There can be more than one RDBMS per request.

m There can be several RDBMS's per unit of work.

m There can be several unit of work managers.

®m One of the unit of work managers coordinates commit/rollback.

Using a Distributed Request (DR), you will be able to access multiple RDBMS's at the

same time. The systems update the files. A DR allows the user to perceive all files across
all systems as being part of one unified database.

CA 2E Implementation of DRDA

CA 2E's DRDA support makes it possible for you to generate applications that access files
distributed over many systems. CA 2E functions can be created with distributed file I/0
control set to CA 2E. With this option, the relational databases accessed by the function
are controlled by a distributed file configuration table that you can maintain.

The use of a table to control access permits changes to the relational database (RDB)
configuration without the need to change application code. This means that you can put
the same program objects on several IBM i distributions, with different configuration
tables on each one.

CA 2E's DRDA support provides the following features:

m Design of applications for distributed data processing

m Access of the same file name across multiple systems (not as a unified database)

® |Implementation-level Distributed File Configuration Table

m CA 2E-generated iteration loops or user-defined control for error handling for
CONNECT failure

m User access for specification of the RDB name used in the SQL CONNECT statement
m Access to either DDS or SQL files

Chapter 7: Distributed Relational Database Architecture 223

CA 2E Implementation of DRDA

Shipped Defaults

In keeping with CA 2E's implementation independent design capabilities, you do not
have to modify the design of a function to use DRDA. To generate a DRDA application
from an existing design, you set generation options and regenerate the functions, but
the design remains the same.

CA 2E ships the default values for the new model values, file options, and function
options. You explicitly set DRDA functionality. If you do not specify distributed
processing functionality for your model, DRDA functionality does not affect it.

By setting certain flags, you can choose how you wish to generate and implement your
distributed applications. The shipped defaults for the options that drive CA 2E
distributed function creation are:

m New model values:
m YGENRDB (*NONE - no DRDA compilation enabled)
m YDSTFIO (*NONE - no generation of distributed functionality)
m Distributed flag: Distributed - N (No); flag for each CA 2E file in the model
®m Function option: Distributed File I/O control - M (MDLVAL); YDSTFIO model value

Use of these defaults is described later in this chapter.

224 Generating and Implementing Applications

CA 2E Implementation of DRDA

Steps to Implement DRDA

There are two new steps that are required to implement DRDA:
1. For data modeling:

m Setaflag on a CA 2E file to indicate that it is distributed (refer to the Using
Shipped DRDA Values section in this chapter).

m Set the Distributed File I/O control function option for the function to either S
(CA 2E) or U (User) control. Set this option from Edit Function Options, using
the Distributed File I/0 Control field.

2. If you specified S (CA 2E) control for the function, enter the file locations in the
Distributed File Configuration Table. This entry associates the file with the name of
the application server and, optionally, the collection name in which it is located,
allowing a different configuration at each location on which the application is
implemented.

Creation (compilation) of the program is via an extended form of CRTSQLxxx (where xxx
= HLL language). Use the YGENRDB model value as the RDB in the CRTSQLxxx command.
Running CRTSQLxxx results in:

m An application program, which resides on the application requester.

® An SQL package, which resides on the application server and contains the SQL
statements for accessing the AS database.

Chapter 7: Distributed Relational Database Architecture 225

Using Shipped DRDA Values

Development Environments for DRDA in CA 2E

Using only one machine, you can design and create DRDA applications that are
production ready. You can exercise program logic without the use of another machine
by simply configuring the files as having one RDB, the local RDB. The generated SQL
CONNECT statements are executed and the connection is made to the local system.

By changing the Distributed File Configuration Table, you can modify the collection and
relational database names easily, without having to generate or compile the
applications again. However, you do need a distributed machine to fully test the
distributed data functions of the generated code.

Perform the following tasks to create the correct recommended environment:

1.

4.

First create RDB entries in the RDB Directory, using the i OS Work with Relational
Database Directory Entries (WRKRDBDIRE) command. The only entry required for
one machine is the local RDB name. This same RDB name should be used as the
model value for YGENRDB.

For a multiple machine environment, describe each RDB in the directory of both the
local and remote machines. Each RDB will have SQL collections (libraries) containing
the distributed files (tables and views).

Using save/restore or communication facilities, such as Send Network File
(SNDNETF) or Send SMT Objects (SNDSMTOBI), distribute SQL packages to the
RDBs. Note that the package must reside in a library with the same name as the
library of the application program that defined it.

For example, PGMA resides in a library called DRDAGEN; therefore, the SQL
package of the same name (PGMA) also needs to reside in DRDAGEN.

Establish appropriate security and communication requirements for the IBM i.

For more information:

On the i OS commands mentioned above, see IBM's Application System/400
Programming: Control Language Reference.

On DRDA security and communication requirements, see IBM publications on SNA,
such as SNA Concepts and Products.

Using Shipped DRDA Values

This section specifies DRDA model values and flags.

226 Generating and Implementing Applications

Using Shipped DRDA Values

DRDA Model Values

The model value YDSTFIO (Distributed File I/O control) is input-capable and has the
following values:

m *SYNON—Synon Control
m *USER—User Control

m *NONE—No distributed functionality will be generated

If the Distributed File I/0 Control function option is M (MDLVAL) for a function, that
function inherits the value set for YDSTFIO. Set this option from the Edit Function
Options panel.

The model value YGENRDB (Generation RDB Name) is the RDB name used in the i OS
CRTSQLxxx command for compiling the CA 2E-generated distributed function. The RDB
name indicates the RDB to which the SQL package will be distributed. The RDB name
should be the name of the local RDB as defined in the IBM i RDB directory. If the name is
not the local RDB, the SQL package is created as part of the compile, and the IBM i will
try to move the package to the RDB specified in the CRTSQLxxx command, unless
communications limitations prevent it from doing so.

If you use the shipped default value *NONE for YGENRDB, the model is not enabled to
compile DRDA applications. Even though code may be generated that contains
distributed functionality, there is no RDB to compile against. You must specify an RDB to
compile DRDA applications.

Chapter 7: Distributed Relational Database Architecture 227

Using Shipped DRDA Values

Distributed Flag

Function Options

A new field, Distributed, on the Edit File Details panel, allows you to flag a CA 2E file as
distributed. The field can have the following values:

m N—No. Default.
m Y—Yes.

This flag affects the creation of the Distributed File Configuration Table. Entries for
access paths built over CA 2E files are either added (Y) or removed (N) from the table. To
do this, execute the Convert Distributed Files to Configuration (YCVTDSTFIL) command.

The entries in the Distributed File Configuration Table can then be modified using the
Work with Distributed Files (YWRKDSTFIL) command.

Use of these commands is described in detail later in this chapter.

Note: If you generate a program with DRDA-distributed code but compile it using the
model value YGENRDB set to *NONE, the program compiles. However, at execution the
program will be unable to perform the connects. Appropriate error messages will be
issued. You can override the YGENRDB value for a specific program by using a compiler
override to specify a different value for the RDB keyword on the i OS commands, Create
SQL RPG/400 Program (CRTSQLRPG) and Create SQL COBOL/400 Program (CRTSQLCBL).

For functions to be distributed with S (CA 2E) for Distributed File I/O Control, the default
action diagram of those functions will show the availability of the *Change RDB function
and, depending on the function type, the *Previous page function. For example:

>Process response

.—CASE

| —CTL.*CMD key is *Exit

| ...Exit program

[—CTL.*CMD key is *Next page

| ...Load next subfile page ===>
|—CTL.*CMD.key is *Previous Page
|— ...Connect to previous RDB

| —PGM."Reload subfile = CND.*YES
|—CTL.*CMD key is *Help

| ...Process help request
|—CTL.*CMD key is *Change RDB

| ...Change to selected RDB
|—*OTHERWISE

| ...Process screen

'—ENDCASE

This section outlines how to use the Distributed I/O option.

228 Generating and Implementing Applications

Using Shipped DRDA Values

Accessing Multiple Systems with the Same File Name

Due to constraints of Remote Unit of Work, the S (CA 2E) Distributed 1/0 option only
applies to the primary access path of the function. There is no CA 2E control for file /O
operations contained within embedded internal functions.

When a function uses the S (CA 2E) Distributed 1/0O option, initial connections to the
primary view of the function will use the configuration table entries specified in the
configuration table for that primary view.

Since the scope of a connect affects all files and programs in the current routing step,
modifying the RDB for the main file may affect any underlying processing to other
database files within the master function and to any other functions called from that
master function.

All functions generated under S (CA 2E) control enable function key F22 for their device
designs. The default value of this key is stored in a *Change RDB command key list, and
can be modified in the model. Function key F22 calls the shipped CA 2E program
Y2CRDBR (Change RDB), which appears in a window. The program displays all RDBs in
the configuration table for the primary view and allows application users to switch to an
RDB by merely selecting one of the entries. This program indicates to users which RDB
they are currently connected to.

For example:
CUSTMRR CHANGE 8/13/97 16:13:05
Work with Customers
Customer Code_
Type cptions, press Enter
4=Delete request
Change RDB
Current RDB..CHICAGO
1= Select reguest
? Customer Custo
Code
- 00001 Mr Jof o Seq RDB Name
- 00002 Mra F| © 1o CHICAGH
- 00003 John o e
. - 20 DALLAS
- Qgo004 Chris I N i
- 30 WEW YORK
] pooos dane | 40 ATLANTA
- 00006 Dr De - ;)
- 00007 Moby
- oooo8 IEM C X
- 00009 Well F3=Exit)
_ 00010 Jacks Current RDB is CHICAGO
- 00011 Jenni
- goolz Mr J Jercmes

F3=Exit F9=Fo toc ‘Add’ mode F22=Changes RDB

Chapter 7: Distributed Relational Database Architecture 229

Using Shipped DRDA Values

Functions with Subfiles

The three functions, EDTFIL, DSPFIL and SELRCD, have subfiles. For these functions, if
the end user tries to continue scrolling past the end of the subfile, S (CA 2E) Distributed
file 1/0O control causes an automatic connection to be made to the next RDB at the end
of subfile for the RDB. Similarly, if the end user rolls beyond the top of the subfile, a
connection will be made to the previous RDB. If a Rollup or Rolldown beyond the
current extent is attempted, and the current RDB is the last (or first) in the configuration
list, a message appears stating that there are "No more RDBs to connect to".

These automatic connections are subject to a confirm prompt if confirm prompting has
been requested for the function. This confirm prompt appears with a message, "Confirm
Connect to Next/Previous RDB," as a request to confirm the connection, not the
changes. Any changes are lost if not previously confirmed by the end user.

End users can respond N to the confirm prompt to return without connecting, and press
Enter to confirm any changes they may have made.

The subfile functions, EDTTRN and DSPTRN, do not have the roll functionality. This is
because they have an inherent key screen concept similar to the EDTRCD and DSPRCD
functions. Further, an EDTTRN function has infinite roll forwards, as you can add records
at the end of an EDTTRN function. A DSPTRN function, while having a defined roll
boundary, currently has rolling controlled by i OS, because the whole subfile is built
before it is displayed.

Note: All functions with panels, including EDTTRN and DSPTRN, have the F22-Change
RDB function under CA 2E Distributed file 1/O control.

230 Generating and Implementing Applications

Using Shipped DRDA Values

DRDA Control Fields

Within the action diagram, the programmer has access to the following three fields that
control DRDA functionality:

m JOB.*Current RDB—The name of the currently attached RDB, maintained by CA 2E.
This field can be added to the device design as a function field to inform application
users which RDB they are currently connected to.

m PGM.*Next RDB—A user-modifiable field. If nonblank prior to the next data access,
this field will be used to connect to the named RDB before access. While the
application will respond to the values in this field, whether CA 2E or User control is
requested, its primary use is for functions generated with User control.

m JOB.*Local RDB—-CA 2E -maintained field for the name of the local RDB where the
application is executing. This field has a value if the application is connected locally
either when invoked or in processing.

With U (User) control, connects are still generated. The application user can modify the
RDB by placing values in the PGM.*Next RDB parameter, but there is no F22 support,
nor is there any rollup/rolldown support for functions with subfiles. Users receive a
message to let them know the connection failed.

Functions such as PRTFIL and EXCEXTFUN, which have no panels, can only be specified
as having User Distributed I/O control. Specifying S (CA 2E) control is accepted but
ignored and U (User) control is used.

Referential Intedrity

Due to an RUOW constraint,CA 2E does not generate CONNECT statements prior to
referential integrity checks and therefore validates relations on the RDB to which the
user is currently connected. The i OS is unable to switch connections to another RDB in
the middle of an SQL FETCH routine. This is fully consistent with the RUOW assumptions
that each RUOW is constrained to a single RDB. If a user attempts to switch to another
RDB in the middle of a SQL FETCH loop, DRDA closes all cursors and the application fails.

Chapter 7: Distributed Relational Database Architecture 231

Commands for DRDA

Commands for DRDA

YCVTDSTFIL: Convert Distributed Files to Configuration

The YCVTDSTFIL command allows you to create entries for distributed files in the
Distributed File Configuration Table. The command preserves the entries in the table
already made for a file in the following ways:

m [fthefile is distributed and has an entry in the Distributed File Configuration Table,
no new entry is required.

m |[f the file is distributed and there is no entry in the Distributed File Configuration
Table, an entry is created with the YGENRDB model value as the default RDB name.

m [f the file exists in the Distributed File Configuration Table and is not Distributed, all
entries for that file are removed from the Distributed File Configuration Table.

The YCVTDSTFIL command creates the physical file and logical files required for the
Distributed File Configuration Table if they do not already exist in the named generation
library. It uses the i OS Create Duplicate Object (CRTDUPOBJ) command and copies the
template objects from Y2SY.

The YCVTDSTFIL command can be run outside of the model. To access the Display
Convert Model Data Menu from the Display Services Menu, select the option Convert
condition values to database file. From the Display Convert Model Data Menu, you can
select the option to run the YCVTDSTFIL command.

Note: There are two approaches to removing distributed functionality.

m Change generated, distributed files to Distributed = N. Generate and compile the
functions to remove distributed functionality. Entries in the Distributed File
Configuration Table will be removed when you execute the YCVTDSTFIL command.

®m Asan alternative to changing the Distributed option for a file from Y to N, you can
modify the Distributed File Configuration Table and change the RDB name to be the
name for the local RDB. By manipulating the Distributed File Configuration Table,
you can avoid changing the generated code, the SQL CONNECT is to the local
system, and you do not have to generate the code again.

232 Generating and Implementing Applications

Commands for DRDA

YWRKDSTFIL: Work with Distributed Files

Two CA 2E files, *Configuration Table and *Distributed File, are present in every model.
These files contain functions and access paths shipped for DRDA. When generated, they
form the set of objects that make up the configuration table editor environment.

Note: The YWRKDSTFIL command operates outside the model environment. Security for
this command, and associated functions and objects, are your responsibility.

You can copy the functions shipped with *Distributed File and *Configuration Table files
and make modifications to the copied versions as required. You can also create
functions and customize them to your own standards and requirements. You may even
want to create an NLS version of the editors by generating NLS applications in CA 2E.

The YCVTDSTFIL and YWRKDSTFIL commands and the shipped RDB loader (Y2LRDBR,
Load RDBs for View) use the access paths described in the model built over the
*Distributed File and *Configuration Table files. Any changes that impact these access
paths may cause these functions to behave incorrectly. The source for Y2LRDBR and the
associated display file is shipped in Y2SYSRC.

Note: CA does not recommend adding any fields to either the shipped *Distributed File
or *Configuration Table files, nor directly modifying the system functions and access
paths.

To begin to use the shipped configuration table editor, generate and compile the
following:
m *Distributed File Access Paths:
m Physical file—Y2DSTFP
m Update index—Y2DSTFLO
m Retrieval index—Y2DSTFL1
*DSTFNM/*TYPE/*TABVIEWNM —Y2DSTFL2

m Dist. File - Config Tbl—Y2DSTFL3255
®m Functions:
m Work With Config Table—Y2CFGTR
m Work With Dist. File—Y2DSTFR
m *Configuration Table Access Paths:
m Physical file—Y2CFGTP
m Update index—Y2CFGTLO
m Retrieval index—Y2CFGTL1
= *TABVIEWNM/*SEQ/*RDBNM—Y2CFGTL2

Chapter 7: Distributed Relational Database Architecture 233

Commands for DRDA

Once you generate and compile these objects, run the YCVTCNDVAL (Convert Condition
Values) command, then the YCVTMDLMSG (Convert Model Messages) command for
your model.

You can then use the YWRKDSTFIL command to invoke the configuration table editor.
This command displays a list of the access paths enabled for distribution. These entries
are created with the YCVTDSTFIL command and displayed on the Work With Distributed
Files panel. On this panel, files are identified as tables or views. A table in SQL is
equivalent to a physical file, and a view is similar to a logical file.

You can work with the tables and/or views from this panel. You may wish to define the
distributed nature of data at the table level (physical file) or to differentiate the
distribution of that at the view (logical file) level.

While you are not required to do so for DRDA support, you can reference the access
paths by any valid CA 2E functions.

Note: You cannot remove any of the distributed file table entries, except by running the
YCVTDSTFIL command.

Working with Configuration Table Entries for Tables

RDB Name

To work with a Configuration Table entry, take option 5 against the table. The Work with
Configuration Table Entries panel displays.

You can add or remove RDB locations for a table. Each RDB name must be unique for a
table, regardless of sequence number. You can only add a new RDB for a table. Once
you add an RDB, it is propagated to all the views based on the table.

Once you remove an RDB, it is removed from all the views associated with that table.
This ensures referential integrity in the configuration table database.

Note: You can only add RDBs directly for views if the RDB exists as an entry for the
corresponding table. This prevents any view from being specified on an RDB when its
corresponding table is not specified.

Once you add an RDB entry, modifying it at the table level will not cause the views to be
updated, as you may have customized certain views.

234 Generating and Implementing Applications

Commands for DRDA

Seq

The Sequence Number (Seq) on the Work with Configuration Table Entries panel
indicates the order in which to process the locations for that particular access path.

The Work with Configuration Table Entries panel automatically resequences in
increments of ten. RDBs are initially ordered by the allocated sequence number, then
alphabetically within sequence number. This is the order in which the RDBs are
retrieved and cycled through in the generated applications which you specify for
Distributed 1/0 control.

Collection

The Collection is optional and serves as a reference. Its presence is compatible with
expected enhancements in i OS DRDA support.

Working with Configuration Table Entries for Views

To work with a Configuration Table entry for a view, place 5 against the view. The same
Work with Configuration Table Entries panel displays.

You can only create RDBs for views already present as RDBs for the corresponding
tables. You can remove any RDBs on which the view may not reside. You can also alter
the sequence of access for the view.

Chapter 7: Distributed Relational Database Architecture 235

Appendix A: CA 2E Objects Required for

Compilation and Execution

This appendix lists the CA 2E objects required either to compile or execute applications
generated with CA 2E. Source for the required objects is in the shipped library, Y2SYSRC.
To compile or execute applications in jobs that do not have the Y2SY library present in

their library lists, duplicate the objects to the application libraries.

This appendix also lists the Toolkit objects required to display Help text (Display Help,

YDSPHLP) and menus (Go to Menu, YGO).

For more information:

m On duplicating objects, refer to the chapter titled "Implementing Your Application"

in this guide.

m Onthe YDSPHLP and YGO commands, refer to the CA 2E Toolkit Reference Guide.

Required CA 2E Objects

This topic covers:

m Required Objects for RPG Compilation
m Required Objects for COBOL Compilation

m Required Objects for Execution

Required Objects for RPG Compilation

Type Sys Object Name Obj Type Obj Att Description

Cmp Y21#DSP *FILE PF RPG Il File inf data
structure (DEV)

Cmp Y2ISDSP *FILE PF RPG Ill File inf data
structure (DEV)

Cmp Y2IUDSP *FILE PF RPG Ill File inf data
structure (UPD)

Cmp Y2I1DSP *FILE PF RPG lll File inf data

structure (UPD)

Appendix A: CA 2E Objects Required for Compilation and Execution 237

Required CA 2E Objects

Cmp Y2PGDSP *FILE PF RPG IIl PGM STS data
structure

Required Objects for COBOL Compilation

Type Sys Object Name Obj Type Obj Att Description

Cmp Y2IOPEN *FILE PF CcOoBOL

Cmp Y2IDSPFIO *FILE PF COBOL Display file IO area
(DEV)

Cmp Y2IPRTFIO *FILE PF COBOL Print file 10 area
(DEV)

Cmp Y2IMAJMIN *FILE PF COBOL Major/Minor codes
(DEV)

Cmp Y2PGDSPK *FILE PF COBOL PGM STS data
structure

Required Objects for Execution

Type Sys Object Name Obj Type Obj Att Description

Exc Y2USRMSG *MSGF Default messages (Y2xnnnn)

Exc Y2CLMSC *PGM RPG Clear a message queue

Exc Y2CPMSC *PGM CLP Copy a message queue

Exc Y2EXMGC *PGM CLP Retrieve and execute a message QCL

Exc Y2EXMSC *PGM CLP Retrieve and execute a message QCL

Exc Y2EXMCC *PGM CLP Retrieve and execute a message
QCMD

Exc Y2RVMGC *PGM RPG Retrieve a message

Exc Y2RVMSC *PGM CLP Retrieve a message QCL

Exc Y2SNMGC *PGM RPG Send a message

Exc Y2SNMSC *PGM CLP Send a message QCL

Exc Y2VLLSR *PGM RPG Values list display

Exc Y2VLLWR *PGM RPG Values list display window

Exc Y2BGCMC *PGM CLP Begin a commitment control

Exc Y2RCRSC *PGM CLP Reclaim resources

238 Generating and Implementing Applications

Toolkit Required Objects

Exc Y2QLNMR *PGM RPG Qualify a name CPF syntax (.)

Exc Y2RTDAC *PGM CLP Retrieve a data area

Exc Y2RTJBR *PGM RPG Retrieve job attributes

Exc Y2RVCNR *PGM RPG Retrieve condition name

Exc Y2RVCNR *PGM RPG Retrieve condition name

Exc Y2WSTOC *PGM CLP Workstation time out: Program

Exc Y2WSTOCH# *FILE DSPF Workstation time out: Device file

Exc Y2WSTOM *MSGQ Workstation time out: Message
queue

Exc Y2PSSR *PGM RPG *PSSR exception handler

Exc YCMDEXEC *PGM CLP Platform-independent user
command execution

Exc YWRTLCI *PGM PLI Calculate DDS window location

Exc YWRTLCI2 *PGM PLI Calculate DDS window location
subprogram

Exc YWWDDRR *PGM RPG Retrieve cursor location for
automatic positioning of window

Exc YWWDCKI *PGM RPG Retrieve device type subprogram

Exc YWWDDR# *FIL DSPF User-defined data stream for
YWWDDRR

Toolkit Required Objects

The following table includes the objects required to run Toolkit menu and help utilities

on the IBM i

Object Type Text

YDDSHPC@ *PGM YDSPHLP/YDSPMNU Display Help Text CPF
YDDSHPR *PGM YDSPHLP/YDSPMNU Display Help Text
YDMNGOC *PGM YGO Go to a menu. Execute an option
YDMNGOC@ *PGM YGO Go toa menu CPP

YDMNGOI *PGM YGO Go to (display) menus

YDMNNSR *PGM YWRKMNU/YDSPMNU Menu selection display
YDMNSOI *PGM YDSPMNU Retrieve user profile signoff option

Appendix A: CA 2E Objects Required for Compilation and Execution 239

Toolkit Required Objects

YSRTOLC@ *PGM YRTVOBIJLIB Retrieve Object Library
YYCKAUC *PGM YDSPMNU Check object authority
YYCVBNR@ *PGM YCVTBIN Convert binary (2B) to decimal (5.0P)
YYQLN2R *PGM Qualify a name
YYRCMSC *PGM Receive a request message from specified program
message queue
YYRTMGC *PGM Retrieve a message from a message file
Y1PGMSC *PGM YDSPHLE/YDSPMNU Send message to a given
message queue
Y1USRMSG *MSGF Y1 Execution messages
Y1USRPMT *MSGF DDS MSGCON Message prompts for shipped source
YDDSHPR# *FILE PRD YDSPHLP Display help text
YDMNGOI# *FILE PRD YGO Go to menus
YDNMWKR# *FILE YWRKMNU/YDSPMNU Display screens
Y1USRTXT *FILE Y1LDO ENG P1 Help Text
Members:
YDMNGOI
YDMNNSR
YCVTBIN *CMD Convert binary (2B) to decimal (5.0P)
YDSPHLP *CMD YDSPHLP Display help text
YGO *CMD YGO Gotoamenu
YMHPFLA *DTAARA YGO Name of help text file
YMHPLBA *DTAARA YGO Name of help text file library
YYSLV1A *DTAARA Selection value mapping

240 Generating and Implementing Applications

Appendix B: Troubleshooting

This appendix covers some of the most common source generation errors.

Source Generation Errors

Some examples of source generation errors are as follows:

Display File and Program in Error (*ERROR)

Problem: The entry for the display file and the program appear on the job log with an
*ERROR status. The most frequent cause is a device design that exceeds the panel size.

Solution: Enter the device design to correct this problem. You can use F4 to move to the
right and look for labels or fields exceeding the device size. The size depends on the
header options.

One easily missed area is the function key text lines and subfile selection prompt and
text. These fields are 78 characters long and should begin at the left margin. To correct
the problem:

1. Press F17 and zoom into the Subfile Control format.

2. Zoom into each *SFLSEL field, and make the Spaces before equal to 1.

Action Diagram Un-determined Action

Problem: An !lUndetermined action within an action diagram causes source
generation failure.

Solution: Use the Find Error facility in the action diagram editor, or follow these steps:
1. Scan through the generated source to find the comment line containing !!1.

2. From the Submit Model Generation & Creates panel, invoke the source editor,
STRSEU, by placing E in front of the program object in error.

3. To find the incomplete action diagram statement, at the SEU positioner line, enter
the search string !l and press Enter.

4. Return to the action diagram for the function to correct or remove the incomplete
statement.

Appendix B: Troubleshooting 241

Source Generation Errors

Context Not Found

Problem: Context Not Found occurs if:

® You changed the access paths on a function and did not revisit the action diagram
to re-verify user statements.

m You removed function fields from the device design and did not revisit the action
diagram to re-verify user statements.

®m You changed parameters on called functions and did not revisit the action diagram
containing the call to re-verify the parameters.

®m You copied sections of code between user points or between action diagrams
containing contexts that are not valid at the target.

Solution: Use the Find Error facility in the action diagram editor, or find the errors by
looking for ??? in the source listing. You can roll backward to identify both the function
that is called and the user point in which the function is located.

When you revisit the parameters for a statement or a function, always prompt the field
and reselect the values.CA 2E does not automatically perform the validation on the
statement shown if you do not make a change to the displayed parameter values.

242 Generating and Implementing Applications

Appendix C: CA2E--Change Control
Facilities Reference Tables

This appendix contains the following change control facilities reference tables:

m Model Object Description—This table describes the most significant fields
contained in the model object description for each design object in a CA 2E model.

m Default Change Types for Component Change Processing—These tables list the
default change type for each possible change you can make to a model object.
There is a separate table for each model object type.

m Component Change Processing Propagation Table—This table shows the effect of
each change type on objects that use the changed object.

m For more information on CA 2E change control facilities, refer to the chapter,
“Managing Model Objects”, in this guide.

CA2E--Model Object Description

CA 2E maintains a model object description for each object in your model and
automatically updates the model object descriptioneach time the object is changed,
regenerated, or imported.

Use selection option 8 from the Edit Model Object List panel to view the model object
description for an object. A standard set of information is displayed for each model
object type; for example, name, type, surrogate, and so on. Additional information
displayed depends on the model object type as shown in the following table:

Object Type Information Displayed Examples
ACP Attribute PHY, RTV, UPD
Source Member Name and description
Source Details Date/time of last successful
generatio
Auxiliaries Implementation object name

and description

APP Application Area Code Three-character name

ARR - -

Appendix C: CA2E--Change Control Facilities Reference Tables 243

CA2E--Model Object Description

Object Type Information Displayed Examples

CND Atrribute VAL, LST

FIL Atrribute REF, CPT

FLD Usage ATR, CDE, USR
Atrribute STS, DTE, TXT
Implementation Name DDS name

FUN Function Type CRTOBJ, EXCINTFUN
Access Path Name and description
Source Member Name and description
Source Details Date/time of last successful

generation

Attribute (SEU Type) RPG (if appropriate)

MSG Atrribute INF, ERR, STS

Implementation name

Message identifier

244 Generating and Implementing Applications

CA2E--Model Object Description

CA 2E--Definitions of Model Object Description Fields

The following table lists the most significant fields contained in the model object
description. You can use model object list commands to analyze your model and create
model object lists and reports based on values in the model object description.

For more information:

® On model objects, model object lists, and model object list commands, refer to the
chapter titled “Managing Model Objects” in this guide.

m On retrieving model object description fields, refer to the YRTVMDLOBJ section of
the Command Reference Guide.

Field Meaning

FunctiModel object surrogate number A number that uniquely identifies an

(OBJSGT) object in a model; it is assigned
automatically when the model object is
created. CA 2E uses the object surrogate
to identify objects internally. You can use
the surrogate on model object list
commands as an alternate to the
owner/name/type identifier.

Object name (OBJNAM) Descriptive name of the model object
assigned by the developer. This is the
name part of the object's
owner/name/type identifier.

The model object's type; for example, ACP

Object type (OBITYP) for access path. Possible values are:

m ACP
m APP
m ARR
= CND
s FIL

m FLD

= FUN
. MSG

This is the type part of the object's
owner/name/type identifier.

Appendix C: CA2E--Change Control Facilities Reference Tables 245

CA2E--Model Object Description

Field

Meaning

Object attribute (OBJATR)

The model object's subtype; the value
depends on the object type. For example,
for an object of type ACP, RTV means
Retrieval access path. This field is blank for
APP and ARR object types.

Surrogate of the owning object
(OWNSGT)

The model object surrogate for the owner
of the model object; for example, for an
access path or function, this is the
surrogate of the owning file (FIL). Not all
objects have owners.

Name of owner of object (OWNNAM)

Descriptive name of the owner of the
model object. This is the owner part of the
object's owner/name/type identifier.

Function type (FUNTYP)

The type of function for model objects of
type FUN; for example, DSPFIL for Display
file and RTVOBI for Retrieve object.

Implementation name (IMPNME)

The implementation or 3GL name for the
model object. The value depends on the
object type; it is blank for ARR and CND.

m ACP—Source member name
m APP—Application area code
m FIL—Format prefix

m FLD—DDS name

m FUN—Program source member name
or blank

m MSG—Message ID

Copy name (CPYNME)

The Object name of the corresponding
model object in a target model. It is used
by the YCPYMDLOBJ command when
copying model objects between models.
For new objects, the Copy name is initially
the same as the Object name; for new
versions (FUN or MSG), the Copy name is
initially the same as that used by the
version group to which it belongs.

Creation date and time
(CRTDTE/CRTTME)

The date and time the model object was
created.

246 Generating and Implementing Applications

CA2E--Model Object Description

Field Meaning
Change date and time The date and time the model object was
(CHGDTE/CHGTME) last edited. CA 2E updates this field

automatically. It is not updated when:

m The model object is accessed as if to
edit, but no changes are actually
made.

m The model object has been copied
from another model or model object
and has not been changed since

copying.
User profile of developer that The name of the user profile that last
changed the object (CHGUSR) updated the model object.

The type of the most recent change to the

Change type (CHGTYP) model object. It is used by component
change processing to identify other
objects in the model affected by the
change. The possible values are:

m PUB—Public
m PVT—Private
m GEN—Regenerate
m OBJ—Object only

Impact processed indicator (IPCPRC) This field indicates whether component
change processing has been run for the
last change to the model object. It is set
by component change processing.

Component changed processing date The meaning of this field depends on

and time (COMPDTE/COMPTME) whether the model object itself or a
component of the model object was
changed.

m For a changed object, this is the same
as its Change date and time.

m For an object that uses a changed
object (a component changed), this is
the date and time component change
processing was run for the change.

Appendix C: CA2E--Change Control Facilities Reference Tables 247

CA2E--Model Object Description

Field

Meaning

m Action required indicator
(ACTRQD

The type of change required to the model
object as a result of a change to one of its
components.

m GEN—Generation required

m EDT—Edit required

Generation date and time
(GENDTE/GENTME)

The date and time the model object was
last successfully generated.

SEU Type (SEUTYP)

The system SEU type of the model object;
for example, RPG or PF. It contains a value
only for source-based model objects.

Import date and time
(IMPDTE/IMPTME)

The date and time the model object was
last copied from another model using the
Copy Model Object (YCPYMDLOBIJ)
command

m Group surrogate number
(GRPSGT)

For a model object that is not a version of
another model object, this is the same as
the Model object surrogate. For a version
of a model object, this is the group
surrogate number of the model object
from which the version was created. All
versions of a model object have the same
value in this field and together comprise a
group of versions.

Current object indicator (CUROBJ)

For a version of another model object, this
indicates whether the version is the one
being used by other model objects in the
model; in other words, whether the
version is current. Only one version of a
group of versions can be current.

A model object that is not a version of
another model object is always current.

Version type (VSNTYP)

m The version type for the model
object. Only one version in a group
can be of type PRD. This value is
always DEV unless you are using
Advantage 2E CM. The values are:

m DEV—Development
m PRD—Production
m ARC—Archive

248 Generating and Implementing Applications

CA2E--Model Object Description

Field Meaning

Archive surrogate number (ARCSGT) The model object surrogate of the archive
object that this object replaced when it
was promoted. This field contains a value
only for archive versions. This field is used
only for Advantage 2E CM.

Check out date and time (CHKDTE/ The date and time the model object was

CHKTME) last checked out for a change. This field
contains a value only if you are using
Advantage 2E CM.

The name of the user profile that checked

Check out user (CHKUSR) out the model object for a change. This
field contains a value only if you are using
Advantage 2E CM.

Check out status (CHKSTS) Status information used by Advantage 2E
CM.
Check out list (CHKLST) The name of the model object list to

which the model object has been checked
out. This field contains a value only if you
are using Advantage 2E CM.

The promotion method for the model

Promotion type (PRMTYP) object; namely, whether the object is new
to the target environment and whether
the model object is to be promoted. This
field contains a value only if you are using
Advantage 2E CM.

m *CHG—The object is to replace an
existing version in the target

m *ADD—The object is to be added to
the target

m *GEN—The object is to be generated
from the target; the design object is
not to be promoted

m *DLT—The object is to be deleted
from the target

Appendix C: CA2E--Change Control Facilities Reference Tables 249

CA2E--Default Change Types for Component Change Processing

CA2E--Default Change Types for Component Change Processing

Component change processing ensures the integrity of your model by identifying which
other model objects are affected and the type of change required whenever you change

a model object. CA 2E uses the default change type table internally to set the change
type in the object description for the changed model object. You can use model object
list commands to analyze your model based on this change type setting.

For more information on component change processing, refer to the Impact Analysis
section of the “Managing Model Objects” chapter in this guide.

The tables in this appendix list the possible changes that can be made to each model
object type and the default change type for each change. There is a separate table for
each supported model object type. Each entry in each table corresponds to a position
on a CA 2E panel where you can change a model object.

In cases where these tables cannot be used to determine the change type, the Override
column in the table explicitly specifies the change type. A change type of *CREATE or
*DELETE in the Override column are special cases of *PUBLIC. As a result, they do not
require component change processing because there are no using objects.

CA2E--Access Paths - ACP

Panel Change Change Type Override
Edit Access Path Auxiliaries Query physical name *PRIVATE
*OBJONLY
Query physical text
Query program name *PRIVATE

250 Generating and Implementing Applications

CA2E--Default Change Types for Component Change Processing

Panel Change Change Type Override
Query program text *OBJONLY
Edit Access Path Sequence number *GEN
Conditions
Field *GEN
Condition *GEN
Edit Access Path Details Access path name *OBJONLY
Allow select/omit *GEN
Generation mode *PRIVATE
Source member name *PRIVATE
Source member text *OBJONLY
Duplicate sequence *GEN
Unique key *GEN
Maintenance *GEN
Alternate collation table *PRIVATE
Format text *OBJONLY
Format name *PRIVATE
Assoc. retrieval access path *PRIVATE
Sequence number *PUBLIC
Delete Access Path Delete Access Path *DELETE
Edit Access Path Format Key number *PUBLIC
Entries
Ascending/descending *GEN
Alt. Coll. Sequence *PRIVATE
Display Access Path Add new format for SPN access *PUBLIC
Formats path
Edit Physical File Sequence *GEN
DDS name *PRIVATE
Type *PRIVATE

Appendix C: CA2E--Change Control Facilities Reference Tables 251

CA2E--Default Change Types for Component Change Processing

Panel Change Change Type Override
Length *PRIVATE
Edit Access Path Relations Add/remove relations *PUBLIC
Referenced access path *PRIVATE
Select record function *PRIVATE
Edit Access Path Select/omit details *GEN
Select/Omit
Sequence *GEN
Text description *OBJONLY
Edit Access Path Relation ~ Add/remove virtual fields *PUBLIC
Virtual Fields
No Panel Default access path creation *CREATE
program
CA2E--Arrays-ARR
Panel Change Change Type Override
Edit Array New array details *CREATE
Delete Array Delete array *DELETE
Edit Array Details Number of elements *PRIVATE
Sequence *PRIVATE
Unique *PRIVATE
File/field *PRIVATE
Access path/field *PRIVATE
Sequence *PRIVATE
Array name *OBJONLY
Edit Array Entries '+' Select field *PRIVATE
"-' Drop field *PRIVATE
Edit Array Key Entries Key number *PRIVATE

252 Generating and Implementing Applications

CA2E--Default Change Types for Component Change Processing

CA 2E--Conditions - CND

Panel Change Change Type Override
Display Field Domain Delete condition *DELETE
Conditions
Edit Field Condition Details Create condition *CREATE
Condition name *OBJONLY
Relational operator *PRIVATE
Internal value *PRIVATE
External value *PRIVATE
Edit List Condition Create condition *CREATE
'+' Add condition *PRIVATE
- Remove condition *PRIVATE

Change condition name *OBJONLY

CA 2E--Files - FIL

Panel Change Change Type Override

Define Objects New file/field

Record not found MSG

Record exists MSG

Edit File Entries Replace field *PUBLIC

Edit File Details File name *OBJONLY
Attribute *OBJONLY
Document sequence *OBJONLY
GEN format prefix *PRIVATE
Distributed *PRIVATE

Appendix C: CA2E--Change Control Facilities Reference Tables 253

CA2E--Default Change Types for Component Change Processing

CA 2E--Fields - FLD

Panel Change Change Type Override

Edit Field Details Field name *OBJONLY
Document sequence *OBJONLY
Type *PUBLIC
Ref type *NONE
Ref field *PUBLIC
Field usage *OBJONLY
Internal length *PUBLIC
Internal decimals *PUBLIC
Data type *OBJONLY
Gen name *PUBLIC
K'bd shift *PRIVATE
Lowercase *PRIVATE
Old DDS name *OBJONLY
Text *OBJONLY
Left hand side text *OBJONLY
Right hand side text *OBJONLY
Column headings *OBJONLY
Default condition *OBJONLY
Check condition *OBJONLY
Mandatory fill *OBJONLY
Valid system name *OBJONLY
Modulus 10/11 *OBJONLY
Edit codes Screen I/P *OBJONLY
Screen O/P *OBJONLY
Report *OBJONLY
Translate condition values *OBJONLY
External Length *PUBLIC
External decimal *PUBLIC
DDS name *PUBLIC

254 Generating and Implementing Applications

CA2E--Default Change Types for Component Change Processing

Panel Change Change Type Override
Prompt function *OBJONLY
Display as multi-line edit *OBJONLY
NPT height *OBJONLY
NPT width *OBJONLY
Display Unreferenced Delete unreferenced fields *DELETE
Fields
Field Mapping Function Ctx *OBJONLY
Parameters
Field *OBJONLY
Permit override *OBJONLY
CA 2E--Functions - FUN
Panel Change Change Type Override
Display All Functions Change access path *PRIVATE
Edit Functions Function *OBJONLY
Function type *OBJONLY
Access path *PRIVATE
Edit Function Details Function name *OBJONLY
Source name *GEN
Target HLL *GEN
Text *OBJONLY
No panel Default functions for a *CREATE
new file
Edit Screen Format Select record override *PRIVATE
Relations function
Edit Screen Constant Lines before *PRIVATE

Spaces before

Screen text

Length

Appendix C: CA2E--Change Control Facilities Reference Tables 255

CA2E--Default Change Types for Component Change Processing

Panel Change Change Type Override
Constant
Edit Function Field Delete function field *PRIVATE
Screen Field Mapping Source context *PRIVATE
Parameters Source field *PRIVATE
Create Model Version From & to functions *OBJONLY
Edit Function Options Subfile select *GEN
Header/Footer *GEN
Edit Function Parameters File/field *PUBLIC
(see note below)
Access path/field *PUBLIC
Passed as *PRIVATE
Sequence *PRIVATE

Note: The changes to the Edit Function Parameters panel apply also to arrays (ARR) and fields (FLD).

CA 2E——Messages - MSG

Panel Change Change Type Override
Edit Message Function Add message *CREATE
Change message *PRIVATE
Delete message *DELETE
Copy message New message *CREATE
Edit Function Parameters File/field *PUBLIC
Access path/field *PUBLIC
Passed as *PRIVATE
Sequence *PRIVATE
Create Model Versions From & to messages *OBJONLY

256 Generating and Implementing Applications

CA 2€--Component Change Processing Propagation Table

CA 2E--Component Change Processing Propadation Table

Component change processing ensures the integrity of your model by identifying which
other model objects are affected and the type of change required whenever you change
a model object. The component change processing propagation table shows the effect
of *PRIVATE and *PUBLIC changes to a model object on other objects that use the
changed object.

For more information on component change processing, refer to the Impact Analysis
section in the “Managing Model Objects” chapter in this guide.

Change Change Using Object Type
d Object Type
Type
ACP ARR CND FIL FLD FUN MSG
ACP *PUBLIC *PUBLI *PUB *PUBLIC *PUBLIC
C LIC
*PRIVATE *PRIVA *PRIV *PRIVAT
TE1 ATE E
ARR *PUBLIC *PRIVAT
E2
*PRIVATE *PRIVAT
E
CND *PUBLIC *PRIVA *PUBLI *PRIVAT
TE C E2
*PRIVATE *PRIVA *PRIVA *PRIVAT
TE TE E
FIL *PUBLIC ~ *PUBLI *PUBLI
C C
*PRIVATE *PRIVA
TE
FLD *PUBLIC *PUBLI *PRIV *PUBLI *PUBLI *PRIVAT
C ATE C C E2
*PRIVATE *PRIVAT
E
FUN *PUBLIC *PRIVA *PRIVA *PRIVAT
TE TE E
*PRIVATE *PRIVA *PRIVAT
TE E

Appendix C: CA2E--Change Control Facilities Reference Tables 257

CA 2E--Component Chande Processing Propadation Table

Notes:

Change Change Using Object Type
d Object Type

Type
ACP ARR CND FIL FLD FUN MSG
MSG *PUBLIC *PRIVA *PRIVAT
TE E

*PRIVATE

1. 1.The using access path is flagged *PRIVATE only when you change a physical access
path.

2. 2. If the change affects the parameters of the using function, the using function is
flagged *PUBLIC instead of *PRIVATE.

258 Generating and Implementing Applications

Index

*

*ALLOBJ o 27

*Configuration Table file (DRDA) » 233
*current RDB ¢ 231

*Distributed file (DRDA) » 233
*ERROR on job log » 241

*|local RDB e 231

*next RDB ¢ 231

A

access paths ¢ 147

accessing ¢ 45, 100

accessing an interactive log » 186
action diagram ¢ 183

action diagram errors 183

action required indicator ¢ 105
activating ¢ 24

adding entries ¢ 67

adding model object list entries * 67
after changes to objects » 188

All Objects list » 24, 27, 30, 31, 32, 33, 66, 79, 105,

126
altering key values ¢ 167
application objects 202
authority » 27

B

basic information ¢ 30

batch diagram ¢ 160

batch gen/compile ¢ 162

batch generation ¢ 160

batch or interactive generation? 138
batch or interactive? ¢ 138
batch processing » 101, 112
before/after image testing * 204
benefits of ¢ 121

biddirectional languages ¢ 220
bidirectional languages » 220
build generic list of objects « 164

C

Call a Program (Y2CALL) » 47, 131, 133, 201
calling a program ¢ 201
cautions ¢ 131

change control facilities » 16, 34, 37

change information 31, 79

change management ¢ 15, 17

Change Model Profile (YCHGMDLPRF) ¢ 154

change type ¢ 81, 105, 113, 115

changing » 47,122, 151

changing HLLs » 168

changing message file names ¢ 145

changing model language » 212

check out information e 33

checking names * 165

CHGOB)J » 167

choosing implementation level e 211

Class » 151

clearing » 24

closedown program e 166

COBOL * 171

COBOLto RPG » 171

command language programs ¢ 71, 75

command line e 54

commands e 28, 29, 34, 36, 37, 70, 232

comments ¢ 140

comments in source code (YGENCMT) e 140

compared to ¢ 19

comparing ¢ 38, 134

compilation ¢ 140, 141, 157, 158, 162, 184, 185, 188,
194, 195

compile listing ¢ 185

compile listing cleardown e 140

compile pre-processor ¢ 146

compiled program e 201

compiler overrides ¢ 146, 147

component ¢ 104

component change processing ¢ 81, 83, 102, 104,
105, 107,108, 111, 112,113, 115

component change processing information ¢ 32, 105

condition values » 177, 180

considerations 168

contents e 22

control fields ¢ 231

conversion to RPG ¢ 171

convert commands ¢ 194

converting a model ¢ 168

converting condition values ¢ 177

converting field condition values ¢ 179

Index 259

converting in multi-model environment ¢ 181
converting model messages ¢ 181

Copy Model Objects (YCPYMDLOBIJ) » 72
copy name ¢ 30,47,122, 126

copying ¢ 70, 72

copying entries ¢ 71

copying objects ¢ 72

creating » 43,67, 71

creating entries ¢ 232

creating for applications e 197

current e 122

current version ¢ 122, 126

D

data area YLNGnnnSYA (NLS) ¢ 212

data objects ¢ 157

date/time information ¢ 31

DBCS applications » 218, 219

DBCS machine to create for SBCS » 219

debug aids ¢ 187

default » 143

defined ¢ 19, 22, 24, 81, 84, 85, 104

defining » 74

defining source file names ¢ 143

delete ¢ 26, 27, 69, 134

deleting » 69, 134

deleting entries ¢ 69

deleting items in converting to RPG ¢ 171

deleting model object list entries ® 69

deleting model objects * 69

description » 21, 24, 27, 28, 66

design objects ¢ 19

development environment ¢ 226

Display Services Menu ¢ 174, 185

displaying (YGO) ¢ 199

displaying compile listing » 185

Distributed File Configuration Table 228, 232, 234,
235

distributed flag » 228

documentation ¢ 208

DRDA e 221, 222, 224, 225, 226, 227, 228, 231, 232

DRDA objects » 233

DSPCLS Class ¢ 151

duplicating execution objects ¢ 202

duplicating shipped objects 202

E

edit from Submit Model Generation & Creates ® 163

Edit Model Object List panel ¢ 44, 45, 46, 51, 54, 55,
59, 60, 61, 63, 67, 68, 69, 70, 71, 72, 74, 126

editing * 42, 46, 65

enabling applications ¢ 179

entries ® 22,27, 150

error routine (¥*PSSR) » 167

errors ® 183, 184, 204, 241

example ¢ 22, 38, 39, 40, 74,94, 98, 112, 122,129

exception monitoring ¢ 166

exception monitoring-program calls » 166

executing ¢ 75

execution displays ¢ 145

execution environment ¢ 179, 181, 202

execution objects ¢ 202

execution support programs ¢ 148

expansion ¢ 83

external message IDs ¢ 210

F

F4 prompt ¢ 204

features in RPG not in COBOL ¢ 165
field condition values ¢ 181

field reference file ® 177

file « 74

filter « 91

filtering * 63

Find Error option ¢ 183

finding compilation errors ¢ 185
finding errors ¢ 184

flag selection e 22

for generation ¢ 158

for tables » 234

for views ¢ 235

from Display Services Menu ¢ 174
function keys ¢ 51

function options ¢ 228

functional » 208

functional text » 208

functions * 146

G

generatable objects ¢ 19

generate help text (YGENHLP) « 139

generated applications ¢ 208

generated model ¢ 210

generation ¢ 136, 138, 139, 141, 142, 157, 158, 160,
161, 162,171,173, 174, 177,182, 184, 188, 195,
206, 210, 233, 241

260 Generating and Implementing Applications

generation information ¢ 32

generation objects ¢ 206

generation required » 81

GENLIB contents ¢ 142

gens and compiles to separate queues ¢ 157
group ® 122

H

header specification ¢ 167
help text » 206

Help text ¢ 139, 206, 208, 213
help text generation 139

HLL compatibility » 168

HLL implementation ¢ 165, 168

I

impact analysis * 81, 82, 83, 85, 86, 87, 91, 94, 98,

100, 101, 102, 104, 192
impact processed indicator ¢ 105
implementation ¢ 138, 165
implementation objects ¢ 19
in another national language ¢ 210
interactive ¢ 86
interactive diagram ¢ 161
interactive generation ¢ 161, 184
introduction ¢ 138, 221

J

job description ¢ 154, 162

job description for batch * 162

job description list ® 154

job descriptions 154

job list » 70, 158, 159, 162, 163, 164, 165, 171
job list commands ¢ 70

job list for generation ¢ 158

job log * 185, 186

job queue ¢ 150, 151, 154, 157, 174

job queue entries ® 150

K
keyword ¢ 210
L

language-specific (NLS) 211
language-specific object library 211
language-specific objects » 211

level » 87, 94

level check testing ¢ 204
levels e 136

library 142, 143, 145, 147, 154, 195, 211

library list 154
library setup ¢ 142
list entry e 22, 27

M

management e 149

managing ¢ 121

many-at-a-time ¢ 139

many-at-a-time generation 139

menu ¢ 197, 199, 200, 201

merging entries and commands ¢ 54
merging entries with commands ¢ 54
message conversion ¢ 181

message file names ¢ 145

message ID generation ¢ 139

message ID generation (NLS) ¢ 139
message IDs (NLS) » 139

model ¢ 140, 168, 181

model list for commands ¢ 34

model object » 69

model object cross references ¢ 83, 100
model object description ¢ 28, 29, 36, 66
model object list ® 26

model object list entries ¢ 71

model object list entry » 69

model object lists » 19, 22, 24, 26, 27, 38, 39, 40, 41,

42,43,44,46,67,69,71,75
model object type * 84, 85
model object usages ¢ 192

model objects ¢ 19, 20, 21, 24, 27, 28, 38, 65, 66, 69,

70,72,79, 82, 83, 84, 85,121
model profile » 34,37, 74, 108, 121, 139
model reorganization ¢ 140
model values * 108, 139, 140, 227
moving ¢ 205
moving items among queues ¢ 174
moving objects ¢ 205
MSGID (NLS) 210
multi-language environments ¢ 214
multiple lists e 164
multi-programmer environment ¢ 195

N

named ¢ 27, 67
named model object list ® 67

Index 261

names ¢ 165, 168

names in recreating physical files e 195
naming e 20, 24

narrative text e 208

navigation ¢ 59

NLS » 139, 210, 211, 212, 213, 214, 218, 220
non-current ¢ 131

numeric parameter passing ® 166

0

object only ¢ 81

objects » 192, 205, 206, 211, 237
on *ALLOBJ ¢ 126

on SBCS machine ¢ 219

one per developer ¢ 163
operational ¢ 208

operational narrative text ® 208
operational text ¢ 208

output queue ¢ 186

output queue for jobs ¢ 186
overview ¢ 16, 22, 28, 44, 104, 121

P

performance considerations ¢ 138, 139, 140
PGM fields ¢ 231

physical file 195

positioning ¢ 61

preparations ¢ 141

preparing to generate ¢ 143, 145

private ¢ 81, 113

program call exception monitoring 166
program execution ¢ 201

public » 81, 115

Q

QBATCH subsystem ¢ 151
QBATCH2 ¢ 154

QBATCH2 job queue ¢ 154
QCMD environment ¢ 151
QIGC system value » 219

R

RDB e 223

RDBMS e 222

recreating physical files ¢ 195
redirection ¢ 129, 131, 132
references ¢ 85, 98
referential integrity 231

regenerating Help text e 213

regenerating in another language ¢ 213
relational database ¢ 223

Relational Database Management System ¢ 222
Remote Unit of Work (RUOW) e 222
reorganization ¢ 140

reorganizing ® 165

repeating selection options ¢ 51, 55, 68, 72
requesting ¢ 173

requesting generation ¢ 174

required action indicator « 113, 115
required for compile/execute ¢ 237
resetting severity level » 186

retaining data when recreating ® 195
return code ¢ 201

reviewing/changing entries ¢ 154

routing entries ¢ 151

RPG conversion to COBOL ¢ 169

RPG features not in COBOL » 166, 167
running ¢ 111

S

sample ¢ 159

selecting » 46

selecting a list » 46

separate compile queue ¢ 157
separate gen queue ¢ 157

separate gen/compile queues ¢ 157
session list ® 24, 25

setting up color ¢ 200

setup ¢ 162

shipped application objects 202
shipped defaults 224

shipped files » 147, 148

simulating ¢ 102, 107

simulating a change » 102, 111
source and object libraries 139
source banner ¢ 144

source code comments generation ¢ 140
source file name defaults » 143
source file names ¢ 143

SQL e 221, 225

stage flag 158

standard source banner ¢ 144
status ¢ 158

storing ¢ 26

subfile select options * 46, 51, 71, 74

262 Generating and Implementing Applications

Submit Model Create Requests (YSBMMDLCRT) e working with « 41, 124

138, 139

subsetting ¢ 60, 126 Y
substitution variables ¢ 73 Y2CALL (Call a Program) » 47, 131, 133, 201
summary ¢ 17 Y2CALL command 133
suppressing generation ¢ 139 Y2SYSRC o 147
suppressing Help text e 139 Y2SYSRC library » 147
suppressing in source code ¢ 140 YALCPHYR1C program e 147
surrogate number ¢ 20 YAPYTRNMDL command » 212
T YBLDJOBLST command ¢ 164

YBRTPRC (pre-compiler program) e 151
tags » 206 YCHGMDLPRF (Change Model Profile) ¢ 154
testing ¢ 133, 204 YCHKJOBLE command ¢ 165
translating » 210 YCMPCHG (Component Change Processing) ® 108
translating user-modified data * 213 YCMPCHG model value » 108
troubleshooting * 241 YCPYLIB model value ¢ 195
types ¢ 19 YCRTENV model value ¢ 151

YCRTOVR (pre-compiler routing entry) ¢ 151
U YCRTOVR compare value ¢ 151
UIM * 206 YCVTDSTFIL command (DRDA) e 232
UM generation * 206 YCVTMDLMSG command e 181
UIM Help text » 206 YDOCMDLFUN command e 208
usages * 83, 84, 94, 104, 132, 192 YEDTMDLLST ¢ 45
usages and/or references ¢ 83 YGENCMT 140
User Interface Manager (UIM) » 206 YGENCMT model value ¢ 140
User Interface Mananger (UIM) ¢ 206 YGENHLP « 139
user option file » 74 YGENHLP model value ¢ 139
user source * 168 YIGCCNV model value » 218
user-defined actions ¢ 51, 71, 73, 74, 75 YLNGNnnnSYA data area ¢ 212

YMOVY1DTA command ¢ 157
YMSGVNM model value * 145

user-defined options ¢ 51, 71, 74
user-modifiable programs e 147

uses of e 132 YOLDLIB model value ¢ 195
using ¢ 25, 132 YPMTGEN model value 139, 211
using objects * 84, 104 YPMTMSF model value ¢ 210
using YBLDJOBLST ¢ 177 YPRCMSGR1R exit program e 214
YRGZMDL command ¢ 140, 165
\J YRPGHDR model value ¢ 167
YSBMMDLCRT (Submit Model Create Requests) ¢

verifying e 151

verifying results ¢ 182

verifying your setup * 154

versions ¢ 37,771,121, 122, 124, 126, 129, 131, 132,
133,134

versions of functions and messages ® 121

viewing e 44, 66

w

where used ¢ 192, 193
work environment ¢ 149, 150, 151, 154, 157

138, 139
YSBMMDLCRT command e 157
YWRKDSTFIL command (DRDA) e 233

Index 263

	CA 2E Generating and Implementing Applications
	Contents
	1: Managing Model Objects
	Components of CA 2E Change Management
	Overview of CA 2E Change Control Facilities
	Change Management of CA 2E Environments with CM
	Summary of CA 2E Change Management Features

	Model Objects
	Supported Model Object Types
	Naming and Identifying Model Objects
	Model Object Description

	Model Object Lists
	All Objects Model Object List
	Session Lists
	Naming and Activating Session Lists
	Using Session Lists
	Administering Your Model
	Using Session Lists with Model List Commands
	Example
	Referencing Model Object Lists in Commands
	How Model Object Lists are Stored
	Model Object List Authority

	All Objects List
	Model Object Description
	Model List Commands and the Model Object Description
	Basic Model Object Information
	Date and Time Information
	Change Information
	Component Change Processing Information
	Generation Information
	Check Out Information

	Commands to Manipulate Model Object Lists
	Change Control Facilities Commands
	Model Object List Commands
	Model Object List Entry Commands
	Model Object Description Commands
	Job List Commands
	Model Profile Commands
	Version Commands
	Using Change Control Facilities Commands
	Example 1
	Example 2
	Example 3

	Working with Model Object Lists
	Editing a Model Object List
	Creating a Model Object List

	Editing Model Object Lists
	Edit Model Object List Panel
	Selecting Another Model Object List
	Subfile Select Options
	User-defined Subfile Select Options
	CA 2E Subfile Select Options
	Function Keys
	Command Line
	Merging Entries with Commands
	Example 1
	Example 2

	Retrieving Commands
	Using Special Command Line Values to Retrieve Commands
	Examples

	Full Screen Mode
	Grouping and Navigation Aids
	Subsetting a Model Object List
	Example

	Positioning a Model Object List
	Example

	Display Order of Model Objects
	Filtering a Named Model Object List
	Editing Model Objects
	Viewing Model Objects
	Viewing a Model Object's Edit Panel
	Viewing a Model Object Description
	Creating Model Object Lists
	Adding Entries to a Named Model Object List
	Adding Entries to the Current Model Object List
	Adding Entries to an Alternate Model Object List
	Example

	Deleting a Model Object or a Model List Entry
	Selecting Job List Commands
	Copying Model Objects
	Creating Copies of Functions and Messages
	Copying Entries Between Model Object Lists
	Performing User-defined Actions on Model List Entries
	Copying Model Objects Between Models
	Using Substitution Variables
	Defining and Editing User-defined Options
	Executing a Model Object List
	Example

	Model Object Audit Information
	Tracking Changes to Model Objects
	Determining the Change Type

	Impact Analysis
	Introduction
	Model Object Cross Reference Facilities
	Understanding Model Object Usages
	Understanding Model Object References
	Interactive Impact Analysis
	Using the Level Number
	Using the Gen Objs and Total Counts
	Using the Object and Type Positioner Specifications
	Using the Include Inactive Code Specification
	Include inactive code: *YES
	Include inactive code: *NO
	Include inactive code: *IGN
	Examples

	Using the Exclude System Objects and Current Objects Only Specifi
	Using the Scope Specification
	Using the Scope Specification
	Using the Filter Specification
	Using the Reason Specification
	Working with Usages Interactively
	Example
	Working with References Interactively
	Example
	Accessing Model Object Cross Reference Facilities
	Working with Model Object Cross References in Batch
	Simulating Changes to Model Objects
	Component Change Processing
	Understanding Component Change Processing
	Impact on the All Objects List
	Examples
	Viewing the Results
	Simulating a Change
	Setting the YCMPCHG Model Value and the Model Profile
	Component Change Processing Model Value
	Model Profile Settings
	Using These Settings to Administer Your Model
	Performance Considerations
	Methods of Running Component Change Processing
	Running Component Change Processing in Batch
	Component Change Processing Scenario
	Private Change to Access Path
	Public Change to Access Path

	Model Security
	Model Profile
	Changing a Model Profile
	How Model Profiles are Stored
	Managing Model Profiles
	Managing Model Profiles

	Working with Versions of Functions and Messages
	Understanding Versions
	Understanding Versions
	A Reason Not to Use Versions
	Working with Versions
	Viewing a Version Group
	Creating a Version
	Making a Version Current
	Example
	Cautions
	Non-current Versions
	Other Uses for Redirection
	Using Versions
	Testing an External Function
	Testing Messages and Internal Functions
	Comparing Versions
	Deleting Versions

	2: Generation and Implementation: An Introduction
	What Happens During Generation and Compilation?
	Implementation
	Performance Considerations
	Batch or Interactive Source Generation?
	Generate Several Objects at a Time
	Separate Source and Object Libraries
	Message ID Generation for National Languages
	Suppressing Help Text
	Suppressing Comments in Source Code
	Model Reorganization
	Deleting Compile Listings

	3: Preparing for Generation and Compilation
	Verifying Your Generation Library Setup
	Defining Source File Names

	Changing Other System Parameters and Model Values
	Changing Text in Standard Source Banner
	Execution Displays
	Changing Message File Names

	Reviewing and Changing Compiler Overrides
	For Functions
	For Access Paths

	Viewing and Changing Shipped Source
	User-modifiable Shipped Programs
	Execution Support Programs

	Managing Your Work Environment
	Job Queue Entries
	Routing Entries
	Verifying Your Work Environment Setup
	Moving Toolkit Data Objects from Y1SY
	Sending Generations and Compilations to Separate Queues

	Understanding Job Lists
	Sample Job List Series
	Batch Generation
	Interactive Generation
	Job Descriptions for Batch Generation and Compilation

	Using Job Lists
	Using More Than One Job List
	Editing Job Lists
	Building Job Lists
	Managing Multiple Job Lists
	Checking Job Lists
	Reorganizing Job Lists

	HLL Implementation Considerations
	Features in RPG Not in COBOL
	Numeric Parameter Passing
	Exception Monitoring on Program Calls
	Closedown Program
	CHGOBJ to Alter Key Values
	Error Routine
	Header Specification
	Converting a Model from One HLL to Another
	User Source Considerations
	User Source in Same HLL as Calling Function
	Compatible Names Between HLLs
	Converting from RPG to COBOL
	Converting from COBOL to RPG

	4: Generating and Compiling Your Application
	Requesting Source Generation
	Working from the Display Services Menu
	Using YBLDJOBLST to Submit Jobs
	Converting Condition Values
	Generating Your Field Reference File

	Enabling Execution Environments
	Field Condition Values for Status Fields
	Converting Field Condition Values
	Converting Condition Values in a Multi-model Environment
	Converting Model Messages

	Verifying Results
	Finding Errors Before Generation
	Finding Errors After Generation
	Interactive Generation Errors
	Finding Errors After Compilation
	From the Display Services Menu
	Display the Compile Listing
	Using Job Logs
	Resetting Job Log Severity Level
	Accessing an Interactive Job Log
	Working with the Output Queue
	Debug Aids

	Generating and Compiling After Changes
	Impact Analysis
	What to Generate/Compile When You Change a Model Object
	Changes Requiring Generation/Compilation
	Finding Where CA 2E Objects are Used
	Model Object Usages
	Model Object References
	Finding Unreferenced Model Objects
	Toolkit Convert Commands
	Multi-Programmer Environments
	Retaining Data When You Recreate Physical Files

	5: Implementing Your Application
	CA 2E Toolkit Menus
	Creating and Maintaining Menus
	Displaying Your Menu
	Setting Up Color Menus

	Calling a Program
	Execution Environments
	Duplicating Shipped Application Objects
	Duplicating Execution Objects

	Testing
	Before You Begin
	What to Test

	Moving Objects
	CA 2E CM Overview
	Toolkit Generic Move Commands

	UIM Help Text
	UIM Panel Groups

	Documenting Your Generated Application

	6: National Language Support
	Understanding NLS Implementation
	Translating a Generated Model
	Choosing Implementation Level
	Placing Language-Specific Objects in Libraries
	Changing a Model Language
	Translating User-Modified Data
	Generating Help Text

	Managing Multi-Language Environments
	Overview
	National Language Database Files
	National Language Support File (Y2NLSPP)
	Message Mapping File (Y2MSMPP)
	Exit Program (YPRCMSGR1R)
	AAPRMM Subroutine
	BAADMS Subroutine
	Using the Exit Program

	Double Byte Character Set (DBCS) Applications
	Creating Applications
	SBCS Machine to Create a DBCS Application
	DBCS Machine to Create an SBCS Application

	Bi-directional Languages

	7: Distributed Relational Database Architecture
	What Is DRDA?
	Remote Unit of Work
	Distributed Unit of Work
	Distributed Request

	CA 2E Implementation of DRDA
	Shipped Defaults
	Steps to Implement DRDA
	Development Environments for DRDA in CA 2E

	Using Shipped DRDA Values
	DRDA Model Values
	Distributed Flag
	Function Options
	Accessing Multiple Systems with the Same File Name
	Functions with Subfiles
	DRDA Control Fields
	Referential Integrity

	Commands for DRDA
	YCVTDSTFIL: Convert Distributed Files to Configuration
	YWRKDSTFIL: Work with Distributed Files
	Working with Configuration Table Entries for Tables
	RDB Name
	Seq
	Collection
	Working with Configuration Table Entries for Views

	A: CA 2E Objects Required for Compilation and Execution
	Required CA 2E Objects
	Required Objects for RPG Compilation
	Required Objects for COBOL Compilation
	Required Objects for Execution

	Toolkit Required Objects

	B: Troubleshooting
	Source Generation Errors
	Display File and Program in Error (*ERROR)
	Action Diagram Un-determined Action
	Context Not Found

	C: CA2E--Change Control Facilities Reference Tables
	CA2E--Model Object Description
	CA 2E--Definitions of Model Object Description Fields

	CA2E--Default Change Types for Component Change Processing
	CA2E--Access Paths - ACP
	CA2E--Arrays-ARR
	CA 2E--Conditions - CND
	CA 2E--Files - FIL
	CA 2E--Fields - FLD
	CA 2E--Functions – FUN
	CA 2E--Messages – MSG

	CA 2E--Component Change Processing Propagation Table

	Index

